

Lecture Notes in Computer Science 6587
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Jeffrey Xu Yu Myoung Ho Kim
Rainer Unland (Eds.)

Database Systems
for Advanced Applications

16th International Conference, DASFAA 2011
Hong Kong, China, April 22-25, 2011
Proceedings, Part I

13

Volume Editors

Jeffrey Xu Yu
The Chinese University of Hong Kong
Department of Systems Engineering and Engineering Management
Shatin, N.T., Hong Kong, China
E-mail: yu@se.cuhk.edu.hk

Myoung Ho Kim
Korea Advanced Institute of Science and Technology (KAIST)
Department of Computer Science
291 Daehak-ro (373-1 Guseong-don), Yuseong-gu, Daejeon 305-701, Korea
E-mail: mhkim@dbserver.kaist.ac.kr

Rainer Unland
University of Duisburg-Essen
Institute for Computer Science and Business Information Systems (ICB)
Schützenbahn 70, 45117 Essen, Germany
E-mail: rainer.unland@icb.uni-due.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-20148-6 e-ISBN 978-3-642-20149-3
DOI 10.1007/978-3-642-20149-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011923553

CR Subject Classification (1998): H.2-5, C.2, J.1, J.3

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

DASFAA is an annual international database conference, which showcases state-
of-the-art R&D activities in database systems and their applications. It provides
a forum for technical presentations and discussions among database researchers,
developers and users from academia, business and industry. It is our great plea-
sure to present you the proceedings of the 16th International Conference on
Database Systems for Advanced Applications (DASFAA 2011), which was held
in Hong Kong, China, during April 22-25, 2011.

DASFAA 2011 received 225 research paper submissions from 32 countries /
regions (based on the affiliation of the first author). After a thorough review
process for each submission by the Program Committee and specialists recom-
mended by Program Committee members, DASFAA 2011 accepted 53 full re-
search papers and 12 short research papers (the acceptance rates were 24% and
5%, respectively). Other papers in this volume include four industrial papers
selected by a committee chaired by Takahiro Hara (Osaka University), Tengjiao
Wang (Peking University), and Xing Xie (Microsoft Research China), and eight
demo papers selected by a committee chaired by Jidong Chen (EMC Research
China), Lei Chen (The Hong Kong University of Science and Technology), and
Kyoung-Gu Woo (Samsung Electronics).

This volume also includes two invited keynote papers, presented by lead-
ing experts in database research and advanced applications at DASFAA 2011,
Josephine M. Cheng (IBM Research Almaden Lab) and Divy Agrawal (Univer-
sity of California at Santa Barbara), on the topics of “Smarter Planet: Empower
People with Information Insights” and “Database Scalability, Elasticity, and
Autonomy in the Could,” respectively; one extended abstract for the DASFAA
2011 ten-year best paper on “What Have We Learnt from Deductive Object-
Oriented Database Research?” by Mengchi Liu (Carleton University), Gillian
Dobbie (University of Auckland), and Tok Wang Ling (National University
of Singapore); three tutorial abstracts, selected by Tutorial Co-chairs Reynold
Cheng (The University of Hong Kong), Ken Lee (University of Massachusetts
Dartmouth), and Ee-Peng Lim (Singapore Management University), “Manag-
ing Social Image Tags: Methods and Applications” by Aixin Sun and Sourav S.
Bhowmick, “Searching, Analyzing and Exploring Databases” by Yi Chen, Wei
Wang and Ziyang Liu, and “Web Search and Browse Log Mining: Challenges,
Methods, and Applications” by Daxin Jiang; and one panel abstract selected
by Panel Co-chairs, Haibo Hu (Hong Kong Baptist University), Haixun Wang
(Microsoft Research China), and Baihua Zheng (Singapore Management Uni-
versity). The conference program boasts conference proceedings that span two
volumes in Springer’s Lecture Notes in Computer Science series.

Beyond the main conference, six workshops, held in conjunction with
DASFAA 2011, were selected by Workshop Co-chairs Jianliang Xu (Hong Kong

VI Preface

Baptist University), Ge Yu (Northeastern University), and Shuigeng Zhou (Fu-
dan University). They are the First International Workshop on Graph-structured
Data Bases (GDB 2011), the First International Workshop on Spatial Informa-
tion Modeling, Management and Mining (SIM3), the International Workshop
on Flash-Based Database Systems (FlashDB), the Second International Work-
shop on Social Networks and Social Media Mining on the Web (SNSMW), the
First International Workshop on Data Management for Emerging Network In-
frastructures (DaMEN), and the 4th International Workshop on Data Quality
in Integration Systems (DQIS). The workshop papers are included in a sepa-
rate volume of proceedings also published by Springer in its Lecture Notes in
Computer Science series.

DASFAA 2011 was jointly organized by The Chinese University of Hong
Kong, The Hong Kong University of Science and Technology, Hong Kong Baptist
University, The University of Hong Kong, City University of Hong Kong, and
The Hong Kong Polytechnic University. It received in-cooperation sponsorship
from the China Computer Federation Database Technical Committee. We are
grateful to the sponsors who contributed generously to making DASFAA 2011
successful. They are the Department of Systems Engineering and Engineering
Management of The Chinese University of Hong Kong, Oracle, IBM, K.C. Wong
Education Foundation, and Hong Kong Pei Hua Education Foundation.

The conference would not have been possible without the support of many col-
leagues. We would like to express our special thanks to Honorary Conference Co-
chairs, Xingui He (Peking University), Shan Wang (Renmin University of China),
and Kyu-Young Whang (KAIST) for their valuable advice on all aspects of or-
ganizing the conference. We thank Organizing Committee Chair Kam-Fai Wong
(The Chinese University of Hong Kong), Publicity Co-chairs, Raymond Wong
(The Hong Kong University of Science and Technology), Xiaochun Yang (North-
eastern University), and Xiaofang Zhou (University of Queensland), Publication
Chair Rainer Unland (University of Duisburg-Essen), Finance Chair Vincent
Ng (The Hong Kong Polytechnic University), Local Arrangements Chair Hong-
va Leong (The Hong Kong Polytechnic University), Sponsor Chair Joseph Ng
(Hong Kong Baptist University), Best Award Committee Co-chairs Ming-Syan
Chen (Academia Sinica, Taiwan and National Taiwan University) and Aoying
Zhou (East China Normal University), and Demo Award Committee Co-chairs
Ben Kao (The University of Hong Kong) and Lizhu Zhou (Tsinghua University).
Our thanks go to all the committee members and other individuals involved in
putting it all together, and all authors who submitted their papers to this con-
ference.

July 2010 Dik Lun Lee
Wang-Chien Lee

Kamal Karlapalem
Jeffrey Xu Yu

Myoung Ho Kim

Organization

Honorary Conference Co-chairs

Xingui He Peking University, China
Shan Wang Renmin University of China, China
Kyu-Young Whang Korea Advanced Institute of Science and

Technology (KAIST), Korea

Conference General Co-chairs

Dik Lun Lee The Hong Kong University of Science and
Technology, China

Wang-Chien Lee Penn State University, USA
Kamal Karlapalem IIIT-Hyderabad, India

Program Committee Co-chairs

Jeffrey Xu Yu The Chinese University of Hong Kong, China
Myoung Ho Kim Korea Advanced Institute of Science and

Technology (KAIST), Korea

Organizing Committee Chair

Kam-Fai Wong The Chinese University of Hong Kong, China

Workshop Co-chairs

Jianliang Xu Hong Kong Baptist University, China
Ge Yu Northeastern University, China
Shuigeng Zhou Fudan University, China

Industrial Co-chairs

Takahiro Hara Osaka University, Japan
Tengjiao Wang Peking University, China
Xing Xie Microsoft Research China, China

Tutorial Co-chairs

Reynold Cheng The University of Hong Kong, China
Ken Lee University of Massachusetts Dartmouth, USA
Ee-Peng Lim Singapore Management University, Singapore

VIII Organization

Panel Co-chairs

Haibo Hu Hong Kong Baptist University, China
Haixun Wang Microsoft Research China, China
Baihua Zheng Singapore Management University, Singapore

Demo Co-chairs

Jidong Chen EMC Research China, China
Lei Chen The Hong Kong University of Science and

Technology, China
Kyoung-Gu Woo Samsung Electronics, Korea

Publicity Co-chairs

Raymond Wong The Hong Kong University of Science and
Technology, China

Xiaochun Yang Northeastern University, China
Xiaofang Zhou University of Queensland, Australia

Local Arrangements Chair

Hong-va Leong The Hong Kong Polytechnic University, China

Finance Chair

Vincent Ng The Hong Kong Polytechnic University, China

Publication Chair

Rainer Unland University of Duisburg-Essen, Germany

Web Chair

Hong Cheng The Chinese University of Hong Kong, China

Demo Award Committee Co-chairs

Ben Kao The University of Hong Kong, China
Lizhu Zhou Tsinghua University, China

Best Paper Committee Co-chairs

Ming-Syan Chen Academia Sinica, Taiwan and National Taiwan
University, Taiwan

Aoying Zhou East China Normal University, China

Organization IX

Steering Committee Liaison

Qing Li City University of Hong Kong, China

Sponsor Chair

Joseph Ng Hong Kong Baptist University, China

CCF DBTC Liaison

Xiaofeng Meng Renmin University of China, China

DASFAA Awards Committee

Tok Wang Ling (Chair) National University of Singapore, Singapore
Jianzhong Li Harbin Institute of Technology, China
Krithi Ramamirtham Indian Institute of Technology at Bombay,

India
Kian-Lee Tan National University Singapore, Singapore
Katsumi Tanaka Kyoto University, Japan
Kyu-Young Whang Korea Advanced Institute of Science and

Technology (KAIST), Korea
Jeffrey Xu Yu The Chinese University of Hong Kong, China

DASFAA Steering Committee

Katsumi Tanaka (Chair) Kyoto University, Japan
Ramamohanarao Kotagiri

(Vice Chair) University of Melbourne, Australia
Kyu-Young Whang (Advisor) Korea Advanced Institute of Science and

Technology (KAIST), Korea
Yoshihiko Imai (Treasurer) Matsushita Electric Industrial Co., Ltd., Japan
Kian Lee Tan (Secretary) National University of Singapore (NUS),

Singapore
Yoon Joon Lee Korea Advanced Institute of Science and

Technology (KAIST), Korea
Qing Li City University of Hong Kong, China
Krithi Ramamritham Indian Institute of Technology at Bombay,

India
Ming-Syan Chen National Taiwan University, Taiwan
Eui Kyeong Hong Univerity of Seoul, Korea
Hiroyuki Kitagawa University of Tsukuba, Japan
Li-Zhu Zhou Tsinghua University, China
Jianzhong Li Harbin Institute of Technology, China
BongHee Hong Pusan National University, Korea

X Organization

Program Committees

Research Track

Toshiyuki Amagasa University of Tsukuba, Japan
Masayoshi Aritsugi Kumamoto University, Japan
James Bailey University of Melbourne, Australia
Ladjel Bellatreche Poitiers University, France
Boualem Benatallah University of New South Wales, Australia
Sourav S. Bhowmick Nanyang Technological University, Singapore
Athman Bouguettaya CSIRO, Australia
Chee Yong Chan National University Singapore, Singapore
Jae Woo Chang Chonbuk National University, Korea
Lei Chen The Hong Kong University of Science and

Technology, China
Ming-Syan Chen National Taiwan University, Taiwan
Reynold Cheng The University of Hong Kong, China
Hong Cheng The Chinese University of Hong Kong,

China
James Cheng Nanyang Technological University,

Singapore
Byron Choi Hong Kong Baptist University, China
Yon Dohn Chung Korea University, Korea
Gao Cong Nanyang Technological University,

Singapore
Bin Cui Peking University, China
Alfredo Cuzzocrea ICAR-CNR / University of Calabria, Italy
Gill Dobbie University of Auckland, New Zealand
Xiaoyong Du Renmin University of China, China
Jianhua Feng Tsinghua University, China
Ling Feng Tsinghua University, China
Sumit Ganguly IIT Kanpur, India
Yunjun Gao Zhejiang University, China
Vivek Gopalkrishnan Nanyang Technological University, Singapore
Wook-Shin Han Kyungpook National University, Korea
Takahiro Hara Osaka University, Japan
Bingsheng He Nanyang Technological University,

Singapore
Wynne Hsu National University Singapore, Singapore
Haibo Hu Hong Kong Baptist University, China
Seung-won Hwang POSTECH, Korea
Yoshiharu Ishikawa Nagoya University, Japan
Mizuho Iwaihara Waseda University, Japan
Adam Jatowt Kyoto University, Japan,
Ruoming Jin Kent State University, USA
Jaewoo Kang Korea University, Korea

Organization XI

Norio Katayama National Institute of Informatics, Japan
Yiping Ke The Chinese University of Hong Kong,

China
Sang Wook Kim Hanyang University, Korea
Young-Kuk Kim Chungnam National University, Korea
Markus Kirchberg Hewlett-Packard Labs Singapore and

National University of Singapore, Singapore
Hiroyuki Kitagawa University of Tsukuba, Japan
Flip Korn AT&T Research, USA
Hady W. Lauw Institute for Infocomm Research, Singapore
Jae-Gil Lee IBM Almaden, USA
Mong Li Lee National University of Singapore, Singapore
Sang-goo Lee Seoul National University, Korea
Sang-Won Lee Sungkyunkwan University, Korea
Wang-Chien Lee Pennsylvania State University, USA
Cuiping Li Renmin University of China, China
Jianzhong Li Harbin Institute of Technology, China
Xuemin Lin University of New South Wales, Australia
Chengfei Liu Swinburne University of Technology,

Australia
Eric Lo Hong Kong Polytechnic University, China
Jiaheng Lu Renmin University of China, China
Nikos Mamoulis The University of Hong Kong, China
Weiyi Meng Binghamton University, USA
Xiaofeng Meng Renmin University of China, China
Bongki Moon University of Arizona, USA
Yang-Sae Moon Kangwon National University, Korea
Yasuhiko Morimoto Hiroshima University, Japan
Yunmook Nah Dankook University, Korea
Miyuki Nakano University of Tokyo, Japan
Tadashi Ohmori University of Electro-Communications, Japan
Makoto Onizuka NTT Cyber Space Labs, Japan
Sanghyun Park Yonsei Universiy, Korea
Seog Park Sogang University, Korea
Jian Pei Simon Fraser University, Canada
Uwe Rohm University of Sydney, Australia
Markus Schneider University of Florida, USA
Heng Tao Shen University of Queensland, Australia
Hyoseop Shin Konkuk University, Korea
S. Sudarshan IIT Bombay, India
Atsuhiro Takasu National Institute of Informatics, Japan
Kian-Lee Tan National University Singapore, Singapore
Jie Tang Tsinghua University, China
David Taniar Monash University, Australia
Egemen Tanin University of Melbourne, Australia

XII Organization

Vincent S. Tseng National Cheng Kung University, Taiwan
Vasilis Vassalos Athens University of Economics and Business,

Greece
John Wang Griffith University, Australia
Jianyong Wang Tsinghua University, China
Guoren Wang Northeastern University, China
Wei Wang University of New South Wales, Australia
Raymond Wong The Hong Kong University of Science and

Technology, China
Xiaokui Xiao Nanyang Technological University, Singapore
Jianliang Xu Hong Kong Baptist University, China
Man-Lung Yiu Hong Kong Polytechnic University, China
Haruo Yokota Tokyo Institute of Technology, Japan
Jae Soo Yoo Chungbuk National University, Korea
Ge Yu Northeastern University, China
Aidong Zhang University of Buffalo, SUNY, USA
Rui Zhang University of Melbourne, Australia
Yanchun Zhang Victoria University, Australia
Baihua Zheng Singapore Management University, Singapore
Aoying Zhou East China Normal University, China
Xiaofang Zhou University of Queensland, Australia

Industrial Track

Wolf-Tilo Balke University of Hannover, Germany
Edward Chang Google, China and University of

California Santa Barbara, USA
Bin Cui Peking University, China
Dimitrios Georgakopoulos CSIRO, Australia
Seung-Won Hwang POSTECH, Korea
Marek Kowalkiewicz SAP, Australia
Sanjay Kumar Madria Missouri University of Science and Technology,

USA
Mukesh Mohania IBM Research India, India
Makoto Onizuka NTT Corporation, Japan
Jilei Tian Nokia Research China, China
Masashi Tsuchida Hitach, Ltd., Japan
Jianyong Wang Tsinghua University, China
Wei Wang Fudan University, China
Yu Zheng Microsoft Research Asia, China

Demo Track

Ilaria Bartolini University of Bologna, Italy
Bin Cui Peking University, China
Heasoo Hwang Samsung Electronics, Korea

Organization XIII

Jin-ho Kim Kangwon National University, Korea
Changkyu Kim Intel Labs, USA
Guoqiong Liao Jiangxi University of Finance and Economics,

China
Hongrae Lee Google Research, USA
Jiaheng Lu Renmin University of China, China
Peng Wang Fudan University, China
Feng Yaokai Kyushu University, Japan

External Reviewers

Eunus Ali
Parvin Asadzadeh
He Bai
Moshe Barukh
Seyed-Mehdi-Reza

Beheshti
Arnab Bhattacharya
Nick Bozovic
Xin Cao
Wing Kwan Chan
Lijun Chang
Muhammad Aamir

Cheema
Jinchuan Chen
Jiefeng Cheng
Taewon Cho
Jaehoon Choi
Shumo Chu
Ke Deng
Wei Feng
Shen Ge
Haris Georgiadis
Kazuo Goda
Jian Gong
Reza Hemayati
He Hu
Hai Huang
Jun Huang
Stéphane Jean
Bin Jiang
Lili Jiang
Yifan Jin
Akimitsu Kanzaki
Hideyuki Kawashima

Selma Khouri
Henning Koehler
Neila Ben Lakhal
Dong-Ho Lee
Injoon Lee
Jongwuk Lee
Kyubum Lee
Mu-Woong Lee
Sanghoon Lee
Sunwon Lee
Guoliang Li
Jianxin Li
Jing Li
Jiang Li
Lin Li
Xian Li
Xiang Li
Xiang Lian
Wenxin Liang
Lian Liu
Wenting Liu
Xingjie Liu
Jiangang Ma
Hossein Maserrat
Takeshi Mishima
Surya Nepal
Bo Ning
Wee Siong Ng
Junho Oh
Sai Tung On
Jin-woo Park
Yu Peng
Jianzhong Qi
Kun Qian

Miao Qiao
Hongda Ren
Jong-Won Roh
Seung Ryu
Sherif Sakr
Shuo Shang
Jie Shao
Mohamed A. Sharaf
Gao Shen
Wei Shen
Zhitao Shen
Wanita Sherchan
Reza Sherkat
Lei Shi
Chihwan Song
Ha-Joo Song
Shaoxu Song
Yehia Taher
Takayuki Tamura
Guanting Tang
Yuan Tian
Guoping Wang
Puwei Wang
Yi Wang
Yousuke Watanabe
Ingo Weber
Chuan Xiao
Hairuo Xie
Kexin Xie
Lin Xin
Jiajie Xu
Zhiqiang Xu
Kefeng Xuan
Yuan Xue

XIV Organization

Qingyan Yang
Xuan Yang
Zenglu Yang
Peifeng Yin
Mingxuan Yuan
Henry Ye
Mao Ye
Pengjie Ye
Peifeng Yin
Tomoki Yoshihisa

Naoki Yoshinaga
Gae-won You
Li Yu
Qi Yu
Weiren Yu
Bin Zhang
Shiming Zhang
Peiwu Zhang
Song Zhang
Geng Zhao

Xiang Zhao
Ye Zhen
Kai Zheng
Yu Zheng
Bin Zhou
Guangtong Zhou
Gaoping Zhu
Andreas Zuefle

Table of Contents – Part I

Keynote Talks

Smarter Planet: Empower People with Information
Insights (Abstract) . 1

Josephine Cheng

Database Scalability, Elasticity, and Autonomy in the Cloud
(Extended Abstract) . 2

Divyakant Agrawal, Amr El Abbadi, Sudipto Das, and
Aaron J. Elmore

Ten Year Award

What Have We Learnt from Deductive Object-Oriented Database
Research? . 16

Mengchi Liu, Gillian Dobbie, and Tok Wang Ling

Social Network

ECODE: Event-Based Community Detection from Social Networks 22
Xiao-Li Li, Aloysius Tan, Philip S. Yu, and See-Kiong Ng

A User Similarity Calculation Based on the Location for Social Network
Services . 38

Min-Joong Lee and Chin-Wan Chung

Modeling User Expertise in Folksonomies by Fusing Multi-type
Features . 53

Junjie Yao, Bin Cui, Qiaosha Han, Ce Zhang, and Yanhong Zhou

Identifying Topic Experts and Topic Communities in the Blogspace 68
Xiaoling Liu, Yitong Wang, Yujia Li, and Baile Shi

Social Network and Privacy

Utility-Oriented K-Anonymization on Social Networks 78
Yazhe Wang, Long Xie, Baihua Zheng, and Ken C.K. Lee

Distributed Privacy Preserving Data Collection . 93
Mingqiang Xue, Panagiotis Papadimitriou, Chedy Räıssi,
Panos Kalnis, and Hung Keng Pung

XVI Table of Contents – Part I

Privacy Preserving Query Processing on Secret Share Based Data
Storage . 108

XiuXia Tian, ChaoFeng Sha, XiaoLing Wang, and AoYing Zhou

Node Protection in Weighted Social Networks . 123
Mingxuan Yuan and Lei Chen

Data Mining I

An Unbiased Distance-Based Outlier Detection Approach for
High-Dimensional Data . 138

Hoang Vu Nguyen, Vivekanand Gopalkrishnan, and Ira Assent

A Relational View of Pattern Discovery . 153
Arnaud Giacometti, Patrick Marcel, and Arnaud Soulet

Efficient Incremental Mining of Frequent Sequence Generators 168
Yukai He, Jianyong Wang, and Lizhu Zhou

An Alternative Interestingness Measure for Mining Periodic-Frequent
Patterns . 183

R. Uday Kiran and P. Krishna Reddy

Data Mining II

A Framework of Mining Semantic Regions from Trajectories 193
Chun-Ta Lu, Po-Ruey Lei, Wen-Chih Peng, and Ing-Jiunn Su

STS: Complex Spatio-Temporal Sequence Mining in Flickr 208
Chunjie Zhou and Xiaofeng Meng

Mining High Utility Mobile Sequential Patterns in Mobile Commerce
Environments . 224

Bai-En Shie, Hui-Fang Hsiao, Vincent S. Tseng, and Philip S. Yu

Reasoning about Dynamic Delegation in Role Based Access Control
Systems . 239

Chun Ruan and Vijay Varadharajan

Probability and Uncertainty

Robust Ranking of Uncertain Data . 254
Da Yan and Wilfred Ng

Probabilistic Image Tagging with Tags Expanded By Text-Based
Search . 269

Xiaoming Zhang, Zi Huang, Heng Tao Shen, and Zhoujun Li

Table of Contents – Part I XVII

Removing Uncertainties from Overlay Network . 284
Ye Yuan, Deke Guo, Guoren Wang, and Lei Chen

Probabilistic and Interactive Retrieval of Chinese Calligraphic
Character Images Based on Multiple Features . 300

Yi Zhuang, Nan Jiang, Hua Hu, Haiyang Hu, Guochang Jiang, and
Chengxiang Yuan

Stream Processing

Real-Time Diameter Monitoring for Time-Evolving Graphs 311
Yasuhiro Fujiwara, Makoto Onizuka, and Masaru Kitsuregawa

Handling ER-topk Query on Uncertain Streams . 326
Cheqing Jin, Ming Gao, and Aoying Zhou

Seamless Event and Data Stream Processing: Reconciling Windows
and Consumption Modes . 341

Raman Adaikkalavan and Sharma Chakravarthy

Querying Moving Objects with Uncertainty in Spatio-Temporal
Databases . 357

Hechen Liu and Markus Schneider

A Novel Hash-Based Streaming Scheme for Energy Efficient Full-Text
Search in Wireless Data Broadcast . 372

Kai Yang, Yan Shi, Weili Wu, Xiaofeng Gao, and Jiaofei Zhong

Graph

Efficient Topological OLAP on Information Networks 389
Qiang Qu, Feida Zhu, Xifeng Yan, Jiawei Han, Philip S. Yu, and
Hongyan Li

An Edge-Based Framework for Fast Subgraph Matching in a Large
Graph . 404

Sangjae Kim, Inchul Song, and Yoon Joon Lee

Context-Sensitive Query Expansion over the Bipartite Graph Model for
Web Service Search . 418

Rong Zhang, Koji Zettsu, Yutaka Kidawara, and Yasushi Kiyoki

BMC: An Efficient Method to Evaluate Probabilistic Reachability
Queries . 434

Ke Zhu, Wenjie Zhang, Gaoping Zhu, Ying Zhang, and Xuemin Lin

XVIII Table of Contents – Part I

XML

Improving XML Data Quality with Functional Dependencies 450
Zijing Tan and Liyong Zhang

Identifying Relevant Matches with NOT Semantics over XML
Documents . 466

Rung-Ren Lin, Ya-Hui Chang, and Kun-Mao Chao

Evaluating Contained Rewritings for XPath Queries on Materialized
Views . 481

Rui Zhou, Chengfei Liu, Jianxin Li, Junhu Wang, and Jixue Liu

XStreamCluster: An Efficient Algorithm for Streaming XML Data
Clustering . 496

Odysseas Papapetrou and Ling Chen

XML and Graph

Efficient Evaluation of NOT-Twig Queries in Tree-Unaware Relational
Databases . 511

Kheng Hong Soh and Sourav S. Bhowmick

A Hybrid Algorithm for Finding Top-k Twig Answers in Probabilistic
XML . 528

Bo Ning and Chengfei Liu

Optimizing Incremental Maintenance of Minimal Bisimulation of Cyclic
Graphs . 543

Jintian Deng, Byron Choi, Jianliang Xu, and Sourav S. Bhowmick

Social Based Layouts for the Increase of Locality in Graph
Operations . 558

Arnau Prat-Pérez, David Dominguez-Sal, and Josep L. Larriba-Pey

Generating Random Graphic Sequences . 570
Xuesong Lu and Stéphane Bressan

Author Index . 581

Table of Contents – Part II

Similarity

Efficient Histogram-Based Similarity Search in Ultra-High Dimensional
Space . 1

Jiajun Liu, Zi Huang, Heng Tao Shen, and Xiaofang Zhou

A Retrieval Strategy Using the Integrated Knowledge of Similarity and
Associations . 16

Yong-Bin Kang, Shonali Krishnaswamy, and Arkady Zaslavsky

PG-Skip: Proximity Graph Based Clustering of Long Strings 31
Michail Kazimianec and Nikolaus Augsten

An Effective Approach for Searching Closest Sentence Translations
from the Web . 47

Ju Fan, Guoliang Li, and Lizhu Zhou

Searching and Digital Preservation

Finding the Sites with Best Accessibilities to Amenities 58
Qianlu Lin, Chuan Xiao, Muhammad Aamir Cheema, and Wei Wang

Audio Lifelog Search System Using a Topic Model for Reducing
Recognition Errors . 73

Taro Tezuka and Akira Maeda

Towards Web Search by Sentence Queries: Asking the Web for Query
Substitutions . 83

Yusuke Yamamoto and Katsumi Tanaka

The DISTARNET Approach to Reliable Autonomic Long-Term Digital
Preservation . 93

Ivan Subotic, Heiko Schuldt, and Lukas Rosenthaler

Spatial Queries

A Unified Algorithm for Continuous Monitoring of Spatial Queries 104
Mahady Hasan, Muhammad Aamir Cheema, Xuemin Lin, and
Wenjie Zhang

Real-Time Monitoring of Moving Objects Using Frequently Used
Routes . 119

Yutaka Ohsawa, Kazuhisa Fujino, Htoo Htoo,
Aye Thida Hlaing, and Noboru Sonehara

XX Table of Contents – Part II

wNeighbors: A Method for Finding k Nearest Neighbors in Weighted
Regions . 134

Chuanwen Li, Yu Gu, Ge Yu, and Fangfang Li

Aggregate Farthest-Neighbor Queries over Spatial Data 149
Yuan Gao, Lidan Shou, Ke Chen, and Gang Chen

Query Processing I

Querying Business Process Models Based on Semantics 164
Tao Jin, Jianmin Wang, and Lijie Wen

Discovering Implicit Categorical Semantics for Schema Matching 179
Guohui Ding and Guoren Wang

Expressive Power of Query Languages for Constraint Complex Value
Databases . 195

Hong-Cheu Liu

Scaling Up Query Allocation in the Presence of Autonomous
Participants . 210

Jorge-Arnulfo Quiané-Ruiz, Philippe Lamarre, Sylvie Cazalens, and
Patrick Valduriez

Generating Preview Instances for the Face Validation of
Entity-Relationship Schemata: The Acyclic Case . 225

Maria Amalfi, Alessandro Artale, Andrea Cal̀ı, and
Alessandro Provetti

Query Processing II

Dynamic Skylines Considering Range Queries . 235
Wen-Chi Wang, En Tzu Wang, and Arbee L.P. Chen

EcoTop: An Economic Model for Dynamic Processing of Top-k Queries
in Mobile-P2P Networks . 251

Nilesh Padhariya, Anirban Mondal, Vikram Goyal,
Roshan Shankar, and Sanjay Kumar Madria

REQUEST: Region-Based Query Processing in Sensor Networks 266
Dong-Wan Choi and Chin-Wan Chung

Efficient Distributed Top-k Query Processing with Caching 280
Norvald H. Ryeng, Akrivi Vlachou, Christos Doulkeridis, and
Kjetil Nørv̊ag

Exploiting Correlation to Rank Database Query Results 296
Jaehui Park and Sang-goo Lee

Table of Contents – Part II XXI

Indexing and High Performance

LinearDB: A Relational Approach to Make Data Warehouse Scale Like
MapReduce . 306

Huiju Wang, Xiongpai Qin, Yansong Zhang, Shan Wang, and
Zhanwei Wang

Genetic Algorithm Based QoS-Aware Service Compositions in Cloud
Computing . 321

Zhen Ye, Xiaofang Zhou, and Athman Bouguettaya

Energy-Efficient Tree-Based Indexing Schemes for Information Retrieval
in Wireless Data Broadcast . 335

Jiaofei Zhong, Weili Wu, Yan Shi, and Xiaofeng Gao

Buffer Cache De-duplication for Query Dispatch in Replicated
Databases . 352

Takeshi Yamamuro, Yoshiharu Suga, Naoya Kotani,
Toshio Hitaka, and Masashi Yamamuro

Indexing for Vector Projections . 367
Sean Chester, Alex Thomo, S. Venkatesh, and Sue Whitesides

Industrial Papers

Assessment of Cardiovascular Disease Risk Prediction Models:
Evaluation Methods . 377

Richi Nayak and Ellen Pitt

Visual Analysis of Implicit Social Networks for Suspicious Behavior
Detection . 388

Amyn Bennamane, Hakim Hacid, Arnaud Ansiaux, and
Alain Cagnati

Compositional Information Extraction Methodology from Medical
Reports . 400

Pratibha Rani, Raghunath Reddy, Devika Mathur,
Subhadip Bandyopadhyay, and Arijit Laha

A Framework for Semantic Recommendations in Situational
Applications . 413

Raphaël Thollot and Marie-Aude Aufaure

Demo Papers

Storage and Use of Provenance Information for Relational Database
Queries . 429

Zhifeng Bao, Henning Koehler, Xiaofang Zhou, and Tok Wang Ling

XXII Table of Contents – Part II

MRQSim: A Moving Range Query Simulation Platform in Spatial
Networks . 434

Yu Gu, Na Guo, Chuanwen Li, and Ge Yu

DWOBS: Data Warehouse Design from Ontology-Based Sources 438
Selma Khouri and Ladjel Bellatreche

AUCWeb: A Prototype for Analyzing User-Created Web Data 442
Weining Qian, Feng Chen, Juan Du, Weiming Zhang, Can Zhang,
Haixin Ma, Peng Cai, Minqi Zhou, and Aoying Zhou

Blending OLAP Processing with Real-Time Data Streams 446
João Costa, José Cećılio, Pedro Martins, and Pedro Furtado

AutoBayesian: Developing Bayesian Networks Based on Text Mining . . . 450
Sandeep Raghuram, Yuni Xia, Jiaqi Ge, Mathew Palakal, Josette
Jones, Dave Pecenka, Eric Tinsley, Jean Bandos, and
Jerry Geesaman

Classify Uncertain Data with Decision Tree . 454
Biao Qin, Yuni Xia, Rakesh Sathyesh, Jiaqi Ge, and Sunil Probhakar

StreamFitter: A Real Time Linear Regression Analysis System for
Continuous Data Streams . 458

Chandima Hewa Nadungodage, Yuni Xia, Fang Li,
Jaehwan John Lee, and Jiaqi Ge

Panel

Challenges in Managing and Mining Large, Heterogeneous Data 462
Haibo Hu, Haixun Wang, and Baihua Zheng

Tutorials

Managing Social Image Tags: Methods and Applications 463
Aixin Sun and Sourav S. Bhowmick

Web Search and Browse Log Mining: Challenges, Methods, and
Applications . 465

Daxin Jiang

Searching, Analyzing and Exploring Databases . 467
Yi Chen, Wei Wang, and Ziyang Liu

Author Index . 471

Smarter Planet: Empower People with
Information Insights

Josephine Cheng

IBM Research - Almaden
chengjm@us.ibm.com

We are all now connected economically, technically and socially. Our planet is
becoming smarter. Infusing intelligence into the way the world literally works the
systems and processes that enable physical goods to be developed, manufactured,
bought and sold services to be delivered everything from people and money to oil,
water and electrons to move and billions of people to work and live. All these
become possible via information integration scattering in many different data
sources: from the sensors, on the web, in our personal devices, in documents and
in databases, or hidden within application programs. Information is exploding
with large amount of data generated every second. It creates many challenges in
securely storing, managing, integrating, cleansing, analyzing and governing the
massive generated information besides the privacy issue. This can be a difficult or
time consuming endeavor. This talk describes some information-intensive tasks,
choosing examples from such areas as healthcare, science, the business world
and our personal lives. I will discuss the barriers to getting information together,
delivering it to the people that need it, in a form they can understand, analyzing
the diverse spectrum of information, giving insights to the decision makers. I
will review key research on information integration and information interaction,
indicate how the combination may enable real progress, and illustrate where
research challenges remain.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, p. 1, 2011.

Database Scalability, Elasticity, and Autonomy in the
Cloud�

(Extended Abstract)

Divyakant Agrawal, Amr El Abbadi, Sudipto Das, and Aaron J. Elmore

Department of Computer Science
University of California at Santa Barbara

Santa Barbara, CA 93106, USA
{agrawal,amr,sudipto,aelmore}@cs.ucsb.edu

http://www.cs.ucsb.edu/˜dsl

Abstract. Cloud computing has emerged as an extremely successful paradigm
for deploying web applications. Scalability, elasticity, pay-per-use pricing, and
economies of scale from large scale operations are the major reasons for the
successful and widespread adoption of cloud infrastructures. Since a majority of
cloud applications are data driven, database management systems (DBMSs) pow-
ering these applications form a critical component in the cloud software stack. In
this article, we present an overview of our work on instilling these above men-
tioned “cloud features” in a database system designed to support a variety of
applications deployed in the cloud: designing scalable database management ar-
chitectures using the concepts of data fission and data fusion, enabling lightweight
elasticity using low cost live database migration, and designing intelligent and au-
tonomic controllers for system management without human intervention.

Keywords: Cloud computing, scalability, elasticity, autonomic systems.

1 Introduction

The proliferation of technology in the past two decades has created an interesting di-
chotomy for users. There is very little disagreement that an individual’s life is signif-
icantly enriched as a result of easy access to information and services using a wide
spectrum of computing platforms such as personal workstations, laptop computers, and
handheld devices such as smart-phones, PDAs, and tablets (e.g., Apple’s iPads). The
technology enablers are indeed the advances in networking and the Web-based service
paradigms that allow users to obtain information and data-rich services at any time
blurring the geographic or physical distance between the end-user and the service. As
network providers continue to improve the capability of their wireless and broadband
infrastructures, this paradigm will continue to fuel the invention of new and imagina-
tive services that simplify and enrich the professional and personal lives of end-users.
However, some will argue that the same technologies that have enriched the lives of

� This work is partly funded by NSF grants III 1018637 and CNS 1053594 and an NEC Labs
America University relations award.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 2–15, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.cs.ucsb.edu/~dsl

Database Scalability, Elasticity, and Autonomy in the Cloud 3

the users, have also given rise to some challenges and complexities both from a user’s
perspective as well as from the service provider or system perspective. From the user’s
point-of-view, the users have to navigate through a web of multiple compute and stor-
age platforms to get their work done. A significant end-user challenge is to keep track
of all the applications and information services on his/her multiple devices and keep
them synchronized. A natural solution to overcome this complexity and simplify the
computation- and data-rich life of an end-user is to push the management and adminis-
tration of most applications and services to the network core. The justification being that
as networking technologies mature, from a user’s perspective accessing an application
on his/her personal device will be indistinguishable from accessing the application over
the broadband wired or wireless network. In summary, the current technology trend is
to host user applications, services, and data in the network core which is metaphorically
referred to as the cloud.

The above transformation that has resulted in user applications and services being
migrated from the user devices to the cloud has given rise to unprecedented technolog-
ical and research challenges. Earlier, an application or service disruption was typically
confined to a small number of users. Now, any disruption has global consequences mak-
ing the service unavailable to an entire user community. In particular, the challenge now
is to develop server-centric application platforms that are available to a virtually unlim-
ited number of users 24 × 7 over the Internet using a plethora of modern Web-based
technologies. Experiences gained in the last decade from some of the technology leaders
that provide services over the Internet (e.g., Google, Amazon, Ebay, etc.) indicate that
application infrastructures in the cloud context should be highly reliable, available, and
scalable. Reliability is a key requirement to ensure continuous access to a service and
is defined as the probability that a given application or system will be functioning when
needed as measured over a given period of time. Similarly, availability is the percentage
of times that a given system will be functioning as required. The scalability requirement
arises due to the constant load fluctuations that are common in the context of Web-based
services. In fact these load fluctuations occur at varying frequencies: daily, weekly, and
over longer periods. The other source of load variation is due to unpredictable growth
(or decline) in usage. The need for scalable design is to ensure that the system capac-
ity can be augmented by adding additional hardware resources whenever warranted by
load fluctuations. Thus, scalability has emerged both as a critical requirement as well
as a fundamental challenge in the context of cloud computing.

In the context of most cloud-based application and service deployments, data and
therefore the database management system (DBMS) is an integral technology compo-
nent in the overall service architecture. The reason for the proliferation of DBMS, in
the cloud computing space is due to the success DBMSs and in particular Relational
DBMSs have had in modeling a wide variety of applications. The key ingredients to
this success are due to many features DBMSs offer: overall functionality (modeling di-
verse types of application using the relational model which is intuitive and relatively
simple), consistency (dealing with concurrent workloads without worrying about data
becoming out-of-sync), performance (both high-throughput, low-latency and more than
25 years of engineering), and reliability (ensuring safety and persistence of data in the
presence of different types of failures). In spite of this success, during the past decade

4 D. Agrawal et al.

there has been a growing concern that DBMSs and RDBMSs are not cloud-friendly.
This is because, unlike other technology components for cloud service such as the web-
servers and application servers, which can easily scale from a few machines to hundreds
or even thousands of machines), DBMSs cannot be scaled very easily. In fact, current
DBMS technology fails to provide adequate tools and guidance if an existing database
deployment needs to scale-out from a few machines to a large number of machines.

At the hardware infrastructure level, the need to host scalable systems has necessi-
tated the emergence of large-scale data centers comprising thousands to hundreds of
thousands of compute nodes. Technology leaders such as Google, Amazon, and Mi-
crosoft have demonstrated that data centers provide unprecedented economies-of-scale
since multiple applications can share a common infrastructure. All three companies
have taken this notion of sharing beyond their internal applications and provide frame-
works such as Amazon’s AWS, Google’s AppEngine, and Microsoft Azure for hosting
third-party applications in their respective data-center infrastructures (viz. the clouds).
Furthermore, most of these technology leaders have abandoned the traditional DBMSs
and instead have developed proprietary data management technologies referred to as
key-value stores. The main distinction is that in traditional DBMSs, all data within a
database is treated as a “whole” and it is the responsibility of the DBMS to guarantee
the consistency of the entire data. In the context of key-value stores this relationship is
completely severed into key-values where each entity is considered an independent unit
of data or information and hence can be freely moved from one machine to the other.
Furthermore, the atomicity of application and user accesses are guaranteed only at a
single-key level. Key-value stores in conjunction with the cloud computing frameworks
have worked extremely well and a large number of web applications have deployed the
combination of this cloud computing technology. More recent technology leaders such
as Facebook have also benefited from this paradigm in building complex applications
that are highly scalable.

The requirement of making web-based applications scalable in cloud-computing
platforms arises primarily to support virtually unlimited number of end-users. Another
challenge in the cloud that is closely tied to the issue of scalability is to develop mecha-
nism to respond to sudden load fluctuations on an application or a service due to demand
surges or troughs from the end-users. Scalability of a system only provides us a guaran-
tee that a system can be scaled up from a few machines to a larger number of machines.
In cloud computing environments, we need to support additional property that such scal-
ability can be provisioned dynamically without causing any interruption in the service.
This type of dynamic provisioning where a system can be scaled-up dynamically by
adding more nodes or can be scaled-down by removing nodes is referred to as elastic-
ity. Key-value stores such as BigTable and PNUTS have been designed so that they can
be elastic or can be dynamically provisioned in the presence of load fluctuations. Tradi-
tional database management systems, on the other hand, are in general intended for an
enterprise infrastructure that is statically provisioned. Therefore, the primary goal for
DBMSs is to realize the highest level of performance for a given hardware and server
infrastructure. Another requirement that is closely related to scalability and elasticity
of data management software is that of autonomic management. Traditionally, data ad-
ministration is a highly manual task in an enterprise setting where a highly-trained

Database Scalability, Elasticity, and Autonomy in the Cloud 5

engineering staff continually monitor the health of the overall system and take actions
to ensure that the operational platform continues to perform efficiently and effectively.
As we move to the cloud-computing arena which typically comprises data-centers with
thousands of servers, the manual approach of database administration is no longer fea-
sible. Instead, there is a growing need to make the underlying data management layer
autonomic or self-managing especially when it comes to load redistribution, scalabil-
ity, and elasticity. This issue becomes especially acute in the context of pay-per-use
cloud-computing platforms hosting multi-tenant applications. In this model, the service
provider is interested in minimizing its operational cost by consolidating multiple ten-
ants on as few machines as possible during periods of low activity and distributing these
tenants on a larger number of servers during peak usage.

Due to the above desirable properties of key-value stores in the context of cloud com-
puting and large-scale data-centers, they are being widely used as the data management
tier for cloud-enabled Web applications. Although it is claimed that atomicity at a single
key is adequate in the context of many Web-oriented applications, evidence is emerg-
ing that indicates that in many application scenarios this is not enough. In such cases,
the responsibility to ensure atomicity and consistency of multiple data entities falls on
the application developers. This results in the duplication of multi-entity synchroniza-
tion mechanisms many times in the application software. In addition, as it is widely
recognized that concurrent programs are highly vulnerable to subtle bugs and errors,
this approach impacts the application reliability adversely. The realization of providing
atomicity beyond single entities is widely discussed in developer blogs [28]. Recently,
this problem has also been recognized by the senior architects from Amazon [23] and
Google [16], leading to systems like MegaStore that provide transactional guarantees
on key-value stores [3].

Cloud computing and the notion of large-scale data-centers will become a pervasive
technology in the coming years. There are two major technology hurdles that we con-
front in deploying applications on cloud computing infrastructures: DBMS scalability
and DBMS security. In this paper, we will focus on the problem of making DBMS
technology cloud-friendly. In fact, we will argue that the success of cloud computing
is critically contingent on making DBMSs scalable, elastic, and autonomic, which is
in addition to the other well-known properties of database management technologies:
high-level functionality, consistency, performance, and reliability. This paper summa-
rizes the current state-of-the-art as well as identifies areas where research progress is
sorely needed.

2 Database Scalability in the Cloud

In this section, we first formally establish the notion of scalability. In the context of
cloud-computing paradigms, there are two options for scaling the data management
layer. The first option is to start with key-value stores, which have almost limitless scal-
ability, and explore ways in which such systems can be enriched to provide higher-level
database functionality especially when it comes to providing transactional access to
multiple data and informational entities. The other option is to start with a conventional
DBMS architecture and leverage from key-value store architectural design features to
make the DBMS highly scalable. We now explore these two options in detail.

6 D. Agrawal et al.

2.1 Scalability

Scalability is a desirable property of a system, which indicates its ability to either handle
growing amounts of work in a graceful manner or its ability to improve throughput
when additional resources (typically hardware) are added. A system whose performance
improves after adding hardware, proportionally to the capacity added, is said to be a
scalable system. Similarly, an algorithm is said to scale if it is suitably efficient and
practical when applied to large situations (e.g. a large input data set or large number of
participating nodes in the case of a distributed system). If the algorithm fails to perform
when the resources increase then it does not scale.

There are typically two ways in which a system can scale by adding hardware re-
sources. The first approach is when the system scales vertically and is referred to as
scale-up. To scale vertically (or scale up) means to add resources to a single node in
a system, typically involving the addition of processors or memory to a single com-
puter. Such vertical scaling of existing systems also enables them to use virtualization
technology more effectively, as it provides more resources for the hosted set of operat-
ing system and application modules to share. An example of taking advantage of such
shared resources is by by increasing the number of Apache daemon processes running.
The other approach of scaling a system is by adding hardware resources horizontally
referred to as scale-out. To scale horizontally (or scale out) means to add more nodes
to a system, such as adding a new computer to a distributed software application. An
example might be scaling out from one web-server system to a system with three web-
servers.

As computer prices drop and performance demand continue to increase, low cost
“commodity” systems can be used for building shared computational infrastructures
for deploying high-performance applications such as Web search and other web-based
services. Hundreds of small computers may be configured in a cluster to obtain aggre-
gate computing power which often exceeds that of single traditional RISC processor
based supercomputers. This model has been further fueled by the availability of high
performance interconnects. The scale-out model also creates an increased demand for
shared data storage with very high I/O performance especially where processing of
large amounts of data is required. In general, the scale-out paradigm has served as the
fundamental design paradigm for the large-scale data-centers of today. The additional
complexity introduced by the scale-out design is the overall complexity of maintaining
and administering a large number of compute and storage nodes.

Note that the scalability of a system is closely related to the underlying algorithm or
computation. In particular, given an algorithm if there is a fraction α that is inherently
sequential then that means that the remainder 1 − α is parallelizable and hence can
benefit from multiple processors. The maximum scaling or speedup of such a system
using N CPUs is bounded as specified by Amdahl’s law [1]:

Speedup =
1

α + 1−α
N

.

For example if only 70% of the computation is parallelizable then the speedup with 4
CPUs is 2.105 whereas with 8 processors it is only 2.581. The above bound on scaling

Database Scalability, Elasticity, and Autonomy in the Cloud 7

clearly establishes the need for designing algorithms and mechanisms that are inher-
ently scalable. Blindly adding hardware resources may not necessarily yield the desired
scalability in the system.

2.2 Data Fusion: Multi-key Atomicity in Key-Value Stores

As outlined earlier in the prior section, although key-value stores provide almost infi-
nite scalability in that each entity can (potentially) be handled by in independent node,
new application requirements are emerging that require multiple entities (or equiva-
lently keys) to be accessed atomically. Some of these applications are in the domain of
cooperative work as well as in the context of multi-player games. This need has been
recognized by companies such as Google who have expanded their application port-
folio from Web-search to more elaborate applications such as Google documents and
others. Given this need, the question arises as to how to support multi-key atomicity in
key-value stores such as Google’s Bigtable [7], Amazon’s Dynamo [17], and Yahoo’s
PNUTS [9].

The various key-value stores differ in terms of data model, availability, and consis-
tency guarantees, but the property common to all systems is the Key-Value abstraction
where data is viewed as key-value pairs and atomic access is supported only at the
granularity of single keys. This single key atomic access semantics naturally allows effi-
cient horizontal data partitioning, and provides the basis for scalability and availability
in these systems. Even though a majority of current web applications have single key
access patterns [17], many current applications, and a large number of Web 2.0 appli-
cations (such as those based on collaboration) go beyond the semantics of single key
access, and foray into the space of multi key accesses [2]. Present scalable data man-
agement systems therefore cannot directly cater to the requirements of these modern
applications, and these applications either have to fall back to traditional databases, or
to rely on various ad-hoc solutions.

In order to deal with this challenge, Google has designed a system called MegaS-
tore [3] that builds on Bigtable as an underlying system and creates the notion of entity
groups on top of it. The basic idea of MegaStore is to allow users to group multiple
entities as a single collection and then uses write-ahead logging [22, 32] and two-phase
commit [21] as the building blocks to support ACID transactions on statically defined
entity groups. The designers also postulate that accesses across multiple entity groups
are also supported, however, at a weaker or loose consistency level. Although Megas-
tore allows entities to be arbitrarily distributed over multiple nodes, Megastore provides
higher level of performance when the entity-group is co-located on a single node. On
the other hand if the entity group is distributed across multiple nodes, in that case, the
overall performance may suffer since more complex synchronization mechanisms such
as two-phase commit or persistent queues may be necessary. We refer to this approach
as a Data Fusion architecture for multi-key atomicity while ensuring scalability.

Google’s MegaStore takes a step beyond single key access patterns by supporting
transactional access for entity groups. However, since keys cannot be updated in place,
once a key is created as a part of a group, it has to be in the group for the rest of its
lifetime. This static nature of entity groups, in addition to the requirement that keys be
contiguous in sort order, are in many cases insufficient and restrictive. For instance, in

8 D. Agrawal et al.

case of an online casino application where different users correspond to different key-
value pairs, multi key access guarantees are needed only during the course of a game.
Once a game terminates, different users can move to different game instances thereby
requiring guarantees on dynamic groups of keys–a feature not currently supported by
MegaStore.

To circumvent this disadvantage, we have designed G-Store [14], a scalable data
store providing transactional multi key access guarantees over dynamic, non-overlapping
groups of keys using a key-value store as an underlying substrate, and therefore inher-
iting its scalability, fault-tolerance, and high availability. The basic innovation that al-
lows scalable multi key access is the Key Group abstraction which defines a granule
of on-demand transactional access. The Key Grouping protocol uses the Key Group
abstraction to transfer ownership—i.e. the exclusive read/write access to keys—for all
keys in a group to a single node which then efficiently executes the operations on the
Key Group. This design is suitable for applications that require transactional access to
groups of keys that are transient in nature, but live long enough to amortize the cost of
group formation. Our assumption is that the number of keys in a group is small enough
to be owned by a single node. Considering the size and capacity of present commodity
hardware, groups with thousands to hundreds of thousands of keys can be efficiently
supported. Furthermore, the system can scale-out from tens to hundreds of commodity
nodes to support millions of Key Groups. G-Store inherits the data model as well as the
set of operations from the underlying Key-Value store; the only addition being that the
notions of atomicity and consistency are extended from a single key to a group of keys.

A Key Group consists of a leader key and a set of follower keys. The leader is part of
the group’s identity, but from an applications perspective, the semantics of operations
on the leader is no different from that on the followers. Once the application specifies
the Key Group, the group creation phase of Key Grouping protocol transfers ownership
of follower keys to the node currently hosting the leader key, such that transactions ex-
ecuting on the group can be executed locally. Intuitively, the goal of the proposed Key
Grouping protocol is to transfer key ownership safely from the followers to the leader
during group formation, and from the leader to the followers during group deletion.
Conceptually, the follower keys are locked during the lifetime of the group. Safety or
correctness requires that there should never be an instance where more than one node
claims ownership of an item. Liveness, on the other hand, requires that in the absence of
repeated failures, no data item is without an owner indefinitely. The Key Grouping pro-
tocol can tolerate message and node failures as well as message re-ordering, concurrent
group creation requests as well as detect overlapping group create requests [14].

This data fusion approach provides the building block for designing scalable data
systems with consistency guarantees on data granules of different sizes, supporting dif-
ferent application semantics. The two alternative designs have resulted in systems with
different characteristics and behavior.

2.3 Data Fission: Database Partitioning Support in DBMS

Contrary to the approach of data fusion, where multiple small data granules are com-
bined to provide stringent transactional guarantees on larger data granules at scale, an-
other approach to scalability is to split a large database unit into relatively independent

Database Scalability, Elasticity, and Autonomy in the Cloud 9

(a) Tree Schema (b) TPC-C as a tree schema

Fig. 1. Schema level database partitioning

shards or partitions and provide transactional guarantees only on these shards. We re-
fer to this approach as Data Fission. This approach of partitioning the database and
scaling out with partitioning is popularly used for scaling web-applications. Since the
inefficiencies resulting from distributed transactions are well known (see [11] for some
performance numbers), the choice of a good partitioning technique is critical to support
flexible functionality while limiting transactions to a single partition. Many modern sys-
tems therefore partition the schema in a way such that the need for distributed transac-
tions is minimized–an approach referred to as schema level partitioning. Transactions
accessing a single partition can be executed efficiently without any dependency and
synchronization between the database servers serving the partitions, thus allowing high
scalability and availability. Partitioning the database schema, instead of partitioning
individual tables, allows supporting rich functionality even when limiting most trans-
actions to a single partition. The rationale behind schema level partitioning is that in
a large number of database schemas and applications, transactions only access a small
number of related rows which can be potentially spread across a number of tables. This
pattern can be used to group related data together in the same partition.

One popular example of partitioning arises when the schema is a “tree schema”. Even
though such a schema does not encompass the entire spectrum of OLTP applications,
a survey of real applications within a commercial enterprise shows that a large number
of applications either have such an inherent schema pattern or can be easily adapted
to it [4]. Figure 1(a) provides an illustration of such a schema type. This schema sup-
ports three types of tables: Primary Tables, Secondary Tables, and Global Tables.
The primary table forms the root of the tree; a schema has exactly one primary table
whose primary key acts as the partitioning key. A schema can however have multiple
secondary and global tables. Every secondary table in a database schema will have the
primary table’s key as a foreign key. Referring to Figure 1(a), the key kp of the primary
table appears as a foreign key in each of the secondary tables. This structure implies that
corresponding to every row in the primary table, there are a group of related rows in the
secondary tables, a structure called a row group [4]. All rows in the same row group are
guaranteed to be co-located and a transaction can only access rows in a particular row
group. A database partition is a collection of such row groups. This schema structure
also allows efficient dynamic splitting and merging of partitions. In contrast to these
two table types, global tables are look up tables that are mostly read-only. Since global
tables are not updated frequently, these tables are replicated on all the nodes. In addition

10 D. Agrawal et al.

to accessing only one row group, an operation in a transaction can only read a global
table. Figure 1(b) shows a representation of the TPC-C schema [29] as a tree schema.
Such a schema forms the basis of the design of a number of systems such as MS SQL
Azure [4], ElasTraS [12], and Relational Cloud [10]. The MS SQL Azure and Rela-
tional Cloud designs are based on the shared nothing storage model where each DBMS
instance on a node is independent and an integrative layer is provided on the top for
routing queries and transactions to an appropriate database server. The ElasTraS design
on the other hand utilizes the shared storage model based on append-only distributed
file-systems such as GFS [20] or HDFS [25]. The desirable feature of the ElasTraS de-
sign is that it supports elasticity of data in a much more integrated manner. In particular,
both MS SQL Azure and Relational Cloud designs need to be augmented with database
migration mechanisms to support elasticity where database partition migration involves
moving both memory-resident database state and disk-resident data. ElasTraS, on the
other hand, can support database elasticity for relocating database partitions by sim-
ply migrating the memory state of the database which is considerably simpler. In fact,
well-known VM migration techniques [6, 8, 27] can be easily adopted in the case of
ElasTraS [15].

This schema level partitioning splits large databases into smaller granules which
can then be scaled out on a cluster of nodes. Our prototype system—named Elas-
TraS [12, 13]—uses this concept of data fission to scale-out database systems. ElasTraS
is a culmination of two major design philosophies: traditional relational database sys-
tems (RDBMS) that allow efficient execution of OLTP workloads and provide ACID
guarantees for small databases and the Key-Value stores that are elastic, scalable, and
highly available allowing the system to scale-out. Effective resource sharing and the
consolidation of multiple tenants on a single server allows the system to efficiently deal
with tenants with small data and resource requirements, while advanced database par-
titioning and scale-out allows it to serve tenants that grow big, both in terms of data as
well as load. ElasTraS operates at the granularity of these data granules called parti-
tions. It extends techniques developed for Key-Value stores to scale to large numbers of
partitions distributed over tens to hundreds of servers. On the other hand, each partition
acts as a self contained database; ElasTraS uses technology developed for relational
databases [22] to execute transactions efficiently on these partitions. The partitioning
approach described here can be considered as static partitioning. There have been re-
cent efforts to achieve database partitioning at run-time by analyzing the data access
patterns of user queries and transactions on-the-fly [11].

3 Database Elasticity in the Cloud

One of the major factors for the success of the cloud as an IT infrastructure is its pay
per use pricing model and elasticity. For a DBMS deployed on a pay-per-use cloud
infrastructure, an added goal is to optimize the system’s operating cost. Elasticity, i.e.
the ability to deal with load variations by adding more resources during high load or
consolidating the tenants to fewer nodes when the load decreases, all in a live system
without service disruption, is therefore critical for these systems.

Even though elasticity is often associated with the scale of the system, a subtle differ-
ence exists between elasticity and scalability when used to express a system’s behavior.

Database Scalability, Elasticity, and Autonomy in the Cloud 11

Scalability is a static property of the system that specifies its behavior on a static con-
figuration. For instance, a system design might scale to hundreds or even to thousands
of nodes. On the other hand, elasticity is dynamic property that allows the system’s
scale to be increased on-demand while the system is operational. For instance, a system
design is elastic if it can scale from 10 servers to 20 servers (or vice-versa) on-demand.
A system can have any combination of these two properties.

Elasticity is a desirable and important property of large scale systems. For a sys-
tem deployed on a pay-per-use cloud service, such as the Infrastructure as a Service
(IaaS) abstraction, elasticity is critical to minimize operating cost while ensuring good
performance during high loads. It allows consolidation of the system to consume less
resources and thus minimize the operating cost during periods of low load while allow-
ing it to dynamically scale up its size as the load decreases. On the other hand, enterprise
infrastructures are often statically provisioned. Elasticity is also desirable in such sce-
narios where it allows for realizing energy efficiency. Even though the infrastructure is
statically provisioned, significant savings can be achieved by consolidating the system
in a way that some servers can be powered down reducing the power usage and cooling
costs. This, however, is an open research topic in its own merit, since powering down
random servers does not necessarily reduce energy usage. Careful planning is needed
to select servers to power down such that entire racks and alleys in a data-center are
powered down so that significant savings in cooling can be achieved. One must also
consider the impact of powering down on availability. For instance, consolidating the
system to a set of servers all within a single point of failure (for instance a switch or a
power supply unit) can result in an entire service outage resulting from a single failure.
Furthermore, bringing up powered down servers is more expensive, so the penalty for a
miss-predicted power down operation is higher.

In our context of a database system, migrating parts of a system while the system
is operational is important to achieve on-demand elasticity—an operation called live
database migration. While being elastic, the system must also guarantee the tenants’
service level agreements (SLA). Therefore, to be effectively used for elasticity, live
migration must have low impact—i.e. negligible effect on performance and minimal
service interruption—on the tenant being migrated as well as other tenants co-located
at the source and destination of migration.

Since migration is a necessary primitive for achieving elasticity, we focus our ef-
forts on developing live migration for the two most common common cloud database
architectures: shared disk and shared nothing. Shared disk architectures are utilized for
their ability to abstract replication, fault-tolerance, consistency, fault tolerance, and in-
dependent scaling of the storage layer from the DBMS logic. Bigtable [7], HBase [24]
and ElasTraS [12, 13] are examples of databases that use a shared disk architecture. On
the other hand, a shared nothing multi-tenant architecture uses locally attached storage
for storing the persistent database image. Live migration for a shared nothing archi-
tecture requires that all database components are migrated between nodes, including
physical storage files. For ease of presentation, we use the term partition to represent a
self-contained granule of the database that will be migrated for elasticity.

In a shared storage DBMS architecture the persistent image of the database is stored
in a network attached storage (NAS). In the shared storage DBMS architecture, the

12 D. Agrawal et al.

persistent data of a partition is stored in the NAS and does not need migration. We
have designed Iterative Copy for live database migration in a shared storage architec-
ture. To minimize service interruption and to ensure low migration overhead, Iterative
Copy focuses on transferring the main memory state of the partition so that the partition
starts “warm” at the destination node resulting in minimal impact on transactions at the
destination, allowing transactions active during migration to continue execution at the
destination, and minimizing the tenant’s unavailability window. The main-memory state
of a partition consists of the cached database state (DB state), and the transaction exe-
cution state (Transaction state). For most common database engines [22], the DB state
includes the cached database pages or some variant of this. For a two phase locking
(2PL) based scheduler [22], the transaction state consists of the lock table; for an Op-
timistic Concurrency Control (OCC) [26] scheduler, this state consists of the read and
write sets of active transactions and a subset of committed transactions. Iterative Copy
guarantees serializability for transactions active during migration and ensures correct-
ness during failures. A detailed analysis of this technique, optimizations, and a detailed
evaluation can be found in [15].

In the shared nothing architecture, the persistent image of the database must also be
migrated, which is typically much larger than the database cache migrated in the shared
disk architecture. As a result, an approach different from Iterative Copy is needed. We
have designed Zephyr, a technique for live migration in a shared nothing transactional
database architecture [19]. Zephyr minimizes service interruption for the tenant being
migrated by introducing a synchronized phase that allows both the source and desti-
nation to simultaneously execute transactions for the tenant. Using a combination of
on-demand pull and asynchronous push of data, Zephyr allows the source node to com-
plete the execution of active transactions, while allowing the destination to execute new
transactions. Lightweight synchronization between the source and the destination, only
during the short mode of synchronized operation, guarantees serializability, while ob-
viating the need for two phase commit [21]. Zephyr guarantees no service disruption
for other tenants, no system downtime, minimizes data transferred between the nodes,
guarantees safe migration in the presence of failures, and ensures the strongest level
of transaction isolation. It uses standard tree based indices and lock based concurrency
control, thus allowing it to be used in a variety of DBMS implementations. Zephyr does
not rely on replication in the database layer, thus providing greater flexibility in select-
ing the destination for migration, which might or might not have the tenant’s replica.
However, considerable performance improvement is possible in the presence of repli-
cation when a tenant is migrated to one of the replicas.

4 Database Autonomy in the Cloud

Managing large systems poses significant challenges in monitoring, management, and
system operation. Moreover, to reduce the operating cost, considerable autonomy is
needed in the administration of such systems. In the context of database systems, the
responsibilities of this autonomic controller include monitoring the behavior and per-
formance of the system, elastic scaling and load balancing based on dynamic usage

Database Scalability, Elasticity, and Autonomy in the Cloud 13

patterns, modeling behavior to forecast workload spikes and take pro-active measures
to handle such spikes. An autonomous and intelligent system controller is essential to
properly manage such large systems.

Modeling the behavior of a database system and performance tuning has been an
active area of research over the last couple of decades. A large body of work focuses
on tuning the appropriate parameters for optimizing database performance [18, 31],
primarily in the context of a single database server. Another line of work has focused
on resource prediction, provisioning, and placement in large distributed systems [5, 30].

To enable autonomy in a cloud database, an intelligent system controller must also
consider various additional aspects, specifically in the case when the database system is
deployed on a pay-per-use cloud infrastructure while serving multiple application ten-
ant instances, i.e., a multitenant cloud database system. In such a multitenant system,
each tenant pays for the service provided and different tenants in the system can have
competing goals. On the other hand, the service provider must share resources amongst
the tenants, wherever possible, to minimize the operating cost to maximize profits. A
controller for such a system must be able to model the dynamic characteristics and re-
source requirements of the different application tenants to allow elastic scaling while
ensuring good tenant performance and ensuring that the tenants’ service level agree-
ments (SLAs) are met. An autonomic controller consists of two logical components:
the static component and the dynamic component.

The static component is responsible for modeling the behavior of the tenants and
their resource usage to determine tenant placement to co-locate tenants with comple-
mentary resource requirements. The goal of this tenant placement algorithm is to min-
imize the total resource utilization and hence minimize operating cost while ensuring
that the tenant SLAs are met. Our current work uses a combination of machine learn-
ing techniques to classify tenant behavior followed by tenant placement algorithms to
determine optimal tenant co-location and consolidation. This model assumes that once
the behavior of a tenant is modeled and a tenant placement determined, the system will
continue to behave the way in which the workload was modeled, and hence is called the
static component. The dynamic component complements this static model by detecting
dynamic change in load and resource usage behavior, modeling the overall system’s
behavior to determine the opportune moment for elastic load balancing, selecting the
minimal changes in tenant placement needed to counter the dynamic behavior, and use
the live database migration techniques to re-balance the tenants. In addition to modeling
tenant behavior, it is also important to predict the migration cost such that a migration
to minimize the operating cost does not violate a tenant’s SLA. Again, we use machine
learning models to predict the migration cost of tenants and the re-placement model
accounts for this cost when determining which tenant to migrate, when to migrate, and
where to migrate [15].

5 Concluding Remarks

Database systems deployed on a cloud computing infrastructure face many new chal-
lenges such as dealing with large scale operations, lightweight elasticity, and autonomic
control to minimize the operating cost. These challenges are in addition to making the

14 D. Agrawal et al.

systems fault-tolerant and highly available. In this article, we presented an overview of
some of our current research activities to address the above-mentioned challenges in
designing a scalable data management layer in the cloud.

References

1. Amdahl, G.: Validity of the single processor approach to achieving large-scale computing
capabilities. In: AFIPS Conference, pp. 483–485 (1967)

2. Amer-Yahia, S., Markl, V., Halevy, A., Doan, A., Alonso, G., Kossmann, D., Weikum, G.:
Databases and Web 2.0 panel at VLDB 2007. SIGMOD Rec. 37(1), 49–52 (2008)

3. Baker, J., Bond, C., Corbett, J., Furman, J., Khorlin, A., Larson, J., Leon, J.M., Li, Y., Lloyd,
A., Yushprakh, V.: Megastore: Providing Scalable, Highly Available Storage for Interactive
Services. In: CIDR, pp. 223–234 (2011)

4. Bernstein, P.A., Cseri, I., Dani, N., Ellis, N., Kalhan, A., Kakivaya, G., Lomet, D.B., Manner,
R., Novik, L., Talius, T.: Adapting Microsoft SQL Server for Cloud Computing. In: ICDE
(2011)

5. Bodı́k, P., Goldszmidt, M., Fox, A.: Hilighter: Automatically building robust signatures of
performance behavior for small- and large-scale systems. In: SysML (2008)

6. Bradford, R., Kotsovinos, E., Feldmann, A., Schiöberg, H.: Live wide-area migration of
virtual machines including local persistent state. In: VEE, pp. 169–179 (2007)

7. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,
Fikes, A., Gruber, R.E.: Bigtable: A Distributed Storage System for Structured Data. In:
OSDI, pp. 205–218 (2006)

8. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I., Warfield, A.: Live
migration of virtual machines. In: NSDI, pp. 273–286 (2005)

9. Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P., Jacobsen,
H.A., Puz, N., Weaver, D., Yerneni, R.: PNUTS: Yahoo!’s hosted data serving platform.
In: Proc. VLDB Endow., vol. 1(2), pp. 1277–1288 (2008)

10. Curino, C., Jones, E., Popa, R., Malviya, N., Wu, E., Madden, S., Balakrishnan, H.,
Zeldovich, N.: Relational Cloud: A Database Service for the Cloud. In: CIDR, pp. 235–240
(2011)

11. Curino, C., Zhang, Y., Jones, E.P.C., Madden, S.: Schism: a workload-driven approach to
database replication and partitioning. PVLDB 3(1), 48–57 (2010)

12. Das, S., Agarwal, S., Agrawal, D., El Abbadi, A.: ElasTraS: An Elastic, Scalable, and Self
Managing Transactional Database for the Cloud. Tech. Rep. 2010-04, CS, UCSB (2010)

13. Das, S., Agrawal, D., El Abbadi, A.: ElasTraS: An Elastic Transactional Data Store in the
Cloud. In: USENIX HotCloud (2009)

14. Das, S., Agrawal, D., El Abbadi, A.: G-Store: A Scalable Data Store for Transactional Multi
key Access in the Cloud. In: ACM SoCC, pp. 163–174 (2010)

15. Das, S., Nishimura, S., Agrawal, D., El Abbadi, A.: Live Database Migration for Elasticity
in a Multitenant Database for Cloud Platforms. Tech. Rep. 2010-09, CS, UCSB (2010)

16. Dean, J.: Talk at the Google Faculty Summit (2010)
17. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Siva-

subramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly available key-value
store. In: SOSP, pp. 205–220 (2007)

18. Duan, S., Thummala, V., Babu, S.: Tuning database configuration parameters with ituned.
Proc. VLDB Endow. 2, 1246–1257 (2009)

19. Elmore, A., Das, S., Agrawal, D., El Abbadi, A.: Zephyr: Live Database Migration for
Lightweight Elasticity in Multitenant Cloud Platforms. under submission for review

Database Scalability, Elasticity, and Autonomy in the Cloud 15

20. Ghemawat, S., Gobioff, H., Leung, S.T.: The Google file system. In: SOSP, pp. 29–43 (2003)
21. Gray, J.: Notes on data base operating systems. In: Flynn, M.J., Jones, A.K., Opderbeck, H.,

Randell, B., Wiehle, H.R., Gray, J.N., Lagally, K., Popek, G.J., Saltzer, J.H. (eds.) Operating
Systems. LNCS, vol. 60, pp. 393–481. Springer, Heidelberg (1978)

22. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan Kaufmann
Publishers Inc., San Francisco (1992)

23. Hamilton, J.: I love eventual consistency but... (April 2010),
http://bit.ly/hamilton-eventual

24. HBase: Bigtable-like structured storage for Hadoop HDFS (2010),
http://hadoop.apache.org/hbase/

25. HDFS: A distributed file system that provides high throughput access to application data
(2010), http://hadoop.apache.org/hdfs/

26. Kung, H.T., Robinson, J.T.: On optimistic methods for concurrency control. ACM Trans.
Database Syst. 6(2), 213–226 (1981)

27. Liu, H., et al.: Live migration of virtual machine based on full system trace and replay. In:
HPDC, pp. 101–110 (2009)

28. Obasanjo, D.: When databases lie: Consistency vs. availability in distributed systems (2009),
http://bit.ly/4J0Zm

29. The Transaction Processing Performance Council: TPC-C benchmark (Version 5.10.1)
(2009)

30. Urgaonkar, B., Rosenberg, A.L., Shenoy, P.J.: Application placement on a cluster of servers.
Int. J. Found. Comput. Sci. 18(5), 1023–1041 (2007)

31. Weikum, G., Moenkeberg, A., Hasse, C., Zabback, P.: Self-tuning database technology and
information services: from wishful thinking to viable engineering. In: VLDB, pp. 20–31
(2002)

32. Weikum, G., Vossen, G.: Transactional information systems: theory, algorithms, and the
practice of concurrency control and recovery. Morgan Kaufmann Publishers Inc., San
Francisco (2001)

http://bit.ly/hamilton-eventual
http://hadoop.apache.org/hbase/
http://hadoop.apache.org/hdfs/
http://bit.ly/4J0Zm

What Have We Learnt from Deductive
Object-Oriented Database Research?

Mengchi Liu1, Gillian Dobbie2, and Tok Wang Ling3

1 State Key Lab of Software Engineering, Wuhan University, China
mengchi@sklse.org

2 Department of Computer Science, University of Auckland, New Zealand
g.dobbie@auckland.ac.nz

3 School of Computing, National University of Singapore, Singapore
lingtw@comp.nus.edu.sg

Deductive databases and object-oriented databases (DOOD) are two important
extensions of the traditional relational database technology.

Deductive databases provide a rule-based language called Datalog¬ (Datalog
with negation) that uses function-free Horn clauses with negation to express
deductive rules [1], and is a simplified version of the logic programming lan-
guage Prolog [2]. A deductive database consists of an extensional database and
an intensional database. The extensional database (EDB) consists of the rela-
tions stored in a relational database whereas the intensional database (IDB)
consists of a Datalog¬ program that is a set of deductive rules used to derive
relations that are the logical consequences of the program and the extensional
database. Datalog¬ is more expressive than pure relational query languages such
as relational algebra and relational calculus as it supports recursive deductive
rules and recursive queries. Moreover, deductive databases have a firm logi-
cal foundation that consists of both model-theoretic semantics in terms of the
minimal model [3], the stable model [4], and the well-founded model [5], and
proof-theoretic semantics in terms of bottom-up fixpoint semantics [2].

Object-oriented databases provide richer data modeling mechanisms such as
object identity, property/attribute, method, complex object, encapsulation, class
hierarchy, non-monotonic multiple inheritance, overloading, late binding, and
polymorphism, but without much research on good DOOD database design,
and the accompanying theoretical progress.

The objective of deductive object-oriented databases is to combine the best
features of deductive databases and object-oriented databases, namely to com-
bine the expressive power of rule-based language and logical foundation of the de-
ductive approach with various data modeling mechanisms of the object-oriented
approach. In the late 80s and 90s, a large number of deductive object-oriented
database languages were proposed, such as O-logic, revised O-logic, C-logic,
F-logic, IQL, LOGRES, LLO, COMPLEX, ORLOG, LIVING IN LATTICE,
Datalogmeth, CORAL++, Noodle, DTL, Gulog, Rock & Roll, ROL, Datalog++,
ROL2, Chimera, and DO2. These proposals can be roughly classified into two
kinds: loosely-coupled and tightly coupled. The first kind mainly uses or extends

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 16–21, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

What Have We Learnt from Deductive Object-Oriented Database Research? 17

Datalog¬-like languages as a query language for object-oriented databases. This
is not a satisfactory approach as the resulting system consists of two clearly dis-
tinct parts with no unifying semantics. Typical examples of this kind are: IQL,
Rock & Roll, CORAL++, and Chimera. The other approach is more fundamen-
tal in which new unifying logics are proposed to formalize the notions underlying
object-oriented databases. It started with a small set of simple object-oriented
features, and more and more powerful features were gradually incorporated into
successive languages. Typical examples of this kind are: O-logic, revised O-logic,
C-logic, F-logic, ORLOG, ROL, and ROL2.

However, a clean logical semantics that could naturally account for all the
important object-oriented features was still missing. Such a semantics played an
important role in database research. In particular, two key object-oriented fea-
tures that were not addressed logically were encapsulation of rule-based methods
in classes, and non-monotonic structural and behavioral inheritance with over-
riding, conflict resolution and blocking.

Method Encapsulation

In object-oriented programming languages and data models, methods are de-
fined using functions or procedures and are encapsulated in class definitions.
They are invoked through instances of the classes. In deductive databases, we
use deductive rules based on Horn clauses with negation instead of functions and
procedures. By analogy, methods in deductive object-oriented databases can be
defined using deductive rules and encapsulated in class definitions. Such meth-
ods should be invoked through instances of the classes as well. However, earlier
deductive object-oriented database languages did not allow rule-based methods
to be encapsulated in the class definitions. The main reason is that the logical
semantics of deductive databases is based on programs that are sets of rules
as in logic programming. If rules are encapsulated into classes and classes can
non-monotonically inherit methods, then it is not clear how to define logical
semantics directly.

Inheritance Conflict Resolution

Non-monotonic multiple structural, and behavioral inheritance is a fundamen-
tal feature of object-oriented databases. Users can explicitly redefine (or over-
ride) the inherited attributes or methods and stop (or block) the inheritance
of attributes or methods from the superclasses. Ambiguities may arise when an
attribute or method is defined in two or more superclasses, and the conflicts
need to be handled (or resolved). Most systems use the superclass ordering to
resolve the conflicts. Unfortunately, a logical semantics for multiple inheritance
with overriding, blocking and conflict resolution had not been defined directly.
The main difficulty is that the inherited instances of a superclass may not be
well typed with respect to its type definition because of overriding and blocking.
Most deductive object-oriented database languages only allow monotonic mul-
tiple structural inheritance or non-monotonic single inheritance, which is not
powerful enough.

18 M. Liu, G. Dobbie, and T.W. Ling

Main Contribution

Our DASFAA 2001 paper successfully solved these two problems. It provides a
direct well-defined declarative semantics for a deductive object-oriented database
language with (1) encapsulated rule-based methods and (2) non-monotonic struc-
tural and behavioral inheritance with overriding, conflict resolution, and block-
ing. In the language, methods are declared in the class definitions, and the meth-
ods are invoked through instances of the classes. We introduce a special class,
none, to indicate that the inheritance of an attribute or method in a subclass is
blocked; that is, it won’t be inherited from its superclasses. We provide a very
flexible approach to inheritance conflict resolution. Our mechanism consists of
two ways. The first and default is similar to the method used in Orion, namely
a subclass inherits from the classes in the order they are declared in the class
definition. The second allows the explicit naming of the class the attribute or
method is to be inherited from. Therefore, a subclass can inherit an attribute or
a method from any superclass. We then define a class of databases, called well-
defined databases that have an intuitive meaning and develop a direct logical se-
mantics for this class of databases. The semantics naturally accounts for method
encapsulation, multiple structural and behavioral inheritance, overriding, block-
ing, and conflict resolution, and is based on the well-founded semantics from logic
programming. However, our semantics differs from the well-founded semantics
in the following ways. We are concerned with a typed language with methods
rather than an untyped language with predicates. We introduce a well-typed
concept and take typing into account when deducing new facts from methods.
The definition of satisfaction of expressions is more complex in our definition
because we define the truth values for our many kinds of expressions. Our def-
inition reflects the fact that our model effectively has two parts, an extensional
database (EDB) that models oid membership and attribute expressions, and
an intensional database (IDB) that models method expressions. The EDB is a
2-valued model, in which oid membership and attribute expressions are true if
they are in the model; otherwise, they are false. The IDB is a 3-valued model,
in which method expressions are true if they are in the model, false if their com-
plement belongs to the model; otherwise, they are undefined. When a method
expression is undefined, either the method isn’t defined on the invoking object,
or it isn’t possible to assign a truth value to that expression. The reason we use
a 3-valued model for IDB is that we can infer both positive and negative method
expressions using method rules. On the other hand, EDB only contains positive
oid membership and attribute expressions so we just use a 2-valued model. In
the well-founded semantics, a program may have a partial model. This is not
the case in our definition, in fact we prove that every well-defined program has
a minimal model. We define a transformation that has a fixpoint, I* for well-
defined databases, and prove that if I* is defined, then it is a minimal model of
the database.

Our work differs from the work of others in many ways. Most existing de-
ductive object-oriented database languages do not allow rule-based methods to

What Have We Learnt from Deductive Object-Oriented Database Research? 19

be encapsulated in the class definitions. Those that do, do not address the issue
directly. In contrast, we have provided a direct semantics for methods encapsu-
lated in class definitions. Also, most existing deductive object-oriented database
languages do not allow non-monotonic multiple structural and behavioral inher-
itance.

By providing a direct logical semantics to the two most difficult object-oriented
features, our work has shown that the object-oriented features that were believed
to be difficult to address, can indeed be completely captured logically.

Applications of Deductive Object-Oriented Database Techniques

There was not a lot more work undertaken into the semantics of object-oriented
databases after 2001, as most important semantic issues have been successfully
solved. However, the logical semantics developed in our work and also deductive
object-oriented database techniques in general have been used in several new
research areas.

In [6], a Datalog-like language is proposed to define derivation rules in object-
oriented conceptual modeling language. As pointed out in [6], the language is
quite similar to our work, which shows that our work can be used for conceptual
modeling.

One is the development of knowledge based applications for information ex-
traction and text classification [7]. The language developed for this purpose
was DLV+. A later development was OntoDLV which supports a powerful in-
teroperability mechanism with OWL, allowing the user to retrieve information
from OWL ontologies, and build rule-based reasoning on top of OWL ontolo-
gies [8]. There was further work into providing a formal approach to ontology
representation that was mainly based on our deductive object-oriented database
semantics [9].

Our logical semantics has been used in new languages for extending the power
of XML schema definition languages, for example adding non-monotonic inher-
itance to XML schema definition languages [10,11,12].

Another XML development is the active deductive XML database system
ADM [13], which extends XML with logical variables, logical procedures and
event-condition-action (ECA) rules.

Also, W3C has created a new working group called Rule Interchange Format
(RIF) to produce a recommendation for a standardized rule language that can be
used as an interchange format for various rule-based systems [14]. It will support
features in deductive object-oriented databases in an XML syntax in order to
exchange and merge rules from different sources

Three perhaps surprising areas where the deductive object-oriented database
technique has been used are source code analysis, metamodel translation and
conceptual modeling in the biological domain.

There is one project in Source Code Analysis that used an object-oriented
query language (.QL) [15,16]. .QL can be used to assess software quality, namely
to find bugs, to compute metrics and to enforce coding conventions.

20 M. Liu, G. Dobbie, and T.W. Ling

Metamodels are used for performing translations of schemas and databases
from one model to another. Typical object-oriented constructs and Datalog pro-
vide significant advantages in the language independent model [17].

It is recognized that the biological domain has some specific requirements
when it comes to conceptual modeling for data integration and database de-
sign [18]. Some of the concepts in the biological domain are similar to object-
oriented concepts.

References

1. Ceri, S., Gottlob, G., Tanca, T.: Logic Programming and Databases. Springer,
Heidelberg (1990)

2. van Emden, M.H., Kowalski, R.A.: The Semantics of Predicate Logic as a Pro-
gramming Language. Journal of ACM 23, 733–742 (1976)

3. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. In:
Minker, J. (ed.) Foundation of Deductive Databases and Logic Programming, pp.
89–148. Morgan Kaufmann, Los Altos (1988)

4. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In:
Proceedings of the International Conference and Symposium on Logic Program-
ming (ICLP/SLP 1988), pp. 1070–1080 (1988)

5. Gelder, A.V., Ross, K.A., Schlipf, J.S.: The Well-Founded Semantics for General
Logic Programs. Journal of ACM 38, 620–650 (1991)

6. Olivé, A.: Derivation Rules in Object-Oriented Conceptual Modeling Languages.
In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 404–420.
Springer, Heidelberg (2003)

7. Ricca, F., Leone, N.: Disjunctive logic programming with types and objects: The
DLV+ system. Journal of Applied Logic 5, 545–573 (2007)

8. Ricca, F., Gallucci, L., Schindlauer, R., Dell’Armi, T., Grasso, G., Leone, N.: On-
toDLV: An ASP-based System for Enterprise Ontologies. Journal of Logic and
Computation 19, 643–670 (2009)

9. Sun, Y., Sui, Y.: A logical foundation for ontology representation in NKI. In:
Proceedings of IEEE International Conference on Natural Language Processing
and Knowledge Engineering (NLPKE 2005), pp. 342–347 (2005)

10. Wang, G., Han, D., Qiao, B., Wang, B.: Extending XML Schema with Object-
Oriented Features. Information Technology Journal 4, 44–45 (2005)

11. Wang, G., Liu, M.: Extending XML with Nonmonotonic Multiple Inheritance.
In: Proceedings of Database Systems for Advanced Applications (DASFAA 2005)
(2005)

12. Liu, M.: DTD schema: a simple but powerful XML schema language. International
Journal of Web Information System 4, 465–483 (2008)

13. Olmedo-Aguirre, O., Escobar-Vzquez, K., Alor-Hernndez, G., Morales-Luna, G.:
ADM: An Active Deductive XML Database System. In: Monroy, R., Arroyo-
Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972,
pp. 139–148. Springer, Heidelberg (2004)

14. Rule Interchange Format: W3C Working Group (2005),
http://www.w3.org/2005/rules

15. de Moor, O., Verbaere, M., Hajiyev, E., Avgustinov, P., Ekman, T., Ongkingco,
N., Sereni, D., Tibble, J.: Keynote Address: .QL for Source Code Analysis. In:
Proceedings of the IEEE International Workshop on Source Code Analysis and
Manipulation, pp. 3–16 (2007)

http://www.w3.org/2005/rules

What Have We Learnt from Deductive Object-Oriented Database Research? 21

16. de Moor, O., Sereni, D., Verbaere, M., Hajiyev, E., Avgustinov, P., Ekman, T.,
Ongkingco, N., Tibble, J.: QL: Object-Oriented Queries Made Easy. In: Lämmel,
R., Visser, J., Saraiva, J. (eds.) Generative and Transformational Techniques in
Software Engineering II. LNCS, vol. 5235, Springer, Heidelberg (2008)

17. Atzeni, P., Gianforme, G., Toti, D.: Polymorphism in Datalog and Inheritance in
a Metamodel. In: Proceedings of the 6th International Symposium on Foundations
of Information and Knowledge Systems, FoIKS 2010 (2010)

18. de Macedo, J.A.F., Porto, F., Lifschitz, S., Picouet, P.: Dealing with Some Con-
ceptual Data Model Requirements for Biological Domains. In: Proceedings of the
International Conference on Advanced Information Networking an Applications
Workshops, AINAW 2007 (2007)

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 22–37, 2011.
© Springer-Verlag Berlin Heidelberg 2011

ECODE: Event-Based Community Detection from Social
Networks

Xiao-Li Li1, Aloysius TanP

1
P, Philip S. YuP

2
P, and See-Kiong NgP

1
P

1 Institute for Infocomm Research, 1 Fusionopolis Way #21-01 Connexis Singapore 138632
2 Department of Computer Science, University of Illinois at Chicago, IL 60607-7053
{xlli,skng}@i2r.a-star.edu.sg, aloysius_tan@hotmail.com,

psyu@cs.uic.edu

Abstract. People regularly attend various social events to interact with other
community members. For example, researchers attend conferences to present
their work and to network with other researchers. In this paper, we propose an
Event-based COmmunity DEtection algorithm ECODE to mine the underlying
community substructures of social networks from event information. Unlike
conventional approaches, ECODE makes use of content similarity-based virtual
links which are found to be more useful for community detection than the
physical links. By performing partial computation between an event and its
candidate relevant set instead of computing pair-wise similarities between all
the events, ECODE is able to achieve significant computational speedup.
Extensive experimental results and comparisons with other existing methods
showed that our ECODE algorithm is both efficient and effective in detecting
communities from social networks.

Keywords: social network mining, community detection, virtual links.

1 Introduction

In recent years, many real world networks, such as worldwide web [1], social
networks [2] [3], biological networks [4] [5] [6] [7] [8] [9], citation networks [10],
communication networks [11] etc, have become available for data mining. A key task
of mining these networks is to unravel the underlying community substructures.
Community detection can reveal important functional information about the real-
world networks. For example, communities in the biological networks usually
correspond to functional modules or biological pathways that are useful for
understanding the causes of various diseases [7]. In the social networks, knowledge
about the underlying community substructures can be used for searching for potential
collaborators, devising strategies to optimize the social relationships, identifying key
persons in the various communities, etc.

Qualitatively, detecting communities from networks involves dividing the vertices
into groups such that there is a higher density of links within groups than between
them [12] [13]. Numerous algorithms have been proposed to detect communities from
various networks in recent years. However, detecting community substructures from
large scale networks is still a challenging issue [12]. First of all, these algorithms are

 ECODE: Event-Based Community Detection from Social Networks 23

not very efficient as they either compute pair-wise similarities between all the entities
or cliques (agglomerative methods), or iteratively calculate the cutting edges (divisive
methods) based on the values of some measures, e.g. betweenness scores. Secondly, it
is common in practice that the social entities only interact with a limited subset of
community members. As such, there exist communities which do not have very dense
connections among all its members. This will make existing algorithms, most of
which are density-based, suffer.

We observe that people regularly attend various social events to interact with other
community members. Many communities are formed and strengthened during such
events as the members are able to effectively interact en masse in addition to
traditional one-on-one interactions with one another. For example, in the academic
domain, researchers often attend conferences, seminars and workshops to network
with other community members whom they may not yet have direct working
relationships with, but who have common research background and interests with
them. In such events, old links are strengthened while new links are formed as the
community members present their work, talk about the possible technical solutions
for specific problems, provide feedbacks and suggestions to their peers’ work, discuss
the possibility of future research direction and the collaboration topics, etc, during the
formal programs as well as the informal tea breaks, lunches, and dinners. Similarly, in
business domain, professionals also often attend business meetings and trade
exhibitions to find potential collaborators, discuss with their business plans, exchange
ideas on the issues regarding the economic situation, and find commercial
opportunities in current and/or emerging markets. Event information can thus be quite
useful for inferring communities from social networks.

In this paper, we have proposed a novel ECODE algorithm which detects
community substructures from events. ECODE stands for Event-based COmmunity
Detection. In ECODE, similar events are merged using hierarchical clustering to form
bigger communities. We summarize the main contributions in this paper as follows:

• For the first time, the event-based community detection problem is formally
defined. This will facilitate the use of event data for better detection of community
substructures in social networks.

• Our proposed ECODE algorithm uses events instead of single persons or cliques as
the basic unit to perform hierarchical clustering efficiently. In fact, ECODE only
computes the similarity scores from a part of the selected potentially similar
events, which further speeds up our algorithm.

• A novel idea termed as virtual links has been proposed to enhance the connectivity
among members within same communities. The virtual links, which are content-
based associations, can be used to enrich the potentially sparse connections
amongst the community members, resulting in effective community detection.

• Experimental results showed that our method that can effectively address the
challenging problems in the community detection, namely, the issues of low
efficiency and low connectivity within community. ECODE not only significantly
outperformed the existing state-of-the-art community detection methods, but it also
detects the hierarchical substructures of communities in the social networks, which
can provide more insights on community formations. Our algorithm also allows the
communities discovered to have overlapping structures.

24 X.-L. Li et al.

2 Related Work

Detecting communities or modules from networks has attracted considerable attention
in recent years [14]. The current research on community detection can be divided into
two main thrusts, namely, agglomerative methods and divisive methods [13] [15].

Agglomerative methods adopt bottom-up strategies to build a tree where the leaves
can be either a single node or dense graphs [16] [12] [17] [18] [4] [19] [20]. The
agglomerative methods proposed in [12], [16], [17] and [18] evaluate the pair-wise
similarities or closeness s(i, j) for every pair of nodes i and j in the network. Starting
from individual nodes as initial groups, the process involves iteratively merging the
two most similar groups into larger and larger communities. A tree which represents
the whole network is built from the bottom up to the root. In comparison, the
agglomerative methods proposed in [4], [19] and [20] detect dense graphs, such as the
maximal cliques [4] [19] and k-core [20], as the initial leaves. They then repeatedly
join together the two most similar dense graphs to larger communities.

Divisive methods, on the other hand, construct a tree in the reversed order [21] [22]
[23] [15] [24] [25]. They start from the root, which represents the whole network, and
divide the network progressively into smaller and smaller disconnected sub-networks
which can correspond to the communities. The fundamental idea of the divisive
methods is to select links that are inter-cluster links and not intra-cluster links to be
cut. A well-known divisive algorithm has been proposed by Girvan and Newman
[26]. The algorithm selects the links to be cut based on the values of the “edge
betweenness” ― a link’s betweenness score is defined as the number of shortest paths
between all pairs of nodes in the network that pass along it. Links with large
betweenness score are thus “bridge”-like edges (or inter-cluster links) linking densely
connected clusters, since many shortest paths between the different clusters will have
to pass through these edges. Spectral graph partitioning methods have also been
employed to detect the groups by identifying an approximately minimal set of links
from the given graph [27] [28]. The block modeling method can be considered as a
classical Social Network Analysis (SNA) method for this problem [29].

Many interesting problems have been explored recently by taking time factors into
consideration. The work in [30] investigated communities that grow rapidly and
explored how the overlaps between pairs of communities change over time. The work
in [31] showed to discover what the “normal” growth patterns in social, technological
and information networks are. A tractable model for information diffusion in social
networks was proposed in [32], while the work in [33] studied how communities
evolve over time in dynamic multi-mode networks.

3 The Proposed Technique

In this section, we present our proposed ECODE algorithm. In Subsection 3.1, we
provide the problem definition of event-based community detection. Then, in
Subsection 3.2, we introduce a content-based virtual link method. Next, in Subsection
3.3, we describe three different similarity measures. We present our ECODE
algorithm in Subsection 3.4. Finally, we assign people to corresponding communities.

 ECODE: Event-Based Community Detection from Social Networks 25

3.1 Problem Definition

Let event set E = { φ Bi B| φ Bi B is a event, i = 1, 2, …, n}. Each event φ Bi Bcan be represented
as a graph φ Bi B={V BiB, EBiB} where V BiB ={vBj B| v BjB is an individual entity who attended the event
φ BiB}, E Bi B={(vBjB,v Bk B) | v Bj Band v Bk B are two individual entities who have certain relationships, vBjB,
v Bk B ∈ V BiB}. Each link (v BjB,v Bk B) in E BiB could be vBjB and v Bk B work together (physical links).

Fig. 1. Illustration of community detection

Given an event set E, our objective is to detect those communities {CB1B, CB2 B, …, CBpB}
where each individual community CBi B(i=1, 2, …, p) has much more intra-links (links
within CBiB) but relatively less inter-links cross different communities (links between CBi B
and CBjB, j = 1, 2, …, p, i ≠ j) (link perspective). In addition, there should be relatively
small number of vertices that participate in two communities CBiB and CBjB (i ≠ j). Fig. 1
illustrates an event community detection problem where the nodes are individual
entities (represented by colored circles) and there are two different types of links, i.e.
physical links (represented by solid lines) and virtual links (represented by dotted
lines). Virtual links connect a pair of entities from different events who do not have
direct interactions but work on some similar topics. Fig. 1 depicts 7 events ϕ 1, …, ϕ 7
(circled), and 2 main communities existing separated by H (community 1: ϕ 1, ϕ 2, ϕ 3,
ϕ 4 and community 2: ϕ 5, ϕ 6, ϕ 7). Note that some people attend multiple events and
they are thus located in the intersections of these communities. If there are many
common participants in two separate events (vertex overlapping), then these events
are probably related and those people in the two events should belong to the same
community. The virtual links enhance the connectivity across different events within
the same community, which are useful to merge events to form bigger communities.

3.2 Virtual Links between Events

Given a vertex v BiB, we consider its associated content in various events d Bi B: for the
researchers’ social networks, these could be v BiB’s research papers, presentation slides,
project descriptions, curriculum vitae, etc to profile v BiB’s interests. For a pair of vertices
v BjB and v Bk B from different events (v BjB∈φ BjBB B={V BjB, EBjB}, v Bk B∈ φk BBB B={V Bk B, E Bk}, j ≠ k), we evaluate

ϕ B1B

ϕ B 2 B

ϕB 3 B ϕ B 4 B

ϕB 5 B

ϕB 6B

Physical links Virtual links

H

ϕB 7B

26 X.-L. Li et al.

if there is a virtual link between v BjB and v Bk B by computing whether their content
similarity consim(v BjB,v Bk B) is big enough, i.e. consim(v BjB,v Bk B)>δ, where δ is a threshold
which can be computed by averaging the similarities among the non-connected
entities within randomly selected events ER ⊂ϕ , i.e.

∑
∈

∈=
Ri

ikj

i

kj

R

vv
vv

ϕϕ
ϕ

ϕϕ
δ ,,

||

),(consim

||

1
(1)

where (v BjB,v Bk B) is a pair of non-connected entities in event φ BBi B, B B|φ BBi B| is the number of all the
non-physical link pairs in φ BBi, and φ BBBR B is the event set selected from event set E.

The content similarity v Bj Band v Bk BB B,B consim(v BjBB B, vBk B) in equation (1) can be defined as

|)(|*|)(|

|)()(|1
),(

kj

kj

con
kj vfvf

vfvf

K
vvconsim

∩
=

(2)

In equation (2), f(vBjB) represents the feature set of vertex v Bj after eliminating the stop

words; Kcon is a normalization constant and)),((max
,

ba
ba

con vvconsimK = . consim(vBj B, vBkB)

(ranged from 0 to 1) will be bigger if two vertices shared a lot of common features.
While the people within same community have a higher chance to interact with each
other, each individual entity typically still only interacts with a limited number of his
or her community members. In community detection, it is thus quite important to
enrich the social network by linking those entities with common interests together.
Here, we propose virtual links to connect those people from different events whose
content similarity is equal to or higher than the average feature similarity between
people within randomly selected events.

3.3 Similarity Measures

Communities can consist of the people from different events. It is thus necessary to
combine the smaller events together to form those bigger communities. We evaluate
the similarities between events by the following three different similarity measures.

Given two graphs φ BiBB B={V BiB, E BiB} and φ BjBB B={V BjB, EBjB}, the vertex similarity between two
events φ BiBB B and φ BjBB B is defined as

vex
ji

ji
ji K

VV

VV
simVex /

||

||
),(_

∪
∩

=ϕϕ
(3)

where KVex is a normalization constant and)),(_(max
,

ba
ba

Vex simVexK ϕϕ= . According to

equation (3), if two events share a high proportion of members, then they are
considered to be events for the same community.

The physical similarity between two events φ BiB and φ BjB is defined as

PL
ijji

ijjjiikjiji
ji K

VVVV

VVvVVvjkikvvvv
simPL /

|\|*|\|

|}\,\,,,),(|),{(|
),(_

∈∈≠≠∈
=

ϕ
ϕϕ

(4)

where KPL is a normalization constant and)),(_(max
,

ji
ba

PL simPLK ϕϕ= . Equation (4)

basically evaluates how closely the members from different events interact with each

 ECODE: Event-Based Community Detection from Social Networks 27

other. If there are a lot of physical inter-links (involved in different events, such as φ Bk B)
between the members from two events φ BiB and φ BjB, then the events are highly likely to
be events for the same community.

In the same way, we define the virtual link similarity between two events φ BiB and φ BjB:

VL
ijji

ijjjiijijjiiji
ji K

VVVV

VVvVVvvvconsimvvvv
simVL /

|\|*|\|

|}\,\,),(,,|),{(|
),(_

∈∈>∈∈
=

δϕϕ
ϕϕ

(5)

where KVL is a normalization constant and)),(_(max
,

ji
ba

VL simVLK ϕϕ= . Note that the

virtual link similarity in Equation 5 is similar to the physical link similarity in
Equation 4 – the only difference is that we use the virtual links replace the physical
inter-links between the members from the two events. It may appear that the virtual
links are not very useful as the virtual links between entities not involving in the same
events merely indicate that the individuals are doing something similar but they do
not have any physical interactions. However, we will show that the virtual links are
actually more useful for community detection than the physical interaction links.

3.4 ECODE Algorithm

We adopt an agglomerative clustering approach for our community detection
algorithm ECODE (Fig. 2). The objective is to detect similar events in terms of
overlapping vertices and virtual links, and then merging them to form bigger
communities. The algorithm terminates when the quality of the detected communities
in the merging process have become maximal. In Fig. 2, ECODE algorithm starts
with the members from each event forming an initial community. Although we could
employ standard hierarchical clustering, the need to compute pair-wise similarities
between all initial leaf nodes is too time-consuming for large networks. To improve
the efficiency of our technique, in Step 2 of our algorithm, we only select those event
pairs which are potentially similar to compute their similarities.

1. For each event φ Bi B={V BiB, E BiB} (i = 1, 2, …… , n), φBiB ∈ E
2. Find its candidate relevant set Eφ BiB where the members from φ BiB also

frequently participated in the each event in Eφ BiB
3. Compute the similarities between φ Bi Band each event φ BipB in Eφ BiB
4. While (quality of current-level of tree increases)
5. Find the most similar events φ BiB and φ BjB and merge them into a new event φ BnewB
6. Construct a candidate set Eφ BnewB for φ Bnew Bfrom its children’s candidate sets Eφ BiB

and Eφ BjB
7. Compute the similarities between the new event φ BnewB and each event in Eφ BnewB
8. Compute the quality of current level of the tree

Fig. 2. ECODE algorithm for community mining

Given an event φ BiB, we want to find its candidate relevant set EφBiB, which consists of
potential similar events that φ BiB’s entities/members have also participated in. To do
this, we first construct event transaction set Tφ BiB where each record includes an entity

28 X.-L. Li et al.

and the various events that he/she is involved in. We want to detect candidate relevant
event set Eφ BiB for event φ BiB where those events in Eφ BiB have high support in Tφ BiB, i.e.

Eφ BiB ={φ BjB| supportBTφiB(φ Bi B, φ BjB)>α, φ Bi B, φBjB ∈ E, j ≠ i} (6)

where α is a parameter to control the size of candidate relevant set Tφ BiB. The problem
to find high support associated events can be modeled as mining frequent item sets
problem ― there exist many efficient algorithms for this problem in the data mining
domain [34]. We are thus able to compute Eφ Bi B rapidly.

For each event φ BiB and its candidate relevant set Eφ BiB, Step 3 computes the
similarities sim(φ BiB , φ BjB) between φ BiBB Band each event φbipB in Eφ BiBB Bwhich is defined as the
linear combination of vertex similarity Vex_sim (φ BiB , φ BiBBp B) and virtual link similarity
VL_sim (φ BiB , φ BipB):

sim(φ BiB , φ BipB) = λ * Vex_sim (φ BiB , φ Bip) + (1- λ)* VL_sim (φ BiB , φ Bip), (7)

where λ (0≤λ ≤1) is a parameter to adjust the weighs for the importance of vertex

similarity and virtual link similarity. If λ =1 (λ =0), then we only consider the vertex

similarity (virtual similarity). In our experiments, we will test λ ’s sensitivity.
Note that according to Equation (5), obtaining VL_sim (φ BiB , φBjB) will incur

significant computational costs because of the computation of feature similarities
between all the pair-wise events φ BiB and φ BjB. In order to speed up its computation, we
adopt a sampling strategy which randomly selects some entities, i.e. φ BipB and φ BjpB from
φ Bi Band φ BjB respectively and reduce VL_sim (φ BiB , φ BjB) to a manageable VL_sim (φ BipB , φ BjpB).

Steps 4 to 8 perform the hierarchical clustering process. In Step 5, the most similar
events φ BiB and φ BjB are merged together into a new event φ BnewB. We then construct
candidate relevant set Eφ BnewBB for φ BnewB (merge Eφ Bi and EφBj to get the events whose
support is larger than α) and compute the similarities between φ BnewB and each event φ Bk B
in Eφ BnewB based on their children’s similarities, i.e.

sim(φ BnewB , φ Bk B) = sim(φ BiB , φ Bk B) +sim(φ BjB , φ Bk B) (8)

Finally, we compute the quality of the current level of the tree. Note that our
hierarchical clustering may not necessarily result in a tree since we are not building
one big community – we will stop the merging process if the current merging step
does not improve the quality of the current level of tree. Newman has proposed a
quality function Q (modularity) to evaluate the goodness of a partition [15]:

∑ −=
i

iii aeQ)(2
(9)

where iie B Bis the number of edges in the same group/community connecting the

vertices (intralinks) and ²ia is the sum of edges from the vertices in group i to

another group j (interlinks). Since we have observed that there are many interactions
across different communities, instead of using the physical links, we use the
content/feature-based approach. We represent each event using a TFIDF
representation, and then use cosine similarity to compute the intra-similarities and
inter-similarities. The quality equation in (9) can be rewritten into Equation (10),

∑ ∑−=
i j

2jisimcosiisimcosQ)),(),((
 (10)

 ECODE: Event-Based Community Detection from Social Networks 29

Basically, using Equation 10 favors a community substructure which has in overall
bigger intra-similarity and less inter-similarity in terms of their topics and content.
Our ECODE algorithm stops at a level of tree with the maximal Q value.

3.5 Assign People to Corresponding Communities

We note that each entity may occur in multiple communities. For each entity, we
discover the core communities in which the entity is highly involved in. If a BiB is a
member of community set C={CB1B, CB2 B, …, CBp B}, we compute the community
attachment scores of a BiB to CBjB (j=1, 2, …, p) as follows

∑
≠
∈

=
ik

Ca

i

ki

ji
jk a

aa
Cas

)(int
),(int

),(

(11)

where int(a BiB, aBk B) is the number of links between a BiB and other members in community
CBjB and int(a BiB) is the total number of links of a BiB, i.e. a BiB’s degree.

If a BiB is not a member of CBjB but it can be connected to CBjB through intermediate
connectors (indirect neighbors), its community attachment scores can be computed as

∑
≠

∈∈

=

jm
CaCa k

lk

i

ki
ji

jlmk
aint

aaint

aint

aaint
Cas

,)(

),(
*

)(

),(
),(

(12)

Note if pCasCas
p

i
iiki /),(),(

1
∑

=

> , then CBk B will be regarded as aBiB’s core community.

4 Experimental Results

We evaluate the proposed ECODE algorithm by using it to mine communities from a
large researcher social network built by using bibliography data. The datasets that we
have used for our experiment are publication data from the Digital Bibliography and
Library Project (DBLP). The DBLP database provides bibliography information on
major computer science journals and conferences (http://www.informatik.uni-
trier.de/~ley/db/). DBLP currently lists more than one million articles; each article
record contains the author names, paper title, conference or journal name, and year of
publication, as well as other bibliographic information. For our work, we used only
the information on the author names, paper titles and conference names. In our
experiments, each conference will be regarded as one event.

We have selected 6 domains in computer science, namely database, data mining,
machine learning, multimedia, bioinformatics, and natural language processing,
which represent different communities in computer science. For each community, 3
events (in this case, top conferences) were selected and a total of 28,998 papers (from
1970 to 2008) were retrieved from DBLP, including 31,122 authors/entities and
127,238 links (physical links between every two co-authors). The link density of the
network is quite small, which is equal to 127238/(31122*31121/2)= 0.00026274,
indicating that each researcher will only interact with a very limited subset of
community members which results the low connectivity issue in the network.

30 X.-L. Li et al.

Table 1. Communities, events and community core members

Domain/Communities Events #PC members
Database (DB) SIGMOD, VLDB, ICDE 557

Data Mining (DM) KDD, ICDM, SDM 738
Machine Learning (ML) ICML, NIPS, ECML 1,007

Multimedia (MM) CVPR, ICCV, ACM MM 802
Bioinformatics (BI) RECOMB, ISMB, CSB 951

Natural Language Processing (NLP) ACL, COLING, EACL 187

Table 1 summarizes the communities and the corresponding events (column 1

and 2). To evaluate the quality of the detected communities, we also manually construct
gold standard community data sets consisting of community core members, namely, the
technical program committee (PC) members, for each event (note that there is no
existing gold standard for evaluating the communities in social networks). The third
column lists the number of PC members for these top conferences from 2000 to 2007.

Next, we describe the experimental setting. In our ECODE algorithm, for each
event, we will find its “candidate relevant set” which consists of its potential similar
events where α is used to control the size of candidate relevant set (Equation 6). In
our experiments, α is set as 4, but we have also tested the sensitivity how α affects our
algorithm later on (Fig. 4). In order to compute the virtual links between two events,
we randomly selected 10 events/conferences and compute the average similarity of
non-connected community members as the virtual link threshold δ (Equation 1). In
addition, in order to speed up the computation, we randomly selected 100 members in
each event to compute the virtual links between them. We also tested how the number
of members affects the performance of our technique (Fig. 5). For Equations 2 and 10,
we only used the paper titles as the associated documents since they are readily
available. In ECODE algorithm, we combined the vertex similarity and virtual link
similarity (equation 7) where λ is used to weight the two similarities. In our
experiments, λ is fixed as 0.9, and we also test λ’s sensitivity in Fig. 6. Note all our
experiments were run with a standard Intel Core 2 2.40 GHz desktop with 2GB RAM.

Let us now present the experimental results. Table 2 lists the results using two
recently published techniques CONGO [24], EAGLE [19] (they have performed
better than state-of-the-art techniques), as well as our proposed techniques with
different similarity measures, such as vertex similarity (ECODE_Vex), physical links
(ECODE_PL), virtual links (ECODE_VL), combined vertex and virtual links
(ECODE). The table lists the performance of various techniques in terms of
Recall_BM, which is obtained by computing the best match of discovered
communities to gold standard communities with one to one mapping. To do so, we
find all the similarity scores (Equation 3 was used to compute the scores) between the
discovered communities and the gold standard communities. Then, we find the first
best match pair with the biggest similarity score to match a discovered community
with a gold standard community. We continue this process for the remaining gold
standard communities until all the gold standard communities have found their best
match discovered communities, or that no discovered community can be matched to
the gold standard communities. Recall_BM is defined as the number of the members
in gold standard communities retrieved by discovered communities divided by the
total number of members in gold standard communities.

 ECODE: Event-Based Community Detection from Social Networks 31

Table 2. Overall performances of various techniques

Methods CONGO EAGLE ECODE_Vex ECODE_PL ECODE_VL ECODE
Performance 13.7% 27.6% 63.5% 53.3% 64.1% 69.9%

Table 2 shows that ECODE produces the best results, achieving a Recall_BM
score of 69.9%, which is 42.3%, and 56.2% higher than the Recall_BM of the two
existing techniques CONGO and EAGLE respectively. Compared with only using
physical link, virtual link, and vertex similarities, ECODE also generated better
results, illustrating that integrating the vertex links and virtual links improves the
effectiveness of detecting communities in the social networks.

 SIGMOD

ACM MM
NIPS

CVPR

SDM
ICDE

CSB
RECOMB

ISMB

 ECODE_PL ECODE_Vex

SIGMOD
VLDB

ICDE

KDD
ICDM

SDM
ICML

ECML
ECML NIPS
ICDM CVPR
VLDB ICCV

ACM MM
KDD RECOMB

ISMBEACL
ACL CSB

ACLCOLING

ICCV
ICML

COLING

EACL

 ECODE_VL ECODE

RECOMB

COLING
EACL

ACL
CSB

ISMB

NIPS
ACM MM

ICCV

CVPR
ECML

ICML

SDM

ICDM
KDD

ICDE

VLDB

SIGMOD SIGMOD
VLDB

ICDE

KDD

ICDM

SDM
ICML

ECML

NIPS

CVPR

ICCV

ACM MM

RECOMB
ISMB

CSB
ACL

COLING

EACL

Fig. 3. Dendrograms of DCODE for communities using different similarity measures

32 X.-L. Li et al.

We further checked the four dendrograms of our ECODE algorithms with different
similarity settings, which are shown in Fig. 3. We observe that the dendrogram of
ECODE is much more meaningful than ECODE_PL, ECODE_Vex as well as
ECODE_VL. From the results of ECODE_PL, we can see that it is almost like
random clustering. This is because researchers tend to have collaborations with those
from different communities. As such, the physical links are rather misleading for
forming community substructures. ECODE_Vex showed a more meaningful result;
however, there are still some faults in the clustering process. For example, CVPR and
ICCV (multimedia conferences) were grouped with data mining and machine learning
communities first before being grouped with ACM MM although ACM MM, CVPR
and ICCV are multimedia-related conferences. As for ECODE_VL, while their results
are better than ECODE_PL in terms of its dendrogram, conferences belonging to the
same community such as ICML, ECML and NIPS (machine learning conferences) are
not grouped together. NIPS was grouped with ICML and ECML after both have been
clustered to the database, data mining, and multimedia community.

In comparison, by weighting and combining different similarity measures (vertex
and virtual links), ECODE algorithm was able to categorize the right conferences to
the right communities. Our ECODE algorithm discovered 8 communities where all
the merging steps are correct. This shows that ECODE’s integrating of the virtual
links and vertex overlapping was effectively used to detect the community
substructures. In addition, our clustering cut-off (Equation 10)—the dotted line in Fig.
3—is also very accurate, showing that ECODE was able to early-stop the hierarchical
clustering and detect meaningful communities.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 3 4 5 6 7 8

The size of candidate relevant set

P
er

fo
rm

an
ce

0

1

2

3

4

5

6

7

8

9

10

2 3 4 5 6 7 8

The size of candidate relevant set

T
im

e
(H

o
u

rs
)

Fig. 4. Performance of ECODE with different size of candidate relevant set

Fig. 4 shows the performance of ECODE with different sizes of candidate relevant
set, from 2 to 8 with Step 1. The performance of ECODE increases as the size of
candidate relevant size increases from 2, 3 to 4, but it does not change after that. The
plot on the right portion of Fig. 4 shows the actual running time against the size of
candidate relevant set. As expected, more computations were needed when the size of
candidate relevant set increases. However, by considering both performance and
running time plots together, Fig. 4 indicates that after the size of the candidate
relevant set has increased to a certain degree — in this case, 4 — more computation is
no longer useful for community detection as it only increases the computational time

 ECODE: Event-Based Community Detection from Social Networks 33

without increasing the performance. It also shows that our candidate relevant set has
effectively captured the more related events so that it can save a large amount of
computational time, as compared with computing all the pair-wise similarities which
is typically used for hierarchical clustering.

Recall that we also selected a subset of authors to compute the virtual links among
two events in order to improve the efficiency of our algorithm. To study the
sensitivity of the number of authors selected, we performed a series of experiments
using different numbers of authors, from 50 to 200 with a step of 50. The results are
shown in Fig. 5. While the results of using 100, 150 and 200 authors are better than
using only 50, there are no significant improvements. This means that our ECODE
algorithm with small number of authors can perform reasonably well even when we
select only 50 or 100 authors from each event. On the other hand, in terms of
efficiency, our algorithm will perform much fast when we use less authors for
computing virtual links, as shown in the right part of Fig. 5.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200

Number of Authors Selected

P
er

fo
rm

an
ce

0

2

4

6

8

10

12

14

16

50 100 150 200

Number of Authors Selected

T
im

e
(H

o
u

rs
)

Fig. 5. Performance of ECODE with different number of selected authors

In equation 7, we have used λ to
weight the importance of vertex
similarity and virtual link similarity.
Fig. 6 shows how the values of λ affect
the performance of ECODE algorithm.
In Fig. 6, when λ increases, the
performance of ECODE also increases
until λ reaches 0.9. Fig. 6 shows that
combining the vertex similarity and
virtual link similarity can get
consistent better results when λ
∈[0.5,0.9] than using vertex similarity
and virtual link similarity individually.

Finally, in Fig. 7, we show the 20 top representative researchers with the most
publications in our discovered communities. We observe that these top researchers are
typically shared by two or more communities (e.g. Tao Jiang is shared by four, i.e.
bioinformatics, database, data mining and machine learning). In fact, all the data

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
er

fo
rm

an
ce

Fig. 6. The performance of ecode with λ

34 X.-L. Li et al.

Fig. 7. The top researchers in our discovered communities

mining researchers are shared by two or more communities (no single data mining
circle in Fig. 7), indicating that data mining is highly related to other domains, and
data mining researchers are always doing applications or research in other domains.

Note that out of the total 3,488 PC members in Table 1, there were about a third
of them (1,118) who were not assigned any community because these community
(PC) members did not have any publications in the conferences listed. We have
searched all their publications in DBLP (they published in other related conferences
anyway). By incorporating their publication data into current publication data sets,
we were able to assign 782 of them to one or more correct communities through
indirect neighbors with an accuracy of 77.75% (using Equation 12). After assigning
all these authors to their respective communities, the Recall_BM score for ECODE
algorithm has a significant further improvement from 69.9% to 87.1%, as shown
in Table 3. As such, the Equation 12 (assigning entities to community based on
connectivity information) can be useful to effectively infer the underlying
community belongings.

 ECODE: Event-Based Community Detection from Social Networks 35

Table 3. Performance before and after assigning unpublished authors for various communities

Communities
Before assigning

unpublished authors
After assigning

unpublished authors

Bioinformatics (BI) 49.7% 77.6%

Database (DB) 87.1% 97.3%

Data Mining (DM) 59.4% 80.1%

Multimedia (MM) 62.6% 85.9%

Machine Learning (ML) 70.5% 87.5%

Natural Language Processing (NLP) 89.8% 94.1%

Average 69.9% 87.1%

5 Conclusions

Communities are often formed and strengthened during various social events attended
by individuals to interact with other members of the community. Event information
can thus be quite useful for inferring communities from social networks. In this paper,
we have therefore proposed an Event-based COmmunity DEtection algorithm
ECODE to mine the underlying community substructures of social networks from
event information. Unlike conventional approaches, ECODE makes use of content
similarity-based virtual links in the social networks. The virtual links are found to be
more useful for community detection than the physical links. By performing
computation between an event and its candidate relevant set instead of computing
pair-wise similarities between all the events, ECODE was able to achieve significant
computational speedup. We have performed extensive experimental results on the
events and social network data of Computer Science researchers. Comparisons with
other existing methods showed that our ECODE algorithm is both efficient and
effective in detecting communities from social networks.

We have so far focused on the social networks for our approach in this work. In our
future work, we plan to generalize our current approach to mine other networks. For
example, we aim to mine protein complexes from protein interaction networks where
proteins are vertices and protein interactions between two proteins are the links [9].
Each protein in protein interaction networks will have various biological evidences
(similar to content profiling data in social networks) such as sequences, protein
domains, motifs, molecular functions, cellular components as well as other protein’s
physico-chemical properties etc. In this scenario, virtual links will connect two
proteins if they have overall bigger similarities in terms of sequence similarity,
functional similarity, location similarity etc. We will leave this as our future work.

References

1. Albert, R., Jeong, H., Barabási, A.-L.: Diameter of the world-wide web. Nature 401, 130–
131 (1999)

2. Wasserman, S., Faust, K.: Social Network Analysis. Cambridge University Press,
Cambridge (1994)

36 X.-L. Li et al.

3. Li, X.-L., et al.: Searching for Rising Stars in Bibliography Networks. In: DASFAA (2009)
4. Palla, G., et al.: Uncovering the overlapping community structure of complex networks in

nature and society. Nature 435, 814–818 (2005)
5. Li, X.-L., et al.: Interaction Graph Mining for Protein Complexes Using Local Clique

Merging. Genome Informatics 16(2) (2005)
6. Li, X.-L., Foo, C.-S., Ng, S.-K.: Discovering Protein Complexes in Dense Reliable

Neighborhoods of Protein Interaction Networks. In: CSB (2007)
7. Steinhaeuser, K., Chawla, N.: A Network-Based Approach to Understanding and

Predicting Diseases. Springer, Heidelberg (2009)
8. Wu, M., et al.: A Core-Attachment based Method to Detect Protein Complexes in PPI

Networks. BMC Bioinformatics 10(169) (2009)
9. Li, X.-L., et al.: Computational approaches for detecting protein complexes from protein

interaction networks: a survey. BMC Genomics 11(Suppl 1:S3) (2010)
10. Redner, S.: How popular is your paper? An Empirical Study of the Citation Distribution.

Eur. Phys. J. B(4), 131–138 (1998)
11. Nisheeth, S., Anirban, M., Rastogi, R.: Mining (Social) Network Graphs to Detect

Random Link Attacks. In: ICDE (2008)
12. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large

networks. Phys. Rev. E 70, 066111 (2004)
13. Radicchi, F., et al.: Defining and identifying communities in networks. PNAS 101(9),

2658–2663 (2004)
14. Fortunato, S.: Community detection in graphs. Physics Reports 486, 75–174 (2010)
15. Newman, M.E.J.: Modularity and community structure in networks. PNAS 103(23), 8577–

8582 (2006)
16. Ravasz, E., et al.: Hierarchical Organization of Modularity in Metabolic Networks.

Science 297, 1551–1555 (2002)
17. Clauset, A.: Finding local community structure in networks. Phys. Rev. E 72 (2005)
18. Boccaletti, S., et al.: Detection of Complex Networks Modularity by Dynamical

Clustering. Physical Review E, 75 (2007)
19. Shen, H., et al.: Detect overlapping and hierarchical community structure in networks.

CoRR abs/0810.3093 (2008)
20. Seidman, S.B.: Network structure and minimum degree. Social Networks 5, 269–287

(1983)
21. Holme, P., Huss, M., Jeong, H.: Subnetwork hierarchies of biochemical pathways.

Bioinformatics 19(4), 532–538 (2003)
22. Gleiser, P., Danon, L.: Community structure in jazz. Advances in Complex Systems 6, 565

(2003)
23. Tyler, J.R., Wilkinson, D.M., Huberman, B.A.: Email as Spectroscopy: Automated

Discovery of Community Structure within Organizations. Communities and Technologies,
81–96 (2003)

24. Gregory, S.: A fast algorithm to find overlapping communities in networks. In: Daelemans,
W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211,
pp. 408–423. Springer, Heidelberg (2008)

25. Bie, T.D., Cristianini, N.: Fast SDP relaxations of graph cut clustering, transduction, and
other combinatorial problems. Journal of Machine Learning Research 7, 1409–1436 (2006)

26. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks.
PNAS 99(12), 7821–7826 (2002)

27. Newman, M.E.J.: Detecting community structure in networks. European Physical Journal
B 38, 321–330 (2004)

 ECODE: Event-Based Community Detection from Social Networks 37

28. Ding, C., He, X., Zha, H.: A Spectral Method to Separate Disconnected and Nearly-
disconnected Web Graph Components. In: KDD (2001)

29. Wasserman, S., Faust, K.: Social network analysis: methods and applications. Cambridge
University Press, Cambridge (1994)

30. Backstrom, L., et al.: Group Formation in Large Social Networks: Membership, Growth,
and Evolution. In: Proceedings of the Twelfth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 2006), Philadelphia, USA (2006)

31. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over Time: Densification Laws,
Shrinking Diameters and Possible Explanations. In: ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD (2005)

32. Kimura, M., Saito, K.: Tractable Models for Information Diffusion in Social Networks. In:
ECML/PKDD (2006)

33. Tang, L., et al.: Community Evolution in Dynamic Multi-Mode Networks. In: SIGKDD
(2008)

34. Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules Between Sets of Items
in Large Databases. In: SIGMOD Conference (1993)

A User Similarity Calculation Based on the
Location for Social Network Services

Min-Joong Lee and Chin-Wan Chung

Department of Computer Science,
Korea Advanced Institute of Science and Technology(KAIST)

335 Gwahangno, Yuseong-gu, Daejeon, Republic of Korea
mjlee@islab.kaist.ac.kr, chungcw@kaist.edu

Abstract. The online social network services have been growing rapidly
over the past few years, and the social network services can easily obtain
the locations of users with the recent increasing popularity of the GPS
enabled mobile device. In the social network, calculating the similarity
between users is an important issue. The user similarity has significant
impacts to users, communities and service providers by helping them
acquire suitable information effectively.

There are numerous factors such as the location, the interest and the
gender to calculate the user similarity. The location becomes a very im-
portant factor among them, since nowadays the social network services
are highly coupled with the mobile device which the user holds all the
time. There have been several researches on calculating the user similar-
ity. However, most of them did not consider the location. Even if some
methods consider the location, they only consider the physical location
of the user which cannot be used for capturing the user’s intention.

We propose an effective method to calculate the user similarity using
the semantics of the location. By using the semantics of the location, we
can capture the user’s intention and interest. Moreover, we can calculate
the similarity between different locations using the hierarchical location
category. To the best of our knowledge, this is the first research that uses
the semantics of the location in order to calculate the user similarity. We
evaluate the proposed method with a real-world use case: finding the
most similar user of a user. We collected more than 251,000 visited loca-
tions over 591 users from foursquare. The experimental results show that
the proposed method outperforms a popular existing method calculating
the user similarity.

Keywords: User similarity, Social network, Location based service.

1 Introduction

Over the past few years, the online social network services such as facebook,
twitter and foursquare have been rapidly increasing their territory in the Inter-
net world. With the help of recently growing prevalence of mobile devices, the
online social network services have naturally permeated into the mobile devices

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 38–52, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A User Similarity Calculation 39

such as smartphones. Nowadays most of the smartphone users create, share and
communicate with other users by using the online social network services at
anytime, anywhere.

Moreover, the emergence of the Global Positioning System (GPS) enabled
smartphone brings a great opportunity to the online social networks services. The
GPS-enabled smartphones are able to acquire their current position through the
GPS sensor and tag the acquired location of a device to user generated contents.
For instance, when a user writes a post or takes a photo, a smartphone can
tag the location of the user on the post or the photo automatically. Especially,
if the post is regarding the user’s current location or the photo is a landscape of
the user’s location, the location information will be a huge asset to the online
social network. For example, for other online social network users trying to get
information about the specific location, this tagged location information can be
used to increase the quality of search results.

As the GPS-enabled smartphones become more and more popular, the loca-
tion based social network service is getting into the spotlight as a new type of the
online social network service. For instance, foursquare belongs to this category.
foursquare lets a user record a place of one’s current location and tell friends
where he/she is and leave a short commentary about the place. We will describe
the details of foursquare in section 5.1.

In social network services, finding similar users is a very important issue since
we can recommend similar users as friends to a new user and recommend a lot
of things such as products, search results and experiences. However there are
numerous factors to calculate the user similarity. Among the various factors,
we utilize the user’s location to calculate the user similarity. Since the users
carry mobile devices most of the day, especially smartphones, the location of
a smartphone has more meaning then just a specific point of the earth. The
location of a smartphone is the user’s current position and it implies user’s
interest and life style.

When calculating the user similarity by using the user’s location information,
the physical location cannot capture the user’s real intention why the user visits
there. In the real world, one specific physical location is related to many places
such as a coffee shop and a theater, and we cannot determine the exact place by
using the physical location. This problem is worsened if the user is in a building
in a downtown. Therefore, we use the semantics of the location such as the
name of the place, and the type of the place to determine the exact place and
capture the user’s intention. For example, if a user visits a theater frequently, it
is reasonable to infer that the user likes watching movies and if a user visits a
university regularly, we can infer the user is a student or a faculty member of
the university.

In this paper, we propose a new method to calculate the user similarity by
using the semantics of the location. We only consider the top-k visited locations
of each user. Infrequently visited locations incur incorrect results since people
occasionally visit some locations against their will. To take advantage of using
the semantics of the location we utilize a location category hierarchy. Also, we

40 M.-J. Lee and C.-W. Chung

devise the human sense imitated similarity calculation which is able to calculate
the interest for another location by using a user’s current interest in a certain
location.

The contributions of this paper are as follows:

– We address an importance of the semantics of the location than the physical
location, and use the semantics of the location to calculate the user similarity.
This is the first research that uses the semantics of the location in order to
calculate the user similarity.

– We devise an efficient method to calculate the user similarity by using the
semantics of the location. In our method, locations and their categories form
a hierarchical graph structure. By considering only relevant nodes and com-
puting the similarity at necessary nodes, the proposed method generates the
result quickly.

– Our proposed method can also be used to efficiently calculate the similarity
between the two objects other than users when the object can be associated
with hierarchical categories of elements where each category has a weight.

– We experimentally evaluate the proposed method with a real-world use case:
finding the most similar user of a user. Experimental results show that our
proposed method is 84% higher in precision, 61% in recall and 72% in f-
measure than Jaccard index.

The rest of the paper is organized as follows. In Section 2, we discuss the related
works on user similarity calculation. In Section 3, we explain basic concepts and
derive basic equations of our proposed method. In Section 4, we describe the
details of our proposed method. The experimental results are shown in Section
5. Finally, in Section 6, we make conclusions.

2 Related Work

There have been numerous efforts to calculate the user similarity for different
objectives. Recommending people is one of the popular objectives. Guy et al. [4]
proposed a method based on the various aggregated information about people
relationships but it focused on the people that the user is already familiar with.
Therefore, this method cannot be used for calculating the similarity with an
unknown user and finding a new friend in the online social network. Terveen et al.
[9] proposed a framework called socialmatching. The socialmatching framework
aims to match people mainly using the physical locations of people, while we
focus on the semantics of the location.

Some methods recommend experts. McDonald et al. [7] proposed an expert
locating system that recommends people for possible collaboration within a work
place. Also an expert search engine is described in [2]. The expert search engine
finds relevance people according to query keywords. Those approaches are useful
to find co-workers or experts but their life style can be varying since the authors
focused on a domain to find experts of that domain. Therefore, this approach
can not used for finding similar users in general.

A User Similarity Calculation 41

Nisgav et al. [8] proposed a method to find the user similarity in the social
network. They utilize the user’s typed queries to calculate the user similarity.
However, since the location based social network is mainly accessed by using
the smartphone, typed queries are not much used. In addition, considering the
importance of the location information in the location based social network,
using the user’s queries is not suitable for the location based social network.

The increasing pervasiveness of the location-acquisition technologies such as
GPS and WiFi has produced a large amount of location data, and there have
been numerous attempts to utilize these location data. Several researchers ma-
nipulated and extracted valuable information by using the individual’s location
data. Chen et al. [1] proposed the raw-GPS trajectory simplification method
for the location based social network service. They considered both the shape
skeleton and the semantic meanings of a GPS trajectory but they did not report
about the semantic meanings of a GPS trajectory.

Also, multiple users’ locations have been used to extract meaningful informa-
tion by several researchers. Krumm et al. [5] described a method that uses a
history of the GPS driving data to predict the destination as a trip progresses,
and Gonotti et al. [3] developed an extension of the sequential pattern min-
ing paradigm that analyzes the trajectories of moving objects. In contrast to
these techniques, Li et al. [6] proposed a framework for mining the user simi-
larity based on the location history. Li et al. extended the paradigm of mining
multiple users’ location histories, from exploring user’s behaviors to exploring a
correlation between two users.

The purpose of [6] is similar to ours as finding the similarity between users by
using the location history. First, they identified the stay points from the GPS-
trajectories and clustered stay points. Then, they matched clustered sequences
of two users. The higher user similarity in their framework means two users are
physically close such as a family, roommates and lovers, since their framework
is based on physical locations. In general, people do not think roommates are
similar to each other. On the other hands, people intuitively think two users are
similar to each other, if their life styles are alike such as two users both often go
coffee shops even if coffee shops are different. Our proposed method efficiently
finds the similarity of two users who have similar life styles, since we use the
semantics of the location.

3 Preliminary

We explain basic concepts and derive basic equations.

3.1 Location Category

As we mentioned in previous sections, we are using the semantics of the location
instead of the physical location. For the use of the semantics of the location,
we construct and utilize the location category hierarchy graph. We extract the
location category from foursquare since we use a foursquare dataset. A part of
the location category hierarchy graph is shown in Fig. 1.

42 M.-J. Lee and C.-W. Chung

MTA
Subway
– 72nd St

McDonald
’s

Hotel
Rinjani

Downtown
Disney

Gillette
Stadium

Wick
Field
Park

Star
bucks

Fenway
Park

Imperial
Palace

Las
Vegas

Bally's
Casino&

Hotel

HP
Pavilion
at San
Jose

Panera
Bread

Seri
Balai

Pearl City
High

School

Jooseeosee
Fort

Mason
Municipal

Pier

gaasasas
The

Westin
BellevueCity

DUOC
UC

Round
Hill

Park

JFK
Terminal
4 Gate

25
nd Sttt

World
Trade
Center
PATH
Station

Locations

Arts &
Entertainment

College &
Education

Parks &
OutdoorsFood

Travel

Casino

Movie
Theater

Music
Venue

Rock
Club

Foot
ball

Base
ball

Airport
Stadium

Academic
Building

Engin
eering

High
School

Café

Bakery

Asian

Fast
Food American

Farm

Harbor

Hotel

Hotel
Bar

Subway

Train
Station

Train

Termi
nal

Gate

Fig. 1. The location category hierarchy graph (selected)

The location category hierarchy graph consists of two kinds of nodes, location
nodes and category nodes. A location node represents the corresponding unique
location such as Downtown Disney, Hotel Rinjanis and Gillette Stadium. A
category node represents a location category such as a movie theater, a hotel
and a stadium.

3.2 Significant Score

SigSn(u) denotes the significant score of node n of user u and it is calculated as
follows:

SigSn(u) =
V isitn(u)

TotalV isit(u)
(1)

where V isitn(u) is the number of visits at location node n of user u, TotalV isit(u)
is the total number of visits of user u.

We denote a user’s most frequently visited k locations as the top−k locations
of the user. There are many locations that users visit, but users visit only a few
locations frequently. We can consider that the location visited more by a user
represents the user’s characteristic better than the location visited less, and we
experimentally show that the visits to top − k locations take up great part of
total visits in Section 5.4. To avoid a time-consuming process, we consider only
top − k locations of a user to calculate the similarity.

A User Similarity Calculation 43

3.3 Similarity Score

If two users have their own significant scores at the same node, we can compute
a similarity score at that node (denote as a match node). Let SimSn(u, v) be
the similarity score between user u and user v at match node n. To compute
SimSn(u, v), we take the minimum significant score of user u and user v at
match node n as follows:

SimSn(u, v) = min(SigSn(u), SigSn(v)) (2)

We take the minimum value of two users’ significant scores since the minimum
value intuitively represents two users’ common interest at the match node.

3.4 Significant Score Propagation

We should take into account miss-matching nodes between two users to get more
accurate similarity. For example, consider that two users like watching movies,
where one user often goes to ‘theater A’ and the other user often goes to ‘theater
B’. In such a case, people intuitively think two users are similar. Furthermore, we
can infer that their hobby is watching movies. The human intuition also tells us
two users in different theaters are less similar than two users in the same theater.

To imitate this human intuition, we design a method to give the similarity
score at the common nearest ancestor node when two nodes are different in
the location category hierarchy graph. For instance, ‘theater A’ and ‘theater B’
belong to a movie theater category node.

X

A B

(a) 100 children nodes

Y

C D

(b) 10 children nodes

Fig. 2. Different propagation rate according to the number of children nodes

Consider the following two cases depicted in Fig 2. First, the similarity be-
tween two users when one user visits location A, corresponding to node A, and
the other user visits location B, corresponding to node B, where node A and node
B are children of node X , represents category X , which has 100 children (Fig. 2
(a)). Second, the similarity between two users when one user visits location C,
corresponding to node C, and the other user visits location D, corresponding to
node D, where node C and node D are children of node Y , represents category
Y , which has 10 children (Fig. 2 (b)). The first case is more similar than the sec-
ond case from a probabilistic perspective. The difference between location A and
location B in the first case is less than that between location C and location D

44 M.-J. Lee and C.-W. Chung

in the second case because location A and location B are among 100 locations,
while location C and location D are among 10 locations. Therefore, the similar-
ity between two users in the first case is probabilistically higher than that in the
second case.

Since each category has various numbers of children, we introduce the loga-
rithm to lessen the effect of various numbers of children nodes. Let PR(n) be
the propagation rate of node n. It is calculated as follows:

PR(n) =
log(|Sibling(n)|+ 1)

log(totalNumberofNodes)
(3)

where Sibling(n) is the node n’s sibling node set, including node n. We add one
to |Sibling(n)| to prevent a case which a dividend becomes zero. totalNumberof
Nodes is used because PR(n) should be a small number, and totalNumberof
Nodes is always much bigger than |Sibiling(n)| and easy to obtain. The signifi-
cant score at node n is multiplied by the propagation rate (PR(n)) when node
n’s significant score propagates to the parent node.

4 User Similarity Calculation

In this section,we first overviewour proposedmethod, and then explain the details.

4.1 Overall Process

The procedure of our proposed method is as follows:

1. Compute the significant score (Equation 1) of each visited location of user
u and user v

2. Find top−k locations of user u and user v, and construct a top-k significant
score table for each user.

3. Construct a location category hierarchy graph by using only visited location
nodes of two user and visited location nodes’ ancestor nodes.

4. Find the match nodes and its calculation order by using algorithm MatchN-
odeOrder() (Fig. 4).

5. Calculate the user similarity between user u and v by using algorithm Sim-
ilarity() (Fig. 5).

The details of MatchNodeOrder() will be discussed in Section 4.2, and the
details of Similarity() will be discussed in Section 4.3.

4.2 Order of Match Nodes

There are two difficulties to calculate the user similarity. First, as we showed
in Fig. 1, the structure of category nodes is a tree structure. However, some of
location nodes have multiple parent nodes since some locations belong to more
than one category. If a location node has multiple parent nodes, we should select
one of the parent nodes to propagate the significant score. Second, the diverse

A User Similarity Calculation 45

depths of location nodes make it hard to find match nodes at which two users’
significant scores are propagated to come across each other.

Regarding to first difficultly, to overcome the multiple parent nodes problem,
we split a location node to the number of parent nodes and also the significant
score is divided equally among split nodes. This step does not require too much
workload since only some of location nodes belong to more than one parent node
as shown in Fig. 1. Regarding the second difficulty, to efficiently calculate the
similarity score at a match node, we find match nodes which need to calculate the
similarity score, and the calculation order of match nodes. Without this match
node order, we should calculate the similarity score recursively. The algorithm
of splitting location nodes and finding the match nodes and the order of the
match nodes is as follows:

(a) (b)

Fig. 3. Example of finding match nodes and its calculation order

Fig. 3 (b) shows an example of finding match nodes and its calculation order.
Black colored nodes correspond to user u’s visited locations and white colored
nodes correspond to user v’s corresponding visited locations. The nodes which
have a number at the bottom are match nodes and the numbers indicate the
calculation order which is the output of the algorithm. We explain the details of
the algorithm with an example case in Fig. 3.

As shown in Fig. 3 (a), node j has two parent nodes, e and g. We split node j
to j1, j2 and make them the children of node e and g, respectively in Fig. 3 (b)
(Line(4) - Line(6)). Then, we equally divide the initial significant score of node j
into split node j1, j2 and store split nodes in the STu table (Line(7) - Line(10)).
We construct empty sets for each user, ancestorU and ancestorV (Line(13)).
For user u, add all ancestor nodes of all visited nodes (a, b, c, e and g) and all
visited nodes (f , i and k) to ancestorU . And for user v, ancestor nodes (a, b, c,
d, e and g) and visited nodes (h, j1, j2 and k) are added to ancestorV (Line(14)
- Line(19)).

After that, let MatchNodeSet be the intersection of ancestorU and ancestorV
(Line(20)). In this example, MatchNodeSet is {a, b, c, e, g, k} node elements

46 M.-J. Lee and C.-W. Chung

Algorithm MatchNodeOrder()
Input location category hierarchy graph G

user u’s top-k significant score table STu

user v’s top-k significant score table STv

Output match node order list m
begin
1. Let list m be an empty node list
2. Let STu[n] be a significant score of user u at node n

/* to handle multiple parent nodes problem */
3. foreach leafnode l in graph G
4. if location node l has more than one parent node
5. pNum := location node l’s parent nodes count
6. Split node l to l1, l2, ..., lpNum as each parent’s child node

/* Do following if step on STv */
7. if STu contains score for node l

8. Add l1, l2, ..., lpNum to STu with STu[l]
pNum score

9. Delete node l and its significant score from STu table
10. endif
11. endif
12. endforeach
13. Let MatchNodeSet, ancestorU and ancestorV be empty node sets
14. foreach node n in STu

15. Add node n’s ancestor nodes to ancestorU
16. endforeach
17. foreach node n in STv

18. Add node n’s ancestor nodes to ancestorV
19. endforeach
20. MatchNodeSet := ancestorU

⋂
ancestorV

21. m := Sort MatchNodeSet in post-order by using graph G structure
22. return m
end

Fig. 4. Algorithm of finding match nodes order

which is intersection of {a, b, c, e, g, i, k, f} and {a, b, c, d, e, g, j1, j2, h, k}.
Finally, a post-order list of MatchNodeSet elements are assigned in a list m
and returned as an output of this algorithm (Line(21) - Line(22)). As shown as
numbers in Fig. 3 (b), the calculation order list is <e, b, k, g, c, a>.

4.3 User Similarity Calculation

After we determine the match nodes and its calculation order, we can efficiently
calculate the user similarity. The algorithm of calculating the user similarity is
as follows:

For efficiency, we devise the multiple propagation rate based on Equation
3 for propagating a significant score of a node to its ancestor node through
multiple levels. MPR(n, v) denotes the multiple propagation rate, from node v
to ancestor node n, and it is calculated as follows:

MPR(n, v)=
log(|Sibling(k1)|+1) × log(|Sibling(k2)|+1) × ... × log(|Sibling(kn)|+1)

depthDiff × log(totalNumberofNodes)
(4)

where depthDiff is the depth difference between node n and node v, Sibling(n)
is the number of node n’s sibling nodes. k1 is node v, k2 is the parent node of v,
... , and node kdepthDiff is the node n since depthDiff is the depth difference
between node n and node v.

A User Similarity Calculation 47

Algorithm Similarity()
Input location category hierarchy graph G

user u’s top-k significant score table STu

user v’s top-k significant score table STv

match node order list m
Output User similarity score SimScore
begin
1. Let STu[n] be a significant score of user u at node n
2. SimScore := 0.0

/* Calculate user similarity at each node in list m in order*/
3. foreach node n in list m
4. descendants := the set of descendant of node n (use graph G structure)
5. foreach node d in descendants

/* Do following if step on STv */
6. if STu has node v
7. if STu does not have node n
8. Add node n to STu

9. STu[n] : = 0.0
10. endif

/* propagate all descendants significant score to node n */
11. STu[n] := STu[n] + STu[d] * MPR(n, d) (Equation 4)
12. Delete node d from STu table
13. endif
14. endforeach
15. SimScore := SimScore + SimSn(u, v) (Equation 2)
16. STu[n] := STu[n] - SimSn(u, v)
17. STv[n] := STu[n] - SimSn(u, v)
18. endforeach
19. return SimScore
end

Fig. 5. Algorithm of the user similarity calculation

The user similarity calculation algorithm (Fig. 5) utilizes match node order
list m (output of Fig. 4 algorithm) as one of the inputs. At the beginning of the
algorithm, we initialize SimScore with zero (Line (2)) and enumerate each node
n in list m (Line (3) - Line (18)). At the beginning of enumeration steps, let
descendants be the descendant node set of node n (Line (4)). For user u, if STu

has node v (Line (6)), and if STu does not have node n we make a empty table
entry for node n to store the propagated score of descendant nodes (Line(7)
- (10)). Then we propagate user u’s significant scores at node v to the match
node n using Equation 4 (Line (11) - Line(12)). We calculate the similarity
score at node n and add the similarity score to SimScore (Line (15)), and we
subtract similarity score SimSn(u, v) from two user’s significant scores since
the similarity score SimSn(u, v) is already added to the user similarity score
SimScore. (Line (16) - Line (17)). Finally, the algorithm returns SimScore as
the output (Line(19)).

5 Experiment

We evaluate the proposed method with a real-world use case. We use foursquare
user’s data as a dataset. Before discussing about the experimental results, we
briefly introduce our dataset.

48 M.-J. Lee and C.-W. Chung

5.1 Dataset

foursquare is one of the most spotlighted location based social network services.
We briefly introduce foursquare since we collect data from foursquare for evalu-
ating our method.

Fig. 6. Diagram of foursquare service

Fig. 6 shows a diagram of foursquare’s ‘check-in’1, feature. When a user tries to
‘check-in’ to a certain place, the user sends an exact physical location of the user
(Step 1). Then foursquare compares the received location with their huge venue
database (Step 2) and suggests a few names of places in distance order (Step
3). After that, the user selects one place name for his/her current locations, also
the user can make a short commentary about the place (Step 4). After that, the
user sends the selected place name and a commentary to foursquare and twitter
(Step 5). Therefore, by using foursquare APIs2 (Step 1-3), we can convert the
physical location to the semantics of the location.

We collect users’ visited locations through users’ twitter pages since users also
post ‘check-in’ information to their twitter accounts (Step 5 in Fig. 6). At first,
we collected 1,358,287 visiting locations over 17,863 users. However, most of users
are not active enough to use their recoeds as a dataset. Therefore, we select 591
users based on their activity. The selected users visited 251,053 locations and
they are distributed around the world.

5.2 Finding a Similar User

Fig. 7 shows an example of two similar users which are selected by our method.
User A and user B live in very different locations, but they are similar because
they are both students and they like to go shopping. By only considering the
physical location of two users, the similarity score between user A and user B is
close to zero. However, our proposed method finds the similarity between them
since our method utilizes the semantics of the location.

5.3 Performance of Proposed Method

We experimentally evaluate the proposed method with a real-world use case;
finding the most similar user of a user. We compare our method to Jaccard
1 Records a user’s place and able to leave a short commentary about the place.
2 http://groups.google.com/group/foursquare-api/web/api-documentation

http://groups.google.com/group/foursquare-api/web/api-documentation

A User Similarity Calculation 49

(a) User A

(b) User B

Fig. 7. Example of two similar users selected by our method

index which is a popular method to calculate the similarity. As we utilize the
semantics of the location to calculate the user similarity for the first time, there
is no existing method to be compared with.

To find the most similar user of a user, firstly, we calculate pairwise the user
similarity between 591 users. Then, we select the most similar user to each of
591 users. After that, we compare a user’s visited locations with the most similar
user’s visited locations for every user.

In order to measure the accuracy of two methods, we compute the precision,
recall and F-measure by comparing his/her visited locations with the visited
locations of the most similar user recommended by each method.

Let f(u) returns the set of categories of the top-k locations of user u. The
precision is calculated as follows:

Precision =
|f(u)

⋂
f(ur)|

|f(ur)| (5)

where ur is the most similar user selected by a method, which can be our method
or Jaccard index.

The recall is calculated as follows:

Recall =
|f(u)

⋂
f(ur)|

|f(u)| (6)

The F- measure is calculated as follows:

F − measure =
2 × Precision × Recall

Precision + Recall
(7)

Then, we average the precisions, recalls and F-measures for all users.

50 M.-J. Lee and C.-W. Chung

(a) User’s top-5 location (b) User’s top-10 location

(c) User’s top-20 location (d) User’s top-30 location

Fig. 8. Experimental results with various top-k locations

As shown in Fig. 8, our proposed method outperforms the Jaccard index for
every different top-k location setting. Our method is 84% higher in the precision,
61% in the recall and 72% in the f-measure than the Jaccard index on the
average. Since a frequency of visits to a location is represented by a binary value
in Jaccard index, we make our proposed method not to use significant scores and
compare with Jaccard index. This modified version of our method is labeled as
Proposed w/o SC in Fig. 8. However, the result that our method shows higher
performance than the Jaccard index remains unchanged.

5.4 Top-k Location

Since we use only the top − k locations of a user to calculate the similarity, we
experimentally show that considering only the top−k locations of a user results
is better than considering all the visited location of a user.

A User Similarity Calculation 51

To show the visits to top − k locations are greater part of total visits, we
devise TopKCover(k) which shows the ratio of top − k locations visits to total
visits.

TopKCover(k) =

∑
u∈U (TopkV isitk(u)

TotalV isit(u))

|U | (8)

where U is the set of all users, TopkV isitk(u) is the user u’s number of visits to
top− k locations of user u, TotalV isit(u) is the total number of visits of user u.

From the result of Fig. 9 (a), we can consider that using more than 100 visited
locations to characterize a user is meaningless, also the small number of top-k
locations covers a large part of visits. The top-5 locations cover 32%, top-10
cover 43%, top-20 cover 55% and top-30 cover 62% of visits.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70 80 90 100
top-k locations

TopKCover(k)

(a) ratio of top− k locations visits to total
visits

0.49
0.5

0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59

Top-10 Top-20 Top-30 Top-50 Top-75 ALL
top-k locations

Precision

Recall

F-measure

(b) precision, recall, F-measure on various
top-k settings

Fig. 9. Two experimental results to select proper top-k

Fig. 9 (b) shows that considering only the top−k locations of a user is better
than considering a large number or all of the user’s visits. All the three measure
start dropping after top-50 locations.

6 Conclusion

In this paper, we proposed an accurate and efficient user similarity calculation
method. Our method utilizes the semantics of the location, while the other exist-
ing previous researches have been focused on only the physical location. We also
utilize the location category hierarchy to semantically match locations, and the
experimental results show that the proposed method outperforms the popular
Jaccard index. We also experimentally show how many numbers of the locations
has the meaning to a user, and it helps us to understand the user’s behavior.
As a future work, we would aggregate the semantics of the location with some
other information such as user generated tags to get more accurate results.

Acknowledgments. This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea government (MEST) (No.
2010-0000863).

52 M.-J. Lee and C.-W. Chung

References

1. Chen, Y., Jiang, K., Zheng, Y., Li, C., Yu, N.: Trajectory simplification method for
location-based social networking services. In: International Workshop on Location
Based Social Networks, pp. 33–40 (2009)

2. Ehrlich, K., Lin, C.Y., Griffiths-Fisher, V.: Searching for experts in the enterprise:
combining text and social network analysis. In: International ACM SIGGROUP
Conference on Supporting Group Work, pp. 117–126 (2007)

3. Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In:
13th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 330–339 (2007)

4. Guy, I., Ronen, I., Wilcox, E.: Do you know?: recommending people to invite into
your social network. In: International Conference on Intelligent User Interfaces, pp.
77–86 (2009)

5. Krumm, J., Horvitz, E.: Predestination: Inferring destinations from partial trajecto-
ries. In: 8th International Conference on Ubiquitous Computing, pp. 243–260 (2006)

6. Li, Q., Zheng, Y., Xie, X., Chen, Y., Liu, W., Ma, W.Y.: Mining user similarity
based on location history. In: 16th ACM SIGSPATIAL International Symposium on
Advances in Geographic Information Systems, p. 34 (2008)

7. McDonald, D.W.: Recommending collaboration with social networks: a comparative
evaluation. In: Conference on Human Factors in Computing Systems, pp. 593–600
(2003)

8. Nisgav, A., Patt-Shamir, B.: Finding similar users in social networks: extended ab-
stract. In: 21st Annual ACM Symposium on Parallel Algorithms and Architectures,
pp. 169–177 (2009)

9. Terveen, L.G., McDonald, D.W.: Social matching: A framework and research
agenda. ACM Trans. Comput. -Hum. Interact, 401–434 (2005)

Modeling User Expertise in Folksonomies
by Fusing Multi-type Features

Junjie Yao1, Bin Cui1, Qiaosha Han1, Ce Zhang2, and Yanhong Zhou3

1 Department of Computer Science & Key Laboratory of High Confidence Software
Technologies (Ministry of Education), Peking University

{junjie.yao,bin.cui,qiaoshahan}@pku.edu.cn
2 Department of Computer Science, University of Wisconsin-Madison

czhang@cs.wisc.edu
3 Yahoo! Global R&D Center, Beijing

zhouyh@yahoo-inc.com

Abstract. The folksonomy refers to the online collaborative tagging system
which offers a new open platform for content annotation with uncontrolled vocab-
ulary. As folksonomies are gaining in popularity, the expert search and spammer
detection in folksonomies attract more and more attention. However, most of pre-
vious work are limited on some folksonomy features. In this paper, we introduce
a generic and flexible user expertise model for expert search and spammer de-
tection. We first investigate a comprehensive set of expertise evidences related
to users, objects and tags in folksonomies. Then we discuss the rich interactions
between them and propose a unified Continuous CRF model to integrate these
features and interactions. This model’s applications for expert recommendation
and spammer detection are also exploited. Extensive experiments are conducted
on a real tagging dataset and demonstrate the model’s advantages over previous
methods, both in performance and coverage.

1 Introduction

Collaborative tagging is an emerging method for online content organization and man-
agement. By annotation using uncontrolled vocabulary, collaborative tagging systems
provide better experience of resource sharing as well as organization. There are many
sites assisted by collaborative tagging. For example, Delicious (http://delicious.com) for
web page bookmarking, YouTube (http://www.youtube.com) for video sharing, Flickr
(http://www.flickr.com) for photo sharing, and Twitter (http://www.twitter.com) with
hashtag. This collaborative organization approach is also called folksonomy.

Along with the developments of these tagging systems, many research problems
have been studied to improve folksonomy. For example, personalized recommendation
is discussed in [4], an improved tag based content retrieval is presented in [13], and one
of our previous work in [2] exploits novel features fusion methods for tagged resources.

As tagging systems gain in popularity, experts and spammers flow into the tagging
sites at the same time. User interaction becomes difficult, and finding appropriate infor-
mation is urgent. In this paper, we study the problem of modeling users’ expertise in
collaborative tagging communities. That is to discover the user’s expertise with respect
to a given topic (or a tag), of which can be made use to clearly distinguish the experts
and spammers.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 53–67, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

54 J. Yao et al.

The expert search problem, which has already caught our eyes in enterprise cor-
pora [1] and recently social networks [6], is also very meaningful to current tagging
communities. Nevertheless, without the ability to combat spammers, the system will
suffer the misleading influences of them. For example, an expertise model is helpful in
the case that a user wants to find top experts on a specific topic and then follow their
activities. With a suitable expertise model, we can also directly recommend a user the
experts of certain topics which may be interesting to him/her. However, the expert list
recommended by the system for the user will be filled with some useless spammers if
we cannot eliminate them accurately. What is more, a suitable expertise model can also
improve tag qualities. On one side, tagging systems can directly push the resources with
imprecise tags to the expert users and let them tag. On the other side, we can avoid the
misleading influences of spammers on tag quality calculation, by simultaneously dis-
tinguishing spammers from users. We believe that, with the help of a reliable expertise
model to search experts and combat spammers, a lot of applications as those we mention
above can be supported in such communities to improve user satisfaction significantly.

The most crucial difference between folksonomy and traditional classic enterprise
corpus or social network is that the former has a comprehensive set of features, e.g.,
users, tags and objects. There also exist rich and meaningful interactions among them.
For example, it is not surprising to see that the expertise of a certain user on tag t is
determined not only by his/her tagging behavior on t, but also on tags similar to t, or
the user’s social network involved. Such multi-type features can not only help us get
more reasonable expert ranking, but also better protect our system from malevolent
attacks of spammers.

To the best of our knowledge, there do not exist many solutions to deal with the
expertise modeling problem in folksonomies. Current methods usually utilize a part of
information about users, objects and tags [15,5,11]. However, no work have explored
all features related to users, objects and tags in folksonomies. We believe this could
result in better representation models, and further make folksonomies more accurate in
expert finding and more resistant to spammers.

To fully utilize existing multi-type features, we propose a novel expertise model for
collaborative tagging communities. We extract several expertise evidences/features hid-
den in folksonomies. An expertise model is used to combine those expertise evidences
and generate users’ expertise over topics/tags. Experiments demonstrate the advantage
of this integrated model.

We outline the contributions of this paper as below:

1. We extract a comprehensive set of expertise evidences/features hidden in such tag-
ging communities. Considering the fact that collaborative tagging communities
basically consist of three parts: tags, users, and objects, those evidences can be
classified into three categories similarly: 1) tag-related evidences, 2) user-related
evidences and 3) object-related evidences.

2. The expertise model based on Continuous Conditional Random Fields (CRF) [12] is
introduced to automatically integrate those expertise evidences and generate user’s
expertise over topics/tags as a result. This model is inspired by the successful ap-
plications of CRF technique [8] to model interactions between different items in an
undirected graph. As for our expertise modeling problem, the proposed model can
keep the balance among different kind of features and also make full use of them.

Modeling User Expertise in Folksonomies by Fusing Multi-type Features 55

3. Our experiments conducted on the expertise ranking problem in a real tagging
dataset show clearly that our CRF-based expertise model is obtaining much higher
precision on searching experts and more resistant to spamming activities than any
other baselines.

The rest of this paper proceeds as follows. In Section 2 we formulate the problem
and explore the evidences inspiring our expertise model. Section 3 presents the CRF-
based expertise model. We discuss the modeling and learning of this model in details.
Quantitative experiments are shown in Section 4. After Section 5 reviews the related
work, we conclude this paper in Section 6.

2 Expertise Evidence in Folksonomy

In this section, we carry out a thorough analysis of the folksonomies and investigate
all evidences which are helpful to our expertise model. We begin with the problem for-
mulation of expertise modeling task and correlated structure of features in folksonomy.
Then a comprehensive set of expertise evidences are studied.

2.1 Feature Correlation

Let X = {O, U, T, R} denote all the observations we have in a folksonomy includ-
ing all the objects O = {o1, o2, . . . , oM}, users U = {u1, u2, . . . , uN}, tags T =
{t1, t2, . . . , tL} and their relationships R = {(oi, uj, tk)}. Also, define a matrix E =
{eij}, where eij denotes the expertise score of user ui on tag tj . With higher value of
eij , user ui is more likely to be an expert on tag tj .

The expertise modeling problem is to determine the expertise score matrix E given
all the observations X in a folksonomy. We need to infer reasonable expertise scores
based on all observations. Hence, our task can be modeled to find E that maximizes the
appearance probability of E given current observations X , i.e.,

E = argmax
E

Pθ(E|X) = arg max
E

Pθ(E|O, U, T, R), (1)

where θ denotes the model parameter. However, the computing Pθ(E|O, U, T, R) is not
a trivial task, as discussed in the above section.

To model the interactions among users, objects and tags and show the influences of
the interactions on expertise, we introduce a graph structure, in Figure 1. Shown in this
graph, three core elements: users, objects and tags are represented by grey nodes and
expertise scores by blank nodes in the upper part. Here we present relations among the
same type of nodes as well as the cross-type relations. For example, the edge between
user ui and uj stands for a subscribe/as-a-friend relation in the tagging system. And
for the cross-type relation, the use of tag tj by user ui is represented by an edge between
the corresponding nodes of tj and ui. Edges in this graph are weighted. In this scenario,
the more frequently user ui uses tag tj , the larger the edge weight between node ui and
node tj is.

Besides those observations X = {O, U, T, R}, our expertise scores, which are de-
noted in the top layer E, are the output of our expertise model. Each node eij in this

56 J. Yao et al.

Fig. 1. Graph Structure of Folksonomy

layer represents the expertise of user ui on tag tj . In this graph the expertise nodes are
interlinked. This aligns with our intuition that there are hidden interactions among the
expertise scores of different users on different tags.

To present these mutual influences, each node in the expertise layer is connected
to the nodes corresponding to observations in folksonomy, which implies that a user’s
expertise in folksonomy is influenced by all items, i.e., users, objects and tags. The
intuitive meanings of these edges will be clear after explaining the Expertise Evidences
we find.

2.2 Expertise Evidences

Only the structure of folksonomy can not give us enough information about the user
expertise, here we illustrate more facets and evidences in folksonomy for more inspira-
tions to estimate expertise reasonably.

The Expertise Evidences refer to the information which can help discover experts and
tell spammers in a folksonomy system. Some state-of-the-art work have already pro-
posed some indications, e.g., user authority [15], tag reliability [5] and post date [11].
However, they usually fail to conduct a comprehensive study of feature interactions,
which are actually the most crucial difference between folksonomy and classic web
environment or the enterprise corpus. In contrast, we first investigate an overall set of
Expertise Evidences. Considering the fact that users, objects, and tags are three basic
foundations of folksonomy, we observe the system from these three perspectives and
explore the corresponding evidences.

We categorize our discovered evidences into three types: 1) tag-related evidences, 2)
object-related evidences and 3) user-related evidences.

Tag-related Evidences. Two tag-related expertise evidences are applied in our model.
The first evidence suggests that, if a user often agrees with others on the choice

of tag to label on an object, there is a great chance that he/she is an expert. This is
consistent with our intuition [15,5], however, this feature alone is very vulnerable to
attacks conducted by spammers as shown in our following experiments. (TE-1)

The second one is that an expert on tag t should have high expertise on similar tag t′,
too. Imagine an expert on topic Web2.0, even though he/she may not tag many tags on

Modeling User Expertise in Folksonomies by Fusing Multi-type Features 57

similar topics, e.g., Delicious, we can trust these tags because that his/her knowledge
has been reflected on a very similar topic. This evidence may also help us handle the
different personal customs on tagging. For example, tell an expert on Puppy in spite of
his preference to use Dog when tagging. (TE-2)

User-related Evidences. The user-related evidence comes from the subscribe relation
in folksonomy. Two metrics are used to depict user’s characteristics: the expertise on
certain tag and the ability to find an expert on certain tag.

In the directed subscribe relation, the difference and interaction between the two
metrics are important. The expert user tends to be subscribed by users who are good at
discovering experts, and the user with high ability of discovering experts is more likely
to subscribe many experts. This is reasonable for us, given that in practice experts are
often subscribed by others because they often provide useful knowledge. Also a user
subscribing lots of experts is good at finding experts because his behavior is a good
sign of the ability to distinguish the usefulness of provided knowledge. These two sub-
rules together show the mechanism of the interactive influence between user’s expertise
and user’s ability of finding experts. (UE-1)

Object-related Evidences. It is always not easy to analyze the content of objects, and
hence we will not use object’s content information in this work. Instead, we should
notice that the user’s expertise on tag t should be increased if he/she uses tag t to
annotate the object o which later becomes a popular object.

This evidence combines the popularity of an object and the post time information.
It satisfies the assumption in [11] that an expert should have the ability of discovering
popular objects instead of just following others. However, compared to [11], we model
this feature in a different way to integrate it into our model seamlessly. (OE-1)

For any folksonomy system, the three elements, i.e., users, objects and tags, are
pillars of the pyramid, and all the facts and evidences we are considering have fully
covered the three main foundations of the folksonomy. The evidences and rules directly
resulting from these facts are laconic, easy to obtain, reasonable intuitively at the same
time. It cannot be denied that other features can also be drawn from the folksonomy
graph structure we presented above, too. For example, one can write ad hoc evidences
specific to application scenario or user preference. But we need to point out that the four
basic evidences we pick now can fully cover all three facets of a folksonomy system
and as shown in our latter experiment, our model integrating barely these four evidences
can still beat other state-of-the-art techniques and perform satisfactorily. What is more
important, any other evidence can be easily integrated into our model. As a result, in
this paper, we can mainly focus on these evidences and show how they can be integrated
into a unified model.

3 CRF Based Expertise Model in Folksonomy

In this section, we present our CRF based expertise model in detail. The CRF based
expertise model is proposed to fuse multi-type features in folksonomy and to finally
generate expertise scores of users on specific tags. We formulate the relations in this
unified model and also discuss the parameter learning methods.

58 J. Yao et al.

3.1 Model Formulation

In order to well fuse the expertise evidences discussed in Section 2, a Continuous Con-
ditional Random Fields [12] based expertise model is proposed here to model the user
expertise in folksonomy. Compared to other fusion models or heuristic methods, this
model is powerful in automatic feature weighting and interaction combination. To cope
with requirements in this problem setting, we also discuss the improvement over basic
CRF model.

Recall the problem defined above, we aim at estimating the probability of E given the
observation X = {O, U, T, R}, and hence we can maximize this probability to obtain
an optimal E = arg maxE {Pθ(E|X)}. Continuous CRF provides a way to estimate
such probability:

Pθ(E|X) =
1

Z(X)
exp

{
k∑

i=1

(
λo · Fo(ci) + λu · Fu(ci) + λt · Ft(ci)

)}
, (2)

where {ci|i ∈ [1, k]} is a set of k cliques in our graph. For example, in Figure 1,
c = {u1, t1, t2, e11, e12} can be taken as a clique if the corresponding nodes of these
elements in the set are fully connected. In the above equation, Fo denotes a func-
tion vector consisting of feature functions designed for the object-related evidences
and λo represents a weight vector of those features or evidences. Fu, λu, Ft and λt

all have similar definitions. The variable θ stands for the parameter set of this model:
θ = {λo, λu, λt} which satisfies

∑
i λi

o +
∑

j λj
u +

∑
k λk

t = 1 and Z(X) is a nor-
malization factor defined as

Z(X) =
∫
E

exp

{
k∑

i=1

(
λo · Fo(ci) + λu · Fu(ci) + λt · Ft(ci)

)}
. (3)

We need to define different feature functions for the three kinds of evidences to inte-
grate them into this model. Here the feature function refers to a function defined on
clique c to measure the fitness of nodes in c to appear together. Specifically, four feature
functions are designed with respect to the four expertise evidences stated above. Before
we explain the detailed feature functions, we first define variables extracted to describe
information in folksonomy.

- Tag similarity matrix Stag: each entry Stag(ti, tj) equals the similarity between
tag ti and tj , which is calculated by tag co-occurrence in our implementation.

- User subscription matrix Sub: Sub(ui, uj) = 1 iff. user uj subscribes user ui.
- User temporal similarity matrix ST : ST (ui, uj|tk) is the similarity between ui

and uj tagging behaviors computed based on the average number of users who
follow ui and uj on objects tagged by tk.

- Expertise matrix E: each entry eij represents the expertise score of user ui on tag
tj .

- Expert finding ability matrix E′: each entry e′ij denotes the ability of user ui to
find experts on tag tj .

We then write feature functions according to the suggested evidences above. Note that,
these feature functions only have non-zero values to certain types of cliques and are
automatically set to zero for cliques of other kinds.

Modeling User Expertise in Folksonomies by Fusing Multi-type Features 59

– TE-1: We define f1
t on clique c like {eij , ui, tj} as

f1
t (eij , ui, tj) = −

(
eij −N (∑

otj

CoIn(ui, tj)
))2

, (4)

where otj enumerates the objects tagged by ui with tag tj , and CoIn(ui, tj) is the
number of users who agree with user ui to apply tag tj to object otj for tag tj .
Function N (.) is introduced to normalize the input variable to [0, 1]. This feature
represents the evidence that if one user agrees with more other users on a certain
tag, his/her expertise on this tag should be higher.

– TE-2: We define f2
t on clique c like {eij , eik, tj , tk} as

f2
t (eij , eik, tj , tk) = − 1

2(|T | − 1)
Stag(tj , tk) × (eij − eik)2, (5)

where |T | is the number of all tags in the system. By this feature function, the user
ui’s expertise scores on similar tags tj and tk would be close.

– UE-1: We define f1
u on clique c like {eij , e

′
kj , ui, uk} as

f1
u(eij , e

′
kj , ui, uk) = −Sub(ui, uk) × (eij − e′kj)

2, (6)

where e′kj =
∑|U|

i=1

(
Sub(ui, uk) × eij

)
and |U | is the number of all users in

folksonomy. This user-related feature function encodes the two-side interactions
between expertise score and finding expert ability into a unified framework.

– OE-1: We define f1
o on clique c like {eij, ekj , ui, uk, tj} as

f1
o (eij , ekj , ui, uk, tj) = −1

2
ST (ui, uk|tj) × (eij − ekj)2. (7)

This means it is better for two users ui and uk to own similar high expertise on tag
tj if they both label a popular object with tag tj and they discover the object earlier
than most other users.

3.2 Parameter Learning

The learning process of our expertise model is to obtain parameters θ = {λo, λu, λt},
given a training dataset D = (X,E), X includes objects O, users U , tags T and their
relations R. In matrix E = {eij}, each entry eij represents the expertise score of user
ui on tag tj . We normalize the expertise scores to [0, 1].

One traditional technique for parameter learning is to train a model which can max-
imize log-likelihood of training dataset D’s appearance. There exist lots of discussions
about how to learn the optimal parameters in CRF framework, e.g., Gibbs Sampling
from [14]. However, it may not optimize the desired objective function, i.e., the average
precision of expertise ranking problem in our case. In contrast, direct optimization aim-
ing at the evaluation metric is better in some scenarios [10]. In this paper, we use the
methodology applied in [10]. Specifically speaking, we enumerate the combination of
parameter θ and select parameter which makes the model obtain the maximal average
precision of expert ranking task.

60 J. Yao et al.

In our problem setting, we are only interested in ranking users by their expertise, so
the inference process can be simplified. The Z(X) will influence only the absolute ex-
pertise scores, not the ranking positions. Under this occasion, the ranking score matrix
of users on certain tags is denoted by E′.

E′ ∝ argmax
E

exp

{
k∑

i=1

(
λo · Fo(ci) + λu · Fu(ci) + λt · Ft(ci)

)}

∝ argmax
E

k∑
i=1

(
λo · Fo(ci) + λu · Fu(ci) + λt · Ft(ci)

)
After substituting the detailed feature functions, i.e., tag related functions: f1

t (.), f2
t (.),

user related function: f1
u(.), as well as object related function: f1

o (.), into this equation,
we can generate the solution of E′ by using standard Lagrange multiplier methods.

4 Empirical Study

In this section, we evaluate our expertise model by the expertise ranking problem in
folksonomies. Specifically, we conduct the evaluations on expert ranking and spammer
ranking to answer the following two questions respectively:

Q1: How exactly is the performance of our expertise model on searching experts for
specific tags?

Q2: Is the proposed expertise model robust enough to resist the spammers’ attacks?

4.1 Experimental Setup

Experiments are conducted on a real tagging dataset, collected from Delicious (http://
delicious.com/) website. These tags range from Jan. to Jun. 2010. The dataset contains
10, 800, 690 web page urls, 197, 783 users, 1, 928, 677 tags. We also fetch subscription
relations between users.

The distribution of tag frequency is shown in Table 1. It is easy to tell that, less tags
show in the dataset with higher frequency. In our experiments, we mainly focus on the
tags ranging from level-3 to level-5. In truth, more people will be interested in experts on
tags such as “asp.net” in level-4 than those like “vibes” in level-1. Since users’ interests
mainly focus on popular tags, these tags deserve more attention. And the improvement
in experts search on these tags can dramatically enhance user satisfaction.

Training Set and Testing Set. To construct our testing query set, we randomly select
10 tags for each frequency level from level-3 to level-5. This is the base to run the model
and to evaluate its performance on expert ranking and spammer ranking.

For expert ranking part, parameter learning is crucial to our expertise model as il-
lustrated before. To learn the parameter set θ = {λo, λu, λt}, a small training set is
manually annotated by two annotators. Annotators are asked to assign the binary ex-
pertise score (expert or not) to randomly selected users to some randomly selected tags.
With the annotation result as ground truth, we adjust the parameter to achieve higher
expert recommendation precision.

Modeling User Expertise in Folksonomies by Fusing Multi-type Features 61

Table 1. Statistics of tag frequency

Level-ID Frequency Interval #Tags
0 [1,9] 1,694,768
1 [10, 99] 199,563
2 [100,999] 28,557
3 [1000,9999] 4,921
4 [10000,99999] 780
5 [100000,999999] 88

Turning to spammer ranking part, in order to measure how resistant the expertise
model is to the spammers’ attacks, we follow the method used in [11]. Three types of
spammers are randomly inserted, i.e., Flooders, Promoters and Trojans. Flooders refer
to users who tag a extremely large number of tags, while Promoters always tag their
own web pages and pay little attention to objects provided by other users. Much more
crafty, Trojans tag a lot for their own pages but at the same time conceal their malicious
intentions by acting like regular users. More details can be found in [11]. Specifically,
each query tag has 20 spammers of each type.

Evaluation Metrics. We apply the Precision@N as our main evaluation metric, which
represents the percentage of answers that are “correct” in all N candidate answers re-
trieved, taking the manually annotated experts list and inserted spammers list as ground
truth.

In particular, in expert ranking part, the retrieved user is “correct” if he/she is labeled
as expert by annotators. As for spammer ranking task, the retrieved user is “correct” if
he/she is a simulated spammer we inserted. Hence, the higher Precision@N for expert
ranking, the more reliable and suitable the model. In contrast, a higher Precision@N for
spammer ranking task is an indication that the model is more vulnerable to spammers’
attack activities.

In addition to the Precision@N , we use another metric, i.e., Average Ranking Po-
sition, to measure the difference in model’s ability to demote spammers in the expert
list by giving spammers lower scores than true experts. The higher the metric, the more
resistant the expertise model to spammers’ attacks.

Baseline Methods. We compare our method with three state-of-the-art approaches for
both expert ranking and spammer ranking.

– Baseline 1: HITS [15]. It applies HITS algorithm to determine the user expertise
by assuming that there exit reciprocal reinforcements between user expertise and
tag quality.

– Baseline 2: CoIn [5]. It uses the coincidence between users as the expertise of users.
– Baseline 3: SPEAR [11]. It assumes the users tagging objects of more popularity

or tagging objects earlier deserve higher expertise scores.

4.2 Quantitative Result

We report our performance study on two tasks, i.e., expert ranking and spammer rank-
ing.

62 J. Yao et al.

Expert Ranking. We present our experimental results to answer how exactly the per-
formance of our expertise model on searching experts is. Table 2 shows the results
of different approaches, including our method named Multi-type Feature Fusion (MFF)
and three baselines, i.e., SPEAR, CoIn and HITS. We have tried different popular levels
of tags, however they obtain similar results so we do not report them separately.

As seen in this table, in respect of Precision@1, our MMF is tied with other baselines.
Also, our MFF approach obtains the best performance in top-5 precision, however, it
meets a slightly decrease in performance for larger N . From the overall perspective
HITS obtains the best performance but our approach is the second best.

Table 2. Average Precision for Expert Ranking Task

Average Precision SPEAR CoIn HITS MFF
P@1 1 1 1 1
P@5 0.80 0.96 0.96 1
P@10 0.68 0.90 0.92 0.88
P@15 0.64 0.85 0.91 0.85
P@20 0.61 0.87 0.91 0.88

Several facts can interpret this result. First of all, due to the limited time, when the
annotators determine whether the retrieved user is an expert on the query tag, they
usually take the tag frequency of users as the most important factor, but true users in
a collaborative tagging system will consider more in fact. Hence, the annotated results
may be more inclined to HITS method. Secondly, as reported by the annotators, they
can not easily determine whether some users with tremendous tags are spammers or
not. Generally, they just take those users as experts instead of spammers.

Despite having slightly worse overall performance than HITS when measured by an-
notated results and assuming all manually annotated experts are accurate, our model can
improve user satisfaction empirically and also, the top 5 retrieved users of our method
for all query tags are all annotated as experts. We believe in fact, our algorithm can
averagely achieve satisfactory results, and can be better or at least comparable to most
state-of-the-art approaches.

Spammer Ranking. This experiment is conducted to test how our expertise model’s
performance is when confronting malicious spammers.

When measuring with the metric of Precision@N , Figure 2, 3 and 4 present the per-
formance of spammer ranking for different models here. The overall performance of
whole query set is shown in Figure 2, while Figure 3 and 4 give more detailed informa-
tion about the model’s performance concerning the discrepancies of frequency levels
in tags. The result for the level-4 query tags is quite similar to level-5, so we do not
show it.

In addition, we show the evaluation results in Figure 5 for different expertise models
with respect to various types of spammers. The y-axis represents the average ranking
position of specified type spammers in top 10, 000 retrieved users. In Figure 2 and
Figure 3, for the spammer ranking task, the lower value in Precision@N suggests there
are less spammers in the first N experts, which means the expertise model is more

Modeling User Expertise in Folksonomies by Fusing Multi-type Features 63

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

P
re

c
is

io
n

@
N

 o
f

S
p

a
m

m
e

rs

N

MFF
SPEAR

CoIn
HITS

Fig. 2. Average Precision of Spammer Ranking, from level-3 to level-5

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

P
re

c
is

io
n

@
N

 o
f

S
p

a
m

m
e

rs

N

MFF
SPEAR

CoIn
HITS

Fig. 3. Average Precision of Spammer Ranking, level-3

resistant to spammers’ attacks. In contrast, in Figure 5, the lower value in y-axis serves
as an indication that inserted spammers are decided to be experts by the model with
high expertise scores, showing the system’s vulnerability to spammers’ attacks.

In Figure 2, the average Precision@20 almost equals 1 for three baselines, but only
approximately 0.4 for our approach. With the increase of the recommended expert num-
ber, the advantage of our model shrinks. However, even at Precision@100, our approach
is still better than the other three. As discussed later, it is the seamless fuse of different
types of expertise information that makes our method most resistant to spammers on
average.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

P
re

c
is

io
n

@
N

 o
f

S
p

a
m

m
e

rs

N

MFF
SPEAR

CoIn
HITS

Fig. 4. Average Precision of Spammer Ranking, level-5

64 J. Yao et al.

 0

 2000

 4000

 6000

 8000

 10000

Flooder Promoter Trojan

A
v

e
ra

g
e

 R
a

n
k

in
g

 P
o

s
it

io
n

MFF
SPEAR

CoIn
HITS

Fig. 5. Average Spammer Ranking Positions

According to Figure 3 and Figure 4, we can find that all the expertise models can
obtain better performance when dealing with tags of higher popularity. One possible
reason might be that for the tags with less popularity, the spammers are easier to “beat”
regular users and become the “experts” on certain topics. Figure 5 suggests that no
matter what kind the spammers belong to, our expertise model MMF shows great im-
provement in the ability to demote all the spammers from the top of the expert list. To
be more specific, all three baselines show nearly no resistance to Flooders while MMF
goes a big step further than them. As for Promoters and Trojans, these spammers will
be demoted twice or more in the expert list by MMF than by any other method in the
three.

Result Analysis and Discussion. From the above expert ranking and spammer ranking
experiments, we can see that our MFF approach outperforms the baseline models. And
we should point out that the good performance of MMF approach results from its ability
to integrate multi-type information extracted from the folksonomy system.

When distinguishing experts, we have more clues and features to inspire experts
search. So we can get accurate experts list especially when most top experts are needed.
While telling spammers, CoIn and HITS both cannot well separate Trojans from reg-
ular users. This failure is a result of their too much dependence on the tag frequency
information. Although when added to the temporal information, SPEAR has great im-
provements in telling Trojans and basically performs better than CoIn and HITS, it still
cannot identify the Flooders like MMF because Flooders tag too many resources to
be distinguished by temporal information easily. However, our MMF model integrates
information of a wider range, e.g., subscription network among users, yielding more
satisfactory results both on the average spammers ranking and spammers demotion of
special kinds.

Considering the performance of our expertise model on expert ranking and spammer
ranking, the model is believed to suitable for practical applications in real world col-
laborative tagging systems. First, although the model is not best when recommending
large scale of experts, but in our daily life, only the top experts recommended are inter-
esting to users. Too much patience are needed for a user to browse 10 or more recom-
mended experts everyday. Second, the outstanding performance on spammer ranking
means our recommended expert list will not be filled with spammers, especially Flood-
ers. Hence, compared to other methods, such as HITS, our expertise model is good at

Modeling User Expertise in Folksonomies by Fusing Multi-type Features 65

demoting crafty spammers like Flooders, who will waste user’s energy to follow and
reduce user satisfaction significantly. Given all these reasons, by accurate top experts
ranking without misleading spammers in the top positions, our expertise model will
provide satisfactory services in real world folksonomies.

5 Related Work

Our work in this paper is broadly related to several areas. We review some in this sec-
tion.

Social Media Management: With the recent startling increase of social media appli-
cation, the uncontrolled vocabulary annotation is becoming popular. Researchers have
discussed various directions of tagging systems. A structured tag recommendation ap-
proached was discussed in [4], and [13] presented an improved retrieval algorithm based
on sequential tags. One of our previous work [2] proposed a feature fusion approach for
social media retrieval and recommendation. Work in this paper focuses on a unified
model for both spammer detection and expert recommendation.

Spammer Detection: Another line of related work is spammer detection which aims to
detect the spammers in collaborative tagging systems or other similar systems. Here we
do not pay much attention to explicitly illustrate the details in spammer detection work,
instead, we focus more on the information utilized in these work. In [9], the classifica-
tion methods were utilized to differentiate spammers from regular users. The features
used in those machine learning method mainly focused on the content of resources. An-
other example was [7], in which co-occurrence information of tags and resources was
used to detect spammers. In detail, the manually annotated spammer scores were prop-
agated through a user graph, the edges of which were generated from the co-tagging,
co-resource and co-tag-resource relations among different users. However, the system
suffered from the problem of human labeled training data, which limited the use of
the system in large scale data. Also, in [15], Xu et al. applied HITS algorithm on the
bipartite graph of users and tags to implement the mutually reinforcement between
tag qualities and user authorities. In addition, when dealing with tag recommendation
problem in [5], the authors measured user’s reliability by the frequency of the user’s
tags agreeing with other users’ postings.

Expert Recommendation: With the widespread use of social communities in our daily
life, online user modeling and expert recommendation or expert search show its impor-
tance. Researchers have made great efforts towards this direction. For example, [16]
explored expertise networks in online systems, user interest and expertise modeling in
social search engine was discussed in [6]. Usually, content based and structure based
methods are used in user profiling. Expert search task in enterprise corpora is always of
interest for many researchers. There exist two seminar models applied, i.e., document
based model [3] and profile based model [1]. In one of our previous work, we combine
the profile and structure based method together for community expert recommenda-
tion [17].

66 J. Yao et al.

To tell experts in folksonomies, Noll et al. focused on structure property and pro-
posed a HITS based algorithm on the bipartite graph among users and objects graph to
extract users’ expertise information in [11].

Different from all existing methods for expert ranking in tagging systems, we in-
troduce a new expertise model to integrate a comprehensive set of expertise evidences
among users, tags, and objects. With this fusion framework, our method can obtain bet-
ter performance than those state-of-the-art approaches, both in combating spammer and
expert ranking.

6 Conclusion

In this paper, we have addressed the problem of modeling users’ expertise in folk-
sonomies by fusing multi-type features. Compared to state-of-the-art methods, we high-
lighted coding the multiple interactive evidences into a unified framework by employing
Continuous Conditional Random Fields techniques.

We examined the performance of our method in large scale real-world tagging data
both about expert ranking and spammer ranking. According to our experiments, we find
our proposed model obtains high precision in expert ranking problem in folksonomies
and is also far more resistant to the spamming attacks than those state-of-the-art ap-
proaches.

We plan to extend our expertise model in two aspects. First, we will further investi-
gate more evidences from real world folksonomies while considering the characteristics
of different social sites. Second, we will employ our expertise model to facilitate other
applications in folksonomies, e.g., tag-based retrieval or tag ranking.

Acknowledgements. This research was supported by the National Natural Science
foundation of China under Grant No. 61073019, 60933004 and 60811120098.

References

1. Balog, K., Azzopardi, L., de Rijke, M.: A language modeling framework for expert finding.
Information Processing and Management 45(1), 1–19 (2009)

2. Cui, B., Tung, A., Zhang, C., Zhao, Z.: Multiple feature fusion for social media applications.
In: Proc. of ACM SIGMOD, pp. 435–446 (2010)

3. Deng, H., King, I., Lyu, M.R.: Enhancing expertise retrieval using community-aware strate-
gies. In: Proc. of ACM CIKM, pp. 1733–1736 (2009)

4. Guan, Z., Bu, J., Mei, Q., Chen, C., Wang, C.: Personalized tag recommendation using graph-
based ranking on multi-type interrelated objects. In: Proc. of ACM SIGIR, pp. 540–547
(2009)

5. Heymann, P., Koutrika, G., Garcia-Molina, H.: Fighting spam on social web sites: A survey
of approaches and future challenges. IEEE Internet Computing 11(6), 36–45 (2007)

6. Horowitz, D., Kamvar, S.: The anatomy of a large-scale social search engine. In: Proc. of
WWW, pp. 431–440 (2010)

7. Krestel, R., Chen, L.: Using co-occurence of tags and resources to identify spammers. In:
Proc. of ECML PKDD Discovery Challenge Workshop, pp. 38–46 (2008)

8. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for
segmenting and labeling sequence data. In: Proc. of ICML, pp. 282–289 (2001)

Modeling User Expertise in Folksonomies by Fusing Multi-type Features 67

9. Madkour, A., Hefni, T., Hefny, A., Refaat, K.S.: Using semantic features to detect spamming
in social bookmarking systems. In: Proc. of ECML PKDD Discovery Challenge Workshop,
pp. 55–62 (2008)

10. Metzler, D., Croft, W.B.: A markov random field model for term dependencies. In: Proc. of
ACM SIGIR, pp. 472–479 (2005)

11. Noll, M.G., Yeung, A.: et al. Telling experts from spammers: expertise ranking in folk-
sonomies. In: Proc. of ACM SIGIR, pp. 612–619 (2009)

12. Qin, T., Liu, T., Zhang, X., Wang, D., Li, H.: Global ranking using continuous conditional
random fields. In: Proc. of NIPS, pp. 1281–1288 (2008)

13. Sarkas, N., Das, G., Koudas, N.: Improved Search for Socially Annotated Data. PVLDB 2(1),
778–789 (2009)

14. Xin, X., King, I., Deng, H., Lyu, M.R.: A social recommendation framework based on multi-
scale continuous conditional random fields. In: Proc. of ACM CIKM, pp. 1247–1256 (2009)

15. Xu, Z., Fu, Y., Mao, J., Su, D.: Towards the semantic web: collaborative tag suggestions. In:
Proc. of WWW Collaborative Web Tagging Workshop (2006)

16. Zhang, J., Ackerman, M.S., Adamic, L.: Expertise networks in online communities: structure
and algorithms. In: Proc. of WWW, pp. 221–230 (2007)

17. Zhou, Y.H., Cong, G., Cui, B., Jensen, C.S., Yao, J.J.: Routing Questions to the Right Users
in Online Communities. In: Proc. of ICDE, pp. 700–711 (2009)

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 68–77, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Identifying Topic Experts and Topic Communities in the
Blogspace

Xiaoling Liu, Yitong Wang*, Yujia Li, and Baile Shi

School of Computer Science, Fudan University, Shanghai 200433, China
{Xiaolingl,yitongw,bshi}@fudan.edu.cn,

Liyujia2008@gmail.com

Abstract. Blogs have become an important media of self-expression recently.
Millions of people write blog posts, share their interests, give suggestions and
form groups in blogspace. An important way to understand the development of
blogspace is to identify topic experts as well as blog communities and to further
find how they interact with each other. Topic experts are influential bloggers
who usually publish “authoritative” opinions on a specific topic and influence
their followers. Here we first discuss the challenge of efficient identifying topic
experts and then propose a novel model to quantify topic experts. Based on
the topic experts identified, we further propose a new approach to identify the
related blog communities on that topic. Experiments are conducted and the
results demonstrate that our approaches are very effective and efficient.

Keywords: topic expert; blog community; identify; blogspace.

1 Introduction

Blogs have become an important media within the last decade, and millions of people
adopt it as a tool to express themselves. These people (called bloggers), might be not
acquainted with each other at all but they share their opinions on hot political events,
their pets, their lovely children etc. through blogs. Until August 2006, the size of
blogspace was two orders of magnitude larger than three years ago [8]; most bloggers
are young people in the age group of 13-29, and they generate 91% blog activities.

Bloggers are connected by hyperlinks, comments, and blogroll (list of friends). The
whole blogspace can be modelled as a huge graph by considering bloggers as nodes
and connections as edges. For example, bloggers talked about SARS could produce
many connections (edges) and made a community (dense sub graph) about this topic.
We make the following contributions:

(1) Present a novel approach to identify topic experts. Considering topic and
many other factors, our approach can identify the true experts efficiently.

(2) Present a novel approach to identify blog communities on a specific topic
effectively. Comparing with other approaches, our approach could produce
more stable, more cohesive, and larger topic-related communities.

* Corresponding author.

 Identifying Topic Experts and Topic Communities in the Blogspace 69

(3) Thorough experiments are conducted and the results demonstrate that our
approach can extract meaningful topic experts and communities effectively.

This paper is organized as follows. In section 2, we briefly review related work in
recent years. We present topic expert identification algorithm and blog community
identification algorithm in section 3 and section 4. Experiments are introduced in
section 5. In section 6, we conclude the paper with some discussion and future work.

2 Related Work

Topic expert identification and blog community identification are two hot topics of
research about blogs. Song [3] tried to find opinion leaders in the blogspace, and he
regard importance and novelty as two considerable factors to identify opinion leaders.
Agarwal proposed a method to identify influential bloggers in a blog community [2],
some factors such as post citations, post length and comment count were considered.
However, he did not consider the quality and main topic of posts or comments, which
we think are rather important factors to make the blogger to be considered as a topic
expert. Unlike Agrawal, we focus on identifying topic experts. We will integrate a
series of factors, such as topic similarity, length of a post or a comment, and the
number of posts a blogger published on the topic etc. to identify topic experts.

Lin’s method [9] based on blogs’ mutual awareness, and the interaction of
blogs was considered as an important factor. Belle’s approach [10] was first ranking
blogs by their citations, and then discovered communities composed of important blogs.
Gruhl [11] studied the information propagation through blogspace, they characterize and
model the data at two levels, one is macroscopic characterization which formalizing the
notion of long-running “chatter” topics sensitising restively of “spike” topics generated
by real world events; the other is a microscopic characterization of propagation among
individuals; then proposed an algorithm to induce the propagation network from a
sequence of posts. Bulters presented a method for discovering blog communities that
incorporates both topology and content analysis. [12].

In Kumar’s algorithm [1], blogs were organized as a time graph, in which
timestamps were used to analyze bursty events through Kleinberg’s method [13]. His
work is most similar to our method of identifying blog communities. In his opinion, a
dense sub-graph of time graph is a signature of a blog community. However, his
method has some weaknesses, such as low topic relativity, bad stability, fragmentary
communities, and low cohesiveness of community members. The method we
presented overcomes these weaknesses to identify high quality blog communities.

3 Experts on a Specific Topic

We regard a blogger as a topic expert if he/she: (1) publish many high quality posts
on that topic; (2) give many high quality comments to others on that topic; (3) is
commented positively by many other bloggers; (4) is acquainted by many other high
quality bloggers. The length of a post, similarity between a post and a given topic, the
number of posts published, the number of comments replied, relevance of a comment
to a post, and commenter’s quality etc. are considered to evaluate the blog quality.

70 X. Liu et al.

3.1 Clusters of Keywords

Keywords in a cluster appear together in many posts and we look on these keywords
as a hot topic. Gabriel [7] and Bansal [4] developed different algorithms to identify
keyword clusters. Gabriel developed a probability model to identify keyword clusters,
which represent hot events at a specific temporal interval. Bansal produced a keyword
graph using all pairs of keywords in posts, and then find bi-connected components of
the keyword graph. We extend Bansal’s approach and take average frequency of a
keyword similarity between a post (or a comment) and a cluster into account.

3.2 Approach of Identifying Experts

Formula (1) is a keyword vector and formula (2) is a keyword frequency vector. Note
that freqi in freq is the average appearing times of fi in related posts (posts include at
least one keyword in f). Keyword frequency vector is used to compute topic similarity
between a post (comment) and the given topic. Suppose p is a post, and freqp is the
keyword frequency of p; the topic similarity between p and f can be calculated using
Cosine Similarity as formula (3) shows. Given a comment c and the keyword
frequency of c, we can compute sim(c) in the same way.

1 2{ , ,..., }nf f f f= (1)

1 2{ , ,..., }nfreq freq freq freq= (2)

1

2 2

1 1

()

n

k pk

k

n n

k pk

k k

freq freq

sim p

freq freq

=

= =

×
=

×

∑

∑ ∑
 (3)

We identify a topic expert in the blogspace by his/her quality score, which is
composed of three parts: scores of post quality, scores of comment quality and scores
from commenters. We will explain the three parts in later section respectively.

For a post p, we denote the quality score of p as quality(p), which can be calculated
by formula (4). In formula (4), length(p) is the size of p; the number “1000” is a scale
factor. Formula (4) ensures that a larger post similar to a specific topic has a larger
quality score. For a comment c, quality(c) can be calculated in the same way.

()
() ()

1000

length p
quality p sim p= ×

(4)

Fig. 1 shows the relationship of comments and posts. Ellipses represent bloggers;
squares and black points represent posts and comments respectively; the numbers
attached to arcs are comment quality scores and the numbers attached to the squares
are post quality scores. The dashed line (c31, p12) means that c31 has nothing to do
with the given topic (sim(c31)= 0), but it also plays a part in the quality score
calculation of b1, so we give it a smaller basic quality score 0.1(called “fame quality
score”).

 Identifying Topic Experts and Topic Communities in the Blogspace 71

Fig. 1. Relationship of blogs

For a comment c with sim(c)=0, we calculate its fame quality score by formula (5).
Note that this kind of comment can not take part in the computation of the second part
quality score. Constant fame_sim represents the fame similarity and can be adjusted.

()
_ () _

1000

length c
fame quality c fame sim= × (5)

There are three parts of a blog’s quality score, and the first two parts are fixed: total
quality score of posts and total quality score of comments. The fixed quality score is
defined in formula (6), where n is the number of posts of bi, and m is the number of
comments of bi. Note that if sim(pij)=0 or sim(cij)=0, the corresponding quality is
equal to 0. wp and wc are the weights used to adjust the contribution of the two parts.

1 1

() () ()
n m

i p ij c ik
j k

fqs b w quality p w quality c
= =

= +∑ ∑ (6)

The third part of blog quality score is obtained from other blogs. We call it mutable
quality score (mqs) because it is obtained by iteratively computation. Suppose the
number of comments a blogger published is num_c, so the mqs of that blog can be
divided into num_c parts which are given to the bloggers he/she commented on. mqs
can be computed by formula (7), where o is the number of comments with zero
similarity. The first part is necessary because some blogs’ fqs=0, but their comments
play a part in the mqs calculation of the blogs they commented on.

1

() _ () ()
o

i ij i
j

mqs b fame quality c fqs b
=

= +∑ (7)

For a blogger bi, assume the total quality score of all his/her comments is sum_cs, the
contribution ratio of a comment cij on other blog can be defined as:

()
() 0

_
()

_ ()
() 0

_

ij
ij

ij

ij
ij

quality c
sim c

sum cs
ratio c

fame quality c
sim c

sum cs

⎧
>⎪

⎪= ⎨
⎪ =⎪
⎩

 (8)

Now calculate the new third part quality score of blog bi using formula (9), where
commenter_count(bi) is the number of blogs that have given some comments to bi,
and num(ck_to_bi) is the number of comments that blog bk gives to bi. Formula (9) can

b1

b2

b3

1.5
0.8

p11(2.3)
p12(1.5)

c11 c12

c13 p31(1.4)

c31

c21

p21(3.8)

0.3

0.5

0.1

72 X. Liu et al.

be iteratively calculated and the procedure will terminate when the mutable quality
scores of all blogs reach stable, then the third part quality score of a blog is obtained.

(_ _)

1 1

() (() ())
k inum c to b

i k kr
k r

mqs b mqs b ratio c
= =

= ×∑ ∑
()

i
commenter_ count b

 (9)

4 Blog Communities on a Specific Topic

4.1 Some Symbols and Definitions about Blog Graph

Table 1 lists some useful symbols for topic communities.

Table 1. Symbols

Symbol Definition and Description
G = {B, E} G: blog graph; B: vertex set; E: edge set
В ={b1, b2, …, bn} bi (1<=i<=n): blog; B: collective of bi
E={e|e=(bi, bj)∧1<=i, j<=n
∧i!=j∧bi,bj∈B}

E: edge between bi and bj if there exist a comment on a given
post.

P ={p1, p2, …, pn} pi is the set of posts posted by bi
C={b1, …, bm | 3<=m<=n } C is a community composed by some blogs in B

Fig. 2. The undirected graph of blogs

Fig. 2 (a) and (b) represent two blogs and their connections. In Fig. 2 (a), bi and bj

represent two blogs; squares and black points represent posts and comments. We
don’t consider the blogger’s comments on his/her self’s posts, so there are no lines
between nodes inside a blog. Fig. 2 (b) simplifies the connection between bi and bj,
the undirected edge represents their “contacts”; the edge’s weight is their contact
times. A huge blog graph shown in Fig. 2 (c) can be formed using this structure.

Definition 1. We denote the vertex incident degree between a blog bi and a
community as degreeVtoC(bi). Suppose the adjacent vertex set of bi is Adjacent(bi),
then for bi and a Community C, degreeVtoC(bi)= count(Adjacent(bi)∩ C). We
consider only one community at the same time, so for bi, degreeVtoC(bi) is changing
with the forming of community. Note that iff there exists at least one edge e=(bi, bj),
subject to bjC and bi C, degreeVtoC(bi)>0, or else degreeVtoC(bi)=0. Fig. 3 shows the
changing of degreeVtoC(b5); grey vertices are the members of community C. In Fig.
3(a), degreeVtoC(b5) is initialized to zero and C={}; using the rule mentioned, we can
get a number list {0, 1, 1, 2, 0} of degreeVtoC(b5).

bj bi

5
bi bj

e4:3

b 1

b2

b 3

b 4
b 5

e2:5

e1:1 e3:3 e5:1
e6:5

(c) (b) (a)

 Identifying Topic Experts and Topic Communities in the Blogspace 73

Fig. 3. The value evolvement of degreeVtoC

Definition 2. For an edge e, we denote the multiplicity of e as edgeMultiplicity(e).
Edge multiplicity represent the contact times of two blogs.

4.2 Identifying Topic Blog Communities

We give every vertex of the blog graph a property QS (Quality Score) which is
obtained through the expert identification algorithm in section 3 and denote the QS
value of blog bi as QS(bi). Unlike Kumar’s algorithm, we choose candidate vertices
mainly by their QS, and then by the degreeVtoC and the edgeMultiplicity.

Fig. 4. Identifying expert communities on a specific topic

In Fig. 4 (a), we firstly choose (b1, b3) as a seed because QS(b1)+QS(b2)=15, the
largest value among all edges. According to Kumar, b2 and b4 are two candidates that
can join in C={b1, b3}; because QS(b2)=3.0 and QS(b4)=2.8, at this point, b2 is a better
choice. However, because degree(b4)>degree(b2), so b4 will brings more candidates to
C. To make a good choice, we give a threshold t=|max(QS)-c|, where c is a constant
and max(QS) is the max QS among all candidates. For a candidate bi, if QS(bi)>=t,
then add it to the candidate list. If a blog in this list have the largest degree, then
choose it as the best one; if there are many best candidates, choose the one with the
largest edgeMultiplicity value. Suppose c=0.3, so based on the rules, b4 is chosen and
the current community is {b1, b3, b4}. Now max(QS)=3.1, so the candidate list is {b2,
b5}. The average edgeMultiplicity of edges between b5 and C is (3+6)/2=4.5, between
b2 and C is (2+4)/2=3, so b5 is chosen and the final community C={ b1, b3, b4, b5}.

5 Experiments

In this section, we will discuss our experiments based on the real dataset collected
from “www.sbnation.com”. We collected the data from Nov. 26, to Dec. 25, 2008,
which includes 9408 bloggers, 6804 posts, and 197,933 comments.

b1

b2
b3

b5

b4

b1

b2
b3

b5

b4

(a)

b1

b2
b3

b5

b4

b1

b2
b3

b5

b4

(b) (c) (d) (e)
b3

b1 b5

b4
b2

b3(6.5)

b2(3.0)

b4(2.8) b5(3.1)

2 4

6

3

2
3

2

b3(6.5)
b2(3.0)

b4(2.8) b5(3.1)

2 4

6

3

2
3

2

b1(8.5) b1(8.5) b1(8.5)
b3(6.5)

b2(3.0)

b4(2.8) b5(3.1)

2 4

6

3

2
3

2

(a) (b) (c)

74 X. Liu et al.

5.1 Identifying Experts on a Specific Topic

We adopt Bansal’s method [4] and make a change by calculating the average
appearance times of keywords to identify topics. Two keyword clusters f1 (about
baseball) and f2 (about football) are selected from the results. f1 has 19 elements and
each element appears 1.41 times in a related post on average; f2 has 10 elements and
each element appears 1.29 times in a related post on average.

Table 2. Top 5 experts of topic one

Rank Name TQS PQS CQS VQS In(Out)
1 King Billy Royal 145.44 105.38 0.55 39.52 817(43)
2 the pinstripes 111.99 87.13 0.12 24.74 748(16)
3 Zonis 94.37 74.22 0 20.15 1581(0)
4 TwistNHook 64.90 33.02 1.58 30.30 2263(11)
5 Dewey Finn 36.85 9.19 0.95 26.72 422(8)

Table 3. Top 5 experts of topic two

Rank Name TQS PQS CQS VQS In(Out)
1 King Billy Royal 166.59 103.61 0.46 62.52 817(34)
2 the pinstripes 117.81 82.54 0 35.27 743(14)
3 Dewey Finn 47.16 9.43 0.20 37.53 301(5)
4 marcello 32.83 6.13 0.10 26.61 454(2)
5 Zonis 25.71 14.01 0 11.71 814(0)

Table 2 and Table 3 show the top 5 experts using f1 and f2 respectively. TQS is the

total quality score of three parts, PQS is the quality score from this blogger’s posts,
CQS is the quality score from this blogger’s comments, VQS is vote quality score
from others and In (Out) is the indegree (outdegree). In Table 2, the best expert is
“King Billy Royal”(KBR) with the highest TQS, and the main contribution to his/her
TQS is PQS (105.38), which means that KBR has published many topic-related posts.
However, the low CQS shows that KBR’s comments have a weaker contribution. The
indegree of KBR is 817, which is very lower than that of “Zonis”(Z) and
“TwistNHook”(T), but his VQS is still larger than that of Z and T, that’s because his
commenter, “the pinstripes”(TP), has high quality. T can’t be listed in Table 3
because of low TQS (4.49). Obviously, he/she has little interests in topic two.

Table 4. The important posts’ information of expert blogs

Post1 Post2 Post3 Rank
pqs len cn cbqs pqs len Cn cbqs pqs len cn cbqs

1 4.68 4909 55 5.40 4.56 4938 12 10.74 4.55 4886 30 94.75
2 4.35 4716 13 5.28 4.35 4716 13 2.55 4.30 4657 32 5.49
3 8.22 9116 21 4.71 8.21 9106 12 0.72 3.27 3608 37 0.72
4 4.09 11087 210 1.57 3.89 8248 338 1.77 3.27 9809 315 1.89
5 5.10 6814 156 114.48 2.72 4865 162 115.02 0.76 1967 112 108.49

 Identifying Topic Experts and Topic Communities in the Blogspace 75

In table 4, we analyze the top 3 best posts of every expert in table 2 to illustrate
why they are experts. pqs is the post quality score, len is the post length, cn is the
number of comments on that post, and cbqs is the total quality score of the
commenters. The first row shows KBR’s three best posts. We can see that the cbqs of
Post3 is much larger than that of Post1 and Post2, that’s because TP gives him/her a
high quality comment. Because of KBR’s small outdegree and large TQS, his
contributions to others are huge. For “Dewey Finn”(DF), all his/her three posts have
high cbqs because of KBR’ comments, so the blog’sVQS depends on not only the
number of the comments but also the quality and outdegree of the commenters.

Now we consider the results generated from different fame_sim. In the above
experiments, fame_sim=0.1; now we will analyze the change using different fame_sim.
Table 5 shows the results when fame_sim=0.1, 0.2, and 0.02. VQS_0.1, VQS_0.2, and
VQS_0.02 represent the VQS adopting different fame_sim values; CR_0.2 and CR_0.02
are the change ratios relative to VQS_0.1. For every expert in Table 2, Fig. 5 (a) shows
the ratio of the number of high quality comments (sim(cij)>0) to low quality comments
(sim(cij)=0), and Fig. 5 (b) shows the values of CR_0.2 and CR_0.02.

Table 5. Vote quality score of different weights

Rank Blog VQS_0.1 VQS_0.2(CR_0.2) VQS_0.02(CR_0.02) In(Out)
1 King Billy Royal 39.52 49.83(26.0%) 31.96(19.1%) 817(43)
2 the pinstripes 24.74 32.01(29.4%) 18.05(27.0%) 748(16)
3 Zonis 20.15 25.47(26.4%) 16.52(18.0%) 1581(0)
4 TwistNHook 30.30 38.98(28.6%) 23.25(23.3%) 2263(11)
5 Dewey Finn 26.72 33.81(26.5%) 22.13(17.2%) 422(8)

Fig. 5. The ratios of different kinds of comments and the ratios of change

From Table 5 and Fig. 5, we know that when fame_sim=0.2 or 0.02, TP’s and T’s
change ratio are always larger than that of others. From Table 4, we know that the
three cbqs values of T are all small, and the three cn values of T are all relatively
large; in Fig. 5 (a), T has the lowest ratio; so it is no doubt that T’s change ratio is
unstable. That is because the main contribution of T’s VQS is obtained from plenty of
low quality comments. However, the question is that the first and the second expert
have similar ratios in Fig. 5 (a), but have different stabilities in Fig. 5 (b). To interpret
this, we calculated the sum of all their commenters’ TQS(sum_cq(rank)) respectively,
and found that sum_cq(1)=124.58, sum_cq(2)=129.82. Further analysis shows that

0

0.1

0.2

0.3

1 2 3 4 5
rank

ra
tio

0.1

0.2

0.3

1 2 3 4 5
rank

ch
an

ge
 r

at
io

fame_sim=0.02 fame_sim=0.2

(a) (b)

76 X. Liu et al.

KBR is the main contributor of TP and TP is the main contributor of KBR; however,
KBR gives TP his/her 16% mqs (about 17) by three comments, while TP gives KBR
his/her 32% mqs (about 28) by two comments. The final results suggest that the VQS
of KBR is more stable than that of TP.

5.2 Identifying Topic Blog Communities

To prove that our community extraction approach is better than Kumar’s, we make a
vector vec100 that consists of top 100 experts. For every community C obtained, we
calculate the intersection of vec100 and C. Fig. 6 shows the properties of top 5 (sorted
by size) such intersections. In Fig. 6, x-axis is the intersection’s index; left y-axis
represents the average quality score of all community members; right y-axis represents
the size of a community or an intersection. The first intersection obtained by our
algorithm has 8 elements; and the according community size and average quality score
are 9 and 39.37 respectively. The first intersection obtained by Kumar’s algorithm has
6 elements; and the according community size and average quality score are 11 and
31.28 respectively. The result is shown in Fig. 6, and this result means that our
approach can generate communities with higher quality and purer members.

0

10

20

30

40

50

1 2 3 4 5
The Index of Intersection

A
ve

ra
ge

 Q
ua

lit
y

S
co

re

0
5
10
15
20
25
30

S
iz

e

Our Method

Kumar's Meshod

Our Community Size

Our Intersection Size

Kumar's Community Size

Kumar's Intersection Size

Fig. 6. The properties of the intersection of top 100 experts and every community

Fig. 7 shows the top 100 experts’ distribution; x-axis represents expert rank and
y-axis represents the generating order of communities. Obviously, when adopting our
method, these experts are almost all distributed in the first 50 communities. That’s
because we only choose the blog with the highest quality as candidate when
extracting communities. This ensures the community’s purity and high quality.

0

200

400

600

0 20 40 60 80 100 120

Expert Rank

C
om

m
un

ity

G
en

er
at

in
g

O
rd

er The Expert
Distribution Using
Kumar's Method
The Expert
Distribution Using
Our Method

Fig. 7. The distribution of the top 100 experts when extracting communities

6 Conclusion

Blogs have spread fast all over the world and form all kinds of topics and virtual blog
communities. In this paper, we are focusing on identifying topic experts and topic

 Identifying Topic Experts and Topic Communities in the Blogspace 77

communities. These two issues are very important not only for understanding the
development of blogspace, but can also provide people the facility of sales,
advertisements, etc. We propose several algorithms to tackle these two issues, and
experimental results demonstrate that our algorithms are very effective and efficient.

We focus on identifying experts on a given topic and identifying topic
communities based on the results of topic expert identification. Our algorithms could
produce purer, high quality, and highly topic-related communities. We plan to further
extend our research in several directions. First, the algorithm proposed is only based
on comments and not combined with link analysis, and we plan to incorporate
link analysis into our framework. Second, we plan to analyse the evolution of topic
experts and topic communities over a period of time by tracing their activities and
understanding the interplay between them.

Acknowledgement

This research is supported by NSF China with Grant No. 90818023.

References

1. Kumar, R., Novak, J., Raghavan, P., Tomkins, A.: On the Bursty Evolution of Blogspace.
In: Proc. WWW, pp. 568–576. ACM Press, New York (2003)

2. Agarwal, N., Liu, H., Tang, L., Yu, P.S.: Identifying the Influential Bloggers in a
Community. In: Proc. of WSDM, pp. 207–218. ACM Press, New York (2008)

3. Song, X., Chi, Y., Hino, K., Tseng, B.L.: Identifying Opinion Leaders in the Blogosphere.
In: Proc. of CIKM, pp. 971–974. ACM Press, New York (2007)

4. Bansal, N., Chiang, F., Koudas, N., Wm, F.: Tompa: Seeking Stable Clusters in the
Blogosphere. In: Proc. of VLDB, pp. 806–817. VLDB Endowment (2007)

5. Kumar, R., Raghavan, P., et al.: Trawling the Web for Emerging Cyber-Communities. In:
Proc.of WWW, New York, pp. 1481–1493 (1999)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. McGraw Hill and
MIT Press (1990)

7. Pui, G., Fung, C., et al.: Parameter Free Bursty Events Detection in TextStreams. In: Proc.
of VLDB, pp. 181–192. VLDB Endowment (2005)

8. State of the Blogosphere – (August 2006),
http://www.sifry.com/alerts/archives/000436.html

9. Lin, Y., Sundaram, H., Chi, Y., Tatemura, J., Tseng, B.: Blog Community Discovery and
Evolution Based on Mutual Awareness Expansion. In: Proceedings of the IEEE/WIC/ACM
International Conference on Web Intelligence, pp. 48–56. IEEE Computer Society,
Washington (2007)

10. Tseng, B., Tatemura, J., Wu, Y.: Tomographic Clustering to Visualize Blog Communities
as Mountain Views. In: Proc. of the World Wide Web (2005)

11. Gruhl, D., Guha, R., Liben-Nowell, D., Tomkins, A.: Information Diffusion Through
Blogspace. In: Proc. of the World Wide Web, pp. 43–52. ACM Press, New York (2004)

12. Bulters, J., de Pijke, M.: Discovering Weblog Communities. In: International AAAI
Conference on Weblogs and Social Media Boulder, pp. 211–214 (2007)

13. Kleinberg, J.: Bursty and Hierarchical Structure in Streams. In: Proc. 8th ACM SIGKDD
Intl. Conf. on Knowledge Discovery and Data Mining, pp. 373–397. Kluwer Academic
Publishers, HingHam (2003)

Utility-Oriented K-Anonymization on Social
Networks

Yazhe Wang1, Long Xie1, Baihua Zheng1, and Ken C.K. Lee2

1 Singapore Management University
{yazhe.wang.2008,longxie,bhzheng}@smu.edu.sg

2 University of Massachusetts Dartmouth
ken.ck.lee@umassd.edu

Abstract. “Identity disclosure” problem on publishing social network
data has gained intensive focus from academia. Existing k-anonymization
algorithms on social network may result in nontrivial utility loss. The
reason is that the number of the edges modified when anonymizing the
social network is the only metric to evaluate utility loss, not considering
the fact that different edge modifications have different impact on the
network structure. To tackle this issue, we propose a novel utility-oriented
social network anonymization scheme to achieve privacy protection with
relatively low utility loss. First, a proper utility evaluation model is pro-
posed. It focuses on the changes on social network topological feature,
but not purely the number of edge modifications. Second, an efficient
algorithm is designed to anonymize a given social network with rela-
tively low utility loss. Experimental evaluation shows that our approach
effectively generates anonymized social network with high utility.

Keywords: social networks, privacy,k-anonymity, utility, HRG.

1 Introduction

With the rapid growing of social network applications and the proliferation of
the social network data in recent years, social network data privacy has attracted
more and more attentions from academia [1–4]. Among various privacy problems
on social networks, identity disclosure [1] in publishing social network data is
most concerned. Usually, a social network is modeled as a complex graph. Given a
social network G, a published social network G∗ has identity disclosure problem
if there is a vertex v in G∗ that can be mapped to an original entity t in G
with a high probability. It has been demonstrated that even after removing all
identifiable personal information (e.g., names and identity card numbers), an
attacker is still able to identify an original entity in a published social network
with high confidence based on the knowledge of the topological structure around
the entity, such as degree, neighborhood and subgraph.

To tackle this issue, various anonymization models have been proposed based
on the principle of k-anonymity. They all have to make changes to the original
social networks in order to protect the privacy. Generally, from privacy protection

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 78–92, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Utility-Oriented K-Anonymization on Social Networks 79

b

a

c

e

d f

h g

i

(a) Social network G

b

a

c

e

d f

h g

i

(b) Published G∗
1

b

a

c

e

d f

h g

i

(c) Published G∗
2

Fig. 1. An example of the impact of adding edges to achieve 2-degree anonymity

point of view, more changes on the original social network are preferred. However,
it will greatly affect the utility of the social network. Ideally, we prefer that a
modified social network does not disclose the true identity of each vertex, and
meanwhile it still provides comparable level of accuracy with the original data for
the corresponding mining and analysis activities. The trade-off between privacy
and utility in publishing tabular data has been well studied [5], however, it is
still new in the field of social network publishing.

To the best of our knowledge, most of previous works use the total number
of modified edges to measure the social network utility loss. In other words,
they try to achieve anonymity with minimum number of edge modifications.
However, this measurement is not effective as it assumes each edge modification
has an equal impact on the original social network properties. For example, a
social network G is given in Fig. 1(a). Its vertices are naturally divided into
two communities, as indicated by the dash circles. The vertices within the same
community are strongly connected, while connections between the vertices of
different communities are weak. Assume there are two corresponding social net-
works G∗

1 and G∗
2 published based on G, as illustrated in Fig. 1(b) and Fig. 1(c)

respectively. In terms of privacy, both G∗
1 and G∗

2 satisfy 2-degree anonymity,
that is for any given vertex, there is at least one other vertex sharing the same
degree. In terms of utility, they are same as they both only add one edge to the
original social network. However, the change that G∗

1 makes (i.e., adding edge
between vertex g and vertex c) is more significant, compared with the change
made by G∗

2 (i.e., adding edge between vertex g and vertex e), as G∗
2 remains the

two-community structure of G, while G∗
1 blurs the boundary of the communities.

Based on the above observations, we believe that the number of edge mod-
ifications alone is not a good measurement of the utility loss and hence the
existing k-anonymization algorithms based on this measurement have nature
flaws in providing high-utility anonymized social network data. To address this
concern, we propose a novel utility-oriented social network anonymization ap-
proach in this paper to achieve high privacy protection and low utility loss. First,
a proper utility model is proposed based on the hierarchical community structure
of the social network, to measure the utility loss of a published social network.
It focuses on social network topological feature changes instead of purely the
number of edge modifications. Second, an efficient k-anonymization algorithm
is designed to modify a given social network G to G∗, where G∗ satisfies the
privacy requirement (e.g., k-degree anonymity) with relatively low utility loss.

80 Y. Wang et al.

The rest of the paper is organized as follows. Section 2 presents some back-
ground knowledge and reviews related works about social network privacy
protection. Section 3 details the new utility model based on the hierarchical com-
munity structure of the social network. Section 4 presents the k-anonymization
algorithm based on the proposed utility model. Section 5 reports the experiment
results. Finally, section 6 concludes the paper.

2 Preliminaries and Related Work

We first present the terminology that will be used in this paper. Similar as other
works, we model the social network as an undirected graph G(V, E), where vertex
set V represents the entities (e.g., persons, organizations, et al), and edge set E
represents the relationships between two entities (e.g., friendship, collaboration,
et al). An edge between vertex vi and vj is denoted as e(vi, vj) ∈ E.1

2.1 Structural Re-identification Attack and K-Anonymity

Social network data publishing faces various privacy challenges, and we only
focus on the identity privacy problem in this work. We assume the entities’
true identities in the original social network G are sensitive, and hence they are
eliminated in the released social network G′. An attacker tries to locate a target
entity in G′ based on her background knowledge about the target. We use F
to denote the type of background knowledge that an attacker uses and F (t) to
represent the evaluated value of F for a target t. If F is based on the structure
of the graph, such as degree, neighborhood and subgraph, this attack is called
structural re-identification attack (SRA) [6], as defined in Definition 1.2

Definition 1 (Structural Re-identification Attack (SRA)). Given a so-
cial network G(V, E), its published graph G′(V ′, E′), a target entity t ∈ V and
the attacker’s background knowledge F (t), the attacker performs the structural
re-identification attack by searching for all the vertices in G′ that could be mapped
to t, i.e., VF (t) = {v ∈ V ′|F (v) = F (t)}. If |VF (t)| << |V ′|,3 then t has a high
probability to be re-identified.

K-anonymity is a widely adopted principle to prevent the SRA on social net-
works [1–4], formally defined in Definition 2. Please note that we need to specify
the type of background knowledge F (e.g., degree, neighborhood) that an at-
tacker has in order to formally define k-anonymity. However, when the context
of F is clear, we use k-anonymity in this paper for the brevity of presentation.

Definition 2 (K-Anonymity). Given a graph G(V, E), and a type of attacker’s
background knowledge F , G satisfies k-anonymity against F , iff for each v ∈ V ,
there are at least (k − 1) other vertices in V with the same F value of F (v).
1 For ease of presentation, we use “graph” and “social network” interchangeably.
2 The attacker could possess some non-structural information as well (e.g., the ver-

tex(edge) labels), but we only consider the structural information in this paper.
3 Notation |V | refers to the cardinality of a set V .

Utility-Oriented K-Anonymization on Social Networks 81

Different approaches have been proposed to convert a given graph into a k-
anonymized graph. In this work, we only focus on edge modification, that is to
modify a graph into a k-anonymized graph only via inserting and/or deleting
edges. It is expected that the topological structure of a graph will be changed
by modifications and the published graph is expected to lose some utility of the
original one. Consequently, social network publishing should take both the pri-
vacy and utility into consideration. Ideally a published social network G′ should
satisfy k-anonymity and meanwhile cause a utility loss as small as possible.

2.2 Related Work

Structural re-identification is one of the major privacy concerns in social network
publishing [7]. The initial study demonstrates that simply removing the iden-
tification information of the entities is not sufficient to protect privacy as the
true identities of the vertices can be inferred due to the structural uniqueness of
some embedded small subgraphs (i.e., SRA). Various classes of SRAs are there-
after proposed based on the types of attackers’ background knowledge, including
vertex refinement queries, subgraph queries and hub-fingerprint queries [6].

To counter the SRAs, various protection schemes were proposed [1–4, 6, 8].
For example, the random permutation approach protects privacy by randomly
inserting and deleting edges [8], which is simple but may significantly affect the
graph utility. Then graph generalization based approaches abstract an original
graph into a super graph by grouping the vertices into small blocks represented
by super nodes and linking super nodes via edges if the corresponding blocks
are connected [6]. The super graph introduces great uncertainty in the released
data, thus increasing the difficulties of using the data.

Recently, researchers start to apply the principle of k-anonymity [9] to pro-
tect the social network privacy. Based on the types of attacker’s background
knowledge, various k-anonymity schemes and algorithms have been proposed.
For example, k-degree anonymity scheme is to against the attackers with knowl-
edge of entity degree [1]; scheme proposed in [3] considers the attackers with the
information about the vertices’ neighborhood; k-automorphism and k-symmetry
schemes can resist multiple structural attacks. k-automorphism modifies the
graph such that for each vertex, there are at least (k − 1) other structurally
equivalent vertices [4]; and k-symmetry utilizes the symmetry property of the
social network to modify the graph [2]. All these algorithms anonymize graphs
based on edge/node modification operations (i.e., addition and/or deletion), and
try to preserve the utility of the released graphs. However, most of them employ
the number of edge/node changes as the only measurement to quantify the util-
ity loss, which is not effective, as demonstrated in Section 1. The new model we
propose, as will be detailed in next section, actually gives a better measurement.

3 Graph Utility Measurement

In order to support utility-oriented k-anonymization, the first issue to address
is how to measure the utility loss of a published social network, compared with

82 Y. Wang et al.

b

c

da

(a) Graph G

a d

0

bc

1

1

(b) H1
G

2/3

a bc d

1

1
r1

r2

(c) H2
G

Fig. 2. A graph G and its corresponding HRGs

1/18

1/2

UL ≈ 0.03

UL ≈ 0.02

r1

r2

a b c

1

1

g i f

1

1

e

2/3

d h

1

Fig. 3. An example of HRG
and utility loss

the original social network. As pointed out in previous sections, the number of
edge modifications, the most common utility loss measurement, is not effective
as it treats all the edges equally. In our work, we aim at developing a new mea-
surement that reflects the different impacts of various edge operations on the
social network structure. Given the fact that social network is a complex graph,
there are many aspects of its topological properties, such as transitivity, eigen-
vector, and community structure. Among them, the community structure is a
central organizing principle of complex graph and it is a core graph topologi-
cal feature which has a strong correlation with other important features (e.g.,
transitivity and betweenness). Consequently, we decide to use the community
structure to represent the topological features of social networks as it provides a
simple representative to reflect the influence of the edge modification on social
network structure in a micro perspective. In this section, we first introduce the
Hierarchical Random Graph (HRG) [10] for modeling the community structure,
then present its construction algorithm, and finally introduce a novel hierarchical
community entropy to quantify the graph structural features (i.e., utility).

3.1 Hierarchical Random Graph

The community structure of a graph is a nature grouping of its vertices. The
vertices have dense connections within the groups, but sparse connections be-
tween groups. Recent studies suggest that the communities of social networks
often exhibit hierarchical organization (i.e. the large communities further con-
tain small communities). Consequently, we adopt a Hierarchical Random Graph
(HRG) model to capture this hierarchical organization of communities [10].

Given a graph G(V, E), the HRG is a binary tree, denoted as HG. The leaf
nodes of HG correspond to vertices of G, and each internal node r is associated
with a connection probability pr. Given a sub-tree Tr that is rooted at node r, pr

is the probability that a vertex in the left subtree T L
r has an edge with a vertex

in the right subtree T R
r . It reflects the connection strength between the vertices

in the left and right subtrees. The larger the pr is, the stronger the connection
is. Mathematically, connection probability pr is defined in Equation (1).

pr = |Er|/(|T L
r | · |T R

r |) , (1)

where |Er| is the number of edges e(vi, vj) ∈ E with vi ∈ T L
r and vj ∈ T R

r , and
|T L

r | (|T R
r |) is the number of vertices in r’s left (right) subtree. A graph G and

Utility-Oriented K-Anonymization on Social Networks 83

its two possible HRGs are depicted in Fig. 2. Naturally, the vertices in sub-tree
Tr rooted at node r are regarded as a community Cr.

3.2 Constructing HRG

As mentioned above, the tree-structure of HRG organizes the underlying social
network hierarchically. However, for a given social network G, there are multiple
possible HRGs. How to construct an HRG that captures the topological structure
of a given social network G best is a key issue we have to address in order
to use HRG to model social network. In the literature, a likelihood function
L has been developed to evaluate the fitness of a given HRG HG to G, with

L(HG) =
∏

r∈HG

[
ppr

r (1 − pr)1−pr
]|T L

r |·|T R
r | [10]. Accordingly, a representative

HRG construction algorithm uses Markov chain Monte Carlo method to sample
the space of all possible HRGs with probability proportional to L and returns
the sampled HRG having the maximum L value.

Essentially, L(HG) is the posterior probability that the model HG generates
G. However, in fact, a model HG generates G with high probability does not
necessarily mean that HG is a good model of the hierarchical community struc-
ture of G. We use example depicted in Fig. 2 to support our statement. We
observe that the partition of H2

G is more meaningful than H1
G in terms of the

community structure. This is because H1
G groups a and d into the same com-

munity which is improper as there is even no edge between them. However,
L(H1

G) = 1 >> L(H2
G) = 0.148. Consequently, maximize the likelihood value

L(HG) does not necessarily reflect a good community organization of a social
network G. Thus, the Monte Carlo sample algorithm which is developed based
on L(HG) cannot return the best HRG that preserves most, if not all, the topo-
logical structure properties of a given social network G as we expect, not to
mention its extremely high construction cost.

To overcome the shortcomings of the existing HRG construction approach,
we propose a simple greedy bottom-up construction algorithm. Initially, the
algorithm forms each vertex of G as one community (i.e. the leaf nodes of HG).
Thereafter, communities (i.e. subtrees) with strong connections are merged from
bottom to up until one unified community is achieved. The connection strength
of two community Ci and Cj is again evaluated by the connection probability
pCi,Cj = |Eij |/(|Ci||Cj |), with |Eij | the number of edges connecting vertices of
Ci with vertices of Cj , and |Ci| (|Cj |) the number of vertices of Ci (Cj). Due to
the limitation of the space, we omit the detailed HRG construction algorithm.

3.3 Hierarchical Community Entropy

As mentioned above, we use an HRG HG to represent the topological features of a
given social network G. In this subsection, we introduce an information entropy
based utility function to quantify the information (i.e. utility) of G reflected
by HG. In the literature, there are various graph entropy definitions available,
based on different focuses. For example, entropy of the degree distribution, target
entropy and road entropy [11]. However, none of the above entropy definitions

84 Y. Wang et al.

considers the graph’s hierarchical community information. Consequently, we pro-
pose a new Hierarchical Community Entropy (HCE) to represent the information
embedded in the graph community structure.

HCE is defined based on the edge grouping. Given a graph G(V, E) and its
community structure represented by HG, there are |V | − 1 internal nodes in HG

as HG is a complete binary tree with |V | leaf nodes. Each internal node r in HG

roots a subtree corresponding to a group of crossing edges Er of G. Given the
numbers of vertices in left subtree and right subtree represented by |T L

r | and |T R
r |

respectively, |Er| = |T L
r | · |T R

r | · pr. The HCE of a given HG of a social network
G, denoted as HCE(G, HG) is defined in Equation (2), with pt represents the
connection probability. For example, the graph depicted in Fig. 1(a), the HCE
of its HG shown in Fig. 3 is 2.807.

HCE(G, HG) = −
|V |−1∑
t=1

|T L
t | · |T R

t | · pt

|E| log(
|T L

t | · |T R
t | · pt

|E|) . (2)

When we insert/delete an edge on a graph G, the modification will be reflected
by the connection probability change of an internal node on HG, thus changing
the HCE value. Continue our example. When we add a new edge e(vg, vc) to G in
Fig. 1(a), the connection probability of the lowest common ancestor of vg and vc

(i.e. the root) is changed from 1
18 to 1

9 , with the new HCE value of the modified
graph being 2.840. Similarly, if we add a new edge e(vg, ve) to G, its HCE value
will be 2.790. The utility loss caused by the edge operation is evaluated by the
change of the HCE value, as defined in Equation 3.

UL(G, G′) = |HCE(G, HG) − HCE(G′, H ′
G)| , (3)

where G′ is the modified graph, and H ′
G is the corresponding HRG derived

from HG with updated connection probabilities. The main goal of this work
is to anonymize the social network while making the utility loss as small as
possible. Continue above example. As adding edge e(vg, vc) causes the utility loss
of |2.840 − 2.807| = 0.033, and adding edge e(vg, ve) causes utility loss of 0.017,
the second modification has a less significant impact on the graph structure and
hence is preferred. It also confirms our observation in Fig. 1.

4 HRG Based K-Anonymization

After introducing the HRG model and the information entropy based utility
measurement, we are ready to present HRG-based k-anonymization algorithm
that tries to anonymize a given social network via edge operations with the
utility loss as small as possible. In the following, we first present the basic idea of
HRG-based k-anonymization and then detail its main components individually.
Notice that although we only focus on k-degree anonymity in this section, our
approach is general and it is applicable to other k-anonymity based privacy
protection schemes on social networks (e.g. k-neighborhood anonymity).

Utility-Oriented K-Anonymization on Social Networks 85

Algorithm 1. HRG based k-anonymization algorithm
Input: Graph G(V, E), HG, F , and k
Output: K-anonymized graph G′

1 G′(V ′, E′) = G(V, E);
2 D∗ = estimate(G, F, k);
3 while G′ is not k-anonymized do
4 Setop = findcandidateOp(G′, D∗, HG);
5 while Setop �= ∅ do
6 operation p = Setop.min op();
7 execute(p,G′, HG);
8 Setop = findcandidateOp(G′, D∗, HG);

9 if G′ is not k-anonymized then D∗=refine(D∗,G′);

10 return G′;

4.1 Basic Idea and Algorithm Framework

The optimal k-anonymization problem (i.e. k-anonymization with minimum util-
ity loss) on social networks is NP-hard.4 To simplify the problem, we assume the
utility loss is affected by the number of edge operations performed and the utility
loss caused by each edge operation. In other words, we try to solve the problem
by reducing the number of edge operations and meanwhile always performing
the edge operations that cause smaller utility loss first. A greedy algorithm is
designed accordingly.

The basic idea of our algorithm is as follows. Given a graph G, the attack
model F and the privacy requirement k, we perform edge operations one at a time
on G to achieve k-anonymity. To restrain the utility loss, we perform the edge
operation that directs the current G towards its “nearest” k-anonymized graph
and meanwhile causes the smallest utility loss. Here, “nearest” k-anonymized
graph refers to the graph that satisfies k-anonymity with the smallest number of
edge operations, which is denoted as G∗ to facilitate our explanation. The knowl-
edge of G∗ is essential for our algorithm. However, G∗ is unknown in advance
and it is hard to locate. Given that forming G∗ directly is not always possible,
we try to estimate the local structure information of the vertices of G∗ (e.g., the
degrees and/or the degrees of the neighbors of each vertex) which, based on the
given G, F and k, is possible. Then, according to the local structure information,
a set of candidate edge operations are generated to lead G towards G∗.

Algorithm 1 sketches a high-level outline of our HRG based k-anonymization
algorithm. It takes a graph G, its HRG HG, attacker’s background knowledge
F and privacy parameter k as inputs, and outputs a modified graph G′ that
is k-anonymized and meanwhile has small utility loss. Initially, the algorithm
sets G′ to G, and sets D∗ as an estimation of G∗ based on G, F and k (lines
1-2). Thereafter, it generates a set of candidate edge operations, maintained
by a set Setop with the utility loss caused by each edge operation (line 4).
4 The NP-hardness is proved by reducing the traditional set-packing problem [12] to

the optimal k-anonymization problem.

86 Y. Wang et al.

At each step, it gets the edge operation which causes the smallest utility loss,
performs that edge operation on G′, at the same time, updates the corresponding
connection probability on HG, and then re-generates the candidate set based on
the updated G′ (lines 6-8). This process continues until Setop becomes empty
(lines 5-8). After performing all the identified candidate edge operations, there
are two possible outcomes, i.e., the current G′ is k-anonymized or not. In case G′

still does not satisfy the privacy requirement, it means the k-anonymized graph
which has the local structure information D∗ is not achievable by the current
executed operation sequence and we need to refine D∗ via small adjustments and
continue previous process (line 9). We would like to point out that when refining
D∗, we only consider additive adjustment, i.e. adjust the graph via adding edges.
Thus, in the worst case, G′ will be modified towards a complete graph, which
always satisfies the privacy requirement. Therefore, our algorithm is convergent.

As highlighted in Algorithm 1, there are three key components, i.e., estima-
tion of local structure information, generation of candidate edge operations, and
refinement of D∗. Each of them will be detailed in following subsections.

4.2 Estimating Local Structure Information

As pointed out earlier, we only focus on k-degree anonymization for presenta-
tion simplicity. In the following, we explain how to find a good estimation of
the k-anonymized graph with smallest number of edge operations, i.e., G∗. Our
approach is to perform the estimation on the local structure information based
on degree sequence. Degree sequence D of a graph G(V, E) is a vector of size |V |
with each element D[i] ∈ D representing the degree of vertex vi in G. We further
assume the degree sequence is sorted by the decreasing order of its elements.

Given a graph G, its degree sequence D and k, we want to estimate the de-
gree sequence D∗ of its “nearest” k-degree anonymized graph G∗. We list some
pre-knowledge that can guide the estimation. First, D∗ shares equal size with
D, because we only consider graph modification via edge insertion/deletion but
not vertex insertion/deletion. Second, D∗ must be k-anonymized since D∗ is the
degree sequence of a k-degree anonymized graph of G. In other word, for each
element D∗[i] ∈ D∗, there are at least (k − 1) other elements sharing the same
value as D∗[i]. Third, because that D∗ is the degree sequence of the “nearest”
k-anonymized graph of G, the L1 distance between D∗ and D should be mini-
mized. Based on the above knowledge, we can employ the dynamic programming
method proposed in [1] to find D∗. We ignore the detail due to space limitation.

4.3 Generating Candidate Edge Operation Set

Once D∗ that represents the target local structure information is ready, we need
to find candidate edge operations that convert G′ to a k-anonymized graph
with its degree sequence represented by D∗. Before we introduce the detailed
algorithm, we first define three basic edge operations, i.e., edge insertion, edge
deletion, and edge shift, denoted as ins(vi, vj), del(vi, vj), and shift((vi, vj), vk).
As suggested by their names, ins(vi, vj) is to insert a new edge that links vertex

Utility-Oriented K-Anonymization on Social Networks 87

b

a

c

e

d f

h g

i

Fig. 4. shift((vc, vd), ve)

D 5 4 4 3 3 3 2 2 2

D∗ 5 5 4 4 3 3 2 2 2

δ 0 1 0 1 0 0 0 0 0

V S+ = {vi, vg, vc, ve, vf}
V S− = ∅
Candidate operations:
ins(vg, ve), ins(vi, vc), ins(vg, vc)

Fig. 5. HRG based 2-degree anonymization

vi to vertex vj and del(vi, vj) is to remove the edge between vi and vj . Operation
shift((vi, vj), vk) is to replace the edge e(vi, vj) with edge e(vi, vk). It is moti-
vated by the observation that the HCE value is only sensitive to the number of
the crossing edges between two communities. For example, as shown in Fig. 1(a),
G is partitioned into two main communities as demonstrated by the dash circles.
Edge e(vc, vd) is the crossing edge connecting those two communities, and their
lowest common ancestor is the root (based on HG shown in Fig. 3). If we shift
the end point vd of the edge e(vc, vd) to ve (i.e., shift((vc, vd), ve)) as illustrated
in Fig. 4, it will not affect the connection probability of the root in HG and
hence HCE value, as the number of the crossing edge is not changed. Therefore,
edge shift operation should receive a higher priority when modifying the graph
to achieve k-anonymity. Definition 3 gives formal definition of this operation.

Definition 3 (Edge Shift). Given a graph G(V, E), the corresponding HRG
HG, an edge e(vi, vj) ∈ E, and a vertex vk ∈ V such that e(vi, vk) �∈ E, let r be
the lowest common ancestor of vj and vk on HG, and assume vi is not in the
subtree of r. Edge shift shift((vi, vj), vk) is to replace e(vi, vj) with e(vi, vk).

The goal of the edge operations is to modify the graph such that its degree
sequence D′ matches the target degree sequence D∗. Consequently, the difference
sequence δ = (D∗ − D′) can give some guidance. For each element δ[i] ∈ δ with
δ[i] > 0 (i.e. D′[i] < D∗[i]), it means a vertex in G′ with degree D′[i] needs to
increase its degree, i.e., it should have more edges connected to. We maintain
D′[i] with δ[i] > 0 via set DS+ and maintain all vertices v ∈ G′ that have
degree of D′[i] via set V S+ which includes all the vertices that may require
edge insertion operation. Similarly, for each element δ[j] ∈ δ with δ[j] < 0 (i.e.
D′[j] < D∗[j]), it means a vertex in G′ with degree D′[i] needs to decrease
its degree, i.e., it should have less edges connected to. We maintain D′[i] with
δ[j] < 0 via set DS− and maintain all the vertices v ∈ G′ that have degree
of D′[j] via set V S− which includes all vertices that may require edge deletion
operation. Notice that the degree value of D′[i] or D′[j] may correspond to
multiple vertices in G′ and we treat them equally in our work. In addition, if
the degree D′[i] (D′[j]) only appears once in DS+ (DS−), we cannot perform
edge insertion (deletion) to connect (disconnect) two vertices vl, vm both with
original degree of D′[i] (D′[j]) and hence we mark these vertices mutual exclusive,
denoted as EX(vl, vm) = True.

Back to the graph G depicted in Fig. 1(a). Its degree sequence D and the
target 2-degree anonymized degree sequence D∗ are shown in Fig. 5. Based on
δ = (D∗ − D), we find δ[2] = δ[4] = 1 > 0 and hence D[2] (= 4) and D[4] (= 3)

88 Y. Wang et al.

are inserted into DS+. Consequently, all the vertices in G with degree being 4
or 3 are inserted into V S+ = {vi, vg, vc, ve, vf}. Notice that all pair of vertices
among of {vi, vg} and among of {vc, ve, vf} are marked mutual exclusive. As
there is no element of δ with its value smaller than 0, DS− = V S− = ∅.

The reason that we form V S+ set and V S− set is to facilitate the generation
of candidate edge operations. As V S+ set contains those vertices that need
larger degree, a new edge connecting vi to vj (i.e., ins(vi, vj)) is a candidate, if
vi, vj(i �= j) ∈ V S+ ∧ e(vi, vj) �∈ E′ ∧ EX(vi, vj) �= True. We can enumerate
all the candidate edge insertion operations based on V S+ and preserve them
in set Opins. Similarly, removing edge e(vi, vj) (i.e., del(vi, vj)) forms an edge
deletion operation, if e(vi, vj) ∈ E′ ∧ vi, vj(i �= j) ∈ V S− ∧ EX(vi, vj) �=
True. Again, we explore all the candidate edge deletion operations and preserve
them in set Opdel. We also consider the candidate edge shift operation. For a
pair of vertices (vj , vk) with vj ∈ V S− ∧ vk ∈ V S+ ∧ (j �= k), if there is a
vertex vi, (i �= j, k) such that e(vi, vj) ∈ E′ ∧ e(vi, vk) �∈ E′ ∧ vi is not in the
subtree of vj and vk’s lowest common ancestor on the HRG, shift((vi, vj), vk)
is a candidate. All possible edge shift operations form another set Opshift. We
continue the above example shown in Fig. 5. As V S− = ∅, we only need to
consider possible edge insertion operations, i.e., Opdel = Opshift = ∅. Based on
V S+ = {vi, vg, vc, ve, vf}, we have Opins = {ins(vg, ve), ins(vi, vc), ins(vg, vc)}.

Given all the candidate edge operations maintained in the operation sets
Opins, Opdel, and Opshift respectively, we can insert them into the candidate
operation set Setop that is used by HRG-based k-anonymization algorithm (i.e.,
Algorithm 1). We sort Setop by the increasing order of the HCE value changes
caused by each operations, so that the edge operation that causes smaller utility
loss will be performed earlier. Based on the HRG in Fig. 3, the corresponding
Setop is set to {〈ins(vg, ve), 0.017〉, 〈ins(vi, vc), 0.033〉, 〈ins(vg, vc), 0.033〉}. The
whole process of finding candidate operations is summarized in Algorithm 2.

4.4 Refining Target Local Structure Information

As mentioned above, our HRG-based k-anonymization algorithm generates D∗

that estimates the local structure information of the “nearest” k-anonymized
graph as the target, and performs edge operation to change graph towards D∗.
However, it is possible that k-anonymized graph with degree sequence D∗ is not
achievable by the current executed operation sequence. If this happens, we need
to refine D∗ and start another round of attempt. To ensure the convergence of
our algorithm, we only consider additive adjustment and we prefer that the new
target degree sequence is close to that of the original D∗. The basic idea is to
find a point on D∗ to make adjustment and hopefully, after the adjustment, we
can find executable candidate operations on G′.

In our work, we take V S+ as a candidate set for the adjustable points. It
contains the vertices that have not been k-anonymized and need to increase
their degrees. For each vi ∈ V S+, we find vj ∈ V, (i �= j), such that e(vi, vj) �∈
E′, and EX(vi, vj) �= True, and preserve ins(vi, vj) via an operation set Op.
Within Op, we choose the ins(vi, vj) that causes smallest utility loss. Notice

Utility-Oriented K-Anonymization on Social Networks 89

Algorithm 2. findcandidateOp algorithm
Input: G′(V, E′), D∗, HG

Output: Candidate operation set Setop

1 D′ = degree sequence of G′;
2 δ = (D∗ − D′);
3 DS+ = {D′[i] | δ[i] > 0, 1 ≤ i ≤ |D′|};
4 DS− = {D′[i] | δ[i] < 0, 1 ≤ i ≤ |D′|};
5 V S+ = V S− = ∅;
6 foreach d ∈ DS+ do
7 V S+ = V S+ ∪ {vi|vi ∈ G′, vi.degree = d};
8 foreach d ∈ DS− do
9 V S− = V S− ∪ {vi|vi ∈ G′, vi.degree = d};

10 Opins = getOp(V S+, V S+), Opdel = getOp(V S−, V S−),
Opshift = getOp(V S+, V S−);

11 calculate the cost of each operation in Opins, Opdel, and Opshift;
12 Setop.insert(Opins, Opdel, Opshift);
13 return Setop;

that this operation changes degree of vj even if the degree of vj does not request
adjustment. One simple method to address this issue is to change vj ’s degree in
D∗ but it breaks the k-anonymity of D∗. Therefore, we increase the degree of
vj in the original G (i.e., the corresponding element in the degree sequence D is
changed), and re-generate D∗ based on the updated D. As the changes made to
D are very small, the new D∗ should be very similar as the old one.

We consider V S+ first because we want to make additive change on D∗.
However, if V S+ is empty, we have to use V S− that contains the vertices having
not been k-anonymized and need to decrease their degrees. We can decrease
the degrees of those vertices of V S−, but it is against our goal of only making
additive change. Alternatively, for a vertex vi ∈ V S−, we increase the degree of
another vertex vj , whose degree value is close to vi according to G′. The rationale
is that because vi and vj have similar degrees, they are very likely to have the
same degree in the anonymized graph. Increasing the degree of vj will cause the
degree of vi and vj in the anonymized graph to be increased. In this case, vi will
not need to decrease its degree anymore. Still, we increase the degree of vj on
the seed degree sequence D instead of D∗ by the same reason mentioned above.

5 Experimental Evaluation

In this section, we compare the utility loss of our HRG-based k-anonymization
algorithm, referred as HRG, with the existing k-anonymization approaches that
only consider minimizing the number of edge modifications. We choose k-degree
anonymity as the privacy requirement, and use two existing k-degree anonymi-
zation algorithms proposed in [1] as competitors, namely probing method that

90 Y. Wang et al.

only considers edge addition operations, and greedy swap method that considers
both edge addition and deletion operations. We refer them as Prob. and Swap

respectively. We implemented all the evaluated algorithms in C++, running on
a PC having an Intel Duo 2.13GHz processor and 2GB RAM.

We first examine the utility loss by measuring the HCE value change. In ad-
dition, we use some common graph structural properties to further evaluate the
utility loss of different algorithms, such as clustering coefficient (CC), average
path length (APL), and average betweenness (BTN) (see [11] for more infor-
mation). We use function PCR = |P − P ′|/|P | to measure the property change
ratio, where P and P ′ are the property value (i.e., HCE, CC, APL, or BTN) of
the original graph G and the corresponding k-anonymized G′ respectively.

Two real datasets are used in our tests, namely dblp and dogster. The former
is extracted from dblp (dblp.uni-trier.de/xml), and the latter is crawled from
a dog-theme online social network (www.dogster.com). We sampled subgraphs
from these datasets with the size changing from 500 to 3000 respectively.

5.1 Utility Loss v.s. Graph Size

In our first set of experiments, we evaluate the impact of graph size in terms of
number of vertices on the graph utility loss (i.e., HCE and other graph properties
changes) under different k-anonymization methods. We set k = 25.

Fig. 6 shows the change ratio of different graph properties with different graph
size of two datasets. Generally, our HRG method is most effective in terms of
preserving graph properties. Take HCE value as an example. As depicted in
Fig. 6(a) and Fig. 6(e), the change ratio of our method (i.e., HRG) is around
0.1% for both dblp and dogster, while that under Prob. is 0.5% for dblp and
3% for dogster, and that under Swap is 60% for dblp and 14% for dogster.
The other example is APL value. As depicted in Fig. 6(c) and Fig. 6(g), as
number of vertices increases from 500 to 3000, our HRG method causes around
0.4% and 0.07% utility loss on average for dblp and dogster, respectively. On
contrary, Prob. causes 4% and 7% utility loss on average, and Swap causes around
11% and 1.6% utility loss for dblp and dogster datasets. All these observations
verify that HRG model does successfully capture most, if not all, core features of
the social network, as our HRG method which employs HRG model to represent
graph feature is most effective.

5.2 Utility Loss v.s. k

In the second set of experiments, we evaluate the impact of k on the graph
property change ratio of different k-anonymity methods. Here, the size of the
graph is fixed to 2000 vertices.

Fig. 7 presents the results. We can observe that, in most cases, our HRG ap-
proach outperforms the others. As privacy requirement increases (i.e., k value
increases), the utility loss under HRG and Prob. becomes more significant. This
is because more edge operations are needed to achieve k-anonymity with large k

dblp.uni-trier.de/xml
www.dogster.com

Utility-Oriented K-Anonymization on Social Networks 91

0

20

40

60

0.5 1.0 1.5 2.0 2.5 3.0

C
hg

. r
at

io
 (

%
)

of vertices (×103)

Swap
Prob.
HRG

(a) HCE (dblp)

10

30

50

70

90

0.5 1.0 1.5 2.0 2.5 3.0

C
hg

. r
at

io
 (

%
)

of vertices (×103)

Swap
Prob.
HRG

(b) CC (dblp)

0
3
6
9

12

0.5 1.0 1.5 2.0 2.5 3.0

C
hg

. r
at

io
 (

%
)

of vertices (×103)

Swap
Prob.
HRG

(c) APL (dblp)

0
4
8

12
16
20

0.5 1.0 1.5 2.0 2.5 3.0

C
hg

. r
at

io
 (

%
)

of vertices (×103)

Swap
Prob.
HRG

(d) BTN (dblp)

0

4

8

12

16

0.5 1.0 1.5 2.0 2.5 3.0

C
hg

. r
at

io
 (

%
)

of vertices (×103)

Swap
Prob.
HRG

(e) HCE (dogster)

0
4
8

12
16
20
24

0.5 1.0 1.5 2.0 2.5 3.0

C
hg

. r
at

io
 (

%
)

of vertices (×103)

Swap
Prob.
HRG

(f) CC (dogster)

0

3

6

9

0.5 1.0 1.5 2.0 2.5 3.0

C
hg

. r
at

io
 (

%
)

of vertices (×103)

Swap
Prob.
HRG

(g) APL (dogster)

0

4

8

12

16

0.5 1.0 1.5 2.0 2.5 3.0

C
hg

. r
at

io
 (

%
)

of vertices (×103)

Swap
Prob.
HRG

(h) BTN (dogster)

Fig. 6. Graph property change ratio v.s. the graph size

10

30

50

5 10 15 20 25 50 100

C
hg

. r
at

io
 (

%
)

k

Swap
Prob.
HRG

(a) HCE (dblp)

10

30

50

70

90

5 10 15 20 25 50 100

C
hg

. r
at

io
 (

%
)

k

Swap
Prob.
HRG

(b) CC (dblp)

0

3

6

9

12

5 10 15 20 25 50 100

C
hg

. r
at

io
 (

%
)

k

Swap
Prob.
HRG

(c) APL (dblp)

0
3
6
9

12
15
18

5 10 15 20 25 50 100
C

hg
. r

at
io

 (
%

)

k

Swap
Prob.
HRG

(d) BTN (dblp)

0

3

6

9

12

15

5 10 15 20 25 50 100

C
hg

. r
at

io
 (

%
)

k

Swap
Prob.
HRG

(e) HCE (dogster)

0
3
6
9

12
15

5 10 15 20 25 50 100

C
hg

. r
at

io
 (

%
)

k

Swap
Prob.
HRG

(f) CC (dogster)

0

3

6

9

12

5 10 15 20 25 50 100

C
hg

. r
at

io
 (

%
)

k

Swap
Prob.
HRG

(g) APL (dogster)

0
3
6
9

12
15
18
21

5 10 15 20 25 50 100

C
hg

. r
at

io
 (

%
)

k

Swap
Prob.
HRG

(h) BTN (dogster)

Fig. 7. Graph property change ratio v.s. k

under both methods. On the other hand, the utility loss caused by Swap algorithm
is not affected by the change of k value that much. This is because, Swap method
has to perform a large number of edge operations even for a small k. When k
increases, the number of edge operations does not change much.5

To sum up, our experiments use different graph properties to evaluate the
utility loss, although our HRG method is developed based on HCE values. The
experimental results clearly verify that our approach can generate anonymized
social networks with much lower utility loss.
5 Due to the extremely long converge time of the Prob. method, its results on the dog-

ster graph with k = 100 were missing. However, it should not affect our observations
of the experimental trend.

92 Y. Wang et al.

6 Conclusion

Privacy and utility are two main components of a good privacy protection
scheme. Existing k-anonymization approaches on social networks provide good
protection for entities’ identity privacy, but fail to give an effective utility
measurement, thus are unable to generate anonymized data with high utility.
Motivated by this issue, in this paper, we propose a novel utility-oriented social
network anonymization approach to achieve high privacy protection with low
utility loss. We define a new utility measurement HCE based on the HRG model,
then design an efficient k-anonymization algorithm to generate anonymized so-
cial network with low utility loss. Experimental evaluation on real datasets shows
our approach outperforms the existing approaches in terms of the utility with
the same privacy requirment.

Acknowledgment. This study was funded through a research grant from the
Office of Research, Singapore Management University.

References

1. Liu, K., Terzi, E.: Towards Identity Anonymization on Graphs. In: SIGMOD 2008,
pp. 93–106 (2008)

2. Wu, W., Xiao, Y., Wang, W., He, Z., Wang, Z.: K-Symmetry Model for Identity
Anonymization in Social Networks. In: EDBT 2010, pp. 111–122 (2010)

3. Zhou, B., Pei, J.: Preserving Privacy in Social Networks Against Neighborhood
Attacks. In: ICDE 2008, pp. 506–515 (2008)

4. Zou, L., Chen, L., Özsu, M.: K-Automorphism: A General Framework for Privacy
Preserving Network Publication. VLDB Endowment 2(1), 946–957 (2009)

5. Li, T., Li, N.: On the Tradeoff Between Privacy and Utility in Data Publishing.
In: SIGKDD 2009, pp. 517–525 (2009)

6. Hay, M., Miklau, G., Jensen, D., Towsley, D., Weis, P.: Resisting Structural Re-
identification in Anonymized Social Networks. VLDB Endowment 1(1), 102–114
(2008)

7. Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore Art Thou R3579X?
Anonymized Social Networks, Hidden Patterns, and Structural Steganography. In:
WWW 2007, pp. 181–190 (2007)

8. Hay, M., Miklau, G., Jensen, D.: Anonymizing Social Networks. Technical report,
UMass Amberst (2007)

9. Sweeney, L.: K-anonymity: A Model for Protecting Privacy. IJUFKS 10(5), 557–
570 (2002)

10. Clauset, A., Moore, C., Newman, M.E.J.: Hierarchical Structure and The Predic-
tion of Missing Links in Networks.. Nature 453(7191), 98–101 (2008)

11. Costa, L.D.F., Rodrigues, F.A., Travieso, G., Boas, P.R.V.: Characterization of
Complex Networks: A Survey of Measurements. Advances in Physics 56(1), 167–242
(2007)

12. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum
Press, New York (1972)

Distributed Privacy Preserving Data Collection

Mingqiang Xue1, Panagiotis Papadimitriou2, Chedy Raı̈ssi3,
Panos Kalnis4, and Hung Keng Pung1

1 Computer Science Department, National University of Singapore
2 Stanford University

3 INRIA Nancy
4 King Abdullah University of Science and Technology

Abstract. We study the distributed privacy preserving data collection problem:
an untrusted data collector (e.g., a medical research institute) wishes to collect
data (e.g., medical records) from a group of respondents (e.g., patients). Each re-
spondent owns a multi-attributed record which contains both non-sensitive (e.g.,
quasi-identifiers) and sensitive information (e.g., a particular disease), and sub-
mits it to the data collector. Assuming T is the table formed by all the respondent
data records, we say that the data collection process is privacy preserving if it
allows the data collector to obtain a k-anonymized or l-diversified version of T
without revealing the original records to the adversary.

We propose a distributed data collection protocol that outputs an anonymized
table by generalization of quasi-identifier attributes. The protocol employs cryp-
tographic techniques such as homomorphic encryption, private information re-
trieval and secure multiparty computation to ensure the privacy goal in the process
of data collection. Meanwhile, the protocol is designed to leak limited but non-
critical information to achieve practicability and efficiency. Experiments show
that the utility of the anonymized table derived by our protocol is in par with the
utility achieved by traditional anonymization techniques .

1 Introduction

In the data collection problem a third party collects data from a set of individuals who
concern about their privacy. Specifically, we consider a setting in which there is a set of
data respondents, each of whom has a row of a table, and a data collector, who wants
to collect all the rows of the table. For example, a medical researcher may request from
some patients that each of them provides him with a health record that consists of three
attributes: 〈age, weight, disease〉. Figure 1(a) shows the table of the patients’ records.

Although the health record contains no explicit identifiers such as name and phone
numbers, an adversarial medical researcher may be able to retrieve a patient’s identity
using the combination of age and weight with external information. For instance, in
the data records of Figure 1(a), we see that there is only one patient with age 45 and
weight 60 and this patient suffers from Gastritis (the third row). If the researcher knows
a particular patient with the same age and weight values, after collecting all the data
records he learns that this patient suffers from Gastritis. In this case the attributes age
and weight serve as a quasi-identifier. Generally, the patients feel comfortable to provide
the researcher with medical records only if there is a guarantee that the researcher can

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 93–107, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

94 M. Xue et al.

only form an anonymized table with their records. In k-anonymity [16], each record
has at least k − 1 other records whose values are indistinct over the quasi-identifier
attributes [16]. l-diversity [10] further requires that there are at least l well repre-
sented sensitive values for records in the same equivalence class. The patients may
achieve k-anonymity or l-diversity by generalizing the values that correspond to the
quasi-identifiers [14]. In Figure 1(b), observe that if each patient discloses only some
appropriate range of his age and weight instead of the actual values, then the medical
researcher sees a 4-anonymous and 3-diverse table. In this case, the researcher can only
determine with probability at most 1/2 the disease of the 45-year old patient.

In the privacy preserving data collection the data respondents look for the minimum
possible generalization of the quasi-identifier values so that the collector receives an
anonymized table. The constraint of the problem is that although the respondents can
communicate with each other and with the collector, no single participant can leak any
information to the others except from his final anonymous record. Traditional table
anonymization techniques [16] are not applicable to our problem, as they assume that
there is a single trusted party that has access to all the table records. If the trusted party
is compromised then the privacy of all respondents is compromised as well. In our
approach, each respondent owns his own record and does not convey its information to
any other party prior to its anonymization.

Our setting is similar to the distributed data collection scenario studied by Zhong et
al [19]. The difference is that in their work the respondents create a k-anonymous table
for the collector by suppressing quasi-identifier attribute values. We use generalization
instead of suppression, which makes the problem not only more general but also much
more practical. Our problem is more general because suppression is considered as a
special case of generalization: a suppressed attribute value is equivalent to the value
generalization to the higher level of abstraction. The problem is also more practical be-
cause generalized attribute values have greater utility than suppressed values, since they
convey more information to the data collector without compromising the respondents’
privacy. Moreover, our solution not only achieves k-anonymity, but also l-diversity. Our
contributions are the following:

– We formally define the problem of distributed privacy preserving data collection
with respondents that can generalize attribute values.

– We present an efficient and privacy-preserving protocol for k-anonymous or l-
diverse data collection.

– We show theoretically the information leakage that our protocol yields.
– We evaluate our protocol experimentally to show that it achieves similar utility

preservation as the state-of-the art non-distributed anonymization algorithm [6].

2 Related Work

In [19], the authors proposed a distributed, privacy-preserving version of the MW [11],
which is an O(k log k) approximation to optimal k-anonymity based on entry suppres-
sion; in contrast, our algorithm supports generalization. Similar to our scheme, in order
to achieve efficient distributed anonymization the distributed MW algorithm reveals
information about the relative distance between different data record pairs. In [19], the

Distributed Privacy Preserving Data Collection 95

Age Weight Disease
35 50 Gastritis
40 55 Diabetes
45 60 Gastritis
45 65 Pneumonia
55 65 Gastritis
60 60 Diabetes
60 55 Diabetes
65 50 Alzheimer
55 75 Diabetes
60 75 Flu
65 85 Flu
70 80 Alzheimer

(a) Original

Age Weight Disease
[35, 45] [50, 65] Gastritis
[35, 45] [50, 65] Diabetes
[35, 45] [50, 65] Gastritis
[35, 45] [50, 65] Pneumonia
[55, 65] [50, 65] Gastritis
[55, 65] [50, 65] Diabetes
[55, 65] [50, 65] Diabetes
[55, 65] [50, 65] Alzheimer
[55, 70] [75, 85] Diabetes
[55, 70] [75, 85] Flu
[55, 70] [75, 85] Flu
[55, 70] [75, 85] Alzheimer

(b) Anonymized

Fig. 1. Distributed medical records table

Age Weight Disease 1D

35 50 Gastritis 22

40 55 Diabetes 24

45 60 Gastritis 30

45 65 Pneumonia 31

55 65 Gastritis 33

60 60 Diabetes 35

60 55 Diabetes 40

65 50 Alzheimer 42

55 75 Diabetes 55

60 75 Flu 56

65 85 Flu 61

70 80 Alzheimer 63

Age Weight Disease 1D

35 50 Gastritis 22

40 55 Diabetes 24

45 60 Gastritis 30

45 65 Pneumonia 31

55 65 Gastritis 33

60 60 Diabetes 35

60 55 Diabetes 40

65 50 Alzheimer 42

55 75 Diabetes 55

60 75 Flu 56

65 85 Flu 61

70 80 Alzheimer 63

22
35 40 45 50 55 60 65 70

Age

50
55
60
65
70
75
80
85

W
ei
gh
t

24
30
31 33

35
40

42

61
63

5655

Fig. 2. Mapping 2D to 1D points using Hilbert
curve

distance between two records is the number of differences in the attribute values. For
example, in Figure 1(a), the distance between the first two records is 2, since age 35
is different from age 40 and weight 50 is different from weight 55. In our approach,
the distance between two records depends on the distance between the corresponding
attribute values, which is more difficult to evaluate securely. In [18] the authors pro-
posed another k-anonymous data collection scheme. Opposed to the work in [19], this
scheme has eliminated the need for unidentified communication channel by the data
respondent. However, this scheme is still based on entry suppression and it is unclear
whether the scheme can be generated to l-diversity. A similar approach appears in [7].
They considered distributed data collection problem based on a suppression based k-
anonymity algorithm Mondrian and they only consider the k-anonymity case. Different
from the above, [3] and [17] considered the anonymity-preserving data collection prob-
lem. Although, the setting of the problem is similar to ours, their protocols aims to
allow the miner to collect original data from the respondents without linking the data
to individuals. When the data collected contains identifiable information as in our case,
their solutions are not applicable.

The anonymization algorithm that we present in this paper is based on the the Fast
data Anonymization with Low information Loss (FALL)et al [6]. In this work, efficient
anonymization is achieved in two steps. The first step includes the transformation of u-
dimensional to 1-dimensional data, in which a multi-attributed data record is converted
to an integer using a space filling curve (e.g. Hilbert curve [12]). For example, Figure 2
shows a Hilbert walk that visits each cell in the two dimensional space (Weight × Age)
and assigns each cell with an integer in increasing order along the walk. In the second
step, an optimal 1D k-anonymization is performed over the set of integers obtained in
the first step using an efficient algorithm based on dynamic programming. The same
partitions will be used for forming the equivalence classes of data records. Similarly,
efficient l-diversity can be achieved using heuristics in a similar manner as k-anonymity.

3 Problem Formulation

3.1 The System and the Adversaries

The system employs the Client-Server architecture. Each respondent runs a client. There
is an untrusted server that facilitates the communication and computation in the system

96 M. Xue et al.

on behalf of the collector. We assume that all messages are encrypted, and secure com-
munication channels exist between any pair of communicating parties. By the end of
the protocol execution, an anonymized table, generalized from the data records of the
respondents, is created at the server side (i.e., the collector).

The adversaries can either be the respondents or the server. We assume that the ad-
versaries follow the semi-honest model, which means that they always correctly follow
the protocol but are curious in gaining additional information during the execution of
the protocol. In addition, we assume that the adversarial respondents can collaborate
with each other to gain additional information. We assume there can be up to tss − 1
adversaries among the respondents, where tss is a security parameter.

3.2 Notion of Privacy

Initially, there are x number of respondents each running an instance of the client. We
denote the set of non-sensitive attributes of the data records A = {a1, a2, . . . , au}
and the sensitive attribute si. The data record for the ith respondent is represented as
ti = {ai

1, . . . , a
i
u, si} and T = {t1, t2, . . . , tx} is the table formed by the original data

records of the respondents. ti.A represents the non-sensitive attribute values for the data
record ti. Similarly, T.A represents the non-sensitive attribute columns of table T . Let
K(T) denote the final output of the protocol, which is an anonymized table generalized
from T . Let Li and Lsvr denote the amount of information leaked in the process of
protocol execution to the respondent i and the server, respectively.

During the execution of the protocol, the view of a party uniquely consists of four
objects: (i) the data owned by the party, (ii) the assigned key shares, (iii) the set of
received messages and (iv) all the random coin flips picked by this party. Let viewi(T)
(respectively viewsvr(T)) denote the view of the respondent i (respectively the view of
server). We adopt a similar privacy notion as in [19]:

Definition 1. A protocol for k-anonymous data collection leaks only Li for the respon-
dent i and Lsvr for the server if there exist probabilistic polynomial-time simulators
Msvr and M1, M2, . . . , Mx such that:

{Msvr(keyssvr,K(T),Lsvr)}T ≡c {viewsvr(T)}T (1)

and for each i ∈ [1, x],

{Mi(keysi,K(T),Li)}T ≡c {viewi(T)}T (2)

The contents of Lsvr and Li are statistical information about the respondent’s quasi-
identifiers. Later in this paper, we prove that the execution of our proposed protocol
respects the previous definition by only leaking Lsvr and Li for each i.

3.3 Using Secret Sharing

To conquer up to tss − 1 collaborating adversaries among the respondents, we initially
assume that there is a global private key SK shared by all the respondents and the
server using a (tss, x + 1) threshold secret sharing scheme [15]. The shares owned by

Distributed Privacy Preserving Data Collection 97

the respondents and the server are denoted as sk1, sk2, . . ., skx, and sksvr , respectively.
With a (tss, x+1) secret sharing scheme, tss or more key shares are necessary in order
to successfully reconstruct the decryption function with the secret key SK , while less
than tss key shares give absolutely no information about SK . The corresponding public
key of the private key SK is denoted as PK . The public key encryption algorithm that
we use in this paper is the Paillier’s cryptosystem [13] because of its useful additive
homomorphic property. To support threshold secret sharing, we use a threshold version
of Paillier’s encryption as described in [8] based on Asmuth-Bloom secret sharing [1].

4 Towards the Solution

4.1 A Sketch of the Solution

Preparation stage. The main goal of this stage is to map the uD records to 1D integers.
In this stage, each respondent independently performs uD to 1D mapping using a space
filling curve, e.g., the Hilbert curve. Symbolically, the mapping for ti.A is denoted
as ci = S(ti.A). Each integer ci is in the range [1, cmax], where cmax denotes the
maximum possible value that the mapping function can yield. The set of mapped values
is denoted as S = {c1, c2, . . . , cx}. Without loss of generality, we assume that the
values in S are already sorted in ascending order for the ease of subsequent discussion.

Stage 1. The goal of this stage is to achieve p-probabilistic locality preserving map-
ping. Symbolically, the ith respondent maps the secret integer ci to a real number r+

ci
us-

ing function F(), i.e. r+
ci

= F(ci). Note that, although the encryption algorithm that we
use do not support encryption of real numbers directly, we can use integers in the chosen
field to simulate a fixed point real number which is sufficient for our purpose. The set
of mapped values for all the respondents is represented as F(S) = {r+

c1
, r+

c2
, . . . , r+

cx
}.

We require that the mapping from each ci to r+
ci

by F() preserves certain order and dis-
tance relations for the integers in S for utility efficient anonymization, which is known
as p-probabilistic locality preserving and is defined as follows:

Definition 2. Given any two pre-images ci1 , ci2 , a mapping function F() is order pre-
serving if:

ci1 ≤ ci2 ⇒ F(ci1) ≤ F(ci2) (3)

Given any three pre-images ci1 , ci2 , ci3 , and the distances dist1 = |ci1 − ci2 |, dist2 =
|ci2 − ci3 |, a mapping function F() is p-probabilistic distance preserving if:

dist1 ≤ dist2 ⇒ Pr(fdist1 ≤ fdist2) ≥ p (4)

and it increases with dist2, where fdist1 = |F(ci1) − F(ci2)|, fdist2 = |F(ci2) −
F(ci3)|, and p is a parameter in the [0, 1].

A mapping functionF() is p-probabilistic locality preserving if it is both order preserv-
ing and p-probabilistic distance preserving. In addition, we also require that the map-
ping from ci to r+

ci
reveals limited information about ci, which is to be γ-concealing:

98 M. Xue et al.

Definition 3. Given the pre-image ci and r+
ci

= F(ci), the functionF() is γ-concealing
if Pr(cmle = ci|r+

ci
) ≤ 1−γ for the Maximum Likelihood Estimation (MLE) cmle of ci.

Stage 2. The goal of this stage is to determine a set of partitions of respondents based on
the set of values in F(S) using 1D optimal k-anonymization algorithm or the l-diversity
heuristics as proposed in FALL.

Stage 3. The goal of this stage is to privately anonymize the respondent data records
based on the partitions from Stage 2, which involves secure computation of equivalence
classes for the respondents in the same partition. As F(S) is p-probabilistic locality
preserving, if we use the same partitions created on F(S) to anonymize T , we expect
that the anonymized table K(T) preserves the utility well.

4.2 Technical Details

Stage 1. Probabilistic Locality Preserving Mapping. The challenge of perform-
ing p-probabilistic locality preserving mapping in this application is that all the data
values in S are distributed, and we must ensure the secrecy of ci for respondent i
in the mapping process. In our approach we build an encrypted index E(R +) =
{E(r+

1), . . . , E(r+
cmax

)} on the server side containing cmax randomly generated num-
bers that correspond to all integers in the range [1, cmax] of the mapping function S.
Later, each respondent i retrieves then the cth

i item in the encrypted index, i.e., the item
E(r+

ci
), in a private manner and can jointly and safely decrypt it with other respondents

in order to build the anonymized data.
Essentially, four steps are needed in order to achieve p-probabilistic locality pre-

serving mapping: Step 1. Two sets of encrypted real numbers are created at the server
side, i.e. E(Rinit) and E(Rp). Step 2. The set of encrypted real numbers E(R+) is
created in a recursive way using the two sets of encrypted real numbers from Step 1:
the set E(Rinit) is used to define the value of the first encrypted number E(r+

1) and
the set E(Rp) is used to define number E(r+

i) in terms of E(r+
i−1). Step 3. Respondent

i retrieves the cth
i item from index E(R+) created in Step 2 using a private informa-

tion retrieval scheme. Step 4: The retrieved encrypted item is jointly decrypted by tss

parties, and uploaded to the server. Its plaintext is defined as r+
ci

, i.e., the image of ci

under F(). In the following, we describe the above four steps in detail. In Step 1, we
first describe how to create one encrypted random real number whose plaintext value is
not known by any parties. The creation of two sets of encrypted real numbers is just a
simple repetition of this process.

In order to hide the value of a random number, each of these is jointly created
by both a respondent and the server. To compute an encrypted joint random number
E(r), the respondent randomly selects a real number rdr from a uniform distribution in
the interval [ρmin, ρmax]. Then the respondent sends the encrypted number E(rdr) to
the server. The server independently chooses another random real number rsvr from the
same interval [ρmin, ρmax] and encrypts it to obtain E(rsvr). The join of the
two encrypted real numbers is computed as E(r)=E(rdr)·E(rsvr)=E(rdr +rsvr) by

Distributed Privacy Preserving Data Collection 99

the additive homomorphic property of the Paillier’s encryption (assuming a large mod-
ulus N is used so that round up does not take place). We are aware that both the
respondent i and the server knows the range information about r. We denote such range
knowledge about the joint random numbers for respondent i and the server as RGi and
RGsvr , respectively. Recall that Lsvr and Li are the information leakage for the server
and the data respectively. Therefore, we have that RGsvr ∈ Lsvr and RGi ∈ Li.

With the above technique, the first encrypted set of joint random numbers that we
create is E(Rinit) = {E(ι1), E(ι2), E(. . .), E(ιb)}, where the size b is a security pa-
rameter of the system. Each of the encrypted joint random numbers is created by the
server and a randomly selected respondent. The second set of encrypted joint random
numbers that we create on the server side is E(Rp) = {E(r1), E(r2), . . . , E(rcmax)}.
To create E(Rp), each respondent needs to generate

⌊
cmax

x

⌋
or

⌈
cmax

x

⌉
encrypted joint

random numbers with the server, if we distribute this task evenly.
In Step 2, to build an encrypted set of real numbers E(R+) = {E(r+

1), E(r+
2),

. . ., E(r+
cmax

)} whose plaintexts values are in ascending order based on E(Rinit) and
E(Rp), we once again use the additive homomorphic property of Paillier’s encryption:⎧⎨⎩E(r+

i) = E(ri) ·
b∏

j=1

E(ιj) i = 1

E(r+
i) = E(r+

i−1) · E(ri) i = 2, . . . , cmax

(5)

In Step 3, E(r+
ci

) is retrieved from the server by the respondent i who owns the secret
ci using Private Information Retrieval (PIR) scheme. We adopt the single database PIR
scheme developed in [5] which supports the retrieval of a block of bits with constant
communication rate. This PIR scheme is proven to be secure based on a simple variant
of the Φ-hiding assumption. To hide the complexity of the PIR communications, we use
the PIR(ci, E(R+)) to represent the sub-protocol that privately retrieves the ci

th item
in the set E(R+) by the ith respondent, and the result of retrieval is E(r+

ci
).

In Step 4, after the respondent i has retrieved E(r+
ci

), he partially decrypts E(r+
ci

) and
sends the partially decrypted cipher to tss − 2 other respondents for further decryption.
The last partial decryption is done by the server, after which the server obtains the
plaintext r+

ci
. Note that the server cannot identify the value of ci by re-encrypting the

r+
ci

and search through E(R+), as the Paillier’s encryption is a randomized algorithm
in which the output ciphers are different for the same plaintext with different random
inputs. Finally, we have achieved the mapping from the ci to r+

ci
. The server obtains the

set F(S) by the end of this step.
We illustrate these four steps in the Figure 3. The first column describes the re-

spondents 1D data. The second column represents the 33rd to 40th entries in E(R+).
The third column represents 33rd to 40th entries in E(Rp). The ith entry of E(R+)
is computed based on the product of the (i − 1)th entry of E(R+) and the ith en-
try of E(Rp). For example, E(r+

34) = E(r+
33) · E(r34) by the additive homomor-

phic property, E(r+
34) = E(r+

33 + r34) which translated in terms of real values gives
E(304.7) = E(293.5) · E(11.2) = E(293.5 + 11.2).

Theorem 1. The mapping function F() is 1
2 -probabilistic locality preserving.

100 M. Xue et al.

1D
22
24
30
31
33
35
40
42
55
56
61
63

E(293.5)

E(304.7)

E(323.4)

E(333.8)

E(339.0)

E(355.6)

E(368.8)

E(373.7)

s

E(11.2)

E(19.6)

E(8.7)

E(10.4)

E(5.2)

E(16.6)

E(13.2)

E(4.9)

E(R+) E(Rp)

33th

34th

35th

36th

37th

38th

39th

40th

Index

… …

… …

…
…

PIR

Fig. 3. Example of the probabilistic locality preserving mapping construction

Proof. Since R+
p is a set of ascending real numbers, we have r+

ci1
≤ r+

ci2
, if ci1 ≤ ci2 .

Therefore,F() is order preserving by Equation 3. To prove that it is also 1
2 -probabilistic

distance preserving, let ci1 , ci2 , ci3 be any randomly selected pre-images, and dist1,
dist2, fdist1 and fdist2 follow the definitions in Definition 2 Equation 4. Assume
that ci1 ≤ ci2 ≤ ci3 and dist1 ≤ dist2. The exact form of the distributions of fdist1
and fdist2 are difficult to estimate. However, since fdist1 (fdist2 resp.) is the sum of
dist1 (dist2 resp.) number of joint random numbers, where each joint random number
is the sum of two random uniformly selected real numbers in the interval [ρmin, ρmax],
fdist1 and fdist2 can be unbiasedly approximated by continuous normal distribution

according to the central limit theorem. Let μ = ρmin+ρmax

2 and σ2 = (ρmin−ρmax)2

12 be
the mean and variance of the uniform distribution respectively, and without ambiguity,
fdist1 and fdist2 be the continuous random variables. From the central limit theorem,
we have fdist1 ∼ N(dist1 · 2μ, dist1 · 2σ2) and fdist2 ∼ N(dist2 · 2μ, dist2 · 2σ2).
Therefore, fdist1 − fdist2 ∼ N((dist1 − dist2) · 2μ, (dist1 + dist2) · 2σ2). From the
property of continuous normal distribution, Pr(fdist1 − fdist2 ≤ 0) = Pr(fdist1 ≤
fdist2) ≥ 1

2 when dist1 ≤ dist2 and it increases with dist2. Hence, by Equation 4,
F() is also 1

2 -probabilistic distance preserving.

Stage 2. Anonymization in the mapped space. Suppose the anonymization algo-
rithm in FALL(i.e. the 1D optimal k-anonymization or l-diversity heuristics) is used
by the server for determining the partitions. Let Z = {z1, z2, . . . , zπ} be the result of
anonymization, where the ith element in Z is the ending index of the ith partition of
respondents and there are π number of partitions. Without losing generality, we assume
the indices in Z are sorted in ascending order.

Stage 3. Secure computation of equivalence classes. In this stage, the quasi-identifiers
of respondents in the same partition defined by Z form an equivalence class in K(T).
Consider the ith partition defined by Z , which is formed by the zi+1 − zi number of
respondents with IDs zi, zi + 1, . . . , zi+1 − 1, where k ≤ zi+1 − zi ≤ 2k − 1. Note
that each non-sensitive attribute in the partition will be generalized to an interval in the
K(T). Moreover, the interval for a particular attribute is the same for all the data records
in this partition. We use lep(aj, i) and rep(aj , i) to represent the left endpoint and right

Distributed Privacy Preserving Data Collection 101

endpoint of the interval, for the attribute aj (1 ≤ j ≤ u) in the ith partition in the K(T),
respectively. From the anonymization algorithm, we have:

lep(aj, i) = min(azi

j , azi+1
j , . . . , a

zi+1−1
j)

rep(aj , i) = max(azi

j , azi+1
j , . . . , a

zi+1−1
j)

(6)

To find the minimum and maximum values of the set { azi

j , azi+1
j , . . ., a

zi+1−1
j } by the

zi+1 − zi respondents, we employ the unconditionally secure constant-rounds SMPC
scheme in [4]. This SMPC scheme provides a set of protocols that compute the shares
of a function of the shared values.

Based on the result of [4], we can define a primitive comparison function
?
< : Fδ ×

Fδ → Fδ for some prime δ, such that (α
?
< β) ∈ {0, 1} and (α

?
< β) = 1 iff α < β.

This function securely compares two numbers α and β, and outputs if α is less than
β. With this function, the maximum and minimum numbers in a set are easily found
based on a series of pairwise comparisons. We omit the details of the implementation
the comparison function where the readers can find in [4].

The sub-protocol that uses the primitive comparison function
?
< to find the maximum

and minimum values for the attribute aj in the ith partition is called M(aj , i) with
the output < lep(aj, i), rep(aj , i) >. This sub-protocol is described as follows: first,
each value in this set is shared using Shamir’s (tss, tss) secret sharing. The shares
are distributed via an anonymous protocol so that the identities of the shares’ owners
are not revealed. Second, with the shares, the pairwise comparison of values based

on
?
< can be successfully constructed. The maximum and minimum values in {azi

j ,

azi+1
j , . . ., azi+1−1

j } can be found with maximally
⌈

3·(zi+1−zi)
2

⌉
−2 number of pairwise

comparisons. Finally, the owners of the maximum value and minimum value publish
their values of aj anonymously and each respondent in the partition assigns the values
of lep(aj, i) and rep(aj , i) accordingly.

For each non-sensitive attribute aj (1 ≤ j ≤ u) and each partition i (1 ≤ i ≤ π),
M(aj , i) is run once. Therefore, the M sub-protocol runs for π ·u rounds. Since the M
sub-protocol runs independently within each partition, the sub-protocol can run simulta-
neously for each partition. By the end, the respondent j in the ith partition submits the
anonymized data record K(tj)={[lep(a1, i), rep(a1, i)], . . ., [lep(au, i), rep(au, i)],
s1, . . ., sv} to the server. After collecting K(t1), K(t2), . . ., K(tx) from all x respon-
dents, the final anonymized table K(T) is created and is returned to the collector.

5 Analysis

5.1 Information Leakage

Theorem 2. The privacy preserving data collection protocol only leaks Lsvr for the
server and Li for the respondent i, where Lsvr = {RGsvr,F(S)} and Li = {RGi}.

Proof. We first construct the simulator Msvr for the server. In step 1 in stage 1 , the
knowledge of the server is described by RGsvr , in which the server knows the range

102 M. Xue et al.

of each of the random numbers in E(R) and E(Rinit). Each joint encrypted random
number in E(R) and E(Rinit) in the view of the server can be simulated by Msvr by
multiplying an encrypted random number in the range of [ρmin, ρmax] to the encrypted
random number contributed by the server. In step 2, the E(R+) is constructed based
on E(R) and E(Rinit), where no information is leaked during the computation based
on the semantic security of the Paillier’s encryption. Therefore, Msvr simulates E(R+)
based on the simulations of E(R) and E(Rinit). In step 3, the server gains no informa-
tion about the retrieved item which is guaranteed by the property of PIR() function.
The decrypted value in step 4 is F(S), which is part of the knowledge of the server. In
stage 2, the input is based on F(S), therefore the server does not gain any additional
information. In stage 3, the server receives the anonymized tuples from the respondents,
the received data are equivalent to the knowledge of the server K(T).

Now, we construct the simulator Mi for the respondent i. In stage step 1 in stage
1, the knowledge of respondent i is described by RGi, in which he knows the range
of joint random numbers which are jointly created by him and the server. The respon-
dent is not participating in step 2. In step 3, Mi simulates the retrieved ciphertext by
a random ciphertext. In step 4, Mi simulates the partially decrypted message by par-
tially decrypted the random ciphertext. The respondent is not participating in stage 2.
In stage 3, the secret shares and messages can be simulated by Mi using random ci-
phers, guaranteed by the function sharing algorithm in [4]. The output is equivalent to
the knowledge of the respondent K(T).

5.2 γ-Concealing Property

A property explaining how well the mapped value r+
ci

hides the value ci is described by
the notion of γ-concealing. The value of 1− γ (the probability the adversary can guess
ci correctly based on r+

ci
) can be approximated as follows: with r+

ci
, the Maximum

Likelihood Estimation of ci is cmle =
∥∥r+

ci
/μ

∥∥ − b (i.e. cmle =roundup(r+
ci

/μ)−b).
As the condition for ci =

∥∥r+
ci

/μ
∥∥− b is equivalent to the condition for r+

ci
to be in the

range of [(ci − 1
2 − b)μ, (ci + 1

2 − b)μ], we can establish the following equivalence:

Pr(cmle = ci|r+
ci

) = Pr(r+
ci

∈ [(ci − 1
2
− b)μ, (ci +

1
2
− b)μ]) (7)

The probability value on the r.h.s of the above equation can be approximated using
the central limit theorem. According to the central limit theorem, r+

ci
is approximately

normally distributed with r+
ci

∼ N((ci + b)μ, (ci + b)σ2). Thus, the following approx-
imation holds:

1 − γ ≈ Φ(ci+b)μ,(ci+b)σ2 [(ci + 1
2 − b)μ]

−Φ(ci+b)μ,(ci+b)σ2 [(ci − 1
2 − b)μ] (8)

In the above equation, Φ(ci+b)μ,(ci+b)σ2 is the distribution function of a normal distri-
bution with mean (ci +b)μ, and variance (ci +b)σ2. The equation shows that, the value
of 1 − γ relies on the values of μ, σ2, b and ci. Particularly, the protocol tends to be
secure when large σ2, b, and ci values, and small μ value are used.

Distributed Privacy Preserving Data Collection 103

6 Experimental Evaluation

In this section, we carry out several experiments to evaluate the performance of the
proposed privacy preserving data collection protocol. The experiments are divided into
four parts: in the first part, we evaluate the γ-concealing property of the proposed pro-
tocol. In the second part, we evaluate the probabilistic distance preserving property in
the proposed protocol due to its importance in utility preservation. In the third part, we
evaluated the performance of the protocol in utility preservation. In order to compare
with FALL − the k-anonymization algorithm that the proposed protocol is based on, we
employ the utility metric GCP [6]. Lastly, we evaluate the running time of the protocol
to show the practicality.

The dataset that we use for the experiments is from the website of Minnesota Popu-
lation Center (MPC)1, which provides census data over various locations through dif-
ferent time periods. For the experiments, we have extracted 1% sample USA population
records with attributes age, sex, marital status, occupation and salary for the year 2000.
The dataset contains 2, 808, 457 number of data records, however, we only use a sub-
set of these records. Among the five attributes, the age is numerical data while others
are categorical data. For the categorical data, we can use taxonomy trees (e.g. [2,9]) to
convert a categorical data to numerical data for generalization purposes. Among all the
seven attributes, the salary is considered as the sensitive attribute, while others are non-
sensitive and are considered as quasi-identifiers. The domain sizes for age, sex, marital
status and occupation are 80, 2, 6 and 50, respectively. The programs for the experi-
ments are implemented in Java and run on Windows XP PC with 4.00 GB memory and
Intel(R) Core(TM)2 Duo CPU each at 2.53 GHz.

6.1 Evaluation of γ-Concealing Property

In this part of experiments, we compute some real values of 1 − γ with predefined
parameters based on the formulas in Equation 8, to show that the proposed protocol is
privacy preserving. The Figure 4(a) shows the result of how the value of 1− γ changes
with the value of μ and σ2. In the first three rows of the table, we keep the value of
μ constant (μ = 150) while increasing the value of σ2. Notice that the value of 1 − γ
decreases with increasing σ2. In the last three rows of the table, we keep the values of
σ2 constant (σ2 = 7, 500) instead, and increase the values of μ. Notice in this case that
the value of 1 − γ increases with increasing μ. In Figure 4(b), we experimented how
the value of 1− γ changes with the value of b and ci. In the first three rows of the table,
we keep the value of b constant (b = 200) and increase the value of ci. We find that the
value of 1 − γ decreases with increasing ci. In the last three rows of the table, we keep
the value of ci constant (ci = 0) and increase b. It is true that the value of 1−γ decreases
with increasing b. Since the minimum ci is 0, the last three rows of the table shows the
maximum values of 1− γ under different values of b. The values of 1− γ are all below
0.1 which supports the level of privacy that a respondent can hide his quasi-identifiers
with probability at least 90% in the process of data collection. For stronger privacy, we
can further lower the value of 1 − γ, by either decreasing μ or increasing σ2 or b.

1 http://www.ipums.org/

http://www.ipums.org/

104 M. Xue et al.

ρmin ρmax μ σ2 1 − γ

100 200 150 833.333 0.119235
50 250 150 3333.33 0.0597853
0 300 150 7500 0.0398776

100 400 250 7500 0.0664135
150 450 300 7500 0.0796557
200 500 350 7500 0.0928758

b ci 1 − γ

200 100 0.0796557
200 200 0.0690126
200 300 0.0617421
200 0 0.0974767
300 0 0.0796557
400 0 0.0690126

ρmin ρmax μ σ2 DPR
100 200 150 833.333 0.999525
50 250 150 3333.33 0.999174
0 300 150 7500 0.998411

100 400 250 7500 0.999223
150 450 300 7500 0.999438
200 500 350 7500 0.999536

(a) b = 200, ci = 100 (b) ρmin = 100, ρmax = 300 b = 200

Fig. 4. γ-Concealing and relative distance preserving

6.2 Evaluation of Distance Preserving Mapping

In this part of experiments, we show that the proposed mapping function F() can quite
well preserve the relative distance. For this purpose, we propose the Distance Preserv-
ing Ratio (DPR) metric. Given a set of pre-images {c1, c2, . . . , cx}, and the set of
images {F(c1),F(c2), . . . ,F(cx)}. A relative distance preserving triple (RDPT), is
a combination of three pre-images < ci1 , ci2 , ci3 > whose images < F(ci1),F(ci2),
F(ci1) > preserve their relative distances. The DPR is defined as follows:

DPR =
total no. of RDPT < ci1 , ci2 , ci3 >

total no. of triples C(x, 3)
(9)

The DPR describes the ratio between the number of triples of pre-images whose map-
ping preserve relative distances and the total number of triples in the set of pre-images.
In the experiments, we randomly select 2,000 data records from the dataset. We convert
the non-sensitive attributes of selected data records into a set of integers using Hilbert
curve, and input it to F() as the set of pre-images. The set of parameters used is the
same as the one used in the experiments for γ-concealing property. In Figure 4(c), we
see that when μ is fixed to 150, the value of DPR decreases with increasing of σ2. On
the other hand, when we fix the value of σ2 to be 7, 500, the value of DPR increases
with μ. In other words, large μ and small σ2 has positive impacts on relative distance
preserving. In all cases, the values of DPR are extremely high (almost close to 1),
which clearly show that the mapping function F() achieves excellent relative distance
preserving.

6.3 Evaluation of Utility Preservation

Lastly, we evaluate the utility preservation property of the proposed protocol by measur-
ing the utility loss (the GCP metric) against several parameters. The set of data records
used in the first three experiments is the same set of 2,000 data records used in the last
part of the experiments.

In the first experiment, we measure the GCP value against increasing k. The param-
eters that we use are b = 200, ρmin = 200 and ρmax = 500. Figure 5(a) shows that
the value of GCP increases with increasing k (as expected). Moreover, the GCP value
computed based on table created by FALL (as labeled) and the proposed protocol (la-
beled as Distr.) are almost the same, showing that our approach can achieve almost the
same level of utility preservation as the FALL. A naive method (labeled as Order only),

Distributed Privacy Preserving Data Collection 105

which only sorts the respondents in 1D space and group every consecutive k respon-
dents, results in much higher GCP values compared to FALL and our approach. Fig-
ure 5(b) shows the utility loss for both FALL and the proposed protocol with increasing
σ2. Though from Figure 5(a), the curve of utility loss for FALL and the proposed pro-
tocol appear to be overlapping, when we focus the GCP values in the interval of [0.55,
0.6] in Figure 5(b), we indeed observe that the performance of the proposed protocol in
utility preservation is slightly less optimal compare to FALL. Moreover, the Figure 5(b)
shows that the GCP value based on the proposed approach increases with increasing
σ2 at relatively slow rate. Similarly, Figure 5(c) shows that increasing μ value helps to
reduce the GCP value. In Figure 5(d), in order to evaluate how the GCP value changes
with the data size, we increase the data size from 10,000 to 50,000. It shows that the
GCP value for both FALL and the proposed approach decreases at similar rate with in-
creasing data size. The decreasing of GCP value is due to the fact that when data size
increases, the density of data also increases. To conclude this part, these experiments
show that with appropriate parameters, the proposed approach achieves almost the same
utility preservation performance as FALL. Figures 5(e)(f)(g)(h) show the utilities in the
anonymized table based on the l-diversity heuristics in FALL. The pattern is similar to
the experiments for k-anonymity except that the utilities for l-diversity is lower than the
k-anonymity as expected.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 2 3 4 5 6 7 8 9 10

U
til

ity
 lo

ss
 (G

C
P

)

k

x=2000 b=200 ρmin=200 ρmax=500

FALL
Distri.

Order only
0.55

0.56

0.57

0.58

0.59

0.6

 0 2000 4000 6000 8000

U
til

ity
 lo

ss
 (G

C
P

)

σ2

x=2000 b=200 μ=150

FALL
Distri.

0.57

0.572

0.574

0.576

0.578

0.58

 250 275 300 325 350

U
til

ity
 lo

ss
 (G

C
P

)

μ

x=2000 b=200 σ2=7500

FALL
Distri.

0.1

0.2

0.3

0.4

0.5

0.6

 10000 20000 30000 40000 50000

U
til

ity
 lo

ss
 (G

C
P

)

Data size

b=200 ρmin=200 ρmax=500 k=4

FALL
Distri.

(a) ka: vary k (b) ka: vary σ2 (c) ka: vary μ (d) ka: vary data size

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 2 3 4 5 6 7 8 9 10

U
til

ity
 lo

ss
 (G

C
P

)

l

x=2000 b=200 ρmin=200 ρmax=500

FALL
Distri 0.57

0.58

0.59

0.6

0.61

0.62

 0 2000 4000 6000 8000

U
til

ity
 lo

ss
 (G

C
P

)

σ2

x=2000 b=200 μ=150

FALL
Distri

0.59

0.592

0.594

0.596

0.598

0.6

 250 275 300 325 350

U
til

ity
 lo

ss
 (G

C
P

)

μ

x=2000 b=200 σ2=7500

FALL
Distri

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 10000 20000 30000 40000 50000

U
til

ity
 lo

ss
 (G

C
P

)

Data size

b=200 ρmin=200 ρmax=500 l=4

FALL
Distri

(e) ld: vary l (f) ld: vary σ2 (g) ld: vary μ (h) ld: vary data size

Fig. 5. Utility preservation evaluation

6.4 Evaluation of System Time

In this experiment, we show the practicality of our protocol using experiment imple-
mented with java BigInteger class and Security package. We aim to verify the practical-
ity of the solution rather than comparing its efficiency against the requirement for real
time applications. The experiments results match our expectation for privacy preserving
data collection application.

106 M. Xue et al.

80

120

160

200

240

280

 2 3 4 5 6 7 8 9 10

Ti
m

e
in

 s
ec

s

cmax (in 104)

0

100

200

300

400

500

600

700

 2 3 4 5 6 7 8 9 10

Ti
m

e
in

 m
in

s

cmax (in 104)

80

120

160

200

 2 3 4 5 6 7 8 9 10

Ti
m

e
in

 s
ec

s

cmax (in 104)

(a) Database creation time (b) Data preparation time (c) Query response time

Fig. 6. System time

The time evaluation focuses on the server database generation and PIR part which
are the main time components of the protocol for both respondent side and server side.
On the server side, the first time component is the creation of the encrypted database of
size cmax that is equivalent to the size of domain of T as in step 1 and 2 in stage 1 of
the protocol. Since cmax is usually large, we vary this value from 10,000 to 100,000.
For the parameters setting, we choose b = 200, ρmin = 0 and ρmax = 300. In the
Paillier’s encryption, the modulus is set to 512 bits which creates blocks of size 512 bits
on the server. Figure 6(a) shows the time (in seconds) needed by the server to create the
joint encrypted random variables and encrypted database by using Paillier’s encryption.
Experiment shows that this step is efficient as the number of encryptions is linear to
cmax. The second time component for the server is database preparation time. The PIR
scheme in [5] requires the database to be prepared as a big integer using Chinese Re-
mainder Theorem so as to answer PIR query. Figure 6(b) shows the database preparation
time (in mins) and suggests that the time needed for this step could last for about 10.5
hours for cmax = 100, 000. However, as this step is taken independently on the server
for once only and requires no interaction with the data respondents, we still consider it
as practical. The third server time component is the response time to the respondent’s
PIR query. The parameters for PIR are determined by database size and block size.
In each query, the respondent privately retrieves 512 bits from the server. Figure 6(c)
shows the server response time which is in minutes. Compare to the server, the client is
lightly loaded in cryptographic operations. We assume 1,000 respondents are participat-
ing and measure the sum of joint random number generation time as in step 1 in stage 1
of the protocol, the query generation time and answer extraction time. Our experiments
show that the PIR query generation and answer extraction at the respondent side is less
sensitive to the size of database on the server side and the number of participating data
respondents, and the total time needed by the respondents are less than 5 seconds. From
both complexity analysis and experiment, we show that our protocol is practical. The
efficiency of the our protocol could be further improved by optimizing the memory or
CPU usage, or using dedicated hardware circuits for cryptographic operations.

7 Conclusions

We proposed a privacy preserving data collection protocol under the assumption that the
data collector is not trustworthy. With our protocol, the collector receives an anonymized

Distributed Privacy Preserving Data Collection 107

(either k-anonymized or l-diverse) table generalized from the data records of the re-
spondents. We show that the privacy threat caused by the information leakage remains
limited. Lastly, we show with experiments that the protocol is scalable, practical and
that the data utility is almost as good as in the case of a trustworthy collector.

References

1. Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Trans. Information
Theory 29(2), 208–210 (1983)

2. Bayardo, R., Agrawal, R.: Data privacy through optimal k-anonymization. In: Proc. of ICDE,
pp. 217–228 (2005)

3. Brickell, J., Shmatikov, V.: Efficient anonymity-preserving data collection. In: KDD 2006,
pp. 76–85. ACM, New York (2006)

4. Damgard, I., Fitzi, M., Kiltz, E., Nielsen, J., Toft, T.: Unconditionally secure constant-rounds
multi-party computation for equality, comparison, bits and exponentiation, pp. 285–304
(2006)

5. Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant commu-
nication rate, pp. 803–815 (2005)

6. Ghinita, G., Karras, P., Kalnis, P., Mamoulis, N.: Fast data anonymization with low informa-
tion loss. In: Proc. of VLDB, pp. 758–769 (2007)

7. Jurczyk, P., Xiong, L.: Privacy-preserving data publishing for horizontally partitioned
databases. In: CIKM 2008: Proceeding of the 17th ACM Conference on Information and
Knowledge Mmanagement, pp. 1321–1322. ACM, New York (2008)

8. Kaya, K., Selçuk, A.A.: Threshold cryptography based on asmuth-bloom secret sharing. Inf.
Sci. 177(19), 4148–4160 (2007)

9. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Incognito: Efficient full-domain k-anonymity.
In: Proc. of ACM SIGMOD, pp. 49–60 (2005)

10. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-diversity: Privacy
beyond k-anonymity. In: Proc. of ICDE (2006)

11. Meyerson, A., Williams, R.: On the complexity of optimal k-anonymity. In: PODS 2004, pp.
223–228. ACM, New York (2004)

12. Moon, B., Jagadish, H.v., Faloutsos, C., Saltz, J.H.: Analysis of the clustering properties of
the hilbert space-filling curve. IEEE TKDE 13(1), 124–141 (2001)

13. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes, pp.
223–238 (1999)

14. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing informa-
tion (abstract). In: Proc. of ACM PODS, p. 188 (1998)

15. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
16. Sweeney, L.: k-anonymity: A model for protecting privacy. Int. J. of Uncertainty, Fuzziness

and Knowledge-Based Systems 10(5), 557–570 (2002)
17. Yang, Z., Zhong, S., Wright, R.N.: Anonymity-preserving data collection. In: KDD 2005,

pp. 334–343. ACM, New York (2005)
18. Zhong, S., Yang, Z., Chen, T.: k-anonymous data collection. Inf. Sci. 179(17), 2948–2963

(2009)
19. Zhong, S., Yang, Z., Wright, R.N.: Privacy-enhancing k-anonymization of customer data. In:

PODS 2005, pp. 139–147. ACM, New York (2005)

Privacy Preserving Query Processing on Secret Share
Based Data Storage

XiuXia Tian1,2, ChaoFeng Sha1, XiaoLing Wang3, and AoYing Zhou3

1 School of Computer Science, Fudan University, Shanghai 200433, China
2 School of Computer and Information Engineering, Shanghai University of Electric Power,

Shanghai 200090, China
3 Institute of Massive Computing, East China Normal University, Shanghai 200062, China

{xxtian,cfsha,wxling,ayzhou}@fudan.edu.cn

Abstract. Database as a Service(DaaS) is a paradigm for data management in
which the Database Service Provider(DSP), usually a professional third party for
data management, can host the database as a service. Many security and query
problems are brought about because of the possible untrusted or malicious DSP
in this context. Most of the proposed papers are concentrated on using symmetric
encryption to guarantee the confidentiality of the delegated data, and using par-
tition based index to help execute the privacy preserving range query. However,
encryption and decryption operations on large volume of data are time consum-
ing, and query results always consist of many irrelevant data tuples. Different
from encryption based scheme, in this paper, we present a secret share based
scheme to guarantee the confidentiality of delegated data. And what is more im-
portant, we construct a privacy preserving index to accelerate query and to help
return the exactly required data tuples. Finally we analyze the security properties
and demonstrate the efficiency and query response time of our approach through
empirical data.

1 Introduction

With the development of practical cloud computing applications, many IT enterprises
have designed service products of their own, such as EC2 and S3 of Amazon, Ap-
pEngine of Google, in which EC2 can provide clients with scalable servers service, S3
can provide low cost and convenient network storage service, and AppEngine can pro-
vide network application platform service. Database as a Service(DaaS) emerges and
conforms to this trend, which is more attractive for small enterprises who couldn’t af-
ford the expensive hardware and software, especially the expensive costs for hiring data
management expertise. Despite of advantages of the DaaS paradigm, it also introduces
security and query efficiency problems due to the possible untrusted or malicious DSP.
Most of the proposed papers[2] and [3] are focused on using encryption, especially
symmetric encryption algorithm, to guarantee the confidentiality and authorized access
of the delegated data, and using partition based index to execute privacy preserving
range query[8], [9].

However, data encryption and decryption operations are time consuming, and the
query results always consist of many irrelevant data tuples. In this paper, we present a

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 108–122, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Privacy Preserving Query Processing on Secret Share Based Data Storage 109

Delegated DB Delegated DB Delegated DB

DSP1 DSP2 DSPn

......

Source DB

DO

Secret share
function

DR

......Share1 Share2
Sharen

Query
transformation

Secret
computation

k shares of n k queries of n

Privacy preserving index

Fig. 1. Secret share based system architecture

secret share based scheme to guarantee the confidentiality of delegated data. And what
is more important, we construct a privacy preserving index to accelerate query and to
help return the exactly required data tuples. We illustrate our secret share based system
architecture in Fig. 1.

– As the general DaaS paradigm, there are three types of entities in our architec-
ture, Data Owner(DO), Data Requestor(DR), and Database Service Provider(DSP).
However, in our approach there is a set of DSPs, not one, who cooperate to guaran-
tee the confidentiality of delegated data.

– DO delegates his/her source database(Source DB) to n DSPs by using the secret
share function, in which DO divides a private data in source database into n shares
by using the secret share function, and each share is delegated to one different DSP,
such as share1 for DSP1, share2 for DSP2, and sharen for DSPn respectively.

– DR transforms a query into the privacy preserving form by using the query transfor-
mation function, and derives the real query results by using the secret computation
function in terms of the returned results from any k different DSPs.

The contributions of our paper are in the following:

– This paper introduces efficient secret share scheme[1] to guarantee the confiden-
tiality of delegated data, in which a private data is divided into n shares(n is the
number of DSPs), and then each share of them is delegated to one different DSP.

– We construct an ordered privacy preserving index through combining the partition
and encryption techniques, which can be used to accelerate data access for DRs
online without disclosing data privacy.

– In order to guarantee the privacy of query from DRs in client, the submitted query is
transformed into a private form in terms of the proposed privacy preserving index.

– We evaluate our approach with empirical data from two different aspects, security
analysis and efficiency evaluation respectively.

110 X. Tian et al.

The rest of the paper is organized as follows. Section 2 first introduces the preliminary
knowledge about the secret share scheme. Then we describe the secret share based
storage model and give the general concept of privacy preserving index in section 3.
We elaborate our proposed privacy preserving index in section 4. Section 5 describes
the query transformation and processing in terms of the proposed privacy preserving
index. Then comes the experiment evaluation in section 6. Finally we give the related
work and conclusion in section 7 and section 8 respectively.

2 Preliminary

In this section, we first introduce the secret share scheme and its related properties, then
describe how to divide and delegate a private data to n DSPs by using the secret share
scheme, and finally describe how DR reconstructs the required private data from any k
different shares of n DSPs.

2.1 Secret Share Scheme

In cryptography community, everyone knows that encryption or decryption algorithm
can be publicly known, but the secret or private key must be kept secret. That is to say,
the security of secret key is critical to the security of encrypted data. Once the secret
key is leaked, the encrypted data will be in danger or leaked to the malicious attackers.
Shamir[1] proposed a secret share scheme to protect the security of secret key, where a
secret key can be divided into n shares, and each share is distributed to one participant,
only the designated number of participants like k or more participants like t, t > k
together can reconstruct the secret key. The scheme is called (k, n) threshold scheme if
and only if it satisfies the following two properties:

– Knowledge of any k or more than k of n shares makes the secret key easily com-
putable.

– Knowledge of any k−1 or fewer than k−1 of n shares makes the secret completely
undetermined.

In order to understand our approach clearly, we give the definition of share used
throughout the paper as follows:

Definition 1. A share is the result value y by computing the following polynomial on
inputting a known x.

y = f(x) = ak−1x
k−1 + ak−2x

k−2 + ... + a1x + a0

where ak−1, ak−2, ..., a0 ∈ Fq, q is a large prime, Fq is a finite domain on q, a0 is the
secret value.

From the definition above we know that n shares are y1, y2, ..., yn computed from
known x1, x2, ..., xn respectively, and the polynomial y = f(x) can be reconstructed
from any k known pairs (xi1, yi1), (xi2, yi2), ..., (xik, yik) of n pairs (x1, y1), ..., (xn, yn).

Privacy Preserving Query Processing on Secret Share Based Data Storage 111

2.2 Data Division at DO

Assume there are one DO, n DSPs, and many DRs. DO wants to use the database
service provided by DSPs to relieve him/her from expensive database management.
In order to prevent the delegated database from reading by the possible untrusted or
malicious DSPs and other attackers, DO first uses the secret share function in Fig. 1 to
deal with the private data in source database and then delegates them to n DSPs. After
that DRs in client can access the delegated database from n DSPs conveniently and
efficiently without revealing any data privacy. For simplicity, assume there is only one
table Employees in DO’s source database, and there are three attributes empno, name,
and salary respectively in Table 1. The unit of salary is thousand, for example, 20 is
equivalent to 20000. In order to protect the private value of attribute salary, DO uses
the secret share function to divide each value for attribute salary to n shares and then
distributes each of them to one different DSP.

Table 1. Employees

empno name salary
20060019 Mary 20
20060011 John 35
20050012 Kate 40
20050001 Mike 50
20040018 Henry 75

Example 1. Assume the scheme is a (3, 5) threshold scheme created on finite domain
F103, then DO divides each numeric value vsal for salary attribute in Table 1 into 5
shares, and stores each share sharei into share table Employeesi at DSPi, 1 ≤ i ≤ 5,
such as five share1s into share table Employees1 at DSP1, ... , five share5s into share
table Employees5 at DSP5 respectively. In terms of the secret share properties above,
we know that any knowledge of less than 3 shares can’t reconstruct the private value.
The concrete private value division processing is as follows:

DO randomly chooses a polynomial on finite domain F103, such as

y = f20(x) = 20 + 18x + 3x2,

and selects the minimal generator g = 5 of prime q = 103. The following computation
is how to divide the private salary value vsal = 20 in Table 1 into five shares on finite
domain F103. The notation < x >q= y means that the result y is the remainder of
prime q divided by numeric value x, x ≡ y (mod q).

< 51 >103= 5, < 52 >103= 25, < 53 >103= 22, < 54 >103= 7, < 55 >103= 35

Assume X = {5, 25, 22, 7, 35} is a set of chosen xi, xi ∈ X such as x1 = 5, x2 = 25,
... , x5 = 35, then the five shares are computed as follows:

share(20,1) = f20(< 51 >103) =< 20 + 18 ∗ 5 + 3 ∗ 52 >103= 82

share(20,2) = f20(< 52 >103) =< 20 + 18 ∗ 25 + 3 ∗ 252 >103= 79

112 X. Tian et al.

Computed as above share(20,3) = 14, share(20,4) = 87, share(20,5) = 102. For sim-
plicity, we omit the notation <>, and the subscript 103, then 51 is equal to < 51 >103,
51 = 5,..., 55 = 35. After the computation above, DO sends share share(20,i) to DSPi,
1 ≤ i ≤ 5. Therefore each DSPi couldn’t gain the private salary value 20, because
he/she only knows one share of the private value. In fact even if more than 3 DSPs
collude they couldn’t derive the private salary value 20, since only the DO and the DR
belongs to DO who know the secret set X.

2.3 Private Data Reconstruction at DR

The DRs can access the delegated database from n DSPs, each of whom stores one
share table of the source database. When a DR wants to query from DSPs, he/she
needs to transform the query into at least 3 equal privacy preserving queries for any 3 of
5 DSPs. Assume share(20,1), share(20,2), and share(20,3) are the three shares, then
by using Lagrange interpolation the reconstructed polynomial is in the following:

y = 82·x − 52

5 − 52
· x − 53

5 − 53
+79· x − 5

52 − 5
· x − 53

52 − 53
+14· x − 5

53 − 5
· x − 52

53 − 52
= 20+18x+3x2

Setting x = 0 and computing f20(0) the DR can get the private salary value 20. All the
computation is implemented on the finite domain F103. The division of private value
35, 40, 50, 75 is the same as above.

In order to protect the private data against the untrusted or malicious DSPs, the values
for salary attribute and the corresponding random polynomials can’t be stored at DSPs,
each of them only stores one share for each private salary value. Otherwise the private
value will be leaked to the untrusted DSPs.

In fact by division, shareis for all salary values stored in sharei table at DSPi

are unordered even if the values of salary attribute in source database are ordered,
1 ≤ i ≤ 5. Therefore all the queries submitted by DR should be returned all shares
from any k DSPs, which will in turn result in the large communication and bandwidth
costs between the DR and any k of n DSPs, as well as large computation costs in DR.
However, in general, the DR has limit computation capability and lower bandwidth,
therefore the simple application of secret share scheme to guarantee the confidentiality
of the delegated data is not practical. In section 3 we will introduce the efficient secret
share based storage model and present the concept of privacy preserving index.

3 Storage Model and Privacy Preserving Index

We first introduce storage model by using the secret share based data division described
above, and then introduce the general definition of privacy preserving index.

3.1 Storage Model

In our approach, any relation in the following

R(A1, A2, ..., Am),

Privacy Preserving Query Processing on Secret Share Based Data Storage 113

where m ≥ 1, in source database at DO, will be stored into n DSPs in the form of the
following relation

Ri(key1, sharei(A1, i), ..., keym, sharei(Am, i))

where 1 ≤ i ≤ m, relation Ri is delegated to DSPi. key1, ..., keym is the extra in-
troduced key attribute for attributes A1, ..., Am respectively, and each key is ordered
in terms of the corresponding attribute values, such as key1 is ordered in terms of
attribute A1. How to generate the keys for different attributes will be introduced in
section 4. Each attribute keyi can be used to construct the index corresponding to at-
tribute Ai, and the constructed index will be used to accelerate the query processing at
each DSPi.

Example 2. Table 1 is divided into five tables by using the secret share scheme, in
which Table 2 is the delegated share table Employees3 for DSP3 to manage and
maintain. In Table 2 the attribute name starting from character k represents the added
key attribute for the corresponding attribute in source database. For instance ksal is the
key attribute for attribute salary. The attribute name starting from character s represents
the share attribute for the corresponding attribute in source database. For instance ssal

is the share attribute for attribute salary.

Table 2. Employees3

kno sno kname sname ksal ssal

no214 20 name303 99 sal100 14
no211 38 name301 101 sal101 62
no212 65 name302 57 sal102 39
no210 18 name304 79 sal103 56
no213 34 name300 33 sal104 91

As a matter of fact, not all attributes kno, kname and ksal should be added, we only
add key attributes for the attributes which are accessed frequently, such as ksal. There-
fore in practical application, the keys added may be much less than those are showed
in Ri.

3.2 Privacy Preserving Index

Definition 2. Privacy preserving index is an index which can make the untrusted DSP
to evaluate queries correctly with minimal information leakage.

A partition based index is proposed in [3], in which an attribute domain is partitioned
into a set of buckets, and each bucket is identified by a tag. These bucket tags are main-
tained as an index and are used by the untrusted DSP to accelerate queries. The bucket
tags leak less information about the source data, that is to say, the DSP can’t derive
the private data from the delegated bucket tags. For example, assume the salary at-
tribute in Table 1 is partitioned into three buckets, so the range of each bucket is [0, 40),
[40, 80), [80, 120) respectively. Each bucket is given a tag by using a map function, such
as 4, 2, 7 respectively, and the bucket tags are sent to the untrusted DSP as an index.

114 X. Tian et al.

Therefore for an exact query or obfuscated rang query from DR, the DSP returns a
superset of tuples in terms of the partition based index, which include many irrelevant
tuples.

However, the returned irrelevant tuples will result in large costs of communication,
and large extra computation for the DR to decrypt them, and moreover lead to more than
k times of that in one DSP scenario. So in the subsequent section 4 we will introduce
our proposed privacy preserving index, which is expected to only retrieve the required
or a small superset of tuples from any k of n DSPs.

4 Proposed Privacy Preserving Index

In order to give an efficient solution to the problems resulted by query on unordered
data and minimize the returned irrelevant tuples, we construct a privacy preserving B+
tree index on the ksal attribute for n DSPs to share. The constructed B+ tree index can
accelerate query without leaking data privacy, because the values of ksal attribute and
the shares for salary attribute are irrelevant. So even if an attacker or a malicious DSP
knows the values of ksal attribute and the corresponding shares of salary attribute,
he/she couldn’t derive the real values of salary attribute. In the following subsections,
we will present the construction of privacy preserving B+ tree index from two functions,
key generation function and index creation function.

4.1 Key Generation Function key generation

We define an algorithm named as key generation in Fig. 2 to generate keys for pri-
vate attribute values, such as salary attribute in Table 1. In steps 1 − 4, we first divide
a specific domain different from salary domain into N uniform buckets bucket ids.
Then in steps 5− 6 of the for loop the algorithm generates a random key to encrypt the
corresponding salary value to the encrypted sal. Finally in step 7 the algorithm con-
catenates bucket id and encrypted sal and takes the concatenating result as key sal.
After the for loop all values of key sals are in order in terms of the corresponding
bucket ids and stored into the delegated Table 2 as values of attribute ksal.

key_generation(domain_start, domain_end, int N) // executed by DO
// domain_start and domain_end are the first and the last number in the domain
// N is the number of private value for some private attribute, such as salary
1. Divide the finite domain into at least N uniform buckets
2. For each bucket range from bucket_satrt to bucket_end
3. Generate a random seed
4. bucket_id=generator(seed)%(bucket_end-bucket_start)
5. Generate a random secret_key
6. encrypted_sal=E(the value of salary, secret_key)
7. Concatenate the bucket_id and encrypted_sal to form the key_sal
8. Save the seed and the key_sal as the metadata for the subsequent query
//key_sal is ordered in terms of the bucket_id
//E is a symmetric algorithm

Fig. 2. The key sal generating algorithm for salary attribute

Privacy Preserving Query Processing on Secret Share Based Data Storage 115

Example 3. The salary attribute is usually used in the where clause for queries submit-
ted by DRs, but it is usually private. In order to accelerate the query as well as protect
the private value of salary attribute against the malicious DSPs or attackers, we adopt
the secret share based scheme to implement the confidentiality of private salary and use
key generation algorithm to generate key sals for each salary value. For instance, the
key sal for salary value 20 is generated in the following steps:

– Through steps 1 − 4 in Fig. 2, the bucket id for value 20 is 37, bucket id = 37.
– Choosing a symmetric algorithm DES and a random key in steps 5 − 6 to generate

the encrypted value i89uhgnk for value 20, encrypted sal = i89uhgnk.
– Concatenating the results from the steps above obtains the key sal for value 20,

that is key sal = bucket id||encrypted sal = 37||i89uhgnk = 37i89uhgnk.

key_sal 37i89uhgnk 128h8jbka8g 279sudvyjl3 333ij9kyfbh 471rfyhujl2

bucket_id 37 128 279 333 471

encrypted_sal i89uhgnk h8jbka8g sudvyjl3 ij9kyfbh rfyhujl2

salary 20 35 40 50 75

Fig. 3. The key sal for each salary value

Fig. 3 lists all key sals for each value of salary attribute in Table 1 by using
key generation. The security of encrypted value is determined by the security of the
secret key chosen.

4.2 Index Creation Function index creation

We present an algorithm index creation in Fig. 4 to construct a B+ tree index based
on the key sals generated above. In our approach, we sort the key sals in term of its
former part bucket id. And then construct the B+ tree index like the standard B+ tree
algorithm. The proposed index satisfies the following properties:

– The proposed B+ tree index meets with the definition of privacy preserving index
in section 3.2. The former part of key sal is irrelevant with the salary value, and
the latter part is the encrypted value of salary value. So DSP can’t derive any infor-
mation useful to breach the private salary except for the order of salary.

– We introduce another bucket named as bucket pointer for each pointer field in the
leaf node on the B+ tree index. The bucket pointer consists of n rows, and each
row consists of two fields, one is the identifier field for DSPi, and the other is the
pointer field which points to the record in the delegated database at DSPi with key
value equaling to the value of the data field on the leaf node.

– n DSPs can share the same B+ tree index without leaking any private information.
Each DSPi locates the corresponding record with the designated query key in term
of the id of DSPi in the bucket pointer. This property makes the query efficient
and save much storage for each DSPi.

116 X. Tian et al.

index_creation(Relation R) // executed by DO
// R is any relation in the datatabe of DO,such as relation Employees
1. For each key_sal computed from the algorithm key_generation
2. Sort all key_sals in term of the former part in the key_sal
3. Create B+ tree in terms of the sorted key_sals
// The data field is filled with the key_sal not the former part
// The pointer is the same as the pointer in the standard B+ tree

Fig. 4. The index creation algorithm for key sal

128 333

37 128 279 333 471

128h8jbka8g 471rfyhujl2

DSP1id

DSP2id

DSP3id

DSP4id

DSP5id

P1

P2

P3

P4

P5

37i89uhgnk in DSP1

37i89uhgnk in DSP2

37i89uhgnk in DSP3

37i89uhgnk in DSP4

37i89uhgnk in DSP5

...

... ...

bucket_pointer

Fig. 5. The B+ tree for key sal

– The proposed B+ tree index supports the exact query and range query efficiently
and securely. This property makes the DSPs minimize the returned results and re-
lieve DRs from computing many results irrelevant to the submitted query.

Example 4. Fig. 5 is an B+ tree index instance for key sals generated above. For
simplicity, we only put the former part bucket id of key sal into the data field such
as 37, 128, however, in the practical B+ tree the concatenating results key sal =
bucket id||encrypted sal is filled in the data field. For example, 37 is 37i89uhgnk,
128 is 128h8jbka8g in fact. In Fig. 5 we list the bucket pointer for pointer field of key
value 37i89uhgnk, which consists of five rows, one row for each DSPi, 1 ≤ i ≤ 5, in
which DSPiid is the identifier for DSPi, Pi is the pointer pointing to the record with
key value 37i89uhgnk at DSPi.

In our approach the same value of salary will be mapped into different key sals.
That is to make the former part and the latter part both different by using different
secret keys to encrypt the same value of salary. In order to describe how our proposed
B+ tree index support all kind of queries efficiently, we will give the concrete query
processing in next section. But due to the space limitation, we only focus on the exact
and range query processing.

Privacy Preserving Query Processing on Secret Share Based Data Storage 117

5 Query Processing

In this section we describe how to process queries submitted by DRs on the architecture
in Fig. 1. For simplicity, we will take Table 1 and one of its corresponding secret share
based Table 2 as relations. For any query, DR first needs to do the following steps to
transform the submitted query into a private form:

– Encrypting the salary value in where clause into its corresponding encrypted value
under the DR’s secret key.

– Comparing the encrypted value with the latter part of the key sal in the metadata,
until find the correct key sal.

– Rewriting the query in terms of the value computed above.

Example 5. Suppose the exact query submitted by DR is as follows

SELECT name FROM Employees WHERE salary=35

it is transformed into the following private form in term of the three steps above:

SELECT snamei FROM Employeesi WHERE ksal = 128h8jbka8g

where 1 ≤ i ≤ k, k is the at least number of DSPs. Then DR submits all k query shares
of any k of n DSPs. Each DSPi searches the share share(name,i) for attribute name
in his/her own delegated database under the condition key sal = 128h8jbka8g, that is
to say, ksal = 128h8jbka8g. When searching to the leaf node, DSPi finds the record
pointer in the bucket pointer on the condition that DSPiid equals to the id proposed
by the corresponding DSPi.

Example 6. Suppose the range query submitted by DR is in the following

SELECT name FROM Employees WHERE salary ≥ 35 and salary ≤ 50

it is transformed into the following private form in term of the three steps above:

SELECT snamei FROM Employeesi WHERE F (ksal) ≥ 128 and F (ksal) ≤ 333

F is a defined function by DO, and used to extract the former part of ksal. The salary
range above has the corresponding start value and end value in the delegated database.
However, not all query in which the start value or the end value for salary is in the
predefined delegated database. Therefore if DR submits query in the following form:

SELECT name FROM Employees WHERE salary ≥ 30 and salary ≤ 60

where neither the start value 30 nor the end value 60 for salary are in the delegated
database. Therefore DR first executes a binary search to find the maximal value which
is less than or equal to 30 and the minimal value which is larger than or equal to 60.
These can be implemented easily because we construct an order preserving bucket id.
After this, DR computes the corresponding key key max for the minimum and key
key min for the maximum. Finally, each DSPi searches the snamei for attribute name
in his/her own delegated database under the condition F (ksal) ≥ F (key max) and

118 X. Tian et al.

F (ksal) ≤ F (key min). Since we construct a B+ tree index based on the order pre-
serving bucket id which keeps the same order with the practical salary value, each
DSPi can only return the required tuples. After receiving all shares snameis from each
DSPi, DR or DO can obtain the practical results by reconstructing the polynomials for
name attribute values.

6 Experiments Evaluation

Due to the space limitation we only analyze the security and efficiency of our approach
through the following experiments.

6.1 Security Analysis

The blue line in Fig. 6(a) is based on the AMD sempron(tm) processor 1.6GHz PC with
RAM 512M, 80G hard disks, VC++6.0 as the integrated development environment.
The pink line is based on the Intel(R) Core(TM)2 Duo CPU, 2.33GHz PC with RAM
2G and 160GB hard disks, VS.NET 2008 as the integrated development environment,
coding in C++ with Framework 3.5.

Aggarwal et al[7] proposed a distributed architecture, which took use of two different
DSPs to implement the privacy guarantee for sensitive data. The query in proposed
distributed architecture is efficient, however, the data privacy is completely determined
by the condition that the two DSPs are unable to communicate directly with each other.
In fact they need not even be aware of each other’s existence. Once one of the provider
is compromised, the important private information such as the credit card number or
salary will be leaked. Compared to theirs, the privacy guarantee in our approach doesn’t
depend on the DSPs, but determined by the trusted DO and DRs. And the DSPs in our
approach can communicate or collude freely with each other, which couldn’t endanger
the privacy of sensitive data. Only the DR colludes with at least k DSPs, does the privacy
for the very DR be leaked.

In the information theoretically secure aspect, from Fig. 6(a) we know that if an
attacker or the DSP doesn’t know the prime number used by DO, he/she must take
more time or exploit large scale computation on multi-computers to gain the appropriate
prime number, because the computing time is sharply increasing with the decimal digits
of prime over 8. It is shown in Fig. 6(a) that the computing time is sharply increasing
to more than 1500 seconds(almost half an hour) in the blue line, even reach to 2200
seconds in the pink line.

In conclusion, the proposed approach is information theoretically secure and can be
proved as secure as other common cryptographic primitives.

6.2 Efficiency Evaluation

We experiment on the Intel(R) Core(TM)2 Duo CPU, 2.33GHz PC with RAM 2G and
160GB hard disks, VS.NET 2008 as the integrated development environment, coding
in C� with Framework 3.5, and SQL Server 2005 as the database server. We use five
synthetic relations Ri, 1 ≤ i ≤ 5, each contains two independent attributes att1 and

Privacy Preserving Query Processing on Secret Share Based Data Storage 119

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8

AMD sempron(tm)

Intel(R) Core(TM) 2Duo CPU

(a) The decimal digits of prime number

C
om

p
u

ti
n

g
ti

m
e(

s)

0

50

100

150

200

250

100 500 1000 5000 10000

B+ search

SHA-1 search

S
ea

rc
h

in
g

ti
m

e(
s)

(b) The number of tuples

Fig. 6. The prime computation in (a) and search time comparison in (b)

att2. The size of the tuples are 1·104, 5·104, 10·104, 50·104, and 100·104 respectively.
In addition, attribute att1 is the primary key for all five relations. We choose SHA-1 as
the hash function and DES as the encryption algorithm.

Time Comparison Between Hash Based Searching and Our Index Based Searching
From Fig. 6(b) we know that the searching time based on the B+ tree(red line) is almost
0 seconds, but the searching time based on the SHA-1(pink line) grows fast when the
number of the tuples are more than 1000 tuples. The SHA-1 approach proposed by
[4] is to change the key in source database into the corresponding digest in delegated
database. The digest can protect the privacy of data when the join happens among multi-
tables from different n DSPs. For example, the searching time is 0.031 seconds in red
line, however the searching time is 95.797 seconds in pink line, which is almost three
thousands times that in the red line. So the proposed approach is much efficient than
that in SHA-1 based approach. The quick speed in the red line mainly depends on
the B+ tree index constructed on the key sal. In contrast, the SHA-1 approach should
search the whole database under the condition that the searching digest equals to the
digest stored in the delegated database. Our approach can be applied to the range query
well, however, the SHA-1 approach works bad because of the unordered key resulted
by using the hash function.

The Comparison Between Encryption and Polynomial Computation
From Fig. 7 we know that the encryption time in green line and the polynomial compu-
tation time in blue line are almost the same with the number of tuples less than 5 · 104,
but the encryption time is growing faster than that of the polynomial computation with
the number of tuples more than 10 · 104.

The data extension in data encryption is much more than that in polynomial compu-
tation, for example, if the size of original relation is 0.172MB, then the corresponding
encrypted relation is 0.398MB, but the corresponding polynomial relation is 0.172MB,
Table 3 lists all the five relations with their corresponding data extension. The del-
egated relation in the polynomial computation has the same size with the original

120 X. Tian et al.

0

100

200

300

400

500

600

10000 50000 100000 500000 1000000

Encryption

Polynomials

The numbers of tuples

C
om

p
u

ti
n

g
ti

m
e(

s)

Fig. 7. The time for encryption and polynomial computation

Table 3. Data extension vs. tuple size

Relation(MB) 0.172 0.828 1.648 8.211 16.414
Encryption 0.398 2.016 4.039 28.445 58.961
Polynomial 0.172 0.828 1.648 8.211 16.414

relation, while the delegated relation in the encryption has more than three times that in
the original relation, and the data extension even more larger with the size increasing of
the original relation. So the communication and bandwidth costs between the DO and
the DSP in the encryption must be more higher than that in the polynomial computation
resulted by the different data extension.

In conclusion, our proposed approach is secure and efficient compared to the en-
cryption or hash based approach. The constructed index based on the constructed key
improves the query efficiency greatly. And the information leakage does not depend on
DSPs, but the DR and the DO. That is to say, even if the DSPs collude, they couldn’t
leak private information delegated by DO.

7 Related Work

The concept of DaaS is first proposed by Hacigumus et al[2], in which a prototype
system NetDB2 was developed. NetDB2 resolved two important challenges about data
privacy and performance in DaaS scenario. From then on a lot of related papers are
proposed[3], [10], [11], [5], but most of which used the encryption algorithm to pro-
tect the confidentiality of delegated data, and used asymmetric encryption algorithm to
implement the integrity and completeness.

However, encryption on data makes the usability of the delegated encrypted database
worse. In order to improve the usability of the delegated encrypted database most cur-
rent proposed approaches[9], [11], are based on exploiting index information, which is

Privacy Preserving Query Processing on Secret Share Based Data Storage 121

stored together with the delegated encrypted database. This is used to help the service
provider select the returned data for the query without the need of decrypting the data.
Especially the order preserving encryption function proposed in [8] can support range
queries and is adopted widely in many subsequent schemes. However, because of the
low speed of the software-based encryption[13], [14] experiments database encryption
efficiency through three different dimensions by adopting software encryption, hard-
ware encryption, and hybird encryption respectively. Finally, they concluded that the
hybird encryption on database-level is most efficient and can prevent theft of critical
data and protect against threats such as the storage theft and storage attacks.

Almost all of the schemes proposed above are implemented by using encryption to
protect the data privacy, However, as we all know that the encryption and decryption
on large amount of data are time consuming[13], [14], and the query results always
consist of many irrelevant data tuples besides the required data tuples[9], [10]. In order
to overcome the inefficiency problems of the encryption for cinfidentiality guarantee,
[4], [5], [6] proposed a new way to protect data confidentiality, that is the secret share
based, not encryption based, data storage. However, the schemes proposed by [4], [5],
[6] couldn’t give an efficient privacy preserving index to accelerate the query speed.
In this paper, on one hand we present an information theoretic secure secret share[1]
based approach, not encryption based, to guarantee the confidentiality of the delegated
data at n DSPs , and on the other hand we construct a privacy preserving index to
accelerate the query speed and help return the exactly required data tuples. Finally we
present the query transformation techniques at DRs to access the delegated database
from different DSPs.

8 Conclusions

Due to the paper limitation, we couldn’t list all my algorithms and query processing
proposed and couldn’t provide all kinds of experiment evaluation from different aspects
either. We will give the unwritten part in another full paper. In this paper we proposed
a privacy preserving index for n DSPs on secret share based data storage, in which the
index is constructed on the added key generated through the concatenation between the
bucket id and the encrypted private value. Finally we analyze the security and efficiency
of the proposed approach from two different angles.

Our future research interest is to focus on implementing the integrity verification
based on the secret share based data storage. Then we will design a secure middleware
as a middle interface among the different three parties, the DO, DRs and DSPs in DaaS
scenario. The middleware can deal with the integrity, confidentiality and privacy pre-
serving security. Finally we will develop a client tool to guarantee the correctness of the
returned results from the n DSPs.

Acknowledgments

This work was supported by the NSFC grant (No.60903014), and the China National
Funds for Distinguished Young Scientists grant (No.60925008).

122 X. Tian et al.

References

1. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)
2. Hacigumus, H., Iyer, B., Mehrotra, S.: Providing database as a service. In: Proc. of the 18th

ICDE Conf., pp. 29–38 (2002)
3. Hacigumus, H., Iyer, B., Mehrotra, S., Li, C.: Executing SQL over encrypted data in the

database-service-provider model. In: Proc. of the ACM SIGMOD Conf., pp. 216–227 (2002)
4. Emekci, F., Agrawal, D., Abbadi, A.E.: Abacus: A distributed middleware for privacy pre-

serving data sharing across private data warehouses. In: Alonso, G. (ed.) Middleware 2005.
LNCS, vol. 3790, pp. 21–41. Springer, Heidelberg (2005)

5. Emekci, F., Agrawal, D., Abbadi, A.E., Gulbeden, A.: Privacy preserving query processing
using third parties. In: Proc. of 22th ICDE Conf. (2006)

6. Agrawal, D., Abbadi, A.E., Emekci, F., Metwally, A.: Datamanagement as a ser-
vice:challenges and opportunities. Keynotes. In: Proc. of the 25th ICDE Conf. (2009)

7. Aggarwal, G., Bawa, M., Ganesan, P., Garcia-Molina, H., Kenthapadi, K., Motwani, R., Sri-
vastava, U., Thomas, D., Xu, Y.: Two can keep a secret: A distributed architecture for secure
database services. In: Proc. of CIDR Conf., Asilomar, CA, pp. 186–199 (2005)

8. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for numeric data.
In: Proc. of the ACM SIGMOD Conf., pp. 563–574 (2004)

9. Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving index for range queries. In: Proc.
of the 30th VLDB Conf., Toronto, Canada, pp. 720–731 (2004)

10. Li, J., Omiecinski, R.: Efficiency, security trade-off in supporting range queries on encrypted
databases. In: Jajodia, S., Wijesekera, D. (eds.) Data and Applications Security 2005. LNCS,
vol. 3654, pp. 69–83. Springer, Heidelberg (2005)

11. Shmueli, E., Waisenberg, R., Elovici, Y., Gudes, E.: Designing secure indexes for encrypted
databases. In: Proc. of the IFIP Conf. on Database and Application Security (2005)

12. Anciaux, N., Benzine, M., Bouganim, L., Pucheral, P., Shasha, D.: Ghostdb:querying visible
and hidden data without leaks. In: Proc. of the ACM SIGMOD Conf., pp. 677–688 (2007)

13. Schneier, B.: Applied Cryptography. John Wiley Sons, Chichester (1996)
14. Mattsson, U.: Database encryption-how to balance security with performance. Protegrity

Corp. (2005)

Node Protection in Weighted Social Networks

Mingxuan Yuan and Lei Chen

Hong Kong University of Science and Technology, Hong Kong
{csyuan,leichen}@cse.ust.hk

Abstract. Weighted social network has a broad usage in the data mining fields,
such as collaborative filtering, influence analysis, phone log analysis, etc. How-
ever, current privacy models which prevent node re-identification for the social
network only dealt with unweighted graphs. In this paper, we make use of the
special characteristic of edge weights to define a novel k-weighted-degree anony-
mous model. While keeping the weight utilities, this model helps prevent node
re-identification in the weighted graph based on three distance functions which
measure the nodes’ difference. We also design corresponding algorithms for each
distance to achieve anonymity. Some experiments on real datasets show the ef-
fectiveness of our methods.

1 Introduction

With the popularity of social network websites, such as Facebook, LinkedIn, and Twit-
ter, more and more social network data are available for the public to analyze social
connections and user online behaviors. However, social network users might not want
to be found in the social network due to their privacy concerns. As a result, those social
network websites have to be careful when they publish their user data or provide API
to third parties to develop new applications.

Lots of research has been done to generate anonymized social graphs. The published
graph should make sure an attacker could not re-identify any user in the graph using
the structural information, such as a node’s degree [9], the neighborhood graph [14],
the whole graph [8][16], etc. For example, given a graph G, for any node u, if there
are another k− 1 nodes that have the same degree as u, we call G k-degree-anonymous
graph. For this graph, if an attacker uses a node’s degree information to re-identify it, he
will always get at least k candidates. These pioneering works all treat the social graph as
an un-weighted graph. However, in reality, many social networks are weighted graphs
[10][7]. How to publish a privacy preserving weighted graph becomes an important
problem. Two works [10][7] considered how to protect the edge weights in weighted
graphs. But no work has been done on how to prevent node re-identification when the
edge weights also work as part of an attacker’s background knowledge. For example,
Figure 1(a) is already a 2-degree-anonymous graph. Besides a node u’s degree, if an
attacker also knows the weights on the edges adjacent to u, he can still successfully
re-identify u. Suppose an attacker knows there are two edges connect to Bob and the
weights on these two edges are 1 and 2 respectively, the attacker can immediately re-
identify node A is Bob in Figure 1(a). Target on this problem, in this paper, we study
how to prevent node re-identification in weighted graphs.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 123–137, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

124 M. Yuan and L. Chen

The naive way to anonymize a weighted graph is to make the nodes with the same
structure (e.g. the same degree) also have the same weights on the corresponding edges.
We call a graph G which satisfies the above constraint as the strict weighted anonymous
graph. For k-degree-anonymous model, we should make sure for any node u, there are
at least k−1 other nodes which have the same degree as u and the weights on the edges
adjacent to these nodes are also the same as u. One way is to generalize the weight to
a certain range. Figure 1(a) is a 2-degree-anonymous graph. In it, M, N have the same
degree and A, B, C have the same degree. Figure 1(b) is a strict weighted 2-anonymous
graph by generalizing the weights. The shortcoming of this solution is quite obvious. To
mine such an anonymized graph, it needs to sample the graph (assign a concrete weight
for each edge within this edge’s weight range) and it is unclear how many graphs have
to be sampled in order to achieve the required accuracy. Furthermore, since each edge is
adjacent to two endpoints, its weight influences two nodes. This makes the final weight
range of each edge become very large. Instead of generalizing the weights, we can
also use a new weight value to replace each weight. If we apply strict anonymous to
Figure 1(a) to let each edge have one weight value, we can get an anonymized graph
as shown in Figure 1(c). Since the weight on each edge influences this edge’s two end-
points, we might change most or all weights to be the same (as shown in Figure 1(c)).

N

A

B

C

M

1

2

5

2

4.2

11

(a) 2-degree-anonymous

N

A

B

C

M

[1,11]

[1,11]

[1,11] [1,11]

[1,11]

[1,11]

(b) Generalization

N

A

B

C

M

1

1

1

1

1

1

(c) Strict Anonymous

N

A

B

C

M

1

1.2

1.2

1.2

1.44

1.44

(d) Loose Anonymous

N

A

B

C

M

1a

2a

5a

2a

4.2a

11a

(e) Enlarge/Shrink

N

A

B

C

M

1

2

5

2

4

10

(f) Rate Anonymous

Fig. 1. Anonymous Examples

The strict weighted anonymous model helps to avoid node re-identification in a
weighted graph. However, weight is a special label in a social network. It is only use-
ful when the weights in the graph have different values. Otherwise, the data mining
technique could not mine the useful results. As a consequence, when anonymizing a
weighted social graph, we could not adjust all weights to the same value or a group of
values. Let’s consider the special characteristic of edge weights. Weight is a numerical
number which is converted from some properties of social network. Although all the
converting algorithms try to represent the same fact, they may use different values. The
attacker could not get the complete information about what algorithm the publisher uses
to construct the graph. Therefore, the attacker is impossible to get the exact number. He

Node Protection in Weighted Social Networks 125

can only estimate a number around the exact value based on the fact he knows. It is
not necessary to keep the weights in the same group identical. If we assume weights
with less than 20% difference could be considered as equal, then we can have a loose
anonymous version of the graph (as shown in Figure 1(d)).

Moreover, different extraction algorithms may use different metrics to represent the
social network. Thus the edge weights may have different values using different graph
generation algorithms. For example, the transactions between two companies can either
be represented by dollars based on billions, or by euro based on millions. We can either
enlarge or shrink the weight with the same ratio on the whole graph when publishing
it. For example, we can multiply an a in the graph and get the same graph properties as
shown in Figure 1(e). In this case, an attacker could only know the relative weight of a
certain user in the social graph. For example, an attacker knows that Alice cooperated
with 2 other researchers in the past and the ratio of these two collaboration weights is
around 2. He does not know what metric the published graph uses. Thus all the nodes
whose degree is 2 are candidates if their two weights’ ratio is also around 2. Therefore,
it is more important to protect the ratio between weights other than the real value. We
can have Figure 1(f) as the published graph which is very similar to Figure 1(a).

In this paper, we assume the attacker may know one node’s degree information and
the weight information on the edges adjacent to this node. We propose a k-weighted-
degree anonymous model to prevent the node re-identification using this background
knowledge. Moreover, we make use of the numerical characteristic of the edge weights
which improves the utilities of the published graph. The k-weighted-degree anonymous
model is defined on three different distances which an attacker might use to re-identify
a user. We propose graph construction algorithms for each distance definition in order
to publish an anonymized graph.

The rest of the paper is organized as follows: Section 2 defines the problem.
Section 3 defines three different distances and Section 4 describes the graph construc-
tion algorithms. We report the experiment results in section 5. Comparison of our
work with related previous works is given in Section 6 followed by the conclusion in
Section 7.

2 Problem Description

In this paper, we focus on preventing node re-identification in a weighted graph. For
a node u, the weights on the edges adjacent to it can be represented as a sorted num-
ber sequence W , which is called node u’s weight sequence. For example, node N ’s
weight sequence in Figure 1(a) is (1, 2, 5). Then, for any two nodes u and v that already
have the same degree, the difference between u and v can be measured by the distance
between their corresponding weight sequences. (See Section 3 for the details of the dis-
tance between weight sequences). Based on the distance between weight sequences, we
can give the definition of k-weighted-degree anonymous on a weighted graph:

Definition 1. k-weighted-degree anonymous: for a weighted graph G, it is k-weighted-
degree anonymous if and only if for each node u, there are at least k − 1 other nodes
having the same degree as u and the distance between the weight sequences of u and
anyone in these k − 1 nodes is within a threshold t.

126 M. Yuan and L. Chen

The threshold t is the users’ equal expectation [7] on two weight sequences. The prob-
lem we solve in this paper is:

Problem 1. k-weighted-degree anonymous problem: given a weighted graph G, an in-
teger k and a threshold t, convert G to a k-weighted-degree anonymous graph G′ with
the minimum cost of edge change.

Here, the cost of “edge change” contains two parts: 1) The number of edges added/deleted;
2) The total weight change on edges.

3 Distance between Weight Sequences

In this part, we define three distances between weight sequences. The first two are based
on the absolute values of weights and the last one is based on the ratio between weights.

3.1 Absolute Distance

In [11], a distance based on EMD (Earth Mover Distance) is defined to compare two
distributions. The weight sequence can be transformed to a distribution on real numbers
(weights) that appear in the sequence. For example, Table 1 shows the distribution of
node N ’s weight sequence in Figure 1(f). Thus, the distance between two weight se-
quences can be represented as the EMD between the two corresponding distributions
on real numbers. For two distributions on the numerical values {v1, v2, ..., vm} with
ordered distance (the distance between two values is based on the number of values
between them in the total order), the EMD distance between them is computed by:

d =
1

m − 1

m∑
i=1

|
i∑

j=1

ri| (ri = di − d′i) (1)

where di and d′i are the corresponding values on vi in two distributions respectively.
Since the distributions of two weight sequences may be on two different real num-
ber sets, we need to combine these two real number sets together before comput-
ing the EMD distance. For two ordered real number sets V1 = (v1, v2, ..., vp) and
V2 = (v′1, v′2, ..., v′q), we can compute a new real number set N = (n1, n2, ..., nm)
where n1 = min(v1, v

′
1), nm = max(vp, vq), V1 ⊆ N , V2 ⊆ N and for ∀i < m,

ni+1−ni = constant. After getting this new real number set, the two distributions can
be put on this new set and the EMD between them can be computed using Equation 1.

For example, the distributions of nodes M and N ’s weight sequences in Figure 1(f)
are shown in Table 1 & 2, their new distributions on the combined numerical set are
shown in Table 3. The distance between M and N = (0.33+ 0.33+ 0.33+ 0+ 0.33+
0.33+0.33+ 0.33+0.33+ 0)/9 = 0.293. We give Lemma 1 to compute this distance
on weight sequences directly without transforming them to distributions.

Table 1. Node N ’s weight sequence distribution

weight sequence 1 2 5
distributionN 0.33 0.33 0.33

Table 2. Node M ’s weight sequence distribution

weight sequence 2 4 10
distributionM 0.33 0.33 0.33

Node Protection in Weighted Social Networks 127

Lemma 1. For two weight sequences (x1, x2, ..., xn) and (y1, y2, ..., yn), if the corre-
sponding distributions of X , Y are DWSX and DWSY , EMD(DWSX , DWSY) =

1
n(max(xn,yn)−min(x1,y1))

∑n
i=1 |Xi − Yi|.

Due to the space limitation, we ignore the proof here. For node M and N in Figure1(f),
EMD(M, N) = 1+2+5

3∗(10−1) = 0.293.

Table 3. Combined distributions of node M and N ’s
weight sequences

1 2 3 4 5 6 7 8 9 10
distribution′

N 0.33 0.33 0 0 0.33 0 0 0 0 0
distribution′

M 0 0.33 0 0.33 0 0 0 0 0 0.33

Table 4. weight sequence example

S1 0.1 0.2 0.3 0.4
S2 0.3 0.4 0.5 0.6
S′

1 1000.1 1000.2 1000.3 1000.4
S′

2 1000.3 1000.4 1000.5 1000.6

We name EMD as Absolute Distance and use Disabs to represent this distance for
the rest part of our paper. The value of Absolute Distance is between [0, 1].

3.2 Relative Distance

The Absolute Distance does not consider the relativity between the distance and the
original sequences. For example, in Table 4, Disabs(S1, S2) = Disabs(S′

1, S
′
2). How-

ever, comparing with S1 and S2, S′
1 and S′

2 are almost the same. In order to handle this
problem, we give another distance definition:

Definition 2. Relative Distance: the relative distance between two weight sequences
A(a1, a2, ..., an) and B(b1, b2, ..., bn) equals max(2|ai−bi|

ai+bi
).

This definition counts the maximum relative change from one weight sequence to the
other comparing with the mean value on each position. By doing this, the distance
relative to the original values of the two sequences can be represented. We use Disrel

to represent the Relative Distance. The value of Disrel is between [0, 2).

3.3 Rate Distance

In many situations, an attacker can only use the relative weights among the neighbors of
one node instead of using the absolute values of them. For example, company A has two
cooperating companies and one of them has 3-5 times flow with A than the other. The
attacker cannot know the exact metric that the data publisher uses to represent the flow.
The flow may be based on thousand dollars, or based on million dollars. The weight
sequences such as (1, 3.5), (10, 35) and (0.1, 0.35) can all be used to show node u’s one
edge has 3.5 times weight than the other. Therefore, we define another distance based
on the rate between one item and the smallest item in the same weight sequence.

Definition 3. Rate Distance: the rate distance between two weight sequences A(a1, a2,
..., an) and B(b1, b2, ..., bn) is defined as max(max(aib1

a1bi
, a1bi

aib1
)).

128 M. Yuan and L. Chen

The Rate Distance computes the maximum ratio between the relative weights appearing
in the same position in two weight sequences. We call max(aib1

a1bi
, a1bi

aib1
) as the rate at

position i. The minimum distance (the distance between two same weight sequences) is
1. When using this distance, weight sequences such as (1, 3.5), (10, 35) and (0.1, 0.35)
can be seen as the same. (1000, 4000) and (0.01, 0.04) also have the same distance to
(1, 3.5), (10, 35) and (0.1, 0.35). We use Disrate to present this distance for the rest
part of our paper. The value of Disrate is between [1, +∞).

In this paper, we also use Distance(u1, u2) to directly represent the distance be-
tween two nodes u1 and u2. We use the words “cluster” and “group” interchangeably.

4 Graph Construction Algorithm

Before presenting the details of our k-weighted-degree anonymous graph constructing
algorithms, we first show the hardness of Problem 1.

Lemma 2. k-weighted-degree anonymous problem is NP-Hard.

We prove the k-weighted-degree anonymous problem is NP-Hard from the r-Gather
Problem [1]. Due to the space limitation, we ignore the proof here.

4.1 Algorithm Structure

We design a four step algorithm to construct a k-weighted-degree anonymous graph:

1. Construct a k-degree-anonymous [9] graph G′ from G which minimizes the change
of the edge number;

2. Assign weights on each new added edges;
3. Classify the nodes into groups with the same degree, where each group has size

≥ k and the diameter of each group is as small as possible;
4. Adjust weights on edges to ensure the diameter of each group ≤ t.

where the diameter of a cluster is the maximum distance between any two nodes in it.
Firstly, we use the algorithm in [9] to construct a k-degree-anonymous graph with

the minimum edge change. Through the algorithm in [9], we can obtain a k-degree-
anonymous graph by adding edges. Next, we introduce how to implement steps (2)-(4).

4.2 Assign New Weights

When a group of new edges are added into the graph G to achieve a k-degree-anonymous
graph G′, we should set weights on the new created edges. For a new created edge e,
we want to set the edge weight as similar as its “neighbors”. Here “neighbors” means
the edges sharing the same endpoints with e. So we compute the mean edge weight of
all the “neighbors” of e and set it as e’s weight.

4.3 Clustering

In the k-degree-anonymous graph G′, for each degree, there are at least k nodes. Some-
times, for a certain degree, there are more nodes than k. So in step (3), we classify the

Node Protection in Weighted Social Networks 129

Algorithm 1. Clustering

Set superGroups = new Set;1

for Each node u in G′ do2

Group gn = new Group(u);3

if superGroups.Contains(u.degree) then4

Set sgn =5

superGroups.getSet(u.degree);
sgn.addGroup(gn);6

else7

Set sgn = new Set(u.degree);8

sgn.addGroup(gn);9

superGroups.add(sgn);10

for Each Set sgn in superGroups do11

Sort sgn by group size;12

while sgn[0].size < k do13

Group gn = sgn[0];14

Remove sgn[0];15

for Each group gn′ in sgn do16

gn′.merge cost = cost of17

gn ∪ gn′;

Sort sgn by the merge cost;18

merge sgn[0] with gn;19

Sort sgn by group size;20

nodes with the same degree to groups so that each group has size bigger than or equal
to k with the minimum group diameter. Then, in step (4), we can adjust the diameter of
all the groups less than t with the minimum weight change.

The problem that needs to be solved in this step can be formulated as:

objective : min
∑

i

(cost that makes Diameter(Clusteri) ≤ t)

subject to : ∀i, |Clusteri| ≥ k;
∀i, ∀ni, nj ∈ Clusteri, Degree(ni) = Degree(nj);

We design an incremental algorithm as shown in Algorithm 1 to cluster the nodes to
groups. The algorithm first creates one group for each single node and stores the groups
with the same degree into the same set. Then, for each degree, we sort its corresponding
group set by group size. If the minimum group size is less than k, we merge this group
with another group (the same degree) with the minimum merging cost. The merging
cost is estimated by the diameter of the merged group. We repeat this process until
all the groups have size ≥ k. In the worst case, the algorithm merges all nodes into a
single group with |V | merging operations. Each merging operation computes distances
between at most |V |2 pair of nodes. So the time complexity of this algorithm is O(|V |3).

4.4 Weight Adjustment

After the nodes are divided into groups, the diameter of each group should be adjusted
to a value ≤ t. The objective is to minimize the change of weights on all edges. So, the
problem that needs to be solved in this step can be formulated as:

objective : min

|E|∑
i

(|w′
i − wi|) ∨

|E|∑
i

(max(
w′

i

wi
,
wi

w′
i

))

subject to : ∀j, Diameter(Clusterj) ≤ t;
∀i, w′

i ∈ [minW , maxW];

Where minW and maxW are the allowed minimum and maximum edge weights. For
the Absolute Distance and Relative Distance, the objective is to minimize the sum of

130 M. Yuan and L. Chen

weight changes on all edges (min
∑|E|

i |w′
i − wi|)). For the Rate Distance, since the

weight rate becomes the main concern, the sum of weight rate change becomes the

objective (min
∑|E|

i max(w′
i

wi
, wi

w′
i
))).

We design our adjusting algorithm based on the local optimized adjustment. That is
iteratively adjusting each group’s diameter ≤ t with the minimum weight change of
the edges in this group until all groups have diameters ≤ t. Since the weight on one
edge may appear in two nodes’ weight sequences, if these two nodes are clustered into
two different groups, this weight appears in two groups. In one group, the local optimal
adjustment may require decreasing this weight. While at the same time, in the other
group, the local optimal adjustment may need to increase this weight. This phenomenon
makes the local optimization vibrate some weights and fall in infinite loop. Target on
this problem, in our algorithm, we only allow each weight be adjusted in one direction:
only increasing or only decreasing. The adjusting algorithm is shown in Algorithm 2.

Algorithm 2. Adjusting Framework

while ¬(All group in Groups has diameter ≤ t) do1

for Each group g in Groups do2

if g’s diameter > t then3

for each pair of nodes (n1, n2) in g do4

if Distance(n1, n2) > t then5

Adjusting to Distance(n1, n2) = t;6

The algorithm iteratively adjusts each group that has diameter bigger than t until all
the groups have diameters≤ t. For a group which needs to be adjusted, if a pair of nodes
(u1, u2) in it has distance bigger than t, we adjust the weights on the edges adjacent to
u1 and u2 to make their distance equal to t. The key step of Algorithm 2 is to make
Distance(u1, u2) = t (line 6 in Algorithm 2) with the minimum weight change. Next
we introduce how to implement this for the three distances defined in Section 3.

Adjusting for Absolute Distance. The weight adjusting algorithm for Absolute Dis-
tance is described in Algorithm 3. For a pair of nodes (u1, u2) with Disabs(u1, u2) > t,
we do the following adjustment:

– Step 1: Find the maximum and second maximum value gaps on each position of
the weight sequences (max(|S1[i]−S2[i]|), suppose these two values are max1 and
max2 respectively and there are nummax1 positions have max1 gap;

– Step 2: Compute the total weight change changeneed that needs to be reduced to
let Disabs(n1, n2) = t;1

1 Disabs(S1, S2) =
∑n

i=1 |S1[i]−S2[i]|
n(max(S1[n],S2[n])−min(S1[1],S2[1])

(n = |S1|/|S2| and S′
1/S′

2 are

the new weight sequences), t =
∑n

i=1 |S′
1[i]−S′

2[i]|
n(max(S1[n],S2[n])−min(S1[1],S2[1])

, so changeneed =∑n
i=1(|S1[i] − S2[i]| − |S′

1[i] − S′
2[i]|) = (Disabs(S1, S2) − t) × n(max(S1[n], S2[n]) −

min(S1[1], S2[1])).

Node Protection in Weighted Social Networks 131

Algorithm 3. Adjusting for Absolute Distance

S1 = u1’s weight sequence; S2 = u2’s weight sequence; n = |S1|;1

while Disabs(S1, S2) > t do2

max1 = max(|S1[i] − S2[i]|);3

nummax1 = No. of pairs with (|S1[i] − S2[i]| = max1);4

max2 = max(|S1[i] − S2[i]| < max1);5

changeneed = (Disabs(S1, S2)− t)×n(max(S1[n], S2[n])−min(S1[1], S2[1]));6

if ((max1 − max2) × nummax1) ≥ changeneed then7

for each |S1[i] − S2[i]| = max1 do8

Adjust corresponding weights, let |S1[i] − S2[i]| = max2;9

else10

target = max1 − changeneed/nummax1 ;11

for each |S1[i] − S2[i]| = max1 do12

Adjust corresponding weights, let |S1[i] − S2[i]| = target;13

– Step 3: If reducing all the max1 gap to max2 can cover changeneed (changeneed≤
(max1 − max2) × nummax1), we change the weights appear in the positions
of max1 to let all max1 be reduced to a new value target: target = max1 −
changeneed/nummax1 . By doing this, the Disabs(n1, n2) is reduced to t. If chang-
ing all max1 to max2 cannot cover changeneed, we reduce all max1 to max2, go
to Step 1 and repeat this process until Disabs(n1, n2) ≤ t.

Suppose the degree of the two adjusting nodes is d, then the time to find the maximum
and second maximum value gap is O(d). In the worst case, all the gaps are adjusted and
the procedure repeats d times. So the time complexity of Algorithm 3 is O(d2).

Adjusting for Relative Distance. Algorithm 4 is the weight adjusting algorithm for
Relative Distance. For a pair of nodes (u1, u2) with Disrel(u1, u2) > t, we find a
position with 2|S1[i]−S2[i]|

S1[i]+S2[i]
> t. Suppose this position is adjusti, we need to adjust the

edge weight at adjusti to ensure 2|S1[adjusti]−S2[adjusti]|
S1[adjusti]+S2[adjusti]

= t. For weight decreasing
only, suppose vmin is min(S1[adjusti], s2[adjusti]) and vmax is max(S1[adjusti],
s2[adjusti]), we should reduce vmax to x that satisfies: 2(x−vmin)

x+vmin
= t, then x =

(2+t)vmin

2−t . For weight increasing only, similar computation can be deduced. In the worst
case, every position should be adjusted. So the running time of Algorithm 4 is O(d).

Adjusting for Rate Distance. The definition of Rate Distance is max(max(aib1
a1bi

,a1bi

aib1
)),

so there are two options for adjustment, adjusting the minimum weight in a weight se-
quence or adjusting the weight at position i.

If we choose the first option, the rate at every position is changed. This makes the
problem be a non-linear optimization problem. In order to solve this problem, we model
the optimal weight adjusting problem between two nodes as a Geometric Programming
(GP) problem and use a GP solver to find the proper weights on edges.

132 M. Yuan and L. Chen

Algorithm 4. Adjusting for Relative Distance

S1 = u1’s weight sequence; S2 = u2’s weight sequence;1

while Disrel(S1, S2) > t do2

adjusti = i such that 2|S1[i]−S2[i]|
S1[i]+S2[i]

> t;3

if Decrease then4

vmin = min(S1[adjusti], S2[adjusti]);5

vmax = max(S1[adjusti], S2[adjusti]);6

vmax = (2+t)vmin
2−t

;7

else8

vmax = max(S1[adjusti], S2[adjusti]);9

vmin = min(S1[adjusti], S2[adjusti]);10

vmin = (2−t)vmax

2+t
;11

We model the local optimization problem for Rate Distance adjustment as a GP
problem and iteratively invoke a GP solver to do the adjustment. A GP problem is an
optimization problem that has the following form:

objective : min f0(x)
subject to : fi(x) ≤ 1; hi(x) = 1;

where fi is a posynomial and hi is a monomial. A monomial is a function which is de-
fined as: f(x) = cxa1

1 xa2
2 ...xan

n , where c > 0 and ai ∈ R (Real number). A posynomial
is the summation of monomials. If xis are real numbers, GP problem can be solved in
polynomial time.

We use the weight decreasing adjustment to demonstrate how GP model can be built.
In the case using weight increasing, similar model can be built. For two nodes u1 and
u2, the weight sequences of these two nodes are S1(v1, v2, ..., vn) and S2(v′1, v′2, ..., v′n)
respectively. Suppose the edge sequences correspond to these two weight sequences are
E1(e1, e2, ..., en) and E2(e′1, e

′
2, ..., e

′
n) (note there may exist one edge (u1, u2) which

appears both in E1 and E2), we can build the following GP model:
The constants used in the GP model:

– The original weights on the edges in E1 and E2: v1, v2, ..., vn, v′1, v
′
2, ..., v

′
n.

The variables used in the GP model:

– nvi : the new weight of edge ei;
– nv′i : the new weight of edge e′i.

The objective of GP model:

– If there’s no overlapping between E1 and E2: min
∑n

i=1
vi

nvi
+

∑n
i=1

v′
i

nv′
i

– If there’s one edge which appears both in E1 and E2, suppose ep in E1 and eq in
E2 are the same edge (we should only count ep/eq one time):

min
∑n

i=1
vi

nvi
+

∑q−1
i=1

v′
i

nv′
i
+

∑n
i=q+1

v′
i

nv′
i

Node Protection in Weighted Social Networks 133

The constraints used in the GP model:

– The Rate Distance between new S1 and S2 should be less than t:
∀i

nv1·nv′
i

nvi·nv′
1
≤ t ∧ ∀i

nv′
1·nvi

nv′
i·nv1

≤ t

– Only weight decreasing is allowed: ∀i nvi

vi
≤ 1 ∧ ∀i

nv′
i

v′
i
≤ 1

– The new weight on each edge should be bigger than the allowed minimum weight
minW : ∀i minW

nvi
≤ 1 ∧ ∀i minW

nv′
i

≤ 1
– If there’s an edge appearing both in E1 and E2, suppose ep in E1 and eq in E2 are

the same edge, the weights of them should be the same: nvi

nv′
i

= 1

We use the optimization software Mosek (www.mosek.com) solve our GP models. To
build the GP model, we should scan all the edges adjacent to the two adjusting nodes,
so the time complexity of this adjustment is O(d + tGP) (d is the degree of the two
adjusting nodes). Here tGP is the running time of the GP solver. Since all the values in
the GP model are real numbers, the GP solver can get the solution in polynomial time.
tGP has polynomial relation with d.

It is obvious that our adjusting algorithms will always find a solution. The worst
case of an adjusting algorithm for weight decreasing adjustment is that all the edges
have the equal weight minW . The worst case for weight increasing adjustment is that
all the edges have the equal weight maxW , so the adjusting algorithm will terminate
with a solution. The worst case of the k-weighted-degree anonymous algorithms are to
generate a full connected graph with the same weight on all edges.

5 Experiments

5.1 DataSets

In this section, we test the effectiveness of our methods on two real datasets.

Arnet. (www.arnetminer.org) is a researcher social network collected by Tsinghua Uni-
versity. It contains information extracted from crawled web pages of computer scien-
tists. The data also contains the co-authorship graph among these people. The weight
on each edge represents the number of papers coauthored by two researchers. In this
experiment, we extract a subgraph which contains 6000 nodes and 37848 edges.

ArXiv Data. (arXiv.org) is an e-print service system in Physics, Mathematics, Com-
puter Science, etc. We extract a subset of co-author graph in Computer Science, which
contains 19835 nodes and 40221 edges. Each node denotes an author, and each edge
has a weight which represents the number of papers co-authored by the two endpoints.

5.2 Utilities

Since our k-weighted-degree anonymous model targets on the special characteristic of
the edge weight, we use the relative edge weight distribution’s change as our utilities.
Suppose the minimum edge weight in the graph is min, then for any edge e, its rela-
tive edge weight is e.weight

min . We define two utilities based on the relative weights in our

134 M. Yuan and L. Chen

experiment. The reason we choose relative weight is that the information represented by
this graph is not changed after multiplying or dividing all edge weights by a parameter.
The two utilities we tested are:

– Standard deviation change ratio of the relative edge weights (SDC)
Standard deviation is a widely used measure of the variability or dispersion of data.
Here we use it to measure the distribution of the relative edge weights. For a graph
G(V, E) (V is the node set and E is the edge set), the standard deviation of G: GSD

is computed as: SDG =

√∑
e∈E (e.weight

min −mean)2

|V |−1 with mean =
∑

e∈E
e.weight

min

|V | .

The SDC of a published graph Ga compared with the original Graph Go is:
SDC = |SDGa−SDGo |

SDGo
. The smaller this value is, the better utility Ga gets.

– Average relative edge weights change ratio (CR)
For a graph Go and its corresponding k-weighted-degree anonymous graph Ga,
the relative weight change ratio of all the edges can be estimated by: CR =∑

e∈Go,e′∈Ga,e.x=e′.x∧e.y=e′.y
|e.weight−e′.weight|

e.weight

|Eo| . The smaller this value is, the better
utility Ga gets.

5.3 Results

In order to show the effects of our privacy model, we also generate the strict k-weighted-
degree anonymous graph. The algorithm to generate the strict k-weighted-degree anony-
mous graph from a k-degree-anonymous graph is: For any set of edges that need to have
the same weight, if there exist two edges whose weights’ difference is bigger than a
threshold t, we set all the edge weights in this set to the mean weight of the set. After
this adjustment, if there’s no edge set needs to be adjusted, finish; otherwise, we repeat
this process. We set t = 0.0005 in this experiment.

We generate the 3-weighted-degree anonymous graphs for Arnet and ArXiv datasets
respectively using different distance definitions and thresholds. Figure 2 shows the util-
ities of the 3-weighted-degree anonymous graphs with the Absolute Distance, where
x axis is the threshold and the y axis is the corresponding utility. “A. Graph” stands
for the 3-weighted-degree anonymous graph and “S.A.Graph” stands for the strict 3-
weighted-degree anonymous graph. From the result we can see, if we use the strict
weight anonymous, the utilities are very bad (The SD is close to 1 and CR is bigger
than 0.3). Given a distance threshold, an anonymized graph with much better utilities
can be generated based on Absolute Distance. The utilities become better when the
threshold increases.

Figure 3 and Figure 4 show the utilities of the 3-weighted-degree anonymous graphs
with the Relative Distance and Rate Distance respectively. Similar results are observed
as Figure 2. Especially, for Rate Distance case, even with threshold = 1, it gets much
better utilities than the strict k-weighted-degree anonymous. These results demonstrate
that our privacy model helps keep the utilities of weighted graphs. The Rate Distance
gets the best effect on preserving the edge weights of the original graph.

We also test the protection effect and efficiency of our algorithms. We do the attack
using the distances defined in Section 3 with corresponding thresholds, no node can be

Node Protection in Weighted Social Networks 135

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.05 0.1 0.15 0.2 0.25

threshold

A. Graph(Arnet)
S.A. Graph(Arnet)

A. Graph(Arxiv)
S.A. Graph(Arxiv)

(a) SDC

 0

0.05

 0.1

0.15

 0.2

0.25

 0.3

0.35

 0.4

0.45

 0 0.05 0.1 0.15 0.2 0.25

threshold

A. Graph(Arnet)
S.A. Graph(Arnet)

A. Graph(Arxiv)
S.A. Graph(Arxiv)

(b) CR

Fig. 2. Utilities using Absolute Distance

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.05 0.1 0.15 0.2 0.25

threshold

A. Graph(Arnet)
S.A. Graph(Arnet)

A. Graph(Arxiv)
S.A. Graph(Arxiv)

(a) SDC

 0

0.05

 0.1

0.15

 0.2

0.25

 0.3

0.35

 0.4

0.45

 0 0.05 0.1 0.15 0.2 0.25

threshold

A. Graph(Arnet)
S.A. Graph(Arnet)

A. Graph(Arxiv)
S.A. Graph(Arxiv)

(b) CR

Fig. 3. Utilities using Relative Distance

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45

threshold

A. Graph(Arnet)
S.A. Graph(Arnet)

A. Graph(Arxiv)
S.A. Graph(Arxiv)

(a) SDC

 0

0.05

 0.1

0.15

 0.2

0.25

 0.3

0.35

 0.4

0.45

 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45

threshold

A. Graph(Arnet)
S.A. Graph(Arnet)

A. Graph(Arxiv)
S.A. Graph(Arxiv)

(b) CR

Fig. 4. Utilities using Rate Distance

re-identified. Our algorithms also have good time performance. We run our algorithms
on a notepad with 1GB memory and 1.66GHz CPU. For the ArXiv data (19835 nodes)
with the smallest t (0.05 for the Absolute/Relative Distance and 1 for the Rate Distance),
the computer takes 13.4 seconds, 3.1 seconds and 69.8 seconds for Absolute Distance,
Relative Distance and Rate Distance respectively to finish the computation. Due to the
space limitation, we do not show all the results here.

136 M. Yuan and L. Chen

6 Related Works

Simply removing the identifiers in social networks does not guarantee privacy. The
unique patterns such as node degree, subgraph, or distance to special nodes can be
used to re-identify the nodes/links [8]. The attack that only uses certain background
knowledge and doesn’t “actively” change the graph is called passive attack, and the one
“actively” changes the graph when social networks are collecting data is called active
attack (An attacker will find the “actively” changed parts in the anonymized graph and
follows them to attack other nodes). Most current works can be categorized into two
classes: to prevent passive attack [9,8,5,15,4,13,14] and to prevent active attack [12].

The basic methods to prevent the passive attack include clustering and edge editing.
Clustering is to cluster “similar” nodes together and publish a super node instead of
the original nodes. Hay[8] proposed a heuristic clustering algorithm to prevent privacy
leakage using vertex refinement, subgraph, and hub-print attacks. Zheleva[15] devel-
oped a clustering method to prevent the sensitive link leakage. Campan[4] discussed
how to implement clustering when considering both node labels and structure informa-
tion. Cormode[5][3] introduced (k, l)-groupings for bipartite graph and social networks
to do the protection respectively. The edge editing-based approach tries to add or delete
edges in order to make the graph satisfy certain constraints. Liu[9] defined and imple-
mented k-degree-anonymous model on network structure, that is for published network,
for any node, there exists at least k − 1 other nodes have the same degree as this node.
Zhou[14] considered a stricter model: for every node, there exist at least k − 1 other
nodes share isomorphic neighborhoods when taking node labels into account. Zou[16]
proposed a k-Automorphism protection model: A graph is k-Automorphism if and only
if for every node there exist at least k − 1 other nodes do not have any structure dif-
ference with it. Cheng[6] designed a k-isomorphism model to protect both nodes and
links: a graph is k-isomorphism if this graph consists k disjoint isomorphic subgraphs.
Ying[13] studied how random deleting and swapping edges change graph properties
and proposed an eigenvalues oriented random graph change algorithm.

One method to prevent active attack is to recognize the fake nodes added by attackers
and remove them before publishing the data. Shrivastava[12] proposed an algorithm that
can identify fake nodes based on the triangle probability difference between normal
nodes and fake nodes.

All the previous works that prevent node re-identification only considered un-
weighted graphs. For the privacy protection in weighted graphs, Liu[10] treated weights
on the edges as sensitive labels and proposed a method to preserve shortest paths be-
tween most pairs of nodes in the graph. Das[7] proposed a Linear Programming based
method to protect the edge weights while preserving the path of shortest paths. Both
these two works treated the edge weights as sensitive information and considered how
to protect them. Our work is different since we treat the edge weights as the background
knowledge and study how to prevent node re-identification in a weighted graph.

7 Conclusion

In this paper, we study the problem about how to prevent node re-identification in
weighted graphs. We define the k-weighted-degree anonymous model by considering

Node Protection in Weighted Social Networks 137

the special characteristic of edge weights. Our model takes benefit from the numerical
characteristic of edge weights, which helps to remain the weight diversity of the graph.
Our experiments on the real datasets confirm that it is possible to preserve user’s privacy
while keeping weights in the social graph.

Acknowledgement

Funding for this work was provided by Hong Kong RGC under project no.
N HKUST61 2/09 and NSFC Project Grants 60736013, 60873022, 60903053.

References

1. Aggarwal, G., Feder, T., Kenthapadi, K., Khuller, S., Panigrahy, R., Thomas, D., Zhu, A.:
Achieving Anonymity via Clustering. In: PODS 2006, pp. 153–162 (2006)

2. Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore art thou r3579x?: anonymized social net-
works, hidden patterns, and structural steganography. In: WWW 2007, pp. 181–190 (2007)

3. Bhagat, S., Cormode, G., Krishnamurthy, B., Srivastava, D.: Class-based graph anonymiza-
tion for social network data. Proc. VLDB Endow. 2(1), 766–777 (2009)

4. Campan, A., Truta, T.M.: A clustering approach for data and structural anonymity in so-
cial networks. In: Bonchi, F., Ferrari, E., Jiang, W., Malin, B. (eds.) PinKDD 2008. LNCS,
vol. 5456. Springer, Heidelberg (2008)

5. Cormode, G., Srivastava, D., Yu, T., Zhang, Q.: Anonymizing bipartite graph data using safe
groupings. Proc. VLDB Endow. 1(1), 833–844 (2008)

6. Cheng, J., Fu, A., Liu, J.: K-Isomorphism: Privacy Preserving Network Publication against
Structural Attacks. In: SIGMOD 2010, pp. 459–470 (2010)

7. Das, S., Egecioglu, O., Abbadi, A.: Privacy Preserving in Weighted Social Network. In:
ICDE 2010, pp. 904–907 (2010)

8. Hay, M., Miklau, G., Jensen, D., Towsley, D., Weis, P.: Resisting structural re-identification
in anonymized social networks. Proc. VLDB Endow. 1(1), 102–114 (2008)

9. Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: SIGMOD 2008, pp. 93–106
(2008)

10. Liu, L., Wang, J., Liu, J., Zhang, J.: Privacy preserving in social networks against sensitive
edge disclosure. Technical Report CMIDA-HiPSCCS 006-08 (2008)

11. Li, N., Li, T.: t-closeness: Privacy beyond k-anonymity and l-diversity. In: ICDE 2007, pp.
106–115 (2007)

12. Shrivastava, N., Majumder, A., Rastogi, R.: Mining (social) network graphs to detect random
link attacks. In: ICDE 2008, pp. 486–495 (2008)

13. Ying, X., Wu, X.: Randomizing social networks: a spectrum preserving approach. In: Jonker,
W., Petković, M. (eds.) SDM 2008. LNCS, vol. 5159, pp. 739–750. Springer, Heidelberg
(2008)

14. Zhou, B., Pei, J.: Preserving privacy in social networks against neighborhood attacks. In:
ICDE 2008, pp. 506–515 (2008)

15. Zheleva, E., Getoor, L.: Preserving the privacy of sensitive relationships in graph data. In:
Bonchi, F., Malin, B., Saygın, Y. (eds.) PInKDD 2007. LNCS, vol. 4890, pp. 153–171.
Springer, Heidelberg (2008)

16. Zou, L., Chen, L., Özsu, M.T.: k-automorphism: a general framework for privacy preserving
network publication. Proc. VLDB Endow. 2(1), 946–957 (2009)

An Unbiased Distance-Based Outlier Detection
Approach for High-Dimensional Data

Hoang Vu Nguyen1, Vivekanand Gopalkrishnan1, and Ira Assent2

1 School of Computer Engineering, Nanyang Technological University, Singapore
{ng0001vu,asvivek}@ntu.edu.sg

2 Department of Computer Science, Aarhus University, Denmark
ira@cs.au.dk

Abstract. Traditional outlier detection techniques usually fail to work
efficiently on high-dimensional data due to the curse of dimensional-
ity. This work proposes a novel method for subspace outlier detection,
that specifically deals with multidimensional spaces where feature rel-
evance is a local rather than a global property. Different from existing
approaches, it is not grid-based and dimensionality unbiased. Thus, its
performance is impervious to grid resolution as well as the curse of di-
mensionality. In addition, our approach ranks the outliers, allowing users
to select the number of desired outliers, thus mitigating the issue of high
false alarm rate. Extensive empirical studies on real datasets show that
our approach efficiently and effectively detects outliers, even in high-
dimensional spaces.

1 Introduction

Popular techniques for outlier detection, especially density-based [1] and distance-
based [2] ones, usually rely on the notion of distance functions defining the
(dis)similarity between data points. However, since they take full-dimensional
spaces into account, their performance is impacted by noisy or even irrelevant
features. This issue was addressed in [3], which asserts that in such spaces, the
concept of nearest neighbors becomes meaningless since nearest and farthest
neighbors are alike. Even employing global dimension reduction techniques does
not resolve this problem, because feature irrelevance is a local rather than a
global property [3]. Therefore, in recent years, researchers have switched to sub-
space anomaly detection [3,4,5]. This paradigm shift is feasible as outliers though
may be difficult to find in full-dimensional space, where they are hidden by ir-
relevant/noisy features, they nevertheless can be found completely in subspaces
[3]. In addition, because subspaces are typically much fewer dimensions than
the entire problem space, detection algorithms are able to overcome the curse of
dimensionality. However, this approach opens new challenges:

Unavoidable Exploration of all Subspaces to Mine Full Result Set. Since
the monotonicity property does not hold in the case of outliers, one cannot apply
apriori-like heuristic [6] (as used in mining frequent itemsets) for mining outliers.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 138–152, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Unbiased Distance-Based Outlier Detection 139

0

1

2

3

4

0 1 2 3 4

A

1

(a) A is an outlier in the
full space

0

1

2

3

4

0 1 2 3 4

B

(b) B is an outlier in a
subspace

Fig. 1. Non-monotonicity of subspace outliers

In other words, if a data point p does not show any anomalous behavior in some
subspace S, it may still be an outlier in some lower-dimensional projection(s)
of S (and this is also the reason why we find outliers in subspaces). On the
other hand, if p is a normal data point in all projections of S, it can still be an
outlier in S. Figure 1 provides two examples on synthetic datasets illustrating
our point. Though A is not an outlier on any 1-dimensional projection of the
dataset, it is an outlier in the 2-dimensional space. Conversely, B is not an outlier
in the 2-dimensional space, but it shows anomalous behavior when the dataset
is mapped to the x-axis. Therefore, exploring all subspaces is unavoidable in
order to find all outliers. However, algorithms that explore all subspaces are
infeasible on high-dimensional data, because the number of available subspaces
grows exponentially with the number of data dimensions.

Difficulty in Devising an Outlier Notion. Defining what an outlier should be
in high-dimensional data is not straightforward. Popular distance-based outlier
definitions (e.g., r-Distance [2], CumNN [7]) have been successfully used in full-
dimensional space outlier detection. However, when they are applied for mining
outliers in subspaces, they suffer the issue of dimensionality bias. In particular,
they assign data points higher outlier scores in high-dimensional subspaces than
they do in lower-dimensional ones. This leads to the loss of outliers located in low-
dimensional subspaces. Moreover, it is so far unclear how these metrics should be
extended to subspaces. Current notions specifically developed for mining outliers
in subspaces simply consider outliers as by-products of the clustering process
[8], or are arbitrary, i.e., they work with grids whose resolution cannot be easily
determined [3,5], or use cutoff thresholds without clear details on how the values
may be set [4]. On the other hand, it is not easy to devise a subspace outlier
notion whose parameters can be decided intuitively.

Exposure to High False Alarm Rate. Because typical mining approaches
make a binary decision on each data point (normal or outlier) in each subspace,
they flag too many points as outliers as the number of possible subspaces to
examine is large. This not only causes high false alarm rates, but also requires
additional effort in analyzing the results. This problem can be avoided by em-
ploying a ranking-based algorithm [9], which would allow users to limit such large

140 H.V. Nguyen, V. Gopalkrishnan, and I. Assent

result sets. However, such algorithms are difficult to design, mainly because of
the lack of appropriate scoring functions. In the context of subspace mining,
a score function permitting ranking must be able to produce scores that can
be compared to each other across subspaces, i.e., it should be dimensionality-
unbiased.

Problem Statement. Our goal is to resolve the above challenges, and build an
efficient technique for mining outliers in subspaces. It should: (a) avoid expensive
scan of all subspaces while still yielding high detection accuracy, (b) include an
outlier notion that eases the task of parameter setting, and facilitates the design
of pruning heuristics to speed up the detection process, and (c) provide a ranking
of outliers across subspaces. We achieve this goal by presenting High-dimensional
Distance-based Outlier Detection (HighDOD), a novel technique for outlier de-
tection in feature subspaces. Overcoming the aforementioned difficulties, High-
DOD provides a distance-based approach [10] towards detecting outliers in very
high-dimensional datasets. Though being distance-based, the notion of outliers
here is unbiased w.r.t. the dimensionality of different subspaces. Furthermore,
HighDOD produces a ranking of outliers using a direct, integrated nested-loop
algorithm [10], which helps to reduce the overall runtime cost. HighDOD is also
not grid-based (i.e., it does not require division of data attributes into ranges)
and hence, is not dependent on grid resolution. Similar to other subspace outlier
detection approaches [3,4], HighDOD explores subspaces of dimensionality up to
some threshold. However, it is able to yield very high accuracy (c.f., Section 4).
Our experimental results on real datasets demonstrate that it works efficiently
and effectively to meet our purpose.

The rest of this paper is organized as follows. We provide a formal background
of the problem and review related work in the next section. Then we present
the HighDOD approach in in Section 3 and empirically compare with other
existing techniques in Section 4. Finally, we conclude our paper in Section 5
with directions for future work.

2 Background and Literature Review

Consider a dataset DS with N data points in d dimensions. Each of the dimen-
sions is normalized such that they all have the same scale (without loss of general-
ity, we assume the range is [0, 1]). The distance between any two data points p =
(p1, p2, · · · , pd) and q = (q1, q2, · · · , qd) in subspace S = {s1, s2, · · · , sdim(S)} ⊂
{1, 2, · · · , d} is defined as D(pS , qS) = (

∑
i∈S |pi − qi|l)1/l where l is a positive

integer. In other words, we restrict the distance function to the L-norm class.
Work in distance-based outlier detection was pioneered by Knorr and Ng in

1998 [2]. According to their proposal, outliers are points from which there are
fewer than k other points within distance r. While this definition requires the
specification of k and r (which is not easy) and produces only binary results
(outlier or non-outlier), Angiulli et al. [7] proceed further by defining a data
point’s total distances to its k nearest neighbors to be its outlier score. This
notion allows the design of ranking-based methods.

Unbiased Distance-Based Outlier Detection 141

Ranking-based techniques in general have many advantages over threshold-
based ones (for more details on the classification of a detection method into either
ranking-based or threshold-based, please refer to [9]). First, as pointed out in [8],
binary decision on whether or not a data point is an outlier is not practical in
many applications and hard to parameterize. As for ranking-based methods, the
difficulty one would face in setting the cutoff threshold is lifted off. Instead, users
may specify how many outliers they want to see. Subsequently, the respective
technique will produce a list of anomalies sorted in ascending/descending order
of outlier scores and whose cardinality is equal to the user input parameter.
This is of great convenience because users can avoid analyzing excessively large
amount of outputs. Moreover, they are provided with an intuition on the degree
of outlier-ness of output points.

Subspace mining has been studied extensively in the field of data clustering,
which aims to group similar data points together. Typical clustering approaches
are ineffective on high-dimensional data, because irrelevant features hide some
underlying structures, and also distance functions utilizing all attributes are
meaningless in such spaces [3]. Reducing data dimensionality using global di-
mension reduction techniques like PCA is also ineffective because feature irrele-
vance is a local rather than a global property, i.e., a feature may be irrelevant in
one subspace but required in another subspace. This issue has been addressed
by many subspace clustering methods, which efficiently explore the subspaces
by employing the monotonicity property of clusters. In other words, if a clus-
ter is present in a subspace, it is reflected in some projection of the latter, so
apriori-like algorithms can be designed to avoid irrelevant subspaces.

Unfortunately, as the monotonicity property does not hold in our case, design-
ing efficient outlier detection techniques in subspaces becomes very challenging.
This problem was first addressed by Aggarwal et al. in their proposal HighOut
[3], which defines a data point to be an outlier if it is present in a region of ab-
normally low density in some lower-dimensional projection. HighOut performs a
grid discretization of the data by dividing each data attribute into φ equi-depth
ranges, and then employs a genetic approach to mine hypercubes (of dimension-
ality up to m), with the smallest densities. There are a few issues with HighOut.
First, its notion of outliers is grid-based whereas the grid resolution cannot be
easily determined. Second, it suffers the intrinsic problems of evolutionary ap-
proaches - its accuracy is unstable and varies depending on the selection of initial
population size as well as the crossover and mutation probabilities. Finally, it
may suffer high false alarm rates, since it only produces a ranking of hypercubes
whose total cardinality may be high while actual the number of outliers is small.
In order to improve HighOut, the authors later introduced DenSamp, a non-grid-
based subspace detection approach [4]. Though designed to work with uncertain
data, it is also applicable on normal data. Similar to HighOut, DenSamp also
mines outliers in subspaces of dimensionality up to m. However, it flags a data
point p as a (δ, η)-outlier if the η-probability of p in some subspace is less than
δ. Here, the η-probability of p is defined as the probability that p lies in a region
with data density of at least η. One major drawback of DenSamp is that the

142 H.V. Nguyen, V. Gopalkrishnan, and I. Assent

two important parameters δ and η are not easy to set. Furthermore, δ is dimen-
sionality biased. In particular, with increasing dimensionality, distances between
points grow and densities drop [11]. Thus, in high-dimensional subspaces, the
η-probability of p tends to be less than that in lower-dimensional ones. Besides,
DenSamp does not provide a ranking of outliers, i.e., the number of outputs may
be very high making post-analysis difficult.

Recently Ye et al. presented PODM [5], an apriori-like method for mining
outliers in subspaces. Based on the idea of HighOut, PODM discretizes each
dimension into ranges. It then assigns each subspace an anomaly score based
on Gini-entropy, designed such that an apriori-like pruning rule can be applied.
Consequently, PODM claims to explore all subspaces efficiently. PODM discards
irrelevant subspaces, and then for the remaining ones, it calculates each hyper-
cube’s outlying degree and outputs those with highest values. This approach has
several limitations. First, its performance is dependent on the grid resolution
which is not easy to determine. Second, and perhaps more vital, is that it dis-
cards potentially useful subspaces (by implicitly assuming monotonicity), which
causes loss of knowledge. In addition, similar to HighOut, PODM only ranks
hypercubes, so it cannot provide a ranking of outliers. Finally, PODM lacks in-
tuition on how to choose the cutoff thresholds utilized in its subspace pruning
process. Our experiments (c.f., Section 4), show that PODM yields unsatisfac-
tory accuracy for subspace outlier detection.

Motivated by the need of a ranking-based and dimensionality unbiased de-
tection technique, Müller et al. [8] proposed the OutRank approach for ranking
outliers in high-dimensional data. In order to overcome the curse of dimension-
ality, OutRank first performs subspace clustering and then assigns each object
an outlier score that is an aggregation of its presence in different subspace clus-
ters. This nonetheless smooths out the density deviations that we are trying to
detect. Hence, OutRank does not account for great deviations in each individual
subspace. Furthermore, the aggregation nature of outlier score in OutRank fails
to address the issue of local feature irrelevance that we are interested in studying
in this paper.

3 Approach

In this section, we first introduce a novel dimensionality unbiased notion of
subspace outliers. Based on that, we proceed to present HighDOD and then
theoretically explain why HighDOD works well to meet our purpose.

3.1 Outlier Score Function

Formally, we make the following assertion for subspace outliers:

Property 1. [Non-monotonicity Property] Consider a data point p in the
dataset DS. Even if p is not anomalous in subspace S of DS, it may be an outlier
in some projection(s) of S. Even if p is a normal data point in all projections of
S, it may be an outlier in S.

Unbiased Distance-Based Outlier Detection 143

Among the available notions of distance-based outliers, the proposal by
Angiulli et al. [7] is the most efficient and has been applied in many works,
e.g. [10]. Denoting the set of k nearest neighbors of a data point p in DS as
kNNp, we can present their outlier score function as follows.

Definition 1. [Outlier Score Function: Fout [7]] The dissimilarity of a
point p with respect to its k nearest neighbors is known by its cumulative neigh-
borhood distance. This is defined as the total distance from p to its k nearest
neighbors in DS. In other words, we have: Fout(p) =

∑
m∈kNNp

D(p, m).

This function is dimensionality biased and violates Property 1. In particular, it
is easy to recognize that if S is a subspace of T , then we have: D(pS , qS) ≤
D(pT , qT). Thus, data points in higher-dimensional subspaces will have larger
outlier scores than in lower-dimensional ones, i.e., if p is not an outlier in T , p
will not be an outlier in S when a ranking-based technique is in play. This is
obviously unanticipated. Let us denote the set of k nearest neighbors of a data
point p ∈ DS in subspace S as kNNp(S). In order to ensure Property 1 is not
violated, we redefine the outlier score function as below.

Definition 2. [Subspace Outlier Score Function: FSout] The dissimi-
larity of a point p with respect to its k nearest neighbors in a subspace S of
dimensionality dim(S), is known by its cumulative neighborhood distance. This
is defined as the total distance from p to its k nearest neighbors in DS (projected
onto S), normalized by dim(S). In other words, we have:

FSout(p, S) =
1

[dim(S)]1/l

∑
m∈kNNp(S)

D(pS , mS),

where qS is the projection of a data point q ∈ DS onto S.

Besides assigning multiple outlier scores (one per subspace) to each data point,
FSout is also dimensionality unbiased and globally comparable.

We illustrate the dimensionality unbiased property of FSout by revisiting the
examples in Figure 1. Let us set k = 1 and l = 2 (i.e., using Euclidean distance).
In Figure 1(a), A’s outlier score in the 2-dimensional space is 1/

√
2 which is the

largest across all subspaces. In Figure 1(b), the outlier score of B when projected
on the subspace of the x-axis is 1, which is also the largest in all subspaces. Hence,
FSout flags A and B (in their respective datasets) as outliers.

The globally comparable property of FSout is established by the following
lemmas.

Lemma 1. [Range of Distance] In each subspace S of DS, the distance
between any arbitrary data points p and q is bounded by (dim(S))1/l. Mathemat-
ically:

D(pS , qS) ≤ (dim(S))1/l

144 H.V. Nguyen, V. Gopalkrishnan, and I. Assent

Proof. From the definition of distance function D, we have:

D(pS , qS) =
(∑

i∈S

|pi − qi|l
)1/l

a. When l < ∞: Since pi, qi ∈ [0, 1], it holds that |pi−qi| ≤ 1. Thus, |pi−qi|l ≤ 1.
As a result:

D(pS , qS) ≤
(∑

i∈S

1
)1/l

= (dim(S))1/l

b. When l → ∞: By definition of the Minkowski distance for l → ∞:

D(pS , qS) = lim
l→∞

(∑
i∈S

|pi − qi|l
)1/l

= max
i∈S

|pi − qi|

Thus, D(pS , qS) ≤ 1 (1). As liml→∞(1/l) = 0 and 1 ≤ dim(S) < ∞, we have
liml→∞(dim(S))1/l = (dim(S))liml→∞(1/l) = (dim(S))0 = 1 (2). From (1) and
(2), we conclude that as l → ∞, D(pS , qS) ≤ (dim(S))1/l. ��
Lemma 2. [Range of Outlier Score] For an arbitrary data point p and
any subspace S, we have 0 ≤ FSout(p, S) ≤ k.

Proof. By definition, we get:

FSout(p, S) =
1

(dim(S))1/l

∑
m∈kNNp(S)

D(pS , mS)

Following Lemma 1: D(pS , mS) ≤ (dim(S))1/l. Thus, it holds that:

FSout(p, S) ≤ 1
(dim(S))1/l

∑
m∈kNNp(S)

(dim(S))1/l

i.e.,

FSout(p, S) ≤ k ��

From Lemma 2, it can be seen outlier scores of all points across different sub-
spaces have the same scale. Therefore, they are comparable to each other. This
is of great advantage towards designing a technique for mining ranking-based
subspace outliers. Having obtained a desirable score function for outliers in sub-
spaces, now we can formally define the mining problem based upon this score
function.

Definition 3. [Subspace Outlier Detection Problem] Given two positive
integers k and n, mine the top n distinct anomalies whose outlier scores (in any
subspace) are largest.

Unbiased Distance-Based Outlier Detection 145

By using the novel FSout, we are able to reformulate the problem of detecting
subspace outliers to facilitate the design of a ranking-based method. Notice that
both the input parameters (k and n) can be easily decided as has been solidly
founded in previous works on distance-based outliers [12]. In other words, in
practical applications, it is much easier to tune the dependent parameters of the
solution to our problem, than it is to determine the two threshold parameters of
DenSamp, or the grid resolution of HighOut and PODM.

3.2 The HighDOD Method

We now present our solution towards the subspace outlier detection problem as
mentioned in Definition 3. Our approach, HighDOD, is described in Algorithms 1,
2, and 3, and explained below.

OutlierDetection. Property 1 highlights that in order to mine all outliers,
it is unavoidable to explore all subspaces. This poses a great burden towards
designing a subspace detection method. For addressing the issue, Aggarwal et
al. [3,4] suggested to examine subspaces of dimensionality up to some threshold
m. Though this might cause some loss in accuracy, it is efficient in terms of
runtime cost. The same article shows that the accuracy loss is not that severe
as long as m is about O(logN). Recent work by Ailon et al. [13] also mentions
that a dataset’s properties can be preserved after dimensionality reduction as
long as the number of features extracted is O(logN). Thus, we choose to pursue
this direction in HighDOD.

First we call OutlierDetection (Algorithm 1) to carry out a bottom-up explo-
ration of all subspaces of up to a dimensionality of m, where m is an input param-
eter. Therefore, 1-dimensional subspaces are examined first, then 2-dimensional
ones, and so on. The top n outliers found so far are maintained in TopOut. In
addition, the cutoff threshold c equal to the score of the nth outlier found so
far is also maintained. It plays exactly the same role as in traditional nest-loop
algorithms [10]. For each investigated subspace S, we first extract some candi-
date anomalies by calling CandidateExtraction (Algorithm 2), and then update
TopOut with those candidates by invoking SubspaceMining (Algorithm 3). Af-
ter exhausting all i-dimensional subspaces, we proceed to the (i+1)-dimensional
subspaces, and stop when the maximum dimensionality m has been reached, or
there are no more subspaces to explore.

CandidateExtraction. This procedure is used for extracting the top βn (β ≥
1) potential candidate outliers in any subspace S. Without it, we would have
to perform the traditional nested-loop algorithm in each individual subspaces,
which is too expensive.

The main idea here is to estimate the data points’ local densities by using a
kernel density estimator, and choose βn data points with the lowest estimates as
potential candidates. This comes from the intuition that outliers are rare events
and not surrounded by many objects, i.e., their densities are expected to be very
low. Note that in practice, though we only need to mine top n outliers, we may

146 H.V. Nguyen, V. Gopalkrishnan, and I. Assent

Algorithm 1. OutlierDetection

Input: k: number of nearest neighbors; n: number of outliers to mine; m:
maximum dimensionality; x: number of kernel centers; DS: the
underlying dataset

Output: TopOut: the set of outliers
Set c = 01

Set TopOut = ∅2

Set C1 = the set of all 1-dimensional subspaces3

Set i = 14

while Ci �= ∅ and i ≤ m do5

foreach subspace S ∈ Ci do6

Set CandOut = CandidateExtraction(n, x, DS, S)7

Call SubspaceMining(k, n, DS, S, TopOut, c)8

Set Ci+1 = the set of distinct (i + 1)-dimensional subspaces created by9

combining Ci with C1

Set i = i + 110

Algorithm 2. CandidateExtraction

Input: n: number of outliers to mine; x: number of kernel centers; DS: the
underlying dataset; S: the considered subspace

Output: CandOut: the set of candidate outliers
Set Ctrs = randomly sample x data points from DS1

Construct x clusters C1, C2, · · · , Cx of DS on subspace S whose centroids are2

from Ctrs
Compute kernel bandwidths hi on subspace S3

Set CandOut = ∅4

foreach data point p ∈ DS do5

Set f(p, S) = (1/N) ·
x∑

j=1

|Cj | · K(pS − ctr(Cj)S)
6

Set CandOut = extract 2n points from CandOut ∪ {p} with smallest7

density values

need to extract many more candidates to account for any error caused by the
density estimator, so β > 1. Empirically, we find that β = 2 is sufficient. In other
words, we extract 2n candidate outliers in each explored subspace.

Outlier detection by kernel density estimation has been studied before by Kol-
lios et al. [14] and Aggarwal et al. [4]. Here, we follow the technique proposed
in [4] though others like [14] are also applicable. We initially cluster the data
incrementally with fixed centroids (initially chosen randomly from DS) to ob-
tain a compact representation of the underlying dataset. Then we use those
centroids across all subspaces for density estimation. However, since feature
relevance varies among subspaces, the one-size-fits-all clustering centroids are
unsuitable for our purpose. Hence, we suggest to perform clustering in each in-
dividual subspace to account for such variance. As analyzed later in this section,

Unbiased Distance-Based Outlier Detection 147

the additional runtime overhead incurred is not so high as one may be con-
cerned. We employ the Gaussian kernel function, whose 1-dimensional form is
expressed as Kh(p − ctr) = (1/(h

√
2π)) · e−(p−ctr)2/2h2

, where ctr and h are
the kernel center and bandwidth, respectively. We choose the bandwidth h to
be 1.06 · σ · N−1/5, where σ is the standard deviation of N data points [15].
The s-dimensional kernel function is the product of s identical kernels Khi(·),
where hi = 1.06 · σi · N−1/5 with σi being the standard deviation along the ith

dimension. On a subspace S, the density of a data point p can be approximated
as f(p, S) = (1/N) ·∑x

j=1 |Cj | ·K(pS − ctr(Cj)S). More details for the reasoning
of the approximation method are given in [4].

SubspaceMining. This procedure is used to update the set of outliers TopOut
with 2n candidate outliers extracted from a subspace S. Since outlier scores
across subspaces have the same scale (c.f., Lemma 2), we can maintain one
global cutoff threshold c and design a nested-loop-like algorithm for the update
process.

Note that in high-dimensional data, an outlier may spread its anomalous be-
havior in more than one subspace. Thus, if we simply replace the nth outlier
found so far with a new data point whose score is larger, we may end up with
duplicate outliers. To prevent this from occurring, we only maintain a version of
each outlier in TopOut. More specifically, if a data point is already in TopOut be-
fore we use its newly computed score in some subspace for our updating purpose,
we replace its score with the new score if it is higher, hence avoiding removal of
any point maintained in TopOut. Otherwise, we update TopOut with the new
data point as in traditional nested-loop methods. The cutoff c is adjusted along
the way to ensure good pruning efficiency.

3.3 Theoretical Analysis

Analysis of Parameters Used. As suggested in [3,13], setting the maximum
dimensionality m as logarithmic to the size of the dataset N is sufficient, so we
suggest to select m = �log10N�1. This is equivalent to dividing each dimension
of the original dataset into φ = 10 ranges and choosing m such that the dataset
is not very sparse w.r.t. m. The number of m-dimensional hypercubes is 10m.
To ensure that the sparsity condition is met, the average number of data points
falling into each m-dimensional hypercube should be ≥ 1, i.e., N/10m ≥ 1.
Solving the latter inequality, we arrive at m = �log10N�.

The number of kernel centers x represents the level of data summarization.
Following [4], we fix x to 140. We set the two remaining parameters, the number
of nearest neighbors k and the number of outliers to detect n, based on many
solid works on distance-based outlier mining [12].

Time Complexity. For each subspace S, the cost of extracting candidates
includes: (a) clustering cost, (b) bandwidth computation cost, and (c) density
estimation cost. The cost of clustering is O(N · x · dim(S)). To compute the

1 We here consider cases where d is very high so that N � 10d.

148 H.V. Nguyen, V. Gopalkrishnan, and I. Assent

Algorithm 3. SubspaceMining

Input: k: number of nearest neighbors; n: number of outliers to mine; DS: the
underlying dataset; S: the underlying subspace; CandOut: the set of
candidate outliers; TopOut: the set of outliers; c: cutoff threshold

foreach data point p ∈ CandOut do1

foreach data point q ∈ DS do2

if q �= p then3

Update p’s k nearest neighbors in subspace S using q4

if |kNNp(S)| = k and FSout(p, S) < c then5

Mark p as non-outlier6

Process next data point in CandOut7

/* p is not marked as non-outlier, so it is used to update TopOut */8

if TopOut contains p then9

if FSout(p, S) > outlier score of p stored in TopOut then10

Set p’s score in TopOut = FSout(p, S)11

else12

Set TopOut = extract top n outliers from TopOut ∪ {p}13

if Min(TopOut) > c then14

Set c = Min(TopOut)15

bandwidths, we need to compute the data’s mean and standard deviation vectors
on all dimensions of S. This incurs a cost of O(N · dim(S)). For each data point
p ∈ DS, the cost of density estimation and maintaining the set of 2n candidates
is O(N ·x·dim(S)+2·n·N), which can be reduced to O(N ·x·dim(S)) as n � x·N .
Hence, the total cost of executing CandidateExtraction is O(N ·x ·dim(S)). The
cost of executing the SubspaceMining procedure is O(2 · n · N · dim(S)). As a
result, the overall cost of exploring the subspace S is O((x + n) · N · dim(S)).

Given an integer r < d, the number of subspaces of dimensionality r is given
by Cr

d . Since we only examine subspaces of dimensionality up to m, the total
runtime cost of HighDOD is:

∑m
i=1 Ci

d·O((x+n)·N ·i) = O((x+n)·N)·∑m
i=1 i·Ci

d.
In order to understand the efficiency of our approach, let us consider a dataset

with 100,000 data points (i.e., m = 5) and d = 20. In this dataset, though N is
large, it is very sparse w.r.t. d. As

∑d
i=1 i·Ci

d = d·2d−1, the reduction one obtains
by using HighDOD instead of exploring all subspaces is (d ·2d−1)/(

∑m
i=1 i ·Ci

d) =
(20 · 219)/(

∑5
i=1 i ·Ci

20) > 100. In other words, HighDOD leads to a reduction of
more than 100 times in execution time. Notice that the analysis above does not
take into account the pruning rule used in Algorithm 3. The result is only an
upper bound and our experiments (c.f., Section 4) show that the runtime cost
of HighDOD is much lesser.

Benefits of HighDOD. Compared to HighOut and DenSamp, HighDOD uti-
lizes a ranking-based outlier notion which allows easier parametrization. Further-
more, our proposed definition of outliers is derived from a popular distance-based

Unbiased Distance-Based Outlier Detection 149

notion [7] which has already been verified to be very suitable and intuitive for
practical applications. As for OutRank, in the worst case, i.e., for poor param-
eterization of the subspace clustering or for rather homogeneous data, it will
cluster almost all subspaces and can then only start to compute any scores,
i.e., its execution time will be high. HighDOD’s ranking-based algorithm is done
in a nested-loop fashion, so it can avoid such costly clustering process. Differ-
ent from HighOut and PODM, HighDOD is non-grid-based and hence not sus-
ceptible to the issues of grid resolution and position. The data compression in
HighDOD is performed on every subspace which helps it better tune to feature
local relevance than DenSamp. All of these points give HighDOD advantages
over existing methods and make it be very applicable to outlier detection in
high-dimensional spaces.

4 Empirical Results and Analyses

In this section, we compare the performance of HighDOD with DenSamp,
HighOut, PODM, and LOF [1] (the best-known detection technique using
full-dimensional space) by performing empirical studies on real datasets taken
from the UCI Repository. As mentioned above, OutRank requires a clustering
phase before starting the detection process. Further, OutRank is a “global” out-
lier detection approach that aggregates scores from different subspaces to come
up with a global value, and hence, does not account for great deviations in each
individual subspace. Thus, we decide not to include OutRank in our experiments.

Detection Accuracy. This experiment aims to assess the effectiveness of each
method in terms of detection accuracy using four real datasets whose descrip-
tions and setup procedures are given in Table 1. It is noted that the chosen
datasets’ dimensionality conforms to that of related work in the field for high-
dimensional data [11,3,4]. We measure the quality of results by constructing the
Precision-Recall tradeoff curve that is used widely in data classification as well
as in outlier detection [3,5]. We build this curve by varying: (a) the number
of outliers to detect n for HighDOD and LOF, (b) the number of hypercubes
with lowest densities/highest outlier scores to mine for HighOut/PODM, and (c)
the parameter η for DenSamp. For HighDOD, we set k to 0.05% · N following
established work on distance-based outliers [12]. Parameter settings for other
methods follow their respective papers. The results shown in Figure 2, indicate
that in all test cases HighDOD yields the best accuracy. Among the remaining
subspace detectors, DenSamp produces better accuracy than HighOut, while
PODM has the worst results. The superior performance of HighDOD compared
to DenSamp stems from the fact that it constructs kernel centers separately
for each examined subspace. This helps HighDOD to better adapt to the local
change in feature relevance. Though PODM explores all subspaces, its notion
of anomalies fails to capture Property 1 which causes its detection quality to
become unsatisfactory (the margin with HighOut is quite pronounced). While
HighOut performs better than PODM, it is less accurate than the two non-grid-
based methods, HighDOD and DenSamp. As for LOF, it performs relatively

150 H.V. Nguyen, V. Gopalkrishnan, and I. Assent

Table 1. Characteristics of datasets used for measuring accuracy of techniques

Dataset Description Outlier Normal

Ann-thyroid 1 21 features, 3428 instances class 1 class 3
Ann-thyroid 2 21 features, 3428 instances class 2 class 3
Breast Cancer (WSBC)2 32 features, 569 instances ‘Malignant’ class ‘Benign’ class
Musk (Version 2)3 168 features, 6598 instances ‘Musk’ class ‘Non-musk’ class
Arrythmia4 279 features, 452 instances class 7, 8, 9, 14, 15 class 1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

RECALL

P
R

E
C

IS
IO

N

HighDOD
DenSamp
HighOut
PODM
LOF

(a) Ann-Thyroid 1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

RECALL

P
R

E
C

IS
IO

N
HighDOD
DenSamp
HighOut
PODM
LOF

(b) Ann-Thyroid 2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

RECALL

P
R

E
C

IS
IO

N

HighDOD
DenSamp
HighOut
PODM
LOF

(c) WDBS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

RECALL

P
R

E
C

IS
IO

N

HighDOD
DenSamp
HighOut
PODM
LOF

(d) Musk

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

RECALL

P
R

E
C

IS
IO

N

HighDOD
DenSamp
HighOut
PODM
LOF

(e) Arrythmia

Fig. 2. Detection accuracy of HighDOD, DenSamp, HighOut, PODM, and LOF

well when the number of dimensions is low (in Ann-Thyroid 1, Ann-Thyroid
2, and WDBS datasets). However, its accuracy deteriorates greatly with higher
dimensionality where there are more noisy/irrelevant features.

Scalability. We also evaluate the scalability of HighDOD with respect to the
dataset’s size N , and the dataset’s dimensionality d. Since PODM yields very
unsatisfactory accuracy, we choose not to include it in this experiment. LOF is
a full-dimensional detector and its accuracy on high-dimensional data (particu-
larly those with more than 100 dimensions) is very poor. This points out that
LOF is not suitable for high-dimensional outlier detection. Hence, the study of
its scalability is also not of our interest. Thus, we only compare the efficiency
of HighDOD against DenSamp and HighOut. Parameters settings for DenSamp
and HighOut follow their respective papers. For HighDOD, n is set to the max-
imum number of outliers detected by DenSamp and HighOut while k is kept at
0.05% · N . In this experiment, we test with the CorelHistogram (CH) dataset

2 We randomly extract 10 ‘Malignant’ records as outliers. We discard the record ID and
label (i.e., ‘Benign’ or ‘Malignant’), and use the remaining 30 real-valued features.

3 The test set has 166 features (the first two symbolic attributes are excluded).
4 We consider instances in classes whose cardinality less than 10 to be outliers.

Unbiased Distance-Based Outlier Detection 151

1 2 3 4 5 6 7

x 10
4

0

500

1000

1500

2000

2500

Dataset Size (N)

R
el

at
iv

e
R

un
ni

ng
 T

im
e

HighDOD
DenSamp
HighOut

(a) Dataset size (CH)

5 10 15 20 25 30 35
0

500

1000

1500

2000

2500

Dimensionality (d)

R
el

at
iv

e
R

un
ni

ng
 T

im
e

HighDOD
DenSamp
HighOut

(b) Dimensionality (CH)

0 50 100 150 200
0

200

400

600

800

1000

Dimensionality (d)

R
el

at
iv

e
R

un
ni

ng
 T

im
e

HighDOD
DenSamp
HighOut

(c) Dimensionality (Musk)

Fig. 3. Scalability of HighDOD, DenSamp, and HighOut

consisting of 68040 points in 32-dimensional space. CH contains 68040 records
corresponding to 68040 photo images taken from various categories. However
this dataset cannot be used to measure accuracy, because there is no clear con-
cept of outlier among those images. Instead, it is often used for measuring the
scalability of detection methods [7,10]. To better illustrate the efficiency of our
method against high dimensionality, we include the Musk dataset in the experi-
ment. Since its cardinality is not large enough, we choose not to test techniques’
scalability against its size. The Arrythmia dataset though has large number of
attributes is not selected due to its too small number of instances.

As in [3,4], we scale the running times obtained and present the relative run-
ning time of the three methods. Figure 3(a) shows that w.r.t. N , HighDOD scales
better than DenSamp and worse than HighOut. The genetic-based searching pro-
cess of HighOut prunes much of the search space, giving it the best scalability.
Even though DenSamp only identifies the kernel centers once, it suffers highest
execution time because its process of calculating data points’ η-probability is
costly, and moreover, it lacks pruning rules. On the contrary, the pruning rule
in HighDOD’s nested-loop approach helps to offset the cost of computing kernel
centers in each explored subspace. Therefore, HighDOD yields better scalability
than DenSamp. Figures 3(b) and 3(c) point out that the three algorithms scale
super-linear with increasing data dimensionality with the same order: HighOut
produces the best performance, next is HighDOD, and finally DenSamp. In addi-
tion, HighDOD’s running time is just slightly worse than that of HighOut. From
the empirical studies carried out, our proposed approach, HighDOD, obtains a
better tradeoff between time and accuracy than existing methods.

5 Conclusions

This work proposes a new subspace outlier scoring scheme which is dimensional-
ity unbiased. It extends the well-established distance-based anomaly detection to
subspace analysis. Our notion of subspace outliers not only eases the parameter
setting task but also facilitates the design of ranking-based algorithms. Utilizing
this score, we introduced HighDOD, a novel ranking-based technique for sub-
space outlier mining. In brief, HighDOD detects outliers in a nested-loop fashion
allowing it to effectively prune the search space. Empirical studies carried out
on real datasets demonstrate HighDOD’s efficiency as well as efficacy compared

152 H.V. Nguyen, V. Gopalkrishnan, and I. Assent

to other existing methods in the field. As future work, we are exploring possible
ways to further reduce HighDOD’s running time. We are also studying how to
use our novel notion of subspace outliers to effectively explore all subspaces at
low cost. The availability of such a technique would help us to mine all outliers
in all subspaces, and hence, to further increase the detection accuracy.

References

1. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: Identifying density-based
local outliers. In: SIGMOD Conference, pp. 93–104 (2000)

2. Knorr, E.M., Ng, R.T.: Algorithms for mining distance-based outliers in large
datasets. In: VLDB, pp. 392–403 (1998)

3. Aggarwal, C.C., Yu, P.S.: An effective and efficient algorithm for high-dimensional
outlier detection. VLDB J 14(2), 211–221 (2005)

4. Aggarwal, C.C., Yu, P.S.: Outlier detection with uncertain data. In: SDM, pp.
483–493 (2008)

5. Ye, M., Li, X., Orlowska, M.E.: Projected outlier detection in high-dimensional
mixed-attributes data set. Expert Syst. Appl. 36(3), 7104–7113 (2009)

6. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: VLDB, pp. 487–499 (1994)

7. Angiulli, F., Pizzuti, C.: Outlier mining in large high-dimensional data sets. IEEE
Trans. Knowl. Data Eng. 17(2), 203–215 (2005)

8. Müller, E., Assent, I., Steinhausen, U., Seidl, T.: OutRank: ranking outliers in high
dimensional data. In: ICDE Workshops, pp. 600–603 (2008)

9. Nguyen, H.V., Ang, H.H., Gopalkrishnan, V.: Mining outliers with ensemble of
heterogeneous detectors on random subspaces. In: Kitagawa, H., Ishikawa, Y., Li,
Q., Watanabe, C. (eds.) DASFAA 2010, Part I. LNCS, vol. 5981, pp. 368–383.
Springer, Heidelberg (2010)

10. Bay, S.D., Schwabacher, M.: Mining distance-based outliers in near linear time
with randomization and a simple pruning rule. In: KDD, pp. 29–38 (2003)

11. Assent, I., Krieger, R., Müller, E., Seidl, T.: DUSC: Dimensionality unbiased sub-
space clustering. In: ICDM, pp. 409–414 (2007)

12. Tao, Y., Xiao, X., Zhou, S.: Mining distance-based outliers from large databases
in any metric space. In: KDD, pp. 394–403 (2006)

13. Ailon, N., Chazelle, B.: Faster dimension reduction. Commun. CACM 53(2), 97–
104 (2010)

14. Kollios, G., Gunopulos, D., Koudas, N., Berchtold, S.: Efficient biased sampling
for approximate clustering and outlier detection in large data sets. IEEE Trans.
Knowl. Data Eng. 15(5), 1170–1187 (2003)

15. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman
and Hall, Boca Raton (1986)

A Relational View of Pattern Discovery

Arnaud Giacometti, Patrick Marcel, and Arnaud Soulet

Université François Rabelais Tours, LI
3 place Jean Jaurès

F-41029 Blois France
forename.surname@univ-tours.fr

Abstract. The elegant integration of pattern mining techniques into
database remains an open issue. In particular, no language is able to
manipulate data and patterns without introducing opaque operators or
loop-like statement. In this paper, we cope with this problem using rela-
tional algebra to formulate pattern mining queries. We introduce several
operators based on the notion of cover allowing to express a wide range
of queries like the mining of frequent patterns. Beyond modeling aspects,
we show how to reason on queries for characterizing and rewriting them
for optimization purpose. Thus, we algebraically reformulate the princi-
ple of the levelwise algorithm.

1 Introduction

Pattern discovery is a significant field of Knowledge Discovery in Databases
(KDD). A broad spectrum of powerful techniques for producing local patterns
has been developed over the two last decades [3–5]. But, it is widely agreed that
the need of theoretical fusion between database and data mining still remains
a crucial issue [14, 18, 23, 24]. We would force the pattern mining methods to
fit in the relational model [1] which is the main database theory. Unlike most
of the proposals [6, 10, 14, 16, 20, 23, 28, 33, 34], we desire to only address the
pattern mining that we distinguish from the construction of global models [17]
like decision trees.

Let us consider the popular task of frequent pattern mining [3] as a motivating
example. Most works treat this task as a “black box” which input parameters
are defined by the user [6, 7, 14, 16, 20, 28, 32, 34]. Instead of only specifying
the minimal frequency threshold and the dataset, we think that the user query
should fully formalize the notion of frequent patterns (e.g., it should describe
how the frequency of a pattern is computed starting from the dataset). Ideally,
we would like to express the frequent pattern mining query in the relational
algebra in order to manipulate both the data and the patterns. As declarative
aspects should be promoted on physical ones, a pattern discovery process has to
be fully specified without considering algorithmic points. For this purpose, loop-
like operators [10, 23, 33] are not relevant for us. Furthermore, the improvement
of query performances mainly rests on physical optimizations in the field of
pattern mining. Typically, the frequent pattern mining is efficiently performed

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 153–167, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

154 A. Giacometti, P. Marcel, and A. Soulet

by an adequate implementation [3–5, 25]. Such algorithmic optimizations (even
specified at a higher level [10, 23, 33]) reduce the opportunity of integrating
other optimizations. We prefer to favor logical reasoning for optimizing query
performances. For instance, the rewriting of the naive frequent pattern mining
query should enable us to algebraically formulate the levelwise pruning [25].

The main goal of this paper is to propose an algebraic framework for pattern
discovery for expressing a wide range of queries without introducing opaque
operators or loop-like statements. Our framework brings two meaningful con-
tributions: expressive modeling and logical reasoning. First, it allows a large
set of queries manipulating relations which contain both data and patterns. We
add to the relational algebra several specific operators, like the cover operator
�, to coherently and easily join such relations. We also define a new opera-
tor Δ for generating a language starting from a relation. Typically, the query
σfreq≥f (γpatt,COUNT(trans)→freq(Δ(L) � D)) returns the patterns of language L fre-
quent in dataset D. Second, the pattern-oriented relational algebra enables to
characterize and rewrite queries in order to optimize their performance. In partic-
ular, we formalize the notions of syntactic constraint [9] and global constraint [12]
by characterizing the degree of dependence between a query and a relation. Be-
sides, we not only benefit from usual query rewriting methods stemming from
the relational model, but we also algebraically reformulate the levelwise pruning.

This paper is organized in the following way. Section 2 introduces basic notions
about the relational algebra and the pattern discovery. Section 3 defines the
cover-like and domain operators which are at the core of our algebra. We then
study the properties of downward closure and independence in Section 4. We
rewrite queries satisfying such properties for optimization purpose in Section 5.
Finally, Section 6 provides a related work.

2 Basic Notions

2.1 Relational Algebra

We enumerate here our notations for the relational algebra mainly inspired
from [1]. Let att be a set of distinct literals, named attributes, dom(A) denotes
the finite domain of the attribute A ∈ att. The relation schema (or relation
for brevity) R[U] denotes a relation named by R where U ⊂ att. An instance
of R is a subset of dom(U) = ×A∈Udom(A). Given a relation R[A1, . . . , An],
R′ renames the attributes A1, . . . , An into A′

1, . . . , A
′
n. A database schema is a

nonempty finite set R = {R1[U1], . . . , Rn[Un]} of relations. A database instance
of R is a set I = {I1, . . . , In} such that Ii is an instance of the relation Ri.
Finally, a query q maps a database instance to an instance of a relation. The set
of attributes of this relation is denoted by sch(q). A query q′ is equivalent to q,
denoted by q′ ≡ q, iff for any database instance I, one has q′(I) = q(I).

Let I be an instance of R and J be an instance of S. The relations can be
manipulated by means of set operators including Cartesian product R×S where
I × J = {(t, u)|t ∈ I ∧ u ∈ J}. If R and S are relations which have the same
schema, then R∪S, R∩S and R−S are respectively the union, the intersection

A Relational View of Pattern Discovery 155

and the difference of R and S. Selection: σf (I) = {t|t ∈ I∧f(t)} selects the tuples
of I satisfying the logical formula f where f is built from (i) the logical operators
(∧, ∨ or ¬), (ii) the arithmetic relational operators and (iii) operands based on at-
tributes and constants. Extended projection: πA1,...,An(I) = {t[A1, . . . , An]|t ∈ I}
only preserves the attributes A1, . . . , An of R. Besides, the projection also per-
mits to extend the relation by arithmetic expressions and to (re)name expres-
sions. For instance, πA+B→B′,C→C′(R) creates a new instance where the first
attribute named B′ results from the arithmetic expression A + B and the sec-
ond attribute corresponds to C, renamed C′. Grouping: γA1,...,An,AGG(B)(I) =
{(a1, . . . , an, AGG(πB(σA1=a1∧···∧An=an(I))) |(a1, . . . , an) ∈ πA1,...,An(I)} groups
tuples of I by attributes A1, . . . , An and applies an aggregate function AGG on B.

2.2 Pattern Discovery

We provide here an overview of pattern discovery based on [25, 32] focusing on
the main proposals of the field. A language L is a set of patterns: itemsets LI [3],
sequences LS [4] and so on [5]. A specialization relation � of a language L is
a partial order relation on L [25, 27]. Given a specialization relation � on L,
l � l′ means that l is more general than l′, and l′ is more specific than l. For
instance, the set inclusion is a specialization relation for the itemsets. Given two
posets (L1,�1) and (L2,�2), a cover relation is a binary relation � ⊆ L1×L2 iff
when l1 � l2, one has l′1 � l2 (resp. l1 � l′2) for any pattern l′1 �1 l1 (resp. l2 �2 l′2).
The relation l1 � l2 means that l1 covers l2, and l2 is covered by l1. The cover
relation is useful to relate different languages together (e.g., for linking patterns
to data). Note that a specialization relation on L is also a cover relation on L
(e.g., the set inclusion is a cover relation for the itemsets).

The pattern can be manipulated by means of three kinds of operators non
exhaustively illustrated hereafter. 1) Pattern mining operators produce pat-
terns starting from a dataset: theory [25], MINERULE [26] and so on. More
precisely, the theory denoted by Th(L, q,D) returns all the patterns of a
language L satisfying a predicate q in the dataset D [25]. Typically, the mini-
mal frequency constraint selects the patterns which occur in at least f transac-
tions [3, 4]: freq(ϕ, D) > f . As mentioned in introduction, we notice that the
query Th(L, freq(ϕ,D) ≥ f,D) does not make explicit how the frequency of
a pattern is computed from the dataset. Other approaches find the k patterns
maximizing a measure m in the dataset D [12, 15]. 2) Pattern set reducing
operators compress a collection of patterns. For instance, the minimal and max-
imal operator denoted by Min(S) and Max(S), return respectively the most
general and specific patterns of S w.r.t. a specialization relation � [25]. The
notion of negative and positive borders [25] is very similar. 3) Pattern apply-
ing operators cross patterns and data. For instance, the data covering operator
θd(P,D) = {d ∈ D|∃p ∈ P : p � d} returns the data of D covered by at least
one pattern of P [32]. Dually, the pattern covering operator θp(P,D) returns the
patterns of P covering at least one element of D [32].

156 A. Giacometti, P. Marcel, and A. Soulet

The next sections aim at stating an algebra based on the relational model to
simultaneously and homogeneously handle data and patterns. In particular, all
the manipulations of patterns described here will be expressed in our algebra.

3 Pattern-Oriented Relational Algebra

3.1 Pattern-Oriented Attributes

The pattern-oriented relational algebra pays attention to the attributes describ-
ing patterns, named pattern-oriented attributes. Indeed, several operations are
specifically designed to handle such attributes which the domain corresponds to
a pattern language together with a specialization relation.

Definition 1 (Pattern-oriented attributes). The pattern-oriented at-
tributes patt is a subset of the attributes: patt ⊆ att such that for every
A ∈ patt, dom(A) is a poset. Let U ⊆ att be a set of attributes, the pattern-
oriented attributes of U is denoted by Ũ .

For example, Table 1 provides instances of relations D, L and P containing
pattern-oriented attributes. The relations D[trans] and L[patt] respectively de-
scribe a transactional dataset and the corresponding language in the context of
(a) itemsets and (b) sequences. The relation P [item, type, price] gives the item
identifier, the type and the price of products. We consider that trans, patt and
item are pattern-oriented attributes where dom(item) = I and dom(trans) =
dom(patt) = LI for itemsets (or = LS for sequences). Thereafter, the proposed
queries can address instances where the domain of patt differs from that of trans.

Of course, the relations can be handled with relational operators. For in-
stance, the query σpatt
ϕ(L) returns all the patterns of L being more general
than the pattern ϕ. The formula patt � ϕ is allowed because σpatt
ϕ(L) ≡
πpatt(σpatt=left∧right=ϕ(L × C)) where the relation C[left, right] extensively
enumerates in its instance the tuples (l, r) such that l � r. On the contrary,
the query σfreq(patt,D)≥f (L) is not correct for computing the frequent patterns

Table 1. Instances for pattern discovery

(a) Itemset context (b) Sequence context

D
trans

ABE
ABC
ABCD
AD

L
patt

∅
A
B
C
D
E
AB
AC
AD

AE
BC
BD
BE
CD
CE
DE
ABC
. . .
ABCDE

Dataset Language of itemsets

D
trans

(AB)(E)
(AB)(C)(A)
(AB)(C)(D)
(B)(C)(D)(B)

L
patt

∅
(A)
(B)
(C)
(D)
(E)
(AB)
(A)(B)
. . .

Sequential data Language of
sequences

P
item type price

A snack 3
B snack 10
C beer 5
D soda 8
E soda 6

Product description

A Relational View of Pattern Discovery 157

because the formula freq(patt, D) requires a relation D and it is not allowed in
a selection (see Section 2.1). Besides, we desire to make the computation of fre-
quency explicit. The next section explains how to compute it with the relational
algebra.

3.2 Cover, Semi-cover and Anti-cover Operators

We now indicate how to formulate the frequent pattern mining query (fpm
query in brief) in the relational algebra which illustrates the need of the cover-
like operators. Assume that L[patt] and D[trans] are two relations that re-
spectively contain the language and the dataset as proposed in Table 1. The
main challenge is to compute the frequency of each pattern of L. The Carte-
sian product of L by D gathers all the patterns of L with all the trans-
actions of D. Of course, we only select the relevant tuples such that the
pattern covers the transaction: σpatt�trans(L × D). Finally, we count for each
pattern how many transactions it covers and we select the frequent ones:
σfreq≥s(γpatt,COUNT(trans)→freq(σpatt�trans(L × D))). As the notion of cover rela-
tion plays a central role to relate pattern-oriented attributes, we introduce three
operators based on this notion. The cover operator for the pattern discovery is
as important as the join operator for classical data manipulations.

Cover operator. The result of a cover operation gathers all the combinations of
tuples in R and S that have comparable pattern-oriented attributes.

Definition 2 (Cover operation). The cover of a relation R[U] for a relation
S[V] w.r.t. a cover relation1 � ⊆ dom(Ũ) × dom(Ṽ) is R � S = σŨ�Ṽ (R × S),
i.e. for any instances I of R and J of S, I�J = {(t, u)|t ∈ I∧u ∈ J∧t[Ũ]�u[Ṽ]}.
As θ-join is a shortcut of σf (R × S), the cover operator is derived from primitive
operations defined in Section 2.1. In fact, R � S is equivalentl to σŨ�Ṽ (R × S)
where the formula Ũ �Ṽ can be expressed with usual relational operators as done
above with patt � ϕ. Then, as semi-cover and anti-cover defined below, the cover
operator does not increase the expressive power of the relational algebra. How-
ever, such operators bring two main advantages. First, algebraic properties of
cover-like operators can be formulated, in order to be used by a query optimizer
(see Section 5). Second, specialized and efficient query evaluation methods for
these operators could be developed.

Let us illustrate the cover operation on several examples of pattern manipu-
lations. Given a dataset D[trans] and a language L[patt], the frequent patterns
(with their frequency) correspond to the following query:

F = σfreq≥f (γpatt,COUNT(trans)→freq(L � D))

This fpm query fulfills our modeling objective by explicitly and declaratively
describing how the frequency is computed. Given the instances of L and D

1 Definitions 2 to 4 consider that the binary relation � is a cover relation w.r.t. the
specialization relations 	Ũ and 	Ṽ respectively defined on dom(Ũ) and dom(Ṽ).

158 A. Giacometti, P. Marcel, and A. Soulet

Table 2. Instances containing mined patterns of instance D

(a) Itemset language (b) Sequence language

F
patt freq

∅ 4
A 4
B 3
C 2
D 2
AB 3
AC 2
AD 2
BC 2
ABC 2

C
patt freq

A 4
AB 3
AD 2
ABC 2

M
patt freq

AD 2
ABC 2

Frequent itemsets Frequent closed Frequent maximal
itemsets itemsets

F
patt freq

∅ 4
(A) 3
(B) 4
(C) 3
(D) 2
(AB) 3
(A)(C) 2
(B)(C) 3
(B)(D) 2
(C)(D) 2
(AB)(C) 2
(B)(C)(D) 2
Frequent sequences

provided by Table 1 and f = 2, it exactly returns the instance of F (see Table 2).
In the fpm query, the relation � ⊆ dom(patt) × dom(trans) is a cover relation
w.r.t. �patt and �trans (e.g., the inclusion for itemsets [3] or sequences [4]).

As mentioned earlier, a specialization relation is a particular kind of cover re-
lation. Thereby, it can be exactly used as a cover operator. For instance, starting
from the frequent patterns F , the frequent closed patterns of D [5] are computed
as follows: C = πpatt,freq(σfreq>max(γpatt,freq,MAX(freq′)→max(F ≺ F ′))) (we recall
that F ′ renames the attributes patt and freq into patt′ and freq′). Table 2 il-
lustrates this query applied to a particular instance of F in the case of itemsets.
Furthermore, the query γpatt,MAX(freq′)→freq(L � C′) regenerates the instance F .

Semi-cover operator. The semi-cover operator returns all the tuples of a relation
covering at least one tuple of the other relation:

Definition 3 (Semi-cover operation). The semi-cover of a relation R[U] for
a relation S[V] w.r.t. a cover relation � ⊆ dom(Ũ) × dom(Ṽ) is R �� S =
πU (R � S).

Definition 3 implicitly means that R �� S returns all the tuples of R covered by
at least one tuple of S. Indeed, R �� S has a sense because if the binary relation
� is a cover relation on dom(Ũ) × dom(Ṽ) w.r.t. �Ũ and �Ṽ , then � is also
a cover relation on dom(Ũ) × dom(Ṽ) w.r.t. �Ũ and �Ṽ . Table 3 illustrates
Definition 3 by showing semi-cover operation of L for D which is the whole set
of patterns occurring at least once in D: L�� D. Then, σpatt
ϕ(L �� D) returns
the patterns being more general than ϕ and present in D.

Let us come back to the data and pattern covering operators [32] presented
in Section 2.2. The operation θp(P, D) which gives the tuples of P covering at
least one tuple of D, is equivalent to P �� D. Dually, θd(P, D) = D �� P returns
the tuples of D covered by at least one tuple of P .

Anti-cover operator. The anti-cover operator returns all the tuples of a relation
not covering any tuple of the other relation:

A Relational View of Pattern Discovery 159

Table 3. The semi-cover and anti-cover of L for D

L � �D
patt

∅
A
B
C
D
E
AB
AC
AD

AE
BC
BD
BE
CD
ABC
ABD
ABE
ACD
BCD
ABCD

L � ¬D
patt

CE
DE
ACE
ADE
BCE
BDE
CDE
ABCE
ABDE

ACDE
BCDE
ABCDE

Definition 4 (Anti-cover operation). The anti-cover of a relation R[U] for
a relation S[V] w.r.t. a cover relation � ⊆ dom(Ũ) × dom(Ṽ) is R �¬ S =
R − R �� S.

As for the semi-cover relation, R�¬ S has a sense and returns all the tuples of R
not covered by any tuple of S. Table 3 gives the patterns of L that do not occur
in D by means of the anti-cover of L for D: L �¬ D. The anti-cover operator
enables us to easily express the minimal and maximal pattern operators [25]
(see Section 2.2): Min(R) = R �¬ R and Max(R) = R ≺¬ R. For instance,
the frequent maximal itemsets are the frequent itemsets having no more specific
frequent itemset: M = F ≺¬ F (see Table 2). A pattern of L is either present
in D (i.e., in L �� D) or absent from D (i.e., in L �¬ D). Then, we obtain
that L = L �� D ∪ L �¬ D (see Table 3). More generally, the semi-cover and
anti-cover operator are complementary by definition (see Definitions 3 and 4):
R = R �� S ∪ R �¬ S for any relations R and S.

3.3 Domain Operator

Let us come back to the query σfreq≥f (γpatt,COUNT(trans)→freq(L � D)) that can be
applied to any instance of relation L. However, in a practical pattern discovery
task, the instance of L has to gather all the existing patterns of dom(patt) (as
given by Table 1). To cope with this problem, we introduce a new operator that
outputs the domain of the schema for a given relation.

Definition 5 (Domain operation). The domain of a relation R[U] is Δ(R)
where for any instance I of R, Δ(I) = dom(U).

As the domain of each attribute is finite, the instance Δ(I) is finite. Assume that
I = ∅ is an instance of L[patt], Δ(I) returns the instance depicted by Table 1.
The domain operator enables us to complete the frequent pattern mining query:
σfreq≥f (γpatt,COUNT(trans)→freq(Δ(L) � D)). Other practical queries require the use
of a language of patterns. For instance, negative border of R [25] can now be
formulated: Bd−(R) = (Δ(R)−R) �¬ (Δ(R)−R). Similarly, the downward and
upward closure operators of R are respectively expressed by Δ(R) �� R and
Δ(R) �� R.

160 A. Giacometti, P. Marcel, and A. Soulet

3.4 Scope of the Pattern-Oriented Relational Algebra

The pattern-oriented relational algebra which refers to the relational algebra plus
the cover-like operators plus the domain operator, is strictly more expressive
than the relational algebra. As aforementioned, the cover-like operators do not
increase the expressive power of the relational algebra. In contrast, the domain
operator cannot be expressed with relational operators because it induces domain
dependent queries [1]. Let us note that [10] has already demonstrated that the
frequent pattern mining query cannot be formulated in terms of the relational
algebra.

From a practical point of view, the large number of query examples illustrating
the previous sections (partially reported in Table 4 with q1-q5) highlights the
generality of the pattern-oriented relational algebra. The other queries of Table 4
complete this overview by giving examples about the top-k frequent pattern
mining with q6 [15], the syntactic pattern mining q7 [9], the utility-based pattern
mining q8 or the association rule mining q9 [3]. Note that ∈ is a cover relation
on dom(item)×dom(patt) that relates one item with an itemset or a sequence.
The query q7 returns the patterns of L occurring in D and not containing a
product of type ‘snack’. q8 returns the patterns of L occurring in D such that
the sum of product prices is less than a threshold t.

Table 4. Examples of pattern-oriented queries and their properties

Dependence
Pattern-oriented query DC Local Global

q1 σfreq≥f (γpatt,COUNT(trans)→freq(L � D)) L L D

q2 πpatt,freq(σfreq>max(γpatt,freq,MAX(freq′)→max(F ≺ F ′))) F

q3 σpatt�ϕ(L) L L
q4 σpatt�ϕ(L �� D) L L, D
q5 F ≺¬ F F
q6 σrank≤k(γpatt,freq,COUNT(patt′)→rank(σsupp≤supp′(F × F ′))) F F

q7 (L �� D) ¬ σtype=snack(P) L L, D, P
q8 σtotal≤t(γpatt,SUM(price)→total(P ∈ (L �� D))) L L, D, P

q9 πpatt′→head,patt\patt′→body,freq,freq/freq′→conf(F ′ ≺ F) F

Most of these typical queries are difficult to evaluate because the handled
instances may be very large especially when the domain operator is used for
generating the language. The following sections explain how to rewrite queries
for optimization purpose.

4 Characterizing Pattern-Oriented Queries

In the field of pattern mining, it is well known that some properties are useful
to reduce the computation time (e.g., anti-monotone constraint or pre/post-
processing ability). This section aims at characterizing such properties in the
pattern-oriented relational algebra. More precisely, we first study the structura-
tion of the instance resulting from a query w.r.t. the initial instance. Then, we
analyze three levels of dependency between a query and a relation.

A Relational View of Pattern Discovery 161

Thereafter we assume that q is a query formulated with the pattern-oriented
relational algebra and the database schema {R1[U1], . . . , Rn−1[Un−1], R[U]}.
Then, this query q is often applied to the database instance I = {I1, . . . , In−1, I}.

4.1 Downward Closed Query

Intuitively, the notion of downward closed query expresses that of anti-monotone
constraints [25] in the pattern-oriented relational algebra. A query q is downward
closed in R if for any instance I of R[U], any tuple of I more general than at
least one tuple of πU (q(I)) also belongs to πU (q(I)).

Definition 6 (Downward closed queries). A query q is downward closed in
R[U] w.r.t. � iff U ⊆ sch(q) and (R �� q) ≡ πU (q).

Definition 6 means that if a tuple t of R is more general than at least one tuple of
the answer of q, t is also present in this answer. The downward closed property is
very interesting for pruning an instance (more details are given in Section 5.2).
The query σfreq≥f (γpatt,COUNT(trans)→freq(L � D)) is downward closed in L w.r.t.
�. Indeed, all the generalizations of a frequent pattern are frequent (e.g., ABC
is frequent and then, A, B, C, AB and so on are also frequent, see Table 1).
Similarly, the top-k frequent pattern query q6 is also downward closed in F
w.r.t. �. The column ‘DC’ of Table 4 indicates the relations in which the query
is downward closed w.r.t. �.

4.2 Local and Global Dependent Queries

A query is dependent on the relation R whenever its result varies with the in-
stance of R. Whereas the query σpatt
ϕ(L) is independent of D, σpatt
ϕ(L �� D)
depends on D because it only returns the tuples of σpatt
ϕ(L) that cover at least
one tuple of the instance of D. Definition 7 formalizes the notion of total inde-
pendence (or independence in brief):

Definition 7 (Total independence). A query q is totally independent of R iff
for any instances I, J of R, one has q({I1, . . . , In−1, I}) = q({I1, . . . , In−1, J}).
In other words, a query which is independent of R is equivalent to another
query not involving R. Note that the queries which are totally independent of
D correspond to syntactical constraints [9].

We now refine this notion of dependence by introducing the global indepen-
dence. Both queries σpatt
ϕ(L �� D) and σfreq≥f (γpatt,COUNT(trans)→freq(L � D))
are dependent on D. But, the dependency of the second query on D is stronger
than that of the first query. Indeed, the computation of the frequency for a tuple
of L requires to simultaneously take into account several tuples of D.

Definition 8 (Local/global dependence). A query q is globally indepen-
dent of R iff for any instances I, J of R, one has q({I1, . . . , In−1, I ∪ J}) =
q({I1, . . . , In−1, I})∪ q({I1, . . . , In−1, J}). A query being globally independent of
R but dependent on R is said to be locally dependent on R.

162 A. Giacometti, P. Marcel, and A. Soulet

Definition 8 formalizes the notion of global constraints [12] which compare sev-
eral patterns together to check whether the constraint is satisfied or not. The
queries (like q2, q5, q6 or q9) which are globally dependent on L or F correspond
to such global constraints. Besides, the query q1 globally depends on D and lo-
cally depends on L. It means that q1 can be evaluated by considering separately
each tuple of the instance of L. Conversely, it is impossible to consider individ-
ually each tuple of the instance of D. Thus, the higher the overall number of
global dependencies, the harder the evaluation of the query. The columns ‘Local’
and ‘Global’ of Table 4 indicates the local/global dependent relations for each
query. As expected, the queries q1, q4, q7 and q8 depend on D because they
benefit from the dataset to select the right patterns. We also observe that the
queries q2, q5, q6 and q9 globally depend on F as they postprocess the frequent
patterns by comparing them.

5 Rewriting Pattern-Oriented Queries

This section examines algebraic equivalences to rewrite queries into forms that
may be implemented more efficiently.

5.1 Algebraic Laws Involving Cover-Like Operators

Let us consider the query q4: σpatt
ϕ(L �� D). As the predicate patt � ϕ is
highly selective, it is preferable to first apply it for reducing the language.
Thereby, the equivalent query σpatt
ϕ(L) �� D may be more efficient than
σpatt
ϕ(L �� D). The property below enumerates equivalences:

Property 1 (Laws involving cover-like operators). Let R[U] and S[V] be
two relation schemas. Let f and g be two predicates respectively on R and S. Let
A and B be two sets of attributes such that Ũ ⊆ A ⊆ U and Ṽ ⊆ B ⊆ V . One
has the following equivalences:

1. σf∧g(R � S) ≡ σf (R) � σg(S) πA∪B(R � S) ≡ πA(R) � πB(S)
2. σf (R �� S) ≡ σf (R) �� S πA(R �� S) ≡ πA(R) �� S
3. σf (R �¬ S) ≡ σf (R) �¬ S πA(R �¬ S) ≡ πA(R) �¬ S
4. R �� S ≡ R �� (S ≺¬ S) R �¬ S ≡ R �¬ (S ≺¬ S)

Intuitively, the right hand side of each equivalence listed in Property 1 (proofs
are omitted due to lack of space) may lead to optimize the query. Indeed, Lines 1
to 3 “pushes down” the selection and projection operators to reduce the size of
the operands before applying a cover-like operator. This technique is success-
fully exploited in database with Cartesian product or join operator [1]. Besides,
Line 4 benefits from the maximal tuples of S (i.e., S ≺¬ S) as done in pattern
mining [25]. If a tuple t of the instance of R covers a tuple of the instance J of

A Relational View of Pattern Discovery 163

S, then t also covers a tuple of J ≺¬ J . As |J ≺¬ J | ≤ |J |, the rewritten query
R �� (S ≺¬ S) may be less costly than R �� S provided J ≺¬ J is not too
costly.

5.2 Algebraic Reformulation of the Levelwise Algorithm

We now take into account the downward closed and the global independence
properties for reformulating queries. For instance, assume that the instance of
L is now equal to πpatt(F). A new computation of q1 again returns F : F =
σfreq≥2(γpatt,COUNT(trans)→freq(πpatt(F) � D)). Of course, this query is faster to
compute than the original fpm query because the instance of F is very small
compared to Δ(L). We generalize this observation:

Property 2. Let q be a downward closed query in R[U] w.r.t. � and globally
independent of R such that U ⊆ sch(q), one has q(I) = q(J) for any instances
I = {I1, . . . , In−1, I} and J = {I1, . . . , In−1, J} such that πU (q(J)) ⊆ I ⊆ J .

Given a downward closed and independent query q, Property 2 demonstrates
that q(I) = q(J) when I is an instance of R such that πU (q(J)) ⊆ I ⊆ J . As
I ⊆ J and then |I| ≤ |J |, we suppose that evaluating q(I) is less costly than
evaluating q(J) because the cost generally decreases with the cardinality of the
instance. Thus, in order to reduce the cost of the evaluation of q(I), we aim at
turning I into the smallest instance of R including q(J). Such an approach can
be seen as a pruning of the instance of R.

Table 5. Levelwise computation of the fpm query (level 2)

L C = L �¬ L S
patt

AB
AC
AD
BC
BD
CD

ABC
ABD
ACD
BCD
ABCD

patt

AB
AC
AD
BC
BD
CD

patt supp

AB 3
AC 2
AD 2
BC 2

L �� S (L �� S) �¬ (C �¬ S)
patt

ABC
ABD
ACD
BCD
ABCD

patt

ABC

Table 5 illustrates how to prune the instance L for evaluating the fpm query
q1. As q1 is globally independent of L, we first divide L into two parts: the most
general tuples of L denoted by C = L �¬ L (i.e., the candidates of the level 2
of Apriori [3]) and others, i.e. L �� L. We then apply the fpm query to C for
computing S: the frequent patterns of C and their frequency. Finally, we benefit
from S for pruning L �� L using the downward closed property of q1 in L w.r.t.
� (see Definition 6). We only preserve the tuples which are more specific than
at least one frequent tuple of S: L �� S. Finally, we filter out the tuples having
a non-frequent generalization: (L �� S) �¬ (C �¬ S). As the cardinality of this
instance is smaller than |L �� L|, we have achieved our goal.

164 A. Giacometti, P. Marcel, and A. Soulet

This principle is generalized with this theorem:

Theorem 1 (Levelwise equivalence). Let q be a downward closed query w.r.t.
� and globally independent of R, one has the below equality for any database in-
stance I = {I1, . . . , In−1, I}:

q(I) = q({I1, . . . , In−1, I �¬ I︸ ︷︷ ︸
C=

})
︸ ︷︷ ︸

S=

∪q({I1, . . . , In−1, (I �� S) �¬ (C �¬ S)})

Proof. Let q be a downward closed query w.r.t. � and globally independent of
R. To alleviate the notations, q(I) refers to q({I1, . . . , In−1, I}) where I is any
instance of R. Besides, we fix that C = I �¬ I and S = q(I �¬ I) = q(C):

q(I) = q(I
¬ I ∪ I
� I) = q(C ∪ I
� I) (1)

= q(C) ∪ q(I
� I) (2)

= q(C) ∪ q(I
� q(C)) = q(C) ∪ q(I
� S) (3)

= q(C) ∪ q((I
� S) �¬ (C �¬ S)) (4)

Line 1 stems from the complementary property: R = R �� S ∪R �¬ S. Line 2 is
allowed because q is globally independent of R. Line 3-4 are due to the downward
closed property in R (see Definition 6). ��
Theorem 1 can be used for rewriting queries by considering two important points.
Firstly, the redundant subqueries as candidate tuples C = I �¬ I and satisfied
tuples S = q({I1, . . . , In−1, I �¬ I}) have to be evaluated only once. Secondly,
the practical evaluation of q requires to recursively apply the equality proposed in
Theorem 1. Indeed, the subquery q({I1, . . . , In−1, (I �� S) �¬ (C �¬ S)}) can
also be rewritten by a query plan optimizer using the same identity. Therefore,
Theorem 1 leads to algebraically reformulate the levelwise algorithm [3, 4, 25].
This algorithm repeats this equality for computing which candidate patterns
satisfy the predicate and then, generating those of the next level. Other efficient
pruning strategies like depth-first search techniques [5] could also be expressed
in pattern-oriented relational algebra. Finally, as observed in [12, 15], we cannot
apply Theorem 1 to q6 because it globally depends on F .

6 Related Work

Inductive databases [18, 24] aims at tightly integrating databases with data min-
ing. Our approach is less ambitious because it is “only” restricted to the pattern
mining. Obviously, many proposals provide an environment merging a RDBMS
with pattern mining tools: Quest [2], ConQueSt [7], DBminer [16], Sindbad [34]
and many other prototypes [6]. In such a context, there are many extensions of
the SQL language [31] like DMX or MINERULE [26]. There are also extended
relational model [13] like 3W model [20]. However, such methods don’t fuse the
theoretical concepts stemming from both the relational model and the pattern

A Relational View of Pattern Discovery 165

discovery. For instance, the query optimizer of DBMS is isolated from pattern
mining algorithms. Indeed, most of the approaches consider a pattern mining
query as the result of a “black box”. Only few works [10, 23, 33] express pattern
mining operators by benefiting from the relational algebra. Such approaches add
a loop statement for implementing the levelwise algorithm. On the contrary, our
proposal extends the relational algebra by still using a declarative approach.

Many frameworks inspired from relational and logical databases, but created
from scratch, are proposed during the last decade: constraint-based pattern min-
ing [9, 25], distance-based framework [14], rule-base [19], tuple relational calcu-
lus [28], logical database [29], pattern-base [32] and so on. Other directions are
suggested in [24] like probabilistic approach or data compression. Besides, con-
straint programming is another promising way for expressing and mining pat-
terns [21, 30]. Such frameworks are less convenient for handling data (which are
often initially stored in relational databases). Besides, they suffer from a lack
of simple and powerful languages like the relational algebra (in particular, the
manipulation of patterns is frequently separated from that of data).

From a more general point of view, many works add new operators to the re-
lational algebra in order to express more sophisticated queries. Even if such new
operators don’t necessary increase the expressive power of the relational algebra,
most of the time they facilitate the formulation of user queries and provide spe-
cific optimizations. Typically, several operators are introduced for comparing tu-
ples with each other, as does a specialization relation with patterns. For instance,
the winnow operator is specifically dedicated to handle preferences [11]. Several
operators are dedicated for selecting the best tuples by means of relational domi-
nant queries [8] or relational top-k queries [22]. The cover-like operators are very
closed to such operators. But, they enable to compare tuples based on different
languages, as does a cover relation with patterns. Finally, the domain operator
enables us to manipulate values not initially present in the relations. The same
concept is used in [13] for generating tables containing patterns.

7 Conclusion

In this paper, we have proposed a new and general framework for pattern dis-
covery by only adding cover-like and domain operators to the relational algebra.
The pattern-oriented relational algebra interestingly inherits good properties
from the relational algebra as closure or declarativity. This framework deals
with any language of patterns for expressing a wide spectrum of queries includ-
ing constraint-based pattern mining, condensed representations and so on. We
identify crucial aspects of queries as the downward closed and independence
properties. We then benefit from such properties to algebraically reformulate
the levelwise algorithm. We think that our algebraisation is an important step
towards the elegant integration of pattern discovery in database systems.

Further work addresses the implementation of a complete system based on
the pattern-oriented relational algebra. As done in the database field, we project
to implement the physical cover operators and to design a query plan optimizer

166 A. Giacometti, P. Marcel, and A. Soulet

taking advantage of our proposed algebraic laws. We also study the test of local
and global dependence between a query and a relation.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Agrawal, R., Mehta, M., Shafer, J.C., Srikant, R., Arning, A., Bollinger, T.: The
quest data mining system. In: KDD, pp. 244–249 (1996)

3. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) VLDB, pp. 487–499. Mor-
gan Kaufmann, San Francisco (1994)

4. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Yu, P.S., Chen, A.L.P.
(eds.) ICDE, pp. 3–14. IEEE Computer Society, Los Alamitos (1995)

5. Arimura, H., Uno, T.: Polynomial-delay and polynomial-space algorithms for min-
ing closed sequences, graphs, and pictures in accessible set systems. In: SDM, pp.
1087–1098. SIAM, Philadelphia (2009)

6. Blockeel, H., Calders, T., Fromont, É., Goethals, B., Prado, A., Robardet, C.: An
inductive database prototype based on virtual mining views. In: KDD, pp. 1061–
1064. ACM, New York (2008)

7. Bonchi, F., Giannotti, F., Lucchese, C., Orlando, S., Perego, R., Trasarti, R.: Con-
QueSt: a constraint-based querying system for exploratory pattern discovery. In:
ICDE, p. 159. IEEE Computer Society, Los Alamitos (2006)

8. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE, pp.
421–430. IEEE Computer Society, Los Alamitos (2001)

9. Boulicaut, J.F., Jeudy, B.: Constraint-based data mining. In: Maimon, O., Rokach,
L. (eds.) The Data Mining and Knowledge Discovery Handbook, pp. 399–416.
Springer, Heidelberg (2005)

10. Calders, T., Lakshmanan, L.V.S., Ng, R.T., Paredaens, J.: Expressive power of an
algebra for data mining. ACM Trans. Database Syst. 31(4), 1169–1214 (2006)

11. Chomicki, J.: Querying with intrinsic preferences. In: Jensen, C.S., Jeffery, K.,
Pokorný, J., Šaltenis, S., Hwang, J., Böhm, K., Jarke, M. (eds.) EDBT 2002.
LNCS, vol. 2287, pp. 34–51. Springer, Heidelberg (2002)

12. Crémilleux, B., Soulet, A.: Discovering knowledge from local patterns with global
constraints. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y.,
Gavrilova, M.L. (eds.) ICCSA 2008, Part II. LNCS, vol. 5073, pp. 1242–1257.
Springer, Heidelberg (2008)

13. Diop, C.T., Giacometti, A., Laurent, D., Spyratos, N.: Composition of mining
contexts for efficient extraction of association rules. In: Jensen, C.S., Jeffery, K.,
Pokorný, J., Šaltenis, S., Hwang, J., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS,
vol. 2287, pp. 106–123. Springer, Heidelberg (2002)

14. Dzeroski, S.: Towards a general framework for data mining. In: Džeroski, S., Struyf,
J. (eds.) KDID 2006. LNCS, vol. 4747, pp. 259–300. Springer, Heidelberg (2007)

15. Fu, A.W.C., Kwong, R.W., Tang, J.: Mining n-most interesting itemsets. In:
Ohsuga, S., Raś, Z.W. (eds.) ISMIS 2000. LNCS (LNAI), vol. 1932, pp. 59–67.
Springer, Heidelberg (2000)

16. Han, J., Fu, Y., Wang, W., Chiang, J., Gong, W., Koperski, K., Li, D., Lu, Y.,
Rajan, A., Stefanovic, N., Xia, B., Zäıane, O.R.: DBMiner: a system for mining
knowledge in large relational databases. In: KDD, pp. 250–255 (1996)

A Relational View of Pattern Discovery 167

17. Hand, D.J.: Pattern detection and discovery. In: Hand, D.J., Adams, N.M., Bolton,
R.J. (eds.) Pattern Detection and Discovery. LNCS (LNAI), vol. 2447, pp. 1–12.
Springer, Heidelberg (2002)

18. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Com-
mun. ACM 39(11), 58–64 (1996)

19. Imielinski, T., Virmani, A.: MSQL: a query language for database mining. Data
Min. Knowl. Discov. 3(4), 373–408 (1999)

20. Johnson, T., Lakshmanan, L.V.S., Ng, R.T.: The 3W model and algebra for unified
data mining. In: Abbadi, A.E., Brodie, M.L., Chakravarthy, S., Dayal, U., Kamel,
N., Schlageter, G., Whang, K.Y. (eds.) VLDB, pp. 21–32. Morgan Kaufmann, San
Francisco (2000)

21. Khiari, M., Boizumault, P., Crémilleux, B.: Combining CSP and constraint-based
mining for pattern discovery. In: Taniar, D., Gervasi, O., Murgante, B., Pardede,
E., Apduhan, B.O. (eds.) ICCSA 2010. LNCS, vol. 6017, pp. 432–447. Springer,
Heidelberg (2010)

22. Li, C., Chang, K.C.C., Ilyas, I.F., Song, S.: RankSQL: query algebra and opti-
mization for relational top-k queries. In: Özcan, F. (ed.) SIGMOD Conference, pp.
131–142. ACM Press, New York (2005)

23. Liu, H.C., Ghose, A., Zeleznikow, J.: Towards an algebraic framework for querying
inductive databases. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.)
DASFAA 2010. LNCS, vol. 5982, pp. 306–312. Springer, Heidelberg (2010)

24. Mannila, H.: Theoretical frameworks for data mining. SIGKDD Explorations 1(2),
30–32 (2000)

25. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data Min. Knowl. Discov. 1(3), 241–258 (1997)

26. Meo, R., Psaila, G., Ceri, S.: A new SQL-like operator for mining association rules.
In: Vijayaraman, T.M., Buchmann, A.P., Mohan, C., Sarda, N.L. (eds.) VLDB, pp.
122–133. Morgan Kaufmann, San Francisco (1996)

27. Mitchell, T.M.: Generalization as search. Artif. Intell. 18(2), 203–226 (1982)
28. Nijssen, S., Raedt, L.D.: IQL: a proposal for an inductive query language. In:

Džeroski, S., Struyf, J. (eds.) KDID 2006. LNCS, vol. 4747, pp. 189–207. Springer,
Heidelberg (2007)

29. Raedt, L.D.: A logical database mining query language. In: Cussens, J., Frisch,
A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 78–92. Springer, Heidelberg
(2000)

30. Raedt, L.D., Guns, T., Nijssen, S.: Constraint programming for itemset mining.
In: KDD, pp. 204–212. ACM, New York (2008)

31. Romei, A., Turini, F.: Inductive database languages: requirements and examples.
Knowledge and Information Systems 1–34 (2010),
http://dx.doi.org/10.1007/s10115-009-0281-4

32. Terrovitis, M., Vassiliadis, P., Skiadopoulos, S., Bertino, E., Catania, B., Mad-
dalena, A., Rizzi, S.: Modeling and language support for the management of
pattern-bases. Data Knowl. Eng. 62(2), 368–397 (2007)

33. Wang, H., Zaniolo, C.: ATLaS: a native extension of SQL for data mining. In:
Barbará, D., Kamath, C. (eds.) SDM. SIAM, Philadelphia (2003)

34. Wicker, J., Richter, L., Kessler, K., Kramer, S.: SINDBAD and SiQL: an inductive
database and query language in the relational model. In: Daelemans, W., Goethals,
B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp.
690–694. Springer, Heidelberg (2008)

http://dx.doi.org/10.1007/s10115-009-0281-4

Efficient Incremental Mining of Frequent
Sequence Generators�

Yukai He1, Jianyong Wang2, and Lizhu Zhou2

1 Tsinghua National Laboratory for Information Science and Technology
2 Department of Computer Science and Technology, Tsinghua University,

Beijing 100084, China
heyk05@mails.tsinghua.edu.cn,

{jianyong,dcszlz}@tsinghua.edu.cn

Abstract. Recently, mining sequential patterns, especially closed se-
quential patterns and generator patterns, has attracted much attention
from both academic and industrial communities. In recent years, incre-
mental mining of all sequential patterns (all closed sequential patterns)
has been widely studied. However, to our best knowledge, there has not
been any study for incremental mining of sequence generators. In this
paper, by carefully examining the existing expansion strategies for min-
ing sequential databases, we design a GenTree structure to keep track
of the relevant mining information, and propose an efficient algorithm,
IncGen, for incremental generator mining. We have conducted thorough
experiment evaluation and the experimental results show that the In-
cGen algorithm outperforms state-of-the-art generator-mining method
FEAT significantly.

1 Introduction

Sequential pattern mining is an important task in the data mining commu-
nity. The purpose is to mine all frequent subsequences in a sequence database.
Since the first work in [1], sequence mining has attracted much attention in the
data mining community. Typical sequential pattern mining algorithms include
GSP [6], SPADE [7], PrefixSpan [8], and SPAM [9]. Various applications benefit
from this problem, such as classifying sequential data [2], detecting erroneous
sentences [3], identifying comparative sentences from Web forum posting and
product reviews [4], and Web log data analysis [5].

Due to the famous downward closure property of frequent patterns, if the
minimum support is low or the database is dense, the complete set of fre-
quent subsequences will grow exponentially. Recently, people are more interested
in mining compact form of sequential patterns: closed subsequences, maximal

� This work was supported in part by National Natural Science Foundation of China
under grant No. 60833003 and 60873171, and the Program of State Education Min-
istry of China for New Century Excellent Talents in University under Grant No.
NCET-07-0491.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 168–182, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Efficient Incremental Mining of Frequent Sequence Generators 169

subsequences, and sequence generators. CloSpan [10] and BIDE [11] are two
well-known closed sequential pattern mining algorithms. FEAT [12] and Gen-
Miner [13] were proposed to mine sequence generators. These algorithms make
full use of the search space pruning techniques and greatly improve the min-
ing efficiency, and they are more efficient than the sequential pattern mining
algorithms.

However, as presented in [14], databases are updated incrementally in many
domains, such as user behavior analysis, DNA sequence analysis, web click
stream mining, etc. Among all the incremental mining algorithms on an
updating database, IncSpan [14] and IncSpan+ [15] are designed for mining the
complete set of frequent subsequences, and GSP+/MFS+ [16] are for maximal
subsequences. In addition, IMCS [17] can be used to mine closed subsequences.
But to the best of our knowledge, there is no study on incremental mining of
sequence generators.

To address this problem, in this paper, we study how to incrementally mine
sequence generators. When a database is updated, the generators may change
to non-generators, and non-generators may become generators too. Meanwhile,
newly appended items to existing sequences or newly inserted sequences may
cause previous infrequent subsequences become frequent. In addition, the in-
creased minimum support may make previous frequent subsequences become
infrequent again.

To deal with the above difficulties and solve the incremental generator min-
ing problem, we propose a GenTree (Generating Tree) structure to store the
useful information of the original database, and design an efficient algorithm
IncGen (Incremental Generator Miner) to mine the updated database and main-
tain the GenTree structure (for further updating). We have implemented our
methods and the experimental results show that the IncGen algorithm out-
performs the traditional generator mining algorithm FEAT , especially on non-
sparse databases.

The remainder of the paper is organized as follows. Section 2 describes the
problem formulation. Section 3 presents the GenTree structure and its prop-
erties. The IncGen algorithm is introduced in Section 4. Performance study is
shown in Section 5. Section 6 introduces the related works. Finally, Section 7
concludes the paper.

2 Problem Formulation

2.1 Sequences and Generators

Let I = {i1, i2, · · · , in} be a set of distinct items. A sequence S is defined
as a list of items in I, where each item can occur multiple times, denoted by
S = {e1, e2, · · · , em}, or S = e1e2 · · · em for short. A sequence Sa = a1a2 · · · an

is contained by (or a subsequence of) another sequence Sb = b1b2 · · · bm iff
there exists integers 1 ≤ i1 < i2 < · · · < in ≤ m such as a1 = bi1 , a2 =
bi2 , · · · , an = bin . We use Sa ! Sb to denote that Sa is a subsequence of Sb

170 Y. He, J. Wang, and L. Zhou

(Sb is a supersequence of Sa vice versa). Sa � Sb denotes that Sa ! Sb and
Sa "= Sb. Besides, X#Y is used to indicate the concatenation of two subsequences
or items X and Y .

A sequence database SDB is a set of tuples, where each tuple is in the
form of 〈ID, sequence〉. See Table 1 for an example. The number of the tuples
is called the base size of SDB, denoted by |SDB|. The absolute support of a
subsequence Sa in a sequence database SDB is the number of sequences in SDB
containing Sa, denoted by supSDB(Sa), or sup(Sa) if there is no ambiguous; the
relative support is the percentage of sequences in SDB containing Sa, that
is, supSDB(Sa)/|SDB|. In the rest of the paper, they are used exchangeably if
it is clear in the context.

Table 1. An example sequence database SDB

ID Sequence

1 C A A B C
2 A B C B
3 C A B
4 A B B

Definition 1. (Generator). A subsequence Sa is a generator if and only if " ∃Sb

that sup(Sa) = sup(Sb) and Sb � Sa.

Given a minimum support threshold min sup, a subsequence Sa is frequent
on SDB if supSDB(Sa) ≥ min sup. If a generator is frequent, it is called a
frequent generator. In this paper, we focus on incrementally mining frequent
generators.

Example 1. Table 1 shows an example of a sequence database. The database
has three different distinct items and four input sequences, that is, |SDB| =
4. Supposing min sup = 2, there are seven generators: A:4, AC:2, B:4, BB:2,
BC:2, C:3, and CA:2. (The numbers after the colons are the supports of the
subsequences.) The remaining four frequent subsequences are not generators,
because for each of them, there is a proper subsequence with the same support.
For instance, CB is not a generator because C � CB and sup(C) = sup(CB).

2.2 Incremental Generator Mining

When a sequence database is updated, it can be updated in two main ways:
INSERT and APPEND. INSERT means inserting new sequences into the
database, and APPEND is appending new items to some of the existing se-
quences. Rarely we may encounter the third way of updating: MIXTURE,
which means the combination between INSERT and APPEND. See
Tables 2(a), 2(b) and 2(c) for an example.

Efficient Incremental Mining of Frequent Sequence Generators 171

Table 2. Three updating manners of the SDB in Table 1

(a) INSERT

ID Sequence

1 CAABC
2 ABCB
3 CAB
4 ABB
5 (New) BDCBA

(b) APPEND

ID Sequence (New)

1 CAABC
2 ABCB
3 CAB DC
4 ABB CA

(c) MIXTURE

ID Sequence (New)

1 CAABC
2 ABCB
3 CAB DC
4 ABB CA
5 (New) BDCBA

In the rest of the paper, we use the notation OriDB for the original database,
AppDB for the appended items of the database, and InsDB for the inserted
sequences. In the meantime, we also use D for OriDB, Δ for the updating parts
of OriDB, and D′ for the updated database.

Now we formalize the problem of incremental mining of generators.

Incremental Sequence Generator Mining Problem: Given a sequence
database D, an updating database Δ, and a minimum support min sup, the
incremental sequence generator mining problem is to mine all frequent
sequence generators on the updated database D′.

3 GenTree: The Generating Tree

In this section, we introduce the concept of the generating tree (GenTree), then
discuss the construction and the node type switching rules of GenTree.

3.1 The Concept of GenTree

The GenTree structure is designed for storing useful information of D’s mining
results. Each node represents an item of a frequent subsequence of D. For the
three types of expansion manner: APPEND, INSERT or MIXTURE, we use
the same GenTree.

In a GenTree, each node sn has four fields:

1. Item. The Item field stores an item. The items on the path from the root
to the node sn represent a subsequence Sn.

2. Support. The support of the node. Only frequent nodes are kept.
3. Type. The node type. There are three different types of nodes, which are:

– Generator Node: If a subsequence Sn is a generator, the corresponding
node sn is called a generator node.

– Stub Node: If a subsequence Sn is unpromising to be extended for
generators, its corresponding node is called a stub node.

– Branch Node: Except for the two types above, the rest nodes are
branch nodes.

4. Children. Pointers to children’s nodes.

172 Y. He, J. Wang, and L. Zhou

Fig. 1. GenTree for the database in
Table 1

Fig. 2. Updated GenTree for database in Ta-
ble 2(b)

Figure 1 is the corresponding GenTree of the database in Table 1. The generator
nodes, stub nodes and branch nodes are shown in rectangles, triangles, and
ellipses, respectively.

3.2 The Construction of GenTree

Before introducing the construction of the GenTree, we first give several defini-
tions for ease of presentation.

Definition 2. (Projected Sequence). Given an input sequence S, a prefix sub-
sequence Sp, the projected sequence of S with respect to Sp is defined as the
subsequence of S after the first appearance of Sp.

Definition 3. (Projected Database). Given an input sequence database SDB, a
prefix sequence Sp, the projected database SDBSp of SDB with respect to Sp is
defined as the complete set of projected sequences in SDB with respect to Sp.

Definition 4. (The i-th item missing subsequence) For sequence S= e1e2 . . . en,
we define the i-th item missing subsequence of S as the subsequence derived from
S by removing its i-th item, denoted by S(i) = e1e2 . . . ei−1ei+1 . . . en.

For example, let S=CAABC and Sp=CA. The projected sequence of S with re-
spect to Sp is ABC. The projected database of prefix sequence A in our example
database is {ABC, BCB, B, BB}. And, the 4-th item missing subsequence of S
is S(4) = CAAC.

Here we first introduce the basis of a generator checking theorem and its
proof. A generators is often checked using its definition and the concept of the
projected database. The similar idea was first proposed in CloSpan [10] and also
adopted in our previous FEAT algorithm [12].

Theorem 1. (Generator Checking Theorem) Given two subsequences Sp1

and Sp2, if Sp1� Sp2 and SDBSp1= SDBSp2 , then any extension to Sp2 cannot
be a generator.

Efficient Incremental Mining of Frequent Sequence Generators 173

Proof. Assume there exists any subsequence S, which can be used to grow Sp2 to
get a subsequence S′=Sp2 #S, we can always use S to grow Sp1 and get another
subsequence S′′=Sp1 # S. Since Sp1� Sp2 and SDBSp1= SDBSp2 hold, we can
get sup(S′) = sup(S′′) and S′′ � S′, thus S′ cannot be a generator. �

The FEAT algorithm proposed a useful pruning method: backward prune, and
it is also appropriate for our IncGen algorithm. The following is the slightly
revised theorem from the FEAT algorithm, added with the proof.

Theorem 2. (Backward Pruning Theorem) Given Sp=e1e2 . . . en, if ∃i ∈
{1, 2, . . . , n − 1} such that SDB

S
(i)
p

= SDBSp, then Sp can be safely pruned.

Proof. Because SDB
S

(i)
p

=SDBSp and S
(i)
p �Sp both hold, according to Theorem 1

we can safely prune Sp. �

In the GenTree, if a node sn is in depth k, the subsequence it represents is
denoted by Sn = 〈α1α2...αk〉. We can judge two things about Sn: one is “is
it a generator”, and the other is “can it be pruned (impossible to be extended
to generators)”. We use isGenerator and canPrune to denote them respec-
tively. In our implementation, with the procedure backwardCheck(), the status
isGenerator and canPrune can be determined simultaneously. With the above
definitions and theorems, we give the Algorithm 1 for constructing a GenTree.

It is a recursive algorithm. Let ∅seq be an empty sequence, then, to get
the whole GenTree of a sequence database SDB, we can invoke the algo-
rithm: ConstructGenTree(rootNode, ∅seq, SDB, min sup). In each call of the
algorithm, we list all the local frequent items in the projected database, then
for each of the items: first we allocate a child node and use childNode point-
ing to it; second, some basic initialization for childNode is performed; third,
backwardCheck() procedure is invoked and the canPrune and isGenerator
status are updated; fourth, among the four combinations of two boolean indi-
cator 〈isGenerator, canPrune〉, only three are possible, that is, 〈false, false〉,
〈false, true〉, and 〈true, false〉, corresponding to the three types of the node:
BRANCH , STUB, and GENERATOR; finally, if the pruning conditions can-
not be met, we construct the subtree of the childNode recursively.

3.3 The Node Type Switching of GenTree

A GenTree has several nice properties for our incremental mining algorithm.
When a database is updated, the switching rules of the nodes are made clear
by the following theorems. In the following, we assume the original database is
D, the updated database is D′, and we use the corresponding subsequence S to
represent the current tree node.

Theorem 3. (Branch node switching rule.) No matter how D expands, and
whether min sup increases or not, a branch node may hold, or be changed to a
generator node. It never becomes a stub node.

174 Y. He, J. Wang, and L. Zhou

Algorithm 1. ConstructGenTree(curNode, Sp, SDBSp , min sup)

Input : Current node pointer curNode, prefix sequence Sp, Sp’s projected
database SDBSp , minimum support min sup

Output: The subtree represented by current node pointer curNode
1 begin
2 foreach i in localFrequentItems(SDBSp, min sup) do
3 Si

p ← Sp i;
4 SDBSi

p
← projectedDatabase(SDBSp, i);

5 newSup ← |SDBSi
p
|;

6 childNode ← new allocated tree node;
7 curNode.children.add(childNode);
8 curNode.item ← i;
9 curNode.support ← newSup;

10 backwardCheck(Si
p, SDBSi

p
, newSup, canPrune, isGenerator);

11 if isGenerator then
12 childNode.type ← GENERATOR;
13 else if canPrune then
14 childNode.type ← STUB;
15 else
16 childNode.type ← BRANCH;
17 end
18 if not canPrune then
19 ConstructGenTree(childNode, Si

p, SDBSi
p
, newSup);

20 end

21 end

22 end

Proof. For branch nodes:
“isGenerator=false” may or may not change. S is not a generator, then we

have ∃k ∈ {1, 2, · · · , n} that supD(S(k)) = supD(S). When D expands, since
S(k) � S, sup(S(k)) will not increase slower than sup(S), so supD′

(S(k)) >
supD′

(S) or supD′
(S(k)) = supD′

(S).
“canPrune=false” will remain unchanged. Here let SeqD

<L> be the L-th se-
quence in D. S cannot be pruned, then ∀i ∈ {1, 2, · · · , n}, ∃Li ∈ {l|SeqD

<l> $ S},
making SDBD

S(i) in the Li-th line appear earlier than SDBD
S . When D expands

in any way, for ∀i, in the same Li-th line of D′, SDBD
S(i) will still appear earlier

than SDBD
S . So, S cannot be pruned. �

Theorem 4. (Stub node switching rule.) No matter how D expands, and
whether min sup increases or not, a stub node may be switched to any type of
node.

Proof. For stub nodes:
“isGenerator=false” may or may not change. (The reason is the same as the

above.)

Efficient Incremental Mining of Frequent Sequence Generators 175

“canPrune=true” may or may not change. S can be pruned means: ∃i that
SDBS(i) = SDBS . When D expands, S(i) may occur in some new sequences of
D′ which do not contain S. So, in that case, we cannot prune S. �

Theorem 5. (Generator node switching rule.) If a database is updated
in the INSERT way (see Subsection 2.2), the status to be a generator will
remain unchanged. Otherwise, the generator node will remain unchanged if the
new absolute min sup remains unchanged, or be switched to a branch node if the
min sup increases. In both cases, it never becomes a stub node.

Proof. For generator nodes:
In INSERT expansion manner: “isGenerator=true” will remain unchanged.

Since S is a generator before updating, we have: for ∀i ∈ {1, 2, · · · , n},
supD(S(i)) > supD(S). In the insertion part InsDB, as S(i) � S, we get
supInsDB(S(i)) � supInsDB(S). So, adding the two, we have: ∀i ∈ {1, 2, · · · , n},
supD′

(S(i)) > supD′
(S), which means in the database D′, S is still a generator.

In MIXTURE or APPEND expansion manner: “isGenerator=true” may
or may not change. If sup(S) increases, it will be possible that: ∃k, for some
certain sequences in D containing S(k) but not containing S, appended items
make them contain both S(k) and S. In this case, the generator’s definition may
be violated.

Meanwhile, “canPrune=false” will always remain unchanged. The reason is
the same as the second-part proof of Theorem 3. �

Here, Table 3 summarizes the above three rules.

Table 3. A summarization for the switching rules

Type isGenerator canPrune INSERT Switching Rules

Branch false false {yes, no} B → {B, G}
Stub false true {yes, no} S → {S, G, B}
Generator true false yes G → G
Generator true false no G → {G, B}

Example 2. Figure 2 gives an updated GenTree representing the Table 2(b).
The three nodes in Depth 1 are always considered generators. Among the other
seven non-root nodes in Figure 1, four of them change their types, and the left
three keep their types unchanged.

4 The IncGen Algorithm

In this section we introduce the IncGen algorithm for incremental mining of
sequence generators. There are three implementations of IncGen, correspond-
ing to the three ways in which a database expands. They are: IncGen-Ins for
INSERT , IncGen-App for APPEND, and IncGen-Mix for MIXTURE. The

176 Y. He, J. Wang, and L. Zhou

Algorithm 2. IncGen App(GenTreeF ile,SDB, min sup)
Input : old GenTreeF ile, updated SDB, minimum support min sup
Output: all generators in D′

1 begin
2 rootNode ← loadFromDisk(GenTreeF ile);
3 SuspSet ← ∅;
4 IncGenAppDFS(rootNode, ∅seq , SDB, min sup, SuspSet);
5 foreach Si ∈ SuspSet do
6 ReCheck(rootNode, Si);
7 update the node type corresponding to Si;
8 end
9 outputGen(rootNode);

10 saveToDisk(rootNode, GenTreeF ile);
11 end

three implementations are very similar. They all follow the Depth-First enumer-
ation framework [8]. In the algorithm, D′ is scanned to update the GenTree
(partially). Meantime, information in the old GenTree is sufficiently utilized to
avoid unnecessary operations. Then, some suspected generators are re-checked
and the corresponding tree nodes are updated.

4.1 The IncGen-App Algorithm

Algorithm 2 gives the framework of IncGen-App. We first load the old GenTree
from the disk (Line 2), then invoke the procedure IncGenAppDFS() to get the
partially updated GenTree of the expanded database D′, with the suspected
generators stored in the set SuspSet (Line 4). Afterwards, each S in the SuspSet
is examined using the support information on GenTree nodes, and GenTree
is updated in the meantime (Lines 5-8). The re-checking procedure checks all
S’s subsequences one by one. If any subsequence Sk of S satisfying sup(Sk) =
sup(S), S is not a generator. Otherwise, S is a generator. Finally, we can output
all generators according to the GenTree (Line 9) and save the GenTree into the
disk for future incremental mining (Line 10).

In the recursive IncGenAppDFS() procedure, each time IncGenAppDFS
(curNode, Sp, SDBSp , min sup, SuspSet) is invoked, the subtree corresponding
to the parameter Sp is partially updated, leaving the suspects in the SuspSet. In
each invoking, after getting the locally frequent item set (Line 2), for each item
i we do the following things. First, some initializations are made (Lines 3-5).
Second, we find whether or not the subsequence Si

p (Sp # i) is in the children of
the current node. If it exists, let childNode point to it; otherwise, we allocate a
new tree node, let childNode point to it, and add it to the curNode’s children
list. In both cases, after this step, childNode points to the very node for Si

p

(Lines 6-12). Third, the three types of childNode are judged and processed (one
of Case 1 to 3, Lines 13-20).

Efficient Incremental Mining of Frequent Sequence Generators 177

Procedure. IncGenAppDFS(curNode, Sp, SDBSp , min sup, SuspSet)
Input : current node pointer curNode to represent GenTree, prefix sequence

Sp, Sp’s projected database SDBSp , minimum support min sup, the
set SuspSet for suspected generators

Output: updated GenTree pointed by curNode
1 begin
2 foreach i in localFrequentItems(SDBSp, min sup) do
3 Si

p ← Sp i;
4 SDBSi

p
← projectedDatabase(SDBSp, Si

p);
5 newSup ← |SDBSi

p
|;

6 if Si
p exists in curNode.children then

7 childNode ← the found child;
8 else
9 childNode ← new allocated tree node;

10 childNode.item ← i;
11 curNode.children.add(childNode);
12 end
13 if childNode.isNew = true OR childNode.type = STUB then
14 backwardCheck(Si

p, SDBSi
p
, newSup, canPrune, isGenerator);

15 update childNode.type;
16 else if childNode.type = BRANCH then
17 SuspSet ← SuspSet ∪ Si

p;
18 else if newSup > childNode.support then
19 SuspSet ← SuspSet ∪ Si

p;
20 end
21 childNode.support ← newSup;
22 if canPrune = false then
23 IncGenAppDFS(childNode, Si

p, SDBSi
p
, newSup, SuspSet);

24 end

25 end

26 end

Case 1. childNode is new or is a STUB, there is little information for us.
When it is a stub node, according to Table 3, it can be switched to any type.
So, here we invoke the backwardCheck() (based on Theorem 2) procedure to
determined canPrune and isGenerator. (Lines 13-15)

Case 2. childNode is a BRANCH , then it never becomes a STUB. So, besides
extending it, all we have to do is to determine whether it is a generator. This
means it will be a waste of time to invoke the backwardCheck() procedure. That
is why we abandon the procedure and leave it to be post-processed. (Lines 16-17)

Case 3. childNode is a GENERATOR, and sup(Si
p) increases, which implies

it may become a BRANCH . The processing operations are the same as in Case
2. (Lines 18-19)

Case 4. childNode is a GENERATOR, but sup(Si
p) remains unchanged.

That means it is still a generator node and no action is need.

178 Y. He, J. Wang, and L. Zhou

Finally, after updating childNode’s support, we recursively invoke the same
procedure for childNode if it is necessary. (Lines 21-24)

4.2 The IncGen-Ins and IncGen-Mix Algorithms

The three versions of IncGen are similar to each other. Here, based on the
IncGen-App algorithm just introduced, we talk about the other two briefly.

The IncGen-Mix Algorithm
If the database expands in the MIXTURE manner, new sequences will be in-
serted and the absolute minimum support may increase. In this case, some nodes
of the loaded GenTree may become infrequent, but the information they take
keeps correct and useful. We just need to delete the infrequent nodes before we
save GenTree to the disk. Thus, we get the IncGen-Mix algorithm by inserting
only one piece of code “deleteInfrequentNodes(curNode)” between Line 9 and
Line 10 in IncGen-App (Algorithm 2).

The IncGen-Ins Algorithm
From Theorem 5, we know that in the INSERT expansion manner, a generator
will hold in every cases. Thus, based on the IncGen-Mix algorithm, we only need
to delete Lines 18-19 in the IncGenAppDFS() procedure to get the IncGen-Ins
algorithm.

5 Performance Study

In this section, a thorough evaluation of the IncGen algorithm is performed on
both realistic and synthetic datasets.

5.1 Test Environment and Datasets

To test the performance of IncGen, we used three datasets. The first dataset,
Gazelle, is a sparse web click-stream dataset. The other two datasets are from
the well-known IBM Data Generator. One is C10S10T2.5I0.03, containing only
30 distinct items, which is a small but dense dataset, referred as IBM-Dense.
The other is C10S10T2.5I0.3, which is sparser than IBM-Dense but denser than
Gazelle, referred as IBM-Medial. Table 4 summarizes the characteristics of the
three datasets, including the number of sequences, number of distinct items, and
the average sequence length.

Table 4. Characteristics of the datasets

Dataset #sequence #items #avg seq len

Gazelle 29,369 1,423 3
IBM-Medial 10,000 300 60
IBM-Dense 500 30 50

Efficient Incremental Mining of Frequent Sequence Generators 179

The algorithms were implemented in standard C++ and compiled by Mi-
crosoft Visual Studio 2008. We conducted the performance study on a computer
with Intel Core Duo 2 E6300 CPU and 2GB memory running Windows 7.

5.2 Performance Evaluation

Since our algorithm IncGen is the first algorithm designed for incremental
mining of sequence generators, we can only compare IncGen with the non-
incremental algorithm FEAT [12], which is also designed for mining generators.
For each test, the 90% of the original dataset is randomly selected as the “base”
dataset, to ensure that up-to 10% of the incremental part can be added.

We use the parameter hr for the horizontal ratio when a dataset is inserted,
use vrseq for the ratio regarding how many sequences are updated, and use vritem

for the average ratio regarding how many items will be appended to the updated
sequences. For example, in Table 2(a), hr = 25%; in Table 2(b), vrseq = 50%
and vritem = 66.7%.

Figure 3 shows the results when the sparse dataset Gazelle is inserted. It gives
the running time of the two algorithms when the horizontal incremental ratio hr
varies from 2% to 10% and min sup is set to 0.022%. Note that when hr = 10%,
the running time drops rapidly because with the insertion process, the absolute
support may increase. Figure 4 shows the result when a sparse dataset meets
higher min sup. Since less and less pruning operations are needed, the IncGen
will gradually lose its efficiency.

 0

 20

 40

 60

 80

 100

 120

 140

 2 3 4 5 6 7 8 9 10

R
un

tim
e

(in
 s

ec
on

ds
)

Horizontal incremental ratio (in %)

(min_sup = 0.022%)

FEAT
IncGen

Fig. 3. INSERT to Gazelle

 0

 20

 40

 60

 80

 100

 120

 0.022 0.024 0.026 0.028 0.03 0.032 0.034

R
un

tim
e

(in
 s

ec
on

ds
)

Minimum support (in %)

(hr = 6%)

FEAT
IncGen

Fig. 4. INSERT to Gazelle

Figure 5 and Figure 6 compare the appending and inserting to the same
dataset IBM-Medial. The two figures here indicate that: with the same incre-
mental ratio (2% to 10%), the APPEND updating is more time-consuming
than INSERT .

Figure 7 shows the insertion in the IBM-Dense dataset, and it gives the sit-
uation when min sup varies with hr = 6%. Note that with the incensing of the
min sup, the running time of IncGen varies from about 1/5 to nearly 3/10 of
FEAT ’s time.

180 Y. He, J. Wang, and L. Zhou

 0

 20

 40

 60

 80

 100

 120

 140

 2 3 4 5 6 7 8 9 10

R
un

tim
e

(in
 s

ec
on

ds
)

Vertical incremental ratio for items(in %)

(min_sup = 1%, 100% seq appended)

FEAT
IncGen

Fig. 5. APPEND to IBM-Medial

 0

 20

 40

 60

 80

 100

 120

 2 3 4 5 6 7 8 9 10

R
un

tim
e

(in
 s

ec
on

ds
)

Horizontal incremental ratio (in %)

(min_sup = 1.5%)

FEAT
IncGen

Fig. 6. INSERT to IBM-Medial

Although it is rarely seen, Figure 8 shows the situation when a dataset is up-
dated in the MIXTURE manner. Suppose vrseq ≡ 20%, each percentage point
of expansion is divided into two parts: one for growing some existing sequences
and the other for inserting new sequences. Again, we get satisfied results.

 0

 20

 40

 60

 80

 100

 120

 140

 12 13 14 15 16 17 18 19 20

R
un

tim
e

(in
 s

ec
on

ds
)

Minimum support (in %)

(hr = 6%)

FEAT
IncGen

Fig. 7. INSERT to IBM-Dense

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 3 4 5 6 7 8 9 10

R
un

tim
e

(in
 s

ec
on

ds
)

Mixed incremental ratio (in %)

(min_sup = 15%)

FEAT
IncGen

Fig. 8. MIXTURE to IBM-Dense

The memory cost of IncGen is usually more than the non-incremental algo-
rithm FEAT . But, since the nodes in GenTree are all frequent and the pruned
parts are not included in the tree, the memory usage of IncGen is acceptable
for most circumstances. For example, even on the denser dataset in Figure 7
with the lower min sup = 12% (usually implying more memory requirement),
IncGen only used approximate 62MB memory to mine 781,936 generators.

To sum up, the denser is a dataset or the lower is min sup, the better our
IncGen algorithm will perform, because more time on pruning operations could
be saved owing to the information from GenTree.

6 Related Works

The sequential pattern mining problem was first proposed by Agrawal and
Srikant in [1], and an improved algorithm, called Generalized Sequential Pat-
terns (GSP) [6], was later proposed. Then, improved SPADE [7], PrefixSpan [8],

Efficient Incremental Mining of Frequent Sequence Generators 181

SPAM [9] and PLWAP [18] were developed. These algorithms mine the com-
plete set of frequent sequences. Later, two representative closed sequential pat-
tern mining algorithms, CloSpan [10] and BIDE [11], were proposed. While the
opposite concept – the “sequence generator” appears too. FEAT [12] and Gen-
Miner [13] are two algorithms for it. Usually a well-designed closed sequence
mining or generator mining algorithm can remove some redundant patterns,
and can be more efficient in many cases by pruning some unpromising parts of
search space.

Often an incremental mining algorithm is based on an algorithm introduced
above. Based on GSP, algorithms ISE [19], IncSP [20] and GSP+/MFS+ [16]
were proposed. They all follow the candidate-generation-and-test paradigm. This
kind of algorithms have common disadvantages: they need to scan the database
many times, and the candidate set may be very huge to process. The algorithm
ISM [21] is based on SPADE. It is an interactive and incremental algorithm
using vertical format data representation. It stores a sequence lattice in memory
to save time, but consumes too much memory. IncSpan [14] and its revised
version IncSpan+ [15] use the “semi-frequent” concept. It studies the switching
rules between frequent, infrequent and semi-frequent sequences. Also, it may
suffer the memory consuming problem. BSPinc [22] is another algorithm for
incremental mining of frequent subsequences. Unlike others, it uses a backward
mining strategy and can be 2.5 times faster than IncSpan. Algorithm PL2UP [23]
is an incremental version of PLWAP. In PL2UP, a PLWAP tree is used to avoid
scanning the database repeatedly. The experimental results show that PL2UP
outperforms GSP+, MFS+ and IncSpan.

IMCS [17] is the first incremental algorithm for closed sequential patterns.
With a CSTree, it stores the previous closed sequence information. When the
database is updated, the CSTree is updated too and closed subsequences of the
new database are also obtained.

7 Conclusions

In this paper, we have studied the problem of incremental mining of frequent
sequence generators. We proposed a new structure GenTree to keep the useful
information. Several properties and switching rules were studied, and based on
these techniques we devised an incremental mining algorithm IncGen. Exten-
sive experiments on both realistic and synthetic datasets were conducted and
experimental results prove the efficiency of the IncGen algorithm.

References

1. Agrawal, R., Srikant, R.: Mining sequential patterns. In: ICDE, pp. 3–14 (1995)
2. She, R., Chen, F., Wang, K., Ester, M., Gardy, J.L., Brinkman, F.S.L.: Frequent-

subsequence-based prediction of outer membrane proteins. In: KDD, pp. 436–445
(2003)

182 Y. He, J. Wang, and L. Zhou

3. Sun, G., Liu, X., Cong, G., Zhou, M., Xiong, Z., Lee, J., Lin, C.Y.: Detecting
Erroneous Sentences using Automatically Mined Sequential Patterns. ACL, 81–88
(2007)

4. Jindal, N., Liu, B.: Identifying comparative sentences in text documents. In: SIGIR,
pp. 244–251 (2006)

5. Chen, J., Cook, T.: Mining contiguous sequential patterns from web logs. In:
WWW, pp. 177–1178 (2007)

6. Srikant, R., Agrawal, R.: Mining Sequential Patterns: Generalizations and Perfor-
mance Improvements. In: EDBT (1996)

7. Zaki, M.J.: SPADE: An Efficient Algorithm for Mining Frequent Sequences. ML,
31–60 (2001)

8. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.C.:
PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern.
In: ICDE (2001)

9. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential PAttern mining using a
bitmap representation. In: KDD, pp. 429–435 (2002)

10. Yan, X., Han, J., Afshar, R.: CloSpan: Mining closed sequential patterns in large
datasets. In: SDM, pp. 166–177 (2003)

11. Wang, J., Han, J.: BIDE: efficient mining of frequent closed sequences. In: ICDE,
pp. 79–90 (2004)

12. Gao, C., Wang, J., He, Y., Zhou, L.: Efficient mining of frequent sequence genera-
tors. In: WWW, pp. 1051–1052 (2008)

13. Lo, D., Khoo, S.C., Li, J.: Mining and ranking generators of sequential patterns.
In: SDM, pp. 553–564 (2008)

14. Cheng, H., Yan, X., Han, J.: IncSpan: incremental mining of sequential patterns
in large database. In: KDD, pp. 527–532 (2004)

15. Nguyen, S.N., Sun, X., Orlowska, M.E.: Improvements of incSpan: Incremental
mining of sequential patterns in large database. In: Ho, T.-B., Cheung, D., Liu, H.
(eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 442–451. Springer, Heidelberg
(2005)

16. Kao, B., Zhang, M., Yip, C.L., Cheung, D.W., Fayyad, U.: Efficient algorithms for
mining and incremental update of maximal frequent sequences. In: DMKD, pp.
87–116 (2005)

17. Chang, L., Wang, T., Yang, D., Luan, H., Tang, S.: Efficient algorithms for incre-
mental maintenance of closed sequential patterns in large databases. In: DKE, pp.
68–106 (2009)

18. Ezeife, C.I., Lu, Y.: Mining web log sequential patterns with position coded pre-
order linked wap-tree. In: DMKD, pp. 5–38 (2005)

19. Masseglia, F., Poncelet, P., Teisseire, M.: Incremental mining of sequential patterns
in large databases. In: DKE, pp. 97–121 (2003)

20. Lin, M.Y., Lee, S.Y.: Incremental update on sequential patterns in large databases
by implicit merging and efficient counting. In: IS, pp. 385–404 (2004)

21. Parthasarathy, S., Zaki, M.J., Ogihara, M., Dwarkadas, S.: Incremental and inter-
active sequence mining. In: CIKM, pp. 251–258 (1999)

22. Lin, M.Y., Hsueh, S.C., Chan, C.C.: Incremental Discovery of Sequential Patterns
Using a Backward Mining Approach. In: CSE, pp. 64–70 (2009)

23. Ezeife, C.I., Liu, Y.: Fast incremental mining of web sequential patterns with
PLWAP tree. In: DMKD, pp. 376–416 (2009)

An Alternative Interestingness Measure for Mining
Periodic-Frequent Patterns

R. Uday Kiran and P. Krishna Reddy

Center for Data Engineering,
International Institute of Information Technology-Hyderabad,

Hyderabad, Andhra Pradesh, India - 500032
uday rage@research.iiit.ac.in, pkreddy@iiit.ac.in

Abstract. Periodic-frequent patterns are a class of user-interest-based frequent
patterns that exist in a transactional database. A frequent pattern can be said
periodic-frequent if it appears at a regular user-specified interval in a database.
In the literature, an approach has been proposed to extract periodic-frequent pat-
terns that occur periodically throughout the database. However, it is generally
difficult for a frequent pattern to appear periodically throughout the database
without any interruption in many real-world applications. In this paper, we pro-
pose an improved approach by introducing a new interestingness measure to dis-
cover periodic-frequent patterns that occur almost periodically in the database.
A pattern-growth algorithm has been proposed to discover the complete set of
periodic-frequent patterns. Experimental results show that the proposed model is
effective.

Keywords: Data mining, knowledge discovery, frequent patterns and periodic-
frequent pattern.

1 Introduction

Periodic-frequent pattern mining is an important model in data mining. Periodic-
frequent patterns can provide useful information regarding the patterns that occur both
frequently and periodically in a transactional database. The basic model of periodic-
frequent patterns is as follows [4].

Let I = {i1, i2, · · · , in} be a set of items. A set X ⊆ I is called an itemset (or a pattern).
A pattern containing ‘k’ number of items is called a k-pattern. A transaction t = (tid,Y)
is a tuple, where tid represents a transaction-id (or a timestamp) and Y is a pattern. A
transactional database T over I is a set of transactions, T = {t1, · · · , tm}, m = |T |, where
|T | is the size of T in total number of transactions. If X ⊆Y , it is said that t contains X or
X occurs in t and such tid is denoted as tX

j , j ∈ [1,m]. Let T X = {tX
k , · · · , tX

l }⊆ T , where
k ≤ l and k, l ∈ [1,m] be the ordered set of transactions in which pattern X has occurred.
Let tX

q and tX
r , where k ≤ q < r ≤ l be the two consecutive transactions in T X . The

number of transactions or time difference between tX
r and tX

q can be defined as a period
of X , say pX

a . That is, pX
a = tX

r − tX
q . Let PX = {pX

1 , pX
2 , · · · , pX

r }, be the set of periods
for pattern X . The periodicity of X , denoted as Per(X) = maximum(pX

1 , pX
2 , · · · , pX

r).
The support of X is denoted as S(X) = |T X |. The pattern X is periodic-frequent if

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 183–192, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

184 R.U. Kiran and P.K. Reddy

S(X)≥minSup and Per(X)≤maxPrd. MinSup and maxPrd are the user-specified min-
imum support and maximum periodicity constraints. Both periodicity and support of
a pattern can be described in percentage of |T |.

Table 1. Transactional database

ID Items ID Items ID Items ID Items ID Items
1 a, b 3 a, b, e, f 5 a, b, c, d 7 c, d 9 c, d, e, f
2 c, d 4 b, e 6 e, f 8 a, b 10 a, b

Example 1. Consider the transactional database shown in Table 1. Each transaction in
this database is uniquely identifiable with a tid. We consider that the tid of a transaction
also represents a time stamp. Consider the first five transactions in Table 1. The set of
items, I = {a,b,c,d,e, f}. The set of ‘a’ and ‘b’ i.e., {a,b} is a pattern. It is a 2-pattern.
The pattern ‘ab’ occurs in tids 1,3 and 5. Therefore, T ab = {1,3,5} and S(ab)= |T ab|=
3. The periods for this pattern are 1 (= 1− ti), 2 (= 3−1), 2 (= 5−3) and 0 (= tl −5),
where ti = 0 represents the initial transaction and tl = 5 represents the last transaction in
the sub-transactional database. The periodicity of ab, Per(ab) = maximum(1,2,2,0) =
2. If the user-specified minSup = 2 and maxPrd = 2, then ab is a periodic-frequent
pattern because S(ab)≥ minSup and Per(ab)≤ maxPrd.

A pattern-growth algorithm using a tree structure known as periodic-frequent tree (PF-
tree) has also been discussed in [4] to discover the complete set of periodic-frequent
patterns in a database. In [3], the basic model was extended to multiple minSups and
multiple maxPrds framework.

The basic model of periodic-frequent patterns mines only those frequent patterns
that are occurring periodically throughout the database. However, in many real-world
applications, it is difficult for the frequent patterns to appear periodically throughout the
database (without any interruption), because items’ occurrence behavior can vary over
time causing periodically occurring patterns to be non-periodic and/or vice-versa. As a
result, the existing model of periodic-frequent patterns misses the knowledge pertaining
to the interesting frequent patterns that are appearing almost periodically throughout
the database. However, depending upon the user and/or application requirements such
patterns can be considered periodically interesting.

Example 2. In the entire transactional database shown in Table 1, T ab = {1,3,5,8,10},
Pab = {1,2,2,3,2,0}, S(ab) = 5 and Per(ab) = 3. If the user-defined minSup and
maxPrd values are respectively 3 and 2, we miss the frequent pattern ‘ab’ as a periodic-
frequent pattern. However, this pattern can still be periodically interesting to the users
as it has failed to appear periodically only once throughout the transactional database.

In this paper, we propose an approach to extract the frequent patterns that occur almost
periodically throughout the database. The proposed approach evaluates the periodic in-
terestingness of a frequent pattern based on the proportion of its periodic occurrences
in a database. As a result, the proposed approach is able to generate the same set of
periodic-frequent patterns as in the basic approach. In other words, the proposed ap-
proach generalizes the existing approach of periodic-frequent patterns. The proposed

An Alternative Interestingness Measure for Mining Periodic-Frequent Patterns 185

approach do not satisfy downward closure property. However, by exploiting the re-
lationship between the “support” and periods of a pattern, we propose two pruning
techniques for reducing the search space. A pattern-growth algorithm is also proposed
to discover the complete set of periodic-frequent patterns. Experimental results on both
synthetic and real-world datasets demonstrate that both the proposed model and algo-
rithm are efficient.

The rest of the paper is organized as follows. The proposed model along with the
pruning techniques are presented in Section 2. The pattern-growth algorithm is pre-
sented in Section 3. Experimental results are provided in Section 4. Conclusions are
provided in the last section.

2 The Proposed Model and Pruning Techniques

2.1 Proposed Model

To extract frequent patterns that appear almost periodically in a database, we propose
an interestingness measure, called periodic ratio. We use the notions support, period
and set of periods which are defined in Section 1.

Definition 1. Periodic ratio of a pattern X (Pr(X)): Let IPX ⊆ PX be the set of peri-
ods such that ∀pX

a ∈ IPX , pX
a ≤ maxPeriod. The variable maxPeriod is the user-defined

maximum period threshold value that determines the periodic interestingness of a pat-

tern. The periodic ratio of the pattern X, Pr(X), is equal to |IPX |
|PX | .

The measure Pr captures the proportion of periods that satisfy the user-defined maxPeriod
value. For a pattern X , Pr(X) ∈ [0,1]. If Pr(X) = 0, it means X has not appeared peri-
odically anywhere in the transactional database. If Pr(X) = 1, it means X has appeared
periodically throughout the database without any interruption.

Definition 2. Periodic-frequent pattern: The pattern X can be said periodic-frequent if
S(X)≥minSup and Pr(X)≥minPr. MinSup and minPr are the user-defined minimum
support and minimum periodic ratio values.

For a periodic-frequent pattern X , if S(X) = a and Pr(X) = b then it is represented as
shown in Equation 1.

X [support = a,Pr = b] (1)

Example 3. Continuing with Example 2, if the user-specified maxPeriod = 2, then
IPab = {1,2,2,2,0}. Therefore, the periodic ratio of the pattern ‘ab’ i.e., Pr(ab) =
|IPab|
|Pab| = 5

6 = 0.83 (= 83%). If the user-specified minPr = 0.8 and minSup = 3, then

‘ab’ is a periodic-frequent pattern and is described as: ab [support = 5, Pr = 0.83].

Problem definition: Given a transactional database T , minimum support (minSup),
maximum period (maxPeriod) and minimum periodic ratio (minPr) constraints, the
objective is to discover the complete set of periodic-frequent patterns in T that have
support and Pr no less than the user-specified minSup and minPr, respectively.

186 R.U. Kiran and P.K. Reddy

2.2 Pruning Techniques

Let the time duration of the database be [ti, tl], where ti and tl respectively denote the
timestamps of the first and last transactions of a database. Support of the pattern X ,
S(X), indicates the number of transactions containing X . The time difference between
any two transactions constitute a period. The number of periods come to S(X)− 1. In
addition, two more periods are to be added: one is from ti to the first occurrence of X
and another is from the last occurrence of X to tl . Total number of periods become equal
to S(X)−1 + 2 = S(X)+ 1.

Property 1. The total number of periods for a pattern X i.e., |PX | = S(X)+ 1.

Property 2. Let X and Y be the two patterns in a transactional database. If X ⊂Y , then
|PX | ≥ |PY | and |IPX | ≥ |IPY | because T X ⊇ TY .

The measure periodic ratio captures the ratio of interesting periods to the total number
of periods for a given pattern X . As a result, if a given pattern X satisfies the periodic
ratio threshold value, its subset Y ⊂ X or superset Z ⊃ X may not satisfy the periodic
ratio threshold value. So, the periodic-frequent patterns discovered with the proposed
model do not satisfy downward closure property (see Lemma 1). That is, not all non-
empty subsets of a periodic-frequent pattern may be periodic-frequent.

Lemma 1. The periodic-frequent patterns discovered with the proposed model do not
satisfy downward closure property.

Proof. Let Y = {ia, · · · , ib}, where 1 ≤ a ≤ b ≤ n be a periodic-frequent pattern with
S(Y) = minSup and Pr(Y) = minPr. Let X ⊂ Y be another pattern. From Property 2,
we derive |PX | ≥ |PY | and |IPX | ≥ |IPY |. Considering the scenario where |PX | > |PY |
and |IPX |= |IPY |, we derive |IPX |

|PX | <
|IPY |
|PY | (Property 2). In other words, Pr(X) < Pr(Y).

Since, Pr(Y) = minPr, we get Pr(X) < minPr. Therefore, X is not a periodic-frequent
pattern.

However, by exploiting the relationship between the support and number of periods
of a pattern (Property 1), there exists a scope to reduce the search space. It can be
noted that every periodic-frequent pattern must have the support value greater than or
equal to user-defined minsup, which implies that every pattern will have the minimum
number periods. If the ratio of total number of interesting periods to minimum number
of periods is not satisfying the user-defined minPr value, it can be pruned. Also, its
supersets can be pruned as they cannot generate any periodic-frequent pattern. The
following pruning techniques are proposed to reduce the search space.

i. The minSup constraint follows downward closure property [1]. Therefore, if a pat-
tern X fails to satisfy minSup, then X can be eliminated as X and its supersets
cannot generate any periodic-frequent pattern.

ii. For a pattern X , if |IPX |
(minSup+1) < minPr, then X can be eliminated as X and its super-

sets cannot generate any periodic-frequent pattern (see Theorem 1). If |IPX |
(minSup+1) ≥

minPr and S(X)≥minSup, then X is called a potential pattern. A potential pattern

An Alternative Interestingness Measure for Mining Periodic-Frequent Patterns 187

need not necessarily be a periodic-frequent pattern. However, only potential pat-
terns can generate periodic-frequent patterns. A potential pattern containing only
one item (1-pattern) is called a potential item.

Theorem 1. Let X and Y be the two patterns such that Y ⊃ X. For the pattern X, if
|IPX |

(minSup+1) < minPr, then X and Y cannot be periodic-frequent patterns.

Proof. Every periodic-frequent pattern will have support greater than or equal to minSup.
Hence, every periodic-frequent pattern will have at least (minSup + 1) number of peri-

ods (Property 1). For a frequent pattern X , |IPX |
(minSup+1) ≥ |IPX |

|PX | (= Pr(X)) because |PX | ≥
(minSup + 1). If |IPX |

(minSup+1) < minPr, then X cannot be a periodic-frequent pattern as
|IPX |
|PX | ≤

|IPX |
(minSup+1) < minPr. In addition, if Y ⊃ X , then Y cannot be a periodic-frequent

pattern as |IPY |
|PY | ≤

|IPY |
(minSup+1) ≤ |IPX |

(minSup+1) < minPr (Property 2).

3 Proposed Algorithm

The PF-tree structure discussed in [4] cannot be used directly for mining periodic-
frequent patterns with the proposed model. The reasons are as follows: (i) Periodic-
frequent patterns discovered with the proposed model do not satisfy downward closure
property and (ii) The tree structure must capture different interestingness measures, i.e.,
maxPeriod and minPr. To mine periodic-frequent patterns with the proposed model, we
need to modify both the PF-tree and PF-growth algorithms. In this paper, we call the
modified PF-tree and PF-growth as Extended PF-tree (ExPF-tree) and Extended PF-
growth (ExPF-growth), respectively.

3.1 ExPF-tree: Structure and Construction

Structure of ExPF-tree. The ExPF-tree consists of two components: ExPF-list and
a prefix-tree. An ExPF-list is a list with three fields: item (i), support or frequency (s)
and number of interesting periods (ip). The node structure of prefix-tree in ExPF-tree
is same as the prefix-tree in PF-tree [4], which is as follows.

The prefix-tree in ExPF-tree explicitly maintains the occurrence information for each
transaction in the tree structure by keeping an occurrence tid list, called tid-list, only at
the last node of every transaction. The ExPF-tree maintains two types of nodes: ordinary
node and tail-node. The ordinary node is similar to the nodes used in FP-tree, whereas
the latter is the node that represents the last item of any sorted transaction. The structure
of a tail-node is N[t1,t2, · · · ,tn], where N is the node’s item name and ti, i ∈ [1,m] is a
transaction-id where item N is the last item. Like the FP-tree [2], each node in ExPF-
tree maintains parent, children, and node traversal pointers. However, irrespective of
the node type, no node in ExPF-tree maintains support count value in it.

Construction of ExPF-list. Let idl be a temporary array that explicitly records the tids
of the last occurring transactions of all items in the ExPF-list. Let tcur be the tid of current
transaction. The ExPF-list is maintained according to the process given in Fig. 2.

188 R.U. Kiran and P.K. Reddy

a 1 1 1
b 1 1 1

a 1 1 1
b 1 1 1
c 1 1 2
d 1 1 2

a 2 2 3
b 2 2 3
c 1 1 2
d 1 1 2
e 1 0 3
f 1 0 3

a 5 4 10
b 6 5 10
c 4 3 9
d 4 3 9
e 4 2 9
f 3 0 9

a 5 5
b 6 6
c 4 4
d 4 4
e 4 3
f 3 1

a 5 5
b 6 6

c 4 4
d 4 4

(a) (b) (c) (d) (e) (f)

i s ip idl i s ip idl i s ip idl i s ip idl i s ip i s ip

Fig. 1. ExPF-list. (a) After scanning first transaction (b) After scanning second transaction (c)
After scanning third transaction (d) After scanning entire transactional database (e) Reflecting
correct number of interesting periods (f) compact ExPF-list containing only potential items.

In Fig. 1, we show how the ExPF-list is populated for the transactional database
shown in Table 1. With the scan of the first transaction {a,b} (i.e., tcur = 1), the items
‘a’ and ‘b’ in the list are initialized as shown in Fig. 1(a) (lines 4 to 6 in Algorithm 2).
The scan on the next transaction {c,d} with tcur = 2 initializes the items ‘c’ and ‘d’ in
ExPF-list as shown in Fig. 1(b). The scan on next transaction {a,b,e, f} with tcur = 3
initializes ExPF-list entries for the items ‘e’ and ‘ f ’ with idl = 3, s = 1 and ip = 0
because tcur > maxPeriod (line 6 in Algorithm 2). Also, the {s; ip} and idl values for the
items ‘a’ and ‘b’ are updated to {2;2} and 3, respectively (lines 8 to 12 in Algorithm
2). Fig. 1(c) shows the ExPF-list generated after scanning third transaction. Fig. 1(d)
shows the ExPF-list after scanning all ten transactions. To reflect the correct number
of interesting periods for each item in the ExPF-list, the whole ExPF-list is refreshed
as mentioned from lines 15 to 19 in Algorithm 2. The resultant ExPF-list is shown in
Fig. 1(e). Based on the above discussed ideas, the items ‘e’ and ‘ f ’ are pruned from

the ExPF-list because |IPe|
(minSup+1) < minPr and |IP f |

(minSup+1) < minPr (lines 21 to 23 in
Algorithm 2). The items ‘a’, ‘b’, ‘c’ and ‘d’ are generated as ExPF-patterns (lines 24 to
26 in Algorithm 2). The items which are not pruned are sorted in descending order of
their support values (line 29 in Algorithm 2). The resultant ExPF-list is shown in Fig.
1(f). Let PI be the set of potential items that exist in ExPF-list.

Construction of ExPF-tree. With the second database scan, we construct ExPF-tree
in such a way that it only contains nodes for items in ExPF-list.

Continuing with the ongoing example, using the FP-tree [2] construction technique,
only the items in ExPF-list take part in the construction of ExPF-tree. The tree construc-
tion starts with inserting the first transaction {a,b} according to the ExPF-list order i.e.,
{b,a}, as shown in Fig. 3(a). The tail-node “a : 1” carries the tid of the transaction. Fig.
3(b) and (c) respectively show the ExPF-tree generated in the similar procedure after
scanning the second and every transaction in the database. For simplicity of figures, we
do not show the node traversal pointers in trees; however, they are maintained as in the
construction process of FP-tree.

It is to be noted that ExPF-tree is memory efficient. It has been shown in [4] that the
tree achieves memory efficiency by keeping such transaction information only at the
tail-nodes and avoiding the support count value at each node. Furthermore, ExPF-tree
avoids the complicate combinatorial problem of candidate generation as in Apriori-like
algorithms [1].

An Alternative Interestingness Measure for Mining Periodic-Frequent Patterns 189

Fig. 2. Algorithm for constructing ExPF-list

3.2 Mining ExPF-tree

The basic operations in mining ExPF-tree are as follows: (i) counting length-1 potential
items, (ii) constructing the prefix-tree for each potential pattern, and (iii) constructing
the conditional tree from each prefix-tree. The ExPF-list provides the length-1 potential
items. Before discussing the prefix-tree construction process, we explore the following
important property and lemma concerning to ExPF-tree.

Property 3. A tail-node in an ExPF-tree maintains the occurrence information for all
the nodes in the path (from that tail-node to the root) at least in the transactions in its
tid-list.

Lemma 2. Let B = {b1,b2, · · · ,bn} be a branch in ExPF-tree where node bn is the tail-
node carrying the tid-list of the path. If the tid-list is pushed-up to node bn−1, then bn−1

190 R.U. Kiran and P.K. Reddy

{}

b

a:1

{}

b

a:1

c

d:2

{}

b:4

a:1,3
 8,10

c

d:2,7,9

c

d:5

i s ip

a 5 5
b 6 6

c 4 4
d 4 4

null null null

(a) (b) (c)

Fig. 3. ExPF-tree. (a) After scanning first transaction (b) After scanning second transaction and
(c) After scanning complete transactional database.

maintains the occurrence information of the path B′ = {b1,b2, · · · ,bn−1} for the same
set of transactions in the tid-list without any loss [4].

Using the feature revealed by the above property and lemma, we proceed to construct
prefix-tree starting from the bottom-most item, say i, of the ExPF-list. Only the prefix
sub-paths of nodes labeled i in the ExPF-tree are accumulated as the prefix-tree for
i, say PTi. Since i is the bottom-most item in the ExPF-list, each node labeled i in the
ExPF-tree must be a tail-node. While constructing the PTi, based on Property 3 we map
the tid-list of every node of i to all items in the respective path explicitly in a temporary
array (one for each item). It facilitates the support and number of interesting periods’
calculation for each item in the ExPF-list of PTi. Moreover, to enable the construction
of the prefix-tree for the next item in the ExPF-list, based on Lemma 2 the tid-lists are
pushed-up to respective parent nodes in the original ExPF-tree and in PTi as well. All
nodes of i in the ExPF-tree and i’s entry in the ExPF-list are deleted thereafter. Fig. 4(a)
shows the status of the ExPF-tree of Fig. 3(c) after removing the bottom-most item ‘d’.
Besides, the prefix-tree for ‘d’, PTd is shown in Fig. 4(b).

{}

b

a

c:2,7,9

c:5

i s ip

a 1 0
b 1 0

c 4 4

null

(b)

{}

b:4

a:1,3
 8,10

c:2,7,9

c:5

i s ip

a 5 5
b 6 6

c 4 4

null

(a)

i s ip

c 4 4

{}null

c:2,5,
 7,9

(c)

Fig. 4. Prefix-tree and conditional tree construction with ExPF-tree. (a) ExPF-tree after removing
item ‘d’ (b) Prefix-tree for ‘d’ and (c) Conditional tree for ‘d’.

The conditional tree CTi for PTi is constructed by removing the items whose support
is less than minSup or |IP|

(minSup+1) < minPr. If the deleted node is a tail-node, its tid-list
is pushed-up to its parent node. Fig. 4(c), for instance, shows the conditional tree for ‘d’,
CTd constructed from the PTd of Fig. 4(b). The contents of the temporary array for the
bottom item ‘ j’ in the ExPF-list of CTi represent T i j (i.e., the set of all tids where items
i and j are occurring together). Therefore, it is a rather simple calculation to compute

An Alternative Interestingness Measure for Mining Periodic-Frequent Patterns 191

S(i j), |IPi j |
(minSup+1) and Pr(i j) from T i j by generating Pi j. If S(i j)≥ minSup and Pr(i j)≥

minPr, then the pattern “i j” is generated as a periodic-frequent pattern with support
and Pr values of S(i j) and Pr(i j), respectively. The same process of creating prefix-tree
and its corresponding conditional tree is repeated for further extensions of “i j”. Else,

if |IPi j |
(minSup+1) ≥ minPr and S(i j) ≥ minSup, then the above process is still repeated for

further extensions of “i j” even though “i j” is not a periodic-frequent pattern. The whole
process is repeated until ExPF-list "= /0.

4 Experimental Results

The ExPF-growth algorithm is written in C++ and run with Ubuntu operating system on
a 2.66 GHz machine with 1 GB memory. We pursued experiments on widely used syn-
thetic (T10I4D100K) and real-world datasets (Retail and Mushroom). T10I4D100K is
a sparse dataset containing 100,000 transactions and 870 items. Retail is another sparse
dataset containing 88,162 transactions and 16,470 items. Mushroom is a dense dataset
containing 8,124 transactions and 119 items. We have considered the transactions in
these datasets as an ordered set based on a particular time stamp.

Table 2. Periodic-frequent patterns generated in different datasets

Database minSup
maxPeriod1 = 0.1% maxPeriod2 = 0.5%

minPr=0.5 minPr=0.75 minPr=1 minPr=0.5 minPr=0.75 minPr=1
A B A B A B A B A B A B

T10I4D100k
0.1% 624 5 272 1 0 0 20748 10 6360 8 229 2
1.0% 385 3 272 1 0 0 385 3 385 3 229 2

Retail
0.2% 643 5 205 5 4 2 2691 5 1749 5 15 3
1.0% 159 4 102 4 4 2 159 4 159 4 15 3

Mushroom
10% 574,431 16 570,929 16 15 4 574,431 16 574,431 16 135 6
20% 53,583 15 53,583 15 15 4 53,583 15 53,583 15 135 6

The periodic-frequent patterns discovered with the proposed model in different
databases at various minSup, maxPeriod and minPr values are reported in Table 2. At
different minSup, maxPeriod and minPr values, the column “A” shows the number of
periodic-frequent patterns mined and the column “B” shows the maximal length of the
periodic-frequent pattern(s) discovered. The columns with minPr = 1 indicates the per-
formance of the basic model that extracts the periodic-frequent patterns that appears in
the entire transactional database. It can be observed that the increase in minSup or minPr
(keeping other constraints fixed) decreases the number of periodic-frequent patterns be-
cause many items (or patterns) fail to satisfy the increased threshold values. Also, the
increase in maxPeriod increases the number of periodic-frequent patterns. It is because
of the increased interval range in which a pattern should reappear. More important, it
can be observed that very few patterns, mostly of shorter lengths, are being generated as
periodic-frequent patterns when minPr = 1. Overall, the experimental results show that
the proposed model provides more flexibility and improves performance by extracting
more number of periodic-frequent patterns of longer length over the basic model.

192 R.U. Kiran and P.K. Reddy

The runtime taken by ExPF-growth for generating periodic-frequent patterns at dif-
ferent minSup, maxPeriod and minPr values on various datasets is shown in Table 3.
The runtime encompasses all phases of ExPF-list and ExPF-tree constructions, and the
corresponding mining operation. It can be observed that the runtime taken by the pro-
posed algorithm depends on the number of periodic-frequent patterns being generated.

Table 3. Runtime requirements for the ExPF-tree. Runtime is measured in seconds.

Dataset minSup
maxPeriod1 = 0.1% maxPeriod2 = 0.5%

minPr=0.5 minPr=0.75 minPr=1 minPr=0.5 minPr=0.75 minPr=1

T10I4D100k
0.1% 120.533 124.766 128.057 105.951 110.085 113.957
1.0% 109.257 102.138 83.009 112.400 107.000 112.604

Retail
0.2% 29.638 25.479 22.529 43.254 40.178 34.305
1.0% 15.441 15.182 14.352 15.780 15.909 15.894

Mushroom
10% 20.580 20.180 16.510 20.320 20.270 18.860
20% 2.920 2.790 2.780 2.930 3.000 2.740

5 Conclusions

In this paper, we have proposed an improved approach to extract periodic-frequent pat-
terns in a transactional database. A new interestingness measure, called periodic ra-
tio, has been proposed for mining frequent patterns that occur almost periodically in a
database. Two pruning techniques are proposed to improve the efficiency of proposed
algorithm as the periodic-frequent patterns under the proposed model do not satisfy
downward closure property. Also, a pattern-growth algorithm has been proposed to
discover periodic-frequent patterns. The effectiveness of the proposed model and algo-
rithm are shown practically by conducting experiments on various datasets.

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in
large databases. In: SIGMOD 1993: Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, pp. 207–216. ACM, New York (1993)

2. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: A
frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–87 (2004)

3. Kiran, R.U., Reddy, P.K.: Towards efficient mining of periodic-frequent patterns in transac-
tional databases. In: DEXA, vol. (2), pp. 194–208 (2010)

4. Tanbeer, S.K., Ahmed, C.F., Jeong, B.-S., Lee, Y.-K.: Discovering periodic-frequent patterns
in transactional databases. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.)
PAKDD 2009. LNCS, vol. 5476, pp. 242–253. Springer, Heidelberg (2009)

A Framework of Mining Semantic Regions from
Trajectories

Chun-Ta Lu1, Po-Ruey Lei2, Wen-Chih Peng1, and Ing-Jiunn Su2

1 National Chiao Tung University, Hsinchu, Taiwan, ROC
{lucangel,wcpeng}@gmail.com

2 Chung Cheng Institute of Technology, National Defense University,
Taoyuan, Taiwan, ROC

{kdboy1225,suhanson}@gmail.com

Abstract. With the pervasive use of mobile devices with location sens-
ing and positioning functions, such as Wi-Fi and GPS, people now are
able to acquire present locations and collect their movement. As the
availability of trajectory data prospers, mining activities hidden in raw
trajectories becomes a hot research problem. Given a set of trajectories,
prior works either explore density-based approaches to extract regions
with high density of GPS data points or utilize time thresholds to iden-
tify users’ stay points. However, users may have different activities along
with trajectories. Prior works only can extract one kind of activity by
specifying thresholds, such as spatial density or temporal time threshold.
In this paper, we explore both spatial and temporal relationships among
data points of trajectories to extract semantic regions that refer to re-
gions in where users are likely to have some kinds of activities. In order
to extract semantic regions, we propose a sequential clustering approach
to discover clusters as the semantic regions from individual trajectory
according to the spatial-temporal density. Based on semantic region dis-
covery, we develop a shared nearest neighbor (SNN) based clustering
algorithm to discover the frequent semantic region where the moving
object often stay, which consists of a group of similar semantic regions
from multiple trajectories. Experimental results demonstrate that our
techniques are more accurate than existing clustering schemes.

Keywords: Trajectory pattern mining, sequential clustering and spatial-
temporal mining.

1 Introduction

Knowledge discovery from spatial-temporal data has risen as an active research
because of the large amount of trajectory data produced by mobile devices. A
trajectory is a sequence of spatial-temporal points which records the movement
of a moving object. Each point specifies a moving location in space at a certain
instant of time. The semantic knowledge may contain in some re-appear trajecto-
ries and can be applied in many applications, such as trajectory pattern mining

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 193–207, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

194 C.-T. Lu et al.

for movement behaviors [6,19,8], predicting user location [10,18], and location-
based activity discovery [13,14,7]. Unfortunately, locations may not be repeated
exactly in similar trajectories. The common preceding task for the above works
is to discover the regions for replacing the exact locations where moving objects
often pass by or stay. Such a region summarizes a set of location points from dif-
ferent trajectories that are close enough in the spatial space. Then, the relation
between regions can be extracted for knowledge analysis. Intuitively, the quality
of regions directly affects the analysis result of trajectory data. Thus, in this
paper, we focus on effectively and precisely discovering regions from trajectory
data where can imply the potential of users are likely to have some kinds of
activities, called semantic regions.

Traditionally, regions are extracted from trajectory points by density-based
clustering methods (e.g., DBSCAN [4]). Given the definition of distance (i.e.,
measure of dissimilarity) between any two points, regions with higher density
are extracted in terms of clustering similar data points in the spatial domain.

20

40

60

80

100

T
(m
in
)

XY

T
(m
in
)

12
17

24

2

3
4

1

(a) The original trajectory

1

2
3

4

(b) Semantic region discovered by
density-based approach

Fig. 1. An example of discovering semantic regions from a trajectory

However, such regions, extracted by clustering spatial points without consid-
ering sequential relation, only focus on the geometrical properties of trajecto-
ries. Consider an example in Figure 1, where there are four activities involved
in this trajectory. Each region associated with one activity is marked with a
star in Figure 1(b). We observed that, from the original trajectory based on
spatial-temporal domain, there should be three indoor regions (region 1, 2 and
3) because of the appearance of temporal transition gaps which are labeled with
stay durations in Figure 1(a). The temporal transition gap between sampled lo-
cation points is generated due to the loss of satellite signal when GPS-embedded
location recorder is inside a building (e.g., restaurant, home or office). In ad-
ditional, in Figure 1(b), there is an outdoor activity (i,e., in region 4) where
the user is walking around a lake. Two regions where represented by minimum
bounding rectangles (MBRs) are discovered by a spatial density based clustering
algorithm, DBSCAN (Minpts = 7, Eps = 50 meters) . There are three problems

A Framework of Mining Semantic Regions from Trajectories 195

in this example. First, some semantic regions are missing. By verifying with the
ground truth (i.e., four regions with stars in Figure 1(b)), only two regions are
detected by DBSCAN and region 2 is missing. As shown in Figure 1(b), while
this user stays in the region 2 for 17 minutes, DBSCAN cannot discover region
2. This is because that region 2 does not have a sufficient amount of GPS data
points to form a cluster. Second, granularity problem causes the indistinguisha-
bility between region 1 and 3. Third, road-sections and intersections, where an
object often passes but carries non-semantic meaning to the user, are included
in both discovered regions. The above example indicates that only exploring
density-based approaches in the spatial domain of data points in trajectories
cannot discover semantic regions.

Recently, the authors in [21] proposed the concept of stay point detection to
discover the stay regions. Unlike density based clustering, stay point is detected
when the consecutive points of a examined point do not exceed the predefined
distance threshold during the specified period of time threshold. The authors
claimed that a stay point can stand for a geographic region and carry a partic-
ular semantic meaning. However, a trajectory usually contains more than one
activity, such as driving, walking, sightseeing, staying and so on. Each activity
has different distance density and speed. In other words, the density of trajectory
points varies from different activities. Thus, the traditional density clustering ap-
proach or stay point detection, which using universal parameter to detect the
clusters only for a certain density, cannot discover all semantic regions. Figure
2 shows regions discovered by the stay points approach, where the time thresh-
old is fixed to 10 minutes and three distance thresholds are set to 100 meters,
200 meters and 250 meters. When distance threshold is set to 100 meters, in
Figure 2(a), there are three stay points mapping to three semantic regions, but
the semantic region 4 (lake), a much larger area with an activity of walking,
cannot be detected. The regions are not detected completely until the distance
threshold is larger than 250 meters. On the other hand, the other three regions
have been mixed and their coverage have been overlapped shown in Figure 2(b)
and Figure 2(c). As such, the stay point approach considers both the temporal
and spatial thresholds for detecting regions. However, the stay point approach
is highly dependent to thresholds. Consequently, to detect regions with a vari-
ety of activities, the stay point approach may need to have different settings of
thresholds.

In this paper, we first propose a sequential density clustering approach to
extract candidate semantic regions based on both the spatial and the tempo-
ral domains for GPS data points in trajectories. The density is measured by
cost function to analyze the density distribution of a trajectory. The cost func-
tion reflects the local configuration of the trajectory points in spatial-temporal
data space. In light of candidate semantic regions, we further propose shared
nearest neighbor (SNN) clustering to extract frequent semantic regions from a
set of candidate semantic regions. Our approach is nonexclusive to be applied
in many different activity scenarios, not being to one single application. Our

196 C.-T. Lu et al.

(a) 100 Meters (b) 200 Meters (c) 250 Meters

Fig. 2. An example of regions discovered by the stay point approach

experiments demonstrate that semantic regions can be extracted precisely as
well as efficiently. The main contributions of this paper are summarized below.

– The scheme of region extraction is proposed for effectively and precisely
semantic region discovery.

– We propose a sequential density based clustering method to discover seman-
tic regions from a trajectory. The clustering method takes both spatial and
temporal domain into account.

– We define the similarity between semantic regions and develop a shared
nearest neighbor based clustering algorithm to discover frequent semantic
regions from trajectory dataset.

– We present comprehensive experimental results over various real datasets.
The results demonstrate that our techniques are more accurate than existing
clustering schemes.

The remainder of this paper is organized as follows. Section 2 reviews the related
literature. Our framework of mining semantic regions is proposed in section 3. In
section 4, we evaluate our framework by real trajectory datasets. Finally, section
5 concludes this paper.

2 Related Work

Hot region detection has been widely used in the field of trajectory data anal-
ysis such as trajectory pattern mining [17,2,6,11,8], moving objects’ location
prediction [10,18], location-based activity discovery [14,13,21] and so on. Most
of proposed methods employ density based clustering techniques to group a set
of trajectory points into a cluster as a region, such as DBSCAN [4] and OPTICS
[1]. In density based clustering, clusters are regions of high density separated by
regions of low density. Based on density based clustering algorithms [6,11,10,18],
the regions are extracted only according to the density in spatial domain with-
out considering the density in temporal domain. Giannotti et. al. [6] adopted
grid density clustering to discover popular regions as ROIs where dense cells in
space are detected and merged if they are neighbors. It implies that popular
regions can be extremely large. Thus, they have to give additional constrains
to select significant and limited regions to represent ROIs. The authors in [11]
extracted frequent regions by applying the clustering method DBSCAN. In spite

A Framework of Mining Semantic Regions from Trajectories 197

of advantage of DBSCAN that clusters in arbitrary shape can be detected, they
have to decompose a cluster when it is too large to describe correlations between
frequent regions. The hybrid location prediction model proposed by [10] that di-
vides a trajectory into several periodic sub-trajectories. Then, frequent regions
of the same time offset are extracted by using DBSCAN to cluster locations from
sub-trajectories.

For the purpose of knowledge discovery of the ROIs which contains activity-
related meaning to users, few existing works [12,20,21] aimed to applying se-
quential constraint to a single sequence. The authors in [12,20,21] proposed a
stay point and claimed that can stand for a geographic region and carry a partic-
ular semantic meaning. A stay point is the mean point of a sub-sequence where
the consecutive points of a examined point do not exceed the distance thresh-
old during the period of time threshold. Each stay point contains information
about mean coordinates, arrival time and leaving time. In addition, the authors
in [21] proposed stay regions extracted from stay points via grid based clustering
algorithm.

All of the above techniques have some deficiencies for discovery ROIs from
trajectory data. First, traditional clustering approach only considers similarity in
one domain, i.e.,the spatial domain only. They have focused on geometric prop-
erties of trajectories, without considering the temporal information or sequential
relation. The region extraction for semantic analysis has to consider both spatial
and temporal domains. Second, applying a universal density threshold for clus-
ter discovery may either miss regions with different density or merge non-related
regions. In this paper, the challenge is that trajectories may consist of different
activities and each activity has different distance density and speed distribution.
We want to extract significant and precise regions with semantic meaning from
trajectories and these regions can imply certain activities of moving objects by
spatial-temporal clustering approach.

3 A Framework of Mining Semantic Regions

3.1 Overview

We propose an effective and precise algorithm to discover semantic regions from
trajectory data based on spatial-temporal density model and sequential density
clustering, and we develop a shared nearest neighbor based clustering method to
discover frequent semantic regions from multiple trajectories. Figure 3 outlines
the framework for semantic region discovery. On the process of semantic region
discovery, each trajectory is first partitioned into a set of trajectory segments.
The spatial-temporal density of each segment is computed by cost function.
Then, the sequential density clustering is applied to sequentially group the seg-
ments with similar density. The region where users may have some kinds of
activities locates in the cluster with local maxima density. Finally, while each
trajectory is transformed into a sequence of semantic regions, a set of similar
semantic regions is clustered to indicate the major frequent semantic regions
from multiple trajectories.

198 C.-T. Lu et al.

User Trajectories

Partition

Density
Distribution

Semantic Regions

Trajectory

Clustering

Frequent
Semantic Region

SNN Graph

Semantic Region
Discovery

Frequent Semantic
Region Discovery

Fig. 3. Overview of extracting semantic regions

3.2 Problem Formulation

Given a trajectory dataset of a moving object, our algorithm generates a set of
clusters as semantic regions of each trajectory and a set of frequent semantic
regions from the trajectory dataset. An object’s trajectory is represented as a
sequence of points {p1, p2, ..., pi, ..., pn}. Each point pi(1 ≤ i ≤ n) contains loca-
tion (xi, yi) and timestamp (ti). A trajectory can be partitioned into continuous
segments {s1, s2, ..., sl, ..., sm, ...} according to user-defined parameter T . Let T
be an integer called period of activity that is the minimum duration of activity
proceeding time we are interested in. For example, T can be set to 30 minutes
for sightseeing at an interesting spot or 2 hours for exercising at the gym.

A semantic region is a spatial-temporal based cluster and is denoted as SR.
The cluster Ck is a set of trajectory segments {sl, sl+1, sl+2, ..., sm}, where m ≥ l.
The cluster Ck is a semantic region if (1) the stay duration of each segment in
Ck is not less than T (i.e. |tj − ti| ≥ T) (2) and spatial-temporal density of
Ck is higher than that of its adjacent clusters (Ck−1 and Ck+1) by a predefined
threshold ξ. A frequent semantic region is a representative region which indicates
that this region appears in a sufficient number of trajectories. Such a sufficient
number is defined as MinSR.

The spatial-temporal density of a segment mentioned above is defined to re-
flect the local configuration of the points in the spatial-temporal data space and
a cost function is used as a density measurement. Generally, the cost function is
designed to represent the penalty of dissimilarity of the points within a segment.
Previous work [15] defines the cost of a segment as the sum of squared Euclidean
distance between points and its spatial centroid, where the cost is also called the
variance of the segment. Without loss of generality, the squared Euclidean dis-
tance function is adopted as given below to measure the dissimilarity between
two points.

DE2(pi, pj) = (xi − xj)2 + (yi − yj)2. (1)

However, it only counts the spatial dissimilarity without considering the tem-
poral feature such as the duration of a moving object staying in a location or
lingering around some places. Our main idea of this research is to extract the

A Framework of Mining Semantic Regions from Trajectories 199

region with semantic information where involves some activities of user. Because
a trajectory does not involve only one activity in real world, the distance be-
tween location points can vary with different activities in spatial domain and
the temporal interval from a point pi to its succeeding point pi+1 can vary from
seconds to hours. Furthermore, most location-acquisition technologies cannot lo-
calize and record current location under some condition. For example, when a
GPS-embedded object enters a building or a cave, the GPS tracking device will
lose satellite for a time interval until coming back outside and few points are
recorded on such place. If we directly measure the spatial dissimilarity of the
segment around this area, we cannot detect its significance. It implies that both
spatial and temporal feature can affect the result of semantic region discovery.
Thus, we take temporal feature as a weight and compounded with spatial rela-
tion to measure the dissimilar cost of a segment, i.e, the spatial-temporal density
of a segment.

Given a segment sl = pi, pi+1, ...pj , the definition of weighted cost function is
stated as follows.

Cost(sl) =
∑j

k=i wk ∗ DE2(pk, c)∑j
k=i wk

, (2)

c = (
∑j

k=i wk ∗ xk∑j
k=i wk

,

∑j
k=i wk ∗ yk∑j

k=i wk

), (3)

wk =
(tk − tk−1) + (tk+1 − tk)

2
(4)

where wk is the weight of point pk, c is the weighted centroid of segment sl,
respectively. Because there are different activities processing in a trajectory, the
Cost(sl) can vary in a wide range. To normalize the density of clusters with
different activities, the density function is measured as the logarithm of one over
the cost. The definition of density function is stated as follows.

Density(sl) = loge(1 +
1

Cost(sl) + γ
), (5)

where the Density(sl) is in the boundary of [0, loge(1 + 1
γ)] and γ is a constant

(in order to keep the maximum density equals to 1, γ is given as 1
e−1 in this

paper).

3.3 Discovering Semantic Regions

3.3.1 Trajectory Partition
Given an object’s trajectory {p1, p2, ..., pi, ..., pn}, we aim to analyze its spatial-
temporal density distribution to extract the region where the trajectory move-
ment is more dense than the neighboring regions, i.e. the density in this region
is a local maximum in the trajectory density distribution. Unlike the problem
in [15], we are not pursuing to partition a trajectory such that the total cost
of partitioned segments is minimized. Instead, we partition the trajectory in or-
der to compare the density variance between sequent segments in an efficient

200 C.-T. Lu et al.

way. To simplify the description of the spatial-temporal density distribution of a
trajectory, each trajectory is periodically partitioned into �pn.t−p1.t

T � trajectory
segments, where T is a period of activity, i.e., a minimum duration of activity
we are interested in and the density of each sequential segment is computed.
We assume such a sequential density set can be used to describe the density
distribution of the trajectory.

Trajectory

p
1

p
2

p
3

p
4 p

5

p
6 p

7 p
8

t
0
= 0r t

1
= 1r

t
2
= 2r

t
3
= 3r

t
4
= 4r

t
5
= 5r

t
6
= 6r

t
7
= 7r t

8
= 8r

p
0

(a) Original trajectory

Non-overlap Partition

Segment 1 Segment 2

(b) Non-overlap partition
Segment 1 Segment 3

Segment 2

Overlap Partition

(c) Overlap partition

Fig. 4. Overlap partition

However, while the density distribution of a trajectory can be represented by
the density distribution of a sequence of segments, it may occur a partition loss
that a dense region of a trajectory is lost because of partition. A dense region may
be separated into several segments because of partitioning. Under this condition,
the density of each segment may become smaller than original density of the
dense region. As shown in Figure 4(a), the dense region of a trajectory is in
the center, marked within a circle. Given the time interval of each point to its
neighbor point is r and the period T is set as 4r, the partitioned segments are S1

and S2 shown in Figure 4(b). As a result, the dense region in the center of this
trajectory is split into two segments and the dense region cannot be detected.

To solve this problem, overlapping partition is implemented to smooth the
region-split property when partitioning the trajectory. The time interval of the
trajectory in Figure 4(c) is set as [0, 4r), [2r, 6r), [4r, 8r) corresponding to seg-
ment S1, S2, S3, respectively. The time interval function of overlapping partition
is given as follows. [tstartk

, tendk
) = [(k−1)∗T

fold , (k−1)∗T
fold + T), where fold is a pa-

rameter to smooth the partition. In this paper, fold can be set as a fixed integer
and our experiment shows the result change slightly when fold � 3.

3.3.2 Sequential Density Clustering Algorithm
We now present our sequential density clustering algorithm for semantic region
discovery. Given a set of sequential trajectory segments S, our algorithm gen-
erates a set of clusters as semantic regions. We define a cluster as a sequential
density-connected set. It requires a parameter ξ, a density threshold for simi-
larity measurement. Before clustering, each density Dk of partitioned segment
Sk is calculated by spatial-temporal cost. In a trajectory density distribution, a
segment with a local maximum can correspond to a dense region of a trajectory
and the segments with similar density are grouped into a cluster if they are ad-
jacent to each other. Finally, the boundary of a semantic region, i.e. a cluster,
is extracted at where the density dramatically change. Thus, the semantic re-
gion discovery involves grouping the segments (if they belong to the same dense
region) and setting boundary of dense region.

A Framework of Mining Semantic Regions from Trajectories 201

 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Segment

De
ns

ity

(a) Trajectory density dis-
tribution

 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Segment

De
ns
ity

(b) Sequential density clus-
tering

 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Segment

De
ns
ity

C1 C2 C3

C4

(c) Clusters

Fig. 5. Sequential density clustering over trajectory density distribution

Algorithm 1. Sequential Density Clustering
Input: A set of trajectory segments S, a density threshold ξ
Output: A set of sequential density cluster SDC

1 Compute D = Density(S) for each segment in S
2 Sequentially record the local max and local min from D to an array E
3 foreach local max Ei in E do
4 Take nearby local min and Ei as a group G : {Ei−1, Ei, Ei+1} and take the

local max of last group in GroupSet as Elast

5 if |Ei − Ei−1 � ξ| and |Elast − Ei−1 � ξ| then
6 Merge G with last group in GroupSet
7 end
8 else
9 Add G into GroupSet

10 end

11 end
12 foreach group G in GroupSet do
13 foreach Dj from local max to local min in G do
14 if |Dj − Dj−1| � ξ and (|Dj − Dj+1| � ξ) then
15 Add Sj into of a density cluster C
16 end

17 end
18 if boundary(C) �= boundary(G) then
19 Add cluster C into SDC
20 end

21 end
22 return SDC

For instance, we set T = 10, fold = 2 to partition the trajectory in Figure
1(a) into 23 segments and compute the density for each segment. The density
distribution D of the periodically two-fold-partitioned trajectory is shown in
Figure 5(a). Such a sequence of density D is the input of the algorithm. Algo-
rithm 1 shows the sequential density clustering to extract semantic regions from
the density distribution. Initially, the local extremes (maxima and minima) are
identified and recorded as a set of group G. Each G is a group of local max-
ima Ei and its nearby local minima Ei−1 and Ei+1, i.e., G : {Ei−1, Ei, Ei+1}.

202 C.-T. Lu et al.

The algorithm consists two steps. In the first step (Line 3-11), the algorithm
computes the density similarity between two adjacent groups. If density differ-
ence between two adjacent groups is equal to or smaller than density threshold
ξ, these groups are sequentially similar. The algorithm performs the clustering
to merge them into a new group. For example, there are two connected groups
G1 : {D14, D17, D18} and G2 : {D18, D19, D23} in Figure 5(b). Given ξ = 0.1, G1

and G2 are similar (|D17−D18| � ξ and |D19−D18| � ξ) and can be merged into
a new group G′ : {D14, D17, D23}. The clustering results are added to GroupSet
as a sequence of groups. In the second step (Line 12-21), the boundary of a
cluster is extracted from each group G. The precise boundary of a cluster C
is extended from the local maximum in G to its nearby local minima until the
density difference between two continuous segment is more than ξ. The cluster
C4 : {S16, S17, S18, S19, S20} is extracted from group {D14, D17, D23} as shown in
Figure 5(c). Only regions with significant change in density are taken as semantic
regions. If there are no continuous density changes more than ξ inside a group,
this implies the region enclosed in the group can be viewed as an non-semantic
area.

3.4 Mining Frequent Semantic Regions

While semantic regions represent the location where a moving object proceeds
with some kind of high dense activities in duration of time from a trajectory, it
does not imply that those semantic regions are an object’s ”frequently” appear-
ing at. Thus, given a set of trajectory data, we want to find out the region where
an object frequently stays or lingers around for a certain activity, i.e, a frequent
semantic region. A frequent semantic region is a summary of a set of similar
semantic regions from different trajectories. To define the similarity between
semantic regions and discover the frequent semantic regions, we adopt the def-
inition of shared nearest neighbor (SNN) [9] and SNN density-based clustering
[3]. That is, the similarity between a pair of points is measured by the number of
their shared nearest neighbors. In graph terms, a link is created between a pair
of nodes if both have each other in their K nearest neighbor (KNN) lists and an
SNN similarity graph is created. Clusters are simply the connected components
of the SNN graph. The discovery of frequent semantic regions is similar to find
clusters. For each semantic region, it can be viewed as a node in SNN graph.
However, if nodes are not close enough, they do not stay in the same region
apparently. When applying SNN density based clustering to discover frequent
semantic regions, we constrain the searching range of nearest neighbors is a ra-
dius Dh around the examined nodes. We define a semantic region is a frequent
semantic region if each semantic region of which contains at least MinSR num-
ber of neighbors in the distance radius Dh. The nodes without MinSR nearest
neighbors are viewed as non-frequent regions and discarded. All the connected
components in the resulting graph are clusters finally. These clusters can be
considered as frequent semantic regions where an object often visits for certain
activities.

A Framework of Mining Semantic Regions from Trajectories 203

Algorithm 2. Frequent Semantic Region Discovery Algorithm
Input: A set of nodes, distance threshold Dh, minimum support MinSR
Output: a set of clusters

1 Find the MinSR-nearst neighbors in Dh of all nodes.
2 Construct the shared nearest neighbor similarity graph.
3 For every node in the graph, calculate the number of links.
4 Identify core nodes which has more or equal to MinSR links.
5 Identify noise nodes which is neither a core node nor linked to a core node and

remove them.
6 Take connected components of nodes to form clusters.
7 return the union of all clusters

We develop a frequent semantic region discovery algorithm (Algorithm 2)
based on the property described in new SNN clustering algorithm [3]. The nodes
that have at least MinSR connectivity in the SNN graph are candidates for
core nodes since they tend to be located well inside the natural cluster, and the
nodes with connectivity lower than MinSR and not connected to any core node
are identified as noise nodes. As a result, a cluster is detected if there exists
a connected component in SNN graph. The cluster is regarded as a frequent
semantic region. For each semantic region which has at least MinSR similar
semantic regions, it will be included in a frequent semantic region. Notice that
the number of clusters is not considered as a parameter. Depending on the nature
of the data, the algorithm finds the nature number of clusters for given set of
parameters, MinSR and Dh.

4 Experiments

The experiments in this study are designed for two objectives. First, we com-
pare the semantic region coverage of our method, Sequential Density Clustering
(SDC), with Stay Point (SP) that is the method considering the sequential con-
straint in literature. Second, we verify the accuracy of frequent semantic region
discovery. We conduct experiments on our prototype which was implemented
in the python language on CarWeb [16], a traffic data collection platform on
Ubuntu 9.10 operating system.

Table 1. Dataset of each activity in California

Activity # Trajectory # Photo
Hiking 3839 33065
Road Biking 5032 11968
Walking 955 4685

We evaluate the experiment with real dataset from EveryTrail [5] in California.
Each data includes an labelled activity trail (a trajectory) and a set of photos

204 C.-T. Lu et al.

with geographic information where are taken by user. We assume the ground
truth that location with photo is where the activity happen at. Each photo
represents a interesting of the user (photo taker) and each region containing
the photos can be considered as a interesting (semantic) region. Three kind of
activity (Hiking, Road Biking, Walking) in California are selected. The major
difference between each activity is the average speed (Road Biking > Walking
> Hiking). Table 1 shows the total number of trajectories and photos for each
activity.

4.1 Evaluation of Semantic Regions

In order to evaluate the effectiveness of semantic region discovery, we compare
the semantic region coverage of SDC with that of SP under varying conditions.
A semantic region coverage is measured as the hit ratio of the photos enclosed
by discovered region to total photos for each activity. We set SDC parameters as
follows: the partition smoothing parameter Fold = 3 and the density threshold
ξ = 0.02 for all datasets. There are two parameters setting for SP: distance and
time thresholds. For comparison with SP fairly, the dynamic size of a sematic re-
gion is constrained as a fixed size of SP. Thus, We set various distance thresholds
(100, 200, 300 meters) of stay point as the radius of the region around stay point
and also as the radius around mean point discovered via SDC. In additional, we
compare above regions of fixed size with the regions of dynamic size discovered
via SDC. The time threshold of SP is set as the period of activity for SDC and
varied from 5 minutes to 30 minutes.

For each activity, in Figure 6, the hit ratio of our method is much higher
than that of SP. As expected, SDC shows the coverage of discovered region
with dynamic size is better than that with fixed size while the average size (the
size number marked with SDC curve in Figure 6) is smaller than the fixed size,
especially in datasets of slow-speed activity (Hiking and Walking). It implies that
our method is adaptive to various shape and size of discovered region. Besides,
the hit ratio is much lower in high-speed activity than in low-speed activity, since
the semantic region is much harder to be obtained when the activity has higher
average speed and has many sudden changes of direction or speed. These results
prove that using SDC for semantic region discovery is obviously more precise
than using SP under different average speed. Another observation found in the
results demonstrates that hit ratio decreases when the period of activity (time
threshold) increases. Because the period of activity is a user-defined parameter
which indicates the minimum duration of an activity, the semantic regions with
the period of activity which is shorter than minimum requirement will be ignored
when the activity is expected to keep running longer.

4.2 Accuracy of Frequent Semantic Regions

To show the accuracy of frequent semantic region discovery, we obtained a user’s
trajectory over one week and labeled the top five frequent semantic regions. We
then generated 1000 different trajectory dataset each have 100 similar trajecto-
ries to the original trajectory. For each trajectory, we set the period of activity

A Framework of Mining Semantic Regions from Trajectories 205

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

H
it

R
at

io

Period

size: 103
125

158 193 225
251

SP100
SP200

SP300
SDC100

SDC200
SDC300

SDCDyna

(a) Hiking

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

H
it

R
at

io

Period

size: 111
134

163
199 233 252

SP100
SP200

SP300
SDC100

SDC200
SDC300

SDCDyna

(b) Walking

 0

 0.2

 0.4

 0.6

 0.8

 5 10 15 20 25 30

H
it

R
at

io

Period

size: 215

248

269

263
250 265

SP100
SP200

SP300
SDC100

SDC200
SDC300

SDCDyna

(c) Biking

Fig. 6. Semantic region coverage

T = 10 minutes to discover semantic regions. We take the semantic regions as
nodes in a 5 ∗ 5 map. Frequency and radius of each frequent semantic regions
are stated in Table 2.

Table 2. Dataset of frequent semantic regions

Region Frequency Radius
2 50% 0.5
2 80% 0.1
1 30% 0.8

We take F-measure to analyze the accuracy of discovered frequent semantic
regions. Precision is defined as the overlapped area discovered in labelled regions
divided by the total discovered area, and recall is defined as the overlapped
area discovered in labelled regions divided by the total area of existing labelled
regions. The definition of F-measure is the harmonic mean of precision and recall:

F = 2 ∗ precision ∗ recall

precision + recall

A higher precision score means the higher representative of discovered regions
while a higher recall score means the higher coverage of labelled regions. Al-
though a larger region can cover more labelled regions and obtain high recall, it

206 C.-T. Lu et al.

Table 3. Impact of minimum support

MinSR Precision Recall F-measure
10% 0.856 ± 0.068 0.995 ± 0.013 0.919 ± 0.04
20% 0.903 ± 0.065 0.884 ± 0.005 0.894 ± 0.036
30% 0.916 ± 0.066 0.441 ± 0.074 0.592 ± 0.068

is hard to distinguish these labelled regions and results in low precision. In Table
3, we fix the radius Dh as 0.5 and report the performances of our model under
different minimum support (MinSR) requirement for a frequent semantic region.
The entry value in Table 3 denotes the mean and standard deviation of preci-
sion, recall and F-measure. As shown in the table, our method can achieve high
precision under different MinSR. However, when the requirement of MinSR
increases, it is much harder to find regions with low frequency in a large radius.

5 Conclusion

In this paper, we propose the concept of semantic region that indicates regions
along with trajectories where users may proceed with some activities. First,
spatial-temporal cost is introduced to model the density distribution of a tra-
jectory. Then, we adopt a sequential density clustering algorithm to extract the
semantic regions. Based on semantic region discovery, we define the similarity
between semantic regions and devise a SNN based clustering algorithm to dis-
cover frequent semantic regions from multiple trajectories. Finally, to show the
preciseness and effectiveness of our framework, we present comprehensive ex-
perimental results over various real datasets. The results demonstrate that our
framework is able to accurately extract semantic regions.

Acknowledgments. Wen-Chih Peng was supported in part by ITRI-NCTU
JRC program (No. 99EC17A05010626), Microsoft, D-Link, National Science
Council (No. NSC-97-2221-E-009-053-MY3) and Taiwan MoE ATU Program.

References

1. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: Ordering Points
To Identify the Clustering Structure. In: SIGMOD, pp. 49–60 (1999)

2. Cao, H., Mamoulis, N., Cheung, D.W.: Mining Frequent Spatio-Temporal Sequen-
tial Patterns. In: ICDM, pp. 82–89 (2005)

3. Ertoz, L., Steinbach, M., Kumar, V.: A New Shared Nearest Neighbor Clustering
Algorithm and its Applications. In: 2nd SIAM International Conference on Data
Mining (2002)

4. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A Density-Based Algorithm for Dis-
covering Clusters in Large Spatial Databases with Noise. In: KDD, pp. 226–231
(1996)

5. Everytrail – gps travel community, http://www.everytrail.com

A Framework of Mining Semantic Regions from Trajectories 207

6. Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory Pattern Mining. In:
KDD, pp. 330–339 (2007)

7. Hung, C.C., Chang, C.W., Peng, W.C.: Mining Trajectory Profiles for Discovering
User Communities. In: GIS-LBSN, pp. 1–8 (2009)

8. Hung, C.C., Peng, W.C.: Clustering Object Moving Patterns for Prediction-Based
Object Tracking Sensor Networks. In: CIKM, pp. 1633–1636 (2009)

9. Jarvis, R.A., Patrick, E.A.: Clustering Using a Similarity Measure Based on Shared
Near Neighbors. IEEE Trans. Comput. 22(11), 1025–1034 (1973)

10. Jeung, H., Liu, Q., Shen, H.T., Zhou, X.: A Hybrid Prediction Model for Moving
Objects. In: ICDE, pp. 70–79 (2008)

11. Jeung, H., Shen, H.T., Zhou, X.: Mining trajectory patterns using hidden markov
models. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2007. LNCS,
vol. 4654, pp. 470–480. Springer, Heidelberg (2007)

12. Li, Q., Zheng, Y., Xie, X., Chen, Y., Liu, W., Ma, W.Y.: Mining User Similarity
Based on Location History. In: GIS (2008)

13. Liao, L., Fox, D., Kautz, H.A.: Location-Based Activity Recognition. In: NIPS
(2005)

14. Liao, L., Fox, D., Kautz, H.A.: Location-Based Activity Recognition using Rela-
tional Markov Networks. In: IJCAI, pp. 773–778 (2005)

15. Lin, C.R., Chen, M.S.: On the Optimal Clustering of Sequential Data. In: SDM
(2002)

16. Lo, C.H., Peng, W.C., Chen, C.W., Lin, T.Y., Lin, C.S.: CarWeb: A Traffic Data
Collection Platform. In: MDM, pp. 221–222 (2008)

17. Mamoulis, N., Cao, H., Kollios, G., Hadjieleftheriou, M., Tao, Y., Cheung, D.W.:
Mining, Indexing, and Querying Historical Spatiotemporal Data. In: KDD, pp.
236–245 (2004)

18. Monreale, A., Pinelli, F., Trasarti, R., Giannotti, F.: WhereNext: a Location Pre-
dictor on Trajectory Pattern Mining. In: KDD, pp. 637–646 (2009)

19. Yang, J., Hu, M.: TrajPattern: Mining sequential patterns from imprecise trajec-
tories of mobile objects. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes,
F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT
2006. LNCS, vol. 3896, pp. 664–681. Springer, Heidelberg (2006)

20. Zheng, Y., Zhang, L., Xie, X., Ma, W.Y.: Mining Interesting Locations and Travel
Sequences From GPS Trajectories. In: WWW, pp. 791–800 (2009)

21. Zheng, Y., Zhang, L., Xie, X., Ma, W.Y.: Collaborative Location and Activity
Recommendations with GPS History Data. In: WWW, pp. 26–30 (2010)

STS: Complex Spatio-Temporal Sequence Mining in
Flickr�

Chunjie Zhou and Xiaofeng Meng

School of Information, Renmin University of China, Beijing, China
{lucyzcj,xfmeng}@ruc.edu.cn

Abstract. Nowadays, due to the increasing user requirements of efficient and
personalized services, a perfect travel plan is urgently needed. In this paper we
propose a novel complex spatio-temporal sequence (STS) mining in Flickr, which
retrieves the optimal STS in terms of distance, weight, visiting time, opening
hour, scene features, etc.. For example, when a traveler arrives at a city, the sys-
tem endow every scene with a weight automatically according to scene features
and user’s profiles. Then several interesting scenes (e.g., o1,o2,o3,o4,o5,o6) with
larger weights (e.g., w1,w2,w3,w4,w5,w6) will be chosen. The goal of our work
is to provide the traveler with the optimal STS, which passes through as many
chosen scenes as possible with the maximum weight and the minimum distance
within his travel time (e.g., one day). The difficulty of mining STS lies in the
consideration of the weight of each scene, and its difference for different users,
as well as the travel time limitation. In this paper, we provide two approximate
algorithms: a local optimization algorithm and a global optimization algorithm.
Finally, we give an experimental evaluation of the proposed algorithms using real
datasets in Flickr.

Keywords: spatio-temporal, sequence, Flickr, approximate.

1 Introduction

With the rapid development of modern society, people are concentrating more on ef-
ficient and personalized services. In the tourist industry, a perfect traveling plan can
help people to visit their favorite scenes as many as possible, and save a lot of time
and energy. However, at present it is hard for people to make a proper and personal-
ized traveling plan. Most of them follow other people’s general travel trajectory, but do
not consider their own profile and the best visiting order of scenes in this trajectory.
So only after finishing their travel, do they know which scene is their favorite, which
is not, and what is the perfect order of visits. Let’s consider such a scenario: a person
plans to travel on a holiday, but does not have a specific destination. In order to make a
better plan, they scan the tourist routes on the Internet or they seek advice from travel
companies. Then they choose a popular travel trajectory suggested by other people, but
do not consider their own interests. As a result, this sightless travel plan may cause the
following aftereffects: 1) waste a lot of time on the road among scenes; 2) waste lots of

� This research was partially supported by the grants from the Natural Science Foundation of
China (No.60833005, 61070055, 61003205); the National High-Tech Research and Develop-
ment Plan of China (No.2009AA011904).

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 208–223, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

STS: Complex Spatio-Temporal Sequence Mining in Flickr 209

Fig. 1. Two different sequences (red, blue) including six chosen scenes with different weights on
Google Maps and their timelines. Scenes of each sequence which have been visited are presented
in the order of visitation. On the timelines, transitions between tourist scenes are depicted by
rectangles and visiting time is given in minutes.

unnecessary money; 3) do not have enough time to visit their real favorite scenes, etc.
However, with increasing interests in perfect travels and modern advanced services,
more wonderful and personalized travel suggestions need to be supplied urgently.

In this paper, we propose a novel spatio-temporal sequence (STS) mining in Flickr.
The goal of STS is to provide a user with the optimal STS, which minimizes the total
traveling distance and maximizes the total weight within his limited travel time. In
consequence a user can make a perfect and personalized travel plan based on his own
profile before he starts to travel. The implementation of STS is based on two basic
pieces of knowledge. 1) the user’s profile. The methods of mining user’s profile have
been studied a lot [1]. Here we assume that every user’s profile is already stored in
his accompanied mobile devices. So when a user arrives at a city, the system can get
his profile from his mobile devices directly. 2) scene features. The methods of mining
scene features according to photos and tags in Flickr has been studied in our previous
work [6]. So here we directly use the database in [6] that stores the features of each
scene in each city. In this paper, we consider solutions for the STS problem as graphs
where tourist scenes are nodes and paths between these scenes are edges. To the best of
our knowledge, no prior work considers both point weight and edge distance together,
which are inversely proportional.

Efficient STS evaluation could become a new important feature of advanced services
in Flickr, and be useful for LBS (Location Based Services). The quality of these services

210 C. Zhou and X. Meng

can be greatly improved by supporting more advanced query types, like STS. An exam-
ple of STS is shown in Figure 1. When a traveler arrives at a city, the system endows
every scene with a weight automatically according to scene features and user’s pro-
files. Then six interesting scenes (e.g., o1,o2,o3,o4,o5,o6) with larger weights (e.g.,
w1,w2,w3,w4,w5,w6) will be chosen. Given these six certain scenes, a database that
stores the features of scenes will compute a proper STS (i.e., the red sequence) effi-
ciently. The blue sequence is created by a user who follows others’ general trajectory.
These two different sequences are presented in Figure 1. Tourist visits cover not only the
visiting time of scenes, but also the transitional cost among scenes (i.e., rectangles on
the timelines)[16]. Because of the different visiting order of the scenes, the duration of
these two sequences is variable, from under six hours (e.g., the red sequence) to over 9
hours (e.g., the blue sequence). Clearly, an ideal method is to propose an optimal tourist
sequence that not only re-arranges the order in which these scenes are visited with the
maximum value (see Section 2.1), but also should be within a limited travel time. For
the red sequence, there are only two significant transitions (i.e., 56 min between Wilcox
Lake and Ticonderoga, 30 min between Ticonderoga and High Peeks). The first three
visited tourist scenes (Ferris Lake, Silver Lake and Wilcox Lake) and the last two ones
(High Peeks and Varderwhacker) are adjacent and the tourist makes no pause between
them. Some factors influencing visiting order, for example, personal preferences (i.e.,
scene weight) and travel time must be taken into account.

STS can be considered as a special case of the knapsack problem (KSP) which is NP-
hard. The reduction from STS to KSP is straightforward. Given a set of m scenes from
which we select some interesting scenes to be included in the spatio-temporal sequence
in a limited travel time Ttotal . Each scene has a weight and a duration time. The objective
is to choose the set of ordered scenes that optimize the STS and maximize the travel
value (i.e., a minimum distance and a maximum tourist scene weight). By regarding
distance as the multiplication of velocity and time, each scene of STS can be reduced
to an item of KSP. There are also some differences between STS and KSP: 1) the goods
in KSP is disordered, but the scenes in STS is strictly ordered; 2) KSP has only one
objective function, but STS has two independent objective functions.

Contributions: This paper proposes a novel spatio-temporal sequence mining in Flickr
and studies methods for solving it efficiently. Two approximate algorithms that achieve
both local and global optimization are presented. In particular:

– We present a novel STS mining in Flickr, which can minimize the total traveling
distance and maximize the total weight within a limited travel time. This type of
mining has not been considered before.

– We give a formal definition of STS in road network. The weights of chosen scenes
are specified according to personal preferences. This is more similar to the real
world applications.

– We propose two types of algorithms for STS. Local optimization algorithms include
approximation in terms of distance, weight and value respectively.

– We perform an extensive experimental evaluation of the proposed algorithms on
real datasets in Flickr.

STS: Complex Spatio-Temporal Sequence Mining in Flickr 211

Paper Organization: The rest of the paper is organized as follows: Section 2 gives
the problem definition and related works. The approximate algorithms are presented in
Section 3. An experimental evaluation of the proposed algorithms using real datasets is
presented in Section 4. Finally, we give the conclusion and future works.

2 Preliminaries

This section formally defines the STS problem and introduces the basic notation that
will be used in the rest of the paper. Furthermore, a concise overview of related works
is presented.

2.1 Problem Definition

Table 1 lists the main symbols we use throughout this paper. Following standard nota-
tion, we use capital letters for sets (e.g., P is a set of all scenes), and lowercase letters
for vectors (e.g., oi).

Table 1. Symbols

Symbol Definition and Description
V the value of the sequence { o1, ...,ok }
P a set of all scenes { P1, ...,Pm }
R a chosen subset of scenes { o1, ...,ok }
Q a travel sequence
N the road network
Ttotal the total travel time
T (oi,o j) the time cost from the scene oi to o j

T (oi) the duration time of scene oi

DdisN
the distance among scenes in road network

wi the weight of the chosen scene oi

oi the ith chosen scene
α a balance factor
m the number of all scenes
k the number of chosen scenes

We consider solutions for the STS problem as graphs where tourist scenes are nodes
(labeled with scene’s name) and paths between these scenes are edges. Given a graph
G(O,ξ) with n nodes O= {o1, ...,on} and s edges ξ = {e1, ...,es}, each node in the graph
has a weight denoting the interest percentage of the traveler. The value of traversing
a scene sequence (oi, ...,o j) is expressed as V (oi, ...,o j) ≥ 0, which means the score
of the sequence. As shown in Eq.(1), the value of the sequence is in proportion to the
total weight of all chosen sences, but in contrast to the total distance. Here, we consider
distance among scenes in road network, which is more meaningful in the real travel
application scenario. Suppose that the average velocity of the traveler is υ , the distance
DdisN (oi,o j) can be denoted as υ*T (oi,o j). A balance factor α is defined between
weight and distance, which may be changed in different situations.

212 C. Zhou and X. Meng

V (oi, ...,o j) = α ∗ (wi + ...+ wj)+ (1−α)∗ 1
j

∑
k=i

DdisN (ok,ok+1)

= α ∗
j

∑
k=i

wk +(1−α)∗ 1
j

∑
k=i

υ ∗T (ok,ok+1)

(1)

Given a set of m scenes P = {P1, ...,Pm} (where m ≤ n) and a mapping function π :
Pj→oi that maps each scene Pj ∈ P to a node oi ∈ N. So scenes can be regarded as
special nodes, and be denoted by node symbols. In the rest of this paper, scenes and
nodes will share the same symbols. The STS problem can be defined as follows:

Definition 1. Given a set R ⊆ P (R= {o1,o2, ...,ok}), a source scene S and a destination
scene E, identify the traveling scene sequence Q= {S,o1, ...,ok,E} from S to E that visits
as many scenes in R as possible (i.e., maximize the total weight of the sequence), and
takes the minimum possible distance DdisN (Q) (i.e., for any other feasible sequence Q′
satisfying the condition DdisN (Q) ≤ DdisN (Q′)) in a limited travel time Ttotal .

The time constraint condition is in the following, which includes not only the duration
time of scenes, but also transitional cost among scenes. The duration time of scenes
can be achieved by [16], which is not our focus in this paper. We mainly consider the
temporal cost among scenes, namely, the distance between each couple of scenes.

k

∑
i=1

T (oi)+
k

∑
i=1, j=i+1

T (oi,o j) ≤ Ttotal (2)

2.2 Related Work

Rattenbury et al. [2] was an early attempt to discover both event and place names from
Flickr geolocated textual metadata, resulting in an application [3] for geographic image
retrieval, with representative and popular tags overlaid on a scalable map. Quack et al.
[4] downloaded 200,000 georeferenced Flickr images from nine urban areas and clus-
tered them using local image descriptors to discover place names and events, linking
some places to their Wikipedia articles. In contrast to [4] and [5], we do not limit our-
selves to geographic information of photographs since temporal information are also
important for mining STS. Elsewhere [6], we detailed methods for mining the features
of each scene in each city. Here we exploit these same results but shift our focus towards
mining spatio-temporal sequence according to personal preferences.

Zheng et al. [7] recorded GPS tracks of 107 users during a year to determine the in-
terestingness of tourist scenes. Cao et al. [8] presented techniques capable of extracting
semantic locations from GPS data. The authors of [9] also focused on mining similar
traveling sequences from multiple users’ GPS logs while the authors of [10] retrieved
maximum periodic patterns from spatio-temporal metadata. Girardin et al. [11] ana-
lyzed the tourist flows in the Province of Florence, Italy, based on a corpus of georef-
erenced Flickr photos and their results contribute to understanding how people travel.

STS: Complex Spatio-Temporal Sequence Mining in Flickr 213

Chen et al. [12,13] studied a problem of searching trajectories by locations, and the tar-
get was to find the K best-connected trajectories from a database such that it connected
the designated locations geographically. None of these approaches considers scene fea-
tures combined with user’s profile, which are central pieces of our approach. Whereas
[7] or [9] relied on accurate GPS traces for small scale regions and obtained from a rel-
atively reduced number of users. Flickr data is noisy, but covers most interesting tourist
regions of the world. As a result, we are able to propose itineraries in any region of the
world that is sufficiently covered by Flickr data.

Visiting duration is an important characteristic of trips and it is classically estimated
by domain experts [14]. The automatic extraction of visiting duration from Flickr meta-
data was only recently explored [15] but no separation between sightseeing and sight-
seeing + interior visits was proposed. Building on this latter work, Popescu et al. [16]
used visual image classification to separate these two types of visits and to calculate
typical visiting time of each case. In this paper, we use the method in [16] directly to
get the visiting time of scenes, which is not our focus here. We mainly consider the time
cost among scenes, namely, the distance between each couple of scenes.

Researches in spatial databases also address applications in spatial networks repre-
sented by graphs, instead of the traditional Euclidean space. Recent papers that extended
various types of queries to spatial networks were [17]. Clustering in a road network
database has been studied in [18], where a very efficient data structure was proposed
based on the ideas of [19]. Li et al. [20] discussed a trip planning query in both Eu-
clidean space and road network, which retrieved the best trip passing through at least
one point from each category. However, they did not consider the point weight and the
order of points. Likewise, we also study the STS problem in road network.

3 Approximation Algorithms

In this section we present two approximate algorithms for answering the spatio-temporal
sequence mining.

3.1 Local Optimization Algorithms

Three local optimization algorithms in terms of distance, weight and value will be pro-
vided in the following.

Approximation in terms of distance: The most intuitive algorithm for solving STS
is to form a sequence by iteratively computing the)m/2* nearest neighbor scenes of
the current scene, comparing the value of them, choosing the scene whose value is
maximum from all scenes that have not been visited yet. Then refresh the total time
by adding this scene’s duration time and the time cost between this scene and the last
scene. If the total time is less than Ttotal , add this scene to the sequence; else, restore
the total time and ignore this scene. Formally, given a partial sequence Qk with k<m,
Qk+1 is obtained by inserting the scene ok+1 whose value is larger than any scene in the
)m/2* nearest neighbor of ok. Meanwhile, this scene should not been covered yet and
satisfy the time limitation. In the end, the final sequence is produced by connecting ok

to E . We call this algorithm d-LOA , which is shown in Algorithm 1.

214 C. Zhou and X. Meng

Algorithm 1. d-LOA
Input:

The start scene, o = S;
The end scene, E;
The set of scene IDs, I = {1, ...,m};
The initial spatio-temporal sequence, Qa = {S};
The limited time, Ttotal ;

Output:
The d-local optimal spatio-temporal sequence, Qa;

1: loc = S;
2: t = Ttotal ;
3: while (I is not empty) and (t > 0) do
4: define an array DS for storing the distances from loc to other scenes;
5: for each n ∈ I do
6: DS(loc,n)=DdisN

(loc,n);
7: end for
8: HI = the set of)m/2* smallest DS scene IDs;
9: define an array V for storing the values from loc to other scenes;

10: for each n ∈ HI do
11: if T (n)+T (loc,n) ≤ t then
12: V (loc,n)=α*(wloc+wn)+(1-α)* 1

DS(loc,n) ;
13: end if
14: end for
15: o = the scene whose value is maximum in V ;
16: loc = o;
17: pop o from I;
18: put o to Qa;
19: t = t-(T (o)+T (loc,o));
20: end while
21: Qa ← { E };

Algorithm 2. w-LOA
Input:

The start scene, o = S;
The end scene, E;
The set of scene IDs, I = {1, ...,m};
The initial spatio-temporal sequence, Qa = {S};
The limited time, Ttotal ;

Output:
The w-local optimal spatio-temporal sequence, Qa;

1: loc = S;
2: t = Ttotal ;
3: while (I is not empty) and (t > 0) do
4: for each n ∈ I do
5: HI = the set of)m/2* largest wi scene IDs;
6: end for
7: define an array V for storing the values from loc to other scenes;
8: for each n ∈ HI do
9: if T (n)+T (loc,n) ≤ t then

10: V (loc,n)=α*(wloc+wn)+(1-α)* 1
DS(loc,n) ;

11: end if
12: end for
13: o = the scene whose value is maximum in V ;
14: loc = o;
15: pop o from I;
16: put o to Qa;
17: t = t-(T (o)+T (loc,o));
18: end while
19: Qa ← { E };

STS: Complex Spatio-Temporal Sequence Mining in Flickr 215

Approximation in terms of weight: Another algorithm for solving STS is to form a
sequence by iteratively performing the following operations. Choose the)m/2* maxi-
mum weight scenes, which connect to the current scene and have not been visited yet.
Compare the value of these)m/2* scenes, and select the scene whose value is maxi-
mum. Then refresh the total time by adding this scene’s duration time and the time cost
between this scene and the last scene. If the total time is less than Ttotal , add this scene
to the sequence; else, restore the total time and ignore this scene. We call this algorithm
w-LOA, which is similar to d-LOA and shown in Algorithm 2.

Approximation in terms of value (i.e., distance and weight): A hybrid local opti-
mization algorithm for solving STS is to form a sequence by iteratively performing the
following operations. Compute the values between the current scene and every other
scenes that have not been visited yet. Choose the scene whose value is maximum. Then
refresh the total time by adding this scene’s duration time and the time cost between
this scene and the last scene. If the total time is less than Ttotal , add this scene to the
sequence; else, restore the total time and ignore this scene. Formally, given a partial se-
quence Qk with k<m, Qk+1 is obtained by inserting the scene ok+1 whose value is larger
than any scene in R. Meanwhile, this scene should not been covered yet and satisfy the
time limitation. In the end, the final sequence is produced by connecting ok to E . We
call this algorithm v-LOA, which is shown in Algorithm 3.

Algorithm 3. v-LOA (G,R,S,E)
Input:

The start scene, o = S;
The end scene, E;
The set of scene IDs, I = {1, ...,m};
The initial spatio-temporal sequence, Qa = {S};
The limited time, Ttotal ;

Output:
The v-local optimal spatio-temporal sequence, Qa;

1: loc = S;
2: t = Ttotal ;
3: while (I is not empty) and (t > 0) do
4: define an array V for storing the values from loc to other scenes;
5: for each n ∈ I do
6: if T (n)+T (loc,n) ≤ t then
7: V (loc,n)=α*(wloc+wn)+(1-α)* 1

DS(loc,n) ;
8: end if
9: end for

10: o = the scene whose value is maximum in V ;
11: loc = o;
12: pop o from I;
13: put o to Qa;
14: t = t-(T (o)+T (loc,o));
15: end while
16: Qa ← { E };

3.2 Global Optimization Algorithm

This section introduces a novel heuristic algorithm, called GOA. This algorithm achieves
a much better result in comparison with the previous algorithms. GOA can find the op-
timal sequence if the heuristic function never overestimates the actual minimal value of

216 C. Zhou and X. Meng

reaching the goal. Here we select the heuristic as the value in Euclidean space, as it is
always less than or equal to the actual value in road network in this scenario (see Defi-
nition 2). This can guarantee the sequence optimality in terms of road network value.

Definition 2. For two scenes u and v (u,v ∈ N), DdisN (u,v) is the road network distance,
and DdisE (u,v) is the Euclidean distance. Correspondingly,VN (u,v) denotes the value of
the sequence from u to v in road network, while VE (u,v) means that in Euclidean space.
In this paper, we care more about personal preferences, namely, we set the balance
factor α larger than 0.5. So according to Eq.(1), VE (u,v) ≤ VN (u,v).

Maximum value sequence finding method. We can find the maximum value from
the current scene to any scene in R using the heuristic algorithm GOA. This can be
explicitly described by Theorem 1.

Theorem 1. For an intermediary scene o along the sequence between u and v, the
sequence with the maximum value VNE (u,o,v) is formalized by the sequence passing o.
Then, the following Eq. (3) holds:

VNE(u,o,v) = VN(u,o)+VE(o,v) (3)

Proof. Here VN (u,o) represents the value from the source scene u to the intermediary
scene o, while VE (o,v) is the heuristic function that estimates the value from o to the
destination scene v. According to the concept of naive heuristic algorithm, Eq. (3) holds.
Then, VN (u,o) and VE (o,v) can be obtained by Lemma 1 and Lemma 2 respectively.

Lemma 1. Assume that a source scene u:=o0 and a destination scene v:=ok. A road
network traveling sequence (o0,o1, · · · ,ok−1,ok) is a sequence of k+1 interesting scenes.
VN (o0,ok) denotes the value of the sequence from o0 to ok via o1, · · · ,ok−1:

k

∑
i=1

VN(oi−1,oi) = VN(o0,ok) (4)

Proof. The value function VN (o0,ok) accounts for a total value of the traveling sequence
from o0 to ok in road network. That is, this value is the cumulative sequence value
from the source scene o0 to a destination scene ok via as many scenes as possible from
o1, · · · ,ok−1. So the total value VN (o0,ok) can be divided into VN(o0,o1) + VN(o1,o2) +

· · · + VN(ok−1,ok), namely,
k

∑
i=1

VN(oi−1,oi).

Lemma 2. Let node o and v be the current scene and the destination scene respectively.
h(o) is the heuristic estimator. Then, for the value function VE (o,v) of a heuristic value,
the following Eq.(5) holds:

h(o) ≤VE(o,v) ≤VN(o,v) (5)

Proof. The heuristic estimator can find an optimal traveling sequence to a destination
scene if the destination scene is reachable. Hence, according to Definition 2, the heuris-
tic employs the value in Euclidean space as a lower bound value of a sequence from o

STS: Complex Spatio-Temporal Sequence Mining in Flickr 217

to v. For that reason, h(o)≤VE (o,v) holds when h(o) as the estimator is approximately
equal to the value in Euclidean space. Also, for the sequence value between o and v,
Eq. (5) holds by VE (o,v) ≤ VN (o,v). Because although the Euclidean distance is less
than or equal to the network distance, the balance factor is larger than 0.5, as follows:

VN(o,v) = α ∗ (wo + woi + ...+ wo j + wv)+

(1−α)∗ 1

DdisN (o,oi)+
j−1

∑
k=i

DdisN (ok,ok+1)+ DdisN (o j,v)

VE(o,v) = α ∗ (wo + wv)+ (1−α)∗ 1
DdisE (o,v)

So

ΔV = VN(o,v)−VE(o,v) = α ∗ (woi + ...+ wo j)+ (1−α)∗ 1
ΔDdis(o,v)

> 0

and this completes the proof.

Efficient optimal scene search. This paper employs the branch-and-bound technique
[21] to search an optimal traveling sequence (i.e., a minimum distance and a maximum
tourist scene weight). The technique is used to prune all of the unnecessary scenes from
multiple neighbor scenes connected with a given current scene by Theorem 2. That is,
to find the optimal STS whose value is maximum. This technique can select the tourist
scene oi, which has the minimum distance DdisNE (u, oi, v) out of the adjacent scenes
o1,o2, · · · ,oi, · · · ,ok emanating from u (i.e., DdisN (u, o1, v), DdisN (u,o2, v),· · ·, DdisN (u,
oi, v),· · ·,DdisN (u, ok, v) in road network. Meanwhile, this technique can also select
the tourist scene o j, which has the maximum traveling weight w (u, o j, v) among all
chosen scenes o1,o2, · · · ,o j, · · · ,ok. Hence, we define the optimal traveling sequence as
follows:

Definition 3. Let u and v be a source scene and a destination scene respectively. The
optimal traveling sequence is a set of ordered scenes from u to v with the maximum
value VNE (u, oi, v) (i.e., a minimum distance DdisNE (u, oi, v), and a maximum weight
w(u, oi, v)), where oi is a chosen scene adjacent to u.

Theorem 2 presents how to find the optimal traveling sequence by the branch-and-
bound technique and achieve V ∗

NE (u, oi, v) from VNE (u, oi, v).

Theorem 2. Given two scenes u and v (u,v ∈ N) in road network, if there exist a set
of chosen scenes o1,o2, · · · ,oi, · · · ,ok connected to scenes u and v, Eq. (6) holds by
Definition 3:

V ∗
NE(u,oi,v) = max

1≤i≤k
(VNE(u,oi,v)) (6)

Proof. Let adjacent chosen scenes oi, ...,o j be connected with a given scene u. If VNE

(u, oi, v) is larger than the value of any other adjacent chosen scenes, that is VNE (u, oi,
v) > VNE (u, ok, v), for ∀ k ∈ (i, j]. Hence, VNE (u, oi, v) can be the optimal traveling
sequence via oi among adjacent scenes connected to both u and v.

218 C. Zhou and X. Meng

According to Theorem 2, the branch-and-bound technique can prone some scenes by
pre-calculating values from the adjacent scenes to a destination scene.

Efficient traveling sequence finding. The result of STS query is the traveling sequence
of the ordered scenes and the paths to them. Figure 2 shows an example of finding
efficient STS from k scenes. First, we select a path from the source tourist scene S to
each of other chosen scenes by Eq. (3). This procedure begins with the selection of
the first scene with the maximum value to the source scene by Eq. (1) and then finds
the path to it. In order to prevent the predetermined paths from being re-searched, we
must allocate the heap for the optimal value of a scanned scene calculated by VN (S,oi)
and the path from S to oi. In Figure 2, we find STS starting from scanning the source
scene S to scenes o1, o2 and o3, choosing the scene o2, whose value is maximum in the
heap. Then calculate VNE (S, o2,o1), VNE (S, o2,o3) and VNE (S, o2,o4). In order to find
the optimal scene, we calculate V ∗

NE (S, o2,o4) by Eq. (6) and store the intermediary
path into the heap. As a result, the procedure yields the sequence S → o2 → o4 whose
value is maximum. Next, we refresh the sequence to other unvisited scenes with the
maximum value to the destination scene by Eq. (3). In the same way, if the total time
the sequence is less than or equal to the limited time Ttotal , we iteratively refresh the
sequence to remaining scenes.

Fig. 2. Find the efficient traveling sequence

Algorithm 4 describes our GOA algorithm. At first, add the start scene to the OPEN
list. Line 2 chooses a scene whose value is maximum from the OPEN list. We regard this
scene as the current scene. From Line 3 to Line 6, if the destination scene is added to the
CLOSE list, then the STS has been found, and the cycle stops. Else repeat the following
operations from Line 7 to Line 28. Choose a scene whose value is maximum from the
OPEN list. Then refresh the total time by adding the sum of this scene’s duration time
and the time cost between this scene and the last scene. If the total time is less than
Ttotal , switch this scene to the CLOSE list; else, restore the total time and ignore this
scene. For each of the other scenes adjacent to this current scene, if it is not walkable
or it is in the CLOSE list, ignore it. Otherwise do the following operations. If it is not
in the OPEN list, add it to the OPEN list. Regard the current scene as the parent of this
scene, and calculate the value of the scene. If it is already in the OPEN list, check if
there is other better path according to the value of the current sequence. If so, change
the parent of the scene to the current scene, and recalculate the value of the scene.

STS: Complex Spatio-Temporal Sequence Mining in Flickr 219

Algorithm 4. GOA
Input:

The start and end scene, o = S, E;
The set of scenes ID, I = {1, ...,m};
The limited time, Ttotal ;

Output:
1: The global optimal spatio-temporal sequence, Qa;

The array OPEN which stores all chosen but not visited scenes
2: OPEN = [S];

The array CLOSE which stores all visited scenes
3: CLOSE = [];
4: while OPEN IsNotEmpty and Ttotal > 0 do
5: pop the first scene in OPEN to o
6: put it into CLOSE;
7: if o equal E then
8: break;
9: end if

10: M=the number of children scenes of o in I;
11: for each s ∈ M do
12: if T (o)+T (o,s) ≤ Ttotal then
13: calculate the estimated value, EV (o,s)=α*(wo+ws)+(1-α)* 1

DdisN (o,s) ;

14: if s is not in OPEN or CLOSE then
15: pop s from I
16: put s into OPEN
17: else if s is in OPEN then
18: if EV (o,s) > EV (OPEN) then
19: update the value of OPEN;
20: end if
21: else
22: if EV (o,s) < EV (CLOSE) then
23: update the value of CLOSE;
24: pop s from CLOSE
25: put s into OPEN;
26: end if
27: end if
28: end if
29: end for
30: put o into CLOSE;
31: sort the scenes in OPEN by the EV descending
32: Ttotal = Ttotal-T(o)+T (s));
33: end while
34: reverse CLOSE
35: Qa = CLOSE;
36: return Qa;

4 Experimental Evaluation

This section presents a comprehensive performance evaluation of the proposed methods
for STS using Flickr datasets.

Experimental Setup. We obtained the real dataset in the city of Beijing with 286 scenes
and 658 edges. In this dataset, we generated some interesting scenes according to scene
features combined with user’s profile. Datasets with a varying number of interesting
scenes, varying balance factor, as well as varying limited total time were generated.
The total number of interesting scenes is in the range m ∈ [1,20], the balance factor is
in the range α ∈ [0,1], while the limited total time is in the range Ttotal ∈ [1h,8h], where
h denotes the time granularity “hour”.

220 C. Zhou and X. Meng

Performance Results. In this part we study the performance of the proposed four al-
gorithms. In order to prove the advantage of our algorithms, we compared them with
ARM (average random method). ARM is achieved by choosing scene randomly for 30
times, and taking the average value of them.

First, we study the effects of α and Ttotal on the value of STS. Figure 3 plots the value
of STS as a function of α , when Ttotal =8h. Figure 4 plots the value of STS as a function
of Ttotal , when α =0.7. In both cases, GOA outperforms v-LOA, d-LOA, w-LOA and
ARM obviously. The value of ARM is the lowest. With the increase of α and Ttotal ,
the performance of all algorithms increases. The algorithm d-LOA is greatly affected
by the relative locations of scenes, because it greedily follows the nearest)m/2* scenes
from the remaining scenes irrespective of its direction with respect to the destination
scene E . With the increase of α and Ttotal , the probability that d-LOA wanders off the
correct direction increases. In Figure 4 the trends of algorithm w-LOA and v-LOA are
almost the same. Because when α =0.7, the distance has little effect on the value of the
sequence, and the value of both algorithms is similar.

Fig. 3. The trend of VN with different α Fig. 4. The trend of VN with different Ttotal

Figure 5 plots the results of road network distance of STS as a function of Ttotal ,
when α =0.7. Figure 6 plots the total weight of STS as a function of Ttotal , when α
=0.7. With the increase of Ttotal , both the distance and the weight of STS in all algo-
rithms increase. The distance of algorithm d-LOA is less than the other four algorithms,
because it always greedily follows the nearest)m/2* scenes from the remaining scenes.
The weight of algorithm GOA outperforms v-LOA, d-LOA and w-LOA in Figure 6. So
our four algorithms can get better results than ARM.

Fig. 5. The trend of DdisN
with different Ttotal Fig. 6. The trend of w with different Ttotal

STS: Complex Spatio-Temporal Sequence Mining in Flickr 221

We also study the average length of STS as a function of Ttotal , when α =0.7 in Figure
7. In general, the algorithm GOA includes more scenes than the other four ones. The
reason is that GOA can get the global optimal sequence in road network. The number
of scenes in ARM is the smallest. From Figure 8 we can see the value of GOA is the
maximum, v-LOA and w-LOA are almost the same, which depends on the choice of α .
The value of ARM is the minimum.

We examine the trend of runtime with different number of scene set in Figure 9.
When the number of scene set is more than 50000, the runtime of v-LOA, d-LOA, and
w-LOA increase much faster. The trend of runtime with different Ttotal is examined in
Figure 10, when the number of scene set is 10000. In both cases, with the increase of
scene set, the runtime of all algorithms increase. The runtime of v-LOA is the maxi-
mum, and ARM’s is the minimum. The difference is the increase speed of runtime in
Figure 10 is slower than that in Figure 9.

Fig. 7. The length of STS with different Ttotal Fig. 8. The trend of VN of different algorithms

Fig. 9. Runtime with different NumSet Fig. 10. The trend of runtime with different Ttotal

5 Conclusions and Future Work

The goal of this paper is to provide users with the optimal spatio-temporal sequence that
passes through as many chosen scenes as possible with the maximum weight and the
minimum distance within a limited travel time. We first argued that this problem is NP-
hard, and gave a simple proof. Then formally defined the STS problem. We considered
solutions for the STS problem as graphs where tourist scenes were nodes and paths
between these scenes were edges. Two approximate algorithms: local optimization

222 C. Zhou and X. Meng

algorithms and a global optimization algorithm were provided. The experimental study
using real datasets in Flickr demonstrated the effectiveness of our proposed algorithms.

Acknowledgement

We would like to thank Pengfei Dai of Beijing University of Posts and Telecommuni-
cations for his helpful comments in the experiments.

References

1. Nasraoui, O., Soliman, M., Saka, E., et al.: A Web Usage Mining Framework for Mining
Evolving User Profiles in Dynamic Web Sites. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 202–215 (2008)

2. Rattenbury, T., Good, N., Naaman, M.: Towards Automatic Extraction of Event and Place
Semantics from Flickr Tags. In: Proceedings of the 30th Annual International ACM SIGIR
Conference (2007)

3. Ahern, S., Naaman, M., Nair, R., Yang, J.: World Explorer: Visualizing Aggregate Data from
Unstructured Text in Georeferenced Collections. In: Proceedings of the ACM IEEE Joint
Conference on Digital Libraries, JCDL (2007)

4. Quack, T., Leibe, B., van Gool, L.: World-Scale Mining of Objects and Events from Commu-
nity Photo Collections. In: Proceedings of the 7th ACM International Conference on Image
and Video Retrieval, CIVR (2008)

5. Crandall, D., Backstrom, L., Hutternlocher, D., Kleinberg, J.: Mapping the World’s photos.
In: Proceedings of the 18th International World Wide Web Conference, WWW (2009)

6. Zhou, C., Meng, X.: Complex Event Detection on Flickr. In: Proceedings of the 27th National
Database Conference of China, NDBC (2010)

7. Zheng, I., Zhang, L., Xie, X., Ma, W.Y.: Mining Interesting Locations and Travel Sequences
from GPS Trajectories. In: Proceedings of the 18th International World Wide Web Confer-
ence, WWW (2009)

8. Cao, X., Cong, G., Jensen, C.: Mining Significant Semantic Locations From GPS Data. In:
Proceedings of the VLDB Endowment, PVLDB, vol. 3(1) (2010)

9. Gonotti, F., et al.: Trajectory Pattern Mining. In: Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD), pp. 330–339
(2007)

10. Mamoulis, N., et al.: Indexing and Quering Historical Spatiotemporal Data. In: Proceedings
of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), pp. 236–245 (2004)

11. Girardin, F., Dal Fiore, F., Blat, J., Ratti, C.: Understanding of Tourist Dynamics from Ex-
plicitly Disclosed Location Information. In: Proceedings of the 4th International Symposium
on LBS and Telecartography (2007)

12. Chen, Z., Shen, H.T., Zhou, X., Yu, J.X.: Monitoring Path Nearest Neighbor in Road Net-
works. In: Proceedings of the 35th SIGMOD International Conference on Management of
Data, SIGMOD (2009)

13. Chen, Z., Shen, H.T., Zhou, X., Zheng, Y., Xie, X.: Searching Trajectories by Locations-An
Efficiency Study. In: Proceedings of the 36th SIGMOD International Conference on Man-
agement of Data, SIGMOD (2010)

14. Home and Abroad, http://homeandabroad.com
15. Popescu, A., Grefenstette, G.: Deducing Trip Related Information from Flickr. In: Proceed-

ings of the 18th International World Wide Web Conference, WWW (2009)

http://homeandabroad.com

STS: Complex Spatio-Temporal Sequence Mining in Flickr 223

16. Popescu, A., Grefenstette, G., Alain, P.: Mining Tourist Information from User-Supplied
Collections. In: Proceedings of The 18th ACM Conference on Information and Knowledge
Management, CIKM (2009)

17. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query Processing in Spatial Network
Databases. In: Proceedings of 29th International Conference on Very Large Data Bases,
VLDB (2003)

18. Yiu, M., Mamoulis, N.: Clustering Objects on a Spatial Network. In: Proceedings of the 30th
SIGMOD International Conference on Management of Data, SIGMOD (2004)

19. Shekhar, S., Liu, D.: CCAM: A Connectivity Clustered Acccess Method for Networks and
Network Computations. IEEE Transactions on Knowledge and Data Engineering (TKDE),
102–119 (1997)

20. Li, F., Cheng, D.: On trip planning queries in spatial databases. In: Anshelevich, E.,
Egenhofer, M.J., Hwang, J. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 273–290. Springer,
Heidelberg (2005)

21. Tao, Y., Papadias, D., Shen, Q.: Continuous Nearest Neighbor Search. In: Proceedings of
28th International Conference on Very Large Data Bases (VLDB), pp. 287–298 (2002)

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 224–238, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Mining High Utility Mobile Sequential Patterns in Mobile
Commerce Environments

Bai-En Shie1, Hui-Fang Hsiao1, Vincent S. Tseng1, and Philip S. Yu2

1 Department of Computer Science and Information Engineering,
National Cheng Kung University, Taiwan, ROC

2 Department of Computer Science, University of Illinois at Chicago, Chicago, Illinois, USA
{brianshie,karolter1130}@gmail.com,

tsengsm@mail.ncku.edu.tw, psyu@cs.uic.edu

Abstract. Mining user behaviors in mobile environments is an emerging and
important topic in data mining fields. Previous researches have combined
moving paths and purchase transactions to find mobile sequential patterns.
However, these patterns cannot reflect actual profits of items in transaction
databases. In this work, we explore a new problem of mining high utility mobile
sequential patterns by integrating mobile data mining with utility mining. To
the best of our knowledge, this is the first work that combines mobility patterns
with high utility patterns to find high utility mobile sequential patterns, which
are mobile sequential patterns with their utilities. Two tree-based methods are
proposed for mining high utility mobile sequential patterns. A series of analyses
on the performance of the two algorithms are conducted through experimental
evaluations. The results show that the proposed algorithms deliver better
performance than the state-of-the-art one under various conditions.

Keywords: High utility mobile sequential pattern; utility mining; mobility pattern
mining; mobile environment.

1 Introduction

With the rapid development of tele-communication technologies, mobile devices and
wireless applications become increasingly popular. One’s current position can be
acquired via a mobile device with GPS service. With a series of users’ moving logs, we
can know the moving paths of mobile users. Besides, a greater number of people are
using mobile devices to purchase mobile services online by credit cards. Combining
moving logs and payment records, mobile transaction sequences, which are the
sequences of moving paths with transactions, are obtained. Yun et al. [14] first proposed
a framework for discovering mobile sequential patterns, i.e., the sequential patterns with
their moving paths in mobile transaction sequence databases. Mobile sequential patterns
can be applied in many applications, such as route planning in mobile commerce
environment and maintaining website structures of online shopping websites.

However, in mobile sequential pattern mining, the importance of items is not
considered. In the framework of traditional frequent pattern mining, utility mining [3,
4, 7, 8, 12, 13] is proposed for solving this problem. Instead of finding frequent
patterns, utility mining discovers the patterns with high utilities, which are called high

 Mining High Utility Mobile Sequential Patterns in Mobile Commerce Environments 225

utility patterns. By utility mining, patterns with higher importance/profit/user interests
can be found. For instance, the frequent patterns involving refrigerators may not be
easily found from the transaction databases of hypermarkets since the frequency of
purchasing refrigerators is much less than that of other items. But if we apply utility
mining, the high utility patterns about refrigerators may be found since the utilities, i.e.,
the profits, of refrigerators are higher than that of others. Therefore, it is obvious that
pushing utility mining into the framework of mobility pattern mining is an essential
topic. If decision makers know which patterns are more valuable, they can choose
more appropriate actions based on the useful information. Considering the utilities of
items in customers' frequent purchasing patterns and moving paths is crucial in many
domains, such as finding valuable patterns in mobile commerce environments,
metropolitan planning and maintaining the structure and designing promotions for
online shopping websites.

In view of the above issues, we aim at integrating mobility pattern mining with
utility mining to find high utility mobile sequential patterns in this research. The
proposed pattern must be not only high utility but also frequent. In other words, it is
composed of both high utility purchasing pattern and frequent moving path. This is
because applying only utility mining to the mobile environments is insufficient. A
moving path with high utility but low frequency is unpractical. Users may be confused
with a number of these redundant patterns. By this consideration, the proposed pattern
is more useful than the patterns that apply only utility mining or frequent pattern
mining to the mobile environments.

In this paper, we propose two tree-based methods, namely UMSPDFG (mining high
Utility Mobile Sequential Patterns with a tree-based Depth First Generation strategy)
and UMSPBFG (mining high Utility Mobile Sequential Patterns with a tree-based
Breadth First Generation strategy). The main difference of the two algorithms is the
method for generating the length 2 patterns during the mining process, which is the
bottleneck of pattern mining. Both of the algorithms use a tree structure MTS-Tree
(Mobile Transaction Sequence Tree) to summarize the information about locations,
items, paths and utilities in mobile transaction databases. To the best of our knowledge,
this is the first work that explores the integration of mobility pattern mining and utility
mining. The experimental results show that UMSPBFG has better performance than
UMSPDFG. Moreover, the performance of the two proposed tree-based methods
outperforms the compared level-wise algorithm which is improved by the state-of-the-
art mobile sequential pattern algorithm [14].

Major contributions of this work are described as follows. First, this research is the
first work that integrates high utility pattern mining with mobility pattern mining so as
to explore the new problem of mining high utility mobile sequential patterns. Second,
different methods proposed under different pattern generation strategies are proposed
for solving this problem. Third, a series of detailed experiments is conducted to
evaluate the performance of the proposed methods in different conditions. By the
combination of high utility patterns and moving paths, highly profitable mobile
sequential patterns can be found. We expect that the useful patterns can bring novel
and insightful information in mobile commerce environments.

The remainder of this paper is organized as follows. We briefly review the related
work in section 2. Section 3 is the problem definition of this research. In section 4, we
describe the proposed algorithms. The experimental evaluation for performance study
is made in section 5. The conclusions and future work are given in section 6.

226 B.-E. Shie et al.

2 Related Work

Extensive studies have been proposed for finding frequent patterns in transaction
databases [1, 2, 5, 10]. Frequent itemset mining [1, 5] is the most popular topic among
them. Apriori [1] is the pioneer for mining frequent itemsets from transaction databases
by a level-wise candidate generation-and-test method. Tree-based frequent itemset
mining algorithms such as FP-Growth [5] were proposed afterward. FP-Growth
improves the efficiency of frequent itemset mining since it does not have to generate
candidate itemsets during the mining process and it only scans the database twice.
Afterwards, sequential pattern mining [2, 10] is proposed for finding customer
behaviors in transaction databases. As an extension method of Apriori, AprioriAll [2]
also use a level-wise framework to find sequential patterns. On the contrary,
PrefixSpan [10] finds sequential patterns directly from projected databases without
generating any candidate pattern. Thus, the performance can be more improved.

Mining user behaviors in mobile environments [6, 9, 11, 14] is an emerging topic in
the frequent pattern mining field. SMAP-Mine [11] was first proposed for finding
customers' mobile access patterns. However, in different time periods, users' popular
services may be totally different. Thus, T-Map algorithm [6] was proposed to find
temporal mobile access patterns in different time intervals. Although users' mobile
access patterns are important, their moving paths are also essential. Therefore, Yun et al.
[14] proposed a framework which combines moving paths and sequential patterns to
find mobile sequential patterns. Moreover, Lu et al. [9] proposed a framework for
discovering cluster-based mobile sequential patterns. The customers whose moving
paths and transactions are similar will be grouped into the same clusters. By this
framework, the discovered patterns may be closer to the customer behaviors in real life.

In the above researches, the profits of items are not considered yet. In transaction
databases, items have different profits. Utility mining [3, 4, 7, 8, 12, 13] is proposed to
conquer this problem. Among these researches, Liu et al. [8] proposed Two-Phase
algorithm which utilizes the transaction-weighted downward closure property to
maintain the downward closure property in the processes of utility mining. On the
other hand, Ahmed et al. [3] employed a tree structure, named IHUP-Tree, to maintain
essential information about utility mining. Different from Two-Phase, it avoids
scanning database multiple times and generating candidate patterns. Although IHUP-
Tree achieves a better performance than Two-Phase, it still produces too many high
transaction weighted utilization itemsets. Therefore, Tseng et al. proposed UP-Growth
[12], which applies four strategies for decreasing the estimated utilities during the
mining processes. By these strategies, the number of possible high utility itemsets is
effectively reduced and the performance of utility mining is further improved.

By the above literature reviews, although there are many researches about mobility
pattern mining and utility mining, there is no research about the combination of the
two topics. This paper is the first work which integrates the two topics to find high
utility patterns with frequent moving paths in mobile environments.

3 Problem Definition

In this section, we define basic notations for mining high utility mobile sequential
patterns in mobile environments in detail.

 Mining High Utility Mobile Sequential Patterns in Mobile Commerce Environments 227

Table 1. Mobile transaction sequence database DB

SID Mobile transaction sequence SU
S1 <(A; {[i1, 2]}), (B; null), (C; {[i2, 1]}), (D; {[i4, 1]}), (E; null), (F; {[i5, 2]})> 54

S2
<(A; {[i1, 3]}), (B; null), (C; {[i2, 2], [i3, 5]}), (K; null), (E; {[i6, 10]}),
(F; {[i5, 4]}), (G; {[i8, 2]}), (L; null), (H; {[i7, 2]})>

132

S3
<(A; {[i1, 3]}), (B; null), (C; {[i2, 1], [i3, 5]}), (D; {[i4, 2]}), (E; null),
(F; {[i5, 1], [i6, 2]}), (G; null), (H; {[i7, 1]})>

72

S4
<(A; {[i1, 1]}), (W; null), (C; {[i3, 10]}), (E; null), (F; {[i5, 1]}), (G; {[i8,
2]}), (L; null), (H; {[i7, 1]}), (E; {[i9, 1]})>

59

S5
<(A; {[i1, 4]}), (B; null), (C; {[i3, 10]}), (D; {[i4, 1]}), (E; null), (F; {[i5, 1]}),
(G; null), (H; {[i7, 2]})>

73

S6 <(C; {[i2, 2]}), (D; null), (E; {[i9, 1]}), (F; {[i5, 1]})> 31

Table 2. Utility table

Item i1 i2 i3 i4 i5 i6 i7 i8 i9
Utility 1 5 3 11 18 2 5 1 3

Let L = {l1, l2, …, lp} be a set of locations in a mobile commerce environment

and I = {i1, i2, …, ig} be a set of items sold at the locations. An itemset is denoted
as {i1, i2, …, ik}, where each item iv ∈ I, kv ≤≤1 and gk ≤≤1 . Given a mobile
transaction sequence database D, a mobile transaction sequence S = <T1, T2, ..., Tn>
is a set of transactions ordered by time, where a transaction Tj =
(lj;]},[],...,,[],,{[

2211 hh jjjjjj qiqiqi) represents that a user made Tj in lj, where nj ≤≤1 .

In Tj, the purchased quantity of item
pji is

pjq , where hp ≤≤1 . A path is denoted as

l1 l2 … lr, where lj ⊂ L and rj ≤≤1 .

Definition 1: A loc-itemset <lloc; {i1, i2, …, ig}> signifies the itemset {i1, i2, …, ig} was
traded in lloc, where lloc∈L and {i1, i2 , …, ig} ⊆ I. The utility of a loc-itemset Y = <lloc;
{i1, i2, …, ig}> in a mobile transaction sequence database D is denoted as u(Y) and
defined as ∑ ∑∈∧⊆ =

><
)()(: 1

),;(
DSSYS

g

k jkloc
jjj

Silu , where u(<lloc; ik>, Sj), defined as

w(ik)×
kj

q , is the utility of the loc-item <lloc; ik> in the mobile transaction sequence Sj.

w(ik) is the unit profit of the item ik recorded in a utility table.
Take the mobile transaction sequence database in Table 1 and the utility table in

Table 2 as an example, u(<C; {i2, i3}>) = u(<C; {i2, i3}>, S2) + u(<C; {i2, i3}>, S3) =
(5× 2+3× 5) + (5× 1+3× 5) = 25+20 = 45.

Definition 2: A loc-pattern X is a list of loc-itemsets. It is denoted as

><>><< },...,,{;...},...,,{;},...,,{; 21212211 222111 mmm gmgg iiiliiiliiil . The utility of a loc-

pattern X in Sj is denoted as u(X, Sj) and defined as ∑ ∈∀ XY jSYu),(. The utility of a

loc-pattern X in D is denoted as u(X) and defined as ∑ ∈∧⊆)()(
),(

DSSX j
jj

SXu .

For instance, for the loc-pattern X1 = <A; i1><C; {i2, i3}> in Table 1, u(X1, S2) =
u(<A; i1>, S2) + u(<C;{i2, i3}>, S2) = 28, and u(X1) = u(X1,S2) + u(X1,S3) = 28+23 = 51.

228 B.-E. Shie et al.

Definition 3: A moving pattern is composed of a loc-pattern and a path. The utility of
a moving pattern P= };},...,,{;...},...,,{;},...,,{;{ 21212211 222111

><>><<<
mmm gmgg iiiliiiliiil

l1l2…lm>, denoted as u(P), is defined as the sum of utilities of the loc-patterns in P in
the mobile transaction sequences which contain the path of P in D. The support of a
moving pattern P, denoted as sup(P), is defined as the number of mobile transaction
sequences which contain P in D. Similarly, the support of a loc-itemset or a loc-pattern
is also defined as the number of mobile transaction sequences which contain it in D.

For example, for the moving path P1 = <{<A; i1><C; {i2, i3}>}; ABC>, u(P1) =
u(<A; i1><C; {i2, i3}>, S2) + u(<A; i1><C; {i2, i3}>, S3) = 28+23 = 51, and sup(P1) = 2.

Definition 4: Given a minimum support threshold δ and a minimum utility threshold ε,
a moving pattern P is called a high utility mobile sequential pattern, abbreviated as
UMSP, if sup(P) δ≥ and ε≥)(Pu . The length of a pattern is the number of loc-
itemsets in this pattern. A pattern with length k is denoted as k-pattern.

For example, in Table 1, if δ = 2 and ε = 50, the moving pattern P1 = <{<A; i1><C;
{i2, i3}>}; ABC> is a 2-UMSP since sup(P1) ≥ 2 and u(P1) > 50.

After addressing the problem definition of mining high utility mobile sequential
patterns in mobile environments, we introduce the sequence weighted utilization and
sequence weighted downward closure property (abbreviated as SWDC), which are
extended from [8].

Definition 5: The sequence utility of mobile transaction sequence Sj is denoted as
SU(Sj) and defined as the sum of the utilities of all items in Sj.

For example, SU(S6) = u(<C; i2>, S6)+u(<E; i9>, S6)+u(<F; i5>, S6) = 10+3+18 = 31.

Definition 6: The sequence weighted utilization, abbreviated as SWU, of a loc-itemset,
a loc-pattern, or a moving pattern is defined as the sum of SU of the mobile transaction
sequences which contain it in D.

For example, SWU(<D; i4>) = SU(S1)+SU(S3)+SU(S5) = 54+72+73 = 199; SWU(<A;
i1><C;{i2,i3}>) = SU(S2)+SU(S3) = 132+72 = 204; SWU(<{<A;i1><C;{i2,i3}>}; ABC>)
= SWU(<A; i1><C;{i2, i3}>, S2)+SWU(<A; i1> <C;{i2, i3}>, S3) = 132+72 = 204.

Definition 7: A pattern Y is called a high sequence weighted utilization pattern, if
sup(Y) δ≥ and SWU(Y) ε≥ . In the following paragraphs, high sequence weighted
utilization loc-itemset, high sequence weighted utilization loc-pattern and high
sequence weighted utilization mobile sequential pattern are abbreviated as WULI,
WULP and WUMSP, respectively.

Property 1. (Sequence weighted downward closure property): For any pattern P, if
P is not a WUMSP, any superset of P is not a WUMSP.

Proof: Assume that there is a pattern P and P’ is a superset of P. By Definition 6,
SWU(P) ≥ SWU(P’). If SWU(P)<ε , SWU(P’)<ε . Similarly, by Definition 3, sup(P)≥
sup(P’). If sup(P)<δ , sup(P’)<δ . By the above two conditions, we can obviously
know that if P is not a WUMSP, any superset of P is not a WUMSP. ■

Problem Statement. Given a mobile transaction sequence database, a pre-defined
utility table, a minimum utility threshold and a minimum support threshold, the
problem of mining high utility mobile sequential patterns from the mobile transaction
sequence database is to discover all high utility mobile sequential patterns whose
supports and utilities are larger than or equal to the two thresholds in this database.

 Mining High Utility Mobile Sequential Patterns in Mobile Commerce Environments 229

4 Proposed Methods

4.1 Algorithm UMSPDFG

The workflow of the proposed algorithm UMSPDFG (high Utility Mobile Sequential
Pattern mining with a tree-based Depth First Generation strategy) is shown in Figure
1. In step 1, WULIs and a mapping table are generated. Then a MTS-Tree (Mobile
Transaction Sequence Tree) is constructed in step 2. In step 3, WUMSPs are generated
by mining the MTS-Tree with the depth first generation strategy. Finally in step 4,
UMSPs are generated by checking the actual utility of WUMSPs. In this section, we
describe the construction of MTS-tree first and then address the generation of
WUMSP.

We first address the process of generating WULIs by an example. Take the mobile
transaction sequence database in Table 1 and the utility table in Table 2 for example.
Assume the minimum support threshold is 2 and the minimum utility threshold is 100.
In the first step, WULIs whose supports and SWUs are larger than or equal to the two
thresholds are generated by the processes similar to [8]. In this case, eight WULIs
shown in Table 3 are generated. Note that they are also 1-WULPs. Then the 1-WULPs
are mapped sequentially into a mapping table as shown in Table 3.

4.1.1 The Construction of MTS-Tree
The procedures of MTS-Tree construction are shown in Figure 2. The construction of
MTS-Tree is completed after one scan of the original database. Without loss of
generality, we give a formal definition for MTS-Tree first.

Definition 8. (MTS-Tree): In MTS-Tree, each node N includes N.location, N.itemset, N.SID
and a path table. N is represented by the form <N.location [N.itemset1]: N.SID1; [N.itemset2]:
N.SID2; ... >. N.location records the node's location. Each node has several itemsets N.itemset
which represent the itemsets traded in the same location. For each itemset in a node, it
has a string of sequence identifiers, N.SID, which records the mobile transaction
sequences with the item in it. A path table records the paths, which are a series of
locations with no item purchased from N's parent node to N, and the SIDs of the paths.
Moreover, a header table is applied to efficiently traverse the nodes of a MTS-Tree. In
a header table, each entry is composed of a 1-WULP, its SWU and support, and a link
which points to its first occurrence in MTS-Tree.

Mobile
transaction
sequence
database

Utility
table

Min_utility

Min_sup

Input

Step 4: Finding UMSPs
within WUMSPs

Process

Output

Phase I: Mining WUMSPs Phase II: Finding UMSPs

Step 2: MTS-Tree construction

Step 1: Generating WULIs

Step 3: Generating WUMSPs
by mining MTS-Tree High utility mobile

sequential patterns

Fig. 1. The framework of the proposed algorithm UMSPDFG

230 B.-E. Shie et al.

Table 3. Mapping table

1-WULP A;i1 C;i2 C;i3 D;i4 F;i5 G;i8 H;i7 C;{i2,i3}
After Mapping A;t1 C;t2 C;t3 D;t4 F;t5 G;t6 H;t7 C;t8

Algorithm (Step 2 of UMSPDFG: MTS-Tree construction)
Input: Mobile transaction sequence database DB, mapping table MT
Output: MTS-Tree
1. create a header table H
2. create a root R for an MTS-Tree T
3. foreach mobile transaction sequence Si in DB do
4. let path_start = false
5. call InsertMTS_Tree(Si, R, MT, sid)

Procedure InsertMTS_Tree(Si, R, MT, sid)
1. if Si is not NULL then
2. divide Si into [x|X]
 /* x: the first loc-itemset of Si. X: the remaining list of Si */
3. let temppath = NULL
4. if there is a combination y' of x exists in MT then
5. convert x to the HTWULI y in MT
6. if R has a child node C where C.location = y.location then
7. if y.item exists in C.items then
8. insert sid into C.[y.item].sid
9. else
10. create a new item y.item to C.items
11. insert sid to C.[y.item].sid
12. else
13. create a new node C as a child node of R
14. let C.location = y.location
15. let C.item = y.item
16. append sid to C.[y.item].sid
17. update y’s WULI, sup, TWU in H
18. if temppath = NULL then
19. append temppath and sid to C.pathtable
20. let temppath = NULL
21. else
22. append x.location to temppath
23. if X is not NULL then
24. call InsertMTS_Tree(X, C, MT, sid)

Fig. 2. The procedure of MTS-Tree construction

Now we introduce the processes of the MTS-Tree construction, i.e., the second step
of UMSPDFG, by continuing the example in Section 4.1. At the beginning, the first
mobile transaction sequence S1 is read. The first transaction in S1 is (A; {[i1, 2]}), so
we check the loc-itemset <A; i1> in the mapping table in Table 3. After checking, the
loc-itemset is converted into <A; t1>, it is then inserted into MTS-Tree. Since there is
no corresponding node in the MTS-Tree, a new node <A[t1]: S1> is created. The loc-
itemset <A; t1> is also inserted as an entry into the header table.

Subsequently, the second transaction (B; null) is evaluated. Since it has no
purchased item, the location B is kept as a temporary path. Then the third transaction
(C; {[i2, 1]}) is checked in the mapping table and converted into <C; t2>. Then the
node <C[t2]: S1> is created and inserted as a child node of <A[t1]: S1>. Since there is a

 Mining High Utility Mobile Sequential Patterns in Mobile Commerce Environments 231

path B in the temp path, B and its SID S1 are recorded into the path table of the node
<C[t2]: S1>. Then the information in the temp path is cleared. The loc-itemset <C; t2>
and its relevant information are also inserted into the header table. The remaining
transactions in S1 are inserted into the MTS-Tree sequentially by the same way.

Subsequently, the second mobile transaction sequence S2 is read. For the first
transaction (A; {[i1, 3]}), it is converted into <A; t1>. Since there is already a node
<A[t1]: S1> with the same location A in MTS-Tree, the SID S2, SWU and support of
the transaction are updated in the node and its entry in the header table, respectively.
Then the location B of the second transaction (B; null) is kept into the temp path. Next,
the third transaction (C; {[i2, 2], [i3, 5]}) is evaluated. By the mapping table, it is first
converted into <C; t2>, <C; t3> and <C; t8>. Since there is a node <C[t2]: S1> with
location C and item t2, <C; t2> can be just updated on the SID in the node by the
processes mentioned above. On the other hand, for <C; t3> and <C; t8>, their items and
SIDs are stored into the node. After processing this transaction, the node becomes <C
[t2]: S1 S2; [t3]: S2; [t8]: S2>. The remaining transactions in S2 are inserted into the
MTS-Tree sequentially by the same way. After all sequences in D are inserted, we can
get the MTS-Tree in Figure 3.

4.1.2 Generating WUMSPs from MTS-Tree
After constructing MTS-Tree, now we show the step 3 of UMSPDFG. The purpose of
this step is generating WUMSPs from MTS-Tree by the depth first generation strategy.
The procedures are shown in Figure 4. First, WULPs and their conditional MTS-Trees
are generated by tracing the links of the entries in the header table of the MTS-Tree.
Then the WULPs are inserted into a WUMSP-Tree (high sequence Weighted
Utilization Mobile Sequential Pattern Tree), which is used for storing the WUMSPs.
Then the paths of the WULPs in the WUMSP-Tree are traced in the original MTS-Tree
and the WUMSPs are generated.

Definition 9. (WUMSP-Tree): In a WUMSP-Tree, each node is a WULI. For a node
N, N.SID and its path table are recorded. N is represented by the form <N.WULI: N.SID>.
For the WULI in a node, it has a string of sequence identifiers, N.SID, which records the
mobile ransaction sequences with the WULI occurring in it. A path table records the
paths from the node N to root and the SIDs of the paths.

Root

A[t1]: S1S2S3S4S5

C[t2]: S1S2S3

[t3]: S2S3S4S5

[t8]: S2S3

F[t5]: S2S4

Path SID

KE S2

E S4

Path SID

KE S2

E S4

1-WULP SWU Sup

<A; t1> 390 5

<C; t2> 289 4

<C; t3> 336 4

<C; t8> 204 2

<D; t4> 199 3

<F; t5> 421 6

<G; t6> 191 2

<H; t7> 336 4

1-WULP SWU Sup

<A; t1> 390 5

<C; t2> 289 4

<C; t3> 336 4

<C; t8> 204 2

<D; t4> 199 3

<F; t5> 421 6

<G; t6> 191 2

<H; t7> 336 4

G[t6]: S2S4

H[t7]: S2S4

Path SID

L S2S4

Path SID

L S2S4

C[t2]: S6

F[t5]: S6

Path SID

DE S6

Path SID

DE S6

D[t4]: S1S3S5

F[t5]: S1S3S5

Path SID

E S1S3S5

Path SID

E S1S3S5

Path SID

G S3S5

Path SID

G S3S5

Path table

Header table

Path SID

B S1S2S3S5

W S4

Path SID

B S1S2S3S5

W S4

H[t7]: S3S5

Fig. 3. An Example of MTS-Tree

232 B.-E. Shie et al.

Algorithm (Step 3 of UMSPDFG: Generating WUMSPs)
Input: A MTS-Tree T, a header table H, a minimum utility threshold ε,
and a minimum support threshold δ
Output: A WUMSP-Tree T’
1. Let T’ be an WUMSP-Tree
2. foreach WULI α in the bottom entry of H do
3. trace the link of WULI α in H to get 1-WULP
4. add 1-WULP α and sid to T’
5. create a conditional MTS-Tree CTα and a header table Hα
6. call WUMSP-Mine(CTα, Hα, α)

Procedure WUMSP-Mine(CTα, Hα, α)
1. foreach WULI β in Hα do
2. if sup(β)< δ or SWU(β)< ε then
3. delete β from CTα and Hα
4. if there exists an empty node X in CTα
5. delete X
6. append the X’s children nodes to X’s parent node
7. foreach WULI β of HTα do
8. add WULP βα and its sids to T’
9. trace the paths of βα in T
10. calculate the corresponding supports and SWUs
11. add the paths to the path table of βα in the node of β in T’
 /* line 12-14: Path pre-checking technique*/
12. if there exists a path in βα to form a WUMSP Y, such that

sup(Y)≧ δ and SWU(Y)≧ ε then
13. create a conditional MTS-Tree CTβα and a header table Hβα
14. call WUMSP-Mine(CTβα, Hβα, βα)

Fig. 4. The procedure of generating WULPs

1-WULP SWU Sup

<A; t1> 336 4

<C; t2> 204 2

<C; t3> 336 4

<C; t8> 204 2

<D; t4> 145 2

<F; t5> 336 4

<G; t6> 191 2

1-WULP SWU Sup

<A; t1> 336 4

<C; t2> 204 2

<C; t3> 336 4

<C; t8> 204 2

<D; t4> 145 2

<F; t5> 336 4

<G; t6> 191 2

(b) WUMSP-Tree

<G; t6>:
S2S4

Path SID

GLH S2S4

Path SID

GLH S2S4

Root

A[t1]: S2S3S4S5

C[t2]: S2S3

[t3]: S2S3S4S5

[t8]: S2S3

D[t4]: S3S5

F[t5]: S3S5

F[t5]: S2S4

G[t6]: S2S4

(a) Conditional MTS-tree of <H; t7>

Sup=2, SWU=191

Header table

<H; t7>:
S2S3S4S5

Root

Path table

Fig. 5. Conditional MTS-Tree of <H; t7> and the corresponding WUMSP-Tree

By tracing from a node to root in a WUMSP-Tree, a WULP can be derived.
Furthermore, the corresponding WUMSPs of the WULP can be obtained after
combining the paths in the node. Take the WUMSP-Tree in Figure 5 for example, we
can get a WULP <G;t6><H;t7> by tracing from the node to root. Moreover, we can get
a WUMSP <{<G;t6><H;t7>}; GLH> by combining the path GLH in the node <G;t6>
with the WULP. After tracing all nodes in WUMSP-Tree, all WUMSPs can be
obtained. By storing the WUMSPs in the WUMSP-Tree, the patterns can be
compressed in the tree and the memory storage can be saved.

 Mining High Utility Mobile Sequential Patterns in Mobile Commerce Environments 233

During the processes of generating WULPs, if the length of the WULPs is larger
than 1, besides the processes of tracing path, a path pre-checking technique will be
performed to prune the moving patterns which can not fit the user-specified thresholds.

Definition 10. (Path pre-checking technique): If there exists no path in a WULP X to
form a WUMP Y such that sup(Y) δ≥ and SWU(Y) ε≥ , X is pruned.

Path pre-checking technique is used for trimming the search space. By using this
technique, the number of conditional MTS-Tree can be reduced effectively and the
mining performance can be more improved.

Now we introduce the processes of the step 3, i.e., generating WUMSPs from MTS-
Tree, by continuing the example in the previous section. First, the last entry <H;t7> in
the header table of the MTS-Tree shown in Figure 3 is checked and a WULP <H;t7> is
generated. Then <H;t7> and its SIDs are inserted as the first child node of the root of
the WUMSP-Tree. Since <H;t7> is a 1-WULP, its path is not traced. Then the
conditional MTS-Tree of <H;t7> shown in Figure 5 is constructed by tracing all
ancestor nodes of the nodes labeled <H;t7> in MTS-Tree. The nodes labeled <H;t7>
can be acquired by tracing the links from the entry of <H;t7> in header table. Note that
the conditional MTS-Trees do not need any path table.

Subsequently, in the header table of the conditional MTS-Tree of <H;t7>, the last
entry <G;t6> is checked and a WULP <G;t6><H;t7> is generated and inserted into the
WUMSP-Tree. Since there is already a node <H;t7> in the WUMSP-Tree, we just
insert <G;t6> as a child node of <H;t7>. At the same time, the path of the WULP
<G;t6><H;t7> is traced in the original MTS-Tree. By the links from the entry <H;t7> in
header table, we can get the node <H[t7]> with the SIDs S2 and S4. The node <H[t7]> is
traced up until the node <G;t6> is reached to obtain the paths between the nodes. Then
a path GLH is found. After tracing the path, a WUMSP <{<G;t6><H;t7>}; GLH>
whose support equals to 2 and SWU equals to 191 is found. By the path pre-checking
technique, since its support and SWU are both no less than the two thresholds, it is
kept, and the path is added into the node <G;t6> of the WUMSP-Tree. The WUMSP-
Tree now is shown in Figure 5. Generating the patterns from the MTS-Tree by the
above processes recursively, all WUMSPs can be generated.

4.1.3 Finding High Utility Mobile Sequential Patterns
After generating all WUMSPs, an additional database scan will be performed to find
UMSPs from the set of WUMSPs. The WUMSPs whose utilities are larger than or
equal to the minimum utility threshold will be regarded as UMSPs. Moreover, since
the WUMSPs in WUMSP-Tree include SIDs, instead of checking all mobile
transaction sequences, they will just check the specified sequences. By applying this
process, the mining performance will become better.

4.2 An Improved Tree-Based Method: UMSPBFG

In UMSPDFG, since the number of combinations of 2-WULPs is quite large, many
conditional MTS-Trees will be generated. Dealing with these conditional MTS-Trees
is a hard work in the mining processes. Moreover, tracing the paths of WULPs in the
processes of generating WUMSPs also consumes much time. If we can decrease the
number of WULPs requiring verification, especially the large number of 2-WULPs,
the performance can be more improved. Therefore, how to speed up the processes
about 2-WUMSPs is a crucial problem.

234 B.-E. Shie et al.

To conquer this problem, we propose an improved tree-based algorithm UMSPBFG
(high Utility Mobile Sequential Pattern mining with a tree-based Breadth First
Generation strategy). The difference between the two algorithms is that UMSPBFG use
a breadth first generation strategy for generating 2-WUMSPs. Within the strategy, a
possible succeeding node checking technique is applied. By this technique, the size of
the conditional MTS-Trees will be smaller, and the 2-moving patterns which cannot be
2-WUMSPs will be pruned in advance.

Instead of generating a 2-WULP by combining the last entry with the 1-WULP of a
conditional MTS-Tree, in the breadth first generation strategy, 2-WULPs are generated
by combining all 1-WULPs in the header table with the 1-WULP of the conditional
MTS-Tree. After generating the 2-WULPs, their paths, supports and SWUs are
checked in advance. The valid paths will be stored in the corresponding nodes of
WUMSP-Tree. While generating 2-WULPs, UMSPBFG applies a possible succeeding
node checking technique for pruning useless 2-WULPs, which is addressed as follows.

Definition 11. (Possible succeeding node checking technique): While generating 2-
WULPs of a 1-WULP X in X's conditional MTS-Tree, all 1-WULPs in the header table
are inserted as children nodes of X in the WUMSP-Tree in advance. If there exists no
path in a WULP Y to form a WUMSP Z such that sup(Z) δ≥ and SWU(Z) ε≥ , Y is
pruned. Furthermore, only the nodes kept in the WUMSP-Tree are able to be
succeeding nodes of the WUMSP-Tree in the later mining processes.

In the following paragraphs, we use the same example as the previous section. The
MTS-Tree shown in Figure 3 and the conditional MTS-Tree of <H;t7> shown in Figure
5 are constructed by the same processes in previous section. <H;t7> is inserted into the
WUMSP-Tree as the first node. Different from UMSPDFG, in the processes of
generating 2-WULPs of UMSPBFG, all 1-WULPs in the header table of the conditional
MTS-Tree of <H;t7> are inserted as children nodes of the node <H;t7> in the WUMSP-
Tree, that is, all 2-WULPs of the conditional MTS-Tree of <H;t7> are generated in
advance. The paths of the 2-WULPs are then generated by tracing the original MTS-
Tree. Combining the 2-WULPs and the paths, 2-moving patterns are generated. Also,
their supports and SWUs are obtained. The results are shown in Figure 6.

<H; t7>

<G; t6>:
S2S4

<F; t5>:
S2S3S4S5

<D; t4>:
S3S5

<C; t8>:
S2S3

<C; t3>:
S2S3S4S5

<C; t2>:
S2S3

<A; t1>:
S2S3S4S5

S3S5CDEFGH

Path SID

CKEFGLH S2

CEFGLH S4

S3S5CDEFGH

Path SID

CKEFGLH S2

CEFGLH S4

S3CDEFGH

Path SID

CKEFGLH S2

S3CDEFGH

Path SID

CKEFGLH S2

S3S5ABCDEFGH

Path SID

ABCKEFGLH S2

AWCEFGLH S4

S3S5ABCDEFGH

Path SID

ABCKEFGLH S2

AWCEFGLH S4

Path SID

DFGH S3S5

Path SID

DFGH S3S5

Path SID

GLH S2S4

Path SID

GLH S2S4

S2S4FGLH

Path SID

FGH S3S5

S2S4FGLH

Path SID

FGH S3S5

Sup=2, SWU=191

Sup=2, SWU=145

Sup=2, SWU=191

Sup=2, SWU=145

Sup=1, SWU=132

Sup=1, SWU=72

Sup=1, SWU=132

Sup=1, SWU=59

Sup=2, SWU=145

Sup=1, SWU=132

Sup=1, SWU=59

Sup=2, SWU=145

Sup=1, SWU=132

Sup=1, SWU=72

S3CDFGH

Path SID

CFGLH S2

S3CDFGH

Path SID

CFGLH S2

Fig. 6. An example of WUMSP-Tree generated by UMSPBFG

 Mining High Utility Mobile Sequential Patterns in Mobile Commerce Environments 235

By Figure 6, since the supports or SWUs of the 2-moving patterns <{<C;t8><H;t7>};
CFGLH>, <{<C;t8><H;t7>};CDFGH>, <{<C;t3><H;t7>};CKEFGLH>, <{<C;t3>
<H;t7>};CEFGLH>, <{<C;t2><H;t7>};CKEFGLH>, <{<C;t2><H;t7>};CDEFGH>,
<{<A;t1><H;t7>};ABCKEFGLH> and <{<A;t1><H;t7>};AWCEFGLH> are less than
the thresholds, their relevant paths are pruned from the path tables of the WUMSP-
Tree. Moreover, since there is no valid path in the nodes <C;t8> and <C;t2>, the two
nodes are also pruned. In Figure 6, the pruned nodes and paths in the WUMSP-Tree
are labeled with grey. By the WUMSP-Tree, we can know the possible succeeding
nodes of <G;t6> are <F;t5>, <D;t4>, <C;t3> and <A;t1>.

After ascertaining which 2-moving patterns need to be pruned, the relevant nodes
and entries in the conditional MTS-Tree of <H;t7> are also pruned. After this step, the
mining processes proceed without the pruned nodes in both the WUMSP-Tree and the
conditional MTS-Tree of <H;t7>. The remaining conditional MTS-Tree is much
smaller than the original one. Moreover, since the useless entries are pruned in the
header table, they will never be checked in the following processes. Therefore, the
search space can be further reduced and the mining performance is further improved.

5 Experimental Results

In this section, we evaluate the performance of the proposed algorithms. The
experiments were performed on a 2.4 GHz Processor with 1.6 GB memory, and the
operating system is Microsoft Windows Server 2003. The algorithms are
implemented in Java. The default settings of the parameters are listed in Table 4. The
settings of parameters related to mobile commerce environment and utility mining are
similar to [14] and [8], respectively.

For comparing the performance of the proposed algorithms, we extend algorithm
TJPF in [14] to form a basic algorithm for mining UMSPs which is called MSP in this
paper. The processes of MSP are as follows: First, the mobile sequential patterns
whose supports are no less than the minimum support threshold are generated by TJPF.
Then an additional check of the actual utilities of the mobile sequential patterns is
performed for finding UMSPs. In the following experiments, the performance of MSP
is compared with that of the two proposed algorithms. Due to the page limit, in the
experiment results, we show the number of patterns after phase I instead of the
execution time of phase II since the time cost is mainly decided by the number of
these patterns. The fewer patterns should be checked, the less time will be spent.

Table 4. Parameter settings

Parameter Descriptions Default
D: Number of mobile transaction sequences 50k
P: Average length of mobile transaction sequences 20
T: Average number of items per transaction 2
N: Size of mesh network 8
nI: The range of the number of items sold in each location 200
Pb: The probability that user makes the transaction in the location 0.5
w: Unit profit of each item 1~1000
q: Number of purchased items in transactions 1~5

236 B.-E. Shie et al.

D50k P20 T2 N8, Pb=0.5, u=1%

0

600

1200

1800

0.2 0.5 0.8 1.1 1.4 1.7 2

Minimum support (%)

T
im
e
 (
se
c
)

UMSP(BFG) UMSP(DFG) MSP

D50k P20 T2 N8, Pb=0.5, u=1%

0

1000

2000

3000

4000

0.2 0.5 0.8 1.1 1.4 1.7 2

Minimum support (%)

#
p
a
t
t
e
r
n
s

UMSP(BFG) UMSP(DFG) MSP
 (a) Execution time (b) Number of patterns after Phase I

Fig. 7. The performance under varied minimum support thresholds

D50k P20 T2 N8, Pb=0.5, s=0.5%

0

100

200

300

400

500

0.1 0.4 0.7 1 1.3 1.6 1.9

Minimum utility (%)

T
im
e
 (
se
c
)

UMSP(BFG) UMSP(DFG) MSP

D50k P20 T2 N8, Pb=0.5, s=0.5%

0

300

600

900

1200

0.1 0.4 0.7 1 1.3 1.6 1.9

Minimum utility (%)

#
p
a
t
te
r
n
s

UMSP(BFG) UMSP(DFG) MSP
 (a) Execution time (b) Number of patterns after Phase I

Fig. 8. The performance under varied minimum utility thresholds

The first part of the experiments is the performance under various minimum support
thresholds. In the experiments, the minimum utility threshold is set as 1%. The results
for the execution time and the number of patterns after phase I under varied minimum
support thresholds are shown in Figure 7. For the two proposed algorithms, the patterns
after phase I are WUMSPs, on the other hand, for MSP, the patterns are mobile
sequential patterns. In Figure 7 (a), it can be seen that MSP requires much more
execution time than the other algorithms. The reason is that since MSP does not
consider utility in phase I, the number of generated patterns is much larger than that of
other algorithms as shown in Figure 7 (b). MSP spends much more time on processing
additional patterns, so its performance is the worst. Besides, although the number of
WUMSPs generated by the proposed algorithms is the same, their execution time is
different. Overall, the tree-based algorithms are better than the level-wise version
especially when the minimum support threshold is low.

The second part of the experiments is the performance under various minimum
utility thresholds. In the experiments, the minimum support threshold is set as 0.5%.
The results are shown in Figure 8. Overall, the tree-based algorithms are better than the
level-wise one. Besides, since MSP does not consider utility in phase I, its execution
time and number of generated patterns remain the same. On the contrary, both of the
two results of the proposed two algorithms decrease with the minimum utility

 Mining High Utility Mobile Sequential Patterns in Mobile Commerce Environments 237

D50k P20 T2, Pb=0.5, s=0.5%, u=1%

0

200

400

600

800

6*6 7*7 8*8 9*9 10*10

Mesh network size

T
im
e
 (
se
c
)

UMSP(BFG) UMSP(DFG) MSP

D50k P20 T2, Pb=0.5, s=0.5%, u=1%

0

600

1200

1800

6*6 7*7 8*8 9*9 10*10

Mesh network size

#
p
a
t
t
e
r
n
s

UMSP(BFG) UMSP(DFG) MSP
 (a) Execution time (b) Number of patterns after phase I

Fig. 9. The performance under varied mesh network size

P20 T2 N8, Pb=0.5, s=0.5%, u=1%

0

400

800

1200

25k 50k 75k 100k 125k 150k
Number of mobile transaction sequences

T
im
e
 (
s
e
c
)

UMSP(BFG)

UMSP(DFG)

MSP

Fig. 10. The execution time under varied number of mobile transaction sequences

threshold increasing. In Figure 8 (b), when the minimum utility threshold is below
0.4%, almost no candidate can be pruned. Thus, the performance of the two algorithms
is almost the same.

The third part of the experiments is the performance under varied mesh network
size. The results are shown in Figure 9. By Figure 9, it can be seen that the execution
time of all the three algorithms decreases with the size of mesh network. The reason is
that when the size of mesh network is larger, the database will be sparser, therefore,
the patterns generated in phase I will become fewer and the time cost of mining
processes will be reduced.

The final part of the experiments is the performance under varied number of mobile
transaction sequences. The experimental results are shown in Figure 10. In this figure,
we can see that when the number of mobile transaction sequences is larger, the
execution time of the algorithms increases linearly.

By the above experiments, the proposed algorithms are shown to outperform the
state-of-the-art mobile sequential pattern algorithm MSP. Among the algorithms, the
performance of UMSPBFG is the best since the MTS-tree is an efficient tree structure
and the breadth first strategy effectively enhances the mining performance.

6 Conclusions

In this research, we proposed a novel data mining issue about mining high utility
mobile sequential patterns in mobile commerce environments. This paper is the first

238 B.-E. Shie et al.

research work about the combination of mobility pattern mining and utility mining.
Two algorithms developed by different strategies, i.e., depth first generation and
breadth first generation, are proposed for efficiently mining high utility mobile
sequential patterns. The experimental results show that the proposed algorithms
outperform the state-of-the-art mobile sequential pattern algorithm. For future work,
additional experiments under more conditions of mobile commerce environments will
be conducted for further evaluating the algorithms. Moreover, new algorithms which
improve the mining performance will be designed.

Acknowledgments. This research was supported by National Science Council,
Taiwan, R.O.C. under grant no. NSC99-2631-H-006-002 and NSC99-2218-E-006-001.

References

1. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Proc. of the
20th Int’l. Conf. on Very Large Data Bases, pp. 487–499 (1994)

2. Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: Proc. of 11th Int’l. Conf. on Data
Mining, pp. 3–14 (1995)

3. Ahmed, C.F., Tanbeer, S.K., Jeong, B.-S., Lee, Y.-K.: Efficient Tree Structures for High
Utility Pattern Mining in Incremental Databases. IEEE Trans. on Knowledge and Data
Engineering 21(12), 1708–1721 (2009)

4. Chan, R., Yang, Q., Shen, Y.: Mining High Utility Itemsets. In: Proc. of Third IEEE Int’l
Conf. on Data Mining, pp. 19–26 (November 2003)

5. Han, J., Pei, J., Yin, Y.: Mining Frequent Patterns without Candidate Generation. In: Proc.
of the ACM-SIGMOD International Conference on Management of Data, pp. 1–12 (2000)

6. Lee, S.C., Paik, J., Ok, J., Song, I., Kim, U.M.: Efficient Mining of User Behaviors by
Temporal Mobile Access Patterns. Int’l. Journal of Computer Science Security 7(2), 285–
291 (2007)

7. Li, Y.-C., Yeh, J.-S., Chang, C.-C.: Isolated Items Discarding Strategy for Discovering
High Utility Itemsets. Data & Knowledge Engineering 64(1), 198–217 (2008)

8. Liu, Y., Liao, W.-K., Choudhary, A.: A Fast High Utility Itemsets Mining Algorithm. In:
Proc. of Utility-Based Data Mining (2005)

9. Lu, E.H.-C., Tseng, V.S.: Mining Cluster-based Mobile Sequential Patterns in Location-
based Service Environments. In: Proc. of IEEE Int’l. Conf. on Mobile Data Management
(2009)

10. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.C.: Mining
Sequential Patterns by Pattern-Growth: The PrefixSpan Approach. IEEE Transactions on
Knowledge and Data Engineering 16(10) (October 2004)

11. Tseng, V.S., Lin, W.C.: Mining Sequential Mobile Access Patterns Efficiently in Mobile
Web Systems. In: Proc. of the 19th Int’l. Conf. on Advanced Information Networking and
Applications, Taipei, Taiwan, pp. 867–871 (2005)

12. Tseng, V.S., Wu, C.W., Shie, B.-E., Yu, P.S.: UP-Growth: An Efficient Algorithm for
High Utility Itemsets Mining. In: Proc. of the 16th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD 2010), Washington, DC, USA (July 2010)

13. Yen, S.-J., Lee, Y.-S.: Mining High Utility Quantitative Association Rules. In: Song, I.-Y.,
Eder, J., Nguyen, T.M. (eds.) DaWaK 2007. LNCS, vol. 4654, pp. 283–292. Springer,
Heidelberg (2007)

14. Yun, C.-H., Chen, M.-S.: Mining Mobile Sequential Patterns in a Mobile Commerce
Environment. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications
and Reviews 37(2) (2007)

Reasoning about Dynamic Delegation in Role
Based Access Control Systems

Chun Ruan1 and Vijay Varadharajan1,2

1 University of Western Sydney, Penrith South DC, NSW 1797 Australia
{chun,vijay}@scm.uws.edu.au

2 Macquarie University, North Ryde, NSW 2109 Australia
vijay@ics.mq.edu.au

Abstract. This paper proposes a logic based framework that supports
dynamic delegation for role based access control systems in a decen-
tralised environment. It allows delegation of administrative privileges for
both roles and access rights between roles. We have introduced the no-
tion of trust in delegation and have shown how extended logic programs
can be used to express and reason about roles and their delegations
with trust degrees, roles’ privileges and their propagations, delegation
depth as well as conflict resolution. Furthermore, our framework is able
to enforce various role constraints such as separation of duties, role com-
position and cardinality constraints. The proposed framework is flexible
and provides a sound basis for specifying and evaluating sophisticated
role based access control policies in decentralised environments.

1 Introduction

A fundamental challenge in the development of large scale secure database
systems is the design of access control and privilege management model and
architecture. The dynamic aspect of privileges coupled with the fine granular
nature of entities involved in large scale distributed database systems make this
a significant problem, especially in the context of pervasive mobile distributed
applications. At a general level, there are two types of mappings, one from re-
questing entity to privileges and the other from the privileges to accessed entity.
Models such as Role-Based Access Control (RBAC) [3] is well-known in terms
of their ability to decouple these two mappings, by having a user to role map-
ping and role to objects mapping. The central notion of RBAC is that access
rights or privileges are associated with roles and users are assigned to appro-
priate roles. In distributed applications and services, we have access rights and
roles are mapped to entities other than individuals. This partitioning into two
mappings enables the system to manage these two mappings somewhat indepen-
dently thereby helping to achieve more flexible and secure policy management.
For instance, in a user based role system, if a a specific user leaves the organi-
zation and changes his/her position, only the mapping from users (subjects) to
roles need to be revoked or changed (while the mapping between the role and

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 239–253, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

240 C. Ruan and V. Varadharajan

the rights are not touched). On the other hand, if the access rights of the roles
change, only the mapping from roles to access rights need to be changed.

When it comes to management of policies, in general, there are two types of
approaches namely centralised and decentralised. Decentralised management in
principle allows many administrators with different privileges and rights residing
in different locations in a distributed system. A main advantage of centralised
paradigm is that it enables an organization to have central control over its re-
sources. However, when the system is large, it is often difficult, and sometimes
impossible, for a single central unit to know every suitable role for a user, and
every suitable access right for a role. Furthermore, large organizations may have
over a thousand roles, and tens of thousands of users. A case study carried
out with Dresdner Bank, a major European bank, resulted in an RBAC sys-
tem that has around 40,000 users and 1300 roles [7]. In a distributed federated
application environment over the Internet, where the resources are owned (and
administered) by different entities, it is infeasible to envisage a centralised ap-
proach to access control management. However decentralised management with
different entities, though it offers flexibility, poses several security policy and
architectural challenges.

While RBAC is mainly used in a centralised management, we believe that it
can be extended to a distributed environment such as web service or internet
applications through proper delegation and trust management. That is, roles
can be assigned to unknown entities based on the delegation and trust. For
example, many newspapers such as Daily Telegraph provide free access to uni-
versity students. In this case, universities can be delegated the right to assign
the role “student” with full trust. This paper is concerned with dynamic delega-
tion based access rights management in a distributed environment with multiple
administrative entities. In this paper, we consider dynamic delegation of ad-
ministrative privileges in the context of role based access control system. In
such a situation, a major security concern is whether the organization can have
some degree of control about who can access its resources; as after several steps
of delegations, a user who is not trusted may get control over the system re-
sources. Therefore how to use the delegation without compromising the security
of the system is a big challenge. In this paper, we consider several ways for the
delegators to control their delegations. Firstly, we allow a delegator to express
their trust degrees on the delegations. For example, in a university context, the
Vice-Chancellor(VC) may delegate the capability of recruiting a role “Leading
Security Researcher”(LSR) to the Research Director(RD) who may further dele-
gate to his or her Research Group Leader and an external member. The Research
Director may associate different degrees of trust to these two delegations. This
is especially the case when the role is fuzzy, like the above “Leading Security Re-
searcher”. Furthermore, an entity may be assigned to a role by two other entities
(assigners) with different trust degrees. Hence when it comes to deciding on a
user’s assignment to a role, it is necessary to consider the multiple paths involved
and the trust degrees associated with these paths. A role assignment can be

Reasoning about Dynamic Delegation in RBAC Systems 241

rejected if the trust degree associated with this falls below a certain threshold.
Our framework takes into account of such trust aspects in reasoning about access
in decentralised systems.

Conflict resolution is another important aspect in the design of access control
systems. Conflicts may arise in a number of ways involving positive and negative
authorizations as well as due to dynamic delegation of privileges between roles.
Solving conflicts in role based access control systems can be a complex issue
that has not been well studied in the current research. A role may dynamically
receive two conflicting authorizations from two different roles which are able to
grant privileges. E.g. an Enrolled Student when using a website associated with
a course, may receive conflicting authorizations from a Website Administrator
and the Course Coordinator. Alternatively, a user may receive two conflicting
authorizations from the two roles in which he/she is a member. For example,
Alice is an enrolled student and a tutor. Therefore she may receive two conflicting
authorizations, with one allowing her to access the students’ work and the other
not. Both levels of conflicts need to be properly resolved. In our framework,
delegators and grantors are allowed to express trust degrees on their delegations
and authorizations. Both the grantor’s priority and the trust of the authorization
will be taken into consideration in resolving conflicts. It will also allow us to
express and enforce a range of other role requirements based on constraints such
as separation of duty, role exclusion and cardinality.

Our framework is based on extended logic programs (ELP)[1]. The main con-
tribution of this paper is the design of a logic based framework that supports
dynamic delegation for role based access control systems in a decentralised en-
vironment. It has several novel features and allows for – delegation of both role
administration and access right administration, trust degrees to be associated
with role and access right delegations, able to specify both positive and negative
authorizations to be granted to roles. This in turn enables to specify and reason
about trust in delegated RBAC policies as well as resolve conflicts using trust
in such policies.

The paper is organised as follows. Section 2 provides an overview of our formal
dynamic delegation framework for role based access control systems. In Section 3,
we define a role based authorization program (RBAP) to capture the delegations,
trust degrees, access right propagations along the hierarchies of roles and objects
and conflict resolution. A discussion of the features of RBAP and syntax are given
in Section 3. Section 4 presents the formal semantics, and Section 5 compares our
framework with previous works and discusses the future work.

2 An Overview of the Formal Framework

2.1 Administrative Privilege Delegation Correctness

In our formalization, administrative privilege delegation includes role adminis-
trative privilege delegation and access right administrative privilege delegation.
We assume that System Security Officer (SSO) in an organization is the first
role that can delegate. Others have to be granted the privilege to delegate.

242 C. Ruan and V. Varadharajan

Definition 1. Delegation correctness: A role r can delegate other roles the priv-
ilege to assign a role with depth d if and only if r is SSO or r has been delegated
the privilege to assign roles with delegation depth d + 1. A role r can delegate
other roles the privilege to grant an access right a over object o with depth d if
and only if r is SSO or r has been delegated the privilege to grant a over o with
delegation depth d + 1.

The delegations are dynamic in our system in several ways. Firstly, the delega-
tions can be subjective to conditions. For example, we can say that a Head of
School is delegated the right to assign new staff if the student teacher ratio is
greater than 50:1. Hence the delegation depends on the ratio which is chang-
ing dynamically. Second, the delegation paths are changing dynamically. Since
a number of roles can be delegated the right to further delegate, or assign a role
or access rights, the delegations will be dynamically generated. Furthermore, a
delegation is allowed to be associated with a trust degree, which also affects the
delegation’s evaluation. We will give more details about this later.

2.2 Role and Access Right Assignment Correctness

In this paper, we use users and entities interchangeably. The users can be indi-
viduals, agents or processes. For a particular role r, only the roles that have been
granted the role administrative privilege on r can exercise r’s role assignment.
We assume SSO can assign any roles in the organization.

Definition 2. Role assignment correctness: A role r can assign users to a role r′

if and only if r is SSO or r has been granted the privilege to assign r′.

In our formalization, the access right administrative privilege is in terms of a
specific access right on a specific object. Thus it is possible to say that a role can
only grant read, but not write, on an object to others. For instance, a Head of
School may be able to grant “read” about the college’s budget file but not write.
We also assume SSO can grant any privileges on any object in the organization.

Definition 3. Access right assignment correctness: A role r can grant other
roles an access right a of type + or − over object o if and only if r is SSO or r
has been granted the privilege to grant a over o.

2.3 Degrees of Trust and Effective Trust

In the real world, trust is often not a yes/no binary decision. People often trust
some people or something to a certain degree. This is also true when it comes
to the role or access right assignment or delegations. There is a need for peo-
ple to express the degree to which they believe that someone can perform some
role/action, or someone can grant some role/action. In our formalization, we
allow a trust degree to be associated with each role/access right assignment,
and each role/access right delegation. The trust degree may come from the del-
egator’s own knowledge about the delegate, or from the information that the

Reasoning about Dynamic Delegation in RBAC Systems 243

delegator obtains from reputable sources. There has been a lot research about
trust evaluations in the area of trust management systems, and we will not
address the issue in detail in this paper.

Consider for example the following case: (i) A says B and C can say who can
assign the role R with 0.9 and 0.8 trust degrees respectively, (ii) B and C say
D can assign the role R with 0.7 and 0.6 trust degrees respectively, and (iii) D
assigns Alice to role R with 1. So, what should be the effective trust degree that
the system adopts about assigning Alice to the role R? A statement’s effective
trust degree should consider all the trust degrees on a delegation path to it,
and all the delegation paths to it. In our framework, for any statement, if there
exists only one path to it, then the product of all the trust degrees on the path
is defined as its effective trust degree. If there exist multiple paths to it, then
the greatest value of all the paths is defined as its effective trust degree. In the
above example, there are two paths leading to Alice’s role assignment, A− >
B− > D− > Alice and A− > C− > D− > Alice, with effective trust degrees
0.9*0.7*1 and 0.8*0.6*1 respectively, so the effective trust degree for Alice’s role
assignment is 0.63. Effective trust degree can help to dynamically control the
administrative privilege delegation and role or access right assignment. For ex-
ample, if the effective trust degree falls below a certain threshold, then, the
system can reject the role assignment or delegation. The trust degrees, the ef-
fective trust degrees, and the threshold can be dynamically changed, and so are
the delegations and role or access right assignments. For example, a previously
ineffective delegation may become effective due to the increased effective trust
degree caused by an additional delegation path added to it. We believe that
assigning and evaluating effective trust degrees is an easy but effective approach
for delegation control.

Example 1. Let us consider the example in the university context about teaching
web service. Suppose that the contents of a course website are open to all uni-
versity students, and SSO has delegated the capability to assign students to the
trusted universities. SSO firstly delegates the Educational Department (ED) to
assign trusted university(TUni) with full trust and delegation depth of 1, so that
ED can delegate once more. SSO then delegates the same right to any trusted
university with a trust degree of 0.9 and delegation depth of 0 (meaning that
they cannot further delegate). A university becomes trusted university if it has
existed for over 10 years. Now suppose ED says UniOne is a trusted university
with a trust degree of 0.9, and UniOne says Bob is a student with full trust.
Then Bob will be able to access the resources on the teaching website if the role
assignment threshold is set to 0.85. Now if UniOne says UniTwo is a university
with a trust degree of 0.9, and UniTwo says Tom is a student with full trust,
then Tom will not be able to access the contents on the website, as UniTwo
is not a trusted university since its effective trust degree is only 09.*0.9=0.81
which is less than the threshold of 0.85 (suppose UniTwo has not existed for
over 10 years). The situation will be represented in RBAP program in the next
section.

244 C. Ruan and V. Varadharajan

2.4 Conflict Resolution

Two types of conflicts can arise in a role based access control system. A role
may receive conflicting authorizations from multiple administrators, or an user
may receive conflicting authorizations due to being a member of two different
roles. For example, a staff member is allowed to borrow books from a library,
but an “overdue staff” member who has overdue books is not allowed to borrow
books. If a person belongs to both of the roles, then he/she will receive two
conflicting authorizations. For both types of conflicts, we will use the effective
trust degree to resolve the conflicts. This means that the authorization with
higher effective trust degree will override. For example, by giving a higher trust
degree to the negative authorization granted to “overdue staff” than that of the
positive authorization granted to staff, an “overdue staff” cannot borrow books.
This method would also allow the administrative privilege delegator to control
their delegations flexibly. For instance, by giving a delegatee a less than one
trust degree, a delegator can keep a higher priority than the delegatee in their
‘can grant’ delegations. Therefore, when the delegator gives an authorization a
full trust degree, this authorization will not be overridden by the delegatee’s
authorizations. This method will help to enforce the high level policies despite
the delegations.

Example 2. Consider again the example about university teaching web service.
Suppose the SSO delegates the capability to grant access right on the teaching
course website (CWeb) to each Course Coordinator(CC) with a trust degree of
0.9 and a delegation depth of 1. However, SSO has made a strong university wide
policy that anyone who enrolled in the course can access the website’s teaching
materials, and all school staff can also access the website’s teaching materials.
This is done by granting the access to enrolled students(Enro) and school staff
with a full trust degree of 1. SSO has also made a weak policy that external
students can access the course website’s teaching materials, and this is done by
granting the access to students with a low trust degree of 0.6. Suppose SSO says
Head of School(HOS) can assign the course coordinators with a trust degree of
1 and a delegation depth of 1. HOS says Helen is a course coordinator if no
information shows she is on leave. If Helen wants to deny the external students
to access her teaching materials, she can grant them a negative authorization
with a full trust degree. In this case her grant’s effective trust is 0.9*1, which is
greater than SSO’s 0.6, and therefore her grant will override. However, if Helen
wants to deny the school staff to access in the same way, she will not be successful
as her grant’s effective trust degree of 0.9 (the maximum she can get) is less than
the SSO’s 1. This time SSO’s grant will win. The situation will be represented
in RBAP program in the next section.

When the two conflicting authorizations have the same effective trust, the con-
flicts are said to be unresolved in our framework. Although we can use the simple
negative-take-precedence to solve them, we prefer to leave it to the access control
mechanisms to resolve the situation.

Reasoning about Dynamic Delegation in RBAC Systems 245

We would like to point out that most current conflict resolution policies can
be easily achieved in our framework. For example, by always giving a nega-
tive authorization a higher trust than positive one or vice versa, we can achieve
negative-take-precedence or positive-take-precedence policies. By giving more spe-
cific authorizations a higher trust degree than general ones, we can achieve the
more specific-take-precedence policy. Similarly, by always giving the strong au-
thorizations a higher trust degree than the weak ones, we can achieve the strong
and weak policies. By giving a trust degree of less than one to administrative
privilege delegations, and giving a trust degree of one to authorizations, we can
achieve the predecessor-take-precedence policy. This shows that our conflict res-
olution policy is very flexible which can meet different applications’ needs.

2.5 Other Features

Various role constraints, such as strong exclusion, role cardinality, role composi-
tion requirement and role dependency, are supported in our framework. Autho-
rization and delegation propagations along the role and object hierarchies are
also supported which can greatly reduce the size of explicit role and access right
delegations and assignments.

3 Role Based Authorization Programs

Role based authorization program (RBAP) is an extended logic program. Any
RBAP is consisted of domain specific rules and general rules. The former is
defined by users to express the desired application related security policies, while
the latter is defined in this section to capture the general features stated in the
last section.

3.1 Syntax of RBAP

Role based authorization program (RBAP) is a multi-sorted first order language,
with seven disjoint sorts R,U ,O,A, T ,W , and N for role, user, object, access
right, authorization type, weight and depth respectively. Variables are denoted
by strings starting with lower case letters, and constants by strings starting with
upper case letters. In addition, two partial orders <R, <O are defined on sorts
R and O representing the role and object hierarchies respectively. There are
two authorization types denoted by −, +, where − means negative, + means
positive. A negative authorization specifies that the access must be forbidden,
while a positive authorization specifies that the access must be granted. W is a
set of real number in (0,1], and N is a set of non-negative integers. In general,
we prohibit function symbols in our language for the sake of simplicity, but allow
some simple built-in arithmetic functions to be used. A rule r is of the form:

b0 ← b1, ..., bk, not bk+1, ..., not bm, m >= 0

where b0, b1, ..., bm are literals, and not is the negation as failure symbol. A Role
Based Authorization Program, RBAP, consists of a finite set of rules.

246 C. Ruan and V. Varadharajan

The predicate set P in RBAP consists of a set of ordinary predicates defined
by users, and a set of system built-in predicate designed for user to express
role assignment, role/user to privilege grant, role/access right administrative
privilege delegation, and role constraints.

In our formalization, administrative privilege delegation includes role admin-
istrative privilege delegation and access right administrative privilege delegation.
We assume that System Security Officer (SSO) in an organization is the first role
that can delegate. Others have to be granted the privilege to delegate. For role
assignment delegation, a special predicate (g, r, w, d)canAssign(r′, r′′) is defined,
where (g,r,w,d) is called the grantor of the delegation. Intuitively, it means that
a user g in role r says that the role r′ can not only assign users to role r′′, but also
further delegate this administrative privilege on r′′ for the maximum delegation
depth d, and g’s trust degree on this delegation to r′ is w. If the depth is 0, r
cannot further delegate. A depth of 1 would mean that r can further delegate
to some role r′ with maximum depth of 0 and etc. Similarly, for privilege grant
delegation, we have (g, r, w, d)canGrant(r′, a, o), which means that a user g in
role r says that role r′ can not only grant access right a on o, but also further
delegate this administrative privilege to the maximum depth of d. And g’s trust
degree on this delegation to r′ is w.

In terms of role assignment, a special predicate of the form (g, r, w)assign(r′, u)
is defined. Intuitively, it means that a grantor g in a role r assigns user u to role
r′. g’s trust degree on this role assignment is w. The users can be individuals,
agents or processes. Similarly, we define a predicate grant (g, r, w)grant(r, o, t, a)
for authorization. It means that g in role r says that role r can/cannot(depending
on the type t) do access a on object o, and the grant weight is w. A role r can
assign users to a role r′ if and only if r is SSO or r has been granted the privilege
to assign r′ (using canAssign). A role r can grant other roles an access right a
of type + or − over object o if and only if r is SSO or r has been granted the
privilege to grant a over o (using canGrant).

For the role delegation, predicate deleRole(u, u′, R) means user u delegates
its role R to user u′ while deleAll(u, u′) with Type U ×U means user u delegates
its every role to user u′. The delegatee can perform the delegated role due to the
delegation.

For the exclusion of roles, we define a predicate exclusive(r1, r2, r3, r4) to
represent up to 4 roles exclusion. Please note that r2 or r3 can be empty denoted
by to denote 2 or 3 role exclusion.

Predicate roleNum(r, n, m) is defined for the role cardinality constraint. It
means that a role r should have at least n and at most m members. If there is
no restriction on the minimum or maximum number, n or m is set as 0. Exact
number of members is represented by setting m==n.

For the role composition constraint, we define the predicate roleComp(r, r′,
n, m). It means that role r should contain at least n and at most m members
from another role r′.

In the real world, it is often required that to be able to perform role 1,
one needs to be in role 2. For example, many universities require that Unit

Reasoning about Dynamic Delegation in RBAC Systems 247

coordinators to be full time academic staff. Role dependency requirement is
thus introduced in our framework to represent this situation. For the role de-
pendency constraint, we define the predicate depend(r, r′) which means that role
r depends on role r′.

Example 3. We can now use RBAP program to represent Example 1.

(a1). (Alice, SSO, 1, 1)canAssign(TUni, Stu) ←
(a2). (Alice, SSO, 1, 1)canAssign(EduD, TUni) ←
(a3). (Alice, SSO, 0.9, 0)canAssign(TUni, TUni)←
(a4). (Alice, SSO, 1)assign(TUni, x) ← year(x, 10), (u, r, t)assign(Uni, x)
(a5). (Mary, EduD, 1, 0.9)assign(TUni, UniOne) ←
(a6). (Evan, UniOne, 1)assign(Stu, Bob) ←
(a7). (Evan, UniOne, 0.9)assign(TUni, UniTwo) ←
(a8). (Rose, UniTwo, 0.9, 1)assign(Stu, T om) ←

Example 4. The following RBAP program represents Example 2.

(b1). (Alice, SSO, 0.9, 1)canGrant(CC, CWeb) ←
(b2). (Alice, SSO, 1)grant(Enro, CWeb, +, R) ←
(b2). (Alice, SSO, 1)grant(Staff, CWeb, +, R) ←
(b3). (Alice, SSO, 0.6)grant(Stu, CWeb, +, R) ←
(b4). (Alice, SSO, 1, 1)canAssign(HOS, CC) ←
(b5). (Alice, SSO, 0.6)grant(Stu, CWeb, +, R) ←
(b6). (Jim, HOS, 1, 0)assign(Helen, CC) ← not onleave(Helen)
(b7). (Helen, CC, 1)grant(Staff, CWeb,−, R) ←
(b8). (Helen, CC, 1)grant(Enro, CWeb,−, R) ←

3.2 Domain-Independent Rules

In this section, we define a set of domain-independent rules to formally achieve
the concepts defined in the last section on role and access right administrative
privilege delegation, role constraints, delegation correctness, role and privilege
propagations, and conflict resolution.

Rules r1 - r11 are about role delegation and assignment management.

Rules for role assignment delegation correctness

The next two rules are about delegation of role assignment. The first rule
means that any delegation from SSO will be accepted, represented by predicate
canAssign1. The second rule means that if a role has been delegated to assign
roles for the maximum delegation depth d′, then the role’s further delegation
with depth less than d′ is accepted.

(r1). (g, SSO, w, d)canAssign1(r, r′) ← (g, SSO, w, d)canAssign(r, r′)
(r2). (g, r1, w, d)canAssign1(r, r2) ← (g, r1, w, d)canAssign(r, r2),

(g′, r3, w1, d
′)canAssign1(r1, r2), role(r1, g), d′ > d

248 C. Ruan and V. Varadharajan

Rules for role assignment correctness
The following two rules mean any role assignment from the System Security
Officer or a grantor holding the right to assign a role is accepted represented by
assign1.

(r3). (g, SSO, w)assign1(r′, u) ← (g, SSO, w)assign(r′, u), role(SSO, g)
(r4). (g, r, w)assign1(r1, u) ← (g, r, w)assign(r1, u),

(g′, r2, w1, d)canAssign1(r, r1), role(r, g)

Rules for calculating the role’s assigner’s trust degree
A role assigner’s trust degree is the production of all the trust weights along the
path from the root(SSO) to it. If there are multiple paths to it, then the greatest
number will be chosen as its trust degree. The following rules are used to achieve
this. The first rule assigns SSO the maximum trust degree of 1. The second
calculates the candidate trust based on a delegation’s weight and the delegator’s
trust degree. The third and fourth rule check that, for any candidate trust degree
x of an assigner g on a role r (represented by trusts(g, r, x), if there is any other
that is greater than it (represented by existHigherT rusts(g, r, x)). If there is
no higher one, then the current one is the assigner’s trust degree(represented by
trust(g, r, x).

(r5). trust(SSO, r, 1) ←
(r6). trusts(r1, r2, w

′ ∗ w) ← (g, r, w, d)canAssign1(r1, r2), trust(r, r2, w
′)

(r7). existHigherT rusts(r, r′, w) ← trusts(r, r′, w),trusts(r, r′, w′), w′ > w
(r8). trust(r, r′, w) ← trusts(r, r′, w),not existHigherT rusts(r, r′, w)

Rules for role assignment acceptance
The following rule means that a role assignment from an assigner is accepted if
the production of its trust degree and the assignment weight is greater than W ,
where W is a constant in (0,1] used to express the trust degree accepted by the
organization.

(r9). role(r, u) ← (g, r′, w)assign1(r, u), trust(r′, r, w′), w′ ∗ w >= W

Rules for role delegation
The next two rules are about role delegation. The first rule means that a user
u delegates its role r to another user u′. If u is a member of r, then u′ will be
added to the role. The second rule means that u delegates all of its roles to u′.

(r10). role(r, u′) ← deleRole(u, u′, r), role(r, u)
(r11). role(r, u′) ← deleAll(u, u′), role(r, u)

Rules s1 - s8 are about enforcing role constraints.

Rules for enforcing the constraint about separation of duty
The next rule is about generalized static separation of duty. It means that r1,
r2, r3 and r4 are required to be exclusive, and thereby a user cannot be assigned
to all of them. Note that r2 or r3 can be empty denoted by . In this case s <M

is assumed to be true. On the other hand, the first two roles cannot be . That
is, at least two roles are needed to define the exclusive relationship.

Reasoning about Dynamic Delegation in RBAC Systems 249

(s1). ← exclusive(r1, r2, r3, r4), r1 "= , r2 "= ,
role(r1, u), role(r2, u), role(r3, u), role(r4, u)

Rules for enforcing the constraint about role dependency requirement

Role r is said to be dependent on r′ if r needs to be a subset of r′ The following
rule enforces this requirement.

(s2). ← depend(r1, r2), role(r1, u), notrole(r2, u)

Rules for enforcing the constraint about the cardinality constraint

The following rules are used to enforce the role cardinality constraints. The first
rule means that it is not acceptable if there are more than m different members
in r. The second and third rules mean that it is not acceptable if there are not
n different members in r.

(s3). ← roleNum(r, n, m), role(r1, u1), ..., role(r, um+1), m > 0, ui "= uj

(i "= j, i, j = 1, ..., m + 1)
(s4). existRoleNum(r, n) ← role(r, u1), ..., role(r, un), n > 0, ui "= uj

(i "= j, i, j = 1, ..., n)
(s5). ← roleNum(r, n, m), notexistRoleNum(r, n)

Rules for enforcing the constraint about role composition requirement

The following rules are used to enforce the role composition requirement. The
first rule says that, if a role r should have at most m members from r′ , but
in fact there are m + 1 users who belong to both roles, then the system will
fail. The second and the third rules mean that if a role r should have at least
m members from r′ , but the system cannot find n members from r’ belonging
to r, then it will fail.

(s6). ← roleComp(r, r′, n, m), role(r, u1), ..., role(r, um+1)
role(r′, u1), ..., role(r′, um+1), ui "= uj , (i "= j, i, j = 1, ..., m + 1, r)

(s7). existRoleComp(r, r′, n) ← role(r, u1), ..., role(r, un),
role(r′, u1), ..., role(r′, un), ui "= uj, (i "= j, i, j = 1, ..., n, r)

(s8). ← roleComp(r, r′, n, m), not existRoleComp(r, r′, n)

Rules o1 - o8 are about access right delegation and grant management.

Rules for administrative privilege delegation correctness

The following rules are used to guarantee that the administrative privileges are
properly delegated in terms of the eligible delegators and the valid delegation
depths. The first rule means the System Security Officer (SSO)’s any adminis-
trative privilege delegation is accepted (represented by predicate canGrant1).
The second rule means if a subject has been delegated the right to grant for the
maximum delegation depth d′, then the subject’s further administrative delega-
tion with depth less than d′ is accepted.

(o1). (g, SSO, w, d)canGrant1(r, o, a) ← (g, SSO, w, d)canGrant(r, o, a),
role(SSO, g)

250 C. Ruan and V. Varadharajan

(o2). (g, r2, w, d)canGrant1(r1, o, a) ← (g, r2, w, d)canGrant(r1 , o, a),
(g′, r3, w

′, d′)canGrant1(r2, o, a), role(r2, g), d′ > d

Rules for administrative privilege propagation along the role hierarchy
The next rule is about administrative privilege propagations along the role hi-
erarchy. It means that a subject’s administrative privilege on some object and
access right would propagate automatically to its next higher level roles repre-
sented by <R relation.

(o3). , (g, r′′, w, d)canGrant1(r, o, a) ← (g, r′′, w, d)canGrant1(r′, o, a),
r <R r′

Rules for administrative privilege propagation along the object hierarchy
The next two rules are about administrative privilege propagations along the
object hierarchy. It means that a subject’s administrative privilege on some
object and access right would propagate automatically to its next lower level
objects represented by <O.

(o4). (g, r′, w, d)canGrant1(r, o, a) ← (g, r′, w, d)canGrant1(r, o′, a),
o′ <O o

Rules for authorization correctness
The following two rules mean any grant from the System Security Officer or a
grantor holding the right to grant is accepted (represented by predicate grant1).

(o5). (g, SSO, w)grant1(r, o, t, a) ← (g, SSO, w)grant(r, o, t, a),
role(SSO, g)

(o6). (g, r1, w)grant1(r, o, t, a) ← (g, r1, w)grant(r, o, t, a),
(g′, r2, w

′, d)canGrant1(r1, o, a), role(r1, g)

Rules for authorization propagation
The following rules are used to achieve authorization propagation along role and
objects inheritance hierarchies. The first rule means any authorization given to
a role would propagate to its superior roles represented by the <R relation.
The second rule means any authorization on an object would propagate to its
sub-objects represented by the <O relation.

(o7). (g, r, w)grant1(r2, o, t, a) ← (g, r, w)grant1(r1, o, t, a), r1 <R r2

(o8). (g, r, w)grant1(r1, o
′, t, a) ← (g, r, w)grant1(r1, o, t, a), o <O o′

Rules c1 - c9 are about conflict resolution for roles and users.

Rules for conflict resolution
As mentioned before, the conflict resolution is based on the priority of the
grantor and the weight of the authorization. The priority of a grantor is the
weighted length of the shortest delegation path from the owner to it, since
there may exist multiple paths to it. In the following rules, we use predicate
priority to represent the priority of a grantor, which is the length of the shortest
path. We use priorities to represent all the priorities that a grantor received

Reasoning about Dynamic Delegation in RBAC Systems 251

from their delegators, which are lengths of all possible paths to it. Predicate
existHigherPriorities means that the corresponding priorities is not the high-
est one. It is introduced to avoid the existential quantifier to be used in (c4), as
in an extended logic program all the variables in clauses are considered to be uni-
versally quantified. For the two conflicting authorizations, we will compare the
sum of the grantor’s priority and weight of the authorization, and the one with
smaller value will win. Predicate overridden is introduced to indicate that the
corresponding authorization is overridden by some other authorizations. Pred-
icate hold means the corresponding authorization holds as it is not overridden
by any other authorizations, and its effective weight is greater than W which is
a constant denoting the trust degree accepted by the organization.

(c1). priority(SSO, o, a, 1) ←
(c2). priorities(r, o, a, w′ ∗ w) ← (r′, w, d)canGrant1(r, o, a),

priority(r′, o, a, w′)
(c3). existHigherPriorities(r, o, a, w) ← priorities(r, o, a, w),

priorities(r, o, a, w′), w′ > w
(c4). priority(r, o, a, w) ← priorities(r, o, a, w),

not existHigherPriorities(r, o, a, w)
(c5). (g, r1, w)overridden(r, o, t, a) ← (g, r1, w)grant1(r, o, t, a),

(g′, r2, w1)grant1(r, o, t′, a),
priority(r1, o, a, w2), priority(r2, o, a, w3), w1 ∗ w3 > w2 ∗ w

(c6). (g, r′, w ∗ w′)grant2(r, o, t, a) ← (g, r′, w)grant1(r, o, t, a),
not (g, r′, w)overridden(r, o, t, a), priority(r′ , o, a, w′), w′ ∗w > W

(c7).(g, r′, w)grant3(u, o, t, a) ← (g, r′, w)grant2(r, o, t, a), role(r, u)
(c8). (g1, r1, w)overridden(u, o, t, a) ← (g1, r1, w1)grant3(u, o, t, a),

(g2, r2, w2)grant3(u, o, t′, a), w1 < w2

(c9). (g, r, w)hold(u, o, t, a) ← (g, r, w)grant3(u, o, t, a),
not (g, r, w)overridden(u, o, t, a)

Let R denote all the general rules, i.e. R={r1, ..., r11, s1, ..., s8, o1, ...o8, c1, ..., c9}.
R will be combined with application dependent rules to evaluate the authoriza-
tions holding at any time (represented by predicate hold). Any access request
will then be checked against it. For example, Example 3 and 4 will be combined
with R to evaluate the authorizations holding in this application.

4 Formal Semantics of RBAP

We will adopt well known answer set semantics for RBAP because it is more
suitable for our purpose of handling authorization conflicts since it provides a
more flexible way to deal with incomplete and contradictory information. Let Π
be a RBAP, the Base BΠ of Π is the set of all possible ground literals constructed
from the system reserved predicates and predicates appearing in the rules of
Π , the constants occurring in R,U ,O,A, T ,W ,N . A ground instance of r is a
rule obtained from r by replacing every variable W in r by δ(x), where δ(x)
is a mapping from the variables to the constants in the same sorts. Let G(Π)

252 C. Ruan and V. Varadharajan

denote all ground instances of the rules occurring in Π . Two ground literals
are conflicting on subject S, object O and access right A if they are of the form
(G, R, W)hold(U, O, +, A) and (G′, R′, W ′)hold(U, O,−, A). A subset of the Base
of BΠ is consistent if no pair of complementary or conflicting literals is in it. An
interpretation I is any consistent subset of the Base of BΠ .

Definition 4. Given a RBAP Π, an interpretation for Π is any interpretation
of Π ∪ R. Let I be an interpretation for a RBAP G(Π), the reduction of Π
w.r.t I, denoted by ΠI , is defined as the set of rules obtained from G(Π ∪R) by
deleting (1) each rule that has a formula not L in its body with L ∈ I, and (2)
all formulas of the form not L in the bodies of the remaining rules.

Given a set R of ground rules, we denote by pos(R) the positive version of R,
obtained from R by considering each negative literal ¬p(t1, ..., tn) as a positive
one with predicate symbol ¬p.

Definition 5. Let M be an interpretation for Π. We say that M is an answer
set for Π if M is a minimal model of the positive version pos(ΠM).

5 Discussion and Related Work

We have developed a simple XML interface for RBAP. XML is most suitable
for integration of information from various sources. This is especially useful for
our scheme since there exist multiple authorities due to dynamic delegation and
there is a need to exchange and integrate the security policies on the web. A vi-
sual tool interface is also developed in which one can create roles, users, objects,
access rights, user to role mapping, role to access rights mapping, administra-
tive privilege delegations etc. The XML file will be created based on it. On the
other hand, Smodels based processor is used as the policy evaluation engine for
RBAP. Smodels is a widely used system that implements the answer set seman-
tics for extended logic programs. It is domain-restricted but supports extensions
including built-in functions as well as cardinality and weight constraints.

ARBAC97 [4] is a model for decentralized administration of RBAC policies.
In a typical ARBAC policy, roles are classified as administrative roles and nor-
mal roles. Only administrative roles can assign users and privileges. There is a
single top level administrator role, called the Senior Security Officer (SSO) and a
number of Junior Security Officers (JSO). The SSO partitions the organizations
policy into different security domains, each of which is administered by a different
JSO. To decentralise the policy details without loosing central control over broad
policy, each delegation to JSO is associated with some condition. The ARBAC
policy specifies, for instance, to which normal roles and under what conditions
can members of a JSO role assign users. Although the framework decentralizes
the administration to some degree, the scalability is still limited. Use of addi-
tional relations to limit the delegation and thereby enforcing central control is
not flexible. Furthermore, negative authorizations are not discussed in ARBAC.
ARBAC99 [5] and [8] improve some shortcomings of ARBAC97. But, they do
not change the fundamental approach of using administrative roles, additional

Reasoning about Dynamic Delegation in RBAC Systems 253

relations, and role ranges based on hierarchies. Our framework does not distin-
guish user roles and administrative roles. Delegations are conditional, and the
broad policy is achieved through trust management. [2] proposes to use security
analysis techniques, which views an access-control system as a state transition
system, to maintain desirable security properties while delegating administrative
privileges. [9] discusses how to assist a delegator in choosing the delegatee using
trust-based approach. In their approach, trust is a relationship between a truster
and trustee with respect to a given task and depends on several factors such as
properties, experience and recommendation. The factors are quantified and used
for the delegator to choose the delegatee. A permission based delegation model
is presented in [10], which supports user-to-user, role-to role, and multi-depth
delegations. However, how to resolve conflicts with respect to access rights in
this context has not been well studied. [6] describes a way to detect conflicts,
meaning the violation of specified constraints such as separation of duty con-
strains, caused by the role delegations. For conflict resolution, it is suggested in
[6] to constrain the delegations, which in turn greatly reduces the flexibility of
the model.

For our future work, we intend to study the formal model for a temporal role
based access control system, where time period can be associated with roles and
delegations, which will expire when the time period expires. We also intend to
investigate program update including revocation of roles and access rights.

References

1. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 365–385 (1991)

2. Li, N., Tripunitara, M.V.: Security Analysis in Role-Based Access Control. ACM
Transactions on Information and System Security 9(4), 391–420 (2006)

3. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role based access control
models. IEEE Computer 29(2), 38–47 (1996)

4. Sandhu, R., Bhamidipati, V., Munawer, Q.: The ARBAC97 model for role-based
administration of roles. ACM Trans. Inf. Syst. Secur. 2(1), 105–135 (1999)

5. Sandhu, R.S., Munawer, Q.: The ARBAC99 model for administration of roles. In:
Proc of the 18th Annual Computer Security Applications Conference, pp. 229–238
(1999)

6. Schaad, A.: Conflict detection in a role-based delegation model. In: Proc. of Annual
Computer Security Applications Conference (2001)

7. Schaad, A., Moffett, J., Jacob, J.: The role-based access control system of a Euro-
pean bank: A case study and discussion. In: Proc. of the Sixth SACMAT, pp. 3–9
(2001)

8. Oh, S., Sandhu, R.S.: A model for role admininstration using organization struc-
ture. In: Proc. of the Seventh SACMAT (2002)

9. Toahchoodee, M., Xie, X., Ray, I.: Towards trustworthy delegation in Role-Based
Access Control Model. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A.
(eds.) ISC 2009. LNCS, vol. 5735, pp. 379–394. Springer, Heidelberg (2009)

10. Zhang, X., Oh, S., Sandhu, R.: PBDM: A flexible delegation model in RBAC. In:
Proc. of the 8th ACM Symposium on Access Control Models and Technologies
(2003)

Robust Ranking of Uncertain Data

Da Yan and Wilfred Ng

The Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong
{yanda,wilfred}@cse.ust.hk

Abstract. Numerous real-life applications are continually generating
huge amounts of uncertain data (e.g., sensor or RFID readings). As a
result, top-k queries that return only the k most promising probabilistic
tuples become an important means to monitor and analyze such data.
These “top” tuples should have both high scores in term of some ranking
function, and high occurrence probability. The previous works on ranking
semantics are not entirely satisfactory in the following sense: they either
require user-specified parameters other than k, or cannot be evaluated
efficiently in real-time scale, or even generating results violating the un-
derlying probability model. In order to overcome all these deficiencies,
we propose a new semantics called U-Popk based on a simpler but more
fundamental property inherent in the underlying probability model. We
then develop an efficient algorithm to evaluate U-Popk. Extensive exper-
iments confirm that U-Popk is able to ensure high ranking quality and
to support efficient evaluation of top-k queries on probabilistic tuples.

1 Introduction

Many emerging applications, such as environmental surveillance and mobile ob-
ject tracking, involve the generation of uncertain data which are inherently fuzzy
and noisy. As a result, various probabilistic DBMSs are developed to support
the storage and querying of these uncertain data [2–4]. Since precise query ex-
pressions like SQL may not be ideal to evaluate such data, top-k queries become
an important means to extract information from them.

Top-k queries on deterministic data have been well studied [5, 6]. Unlike
top-k queries on deterministic data, ranking probabilistic tuples requires taking
both the tuple score and its occurrence probability into account, which gives
rise to new challenges in defining the query semantics. Despite the many recent
attempts to study top-k query semantics in the context of probabilistic relations
[1, 7–10], these seemingly natural semantics lead to quite different query results.

Recently, [11] proposes a unified framework that incorporates several of the
semantics and gives an approach to learn the ranking function from user pref-
erence. [12] proposes to return a number of typical top-k results to users. While
these works mitigate the inconsistency of the previous semantics and provide
more flexibility, they exert extra burden on users by requiring their intervention.

The work of [1] proposes five intuitive properties for top-k queries, and shows
that only ExpectedRank satisfies all of them and it is considerably more efficient

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 254–268, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Robust Ranking of Uncertain Data 255

to evaluate than the previous semantics. However, ExpectedRank has two sig-
nificant deficiencies: First, its results may contradict with the probability model,
which will be detailed in Section 4. Second, its results deviate considerably from
the results of the other semantics, which will be detailed in Section 6.1.

In this paper, we first identify a simple but fundamental property inherent in
the probability model, which any robust ranking semantics for probabilistic data
should satisfy. Then we describe our new semantics, U-Popk, that is founded on
this property to rank probabilistic tuples. It can be proved that U-Popk satisfies
all the five properties of [1]. The efficiency of our evaluation algorithm and the
ranking quality of U-Popk are evaluated using both real and synthetic datasets.

Compared to the state-of-the-art semantics, our proposal has many desirable
features. First, U-Popk gives more reasonable results than ExpectedRank in
general, with comparable evaluation cost. Second, unlike the work in [11, 12], U-
Popk requires no user intervention except for the parameter k, and is thus easier
to use. Finally, the evaluation of U-Popk takes considerably less time than other
semantics, and thus U-Popk paves a much better way towards real time analyses.

The rest of the paper is organized as follows. Section 2 defines our probabilistic
data model. We review the related work in Section 3. The robustness property
and our ranking semantics are proposed in Section 4, and the corresponding
algorithms are presented in Section 5. Extensive experiments are conducted in
Section 6 to demonstrate the efficiency of our algorithm and the ranking quality
of our semantics. Finally, we conclude the paper in Section 7.

2 Probabilistic Data Model

Among the many uncertain data models proposed in the literature, the tuple-
level probabilistic model [1, 8–12] is one of the most important models. In this
model, each tuple t is accompanied with the probability p of its occurrence. The
model is able to capture the form of uncertain data that is common in many
real life applications, such as sensor readings with confidence on their sensor
states, and data tuples with confidence on their information sources. We adopt
the tuple-level probabilistic model throughout the paper due to its popularity
in real life applications.

Figure 1(a) shows our running example relation conforming to the tuple-level
model, where the ranking score is defined according to the attribute “Speed”,
which records the car speed readings detected by different radars in a sampling
moment. In this relation, a confidence field “Conf.” is attached with each tuple
to indicate its occurrence probability. The occurrence probability of t1, denoted
as Pr(t1), is 0.4. In contrast, the probability of the event that t1 does not occur
is given by Pr(¬t1) = 1 − Pr(t1) = 0.6.

Note that both tuples t2 and t6 record the speed reading of the same car.
Since a car can only have one speed in a given moment, t2 and t6 cannot co-
exist, which we denote as t2⊕ t6. We call such a constraint an exclusion rule. We
have another exclusion rule t3 ⊕ t5 defined in the relation for a similar reason.
Different forms of constraints can be adopted in a probabilistic relation [2, 3]

256 D. Yan and W. Ng

Radar Location Car Make Plate No. Speed Confidence
L1 Honda X-123 130 0.4
L2 Toyota Y-245 120 0.7
L3 Mazda W-541 110 0.6
L4 Nissan L-105 105 1.0
L5 Mazda W-541 90 0.4
L6 Toyota Y-245 80 0.3

Possible World Probability
PW1={ t1, t2, t4, t5 } 0.112
PW2={ t1, t2, t3, t4 } 0.168
PW3={ t1, t4, t5, t6 } 0.048
PW4={ t1, t3, t4, t6 } 0.072

PW5={ t2, t4, t5 } 0.168
PW6={ t2, t3, t4 } 0.252
PW7={ t4, t5, t6 } 0.072
PW8={ t3, t4, t6 } 0.108Exclusion Rules: (t2 t6), (t3 t5)

t1
t2
t3
t4
t5
t6

(a) (b)

Fig. 1. (a)Probabilistic Relation with Exclusion Rules (b)Possible World Space

but exclusion rules are the most popular in the literature due to their simplicity
and usefulness. We considered only exclusion rules in this paper.

Note that each exclusion rule corresponds to an entity (e.g. a car in our
example) of the relation. Thus, each tuple appears in at most one exclusion
rule. In our example, the rule t2 ⊕ t6 means that the speed of the “Toyota”
car takes the value 120 with probability 0.7 and 80 with probability 0.3. In
general, given an exclusion rule ti1 ⊕ ti2 ⊕ · · · ⊕ tim , we have (1) Pr(ti1) +
Pr(ti2) + · · · + Pr(tim) ≤ 1, and (2) at most one tuple in {ti1 , ti2 , . . . , tim}
can occur. There is still an event that no tuple in the rule occurs, which has
probability (1 − Pr(ti1) − Pr(ti2) − . . . − Pr(tim)).

If a tuple ti is independent of all other tuples, we say ti itself is in a trivial rule.
In addition, any two tuples from different rules are assumed to be independent.
Thus, we have four rules in the example as follows: t1, t2⊕t6, t3⊕t5 and t4, where
t1 and t4 are in trivial rules, and t2 and t3 are independent. This assumption
simplifies the computation of the probabilities of possible worlds, which will be
further elaborated when discussing the algorithm issues in Section 5.

In the tuple-level model, a possible world (PW) is a subset of the tuples in the
probabilistic relation. Figure 1(b) shows the possible world space for the relation
in Figure 1(a). The probability of each world is computed as the joint probability
of the “occurrence events” of the tuples in the world, and the “absence events”
of all the other tuples. For example, the probability of PW 1 = {t1, t2, t4, t5} is
Pr(PW 1) = Pr(t1) × Pr(t2) × Pr(t4) × Pr(t5) = 0.112. Multiplication is used
here because the occurrence events of t1, t2, t4 and t5 are independent of each
other, and the absence events of t3 and t6 are already implied in the occurrence
events of t5 and t2 due to the exclusion rules. Similarly, the probability of PW 5 =
{t2, t4, t5} is Pr(PW 5) = Pr(¬t1) × Pr(t2) × Pr(t4) × Pr(t5) = 0.168.

3 Related Work

Several semantics for top-k queries on uncertain data have recently been proposed,
such as U-Topk[8], U-kRanks[8], Global-Topk[9], PT-k[10] and ExpectedRank[1],
all of which are defined on the possible world model. We now illustrate their se-
mantics by performing a top-2 query on the relation in Figure 1(a).

Robust Ranking of Uncertain Data 257

1) U-Topk returns the most probable top-k tuples that belong to a valid possible
world. Consider U-Top2 and define 〈ti, tj〉 to be the event that ti is ranked the
first and tj the second in a possible world. By merging the possible worlds in
Figure 1(b) whose top-2 tuples are the same, we have Pr(〈t1, t2〉) = Pr(PW 1)+
Pr(PW 2) = 0.28, which is the largest among all possible top-2 combinations.
Therefore, the result of U-Top2 is 〈t1, t2〉.

However, there can be a large number of valid possible worlds. As a result, the
most probable top-k tuples that belong to a valid possible world can occur with
a very small probability. [12] proposes to return c typical top-k tuple vectors
in terms of the distribution of the total score of top-k tuples, from which users
need to choose one, which is itself a non-trivial task for users.
2) U-kRanks returns the set of most probable top-i th tuples across all possible
worlds, where i = 1, . . . , k. Let us compute U-2Ranks. First, consider the most
probable tuple to appear in the 1st position. Tuple t2 appears in the 1st position
with probability Pr(PW 5) + Pr(PW 6) = 0.42, since it appears the first only
in PW 5 and PW 6. Similarly, t1 appears in the first position with probability
Pr(PW 1) + Pr(PW 2) + Pr(PW 3) + Pr(PW 4) = 0.4. After considering all the
tuples, we can see that t2 appears in the 1st position with maximum probability.
Thus the first answer to U-2Ranks is t2. The second answer to U-2Ranks should
be the most probable tuple to appear in the 2nd position, and similarly, we find
that tuple t3 appears in the 2nd position with maximum probability Pr(PW 4)+
Pr(PW 6) = 0.324. To sum up, the result of U-2Ranks is 〈t2, t3〉.

Since a tuple may be the most probable tuple to appear in more than one
position, the same tuple may be listed multiple times in the result of U-kRanks,
which is a very unnatural answer to users.
3) PT-k returns all tuples whose probability values of being in the top-k answers
in possible worlds are above a threshold; Global-Topk returns k highest-ranked
tuples according to their probability of being in the top-k answers in possible
worlds.

As for Global-Top2 and PT-2, we check for each tuple the probability that it
is within top-2. Tuple t2 is within top-2 in worlds PW 1, PW 2, PW 5 and PW 6,
and thus with probability Pr(PW 1)+Pr(PW 2)+Pr(PW 5)+Pr(PW 6) = 0.7.
Similarly, the probability to be within top-2 is 0.4 for t1, 0.432 for t3, 0.396 for
t4, 0.072 for t5 and 0 for t6. Global-Top2 picks the two tuples with maximum
probability to be within top-2, namely t2 and t3. On the other hand, PT-2 picks
all the tuples with probability to be within top-2 higher than a pre-specified
threshold. If the threshold is set to be 0.5, then only t2 is returned. However, if
the threshold is set to be 0.3, then the result would become {t2, t1, t3, t4}.

One limitation of PT-k is that the number of returned tuples may not be k
but depends on the user-specified threshold, which is difficult for a user to set.
4) ExpectedRank(k) returns k tuples whose expected ranks across all possible
worlds are the highest. However, if a tuple does not appear in a possible world,
its rank is then undetermined. To solve this, in a possible world with m tuples,
ExpectedRank ranks absent tuples to be in the (m + 1)th position. Thus, t2
and t5 are both ranked 5th in PW 4 shown in Figure 1(b), although t2 have

258 D. Yan and W. Ng

both higher score and higher occurrence probability than t5. As a more detailed
illustration, we consider tuple t5 which is ranked 4th in PW 1, 5th in PW 2 due
to its absence, 3rd in PW 3, 5th in PW 4 due to its absence, 3rd in PW 5, 4th
in PW 6 due to its absence, 2nd in PW 7, and 4th in PW 8 due to its absence.
Therefore the expected rank for t5 is 0.112 · 4 + 0.168 · 5 + 0.048 · 3 + 0.072 · 5 +
0.168 · 3 + 0.252 · 4 + 0.072 · 2 + 0.108 · 4 = 3.88. Similarly, we have the expected
rank 2.8 for t1, 2.3 for t2, 3.02 for t3, 2.7 for t4, 4.1 for t6. Therefore, the result
of ExpectedRank(2) is {t2, t4}, since their expected ranks are the highest.

In fact, ExpectedRank defines an order on the tuples, e.g. t2 � t4 � t1 � t3 �
t5 � t6 in the previous example, while the ranking function of Global-Topk and
PT-k is dependent on k, which means that a tuple in the top-k result may not
appear in the top-(k + 1) result.
5) PRF [11] presents a unified framework that uses parameterized ranking func-
tions (PRF) for ranking probabilistic data. The work proposes a basic function
called PRF e and employs a linear combination of PRF e functions to approx-
imate PRF by using Discrete Fourier transformation. This approach is able to
achieve good performance at the expense of result quality.

PRF also gives a learning algorithm that learns the parameter from user
preference. The training data come from explicit user feedback, which assumes
that users know the interplay between high score and high occurrence probability
of the tuples. However, users usually expect reasonable score-probability tradeoff
automatically in the evaluation of such top-k queries and assume no extra effort
to give explicit feedback. Another problem is that high-quality training data may
not be available from casual users, even if they are willing to give feedback.

4 Robust Ranking Semantics

In this section, we first formalize a property called top-1 robustness, which is
founded on the tuple-level probability model. Then a fundamental property of
ranking deterministic data, which is called top-stability, is extended to rank prob-
abilistic tuples. Top-stability enables repeated applications of top-1 robustness,
based on which we define our new semantics.

Property 1 (Top-1 Robustness). The top-1 query on an uncertain relation D
returns the tuple t ∈ D such that ∀t′ ∈ D, Pr(r(t) = 1) ≥ Pr(r(t′) = 1), where
r(t) denotes the rank of t.

From now on, we will use “top-1 probability” to denote the probability for a
tuple to be ranked top-1. Property 1 states that any top-k query semantics for
probabilistic tuples should return the tuple with maximum top-1 probability
when k = 1. Note that the semantics of U-Top1, U-1Ranks and Global-Top1
are equivalent, and they all satisfy Property 1. Although the number of tuples
returned by PT-1 is determined by the threshold, the top-1 tuple defined in
Property 1 must appear in the result of PT-1 if the result is not empty.

Unfortunately, ExpectedRank may violate this robustness property. Consider
an example relation {t1, t2, t3, t4, t5} with an exclusion rule t1 ⊕ t2 ⊕ t3 ⊕ t5,

Robust Ranking of Uncertain Data 259

where tuples t1 to t5 are already sorted in descending order of their scores. We
use pi to denote the occurrence probability of ti, and p1 = p2 = p3 = 0.2, p4 =
0.45, p5 = 0.4. For top-1 query on this relation, t5 should be returned since its
top-1 probability (1−p4)p5 = 0.22 is the highest. However, ExpectedRank picks
t4 whose top-1 probability (1−p1−p2−p3)p4 = 0.18 is smaller, which contradicts
Property 1 and thus the underlying probability model.

Property 2 (Top-Stability). The top-(i + 1)th tuple should be the top-1st after
the removal of the top-i tuples.

Property 2 is intuitive in the context of certain data. Top-stability implies that,
in principle, we are able to adopt the following approach to obtain the top-k
tuples: The top-1 tuple is repeatedly removed from the current relation until k
tuples are obtained. To generalize this approach to ranking probabilistic tuples
for answering a top-k query, we define a new semantics U-Popk as follows:

Definition 1 (U-Popk). Tuples are picked in order from a relation according
to Property 2 until k tuples are picked, where the top-1st tuple is defined according
to Property 1.

According to Definition 1, when a tuple is picked as the result, it is removed
from the relation and thus will never be considered again in later evaluation.
This avoids the problem of multiple occurrences of the same tuple in the result.

Although U-Popk changes the probabilistic relation in each round of evalua-
tion and hence the set of possible worlds, this enables the use of top-1 robustness
to pick the result tuple in each round. If k is small compared with the size of
the relation, which is not unusual in applications, the modified relation in each
round is still a good approximation of the original one. Besides, by removing
the “top” tuples from the relation, we only need to make comparison among the
remaining tuples in the pool from which the next “top” tuple will be picked.

Our approach shares a similar spirit of the work that uses a simplification
assumption to facilitate the application of a robust property. For example, a
näıve Bayes classifier uses the simplification assumption that all observations
are independent to the facility of the evaluation of the robust property (i.e., the
Bayes’ rule), and so does maximum likelihood estimation. Even in top-k queries
on uncertain data, we have the independence assumption among tuples from
different exclusion rules to simplify the computation of the probability of possible
worlds, where the possible world model is robust. For U-Popk, the simplification
property is top-stability and the robust property is top-1 robustness.

Tuples are assumed to be pre-sorted in the descending order of tuple scores in
all previous work, since a tuple t′ with a score lower than another tuple t will be
ranked lower in any possible world and thus has no influence on the probability
computation for the rank of t, which is also adopted in U-Popk. Recall that the
tuples in Figure 1(a) are already pre-sorted according to the attribute speed. The
following example illustrates how U-Pop2 works for the relation in Figure 1(a):

Example. The first step is to compute the top-1 tuple in the relation. Tu-
ple t1 is ranked the first with probability Pr(t1) = 0.4. The probability is

260 D. Yan and W. Ng

Pr(¬t1)Pr(t2) = 0.42 for t2, since t1 must not occur and t2 must occur in
this case, while the other tuples are immaterial. Since the probability that a
tuple other than t1 and t2 is ranked the first is Pr(¬t1)Pr(¬t2) = 0.18, which is
smaller than the probability for t2 to be ranked the first, we can conclude that
t2 is ranked the first with maximum probability and is thus picked.

After removing t2 from the relation, we have the tuples t1, t3, t4, t5, t6 remained
in the pool. Tuple t1 is ranked the first with probability Pr(t1) = 0.4. The
probability is Pr(¬t1)Pr(t3) = 0.36 for t3. Since the probability that a tuple
other than t1 and t3 is ranked the first is Pr(¬t1)Pr(¬t3) = 0.24, which is
smaller than the probability for t1 to be ranked the first, we thus conclude that
t1 is ranked the first with maximum probability and it is thus picked.

Therefore, the result for U-Pop2 on the relation in Figure 1(a) is 〈t2, t1〉.

5 U-Popk Algorithms

In this section, we first present the algorithms to evaluate U-Popk for the case
that all tuples are independent of each other (i.e., no exclusion rule is considered).
Then, we extend them to handle the general case that exclusion rules are given.

5.1 Algorithm for Independent Tuples

We consider the special case where all tuples in a given probabilistic relation are
independent of each other, and assume that tuples are pre-sorted in descending
order of score.

Consider a relation having tuples {t1, t2, . . . , tn}, where t1 to tn are already
sorted and pi is the occurrence probability of ti. In order to rank ti as top-1,
t1 to ti−1 should not appear but ti should appear, while all tuples after ti (i.e.,
tuples with lower scores) are immaterial. Therefore, the top-1 probability of ti
is (1 − p1)(1 − p2) · · · (1 − pi−1)pi.

If we define accumi = (1 − p1)(1 − p2) · · · (1 − pi−1) with the special case of
accum1 = 1, we have accumi+1 = accumi(1 − pi), and the probability for ti to
be top-1 can be written as accumi · pi.

Algorithm 1. Find the Top-1 Tuple
1: accum ←− 1; max ←− −∞; result ←− null
2: while accum > max and there are more tuples do
3: {Process the next tuple ti}
4: top1Prob ←− accum · pi

5: if top1Prob > max then
6: max ←− top1Prob; result ←− ti

7: accum ←− accum · (1 − pi)
8: return result

Algorithm 1 finds the top-1 tuple among a list of pre-sorted tuples. The pa-
rameter accum is initialized to 1 in Line 1, and updated after each iteration

Robust Ranking of Uncertain Data 261

(Line 7). Lines 2–7 check the tuples one by one, and in each iteration a tuple
ti is read and its probability to be top-1 is computed as top1Prob (Line 4). If
top1Prob is found to be larger than the maximum top-1 probability currently
found (Line 5), i.e., max, it is updated and ti is recorded (Line 6).

Note that we do not need to check all the tuples. Suppose we have checked ti
and updated accum to (1− p1)(1− p2) · · · (1− pi), where the current maximum
top-1 probability is max. If accum ≤ max, then the tuple with top-1 probability
equal to max must be the result. This is because the top-1 probability of any
succeeding tuple tj(for j > i) is (1 − p1)(1 − p2) · · · (1 − pi)(1 − pi+1) · · · (1 −
pj−1)pj ≤ (1 − p1)(1 − p2) · · · (1 − pi) · 1 · · · 1 · 1 ≤ max.

Intuitively, the parameter accum acts as an upperbound of the top-1 proba-
bilities for the tuples to be checked, which enables early termination (Line 2).

It is straightforward to construct a näıve algorithm for U-Popk that uses
Algorithm 1: All the sorted tuples are read into a memory buffer first. Then
in each iteration, a top-1 tuple is picked from the current tuple buffer using
Algorithm 1, removed from the buffer and added to the result set. This is re-
peated until k tuples are obtained.

However, the näıve approach is not efficient enough and can be much improved
by reusing the parameters obtained from previous computation. To illustrate
this, we suppose that t3 have been checked, that the iteration stops due to
accum ≤ max, and that t2 is found to have maximum top-1 probability. Then
after removing t2, the top-1 probability of t1 is still p1, which can be reused,
while that of t3 is now (1 − p1)p3 rather than (1 − p1)(1 − p2)p3.

In general, we can reuse the already computed top-1 probabilities of those
tuples whose positions are before the picked top-1 tuple ttop1, since the removal
of ttop1 does not change their top-1 probabilities. Figure 2 shows an example
where ti is picked due to accum ≤ max, after checking tj and updating accum.
The top-1 probabilities for t1 to ti−1 can be reused, ti is removed from the buffer,
and the top-1 probabilities for ti+1 to tj should be updated (i.e., re-scanned).
The update is simply to divide the original probability by (1 − pi) so as to rule
out the consideration for ti. After the update, the next iteration starts from tj+1.
We define (j − i) to be the rescan length for this iteration.

t1 t2 … ti … tj tj+1 …

reuse

tuples read into memory

rescanmax accum < max, stop

Fig. 2. Snapshot of the End of an Iteration

In order to delete the picked top-1 tuple from the memory buffer in O(1)
time for each iteration, we organize the buffer as a doubly-linked list and attach
each tuple t in the buffer with the following three fields: (1) t.prob: its top-1
probability, (2) t.id: its index in the original sorted tuple list, and (3) t.max: the
tuple whose top-1 probability is the maximum before t being put in the buffer.

262 D. Yan and W. Ng

Note that if ti is picked as top-1, ti.max already records the tuple with max-
imum top-1 probability among the tuples whose positions are before ti in the
buffer (i.e., the current maximum top-1 probability for the tuples with position
before ti+1). While updating the top-1 probabilities from ti+1, we update the
current maximum top-1 probability if the updated probability is larger. There-
fore, after all the updates, we get the current maximum top-1 probability for all
the tuples with position before tj+1. Then, the next iteration starts from tj+1.

Algorithm 2 shows the process of top-1 probability adjustment between con-
secutive iterations discussed above, where ti has already been identified as top-1.

Algorithm 2. Top-1 Probability Adjustment between Iterations
1: maxTuple ←− ti.max
2: if maxTuple == null then
3: max ←− −∞
4: else
5: max ←− maxTuple.prob
6: for each tuple t after ti in buffer do
7: t.prob ←− t.prob/(1 − pi); t.max ←− maxTuple
8: if t.prob > max then
9: max ←− t.prob; maxTuple ←− t

10: Delete ti from buffer

The variable maxTuple records the tuple with the maximum top-1 probability
currently, and max is its probability. Before updating from tuple ti+1 (Line 6),
maxTuple is set to ti.max. However, ti.max may be null, because for t1, no
tuple with the maximum top-1 probability exists before it. In this case, max is
set to −∞. Otherwise, it is set to maxTuple.prob which is the maximum top-1
probability among the tuples before ti.

For each tuple t after ti, t.prob is divided by (1 − pi) and t.max records
maxTuple (Line 7). If t.prob > max, t now has the maximum top-1 probability,
and thus maxTuple and max are updated accordingly (Line 9). Finally, ti is
removed from the doubly-linked list buffer in O(1) time in Line 10.

Algorithm 3 is a more efficient algorithm for U-Popk on independent tuples,
which makes use of Algorithm 2. After the initialization in Lines 1–2, tuples
are read into the memory buffer one by one in Line 3. For each tuple, its fields
are set in Line 4, and it is added to the end of buffer (Line 5). If its top-1
probability is larger than the current maximum, the current maximum is updated
accordingly (Lines 6–7). Then accum is updated in Line 8 and checked in Line
9. If accum ≤ max, the current top-1 is found to be maxTuple, which is thus
put into the result set (Line 10). Then Algorithm 2 is called to update buffer to
reflect the removal of maxTuple (Line 13), and so does accum (Line 14).

If k results are picked, we do not need to read in more tuples (Lines 11–12).
However, it is possible that all tuples are read into buffer before k results are
picked. Thus, after the for loop in Lines 3–14, if there are still less than k results,

Robust Ranking of Uncertain Data 263

Algorithm 3. U-Popk Algorithm for Independent Tuples
1: Create an empty doubly-linked list buffer
2: accum ←− 1; resultSet ←− φ; maxTuple ←− null; max ←− −∞
3: for each tuple ti do
4: ti.prob ←− accum · pi; ti.max ←− maxTuple
5: Append ti to the end of the doubly-linked list buffer
6: if ti.prob > max then
7: max ←− ti.prob; maxTuple ←− ti

8: accum ←− accum · (1 − pi)
9: if accum ≤ max then

10: Put maxTuple into resultSet
11: if |resultSet| == k then
12: return resultSet
13: accum ←− accum/(1 − pmaxTuple.id)
14: Call Algorithm 2 to adjust buffer
15: while |resultSet| < k and buffer is not empty do
16: Put maxTuple into resultSet
17: if |resultSet| == k then
18: return resultSet
19: accum ←− accum/(1 − pmaxTuple.id)
20: Call Algorithm 2 to adjust buffer
21: return resultSet

we need to pick maxTuple into the result set (Line 16), and use Algorithm 2 to
adjust the buffer and set the next maxTuple (Line 19). This process is repeated
until k results are picked, which is done by the while loop in Lines 15–20.

At most n tuples are read into buffer where n is the total number of tuples
in the probabilistic relation. Since all the steps in the for loop in Lines 3–14
take constant time except the adjustment in Line 13, they take O(n) time in
total. The adjustment of Lines 13 and 19 is executed exactly k times, since
whenever a top-1 tuple is picked, Lines 14–19 or 23–28 are executed once, and
thus Algorithm 2. It is straightforward to see that Algorithm 2 takes O(L) where
L is the rescan length for an iteration. The time complexity of Algorithm 3 is then
O(n + k ·Lavg), where Lavg is the average rescan length among the k iterations.

Note that Lavg tends to be small since every factor of accum is at most 1,
which makes accum smaller than max after a few tuples are read into buffer.
For small k, it is not likely that all n tuples are read into buffer, but just a few
top ones, the number of which is defined to be scan depth in [8].

The tricky case is when pi = 1, where accum will be updated to 0 in Line 8,
and thus accum ≤ max and Algorithm 2 is then called in Line 13. So, ti+1 can
never be read into buffer until ti is picked, and therefore Line 7 in Algorithm 2
is not executed and it does not cause division by 0. However, we cannot restore
accum using Line 14. Instead, if pi = 1, we save accum before executing Line 8
for later restoration when ti is picked. The saved value is updated using Line 14,
if other tuples are picked before the restoration. These details are not included
in Algorithm 3 in order to make it more readable.

264 D. Yan and W. Ng

5.2 Algorithm for Tuples with Exclusion Rules

Now, we present the general case where each tuple is involved in an exclusion
rule ti1 ⊕ ti2 ⊕ · · · ⊕ tim(m ≥ 1). We assume that ti1 , ti2 , . . . , tim in the rule are
already pre-sorted in descending order of the tuple scores.

The upper bound of the top-1 probability for all the tuples starting from ti
is no longer accumi = (1 − p1)(1 − p2) · · · (1 − pi−1). We denote tj1 , tj2 , . . . , tj�

to be all the tuples with position before ti and in the same exclusion rule of
ti. Then, there is a factor (1 − pj1 − pj2 − . . . − pj�

) in accumi. Let us define
accumi+1 = accumi · (1 − pj1 − pj2 − . . . − pj�

− pi)/(1 − pj1 − pj2 − . . . − pj�
),

which changes the factor of ti’s rule, in the top-1 probabilities of the tuples after
ti, from (1−pj1 −pj2 − . . .−pj�

) to (1−pj1 −pj2 − . . .−pj�
−pi). Now the top-1

probability of ti is accumi · pi/(1− pj1 − pj2 − . . .− pj�
), where the denominator

rules out the influence of the tuples exclusive with ti.
Consider the factor in accumi that corresponds to rule tj1 ⊕ tj2 ⊕ · · · ⊕ tj�

⊕ · · · ⊕ tjm . If the tuples tj1 , tj2 , . . . , tj�
(� < m) are now before the current

tuple considered, then the factor is (1 − pj1 − pj2 − . . . − pj�
). Within the same

iteration, this factor can only be decreasing as we read in more tuples. For
example, if we read in more tuples such that tj�+1 is also positioned before the
current tuple, the factor then becomes (1 − pj1 − pj2 − . . . − pj�

− pj�+1), which
is smaller.

The top-1 probability for ti is no longer accumi · pi < accumi, but accumi ·
pi/(1−pj1−pj2−. . .−pj�

) to rule out the factor corresponding ti’s rule. Therefore,
if we keep track of the factors corresponding to all the rules, where factormin

is the smallest, the top-1 probability upper bound is accumi/factormin for all
the tuples starting from ti. This is due to two reasons. First, the top-1 proba-
bility of ti is computed as accumi

factor × pi(< accumi

factormin
), where factor is the factor

corresponding to ti’s rule. Second, the factors in accum that correspond to the
rules can only decrease as i increases. We organize the rules in the memory by
using MinHeap on factor. Thus, factormin can be retrieved from the top of the
heap immediately, and the upper bound can be computed in O(1) time. We call
this MinHeap Active Rule set and denote it AR.

Note that we do not need to keep all the rules in AR. If all the tuples
in a rule are after the current tuple, we do not need to fetch it into AR.
Otherwise, if the rule of the current tuple is not in AR, we insert it into
AR, which takes O(log |AR|) time. For each rule r in AR, we attach it with
the following two fields: (1) r.pivot: the last tuple in rule r that is before
the current tuple, and (2) r.factor: the current factor of r in accum. Sup-
pose r = ti1 ⊕ ti2 ⊕ · · · ⊕ ti�

⊕ · · · ⊕ tim and r.pivot = ti�
, then r.factor =

(1 − pi1 − pi2 − . . . − pi�
).

After checking a tuple and updating accum, if the upper bound is smaller
than the current maximum top-1 probability, the tuple must be top-1 and thus
the iteration terminates. Before next iteration, we need to update the top-1
probabilities of the tuples after the picked one. In this case, we need to update
their probabilities segment by segment as illustrated in Figure 3.

Robust Ranking of Uncertain Data 265

t1 ... ti1 ... ti2 ... ti (l-1) ... til ... tcur

prob·(1-pi1) /(1-pi1-pi2)

max currentprob·(1-pi1-pi3-…-pi(l-1)) /(1-pi1-pi2-pi3-…-pi (l-1))

prob·(1-pi1-pi3-…-pil) /(1-pi1-pi2-pi3-…-pil)

Fig. 3. Top-1 Probability Adjustment

In Figure 3, we assume that after processing the current tuple tcur, the upper
bound is smaller than tuple ti2 ’s top-1 probability, which is the current maxi-
mum, and thus the iteration ends. Besides, assume that ti1 , . . . , til

are the tuples
in ti2 ’s rule and they are positioned before tcur. Then the top-1 probability prob
of a tuple after ti2 and between tih

and tih+1 (defined to be a segment) in the
buffer should be updated as prob · (1− pi1 − pi2 − pi3 − pih

)/(1− pi1 − pi3 − pih
)

to reflect the removal of ti2 from buffer.
This actually changes the factor of ti2 ’s rule in the top-1 probabilities, which

can be done by a single pass of the tuples after ti2 , and a single pass over ti2 ’s
rule. Note that the top-1 probabilities of ti1 , ti3 , . . . , til

remain the same.
After the removal of the current top-1 tuple (i.e., ti2 in the above example)

and the update of the top-1 probabilities, the tuple is also removed from its
rule r. This increases r.factor (i.e., by pi2 in the above example), and so r’s
position in the MinHeap AR should be adjusted, which takes O(log |AR|) time.
If no tuple remains in a rule after the removal, the rule is deleted from AR.

Since the adjustment after each iteration includes O(log |AR|) time rule po-
sition adjustment in AR and a scan of the rule of the picked tuple, the total
time is O(k(log |AR| + lenmax)), where lenmax is the largest length of a rule.
Besides, since each rule will be inserted into AR at most once in O(log |AR|)
time, the total time is O(|R| log |AR|), where R is the rule set. So the overall
time complexity is O(n+ |R| log |AR|+k(Lavg + lenmax +log |AR|)). We do not
present the complete algorithm here due to space limitation.

6 Experiments

We conduct extensive experiments using both real and synthetic datasets on
HP EliteBook with 3 GB memory, and 2.53 Hz Intel Core2 Duo CPU. The real
dataset is IIP Iceberg Sightings Databases1, which is commonly used by the re-
lated work such as [10, 11] to evaluate the result quality of ranking semantics. We
study the performance of the algorithms on synthetic datasets. Our algorithms
are implemented in Java.

6.1 Ranking Quality Comparison on IIP Iceberg Databases

The pre-processed verion of IIP by [10] is used to evaluate the ranking quality of
different semantics. Figure 4(a) lists the occurrence probabilities of some tuples
from the dataset, where the tuples are pre-sorted by scores. Figure 4(b) shows
the top-10 query results of different semantics.
1 http://nsidc.org/data/g00807.html (IIP: International Ice Patrol).

http://nsidc.org/data/g00807.html

266 D. Yan and W. Ng

U-Popk ExpRank PT-k U-Topk U-kRanks SUM
U-Popk 0 13.5 3 1 5 22.5

ExpRank 13.5 0 13.5 12.5 2.5 42
PT-k 3 13.5 0 2 5 23.5

U-Topk 1 12.5 2 0 4 19.5
U-kRanks 5 2.5 5 4 0 16.5

U-Popk ExpRank PT-k U-Topk U-kRanks SUM
U-Popk 0 10 2 1 4 17

ExpRank 10 0 9 9 0 28
PT-k 2 9 0 1 3 15

U-Topk 1 9 1 0 3 14
U-kRanks 4 0 3 3 0 10

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t14 t18
pi 0.8 0.8 0.8 0.6 0.8 0.8 0.4 0.15 0.8 0.7 0.8 0.6 0.8

1 2 3 4 5 6 7 8 9 10
U-Popk t1 t2 t3 t4 t5 t6 t9 t7 t10 t11

ExpRank t1 t2 t3 t5 t6 t9 t11 t18 t23 t33
PT-k t1 t2 t3 t4 t5 t6 t9 t10 t11 t14

U-Topk t1 t2 t3 t4 t5 t6 t7 t9 t10 t11
U-kRanks t1 t2 t3 t5 t6 t9 t9 t11 t11 t18

(a) Occurrence Probabilities of the Tuples

(b) Occurrence Probabilities of the Tuples

(c) Neural Approach to Kendall’s Tau Distance

(d) Optimistic Approach to Kendall’s Tau Distance

Fig. 4. Top-10 Results on IIP Iceberg Databases

Figure 4(b) shows that the results of U-Popk, U-Topk and PT-k are almost
the same. U-Popk ranks t9 before t7, which is more reasonable, since p7 = 0.4
is much smaller than p9 = 0.8 and their score ranks are close. PT-k rules out
t7 but includes t14. However, p14 = 0.6 is not much larger than p7 = 0.4 but t7
has a much higher score rank than t14. Therefore, it is more reasonable to rank
t7 before t14. In fact, the top-11th tuple for U-Popk is t14. However, U-kRanks
returns duplicate tuples. ExpectedRank promotes low-score tuples like t23 and
t33 to the top, which is unreasonable and is also observed in [11]. This deficiency
happens mainly because ExpectedRank assigns rank (�+1) to an absent tuple t
in a world having � tuples. As a result, low-score absent tuples are given relatively
high ranking in those small worlds, leading to their overestimated rank. Overall,
U-Popk gives the most reasonable results in this experiment.

Kendall’s tau distance is extended to gauge the difference of two top-k lists in
[14], which includes an optimistic approach and a neural approach. Figure 4(c)
and (d) show the extended Kendall’s tau distance between the top-10 lists of the
different semantics in Figure 4(b), where the last column SUM is the sum of the
distances in each row. We can see that ExpectedRank returns drastically differ-
ent results from the other semantics, which means that ExpectedRank actually
generates many unnatural rankings.

6.2 Scalability Evaluation

We find that only U-Popk and ExpectedRank are efficient enough to support
real time needs, while other semantics such as PT-k are much more expensive
to evaluate. Figure 5(a1)–(a2) show the results on the IIP dataset described
above, where 4 seconds are consumed by PT-k even when k = 100 and the high
probability threshold 0.5, while all the tuples can be ranked by U-Popk and
ExpectedRank within 0.2 seconds. (a2) also shows that U-Popk is faster than
ExpectedRank when k is within 1/10 of the data size and never slower by a factor
of 2. Overall, the efficiency of U-Popk is comparable to that of ExpectedRank.

We evaluate the scalability of U-Popk on synthetic data sets and show the
important results in Figure 5. We find that the data size is not a major factor

Robust Ranking of Uncertain Data 267

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 1 2 3 4 5 6 7 8 9 10
E

xe
c

T
im

e
(s

)

(a1) k(x 100)

PT-k

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 10 100 1000 10000 100000

E
xe

c
T

im
e

(m
s)

(a2) k

U-Popk
ExpectedRank

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

 1 2 3 4 5 6 7 8

E
xe

c
T

im
e

(m
s)

(b1) k(x 104)

Gaussian
Uniform

 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000

 1 2 3 4 5 6 7 8

S
ca

n
D

ep
th

(b2) k(x 104)

Gaussian
Uniform

 14000
 14500
 15000
 15500
 16000
 16500
 17000
 17500
 18000

 1 2 3 4 5 6 7 8

A
V

G
 R

es
ca

n
Le

ng
th

(b3) k(x 104)

Gaussian
Uniform

 10

 100

 1000

 10000

 50 500 5000 50000

E
xe

c
T

im
e

(m
s)

(c1) Rule Length

Gaussian
Uniform

 100

 1000

 10000

 100000

 1e+06

 50 500 5000 50000

A
V

G
 R

es
ca

n
Le

ng
th

(c2) Rule Length

Gaussian
Uniform

 0
 10
 20
 30
 40
 50
 60
 70
 80

 1 2 3 4 5 6 7 8
A

V
G

 R
es

ca
n

Le
ng

th
(c3) Rule Length

Gaussian
Uniform

Fig. 5. Important Scalability Evaluation on Synthetic Data

on the performance, and therefore we fix it to be 100K tuples. ExpectedRank
is also not shown here, since it has similar performance in Figure 5(b1). The
results in each experiment are averaged over 10 randomly generated data sets,
whose tuple probabilities conform to either Uniform or Gaussian distribution.

Figures 5(b1)–(b3) show the effect of k on the performance, where the rule
length is set to be 1000. Figures 5(b1)–(b2) show that the execution time and
scan depth are almost linear to k, while in Figure 5(b3) the average rescan length
first increases and then decreases as k increases. The drop happens because
almost all the tuples are read into buffer at the end, and therefore the number
of tuples decreases for each removal of a top-1 tuple.

Figures 5(c1)–(c2) show the effect of rule length on the performance, where
we set all rules to the same length. Since in real life applications it is not likely
to have too many tuples in a rule, we also explore the effect of rule length for
short rules (i.e. less than 10 tuples in a rule). Figure 5(c3) shows that the average
rescan length increases linearly with the rule length for small rule lengths.

The time complexity of U-Popk is shown to be O(n + |R| log |AR| + k(Lavg

+ lenmax + log |AR|)) in Section 5.2, where the O(n) part is actually the scan
depth, which is shown to be almost O(k) in Figure 5(b2). Also, when the max-
imum rule length lenmax is small, we have Lavg = O(lenmax) in Figure 5(c3).
Since AR is a fraction of the rule set, we have |AR| = O(|R|). Thus, the time
complexity can be approximated as O(k · (lenmax +log |R|)+ |R| log |R|), that is
linear to k and lenmax, and O(|R| log |R|) for the rule set R, which scales well.

268 D. Yan and W. Ng

7 Conclusion

We propose U-Popk as a new semantics to rank probabilistic tuples, which is
based on a robust property inherent in the underlying probability model. Com-
pared with other known ranking semantics, U-Popk is the only semantics that
is able to achieve all the following desirable features: high ranking quality, fast
response time, and no additional user-defined parameters other than k.

Acknowledgements. This work is partially supported by RGC GRF under
grant number HKUST 618509.

References

1. Cormode, G., Li, F., Yi, K.: Semantics of ranking queries for probabilistic data
and expected ranks. In: ICDE (2009)

2. Dalvi, N., Suciu, D.: Efficient query evaluation on probabilistic databases. VLDB
Journal 16(4), 523–544 (2007)

3. Agrawal, P., Benjelloun, O., Das Sarma, A., Hayworth, C., Nabar, S., Sugihara,
T., Widom, J.: Trio: A system for data, uncertainty, and lineage. In: VLDB (2006)

4. Antova, L., Koch, C., Olteanu, D.: From complete to incomplete information and
back. In: SIGMOD (2007)

5. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
In: PODS (2001)

6. Ilyas, I.F., Beskales, G., Soliman, M.A.: Survey of top-k query processing tech-
niques in relational database systems. In: ACM Computing Surveys (2008)

7. Re, C., Dalvi, N., Suciu, D.: Efficient top-k query evaluation on probabilistic
databases. In: ICDE (2007)

8. Soliman, M.A., Ilyas, I.F., Chang, K.C.-C.: Top-k query processing in uncertain
databases. In: ICDE (2007)

9. Zhang, X., Chomicki, J.: On the semantics and evaluation of top-k queries in
probabilistic databases. In: DBRank (2008)

10. Hua, M., Pei, J., Zhang, W., Lin, X.: Ranking queries on uncertain data: A prob-
abilistic threshold approach. In: SIGMOD (2008)

11. Li, J., Saha, B., Deshpande, A.: A unified approach to ranking in probabilistic
databases. In: VLDB (2009)

12. Ge, T., Zdonik, S., Madden, S.: Top-k queries on uncertain data: On score distri-
bution and typical answers. In: SIGMOD (2009)

13. Jin, C., Yi, K., Chen, L., Yu, J.X., Lin, X.: Sliding-window top-k queries on un-
certain streams. In: VLDB (2008)

14. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. In: SODA (2003)

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 269–283, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Probabilistic Image Tagging with Tags Expanded By
Text-Based Search

Xiaoming Zhang1, Zi Huang2, Heng Tao Shen2, and Zhoujun Li1

1 School of Computer, Beihang University, Beijing, 100191, China
yolixs@cse.buaa.edu.cn

2 School of Information Technology & Electrical Engineering, University of Queensland
Room 651, Building 78, St Lucia Campus, Brisbane, Australia

{shenht,huang}@itee.uq.edu.au

Abstract. Automatic image tagging automatically assigns image with semantic
keywords called tags, which significantly facilitates image search and
organization. Most of present image tagging approaches assign the query image
with the tags derived from the visually similar images in the training dataset
only. However, their scalabilities and performances are constrained by the
limitation of using the training method and the fixed size tag vocabulary. In this
paper, we proposed a search based probabilistic image tagging algorithm
(CTSTag), in which the initially assigned tags are mined from the content-based
search result and expanded from the text-based search results. Experiments on
NUS-WIDE dataset show not only the performance of the proposed algorithm
but also the advantage of image retrieval using the tagging result.

Keywords: Image tagging, search based tagging, tag expansion.

1 Introduction

Image tagging is the task that assigns an image with several descriptive keywords
called tags. With the tags, images can be searched like web documents. Such new
characteristics of images bring new research problems to Web applications [1], [2],
[3]. Recently, many automatic tagging approaches have been proposed recently [4],
[5], [6], [7]. They mainly assign the query image with the tags that commonly appear
in the visually similar images in the training dataset.

There are several problems existing in these automatic tagging approaches. First,
these automatic tagging approaches have a high dependency on their small-scale
training dataset, which restrict their effectiveness on arbitrary images. That is, only
images that have visually similar images in the training dataset could be assigned with
tags in a limit tag vocabulary. As a result, the novel images which have no visually
similar images in the training dataset can’t been assigned tags correctly, and also the
fashionable tags which appear in the Web recently can’t be assigned to the query
images because that they aren’t in the tag vocabulary. Compared with the limited
number of images and tags that can be used to tag the query images, the potentially
unlimited vocabulary of the web scale images and other types of web resource i.e.
web documents can be utilized to tag images. By using web-scale resource, the

270 X. Zhang et al.

assigned tags of the query image can be more complete and also can track the
fashionable expression on the Web. The search based tagging is also scalable to
online tagging.

The second serious problem they encounter is that the query image is only assigned
with the tags which appear in its visually similar images. Since the tags of most
images tend to be sparse and uncomplimentary and also the semantically similar
images may not be the visually similar images, some relevant tags which don’t appear
in the visually similar images can’t be assigned to the query image. Thus, a query
image can’t only be assigned with the tags derived from the visually similar images.

Finally, a tag can’t be simply accepted or rejected to tag the query image. The
accepted tag should be combined with a probability value which indicates its
relevance to the query image, and the tag probability is helpful to image retrieval and
organization. For example, for the query image of “apple” computer, tags such as
“Steve Jobs” and “Stanford” and others can also be assigned to it even with small
probabilities, though these tags may not appear in its visually similar images. Thus,
this training based technology limit their performance and scalability.

In this paper, we propose a probabilistic image tagging algorithm (CTSTag) based
on web search result mining, which assigns the query image with the tags mined from
both web image and documents. The process of this algorithm is described in Fig.1. It
is mainly composed of 3 steps.

1. A content-based search method is used to retrieve the K visually similar web
images. Then, the most probabilistic tags are derived from the tags associated with
these images. These derived tags constitute the initial tag set Q. For example, for the
query image Iq about apple computer, a set of initial tags Q={“apple”, “computer”,
“laptop”,…} can be derived from the content-based search result.

2. A text-based search is used to retrieve other web images and documents using
the initial relevant tag set Q as the query. As a result, other potential relevant tags
which don’t appear in the visually similar images can be retrieved. Based on their
correlation in the text based search result, the initial tag set can be further denoised.
Then it is expanded with the tags mined from the text-based search result. The
probability of expanded tag is estimated by measuring the probability flow which
flow into the expanded tag from the initial tag set. With the text based search and the
mining of search result, the assigned tags are more complementary and can also
absorb the new tags from other resources. For example, using the text based search,
other web images such as apple headquarter “Silicon Valley” and document about
“Steve Wozniak” the co-founder of apple computer can also be retrieved. Thus the
initial tag set is expand with {“Silicon Valley”, “Steve Wozniak”,…}.

3. Since the initial tags and expanded tags are derived independently, we refine
them consistently in the third step. The intuition is that the correlation between the
initial tags and expanded tags can also be used to rank the initial tags, and all the tag
which has more relation with other tags has a greater probability values.

The rest part of this paper is organized as follows. Related works are introduced in
section 2. Then, the process of deriving initial relevant tags from the content-based
search result is presented in section 3. The procedure of tag expansion based on text-
based search result mining is introduced in section 4. In section 5, we refine all the tags
using a probability propagation method. Extensive experimental results are reported in
Section 6 followed by the conclusion in section 7.

 Probabilistic Image Tagging with Tags Expanded By Text-Based Search 271

2 Related Works

Image tagging has attracted more and more interests in recent years. The key problem
is to decide which tag can be assigned to tag the query image. Some works use a
supervised machine learning method to tag the query images. For example, Barnard
et al. [17] develops a number of models for the joint distribution of image regions and
words to tag the query images. Lei et al. [10] propose a novel probabilistic distance
metric learning scheme which is used to retrieves k social images that share the
largest visually similarity with the query image. The tags of the query image are then
derived based on the tagging of the similar images. Geng et al. [18] model the concept
affinity as a prior knowledge into the joint learning of multiple concept detectors, and
then the concept detectors which also are classifiers are used to tag the query images.
Li et al. [19] combines statistical modelling and optimization techniques to train
hundreds of semantic concepts using example pictures from each concept. However,
these machine learning methods try to learning a mapping between low-level visual
features and high-level semantic concepts, which are not scalable to cover the
potentially unlimited array of concepts existing in social tagging. Moreover,
uncontrolled visual content generated by users creates a broad domain environment
which has a significant diversity in visual appearance, even for the same concept.

Some other works use a mining method based on a training dataset to tag the query
images. Wang et al. [4] propose a relevance model-based algorithm. Candidate tags
are re-ranked by the Random Walk with Restarts (RWR) which leverages both the
corpus information and the original confidence information of the tags. Finally, only
the top ones are reserved as the final annotations. Siersdorfer et al. [5] propose an
automatic video tagging method based on video duplicate and overlap detection, and
the assigned tags are derived from the videos which are overlap with the test video.
Zhou et al. [6] uses a heuristic and iterative algorithm to estimate the probabilities that
words are in the caption of an image by examining its surrounding text and region
matching. Words with high probabilities are selected as tags. The approach in [7] first
estimates initial relevance scores for the tags based on probability density estimation,
and then performs a random walk over a tag similarity graph to refine the relevance
scores. There is also a learning of social tag relevance by neighbour voting [8], which
learns tag relevance by accumulating votes from visual neighbours. Lei et al. [9]
proposes a multi-modality recommendation model based on both tag and visual
correlation of images. Rankboost algorithm is then applied to learn an optimal
combination of those ranking features from different modalities.

However, all of these approaches are dependent on a small-scale high quality
training set, which means that they can only tag the query images which have visually
similar neighbours in the training set and only use the limit tag vocabulary. To
leverage web-scale data, there are already some researches on automatic image
tagging based on web search [11], [12]. X.J. Wang et al. [11] use a text-based search
to find a set of semantically similar web images, and then the Search Result
Clustering (SRC)[13] algorithm is used to cluster these images. Finally, the name of
each cluster is used to annotate the query image. C.H. Wang et al. [12] use CBIR
technology to retrieve a set of visually similar from the large-scale Web image
dataset, then annotations of each web image are ranked. Finally, the candidate
annotations are re-ranked using Random Walk with Restarts (RWR) and only the top

272 X. Zhang et al.

ones are reserved as the final annotations. However, these approaches just use a
search based method to retrieve the visually similar images from a large-scale web
database instead of training dataset, and then derive tags from the feedback web
images. They have no consideration of the new tags which appear in other web
images or documents and are relevant to the query image.

3 Initial Tags

The initial tags are derived from the tags associated with the visually similar images
directly. We use the content-based image search to retrieve K nearest neighbors. For
each query image, it is desired to assign it with the most relevant tags which can
describe its semantic content. We use the conditional probability that the query image
generating the tag to represent the relevance, and the greater the probability is the
more relevant it is. From the generation point of view, the conditional probability of
tag ti generated from the query image Iq can be estimated by the joint generating
probability of every similar images of Iq. The probability P(ti|Iq) which indicate the
relevance of ti to the query image is estimated by the following formula:

() ()
(|) (|) (1) (|)k i k i

i q G i q L i q

N t N t
P t I P t I P t I

k k
= + −

where Nk(ti) represent the number of images which contain the tag ti among the top-K
similar images. This estimation includes two parts which are balanced by the
parameter. The intuition behind the first part PG(ti|Iq) is that the more number of
neighbour images contain the key word and the more frequently it appears the more
probably the query image is tagged with the key word. The intuition behind the
second part is that the more similar the images which contain the key word are the
more probably the key word is assigned. We use the following formula to estimate
PG(ti|Iq):

()

(|) (|) (|)
j

G i q i j j q
I top k

P t I P t I P I I
∈

= ∑

(,)
(|)

max((,))
k j

i j
i j

k j
t I

TF t I
P t I

TF t I
∈

=

,

(,)
(|) visual j q

j q

Sim I I
P I I

k
≈

where TF(ti, Ij) represents the frequency of ti in the web image of Ij, Simvisual(Ij, Iq)
represents the visually similarity between Ij and Iq. However, the PG(ti|Iq) will prefer
the tags which appear frequently in the top-k similar images. Thus, we use the
following formula to alleviate this problem:

Ig()

(,)

(|)
| () |

x i

visual x q
I t

L i q
i

sim I I

P t I
Ig t

∈=
∑

where Ig(ti) denotes the set of images that contain tag ti. Thus, formula (1) can
alleviate the biases on either frequent tags or rare tags. Then all the tags associated
with the top-k images are ranked according to their generating probability values, and
the top ranked tags are selected to compose the initial relevant tag set Q.

 Probabilistic Image Tagging with Tags Expanded By Text-Based Search 273

4 Tags Expanding from Text-Based Search Result

Since there may be many relevant tags which don’t appear in the visually similar
images, and also there may be many new words which haven’t been used to tag
images. We perform a text based search to retrieve other relevant web resource by
using the initial tag set as the query, and then the initial tag set can be expanded with
other relevant tags mined from the search result.

4.1 Initial Tags Denoising

Because of the semantic gap problem, the content-based image search usually
retrieves many noisy images. Thus it is inevitable to include many noisy tags in the
initial tag set. A direct expansion of the initial tag set may include many other noisy
tags. Thus, it is necessary to further denoise the initial tags set before expand it.
However, only using the visually similar images is hardly to distinguish the noisy tags
completely because of the semantic gap problem and the sparsity of tags. We can use
the tag correlation among the feedback of the text-based search to further denoise the
initial tag set.

The denoising of initial tag set is processed as following steps. First, each initial
tag is regarded as a document containing the associated web pages. Then the
denoising of initial tag set can be turn to removing the noisy “documents”. For each
initial tag ti, a vector <tf(ti,D1), tf(ti,D2),…, tf(ti,Dn)> is constructed, where tf(ti,dj)is the
term frequency of tag ti in web page dj. The similarity between two tags can be
estimated using the cosine function on the two vectors. For the noisy tags, its
occurrence distribution in the feedback is different with the relevant tags and other
noisy tags, which means its vector is less likely to be similar with the vectors of other
tags. Thus, the more number of similar vectors a vector has the more confident that
the corresponding tag is a relevant tag. We use the following formula to estimate the
confidence score that a tag ti is a relevant tag:

cos

1
() (,)

| |
j

i ine i j
t Q

Con t Sim t t
Q ∈

= ∑

We use a simple denoising method which only remove the tags whose confidence
score is behind a threshold value θ from the initial tags set Q. The threshold value θ is
set with the average value over the initial tag set:

1
()

| |
i

i
t Q

Con t
Q ∈

θ = ∑

4.2 Tag Expansion

Since the feedback contains many web pages, a direct tag expansion from the whole
feedback will be very complexity. Thus, a ranking method is used to select a subset of
more important web pages. Then features are extracted from these web pages, and the
potential relevant tags are selected from these features to expand the initial tag set.
The conditional probability P(Iq|D), i.e., the probability of generating the query image

274 X. Zhang et al.

Iq with query Q given the observation of a web page D [15] is used to rank the
feedback pages in a descending order. We use the general unigram model to
formulate P(Iq |D) as follows:

(|) ()
(|) (|) (|) (|) (|) (|)

()
i i

i q q
q q i i i i q i

t Q t Q t Qi

P t I P I
P I D P I t P t D P t D P t I P t D

P t∈ ∈ ∈

≈ = ≈∑ ∑ ∑
| |

(|) (|) (|)
| | | |i LM i LM i

D
P t D P t D P t C

D D

μ
μ μ

= +
+ +

(,)
(|)

| |
i

LM i

tf t D
P t D

D
=

,

(,)
(|)

| |
i

LM i

tf t C
P t C

C
=

where PLM(ti|D) is the maximum likelihood estimation of ti in D, and C is the
collection which is approximated by the search result in this paper and μ is the
smoothing parameter. |D| and |C| are the length of D and the total number of words in
C respectively. tf(ti,D) and tf(ti,C) are the frequency of ti in D and C respectively.

After ranking the pages, we extract the features from the top pages. If the page
contains tags, we only extract the tags as its features. Otherwise, we extract the
features from the texture content of the page. The following method is used to assess
the weight of features f in a page D:

(,) | |
() log(1)*log(1)

| | (,)D
t

tf f D Q
W f

D n f Q
= + +

where tf(f, D) is the term frequency in D, and nt(f,Q) is the number of tags that f has
co-occurred with, and the addition of 1 is to avoid zero or negative weights. It is
similar with TF-IDF. But it instead the inverse document frequency with the inverse
co-occurred tag frequency. The intuition is that the more tags a feature co-occurs
with, the less specific and important the feature is. For each top page, we extract the
feature whose weight is greater than the average weight of all the feature words in this
page.

Then, we expand the initial tag with a sub set of features selected from the
extracted features. Usually, the common and noisy features have similar “relations” to
most of initial tags. This means that the irrelevant feature have an evenly distribution
of relation among the initial tags. However, the relevant features usually have strong
relation with some of the initial tags but have less relation to other initial tags, and
these features are preferable to be used as the expanded tags. We use the posterior
probability to represent the relation between a tag ti and a feature f:

()
(|)

()
j

i
i

j
t Q

C t f
P t f

C t f
∈

∩=
∩∑

where C(ti∩f) denotes the number of web pages which contain both tag ti and feature
f, and ()iC t f∩ denotes the number of web pages which contain neither tag ti nor

feature f. Then each feature has a list of these posterior probabilities for each initial
tag. Features that has a strong relation with tag ti will has a high value of P(ti|f), and
low value of P(tj|f), ∀j ≠ i. The irrelevant features will have more evenly distributed

 Probabilistic Image Tagging with Tags Expanded By Text-Based Search 275

values among the posterior probabilities. For example, the common features co-occur
with most initial tags and the occurrences of other noisy features are different with the
initial tags, which induces a more evenly distributed value among the posteriors. To
measure the degree of the confidence that the feature is relative to the initial tags, we
compute the entropy E for a feature f:

2() (|) log (|)
i

i i
t Q

E f P t f P t f
∈

= −∑

The lower the entropy, the higher the confidence that the feature is relative to one or
several initial tags is. Similarly, higher entropy feature has less confidence that it is
relative to the initial tags. Thus the top features with the smallest entropy are selected
as the expanded tags.

4.3 Probability Flow

Like the initial tags, the expanded tags also need a probability value to indicate its
relevance to the query image. Since the expanded tags have no direct relation with the
query image and only have relation with the initial tags. Thus, we estimate the
probability of expanded tag based on its relation with the initial tags. We estimate it
by measuring the probability flow which flow into the expanded tag from the initial
tags. The probability flow reflects how strongly the probability values of the initial
tags are inherited by the expanded tag. We use the formula ()ePF Q t to denote the

probability flow which flows into tag te from tag set Q, and then the probability
P(te|Iq) of the expanded tag te is approximated by the probability flow:

(|) () ()
i

e q e i e
t Q

P t I PF Q t PF t t
∈

≈ = ⊕

where
i

i
t Q

t
∈
⊕ denotes the concept combination of the query tag set. It indicates that the

probability value of expanded tag is the rate of probability value that flow into the
expanded tag from the combination concept. The intuition behind the concept
combination is that the tag which is more relevant with the expanded tag can
dominate the others. We use the following heuristic method to construct the concept
combination of the initial tag set:

Step 1: The vector of each tag
i

t Q∈ is represented by 1 2 | |, ,...,
t t ti i i

F
it w w w< > ,

where |F| is the number of pages of the search result, and ti

kw is estimated as following:

{ (|) (|)
0

th
e i i i

i

P t t P t Iq if the k page contains tag tk
t elsew

 =
 (1≤ k ≤|F|)

() () () ()
(|) * *

()() () () () ()
e i e i e i e i

e i
ie i e i e i e i i

C t t C t t C t t C t t
P t t

C tC t t C t t C t t C t t C t

∩ ∩ ∩ ∩= +
∩ + ∩ ∩ + ∩

where ()i eC t t∩ is the co-occurrence which is the number of pages that contain both ti

and te, and ()e iC t t∩ is the number of web pages which contain neither ti nor te.

276 X. Zhang et al.

Step 2: The vector of expanded tag te is represented by 1 2 | |, ,...,
t t te e e

F
et w w w< > , and

the weight is estimated as following:

{1

0

th e

e

if the k page contains tag tk
elsetw

 =
(1≤ k ≤|F|).

Step 3: The vector of the tag concept combination is then represented
with 1 2 | |, , ...,

i i i
i i i i

F
i t t t

t Q t Q t Q t Q
t w w w

∈ ∈ ∈ ∈
⊕ =< ⊕ ⊕ ⊕ > , where

(|) (|)
i

i

k k k
t e q

t Q
w P t t P t I

∈
⊕ =

,
arg max (|)

i

k
e i

t Q
t P t t

∈
=

.

In this vector, each element is dominated by the query tag which has the greatest
generating probability. Then the probability flow from query tags Q to the expanded
tag te is defined as the following formula:

|

|

*

()
t ti ei

i
te

k k

t Q
k F

i e kt Q

k F

w w

PF t t
w

∈1≤ ≤|

∈

1≤ ≤|

⊕
⊕ =

∑
∑

The probability flow ()
i

i e
t Q

PF t t
∈
⊕ has following properties:

1. 0 () max((|))
i i

i e i q
t Q t Q

PF t t P t I
∈ ∈

≤ ⊕ ≤ ;

2. , () (|)
i

j i j j q
t Q

if t Q then PF t t P t I
∈

 ∈ ⊕ = ;

3. The tag which has a greater generating probability has a stronger influence on
the probability flow, and the more frequently the tag co-occur with the query tags the
more probability it inherit.

Thus, it is reasonable to estimate the probability value of expanded tag by estimating
the probability flow.

5 Tag Refinement

In the above sections, we estimated the probabilities of initial tags and expanded tags
independently, and it is assumed that the probability of expanded tag isn’t greater than
that of initial tag. Thus we refine all the tags according to their correlation with other
tags in the same context. We utilize the relationship among candidate tags to boost the
tags which are more relevant no matter they are initial tags or expanded tags. In order
to fully utilize the probability value estimated in the former stages, we use the RWR
algorithm to refine the candidate tag set based on the tag graph.

5.1 Correlation and Transition between Tags

To construct a directed tag graph, each candidate tag is considered as a vertex and
each two vertexes are connected with two directed edges. The directed edge is

 Probabilistic Image Tagging with Tags Expanded By Text-Based Search 277

weighted with a transition strength which indicates the probability of transition from
the tail vertex to the head vertex. To estimate the transition strength, we first combine
the co-occurrence and absence to estimate the correlation of two tags, and then the
correlations are used to estimate the transition probability denoted by transition
strength.

Usually, the co-occurrence is used to estimate the correlation of two tags in the
previous works. However, these approaches don’t consider the absence of tags and
the hidden correlation. Thus we propose a balanced correlation measure which takes
both the co-occurrence and absence to computer the correlation between two tags.

() ()
(,) Pr(,) log(1) Pr(,) log(1)

() () () () () ()
i j i j

i j i j i j
i j i j i j i j

C t t C t t
Cor t t t t t t

C t C t C t t C t C t C t t

∩ ∩
= + + +

+ − ∩ + − ∩

()
Pr(,)

| |
i j

i j

C t t
t t

F

∩
=

,

()
Pr(,)

| |
i j

i j

C t t
t t

F

∩
=

where
it denotes the absence of tag ti, and Pr(ti,tj) is the joint probability that both ti

and tj appear in a web page and Pr(,)i jt t is the joint probability of the absence of tj

and ti. However, the correlation measured by the above-mentioned formula only
considers the relation between two tags. There may be many hidden correlations
which can’t be discovered. This estimated correlation is also symmetric. But the
transition strength between two tags is asymmetric in some time. Thus, it isn’t
reasonable to represent the transition strength by the correlation directly. To alleviate
these problems, the transition strength between two tags is proposed to represent the
probability propagation between these two tags:

| |

1
| |

1

(,)* (,)
()

(,)

i k k j
k

i j

i k
k

Cor t t Cor t t
Tran t t

Cor t t

=

=

→ =
∑

∑

where is the tag set which is composed of the initial tags and expanded tags. With
this formula, the hidden correlation between tags can also be discovered.

5.2 Tag Refinement

Here we use the random walk with restart (RWR) [14] to propagate the probability
over the tag graph in order to boost the probability of the more relevant tags. First, a
transition matrix C is constructed with that each element Cij be the normalized value:

| |

1

()
()

()

i j
i j

i j
i

Tran t t
Tran t t

Tran t t
=

→
→ =

→∑

We use Pk(ti|Iq) to denote the probability of tag ti at the kth iterations. Then the

probabilities of all tags at the kth iteration is denoted as kP =[Pk(ti|Iq)]|R|×1. Thus, we

can formulate this process using the following formula:

278 X. Zhang et al.

| |

1
1

(|) (1) (|) '(|)
R

k i q ij k j q i q
j

P t I C P t I P t Iα α−
=

= − +∑

where P′(ti|Iq) is the normalized value of the initial probability of ti estimated in the
former sections, and α (0<α<1) is a weight parameter. The probability of each tag
tends to be a fix value after a number of iterations, which result in a high probability
for the tag which has strong correlation with the relevant tags.

6 Evaluations

A series of experiments are conducted on web images and documents database to
evaluate the proposed algorithm CTSTag. First, we test the performance of different
image tagging algorithms. Then, to show the effectiveness of the result tags on image
retrieval, the retrieval performances of query by keyword based on the result tags of
different image tagging algorithms are compared.

6.1 Dataset

Web-scale database. We downloaded 1 million tagged web images from Flickr using
its API service. We select the most popular topics which cover the topics of the
evaluation dataset also, and it is ensured that the images are evenly distributed over
the different topics. The number of distinct tags per image varies from 2 to more than
100, and more than 10 million unique tags in total. Then we download about 1 million
of web documents from the Internet. These documents also cover the same topics of
the evaluation dataset, and each document is represented by the extracted keywords
associated with their term frequencies.

Evaluation dataset. We use the NUS-WIDE dataset as the evaluation set. The
number of distinct tags per image varies from 1 to more than 100, with an average
value of about 30. There are 269,648 images and 425,059 unique tags in total. By
removing rare tags that are used less than 10 times in the entire collection, the average
number of distinct tags per images is about 15.

6.2 Image Tagging

In this section, these experiments are designed to test the effectiveness of our
algorithm CTSTag used in image tagging. It is also compared with neighbor voting
based image tagging algorithm (NVTag) [16] and the other search based image
tagging algorithm (SBIA) [12]. For the CTSTag, 30 initial tags which are more than
the average number of tags per image are derived before the denoising operation, and
then we expand the initial tag set with 50 other tags. For the NVTag and SBIA, the
number of result tags varies from several to the maximum number 60 based on the
ground truth. We employ three standard criteria to evaluate the image tagging
performance, i.e., average precision (Av_P) and average recall (Av_R). With m result
tags, the precision and recall are denoted by Av_P@m, Av_R@m. Two parameters are

 Probabilistic Image Tagging with Tags Expanded By Text-Based Search 279

evaluated first. One is the size K which indicates how many nearest neighbours are
selected, and the other one is the restart parameter α. After the parameters were fixed,
we compare the Av_P@m and Av_R@m of different tagging algorithms.

(a)

0

0.04

0.08

0.12

0.16

0.2

0.24

50 100 150 200 300 400 500
Value of K

A
v

_
P

CTSTag NVtag SBIA

(b)

0

0.04

0.08

0.12

0.16

0.2

0.24

50 100 150 200 300 400 500

Value of K

A
v_

R

CTSTag NVTag SBIA

Fig. 1. a, b Average precision and recall of different value of K

By comparing the tagging performance with different K. all these algorithms retrieve
K images first, and the number of tagging result is fixed to top 15 tags for all the
algorithms. The average precision and recall are shown in Fig.1.a and b. It shows that the
changes of these curves of different algorithms are similar though their peaks are
different. The performance of NVTag is the best when K is 300, and K is 200 for SBIA to
achieve its best performance. As the CTSTag select the images with smallest semantic
gap, its curves are more sooth after that they achieve their peaks. The performance of
CTSTag is similar when K is equal or larger than 150. Thus, in the following
experiments, K is set to be 200, 300 and 150 for NVTag, SBIA and CTSTag respectively.

The other parameter to be evaluated is the restart parameter α. As the SBIA also
use RWR to refine the tags, we will compare the performance of SBIA and CTSTag
with α varied from 0.1 to 0.9. The number of result tags m is also set to be 15.
Fig.2. a and b show the average precision and recall of both algorithms. It indicates
that the change trends of both figures are similar, and both precision and recall rates
reach to the lowest value when α is 0.9. Both of the two algorithms achieve their best
performances when α is set to be 0.3, Therefore, in all of the following experiments,
the parameter α is set to be 0.3 for SBIA and CTSTag.

Based on the aforementioned parameters evaluation, we compare the Av_P@m and
Av_R@m of different algorithms in this experiment. Fig.3.a and b show the Av_P@m
and Av_R@m with m varied from 1 to 15. According to these figures, CTSTag
consistently outperforms both NVTag and SBIA. There are several reasons. The first
one is that we reduce the effect of noisy images by selecting the images with small
semantic gap. Second, the SBIA only use the TF-IDF to re-weight the tags associated
with the feedback images, which rarely consider the visually similarity of images and
other relation. The NVTag use the frequency of a tag minus its prior frequency to
train the tags, which also consider less on the visually similarity and is not scalable.
Our algorithm combines both the frequency and image visually similarity to derive
the initial tags. Finally, we enhance the correlation between tags by mining the hidden
correlation, and also the correlations among the expanded scale of tags can boost the
tags that are more related to the query image.

280 X. Zhang et al.

(a)

0

0.04

0.08

0.12

0.16

0.2

0.24

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Value of alpha

A
v_

P

CTSTag SBIA
(b)

0

0.04

0.08

0.12

0.16

0.2

0.24

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Value of alpha

A
v_

R

CTSTag SBIA

Fig. 2. a, b Average precision and recall of different value of α

(a)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 3 5 7 9 11 13 15
m

A
v_

P

CTSTag NVTag SBIA

(b)

0.00

0.05

0.10

0.15

0.20

0.25

1 3 5 7 9 11 13 15
m

A
v_

R

CTSTag NVTag SBIA

Fig. 3. a, b Average top-m precision and recall of different algorithms

6.3 Image Retrieval

In this section, we employ a general tag-based image retrieval used in existing
systems such as Flickr to evaluate the effectiveness of the result tags of different
tagging algorithms on image retrieval. The retrieval system indexes the result tags of
the evaluation dataset, and a well-founded ranking function Okapi BM25 is used to
ranking the retrieved images [20]. To evaluate the retrieval result, we use two
evaluation criteria i.e. the average precision Av_P@m of top m retrieved images and
the average recall Av_R@m of top m retrieved images.

Since the NVTag and SBIA only derived candidate tags from visually similar
images, the tags that appear less frequently in the visually similar images are less likely
to be selected. Our tagging algorithm also tag the query images with the tags that are
relevant but appear less frequently or never appear in the visually similar images. To
compare the effectiveness of these result tags on image retrieval, we design two
experiments, i.e., one uses single-word queries, one uses double-word queries.

In the single-word queries experiment, we use the common words as the queries,
i.e., {{airport}, {boat}, {beach}, {bridge}, {car}, {computer}, {dog}, {fish}, {sun},
{tree}}. In the two-word queries experiment, we combine the common word with a
relatively uncommon word to set a query, i.e., {{airport girl}, {boat jumping}, {beach
swimsuits}, {bridge cloud}, {car accessories}, {computer office}, {dog baseball},
{fish vocation}, {sun sports}, {tree countryside}}.

 Probabilistic Image Tagging with Tags Expanded By Text-Based Search 281

(a)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

10 20 30 40 50 60 70 80 90 100
m

A
v_

P
CTSTag NVTag SBIA

(b)

0.00

0.02

0.04

0.06

0.08

0.10

10 20 30 40 50 60 70 80 90 100
m

A
v_

R

CTSTag NVTag SBIA

Fig. 4. a, b Average retrieval precision and recall of single-word query

Fig.4. a and b show the average retrieval performances of single-word queries
experiment. Fig.5. a and b show the average retrieval performances of double-word
queries experiment. Two conclusions can be drawn from these figures. First, when we
set a common word as a query, the performances of image retrieval based on different
result tags are similar. This is because that the common tags are preferred to be
selected to tag the query images by all the three algorithms. Second, when add the
single-word query with an uncommon word, the performance of image retrieval based
on result tags of CTSTag are improved obviously. This because that both NVTag and
SBIA tag the query image with the tags that are common in the visually similar
images, and the uncommon are less likely to be selected. Since the double-word
queries contain the uncommon words, many images whose result tags don’t contain
the uncommon tags can’t be retrieved. However, the CTSTag expand the initial tag
set with other relevant tags that may be uncommon or never appear in the visually
similar images, and then the correlation between all the tags are used to boost the tags
which may be neglected by other algorithms.

(a)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

10 20 30 40 50 60 70 80 90 100
m

A
v_

P

CTSTag NVTag SBIA

(b)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

10 20 30 40 50 60 70 80 90 100
m

A
v_

R

CTSTag NVTag SBIA

Fig. 5. a, b Average retrieval precision and recall of double-word query

7 Conclusions

In this paper, we formulate the image tagging as a search problem, and a novel
probabilistic image tagging algorithm based on search result mining is proposed.
First, a content-based search is used to retrieve visually similar images, and then the

282 X. Zhang et al.

initial tags with their probability value are derived from the k nearest neighbour
images. Second, with the initial tags as the query a text based search is used to expand
the tags, and then a probability flow measuring method is proposed to estimate the
probabilities of the expanded tags. Finally, a measure of tag transition strength is
proposed to construct the transition matrix, and then RWR based on the transition
matrix is used to refine the probability of all the tags. The search based framework
make that our algorithm isn’t limited to the training dataset, and it also tag image by
combing web documents mining. Thus it is scalable and can use many kinds of web
resource to tag image. Experimental results on NUS-WIDE dataset show not only the
effectiveness of our tagging algorithm but also the effectiveness of image retrieval
based on the result tags.

References

1. Joshi, D., Datta, R., Zhuang, Z., Weiss, W.P., Friedenberg, M., Li, J., Wang, J.Z.:
PARAgrab: a comprehensive architecture for web image management and multimodal
querying. In: Proceedings of the 32nd International Conference on Very Large Data Bases,
pp. 1163–1166 (2006)

2. Zhang, B., Xiang, Q., Lu, H., Shen, J., Wang, Y.: Comprehensive query-dependent fusion
using regression-on-folksonomies: a case study of multimodal music search. In:
Proceedings of the 17th ACM International Conference on Multimedia, pp. 213–222
(2009)

3. Cui, B., Tung, A.K., Zhang, C., Zhao, Z.: Multiple feature fusion for social media
applications. In: Proceedings of the International Conference on Management of Data, pp.
435–446 (2010)

4. Wang, C., Jing, F., Zhang, L., Zhang, H.-J.: Image annotation refinement using random
walk with restarts. In: Proceedings of 14th ACM International Conference on Multimedia,
pp. 647–650 (2006)

5. Siersdorfer, S., San Pedro, J., Sanderson, M.: Automatic Video Tagging using Content
Redundancy. In: Proceeding of the 32nd ACM International Conference on Research and
Development in Information Retrieval, pp. 16–23 (2009)

6. Zhou, X., Wang, M., Zhang, Q., Zhang, J., Shi, B.: Automatic image annotation by an
iterative approach: Incorporating keyword correlations and region matching. In:
Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp.
25–32 (2007)

7. Liu, D., Wang, M., Hua, X.S., Zhang, H.J.: Tag Ranking. In: Proceeding of the 18th ACM
International Conference on World Wide Web, pp. 351–340 (2009)

8. Li, X.R., Snoek, C.G.M., Worring, M.: Learning tag relevance by neighbor voting for
social image retrieval. In: Proceeding of 1st ACM International Conference on Multimedia
Information Retrieval, pp. 30–31 (2008)

9. Lei, W., Linjun, Y., Nenghai, Y., Hua, X.S.: Learning to tag. In: Proceedings of the 18th
ACM International Conference on World Wide Web, pp. 20–24 (2009)

10. Lei, W., Steven, C.H., Rong Jin, H., Jianke, Z., Nenghai, Y.: Distance Metric Learning
from Uncertain Side Information with Application to Automated Photo Tagging. In:
Proceeding of 17th ACM International Conference on Multimedia, pp. 15–24 (2009)

11. Wang, X.-J., Zhang, L., Li, X.R., Ma, W.-Y.: Annotating Images by Mining Image Search
Results. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(11), 1919–1932
(2008)

 Probabilistic Image Tagging with Tags Expanded By Text-Based Search 283

12. Wang, C., Jing, F., Zhang, L., Zhang, H.J.: Scalable search-based image annotation.
Multimedia Systems 14(4), 205–220 (2008)

13. Jing, F., Wang, C., Yao, Y., Deng, K., Zhang, L., Ma, W.: IGroup: web image search
results clustering. In: Proceedings of the 14th Annual ACM International Conference on
Multimedia, pp. 377–384 (2006)

14. Tong, H., Faloutsos, C., Pan, J.: Fast Random Walk with Restart and Its Applications. In:
Proceedings of the IEEE Sixth International Conference on Data Mining, pp. 613–622
(2006)

15. Croft, W.B., Lafferty, J.: Language Models for Information Retrieval. Kluwer Int. Series
on Information Retrieval, vol. 13. Kluwer Academic Publishers, Dordrecht (2002)

16. Li, X., Snoek, C.G., Worring, M.: Learning social tag relevance by neighbor voting. IEEE
Transaction on Multimedia, 1310–1322 (November 2009)

17. Barnard, K., Duygulu, P., Forsyth, D., de Freitas, N., Blei, D.M., Jordan, M.I.: Matching
words and pictures. Jour. Machine Learning Research 3(6), 1107–1135 (2003)

18. Geng, B., Yang, L., Xu, C., Hua, X.: Collaborative learning for image and video
annotation. In: Proceeding of the 1st ACM International Conference on Multimedia
Information Retrieval, pp. 443–450 (2008)

19. Li, J., Wang, J.Z.: Real-time computerized annotation of pictures. In: Proceedings of the
14th Annual ACM International Conference on Multimedia, pp. 911–920 (2006)

20. Jones, K.S., Walker, S., Robertson, S.E.: A probabilistic model of information retrieval:
development and comparative experiments - part 2. Jour. Information Processing and
Management 36(6), 809–840 (2000)

Removing Uncertainties from Overlay Network

Ye Yuan1,2, Deke Guo3, Guoren Wang1,2, and Lei Chen4

1 College of Information Science and Engineering, Northeastern University,
Shenyang 110004, China

2 Key Laboratory of Medical Image Computing (Northeastern University),
Ministry of Education

3 Key lab of Information System Engineering,
School of Information System and Management,

National University of Defense Technology, Changsha 410073, China
4 Hong Kong University of Science and Technology,

Hong Kong SAR, China

Abstract. Overlay networks are widely used for peer-to-peer (P2P) systems and
data center systems (cloud system). P2P and data center systems are in face of
node frequently joining, leaving and failure, which leads to topological uncer-
tainty and data uncertainty. Topological uncertainty refers to that overlay net-
work is incomplete, i.e., failures of node and link (between two nodes). Data
uncertainty refers to data inconsistency and inaccurate data placement. Existing
P2P and data center systems have these two uncertainties, and uncertainties have
an impact on querying latency. In this study, therefore, we first give probabilis-
tic lower bounds of diameter and average query distance for overlay network in
face of these two uncertainties. The querying latency of existing systems can-
not be better than the bounds. Also, existing systems often suffer unsuccessful
queries due to uncertainties. To support an efficient and accurate query, we pro-
pose a topology constructive method and a data placement strategy for removing
two uncertainties from overlay network. Also, efficient algorithms are proposed
to support range queries in an overlay network. The DeBruijn graph representing
overlay network is used to construct a new system, Phoenix, based on proposed
methods. Finally, experiments show that performances of Phoenix can exceed
the probabilistic bounds, and they behave better than existing systems in terms of
querying latency, querying costs, fault tolerance and maintenance overhead.

1 Introduction

The growing popularity of (Peer-to-Peer) P2P and data center (cloud) systems
makes them very likely substrate for future large-scale information architectures
[1,2,5,13,14,20,11,12]. Most P2P and data center systems are based on overlay net-
works. For example, for P2P systems, Chord [2], Pastry [1] are based on the Hypercube
topology; Viceroy [5] and Ulysses [6] are based on the Butterfly topology; Cycloid [7]
is based on the CCC topology [8]; CAN [1] is based on the d-dimensional torus topol-
ogy; Koorde [4], D2B [3] are based on the deBruijn topology; Moore [18,9] and BAKE
[10] are based on the Kautz topology; [19] is based on bipartite topology. For data cen-
ter systems, BCube [12] and FiConn [11] are based on the Hypercube topology; VL2
[15] is based on the deBruijn-like topology.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 284–299, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Removing Uncertainties from Overlay Network 285

However, one critical requirement of these systems is that the number of nodes must
be some given values determined by the node degree and the network diameter. Hence,
the corresponding approaches are often impractical when nodes frequently join, leave,
and fail. The dynamic feature leads to topological uncertainty and data uncertainty of
overlay network. Topological uncertainty refers to that overlay network is incomplete,
i.e., failures of node and link (between two nodes). Data uncertainty refers to data incon-
sistency and inaccurate data placement. P2P and data center systems often suffer a large
querying latency and unsuccessful queries in face of the two uncertainties. To solve the
problems, there are some challenges for which we propose efficient approaches in this
paper, which is summarized in next subsection.

1.1 Challenges and Our Contributions

Challenge 1: How to compute the lower bound of querying latency of overlay network
in face of uncertainties? The Moore bound sets diameter lower bound for any static
overlay network [22]. The Moore bound, however, cannot give a good description for
overlay network in face of uncertainties. The diameters of Kautz and deBruijn graphs
mostly achieve the Moore bound. However, the diameters of the systems based on them,
like D2B, Koorde and FissionE, are much larger than the Moore bound. To compute
lower bound, we should answer questions: how to simulate uncertainties for overlay
network? how to compute probabilistic distribution of query distance?

In our approach, we define a random process that a node joins a dynamic trie tree
structure. The random process can be seen as a coupon collector’s problem [17]. Then
we can compute distance distribution, from which probabilistic lower bounds of the
network diameter and average query distance are derived.

Challenge 2: How to remove topological uncertainty from overlay network? Topo-
logical uncertainty refers to that overlay network is incomplete, i.e., failures of node
and link (between two nodes). The main reason is that overlay network is typically dy-
namic with nodes frequently coming and leaving. To remove topological uncertainty,
a topology constructive method should be proposed for overlay network to deal with a
dynamic scenario.

In our approach, we propose a dynamic trie tree structure that can provide a flexible
topological control for an overlay network in dynamic scenarios. Based on the tree
structure, any overlay network can be used to construct a system that can behave good
topological properties in dynamic scenarios.

Challenge 3: How to remove data uncertainty from overlay network? Data uncertainty
refers to data inconsistency and inaccurate data placement. For a static overlay network,
i.e., Hypercube and deBruijn, data objects are strictly mapped to corresponding nodes
based on data and node identifiers. However, data objects cannot locate correspond-
ing node identifiers in face of frequent topology changes, which can get data lost or
inconsistent.

In our approach, based on dynamic trie tree structure, a data object is mapped to
a node of overlay network in a fault tolerant way. Even if many nodes fail, our data

286 Y. Yuan et al.

placement policy guarantees that a data object is distributed to a node having the longest
matching identifer with the data object’s, so that the data placement policy can accu-
rately and efficiently organize data objects and support data queries.

Challenge 4: How to support range queries in an overlay network? Range query is a
universal and useful query type, and thus it is desirable to support efficient range queries
in an overlay network. Our topological construction and data placement strategies guar-
antee an efficient exact query (routing) in an overlay network. However, it is unrealistic
to transform a range query to several exact queries, since this method may incur a very
large network overhead. Thus, new algorithms should be proposed to support efficient
range queries in an overlay network.

In our approach, based on the trie tree, two locality-preserving data placement algo-
rithms are proposed for one-dimensional and multi-dimensional data, so that the data
whose values are close each other will obtain adjacent identifiers and data will be stored
on same or neighboring peers. Therefore, the efficient routing algorithm can be used to
reach a peer that covers a part of a querying range, then query is forwarded along pre-
decessor or successor links to obtain the whole querying range.

The rest of the paper is organized as follows. The search delay is analyzed for the
dynamic network, and two lower bounds are proved for the network diameter and aver-
age query distance in Section 2. The topology constructive method and data placement
strategy are proposed to remove uncertainties from overlay network in Sections 3.
Section 4 introduces efficient algorithms for supporting one and multiple dimensional
queries. Finally, the performance of the two proposed algorithms are evaluated in
Section 5 and we conclude the work in Section 6.

2 Probabilistic Lower Bounds of Query Delay of a Dynamic
Overlay Network

Most existing overlay networks are in face of uncertainties. The negative effects due to
possible dynamical behaviors need to be carefully considered for topology properties.
In this section, we discuss the impact on the diameter and average query distance.

It is well known that Moore bound [22] is a lower bound of diameter for any static
overlay network. For a static overlay network with maximum out-degree d, any node
cannot reach more d + d2 + ... + dh nodes in at most h hops. Hence, in order to reach
all n−1 nodes in at most h hops, the value of h should satisfy d+d2 + ...+dh ≥ n−1
which leads to the Moore bound. However, with uncertainties, the number of nodes
reached from a beginning node in i hops may not be di nodes, for 1 ≤ i ≤ h. In other
words, the routing tree may not be completed in each level.

To simulate uncertainties for a overlay network, we set up a d-way trie tree. Let us
consider a case that nodes join and leave randomly from a trie tree. The joining process
of a node is equivalent to that of a ball with a prefix x is dropped into the root of a
virtual tree and then reaches a most matched node with x of d children as the next step.
The leaf at which the ball ends up is the node’s parent, and shares the longest common
prefix with x. The process is similar with the most existing P2P and data center systems.
Node departure is an opposite process of node joining.

Removing Uncertainties from Overlay Network 287

Now we estimate a lower bound of the diameter for an overlay network with uncer-
tainties. Here, the diameter is defined as the largest depth of the tree.

Theorem 1. With the probability 1− o(1), the lower bound dmax of the diameter of an
overlay network concentrates on the value dl, where

dl = �logd n +
√

d logd n − 1.5� (1)

Proof. Since dmax is the maximum height of the tree, to compute dmax, we need to
consider the leave process of a node. This process is constructed by dropping balls and
getting rid of leaf, and it is very similar with the well know structure called the Patricia
trie [16]. The tree is a collapsed version of the regular trie in which all intermediate
nodes with a single child are removed. Recall that with the probability 1 − o(1), the
height of a random Patricia trie is concentrated on the value dl, where dl is given by the
Equation (1), we obtain the result from [16]. �
The diameter of an overlay network is simply the largest distance between any pair of
nodes and only provides an upper bound on the delay (number of hops) experienced by
users. A much more crucial metric is the average distance between any pair of nodes.
We will focus on a lower bound of this metric in an overlay network.

Let h denote the minimum depth of the d-way tree. The tree is divided by two parts.
First part consists of all nodes which locate between the root and h − 1 level. Second
part includes all nodes which locate between level h to dmax − 1. Naturally, the first
part is a full d-way tree with depth h. Let d(root, x) (denoted by dx) denote the distance
from the root to any node x in the tree. We will discuss the distribution of dx for the
two parts separately.

To compute the distribution of the first part, we define a sequence of indicator random
variables Ai, i ≥ 0, where Ai = 1 if level i of the tree is full after users joined the
system and Ai = 0 otherwise. We say that a level is full if all nodes of that level are
present and nonleaf. Notice that level i can be full only if i ≤ h and that Ai = 1 implies
that Ak = 1, for all k < i. It immediately follows dx that is at least k + 1 if and only if
all levels from 0 to k are full:

P (dx ≥ k + 1) = P (
⋂

[Ai = 1]) (2)

We then have the deduction of Formula (2):

P (dx ≥ k + 1) = P (dx ≥ k)P (Ak|Ak−1) (3)

where P (dx ≥ 0) = 1 and P (Ak|Ak−1) is the conditional probability of level k being
full given that all previous levels 0, ..., k − 1 are full:

P (Ak|Ak−1) = P (Ak = 1|h ≥ dx) (4)

For the first part, we draw out the following theorem.

Theorem 2. With the probability 1 − o(1), the distribution of dx is:

exp{−dk exp{n(d − 1) + 1

dk+1(d − 1)
− 1

d − 1
}}

288 Y. Yuan et al.

Proof. First notice that the first part is a d-way tree with h levels. The d-way tree built
using nodes contains n(d−1)+1

d leaves and nonleaf n(d−1)+1−d
d(d−1) nodes. Next, examine

level k of the tree and observe that all dk possible nodes at this level must be non-
leaf for level k to be fully joined. Assuming that all previous levels are full, exactly
dk−1

d−1 non-leaf nodes contributed to filling up levels 0, ..., k − 1 and the remaining
n(d−1)+1−d

d(d−1) − dk−1

d−1 = n(d+1)+1−dk+1

d(d−1) non-leaf nodes had a chance to be joined. After
the first levels k − 1 have been filled up, each node at level k is hit by an incoming
ball with an equal probability d−k. Thus, our problem reduces to finding the probabil-

ity that u = n(d+1)+1−dk+1

d(d−1) uniformly and randomly placed balls into m = dk bins
manage to occupy each and every bin with at least one ball. There are many ways to
solve this problem, one of which involves the application of well-known results from
the coupon collector’s problem [17]. We use this approach below. Define Z(u) to be the
random number of non-empty bins after balls u are thrown into m bins. Thus, we can
write P (Ak|Ak−1) = P (Z(u) = m). Recall that in the coupon collector’s problem,
u coupons are drawn uniformly randomly from a total of m different coupons. Then,
the probability Z(u) = m to obtain m distinct coupons at the end of the experiment is
given by [17].

P (Z(u) = m) =
∑

(−1j)(m/j)(1 − j

m
)u (5)

For large u, the term (1 − j/m)u can be approximated by e−uj/m, yielding

P (Z(u) = m) ≈
∑

(−1j)(m/j)e−uj/m = (1 − e−u/m) (6)

Since we are only interested in the asymptotically large m = O(logdn), (6) allows a
further approximation

P (Z(u) = m) ≈ e−me−u/m

= exp{−dk exp{ n(d−1)+1
dk+1(d−1)

− 1
d−1}}

(7)

From (5)-(7), we get the distribution of dx:

P (dx ≥ k + 1) = P (dx ≥ k)P (Ak|Ak−1)

≈ exp{−dk exp{ n(d−1)+1
dk+1(d−1)

− 1
d−1}}

(8)

�
From (8), we know that

h = max(dx)
= logd n − logd((1 + ε) log n − O(log log n))

(9)

with the probability at least 1 − n−ε, ε ≤ 1.
For the second part of the tree, we have the following theorem from [16].

Removing Uncertainties from Overlay Network 289

Theorem 3. With probability 1 − o(1), the distribution of dx of PATRICIA tries is:

dx ∼
√

1 + dξΦ′(ξ) + ξdΦ′′ (ξ)e−nΦ(ξ) (10)

where ξ = nd−k, 0 < ξ < 1, and Φ(ξ) ∼ 1
dρ0e

ϕ(logdξ)ξ3/2 exp(− logd ξ
d log d).

From the distribution of dx for two parts of the tree, we get the lower bound of average
distance for a dynamic network. We have the following theorem.

Theorem 4. The lower bound of average distance for a dynamic network is logdn +√
logd n/d with the probability at least 1 − n−ε, ε ≤ 1.

Proof. From the above equations, we get the average distance:

davg =
h−1∑
k=0

k · (exp{−dk exp{n(d − 1) + 1
dk+1(d − 1)

− 1
d − 1

}})+

dmax−1∑
k=h

k · (
√

1 + dξΦ′(ξ) + ξdΦ′′(ξ)e−nΦ(ξ))

≈ logdn +

√
logd n

d

�
Now we have obtained the lower bounds of the diameter and average distance for an
overlay network. The search delay of any existing P2P or data center system cannot be
smaller than the lower bounds.

3 Topology Constructive and Data Placement Methods of Overlay
Network

Any static overlay network has desirable properties graph only if all nodes exist and
are stable. Such as deBruijn and butterfly have dk and dkk nodes respectively. This
requirement, however, is impractical in face of uncertainties. To address this issue, we
propose a dynamic multi-way trie tree structure to achieve the desired topology.

3.1 Dynamic Multi-way Trie Tree Structure

Definition 1. A dynamic d-way trie tree with depth k is a rooted tree. Each node has at
most d child nodes. Each edge at the same level is assigned a unique label. Each node
is given a unique label. The label of a node is the concatenation of the labels along the
edges on its root path. The label of each edge is assigned based on the following rules.

– The edge from the root node to its ith child is labeled as xi
1 = i for 0 ≤ i ≤ d − 1.

The ith child of root node is labeled as xi
1 = i, and is arranged from left to right.

The root node does not contain any string.
– The edge from a node x1 to its ith child is labeled as xi

2 = i for 0 ≤ i ≤ d− 1. The
ith child is labeled as x1x

i
2, and is arranged from left to right.

– The edge from a node x1x2...xk−1 to its child is labeled as xi
k. The child of xi

k is
labeled as x1x2...xk−1xk, and is arranged from left to right.

290 Y. Yuan et al.

– There is a bidirectional edge between any node and its parent, and all the nodes at
the same level form a ring.

The trie tree might be imbalanced in a dynamic environment. In fact, it is impractical
to keep a balanced tree in a dynamic scenario. Definition 2 gives a definition of the
balanced tire tree.

Definition 2. A d-way trie tree with depth k is balanced if all leaf nodes are at the level
k. A balanced trie tree is a complete trie tree only if the parent node of any leaf node
has full child, otherwise it is an incomplete trie tree.

0 00 0 1

0 0 0

0

0 10 1 0

0 1 1

1

1 1

1 0

1 0 0

1 0 1

1 1 0

1 1 1

Fig. 1. Example of a trie tree

The tree shown in Fig. 1 is a complete trie tree. If the leaf node 011 fails, the tree
becomes an incomplete trie tree. If nodes 010 and 011 both fail, the tree becomes an
unbalanced tree.

For any level, the left-to-right traversal of nodes at that level form a total ordering,
denoted as the trie ordering. We sort all children of root node in an ascending order
within level 1, and then rank all the child nodes of each node at level 1 respectively.
Note that the level 2 nodes inherit the order of nodes in level 1. By sorting nodes from
level 1 to k recursively, we can find a trie ordering of nodes at each level. From the trie
tree structure, we know each level forms a ring and we call it the trie ring. We arrange
the trie ordering in each ring along the anti-clockwise direction. In the ring, each node
connects its predecessor and successor.

Definition 3. For any node x, its predecessor is the first existing node clockwise from
it in a trie ring of existing nodes at the same level, and its successor is the first existing
node anti-clockwise from it in the same trie ring. The concept of left adjacent node is
similar to the predecessor, but the trie ring is consisted of all possible nodes not just
existing nodes. So do the right adjacent node and successor node.

For example, in Figure 1, the node 010 is the predecessor of the node 011 and its suc-
cessor is the node 100. In the unbalanced tree, (the node 010 and 011 are not alive) the
predecessor of the node 100 is the node 001 and 001’s successor is 100.

Removing Uncertainties from Overlay Network 291

3.2 Mapping Overlay Network to Dynamic Trie Tree

For a node x = x1x2...xk of an overlay network, σi(x), 1 ≤ i ≤ d, denotes a neighbor
node of x. The label will be used throughput the paper. Any d-ary overlay network is
mapped to the d-way trie tree as follows:

– If a node σi(x) is alive in the overlay network, then it is the ith neighbor of node x;
– Otherwise, if σi(x) and its trie tree predecessor y have a common prefix with length

k − 1, then node y is the ith neighbor of node x. In this case, node y also keeps the
identifier σi(x) to take over node σi(x).

– Otherwise, if σi(x) and its trie tree successor z have a common prefix with length
k−1, then node z is the ith neighbor of node x. Similarly, node z keeps the identifier
σi(x).

– Otherwise, the youngest alive ancestor of σi(x) is used as the ith neighbor of node
x and the ancestor keeps the identifier σi(x).

The mapping rule guarantees that node x of system based on any overlay network can
connect to its neighbor node σi(x). For example, node 010 connects to nodes 100 and
101 in Fig. 1. If node 100 fails, then node 010 connects to 101 again and node 101
keeps the identifier 100 to take over node 100. If nodes 100 and 101 both fail, node 010
connects to their parent node 10 and node 10 keeps the identifiers 100 and 101 to take
over both of them.

From the mapping rule, it is easy to draw the following conclusion.

Theorem 5. For an inner node x and leaf node y of system based on an overlay net-
work, the former rules can make the following conclusion:

– For a balanced tree, x has 2d + 3 neighbors and y has d + 3 neighbors.
– For an unbalanced tree, x has at least 2d + 1 neighbors and y has at least d + 1

neighbors.

3.3 Data Placement Rule of Overlay Network

The data placement is very important for P2P and data center systems. Normal data
placement polices may not accurately and efficiently organize data and support data
queries. The following scheme can assure that data objects are distributed based on the
longest prefix matching policy. In addition, the scheme is fault-tolerant.

Suppose the identifier of a data object is x whose length is longer than a node iden-
tifier. The following algorithm gives the placement rule.

Algorithm 1. Placement(Data x = x1x2...xk...)

if node x′ = x1x2...xk has appeared in the overlay network then
Node x′ stores the data x.

else if node x′ and its predecessor y have common parent node in the trie tree then
Node y is the host node of data x.

else if node x′ and its successor z have common parent node in the trie tree then
Node z is the host node of data x.

else
The youngest alive ancestor of x′ is the host node of data object x.

292 Y. Yuan et al.

For example, in Figure 1, data 100... is stored by node 100, and is taken over by
node 101 when node 100 is not alive. If nodes 100 and 101 are both not alive, then their
parent node 10 keeps the data object.

3.4 Case Study

In this section, deBruijn representing the single protocol (like Kautz, Hypercube) of
static overlay network based on the trie tree and above proposed schemes are used to
construct a new dynamic system Phoenix.

110

111 101

011

100

010 000

001

Fig. 2. Example of a deBruijn structure

The topology mapping rule of an overlay network is the most important step for con-
structing a dynamic system. For a deBruijn graph, σi(x) = x2...xkxi

k+1, the mapping
rule can be directly applied. Figure 2 shows a 3-ary deBruijn graph.

Using an example for this deBruijn graph, in Fig. 1, node 010 connects to node 100
and 101. If node 100 fails, node 101 replaces 100. As a result, node 010 connects to 101
again and node 101 stores the identifier 100. If nodes 100 and 101 both fail, node 010
connects to their parent 10 and node 10 stores the identifier 100 and 101.

The routing algorithm from peer x to peer y of the deBruijn overlay is: find the
largest suffix u of x that coincides with a prefix of y, then walk towards a neighbor z of
x such that its largest suffix v coincides with a prefix of y and the length of v is larger
than that of u. The process continues until the route reaches y. For example, in Fig.2,
the route goes from peer 010 to peer 000 along the path: 010-100-000.

Phoenix can directly adopt the data placement rule to enhance the performances of
their data managements.

4 Range Queries

In order to manage complex data objects and support more wide applications, Phoenix
should also support complex query operations besides exact-match query in a graceful
fashion, for example, the one-dimensional and multi-dimensional queries. The most
universal querying type is range query. Thus we focus on techniques of range query,
and the techniques can be applied to other type queries after a little modification.

In the following, we will first introduce techniques for one-dimensional range queries
and then for multi-dimensional range queries.

To support one-dimensional range queries of Phoenix, the structure of Phoenix
does not need to be changed. All the data is stored in leaf peers, and the inner peers act

Removing Uncertainties from Overlay Network 293

[0,16]

[0,8] (8,16]

[0,4] (4,8]

[0,2] (2,4] (4,6] (6,8]

(8,12] (12,16]

(8,10] (10,12] (12,14] (14,16]

0

0

0

0

0 0

1

1

1

0 1

1

1 1

000 001 010 011 100 101 110 111

Fig. 3. Partition of one-dimensional data on trie tree

<[0,8],[0,16]>

0

0

0

0

0 0

1

1

1

0 1

1

1 1

000 001 010 011 100 101 110 111

<[0,4],[0,16]> <(4,8],[0,16]>

<[0,4],[0,8]> <[0,4],(8,16]> <(4,8],[0,8]> <(4,8],(8,16]>

<[0,2],[0,8]> <(2,4],[0,8]> <[0,2],(8,16]> <(2,4],(8,16]> <(4,6],[0,8]> <(6,8],[0,8]> <(4,6],(8,16]> <(6,8],(8,16]>

Fig. 4. Partition of multi-dimensional data on trie tree

as the routing peers. Here we first design an order-preserving data placement strategy
as follows: we recursively partition the whole data space into sub-spaces in the same
way to construct a complete trie tree whose height equalling that of the current trie tree.
Each data finds the smallest sub-space that contains its values, and uses the identifier
of that subspace as its identifier. Therefore, the data whose values are close each other
will obtain adjacent identifiers in the leaf peer level, and they will be stored on same
or neighboring. For instance, in Fig. 3, suppose range query, [L, H] = [0, 16], based
on the locality-preserving data placement algorithm, the leaf identifiers are assigned as
sub-space in the way: {[0, 2], (2, 4], ..., (12, 14], (14, 16]}= {000, 001, ..., 110, 111}.

Any peer that issues a range query can find the identifiers of smallest sub-space that
contains the whole query region. Then the query covers multiply peers and will be
routed towards the peer which charges the lower bound of it region firstly. Once the
peer received the query, it will first forward it to the successor peer if it cannot cover
the whole region of the query. And so on and so forth, the query will be forwarded to
a peer which charges the upper bound of its region. The querying method is shown in
Algorithm 2. x is the requesting peer. y and z are the first and last peers that cover the
whole range query. For example, in Figure 1, peer 010 issues a range query [12, 16].

294 Y. Yuan et al.

Based on the locality-preserving placement scheme, we find that peers 110 and 111
cover sub-spaces {(12, 14], (14, 16]} respectively. Then the query is forwarded to peer
110 to get (12, 14] firstly. Then the query reaches peer 111 for obtaining (14, 16] along
the successor link.

Algorithm 2. Query(x, y, z)

case 1 : Length(x) = Length(y) or (y is a data object and x is not a prefix y)
if x = y then

return available.
else if Comprefix(x, Successor(x)) = k − 1 and Successor(x) is less than y in the
ring then

Forward the message to node Successor(x).
else if Comprefix(x, Predecessor(x)) = k − 1 and Predecessor(x) is larger than y in
the ring then

Forward the message to node Predecessor(x).

else
Node x forwards message to its neighbor σi(x) which has the largest value
Comprefix(σi(x), y) among all the neighbors.

case 2 : Length(x) < Length(y) or (y is a data object and x is a prefix y)
if x contains y then

return available
else if Node x has at least one child then

Forward message to its child z which has the largest value of Comprefix(z, y)

else
Node x forwards message to its neighbor σi(x) which has the largest value of
Comprefix(σi(x), y) among all the neighbors.

case 3 : Length(x) > Length(y)
if x has a link to its parent then

Node x forwards message to its parent.

else
Node x forwards message to its neighbors σi(x) which has the largest value of
Comprefix(σi(x), y) among all the neighbors.

Query is forwarded along the successor link until peer z for obtaining the whole range.

This method for range query can decrease the message cost caused by transferring
the query to the all intersection peers, but the delay maybe be a litter larger than for-
warding the query to all related peers simultaneously. It is needed to make a tradeoff
between the delay and the message cost. After computing the hash values of the lower
bound and upper bound, we get the common prefix b of the hash values. If they have
no common prefix, we can divide the range into several (at most d) sub-regions with
common prefixes and deal with each sub-region respectively. The results are covered
by its offspring leaf peers. Therefore, we have another querying algorithm as follows:
the query is firstly routed to peer b. Then the query is routed down links of peer b until
the query reaches peers which cover the whole query region. This technique of range
query is called SPhoneix.

Removing Uncertainties from Overlay Network 295

The two schemes, Phoenix and SPhoenix, for range query are flexible. If the traffic
of the network is heavy, Phoenix is used. Otherwise SPhoenix is adopted.

For multi-dimensional queries of Phoenix, assume the whole data space is
< [l0, h0], ..., [li, hi], ...,[lm−1, hm−1] >. We also construct the complete trie tree as
one-dimensional query. We partition the entire multi-dimensional data space
< [l0, h0], ..., [li, hi], ..., [lm−1, hm−1] > onto the completed trie tree along dimen-
sions A0, ..., Ai, ..., Am in a round-robin style. Each peer in the tree represents a multi-
dimensional data subspace and the root node represents the entire multi-dimensional
data space. For any node B at the jth level of the trie tree that has d child peers,
let i denote the value of j mod m. Then, the subspace c represented by node B is evenly
divided into d pieces along the ith attribute, and each of its d child peers represents one
such a piece. As a result, all leaf peer store the disconnected subspace of the entire
space. Every multi-dimensional value < a0, ..., ai, ..., am−1 > can find its hash value.
For example, in Figure 4, suppose multi-dimensional range query, < [0, 8], [0, 16] >,
the leaf identifiers are assigned as sub-space in the way: {< [0, 2], [0, 8] >, < (2, 4],
[0, 8] >, ..., < (4, 6], (0, 8] >, < (6, 8], (8, 16] >} = {000, 001, ..., 110, 111}. Then
queries are routed to corresponding peers to fetch desirable data. This technique of
multi-dimensional query is called MPhoenix.

5 Performance Evaluation

We use PeerSim1 to implement Phoenix, SPhoenix and MPhoenix. PeerSim is a
large-scale network simulation framework aimed at developing and testing any kind of
dynamic network protocols. We evaluate networks consisting of 256 to 1 million nodes.
Queries are generated randomly and uniformly from the network, and the identifiers
of targeted data objects are also uniformly distributed in the key-space. The simulation
environment is pentium 4 CPU 3.0 GHz, 2G memory and 160G disk. To compare the
efficiency of dynamic networks, we implement Koorde based on deBruijn, and Viceroy
based on Butterfly in PeerSim. To compare the efficiency of one-dimensional range
queries, CAN [1] and BATON [21] are chosen to compare with Phoenix. To evaluate
the efficiency of multi-dimensional range query, we set the dimension of data to 20.
During tests, d is set to 4 for all experiments, and thus the degree of each graph is
also 4.

Querying Efficiency of Dynamic Overlay Networks. In this section, we show two
group of experiments so as to examine the maximum and average querying path lengths
of each graph in the dynamic networks. In the first group of experiments, for different
numbers of nodes, 10% nodes of the total nodes are allowed to join and (depart) in
(from) the network. The maximum and average number of hops are recorded in the
dynamic scenario. The diameter lower bound (Dia-bound) and average distance lower
bound (Avg-bound) are also shown for the two experiments. The results are plotted in
Figure 5. This figure shows that the delays of Phoenix are both less than the lower
bounds. Phoenix has far better performance than Koorde and Viceroy whose querying
efficiencies are worse than the lower bounds.

1 http://www.cs.unibo.it/bison/deliverables/D07.pdf

http://www.cs.unibo.it/bison/deliverables/D07.pdf

296 Y. Yuan et al.

5

10

15

20

25

0 2 4 6 8 10 12

N
um

be
r

of
 o

ve
rl

ay
 h

op
s

Number of peers in the network(2(x+8))

Koorde
Viceroy
Phoenix

Dia-bound

(a) Maximum query distance

5

10

15

20

0 2 4 6 8 10 12

N
um

be
r

of
 o

ve
rl

ay
 h

op
s

Number of nodes in the network(2(x+8))

Koorde
Viceroy
Phoenix

Avg-bound

(b) Average query distance

Fig. 5. Querying efficiency of dynamic overlay networks

8

10

12

14

16

18

20

0 1 2 3 4 5 6

N
um

be
r

of
 o

ve
rl

ay
 h

op
s

Number of peers (x * 500)

Koorde
Viceroy
Phoenix

Dia-bound

(a) Maximum query distance

6

7

8

9

10

11

12

13

14

15

16

17

0 1 2 3 4 5 6

N
um

be
r

of
 o

ve
rl

ay
 h

op
s

Number of peers (x * 500)

Koorde
Viceroy
Phoenix

Avg-bound

(b) Average query distance

Fig. 6. Variations of hops in the presence of nodes concurrently joining and leaving

In the other group, each system initially has 64k nodes, then the same number
of nodes begin concurrently join and (depart) in (from) the network. Thus the num-
ber of nodes in the network hardly changes. Figure 6 shows the variation of the lengths
of query paths. As shown in the result, though the static graphs are the same, Phoenix
is more stable than Koorde and Viceroy when dealing with the concurrently joining and
leaving operations. The experiment confirms that our constructive method guarantee
that overlay networks behave stable in face of uncertainties, and the performances are
not limited by the lower bound any more.

Querying Efficiency of Range Queries. This section shows evolutional results of range
queries. We calculate the average number of messages and hops induced by answer-
ing one-dimensional rang query request in the network. As shown in Figure 7(a) and
Figure 7(b), Phoenix incurs least costs when performing a rang query request than
CAN and BATON. The reason is that both CAN and BATON first identify a peer whose
data is in the query region, then proceed left and/or right to cover the remainder of the
query range. Though the degree of CAN is large, it still achieves the worst efficiency.
In addition, it is very difficult to make a decision on the value of d in advance, be-
cause it only relies on the expected number of nodes in the system, and therefore large
value of node degree is not suitable in dynamic network. Compared to other networks,
SPhoenix takes very small number of hops, but it takes more costs than other networks
because the request can reach the leaf peers simultaneously.

Removing Uncertainties from Overlay Network 297

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10

N
um

be
r

of
 h

op
s

Number of nodes(2x * 1024)

CAN
BATON
Phoenix

SPhoenix

(a) Average number of hops

0

10

20

30

40

50

60

2 4 6 8 10

N
um

be
r

of
 m

es
sa

ge
s

Number of nodes(2x * 1024)

Phoenix
SPhoenix
BATON

CAN

(b) Average number of messages

Fig. 7. Performance of one-dimensional range queries

0

10

20

30

40

50

60

70

2 4 6 8 10

N
um

be
r

of
 h

op
s

Number of nodes(2x * 1024)

Phoenix
SPhoenix

MPhoenix

(a) Average number of hops

0

10

20

30

40

50

60

2 4 6 8 10

N
um

be
r

of
 m

es
sa

ge
s

Number of nodes(2x * 1024)

Phoenix
SPhoenix

MPhoenix

(b) Average number of messages

Fig. 8. Performance of multi-dimensional range queries

60

65

70

75

80

85

90

95

100

0 5 10 15 20 25 30

%
 o

f
su

cc
es

sf
ul

 q
ue

ri
es

% of peers that are faulty

Koorde
Viceroy
Phoenix

Fig. 9. Percentage of successful queries

The evaluating results of multi-dimensional range queries are shown in Figures 8(a)
and 8(b). Phoenix and SPhoenix are also plotted in the figures. From the figures, we
know that MPhoenix behaves great in terms of querying hops and querying costs.

Robustness. A number of 4000 queries are uniformly generated in the network consist-
ing of 10000 nodes. When the network becomes stable, we let a node fail with probabil-
ity p ranging from 0.1 to 0.3. Figure 9 plots the percentage of successful queries when
using the forwarding algorithm of corresponding protocol. For the same percentage of

298 Y. Yuan et al.

failed nodes, the percentages of successful queries for Phoenix is much higher than
that of other networks, and their variations are minimal. This is because all the methods
for networks are robust to guarantee the successful query. Though Viceroy and Ko-
orde are based on the same overlay networks as Phoenix, they encounter more failed
queries. The reason is that a message is always forwarded towards a unique neighbor
that is closer to the destination and is not allowed to transfer along other paths during
their querying.

6 Conclusions

In this study, we solve the problem of poor performance put on by overlay network in
face of topological and data uncertainties. We first give probabilistic lower bounds of
query distance in face of uncertainties. Then based on the proposed topology construc-
tive method and data placement rule, we can remove uncertainties from overlay network
in a dynamic scenario. Moreover, efficient algorithms are proposed to support range
queries. Finally, extensive experiments show that the new dynamic system, Phoenix,
derived from proposed methods, achieve an optimal querying efficiency which exceeds
the lower bounds. We also have the plan of using Phoenix as an infrastructure to sup-
port other large-scale and distributed applications.

Acknowledgment

This research is supported by the National Science Fund for Distinguished Young
Scholars (Grant No 61025007) and the National Natural Science Foundation of China
(Grant Nos. 60933001 and 60803026). Deke Guo is supported in part by the Research
Foundation of NUDT, the NSF China under Grant No. 60903206.

References

1. Ratnasamy, S., Francis, P., Handley, M.: A scalable content-addressable network. In: Proc.
of the ACM SIGCOMM (2001)

2. Stoica, I., Morris, R., Karger, D.: Chord: a scalable peer-to-peer lookup service for internet
applications. In: Proc. of the ACM SIGCOMM (2001)

3. Gauron, P.: D2B: a de bruijn based content-addressable network. Theor. Comput. Sci. (2006)
4. Kaashoek, F., Karger, D.R.: Koorde: a simple degree-optimal hash table. In: IPTPS (2003)
5. Malkhi, D.: Viceroy: a scalable and dynamic emulation of the butterfly. In: SODA (2002)
6. Xu, J., Kumar, A., Yu, X.: On the fundamental tradeoffs between routing table size and

network diameter in peer-to-peer networks. IEEE J. Sel. Areas Commun. (2004)
7. Shen, H.: Cycloid: a constant-degree and lookupefficient p2p overlay network. In: IPDPS

(2004)
8. Banerjee, S., Sarkar, D.: Hypercube connected rings: a scalable and fault-tolerant logical

topology for optical networks. In: Computer Communications (2001)
9. Guo, D., Wu, J., Liu, Y., Jin, H., Chen, H., Chen, T.: Quasi-kautz digraphs for peer-to-peer

networks. TPDS (August 24, 2010)
10. Guo, D., Liu, Y., Li, X.: BAKE: a balanced kautz tree structure for peer-to- peer networks.

In: Proc. of INFOCOM, Phoenix, AZ, USA (April 2008)

Removing Uncertainties from Overlay Network 299

11. Li, D., Guo, C., Wu, H., Zhang, Y., Lu, S.: Ficonn: using backup port for server interconnec-
tion in data centers. In: Proc. IEEE INFOCOM, Brazil (2009)

12. Guo, C., Lu, G., Li, D.: Bcube: a high performance, server-centric network architecture for
modular data centers. In: Proc. SIGCOMM, Barcelona, Spain (2009)

13. He, Y., Liu, Y.: VOVO: VCR-oriented video-on-demand in large-scale peer-to-peer Net-
works. IEEE TPDS 20(4), 528–539 (2009)

14. Liu, Y.: A two-hop solution to solving topology mismatch. TPDS 19(11), 1591–1600 (2008)
15. Greenberg, A., Jain, N., Kandula, S., Kim, C., Lahiri, P., Maltz, D.A., Patel, P.: Vl2: A scal-

able and flexible data center network. In: Proc. of SIGCOMM, Barcelona, Spain (2009)
16. Szpankowski, W.: Patricia trees again revisited. Journal of the ACM 37 (1990)
17. DeGroot, M.H.: Probability and statistics. Addison-Wesley, Reading (2001)
18. Guo, D., Wu, J., Chen, H.: Moore: an extendable P2P network based on incomplete kautz

digraph with constant degree. In: Proc. of 26th IEEE INFOCOM (May 2007)
19. Liu, Y., Xiao, L., Ni, L.M.: Building a scalable bipartite P2P overlay network. IEEE

TPDS 18(9), 1296–1306 (2007)
20. Liu, Y., Xiao, L., Liu, X., Ni, L.M., Zhang, X.: Location awareness in unstructured peer-to-

peer systems. IEEE TPDS 16(2), 163–174 (2005)
21. Jagadish, H.V., Ooi, B.C., Vu, Q.H.: BATON: A balanced tree structure for peer-to-peer

networks. In: Proceedings of the 31st VLDB Conference (2005)
22. Bridges, W.G., Toueg, S.: On the impossibility of directed moore graphs. Journal of Combi-

natorial Theory, Series B29(3) (1980)

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 300–310, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Probabilistic and Interactive Retrieval of Chinese
Calligraphic Character Images Based on Multiple

Features∗

Yi Zhuang1, Nan Jiang2, Hua Hu3, Haiyang Hu3,
Guochang Jiang4, and Chengxiang Yuan1

1 College of Computer & Information Engineering,
Zhejiang Gongshang University, P.R. China

2 Hangzhou No.1 People’s Hospital, P.R. China
3 School of Computer, Hangzhou Dianzi University, P.R. China

4 The Second Institute of Oceanography, SOA, P.R. China
zhuang@zjgsu.edu.cn

Abstract. This paper proposes an efficient probabilistic indexing scheme called
Probabilistic Multiple-Feature-Tree(PMF-Tree) to facilitate an interactive retrieval
of Chinese calligraphic manuscript images based on multiple features such as
contour points, character styles and types of character. Different from conventional
character retrieval and indexing methods [18] which only adopts shape similarity
as a query metric, our proposed indexing algorithm allows user to choose the above
three kinds of features they prefer to as query elements. Moreover, a probabilistic
modal is introduced to refine the retrieval result. Comprehensive experiments are
conducted to testify the effectiveness and efficiency of our proposed retrieval and
indexing methods respectively.

Keywords: Chinese calligraphic character, high-dimensional indexing, probabilistic
retrieval.

1 Introduction

Chinese historical calligraphy work is a valuable part of the Chinese cultural heritage.
To effectively protect these works from ruining or damage, they have been digitized to
store permanently. The issue of retrieval and indexing of such digital works becomes
new challenges. As shown in Fig. 1, the state-of-the-art character retrieval and indexing
methods only use contour points extracted from a character as a feature in the similarity
retrieval. The styles, types, even number of strokes of a character, however, have not
been adopted to facilitate the character retrieval, which can be also as two effective
features to prune search region in the retrieval processing.

∗ This paper is partially supported by the Program of National Natural Science Foundation of

China under Grant No. 60003047, No.60873022, No.60903053; The Program of Natural
Science Foundation of Zhejiang Province under Grant No. Z1100822, No.Y1080148,
No.Y1090165; The Science Fund for Young Scholars of Zhejiang Gongshang University under
Grant No. G09-7. The Science & Technology Planning Project of Wenzhou under Grant No.
2010G0066.

 Probabilistic and Interactive Retrieval of Chinese Calligraphic Character Images 301

In essence, the efficient retrieval of Chinese calligraphic characters directly relates
to the category of high-dimensional data indexing with multiple features. Although
considerable research efforts have been done on the high-dimensional indexing issue
[10], unfortunately, the existing high-dimensional indexing methods can not be directly
applied to Chinese calligraphic characters [18]. In our previous work [18], we studied
the character retrieval and its indexing algorithms only based on their contour similarity
measure. However, in Figs. 2 and 3, for a same character “书”, there are two different
styles(i.e., Yan Ti and Mi Ti, etc) and two different types (i.e., Kai Su and Li Su, etc). In
most cases, people would like to get some result characters with specific style or type
they prefer to, which can also be regarded as effective pruning criteria to reduce a
search region.

 (a). Yan Ti (b). Mi Ti

Fig. 2. Two different styles of a same character

Fig. 1. A calligraphic character images

 (a). Kai Su (b). Li Su

Fig. 3. Two different types of a same character

In addition, due to the shape complexity of the Chinese calligraphic character, personal
knowledge level and errors occurred in the feature extraction, as shown in Tables 1-3, for
the character “书”, the identifications of its corresponding features such as character type,
style, even number of strokes are not trivial, and the precision ratio of character retrieval is
not so accurate. For example, for the character in Table 1, the probabilities of the character
style are Yan Ti, Mi Ti and Liu Ti are 10%, 85% and 5%, respectively. So the introduction
of probability modal can further refine the retrieval results.

Table 1. The probability of style of“�” Table 2. The probability of type of“�”

Style Probability
Yan Ti 10%
Mi Ti 85%

 Liu Ti 5%

Type Probability
Kai Su 5%
Li Su 5%
Cao Su 85%

 Xing Su 5%

Table 3. The probability of number of strokes of“书”

Number of strokes Probability
9 15%
10 80%

 11 5%

302 Y. Zhuang et al.

From the above discussion, in this paper, based on the shape-similarity-based
retrieval algorithm for Chinese calligraphic character in our previous work [18], we
propose a probabilistic and composite high-dimensional indexing scheme based on
multiple features, called PMF-Tree, which is specifically designed for indexing the
large Chinese calligraphic characters. With the aid of the PMF-Tree index, a
probabilistic k-nearest neighbor query of character λq in high-dimensional spaces is
transformed into a range query in the single dimensional space.
The primary contributions of this paper are as follows:

1. We propose a novel probabilistic interactive retrieval method to effectively
support the Chinese calligraphic characters retrieval by choosing multiple
features of character.

2. We introduce a Probabilistic Multiple-Feature-Tree(PMF-Tree)-based indexing
method to facilitate the interactive and efficient Chinese calligraphic characters
retrieval with multiple features.

The remainder of this paper is organized as follows. In Sections 2, we provide
background of our work. Then in Section 3, we propose a Probabilistic
Multiple-Feature-Tree(PMF-Tree)- based high-dimensional indexing scheme to
dramatically speed up the retrieval efficiency. In Section 4, we report the results of
extensive experiments which are designed to evaluate the efficiency and effectiveness
of the proposed approach. Finally, we conclude in the final section.

2 Background

Numerous promising research works have been done on the handwriting recognition
[5]. For instance, a word-matching technology is used to recognize George
Washington’s manuscripts [3], and the historical Hebrew manuscripts were identified
in [4]. However, no published research work has been done successfully on Chinese
calligraphic character retrieval because it differs from other languages by its enormous
numbers and complex structure of ideographs. In [6] Shi et al. have shown a
content-based retrieval method for antique books, however it is unknown how well this
rigid visual similarity-based method works on the Chinese calligraphic characters
retrieval with different styles of handwritings in different dynasties. Belongie et al. [8]
have proposed an inspirational and similar approach to ours, yet it is much more
complex at least for calligraphic character retrieval. Our earlier work includes applying
the Projecting method [2] and the Earth Movers’ Distance (EMD) method [9] to the
Chinese calligraphic character retrieval. However, these two recognition techniques are
too rigid to be applied to the retrieval process. For calligraphic character retrieval,
shape is a promising feature to model a character. So in this paper, we adopt a
shape-similarity(SS)-based retrieval method proposed in our previous work [18] as a
similarity measure between two characters.

There is a long stream of research on solving the high-dimensional indexing
problems [10]. The R-tree [11] and its variants [12], etc are based on data & space
partitioning, hierarchical tree index structure, however their performance deteriorates
rapidly as dimensionality increases due to the “dimensionality curse" [10]. Another
category is to represent original feature vectors using smaller, approximate
representations, e.g., VA-file [13] and IQ-tree [14], etc. Although these methods

 Probabilistic and Interactive Retrieval of Chinese Calligraphic Character Images 303

accelerate the sequential scan by using data compression, they incur higher
computational cost to decode the bit-string. The above two categories of indexing
approaches, however, are only suitable for indexing the multi-dimensional data with
the fixed dimensionality and does not fit for indexing the character features since
almost every character has different number of contour points (dimensionalities). The
distance-based approach (e.g., iDistance [15]) may be a promising scheme to indexing
them since it does not heavily depend on the dimensionalities of the characters.

3 The PMF-Tree Index

In order to improve the probabilistic retrieval efficiency, in this section, we develop a
novel probabilistic high-dimensional indexing technique, called the Probabilistic
Multiple-Feature Tree(PMF-Tree for short), to accelerate the retrieval process.

3.1 Preliminaries

The design of the PMF-Tree is motivated by the following key observations. First,
conventional character retrieval and indexing methods [18] are only based on similarity
of two characters without considering the other factors such as number of strokes,
styles, etc. So the effectiveness of these methods are not satisfactory and their query
performances are not well scaled for large dataset due to the CPU-intensive distance
computation in the retrieval process [18]. Second, the feature uncertainty has not been
studied in the state-of-the-art character retrieval techniques, which may enable the
query results to be more accurate and objective.

First we briefly introduce the notations that will be used in the rest of paper.

Table 4. Meaning of Symbols Used

Symbols Meaning
Ω a set of Chinese calligraphic character
λi the i-th character and λi∈Ω

M the number of contour points from a character
N the number of characters in Ω
λq a query character user submits
Θ(λq,r) a query sphere with centre λq and radius r

Sim(λi,λj) the distance between two characters defined in [18]

ε Threshold value

As a preliminary step, before constructing the PMF-Tree, all characters in Ω are first

grouped into T clusters by an AP-Cluster algorithm [16]. Each cluster is denoted as Cj,
in which the centroid character(Oj) in Cj can be adaptively selected by the algorithm
[16], where j∈[1,T]. So we can model a cluster as a tightly bounded sphere described by
its centroid and radius, which is saved in a class information file.

Definition 1 (Cluster Radius). Given a cluster Cj, the distance between Oj and the
character which has the longest distance to Oj is defined as the cluster radius of Cj,
denoted as CRj.

304 Y. Zhuang et al.

Given a cluster Cj, the cluster sphere of it is denoted as Θ(Oj,CRj), where Oj is the
centroid character of cluster Cj, CRj is the cluster radius.

Definition 2 (Centroid Distance). Given a character λi, its centroid distance is defined
as the distance between λi and Oj, the centre of cluster that λi belongs to:

 CD(λi)=Sim(λi,Oj) (1)

where j∈[1,T], i∈[1,δ], and δ is the number of characters in Cj.

Once T clusters are obtained, then the centroid distance and the number of strokes of each
character are computed. Moreover, its style and the type are identified at the same time.
Finally, a uniform index key of a character is obtained, which is inserted by a B+-Tree.

As we know, for a same character, there are a number of different styles and types,
respectively (see Figs. 2 and 3). To embed these two information into the unified index
key that will be discussed in Section 3.2, two encoding schemes of the style and the
type are needed which is shown in the following tables.

Table 5. Style of character

Style Name Yan Ti Liu Ti Cai Ti Su Ti …
Style ID 1 2 3 4 …

Table 6. Type of character

Type Name Li Su Kai Su Cao Su …
Type ID 1 2 3 …

3.2 The Data Structure

In order to effectively prune the search region, we propose the PMF-Tree, an
probabilistic multiple-feature indexing scheme in which the high-dimensional index for
contour points is based on the iDistance[15]. As mentioned before, all characters are
first grouped into T clusters using an AP-Cluster algorithm [16], then the
centroid-distance and the number of strokes of each character are computed, the style
and type of each character can be identified by user in preprocessing step. Thus the
character λi can be modeled by a six-tuple:

 λi::= <i, CID, CD, Style, Type, Num > (2)

where

- i refers to the i-th character in Ω;
- CID is the ID number of the cluster λi belongs to;
- CD is the centroid distance of λi;
- Style ={StyID, Ps}, where StyID is the style ID of λi, and Ps=Prob(the style ID of λi

is StyID);
- Type ={TyID, Pt}, where TyID is the type ID of λi, and Pt=Prob(the type ID of λi is

TyID)
- Num ={NumS, Pn}, where NumS is the number of strokes of λi, and Pn=Prob(the

number of strokes of λi is Num)

 Probabilistic and Interactive Retrieval of Chinese Calligraphic Character Images 305

For each character λi in a cluster sphere, its index key can be defined as:

()()i iCD λkey λ = (3)

Since the characters are grouped into T clusters, to get a uniform index key of image in
different clusters, the index key in Eq. (8) can be rewritten by Eq. (9):

()() i
i MAX

CD λCIDkey λ = + (4)

where the CID is the ID number of cluster λi falls in.

Note that since CD(λi) may be larger than one, the value of CD(λi) should be
normalized into the range of [0,1] by being divided a large constant MAX. Thus, it is
guaranteed that the search range of centroid distance of each character can not be
overlapped.

To facilitate retrieving characters via submitting an auxiliary information (e.g, the
style name, type name or number of strokes) of λi, its index keys can be derived in Eqs.
(5) and (7), respectively:

i i S*α StyID(λ) PKEY(λ)= + (5)

i i T*β TyID(λ) PKEY(λ)= + (6)

i i N*NumS(λ) PKEY(λ)= +γ (7)

Where α, β and γ are three stretch constants which are set 10, 102 and 103 respectively.
In the above, we suppose that user submits two query elements (e.g., (a) StyID and

λi, (b) TyID and λi, or (c) NumS and λi). If user submits three query elements (TyID,
StyID and λi,), then a uniform index key for λi can be rewritten below:

i i i T S* * *α StyID(λ)+β TyID(λ) P PKEY(λ)= + (8)

i i i NS* * *α StyID(λ)+ NumS(λ) P PKEY(λ)= +γ (9)

i i i T N* * *β TyID(λ)+ NumS(λ) P PKEY(λ)= +γ (10)

Similarly, for four query elements (TyID, StyID, NumS and λi,) submitted by a user, a
uniform index key for λi can be derived as follows:

i i i i T NS* * * * *α StyID(λ)+β TyID(λ)+ NumS(λ) P P PKEY(λ)= +γ (11)

Fig. 4. The PMF-Tree index structures Fig. 5. The search range in B+-Tree

306 Y. Zhuang et al.

Eqs. (5-11) represent the index keys of character respectively, which correspond to
seven independent indexes. In order to incorporate them into an integral index, we
derive a new uniform index key expression by adding seven stretch constants(i.e., C1 to
C7), which is shown in Eq. (12):

1

2

3

4

5

6

7

C (a)

(b)

(c)

(d)

(e)

(f)

()

i S

i T

i N

i i i T S

i i S N

i i T N

i i

+ *StyID()+P

C +β*TyID()+P

C + *NumS()+P

C +α*StyID()+β*TyID()+P *P

C +α*StyID()+ *NumS()+P *P

C +β*TyID()+ *NumS()+P *P

C +α*StyID()+β*TyID()+ *NumS(

KEY =

α λ

λ

γ λ

λ λ

λ γ λ

λ γ λ

λ λ γ

λ

(g)i T S N)+P *P *Pλ

⎧
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

 (12)

where C1=0, C2=1×104, C3=1.5×104, C4=2×104, C5=2.5×104, C6=3×104, and
C7=3.5×104.The above seven constants should be set large enough to stretch the value
ranges of the index keys so that they do not overlap with each other.

3.3 Building PMF-Tree

For a character, its four values of CD, NumS, styID and tyID are recorded in the
corresponding index key of PMF-Tree whose basic structure is the B+-tree, which is
shown in Fig. 4. Fig. 6 shows the detail steps of constructing a PMF-Tree. Note that the
routines TransDis(λi) and TransDis1(λi) are two distance transformation function in
Eq.(4) and Eq. (12) respectively, and BInsert(key,bt) is a B+-tree insert procedure.

Algorithm 1. PMF-Tree Index Construction
Input: : the character set;
Output: bt and bt : the index for PMF-Tree(I) and (II);
1. The characters in are grouped into T clusters using the AP cluster algorithm
2. bt newFile(), bt newFile(); /* create index header file for PMF-Tree(I),(II)*/
3. for each character i do
4. The CD of i are computed;
5. The style, type and stroke number of the character are identified by user with probabilities;
6. key(i)=TransDis(i); /* Function TransDis() is shown in Eq. (4) */
7. KEY(i)=TransDis1(i); /* Function TransDis1() is shown in Eq. (12) */
8. BInsert(key(i), bt); /* insert it to B+-tree */
9. BInsert(KEY(i), bt); /* insert it to B+-tree */
10. return bt and bt

Fig. 6. The index construction algorithm for PMF-Tree

3.4 Probabilistic k-NN Search Algorithm

For n high-dimensional characters, a probabilistic k-Nearest-Neighbor(Pk-NN)
search is a most frequently used search operation which retrieves the k most similar
characters that are closest in distance to a given character with a probabilistic
threshold. In this section, we will focus on Pk-NN searches of Chinese calligraphic
character. For example, when user submits a query character “国” and a threshold ε,
its type name and the style name of the result characters are Kai Su and Song Ti
respectively. Then as shown in Figure 5, the retrieval process is composed of two

 Probabilistic and Interactive Retrieval of Chinese Calligraphic Character Images 307

steps: 1). Candidate characters returned by retrieving over the PMF-Tree(I) in which
the range is [left, right], where left=CID+(CD(λi)-r)/ MAX, right=CID+CRj/MAX; 2).
Retrieval over the PMF-Tree(II), whose range is [LEFT, RIGHT], where
LEFT=C5+α*tyID(λi)+β*StyID(λi)+Pt*Ps, RIGHT=C5+α*tyID(λi)+β*StyID(λi)+1;

Algorithm 2. PkNN Search
Input: query character q, k, StyID or TyID or NumS,
Output: query results S
1. r 0, S ; // initialization
2. while (|S|<k) // |S| refers to the number of candidate characters in S
3. r r+ r;
4. S RSearch(q,r);
5. if (|S|>k) then
6. for i:=1 to |S|-k do
7. far Farthest(S, q);
8. S S- far;
9. return S;
RSearch(q,r)
10. S1 , S2 ;
11. for each cluster sphere (Oj,CRj) and j [1, T]
12. if (Oj,CRj) contains (q,r) then
13. S1 S1 Search(q,r, j);
14. end loop
15. else if (Oj, CRj) intersects (q,r) then
16. S1 S1 Search(q,r, j);
17. S5 Search1(StyID, TyID, NumS and i);
18. for each character i S1 do
19. if i S5 then S1 S1 i
20. return S1; // return candidate characters

Search(q,r, i)
21. left i+(CD(q)-r)/MAX, right i+CRj/MAX;
22. S3 BRSearch[left, right]; // the filtering step
23. for each character j S3 do
24. if Sim(q, j)>r then S3 S3- j; // the refinement stage
25. return S3; // return the candidate character set

Search1(StyID, TyID, NumS and i)
26. if user submits a q and its style then
27. LEFT C1+ *StyID(i)+Ps, RIGHT C1+ *StyID(i)+1;
28. else if user submits a q and its type then
29. LEFT C2+ *TyID(i)+Pt; RIGHT C2+ *TyID(i)+1;
30. else if user submits a q and the number of strokes then
31. LEFT C3+ *NumS(i)+Pn, RIGHT C3+ *NumS(i)+1;
32. else if user submits a q , its style and the number of strokes then
33. LEFT C4+ *StyID(i)+ *TyID(i)+Ps*Pn, RIGHT C4+ *StyID(i)+ *TyID(i)+1;
34. else if user submits a q , its type and the number of strokes then
35. LEFT C5+ *StyID(i)+ *NumS(i)+Pt*Pn, RIGHT C5+ *StyID(i)+ *NumS(i)+1;
36. else if user submits a q , its type and style then
37. LEFT C6+ *tyID(i)+ *NumS(i)+Pt*Ps, RIGHT C6+ *tyID(i)+ *NumS(i)+1;
38. else if user submits a q, its type, style and the number of strokes then
39. LEFT C7+ *StyID(i)+ *TyID(i)+ *NumS(i)+Pt*Ps*Pn;
40. RIGHT C7+ *StyID(i)+ *TyID(i)+ *NumS(i)+1;
41. S4 BRSearch[LEFT, RIGHT]; // the filtering step
42. return S4; // return the candidate character set

Fig. 7. Pk-NN search algorithm

308 Y. Zhuang et al.

Figure 7 details the whole search process. Routine RSearch() is the main range
search function which returns the candidate characters of range search with centre λq
and radius r with probability larger than ε, Search() and Search1() are the
implementation of the range search. Farthest() returns the character which is the
longest from λq in S. BRSearch() is a B+-tree range search function.

4 Experimental Results

In this section, we present an extensive performance study to evaluate the effectiveness
and efficiency of our proposed retrieval and indexing method. The Chinese
Calligraphic characters image data we used are from CADAL Project [17] which
contains a set of contour point features extracted from the 12,000 character images in
which each feature point is composed of a pair of coordinates <x axis, y axis>. We
implemented the shape-similarity-based retrieval approach and the PMF-Tree index in
C language in which a B+-tree is as the single dimensional index structure. The index
page size of B+-tree is set to 4096 Bytes. All the experiments are run on a Pentium IV
CPU at 2.0GHz with 1G Mbytes memory. In our evaluation, we use the number of page
accesses and the total response time as the performance metric.

4.1 Effectiveness of the Retrieval Method

In the first experiment, we have implemented an online interactive retrieval system for
Chinese calligraphic characters to testify the effectiveness of our proposed retrieval
method comparing with the conventional one [18]. As shown in the right part of Figure
8, when user submits an example Chinese calligraphic character by drawing a character
“天” and the number of strokes (e.g., 4) as well, the query radius and a threshold value
are set 0.8, 60% respectively, the candidate characters are quickly retrieved by the
system with the aid of the PMF-Tree. The left part of the figure is the query result in
which the similarity and confidence values of the answer character images are given
with respective to the query one.

Figure 9 illustrates a Recall-Precision curve for the performance comparisons of the
shape- based method [18] and our proposed composite search. It compares the average
retrieval result (the average precision rate under the average recall rate) of 20 characters
queries randomly chosen from the database. Each of them has more than 4 different
calligraphic styles and types. The figure shows that the retrieval performance of the
composite search is better than that of the shape-based one by a large margin.

4.2 Efficiency of PMF-Tree Index

In the following, we test the performance of our proposed indexing method—PMF-Tree
under different sizes of databases and different selectivity.

4.2.1 Effect of Data Size
In this experiment, we measured the performance behavior with varying number of
characters. Figure 10a shows the performance of query processing in terms of CPU

 Probabilistic and Interactive Retrieval of Chinese Calligraphic Character Images 309

cost. It is evident that PMF-Tree outperforms sequential scan significantly. The CPU
cost of PMF-Tree increases slowly as the data size grows. It’s worth mentioning that
the CPU cost of sequential scan is ignored since the computation cost of it is very
expensive. In Figure 10b, the experimental result reveals that the I/O cost of PMF-Tree
is superior to sequential scan.

Fig. 8. One retrieval example

0.0 0.2 0.4 0.6 0.8 1.0
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

P
re

ci
si

on

Recall

 Probabilistic retrieval
 APC

Fig. 9. Recall vs. precision

2000 4000 6000 8000 10000
0

10

20

30

40

Data set size

 PMF-Tree
 Seq Scan

CPU time(second)

(a) CPU cost vs. Data size

2000 4000 6000 8000 10000
0

100

200

300

400

500

 PMF-Tree
 Seq Scan

Data set size

page access

(b) I/O cost vs. Data size

10 20 30 40
400

600

800

1000

1200

1400

1600

 PMF-Tree
 Seq Scan

K

page access

(a) K vs. Page Access

10 20 30 40
0

10

20

30

40

50

K

 PMF-Tree
 Seq Scan

CPU time(second)

(b) K vs. CPU Cost

Fig. 10. Effect of data size Fig. 11. Effect of k

4.2.2 Performance Behavior with k(Selectivity)
In this section, we proceed to evaluate the effect of k (selectivity) on the performance of
a Pk-NN retrieval by using the PMF-Tree. Figures 11a and 11b both indicate that when
k ranges from 10 to 40, the PMF-Tree is superior to other methods in terms of page
access and the CPU cost. The results conform to our expectation that the search region
of PMF-Tree is significantly reduced and the comparison between any two characters is
a CPU-intensive task. The CPU cost of sequential scan is ignored due to the expensive
computation cost of it.

5 Conclusions

In this paper, we proposed a novel probabilistic and interactive multiple-feature-based
indexing scheme to support large-scale historical Chinese calligraphic character images
retrieval. Two main components are included, such as 1). an effective approach to
probabilistic retrieving Chinese calligraphic characters by choosing three kinds of the
features is introduced; 2). a novel multiple-feature-tree(PMF-Tree)-based probabilistic
high-dimensional indexing scheme is then proposed to boost the retrieval performance

310 Y. Zhuang et al.

of the large Chinese calligraphic characters. The prototype retrieval system is
implemented to demonstrate the applicability and effectiveness of our new approach to
Chinese calligraphic character retrieval.

References

[1] Zhang, X.-Z.: Chinese Character Recognition Techniques. Tsinghua University Press,
Beijing (1992)

[2] Wu, Y.-S., Ding, X.-Q.: Chinese character recognition: the principles and the
implementations. High Education Press, Beijing (1992)

[3] Rath, T.M., Manmatha, R., Lavrenko, V.: A search engine for historical manuscript
images. In: SIGIR, pp. 369–376 (2004)

[4] Yosef, I.B., Kedem, K., Dinstein, I., Beit-Arie, M., Engel, E.: Classification of Hebrew
Calligraphic Handwriting Styles: Preliminary Results. In: DIAL 2004, pp. 299–305 (2004)

[5] Palmondon, R., Srihari, S.N.: On-Line and Off-Line hand-writing Recognition: A
Comprehensive Survey. IEEE Trans. on PAMI 22(1), 63–84 (2000)

[6] Shi, B.-l., Zhang, L., Wang, Y., Chen, Z.-F.: Content Based Chinese Script Retrieval
Through Visual Similarity Criteria. Chinese Journal of Software 12(9), 1336–1342 (2001)

[7] Chui, H.-l., Rangarajan, A.: A new point matching algorithm for non-rigid registration.
CVIU 89(2-3), 114–141 (2003)

[8] Belongie, S., Malik, J., Puzicha, J.: Shape Matching and Object Recognition Using Shape
Contexts. IEEE Trans. on PAMI 24(4), 509–522 (2002)

[9] Cohen, S., Guibas, L.: The Earth Mover’s Distance under Transformation Sets. In: ICCV,
Corfu, Greece, pp. 173–187 (September 1999)

[10] Böhm, C., Berchtold, S., Keim, D.: Searching in High-dimensional Spaces: Index
Structures for Improving the Performance of Multimedia Databases. ACM Computing
Surveys 33(3) (2001)

[11] Guttman, A.: R-tree: A dynamic index structure for spatial searching. In: SIGMOD, pp.
47–54 (1984)

[12] Berchtold, S., Keim, D.A., Kriegel, H.P.: The X-tree: An index structure for
high-dimensional data. In: VLDB, pp. 28–37 (1996)

[13] Weber, R., Schek, H., Blott, S.: A quantitative analysis and performance study for
similarity-search methods in high-dimensional spaces. In: VLDB, pp. 194–205 (1998)

[14] Berchtold, S., Bohm, C., Kriegel, H.P., Sander, J., Jagadish, H.V.: Independent
quantization: An index compression technique for high-dimensional data spaces. In: ICDE,
pp. 577–588 (2000)

[15] Jagadish, H.V., Ooi, B.C., Tan, K.L., Yu, C., Zhang, R.: iDistance: An Adaptive B+-tree
Based Indexing Method for Nearest Neighbor Search. ACM Trans. on Database
Systems 2(30), 364–397 (2005)

[16] Frey, B.J., Dueck, D.: Clustering by Passing Messages Between Data Points. Science 315,
972–976

[17] 2010, http://www.cadal.zju.edu.cn
[18] Zhuang, Y., Zhuang, Y.-T., Li, Q., Chen, L.: Interactive high-dimensional index for large

Chinese calligraphic character databases. ACM Trans. Asian Lang. Inf. Process. 6(2)
(2007)

Real-Time Diameter Monitoring for
Time-Evolving Graphs

Yasuhiro Fujiwara1, Makoto Onizuka1, and Masaru Kitsuregawa2

1 NTT Cyber Space Laboratories
2 Institute of Industrial Science, The University of Tokyo

Abstract. The goal of this work is to identify the diameter, the maxi-
mum distance between any two nodes, of graphs that evolve over time.
This problem is useful for many applications such as improving the qual-
ity of P2P networks. Our solution, G-Scale, can track the diameter of
time-evolving graphs in the most efficient and correct manner. G-Scale is
based on two ideas: (1) It estimates the maximal distances at any time to
filter unlikely nodes that cannot be associated with the diameter, and (2)
It maintains answer node pairs by exploiting the distances from a newly
added node to other nodes. Our theoretical analyses show that G-Scale
guarantees exactness in identifying the diameter. We perform several ex-
periments on real and large datasets. The results show that G-Scale can
detect the diameter significantly faster than existing approaches.

Keywords: Diameter, Graph mining, Time-evolving.

1 Introduction

Graphs arise naturally in a wide range of disciplines and application domains.
The distances between pairs of nodes are a fundamental property in graph theory.
The node-to-node distances are often studied in terms of the diameter, the
maximum distance in a graph. However, the focus of traditional graph theory
has been limited to just static graphs; the implicit assumption is that the number
of nodes and edges never change.

Recent years have witnessed a dramatic increase in the availability of graph
datasets that comprise many thousands and sometimes even millions of time-
evolving nodes; this is one consequence of the widespread availability of electronic
databases and the Internet. Recent studies on large-scale graphs are discover-
ing several important principles of time-evolving graphs [12]. Thus demands for
efficient approaches to the analysis of time-evolving graphs are increasing.

In this paper, we focus on the problems faced when attempting to identify the
exact diameter of a graph evolving over time by the addition of nodes. In other
words, the goal of this work is continuous diameter monitoring for time-evolving
graphs. We propose an algorithm to solve this problem exactly in real-time.
The commonly-used approach to diameter computation is based on breadth-
first search, which is not practical for large-scale graphs since it requires excessive
CPU time. To the best of our knowledge, this is the first study to address the
diameter detection problem that guarantees exactness and achieves efficiency.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 311–325, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

312 Y. Fujiwara, M. Onizuka, and M. Kitsuregawa

1.1 Contributions

We propose a novel method called G-Scale that can efficiently identify the diam-
eter of time-evolving graphs. In order to reduce monitoring cost, (1) we estimate
the maximal distance to prune unlikely nodes that cannot be associated with the
diameter, and (2) we maintain the answer node pairs whose distances are the
diameter by exploiting distances from a newly added node to other nodes. G-
Scale has the following attractive characteristics:

– Efficient: G-Scale is drastically faster than the existing algorithm. The ex-
isting algorithm takes O(n2 + nm) time where n and m are the number of
nodes and edge, respectively, and so is prohibitively expensive for large-scale
graphs.

– Exact: G-Scale does not sacrifice accuracy even though it prunes unlikely
nodes in the monitoring process; it can exactly track the node pair that
delimit the diameter of a time-evolving graph at any time.

– Parameter-free: Previous approximate approaches require the setting of
parameters. G-Scale, however, is completely automatic; this means it does
not require the user to set any parameters.

1.2 Problem Motivation

The problem tackled in this paper must be overcome to develop the following im-
portant applications. The network architecture called P2P is the basis of several
distributed computing systems such as Gnutella, Seti@home, and OceanStore
[2]. And content distribution is a popular P2P application on the Internet. For
example, Kazaa and its variants have grown rapidly over time, over 4.5 million
users share a total of 7 petabytes of data [3]. In a content distribution network,
personal computers can use hop-by-hop data forwarding between themselves. An
important and fundamental question is how many neighbors should a computer
have, i.e., what size the routing table should be [16]. This question is important
for two reasons. The number of computers in a P2P network could be extremely
large, hence the complete routing table is likely to be too large to maintain.
Second, because each hop in a P2P network is overhead, suppressing the query
hop number by increasing table size is important in raising service efficiency.

Network diameter is a useful metric when trying to raise the search efficiency
of a content distribution network, since it directly corresponds to the number
of hops a query needs to travel in the worst case [9]. Moreover, by monitoring
network diameter, the routing table size can be updated more effectively; if the
diameter is large, the routing table size should be increased. This strategy can
bound the search speed of content distribution networks.

In addition to the application presented above, robustness improvement is
an important application in P2P networks of diameter monitoring. Koppula et
al. showed that it can be determined which edges should be added/rewired to
improve network robustness by plotting the diameters of dynamically changing
graphs [8]. Furthermore, our proposed method can be used in other applications
such as measuring the structural robustness of metro networks [13], monitoring

Real-Time Diameter Monitoring for Time-Evolving Graphs 313

the evolution of the Internet [11], and measuring citation networks size [10].
While time-evolving graphs are potentially useful in many applications, they
have been difficult to utilize due to their high computational costs. However, by
providing exact solutions in a highly efficient manner, G-Scale will allow many
more data mining applications based on time-evolving graphs to be developed
in the future.

The remainder of this paper is organized as follows. Section 2 describes re-
lated work. Section 3 overviews some of the background of this work. Section 4
introduces the main ideas of G-Scale and explains its algorithm. Section 5 gives
theoretical analyses of G-Scale. Section 6 reviews the results of our experiments.
Section 7 is our brief conclusion.

2 Related Work

Many papers have been published on approximation for node-to-node distances.
The previous distance approximation schemes are distinguished into two types:
annotation approach and embedding approach. Rattigna et al. studied two anno-
tation schemes [17]. They randomly select nodes in a graph and divide the graph
into regions that are connected, mutually exclusive, and collectively exhaustive.
They give a set of annotations to every node from the regions. Distances are
computed by the annotations. They demonstrated their method can compute
node distances more accurately than the embedding approaches.

The Landmark approach is an embedding approach [7,15], and estimates node-
to-node distance from selected nodes. The minimum distance via a landmark
node is utilized as node distance in this method. Another embedding approach
is Global Network Positioning which was studied by Ng et al [14]. Node distances
are estimated with Lp norm between node pairs.

However, interest of these approaches lies only in the estimation; these ap-
proaches do not guarantee exactness.

3 Preliminary

In this section, we formally define some notations and introduce the background
to this paper. Content distribution networks and others can be described as
graph G = (V, E), where V is the set of nodes, and E is the set of edges. We use
n and m to denote the number of nodes and edges, respectively. That is n = |V |
and m = |E|. We define a path from node u to v as the sequence of nodes linked
by edges, beginning with node u and ending at node v. A path from node u to
v is the shortest path if and only if the number of nodes in the path is the
smallest possible among all paths from node u to v. We use d(u, v) to denote
the distance between node u and v, and d(u, v) is the number of edges in the
shortest path from node u to v in the graph. By definition, d(u, u) = 0 for every
u ∈ V , and d(u, v) = d(v, u) for u, v ∈ V .

314 Y. Fujiwara, M. Onizuka, and M. Kitsuregawa

The diameter,D, is defined as the maximal distance between two arbitrary
nodes as follows [5]: D = max(d(u, v)|u, v ∈ V). And our algorithm returns not
only the diameter but the node pairs whose distances are equal to the diameter,
D. D is formally defined as follows: D = {(u, v)|d(u, v) = D}.

The diameter of graph G can exactly be computed by the breadth-first search
approach [4]. But the breadth-first search based approach generally needs O(n2+
nm) time because it computes the distances from all n nodes in a graph and
O(n + m) time is required for each node [6]. This incurs excessive CPU time
for large-scale graphs as illustrated by the statement ‘computing shortest paths
among all node pairs is computationally prohibitive’ made in [10]. Furthermore,
the naive approach to monitoring time-evolving graphs is to perform this proce-
dure each time a graph changes. However, considering the high frequency with
which graphs evolve, a much more efficient algorithm is needed.

4 Monitoring the Diameter

In this section, we introduce the two main ideas and describe the algorithm of
G-Scale. The main advantage of G-Scale is that it can efficiently and exactly
solve the problem of identifying the diameter of time-evolving graphs. First we
give an overview of each idea and then a full description.

4.1 Ideas Behind G-Scale

Our solution is based on the two ideas described below.

Reference node filtering. Our first idea is to prune unlikely nodes efficiently so as
to reduce the high cost of the existing approach. The existing algorithm requires
high computation time because it computes distances for all pairs of n nodes in
the graph. Our idea is simple; instead of computing distances from all nodes,
we compute the distances only from selected nodes and prune unlikely nodes.
In other words, we use selected nodes to filter unlikely nodes. We refer to the
selected nodes as reference nodes.

In the monitoring process, we select reference nodes one by one and compute
the distances from the node to other nodes. In doing so, we estimate whether
nearby nodes of the reference node can delineate the diameter. The time incurred
to estimate node distances is O(1) for each node. As a result, if the number of
reference nodes is k (k � n), O(kn+km) time is required to detect the diameter,
instead of the O(n2 + nm) time required by the existing algorithm solution.

This new idea has the following two major advantages. First, we can identify
the diameter exactly even though we prune nearby nodes with the estimation.
This means that we can safely discard unlikely nodes at low CPU cost. Note
that the number of k is automatically determined. Generally, it is difficult to
set parameters which would significantly impact the final result. Our approach,
however, avoids user-defined parameters, and this is the second advantage.

Real-Time Diameter Monitoring for Time-Evolving Graphs 315

Incremental update. Time-evolving graphs evolve by the addition of nodes over
time. By a node addition, the diameter can grow, shrink, or be unchanged. We
propose an algorithm that efficiently maintains the answer node pairs to detect
the diameter of time-evolving graphs.

The naive method based on the above filtering approach for time-evolving
graphs is to identify the diameter by setting reference nodes every time a node
added. However, we ask the question, ‘Can we avoid re-estimating the maximal
distance every time the graph grows?’. This question can be answered by exam-
ining whether the node addition changes the answer node pairs. As described
in detail later, if the diameter does not shrink with node addition, the answer
node pairs can be incrementally updated by assessing only the distances from
the added node.

This idea is especially effective for time-evolving graphs. In the case of time-
evolving graphs, a small number of new nodes are continually being added to the
large number of existing nodes. Therefore, there is little difference in the graphs
before and after the addition of nodes, even if the new nodes arrive frequently.
As a result, we can efficiently update the diameter and the answer node pairs
by computing distances from the added node.

4.2 Reference Node Filtering

Our first idea involves selecting reference nodes so as to filter unlikely nodes
efficiently.

Our filtering algorithm is as follows: (1) It computes the candidate distance
which is expected to be diameter. (2) It selects reference nodes and estimates
the maximal distances of nearby nodes to other nodes, and (3) If a node distance
estimation yields a shorter distance than the candidate distance, it prunes the
node since the node cannot be delineate the diameter. Accordingly, the unlikely
node can be filtered quickly.

In this section, we first describe how estimate the maximal distance of a node
to other nodes, and show that node distance estimation gives an upper bound for
the maximal distance. We then introduce our approach of selecting the reference
nodes and computing the candidate distance.

Formally, the following equation gives the maximal distance of node u:
dmax(u) = max(d(u, v)|v ∈ V). We then define the estimation of the maximal
distance as follows:

Definition 1 (Estimation). For graph G, let ur be a reference node, we define
the following estimation of the maximal distance of node v, d̂max(v), to filter
unlikely nodes:

d̂max(v) = dmax(ur) + d(ur, v) (1)

We show the following lemma to introduce the upper bounding property of node
estimation; this property enables G-Scale to identify the diameter exactly.

Lemma 1 (Upper bound). For any node in graph G, the following inequality
holds.

dmax(v) ≤ d̂max(v) (2)

316 Y. Fujiwara, M. Onizuka, and M. Kitsuregawa

Algorithm 1. Filtering
Input: Gt = (V, E), a time-evolving graph at time t

Dt−1, the answer node pairs of previous time tick
Output: Dt, the diameter of graph Gt

Dt, the answer node pairs
1: Dt := max(d(u, v)|(u, v) ∈ Dt−1);
2: Dt := ∅;
3: V ′ := V ;
4: while V ′ �= ∅ do
5: ur := argmax(deg(v)|v ∈ V ′);
6: compute the maximal distance dmax(ur);
7: if dmax(ur) = Dt then
8: append {(ur , v)|d(ur, v) = Dt} to Dt;
9: end if

10: if dmax(ur) > Dt then
11: Dt := dmax(ur);
12: Dt := {(ur, v)|d(ur, v) = Dt};
13: end if
14: subtract ur from V ′;
15: subtract {v|d̂max(v) < Dt} from V ′;
16: end while

Proof. Omitted for space. �
If a node estimation yields a shorter distance than the candidate distance, the
node cannot be a node of the answer node pairs. So we prune the node. Since
node estimation can be computed at the cost of O(1) as shown in Definition 1,
we can efficiently identify the diameter by exploiting node estimation.

Selection of the reference nodes and candidate distance are very important
for efficient filtering; if the maximal distance of the reference node is longer than
the maximal distance of the candidate node, we cannot effectively prune unlikely
nodes (see Definition 1).

We select the highest-degree nodes as the reference nodes since the maximal
distances of such nodes are likely to be short than other nodes; from such nodes,
all nodes can be reached in a small number hops. We utilize the answer node
pairs of the previous time tick to compute the candidate distance. Since graphs
are almost the same after a node addition, the prior answer node pairs are
expected to remain valid. These two techniques allow us to obtain good reference
nodes and candidate distances effectively as demonstrated in the experiments in
Section 6.

Algorithm 1 shows the filtering algorithm that detect the diameter by the
reference nodes. The number of reference nodes, k, is automatically obtained in
this algorithm. In this algorithm, deg(u) represents the degree of node u. The
algorithm first computes the candidate distance based on the prior answer node
pairs (line 1). It then selects a reference node according to degree (line 5). If
the maximal distance of the reference node is equal to the candidate distance,
it appends the answer node pairs (lines 7-9). If the maximal distance of the

Real-Time Diameter Monitoring for Time-Evolving Graphs 317

reference node is larger than the candidate distance, it sets the candidate distance
and the answer node pairs (lines 10-13). It uses the candidate distance to prune
the unlikely nodes in the graph. That is, if a node distance estimation is less than
the candidate distance, that node cannot delineate the diameter, and so can be
safely discarded (line 15). This procedure is iterated until all nodes have been
processed. This implies that the number of reference nodes, k, is automatically
computed. That is, this algorithm does not require any user-defined parameters.

4.3 Incremental Update

Our second idea is an incremental monitoring algorithm that efficiently main-
tains the answer in case a node addition; it suppresses the computation time by
providing conditions that restrict the application of the filtering algorithm for
node addition.

Diameter changes. In this section, we first describe the property of node
distance after node addition, and then examine the conditions in which the
diameter grows, shrinks, or is unchanged. We assume that one node, ua, and its
connected edges are added to a time-evolving graph at each time tick.

We introduce below the property that underlies our update algorithm; dis-
tances of already existing node pairs can not be increased by node addition:

Lemma 2 (Distances after node addition). Node distances at time t can
not be longer than that at time t − 1 for all node pairs in graph Gt−1.

Proof. If all shortest paths between node u and v at time t pass through the
added node, the corresponding path at time t − 1 cannot have existed. That is,
all the shortest paths at t− 1 must be shortened by the added node. Otherwise,
there exists a shortest path between node u and v at time t that does not pass
through the added node. Therefore, the same path was present at time t− 1. As
a result, distance between node u and v is not increased by node addition. �
After node addition, the diameter can change. We distinguish three types of
changes in diameter after node addition, and we theoretically analyze the three
lemmas of the changes by utilizing the above property.

The first type of change is diameter increase. The diameter increases iff the
maximal distance of the added node is longer than the diameter of the previous
time:

Lemma 3 (Growth in diameter). The diameter grows at time t if and only if:

dmax(ua) > Dt−1 (3)

Proof. If Dt > Dt−1, then node ua must delineate the diameter since the maximal
distances of already existing nodes cannot be longer than Dt−1 from Lemma 2. If
dmax(ua) > Dt−1, then obviously dmax(ua) = Dt and Dt > Dt−1. �
The diameter shrinks iff the maximal distance of added node is shorter than the
diameter at the previous time tick, and node addition invalidates all previous
answer pairs:

318 Y. Fujiwara, M. Onizuka, and M. Kitsuregawa

Lemma 4 (Shrinkage in diameter). The diameter
shrinks at time t if and only if:

(1)dmax(ua) < Dt−1, and
(2)∀(v, w) ∈ Dt−1, d(v, w) < Dt−1 (4)

Proof. If Dt < Dt−1, then dmax(ua) < Dt−1 and all distances of answer nodes
pairs at the last time tick must be shorter than Dt−1. If (1) and (2) hold, then
the diameter shrinks at time t because of Lemma 2. �
The diameter would be unchanged after node addition iff the maximal distance
of the added node is equal to the diameter of the previous time, or there exists
at least one node pair whose distance is equal to the diameter at the previous
time tick:

Lemma 5 (Unchanged diameter). The diameter is unchanged at time t if
and only if:

(1)dmax(ua) = Dt−1, or
(2)∃(v, w) ∈ Dt−1 s.t. d(v, w) = Dt−1 (5)

Proof. This is obvious from Lemma 3 and 4. �

Monitoring algorithm. We can efficiently maintain the answer with the in-
cremental update approach. As the first step, we describe invalidation of answer
pairs can be checked with only distances from added node, and then show our
monitoring algorithm based on the incremental update approach.

We exploit the following property of the shortest path, which is shown in [4],
to update the diameter and the answer node pairs:

Lemma 6 (Bellman criterion [4]). Node u lies on a shortest path between
node v and w, if and only if:

d(u, v) + d(u, w) = d(v, w) (6)

With Lemma 6, we can check whether node addition shortens distances of pre-
vious answer pairs:

Lemma 7 (Distance check). In time-evolving graphs, the added node ua

shortens the distances of previous answer node pair (v, w) if and only if:

d(v, ua) + d(w, ua) < Dt−1 (7)

Proof. If the added node ua shortens the distances, then node ua must lie
on the shortest path between node v and w. Therefore, Dt−1 > d(v, w) =
d(ua, v)+d(ua, w) from Lemma 6. If d(v, ua)+d(w, ua) < Dt−1, then the added
node ua must shorten the distance since Dt−1 > d(ua, v) + d(ua, w) ≥ d(v, w)
(see [6]). �
Lemma 7 implies that we can maintain the answer node pairs by using only
the distances from the added node if the diameter grows or remains unchanged.

Real-Time Diameter Monitoring for Time-Evolving Graphs 319

That is, if the added node delineates the diameter, we can compute the answer
node pairs by using the distances from the added node. And if node addition
shortens the distances of a previous answer node pair, that pair can be efficiently
detected with from Lemma 7. If there exist no node pair whose distance is equal
to the previous diameter, we detect the new diameter by the filtering algorithm.

Algorithm 2 describes our G-Scale algorithm. It first computes the maximal
distance of the added node (line 1). If the maximal distance is longer than the
prior time diameter, the added node must delineate the diameter (Lemma 3).
It uses the distances from added node to set the diameter and the answer node
pairs (lines 3-5). If the maximal distance is equal to the prior time diameter or
if there exists an answer node pair whose distance is equal to the prior time
diameter, the diameter remains unchanged after node addition (Lemma 5). It
appends/removes the answer node pairs by distances from the added node (lines
8-13). If no node pair exists whose distance is equal to the prior time diameter
after the addition, the diameter shrinks (Lemma 4). The diameter and the answer
node pair are identified in Algorithm 1 (lines 15-17). Thus G-Scale limits the
application of the filtering algorithm to the minimum.

Time-evolving graphs experience the addition of nodes and we assume here
that a graph has only one node at t = 1. At t = 1, we set Dt−1 = 0 and Dt−1 = ∅.
Lifting this assumption is not difficult, and is not pursued in this paper.

Even though we assumed single node addition, we can also handle the addition
of several nodes in each time tick; we simply iterate the above procedure for each
additional node. If one edge is added, we assume one connected node is added to
the graph. For node/edge deletion, we can detect the diameter by Algorithm 1
since such graphs do not have the property of Lemma 2. This procedure is several
orders of magnitude faster than the existing approach as showed in Section 6.

We have focused on unweighted undirected graphs in this paper, but G-
Scale can also handle weighted or directed graphs. For weighted graphs, we use
Dijkstra’s algorithm to compute distances from nodes, and bread-first search for
each direction to obtain distances for directed graphs. Monitoring procedures,
such as how to estimate the maximal distance from reference nodes and how to
maintain the answer node pairs, are the same as those for unweighted undirected
graphs.

5 Theoretical Analysis

In this section, we introduce a theoretical analysis that confirms the accuracy
and complexity of G-Scale. Let k be the number of reference nodes.

5.1 Accuracy

We prove that G-Scale detects the diameter accurately (without fail) as follows:

Lemma 8 (Exact monitoring). G-Scale guarantees the exact answer in iden-
tifying the diameter.

320 Y. Fujiwara, M. Onizuka, and M. Kitsuregawa

Algorithm 2. G-Scale
Input: Gt = (V, E), a time-evolving graph at time t

Dt−1, the diameter at previous time tick
Dt−1, the answer node pairs at previous time tick
ua, the added node at time t

Output: Dt, the diameter of graph Gt

Dt, the answer node pairs
1: compute the maximal distance dmax(ua);
2: //Growth in diameter
3: if dmax(ua) > Dt−1 then
4: Dt := dmax(ua);
5: Dt := {(ua, v)|d(ua, v) = Dt};
6: else
7: //Unchanged diameter
8: Dt := Dt−1;
9: Dt := Dt−1;

10: if dmax(ua) = Dt−1 then
11: append {(ua, v)|d(ua, v) = Dt−1} to Dt;
12: end if
13: remove {(v, w)|d(v, ua) + d(w, ua) < Dt−1} from Dt;
14: //Shrinkage in diameter
15: if Dt = ∅ then
16: compute Dt and Dt by the filtering algorithm;
17: end if
18: end if

Proof. Mathematical induction can be used to prove that G-Scale detects the
diameter exactly at time t(≥ 1). First, we must show that the statement is true
at t = 1. At time t = 1, G-Scale detects D1 = 0 and D1 = (u1, u1) exactly
since (1) it sets Dt−1 = 0 and Dt−1 = ∅ and (2) dmax(u1) = 0 (see lines 8-12 in
Algorithm 2). Next, we will assume that the statement holds at t = i. Assuming
this, we must prove that the statement holds for its successor, t = i + 1. If the
diameter does not shrink at t = i+1, it detects the diameter and the answer node
pairs exactly from the distances from the added node with Lemma 7. Otherwise,
it finds the diameter and the answer node pairs by the filtering algorithm. The
filtering algorithm discards a node if its estimated maximal distance is lower
than the candidate distance, and node estimation has upper bounding property
(Lemma 1). That is, a node that delineates the diameter cannot be pruned. We
have now fulfilled both conditions of the principle of mathematical induction. �

5.2 Complexity

We discuss the complexity of G-Scale.

Lemma 9 (Space complexity of G-Scale). G-Scale requires O(n+m) space
to compute the diameter.

Real-Time Diameter Monitoring for Time-Evolving Graphs 321

Proof. G-Scale requires O(n+m) space to keep the graph. The number of answer
node pairs is negligible compared to that of nodes/edges as shown in Section 6.
As a result, G-Scale requires O(n + m) space in diameter monitoring. �
Lemma 10 (Time complexity of G-Scale). G-Scale requires O(n+m) time
if the diameter does not shrink by node addition, otherwise it requires O(kn+km)
time to compute the diameter.

Proof. To identify the diameter, G-Scale first compute the distances from the
added node and examines whether the added node delimits the diameter or
shortens the distances of the previous answer node pairs. It takes O(n + m)
time. If the diameter shrinks, G-Scale detects the diameter with the filtering
algorithm which takes O(kn + km) time. As a result it requires O(n + m) time
if the diameter does not shrink, and it takes O(kn + km) time if the diameter
shrinks. �
The monitoring cost depends on the effectiveness of the filtering and incremental
update techniques used by G-Scale to detect the diameter. In the next section, we
confirm the effectiveness of our approach by presenting the results of extensive
experiments.

6 Experimental Evaluation

We performed experiments to demonstrate G-Scale’s effectiveness. We compared
G-Scale to the existing common algorithm based on breadth-first search [4] and
the network structure index [17]. Note that the network structure index can
compute node distances quickly at the expense of exactness. Furthermore, this
method requires O(n2) space and O(n3) time as described in their paper; this
method has higher orders of space and time complexities than the method based
on breadth-first search.

Our experiments will demonstrate that:

– Efficiency: G-Scale outperforms breadth-first search by up to 5 orders of
magnitude for the real datasets tested. G-Scale is scalable to dataset size
(Section 6.1).

– Effectiveness: The components of G-Scale, reference node filtering and in-
cremental update, are effective in monitoring the diameter (Section 6.2).

– Exactness: Unlike the existing approach, which sacrifices accuracy, G-Scale
can identify the diameter exactly and efficiently (Section 6.3).

We used the following three public datasets in the experiments: Citation, Web,
and P2P. They are a U.S. patent network, web pages within ‘berkely.edu’ and
‘stanford.edu’ domain, and the Gnutella peer-to-peer file sharing network, re-
spectively. All data can be downloaded from [1]. We extracted the largest con-
nected component from the real data, and we added single nodes one by one in
the experiments.

We evaluated the monitoring performance mainly through wall clock time.
All experiments were conducted on a Linux quad 3.33 GHz Intel Xeon server
with 32GB of main memory. We implemented our algorithms using GCC.

322 Y. Fujiwara, M. Onizuka, and M. Kitsuregawa

10-2

10-1

100

101

102

103

104

105

106

100000 400000 700000 1000000

W
al

l c
lo

ck
 ti

m
e

[s
]

Number of nodes

G-Scale
Breadth

10-3

10-2

10-1

100

101

102

103

104

105

50000 150000 250000 350000 450000 550000

W
al

l c
lo

ck
 ti

m
e

[s
]

Number of nodes

G-Scale
Breadth

10-4

10-3

10-2

10-1

100

101

102

103

10000 20000 30000 40000 50000 60000

W
al

l c
lo

ck
 ti

m
e

[s
]

Number of nodes

G-Scale
Breadth

(1) Citation (2) Web (3) P2P

Fig. 1. Wall clock time versus number of nodes

6.1 Efficiency and Scalability

We assessed the monitoring time needed for G-Scale and breadth-first search.
We conducted trials with various numbers of nodes because differences in this
number are expected to have strong impact for wall clock time. Figure 1 shows
the wall clock time as a function of the number of nodes to detect the diameter.

These figures show that our method is much faster than breadth-first search
under all the conditions examined. Breadth-first search computes distances for
all node pairs in a graph. However G-Scale requires only distances from an
added node if the diameter does not shrink. Even though G-Scale computes the
distances from reference nodes if the diameter shrinks, this cost has no effect
on the experimental results. This is because node addition hardly changes the
diameter in time-evolving graphs and the number of reference nodes, k, is very
small as is shown in the next section.

6.2 Effectiveness of Each Approach

In the following experiments, we examine the effectiveness of the core techniques
of G-Scale: reference node filtering and incremental update.

Reference node filtering. G-Scale prunes unlikely nodes using reference nodes
and the candidate distance. As mentioned in Section 4.2, G-Scale selects the
highest-degree node as a reference node and utilizes the previous answer node
pairs as candidate pairs. To show the effectiveness of this idea, we removed the
update approach from G-Scale to directly evaluate the filtering technique, and
examined the wall clock time. In other words, we directly evaluate Algorithm 1.

Figure 2 shows the result. In this figure, G-Scale without the update technique
is abbreviated to Filtering, and Random represents the results where reference
nodes and the candidate distance are selected at random. The numbers of nodes
in this figure are 1, 000, 000 for Citation, 550, 000 for Web, and 60, 000 for P2P.

Our selection methods require less computation time than the other methods.
The maximal distances of the highest-degree node are expected to be short, and
the prior answer node pairs are likely to remain valid. Therefore, the filtering
algorithm can efficiently detect the diameter for time-evolving graphs.

For node/edge deletion, we can detect the diameter by Algorithm 1 as de-
scribed in Section 4.3. Figure 2 shows the effectiveness of this approach; it is

Real-Time Diameter Monitoring for Time-Evolving Graphs 323

10-1

100

101

102

103

104

105

106

Citation Web P2P

W
al

l c
lo

ck
 ti

m
e

[s
]

Filtering
Random
Breadth

Fig. 2. Effect of reference
node filtering

1

10

100

1000

0 25000 50000 75000 100000

N
um

be
r

of
 s

ou
rc

e
no

de
s

Number of nodes

1

10

100

1000

0 25000 50000 75000 100000

N
um

be
r

of
 s

ou
rc

e
no

de
s

Number of nodes

(1) G-Scale (2) Filtering

Fig. 3. Number of source nodes from which distances
are computed in diameter monitoring

several orders of magnitude faster than the existing approach (compare Filter-
ing to Breadth).

Incremental update. Our update algorithm efficiently detects the diameter
by reducing the application of the filtering algorithm. That is, if the diameter
does not shrink, it maintains the answer node pairs by the distances from the
added node. We compared the number of source nodes from which distances
are computed to show the effectiveness of this approach. Note that the number
of source nodes is the number of the added node plus the reference nodes. In
other words, the number of source nodes is k + 1. Figure 3 shows the results by
G-Scale and without update technique (abbreviated to Filtering) in monitoring
time-evolving graphs. And Figure 4 shows the number of answer node pairs. We
used Citation as dataset.

Figure 3 shows that the update algorithm significantly reduces the number
of source nodes. As we can see from the figure, in practice, G-scale computes
the distances only from the added node, while the number of reference nodes,
k, is much smaller than that of graph nodes, n, with the filtering algorithm.
Moreover, in most cases, the number of answer node pairs is less than 10 as
shown in Figure 4; it was never more than 30 in the experiments. Therefore, it
can efficiently check whether node addition invalidates the previous answer node
pairs. As a result, G-scale can maintain the answer node pairs efficiently.

6.3 Exactness of the Monitoring Results

One major advantage of G-Scale is that it guarantees the exact answer, but this
raises the following simple questions:

– How successful is the previous approximation approach in providing the
exact answer even though it sacrifices exactness?

– Can G-Scale identify the diameter faster than the previous approximation
approach that does not guarantee the exact answer?

To answer the these questions, we conducted comparative experiments using the
network structure index proposed by Rattigan et al. [17]. Although they studied
several estimation schemes for node distances, we compared the distant to

324 Y. Fujiwara, M. Onizuka, and M. Kitsuregawa

1

10

100

0 25000 50000 75000 100000

N
um

be
r

of
 a

ns
w

er
 p

ai
rs

Number of nodes

Fig. 4. Number of answer
pairs

 0

 0.25

 0.5

 0.75

 2 3 4 5 6 7 8 9 10

E
rr

or
 r

at
io

Number of zones

Dimension=1
Dimension=2
Dimension=3

G-Scale

10-4

10-3

10-2

10-1

100

101

 2 3 4 5 6 7 8 9 10

W
al

l c
lo

ck
 ti

m
e

[s
]

Number of zones

Dimension=1
Dimension=2
Dimension=3

G-Scale
Breadth

(1) Error ratio (2) Wall clock time

Fig. 5. Comparison of G-Scale and the network
structure index

zone annotation scheme to G-Scale since it outperforms the other approaches,
including embedding schemes mentioned in Section 2, in all of our dataset; the
same result is reported in their paper. This annotation has two parameters:
zones and dimensions. Zones are divided regions of the entire graph, and
dimensions are sets of zones. We measured the quality of accuracy by the error
ratio, which is error value of the estimated diameter distance divided the exact
diameter distance. Note that the error ratio becomes a value from 0 to 1. Figure 5
shows the error ratio and the wall clock time of the diameter detection. The
dataset used was Citation where the number of nodes is 10, 000.

As we can see from the figure, the error ratio of G-Scale is 0 because it identifies
the diameter accurately. However, the network structure index has much higher
error ratio. And the number of dimensions has no impact on the error ratio.
Therefore it is not practical to use the network structure index in identifying the
diameter. This answers the first question.

Figure 5 shows that G-Scale greatly reduces the computation time while it
guarantees the exact answer. Specifically, G-Scale is at least 2, 400 times faster
than the network structure index in this experiment; this is our answer to the
second question.

The efficiency of the network structure index depends on the parameters used;
it can take much more time than breadth-first search if the parameters are
wrongly chosen. Furthermore, the results show that the network structure index
forces a trade-off between speed and accuracy. That is, as the number of zones
and dimensions decreases, the wall clock time decreases but the error ratio in-
creases. The network structure index is an estimation technique and so can miss
the exact answer. G-Scale also estimates the maximal distances to yield efficient
filtering, but unlike the network structure index, G-Scale does not discard the
exact answer in the monitoring process. As a result, G-Scale is superior to the
network structure index in not only accuracy, but also speed.

7 Conclusions

This paper addressed the problem of detecting the diameter of time-evolving
graphs efficiently. As far as we know, this is the first study to address the
diameter monitoring problem for time-evolving graphs with the guarantee of

Real-Time Diameter Monitoring for Time-Evolving Graphs 325

exactness. Our proposal, G-Scale, is based on two ideas: (1) It filters unlikely
nodes by selecting reference nodes to estimate the maximal distances, and (2)
It incrementally updates the answer node pairs by exploiting the distances from
the newly added node. Our experiments show that G-Scale is significantly faster
than the existing methods. Diameter monitoring is fundamental for many min-
ing applications in various domains such as content distribution, metro networks,
the Internet, and citation networks. The proposed solution allows the diameter
to be detected exactly and efficiently, and helps to improve the effectiveness of
future data mining applications.

References

1. http://snap.stanford.edu/data/index.html

2. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distri-
bution technologies. ACM Comput. Surv. 36(4), 335–371 (2004)

3. Bawa, M., Cooper, B.F., Crespo, A., Daswani, N., Ganesan, P., Garcia-Molina,
H., Kamvar, S.D., Marti, S., Schlosser, M.T., Sun, Q., Vinograd, P., Yang, B.:
Peer-to-peer research at stanford. SIGMOD Record 32(3), 23–28 (2003)

4. Brandes, U.: A faster algorithm for betweenness centrality. Journal of Mathematical
Sociology 25, 163–177 (2001)

5. Brandes, U., Erlebach, T.: Network Analysis: Methodological Foundations.
Springer, Heidelberg (2008)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
The MIT Press, Cambridge (2009)

7. Goldberg, A.V., Harrelson, C.: Computing the shortest path: search meets graph
theory. In: SODA, pp. 156–165 (2005)

8. Koppula, H.S., Puspesh, K., Ganguly, N.: Study and improvement of robustness
of overlay networks (2008)

9. Kumar, A., Merugu, S., Xu, J., Yu, X.: Ulysses: A robust, low-diameter, low-latency
peer-ti-peer network. In: ICNP, pp. 258–267 (2003)

10. Leskovec, J., Kleinberg, J.M., Faloutsos, C.: Graph evolution: Densification and
shrinking diameters. TKDD 1(1) (2007)

11. Magoni, D., Pansiot, J.J.: Analysis of the autonomous system network topology.
SIGCOMM Comput. Commun. Rev. 31(3), 26–37 (2001)

12. Newman: The structure and function of complex networks. SIREV: SIAM Re-
view 45 (2003)

13. Ng, A.K.S., Efstathiou, J.: Structural robustness of complex networks. In: NetSci.
(2006)

14. Ng, T.S.E., Zhang, H.: Predicting internet network distance with coordinates-based
approaches. In: INFOCOM (2002)

15. Potamias, M., Bonchi, F., Castillo, C., Gionis, A.: Fast shortest path distance
estimation in large networks. In: CIKM, pp. 867–876 (2009)

16. Ratnasamy, S., Stoica, I., Shenker, S.: Routing algorithms for dHTs: Some open
questions. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002.
LNCS, vol. 2429, pp. 45–52. Springer, Heidelberg (2002)

17. Rattigan, M.J., Maier, M., Jensen, D.: Using structure indices for efficient approx-
imation of network properties. In: KDD, pp. 357–366 (2006)

http://snap.stanford.edu/data/index.html

Handling ER-topk Query on Uncertain Streams

Cheqing Jin1, Ming Gao2, and Aoying Zhou1

1 Shanghai Key Laborary of Trustworthy Computing,
Software Engineering Institute, East China Normal University, China

{cqjin,ayzhou}@sei.ecnu.edu.cn
2 Shanghai Key Laboratory of Intelligent Information Processing,

School of Computer Science, Fudan University, China
mgao@fudan.edu.cn

Abstract. It is critical to manage uncertain data streams nowadays
because data uncertainty widely exists in many applications, such as
Web and sensor networks. The goal of this paper is to handle top-k
query on uncertain data streams. Since the volume of a data stream
is unbounded whereas the memory resource is limited, it is challenging
to devise one-pass solutions that is both time- and space efficient. We
have devised two structures to handle this issue, namely domGraph and
probTree. The domGraph stores all candidate tuples, and the probTree is
helpful to compute the expected rank of a tuple. The analysis in theory
and extensive experimental results show the effectiveness and efficiency
of the proposed solution.

1 Introduction

Uncertain data management becomes more and more important in recent years
since data uncertainty widely exists in lots of applications, such as financial
applications, sensor networks, and so on. In general, there are two kinds of un-
certainties, namely attribute-level uncertainty, and existential uncertainty that
is also called as tuple-level uncertainty in some literatures [1]. The attribute-level
uncertainty, commonly described by discrete probability distribution functions or
probability density functions, illustrates the imprecision of a tuple’s attributes.
The existential uncertainty describes the confidence of a tuple. Recently, sev-
eral prototype systems have been produced to manage uncertain data with ex-
plicit probabilistic models of uncertainty, such as MayBMS [4], MystiQ [10],
and Trio [3].

For example, nowadays, radars are often used in traffic monitoring applica-
tions to detect car speeds. It is better to describe a reading record by a discrete
probability distribution function rather than a single value, since the readings
may have some errors caused by complicated reasons, such as nearby high voltage
lines, close cars’ interference, human operators mistakes, etc. Table 1 illustrates
a small data set consisting of four reading records described by x-relation model
that is introduced in Trio [3]. For instance, the 1st record observes a Buick car
(No. Z-333) running through the monitoring area at AM 10:33 with the speed

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 326–340, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Handling ER-topk Query on Uncertain Streams 327

estimated as 50 (miles per hour) with probability 0.6, and 70 with probability
0.4 respectively. In addition, a range is used to test the validation of a speed
reading (e.g. [0, 150]). Once the reading exceeds the range, we remove this part
of information from the tuple description, which makes the total confidence of
a record smaller than 1. For example, the 3rd record estimates the speed of 80
with probability 0.4, and of invalidation with probability 0.6 (= 1 − 0.4).

Table 1. A radar reading database in x-relation model

ID Reading Info (Speed, prob.)
1 AM 10:33, Buick, Z-333 (50, 0.6), (70, 0.4)
2 AM 10:35, BMW, X-215 (60, 1.0)
3 AM 10:37, Benz, X-511 (80, 0.4)
4 AM 10:38, Mazda, Y-123 (20, 0.4), (30, 0.5)

The possible world semantics is widely adopted by many uncertain data mod-
els. The possible world space contains a huge number of possible world instances,
each consisting of a set of certain values from uncertain tuples. A possible world
instance is also affiliated with a probability value, computed by the product of
all tuples within the instance and the product of the non-existing confidence of
all tuples outside of the instance. Table 2 illustrates the possible world space of
in total 12 possible world instances for the dataset in Table 1. Each column is a
possible world instance with the probability listed below. For example, tuples t1,
t2 and t3 occur in w10 at the same time, so that the probability of this possible
world is 0.016 (= 0.4 × 1.0 × 0.4 × (1 − 0.4 − 0.5)).

Table 2. Possible worlds for Table 1

PW w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

t1 50 70 50 70 50 70 50 70 50 70 50 70
t2 60 60 60 60 60 60 60 60 60 60 60 60
t3 80 80 80 80 80 80
t4 20 20 20 20 30 30 30 30

Prob. 0.096 0.064 0.144 0.096 0.120 0.080 0.150 0.120 0.024 0.016 0.036 0.024

Uncertain data stream is quite popular in many fields, such as the radar read-
ings in traffic-control applications. Each tuple arrives rapidly, and the volume of
the data stream is considered unbounded. It is necessary to devise space- and
time- efficient one-pass solutions to handle uncertain data streams, which are
also helpful to handle traditional issues over massive data sets. Our focus in this
paper is an uncertain top-k query.

A top-k query focuses on getting a small set of the most important tuples
from a massive data set. Generally, a ranking function is utilized to give a score
to each tuple and k tuples with maximum scores are returned as query results.
Although the semantics of a top-k query is explicit for the deterministic data,
several different top-k definitions are proposed for distinct purposes, whereas the

328 C. Jin, M. Gao, and A. Zhou

ranking score could be based on attributes, confidences, or the combination of
these two factors, inclusive of U-Topk [18], U-kRanks [18], PT-k [12], Global-topk
[20], ER-topk [8], c-Typical-Topk [11] and so on. Cormode et al. have listed a
set of properties to describe the semantics of ranking queries on uncertain data,
namely exact-k, containment, unique-rank, value-invariance and stability [8].
Moreover, different from other uncertain topk semantics like U-topk, U-kRanks,
PT-k, Global-topk, the ER-topk query satisfies all of these properties.

1.1 Our Contribution

It is trial to process a certain top-k query over high-speed data streams since
we only need to maintain a buffer containing k tuples with highest scores. The
lowest ranked tuple is replaced by the new tuple if its score is lower than the
new tuple. However, processing an uncertain top-k query over data streams is
not equally trial because the semantics of an uncertain top-k query, stemming
from the integration of attribute values and the probability information, is much
more complex than a certain top-k query. In this paper, we propose an efficient
exact streaming approach to answer ER-topk query. [8] has proposed A-ERank
and T-ERank approaches to handle static uncertain data sets which requires all
of the tuples fetched in a special order. Obviously, these approaches can’t suit
for the streaming environment. In our new solution, all tuples in the data stream
are divided into two groups. One group contains candidate top-k tuples, i.e, the
tuples having chance to belong to the query result, and the other contains the
rest. We construct and maintain two structures, namely domGraph and probTree,
to describe the two groups for efficiency.

The rest of the paper is organized as follows. We define the data models and
the query in Section 2. In Section 3, we describe a novel solution to handle the
ER-topk query upon uncertain data streams. Some extended experiments are
reported in Section 4. We review the related work In Section 5, and conclude
the paper briefly in the last section.

2 Data Models and Query Definition

In this paper, we consider a discrete base domain D, and ⊥ a special symbol
representing a value out of D. Let S be an uncertain data stream that contains
a sequence of tuples, t1, t2, · · · , tN . The i-th tuple in the stream, ti, is described
as a probability distribution {(vi,1, pi,1), · · · , (vi,si , pi,si)}. For each l, 1 ≤ l ≤ si,
we have: vi,l ∈ D and pi,l ∈ (0, 1]. For simplicity, we also assume that vi,1 <
vi,2 < · · · < vi,si . In addition,

∑si

l=1 pi,l ≤ 1. The tuple ti can also be treated
as a random variable Xi over D∪ ⊥, such that ∀l, Pr[Xi = vi,l] = pi,l, and
Pr[Xi =⊥] = 1 −∑si

l=1 pi,l.
This data model adapts both kinds of uncertainties. If ∀i,

∑si

l=1 pi,l = 1, the
stream only has attribute-level uncertainty. If ∀i, si = 1, the stream only has ex-
istential uncertainty. Otherwise, the stream contains both kinds of uncertainties.

Handling ER-topk Query on Uncertain Streams 329

Definition 1 (Expected Rank Top-k, ER-Topk in abbr.). [8] The ER-
topk query returns k tuples with smallest values of r(t), defined below.

r(t) =
∑

W∈W
Pr[W] · rankW (t) (1)

where W is the possible world space, Pr[W] is the probability of a possible world
instance W , and rankW (t) returns the rank of t in W , i.e, it returns the number
of tuples ranked higher than t if t ∈ W , or the number of tuples in W (|W |)
otherwise.

By the definition and linearity of expectation, the expected rank of the tuple ti,
r(ti), is computed as follows.

r(ti) =
si∑

l=1

pi,l(q(vi,l) − qi(vi,l)) + (1 −
si∑

l=1

pi,l)(E[|W |] −
si∑

l=1

pi,l) (2)

where q(v) is the sum of probabilities of all tuples greater than v, and qi(v) is
the sum of probabilities of the tuple ti greater than v, i.e, qi(v) =

∑
l,vi,l>v pi,l,

and q(v) =
∑

i qi(v). Let |W | denote the number of tuples in the possible world
W , so that E[|W |] =

∑
i,l pi,l.

Example 1. Consider the data set in Table 1. The expected size of all possible
worlds E[|W |] =

∑
i,l pi,l = 3.3. r(t1) = 0.6×((1.0+0.4+0.4)−0.4)+0.4×(0.4−

0) = 1.0, r(t3) = 0.4 × 0 + (1 − 0.4) × (3.3 − 0.4) = 1.74. Similarly, r(t2) = 0.8,
r(t4) = 2.4. So, the query returns {t2, t1} when k = 2.

3 Our Solution

In this section, we show how to compute the exact answers of ER-topk over
uncertain data streams. Equation (2) illustrates how to compute the expected
rank of a tuple t. Moreover, it implies that the value of the expected rank may
also change with time going on since the function q(v) is based on all tuples
till now. For example, at time 4, r(t2) = 0.8, r(t1) = 1.0, r(t2) < r(t1) (in
Example 1). Assume the next tuple t5 is 〈(65, 1.0)〉. Then, r(t1) = r(t2) = 1.6.
This simple example also implies that r(ti) > r(tj) at some time point doesn’t
mean r(ti) > r(tj) forever.

Fortunately, we actually find some pairs of tuples, ti and tj , such that r(ti) >
r(tj) or r(tj) < r(ti) holds at any time point. For convenience, we use ti ≺ tj to
denote the situation that r(ti) < r(tj) holds forever, and ti � tj if r(ti) > r(tj)
holds forever. For convenience, we also claim that ti dominates tj if ti ≺ tj , or
ti is dominated by tj is ti � tj .

Theorem 1. Consider two tuples ti and tj. ti ≺ tj if and only if (i) ∀v, qi(v) ≥
qj(v), and (ii) ∃v, qi(v) > qj(v) hold at the same time. Remember that qi(v) =∑

l,vi,l>v qi,l.

330 C. Jin, M. Gao, and A. Zhou

Proof. Let P denote a set of points generated from ti and tj , P = {∑zi

l=1 pi,l} ∪
{∑zj

l=1 pj,l} ∪ {1}, where 1 ≤ zi ≤ si, 1 ≤ zj ≤ sj . Let m denote the distinct
items in P , i.e, m = |P| ≤ si + sj + 1. Without loss of generality, let P1, · · ·Pm

denote m items in P , and P1 ≤ P2 ≤ · · ·Pm = 1. Moreover, we assume the gth
item and hth item in P satisfies: Pg =

∑si

l=1 pi,l, Ph =
∑sj

l=1 pj,l. According to
the condition (i), we have: g ≥ h.

Let the function vi(z) be defined as vi(z)=vi,x, where x=argminy(
∑y

l=1 pi,l ≥
Pz). Equation (2) could be computed as follows.

r(ti) =
g∑

l=1

(
Pl−Pl−1

)(
q(vi(l))−qi(vi(l))

)
+

m∑
l=g+1

(
Pl−Pl−1

)(
E[|W |]−Pg

)
(3)

Symmetrically, we can also compute the expected rank of tj like Equation (3).
Now, we begin to compute r(ti) − r(tj) based on Equation (3). Since RHS of
Equation (3) is the sum of m items. We check each item through three cases:
l ∈ [1, h], l ∈ (h, g] and l ∈ (g, m].

case 1: l ∈ [1, h].

Δl =
(
Pl − Pl−1

)(
(q(vi(l)) − qi(vi(l))

)− (
q(vj(l)) − qj(vj(l)))

)
(4)

If vi(l) = vj(l), then q(vi(l)) = q(vj(l)). According to condition (i), Δl ≤ 0.
Otherwise, if vi(l) > vj(l), then q(vj(l)) − q(vi(l)) ≥ the sum of probabilities

that tuples’ values are equal to vi(l) according to the definition of the function
q(·). Moreover, since the tuple ti has at least Pl−qi(vi(l)) probability to be vi(l),
we have: q(vj(l)) − q(vi(l)) ≥ Pl − qi(vi(l)). Finally, because qj(vj(l)) < Pl, we
have: Δl < 0.

It is worth noting that vi(l) < vj(l) will never occur because it violates con-
dition (i) otherwise.

case 2: i ∈ (h, g].

Δl = (Pl − Pl−1)((q(vi(l)) − qi(vi(l)) − (E[|W |] − Ph)) (5)

This situation occurs only when
∑si

l=1 pi,l >
∑sj

l=1 pj,l. Similarly, we have:
E[|W |] − q(vi(l)) ≥ Pl − qi(vi(l)). Thus, Δl < 0.

case 3: l ∈ (g, m].

Δl = (Pl − Pl−1)((E[|W |] − Pg) − (E[|W |] − Ph)) (6)

This situation occurs only when
∑si

l=1 pi,l < 1 and
∑sj

l=1 pj,l < 1. Since Pg > Ph,
we have Δl < 0.

As a conclusion, Δl < 0 under two conditions.
Finally, we show that if neither condition is satisfied, we will never have ti ≺

tj . First, without condition (ii), ti and tj could be the same. Second, without
condition (i), it means ∃v̂, qi(v̂) < qj(v̂). When a new tuple, 〈(v̂, 1.0)〉, arrives,
the values of r(ti) and r(tj) will increase by 1− qi(v̂) and 1− qj(v̂) respectively.
Obviously, r(ti) > r(tj) will hold after inserting a number of such tuples because
1 − qi(v̂) > 1 − qj(v̂).

Handling ER-topk Query on Uncertain Streams 331

Example 2. Figure 1 illustrates the functions qi(v) for all tuples in Table 1.
Obviously, t1 ≺ t4, t2 ≺ t4. For the pair of tuples t1 and t2, neither t1 ≺ t2 nor
t2 ≺ t1 holds.

qi(v)

v

1.0

0.5

8040

t3

t2t1
t4

0

Fig. 1. The functions qi(v), for each 1 ≤ i ≤ 4

Lemma 1. A tuple t cannot belong to the query result if there exist at least k
tuples (say, t′), t′ ≺ t.

Proof. The correctness stems from Theorem 1.

Lemma 1 is capable of checking whether a tuple will belong to the query result
potentially in future or not. Such candidate tuples must be stored in the system.

In addition, it is worth noting that a tuple cannot belong to the query result
even if it is not dominated by k tuples under some situations. See the example
below.

Example 3. Let’s consider a situation, k = 1. There are three tuples, t1 =
〈(9, 0.6), (8, 0.2), (7, 0.1), (6, 0.1)〉, t2 = 〈(11, 0.4), (6, 0.5), (5, 0.1)〉, t3 = 〈(10, 0.1),
(9, 0.4), (4, 0.5)〉. Obviously, neither tuple dominates another tuple. But the tu-
ple t3 won’t be output since its expected rank r(t3) will be greater than t1
or t2 no matter what tuples come later. In other words, We can evaluate that
r(t1) + r(t2) − 2r(t3) < 0 always holds because the function q(·) is monotonous
(Equation (2)).

However, discovering all candidate tuples like Example 3 is quite expensive since
it needs to check a huge number of tuples. Consequently, in this paper we mainly
use Lemma 1 to evaluate candidates. Even though a few redundant tuples are
stored, it is efficient in computing. Algorithm 1 is the main framework of our
exact solution to handle data streams, which invokes maintainDomGraph and
maintainProbTree repeatedly to maintain two novel structures, namely dom-
Graph and probTree.

3.1 domGraph

The domGraph, with each node described in form of (t, T≺, T�, state, c), is a
graph to store all candidate tuples. The entry t refers to a tuple in the stream.

332 C. Jin, M. Gao, and A. Zhou

Algorithm 1. processStream()
1: Empty a domGraph G and a probTree T ;
2: for each (arriving tuple t)
3: maintainDomGraph(t, G);
4: maintainProbTree(t, T);

T≺ represents a set of tuples ranking just higher than t, i.e, (i) ∀t′ ∈ T≺, t′ ≺ t,
and (ii) any tuple in T≺ cannot dominate another tuple in T≺, i.e �t′, t′′ ∈ T≺
such that t′ ≺ t′′. T� represents a set of tuples ranking just lower than t, i.e, (i)
∀t′ ∈ T�, t′ � t, and (ii) �t′, t′′ ∈ T� that t′ � t′′. The entry state illustrates the
state of the node. During processing, a node could be at one of three states: TV
(To Visit), VD (Visited), or NV (No Visit). The entry c is the total number of
tuples in the domGraph ranking higher than t.

Algorithm maintainDomGraph (Algorithm 2) illustrates how to maintain a
domGraph when a new tuple t arrives. Initially, three FIFO (First In First Out)
queues, Q, Q≺ and Q�, which store nodes to be visited, nodes dominating t,
and nodes dominated by t respectively are emptied at the same time. In general,
pop(Q) and push(n, Q) are basic operators supported by any FIFO queue. The
operator pop(Q) returns the item at the front of a non-empty queue Q, and
then remove it from Q. Otherwise, it returns NULL if Q is empty. The operator
push(n, Q) inserts the item n at the back of the queue Q. A subroutine set is
defined to update the state entry for a set of nodes. For example, at Line 1,
set(G, TV) means that the states of all nodes in G are set to TV. The variable
b, initialized to zero, represents the number of nodes been visited.

At first, the states of all nodes in G are initialized to TV, means that these nodes
are ready to be visited. All nodes that are not dominated by any other node in G
are pushed into Q (at Lines 1-3). Subsequently, it begins to construct two FIFO
queues, Q≺ and Q�, by processing all nodes in Q (at Lines 4-12). The queue Q≺
represents all nodes that just dominates t, and Q� represents all nodes that are
just dominated by t. The state of n, a node popped from Q, is updated to V D
(visited), meaning that this node has been visited. Obviously, any node that dom-
inates n.t also dominates t if n.t ≺ t, which means that it is unnecessary to visit
these nodes in future. Under such situation, we begin to compare n.c with k. It is
clear that the new tuple t won’t be a candidate if n.c ≥ k−1 so that the processing
for t could be terminated (Lemma 1). Otherwise, we push n into Q≺, and set the
states of all nodes in n.T≺ to NV (not visit). A node with a state of NV will never
be pushed into the queue Q. Subsequently, if t ≺ n.t, we push n into Q�, following
which Q� is updated to make it only contains nodes directly dominated by t. It is
worth noting that it is necessary to check all nodes dominating t if the tuple t is
not dominated by n.t. In this way, the subroutine pushDominated (Algorithm 3)
is invoked immediately to push part of nodes in n.T≺ into Q if satisfying following
two conditions simultaneously (i) with a state of TV, and (ii) all nodes dominated
by it have been visited. The condition (i) claims that a node to be pushed into Q
must have not been visited. The condition (ii) shows that a node is pushed into Q
after all nodes dominated by it.

Handling ER-topk Query on Uncertain Streams 333

Algorithm 2. maintainDomGraph(t, G)
1: Empty FIFO queues Q, Q≺, Q�; b ← 0; set(G, TV);
2: foreach (node n in G)
3: if (�n′ ∈ G, n.t ≺ n′.t) then push(n, Q);
4: while ((n ← pop(Q)) �= NULL)
5: set(n, VD); b ← b + 1;
6: if (n.t ≺ t) then
7: if (n.c ≥ k − 1) then return; // t isn’t a candidate
8: push(n, Q≺); set(n.T≺, NV);
9: else

10: if (t ≺ n.t) then
11: push(n, Q�); Q� ← Q� − n.T�;
12: pushDominated(n, Q);
13: create a new node nnew(t, Q≺, Q�, |G| + |Q≺| − b, TV);
14: Remove old references between nnew .T� and nnew .T≺;
15: foreach (node n in G, n.t
 nnew .t)
16: n.c ← n.c + 1;
17: if (n.c ≥ k − 1) then
18: Remove all nodes in n.T� in cascade style;

Algorithm 3. pushDominated(n, Q)
1: for each node n′ in n.T≺ do
2: if (n′.state = TV) then
3: if (∀n′′ ∈ n′.T�, n′′.state = VD) then push(n′, Q);

Then, it inserts a new node for t into G if necessary. The queues Q≺ and Q�
keep all nodes dominating t and dominated by t respectively. We then compute
the value of the entry c, which represents the number of nodes dominating t
in G. Recall that all nodes dominating any node in Q≺ have not been visited
(labeled as NV), and b represents the number of nodes been visited. So, there are
|G| + |Q≺| − b nodes in G dominating t. Subsequently, we remove all references
between nnew .T� and nnew.T≺ to make G consistent (at Lines 13-14).

Finally, the entry c of each node dominated by t increases by 1. Additionally,
if we find a node n such that n.c ≥ n − 1, it is clear that all nodes dominated
by n could be removed safely (at Lines 15-18).

Analysis. We maintain a domGraph for a set of candidate tuples for two reasons.
First, we have tried to remove tuples which are definitely not candidates for a
query. Since an arriving tuple may still contains other big attributes like text
information, it will save the space consumption. Second, the domGaph is efficient
to maintain. Without this directed acyclic graph, it is not easy to decide whether
a new tuple is a candidate or not. In our algorithm, we compare the new tuple
with a set of low-ranked tuples in G at first. In this way, the processing could
be terminated as soon as possible (at Line 7).

Example 4. Figure 2 illustrates the evolution of a domGraph based on a small
set of uncertain data in Figure 3. k = 2. Each node is affiliated with the tuple t

334 C. Jin, M. Gao, and A. Zhou

n1 n1

n2

n1

n2

n1

n2 n3

n1

n2 n3

n4 n1

n2 n4

n4n5

(a) after t1 (b) after t2 (c) after t3 (d) after t4 (e) after t5 (f) after t6

(t1,0) (t1,1)

(t2,0)

(t1,1)

(t2,0)

(t1,2)

(t2,0) (t4,0)

(t1,2) (t5,0)

(t2,0) (t4,0)

(t1,2)

(t2,0) (t4,0)

(t5,0)(t6,1)

Fig. 2. The evolution of domGraph based on Figure 3

and the entry c. A directed link from ni to nj means that ni.t ≺ nj.t. Obviously,
A domGraph is in fact a directed acyclic graph. After time 2, both t1 and t2 stay
in domGraph and t1 � t2. At time 3, since t1 ≺ t3 and its node n1.c = 1 ≥ k−1,
t3 will not be inserted into the domGraph. In this way, the following three tuples
will be inserted into the domGraph.

3.2 probTree

Another indispensable task is to maintain the function q(v) over all tuples in the
stream. [8] provides a simple solution to handle a static data set. When a query
request arrives, it begins to invoke a quick ordering algorithm to sort the data
set in O(n log n) time, where n is the size of the data set. Then, the function q(v)
is constructed straightforwardly after conducting a linear scan upon all ordered
tuples. This approach cannot suit for the streaming scenarios since it is expensive
in processing a query request. Our goal is to devising a novel approach that is
efficient both in tuple-maintaining and request-processing phases.

Our solution is a binary search tree that is called as probTree with each node
in form of (v, p, l, r, par). The entry v, describing the attribute’s value, is also
the key of the tree. The entry p represents the probability sum of some tuples.
The rest three entries, l, r and par, are references to its left child, right child
and parent node respectively.

Algorithm maintainProbTree (Algorithm 4) illustrates how to maintain a
probTree T continuously when a new tuple t, described as〈(v1, p1), · · · , (vst , pst)〉,
arrives. Initially, we insert a new node of t into T as the root node if T is empty.
In general, the algorithm begins to seek a target node with a key (or equally the
entry v) equal to vj . If such node is found, the value of its entry p increases by
pj . Otherwise, we insert a new node of (vj , pj) into T . Moreover, for each node
w along the path from root to the destine (a node with entry v equal to vj), the
entry p is updated as w.p ← w.p + pj if w.v < vj .

Algorithm getq (Algorithm 5) illustrates how to compute the value of q(υ)
by a probTree T . It visits some nodes along the path from the root node to a
destine node with v equal to minw∈T ,w.v>υ(w.v). A variable sum, representing
the result value, is initialized to zero at first. For any node w in the path, the
value of sum is updated as sum ← sum + w.p if w.v > υ.

The correctness of Algorithm 5 stems from the construction of a probTree. Let
(vi,l, pi,l) be an arbitrary attribute-probability pair in the uncertain data set. Let

Handling ER-topk Query on Uncertain Streams 335

Algorithm 4. maintainProbTree(t, T)
1: for j = 1 to st

2: w ← T .root;
3: if (w =NULL) then
4: T .root ← newNode(vj , pj); continue;
5: while (w �= NULL)
6: if (w.v > vj) then
7: if (w.l �= NULL) then w ← w.l;
8: else w.l ← newNode(vj , pj); break;
9: else if (w.v < vj) then

10: w.p ← w.p + pj ;
11: if (w.r �= NULL) then w ← w.r;
12: else w.r ← newNode(vj , pj); break;
13: else w.p ← w.p + pj ; break;

Algorithm 5. getq(υ, T)
1: sum ← 0;
2: w ← T .root;
3: while (w �= NULL)
4: if (w.v > υ) then
5: sum ← sum + w.p; w ← w.l;
6: else
7: w ← w.r;
8: return sum;

RP (W) denote a tree includes the node w and its right sub-tree. For each node
w in the probTree, the value of the entry p is the sum of probabilities of all
attribute-probability pair with keys at its right side, i.e, w.p =

∑
vi,l∈RT (w) pi,l.

In Algorithm 5, once it visits a node w such that w.v > v, it will choose to visit
left child (at Line 7). In this way, the correctness is ensured.

Tuple ID Attribute Value
t1 〈(9, 0.3), (7, 0.7)〉
t2 〈(10, 0.4), (8, 0.6)〉
t3 〈(7, 1.0)〉
t4 〈(9, 0.5), (8, 0.4), (7, 0.1)〉
t5 〈(11, 0.3), (4, 0.7)〉
t6 〈(10, 0.4), (5, 0.6)〉

Fig. 3. A small data set

n1

n2 n3

n5n4n6

(9, 1.5)

(7, 2.8) (10, 0.7)

(8, 1.0) (11, 0.3)

n7

(a) after processing t5 (b) after processing t6

(4, 0.7)

n1

n2 n3

n5n4n6

(9, 1.9)

(10, 1.1)

(4, 1.3)

(5, 0.6)

(7, 2.8)

(8, 1.0) (11, 0.3)

Fig. 4. An example of Probtree upon Figure 3

Example 5. Figure 4 illustrates the probTree at time 5 and 6 respectively. Each
node is affiliated with information (v, p). When the tuple t6 〈(10, 0.4), (5, 0.6)〉
arrives, it finds the node n3, n3.v = 10. The entry n3.p is updated to 1.1 (=
0.7 + 0.4). Since the parent node n1 has n1.v = 9 < 10, its entry n1.p is also
updated to 1.9 (= 1.5 + 0.4). Subsequently, it inserts a new node n7 of the

336 C. Jin, M. Gao, and A. Zhou

pair (5, 0.6) into the probTree since no node with v = 5 is in the probTree
now. Similarly, the entry p of the node n6 is updated to 1.3 (= 0.7 + 0.6) since
n6.v < n7.v.

It is easy to compute the value of q(υ) based on a probTree. Assume υ = 8. At
first, it visits the root node n1 to set the variable sum to 1.9 since n1.v = 9 > 8.
Next, it visits the left node, n2, and does nothing since n2.v = 7 < 8. Finally, it
visits the right node, n4, and find n4.v = 8. As a result, it returns 1.9.

Theorem 2. Let N denote the size of the data stream, s denote the maximum
probability options, i.e, s = maxN

i=1 si. The size of a probTree is O(sN), the
per-tuple processing cost is O(s log(sN)), and computing q(·) from a probTree
costs O(log(sN)).

Proof. We assume the tuples in the stream arrive out-of-order. Obviously, the
number of distinct items in the stream is O(sN). The cost on inserting a tuple
or computing q(·) is dependent on the height of the probTree. When each item
is inserted in-order, the height is O(sN) under the worst case. Contrarily, the
expected height of a randomly built binary search tree on sN keys is O(log(sN))
[5]. Straightforwardly, the amortized cost on inserting a tuple is O(s log(sN)),
and the cost on computing q(·) is O(log(sN)).

3.3 Handle a Request

we can efficiently handle an ER-topk request by using domGraph and probTree.
Initially, an FIFO query Q and a result set R are emptied. Let rmax(R) denote the
maximum expected rank of all nodes in a set R, i.e, rmax(R) = maxn∈R(r(n)). At
first, all nodes not dominated by any other nodes are pushed into Q since these
nodes have potentialities to be at the 1st rank. Subsequently, a node n is popped
out of Q for evaluation repeatedly until Q is empty. The expected rank r(n) of a
node n can be computed by Equation (2). If R contains no more than k nodes,
the node n is added into R immediately. Otherwise, if r(n) < rmax(R), we insert
n into R and remove the lowest-ranked tuple in R. If the node n is pushed into
R, it means that all tuples dominated by n directly are also candidate tuples.
Thus, we can push each node in n.T� into Q if this node has not been pushed
into Q. The program will terminate when the queue Q is empty.

4 Experiments

In this section, we present an experimental study upon synthetic and real data.
All the algorithms are implemented in C++ and the experiments are performed
on a system with Intel Core 2 CPU (2.4GHz) and 4G memory. Since our solution
is the only method to handle ER-Topk query over data stream, we will report the
time- and space- efficiency below. We use two synthetic and one real 1,000,000-
tuple data set in our testings, as described below.

syn-uni The syn-uni data set only has existential uncertainty. The rank of each
tuple is randomly selected from 1 to 1,000,000 without replacement and the
probability is uniformly distributed in (0, 1).

Handling ER-topk Query on Uncertain Streams 337

syn-nor The syn-nor data set has both kinds of uncertainties. The existential
confidence of each tuple is randomly generated from a normal distribution
N(0.6, 0.3) 1. We set the maximum number of options of all tuples no more
than 10, i.e, smax = 10. For the ith tuple, the number of attribute options
(say, si) is uniformly selected from [smax/2, smax]. Subsequently, we con-
struct a normal distribution N(μi, σi), where μi is uniformly selected from
[0, 1, 000] and σi is uniformly selected from [0, 1]. We randomly select si val-
ues from the distribution N(μi, σi), denoted as v1, · · · , vsi , and construct ti
as 〈(v1, pi/si), · · · , (vi, pi/si)〉.

IIP The (IIP) Iceberg Sightings Database 2 collects information on iceberg ac-
tivity in North Atlantic near the Grand Banks of Newfoundland. Each sight-
ing record contains the date, location, shape, size, number of days drifted,
etc. Since it also contains a confidence level attribute according to the source
of sighting, we converted the confidence levels, including R/V, VIS, RAD,
SAT-LOW, SAT-MED, SAT-HIGH and EST, to probabilities 0.8, 0.7, 0.6,
0.5, 0.4, 0.3 and 0.4 respectively. We created a data stream by repeatedly
selecting records randomly from a set of all records gathered from 1998 to
2007.

Figure 5 illustrates the space consumption of the proposed method, which mainly
contains a domGraph that stores all candidate tuples and a probTree for the
function q(·). In general, each tuple in a data set also contains other informa-
tion besides the scoring attributes. For example, the IIP data set contains 19
attributes, including 2 time fields, 7 category fields and 10 numeric fields, among
which only two fields (e.g, 1 numeric field and 1 category field) are used for scor-
ing function and confidence respectively. The full information should be stored
in the system if a tuple is probably belonging to the query result. The x-axis
in Figure 5(a) and (b), representing the size of information attributes for each
tuple, varies from 10 to 1000. The domGraph size is quite small, because merely
a small number of tuples are candidates. The probTree size is decided by the
number of distinct attribute values, independent of the information attributes.
Figure 5(c) illustrates the space consumption upon the IIP data set, where each
tuple uses 52 bytes to store the information attributes. The space consumption
is only 1% of the total data set.

Figure 6 illustrates that the per-tuple processing cost is low in general on
three uncertain data sets. When k increases, the cost will continue to grow.
Moreover, the cost for syn-nor is significantly higher than the other data sets,
because each tuple in syn-nor contains multiple attribute choices so that the
cost on maintaining probTree is much higher.

Figure 7 illustrates the cost on handling a request upon three data sets with
the comparison of the static method. The x-axis represents the value of parame-
ter k, and the y-axis represents the time cost. Similarly, when k increases, the cost
will continue to grow. The cost on syn-nor and IIP is significantly greater than
syn-uni because of two reasons. First, the syn-nor data set has multiple choices
1 N(μ, σ) is a normal distribution with μ as mean value and σ as standard deviation.
2 http://nsidc.org/data/g00807.html

http://nsidc.org/data/g00807.html

338 C. Jin, M. Gao, and A. Zhou

(a) upon syn-uni (b) upon syn-nor (c) upon IIP

Fig. 5. Space consumption upon uncertain data sets

in the scoring attribute, making it expensive to compute the rank of each can-
didate tuple. Second, the domGraph for IIP is more complex than syn-uni since
it has many identical tuples. Anyway, this cost can be reduced significantly if
we can scan the domGraph conveniently with the help of an additional list for
candidates.

Fig. 6. Per-tuple processing cost Fig. 7. Cost on handling a request

5 Related Work

Uncertain data management has attracted a lot of attentions recent years, be-
cause the uncertainty widely exists in many applications, such as Web, sensor
networks, financial applications, and so on [1]. In general, there are two kinds
of uncertainties, namely existential uncertainty and attribute-level uncertainty.
More recently, several prototype systems have also been developed to handle
such uncertain data, including MayBMS [4], MystiQ [10], and Trio [3].

Uncertain top-k query has been studied extensively in recent years. Although
the semantics is explicit for the deterministic data, several different top-k defi-
nitions are proposed for distinct purposes, including U-topk [18], U-kranks [18],
PT-k [12], global top-k [20], ER-topk [8], ES-topk [8], UTop-Setk [17], c-Typical-
Topk [11] and unified topk [16] queries. However, most of previous work only
studies the “one-shot” top-k query over static uncertain dataset except [15] that
studies how to handle sliding-window top-k queries (U-topk, U-kRanks, PT-k
and global topk) on uncertain streams. In [15], some synopsis data structures
are proposed to summarize tuples in the sliding-window efficient and effectively.

Handling ER-topk Query on Uncertain Streams 339

The focus of this paper is to study the streaming algorithm to handle top-k
query. After studying main uncertain top-k query, we find that most of existing
top-k semantics has the shrinkability property except the ER-topk query. In
other words, for an ER-topk query, each tuple in the stream is either a candidate
result tuple, or may influence the query result. So, we try to devise the exact
streaming solution for ER-topk query.

Recently, there has been a lot of efforts in extending the query processing
techniques on static uncertain data to uncertain data streams [2,6,7,9,13,14,19].
In [2], a method is proposed to handle clustering issue. [19], the frequent items
mining is also studied.

6 Conclusion

In this paper, we aim at handling top-k queries on uncertain data streams.
Since the volume of a data stream is unbounded whereas the memory resource
is limited, we hope to find some heuristic rules to remove parts of redundant
tuples and the rest tuples are enough for final results. Although this assumption
is true for most of typical uncertain top-k semantics, we find that no tuple is
redundant for the ER-topk semantic. In other words, each tuple either (i) is
belonging to the result sets now or later, or (ii) may influence the query results.
We have devised an efficient and effective solutions for the ER-topk query. A
possible future work is to devising solutions for the sliding-window model.

Acknowledgement

The research of Cheqing Jin is supported by the Key Program of National Natu-
ral Science Foundation of China (Grant No. 60933001), National Natural Science
Foundation of China (Grant No. 60803020), and Shanghai Leading Academic
Discipline Project (Project No. B412). The research of Aoying Zhou is sup-
ported by National Science Foundation for Distinguished Young Scholars (Grant
No. 60925008), and Natural Science Foundation of China (No.61021004).

References

1. Aggarwal, C.C.: Managing and mining uncertain data. Springer, Heidelberg (2009)
2. Aggarwal, C.C., Yu, P.S.: A framework for clustering uncertain data streams. In:

Proc. of ICDE (2008)
3. Agrawal, P., Benjelloun, O., Sarma, A.D., Hayworth, C., Nabar, S., Sugihara, T.,

Widom, J.: Trio: A system for data, uncertainty, and lineage. In: Proc. of VLDB
(2006)

4. Antova, L., Koch, C., Olteanu, D.: From complete to incomplete information and
back. In: Proc. of SIGMOD (2007)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms,
pp. 265–268. The MIT Press, Cambridge (2001)

6. Cormode, G., Garofalakis, M.: Sketching probabilistic data streams. In: Proc. of
ACM SIGMOD (2007)

340 C. Jin, M. Gao, and A. Zhou

7. Cormode, G., Korn, F., Tirthapura, S.: Exponentially decayed aggregates on data
streams. In: Proc. of ICDE (2008)

8. Cormode, G., Li, F., Yi, K.: Semantics of ranking queries for probabilistic data
and expected ranks. In: Proc. of ICDE (2009)

9. Cormode, G., Tirthapura, S., Xu, B.: Time-decaying sketches for sensor data ag-
gregation. In: Proc. of PODC (2007)

10. Dalvi, N., Suciu, D.: Efficient query evaluation on probabilistic databases. VLDB
Journal 16(4), 523–544 (2007)

11. Ge, T., Zdonik, S., Madden, S.: Top-k queries on uncertain data: On score distri-
bution and typical answers. In: Proc. of SIGMOD (2009)

12. Hua, M., Pei, J., Zhang, W., Lin, X.: Ranking queries on uncertain data: A prob-
abilistic threshold approach. In: Proc. of SIGMOD (2008)

13. Jayram, T., Kale, S., Vee, E.: Efficient aggregation algorithms for probabilistic
data. In: Proc. of SODA (2007)

14. Jayram, T., McGregor, A., Muthukrishnan, S., Vee, E.: Estimating statistical ag-
gregates on probabilistic data streams. In: Proc. of PODS (2007)

15. Jin, C., Yi, K., Chen, L., Yu, J.X., Lin, X.: Sliding-window top-k queries on un-
certain streams. Proc. of the VLDB Endowment 1(1), 301–312 (2008)

16. Li, J., Saha, B., Deshpande, A.: A unified approach to ranking in probabilistic
databases. In: Proc. of VLDB (2009)

17. Soliman, M.A., Ilyas, I.F.: Ranking with uncertain scores. In: Proc. of ICDE (2009)
18. Soliman, M.A., Ilyas, I.F., Chang, K.C.-C.: Top-k query processing in uncertain

databases. In: Proc. of ICDE (2007)
19. Zhang, Q., Li, F., Yi, K.: Finding frequent items in probabilistic data. In: Proc. of

SIGMOD (2008)
20. Zhang, X., Chomicki, J.: On the semantics and evaluation of top-k queries in

probabilistic databases. In: Proc. of DBRank (2008)

Seamless Event and Data Stream Processing:
Reconciling Windows and Consumption Modes�

Raman Adaikkalavan1 and Sharma Chakravarthy2

1 Computer and Information Sciences & Informatics, Indiana University South Bend
2 ITLab & Computer Science and Engineering, The University of Texas at Arlington

raman@cs.iusb.edu, sharma@cse.uta.edu

Abstract. For a number of stream applications, synergistic integration of stream
as well as event processing is becoming a necessity. However, the relationship
between windows and consumption modes has not been studied in the literature.
A clear understanding of this relationship is important for integrating the two
synergistically as well as detecting meaningful complex events using events gen-
erated by a stream processing system. In this paper, we analyze the notion of
windows introduced for stream processing and the notion of consumption modes
introduced for event processing. Based on the analysis, this paper proposes sev-
eral approaches for combining the two and investigates their ramifications. We
present conclusions based on our analysis and an integrated architecture that cur-
rently supports one of the reconciled approaches.

1 Introduction

Event processing systems [1, 2] have been researched extensively from the situation
monitoring viewpoint to detect changes in a timely manner and to take appropriate
actions via active (or Event-Condition-Action) rules. Data stream processing systems
[3–5] deal with applications that generate large amounts of data in real-time at varying
input rates and to compute functions over multiple streams that satisfy quality of ser-
vice (QoS) requirements. Event stream processing systems [3, 6–11], those integrating
event and data stream processing, combine the capabilities of both models for applica-
tions that not only need to process continuous queries (CQs), but also need to detect
complex events based on the events generated by CQs. Integrating both these models
requires analysis of their relationships [3, 6]: inputs and outputs, consumption modes
vs. windows, event operators vs. CQ operators, computation model, best effort vs. qual-
ity of service requirements, optimization vs. scheduling, buffer management vs load
shedding, and rule processing management.

In complex event processing systems, primitive or simple events are domain-specific
and are detected or generated by a system along with the time of occurrence. For exam-
ple, a data stream processing system may compute the rise in temperature over a period
of time using a continuous query (CQ) and trigger an event “high temperature”. Com-
posite or complex events are event expressions composed out of one or more primitive

� This work was supported, in part, by the NSF grant IIS 0534611. This work was supported, in
part, by IU South Bend Research Grant.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 341–356, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

342 R. Adaikkalavan and S. Chakravarthy

or composite events using event operators. Composite events are detected using event
operator semantics and event consumption modes 1. For example, the notion of fire may
be defined as composite event when “high temperature” and “presence of smoke” oc-
cur in the vicinity of each other (spatially and temporally). Event consumptions modes
[12–19], such as Recent, Chronicle, Continuous, and Cumulative, were defined based
on the needs of various application domains and are used to detect events in a mean-
ingful way as required by the application. Some of the event operators of Snoop event
specification language [12, 20] are AND, OR, Not, Sequence, Plus, Periodic, and Ape-
riodic. The time of occurrence of a composite event depends on the detection seman-
tics [21, 22] that can be either point-based or interval-based.

Data stream management systems support CQs that are composed using various op-
erators. Most of them support traditional relational operators such as select, project,
join, and aggregates. The data in this model can be accessed only sequentially and
the data items (or tuples) are typically accessed only once. However, computations on
stream processing do not preclude the use of data from a conventional DBMS. Data
items that arrive as a continuous stream can be considered to be ordered by their ar-
riving time stamp or by other attributes (e.g., sequence number in an IP header). To
deal with the unbounded input size of an input stream, a sliding window [4, 5] is used
to capture a subset of an input stream, on which an operator (e.g., join, aggregate) can
compute its results. Different types of windows have been proposed in the literature,
namely: tuple-based, time-based, attribute-based, partitioned and semantic.

Although there is a large body of work on stream and event processing, there is
not much work in the literature on their integration. As a consequence, there is not
any work that explicitly discusses the relationship between windows and consumption
modes. Even the stream and event processing systems that support event operators ex-
plicitly do not indicate how multiple events of the same type are handled with respect to
earlier occurrences. There is no declarative specification along the lines of consumption
modes in existing event stream processing. In this paper, we investigate the reconcilia-
tion between event consumption modes and windows – specifically tuple- or time-based
windows. We will discuss both consumption modes and windows in detail, and then
discuss how they can be handled in a consistent manner.

2 Integrated Event Stream Processing

The integrated event stream processing architecture (from [6]) shown in Figure 1 has
four stages:

Stage 1: In this stage CQs over data streams are processed. This stage processes
normal CQs where it takes streams as inputs and gives computed continuous streams.
In Figure 1, operators S1, S2, and J1 form a CQ. CQs can generate meaningful events
that can be composed further for detecting higher level events (e.g., fire as described
above). Even intermediate results of stream computations may generate events. A CQ
may also give rise to multiple events. In Figure 1, primitive events E1 and E2 generated
from J1 and J2, respectively, are composed to form E3.

1 They are also termed as parameter contexts or simply contexts in this paper where the intention
is clear.

Seamless Event and Data Stream Processing 343

E
3

E2

J2
J1

S
2 S3

S
1 S4

Stage 3:
Event Processing

C Q
Processing

Stream 2 Stream 3

Stage 4: Rule Processing

S
ta

g
e

1:
 C

Q
P

ro
ce

ss
in

g

Streami - Incoming Streams
Sk - Select Operators
J

l
 - Join Operators

R
q
 - Rules

Ep - Event Nodes
Gr - Event Generator
LDET - LED Thread

Rule 1 Rule 2 Rule n... Rule 1 Rule 2 Rule n...

Stream 1 Stream
4

G
1 G

2

LEDT

MaskBuffer Notify Buffer

Stage 2:
Event Generation
Stream Modifiers

E
1

Fig. 1. Event Stream Processing Architecture

Stage 3: In this stage, events are defined and processed using the event detection
graphs, and active rules are triggered. Event detection graphs (EDGs) [12, 15] can be
used to detect events, where leaf nodes represent primitive events and internal nodes
represent composite events.

Stage 4: Multiple rules can be associated with an event. When an event is detected
in stage 3 and a rule is triggered, conditions are checked, and associated actions are
carried out by this stage.

Stage 2: This is the glue that integrates the event and stream processing. In this stage,
stream output is coupled with event nodes using an event generator operator. The event
detector shown in stage 3 has a common event processor buffer into which all events
that are raised are queued. A single queue is necessary as events are detected and raised
by different components of the system (CQs in this case) and they need to be processed
according to their time of occurrence. This stage adds a new event generator operator
to every stream query as the root if an event is associated with that CQ. This operator
can take any number of MASKS (or conditions) and for each MASK, a different event
tuple/object is created and sent to the notify buffer in stage 3. As shown in Figure 1,
nodes J1 and J2 are attached to event generator nodes G1 and G2, which have MASKS
(or conditions on event parameters). Thus, CQ results from J1 and J2 are converted to
events by nodes G1 and G2.

The seamless nature of the proposed integrated model is due to the compatibility of
the chosen event processing model (i.e., an event detection graph) with the model used

344 R. Adaikkalavan and S. Chakravarthy

for stream processing. Event detection graphs correspond to operator trees and have
similarities with respect to query processing whereas the other representations do not
share these characteristics with query processing. The four stages shown in the archi-
tecture can be further linked in meaningful ways. For example, event streams can be
fed to the stage 1 to be further processed as streams. Using the above stages as compo-
nents, multiple layers of stream and event processing can be formulated based on the
needs of applications. For a detailed analysis of event and stream processing, and their
synergistic integration, please refer to [3, 11].

3 Event Consumption Modes

In the absence of consumption mode specification, events are detected in unrestricted
(or with no) consumption mode. This means, once an event occurs, it cannot be dis-
carded at all. Below we explain the detection of events in various consumption modes.
For formalization and generalization, please refer to [12, 22].

The Snoop event specification language operators [12, 20] detect complex events
based on event instances occurring over a time line. An event history (Ei[H]) maintains
all event instances of a particular event type (Ei) up to a given point in time. Suppose
e1 is an event instance of type E1, then event history E1[H] stores all the instances of
the event E1 (namely e1

j). For each instance ei
j , [tsi, tei] indicates the start time (tsi)

and end time (tei). Event instances in an event history are ordered by their end time.

Fig. 2. Sequence Event Operator EDG

Below, we discuss the Sequence composite event operator that detects the sequence
of two events. Consider two primitive events E1 and E2, and a Sequence event E3 (i.e.,
E1 SEQ E2). Event E3 is detected when E2 occurs after E1. Event detection graph
of event E3 is shown in Figure 2. With unrestricted (or no) consumption mode, all
occurrences of event E1 and E2 are combined, and none of them are removed after
they have taken part in an event detection. Consider the following event occurrences2:

E1[H] : e11[10 : 00am]; e21[10 : 03am]; e31[10 : 04am];
E2[H] : e12[10 : 01am]; e22[10 : 02am]; e32[10 : 05am];

In the above histories, event instance e1
1 occurs at 10:00 am. The sequence event E3 is

detected in unrestricted consumption mode with the following event pairs (for example,
e2
2 is combined only with e1

1) :

(e11, e
1
2), (e

1
1, e

2
2), (e

1
1, e

3
2), (e

2
1, e

3
2), (e

3
1, e

3
2).

2 ej
i represents the jth occurrence of event Ei.

Seamless Event and Data Stream Processing 345

Even though the above event pairs are detected, the time of occurrence for these event
pairs depend on the detection semantics. With interval-based semantics, event E3 oc-
curs with the following time of occurrences:

(e11, e
1
2)[10 : 00am, 10 : 01am], (e11, e

2
2)[10 : 00am, 10 : 02am],

(e11, e
3
2)[10 : 00am, 10 : 05am], (e21, e

3
2)[10 : 03am, 10 : 05am],

(e31, e32)[10 : 04am, 10 : 05am].

The constituent event that starts a composite event detection is called the initiator event.
The constituent event that detects a composite event is the detector event. The termi-
nator event stops the future detection of a composite event by removing existing con-
stituent event occurrences. For the Sequence event E3, E1 is the initiator and E2 is the
detector. There is no terminator event as no event instances are discarded without any
consumption mode.

However, the number of events produced without any consumption mode will be
large and not all event occurrences are be meaningful to an application. In addition,
detection of these events has substantial computation and space overhead that may be-
come a problem for situation monitoring applications that are based on stream data
and their unbounded nature. In order to restrict the detection to meaningful compos-
ite events, consumptions modes, contexts, consumption conditions, or similar concepts,
are supported by systems such as: ACOOD, SAMOS, Snoop/Sentinel, REACH, AMiT,
SASE+, CAYUGA for restricting the unnecessary events from being detected.

Consumptions modes, based on their semantics, impose an upper bound on the num-
ber of events of the same event type that should be kept for the purpose of detecting
composite events. The number of events to be kept depended solely on the consump-
tion mode of the operator and the semantics of the operator. Below we explain four
consumption modes (Recent, Chronicle, Continuous, and Cumulative) by showing the
events detected for the Sequence event E3 defined above. Consumptions modes and
event operators defined in the paper are based on the Sentinel system [12]. Note that
these context definitions were proposed prior to the advent of stream data processing.
We also briefly discuss why we chose only these four modes in Section 3.5.

3.1 Recent Consumption Mode

This mode was intended for applications where events are happening at a fast rate and
multiple occurrences of the same event only refine the previous value. Briefly, only the
most recent or the latest initiator (i.e., latest instance of the initiator event) that started
the detection of a composite event is used in this consumption mode. This entails that
the most recent occurrence just updates (summarizes) the previous occurrence(s) of
the same event type. An initiator will continue to initiate new event occurrences until
a new initiator (i.e., new instance of the initiator event) or a terminator (i.e., instance
of the terminator event) occurs. Binary Snoop operators (AND, OR, Sequence) use
only detectors. This implies that the initiator will continue to initiate new event occur-
rences until a new initiator occurs. On the other hand, ternary Snoop operators (Periodic,
Aperiodic) contain both detectors and terminators, which implies that the initiator will

346 R. Adaikkalavan and S. Chakravarthy

continue to initiate new event occurrences until a new initiator occurs or until a termi-
nator occurs. Once the composite event is terminated, all the constituent event instances
of that composite event will be deleted.

Example: The sequence event E3 (defined earlier) is detected in recent consumption
mode using interval-based semantics with the following occurrences:

(e11, e
1
2)[10 : 00am, 10 : 01am], (e11, e

2
2)[10 : 00am, 10 : 02am],

(e31, e32)[10 : 04am, 10 : 05am].

Sequence events (e1
1, e3

2) [10:00am, 10:05am] and (e2
1, e3

2) [10:03am, 10:05am] are not
part of the recent consumption mode, in comparison to the unrestricted mode, as the
initiator e3

1 replaced both e1
1 and e2

1 before detector e3
2 occurred.

In general, events detected in this mode are a subset of the events detected using the
unrestricted consumption mode. This is true in general3 for all Snoop operators and all
modes except the cumulative mode [20, 22].

3.2 Continuous Consumption Mode

For applications where event detection along a moving time window is needed, this
mode can be used. Briefly, in this mode, each instance of the initiator event starts the
detection of a composite event. An instance of the detector or terminator event may
detect one or more occurrences of that same composite event. An instance of the ini-
tiator will be used at least once to detect that event. For binary Snoop operators, all the
constituent event instances (initiator, detector and/or terminator) are deleted once the
event is detected. The detector event acts as the terminator as well. For ternary Snoop
operators, detector and terminator are usually different, so initiators are removed only
upon termination.

Example: The sequence event E3 is detected in continuous consumption mode using
interval-based semantics with the following occurrences:

(e11, e
1
2)[10 : 00am, 10 : 01am], (e21, e

3
2)[10 : 03am, 10 : 05am],

(e31, e
3
2)[10 : 04am, 10 : 05am].

Some of the events detected are different from the ones detected in the recent mode.
Event pair (e1

1, e2
2) [10:00am, 10:02am] is not part of the continuous consumption mode,

as the detector event e1
2 removed the occurrence of e1

1. On the other hand, event pair (e2
1,

e3
2) [10:03am, 10:05am] is not part of the recent context.

3.3 Chronicle Consumption Mode

This mode was proposed for applications where there is a correspondence between
different types of events and their occurrences, and this correspondence needs to be
maintained. In this mode, for a composite event occurrence, the initiator and terminator
pair is unique (oldest initiator instance is paired with the oldest terminator instance). For
binary Snoop operators, both the detector and terminator are the same, so once detected

3 Although only the interval semantics is used in this paper, the subset relationship is true for
point semantics as well.

Seamless Event and Data Stream Processing 347

the entire set of participating constituent events (initiator, detector and terminator) are
deleted. For ternary Snoop operators, detectors and terminators are different.

Example: The event E3 is detected in the chronicle consumption mode using the
interval-based semantics with the following occurrences:

(e11, e
1
2)[10 : 00am, 10 : 01am], (e21, e

3
2)[10 : 03am, 10 : 05am].

The events detected are a subset of the events detected using the unrestricted consump-
tion mode. Event pairs (e1

1, e2
2), (e1

1, e3
2), and (e3

1, e3
2) are not part of the chronicle con-

sumption mode as the detector e1
2 removed the occurrence of e1

1 after pairing, and e2
2

occurred before e2
1. Event e3

1 waits for the next occurrence of E2 to occur.

3.4 Cumulative Consumption Mode

Applications can use this consumption mode when multiple occurrences of the same
constituent event need to be grouped and used in a meaningful way. In this consumption
mode, all occurrences of an event type are accumulated as instances of that event until
the event is detected. In both binary and ternary operator, detector and terminator are
same and once detected and terminated, all constituent event occurrences that were part
of the detection are deleted.

Example: The event E3 is detected in cumulative consumption mode using interval-
based semantics with the following occurrences:

(e11, e
1
2) [10 : 00am, 10 : 01am], (e21, e

3
1, e

3
2) [10 : 03am, 10 : 04am, 10 : 05am].

Note that for this context, events detected are not a subset of the unrestricted consump-
tion mode. As shown above, the second event pair includes two occurrences of E1 as it
accumulates event occurrences until a detector/terminator occurs.

3.5 Consumption Modes in Other Systems

In some of the recent systems [16–19], consumption modes have been specified as a
combination of instance selection and instance reuse. The instance selection option
specifies which event instance of a constituent event will take part in an event compo-
sition. The instance reuse option specifies whether an event instance is consumed after
it takes part in an event detection. We will discuss both the options using AMiT [18]
as it provides the more expressive version. The instance selection options (or quanti-
fiers) supported by AMiT are first, strict first, last, strict last, each, and strict each. For
example, last selects the last instance occurrence of the constituent event to take part
in the composite event detection. The instance reuse option (or consumption condition)
can be either True or False. If it is set to True, the constituent event is consumed imme-
diately after taking part in a detection. Using both the options, events can be detected
in recent mode discussed previously, for example, using last as the instance selection
option and True for the instance reuse option. Both the options can be applied to each
constituent event of a complex event. For example, consider a complex event Ec3 that
consists of two other complex events Ec1 and Ec2. Event Ec1 can be detected in a con-
sumption mode (instance selection and reuse), which is different from Ec2 and Ec3. In
contrast, in systems such as Snoop/Sentinel, the consumption mode is applied to the

348 R. Adaikkalavan and S. Chakravarthy

entire event expression (i.e., Ec1, Ec2, and Ec3 will be detected in one consumption
mode). Though the approach of allowing consumption modes to be specified with each
constituent improves the expressive power, the semantics of the complex event detected
using multiple modes is rather not clear. Thus, we will discuss the reconciliation using
the four consumption modes discussed previously.

4 Windows

In stream processing, a window [3, 5, 6, 23] is defined as a historical snapshot of a finite
portion of a stream at any time point. It defines the meaningful set of data (or tuples)
used by CQ operators to compute their functions. The notion of a window is defined
on each input stream and does not depend upon the operator semantics. The window
need not be defined only in terms of either time or physical number of tuples, although
that is typical in most of the applications and supported by most systems. Windows can
be also semantic, attribute-based, predicate-based, partitioned, etc. The main objective
of defining a window in stream processing is to convert blocking computations (i.e.,
operators) into non-blocking computations to produce output in a continuous manner.
The results of a continuous query form a data stream too.

Below we discuss the working of tuple- and time-based windows using a continuous
query. Consider two traffic streams TS1 and TS2 with two attributes.

TS1(SourceIP, DestIP) TS2(SourceIP, DestIP)

Consider the following tuples along with their time of occurrence:

TS1 : (1, 2)[10 : 00am], (1, 3)[10 : 03am], (2, 5)[10 : 04am]
TS2 : (2, 3)[10 : 01am], (2, 4)[10 : 02am], (4, 2)[10 : 05am]

CQ1 shown below joins streams TS1 and TS2, defined above. It selects the SourceIP
when attribute DestIP’s values are same. Stream operator Join performs computation
on windows W1 and W2.

CQ1 : SELECT TS1.SourceIP, TS2.SourceIP
FROM TS1 [Window W1], TS2 [Window W2] WHERE TS1.DestIP = TS2.DestIP

4.1 Tuple-Based Window

Given a window specification for a continuous query (CQ), each operator in the CQ
performs computation over the specified window. A Tuple-based window is expressed
as [Row N tuples advance M] over stream S, where N > 0, specifies the num-
ber of tuples to be kept in the window. When specified, tuple-based window produces
a relation R with N tuples. At any time instant T, R will have N tuples of S with the
maximum tuple timestamp of R is ≤ T. When CQ1 is executed with the input tuples
shown above, the resulting tuples based on the window size are as follows:

– [Row 1 tuples advance 1] for W1 and W2: The result of the above CQ is an
empty set at any time instant.

– [Row 2 advance 1] for W1 and W2: The resulting set is an empty set at timepoints
10:00, 10:01, 10:02, 10:04, and 10:05, whereas at timepoint 10:03 one tuple (1,2)
is generated by joining the tuples (1,3) of TS1 and (2,3) of TS2.

Seamless Event and Data Stream Processing 349

– [Row Unbounded tuples] or [Row ∞] for W1 and W2: With unbounded window
size the resulting set contains two tuples: First tuple (1,2) joining (1,3) of TS1 &
(2,3) of TS2, and second tuple (1,4) joining (1,2) of TS1 & (4,2) of TS2.

4.2 Time-Based Window

A time-based window is similar to the tuple-based window except the fact that the size
of the sliding window is specified in terms of a time range rather than tuple size. A
Time-based window can be expressed by [Range N time units advance M
time units], where N ≥ 0. When N is unbounded, all tuples in the entire stream
are used. As a special case, NOW denotes the window with N = 0. When N is 0, all the
tuples (possibly empty) that occurred at that instant are used in the computation. This
is particularly useful when database relations are used along with streams.

Let us consider the same CQ defined for explaining tuple-based window. The results
of the CQ execution for different values of N (in seconds) are discussed below.

– [Range 1 advance 1] for W1 and W2: The result of the above CQ is an empty set
at all time instants as no two tuples match within this sliding window.

– [Range 2 advance 2] for W1 and W2: The resulting set is an empty set at any time
instant as the window can only hold tuples that occurred in the last two seconds.

– [Range Unbounded] or [Range ∞] for W1 and W2: With unbounded range, the
resulting set contains two tuples: First tuple (1,2) that joins (1,3) from TS1 & (2,3)
from TS2, and second tuple (1,4) that joins (1,2) from TS1 & (4,2) from TS2.

4.3 Summary

The above examples produce different result sets for different window sizes. However,
the last case in both tuple- and time-based window produced the same results as none
of the tuples are discarded. This is similar to the unrestricted consumption mode where
no tuples are discarded either. This case, with unbounded window size, is computation-
ally expensive, produces redundant composite events, and more importantly, results in
blocking for an unbounded stream. There are multiple types of sliding windows; for
brevity, in this paper, we analyze only the tuple- and time-based windows and their
relationships with event consumption modes.

5 Reconciliation of Windows and Consumption Modes

When event processing and stream processing are combined end-to-end for situation
monitoring applications (as shown in Figure 1), the interplay between windows and
consumption modes need to be clearly understood both from the viewpoints of applica-
tion specification and implementation. In this section, we will analyze this relationship
or interplay between windows and consumption modes. In this paper, we only summa-
rize the reconciliation between these two independent concepts informally and through
examples in terms of implications and semantics.

The integrated end-to-end architecture is shown in Figure 1. CQs are computed us-
ing the window specification associated with a query. Primitive events are produced by

350 R. Adaikkalavan and S. Chakravarthy

the stream processing component4 of the system and are used by the event processing
component. In the integrated model, complex events can either be specified indepen-
dently and associated with CQs, or can be specified along with CQs. In either case,
consumption modes can be specified for events.

First, we will try to establish an intuitive difference between the concept of windows
and consumption modes.

The window specification, although defined for each stream, is applied to all (block-
ing) operators of a CQ. Hence, for tuple- and time-based windows, the number of tuples
in a window is based on a single stream and can be assumed to have an upper bound
for practical purposes5. However, the concept of the consumption modes is in terms of
the semantics of the mode and the semantics of the operator and hence the number of
events to be maintained is not pre-determined. Also, the semantics of event operators
solely depend on the time of occurrence of the event. In a sense, consumption modes
can be viewed as time-based windows where the end time can vary with each instance of
the window. Recent context is the only consumption mode where the number of events
(whether primitive or complex) maintained by the operator is fixed (to one). It has been
shown [12, 20] that the space needs for different contexts are different. Although one
can establish the space requirements for the same set of event sequences with given
rates, the actual size depends on the runtime characteristics of the events (for example,
which event occurs how far apart for chronicle mode).

In contrast, other sliding windows based on partitions, predicates, and semantics
have characteristics similar to that of consumption modes in that the upper bound of
a window specification cannot be established (at compile time) from the definition.
It is beyond the scope of this paper to analyze and reconcile between these window
specifications and consumption modes.

There are multiple ways in which one can try to reconcile between these two con-
cepts in the context of event stream processing:

1. Use windows for stream data processing and consumption modes for event pro-
cessing (Independent approach),

2. Use only windows for both stream and event processing (Windows-only approach)
3. Use only consumption modes or contexts for both stream and event processing

(Context-only approach).
4. Use windows along with event consumption modes during event processing and

only windows for stream processing (Hybrid approach)

It is important to understand that event consumption modes are based on the semantics
of the operator, whereas window specification is not dependent on the semantics of
stream operators. Although, in theory, a different window can be specified for each
stream (and/or operator), the same window is typically used for a query. Currently, it
is not clear as to how the consumption modes can be applied to stream processing or

4 Note that although stream processing is used, in this paper, any computation system can be
used to generate events; then the characteristics of those systems need to be reconciled with
the consumption modes.

5 For time-based windows, the granularity of timestamp is likely to put an upper bound although
in theory it may be undefined due to variable arrival rates.

Seamless Event and Data Stream Processing 351

even whether it is appropriate! Thus, in this paper, we will not discuss the Context-
only Approach that use consumption modes for both stream data and event processing.
Below, we will analyze the remaining three approaches.

5.1 Independent Approach

In this reconciliation, CQs are processed using window specifications and are passed
on to the event processing subsystem where window specification is not used. Instead,
the consumption mode specified for the complex event is used for event detection.

This approach essentially assumes that the semantics of event detection is decoupled
from the CQ that generates the events and hence CQ specification is not needed here.
This may or may not be the case and is likely to be application dependent. Further-
more, it is possible that the semantics of the consumption mode may conflict with the
semantics of the window and hence appropriate situation monitoring is not realized.

Consider the situation where a CQ either generates at most one event per window or
more than one event per window. If all the CQs that generate primitive events generate
at most one event per window, then the recent context perhaps can be effectively used
to make sure that the event from the next window replaces the event from the previous
window. Even this may not be entirely accurate as we elaborate further later. If a window
generates multiple events, then the recent context is not likely to be an appropriate one.
Events from the same window replace previous events and the semantics of complex
event detection may not be as intended. Using other contexts is likely to interfere with
the window boundaries and pair events that occur across window boundaries. This can
also happen with the recent context if some windows do not generate any events or the
event generation rate is varying across CQs.

In this approach, the subset property with respect to the unrestricted context is sat-
isfied as the events are assumed to be a stream without any window specification. In
any of the contexts, it is not possible to constrain the pairing of events to the events
generated by a window. On the positive side, there is no change in the event detection
algorithms for this approach.

This approach may be a good starting strategy to integrate the two systems as it will
not require changes to either of the system. In fact, the integrated architecture presented
in Figure 1 uses this approach. Currently, we are conducting experiments to understand
the effectiveness of this approach for various class of applications.

5.2 Windows-Only Approach

For this approach, we assume that events are detected applying window constraints
in the unrestricted mode and not using any other consumption mode. In other words,
only sliding windows (either overlapping or non-overlapping/disjoint) are used both for
stream and event processing. As sliding windows are new to event detection, we discuss
the effect of adding windows to replace contexts for event processing. In this paper, we
consider only tuple-based windows with window size (1, n and ∞) for N. We will use
events and event occurrences discussed in Section 3.

Consider queries CQ2 and CQ3 with a tuple-based window [W] that generate primi-
tive events E1 and E2, respectively. Also the same window[W] is used for the detection
of the Sequence composite event E3.

352 R. Adaikkalavan and S. Chakravarthy

E3 = E1 [Row W] SEQ E2 [Row W]
E1[H] : e11[10 : 00am]; e21[10 : 03am]; e31[10 : 04am];
E2[H] : e12[10 : 01am]; e22[10 : 02am]; e32[10 : 05am];

If we impose different window sizes for the detection of composite events, we get the
following composite events. Note that unrestricted mode is applied for all events within
each window and events are not paired across windows.

– W = [Row 1 advance 1, unrestricted mode]:
(e11, e

1
2)[10 : 00am, 10 : 01am], (e11, e

2
2)[10 : 00am, 10 : 02am],

(e31, e
3
2)[10 : 04am, 10 : 05am].

The second window does not produce an event as the sequence semantics is not
satisfied i.e., e2

2 occurs before e2
1.

– W = [Row 2 advance 1, unrestricted mode]:
(e11, e

1
2)[10 : 00am, 10 : 01am], (e11, e

2
2)[10 : 00am, 10 : 02am],

(e21, e
3
2)[10 : 03am, 10 : 05am], (e31, e

3
2)[10 : 04am, 10 : 05am].

There are other windows where no event is produced as the Sequence event seman-
tics is not satisfied. Note that due to overlapping nature of windows, the same event
may be generated more than once (in different windows).

– W = [Row 2 advance 2, unrestricted mode]:
(e11, e

1
2)[10 : 00am, 10 : 01am], (e11, e

2
2)[10 : 00am, 10 : 02am],

(e31, e32)[10 : 04am, 10 : 05am].
Since the windows are disjoint, event with occurrences(e21, e

3
2) [10:03am, 10:05am]

is not detected in this case.
– W = [Row ∞/unbounded, unrestricted mode]:

(e11, e
1
2)[10 : 00am, 10 : 01am], (e11, e

2
2)[10 : 00am, 10 : 02am],

(e11, e
3
2)[10 : 00am, 10 : 05am], (e21, e

3
2)[10 : 03am, 10 : 05am],

(e31, e
3
2)[10 : 04am, 10 : 05am].

Unbounded window size always produces the same set of events as the unrestricted
event consumption mode (as inferred earlier) as no event is ever discarded.

The events detected are not the same even when the context is the same (unrestricted
in this case) and the window is changing. Overlapping windows are likely to produce
duplicate events whereas non-overlapping windows will not produce duplicate events.

5.3 Hybrid Approach

We discuss the effect of adding windows to event processing in addition to the consump-
tion modes. For our running example, let us apply different windows and contexts. For
an unbounded window, the following instances of E3 is generated for various contexts.
The unrestricted context/unbounded window consists of five events as shown above.

– W = [Row ∞/unbounded, recent mode]:
(e11, e

1
2)[10 : 00am, 10 : 01am], (e11, e

2
2)[10 : 00am, 10 : 02am],

(e31, e32)[10 : 04am, 10 : 05am].
– W = [Row ∞/unbounded, continuous mode]:

(e11, e12)[10 : 00am, 10 : 01am], (e21, e32)[10 : 03am, 10 : 05am],
(e31, e

3
2)[10 : 04am, 10 : 05am].

Seamless Event and Data Stream Processing 353

– W = [Row ∞/unbounded, chronicle mode]:
(e11, e

1
2)[10 : 00am, 10 : 01am], (e21, e

3
2)[10 : 03am, 10 : 05am].

– W = [Row ∞/unbounded, cumulative mode]:
(e11, e

1
2) [10 : 00am, 10 : 01am], (e21, e

3
1, e

3
2) [10 : 03am, 10 : 04am, 10 : 05am].

Furthermore, we analyze the effect of imposing consumption modes in addition to the
window specification. Table 1 shows the events that are detected with various consump-
tion modes with different window sizes.

As an example, we will discuss the detection of events in Continuous mode
and window [Row 2 advance 1]. Initially, windows corresponding to events E1

and E2 are empty. At time 10:00am event e1
1 occurs and is added to E1’s window. At

time 10:01am event e1
2 occurs and is added to E2’s window. As event E1’s window

is not empty, events in that window are checked for a sequence occurrence. Since e1
1

has occurred at 10:00am before e1
2 a sequence event with (e1

1, e
1
2) is detected. After the

detection, events e1
1 and e2

2 are deleted according to continuous mode and Sequence
operator semantics. Event e2

2 occurring at time 10:02am is deleted as there are no initia-
tors. Event e2

1 occurring at time 10:03am starts the next sequence event and is added to
E1’s window. Event e3

1 occurring at time 10:04am starts the next sequence event and is
also added to E1’s window. Since the size of the window is 2 rows, both the events are
kept in event E1’s window. When event e3

2 occurs at 10:05am it is added to the sliding
window of event E2 and is processed. Since it satisfies the sequence event condition,
two sequence events are detected with (e2

1, e3
2) and (e3

1, e3
2). After the processing all the

three events are removed according to the continuous consumption mode and Sequence
operator semantics. Note that not all the events detected in this approach are same as
the events detected without any windows in Section 3.

Generalization. Since all modes or contexts except the cumulative context produce a
subset of the composite events generated in the unrestricted context as shown in Ta-
ble 1, we will generalize our solution for the Sequence operator using the unrestricted
consumption mode. The formalization of interval-based Sequence event is given below.

I(E1 . E2, [ts1, te2]) � ∃te1, ts2(I(E1, [ts1, te1]) ∧ I(E2, [ts2, te2])
∧(ts1 ≤ te1 < ts2 ≤ te2))

The above formal definition is based on the history of events E1 and E2 (i.e., E1[H]
and E2[H]), respectively. At any point in time, E1[H] contains all the event occurrences
of event E1 up to that point. In the windows only approach, the history of event E1 i.e.,
E1[H] is partitioned. E1[H] = E1

1 [H]+E2
1 [H]+E3

1 [H]+ ...+En
1 [H]. The sub-history

can be disjoint or overlapping. Thus, when the same formal definition is applied over
each sub-history instead of E1[H], the number of events detected will differ. This is
mainly due to the removal of events by the sliding window size. Consider an event that
is detected using the unrestricted mode in the independent approach with event e1

1 in
E1 and e3

2 in E2. If the event occurrences are grouped based on the window size then
e1
1 might not combine with e3

2 since they might be in different sub histories. The above
arguments hold True for other operators as the above analysis is based only on the event
histories and sub-histories.

354 R. Adaikkalavan and S. Chakravarthy

Table 1. Events Detected in Hybrid Approach

Modes Window Sizes
Row 1 advance 1 Row 2 advance 1 Row ∞/unbounded

Unrestricted

(e11, e12) [10:00,10:01am]

(e11, e22) [10:00,10:02am]

(e31, e32) [10:04,10:05am]

(e11, e12) [10:00,10:01am]

(e11, e22) [10:00,10:02am]

(e21, e32) [10:03,10:05am]

(e31, e32) [10:04,10:05am]

(e11, e12) [10:00,10:01am]

(e11, e22) [10:00,10:02am]

(e11, e32) [10:00,10:05am]

(e21, e32) [10:03,10:05am]

(e31, e32) [10:04,10:05am]

Recent

(e11, e12) [10:00,10:01am]

(e11, e22) [10:00,10:02am]

(e31, e32) [10:04,10:05am]

(e11, e12) [10:00,10:01am]

(e11, e22) [10:00,10:02am]

(e31, e32) [10:04,10:05am]

(e11, e12) [10:00,10:01am]

(e11, e22) [10:00,10:02am]

(e31, e32) [10:04,10:05am]

Continuous

(e11, e12) [10:00,10:01am]

(e31, e32) [10:04,10:05am]
(e11, e12) [10:00,10:01am]

(e21, e32) [10:03,10:05am]

(e31, e32) [10:04,10:05am]

(e11, e12) [10:00,10:01am]

(e21, e32) [10:03,10:05am]

(e31, e32) [10:04,10:05am]

Chronicle

(e11, e12) [10:00,10:01am]

(e31, e32) [10:04,10:05am]

(e11, e12) [10:00,10:01am]

(e21, e32) [10:03,10:05am]

(e11, e12) [10:00,10:01am]

(e21, e32) [10:03,10:05am]

Cumulative

(e11, e12) [10:00,10:01am]

(e31, e32) [10:04,10:05am]
(e11, e12) [10:00,10:01am]

(e21, e31, e32)
[10:03,10:04,10:05am]

(e11, e12) [10:00,10:01am]

(e21, e31, e32)
[10:03,10:04,10:05am]

5.4 Analysis

Below, we analyze the effect of windows and contexts on event detection. It is evident,
even from the above analysis using an event operator, that the number and events de-
tected can vary based on two orthogonal parameters: window and consumption mode.

It is also clear from the above discussion and examples that windows and consump-
tion modes play different roles in the detection of events. Informally, windows (espe-
cially time-based) can be viewed as a mechanism for indicating the validity of an event
and hence when an event can be dropped. This can be especially useful for the unre-
stricted context where there is no mechanism for dropping an event. In other words, a
window can act as an expiry mechanism for event detection. On the other hand, a con-
sumption mode is tied to the time of occurrence (or rate and distance of occurrence)
and is based on constraints that are tied to the application semantics (e.g., sensor ap-
plications versus sliding-window applications). To some extent this is similar to the
tuple-based window except that the application semantics is not perhaps dominant. The
expiry mechanism of a consumption mode (if we want to think about it in this manner)
is dynamically changing based on several variables (e.g., rate, application semantics).

From the above discussion, it is clear that the two were designed for different pur-
poses and hence is unlikely to replace one another. A more theoretical analysis is un-
derway to establish this more formally.

The independent approach seems to be useful where CQs and events are specified
separately and independently. The window semantics seems to be not relevant or needed
for the detection of events which can be guided by the specification of a consumption

Seamless Event and Data Stream Processing 355

mode. However, if there is a semantic coupling between CQs and complex events, then
this is not a good choice. The windows-only approach allows only unrestricted event
consumption context for event detection. As the number of events detected is likely to be
proportional (or quadratic at most) to the window size, this approach seems useful only
when the window size is relatively small or when the number of events generated within
a window is small. Furthermore, this approach is subsumed by the hybrid approach
when the consumption mode is unrestricted.

Of all the three approaches, the hybrid approach seems most flexible and useful. This
alternative can be chosen to satisfy both the window requirements of an application and
the consumption mode requirements of an application. This approach does not subsume
the independent approach as the latter assumes an unbounded window along with the
specific event consumption mode.

Based on the above analysis, we postulate the following:

Postulation 1: Windows cannot be simulated by consumption modes.
Postulation 2: Consumption modes cannot be simulated by windows. The two are or-
thogonal and are designed for different purposes. Whether they can be combined to
form a single mechanism to include components of both need to be investigated.
Postulation 3: The hybrid and independent approach are both needed from the ex-
pressiveness viewpoint, and to provide a flexible event stream processing system. The
integrated architecture discussed in Section 2 implements the independent approach.

6 Conclusions and Future Work

In this paper, we have discussed windows and consumption modes associated with
stream data and event processing, respectively. We then analyzed the impact and re-
lationships between the concept of windows and the concept of consumption modes.
We have identified three approaches for using windows and event consumption modes
together in an integrated system. After studying a number of examples for analyzing: i)
the number and types of events generated, ii) whether the subset property is satisfied or
not, and iii) the interaction of windows with events, our conclusion is that both the hy-
brid approach and the independent approach are needed as they provide the maximum
expressiveness and flexibility. We are currently investigating the reconciliation between
other types of windows and consumption modes, and formalizing the reconciliation.

References

1. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley, Boston (2001)

2. Widom, J., Ceri, S.: Active Database Systems: Triggers and Rules. Morgan Kaufmann Pub-
lishers, Inc., San Francisco (1996)

3. Chakravarthy, S., Jiang, Q.: Stream Data Processing: A Quality of Service Perspective. Ad-
vances in Database Systems, vol. 36. Springer, Heidelberg (2009)

4. Carney, D., et al.: Monitoring streams - a new class of data management applications. In:
Proc. of the VLDB, pp. 215–226 (2002)

356 R. Adaikkalavan and S. Chakravarthy

5. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic foundations
and query execution. VLDB Journal 15(2), 121–142 (2006)

6. Jiang, Q., Adaikkalavan, R., Chakravarthy, S.: MavEStream: Synergistic Integration of
Stream and Event Processing.. In: Proc. of the International Conference on Digital Telecom-
munications, p. 29. IEEE Computer Society, Los Alamitos (2007)

7. Chakravarthy, S., Adaikkalavan, R.: Event and Streams: Harnessing and Unleashing Their
Synergy. In: Proc. of the ACM DEBS, pp. 1–12 (July 2008)

8. Brenna, L., et al.: Cayuga: a high-performance event processing engine. In: Proc. of the ACM
SIGMOD, pp. 1100–1102 (2007)

9. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over streams. In:
Proc. of the ACM SIGMOD, pp. 407–418 (2006)

10. Rizvi, S., et al.: Events on the Edge. In: Proc. of the ACM SIGMOD, pp. 885–887 (2005)
11. Jiang, Q., Adaikkalavan, R., Chakravarthy, S.: NFM i: An Inter-domain Network Fault

Management System. In: Proc. of the ICDE, pp. 1036–1047 (2005)
12. Chakravarthy, S., Mishra, D.: Snoop: An Expressive Event Specification Language for Active

Databases. DKE 14(10), 1–26 (1994)
13. Engström, H., Berndtsson, M., Lings, B.: ACOOD essentials. University of Skovde, Tech.

Rep. (1997)
14. Gatziu, S., Dittrich, K.R.: Events in an Object-Oriented Database System. In: Proc. of the

Int’l Workshop on Rules in Database Systems, pp. 23–39 (September 1993)
15. Branding, H., Buchmann, A.P., Kudrass, T., Zimmermann, J.: Rules in an Open System: The

REACH Rule System. In: Proc. of the Int’l Workshop on Rules in Database Systems, pp.
111–126 (September 1993)

16. Zimmer, D., Unland, R.: On the semantics of complex events in active database management
systems. In: Proc. of the ICDE, p. 392. IEEE Computer Society, Los Alamitos (1999)

17. Bailey, J., Mikulás, S.: Expressiveness issues and decision problems for active database event
queries. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 68–82.
Springer, Heidelberg (2000)

18. Adi, A., Etzion, O.: AMiT - The Situation Manager. VLDB Journal 13(2), 177–203 (2004)
19. Carlson, J., Lisper, B.: An event detection algebra for reactive systems. In: Proc. of the ACM

International Conference on Embedded Software, pp. 147–154 (2004)
20. Chakravarthy, S., Krishnaprasad, V., Anwar, E., Kim, S.: Composite Events for Active

Databases: Semantics, Contexts and Detection. In: Proc. of the VLDB, pp. 606–617 (1994)
21. Galton, A., Augusto, J.C.: Two Approaches to Event Definition. In: Hameurlain, A., Cic-

chetti, R., Traunmüller, R. (eds.) DEXA 2002. LNCS, vol. 2453, pp. 547–556. Springer,
Heidelberg (2002)

22. Adaikkalavan, R., Chakravarthy, S.: SnoopIB: Interval-based event specification and detec-
tion for active databases. DKE 59(1), 139–165 (2006)

23. Ghanem, T.M., Aref, W.G., Elmagarmid, A.K.: Exploiting predicate-window semantics over
data streams. SIGMOD Record 35(1), 3–8 (2006)

Querying Moving Objects with Uncertainty in
Spatio-Temporal Databases�

Hechen Liu and Markus Schneider

Department of Computer and Information Science and Engineering
University of Florida

Gainesville, FL 32611, USA
{heliu,mschneid}@cise.ufl.edu

Abstract. Spatio-temporal uncertainty is a special feature of moving
objects due to the inability of precisely capturing or predicting their
continuously changing locations. Indeterminate locations of moving ob-
jects at time instants add uncertainty to their topological relationships.
Spatio-temporal uncertainty is important in many applications, for ex-
ample, to determine whether two moving objects could possibly meet.
Previous approaches, such as the 3D cylinder model and the space-time
prism model have been proposed to study the spatio-temporal uncer-
tainty. However, topological relationships between uncertain moving ob-
jects have been rarely studied and defined formally. In this paper, we
propose a model called pendant model, which captures the uncertainty
of moving objects and represents it in a databases context. As an im-
portant part of this model, we define a concept called spatio-temporal
uncertainty predicate (STUP) which expresses the development of topo-
logical relationships between moving objects with uncertainty as a binary
predicate. The benefit of this approach is that the predicates can be used
as selection conditions in query languages and integrated into databases.
We show their use by query examples. We also give an efficient algorithm
to compute an important STUP.

1 Introduction

The study of moving objects has aroused a lot of interest in many fields such
as mobile networking, transportation management, weather report and forecast-
ing, etc. Moving objects describe the continuous evolution of spatial objects
over time. The feature that their locations change continuously with time makes
them more complicated than static spatial objects in some aspects; one aspect
refers to the topological relationships. A topological relationship, such as meet,
disjoint or inside, characterizes the relative position between two or more spa-
tial objects. In the spatio-temporal context, however, topological relationships
between moving objects are not constant but may vary from time to time. For
� This work was partially supported by the National Science Foundation (NSF) under

the grant number NSF-IIS-0812194 and by the National Aeronautics and Space
Administration (NASA) under the grant number NASA-AIST-08-0081.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 357–371, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

358 H. Liu and M. Schneider

example, an airplane is disjoint with a hurricane at the beginning, and later it
flies approaching the hurricane, and finally locates inside the hurricane. This
developing relationship is named as enter [1]. Since we often do not have the ca-
pability of tracking and storing the continuous changes of locations all the time
due to the deficiency of devices but can merely get observations of them at time
instants, the movements between these time instants are always uncertain. The
indeterminate locations further add uncertainty to the topological relationships
between two moving objects.

Traditionally, moving objects are represented as 3D (2D+time) polylines. This
representation, however, only stores the most possible trajectory of a moving
object, without considering the uncertainty property. Several approaches have
been proposed to handle spatio-temporal uncertainty, including the 3D cylinder
model [2] and the space-time prism model [3]. However, the former assumes that
the degree of uncertainty of a moving object does not change with time and
thus lacks a precise representation. The latter is not able to combine both the
certain part and the uncertain part of a movement. Both models rarely discuss
the dynamic change of topological relationships with uncertainty.

The goal of this paper is to model and query the dynamic topological rela-
tionships of moving objects with uncertainty. This problem is solved through
proposing the pendant model which is based on the well known space-time prism
model while adds two significant advantages. First, it is an integrated and seam-
less model which combines both known movements and uncertain movements.
Second, it formally defines spatio-temporal uncertainty predicates (STUP) that
express the topological relationships between uncertain moving objects. This is
important in querying moving objects with uncertainty since they can be used
as selection conditions in databases. As an important part of the model, we for-
mally define operations related to retrieving and manipulating uncertain data,
and STUPs such as possibly meet at, possibly enter, and definitely cross that are
defined on the basis of the operations. Queries related to the uncertainty in the
topological relationships between moving objects can then be answered.

The paper is organized as follows: Section 2 discusses the related work on
moving objects and spatio-temporal uncertainty models. Section 3 introduces
our pendant model of moving objects with uncertainty. Section 4 defines spatio-
temporal uncertainty predicates and shows the use of them in queries. Section 5
presents the algorithms to determine the defined spatio-temporal uncertainty
predicates. Section 6 draws some conclusions and discusses future work.

2 Related Work

Several approaches have been proposed to model moving objects in spatial
databases and GIS [4–6]. In some models, a moving object is represented as
a polyline in the three-dimensional (2D+time) space with the assumption that
the movement is a linear function between two consecutive sample points [4, 6].
The 3D polyline model, however, only yields the trajectory that the moving ob-
ject may take with the highest possibility but is often not the exact route the
moving object takes in reality.

Querying Moving Objects with Uncertainty in Spatio-Temporal Databases 359

An important approach that captures the uncertainty feature of movements
is the 3D cylinder model [2, 7]. A trajectory of a moving point is no longer a
polyline but a cylinder in the 2D+time space. The possible location of a moving
object at a time instant is within a disc representing the area of the uncertainty.
The cylinder model, however, assumes that the degree of uncertainty does not
change between two sample points, which is not the exact case in reality. An
improved model, the space-time prism model [3] represents the uncertain move-
ment of a moving object as a volume formed by the intersection of two half
cones in the 3D space. Given the maximum speed of a moving object and two
positions at the beginning and at the end of the movement, all possible tra-
jectories between these two points are bounded within the volume of two half
cones. Space-time prisms are more efficient than the cylinder models since they
reduce the uncertain volume by two thirds because of the geometric properties
of cones. There are many application examples that benefit from the space-time
prism model [8–11]. In some GPS applications, the uncertainty is represented as
as an error ellipse which is the projection of a space-time prism in 2D space [8].
The set of all possible locations is useful, for example, in determining whether
an animal could have come into contact with a forest fire, or an airplane could
have entered a hurricane [12]. An approach that uses the space-time prism model
to provide an analytic solution to alibi queries is proposed in [13]. A most re-
cent approach discusses the problem of efficient processing of spatio-temporal
range queries for moving objects with uncertainty [14]. However, there are some
remaining problems that are not solved by space-time prism-based approaches.
First, some movements are more complicated since they include both known
movements and unknown movements together, but this situation has not yet
been included. Second, dynamic topological relationships between moving ob-
jects with uncertainty have not been discussed. We will provide solutions to the
aforementioned problems in our model.

The spatio-temporal predicates (STP) model [1] represents the temporal de-
velopment and change of the topological relationship between spatial objects
over time. A spatio-temporal predicate between two moving objects is a tempo-
ral composition of topological predicates. For example, the predicate Cross is
defined as Cross := Disjoint−meet−Inside−meet−Disjoint where juxtaposition
indicates temporal composition. However, the STP model does not deal with the
uncertainty of topological relationships between moving objects.

3 Modeling the Uncertainty of Moving Objects

In this section, we introduce the pendant model which represents the uncertainty
of moving objects. Section 3.1 provides the formalization of spatio-temporal
uncertainty. We review the space-time prism model, and then taking it as a
basis, we give the definition of a new concept called the uncertainty volume.
Section 3.2 introduces the pendant model which integrates the known part of a
movement and the uncertain part of movement together. Section 3.3 discusses
operations on the pendant model.

360 H. Liu and M. Schneider

3.1 The Formalization of Uncertain Movements

The pendant model is built on top of the well known space-time prism model of
moving objects with uncertainty. Given the locations and time instants of the
origin and the destination of a moving point and its maximum speed, all possible
trajectories between these two time instants are bounded within the volume of
two half cones. An advantage of using a cone to represent moving objects with
uncertainty compared to a cylinder is that the former is one third of the latter
in volume, which reduces the degree of uncertainty. We rewrite this relationship
as a formal definition of the uncertainty volume of a moving point.

Definition 1. Let (x0, y0) denote the origin of a moving point at time t0, (x1, y1)
denote the destination of this point at time t1, where t1 > t0, and vmax denote
the maximum velocity. Then the uncertainty volume UV is given as

UV = { (x, y, t) |
(i) x, y, t ∈ R, t0 ≤ t ≤ t1
(ii) t0 ≤ t ≤ (t0 + t1)/2 ⇒ √

(x − x0)2 + (y − y0)2 ≤ (t − t0)vmax

(iii) (t0 + t1)/2 ≤ t ≤ t1 ⇒ √
(x − x1)2 + (y − y1)2 ≤ (t1 − t)vmax}

The above definition contains two different scenarios illustrated by Figure 1(a)
and Figure 1(b) respectively. First, if the origin and the destination of the moving
point are at the same location, the uncertain volume of the moving object is
shown by two connected symmetric cones sharing a base parallel to the xy-plane,
which is easy to prove. In Condition(ii), the right side of the inequality shows
the maximum distance the moving point can travel up to a given time instant t,
which is actually the radius of the circle representing the uncertainty area, and
the left side represents the actual distance it has traveled. If we integrate all the
time instants, the possible movements are bounded by the half cone with top
(x0, y0). Condition (iii) shows that the moving point must return to its original
location with the same speed bound. Thus, these two parts of movement form
a symmetric double-cone. If we make a cut to the cone which is parallel to the
xy-plane, we will get either a point or a circle object.

In the second scenario, the origin and the destination of the movement are
different, in which case the uncertain volume is the combination of two oblique
cones. The shared base of two cones is not parallel to the xy plane. The reason is
that the moving point shows an apt direction from the origin to the destination,
which is different from the first scenario. As Figure 1(b) illustrated, since x1 >
x2, the moving point has an apt direction to the right of the plane. For the first
half cone, the left most trajectory is shorter than the right most trajectory, which
means that the moving point moves to left for a small distance, and suddenly
changes its direction to the opposite and travels to the destination with a longer
distance. Thus, the base of such an asymmetric double-cone is oblique. If we give
a cut with a plane parallel to the xy plane on the oblique cone, we will get either
a point or a lens object.

We further extend Definition 1 to moving regions whose areas must be con-
sidered. We assume that a moving region is represented by a polygon (a circle

Querying Moving Objects with Uncertainty in Spatio-Temporal Databases 361

x

y

t

(x1,y1,t1)

(x0,y0,t0)

a possible
movement curve

x

(1,) 0apo
s) i os obl1emvi o

nyt ct t cxt u1

nyr ct r cxr u1 y

t

(a) (b)

x

y

t

x

y

t

(t1, f(t1))

(t2, f(t2))

(c) (d)

Fig. 1. Double-cone shaped volumes representing the uncertainty of a moving point
with same (a) and different (b) origin and destination, uncertainty volumes of a moving
polygon region (c) and a moving circle region (d)

region is a polygon with many vertices approaching infinite). Further we assume
that a moving region only makes translation, i.e., there is no rotation, shrink
or split of this region, then each vertices of the region is a moving point, and
the uncertainty volume of each of them can be used to construct the uncertain
volume of the entire moving region.

Definition 2. Let f(t) denote a moving region and let t0 and t1 denote two
instants at the start and the end of the movement and t1 > t0, and vmax denote
the maximum velocity. Then the uncertainty volume UV is defined as

UV = { (x, y, t) |
(i) (x, y) ∈ f(t) ∈ region

(ii) t0 ≤ t ≤ (t0 + t1)/2 ⇒ √
(x − x0)2 + (y − y0)2 ≤ (t − t0)vmax

(iii) (t0 + t1)/2 ≤ t ≤ t1 ⇒ √
(x − x1)2 + (y − y1)2 ≤ (t1 − t)vmax}

Condition (i) states that the uncertainty volume of the moving region contains
all uncertainty volume of all points of the region. Condition (ii) and (iii) show
that the uncertainty volume of each single point is a double-cone volume, as in
Definition 1. Since the moving region only makes translation, all vertices will
result the same uncertainty volume. Thus we can form the base of the entire
uncertainty volume by connecting the tangent lines between bases of cones, as
illustrated by Figure 1(c). In a special case, if the shape of the moving region
is a circle, the uncertainty volume of it is a cone with circle shaped bases, as
illustrated in Figure 1(d). We observe that Definition 1 can be treated as a

362 H. Liu and M. Schneider

special case of Definition 2 in that a moving point is a degenerated case of a
moving polygon which contains only one vertex, thus we can replace (x0, y0) by
f(t0) in the inequalities. In the rest of the paper, we will use the latter notation
when treated moving points and moving regions together.

3.2 The Pendant Model as the Combination of Certain and
Uncertain Movements

In some real cases, part of a movement can be exactly tracked, while part of the
movement is uncertain. For example, the appearance of the signal on a radar
representing the change of the position of an airplane belong to this category. A
signal may exist in some intervals while it may disappear in some other intervals.
The movements during periods in which the signal exists are known movements,
however, the movements in the periods when the signal disappears are unknown
but are interesting to us. We separate the movement of a moving object into two
parts: the known part that can be represented as a function and is analogous
to the string of a necklace, and the uncertain part which is analogous to a
“pendant”. It is allowed that in some special cases, a movement only contains
known part, or only contains uncertain part, thus it will be convenient to give an
integrated model that can represent all kinds of movement. In the above part,
we have discussed the uncertain movement of a moving object in a single time
interval. Next, we discuss how to integrate the known part of the movement.
The part that is known can be represented by line segments through linear
interpolation. This is different from the 3D polyline model, for the latter does
not contain uncertainty parts. We say that a moving point, denoted by (t, (x, y)),
is linear in [t0, t1], if and only if

∀t ∈ [t0, t1], (z−z0
t−t0

= z1−z0
t1−t0

∧ z ∈ {x, y} ∧ x1 "= x0, y1 "= y0)
∨ (x = x0 = x1 ∧ y = y0 = y1)

Further, we say that a moving region, denoted by f(t), is linear if and only
if ∀p ∈ f(t) is linear. A special case of the linear movement is that a static
spatial object can be treated as a moving object whose locations remain constant
over time. For example, a static point can be represented as a straight line
perpendicular to the xy plane, and a static region can be represented as a cylinder
volume in 2D+time space.

Definition 3. The movement of a moving object with uncertainty, denoted by
unmovement, is a function of a data type α, where α ∈ {point, region}, defined
as

unmovement = {f : time → α |
(i) dom(f) = ∪n

i=1[li, ri], n, i ∈ N; li, ri ∈ time
(ii) ∀1 ≤ i < n : ri ≤ li+1

(iii) ∀1 ≤ i ≤ n : f(t) is continuous at t ∈ [li, ri]
(iv) Let v = d(f(t))/d(t) denote the velocity of f at t,

∀1 ≤ i ≤ n, ∀t ∈ [li, ri] : vmaxi
= max(v)}

(v) ∀1 ≤ i ≤ n, ∀t ∈ [li, ri] : either (f(t), t) is an uncertainty volume,
or f(t) is linear in [li, ri].

Querying Moving Objects with Uncertainty in Spatio-Temporal Databases 363

Definition 3 gives the formal representation of the moving object data type with
uncertainty in our pendant model. Condition(i) states that an unmovement is a
partial function defined on a union of intervals. Condition(ii) ensures that time
intervals do not overlap with each other thus maximizes intervals and gives a
unique representation for a known movement. Condition (iii) states that the
movement is continuous in each interval thus instantaneous jump is not allowed.
Condition (iv) defines vmaxi as the upper bound of the speed of the moving
object during each interval i. Condition (v) states that within each interval of
the moving object function, the movement is either a certain movement which
changes linearly, or an uncertain volume of a double-cone. Thus, the uncertainty
volume of a moving object is composed by the union of cones and line segments.

On the basis of Definition 3, we further define two subclasses of the unmove-
ment data type, unmpoint and unmregion, representing moving point with un-
certainty and moving region with uncertainty, which inherit all properties of
unmovement.

Definition 4. The data types moving point with uncertainty, and moving region
with uncertainty are defined as follows:

unmpoint ⊂ unmovement = {f : time → α | ∃t ∈ dom(f) : f(t) ∈ point}
unmregion ⊂ unmovement = {f : time → α | ∀t ∈ dom(f) : f(t) ∈ region}

3.3 Operations on the Pendant Model

Operations are important components in a data model. They are integrated into
databases and used as tools for retrieving and manipulating data. In the rest
of this section, we introduce some important operations in our pendant model.
They will be useful in helping us define spatio-temporal uncertain predicates in
the next section. Because of the page limitation, we only give the semantic and
the explanation of each operation here.

construct segment : α × α × interval → segment
construct pendant : α × α × interval × real → UV
construct movement : segmentm × UV n → unmovement
at instance : unmovement × instant → α
temp select : unmovement × interval → unmovement
dom : unmovement → interval

The operation construct segment takes two observations and an interval as in-
puts, to construct the certain movement, which is the a 3D line segment between
the observations. The construct pendant operation takes two observations, the
speed of the moving object, and the interval as inputs, and construct a double-
cone volume. The construct movement operation integrates known movements
and movements with uncertainty together, where m, n ∈ N, which means that
a movement is composed by multiple known parts and uncertain parts. The
at instance operation takes an unmovement data type and an instant as inputs,
and returns a spatial object representing the uncertainty of the moving object at

364 H. Liu and M. Schneider

x

y

t

x

y

t

t1

t3

t2

x

y

t

I

(a) (b) (c)

Fig. 2. An unmpoint data object (a); at instance (b) and temp select (c)

that instant, as illustrated in Figure 2(b). The temp select operation is short for
“temporal selection”. It retrieves partial movement of the moving object during
a time interval that is last for a period, as illustrated in Figure 2(c). The dom
operator returns the life domain interval of an uncertain moving object.

4 Spatio-Temporal Predicates with Uncertainty and
Queries

In this section, we discuss topological relationships between moving objects with
uncertainty and show query examples. In [1], authors have defined topological re-
lationships between moving objects over time as binary predicates, called spatio-
temporal predicates (STP), the results of which are either true or false. This will
make querying moving objects easier by using binary pre-defined predicates as
selection conditions. Similarly, we define the dynmic topological relationships be-
tween moving objects with uncertainty as spatio-temporal uncertain predicates
(STUP), which will be integrated into databases as join conditions. In Sec-
tion 4.1, we formally define important STUPs on moving objects. In Section 4.2,
we introduce the use of the STUP by showing query examples.

4.1 Definitions of Spatio-Temporal Uncertain Predicates

A spatio-temporal uncertain predicate (STUP) is a bool expression that is com-
posed of topological predicates, math notations and operations on the pendant
model we have defined in Section 3.3. An STUP expression may contain the dis-
tance operator dist, topological predicates between two regions (disjoint, meet,
overlap, covers, coveredBy, equal, inside, contains), logic operators (¬, ∃, ∀, ∧, ∨),
set operators (∩, ∪, ∈, ⊂), and operations on the pendant model (at instance
(shortcut: @), temp select (shortcut: πt)).

The eight topological predicates describe the relationship between two re-
gions, and they form the basis of our spatio-temporal uncertain predicates.
inside(A, B) means that region A locates inside of region B in geometry. For
simplicity, we use notation @ to represent at instance, and πt to represent

Querying Moving Objects with Uncertainty in Spatio-Temporal Databases 365

(a) (b) (c)

Fig. 3. Instant predicates of moving points with uncertainty: disjoint at (a), defi-
nitely meet at and possibly meet at (c)

temp select. We use the logic operators and set operators to connect terms and
form the expressions. We first exam the topological relationship between two
moving points. We name the relationship between them at a time instance as an
instant predicate, and the relationships which lasts for a period as a moving pred-
icate. The topological relationship between two static points is either disjoint or
meet. However, for two moving objects, at a time instant there are three possible
relationships. They can be disjoint, or certainly meet, or possibly meet. Thus we
are able to define the following three instant predicates for moving points with
uncertainty.

Definition 5. Assume that we have two moving points p, q ∈ unmpoint and a
time instant t. Three instant predicates at t are defined as follows,

disjoint at(p, q, t) := t ∈ (D(p) ∩ D(q)) ∧ disjoint(@(p, t), @(q, t))
definitely meet at(p, q, t) := t ∈ (D(p) ∩ D(q)) ∧ @(p, t) ∈ point

∧ dist(@(p, t), @(q, t)) = 0
possibly meet at(p, q, t) := ¬disjoint at(p, q, t) ∧

¬definitely meet at(p, q, t)

In the above definition, two moving points are disjoint with each other at t, if
the resulting regions from at instance operations are disjoint. If the at instance
operation on two objects result two points that are of the same position, they
will definitely meet at this time instance. The rest situations all belong to the
possibly meet at relationship. Figure 3 illustrates the above three predicates.

After introducing the instant predicates between two moving points, now we
define their moving predicates which describe topological relationships that last
for a period of time. Assume that we have an interval I ⊂ time,

Definition 6. definitely encounter(p, q, I) = true, if the following conditions
hold

(i) I ⊂ (D(p) ∩ D(q)), pI := πt(p, I), qI := πt(q, I),
(ii) ∃t1, t2, t3 ∈ I ∧ t1 < t2 < t3 ∧ disjoint at(pI , qI , t1)

∧ definitely meet at(pI , qI , t2) ∧ disjoint at(pI , qI , t3)

Definition 7. possibly encounter(p, q, I) = true, if the following conditions
hold

(i) I ⊂ (D(p) ∩ D(q)), pI := πt(p, I), qI := πt(q, I),
(ii) ∃t1, t2, t3 ∈ I ∧ t1 < t2 < t3 ∧ disjoint at(pI , qI , t1)

∧ possibly meet at(pI , qI , t2) ∧ disjoint at(pI , qI , t3)

366 H. Liu and M. Schneider

(a) (b) (c)

Fig. 4. Predicates between a moving point and a moving region disjoint at (a), defi-
nitely inside at (b) and possibly inside at (c)

The definitely encounter predicate describes the situation that two moving
points will meet for sure during a time interval I. Similarly, possibly encounter
means that two moving points will meet with some possibility. Figure 5(a) illus-
trates this predicate.

Besides the uncertain relationship between two moving points we have in-
troduced above, topological relationships between a moving point and a static
region on the land are also of great importance. It can help, for example, detect
whether an airplane has the possibility of entering a city when it disappears on
the radar. Now, we define some important spatio-temporal uncertain predicates
which represent topological relationships between a moving point and a static
region on the land.

Definition 8. Given the movement of a moving point p ∈ unmpoint, a static
region R ∈ region , and a time instant t ∈ time, three instant predicates between
them are defined as follows,

disjoint at(p, R, t) := t ∈ D(p) ∧ disjoint(@(p, t), R)
definitely inside at(p, R, t) := t ∈ D(p) ∧ inside(@(p, t), R)
possibly inside at(p, R, t) := ¬disjoint at(p, R, t) ∧

definitely inside at(p, R, t)

The above definition formalize three instant predicates between a moving point
and a static region. Figure 4(a)-(c) show the above three predicates, where the
circle represents the uncertain region of a moving point at the given time instance
and the polygon represents the static region. Based on the instant predicates
we have defined, we give the following definitions of spatio-temporal uncertain
predicates which represent the development of relationships between a moving
point and a static region within a period.

Definition 9. definitely enter(p, R, I) = true, if the following conditions hold

(i) I ⊂ D(p), pI := πt(p, I)
(ii) ∃t1, t2 ∈ I ∧ t1 < t2 ∧ disjoint at(pI , R, t1) ∧

definitely inside at(pI , R, t2)

Definition 10. possibly enter(p, R, I) = true, if the following conditions hold

(i) I ⊂ D(p), pI := πt(p, I)
(ii) ∃t1, t2 ∈ I ∧ t1 < t2 ∧ disjoint at(pI , R, t1) ∧

possibly inside at(pI , R, t2)

Querying Moving Objects with Uncertainty in Spatio-Temporal Databases 367

Definition 11. definitely cross(p, R, I) = true, if the following conditions hold

(i) I ⊂ D(p), pI := πt(p, I)
(ii) ∃t1, t2, t3 ∈ I ∧ t1 < t2 < t3 ∧ disjoint at(pI , R, t1) ∧

definitely inside at(pI , R, t2) ∧ disjoint at(pI , R, t3)

Definition 12. possibly cross(p, R, I) = true, if the following conditions hold

(i) I ⊂ D(p), pI := πt(p, I)
(ii) ∃t1, t2, t3 ∈ I ∧ t1 < t2 < t3 ∧ disjoint at(pI , R, t1) ∧

possibly inside at(pI , R, t2) ∧ disjoint at(pI , R, t3)

Definitions 9 to 12 describe spatio-temporal uncertainty predicates between a
moving point and a static region. Figure 5(b) illustrates the possibly cross pred-
icate. Similarly, we can define more predicates between an unmpoint object and
an unmregion object, for example, possibly enter, and possibly cross. There
are no definite enter or definitely cross relationships between an unmpoint
object and an unmregion object, since there is no definitely inside at instant
predicate between a moving point and a moving region with uncertainty at a
time instance. Because of the page limitation, we do not give formal definitions
of STUPs between an unmpoint and unmregion here.

x

y

t

I

x

y

t

I

(a) (b)

Fig. 5. Spatio-temporal predicates of possibly encounter (a); possibly cross (b)

4.2 Spatio-Temporal Uncertainty Queries

Now we discuss how to use STUPs we have defined in Section 4 in database
queries. Current database query languages such as SQL are not able to answer
temporal queries because they do not support temporal operators. This problem
could be solved by implementing the STUPs as operators in queries. Thus, we
are able to extend the SQL language to a more comprehensive query language,
named as spatio-temporal uncertainty language (STUL). The STUL language
extends SQL and supports the spatio-temporal uncertainty operations in terms
of STUPs. Here we show some examples of using this language.

Assume that we have the following database schema of persons,

persons(id:integer, name:string, trajectory:unmpoint)

368 H. Liu and M. Schneider

The query “Find all persons that may possibly become the witness of the criminal
Trudy during the period from 10 am to 12 pm” can be answered by the STUL
query as follows,

SELECT p1.id FROM persons p1, persons p2
WHERE possibly_encounter(p1.trajectory,p2.trajectory,

10:00:00,12:00:00) AND p2.name=‘Trudy’

Now we give an example of SQL like query on the predicates between an un-
certain moving point and a static region. Assume that we have the following
schemas,

airplanes(id: string, flight: unmpoint)
airports(name: string, area: region)

The query “Find all planes that have possibly entered the Los Angeles airport
from 2:00pm to 2:30pm” can be written as follows,

SELECT airplanes.id FROM airplanes, airports
WHERE possibly_enter(airplanes.flight, airports.area,

14:00:00, 14:30:00) AND airports.name=‘LAX’;

We are also able to query on the topological relationship between an uncertain
moving point and an uncertain moving region. An example of a moving region
with uncertainty is the hurricane. Assume that we have the following schema,

hurricanes(name: string, extent: unmregion)

The query “Find all planes that have possibly entered the extent of hurricane
Katrina between Aug 24 to Aug 25, 2005” can be written as follows,

SELECT a.id FROM airplanes a, hurricanes h
WHERE possibly_enter(a.flight,h.extent,2005-08-24,2005-08-25)

AND h.name=‘Katrina’

5 Algorithms to Determine STUP

In this section, we give algorithms to determine the spatio-temporal uncertainty
predicates. Because of the page limitation, we take the predicate between two
moving points, possibly encounter for example. Algorithms for other predicates
will be provided in our future work. In Definition 3, we have stated that each
movement is represented by a set of partial functions on a union of intervals,
and each interval has its own moving pattern, i.e., either a known movement
represented by a linearly function or an unknown movement represented by a
double-cone volume. Thus, we are able to fragment the entire movement as a set
of slices. The slice model is a discrete approach for representing moving objects,
introduced in [4]. A slice is the smallest unit of evaluating the spatio-temporal

Querying Moving Objects with Uncertainty in Spatio-Temporal Databases 369

x

y

t

s1,1

s1,2

s1,3

s1,4

s1,5

s2,1

s2,2

s2,3

s2,4

y

t1

t2

t1 t1

t2

t3

t2
t3

t4

(a) (b)

Fig. 6. Slice unit representation of moving objects with uncertainty (a), critical instants
of a slice unit with different volumes

algorithm unitIntersect (slice S1, slice S2)
1 intersect ← false
2 S ← empty // sequence of instants
3 m ← num of critical instants(S1)
4 n ← num of critical instants(S2)
5 while {i ≤ m and j ≤ n}
6 if time[i] < time[j]
7 add time[i] to S; i++
8 else
9 add time[j] to S; j++
10 endif
11 endwhile
12 add remaining instants of S1 to S
13 add remaining instants of S2 to S
14 s ← get first elem(S)
15 while not end of(S)
16 and intersect = false

17 u ← at instance(S1, s)
18 v ← at instance(S2, s)
19 if a ∈ point and b ∈ point
20 intersect ← dist(u, v) = 0
21 endif
22 if a ∈ point and b ∈ region
23 intersect ← inside(u, v)
24 endif
25 if a ∈ region and b ∈ region
26 intersect ← overlap(u, v)
27 endif
28 s ← get next elem(S)
29 endwhile
30 return intersect

end

Fig. 7. The algorithm testUnitIntersection to determines whether two slices intersect

uncertainty predicate, which is either a line segment or a double-cone volume.
The slice unit representation of moving objects with uncertainty is illustrated in
Figure 6, where moving object A is represented by < s1,1, s1,2, . . . , s1,5 > with
elements ordered by time, and B is represented by < s2,1, s2,2, . . . , s2,4 >. We
evaluate the predicate between two entire moving objects by evaluating whether
an intersection exists between a pair of slices. There are three situations: 1.
Both slices are line segments; 2. one slice is a line segment while the other is
a double-cone; 3. both slices are double-cone volumes. The first situation is the
simplest one in that we can represent two line segments by equations in the
3D plane and compute whether they intersect at a common point, denoted by
comPoint(seg1, seg2). For situation 2 and 3, since it is cumbersome to calculate
the intersection in 3D volumes, we introduce the method to test the intersection
only in some time instants, which are called critical instants. A line segment has

370 H. Liu and M. Schneider

two critical instants: the starting time and ending time respectively. A straight
double-cone volume has 3 critical instants: the instants at the bottom apex, the
base and the top apex. An oblique double-cone volume has 4 critical instants:
the bottom apex, the lower base point, the upper base point and the top apex.
Figure 6(b) illustrates critical instants on the three types of volumes. We design
an algorithm to compute whether two slices could intersect by testing whether
they intersect at critical instants, shown by Figure 7. Because we only exam the
intersection at a few number of critical instants, the complexity of this algorithm
is constant.

The possibly encounter predicate can then be determined by examining the
intersection between pairs of slices. The algorithm is shown in Figure 8. Assume
that the first moving object has m slices and the second has n slices, this al-
gorithm will exam m + n times of unitIntersection. Since the complexity of
unitIntersection is O(1), the total complexity to determine possibly encounter
is O(m + n).

algorithm possibly incounter (umpoint A, umpoint B, t1, t2)
1 intersect ← false
2 A′ ← temp select(A, t1, t2)
3 B′ ← temp select(B, t1, t2)
4 sa ← get first elem(A′)
5 sb ← get first elem(B′)
6 while not (end of(A′) or end of(B′))
7 and intersect = false
8 if sa ∈ segment and sb ∈ segment
9 intersect ← comPoints(sa, sb)
10 else

11 intersect ← unitIntersect(sa, sb)
12 endif
13 if endtime of sa < endtime of sb
14 sa = get next elem(A′)
15 else
16 sb = get next elem(B′)
17 endif
18 endwhile
19 return intersect
20 end

Fig. 8. The algorithm of possibly encounter

6 Conclusions and Future Work

In this paper, we discuss the problem of querying topological relationships be-
tween moving objects with uncertainty. We propose the pendant model which
properly represents the spatio-temporal uncertainty of moving objects. We define
a new set of predicates called spatio-temporal uncertainty predicates (STUP)
which represent moving topological relationships with uncertainty as binary
predicates. The benefit of this approach is that the STUPs can be used in queries
as selection conditions. We define important STUPs which describe topological
relationships between two moving points, or a moving point and a static region,
or a moving point and a moving region. We show query examples of how to
use them and give an efficient algorithm to compute one of the most important
STUPs. In our future work, we will give the algorithms for all other STUPs
we have defined. We will study the topological relationships between complex
regions with uncertainty as well.

Querying Moving Objects with Uncertainty in Spatio-Temporal Databases 371

References

1. Erwig, M., Schneider, M.: Spatio-temporal Predicates. IEEE Trans. on Knowledge
and Data Engineering (TKDE) 14(4), 881–901 (2002)

2. Trajcevski, G., Wolfson, O., Zhang, F., Chamberlain, S.: The geometry of uncer-
tainty in moving objects databases. In: 8th International Conference on Extending
Database Technology (EDBT), pp. 233–250 (2002)

3. Hägerstrand, T.: What about people in regional science. Papers in Regional Sci-
ence 24, 6–21 (1970)

4. Forlizzi, L., Güting, R.H., Nardelli, E., Schneider, M.: A data model and data
structures for moving objects databases. In: SIGMOD 2000: Proceedings of the
2000 ACM SIGMOD International Conference on Management of Data, pp. 319–
330 (2000)

5. Güting, R.H., Böhlen, M.H., Erwig, M., Lorentzos, C.S.J.N.A., Schneider, M.,
Vazirgiannis, M.: A Foundation for Representing and Querying Moving Objects.
ACM Trans. on Database Systems (TODS) 25(1), 1–42 (2000)

6. Su, J., Xu, H., Ibarra, O.H.: Moving Objects: Logical Relationships and Queries.
In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS,
vol. 2121, pp. 3–19. Springer, Heidelberg (2001)

7. Trajcevski, G., Wolfson, O., Hinrichs, K., Chamberlain, S.: Managing Uncertainty
in Moving Objects Databases. ACM Trans. on Database Systems (TODS) 29,
463–507 (2004)

8. Pfoser, D., Jensen, C.S.: Capturing the uncertainty of moving-object representa-
tions. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS,
vol. 1651, p. 111. Springer, Heidelberg (1999)

9. Egenhofer, M.J.: Approximations of geospatial lifelines. In: SpadaGIS, Workshop
on Spatial Data and Geographic Information Systsems (2003)

10. Miller, H.J.: A measurement theory for time geography. Geographical Analysis 37,
17–45 (2005)

11. Kuijpers, B., Othman, W.: Trajectory databases: Data models, uncertainty and
complete query languages. J. Comput. Syst. Sci. 76(7), 538–560 (2010)

12. Hornsby, K., Egenhofer, M.J.: Modeling moving objects over multiple granularities.
Annals of Mathematics and Artificial Intelligence 36(1-2), 177–194 (2002)

13. Grimson, R., Kuijpers, B., Othman, W.: An analytic solution to the alibi query
in the space-time prisms model for moving object data. International Journal of
Geographical Information Science (2009)

14. Trajcevski, G., Choudhary, A., Wolfson, O., Ye, L., Li, G.: Uncertain range queries
for necklaces. In: Proceedings of the 2010 Eleventh International Conference on
Mobile Data Management, MDM 2010, pp. 199–208 (2010)

A Novel Hash-Based Streaming Scheme for
Energy Efficient Full-Text Search in Wireless

Data Broadcast�

Kai Yang1, Yan Shi1 Weili Wu1, Xiaofeng Gao2, and Jiaofei Zhong1

1 The University of Texas at Dallas, Richardson TX 75080, USA
{kxy080020,yanshi,weiliwu,fayzhong}@utdallas.edu
2 Georgia Gwinnett College, Lawrenceville, GA 30043

xgao@ggc.edu

Abstract. Full-Text Search is one of the most important and popular
query types in document retrieval systems. With the development of The
Fourth Generation Wireless Network (4G), wireless data broadcast has
gained a lot of interest because of its scalability, flexibility, and energy
efficiencies for wireless mobile computing. How to apply full-text search
to documents transmitted through wireless communications is thus a re-
search topic of interest. In this paper, we propose a novel data streaming
scheme (named Basic-Hash) with hash-based indexing and inverted list
techniques to facilitate energy and latency efficient full-text search in
wireless data broadcast. We are the first work utilizing hash technology
for this problem, which takes much less access latency and tuning time
comparing to the previous literature. We further extend the proposed
scheme by merging the hashed word indices in order to reduce the total
access latency (named Merged-Hash). An information retrieval protocol
is developed to cope with these two schemes. The performances of Basic-
Hash and Merged-Hash are examined both theoretically and empirically.
Simulation results prove their efficiencies with respect to both energy
consumption and access latency.

1 Introduction

Full-text search is a popular query type that is widely used in document retrieval
systems. Many commercial database systems have included full-text search as
their features. For example, SQL Server 2008 provides full-text queries against
character-based data in SQL Server tables [1]. Oracle Text [3] also gives powerful
support for full-text search applications. Many full-text search techniques in
different application areas have been proposed in literatures [2][5][6][11].

With the rapid development of mobile devices and quick rise of The Fourth
Generation Wireless Network (4G), mobile communication has gained popularity
due to its flexibility and convenience. Limited bandwidth in wireless communi-
cation and limited energy supply for mobile devices are the two major concerns
of mobile computing. That is why wireless data broadcast becomes an attractive
� This work is supported by NSF grant CCF-0829993 and CCF-0514796.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 372–388, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Novel Hash-Based Streaming Scheme for Energy Efficient Full-Text Search 373

data dissemination technique for mobile communication. In a wireless data broad-
cast system, Base Stations (BS) broadcast public information to all mobile devices
within their transmission range through broadcast channels. Mobile clients listen
to the channels and retrieve information of their interest directly when they ar-
rive. This scheme is bandwidth efficient because it utilizes most of the bandwidth
as downlink and requires little uplink traffics. It is also energy efficient because
receiving data costs much less energy than sending data.

Mobile devices usually have two modes: active mode and doze mode. In active
mode, a device can listen, compare, and download the required data; while in
doze mode, it turns off antennas and many processes to save energy. The energy
consumed in active mode can be 100 times of that in doze mode [15]. In general,
there are two major performance criteria for a wireless data broadcast system:
access latency and tuning time. Access latency refers to the time interval between
a client first tunes in the broadcast channel and it finally retrieves the data of
interest, which reflects the system’s time efficiency; tuning time is the total time
a client remains in active mode, which indicates the system’s energy efficiency.

How to apply full-text search in wireless data broadcast is an interesting but
challenging topic. Since data broadcast is especially suitable for public infor-
mation such as news report and traffic information, full-text search can be a
very useful feature desired by mobile clients. For example, a mobile user may
want to browse all news related to “FIFA”, or all local traffic information that
includes “accidents”. Full-text search for traditional disk-storage data has been
well studies [9][12][4]. However, in wireless data broadcast, the data are stored
“on the air” rather than on the disk, which posts new challenges to full-text
search. In disk-based storage, documents are stored in physical space, so clients
can “jump” among different storage slots with little cost; while in on-air storage,
documents are stored sequentially along the time line, which posts much more
cost for clients to search back and forth. Traditional full-text search techniques
cannot not be adopted directly because of this difference. On the other hand,
since existing index techniques for wireless data broadcast [10][17][8][19][20] are
mainly based on predefined structured data with key attributes, they also can-
not be directly applied for full-text search which uses arbitrary words as search
keys. Therefore, new design of indexing schemes are needed to facilitate full-text
search in order to ensure both time efficiency and energy efficiency.

To the best of our knowledge, [7] is the only published research on full-text
query processing in wireless data broadcast. They firstly utilized inverted list in
processing full-text queries on a wireless broadcast stream, and then proposed
two methods: Inverted-List and Inverted-List + Index-Tree which was extended
to (1, α) and (1, α(1, β)). They made use of an inverted list to guide full-text
search and a tree-based index to locate the key word in the inverted list. However,
this method is not energy efficient enough because it might take a long tuning
time to locate the key word in the inverted list. It is also not latency efficient
enough due to the duplication of tree-based index.

Inverted list is a mature indexing method for full-text search [18][22][14]. It is
a set of word indices which guides clients to find specific documents containing a

374 K. Yang et al.

specific word. In this paper, we apply inverted list as a guide for full-text search,
but implement hash function instead of searching tree as indexing method, to
avoid lengthening broadcast cycle and redundant tuning time for locating tar-
get word index. Note that hash function is used to index “word indices” in an
inverted list, which is the “index of indices”. So the index designed in this paper
is a hierarchical index scheme with two levels: (1) inverted list, the index for
documents, and (2) hash function, the index for word indices in an inverted list.

Compared with tree-based indexing technique, hash-based indexing for word
indices is more flexible and space efficient for full-text search in wireless data
broadcast. A hash function only takes several bytes while a searching tree may
take thousands of bytes depending on its design. Hash-based index is more suit-
able for full-text search because the nature of full-text search uses arbitrary words
as search keys. Based on this idea, we propose a novel data streaming scheme
named Basic-Hash to allocate inverted list and documents on the broadcast
channel. Basic-Hash is further improved to another streaming scheme named
Merged-Hash, by merging the hashed word indices to reduce access latency. A
client retrieval protocol is also developed corresponding to the two schemes. We
are the first work utilizing hash technology for full-text search in wireless data
broadcast. We also provide detailed theoretical analysis to evaluate the perfor-
mance of Basic-Hash and Merged-Hash, and then implement many numerical
experiments. Simulation results prove the efficiency of these two schemes with
respect to both energy and access latency.

To summarize, our main contributions include:

1. We are the first work implement inverted list and hash function for full-text
search in wireless data broadcast. We propose two novel wireless broadcast
streaming schemes, namely, Basic-Hash and Merged-Hash, to facilitate full-
text query on broadcast documents. For each scheme, we develop algorithms
for inverted index allocation, document allocation and query protocol.

2. We discuss how to turn collision issues of hash functions into advantage and
utilize appropriate collisions to reduce the access latency of full-text query.

3. We analyze the performances of Basic-Hash and Merged-Hash theoretically
by computing the expected access latency and tuning time for full-text queres
on broadcast streams created based on these two schemes.

4. We implement simulations for the proposed systems and analyze their per-
formances by simulation results.

The rest of the paper is organized as follows: Sec. 2 presents related works
on wireless data broadcast, full-text search involving inverted list techniques,
and recent research on full-text search for wireless data broadcast systems; Sec.
3 introduces the system model and some preliminaries; Sec. 4 first discusses
the Basic-Hash broadcast streaming scheme to facilitate full-text search and
then extends Basic-Hash to Merged-Hash to improve the performance; Sec. 5
theoretically analyzes the performances of Basic-Hash and Merged-Hash; Sec. 6
empirically analyzes Basic-Hash and Merged-Hash based on simulation results;
and Sec. 7 concludes the paper and proposes future research directions.

A Novel Hash-Based Streaming Scheme for Energy Efficient Full-Text Search 375

2 Related Work

Wireless data broadcast has gained many attentions during the past few years.
Imielinski et al. first gave an overview on wireless data broadcast systems in
[10]. They also proposed a popular B+-tree based distributed index to achieve
energy efficiency. Many different index methods were proposed thereafter. Yao
et al. [17] proposed an exponential index which has a linear but distributed
structure to enhance error-resilience. In [21], the trade-off between confidentiality
and performance of signature-based index was discussed. Hash-based index for
wireless data broadcast was also proposed in [16]. All these index techniques,
however, focus only on structured data with predefined key attributes. They
cannot be applied directly to guide full-text queries.

Inverted list is a popular structure in document retrieval systems and a well-
known technique for full-text search. Tomasic et al. [14] studied the incremental
updates of inverted lists by dual-structure index. Scholer et al. [13] discussed the
compression of inverted lists of document postings which contains the position
and frequency of indexed terms and developed two approaches to improve the
document retrieval efficiency. Zobel et al. gave a survey on inverted files for text
search engines in [22]. Zhang et al. [18] studied how to process queries efficiently
in distributed web search engines with optimized inverted list assignment. Most
research works on inverted list are based on disk-storage documents. For on-air
documents, modifications are needed to adjust to on-air storage features.

Chung et al. [7] firstly applied inverted list for full-text search in wireless
data broadcast. They also combined tree-based indexing technique with inverted
list for full-text query on broadcast documents. However, the construction of a
searching tree and the duplication of inverted list will extend the total length
of a broadcast cycle heavily, resulting additional access latency. Moreover, the
average search time for a searching tree heavily relies on the depth of the tree,
which is much more than the searching time of a hash function. Therefore, we
replace the search tree with hash function design and construct a more efficient
data streaming scheme for full-text search in wireless data broadcast.

3 Preliminary and System Model

3.1 System Model

For simplification, we only discuss the situation for one Base Station (BS) with
one communication channel. The broadcast program will not update during a
period of time. The BS will broadcast several documents periodically in cycle.
Each document only repeats once in a broadcast cycle. Let D denote a set of
t documents to be broadcast. D = {doc0, doc1, · · · , doct−1}. Each doci will be
broadcast as several buckets on a channel, each with different size. Here bucket
is the smallest logical unit on a broadcast channel. Assume yi is the size of doci,
measured by buckets, and Y ={y0, y1, · · · , yt−1}.

There are altogether v non-duplicated words in D, denoted as K={k0, k1,
· · · , kv−1}. Let w be the length of each word measured in bytes (here we assume
on average, each word has the same length).

376 K. Yang et al.

Besides documents, we also need to insert indices to form a full broadcast
cycle. As mentioned in Sec. 1, we will apply inverted list and hash function
together as a searching method. A hash function will be appended to each of the
bucket, while the inverted list will be split into word indices and interleave with
document buckets. After all the process, we will form a whole broadcast cycle,
consisting of a sequence of broadcast buckets. Each bucket will have a continuous
sequence number starting from 0. Let bcycle denote this bucket sequence, and
|bcycle| denote the whole number of buckets in one broadcast cycle.

3.2 Inverted List

To facilitate full-text search in wireless data broadcast systems, we apply in-
verted list technique. For full-text search, each word can be related to several
documents and each document contains usually more than one word. To resolve
such many-to-many relationship between documents and words, inverted list has
been popularly used as an index in data retrieval systems [18][22][14].

k1 doc1 doc2 doc3 doc4 doc5 doc6 k3 doc1 doc3 k4 doc1 doc3

k5 doc4 k6 doc3 k7 doc4 k8 doc4 k9 doc1 k10 doc2 doc3 k11 doc1 doc2 doc3 doc5

k12 doc2 k13 doc2 doc6 k14 doc2 doc6 k15 doc1 doc2 doc3 doc4

k2 doc2 doc3 doc5

Fig. 1. Example of an Inverted List for Broadcast System

Let I be an inverted list composed of v entries representing v non-duplicated
words in D. In each entry, a word ki is linked with a set of document address
pointers which can guide clients to find documents containing this word. We
name each entry a word index, denoted as ei. The number of pointers in each word
index depends on how many documents contain this word and is not necessarily
the same. Fig. 1 is an example of an inverted list generated from 6 documents.
Each pointer indicates the time offset from the index to the target document.
Clients can tune off during this offset, and tune on again to save some energy.

Instead of treating an inverted list as a whole, we split it into a set of word
indices, each of which is a pair of a word and a list of offsets that points to
documents containing the word, that is, I = {ei, i = 0, · · · , v − 1} where ei =<
ki : doc addr offset list i > .

For each word index ei ∈ I, si denotes its number of document address offsets.
Assume a is the length of one document address pointer measured in bytes, then
the length of ei can be easily computed as w + asi.

3.3 Hash Function and Collisions

There are many hash functions that can hash strings into integers. In this paper,
only hashing a word into an integer is not enough. We need to hash a word into
a bucket on a broadcast cycle. If |bcycle| denotes the length of a broadcast cycle,
we should map the integer result to a sequence number between 0 and |bcycle|-1.

Collisions can be quantified by collision rate γ. In this paper, a collision hap-
pens when a word index is hashed to the same bucket as some previously hashed

A Novel Hash-Based Streaming Scheme for Energy Efficient Full-Text Search 377

word indices were. In this case, the collision rate γ = total number of collisions/v.
In most hashing applications, collisions are what designers try to avoid be-
cause it increases the average cost of lookup operations. However, it is inevitable
whenever mapping a large set of data into a relatively small range. While most
hash function applications struggle for collision issues, our method is much more
collision-tolerant. In fact, appropriate collisions are even beneficial. This is be-
cause in our method, hash scheme is only used to allocate the word indices in
the inverted list and usually the sizes of most word indices are not exactly the
size of a bucket. Therefore, more than one word indices hashed into the same
bucket may help increasing the bucket utilization factor, which will reduce the
length of a broadcast cycle and the average access latency of query processing.
We will do a more detailed discussion on the collision issue in Subsec. 4.1.

3.4 Data Structure of a Bucket

A bucket is composed of two parts: header and payload. Header records basic
information of a bucket such as bucket id and sequence number, while payload
is the part of a bucket to store data. In our model, there are two different
types of buckets: index bucket which stores word indices, and document bucket
which stores documents. Index and document buckets have the same length and
header structure. Hence, we can use the number of buckets to measure both Y
and |bcycle|. If the total number of index buckets within one broadcast cycle is
|IB| and the total number of document buckets is |DB|, then we should have:

|bcycle| = |DB| + |IB| . (1)

Next, we will illustrate the detailed design of index and document buckets. As-
sume a bucket is capable of carrying l bytes information. For both index and
document buckets, the header contains the following information in Tab. 1.

Table 1. Information in a Bucket Header

Item Description

TYPE: whether the bucket is an index or document bucket.
LEFT: length of unused space, measured in bytes.
END: whether the index or document ends.

MERGEP: time offset of merged index bucket.
SQ: sequence number of a bucket. In this method, SQ is also the hash value.

OFFSET: distance to the next bucket containing the same document.
HASH: hash function to compute sequence number of target index bucket.

For a document bucket, the payload is part of a document or a complete doc-
ument, depending on the document size. For an index bucket, the payload may
contain a part of a long word index or several short word indices. Fig. 2 illustrates
the whole view of a broadcast cycle and details of index and document buckets.
Here grey block D denotes document buckets, while white block I denotes an
index bucket. Each document doci has yi document buckets, but they may be
separated by some index bucket, not necessarily consecutively broadcasted.

378 K. Yang et al.

Table 2. Symbol Description

Sym Description Sym Description

D document set. D = {doc0, · · · , doct−1} a document pointer size.
Y document length. Y = {y0, · · · , yt−1} l bucket size.
K word set. K = {k0, · · · , kv−1} t number of documents.
I an inverted list. I = {e0, · · · , ev−1} v number of keywords.
S S = {s0, · · · , sv−1}, where si is the w word size.

number of document pointers in ei. γ collision rate.
Avg(S) average number of document δ merge rate.

pointers in each word index. bcycle one broadcast cycle.
|IB| number of index buckets. |bcycle| length of bcycle.
|DB| number of document buckets. |ibcycle| initial broadcast cycle length.
|MIB| number of index buckets after merging. Avg(AL) average access latency.
|AKE| average length of the keyword entry. Avg(TT) average tuning time.

For convenience, Tab. 2 lists all symbols used in this paper. Some will be
defined in the following sections.

4 Hash-Based Full-Text Search Methods

In this section, we will introduce the construction of two data streaming schemes
for full-text search, which are Basic-Hash and Merged-Hash. Data streaming
scheme is a preprocessing before documents are broadcasted on channels. It will
interleave documents and inverted list as a whole data stream, allocate index
buckets and data buckets according to the predefined hash function, and then
setup corresponding address pointer and other information for clients to search
words of interest and retrieve target documents.

In the following subsections, we will discuss the construction of Basic-Hash
and Merged-Hash, with detailed algorithm description, examples, and scenario
discussion. Finally, we propose an information retrieval protocol for mobile/
wireless clients to retrieve their interest documents.

4.1 Basic-Hash Data Streaming Scheme

Full-text query processing can be achieved by adding the inverted list onto the
broadcast channel. If we put the inverted list directly in front of the documents,
the average tuning time can be dramatically long because the client needs to
go through the inverted list one by one to find the word index of interest. This
tuning time overhead can be reduced by a two-level index scheme which adds
another level of index for the inverted list.

In this subsection, we propose a novel two-level index scheme for full-text
search called Basic-Hash method. The idea is to hash all word indices in the
inverted list onto the broadcast channel. The documents and word indices are
interleaved with each other. We choose hashing rather than tree-based indexing
as the index for the inverted list because it is faster and doesn’t occupy much
space. Once a client tunes in the broadcast channel, it reads the hash function

A Novel Hash-Based Streaming Scheme for Energy Efficient Full-Text Search 379

in the header of a bucket and computes the offset to the target word index
immediately. The tuning time to reach the word index of interest is only 2 in the
ideal case. Hash function also takes little space from the header of each bucket,
without occupying extra index buckets.

It takes three steps to construct a bcycle using Basic-Hash broadcast scheme:

Step 1: Index Allocation. Hash all word indices onto broadcast channel (Alg. 1);
Step 2: Document Allocation. Fill empty buckets with documents (Alg. 2).
Step 3: Pointer setup. Set offset information for pointers in word indices and

document/index buckets.

Hash Function. Before index allocation and document allocation, we need to
construct our hash function. Recall that there are t documents to broadcast, each
with yi buckets. I is split into v entries, each with a document address offset list
of size si. Each word has w bytes, each document address pointer is a bytes, and
each bucket contains l bytes (we ignore the length of the header). Initially, we do
not know |bcycle|, so we will use an estimated |ibcycle| to represent the length of
a broadcast cycle. It is easy to know, |ibcycle| = ∑t−1

i=0 yi+ 1
l {a

∑v−1
j=0 sj +v×w}.

Then the hash function should be:

Hash(string) = hashCode(string) mod |ibcycle|.
In the above equation, the input string will be a word (string), while the

output is an integer between 0 and |ibcycle| − 1. This function maps a word
index to a broadcast bucket with sequence number equal to hashed value.

Index Allocation. Algorithm 1 describes Step 1 of Basic-Hash: hashing all
word indices onto broadcast channel. Let A denote the bucket sequence array.
Initially, A contains |ibcycle| empty bucket with consecutive sequence number
starting from 0. We use A[0], · · · , A[|ibcycle| − 1] to represent each bucket. The
main idea of Alg. 1 is: firstly, sort I by si, i = 0, · · · , v − 1 in increasing order as
I ′ = {e′0, · · · , e′v−1}. Next, hash each e′i onto the channel in order.

The sorting process guarantees that during allocation, if more than one word
index are hashed to the same bucket, the shorter word index will be assigned to
the bucket first and longer word indices will be appended thereafter, which helps
reducing the average tuning time for a client to find the word index of interest.

Since each bucket has l bytes capability, it may include more than one word
index. Once encountering a collision, we will append e′i right after the existing
index. If this bucket is full, then find the next available bucket right forward and
insert e′i. It is also possible that there is no enough space for e′i. In this situation,
we will push other word indices in buckets with higher sequence number, and
“insert” e′i. An example is shown in Fig. 3.

Fig. 3 illuminates several scenarios for index allocation. In (a), word index e5

should be insert into bucket A[9]. Since A[9] is empty, we directly insert e5 into
it. If the size of e5 is larger than A[9], the rest part will be appended to A[10]
or more buckets. In (b), e2, e3, and e5 have been allocated already, and we are
going to insert e7 to A[7]. Since e2 is already allocated at A[7], and there is still
enough space left in A[7], we append e7 after e2. In (c), e1 should be inserted

380 K. Yang et al.

I I IID II

PayloadHeader

PayloadHeader

TYPE
SQ

LEFT
END

MERGEP
OFFSET
HASH

DDDD

k1:doc_offset_list1

k2:doc_offset_list1

k3:doc_offset_list1...

Index
Bucket

Document
Bucket

Broadcast
 Cycle

Fig. 2. Whole View of bcycle

e7e7e7e2e3

6 7 8
e5

9

e1

e2e3

6 7 8
e5

9
e1 e1 e7 e7

6 7 8Sq#
e5

9
Bucket

e2e3

6 7 8
e5

9

e7

e7e7e7e2e3

6 7 8
e5

9

Allocate ei to an empty bucket

Allocate ei to a bucket with enough space

Allocate ei to a bucket with push process

(a)

(b)

(c) Push

Fig. 3. Index Allocation Scenario Analysis

Algorithm 1. Index Allocation For Basic-Hash
input: I , A;
output: A filled with word indices;

1: sort I by si increasingly to I ′ = {e′0, · · · , e′v};
2: for i = 0 to v − 1 do
3: sq = Hash(k′

i);
4: check whether A[sq] is full, if yes, set sq = sq + 1 until A[sq] is not full;
5: insert e′i into A[sq], if there is not enough space, then push data from A[sq + 1]

forward until e′i can be successfully inserted.
6: end for

into A[6]. e2, e3, e5, and e7 has already been allocated onto the channel before
inserting e1. Note that A[6] does not have enough space for e5. Thus from A[7],
all the data entries should be moved forward until e1 can fit into the channel.
Since there is some unfilled space between e7 and e5, e5 will not be influenced.
Detailed description of index allocation is illustrated in Alg. 1.

Data Allocation. Alg. 2 discusses how to allocate documents after index allo-
cation process. Since each bucket can be either an index bucket or a document
bucket, we cannot append documents to these buckets which already contain
indices. Therefore, starting from A[0], we will scan each bucket in order, and
insert documents from doc0 to doct−1 sequentially to the empty buckets. Each
doci will take yi buckets. We use docj

i to denote the jth bucket for doci in short.

Pointer Setup. Besides index allocation and data allocation, we need to setup
the offset (address) information for pointers inside each word index, as well as
OFFSET in each bucket header (since each document doci will be split into
yi buckets, and may not be consecutively allocated, we need another pointer to
figure out this information). Pointers for word indices in buckets and OFFSET
in headers can only be setup after the index and data allocation, because we did
not know the locations of documents before that. To fill OFFSET in headers,
we can scan reversely from the last bucket of the bcycle, record the sequence
number of each docj

i , and then fill the offset information.

A Novel Hash-Based Streaming Scheme for Energy Efficient Full-Text Search 381

Algorithm 2. Document Allocation for Basic-Hash
input: D, A;
output: a complete broadcast stream A;

1: sq = 0, j = 0;
2: for i = 0 to t − 1 do
 Insert doci onto channel
3: while j < yi do
4: if A[sq] is empty then append docj

i to A[sq]; j = j + 1; sq = sq + 1;
5: else sq = sq + 1; end if
6: end while
7: j = 0;
 Reset intermediate variable
8: end for

e4

e4 e7e11e6e15e3e14e13e2e1e9e5e8e10

1 2 1918171615141312111098765430 20 21 22 2423

Initial Broadcast Cycle

After Index Allocation

After Document Allocation

25

e11 e12

e7e11e6e15e3e14e13e2e1e9e5e8e10

1 2 1918171615141312111098765430 20 21 22 2423

Broadcast Cycle for Basic-Hash

25
doc1 doc1 doc2 doc2 doc3 doc3 doc4 doc4 doc6

e11 e12

doc5 doc5 doc5

e1

e1

(b)

(a)

Fig. 4. Index and Document Allocation of Hash-Based Method

An Example. We apply Basic-Hash to the document set described in Fig. 1 as
an example to demonstrate the complete streaming procedure. Assume w = a =
4bytes. We can then compute the length of each word index. Assume l = 24bytes,
each of doc1, doc2, doc3 and doc4 takes 2 buckets, doc5 takes 3 bucket, and doc6

takes 1 bucket. Based on the above information, we can compute |ibcycle| = 20.
Following Alg. 1, we first allocate all word indices onto the channel. Then, we use
Alg. 2 to allocate 6 documents. The broadcast cycle after index and document
allocations is presented in Fig. 4 respectively. Finally, after bcycle is constructed,
we need to fill the necessary header and pointer information to each bucket.

4.2 Merged-Hash Data Streaming Scheme

Basic-Hash method can dramatically shorten the average tuning time of the
search process than the Inverted List method in [7]. The average access latency,
however, is much longer. The reason is that in Inverted List method, all the
word indices are combined together, and inserted into consecutive buckets. On
the other hand, Basic-Hash method separates them and maps each index respec-
tively into disconnect buckets, which makes |bcycle| much longer. For example,
if the document number is 1000, total number of words is 500, the inverted list
may only occupy 100 bucket; while a non-conflict hash function maps words
in different buckets from each other, which occupies 500 buckets. The |bcycle|
expands from 1100 to 1500, and the average access latency is thus influenced.

Merged-Hash Algorithm. Merged-Hash aims at reducing average access la-
tency by reducing the number of index buckets. Compared with Basic-Hash,
Merged-Hash has one more step: Merge Word Index. It will be performed between

382 K. Yang et al.

Alg. 1 and 2. The purpose is to combine adjacent index fragments into one bucket
to make full use of bucket space. Merge process can reduce |bcycle|without increas-
ing average tuning time.

The idea of Merge Word Index algorithm is: starting from the last index
bucket A[i], if its closest previous index A[j] can be merged into A[i], then
append A[j] to A[i], and delete A[j]. Repeat this process until either A[i] is full
or its closest previous index A[j] is full or cannot be merged into A[i]. Next,
find another A[i] and repeat the above process, until all index buckets have been
scanned. The detailed description is showed in Alg. 3.

Algorithm 3. Merge Word Index
input: A;
output: A with merged word indices;

1: find the last non-full index A[i], set M = A[i];
2: while M is not full do
3: find its closest previous index A[j];
4: if A[j] is not full and M has enough space for A[j] then
5: append A[j] to M , delete A[j];
6: else M = A[j], Break; end if
7: end while
8: repeat Line 2 to Line 7 until all index buckets have been scanned.

An Example. We also use an example shown in Fig. 5(a) to illustrate Alg. 3.
Merge process begins at bucket 17 with M moving backwards. We can see that
word indices in bucket 16 is merged in bucket 17 because there is enough space
for them to append. And we also observe that bucket 15 does not follow the step
of bucket 16, because after bucket 16 is merged to bucket 17, their is not enough
space any more to append the whole indices in bucket 15. For each bucket that
is merged to another bucket, MERGEP in header indicates the offset between
these two buckets for clients to keep track of the index. For instance, MERGEP
in bucket 16’s header is 1 and MERGEP in bucket 1’s header is 2. Note that the
merging operation is based on bucket instead of index. Hence, it is possible that
an index will be split after merging. In such cases, we also need MERGEP to
direct clients. For example, the second part of e1 in bucket 6 is merged to bucket
7, so it is separated from its first part in bucket 5. With the help of MERGEP, the
tuning time to read such an index only increases by 1, while merging operation
dramatically reduces the |bcycle|.

e4 e7e11e6e15e3e14 e13e2e1e9e5 e8e10

1 2 1918171615141312111098765430 20
After Index Merge

e11e12

e4 e7e11e6e15e3e14 e13e2e1e9e5 e8e10

1 2 1918171615141312111098765430 20

Broadcast Cycle for Merged-Hash

doc1 doc2 doc2 doc3 doc3 doc4 doc4 doc5 doc5 doc5 doc6doc1

e11e12

After Document Allocation

e1

e1

(a)

(b)

Fig. 5. Index and Document Allocation of Merged-Based Method

A Novel Hash-Based Streaming Scheme for Energy Efficient Full-Text Search 383

After Basic-Hash, the broadcast channel looks as Fig. 4(a), with 13 index
buckets. If we merge index buckets following Alg. 3, the number of index buckets
will decrease to 9, as shown in Fig. 5(a). Comparing Fig. 4(b) and 5(b), we see
that |bcycle| after merging is reduced to 20, which is the same as |ibcycle|; while
|bcycle| without merging is 25, which is 20% longer than |ibcycle|.

4.3 Information Retrieval Protocol

After document allocation, the whole bcycle is built. Next, we discuss information
retrieval protocol. A mobile client will firstly access onto the channel, read the
current bucket and get hash function. Next, it computes a sequence number
hashed from target word w, and waits until this bucket appears. Then it will
follow the direction of bucket pointers to find the word index containing the
information of w, and read every offset inside the doc offset list. Finally, it waits
according to these time offsets and download the requested documents one by
one. The detailed description of this algorithm is illustrated in Alg. 4.

Algorithm 4. Information Retrieval Protocol
input: keyword w;
output: a set of documents containing w;

1: read current bucket cb, get hash function hash(·); compute sq = hash(w);
2: if A[sq] is not the current bucket then wait for the A[sq]; end if
3: read A[sq], follow index pointer to find ei with w.
4: read all the addresses of document containing w;
5: for each document offset do wait and download the document buckets; end for

5 Performance Analysis

In this section, we will give theoretical analysis for both Basic-Hash and Merged-
Hash with respect to the average access latency and tuning time.

5.1 Analysis for Basic-Hash

For an inverted list, the average number of documents linked to a word is
Avg(S) =

∑v−1
i=0 si/v. The average length of a word index |AKE| = w+aAvg(S).

Theorem 1. The average access latency of Basic-Hash is(
1
2

+
Avg(S)

Avg(S) + 1

)(
t−1∑
i=0

yi +
⌈ |AKE|

(1 − γ)l

⌉
(1 − γ)v

)
. (2)

Proof. In Basic-Hash, average access time (Avg(AL)) is the sum of probe wait
and bcast wait, where probe wait denotes the latency of finding target word index
bucket and bcast wait is the time needed to download all documents containing
the requested word. If documents are uniformly distributed on the channel,

Avg(AL) =
|bcycle|

2
+

Avg(S)|bcycle|
Avg(S) + 1

. (3)

384 K. Yang et al.

From Eqn. (1), we have

|bcycle| =
t−1∑
i=0

yi +
⌈ |AKE|

(1 − γ)l

⌉
v(1 − γ) (4)

Combining Eqn. (3) and (4), we can derive Eqn. (2).

Theorem 2. The average tuning time of Basic-Hash is 1+
⌈
|AKE|
(1−γ)l

⌉
+Avg(S)

t

t−1∑
i=0

yi.

Proof. The average tuning time (Avg(TT)) includes time of 1) initial probing,
2) reading target index bucket and 3) downloading target documents. Initial
probing takes time 1. After initial probe, the client computes the hashed value,
dozes and tunes in the hashed bucket directly. The time needed to read the
target index bucket is)|AKE|/((1 − γ)l)*. On average, there are Avg(S) doc-
uments containing a word, so the time needed to download these documents is
Avg(S)

∑t−1
i=0 yi/t. Summing the above three parts, we can get the conclusion.

5.2 Analysis for Merged-Hash

For Merged-Hash scheme, index buckets are merged according to Alg. 3 after
word indices are hashed to the channel. We define |MIB| to represent the total
number of index buckets after merging, and merge rate δ = |MIB|/|IB| to
indicate the effect of merging. δ is bounded between [)1/|AKE|*, 1].

Theorem 3. The access latency of Merged-Hash is(
1
2

+
Avg(S)

Avg(S) + 1

)(
t−1∑
i=0

yi +
⌈ |AKE|

(1 − γ)l

⌉
(1 − γ)vδ

)
. (5)

Proof. The access latency of Merged-Hash scheme is also computed as Eqn. (3).
The difference is how to get |bcycle|. In Merged-Hash, the length of a bcycle is:

|bcycle| = |DB| + |MIB| =
t−1∑
i=0

yi +
⌈ |AKE|

(1 − γ)l

⌉
(1 − γ)vδ.

Theorem 4. The tuning time of Merged-Hash is 2+ δ
⌈
|AKE|
(1−γ)l

⌉
+ Avg(S)

t

t−1∑
i=0

yi.

Proof. Similar as Basic-Hash, the tuning time for Merged-Hash is also composed
of three parts. If the word index of interest did not merge with any other index,
the tuning time is exactly the same as in Basic-Hash. If the word index merged
with other indices, it means the size of this index is smaller than an index bucket.
So it takes 1 unit time to read. Therefore, the average tuning time to read word
index is (1−δ)+δ)|AKE|/((1 − γ)l)*. Combining with the tuning time for initial
probing and document downloading, we can prove Thm. 4.

A Novel Hash-Based Streaming Scheme for Energy Efficient Full-Text Search 385

6 Simulation and Performance Evaluation

In this section, we will evaluate the Basic-Hash and Merged-Hash methods by
simulation results. We also compare Merged-Hash method with Inverted List
and Inverted List + Tree Index methods in [7]. The performance metrics used
are average access latency (AAL) and average tuning time (ATT).

The simulation is implemented using Java 1.6.0 on an Intel(R) Xeon(R) E5520
computer with 6.00GB memory, with Windows 7 version 6.1 operating sys-
tem. We simulate a base station with single broadcast channel, broadcasting
a database of 10,000 documents with a dictionary of 5,000 distinct words. For
each group of experiments, we generate 20,000 clients randomly tuning in the
channel and compute the average of their access latency and tuning time.

6.1 Comparison between Basic-Hash and Merged-Hash

We use two experiments to compare the performance of Basic-Hash and Merged-
Hash. In the first experiment, we vary the size of the word dictionary from 1,000
to 5,000, while the number of documents is fixed to 10,000. This simulates how
similar a set of documents are. Documents with more similar topics may have
more words in common, which results in a smaller dictionary. The content of
each document is randomly generated from the dictionary. The repetitions of a
word in a document is uniformly distributed between 1 and 5. The number of
non-replicated words contained in a document is set between 1 and 50.

Fig. 6. AAL w.r.t. Word No. Fig. 7. ATT w.r.t. Word No.

Fig. 8. AAL w.r.t. Document No. Fig. 9. ATT w.r.t. Document No.

386 K. Yang et al.

Fig. 6 shows average latency of Basic-Hash and Merged-Hash in this set-
ting. Obviously, Merged-Hash has a much shorter access latency than Basic-
Hash. This verifies our prediction that by merging hashed indices, we can reduce
|bcycle| and thus reduce average access latency. In fact, when the dictionary
size is 5000, |bcycle| of Basic-Hash is 14047 while tit is only 11284 for Merged-
Hash. When the total number of words increases, the advantage of Merged-Hash
compared with Basic-Hash becomes more obvious.

Fig. 7 presents the average tuning time. We can observe that no matter how
the dictionary size changes, the average tuning times of Basic-Hash and Merged-
Hash are very similar with each other. This is because merging word indices do
not have much impact on the time for reading a word index of interest.

The second experiment is to evaluate the influence of document set size to
the performances of proposed two streaming scheme. We generate D in the same
way. Then, randomly choose subsets of D to form eight smaller-sized document
set ranging from 1,000 to 9,000. Fig. 8 indicates that Merged-Hash performs bet-
ter than Basic-Hash with respect to average access latency no matter how large
the document set size is. The difference between Merged-Hash and Basic-Hash
first increases as the number of documents increases, then almost remains un-
changed after the document set size reaches 6000. Similar as the first experiment,
whatever document set size is, the difference between average tuning times of
these two streaming schemes is negligible.

6.2 Comparison with Other Methods

In [7], the authors proposed two full-text search method: Inverted List method
(IL) and Inverted List + Tree Index method (IL+TI). For a fair comparison, we
set the simulation environment exactly the same as in [7]. We generate 10,000
documents, each of size 1024 bytes. The contents of documents are randomly
generated from 4703 distinct words. The bucket size is 1024 bytes. The repeti-
tions of a word in a document is 1 to 5, in a uniform way. The Avg(S) is 51,
which is also the same as in [7]. All results are averaged based on 20,000 clients.

Table 3. Comparison of three full-text search methods

IL IL+TI Merged-Hash

average access latency 14901 16323 16312
average tuning time 916 91 54

Tab. 3 compares the average access latency and tuning time of IL, IL+TI
and Merged-Hash. Compared with IL, both IL+TI and Merged-Hash can dra-
matically reduce average tuning time by indexing the inverted list. Merged-Hash
costs even 40.7% less average tuning time than IL+TI. Therefore, Merged-Hash
is the most energy efficient scheme among three. This verifies our analysis that
hashing can speed up the searching within the inverted list and consequently re-
duce tuning time. The average access latency of Merged-Hash are slightly longer
(9.5%) than IL. The reason is that although hashing itself does not require ded-
icated index bucket, hashing word indices into different buckets may not make

A Novel Hash-Based Streaming Scheme for Energy Efficient Full-Text Search 387

full use of the bucket capacity. Therefore, |MIB| may be larger than the number
of buckets needed to fill in a complete inverted list. However, Merged-Hash still
has very similar average access latency with IL+TI.

7 Conclusion

In this paper, we proposed two novel wireless data broadcast streaming schemes:
Basic-Hash and Merged-Hash, which provide a two-level indexing to facilitate
the full-text query processing in the wireless data broadcast environment. The
proposed methods utilizing hash technique to index the inverted list of document
broadcasted, which itself is an index for full-text search. For each scheme, we
designed detailed index allocation and document allocation algorithms, together
with a corresponding querying processing protocol. The performances of these
two schemes were analyzed both theoretically and empirically. Simulation results
indicate that Merged-Hash is the most energy-efficient streaming scheme among
all broadcast schemes for full-text search in existing literatures. In the future,
we plan to extend Merged-Hash to increase the utilization ratio of index buckets
in order to further reduce the access latency and tuning time of full-text query
processing. We also plan to explore how to adopt other traditional full-text search
methods to the wireless broadcast environment.

References

1. http://msdn.microsoft.com/en-us/library/ms142571.aspx

2. Amer-Yahia, S., Shanmugasundaram, J.: Xml full-text search: challenges and op-
portunities. In: VLDB 2005 (2005)

3. Asplund, M.: Building full-text search applications with oracle text,
http://www.oracle.com/technology/pub/articles/asplund-textsearch.html

4. Atlam, E.S., Ghada, E.M., Fuketa, M., Morita, K., Aoe, J.: A compact memory
space of dynamic full-text search using bi-gram index. In: ISCC 2004 (2004)

5. Blair, D.C., Maron, M.E.: An evaluation of retrieval effectiveness for a full-text
document-retrieval system. Commun. ACM 28(3), 289–299 (1985)

6. Brown, E.W., Callan, J.P., Croft, W.B.: Fast incremental indexing for full-text
information retrieval. In: VLDB 1994, pp. 192–202 (1994)

7. Chung, Y.D., Yoo, S., Kim, M.H.: Energy- and latency-efficient processing of full-
text searches on a wireless broadcast stream. IEEE Trans. on Knowl. and Data
Eng. 22(2), 207–218 (2010)

8. Chung, Y.C., Lin, L., Lee, C.: Scheduling non-uniform data with expected-
time constraint in wireless multi-channel environments. J. Parallel Distrib. Com-
put. 69(3), 247–260 (2009)

9. Faloutsos, C., Christodoulakis, S.: Signature files: an access method for documents
and its analytical performance evaluation. ACM Trans. Inf. Syst. 2(4), 267–288
(1984)

10. Imielinski, T., Viswanathan, S., Badrinath, B.r.: Data on air: Organization and
access. IEEE Trans. on Knowl. and Data Eng. 9(3), 353–372 (1997)

11. Kim, M.S., Whang, K.Y., Lee, J.G., Lee, M.J.: Structural optimization of a full-text
n-gram index using relational normalization. The VLDB Journal 17(6), 1485–1507
(2008)

http://msdn.microsoft.com/en-us/library/ms142571.aspx
http://www.oracle.com/technology/pub/articles/asplund-textsearch.html

388 K. Yang et al.

12. Moffat, A., Zobel, J.: Self-indexing inverted files for fast text retrieval. ACM Trans.
Inf. Syst. 14(4), 349–379 (1996)

13. Scholer, F., Williams, H.E., Yiannis, J., Zobel, J.: Compression of inverted indexes
for fast query evaluation. In: SIGIR 2002, pp. 222–229 (2002)

14. Tomasic, A., Garćıa-Molina, H., Shoens, K.: Incremental updates of inverted lists
for text document retrieval. SIGMOD Rec. 23(2), 289–300 (1994)

15. Viredaz, M.A., Brakmo, L.S., Hamburgen, W.R.: Energy management on handheld
devices. Queue 1(7), 44–52 (2003)

16. Xu, J., Lee, W.C., Tang, X., Gao, Q., Li, S.: An error-resilient and tunable dis-
tributed indexing scheme for wireless data broadcast. IEEE Trans. on Knowl. and
Data Eng. 18(3), 392–404 (2006)

17. Yao, Y., Tang, X., Lim, E.P., Sun, A.: An energy-efficient and access latency op-
timized indexing scheme for wireless data broadcast. IEEE Trans. on Knowl. and
Data Eng. 18(8), 1111–1124 (2006)

18. Zhang, J., Suel, T.: Optimized inverted list assignment in distributed search engine
architectures. In: Parallel and Distributed Processing Symposium, International,
p. 41 (2007)

19. Zhang, X., Lee, W.C., Mitra, P., Zheng, B.: Processing transitive nearest-neighbor
queries in multi-channel access environments. In: EDBT 2008: Proceedings of the
11th International Conference on Extending Database Technology, pp. 452–463
(2008)

20. Zheng, B., Lee, W.C., Lee, K.C., Lee, D.L., Shao, M.: A distributed spatial index
for error-prone wireless data broadcast. The VLDB Journal 18(4), 959–986 (2009)

21. Zheng, B., Lee, W.C., Liu, P., Lee, D.L., Ding, X.: Tuning on-air signatures
for balancing performance and confidentiality. IEEE Trans. on Knowl. and Data
Eng. 21(12), 1783–1797 (2009)

22. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput.
Surv. 38(2), 6 (2006)

Efficient Topological OLAP on Information Networks�

Qiang Qu, Feida Zhu, Xifeng Yan, Jiawei Han, Philip S. Yu, and Hongyan Li

{quqiang,lihy}@cis.pku.edu.cn, fdzhu@smu.edu.sg,
xyan@cs.ucsb.edu, hanj@cs.uiuc.edu, psyu@cs.uic.edu

Abstract. We propose a framework for efficient OLAP on information networks
with a focus on the most interesting kind, the topological OLAP (called “T-
OLAP”), which incurs topological changes in the underlying networks. T-OLAP
operations generate new networks from the original ones by rolling up a subset
of nodes chosen by certain constraint criteria. The key challenge is to efficiently
compute measures for the newly generated networks and handle user queries with
varied constraints. Two effective computational techniques, T-Distributiveness
and T-Monotonicity are proposed to achieve efficient query processing and cube
materialization. We also provide a T-OLAP query processing framework into
which these techniques are weaved. To the best of our knowledge, this is the
first work to give a framework study for topological OLAP on information net-
works. Experimental results demonstrate both the effectiveness and efficiency of
our proposed framework.

1 Introduction

Since its introduction, OLAP (On-Line Analytical Processing) [10,2,11] has been a
critical and powerful component lying at the core of the data warehouse systems. With
the increasing popularity of network data, a compelling question is the following: “Can
we perform efficient OLAP analysis on information networks?” A positive answer to
this question would offer us the capability of interactive, multi-dimensional and multi-
level analysis over tremendous amount of data with complicated network structure.

Example 1 (Academia Social Network Interaction). From an academic publication
database like DBLP, it is possible to construct a heterogeneous information network
as illustrated in Figure 1. There are four kinds of nodes each representing institutions,
individuals, research papers and topics. Edges between individuals and institutions de-
note affiliation relationship. Edges between two individuals denote their collaboration
relationship. A paper is connected to its authors, and also to its research topic.

OLAP operations could expose two kinds of knowledge that are hard to discover in the
original network.

1. Integrating knowledge from different parts of the network. As an example, users
could be interested in questions like ”who are the leading researchers in the topic
of social network?”. This knowledge involves integrating information lying in two

� This work is supported by Natural Science Foundation of China (NSFC) under grant numbers:
60973002 and 60673113.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 389–403, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

390 Q. Qu et al.

Fig. 1. A Heterogeneous Information Network

parts of the network: (1) the linkages between the individuals and papers, and (2)
the linkages between the papers and the topics. As shown in the example, for the
nodes representing papers, we can roll-up on them and group them by the same
topics, as shown in Figure 2. As the nodes are being merged, the original edges
between the papers and individuals would be aggregated accordingly, and the re-
sulting edges would denote the authors’ publication prominence in the research of
every topic.

2. Investigating knowledge embedded in different granularity levels of the network.
Besides synchronous drilling in traditional OLAP, many knowledge discovery tasks
in information networks may need asynchronous drilling. For example, in Figure 3,
users could be interested in the collaborative relationship between the Yahoo! Lab
and related individual researchers. For instance, such analysis could show strong
collaborations between AnHai Doan and researchers at both Yahoo! Lab by exam-
ining the corresponding edges. On the other hand, if the whole Wisconsin database
researchers be merged into a single node, it would be hard to discover such knowl-
edge since, collectively, there would be even stronger collaborations between Wis-
consin and other universities, which may shadow Doan’s link to Yahoo! Lab. Such
asynchronous drilling should be guided by what can be potentially found in knowl-
edge discovery, and thus leading to the concept of discovery-driven OLAP.

Based on the above motivating example, we propose a new framework for OLAP over
information networks. Under this framework, we assume nodes and edges of an infor-
mation network are associated with multiple hierarchical dimensions. OLAP (such as
dicing and drilling) on information network takes a given network as input data and
generates new networks as output. This is rather different from traditional OLAP which
takes facts in the base cuboid and generates aggregate measures at high-level cuboids.

The second major difference between our OLAP model from the traditional one is
the concept of asynchronous, discovery-driven OLAP. In the traditional data warehouse
systems, drilling is performed synchronously across all the data in a cuboid. However,
for OLAP in an information network, such synchronous drilling may fail to expose
some subtle yet valuable information for knowledge discovery.

The information network OLAP (i.e., InfoNet OLAP) poses a major research is-
sue: How to efficiently perform InfoNet OLAP? This paper answers this question by
proposing two general properties, T-distributiveness and T-monotonicity, for efficient

Efficient Topological OLAP on Information Networks 391

Fig. 2. Roll-up on Papers of the Same Topic Fig. 3. Asynchronous Roll-up on Researchers to
Institutions

computation of different measures in InfoNet OLAP. Our focus of this study is on effi-
cient T-OLAP, the OLAP operations that change the topological structure (such as node
merging) of the network. Moreover, we provide algorithms for computing the measures
discussed in our categorization. In particular, we also examine the monotonicity prop-
erty and their impact on efficient query processing. Our experiments on both real and
synthetic networks demonstrate the effectiveness and efficiency of the application of
our framework.

2 Problem Formulation

We study a general model of attributed networks, where both vertices and edges of a
network G could be associated with attributes. The attributes, depending on their se-
mantic meanings, could be either of categorical values or numeric ones. We use the
DBLP co-authorship network, referred to as “DBLP network” from now on, as a run-
ning example for many illustrations in later discussions.

DBLP Network Example. In DBLP co-authorship network, each node v represents
an individual author, associated with attributes: Author Name, Affiliated Institution, and
Number of Papers Published. Each edge (u, v) between two authors u and v represents
their coauthor relationship for a particular conference in a particular year, with attributes
like Conference, Year, Number of Coauthored Papers. Evidently, there could be multiple
edges between two vertices in the DBLP network if two authors have coauthored papers
in different conferences. For instance, it could be found between two authors u and v
edges like (ICDE, 2007, 2) and (SIGMOD, 2008, 1) and so on.

A network is homogeneous if every edge and vertex represents the same kind of
entities and relationships, e.g. the DBLP network. Otherwise, it is heterogeneous.

We focus our discussion on homogeneous networks in this paper, and it should be
evident that most of the results apply to heterogeneous networks as well. As a conven-
tion, the vertex set of a network G is denoted by V (G) and the edge set by E(G). The
size of a network G is defined as the number of edges of G, written as |E(G)|. Let
Σi

V , 1 ≤ i ≤ m and Σi
E , 1 ≤ i ≤ n denote the sets of valid attribute values for vertices

and edges respectively.

392 Q. Qu et al.

Definition 1. [Attributed Network Model] An attributed network is a triple (G, LV ,
LE) in which G = (V (G), E(G)), LV : V (G) /→ Σ1

V × Σ2
V × . . . × Σm

V and LE ⊆
V (G) × V (G) × Σ1

E × Σ2
E × . . . × Σn

E , where m and n are numbers of attribute
dimensions for vertices and edges respectively.

In InfoNet OLAP, the underlying data for a measure is now a network, instead of iso-
lated numerical values, thus measures could in this case take the form of a network.
Given an attributed network G and a measure θ, we use θ(G) to denote the measure θ
computed on the network G.

In general, given G and θ, a query in InfoNet OLAP could be represented as ”SE-
LECT G′ FROM G WHERE fC(θ(G′), δ) = 1” in which G′ ⊆ G and fC() is a
boolean function taking as input a constraint C, a measure θ(G′) computed on G′ and a
user-defined threshold δ, such that fC(θ(G′), δ) = 1 if and only if θ(G′), δ satisfies con-
straint C. For example, given a network G, suppose the measure θ is “diameter”, then a
corresponding constraint C could be “θ(G′) <= δ”. Then fC(θ(G′), δ) = 1, G′ ⊆ G
if and only if the diameter of G′ is at most δ.

Such queries can be issued for the original data network in which every node can be
considered as a data cuboid. However, for T-OLAP on InfoNet, these kind of queries
could more likely be issued for some summarized network generated from the original
one by merging or rolling up certain subgraphs as illustrated in Figure 2 and 3. For
efficient OLAP in traditional data warehouse, data cube computation has been playing
an important role with many algorithms developed. However, for InfoNet OLAP, mate-
rialization of information network “cubes” may not be realistic due to the huge number
of possible flexible “cubes” that have to be precomputed, considering drilling may not
even be “synchronized” (i.e., rolling all the network nodes up to the same level) as
one may like to perform selective drilling for effective discovery-driven OLAP. On the
other hand, it is often the case that we already have some partially materialized cubes
as a result of preceding queries on some summarized level. Then the central question is
the following: Can we make use of the partially materialized cubes to more efficiently
answer a new coming query? If yes, how?

3 Techniques and Framework

We propose two constraint-pushing techniques based on the unique characteristics of
InfoNet OLAP, T-Distributiveness and T-Monotonicity. The framework taps the pow-
erful techniques in traditional OLAP on data cube and extends them further into the
information network setting. We use a simple motivating example to introduce the two
techniques.

DBLP Query Example. Given the DBLP author network, suppose the measure θ of
interest is the ”total number of publications”, i.e., for a given node v, denoted as θ(v)
its total number of publications. Depending on the level of network to which v belongs,
v could represent an individual researcher, a research group, or an institution. A user
could then submit queries asking to return ”all researchers v such that θ(v) ≥ δ”.

The measure in the above example is in fact the ”Degree Centrality”. We use CD(v) to
denote this measure, Degree Centrality, for a node v. To formally represent the concept
of networks at different levels, we need a definition of OLAP network hierarchy

Efficient Topological OLAP on Information Networks 393

Definition 2. [OLAP Network Hierarchy] Given a network G(V, E) and a partition
Π of V (G) such that ΠG = {V1, V2, . . . , Vm}, m ≤ |V (G)|. A network G′ is called a
higher-level network of G if G′ is obtained by merging each Vi ∈ ΠG, 1 ≤ i ≤ m into a
higher-level node v′i and the edges accordingly. G is then called a lower-level network
of G′ and denoted by G � G′. For each v ∈ V (G), v′

î
is called the higher-level node of

v if v ∈ Vî, which is denoted as v �V v′
î
.

Notice that topological OLAP operations could be asynchronous. A higher-level net-
work can be obtained by merging portions of a lower-level one, leaving the rest un-
changed.

3.1 T-Distributiveness

Suppose we have three levels of networks where nodes represent individuals, research
groups and institutions in each network respectively. Instead of individuals, users could
query about the institutions with the total number of publications beyond a certain
threshold δ. The straightforward way is to construct the network G′′ at the institution
level by merging the constituent author nodes for each institution from the original net-
work G, and compute the measure by summing up over each. For large institutions,
the computation could be costly. Now suppose we have already computed the measure
for the network G′ at the research group level, can we exploit this partial result to im-
prove efficiency? It turns out we can do that in this case due to the distributiveness of
this measure function. Basically, the measure value of an institution can be correctly
obtained by summing up over the measure values already computed for the research
groups. Consider any set of vertices S = {v1, v2, . . . , vk} and a partition ΠS of S such
that ΠS = {S1, S2, . . . , Sm}, m ≤ k. Each Si ∈ ΠS is merged to a new vertex v′i and
the whole set S is merged to a new vertex v′′ by a T-OLAP roll-up operation. We also
overload the notation to denote ΠS = {v′1, v′2, . . . , v′m}. It is easy to verify that

CD(v′′) =

(∑
vi∈S

CD(vi)

)
− 2|ES |

=
∑

1≤i≤m

(∑
vi∈Si

CD(vi) − 2|ESi |
)

− 2|EΠS |

=

⎛⎝ ∑
v′

i∈ΠS

CD(v′i)

⎞⎠− 2|EΠS |

where ES is the set of edges with both end vertices in S. It is clear that, since addition
and subtraction are commutative, distributive and associative, the result of computing
by definition from the bottom-level network is the same as the result of computing from
the intermediate-level one. Figure 4 is an illustration of the computation. CD(v′′) is a
total of 4+2+5+3 = 14 from G′′. We can get this measure directly from the original
network G by the given formula

∑
vi∈S CD(vi) − 2|ES | = (3 + 8 + 3 + 7 + 10 +

11 + 7 + 5 + 6) − 2(2 + 3 + 3 + 1 + 2 + 4 + 1 + 2 + 4 + 1) = 14. We can also

394 Q. Qu et al.

Fig. 4. T-Distributiveness for Degree Centrality Fig. 5. T-Distributiveness for Shortest Path

use partial measure results computed for the intermediate network G′ and compute by∑
v′

i∈ΠS
CD(v′i)−2|EΠS | = (8+12+14)−2(3+1+6) = 14. The computational cost

is reduced to O(m + |EΠS |). This example shows that the computation cost is greatly
reduced by taking advantage of partial measure results already computed. This kind of
distributiveness of a measure function is termed T-Distributiveness in this topological
OLAP setting.

We now give the formal definition of T-Distributiveness.

Definition 3. [T-Distributiveness] Given a measure θ and three attributed networks G,
G′ and G′′ obtained by T-OLAP operations such that G � G′ � G′′, suppose we have
available θ(G) and θ(G′), then θ is T-Distributive if there exists a function g such that
θ(G′′) = g(θ(G′)) = g(θ(G)).

Although this example of ”Degree Centrality” may seem simple, it is interesting to note
that other more complicated measures, even those involving topological structures, are
also T-distributive. For instance, it can be shown that the measure of ”Shortest Path” is
also T-distributive. Shortest path computation is a key problem underlying many cen-
trality measures, such as Closeness Centrality and Betweenness Centrality, as well as
important network measures like Diameter.

T-Distributiveness for Shortest Paths. It is well-known that the shortest path problem
has the property of optimal substructures. In fact, shortest-path algorithms typically rely
on the property that a shortest path between two vertices contains other shortest paths
within it. Formally, we have the following lemma, the proof of which is omitted and
readers are referred to [6].

Lemma 1. Given an attributed network G with a weight attribute on edges given by
function w : E(G) /→ R, let p = 〈v1, v2, . . . , vk〉 be a shortest path from vertex v1 to
vertex vk and, for any i and j such that 1 ≤ i ≤ j ≤ k, let pij = 〈vi, vi+1, . . . , vj〉 be
the sub-path of p from vertex vi to vertex vj . Then, pij is a shortest path from vi to vj .

Rationale. The significance of the optimal substructure property of the shortest path
problem is that it means the measure is T-distributive, thus providing an efficient way
to compute the measure for T-OLAP roll-up operations.

We show our algorithm in Algorithm 2. The main algorithm is Algorithm 1 in which
we show that, instead of computing from scratch from the lowest network G, we are

Efficient Topological OLAP on Information Networks 395

actually able to compute the measure network θ(G′′) for G′′ from the measure network
θ(G′) already computed for an intermediate network G′.

In Algorithm 1, in Line 3, we first compute all shortest paths from the single source
v′′ to all other vertices. From Lines 4 to 7, we update the shortest path between each
pair of vertices (u, v) by picking the smaller-weight one between the existing shortest
path between them and the one which passes through the new vertex v′′. In Algorithm
2, in Lines 1 and 2, we first set the shortest path weight between v′′ and other vertices to
be a maximum weight value. From lines 3 to 6, we calculate the shortest paths between
v′′ and every other vertex u by picking the one with the minimum weight among all the
shortest paths between vertices in S′ and u. It is easy to verify that the time complex-
ity of computational cost of ShortestPath Local is O(|S′| · |V (G) \ S|). The time
complexity of the entire algorithm is therefore O(|V (G)|2).

The correctness of the entire algorithm can be seen from the observation that for any
pair of vertices u and v, if the final shortest path pu,v in G′′ does not pass through the
new vertex v′′, then it should also be the shortest path between u and v in the lower-level
network G′. Therefore, the final shortest path pu,v in G′′ must be the smaller-weight
one between the existing shortest path between them in G′ and the new shortest path
passing through v′′. By the optimal substructure property in Lemma 1, the new shortest
path passing through v′′ must be the union of the two shortest paths, one between u
and v′′, and the other between v′′ and v. When computing the shortest paths between
v′′ and other vertices, we do not use standard single source shortest path algorithms.
Instead, Algorithm ShortestPath Local harness the T-distributiveness of the shortest
path measure.

Theorem 1. Given an attributed network G with edge weights, G′′ is obtained by merg-
ing a set of vertices S = {v1, v2, . . . , vk}, S ⊆ V (G) in a T-OLAP roll-up operation
to a new vertex v′′, and G′ is obtained by partitioning S by Π = {S1, S2, . . . , Sk} and
merging the vertices in each Si into v′i ∈ S′, 1 ≤ i ≤ k, then given the shortest path
measure network θ(G′), ShortestPath Local computes the shortest paths between v′′

and all vertices in V (G) \ S.

Proof. The proof is omitted due to the limitation of space.

Algorithm 1. ShortestPath Main
Input: S′, G and θ(G′)
Output: θ(G′′)

1: θ(G′′) ← θ(G′)
2: Merge S′ into v′′ and add v′′ to G′′;
3: θ(G′′) ← ShortestPath Local(S′, G, θ(G′′));
4: for each u ∈ V (G′′), u "= v′′

5: for each v ∈ V (G′′), v "= v′′

6: if w(puv) > w(puv′) + w(pv′v)
7: w(puv) ← w(puv′) + w(pv′v)
8:return θ(G′′);

Algorithm 2. ShortestPath Local
Input: S′, G and θ(G′′)
Output: θ(G′′)

1: for each u ∈ V (G) \ S′

2: w(pv′′u) ← +∞;
3: for each u ∈ V (G) \ S′

4: for each v ∈ S′

5: if w(pvu) < w(pv′′u)
6: w(pv′′u) ← w(pvu);
7:return θ(G′′);

396 Q. Qu et al.

3.2 T-Monotonicity

Suppose the user queries for all pairs of collaborating researchers with the number of
joint publications above a threshold δ. The observation is that the total number of pub-
lications of an institution is at least as large as that of any of its constituent individual.
This simple monotone property could help prune unnecessary data search space sub-
stantially in the query processing: Given the threshold δ, any institution node pairs with
its measure value less than δ could be safely dropped without expanding to explore
any of its constituent nodes at lower level networks. The monotonicity of a constraint
like this is termed T-Monotonicity in this topological OLAP setting. The definition of
T-Monotonicity is as follows.

Definition 4. [T-Monotonicity] Given a measure θ and a constraint C, let G and G′

be two networks such that G � G′, C is T-Monotone if fC(P1) = 1 → fC(P2) = 1
for all P1 ⊆ G, P2 ⊆ G′ and P1 � P2.

It is not just simple and common measures like the example above that are T-monotone,
in fact, it can be shown that many complicated and important measures which involve
network structures are also T-monotone. Interestingly, ”Shortest Path” is again a good
case in point.

T-Monotonicity for Shortest Paths. For shortest path, it turns out the corresponding
constraints have the property of T-monotonicity. The intuition is that when nodes from
a lower-level network are merged to form nodes in a higher-level network, the shortest
paths between any pair of nodes in the higher-level network cannot be elongated, which
is proved as follows.

Theorem 2. Given two networks G1 and G2 such that G1 � G2, for any two nodes
u, v ∈ V (G1), let u′, v′ ∈ V (G2) be the corresponding higher-level nodes such that
u �V u′ and v �V v′. Then we have Dist(u′, v′) ≤ Dist(u, v).

Proof. Denote w(u, v) as the weight of edge (u, v). Let one of the shortest paths be-
tween u and v in G1 be p = 〈v0, v1, . . . , vk〉 where v0 = u and vk = v. Since G1 � G2,
there exists some i and d such that vertices vi, vi+1, . . . , vi+d, 0 ≤ i, d ≤ k of p are
merged into a single vertex w in G2. Then the weight of the shortest path between u′

and v′ in G2 will have

δ(u′, v′) = δ(u′, w) + δ(w, v′) ≤
∑

0≤j<i

w(vj , vj+1) +
∑

i+d≤j<k

w(vj , vj+1) ≤ δ(u, v)

We give a summary of some common network measures in Figure 6.

3.3 T-OLAP Query Processing Framework

Both T-distributiveness and T-monotonicity would be pushed into the framework for
processing T-OLAP queries. The framework of T-OLAP query processing consists of
the following stages:

Pre-computation: Given a network G and the measure θ to be computed, the query
algorithm first computes the base cuboids to be materialized.

Efficient Topological OLAP on Information Networks 397

Constraints SUM MIN, Min Degree, Density Bridging Degree Closeness Betweenness Diameter Structural Containment

MAX Max Degree Capital Centrality Centrality Centrality Cohesion

T-Monotonicity Yes Yes No No No No Yes No Yes No No

T-Distributiveness Yes Yes Yes No Yes Yes Yes Yes Yes No No

Fig. 6. A General Picture of Typical InfoNet OLAP Constraints

Query Processing:

1. Abstraction Level Processing:
Given the OLAP abstraction level from the user query, the algorithm locates the
most immediate higher-level and lower-level networks whose corresponding cubes
have been partially materialized.

2. Measure Computation:
Given the constraint C from the user query, the higher-level network will be used
to prune search space by applying T-monotonicity whenever available. Lower-level
network will be used for more efficient measure computation for the required ab-
straction level by applying T-distributiveness whenever available.

4 Experimental Results

4.1 Synthetic Data

All the experiments are conducted on a Pentium(R) 3GHz with 1G RAM running Win-
dows XP professional SP2.

T-Distributiveness. We perform experiments for two measures, Degree Centrality and
Closeness Centrality on synthetic data to demonstrate the power of T-distributiveness.

Since our aim is to provide studies on measures for InfoNet OLAP in general, our
synthetic data networks are not confined to specific types and statistical properties. Our
synthetic data networks are generated in a random fashion such that (1) the entire net-
work is connected, (2) the vertices have an average degree of d̂ and (3) the edges have
an average weight of ŵ.

Given a network G, users can choose a subset S of vertices to roll-up into a single
vertex v′ and compute the measure network for the new network G′. Such an OLAP
operation is called a user OLAP request. We give a model for incoming user OLAP
requests as follows. For a network G, we recursively partition G into π connected non-
overlapping components of equal number of vertices, until each resulting component is
of a predefined minimum number of vertices, i.e., suppose |V (G)| = 1024 and π = 4,
we first partition G into 4 connected subgraphs each with 256 vertices, and recursively
partition the 4 subgraphs. The partition process identifies a sequence T of connected
subgraphs of the original network G. Now we reverse the sequence T and let the result-
ing sequence be T ′. Consequently, observe that, for any subgraph Q in sequence T ′, all
the subgraphs of Q appear before Q. We model the sequence of incoming user OLAP
requests as the subgraph sequence T ′, i.e., the i-th user OLAP request would take the
original network G and choose to merge the i-th subgraph in T ′ into a single vertex and
thus obtain a higher-level network G′. The task then is to compute the measure network
θ(G′) for G′.

398 Q. Qu et al.

Our baseline algorithm for comparison is denoted as NaiveOLAP. For each user
OLAP request, the naive algorithm would first merge the corresponding subgraph into a
single vertex and then compute the measure network for the new graph directly from the
original network G. Our approach, called T-distributiveOLAP (or TD-OLAP for short),
would take advantage of the T-distributiveness of the measure and take the measures
already computed for π lower level networks as input to compute the new measure
network. In other words, if put in traditional OLAP terminology, we are considering the
best scenario here in which, when computing the measure for a cuboid, all the cuboids
immediately below have already been materialized.

Degree Centrality. The measure of Degree Centrality has the nice property of T-
distributiveness. TD-OLAP could therefore make use of the measures computed for
the lower-level networks and gain significant efficiency boost than the NaiveOLAP.
The average vertex degree is set to d̂ = 5. The partition size π is set as 4 such that each
high level vertex has 4 lower-level children vertices.

Figure 7 shows the running time comparison for the two approaches as the number
of vertices for the original network increases. In this case, the original network G is re-
cursively partitioned for a recursion depth of two with a partition size of 4. The running
time is the result of summing up the computation cost for all the user OLAP requests
in T ′. It can be observed that with T-distributiveness the measure network computation
cost increases much slower than the NaiveOLAP approach.

Figure 8 shows that, when the total number of vertices of the network G is fixed
to 4096 and the average vertex degree is set to 5, how the granularity of T-OLAP op-
erations can affect the running time of both approaches. As the number of partitions
increases, the size of the set of vertices to be merged in the T-OLAP roll-up get smaller,
which means the user is examining the network with a finer granularity. Since the mea-
sure of degree centrality has a small computational cost, both approaches have in this
case rather slow increase in the running time. However, notice that the TD-OLAP still
features a flatter growth curve compared with the NaiveOLAP approach.

Closeness Centrality. The measure of Closeness Centrality has the nice property of T-
distributiveness. As such, TD-OLAP would use the algorithms as shown in Algorithm 1
to assemble the measures computed for the lower-level networks and save tremendous
computational cost than the NaiveOLAP which simply merge subsets of vertices and
run costly shortest path algorithm to compute the new measure network from scratch.
In this example, the average degree is set to d̂ = 5 and the average weight on edges is
set as ŵ = 10. The partition size π is set as 4 such that each high level vertex has 4
lower-level children vertices.

Figure 9 shows the running time comparison for the two approaches as the number
of vertices for the original network increases. In this case, the original network G is
recursively partitioned for a recursion depth of two with a partition size of 4. The run-
ning time is the result of summing up the computation cost for all the 20 user OLAP
requests in T ′. It is clear that, by harnessing T-distributiveness, the measure networks
can be computed much more efficiently, almost in time linear to the size of the original
data network, than the naive OLAP approach.

Efficient Topological OLAP on Information Networks 399

Figure 10 shows how the granularity of the T-OLAP roll-up can impact the running
time for both approaches. As the number of partitions increases, the original network is
partitioned into components of increasingly smaller sizes. The figure shows the average
cost for computing the new measure network for one OLAP request as users choose
to merge smaller set of vertices in the T-OLAP operations. The network in this case
contains 1024 vertices. As shown in the figure, for TD-OLAP, the granularity hardly
affects the computational cost since the complexity of the function to combine the mea-
sures of lower-level networks to obtain the new one is in general very low compared
with the function to compute the measure itself. As the partition size only affects the
number of lower-level vertices to taken into consideration, the running time therefore
remains steady. On the other hand, as fewer vertices are merged with increasing num-
ber of partitions, the NaiveOLAP has to compute the measure network with an input
network of greater size. Hence the increasing running time for the NaiveOLAP.

T-Monotonicity. We perform experiments on the measure of Shortest Distance to
demonstrate the power of T-monotonicity. The number of nodes is set to 1024. The av-
erage node degree is set to 5 and the average weight on edges is set to 5. The T-OLAP
scenario is the following. The user would perform T-OLAP operations on the underly-
ing network G in the same fashion as in the experiment settings for T-distributiveness.
We obtain a higher-level network G′ with π partitions, each becoming a higher-level
node. Then the user would present queries in an asynchronous T-OLAP manner as fol-
lows. Two partitions (nodes) of G′ will be expanded into their constituent lower-level
nodes while the rest partitions remain as higher-level nodes, thus generating a new net-
work Ĝ1 such that G � Ĝ1 � G′. We can then choose another two partitions of G′,
proceed likewise and obtain another network Ĝ2. For a number of partitions π, we can
obtain

(
π
2

)
networks Ĝ1, Ĝ2, . . . , Ĝ(π

2) by the sequence of asynchronous T-OLAP op-

erations. In the process, the user would query for the shortest distance for every pair
of lower-level nodes u and v in Ĝi for 1 ≤ i ≤ (

π
2

)
such that u and v are expanded

out of different higher-level nodes, under the constraint that the minimum of all these
shortest distances is smaller than a threshold δ. It is easy to see that the naive way
would have to compute all-pair shortest distances for each Ĝ to find the minimum. Due
to the T-monotonicity of shortest distance, we can prune data search space as follows.
If we pre-compute the shortest distances between every pair of higher-level nodes in
G′, then if the shortest distance between two nodes u′ and v′ of G′ is greater than δ,
then for any pair of nodes u and v expanded out of u′ and v′ respectively, the short-
est distance between u and v in the corresponding network Ĝ must be greater than δ.
Therefore there is no need to expand u′ and v′ for all-pair shortest distance computa-
tion, thus reducing computational cost. Figure 11 shows how much running time we are
able to save for a successful pruning by T-monotonicity as the number of partitions π
increases. The curve well illustrates the cost saving which is proportional to the size of
the OLAP-generated network Ĝ upon which the naive method would need to compute
all-pair shortest distances. It is not monotone since the size of Ĝ first decreases and
then increases as the number of partitions π increases. Figure 12 shows the situation
where π is set to be 64 and the average edge weight is 500. User queries in this case
also ask to return the shortest distances between all lower-level nodes for all Ĝi but with
the constraint that the shortest distance is smaller than a threshold δ. Figure 12 shows

400 Q. Qu et al.

 0

 500

 1000

 1500

 2000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

R
u

n
n

in
g

 T
im

e
 (

m
s)

Number of Nodes (x1000)

Naive OLAP
T-distributive OLAP

Fig. 7. Run Time Compari-
son

 0

 100

 200

 300

 400

 500

 600

 700

 800

 2 4 8 16 32 64

R
u

n
n

in
g

 T
im

e
 (

m
s)

Number of Partitions

Naive OLAP
T-distributive OLAP

Fig. 8. T-OLAP Granularity

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000

R
u

n
n

in
g

 T
im

e
 (

s)

Number of Nodes

Naive OLAP
T-distributive OLAP

Fig. 9. Run Time Compari-
son

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 8 16 32 64 128 256

R
u

n
n

in
g

 T
im

e
 (

s)

Number of Partitions

Naive OLAP
T-distributive OLAP

Fig. 10. T-OLAP Granularity Fig. 11. Cost Reduction Fig. 12. Run Time Compari-
son

the running time for the query processing as the user-defined threshold δ increases. It
clearly shows that as δ increases, the pruning power weakens since when δ → ∞, it
means all shortest distances need to be returned to the user.

4.2 Real Data

Based on the DBLP data, we can semi-automatically construct a heterogeneous net-
work as illustrated in Figure 13. Edges between different types of entities could carry
different attributes. For instance, edges connecting researchers and topics could have the
relevant publication on this topic by this author; edges between two researchers could
carry the publications co-authored by them; edges between a researcher and an institu-
tion could carry those researchers from the institution who have collaborations with this
researcher, etc.. Wider edges indicate stronger relationships in terms of greater quanti-
ties. By performing discovery-driven, asynchronous T-OLAP operations, users would
be able to examine, analyze and discover knowledge in a multi-dimensional and multi-
level fashion, uncovering hidden information which is previously hard to be identified
in traditional data warehouse scenario. For example, Figure 13 shows a snapshot of the
network after a sequence of discovery-driven T-OLAP operations. One can easily ob-
serve that while Michael Stonebraker, Jennifer Widom and Rajeev Motwani all work on
the topic of “stream data”, they also have their own separate heavily-involved research
topics of “C-Store”, “Uncertainty” and “Web” respectively.

Efficient Topological OLAP on Information Networks 401

Fig. 13. A Snapshot Of A Portion Of A Real Heterogeneous Network

5 Related Work

Social network analysis, including Web community mining, has attracted much atten-
tion in recent years. Abundant literature has been dedicated to the area of social network
analysis, ranging from the network property, such as power law distribution [18] and
small world phenomenon [15], to the more complex network structural analysis such
as [8], evolution analysis [16], and statistical learning and prediction [13]. The static
behavior of large graphs and networks has been studied extensively with the derivation
of power laws of in- and out- degrees, communities, and small world phenomena. This
work is not to study network distribution or modeling but to examine a general analyt-
ical process, with which users can easily manipulate and explore massive information
networks to uncover interesting patterns, measures, and subnetworks.

OLAP (On-Line Analytical Processing) was studied extensively by researchers in
database and data mining communities [10]. Major research themes on OLAP and data
cube include efficient computation of data cubes [2], iceberg cubing [7], partial materi-
alization and constraint “pushing” [20].

Although OLAP for the traditional form of spreadsheet data has been extensively
studied, there are few studies on OLAP on information networks although information
networks have been emerging in many real-world applications. One interesting study
that puts graphs in a multi-dimensional and multi-level OLAP framework is in [5].
However, it focuses on informational OLAP in which the rolling/drilling operations
only merge multiple edges between the same pair of nodes. As there is no merging of
nodes, there is no change in the underlying network structure. As such, [5] only covers
a rather limited subset of all the possible OLAP operations on information networks,
whereas topological OLAP (T-OLAP), the more powerful ones for knowledge discov-
ery, has not yet been systematically explored.

InfoNet OLAP provides users with the ability to analyze the network data from any
particular perspective and granularity. The T-OLAP operation of rolling-up delivers a
summarized view of the underlying network. Therefore, from the perspective of gener-
ating summarized views of graph data, different aspects of the problem has been exam-
ined in one form or another such as compression, summarization, and simplification.
[21,3] study the problem of compressing large graphs, especially Web graphs. Yet they
only focus on how the Web link information can be efficiently stored and easily ma-
nipulated to facilitate computations like PageRank and authority vectors. [4] develops
statistical summaries that analyze simple graph characteristics like degree distributions

402 Q. Qu et al.

and hop-plots. While these papers studied effective summarization of graph data, they
did not aim to give a comprehensive study of multi-dimensional and multi-granularity
network analysis with OLAP operations.

Similar aspects have also been explored by the graphics community under the topic
of graph simplification. [26,1,17], aim to condense a large network by preserving its
skeleton in terms of topological features. Works on graph clustering (to partition sim-
ilar nodes together), dense subgraph detection (for community discovery, link spam
identification, etc.) and graph visualization include [19], [9,22], and [12], respectively.
The visualization and summarization of cohesive subgraphs has been studied in [24].
These studies provide some kind of summaries, but the objective and results achieved
are substantially different from those of this paper.

Summarizing attributed networks with OLAP-style functionalities is studied in [23].
It introduces an operation called SNAP, which merges nodes with identical labels, com-
bines corresponding edges, and aggregates a summary graph that displays relationships
for such “generalized” node groups. There have been recent works examining certain
particular network measures in great detail such as shortest paths [25] and reachability
[14]. However, all these work are not aimed to study measure computation in T-OLAP
setting in general and offer common constraint properties for a general query processing
framework.

6 Conclusion

In this paper we have performed a framework study for topological InfoNet OLAP.
In particular, we propose two techniques in a constraint-pushing framework, T-
Distributiveness and T-Monotonicity, to achieve efficient query processing and cube
materialization. We put forward a query processing framework incorporating these two
techniques. Our experiments on both real and synthetic data networks have shown the
effectiveness and efficiency of the application of our techniques and framework to the
measures.

References

1. Archambault, D., Munzner, T., Auber, D.: TopoLayout: Multilevel graph layout by topolog-
ical features. IEEE Trans. Vis. Comput. Graph. 13(2), 305–317 (2007)

2. Beyer, K.S., Ramakrishnan, R.: Bottom-up computation of sparse and iceberg cubes. In:
SIGMOD Conference, pp. 359–370 (1999)

3. Boldi, P., Vigna, S.: The WebGraph framework I: Compression techniques. In: WWW, pp.
595–602 (2004)

4. Chakrabarti, D., Faloutsos, C.: Graph mining: Laws, generators, and algorithms. ACM Com-
put. Surv. 38(1) (2006)

5. Chen, C., Yan, X., Zhu, F., Han, J., Yu, P.S.: Graph OLAP: Towards online analytical pro-
cessing on graphs. In: Proc. 2008 Int. Conf. Data Mining (ICDM) (2008)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. (eds.): Introduction to Algorithms.
MIT Press, Cambridge (2001)

7. Fang, M., Shivakumar, N., Garcia-Molina, H., Motwani, R., Ullman, J.D.: Computing ice-
berg queries efficiently. In: VLDB, pp. 299–310 (1998)

Efficient Topological OLAP on Information Networks 403

8. Flake, G., Lawrence, S., Giles, C.L., Coetzee, F.: Self-organization and identification of web
communities. IEEE Computer 35, 66–71 (2002)

9. Gibson, D., Kumar, R., Tomkins, A.: Discovering large dense subgraphs in massive graphs.
In: VLDB, pp. 721–732 (2005)

10. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F.,
Pirahesh, H.: Data cube: A relational aggregation operator generalizing group-by, cross-tab,
and sub totals. Data Min. Knowl. Disc. 1(1), 29–53 (1997)

11. Gupta, A., Mumick, I.S. (eds.): Materialized Views: Techniques, Implementations, and Ap-
plications. MIT Press, Cambridge (1999)

12. Herman, I., Melançon, G., Marshall, M.S.: Graph visualization and navigation in information
visualization: A survey. IEEE Trans. Vis. Comput. Graph. 6(1), 24–43 (2000)

13. Jensen, D., Neville, J.: Data mining in networks. In: Papers of the Symp. Dynamic Social
Network Modeling and Analysis. National Academy Press, Washington DC (2002)

14. Jin, R., Xiang, Y., Ruan, N., Wang, H.: Efficiently answering reachability queries on very
large directed graphs. In: SIGMOD 2008: Proceedings of the 2008 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 595–608. ACM, New York (2008)

15. Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: The web as a
graph: Measurements, models, and methods. In: Asano, T., Imai, H., Lee, D.T., Nakano,
S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 1–17. Springer, Heidelberg
(1999)

16. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: Densification laws, shrinking
diameters and possible explanations. In: Proc. 2005 ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining (KDD 2005), Chicago, IL, pp. 177–187 (August 2005)

17. Navlakha, S., Rastogi, R., Shrivastava, N.: Graph summarization with bounded error. In:
SIGMOD Conference, pp. 419–432 (2008)

18. Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–
256 (2003)

19. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In:
NIPS, pp. 849–856 (2001)

20. Ng, R.T., Lakshmanan, L.V.S., Han, J., Pang, A.: Exploratory mining and pruning optimiza-
tions of constrained association rules. In: SIGMOD Conference, pp. 13–24 (1998)

21. Raghavan, S., Garcia-Molina, H.: Representing web graphs. In: ICDE, pp. 405–416 (2003)
22. Sun, J., Xie, Y., Zhang, H., Faloutsos, C.: Less is more: Sparse graph mining with compact

matrix decomposition. Stat. Anal. Data Min. 1(1), 6–22 (2008)
23. Tian, Y., Hankins, R.A., Patel, J.M.: Efficient aggregation for graph summarization. In:

SIGMOD Conference, pp. 567–580 (2008)
24. Wang, N., Parthasarathy, S., Tan, K.-L., Tung, A.K.H.: CSV: visualizing and mining cohesive

subgraphs. In: SIGMOD Conference, pp. 445–458 (2008)
25. Wei, F.: Tedi: efficient shortest path query answering on graphs. In: SIGMOD 2010: Pro-

ceedings of the 2010 International Conference on Management of Data, pp. 99–110. ACM,
New York (2010)

26. Wu, A.Y., Garland, M., Han, J.: Mining scale-free networks using geodesic clustering. In:
KDD, pp. 719–724 (2004)

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 404–417, 2011.
© Springer-Verlag Berlin Heidelberg 2011

An Edge-Based Framework for Fast Subgraph Matching
in a Large Graph

Sangjae Kim, Inchul Song, and Yoon Joon Lee

Department of Computer Science, KAIST, Republic of Korea
{sjkim,icsong}@dbserver.kaist.ac.kr, yoonjoon.lee@kaist.ac.kr

Abstract. In subgraph matching, we want to find all subgraphs of a database
graph that are isomorphic to a query graph. Subgraph matching requires
subgraph isomorphism testing, which is NP-complete. Recently, some
techniques specifically designed for subgraph matching in a large graph have
been proposed. They are based on a filtering-and-verification framework. In the
filtering phase, they filter out vertices that are not qualified for subgraph
isomorphism testing. In the verification phase, subgraph isomorphism testing is
performed and all matched subgraphs are returned to the user. We call them a
vertex-based framework in the sense that they use vertex information when
filtering out unqualified vertices. Edge information, however, can also be used
for efficient subgraph matching. In this paper, we propose an edge-based
framework for fast subgraph matching in a large graph. By using edge
connectivity information, our framework not only filters out more vertices in
the filtering phase, but also avoids unnecessary edge connectivity checking
operations in the verification phase. The experimental results show that our
method significantly outperforms existing approaches for subgraph matching in
a large graph.

1 Introduction

Since graphs are useful to represent structured, complex data, they have been used in
many application areas such as Web, social networks, communication networks,
bioinformatics, ontology engineering, software modeling, VLSI reverse engineering,
etc. Subgraph matching, which is to find all subgraphs of a database graph that are
isomorphic to a query graph, is one of the most frequently used operations in graph
databases. For example, a financial crime investigator may want to find all
occurrences of matches to a spurious pattern in a financial network where vertices
represent account holders or banks and edges represent money transfer transactions
[1]. A biologist may want to find all occurrences of matches to a specific biological
pattern in protein-protein interaction networks [2] or gene regulatory networks. In
addition, subgraph matching can be used for detecting and preventing some privacy
attacks on anonymized social network data [3], [4].

There are two types of queries related to subgraph matching. A subgraph
containment query finds all graphs that contain a subgraph which is isomorphic to the
query graph. Much research has been done for this type of query [5],[6],[7],[8],[9]. In
these works, they assume that a graph database contains many small graphs. A

 An Edge-Based Framework for Fast Subgraph Matching in a Large Graph 405

subgraph matching query finds, from a single database graph, all subgraphs that are
isomorphic to the query graph. Many general purpose algorithms have been proposed
for subgraph matching queries [10],[11]. Recently two techniques for subgraph
matching queries in a large graph have been proposed in [12],[13]. In this paper, we
focus on subgraph matching queries for a large graph.

Since subgraph matching requires subgraph isomorphism testing, which is NP-
complete [14], existing methods typically use a filtering-and-verification framework.
In the filtering phase, the vertices in the database graph are filtered out if they are not
qualified as a matching vertex. This is accomplished by comparing signatures of
vertices, which contain information about the vertices themselves and neighborhood
information. After filtering, only the remaining vertices, which we call candidate
vertices in this paper, are input to subgraph isomorphism testing. In the verification
phase, subgraph isomorphism testing is performed and all subgraphs of the database
graph that are isomorphic to the query graph are found and returned to the user. The
main task of the verification phase is to check whether candidate vertices of different
query graph vertices are properly connected to each other. Many kinds of heuristics
can be employed to speed up the verification process.

Existing approaches mainly focus on reducing the input size to subgraph
isomorphism testing. GADDI [12] proposed a technique for subgraph matching in a
large graph based on data mining techniques. It uses discriminative substructures,
which are small substructures in induced intersection graph between the neighborhoods
of two vertices, as vertex signatures. NOVA [13] is another technique for subgraph
matching in a large graph. It uses label distribution information around vertices as
vertex signatures. Both of these methods are a vertex-based framework in the sense
that they use only vertex information to filter out unqualified vertices. Edge information,
however, also can be used in the filtering process. For example, by selectively checking
connectivity between vertices in the database graph, we can further filter out those
candidate vertices that do not have required connections to other vertices.

In this paper, we propose an edge-based framework for fast subgraph matching
in a large graph. Our method follows a filtering-and-verification framework. Unlike
existing vertex-based frameworks, our method uses edge connectivity information in
both of the filtering and verification phases for fast subgraph matching. In the filtering
phase, it filters out more candidate vertices based on edge connectivity information.
Edge connectivity information is also used in the verification phase to reduce extensive
connectivity checking operations between vertices. Some of the connectivity checking
operations can be removed altogether. The experimental results show that our method
significantly outperforms existing approaches for subgraph matching in a large graph.

The rest of this paper is organized as follows. Section 2 gives the background
information and an overview of our method. Section 3 describes an index structure
used in our method. The filtering and verification phases are explained in Section 4
and 5, respectively. We evaluate our method in Section 6. Section 7 discusses related
work and Section 8 concludes the paper.

2 Preliminaries

In this section, we introduce the basic definitions used in the paper and give the
formal problem statement. Our proposed method supports both directed and

406 S. Kim, I. Song, and Y.J. Lee

undirected graphs with labeled vertices and/or labeled edges. For ease of presentation,
we assume a simple graph with labeled vertices. It is straightforward to apply our
method to other types of graphs. We also assume that every query graph and database
graph considered in this paper are connected, i.e., every pair of vertices is connected
by a path.

Definition 1. Vertex-labeled graph. A vertex labeled graph is denoted as G=(V, E,
L, l), where V is the set of vertices, E⊆V×V is the set of edges, L is the set of vertex
labels, and l is a mapping function: V → L.

Definition 2. Subgraph isomorphism. Given two graphs G = (V, E, L, l) and G’ =
(V’, E’, L’, l’), G is subgraph isomorphic to G’, if there exists an injective function f:
V → V’ such that

1. ∀v ∈ V, l(v) = l’(f(v)),
2. ∀ (u, v) ∈ E ⇒ (f(u), f(v)) ∈ E’.

Such an injective function is called a subgraph isomorphism mapping.

Problem Statement. Given a query graph q and a database graph G, find all subgraph
isomorphism mappings from q to G.

2.1 Filtering and Verification Framework

Our method uses the filtering-and-verification framework. In subgraph isomorphism
testing, for each vertex vq in the query graph q, we need to try every vertex vG in the
database graph G as a matching vertex of vq. In the filtering phase, we filter out those
vertices vG that cannot be a matching vertex of vq. To this end, we encode each vertex
and produce its signature. The signature of a vertex contains information about the
vertex itself and neighbor information. Unqualified vertices in the database graph are
filtered out by comparing their signatures with those of vertices in the query graph.
Unlike existing methods where only vertex signatures are used for filtering, our
method uses edge signatures as well to filter out more vertices. The remaining
vertices from the filtering phase, which we call candidate vertices, are used as input
to subgraph isomorphism testing. In the verification phase, subgraph isomorphism
testing is performed and all possible subgraph isomorphism mappings are produced
and returned to the user.

2.2 Representing Vertices and Edges

Various information can be used as vertex signatures and edge signatures. For
example, NOVA [13] uses a vertex label, degree, and neighbor information as vertex
signatures. In order for a signature to be used for filtering out unqualified vertices, it
must satisfy the inequality property [12], [13]. More specifically, let sig(v) and sig(u)
be the signature of vertex v in the query graph and that of vertex u in the database
graph, respectively. Then for vertex u to be a matching vertex of v, sig(v) must be less
than or equal to sig(u), i.e., sig(v) ≤ sig(u). The operator ≤ must be properly defined
for a specific signature to enforce the inequality property. Our method is designed to
work with any vertex signature that satisfies the inequality property.

 An Edge-Based Framework for Fast Subgraph Matching in a Large Graph 407

2.3 Vertex and Edge Signatures

In this paper, we consider two kinds of vertex signatures, namely NOVA [13] and
NPV [9]. They both use a vertex label and degree, and neighbor information in their
signatures. The difference between them lies in the neighbor information used.
NOVA uses label distribution information around a vertex up to a user-specified
distance as neighbor information. In NPV, simple paths from a vertex up to a pre-
defined length are used as neighbor information. Signature comparison between two
vertices sig(v) ≤ sig(u) is performed by checking the following conditions:

l(v) = l(u) (1)
deg(v) ≤ deg(u) (2)

nInfo(v) ≤ nInfo(u), (3)

where l(v) and l(u) are the labels of v and u, deg(v) and deg(u) are the degrees of v
and u, and nInfo(v) and nInfo(u) are the neighbor information of v and u, respectively.
How to check Condition (3) is specific to each kind of signature, and information
such as the number of distinct vertex labels around a vertex is commonly used in
condition checking. For more details, refer to [12] or [13].

Similarly, we also define the edge signature. The edge signature for an edge
contains the labels of its endpoint vertices, the sum of their degrees, and their
signatures. Given an edge eq=(vl,vr) in the query graph q and eG=(ul,ur) in the database
graph G, we use the following conditions to check if sig(eq) ≤ sig(eG):

l(vl) = l(ul) ∧ l(vr) = l(ur) (4)
deg(vl) + deg(vr) ≤ deg(ul) + deg(ur) (5)

nInfo(vl) ≤ nInfo(ul) ∧ nInfo(vr) ≤ nInfo(ur) (6)

3 Pre-processing

In this section, we describe the Edge Index (E-Index) and Vertex Index (V-Index) that
are used to speed up the filtering phase. The purpose of E-Index is to find candidate
edges of each query graph edge from the database graph. Given an edge (v1, v2) in the
query graph q, an edge (u1, u2) in the database graph G is its candidate edge if 1) the
labels of corresponding vertices are the same, i.e., Condition (4), 2) the degree sum of
two vertices in edge (v1, v2) is less than or equal to the degree sum of two vertices in
edge (u1, u2), i.e., Condition (5), and 3) the neighbor information of the corresponding
vertices satisfies the inequality property, i.e., Condition (6). Here we need three
comparisons. The E-Index is used to speed up the first two comparisons, i.e. the label
comparison and degree sum comparison.

We may construct a separate index to speed up each of these two operations. For
example, we construct an index whose key is a pair of vertex labels and value is the
list of edges that have those vertex labels. We also construct another index whose key
is a degree sum and value is the list of edges having that degree sum. We can find
candidate edges by first retrieving candidate edges from each of the two indexes and
then intersecting them.

408 S. Kim, I. Song, and Y.J. Lee

Instead of having two separate indexes, the E-Index combines them and builds a
two-level index to further reduce index search time. The first level index is called
Label Index (L-Index). Its key is a pair of vertex labels and value is a pointer to a
second level index. The second level index is called Degree Index (D-Index). Each D-
Index is constructed separately for the edges having the identical vertex label pair.
Given a D-Index, its key is a degree sum and value is a list of edges having that
degree sum. Figure 1(a) shows the two-level structure of E-Index. Given an edge (v1,
v2) in the query graph, we can find candidate edges as follows. First we obtain a
pointer to a D-Index by querying L-Index with key (l(v1), l(v2)). Then we find the
candidate edges by issuing a range degree sum query over the D-Index. Both L-Index
and D-Index can be easily implemented by using B+-tree index structure.

(a) The two level structure of E-Index (b) V-Index

Fig. 1. A simple example of E-Index and V-Index

Note that we still need a signature comparison between the edge in the query graph
and the candidate edges to find the final candidate edges. For this last comparison, we
need to retrieve neighbor information of the vertices in the candidate edges. To
efficiently retrieve neighbor information of vertices, we construct a Vertex Index
(V-Index), whose key is a vertex identifier and value is its neighbor information.
Figure 1(b) shows the structure of V-Index.

4 Filtering

In this section, we describe how to find candidate vertices from the database graph by
using E-Index and V-Index described in the previous section. In the filtering phase, the
main task is to find candidate vertices of each query graph vertex from the database
graph. Our method has two advantages over the existing methods. First, we reduce
time to retrieve candidate vertices by using E-Index, a pre-constructed index structure.
Second, since E-Index stores information on vertex pairs that are directly connected to
each other, we can retrieve only those candidate vertices that are directly connected to
each other from E-Index. This may reduce the size of the candidate vertices.

Before we proceed, let us first give an overview of the filtering phase. In our
approach, we obtain candidate vertices indirectly through candidate edges. In other
words, endpoint vertices of the candidate edges will be our candidate vertices. To this
end, we need to find candidate edges of the edges in the query graph. Note that we do
not need to find candidate edges of every edge in the query graph. This is because we
need only those edges that are enough to cover every vertex in the query graph. Here

 An Edge-Based Framework for Fast Subgraph Matching in a Large Graph 409

a spanning tree of the query graph is useful. Thus, we select a spanning tree of the
query graph and find candidate edges of the edges in the spanning tree. Finally, we
obtain candidate vertices from the candidate edges found. In what follows, we
describe the filtering phase in more detail. Section 4.1 describes the spanning tree
selection process and section 4.2 explains how to obtain candidate vertices.

4.1 Selecting a Spanning Tree

Given a query graph, we select a spanning tree of the query graph whose edges are to
be used to find candidate edges. There may exist many different spanning trees of the
query graph. Here we need a way to pick a “good” spanning tree for filtering out
candidate edges. We have the following observation. Given an edge in the query
graph, the number of its candidate edges can be roughly estimated by the degree sum
of its two endpoint vertices. This is because candidate edges must have degree sums
large than or equal to that of the query graph edge, and the larger degree sum of the
query graph edge, the smaller possibility that there are many candidate edges with
larger degree sums. Thus degree sums may indicate the “goodness” of the query
graph edges. Based on this observation, we take the degree sum of each edge as its
weight, compute the maximum cost spanning tree (we can obtain the maximum cost
spanning tree by multiplying each edge weight by -1 and applying minimum spanning
tree algorithms such as Kruskal’s or Prim’s algorithms), and use the resulting tree to
retrieve candidate edges.

4.2 Discovering Candidate Vertices

After selecting a spanning tree, we find candidate vertices through candidate edges.
We first obtain candidate edges of the edges in the spanning tree. We need to decide
the order of visiting edges in the spanning tree. Either breadth-first search or depth-
first search over the spanning tree can be used to determine the edge visiting order.
During graph search, we record edge visiting order. Let the determined order be
e1, e2,…, e|V(q)-1|, where|V(q)| is the number of vertices in the query graph. Now we
visit each edge in the order determined, find candidate edges, and obtain candidate
vertices from the candidate edges. This step proceeds as follows. For each vertex v in
the query graph, we maintain a candidate vertex set, denoted C(v), and initialize it as
empty. Now we visit each edge one by one. First, for the first edge e1 = (v1, v1’) in the
spanning tree, we probe L-Index by using the key (l(v1),l(v1’)) and obtain a pointer to
a D-Index and then perform a range query over the D-Index to retrieve the list of
candidate edges. We then compare neighbor information of the candidate edges with
that of the query edge to find the final candidate edges. For each candidate edge
found, we add its two endpoint vertices to the corresponding candidate vertex sets of
v1 and v1’, respectively.

For the remaining edges in the spanning tree, we process them slightly differently
for better efficiency. For each edge ei = (vi, vi’) (i>1) in the spanning tree, we probe
L-Index and D-Index as before and obtain a list of candidate edges. Here we
make the following observation to reduce the cost of comparing neighbor information
of edge ei with the candidate edges. Given a candidate edge ei’=(ui, ui’), if ui is not
contained in the candidate vertex set of vi, i.e., if ui∉C(vi), then ei’ cannot be the final

410 S. Kim, I. Song, and Y.J. Lee

candidate edge of ei. This is because it means ui has been already filtered out when
finding candidate edges of the query edge of the form (v, vi). Based on this
observation, we first check if ui∈C(vi). If this is true, we proceed to check whether
nInfo(vi’)≤nInfo(ui’). If this is also true, we add ui’ to C(vi’).

5 Verification

In this section, we describe our verification algorithm based on depth first search with
backtracking. In the verification phase, we perform subgraph isomorphism testing. To
this end, we generate subgraph isomorphism mappings between the query graph and
the database graph. We start with an empty mapping M and expand it incrementally
by adding possible matching vertices of the vertices in the query graph. Depth first
search with backtracking is used to expand M systematically. We first determine the
order of visiting the vertices in the query graph. At depth d, we visit the d-th vertex in
the query graph and find possible matching vertices from its corresponding candidate
vertex set. If we do not find any possible matching vertex at depth d, we remove the
most recently added matching vertex from M and backtrack to depth d-1. If we arrive
at depth |V(q)|, then we have found a subgraph isomorphism mapping.

Our verification algorithm, FastMatch, uses three kinds of heuristics to speed up
the verification process. Before describing FastMatch, we first explain each of these
heuristics and how they may speed up the verification process. Figure 2 shows our
running example that will be used in the rest of the paper. Figure 2(a), 2(b), and 2(c)
show a database graph, query graph, and the spanning tree selected in the filtering
phase, respectively.

(a) Database graph (b) Query graph (c) Spanning tree

Fig. 2. Running example

5.1 Heuristics for Fast Verification

The first heuristic used by FastMatch is called vertex ordering. As mentioned above,
before we start depth first search, we decide the order of visiting the vertices in the
query graph. It is important to carefully decide the order of visiting the vertices in
the query graph for the performance of the verification process. Given a vertex in the
query graph, we can save more work if its candidate vertex size is large and it is
visited more later than some vertices with smaller candidate sizes. Thus we visit the
vertices of the query graph in the increasing order of their candidate sizes. This
heuristic is also employed by NOVA [13]. In our method, we modify the heuristic in
such a way that candidate edge information obtained from the filtering phase can be
used. More specifically, we determine vertex visiting order by using the spanning tree

 An Edge-Based Framework for Fast Subgraph Matching in a Large Graph 411

selected in the filtering phase. We maintain a visited vertex set, denoted Visit. We
start with a vertex with the smallest candidate size and add it to Visit. We choose the
next vertex to visit among the vertices not in Visit and directly connected to any of the
vertices in Visit on the spanning tree. The vertex with the smallest candidate size is
selected as the next vertex to visit and added to Visit. This procedure is repeated until
there is no vertex to visit.

The second heuristic is called connection-aware forward checking. After selecting
a possible vertex mapping (vd, ud) between a vertex vd in the query graph and one of
its candidate vertices ud at depth d, we check the connections between ud and the
candidate vertices of unvisited vertices vi (i>d) that are directly connected to vd. The
candidate vertices that do not have any connection with ud are marked as invalid.
Unlike the conventional forward checking, in our method, we do not need to check
the connections between ud and the candidate vertices of vi (i>d) if (vd,vi) is an edge in
the spanning tree. This is because we can easily retrieve candidate vertices directly
connected to ud by using connectivity information between candidate vertices. How to
do this will be described later. Note that our method eliminates the connectivity
checking operations over the edges in the spanning tree altogether, which may result
in a considerable performance gain.

The last heuristic is called incompatibility learning. When backtracking during
depth first search, we lose the results of connectivity checking operations from deeper
depths, which may lead to duplicated connectivity checking operations at later times.
To avoid this problem, we keep track of the candidate vertices of vi (i>d) that are
invalidated by each matching vertex ud of vd during depth first search and use it to
remove unnecessary connectivity checking operations. For ease of presentation and
interest of space, we will omit the incompatibility learning heuristic in the description
of our verification algorithm (Algorithm 1 in section 5.2).

5.2 The FastMatch Algorithm

The algorithm FastMatch is formally described in Algorithm 1. First it determines the
order of visiting the vertices in the query graph by applying the vertex ordering
heuristic, which is described in section 5.1. Then it calls RecursiveFastMatch to
perform subgraph isomorphism testing.

RecursiveFastMatch performs depth first search and finds all possible subgraph
isomorphism mappings. At depth d, the candidate vertices of vertex vd are considered
as possible matching vertices of vd. By calling GetQualifedCandidateVertices,
ResursiveFastMatch retrieves only those candidate vertices that are qualified as a
matching vertex of vd. The details of GetQualifiedCandidateVertices will be described
later. For each qualified candidate vertex u, ResursiveFastMatch sets u as the
matching vertex of vd (line 6) and then check if we have arrived at depth |V(q)|
(line 7). If this is true, we have found a subgraph isomorphism mapping. Thus we
output M and backtrack. If not, we expand M further by going down to the next level.
Before going down, the connection-aware forward checking heuristic is applied to
filter out unqualified candidate vertices with respect to u at deeper depths (line 10).
The connection-aware forward checking heuristic is described in section 5.1. Finally,
RecursiveFastMatch recursively calls itself with an increased depth.

412 S. Kim, I. Song, and Y.J. Lee

Algorithm 1. FastMatch
Input

Output

q: query graph, G: database graph, M: current mapping, initially empty
d: depth, initially 1
All subgraph isomorphism mappings

1.
2.

Apply the Vertex Ordering heuristic
RecursiveFastMatch(q,G,d,M)

3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.

function RecursiveFastMatch(q,G,d,M):
QC GetQualifiedCandidateVertices(vd,M)
for each u in QC do

M[d] = u
if d = |V(q)| then

 Output M and backtrack
else

Apply the Forward Checking heuristic
RecursiveFastMatch(q,G,d+1,M)

end if
end for

end function

5.3 The GetQualifiedCandidateVertices Function

When we arrive at depth d, only those candidate vertices that are not marked as
invalid can be a qualified matching vertex of vd. To find qualified candidate vertices
efficiently, GetQualifiedCandidateVertices uses a pre-constructed data structure. For
each edge (vi,vj) in the spanning tree selected in the filtering phase, we build a
connection map (CM). The order of constructing CMs for the edges in the spanning
tree is determined by the vertex ordering heuristic. The key of CM for (vi,vj) is a
candidate vertex ui of vi and the value is the list of candidate vertices of vj that are
directly connected to ui. The CMs for the edges in the spanning tree can be easily
constructed from the candidate edges discovered in the filtering phase.

For example, Table 1 shows the candidate edges for the edges in the spanning tree
in Figure 2(c). Figure 3 shows the connection maps populated from Table 1. As an
example, the CM for (v1,v2) in Figure 3 indicates that u2 and u7 are the candidate
vertices of v2 that are directly connected to the candidate vertex u1 of v1.

Table 1. Candidate edges for the edges in the spanning tree in Figure 2(c)

Edges in the spanning tree (v1,v2) (v1,v3) (v3,v4)

Candidate edges
(u1,u2)
(u1,u7)

(u1,u3)
(u5,u6)

(u3,u4)
(u6,u8)

Let (vi,vd) (i<d) be an edge in the spanning tree of the query graph. Note that, given

vd, such an edge is uniquely determined by the vertex ordering heuristic (for more
details, see section 5.1.) GetQualifiedCandidateVertices finds the candidate vertices
ud of vd that are directly connected to ui (obtained from M[vi]) by consulting the

 An Edge-Based Framework for Fast Subgraph Matching in a Large Graph 413

(v1,v2)
Key Value
u1 u2,u7

(v1,v3)
Key Value
u1 u3
u5 u6

(v3,v4)
Key Value
u3 u4
u6 u4,u8

Fig. 3. Connection maps for the edges in Table 1

connection map for the edge (vi,vd). Additionally, it removes, from the list of
candidate vertices obtained, those candidate vertices that are marked as invalid and
returns the remaining candidate vertices as the qualified candidate vertices.

5.4 Improving the Connection-Aware Forward Checking Heuristic

Connection maps introduced in the previous section can also be used to enhance the
connection-aware forward checking heuristic. In this section, we briefly describe how
to do that. In the connection-aware forward checking heuristic, given a vertex
mapping (vd, ud) at depth d, we check the connections between ud and the candidate
vertices ui of unvisited vertices vi (i>d) that are directly connected to vd. Note that we
need to consider only ui’s that are not marked as invalid. Instead of checking whether
every ui is not marked as invalid, we can retrieve valid ui’s more efficiently by using
connection maps. Given an edge (vd,vi), if an edge (vj,vi) (j<d) exists in the query
graph, we can retrieve ui’s that are directly connected to uj by probing the connection
map for edge (vj,vi) with uj as a key. We need to check validity for only these ui’s. For
the other edges, we cannot use connection maps to reduce the number of validity
checking operations.

5.5 Discussion

We can estimate how many connectivity checking operations can be reduced by
connection-aware forward checking as follows. Let us first calculate how many of
them can be reduced at depth d over an edge (vd,vj) on the spanning tree T during
depth first search. In the worst case, depth first search arrives at depth d for ∏ | | number of times, where |C(vk)| is the number of candidate vertices of vk
(this happens when all required connections between candidate vertices exist in the
database graph; in such a case, the basic forward checking cannot eliminate any of the
candidate vertices during depth first search). For each arrival at depth d, connection-
aware forward checking eliminates connectivity checking operations over
edge (vd,vj). Thus, the number of connectivity checking operations reduced at depth d
over edge (vd,vj) is ∏ | |. Finally, the total number of connectivity
checking operations reduced over all edges on the spanning tree T is: | |1, ∈

Note that the above formula computes the number of connectivity checking
operations that can be reduced by connection-aware forward checking in the best case
scenario. In general, it might be less than the number suggested by the formula.

414 S. Kim, I. Song, and

6 Evaluation

In this section, we compare
state-of-the-art subgraph m
and NOVA have been impl
were conducted on a PC
running windows server 20
In the graphs that show
represents the one that us
(NPV)” the one that uses
graphs are randomly genera
from the database graphs. W
database graphs and averag

6.1 Effect of the Size of th

In this section, we evaluate
(the size of a query graph
generated database graphs
labels. The average vertex d
experimental results. Figur
shows the number of conn
size increases. Because our
checking operations greatly
performance than that of
(NOVA) because the vertex
of NOVA.

(a) Query processin

Fig. 4. Expe

6.2 Effect of the Average

In this section, we evaluate
graph from 3.4 to 5.8. Thi
which has 1,000 vertices, 4

Y.J. Lee

e the performance of our method with that of NOVA [13
matching technique using synthetic data sets. Our meth
lemented using C++ with the STL library. The experime
with a 3.0GHz quad core CPU and 4GB main mem

003. We use two kinds of vertex signatures in our meth
w experimental results below, “Our Method (NOVA
ses the vertex signature from NOVA and “Our Meth
that from NPV [9]. In various experiments, ten datab
ated and query graphs are selected by extracting subgra
We evaluate each method over the ten randomly genera

ge the results.

he Query Graph

e our method over various query graph sizes from 10 to
h is the number of its vertices.) Each of the random
has 5,000 vertices, 80,000 edges and 20 distinct ver

degree of each query graph is set to 2.8. Figure 4 shows
re 4(a) shows the query processing time and figure 4
nectivity checking operations required as the query gr
r verification algorithm reduces the number of connectiv
y, both versions of our method show significantly be
NOVA. Our Method (NPV) outperforms Our Meth

x signature of NPV has a superior filtering power than t

ng time (b) Number of connectivity checking operati

erimental results over various query graph sizes

e Degree of the Query Graph

e our method by varying the average degree of the qu
is time we generate ten random database graphs, each

40,000 edges and 20 distinct vertex labels. The query gr

3], a
hod
ents

mory
hod.
A)”
hod

base
aphs
ated

o 50
mly
rtex
the

4(b)
raph
vity
etter
hod
that

ions

uery
h of
raph

 An Edge-Based Fr

size is set to 20. Figure 5 s
query processing time and
operations as the degree of
query graph becomes large,
decreases. This is because a
or equal to that of the que
graph increases, more verti
low query processing time
however, many candidate v
in the verification phase. In
determines the performanc
significantly outperform NO

(a) Query processin

Fig. 5. Experimen

7 Related Work

Subgraph matching, which
isomorphic to a query grap
over a wide range of are
testing, which is NP-comp
been proposed thus far.

In graph databases, quer
types. A subgraph containm
isomorphic to the query gra
query [5],[6],[7],[8],[9]. In
contains many small grap
database graph, all subgrap
subgraph matching algori
specifically designed for s
proposed in [12],[13].

Both of [12] and [13] a
filtering phase, they comp
vertices if they are not qu

ramework for Fast Subgraph Matching in a Large Graph

hows the results of this experiment. Figure 5(a) shows
d figure 5(b) shows the number of connectivity check

the query graph increases. As the degree of a vertex in
, the number of its candidate vertices in the database gr
a qualified candidate vertex must have a degree larger t
ry graph vertex. Thus as the average degree of the qu
ices are filtered out in the filtering phase, which result
e in every method. When the average degree is sm
vertices are used as input to subgraph isomorphism test
n this case, the number of connectivity checking operati
ce of the verification phase. Both kinds of our meth
OVA in such a case.

ng time (b) Number of connectivity checking operati

ntal results over various average query graph degrees

h is to find all subgraphs of a database graph that
ph, is an important operation that has many applicati
eas. Subgraph matching requires subgraph isomorph
plete [14]. Many techniques for subgraph matching h

ries related to subgraph matching can be divided into
ment query finds all graphs that contain a subgraph whic
aph. Many techniques have been proposed for this type
n these techniques, they assume that a graph datab
phs. A subgraph matching query finds, from a sin
hs that are isomorphic to the query graph. General purp
ithms are proposed in [10],[11]. Recently, techniq
subgraphs matching queries in a large graph have b

re based on a filtering-and-verification framework. In
pare the signatures of vertices and filter out candid
ualified as a matching vertex. In the verification pha

415

the
king

the
raph
than
uery
s in

mall,
ting
ions
hod

ions

are
ions

hism
have

two
ch is
e of
base
ngle
pose
ques
been

the
date
ase,

416 S. Kim, I. Song, and Y.J. Lee

subgraph isomorphism testing is performed and all matched subgraphs of the database
graph are returned to the user. GADDI [12] uses discriminative substructures, which
are small substructures in the intersection of the neighborhoods of two vertices, as
vertex signatures. In NOVA [13], label distribution information around vertices are
used as vertex signatures. Both of these methods can be classified into a vertex-based
framework in the sense that they use only vertex information to filter out unqualified
vertices. Unlike these methods, our method, which is an edge-based framework, uses
edge connectivity information in both the filtering and verification phases for fast
subgraph matching.

8 Conclusions

In this paper, we have proposed an edge-based framework for fast subgraph matching
in a large graph. Our method is based on a filtering-and-verification framework.
Unlike existing vertex-based frameworks, our method uses edge connectivity
information in both of the filtering and verification phases for fast subgraph matching.
It not only reduces the size of input to subgraph isomorphism testing, but also avoids
unnecessary connectivity checking operations. We verify through experimental
evaluation that our method significantly outperforms existing approaches for
subgraph matching in a large graph.

Acknowledgments

This work was supported in part by Korea Institute of Science and Technology
Information (KiSTi) and in part by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MEST) (No. 2010-0018865).

References

1. Bröcheler, M., Pugliese, A., Subrahmanian, V.: COSI: Cloud Oriented Subgraph
Identification in Massive Social Networks. In: ASONAM (2010)

2. Tian, Y., McEachin, R.C., Santos, C., States, D.J., Patel, J.M.: SAGA: a subgraph matching
tool for biological graphs. Bioinformatics 23, 232–239 (2007)

3. Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore art thou r3579x?: anonymized social
networks, hidden patterns, and structural steganography. In: WWW (2007)

4. Cheng, J., Fu, A.W.c., Liu, J.: K-isomorphism: privacy preserving network publication
against structural attacks. In: SIGMOD (2010)

5. Giugno, R., Shasha, D.: GraphGrep: A Fast and Universal Method for Querying Graphs. In:
ICPR (2002)

6. Yan, X., Yu, P.S., Han, J.: Graph indexing: a frequent structure-based approach. In:
SIGMOD (2004)

7. Cheng, J., Ke, Y., Ng, W., Lu, A.: Fg-index: towards verification-free query processing on
graph databases. In: SIGMOD (2007)

8. Jiang, H., Wang, H., Yu, P.S., Zhou, S.: Gstring: A novel approach for efficient search in
graph databases. In: ICDE (2007)

 An Edge-Based Framework for Fast Subgraph Matching in a Large Graph 417

9. Wang, C., Chen, L.: Continuous Subgraph Pattern Search over Graph Streams. In: ICDE
(2009)

10. Ullmann, J.R.: An Algorithm for Subgraph Isomorphism. J. ACM 23(1), 31–42 (1976)
11. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (Sub)Graph Isomorphism Algorithm

for Matching Large Graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26, 1367–1372 (2004)
12. Zhang, S., Li, S., Yang, J.: GADDI: distance index based subgraph matching in biological

networks. In: EDBT (2009)
13. Zhu, K., Zhang, Y., Lin, X., Zhu, G., Wang, W.: NOVA: A Novel and Efficient Framework

for Finding Subgraph Isomorphism Mappings in Large Graphs. In: Kitagawa, H., Ishikawa,
Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5981, pp. 140–154. Springer,
Heidelberg (2010)

14. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third
Annual ACM Symposium on Theory of Computing, pp. 151–158 (1971)

Context-Sensitive Query Expansion over the Bipartite
Graph Model for Web Service Search

Rong Zhang1,2, Koji Zettsu2, Yutaka Kidawara2, and Yasushi Kiyoki2,3

1 East China Normal University, 3663 ZhongShan Rd.(N), Shanghai 200062, China
c.zhangrong@gmail.com

2 National Institute of Information and Communications Technology,
3-5 Hikaridai, Seika-cho, Kyoto 619-0289, Japan

{zettsu,kidawara}@nict.go.jp
3 Keio University, 5322 Endo, Kanagawa 252-8520, Japan

kiyoki@sfc.keio.ac.jp

Abstract. As Service Oriented Architecture (SOA) matures, service consump-
tion demand leads to an urgent requirement to service discovery. Unlike web
documents, services are intended to be executed to achieve objectives and/or de-
sired goals of users, which means to realize application requirements. This leads
to the notion that service discovery should take into account the “application re-
quirement” of service with service content (descriptions) which have been well
explored. Content is defined by service developers, e.g. WSDL file and context is
defined by service users, which is service usages to application requirement. We
find context(application) information is more useful for query generation, espe-
cially for non-expert users. So in this paper, we propose to do context-sensitive
query processing to resolve application-oriented queries for web service search
engine. Context is modeled by a bipartite graph model to represent the mapping
relationship between application space and service space. Application-oriented
queries are resolved by query expansion based on the topic sensitive bipartite
graph. The experiments verify the efficiency of our idea.

1 Introduction

Recent years have witnessed an explosive increase in online web services (WS), and
tens of thousands of such services are publically accessible. Services are preferred to
fulfill users’ application requirements by simply assembling, e.g. composition or inte-
gration. In order to support service assembling, different tools have been designed and
implemented, e.g. ActiveBpel[1], and BPMN Modeler[2], to help define services’ logic
collaboration graph according to application requirements. As WS consumption rises,
an urgent need has arisen for designing a WS discovery mechanism that can find the
suitable services to fulfill users’ application requirements. Without such a mechanism,
the significant amount of required manual effort will continue to bottleneck WS-based
applications.

For current WS search engines, e.g. [3–5], content-based mapping is still the main
technology. Generally service content includes service name, operation name, parame-
ters and service document1. However, it is pointed out that the content-based mapping

1 In the later, service description or service content includes all parts of such information.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 418–433, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Context-Sensitive Query Expansion over the Bipartite Graph Model for WS Search 419

algorithm is insufficient, as service description and query are short, which makes map-
ping difficult between query space and service space[6]. As shown in Fig. 1, we collect
services from ProgrammableWeb[7] (RESTful-based WS 2) and acquire the term dis-
tribution, among which about 70% of services have fewer than 30 terms and 90% of
services have fewer than 40 terms. In such a case, we may meet with two situations: for
a specific query, the returned results will be very few because of the lack of intersection
between query terms and service descriptions; for a specific query, the returned results
will be too many because of the involving of popular terms.

 0

 100

 200

 300

 400

 500

 600

0-9 10-19
20-29

30-39
40-49

50-59
60-69

70-79
80-89

90-

S
er

vi
ce

 N
um

be
r

Terms Range

Fig. 1. Term distribution statistics
for 1600 services described in Sec. 5

Explore Model
Space

Understand
Nature of Data Gather Data

Data
Preprocessing

Apply
Categorization

Represent
Classification

+ +

Extract terms Remove
short terms

Remove stop
words stemming Indexing

Text categorization

Text data preprocessing

1 2 3

456

4.1 4.2 4.3 4.4 4.5

Fig. 2. An Example BPMN Diagram for
Text Categorization

One method to improve mapping quality is to do local content analysis and per-
form term conceptualization[8]. For example, if it finds term a and b frequently co-
occur in many content, these two terms are supposed to be semantically close (similar).
Woogle[9] does the same thing to design a WS search engine. To some extend, it helps
to improve system precision by clustering semantically close terms. However this local
analysis method is restricted by the length of service descriptions or the overlap be-
tween service descriptions. Additionally, it tries to ask users to generate detailed queries
to services (content), such as operation name, parameter name or even composite ser-
vice requirement. But too many requirements on users may make the system difficult
to use.

Definition 1 (Content-oriented Query). It is the query with query terms from service
description content, such as service name, operation name, or parameter. For example,
in Fig. 2, for step 4.1, the query may be “termExtraction(String text)” .

Definition 2 (Application-oriented Query). It is the query with query terms from both
service content and service usage application scenario description. For example, in
Fig. 2, a query may be like “term extraction for text data preprocessing” or “ text data
preprocessing”.

As have been said, services are defined for resembling to achieve added-value appli-
cations. For example in Fig. 2, this is a logic process procedure for text categorization
application requirement drawn by BPMN modeler[2]. For this procedure, users are re-
quired to define or find the services for each (or some) step, e.g. step 4.1: to find a
service to extract terms. We can not promise all users know how to compose a query

2 http://en.wikipedia.org/wiki/Representational_State_Transfer

http://en.wikipedia.org/wiki/Representational_State_Transfer

420 R. Zhang et al.

by using service name and parameters, for a specific service, e.g. for step 4.1, query
may be like “termExtraction(String text)”. For step 4: “data preprocessing”, not all of
users know that it shall be divided into 5 standard processing procedures, especially
for non-expert users. But one thing is that users clearly know about their application re-
quirement, that is in step 4, it is needed to do “data preprocessing to text”. So they prefer
to submit application-oriented query, defined in Def. 2, (query to application scenario)
instead of content-oriented query, defined in Def. 1 (query to service content). This
kinds of queries can not be resolved by content-based mapping method because of lack
of application related information. On the other hand, we find service definition terms
are not standardized. For example, for “termExtraction(String text)”, it may be defined
as “func1(String str)”. Intuitively, in such a case, content-oriented query is difficult to
be generated. But context-based query may be more efficient to find related services.

Definition 3 (Context). Suppose service s has ever joined applications {aj}. For ser-
vice s, its context is represented as A[s]={< aj >}∗, with 0 ≤ |A[s]|. aj = {< Des. >
[sl]∗}. Des. and {sl} are aj’s application description and the involved services for aj .
For example in Fig. 2, for service in step 4.1, the context is
A[s4.1] = {< text data preprocessing > [s4.2, s4.3, s4.4, s4.5]}. Here s4.i represents
the service which can realize the task requirement in the corresponding step.

In this work, we propose a novel context-sensitive WS discovery method for solving the
problems mentioned above: application-oriented query processing, which may query to
application scenario. Context, defined as Def. 3, displays service usages to applica-
tion requirement. Based on this kind of context, we design the query expansion algo-
rithm to solve application-oriented queries by bridging heterogeneity between query
space(application space) and service space. And then even for query with the applica-
tion terms, we can find services related to the application. The main contributions of
our work are summarized as follows.

First, we propose to distinguish services by service usages defined as context as in
Def. 3, representing the involving relationship between services and applications. As
far as we know, this is the first work to introduce the real service usage information
as context for WS discovery. A bipartite graph model is designed to represent context.
Service content is defined by service developers, used to declare service’s functional-
ities and context is defined by service users, used to declare how they are used. They
complement each other.

Second, we propose to do topic sensitive resources organization. We learn a topic
classifier by using open resources and it is used to classify services, applications and
queries into different topics, e.g. “arts” or “recreation”. We construct bipartite graphs
for services and applications in each topic domain. We expect to resolve queries in their
semantic closest topic domains.

Third, We propose to solve application-oriented queries by query expansion among
different semantic space: application space and service space. We exploit the bipartite
graph and extract the implicit term mapping relationship between service descriptions
and application descriptions.

Fourth, we carry out a series of experiments to investigate the effects of our pro-
posed method.

Context-Sensitive Query Expansion over the Bipartite Graph Model for WS Search 421

The rest of this paper is organized as follows. In Sec. 2, we describe the motivations.
In Sec. 3, we propose the method to generate the topic sensitive bipartite graph from
service context. In Sec. 4, we generate the semantic bridge between query space and
service space. In Sec. 5, we demonstrate system performance. In Sec. 6, we discuss the
related work. Finally, Sec. 7 summarizes this work.

2 Motivation

The application-oriented query is necessary. As mentioned in Sec. 1, services are pre-
ferred to accomplish users application requirements by simply assembling, e.g. compo-
sition or integration. Until now, only part of service’s usage information has been taken
into service discovery, especially for composite service search[10], in which the query
shall point out the partner’s information. As in Fig. 2, in order to find composite service
for step 4.2, it shall point out the parameters requirement for step 4.1 or 4.3, which
is part of context (as collaborative services) in our definition. But one of our ideas is
that we want to support application-oriented query processing, e.g. query for “text pre-
processing” in stead of query for each individual service like “TermExtraction(String
text)” for Step 4.1. In such a case, we expect to get a set of services which are supposed
to be involved for this application. This will make query generation easier, especially
for non-expert users who know the application’s requirements much better than de-
tailed services requirements. On the other hand, application-oriented query processing
can return users context-based related services instead of content-based relevant ser-
vice. It can help to filter out useless services. Services definition are subjective. Content
similar services may be totally different in functionality. For example, two services are
named as “RemovingNoise”, which are used for “web page clustering” and “population
census” respectively. The first one may focus on removing noisy links and the second
one may focus on removing persons with ages older than 150. If we can put the query
together with application requirement, it will make search more accurate.

Table 1. Examples of service descriptions and involved application’s representative terms. These
are obtained from ProgrammableWeb[7].

Service Service Sescription Representative Application Terms
Yahoo
Maps

It offers three ways to integrate maps into a website - a sim-
ple REST-based API for map images, an Ajax JavaScript
API, and a Flash API. This summary refers to the AJAX API
which is closest to Google and Microsoft models. The Yahoo
Map API can also provide for integrating geo-related infor-
mation from Yahoo’s products, such as local listings, traffic,
weather, events, and photos.

location, estate, plot, city,
estate, sites, address, traffic,
states, area, flight, georss,
station, county, travelers,
campus, restaurants, hous-
ing, rental, roads, airport

Twitter The Twitter micro-blogging service includes an API that
gives RESTful access to the Twitter database and activ-
ity streams (users, tweets, friends, followers, favorites and
more), using XML and JSON formats.

social, news, photo, com-
munity, rss, event, share,
messages, mobile, blogs,
topic, feeds, space, website

Last.fm The last.fm API allows for read and write access to the
full slate of last.fm music data resources - albums, artists,
playlists, events, users, and more.

audio, tracks, lyrics, artist

422 R. Zhang et al.

The context-sensitive query processing is feasible. As using to services, there will be a
lot of service usages which are like service usage log information. It is feasible for us
to collect such kinds of services usage context information, e.g. ProgrammableWeb[7].
Query log information has been successfully used for web search engine[11]. How-
ever until now, this kind of usage information has not been taken into consideration
for service discovery. In Table 1. We list some popular services’ descriptions and their
representative context description terms. It is easy to see that, for users, application re-
lated terms are easily understood and used for query generation. But application related
terms have not been covered so much by service content description terms. Generally,
if service’s content description terms do not exist in queries, these services will not be
returned as answers to users, even though the query terms are very close to the ser-
vice description terms. For example, for the commonly known “Yahoo Maps” service,
with query “travel route”, it will not be returned as an answer. Previous work has sel-
dom tackled this kind of heterogenous problem between query space and service space.
Generally, application related terms are more intent to tell what kind of situation it is
used for instead of what it is as in Table 1. For non-experts, application-oriented query
may be more useful and feasible. In such a case, correlation to heterogenous spaces is
required: from the term in application space to the terms in service space.

Table 2. Content-based search for query “location code”

Service Name Service Description Topic
google code
search

Allow client applications to search public source code for function def-
initions and sample code

computer

zip codes Enable you to get the US location behind the zip code in XML format regional
linkpoint Provide payment processing services for those who need sophisticated

payment processing options. You can control how your payments are
processed via code

business

Queries have different relevances to different topic domains. Previous work only con-
siders content-relevance. However queries or services may have different relevance to
different domains, as shown in Table 2 with query “location code”. We list three re-
turned services. Here “location code” makes much more sense in “regional” topic. Then
service “zip codes” may have a higher relevance for this query. Intuitively, this service
shall be ranked higher to the query.

These problems motivate us to design a new method for service discovery. We collect
services usages defined as Context as Def. 3, to solve these problems. The main idea
is: Context is modeled by a bipartite graph, which represents the correlation between
applications and services; we generate a topic-based classifier and then we classify con-
text; for each topic we generate the bipartite graph; based on these graphs, we analyze
the term relationships from application space to service space. The details will be intro-
duced as followings.

In order to make it simple, in the later of our paper, “Context” is used to repre-
sent the pair of services and application; “Application” means application description;
“Content” is service description.

Context-Sensitive Query Expansion over the Bipartite Graph Model for WS Search 423

3 Bipartite Graph Modeling to Service Context

According to Def. 3, for any service s, A[s] can be seen as a set of applications and
the involved collaborative services 3. We define a bipartite graph model G = (ℵ, ε) to
represent the relationship between applications and involved services, as shown in Fig.
3. Here ℵ = S∪A with S∩A = ∅, S is the service set and A is the application set. The
set of edges is ε ⊆ S×A, which represents the involving relationship between services
and applications: if a service is used by an application, there is a link between them. For
a single service s, its individual context is the application ai and other services involved
with ai. For example, in Fig. 3, a sample context of service s1 (e.g. hotel) is a1(e.g.
travel), s2(e.g. airline), s3(e.g. weather) and the related linkages.

s1 s2 s3 s4 s5 s6 s7 s8

a1 a2 at-1 at

...

sn

...Service

Application

individual context of s1

Fig. 3. Bipartite Graph Modeling for Context, representing Involving Relationship between Ser-
vices and Applications

Service Context can be modeled by a bipartite graph, which catches the simple in-
volving relationship between services and applications. However as we have mentioned
in Sec. 2, generally in different topic domains, service’s usefulness is different. In order
to make our bipartite graph more useful, we propose to build topic-sensitive bipartite
graphs that is to build the bipartite graph for each topic domain as following.

3.1 Topic Sensitive Bipartite Graph Constructing

Topic Classifier Generation. We generate a set of biasing vectors representing differ-
ent topics as developed by ODP (open directory project) resources4. This is done offline
and once. We can use a lot of resources for topic model generation. Here we prefer to
use ODP which is freely available and hand constructed.

Let Ti be the set of pages in ODP topic domain ci. Here we use the top 16 categories.
We compute the topic term vector as Di consisting of terms in Ti for topic ci; term
statistic vector Dit represents the number of term t occurrences in ci.

Generally for any content composed of terms, we can calculate its topic distribution
values by comparing the content vectors with these topic vectors.

Given a content string str, we can use the multinomial naive-Bayes classifier[12] to
compute the probabilities for each of the ODP categories, with the parameters set to
their maximum-likelihood estimates. Let strk be the kth term in str. Then for str, we
calculate str’s distribution probabilities for each ci as following:

3 We just consider the existence of services to an application instead of the detailed collaboration
logics as described by workflow.

4 http://www.dmoz.org/

http://www.dmoz.org/

424 R. Zhang et al.

p(ci|str) =
p(ci) · p(str|ci)

p(str)
∝ p(ci) · Πkp(strk|ci) (1)

p(strk|ci) is easily computed from term vector Dit. And then we take normalization
for p(ci|str), 1 ≤ i ≤ 16 and then

∑
ci∈C p(ci|str) = 1. p(ci) is uniformly valued. In

this way, we can draw the topic distribution probability for a given string[13].

Topic Sensitive Bipartite Graph Generation. With topic model generated above, for
each service or application o described by a string str, it is assigned a valued topic
vector as V [o] = {vci

o } with vci
o representing the tightness of current object o to topic

domain ci. We just assign the objects to the topK (e.g. k=3) highly related topic do-
mains instead of all. In order to make these topic graphs efficient and concise, we define
a threshold � (� ∈ [0, 1]) to control the distribution scope for services and applications.
The topic-sensitive graph generation algorithm is shown in Algo. 1.

input : All services S, applications A, � and topK
output: Topic Sensitive Bipartite Graphs

Submit A = {ai} to Topic Classifier to get the topic distribution vectors;1

for each ai ∈ A do2

JTDai = ∅ (Join Topic Domain); v = 0 ; K = 0;3

V [ai] = {vcj
ai}, cj ∈ C and it is ordered descendingly;4

for each item v
cj
ai and K < topK do5

JTDai∪ = {cj}; v+=v
cj
ai ; K++;6

if v ≥ � then7

break;8

end9

end10

end11

for each topic domain cj ∈ C do12

for each ai ∈ A do13

if cj ∈ JTDai then14

A(cj)∪ = ai; \\assign applications15

S(cj)∪ = S(ai); \\ assign services16

end17

end18

Construct Graph for topic cj ;19

end20

Algorithm 1. Topic-Sensitive Bipartite Graph Constructing

First, we assign the applications A={ai} rather than services to different topics
C={cj}. The main reason is that service descriptions are less topic-sensitively dis-
tinguishable comparing to application descriptions, because service descriptions are
generally used to declare service operations instead of domain-sensitive usability as in
Table 1. For example, for “Y ouTube” service, based on its description, its highly re-
lated top3 topic domains are computers, science and business; on the contrary, based

Context-Sensitive Query Expansion over the Bipartite Graph Model for WS Search 425

on its applications, the highly related topic domains are recreation, arts and society,
which are generally acceptable. Then for each application ai, the topic relevance vector
is V [ai] = {vcj

ai} with
∑

cj∈C v
cj
ai = 1 and v

cj
ai = p(cj |ai) defined in Sec. 3.1.

Second, for application ai, we select the highly related topK (e.g. topK = 3) topic
domains to join. In this algorithm we use � to control application’s distribution. If ai has
been related to the top K(e.g. K = 2) topics with K < topK by the accumulated prob-
ability, calculated by p(cj |ai), higher than � (e.g. � = 99%), we stop ai’s distribution to
other domains. For example, if application app is distributed to recreation, arts and
society by probability 57%, 35% and 7% respectively, we can avoid its distribution
to other topic domains with probability less than 7%, because it has a total distribu-
tion probability 99% to these three domains. If we distribute it to all other domains,
it may act as noise for those domains’ analysis. For each topic cj , the selected highly
related applications are A(cj) = {ai}. Noticed that one application may be involved in
different topics. So for ci and cj , with i "= j, A(ci) ∩ A(cj) "= ∅ may exist.

Third, for each topic, we collect the services used by the applications S(cj)∪ =
S(ai). S(cj) and S(ai) are services in topic cj and used by application ai respectively.
Then the applications and services are added to the bipartite graph as introduced above:
for cj , its involved services are S(cj) = {sk}; by using S(cj) and A(cj), we can build
the bipartite graph g[cj] for topic cj .

4 Bipartite Graph-Based Query Expansion

As mentioned in Sec. 2, if users’ queries contain terms in application descriptions,
which may not exist in service descriptions, this causes the mapping problem between
service space and query space. The content-mapping based search will not return these
services related to specific application requirements, and then it leads to low recall and
precision. One popular way to solve this problem is to do query expansion for relating
terms from different spaces. We exploit service usage context for such a purpose: to
transform terms from query (application) space to service space.

4.1 Terms Filtering

Service or application descriptions are composed of terms. As many terms are meaning-
less and noisy, we take a two-step of preprocessing for filtering out these terms. First,
we do stop words removing and filter out specific types of terms, as adjective, adverb,
etc. Second, we do mutual information filtering[14] like Eqn. 2 and filter out terms with
less information value.

IV (t) = p(t)
∑

o

p(o|t) log
p(o|t)
p(o)

(2)

where t is a description term, and o is service or application. This calculation can re-
move terms with high- or low- frequency. From now on, terms we mention are the terms
kept after term-filtering.

426 R. Zhang et al.

4.2 Semantics Bridging between Application (Query) Space and Service Space

Suppose two terms with tak from the application description and tsj from the service de-
scription. Semantically, the correlation degree is calculated by Pci(tsj |tak), representing
the correlation conditional probability for terms tsj and tak, under a topic category ci.
This is the term correlation importance to a topic domain. The probability Pci(tsj |tak) is
calculated as follows:

pci(t
s
j |tak) =

pci(tsj , t
a
k)

pci(tak)
=

∑
∀sm∈S pci(tsj , t

a
k, sm)

pci(tak)

=

∑
∀sm∈S pci(tsj |tak, sm) × pci(tak, sm)

pci(tak)

=

∑
∀sm∈S pci(tsj |sm) × pci(sm|tak) × pci(tak)

pci(tak)

=
∑

∀sm∈S

pci(t
s
j |sm) × pci(sm|tak) (3)

pci(sm|tak) is the conditional probability of service sm involved with term tak in appli-
cation description for topic ci. pci(tsj |sm) is the conditional probability of occurrence
of tsj with respect to service sm for topic ci. Their calculation is formulated as follows:

pci(sm|tak) =
fa

km(tak, sm, ci)
fa(tak, ci)

(4)

fa
km(tak, sm, ci) and fa(tak, ci) are the number of co-occurrences between application

description term tak and service sm and the total number of applications involved with
term tak in topic ci, respectively.

pci(t
s
j |sm) =

ts
jm∑

∀t∈sm
ts
tm

(5)

tsjm and
∑

∀t∈sm
tstm are the term weights calculated by TFIDF, for tsj and total number

of term weight in service sm, respectively.
Combining the equations in Eqn. 3, 4 and 5, we acquire the final calculation for

Pci(t
s
j |tak) as:

pci(t
s
j |tak) =

∑
∀sm∈S

fa
km(tak, sm, ci)
fa(tak, ci)

× tsjm∑
∀t∈sm

tstm
(6)

4.3 Query Expansion

Query expansion algorithm is shown in Algo. 2. Bipartite graph modeling to context
provides a way to correlate services and applications. We try to create the correla-
tions between terms in service side and terms in application side. The main differences
with other work are: 1)it implements expansion between different spaces; 2) it is topic-
sensitive. It means that we prefer to select most relevant topics to expand terms. The
global statistical information for each related term is ranked by the topic based term
relevance, as in Line 5, and we select the globally highly ranked terms as the final
expansion terms.

Context-Sensitive Query Expansion over the Bipartite Graph Model for WS Search 427

input : Query q- composed of terms
output: q′- expanded query

Submit q to topic model;1

Acquire q’s topic distribution vector {vci
q };2

for each tq
k ∈ q do3

Acquire top relevant terms T ci

t
q
k

= {tj} by pci(tj |tq
k) in topic ci by Eqn. 3;4

Calculate term tj final query relevance: Relqtj
=

∑
ci∈c vci

q ·∑t
q
k
∈q pci(tj |tq

k);5

end6

Order the selected terms to ET = {tj} by decreasing value of Relqtj
and select top7

terms as expansion terms;

Algorithm 2. Query Expansion based on Topic Sensitive Bipartite Graph Model

5 Experimental Results

5.1 Experiment Data Set

We focus on using services context to solve application-oriented queries, which does
not focus on analyzing content or (parameter) structure similarity to queries, so we do
not collect a great deal of well structured WSDL-based services. Instead we collect
services and service-related context from ProgrammableWeb[7], which records a large
number of free API services and their involved contexts. For each service, we can ob-
tain service’s description including service title, service description, and URL; for each
mashup[15] application, we regard them as service contexts which have titles, descrip-
tions, and involved service URLs. Finally, we get 1577 services and 3996 contexts. To
avoid overfitting problem, we use 80% of the contexts as training data to build the se-
mantic bridge for Eqn. 3. We use 5% of services as development data to choose query
expansion depth (expansion term number) and 15% as test data.

In our experiment, we test two types of queries. One is automatically generated
queries: we use (part of) the application description from development data and test
data as query and take application involved services as the correct answers. For exam-
ple, for query “text data preprocessing” as in Fig. 2, the possible expected results are 5
kinds of services. The other one is manually generated queries: we manually generate
24 queries from both service content description and application description. It will be
introduced later.

We compare our method OURS with the following 4 systems, labeled as BS,
BS-EXP, Woogle-like[9] and APP. OURS is the topic sensitive query expansion
method; BS:baseline system implemented by content-based mapping method; BS-EXP:
query expansion without topic classifier; Woogle-like:local content-based term concep-
tualization method to clustering similar terms. APP: query to application descriptions
without query expansion.

5.2 Data Status

Service description term distribution status is summarized in Fig. 1 where 70% of ser-
vices have fewer than 30 terms. For applications, 50% have 10-19 description terms as

428 R. Zhang et al.

shown in Fig. 5. Notice that currently only 48% of services in our dataset have con-
texts. Fig. 4 shows applications’ topic distributions based on our topic classifier, with
topK = 3 and stop parameter � = 0.8. The mainly involved topics are “comput-
ers”, “society”, “business”, “arts” and “recreation”. We do not emphasize on dividing
the topic categories into smaller ones by diving into the hierarchical structure of ODP,
which will help to get an even (better) service distribution to topic domains. However
we have verified that system performance can win great increasing even with this kind
of coarse resource distribution. And the means of detailing topics division will be left
as future work.

 0

 200

 400

 600

 800

 1000

 1200

 1400

arts
business

computers

games
health

home
news

recreation

reference

science

shopping

society

sports

A
pp

lic
at

io
ns

 N
um

Fig. 4. Application Distribu-
tion Probability on Topics

 0

 500

 1000

 1500

 2000

0-9 10-19 20-29 30-

A
pp

lic
at

io
n

N
um

Terms Range

Fig. 5. Application Des.
Terms Distribution

5.3 Evaluation Metrics

We use the metrics of P@N , MAP and MRR to evaluate system performance [16].
For a query set Q, we calculate the average values for P@N ,MAP and MRR. For a
query q:

P@N : Precision (P) at top N results. P@N = |CAq

⋂
Rq|

|Rq| , where CAq is the set of
tagged correct answers and Rq is the set of top N results returned by the system. In our
experiment, we select N=3, 5 and 10.

MAP : Mean Average Precision. It is used to evaluate the global relevance of re-
turned ordered results. MAP = 1

|CAq| × (
∑|CAq|

i=1 (P@|Rcai |)). cai is the ith relevant
service to q in CAq and Rcai is the set of ranked retrieval results from the top results
until you get service cai.

Mean Reciprocal Rank is: MRR = 1
rq

, rq is the rank of the first relevant service for
q. The higher the MRR value, the better the system.

5.4 Performance

Query Expansion Depth & Performance with Automatically Generated Queries.
Generally speaking, the expansion terms are not the more the better, due to the intro-
ducing of irrelevant terms. Here based on the development dataset, we choose the best
expansion depth for queries those automatically generated from context descriptions.
We exploit the query expansion depth (0, 3, 5, 10, 15, 20 and 25) to see the performance
for P@N in Fig. 6 and MRR and MAP in Fig. 7. For these queries, expansion depth 5
can win the best performance. So we choose 5 for the next two parts of experimental
usage.

Context-Sensitive Query Expansion over the Bipartite Graph Model for WS Search 429

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5 10 15 20 25

P
re

ci
si

on

Expansion Depth

p@3
p@5
p@10

Fig. 6. Precision & Ex-
pansion Depth

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 0 5 10 15 20 25

M
A

P
&

M
R

R

Expansion Depth

MAP MRR

Fig. 7. MRR and MAP &
Expansion Depth

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3

P@3 P@5P@10

pr
ec

is
io

n

BS
BS-EXP
OURS

Fig. 8. Precision for Con-
text Queries

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

MAP MRR

pr
ec

is
io

n

BS
BS-EXP
OURS

Fig. 9. MAP and MRR for
Context Queries

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

MAP MRR

M
A

P
&

M
R

R

BS
Woogle-like
APP
OURS

Fig. 10. MAP and MRR
for Different Systems

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3

P@3 P@5P@10

pr
ec

is
io

n

BS
Woogle-like
APP
OURS

Fig. 11. P@N for Differ-
ent Systems

Comparing Performance based on Different Implementations with Automatically
Generated Queries. On the test dataset, we check the query performance based on our
system. The results are shown in Fig. 8 and Fig. 9. Such kinds of queries are difficult for
the BS system, because of few overlap between application terms and service terms.
In this case, term expansion helps a lot for query processing. Both BS − EXP and
OURS win better performance. And our method OURS performs better than the non-
topic system BS − EXP .

We also compare performance to other systems as in Fig. 10 and Fig. 11. We find
Woogle− like method does not help so much for query processing if the query is with
application terms, because it does only local information analysis. Here even APP that
is query processing on application descriptions can beat Woogle−like method. OURS
wins best with topic sensitive query expansion.

Performance Improvement & Query Difficulty with Automatically Generated
Queries. We also analyze the effectiveness of our method in helping difficult queries
which have been studied in recent years [17]. In Fig. 12, we show the results. Accord-
ing to BS system’s MAP values, we divide queries equally into five bins. The higher
the MAP value means the utility of content-based mapping method for search is bet-
ter. Bin 0 is assigned queries with the lowest MAP values and Bin 4 with the highest
ones. “Improvement” and “Decreased” mean the improving and decreasing to “P@5”
for these 5 bins of queries. Clearly, for difficult queries (lower MAP with BS), OURs
can improve the performance. In Bin 0, OURS can solve all queries with MAP values
no worse than BS, e.g. 50 improved vs 2 decreased. But for Bin 4, OURS loses to
BS by around 8 queries. It is verified that for application-oriented queries, our method
performs better than BS system.

430 R. Zhang et al.

Table 3. Example Manually Generated Queries

ID Short Queries Long Queries
1 travel informa-

tion browser
travel information browser for trip destinations across the globe It fea-
tures videos, photos, guides and attractions, weather information and
events for nearly all countries and many cities world wide

2 writers books
Timeline

search the favorite writers Books And you can see results by Timeline
showing a list and a publication day

3 ranking blogs A ranking system for blogs, View the top 100 Indonesian blogs
4 talk real-time

translation
talk with people all over the world by a real-time translation

5 music video
rating

a grid of music videos from that band shown as thumbnails, listing their
rating, view count, and the title of the video

6 US collecges
information

colleges and universities in the US plotted on a Google map with street
views and additional school information

7 locate zip locate your zip automatically
8 artist mp3 in-

formation
Get lots of information about your favorite artists. View album informa-
tion, find mp3 songs, lyrics, biographies, podcasts, rate artists and add
comments

9 music preview-
ing

previewing of music and has artist profiles with Music Videos from
MTV

10 feeds aggrega-
tor

A feeds aggregator organized by topic where posts are auto-tagged with
semantic terms

11 hotels search Search hotels by city, check-in dates, number of guests, number of
rooms, and stars

12 city event Select a city and view an aggregated page of feeds. See what is happen-
ing in your city or a city that you are traveling or moving to

Manually Generated Queries. For previous queries, we have not ensured queries’
terms overlap with service description, which is a necessary requirement for the success
of the BS system. In order to make the comparison acceptable, we manually generate
24 queries for both long queries and corresponding short queries as shown in Table
3(because of lack of space, we only list 12 example queries). We promise all of the
queries have terms overlap with service descriptions. We manually find the relevant
services for each query by using the “Pooling” method[18], which has been frequently
used in IR. The judgement pool is created as follows. We use BS, and OURS to pro-
duce the topK = 20 candidates and then merge these results for our real candidates
selection. We then select the most relevant results by our 3 evaluators from the pool.
To ensure topK = 20 is meaningful, we select the queries which can return more than
20 relevant services by each system. Here “-short” and “-long” mean short queries and
long queries, respectively.

In Fig. 13 and Fig. 14, we test the influence of expansion depth for OURS to short
queries and long queries. We find that query expansion has much greater influence to
improve short query performance, because there is a larger change between the high-
est and lowest values for either precision or MAP and MRR to short queries. For
example, in Fig. 13, when expansion depth is 5, the precision change for “p@3-short”
is around 13.5%, but for “p@3-long”, the precision change is around 10%. The main

Context-Sensitive Query Expansion over the Bipartite Graph Model for WS Search 431

 0
 10
 20
 30
 40
 50
 60
 70
 80

0 1 2 3 4

Q
ue

ry
 N

um

Bin ID

Improved
Decreased

Fig. 12. Performance Im-
provement & Query Diffi-
culty

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3

 0 5 10 15 20 25 30

P
re

ci
si

on

Expansion Depth

P@3-short
P@5-short
P@10-sort

P@3-long
P@5-long
P@10-long

Fig. 13. Precision &
Expansion Depth for
Long/Short Queries

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 0 5 10 15 20 25 30

M
A

P
&

M
R

R

Expansion Depth

MAP-short
MRR-short

MAP-long
MRR-long

Fig. 14. MAP and MRR&
Expansion Depth for
Long/Short Queries

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

P@3(short)

P@3(long)

P@5(short)

P@5(long)

P@10(short)

P@10(long)

P
re

ci
si

on

BS
OURS

Fig. 15. Precision for
Long/Short Queries

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

MAP(short)

MAP(long)

MRR(short)

MRR(long)

M
A

P
&

M
R

R

BS
OURS

Fig. 16. MAP and MRR
for Long/Short Queries

reason is that short query has less semantic information for the system to distinguish
them by. But after expansion, short queries are clarified. With expansion, the precision
change for the top list is obvious. In such a case, “p@3-short” wins greater improvement
than “p@5-short”. Long query will always have better performance than short queries
because of its clearer requirement declaration.

Based on the above experiment, we take expansion depth 5 and 20 for short and long
queries respectively, which are both the highest-performance parameters. We compare
baseline system BS and our method for P@N, MAP and MRR in Fig. 15 and Fig.
16, respectively. For short queries, the BS system’s performance is very low, because
of the lack of service description and heterogeneity between query space and service
space. But OURS has good improvement to the BS system. Moreover, because of the
low query precision of BS, current web service search engine would prefer to provide
browsing functionality rather than complicated search functionality.

6 Related Work

Along with the increasing of web services, desirable web service discovery has in-
creased its importance to win users. Content-based web service search has been found
that there is noticeable amount of noise for service search, because of service descrip-
tion is short or not enough to distinguish themselves from others. Much effort has been
put on solving this problem by detecting or extending service self static description.
Until now, we summarize the work into 3 groups.

1. Content matching. It is supposed to compare service’s functional descriptions or
functional attributes or parameters with queries to check whether advertisements sup-
port the required type of services. And it checks the functionality capabilities of web

432 R. Zhang et al.

services in terms of input and output, as used by woogle[9]. For service search and
similarity calculation, it tries to include as more information as it can to characterize
services. It is challenged by the length of service descriptions, the variation of param-
eter names and the scale of service repository. Generally if the overlap among services
are few, woogle-like method may not win good performance improvement.

2. Ontology/semantics mapping [19–21]. These approaches require clear and formal
semantic annotations. But as we know most of the services those are active on WWW
do not contain so many ontology annotations. One of big challenges is the definition to
ontology. However, in order to make the work successful, it shall not contain so much
semantic constraints which bound the activity of users and developers.

3. Context matching [10, 22–24]. Recently context-aware approaches have been pro-
posed to enhance web service discovery and composition. [24] proposes a context-
related service discovery technique for mobile environments by defining a set of at-
tributes to service. The search is still based on tradition content-mapping search mech-
anism and context attributes act as filters. [10] suggests to define the context from two
aspects: client-related context and provider-related context. It prefers to absorbing all
the information related to service activity as the context, which makes context compli-
cated and difficult to follow. By the way, real experiment experience has not been with
the work. Context is well used in web search [25], but we deal with different spaces.

7 Conclusion and Future Work

The mapping problem between query space and service space has caused low search
precision and it affects the development and popularity of Web Service Search Engines,
resulting in some of them only providing service browsing functionality, instead of
search. One kind of queries is application-oriented queries, which has been checked
to be useful and necessary especially for non-expert users. This paper proposes to do
query expansion based on service usage context to solve this kind of query. We generate
the topic sensitive bipartite graph model to represent service context. By exploiting
context, we establish term correlation between service space and application space.
And it is proved to be an efficient way for application-oriented query processing. The
experimental results show that our approach outperforms other systems.

Our work is different with but complementary to previous works. Service local prop-
erties are well exploited by great effort, e.g. Woogle[9]. Rather than taking context as
local properties for results filtering[24], we define context as service usages to applica-
tions. In the future, we want to combine the local content analysis with our context data
analysis; we want to detail the topic classification to improve the performance.

References

1. ActiveVOS: Activebpel engine,
http://www.activevos.com/community-open-source.php

2. BPMNModeler, http://www.eclipse.org/bpmn/
3. BindingPoint, http://www.bindingpoint.com/
4. WebServiceList, http://www.webservicelist.com/

http://www.activevos.com/community-open-source.php
http://www.eclipse.org/bpmn/
http://www.bindingpoint.com/
http://www.webservicelist.com/

Context-Sensitive Query Expansion over the Bipartite Graph Model for WS Search 433

5. Salcentral, http://www.salcentral.com/
6. Fan, J., Kambhampati, S.: A snapshot of public web services. Journal of the ACM SIGMOD

RECORD (2005)
7. mashups, http://www.programmableweb.com/
8. Xu, J., Croft, W.: Improving the effectiveness of information retrieval with local context

analysis. ACM Trans. Information Systems 18(1), 79–112 (2000)
9. Dong, X., Halevy, A., et al.: Similarity search for web services. In: Proc. VLDB, pp. 372–383

(2004)
10. Medjahed, B., Atif, Y.: Context-based matching for web service composition. Distributed

and Parallel Databases 21(1), 5–37 (2007)
11. Vectomova, O., Wang, Y.: A study of the effect of term proximity on query expansion. Jour-

nal of Information Science 32(4), 324–333 (2006)
12. Mitchell, T.: Machine Learning. McGraw-Hill, Boston (1997)
13. Haveliwala, T.H.: Topic-sensitive pagerank. In: Proc. WWW (2002)
14. Hsu, W.H., Chang, S.F.: Topic tracking across broadcast news videos with visual duplicates

and semantic concepts. In: Proc. ICIP, pp. 141–144 (2006)
15. Mashup, http://en.wikipedia.org/wiki/Mashup
16. Wikipedia: Information retrieval,

http://en.wikipedia.org/wiki/Information_retrieval
17. Yom-Tov, E., Fine, S., et al.: Learning to estimate query difficulty: including applications to

missing content detection and distributed information retrieval. In: Proc. SIGIR, pp. 512–519
(2005)

18. Voorhees, E., Harman, D.: Overview of the sixth text retrieval conference (TREC-6). Infor-
mation Processing & Management 36(1), 3–35 (2000)

19. Selvi, S., Balachandar, R.A., et al.: Semantic discovery of grid services using functionality
based matchmaking algorithm. In: Proc. WI, pp. 170–173 (2006)

20. Paolucci, M., Kawamura, T., et al.: Semantic matching of web services capabilities. In: Hor-
rocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, p. 333. Springer, Heidelberg
(2002)

21. Klusch, M., Fries, B., et al.: Owls-mx: Hybrid semantic web service retrieval. In: Proc. 1st
Intl. AAAI Fall Symposium on Agents and the Semantic Web (2005)

22. Morris, M.R., Teevan, J., et al.: Enhancing collaborative web search with personalization:
groupization, smart splitting, and group hit-highlighting. In: Proc. CSCW, pp. 481–484
(2008)

23. Wong, J., Hong, J.I.: Making mashups with marmite: Towards end-user programming for the
web. In: Proc. CHI, pp. 1435–1444 (2007)

24. Lee, C., Helal, S.: Context attributes: an approach to enable context- awareness for service
discovery. In: Proc. SAINT, pp. 22–30 (2003)

25. Cao, H., Jiang, D., et al.: Context-aware query suggestion by mining click-through and ses-
sion data. In: Proc. KDD, pp. 875–883 (2008)

http://www.salcentral.com/
http://www.programmableweb.com/
http://en.wikipedia.org/wiki/Mashup
http://en.wikipedia.org/wiki/Information_retrieval

BMC: An Efficient Method
to Evaluate Probabilistic Reachability Queries

Ke Zhu, Wenjie Zhang, Gaoping Zhu, Ying Zhang, and Xuemin Lin

University of New South Wales, Sydney, NSW, Australia
{kez,zhangw,gzhu,yingz,lxue}@cse.unsw.edu.au

Abstract. Reachability query is a fundamental problem in graph
databases. It answers whether or not there exists a path between a source
vertex and a destination vertex and is widely used in various applications
including road networks, social networks, world wide web and bioinfor-
matics. In some emerging important applications, uncertainties may be
inherent in the graphs. For instance, each edge in a graph could be associ-
ated with a probability to appear. In this paper, we study the reachability
problem over such uncertain graphs in a threshold fashion, namely, to
determine if a source vertex could reach a destination vertex with proba-
bilty larger than a user specified probability value t. Finding reachability
on uncertain graphs has been proved to be NP-Hard. We first propose
novel and effective bounding techniques to obtain the upper bound of
reachability probability between the source and destination. If the upper
bound fails to prune the query, efficient dynamic Monte Carlo simula-
tion technqiues will be applied to answer the probabilitistic reachability
query with an accuracy guarantee. Extensive experiments over real and
synthetic datasets are conducted to demonstrate the efficiency and effec-
tiveness of our techniques.

1 Introduction

In many real world applications, complicatedly structured data could be repre-
sented by graphs. These applications include Bioinformatics, Social Networks,
World Wide Web, etc. Reachability query is one of the fundamental graph prob-
lems. A reachability query answers whether a vertex u could reach another vertex
v in a graph. Database community has put considerable efforts into studying the
reachability problem, for example, [7], [5], [1], [14], [9], [2], [8], [4], [3], etc.

All of the above works focus on the applications where edges between two ver-
tices exist for certain. However, in many novel applications, such an assumption
may not capture the precise semantics and thus the results produced are also
imprecise.

Example 1: In Protein-Protein interaction networks, an edge between two pro-
teins means they have been observed to interact with each other in some ex-
periments. However, not all interactions can be consistantly observed in every
experiment. Therefore, it is more accurate to assign probabilities to edges to
represent the confidence on the relationship. In this application, biologists may
want to query whether a particular protein is related to another protein through
a series of interactions.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 434–449, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

BMC: An Efficient Method to Evaluate Probabilistic Reachability Queries 435

Example 2: Social Network Analysis has recently gained great research at-
tention with the emergence of large-scale social networks like LinkedIn, Face-
book, Twitter and MySpace. In these social networks, connections between
entities/individuals(vertices) may not be completely precise due to various rea-
sons including errors incurred in data collection process, privacy protection, com-
plexed semantics, disguised information, etc([22]).

u

w1

w2

w3

w4

w5

w6

w7

v
0.8

0.
8

0.8

0.8

0.8

0.
8

0.8

0.8

0.
8 0.8

0.
8

Fig. 1. A running example

In above applications, an edge connecting two vertices is associated with a
probability value indicating the confidence of its existence. Reachability queries
over this kind of uncertain graphs are thus called Probabilistic Reachability
Queries. The Probabilistic Reachability problem is intrinsically difficult. As a
running example in Fig. 1, this graph consists of only 11 edges. To accurately
answer the Probabilistic Reachability from u to v, we need to enumerate up to 211

possible instances of the uncertain graph. For each of these instances, we need to
check whether u can reach v, and then aggregate the probabilities of the instances
in which u can reach v. In [10], Valiant has proved this problem is NP-Hard.

Monte Carlo simulation provides an approximate solution to this problem.
A considerable number of articles([15],[16],[17],[18],[19], etc) studied how to use
Monte Carlo simulation to solve the probabilistic reachability problem. The focus
of those studies are on utilizing different sampling plans to reduce sampling error.
Due to the dramatical increase of the scale of graphs and the large number of it-
erations required by Monte Carlo simulation to guarantee the accuracy, the com-
putational cost of traditional Monte Carlo method is still considerably expensive.

In this paper, we propose a more efficient dynamic Monte Carlo method to
approximate the answer. This dymanic Monte Carlo method will only simulate
necessary part of the graph and will share most of the overlapping cost between
different iterations. In addition to that, we also propose an index which can as-
sist in calculating upper bound of probabilistic reachability. Queries pruned by
the bound do no need to be approximated by the Morte Carlo method which is
relatively more expensive. The main contributions of the paper are:

1. To the best of our knowledge, we are the first to address the efficiency issues
of Probabilistic Reachability Queryby using indexing techniques. We formally
define Probabilistic Reachability Queryusing Possible World semantics.

2. We propose an efficient dynamic Monte Carlo algorithm to calculate approx-
imate result. In addition, we also give a theoretical accuracy guarantee for
the Monte Carlo method.

3. We propose an index which efficiently calculates the upper bound of Proba-
bilistic Reachability Queries.

4. We perform extensive experiments on real datasets and synthetic datasets to
demonstrate the efficiency of our proposed method.

436 K. Zhu et al.

Table 1. Notations

u � v, u �� v u can reaches v; u cannot reach v
p(e) the probability that edge e will exist
Ru,v the probability that u could reach v

RU
u,v the upper bound probability that u could reach v

ω, Ω a possible world and the set of all possible worlds respectively
pω the probability of a possible world
s(u, v) the shortest distance between u and v
Prob(Event) the probability that an Event will occur

The whole paper is organized as follows: Section 2 will introduce the background
knowledge of this problem. Section 3 will briefly outline our Bound and Monte
Carlo(BMC) framework. Section 4 will propose a novel bound-based scheme to
address the problem. Section 5 will introduce our dynamic Monte Carlo method.
Section 6 will demonstrate and analyze the experiments. Section 7 will introduce
related works and Section 8 concludes the paper.

2 Background

2.1 Problem Definition

In this paper, we study the reachability problem in graphs in which each edge
is associated with an existence probability and we call such graphs Uncertain
Graphs

Definition 1 (Uncertain Graph). An uncertain graph is defined as G =
(V, E, PE) where V is the set of vertices, E is the set of edges and PE : E → (0, 1]
is the edge probability function. We use p(e) to denote the probability that e exists
where e ∈ E.

The probability that vertex u could reach v can be calculated by summing the
probability of all possible combinations of the edge states. Each of the combina-
tion corresponds to a Possible World in the Possible World semantics. We use
Ru,v to represent the probability of being reachable and R̄u,v otherwise.

Definition 2 (Possible World). Let xe = 1 if e exists and xe = 0 if otherwise.
We call ω a possible world where ω = {xe|e ∈ E}.
We use Ω to denote the set of all possible worlds of an uncertain graph and let
ru,v(ω)= 1 if u could reach v in ω or ru,v(ω)= 0 when otherwise. We also use pω

to represent the probability for ω to occur. pω =
∏

e∈E h(e) where:

h(e) =
{

p(e) if xe = 1
1- p(e) if xe = 0

Definition 3 (Probabilistic Reachability). The probabilistic reachability be-
tween two vertices u and v, Ru,v, is the sum of probability of all possible worlds
in which u can reach v. That is, Ru,v =

∑
ω∈Ωru,v(ω)·pω.

BMC: An Efficient Method to Evaluate Probabilistic Reachability Queries 437

Definition 4 (Probabilistic Reachability Queries). Given a large uncer-
tain database graph G, two vertices u, v, where u, v ∈ V , and a threshold t
where 1 ≥ t > 0, the database outputs true if Ru,v ≥ t or false if Ru,v < t. We
call this type of queries Probabilistic Reachability Queries.

2.2 Preliminaries

Naive Enumeration. Without any pruning strategy, we need to enumerate
every possible world ω ∈ Ω and to increment the probability of success or fail-
ure till t or 1 − t is reached. Algorithm NaiveEnumerate outlines the naive
enumeration process.

Procedure. NaiveEnumerate(G, u, v, t)

begin1

fail, operate = 0 ;2

Ω = all possible worlds of G ;3

foreach ω in Ω do4

if u can reach v in ω then5

operate = operate + pω ;6

else7

fail = fail + pω ;8

if fail > 1 - t then9

return false ;10

if operate ≥ t then11

return false ;12

end13

Monte Carlo Sampling. The complexity of caculating probablistic reachabil-
ity has been proved to be NP-Hard[10]. The cost grows exponentially as size
of graphs grows. Monte Carlo sampling method is generally a widely accepted
method of approximating the result. Briefly, it has three steps:
1. Randomly and independently determine a state for every edge in the graph

according to the operational probability of each edge. A sample graph consists
of all edges with a exist state.

2. Test the the reachability for this sample graph.
3. Repeat the above step 1 and 2 for k iterations.

The approximate probabilistic reachability is: R′
u,v =

∑
ω∈Ωk

ru,v(ω)

k where Ωk is
a set of k sampled states.

3 Framework

As finding the probablistic reachability is infeasible when data graphs are large,
we propose a framework integrating an effective bounding-pruning technique and
an efficient Monte Carlo sampling technique. Intuitively, if Ru,v is small and the
threshold is large, it is possible to obtain an upper bound, RU

u,v, to immediately

438 K. Zhu et al.

reject the query. If the bounding technique fails to prune the query, then Monte
Carlo sampling technique will be applied to produce an approximate answer. We
observe that a major portion of the traditional Monte Carlo simulation can be
shared, thus we propose a more efficient Dynamic Monte Carlo method to ap-
proximate the result. The following sumarizes the major steps in our framework.
1. We create an index on the database graph so that the upper bound of the ex-

act reachability could be calculated efficiently. We will attempt to prune the
query by calculating the upper bound of the probablistic reachability. This
technique is to be detailed in Section 4.

2. If the upper bound cannot prune the query, we will sample a number of possi-
ble worlds and use our proposed Dynamic Monte Carlo simulation to estimate
the reachability. This technique is to be detailed in Section 5.

4 Upper Bound Index

Naive Enumeration is impractical to answer Probabilistic Reachability Queries.
However, Probabilistic Reachability Queries only need to answer whether the
reachability is above a threshold t, rather than the exact probabilistic reacha-
bility. With the help of indices, we can efficiently calculate an effective upper
bound of the reachability between the source and the destination. If the upper
bound can be used to prune the query before Monte Carlo Simulation, we can
avoid the relatively more expensive sampling and reachability testing.

As mentioned previously, it is infeasible to enumerate every single possible
world when a graph is large. The following observations inspired us to propose
an efficient upper bound index:

Observation 1: Many real-world graphs are sparse and a local neighbourhood
graph surrounding a vertex is usually small in sparse graphs. It is affordable to
enumerate all possible worlds in a small neighbourhood graph.
Observation 2: The local neighbourhood structure surrounding a vertex can
usually provide an upper bound of its ability to reach(or to be reached by) other
vertices.

u v

l

m

out
l
u inm

vp′

(a) Incoming and Outgoing Probability

u

w1

w2

w3

w4

w5

w6

w7

v
0.8

0.
8

0.8

0.8

0.8

0.
8

0.8

0.8

0.
8 0.8

0.
8

(b) Example

Fig. 2. Upper Bound Calculation

As shown in Fig. 2 (a), a vertex u has to reach at least one vertex outside
the circle of radius l before it can reach vertex v if l is less than the unweighted
shortest distance between u and v. We will use s(u, v) to denote the shortest
distance between u and v. Similarly, a vertex v has to be reached by at least

BMC: An Efficient Method to Evaluate Probabilistic Reachability Queries 439

one vertex outside the circle of radius m before it can be reached by v if m is
less than s(u, v). The probabilistic reachability is bounded from above by the
outgoing probability and the incoming probability, which are defined as below.

Definition 5 (Outgoing and Incoming Probability). The outgoing proba-
bility of vertex u, outku, represent the probability that u could reach at least one
vertex w where s(u, w) ≥ k. Similarly, the incoming probability of vertex v, ink

v,
means the probability that at least one vertex w could reach v where s(w, v) ≥ k.

Table 2. u’s Outgoing Probability

Possible World ω pω Possible World ω pω

{uw1, uw2, w2w1, w2w4, w1w3} 0.08192 {uw1, uw2, w2w1, w2w4, w1w3} 0.02048
{uw1, uw2, w2w1, w2w4, w1w3} 0.02048 {uw1, uw2, w2w1, w2w4, w1w3} 0.00512
{uw1, uw2, w2w1, w2w4, w1w3} 0.08192 {uw1, uw2, w2w1, w2w4, w1w3} 0.02048
{uw1, uw2, w2w1, w2w4, w1w3} 0.02048 {uw1, uw2, w2w1, w2w4, w1w3} 0.00512
{uw1, uw2, w2w1, w2w4, w1w3} 0.02048 {uw1, uw2, w2w1, w2w4, w1w3} 0.32768
{uw1, uw2, w2w1, w2w4, w1w3} 0.08192 {uw1, uw2, w2w1, w2w4, w1w3} 0.08192
{uw1, uw2, w2w1, w2w4, w1w3} 0.08192 {uw1, uw2, w2w1, w2w4, w1w3} 0.02048
{uw1, uw2, w2w1, w2w4, w1w3} 0.02048

In Table 2, we give an example of how to calculate the outgoing probability
of u when the radius is 2 for the graph in Fig. 2 (b). In this example, we list all
possible worlds in which u can reach at least one of w3 and w4. Each possible
world is represented by a list of edge states. For example, {uw1, uw2} represents
a possible world in which the edge between u and w1 exists, and the edge between
u and w2 does not exist. The outgoing reachability is the aggregated probability
of all listed possible worlds. Please note that we do not need to enumerate edges
which are further than the specified radius because they have no effect on the
outgoing reachability.

Generally speaking, as the outgoing(or incoming) edges get denser, it is more
likely to reach(or to be reached by) other vertices. We can index the outgoing
and incoming probability for every vertex for a specific small radius. In addi-
tion to the incoming and the outgoing probability, every u-v cut will bound the
reachability between u and v from above.

Definition 6 (u-v Cut and Non-overlapping u-v Cut Set). A u-v cut is
a set of edges which will make v unreachable from u if all edges in the set are
missing. A non-overlapping set of u-v cuts Cl,m

u,v is a set of u-v cuts such that
∀c1, c2 ∈ Cl,m

u,v , c1 ∩ c2 = ∅ and ∀c ∈ Cl,m
u,v , ∀(x, y) ∈ c, s(u, y) > l ∧ s(x, v) > m.

Let us denote a cut with c, the event that all edges in c are missing with Cut(c)
and the probability for this event to occur with Prob(Cut(c)). For any l and m
where l + m ≤ s(u, v) and we are given Cl,m

u,v , u could not reach v if any one of
the following conditions is true: 1). ∀x ∈ V,¬(s(u, x) ≥ l∧u � x). 2). ∃c ∈ Cl,m

u,v ,
Cut(c) occurs. 3). ∀x ∈ V,¬(s(x, v) ≥ m ∧ x � v)

Theorem 1. For any u and v, if we are given outlu, inm
v , Cl,m

u,v where l + m ≤
s(u, v), l ,m ≥ 0:

440 K. Zhu et al.

Ru,v ≤ outlu · inm
v ·

∏
c∈Cl,m

u,v

1 − Prob(Cut(c)). (1)

Proof. We will prove the above theorem by proving the following three condi-
tions are necessary conditions and they are independent to each other.

1. If ∀x ∈ V,¬(s(u, x) ≥ l∧u � x), then (u "� v) because s(u, v) ≥ l. Therefore
if u � v, then ∃x ∈ V, such that s(u, x) ≥ l∧u � x. Let us call this event E1.

2. If ∀x ∈ V,¬(s(x, v) ≥ m ∧ x � v), then (u "� v) because s(u, v) ≥ m. There-
fore if u � v, then ∃x ∈ V, such that s(x, v) ≥ m ∧ x � v. Let us call this
event E2.

3. ∃c ∈ Cl,m
u,v , Cut(c) occurs, then (u "� v) by definition of cut. Therefore if

u � v, ∀c ∈ Cl,m
u,v , Cut(c) cannot occur. Let us call this event E3.

Since E1, E2, E3 are necessary conditions for the event u � v, therefore Ru,v ≤
Prob(E1 ∩E2∩E3). Prob(E1) = outlu and Prob(E2) = inm

v . E1 could only over-
lap with E2 if there exists an edge (x, y) such that s(u, x) ≤ l−1∧s(y, v) ≤ m−1.
There will exist a path starting from u and arriving at v via the edge (x, y) with
length s(u, x)+ 1 + s(y, v) which is less or equal than l + m− 1. However, this is
less than the shortest distance between u and v because s(u, v) ≥ l +m is given.
This is a contradiction. Therefore E1 cannot overlap with E2. E1 and E2 also
cannot overlap with E3 because ∀c ∈ Cl,m

u,v , ∀(x, y) ∈ c, s(u, y) > l ∧ s(x, v) > m.
Informally, any edges included in Cl,m

u,v , must be outside of the circle centred at
u with radius l, and be outside of the circle centred at v with radius m. �
Given l and m, there are different choices of Cl,m

u,v . In this paper, we will simply
define Cl,m

u,v as Cl,m
u,v = {ci|i ∈ I∧ l ≤ i < s(u, v)−m} where ci = {(x, y) |s(u, x)

= i ∧ s(u, y) = i + 1 ∧(x, y) ∈ E(g)}.

In the running example in Fig. 2 (b), the source and the destination is u and
v respectively. The numbers on the edges are the existence probability. Suppose
we have already indexed the outgoing/incoming probability up to the radius
2 and the shortest distance. The outgoing probability of radius 2 for u is the
total proability of the possible worlds in which u can reach at least one of w3

and w4 whose shortest distance from u is 2. We initialize the upper bound as
out2u × in2

v and this upper bound can be further reduced by independent u-v
cuts. In this case, {{w3w5, w4w5}} is the only cut to be considered. Algorithm
Upper formalizes the above statements.

Procedure. Upper(g, u, v)

begin1

choose the l and m such that l + m < s(u, v) and outl
u × inm

v is minimum ;2

upper = outl
u × inm

v ;3

for i = l to s(u, v) − m − 1 do4

ci = {(x, y)|s(u, x) = i ∧ s(u, y) = i + 1 ∧ (x, y) ∈ E(g)} ;5

upper = upper × (1 −∏
e∈c p(e)) ;6

return upper ;7

end8

BMC: An Efficient Method to Evaluate Probabilistic Reachability Queries 441

5 Dynamic Monte Carlo Simulation

Traditionally, Monte Carlo simulation has been widely accepted as one of the
efficient methods to answer reachability problems in uncertain graphs due to
the NP-hard nature of this problem. In this section, we will propose a dynamic
Monte Carlo simulation method which integrates sample generation and reach-
ability test to maximize the computational sharing.

There are two major costs in Monte Carlo method:
1. Generating Sample: running a sample pool of size k requires to generate

k samples, for each sample, every edge is to be assigned exist or not exist
according to the existence probability. This costs O(k|E|) of time.

2. Checking Sample Reachability: For each sample, we need to check the
reachability between u and ve. This operation costs O(|E|) of time for each
iteration.

We have two observations in regarding to these two costs.

Observation 3: When some edges are missing, the presence of some other edges
are no longer relevant. For example, in the example Fig. 2 (b), the states of other
edges will no longer affect the reachability between u and v if uw1 and uw2 are
missing.
Observation 4: Many samples share a significant portion of existing or missing
edges, the reachability checking cost could be shared among them.

ø : 100

{uw1} : 22

{uw1, uw2} : 6 ...

{uw1} : 78

... ...

... {uw1, w1w3, w3w5, w5w6, w7v} : 1

Fig. 3. A Dynamic Monte Carlo Sampling Example

Procedure. DynamicMontecarlo(g, s, t, p, k)

Input: g, u, v, t, k
succ, fail = 0 ;1

succ threshold = kt ;2

fail threshold = k(1 − t) ;3

visited = {s} ;4

expand = outgoing edges of s ;5

TestSample(visited, expand, k, t) ;6

if succ ≥ kp then7

return True8

return False9

442 K. Zhu et al.

Procedure. TestSample(visited, expand, n, t)

Input: visited: visted vertices, expand: edges
that can expand, n: number of samples in this group, v: destination

if expand = ∅ then1

fail = fail + n ;2

return3

if u ∈ visited then4

succ = succ + n ;5

return6

if succ ≥ succ threshold Or fail > fail threshold then7

return8

e = expand.pop back ;9

k1, k2 = 0 ;10

visited2 = visited
⋃

v where v is the new vertex brought in by e;11

expand2 = expand
⋃

v′s outgoing edges which at least one end not in visited2;12

foreach i = 0 to n do13

r = random number from 0 to 1 ;14

if r > p(e) then15

k2 += 1 ;16

else17

k1 += 1 ;18

TestSample(visited, expand, k1, t) ;19

if succ ≥ kp Or fail > k(1 − p) then20

return21

TestSample(visited2, expand2, k2, t) ;22

In our dynamic Monte Carlo method, starting with the source vertex u, we
say u is already reached. An edge e is expandable if it starts from a reached ver-
tex. We randomly pick an expandable edge e, then sample the existence of e for
k iterations. The next step is to divide the samples into two groups, one group
with e existing and another with e not existing. In the group with e existing, we
can reach a new vertex w, and more edges become expandable. For both groups,
we repeat the process of picking a random expandable edge, sampling its exis-
tence, and dividing the group into smaller batches. If a group contains no more
expandable edges, the whole group cannot reach v. On the other hand, if v is
contained in a group’s reached vertices, then the whole group can reach v.

In the running example Fig. 2(b), we assume the number of samples to draw
is 100. In the first step, we simultaneously poll the states of uw1 for 100 samples,
the result is shown in Fig. 3, uw1 is missing in 22 of the 100 samples and exists
in the rest. If uw1 is failed, the next step is to poll on the other possible outgoing
edge, uw2, 6 of the 22 are failed in this case, and a u-v cut is formed in these 6
samples and the states of other edges are no longer relevent. If uw1 is operational,
we have more choices on which outgoing edges to poll next. If the destination can
be reached in any step, we can conclude the corresponding sub-batch of samples
are u − v reachable. For example, the rightmost leaf node in Fig. 3.

Based on above observations, we present our Monte Carlo algorithm in Algo-
rithm DynamicMontecarlo and Algorithm TestSample. In DynamicMon-
tecarlo, we initializes a few global variables and invoke TestSample at line 6.

BMC: An Efficient Method to Evaluate Probabilistic Reachability Queries 443

Then it checks whether the number of reachable samples is greater than kp. In
TestSample, we firstly check whether there exist any more edges to expand.
We could determine the whole group fails the reachability test if there is no
more edges to expand. At line 9, we will randomly pick one edge to expand.
From line 11 to line 12, we set up two groups which each represents the sample
group in which the chosen edge is missing or is present, respectively. At line 13
to line 18, we will split all samples into these two group. At the end, it will
recursively invoke TestSample. Line 7 to line 8, and line 20 to line 21 will check
whether the current number of reachable or unreachable samples are enough to
accept or reject the query.

Accuracy Guarantee: Let Ru,v be the Probabilistic Reachability between u
and v, the variance of the expected value, E(Ru,v) sampled by the Monte Carlo
method is as following([16]:

σ2(E(Ru,v)) =
Ru,v − Ru,v

2

k
(2)

As we introduce a threshold t into the Probabilistic Reachability Query, the re-
sult approximated by the Monte Carlo is correct as long as Ru,v − E(Ru,v) ≤
Ru,v − t when a query is rejected or E(Ru,v − Ru,v) ≤ t − Ru,v.

Theorem 2 (Cantelli’s Inequality [21]). Suppose that r is a random variable
with mean E(r) and variance σ2(E(r)), Prob(r − E(r) ≥ a) ≤ δ(a, σ(E(r)) for
any a ≥ 0, where Prob(r − E(r) ≥ a) denotes the probability of r − E(r) ≥ a,
and δ(x, y) is defined as:

δ(x, y) =

⎧⎪⎨⎪⎩
1 if x = 1 and y = 0
0 if x = 0 and y = 0
1

1+ x2
y2

else

Theorem 3. The probability that the Monte Carlo method returns a false pos-
itive(or false negative) answer to a Probabilistic Reachability Query is less or
equal than Ru,v−Ru,v

2

(k−1)Ru,v
2−(2kt−1)Ru,v+kt2

, if we assume the exact probabilistic reach-
ability values and the threshold follow uniform distribution.

Proof. By using the Theorem 2, the probability that the Monte Carlo method
returns a false negative answer:

Prob(Ru,v − E(Ru,v) ≥ Ru,v − t) ≤ δ(Ru,v − t, σ(E(Ru,v))

=
1

1 + (Ru,v−t)2

σ(E(Ru,v))2

=
Ru,v − Ru,v

2

(k − 1)Ru,v
2 − (2kt − 1)Ru,v + kt2

Similarly, the probability that the Monte Carlo method returns a false positive
answer can be deduced and the details are omitted. �

444 K. Zhu et al.

6 Experiment

We have performed extensive experiment to demonstrate our approach(Bounds
and Dynamic Monte Carlo, or BMC) significantly outperforms plain Monte
Carlo(PMC) simulation and Naive Enumeration. Note that, to the best of our
knowledge, there are no other existing techniques aiming at efficiently support
Probabilistic Reachabilityover large scale datasets. In the experiment, we used
both real datasets and synthetic datasets to evaluate the performance. All exper-
iments are conducted on a PC with 2.4GHz 4-core cpu, and 4GB main memory
running Linux. Programs are implemented with C++. Every experiment is run
against a group of 1000 randomly generated queries, and the average response
time is taken as the result.

6.1 Real Dataset

In the experiments, we use 3 real datasets, Anthra, Xmark, and Reactome. All
of these datasets were used by Jin in [14]. Anthra is a metabolic pathway from
EcoCyc1. It contains 13736 vertices and 17307 edges. Xmark is a XML docu-
ment containing 6483 vertices and 7654 edges. Reactome is a metabolic network
with 3678 vertices and 14447 edges. We uniformly assign each edge a probability
between 0 to 1. The index construction time for Anthra, Xmark, and Reactome
is 11, 9, 16 seconds respectively. The index size is 1.5MB, 700KB, 120KB respec-
tively. Please also note that the index size and construction time do not include
the shortest path index since this depends on the technique chosen, which is not
the scope of this paper.

As expected, Naive Enumeration cannot complete any experiment within 6
hours. This is because, out of the 1000 queries in each experiment, Naive Enu-
meration always freezes on at least one of them. The reason is that the cost
of Naive Enumeration is almost the same as calculating the reachability if the
probabilistic reachability between two vertices is close to the threshold. If the
number of edges involved in the calculation is large, the enumeration cost is un-
affordably expensive. This result shows that Naive Enumeration is not pratical
in solving Probabilistic Reachability Queries. As a result, we will not include the
experiment result for Naive Enumeration explicitly.

 0.01

 0.1

 1

 2 3 4 5 6 7 8 9 10

R
es

po
ns

e
T

im
e(

s)

Avg Query Dist

BMC
PMC

(a) Anthra

 0.001

 0.01

 0.1

 1

 2 3 4 5 6 7 8 9 10

R
es

po
ns

e
T

im
e(

s)

Avg Query Dist

BMC
PMC

(b) Xmark

 0.001

 0.01

 0.1

 1

 2 3 4 5 6 7 8 9 10

R
es

po
ns

e
T

im
e(

s)

Avg Query Dist

BMC
PMC

(c) Reactome

Fig. 4. Query Distance vs Response Time, threshold = 0.6

1 www.ecocyc.org

www.ecocyc.org

BMC: An Efficient Method to Evaluate Probabilistic Reachability Queries 445

The first group of experiments studies how distance between query vertices
affects the performance. The threshold is set at 0.6 and 1000 queries are issued.
The result is shown in Fig. 4. The results show that BMC performs approx-
imately one order of magnitude faster than PMC. An interesting observation
is that as the distance increases, BMC and PMC both perform faster. In our
analysis of this phenomenon, we have two observations: 1) It is generally much
more time consuming to prove the destination is reachable than to prove it is
not reachable in a possible world. Similarly, it is generally more time consuming
to accept a query than to reject a query; 2) When the difference between the
threshold and the probabilistic reachability is large, the Monte Carlo simulation
requires less samples to answer the query, and also there is a better chance for
the upper bound to be able to answer the query. These two observations can
explain the above phenomenon. When the distance is small, generally speaking,
the probabilistic reachability is higher, and thus the possibility for a state to be
reachable is also higher. As the distance increases, the probabilistic reachability
drops drastically. It means the average difference between probabilistic reacha-
bility and the threshold becomes larger. It also means the possibility for a state
to be reachable becomes lower. We can also notice when the distance increases,
the gap between BMC and PMC expands. This indicates the upper bound have
played a more important role in this scenario.

 0.01

 0.1

 1

 2 3 4 5 6 7 8 9 10

R
es

po
ns

e
T

im
e(

s)

Avg Query Dist

BMC
PMC

(a) Anthra

 0.01

 0.1

 1

 2 3 4 5 6 7 8 9 10

R
es

po
ns

e
T

im
e(

s)

Avg Query Dist

BMC
PMC

(b) Xmark

 0.1

 1

 10

 2 3 4 5 6 7 8 9 10

R
es

po
ns

e
T

im
e(

s)

Avg Query Dist

BMC
PMC

(c) Reactome

Fig. 5. Query Distance vs Response Time, threshold = 0.1

In order to confirm our analysis, we repeat the experiment with a threshold
of 0.1. The result is presented in Fig. 5. In this case, when the distance is small,
BMC and PMC are both very efficient. This is because the average probabilistic
reachability is much higher than 0.1. As the distance increases, the probabilistic
reachability slowly drops towards the threshold and then keeps going lower. This
represents the peak points of the three result graphs.

 0.01

 0.1

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
es

po
ns

e
T

im
e(

s)

Threshold p

BMC
PMC

(a) Anthra

 0.001

 0.01

 0.1

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
es

po
ns

e
T

im
e(

s)

Threshold p

BMC
PMC

(b) Xmark

 0.01

 0.1

 1

 10

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
es

po
ns

e
T

im
e(

s)

Threshold p

BMC
PMC

(c) Reactome

Fig. 6. Threshold vs Response Time, QueryDistance = 0.6

446 K. Zhu et al.

In next experiment, we fix the query distance to 5 and vary the threshold
from 0.1 to 0.9. The result is shown in Fig. 6. We have observed that as the
threshold increases, the response time generally increases slightly to a peak then
drops drastically. This is because when the threshold is small, the probabilistic
reachability is generally considerably higher than the threshold. As the thresh-
old increases, it approaches the probabilistic reachability, thus the response time
increases. In addition, as the threshold increases, more queries are rejected. To
some extents, this effect offsets the increase caused by smaller gap between the
threshold and the probabilistic reachability. This explains why the increase from
0.1 to the peak is moderate, as well as why the response time decreases drasti-
cally beyond the peak point.

The Anthra dataset has a similar density (average vertex degree) to Xmark
but approximately 2 times the number of vertices. Reactome is much dense than
both of Anthra and Xmark. As we can see from all of the above experiments,
Anthra and Xmark have similar response time whereas Reactome is much slower
than them. This suggests that the graph size will have limited effect on response
time whereas the density plays a major role.

 0.01

 0.1

 1

 6 8 10 12 14

Re
sp

on
se

 T
im

e(
s)

Number of Vertex(K)

BMC
PMC

(a) Graph Size Vs Response Time

 0.01

 0.1

 1

 10

 1 1.5 2 2.5 3 3.5 4

Re
sp

on
se

 T
im

e(
s)

Density

BMC
PMC

(b) Density Vs Response Time

 65

 70

 75

 80

 85

 90

 95

 100

1 10 50 100 500 1000

Ac
cu

ra
cy

K(Number of Iteration)

(c) Accuracy VS k

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ac
cu

ra
cy

Threshold

(d) Accuracy VS Threshold

Fig. 7. Synthetic Data

6.2 Synthetic Dataset

In the first experiment, we generate graphs with 5000 to 15000 vertices with a
fixed density of 1.5. The query distance is fixed at 5 and the threshold is set to
0.6. The result is shown in Fig. 7(a). We found that the increase of graph size has
limited affect on BMC . This is because when the distance is fixed, the number
of edges which can significantly affect the probabilistic reachability is somewhat
unchanged. However, PMC’s response time increases slightly as the graph size
increases this is because PMC needs to draw a complete sample before testing
the reachability.

In the second experiment, we generate graphs with density from 1 to 4 with
a fixed graph size of 10000 vertices. The rest of the set up remains the same.
The result is shown in Fig. 7(b). This shows the density will impact the response

BMC: An Efficient Method to Evaluate Probabilistic Reachability Queries 447

time significantly. However, BMC ’s response time increases 5 times from density
of 1 to density of 4, whereas PMC’s response time increases 10 times. This is
because a portion of queries can be rejected by upper bounds. This portion of
cost is affected less by the density.

6.3 Accuracy

Since Probabilistic Reachabilityis NP-hard, it is impractical to obtain proba-
bilistic reachability precisely over large scale datasets. Thus, in this set of ex-
periments, we use a small synthetic graph with 10 vertices to demonstrate the
accuracy of the Monte Carlo simulation method. For the first experiment, we
pick a pair of nodes whose reachability is approximately 0.7, and fix the thresh-
old to be 0.85. We then vary the number of iteration k and the result is shown
in Fig. 7 (c). We notice that the increase of k can dramatically increase the ac-
curacy initially, and the increase diminishes when k grows larger. In the second
part, we pick a pair of nodes whose reachability is approximately 0.5 and fix
the number of iteration to be 100. We then vary the threshold from 0.1 to 0.9.
The result is shown in Fig. 7 (d). In this case, the accuracy drops dramatically
when the threshold approach 0.5 and again increases when the threshold moves
further away from 0.5. This is because the Monte Carlo simulation will perform
the worst when the threshold is very close to the probabilistic reachability.

7 Related Work

The Probabilitic Reachability problem has been studied in a number of pa-
pers from the 1970s on small scaled graphs, for example, [10], [13]. Valiant([10])
proved it is NP-hard in 1979. As Monte Carlo becomes the widely accepted
method to approximate the answer, there are many studies([15], [16], [17], [18],
[19]) to propose different sampling plans to reduce the estimation error.

There has been considerable effort put on the the certain reachability prob-
lem. A group of techniques([7], [5], etc) named chain decomposition, proposed
to speed up online calculation of certain reachability by decomposing graphs
into chains. Agrawal et. al. shows that using trees instead of chains is more
efficient([1]). Based on the tree cover strategy, a few variants were proposed to
improve Agrawal et. al.’s work. For example, Path-Tree([14]), Dual-Labeling([9]),
Label+SSPI([2]), GRIPP([8]), etc. In [4], Cohen et. al. proposed a technique
called 2-Hop. 2-Hop indexes each vertex with an in-set and an out-set which are
used to infer the reachability between any two vertices. However, finding an op-
timal 2-Hop cover requires O(n4) time complexity. In order to improve the index
building process, Cheng et. al. proposed an approximation 2-Hop cover([3]).

The techniques and applications of Uncertain Graphs have been studied in
a number of recent papers, including mining frequent subpatterns([24], [25]),
finding top-k maximal cliques([26]), etc.

8 Conclusion

In this paper, we study the problem of Probabilistic Reachability Queriesand
proposed effective and efficient techniques to solve this problem. To the best of

448 K. Zhu et al.

our knowledge, we are the first to efficiently support Probabilistic Reachability
Queries over large scale graphs using indexing techniques. We propose an index
structure which assists in calculation of upper bound of probabilistic reachabil-
ity efficiently. Should the bounds fail to answer a query, a dynamic Monte Carlo
method is proposed to output an approximate answer. Through comprehensive
experiments, we demonstrate that our solution is one order magnitude faster
than the most widely accepted plain Monte Carlo simulation.

Acknowledgement

Xuemin Lin is supported by ARC Discovery Projects DP0881035, DP0987557,
and DP110102937.

References

1. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management of transitive
relationships in large data and knowledge bases. In: SIGMOD, pp. 253–262 (1989)

2. Chen, L., Gupta, A., Kurul, M.E.: Stack-based algorithms for pattern matching
on dags. In: VLDB, pp. 493–504 (2005)

3. Cheng, J., Yu, J.X., Lin, X., Wang, H., Yu, P.S.: Fast computation of reachability
labeling for large graphs. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes,
F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT
2006. LNCS, vol. 3896, pp. 961–979. Springer, Heidelberg (2006)

4. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries
via 2-hop labels. In: Proceedings of the 13th Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 937–946 (2002)

5. Jagadish, H.V.: A compression technique to materialize transitive closure. ACM
Trans. Database Syst. 15(4), 558–598 (1990)

6. Schenkel, R., Theobald, A., Weikum, G.: HOPI: An efficient connection index
for complex XML document collections. In: Hwang, J., Christodoulakis, S.,
Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004.
LNCS, vol. 2992, pp. 237–255. Springer, Heidelberg (2004)

7. Simon, K.: An improved algorithm for transitive closure on acyclic digraphs.
Theor. Comput. Sci. 58(1-3), 325–346 (1988)

8. Tribl, S., Leser, U.: Fast and practical indexing and querying of very large
graphs. In: SIGMOD 2007: Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data, pp. 845–846 (2007)

9. Wang, H., He, H., Yang, J., Yu, P.S., Yu, J.X.: Dual labeling: Answering graph
reachability queries in constant time. In: ICDE, p. 75 (2006)

10. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J.
Compt. 8, 410–421 (1979)

11. Jiang, B., Pei, J., Lin, X., Cheung, D.W., Han, J.: Mining preferences from
superior and inferior examples. In: KDD, pp. 390–398 (2008)

12. Provan, J.S., Ball, M.O.: Computing Network Reliability in Time Polynomial in
the Number of Cuts. Operations Research, Reliability and Maintainability 32(3),
516–526 (1984)

13. Shier, D.R., Liu, N.: Bounding the Reliability of Networks. The Journal of the
Operational Research Society, Mathematical Programming in Honour of Ailsa
Land 43(5), 539–548 (1992)

14. Jin, R., Xiang, Y., Ruan, N., Wang, H.: Efficiently Answering Reachability Queries
on Very Large Directed Graphs. In: SIGMOD (2008)

BMC: An Efficient Method to Evaluate Probabilistic Reachability Queries 449

15. Easton, M.C., Wong, C.K.: Sequential Destruction Method for Monte Carlo
Evaluation of System Reliability. IEEE, Reliability 29, 191–209 (1980)

16. Fishman, G.S.: A Monte Carlo Sampling Plan for Estimating Network Reliability.
Operational Research 34(4), 581–594 (1986)

17. Karp, R., Luby, M.G.: A New Monte Carlo Method for Estimating the Failure
Probability of An N-component System. In: Computer Science Division. University
of California, Berkley (1983)

18. Okamoto, M.: Some Inequalities Relating To the Partial Sum of Binomial
Probabilities. Annals Inst. Statistical Mathematics 10, 29–35 (1958)

19. Fishman, G.S.: A Comparison of Four Monte Carlo Methods for Estimating the
Probability of s-t Connectedness. IEEE, Trans. Reliability 35(2) (1986)

20. Chan, E.P., Lim, H.: Optimization and Evaluation of Shortest Path Queries.
VLDB Journal 16(3), 343–369 (2007)

21. Meester, R.: A Natural Introduction to Probability Theory (2004)
22. Adar, E., Ré, C.: Managing Uncertainty in Social Networks. Data Engineering

Bulletin 30(2), 23–31 (2007)
23. Zou, Z., Gao, H., Li, J.: Discovering Frequent Subgraphs over Uncertain Graph

Databases under Probablistic Semantics. In: KDD (2010)
24. Zou, Z., Li, J., Gao, H., Zhang, S.: Mining Frequent Subgraph Patterns from

Uncertain Graph Data. TKDE 22(9), 1203–1218 (2010)
25. Zou, Z., Gao, H., Li, J.: Discovering Frequent Subgraphs over Uncertain Graph

Databases under Probabilistic Semantics. In: SIGKDD, pp. 633–642 (2010)
26. Zou, Z., Li, J., Gao, H., Zhang, S.: Finding Top-k Maximal Cliques in an Uncertain

Graph. In: ICDE, pp. 649–652 (2010)

Improving XML Data Quality with Functional
Dependencies�

Zijing Tan and Liyong Zhang

School of Computer Science,
Fudan University, Shanghai, China

{zjtan,09210240049}@fudan.edu.cn

Abstract. We study the problem of repairing XML functional depen-
dency violations by making the smallest value modifications in terms of
repair cost. Our cost model assigns a weight to each leaf node in the
XML document, and the cost of a repair is measured by the total weight
of the modified nodes. We show that it is beyond reach in practice to
find optimum repairs: this problem is already NP-complete for a set-
ting with a fixed DTD, a fixed set of functional dependencies, and equal
weights for all the nodes in the XML document. To this end we provide
an efficient two-step heuristic method to repair XML functional depen-
dency violations. First, the initial violations are captured and fixed by
leveraging the conflict hypergraph. Second, the remaining conflicts are
resolved by modifying the violating nodes and their related nodes called
determinants, in a way that guarantees no new violations. The experi-
mental results demonstrate that our algorithm scales well and is effective
in improving data quality.

1 Introduction

Integrity constraints are used to define the criteria that data should satisfy.
However, data in real world is typically dirty; we often encounter data sets that
violate the predefined set of constraints and hence are inconsistent. Recently
there has been an increasing interest in the study of automatically repairing re-
lational databases. One basic problem, known as the optimum repair computing,
tries to find a repair that satisfies the given constraints and has the minimum
cost among all repairs for a given cost model. In most versions of this problem, to
compute a repair with a minimum cost is at least NP-complete. That is, we have
no methods to find a repair in polynomial-time, which is the most accurate and
closest to the original data. Thus, some heuristic or approximation algorithms,
e.g., [5,8,13,14], are presented to solve the problem.

Most of the prior works on optimum repair computing are discussed for the
relational model, however, there is no reason to believe that data quality is any
better for the Web data. The prevalent use of the Web has made it possible to
extract and integrate data from diverse sources, but it has also increased the risks

� This work is supported by NSFC under Grant No. 60603043.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 450–465, 2011.
� Springer-Verlag Berlin Heidelberg 2011

Improving XML Data Quality with Functional Dependencies 451

Fig. 1. Example: An XML document violating constraints

of creating and propagating dirty data. XML is fast emerging as the dominant
standard for representing and exchanging data on the Web, which motivates us
to study the problem of repairing inconsistent XML data.

Example 1. Fig. 1 gives an XML document about the customer information,
which is the integration result of different data sources. Customers are grouped
by their country, and each country is identified by its name (cnt). For each
customer (named with a variable), we have values for no, phone, zip and city,
respectively. We also associate each leaf node with a weight (in bracket), to
reflect our confidence on the data accuracy of each node.

The company has some integrity constraints defined on the data, as shown in
Fig. 1. Constraint 1 asserts that the phone number determines the city in the
whole document. According to constraint 2, the zip code determines the city only
in a country. Constraint 3 defines the no as a key of Customer, i.e., it determines
all the child nodes of a customer, but the key is only valid in a country. As
discussed by prior works [3,4], one needs not only absolute constraints that hold
on the entire document, but also relative ones that hold only on certain sub-
documents, to cope with the hierarchical structure of XML data. Here constraint
1 is an absolute constraint, and constraints 2 and 3 are relative constraints
that are only valid in a Country. All the constraints in Fig. 1 are in the form
of functional dependencies (FDs); we focus on this type of constraint in this
paper.

The given XML document violates all the constraints. Customers v1 and v4

have the same phone number but are in different cities, which violates constraint
1. Customers v1 and v2 violate constraint 2, for they have the same zip code but
are in different cities. A constraint violation with respect to constraint 3 is that
customers v1 and v2 have the same no, but their phones and cities are different.
Note that customers v2 and v4 do not violate constraint 2; the two customers
are in different countries, thus constraint 2 is not enforced on them. ��

452 Z. Tan and L. Zhang

Contributions. The XML optimum repair problem is studied in this paper:
given an XML document that violates a set of FDs, our goal is to apply the
lowest cost changes to the document, such that the FDs will be satisfied.

(1) We provide a repair framework for XML. The XML data repairing is nec-
essarily harder to deal with than the relational counterpart. In the framework,
(a) we use FDs to describe data consistency, as they are the most commonly
discussed and used constraints in real applications. (b) we support modification
of node value as the repair primitive; value modification is more flexible, as the
deletion and insertion of nodes may be restricted by the XML schema definition.
(c) we assign a weight to each leaf node in the XML document, and the cost of
a repair is measured by the total weight of the modified nodes.
(2) We establish the lower and upper bounds for the optimum repair computing
problem for XML. We show that our model is non-trivial; it is NP-complete to
find the optimum repair. The complexity bounds are rather robust: the lower
bound is already NP-complete in the size of the data, even with a fixed DTD, a
fixed set of FDs, and equal weights for all the nodes in the XML document.
(3) We develop an efficient algorithm to repair inconsistent XML document.
The key difficulty in fixing FD violations is that repairing one FD can break
another, and most simple heuristics could fail to terminate in the presence of
complex, inter-related dependencies. We first construct the conflict hypergraph
to capture the initial FD violations, and fix them by modifying the values of
all the nodes on a vertex cover of the conflict hypergraph. We then resolve the
remaining violations by modifying not only the violating nodes, but also their
core determinants, to guarantee that no new conflicts will be introduced.
(4) We provide a comprehensive evaluation of the algorithms presented in the
paper. We evaluate the accuracy and scalability of our methods with synthetic
XMark data, and the experimental results demonstrate that our repairing algo-
rithm scales well and is effective in improving data quality.

Related Work. There are many research studies about how to get consistent
information from inconsistent relational databases, following two basic ideas [1].
Repairing a database is to find another consistent database that minimally
differs from the original one. Consistent query answering for a given query
is to find the answer that is common in every possible repairs of the original
database. Two recent surveys [7,9] provide an overview of this field.

Repair is used as an auxiliary concept to define consistent answers in most
of the settings of consistent query answering, and is not actually computed. In
the recently proposed optimum repair computing problem, the minimum repairs
according to some criteria are found as the data cleaning result. Database repairs
are computed for FDs and inclusion dependencies [5], and conditional functional
dependencies [8] using heuristic methods. Approximation algorithms to find the
minimum repair are given for local denial constraints [14] and FDs [13]. A recent
work [6] proposes a cleaning approach that is not limited to finding a single
repair; it samples from the space of possible repairs. The study of data qual-

Improving XML Data Quality with Functional Dependencies 453

ity has mostly focused on the relational data [9], although the data quality on
the web can be even worse. In this paper, the XML optimum repair computing
problem for FD violations is discussed. The data model, the constraint model
and the update operations for XML are far more complicated than the relational
counterparts, thus, this problem is necessarily more difficult. For instance, it is
known that to cope with the hierarchical structure of XML data, one needs rel-
ative dependencies that hold only on certain sub-documents. As a result, the
algorithm for XML FD repairing must handle relative FDs effectively, i.e., the
inference rules for XML FDs need to be incorporated in the process of repair.
The XML FD and related inference are themselves much harder than the rela-
tional ones. Relational data can be expressed in XML format, our method can
therefore be applied to relations as well by minor modifications.

[15] considers the problem of resolving the inconsistency of merged XML doc-
uments w.r.t. a set of FDs. As opposed to this work, [15] discusses how to put
conflicting information from merged documents together in a concise merged for-
mat, by introducing new element node types. [11] considers inconsistent XML
data w.r.t. a set of FDs, where the notion of repair is used as an auxiliary con-
cept: consistent query answers are computed by removing those unreliable nodes
identified by repairs. [12] investigates the existence of repairs w.r.t. a set of in-
tegrity constraints and a DTD. If the existence of a repair is decidable, then the
complexity of providing consistent answers to a query is characterized. In this
paper, we study the optimum repair computing problem based on repair cost,
which clearly differs from the prior works.

2 Preliminaries

In this section, we review some related preliminary definitions, and revisit the
definition of XML functional dependency.

A DTD [10] is (Ele, P, r) , where (a) Ele is a finite set of element types; (b) r
is a distinguished type in Ele, called the root type; (c) P (A) is the production of
A in Ele; it is a regular expression: α ::= str | ε | B1 + ... + Bn | B1, ..., Bn | B∗.
Here str denotes PCDATA, ε is the empty word, B is a type in Ele(called a child
of A), and “+”, “,” and “*” denote disjunction, concatenation and the Kleene
star, respectively. We call a child B of A a singleton if each A has exactly one
B, i.e., B occurs once and is not in the form of B∗ or B + B1 in P (A).

An XML document T conforms to a DTD D, if (a) there is a unique root node
in T labeled with r; (b) each node in T is labeled with an Ele type A, called an
A element node; (c) an A element node is a leaf node carrying a string value if
P (A) := str, otherwise it has a list of element node children whose labels are in
the regular language defined by P (A). We use lab(v) and val(v) to denote the
label and the value of a node v. Given two nodes v and v′, if lab(v) = lab(v′)
and val(v) = val(v′), we say v and v′ are of value equality, denoted v ≡ v′.

A path is a sequence of element types, with the form P := ε | e/P . ε rep-
resents the empty path, e∈Ele, and ”/” denotes concatenation of two paths. A
path e1/ . . . /en is called (a) a root path if e1=r, (b) a singleton path if each ei

454 Z. Tan and L. Zhang

(i ∈ [1, n]) is a singleton, and (c) a leaf path if P (en):=str. R is called a prefix
of P if P = R/O (O can be ε). If R is a prefix of both P and Q, R is called
a common prefix of P and Q. If a node v2 is reachable from node v1 following
path P , we alternatively say that v2 is qualified by P from v1, and that v2 is
a child node of v1, which matches P . We write {v�P �} for the set of nodes that
can be reached from v following P . In particular, when there is only one node in
{v�P �}, we use v�P � to denote this node. If v is the root node, we write {�P �}
for {v�P �}.

Example 2. Based on the XML document shown in Fig. 1, we present some
examples to illustrate the notation. {�Customers/Country/clist/Customer�}
is a set composed of the four Customer nodes, i.e., {vi (i ∈ [1, 4])}. {v4�Zip�}
contains the Zip node with the value “123”. There is only one node in {v4�Zip�},
so we can write val(v4�Zip�) = “123”. ��
We give the definition of XML functional dependency following and extending
the way to define XML keys [4].

Definition 1. With a given DTD D, a functional dependency (FD) is of the
form σ= (P, P ′, (P1, . . . , Pn → Pn+1, . . . , Pn+m)). Here P is a root path, or
P = ε. Each Pi (i∈[1, n+m]) is a singleton leaf path, and there is no non-empty
common prefix for P1, . . . ,Pn+m. Given an XML document T conforming to D,
we say T satisfies σ: iff ∀v ∈ {�P �}, ∀v1, v2 ∈ {v�P ′�}, if v1�Pi� ≡ v2�Pi� for all
i ∈ [1, n], then v1�Pn+j� ≡ v2�Pn+j� for all j ∈ [1, m].

In the definition, we call P the context path, P ′ the target path, P1, . . ., Pn+m

value paths, v∈{�P �} context nodes, v1, v2∈{v�P ′�} target nodes, and v1�Pi�,
v2�Pi� (i ∈ [1, n + m]) value nodes, respectively.

Example 3. We give the formal definitions of the FDs in Fig. 1.
(1) For customers, phone determines city inside the document.

σ1 = (ε, Customers/Country/clist/Customer, (phone → city))
(2) For customers of a given country, zip determines city.

σ2 = (Customers/Country, clist/Customer, (zip → city))
(3) For customers of a given country, no determines phone, zip and city.

σ3 = (Customers/Country, clist/Customer, (no → phone, zip, city)) ��

Remark. With a given DTD D and a set Σ of FDs, there always exists an
XML document T that conforms to D and satisfies Σ. This is because an XML
document will satisfy all the FDs if (a) it has distinct values for every nodes, or
(b) it has a same value for all the nodes. In light of this, node value modifications
suffice to repair any inconsistent XML document T w.r.t. FD violations.

XML FDs are studied in [3,18], with most of the key concepts introduced.
For example, logical implication and inference rules are discussed for XML FDs.
Below we use Σ+ to denote the closure of Σ, composed of all the FDs logical
implied by Σ. Some of the inference rules are extensions of the Armstrong’s
axioms [2]. As an example, (P, P ′, (P1, . . . , Pk, . . . , Pn → Pk)) is a trivial FD. It

Improving XML Data Quality with Functional Dependencies 455

is also easy to see that (P, P ′, (P1 → P2)) and (P, P ′, (P2 → P3)) logical implies
(P, P ′, (P1 → P3)), as extension of the transitivity. W.l.o.g., we consider FDs of
the form (P, P ′, (P1, . . . , Pn → Pn+1)) in the rest of the paper.

Some inference rules are required to handle the hierarchical structure of XML
data. If we have a FD (Q, Q′, (P1, . . . , Pn → Pn+1)), and know P/P ′ = Q/Q′, and
P=Q/R for some non-empty path R, we can infer a new FD (P, P ′, (P1, . . . , Pn

→ Pn+1)). Intuitively, if a FD holds inside a context qualified by Q, it will
certainly hold inside a smaller context qualified by P . Consider σ1 in our running
example. Since phone determines city inside the document, it must also determine
city inside a given country. We therefore have a new FD (Customers/Country,
clist/Customer,(phone → city)), which is logical implied by σ1.

3 Problem Formulation

Cost Model. A weight in the range [0, 1] is associated with each leaf node v,
denoted by w(v) (see the weights given in Fig. 1). The weight of a leaf node may
be assigned by a user to reflect his confidence on the accuracy of the data, or
be automatically generated by some statistical methods. We assume that a leaf
node with a small weight implies less reliability than a node with a large weight.

Repairing Primitive. For a FD σ=(P, P ′, (P1, . . . , Pn → Pn+1)), in the subtree
rooted at a node in {�P �}, consider two nodes v1 and v2 matching path P ′. If
their child nodes qualified by paths Pi have equal values for all i ∈ [1, n], and
their child nodes qualified by path Pn+1 have different values, then v1 and v2

violate σ. The violation is resolved as follows: (a) change the value of the node
qualified by Pn+1 from v2 to the value of v1’s child node that matches Pn+1(or
reversely), or (b) choose an arbitrary Pi (i ∈ [1, n]), and introduce a fresh new
value outside the active domain to the node qualified by Pi from v1 (or v2).

We give some definitions on the domain of an XML document T . The current
domain of T is composed of all the current node values in T . The active domain
of T is composed of all the values that have occurred in T , i.e., the active
domain also contains those “past” values that are changed to current values by
modifications. We assume that a procedure gen new value is available, which
will generate a fresh new value outside the active domain each time when called.

Remark. As remarked earlier, it suffices to repair any inconsistent XML docu-
ment using only rule (a) or rule (b) of the repairing primitive. We find that rule
(a) can preserve more constant values in the current domain and rule (b) can
prevent the excessive “equivalence propagation” incurred by rule (a). In light of
this, the combination of the two rules helps us find a good quality repair.

Repairs. With a given XML document T and a set Σ of FDs, a repair of T
is an XML document TR such that (a) T is changed to TR using node value
modifications, and (b) TR satisfies Σ.

456 Z. Tan and L. Zhang

We assume that a distinct identifier is assigned to each node, which is not
subject to the update. The identifier plays an auxiliary role; we use vR to denote
the node in TR that has the same identifier as the node v in T .

Definition 2. Given an inconsistent XML document T violating a set Σ of FDs,
we define the distance between T and a repair TR of T as:

2(T, TR) =
∑

v in T

w(v) × dist(v, vR),

where dist(v, vR)=1 if val(v) "= val(vR), otherwise dist(v, vR)=0.
We define cost(TR)=2(T, TR), and say that TR is an optimum repair of T ,

if TR has the minimum cost among all repairs of T . We denote the optimum
repair of T as TR

opt.

Example 4. Consider the document in Fig. 1. One repair is got by changing
the value of v1�city� to “cen”, and introducing two different fresh new values to
nodes v2�no� and v4�phone�, respectively. This repair has a cost 0.9+0.8+0.3=2.
We find another repair as follows. We first modify the values of nodes v2�city�
and v4�city� to “mid”, and change the value of node v1�no� to a fresh new value.
Note that the current document is not yet a repair. Our modifications have
caused a new violation: customers v2 and v3 have the same phone number, but
are now in different cities. We then change the value of v3�city� to “mid”. The
new XML document is a repair, with a cost 0.2+0.3+0.5+0.3=1.3. ��
For an inconsistent XML document T , we are interested in finding a minimum
cost repair TR of T . The provided framework is nontrivial; it is NP-complete to
find the optimum repair following it.

Theorem 1. The optimum repair computing problem is NP-complete. It is al-
ready NP-complete in the size of the XML document, even with a fixed DTD, a
fixed set Σ of FDs, and equal weights for all the nodes in the XML document. ��

4 Fixing Initial Conflicts Based on Hypergraph

We employ hypergraph as a tool to model the conflicts in an inconsistent XML
document w.r.t. FDs. Formally, a hypergraph g is a pair g = (V, E); V is a set
of elements, called nodes or vertices, and E is a set of non-empty subsets of V
called hyperedges. We use the version of weighted hypergraph to carry our cost
model. The following definition constructs the initial conflict hypergraph, which
extends the notions in [13] to XML with relative FDs.

Definition 3. Given an XML document T, a set Σ of FDs, the initial conflict
hypergraph of T w.r.t. Σ is defined to be g = (V,E). V is the set of value nodes
w.r.t. Σ in T. Each node v ∈ V is assigned a weight w(v), the same as the weight
of v in T . E is a set of non-empty subsets of V , constructed as follows:

Improving XML Data Quality with Functional Dependencies 457

(1) for each FD (P, P ′, (P1, . . . , Pn → Pn+1))∈Σ, ∀u∈{�P �},∀u1, u2 ∈ {u�P ′�},
if u1�Pi� ≡ u2�Pi� for all i ∈ [1, n], and u1�Pn+1� "≡ u2�Pn+1�, nodes u1�Pi�,
u2�Pi�(i∈[1, n + 1]) form a hyperedge in E;
(2) for two FDs (P, P ′, (P1, . . . , Pn → Pn+1)), (Q, Q′, (Q1, . . . , Qm → Pn+1))∈Σ,
where P/P ′ = Q/Q′. W.l.o.g., we assume that Q is a prefix of P , that is, P=Q/R
for some path R. ∀u∈{�P �},∀u1, u2, u3 ∈ {u�P ′�}, if

(a) u1�Pi� ≡ u2�Pi� for all i ∈ [1, n],
(b) u1�Qj� ≡ u3�Qj� for all j ∈ [1, m], and
(c) u2�Pn+1� "≡ u3�Pn+1�,

nodes u1�Pi�, u2�Pi�(i∈[1, n]), u1�Qj�,u3�Qj�(j∈[1, m]), u2�Pn+1�, u3�Pn+1� form
a hyperedge in E;
(3) for two FDs (P, P ′, (P1, . . . , Pn → Pn+1)), (Q, Q′, (Pn+1, . . . , Pn+m →
Pn+m+1)) ∈Σ, where P/P ′ = Q/Q′. W.l.o.g., we assume that Q is a prefix
of P , that is, P=Q/R for some path R. ∀u∈{�P �},∀u1, u2, u3 ∈ {u�P ′�}, if

(a) u1�Pi� ≡ u2�Pi� for all i ∈ [1, n],
(b) u2�Pn+1� ≡ u3�Pn+1�, and u1�Pn+1+j� ≡ u3�Pn+1+j� for all j∈[1,m-1],
(c) u1�Pn+m+1� "≡ u3�Pn+m+1�,

nodes u1�Pi�(i∈[1, n]∪[n + 2, n + m + 1]), u2�Pj�(j∈[1, n + 1]), u3�Pk�(k∈[n +
1, n + m + 1]) form a hyperedge in E.

Intuitively, each hyperedge in the initial conflict hypergraph indicates a set of
value nodes violating FDs. In rule 2 and rule 3 of Definition 3, if P=Q/R for
some non-empty path R, then FDs defined in a large context are considered
when generating hyperedges for a small context. This is necessary to handle the
hierarchical structure of XML document.

Example 5. We give some hyperedges (not all hyperedges) for the XML docu-
ment in Fig. 1. Following rule 1, the set of nodes {v1�phone�, v1�city�, v4�phone�,
v4�city�} forms a hyperedge. According to rule 2, the set of nodes {v1�zip�,
v1�city�, v2�phone�, v2�zip�, v3�phone�, v3�city�} forms a hyperedge. If rule 3 is
applied, then the set of nodes {v1�no�, v1�city�, v2�no�, v2�phone�, v3�phone�,
v3�city�} forms a hyperedge. It can be verified that to find a repair for this XML
document, in each hyperedge we must change the value of at least one node. ��
Let g=(V, E) be the initial conflict hypergraph, where each hyperedge indicates
a set of value nodes violating FDs. In any repair of the original document, the
value of at least one node should be modified for each hyperedge. This motivates
us to find a set S⊆V , such that for all edges e∈E, S ∩ e "= φ. Note that S is
known as a vertex cover (V C) for g. Moreover, recall that each node in the
hypergraph is associated with a weight. If we define the weight of a vertex cover
S to be the total weight of all vertices in S, then to find a low cost repair actually
leads to the well-known problem of weighted vertex cover for hypergraph [17].

The vertex cover for hypergraph is well studied (also NP-complete), we can
therefore use a known approximation algorithm [17]. If the size of each hyper-
edge is bounded by a constant d, finding a minimum weighted vertex cover has
a d-approximation algorithm. In the initial conflict hypergraph, the size of each

458 Z. Tan and L. Zhang

Algorithm 1. Fix-Initial-Conflicts

input : An XML document T , a set Σ of FDs.
output: A modified document T .

Create the initial conflict hypergraph g of T w.r.t. Σ;1

Use a known algorithm to find an approximation V C for the minimum2

weighted vertex cover of g;
remaining := V C;3

while There are two target nodes v1, v2∈T violating a FD σ∈Σ, and4

v1�Pn+1� or v2�Pn+1� is the only node in V C from the set of nodes {v1�Pi�
(i∈[1, n + 1])} ∪ {v2�Pi�(i∈[1, n + 1])}. (W.l.o.g., assume the violation is as
follows: σ=(P,P ′, (P1, . . . , Pn → Pn+1)), v∈{�P �}, v1, v2 ∈ {v�P ′�}, v1�Pi�
≡ v2�Pi� for all i ∈ [1, n], and v1�Pn+1� �≡ v2�Pn+1�.) do

val(v1�Pn+1�) := val(v2�Pn+1�);5

// W.l.o.g., we assume v1�Pn+1� is in V C
remaining := remaining \ {v1�Pn+1�};6

endw7

foreach node u ∈ remaining do val(u) := gen new value();8

// Introduce fresh new values to all the remaining nodes in V C

hyperedge, i.e., the number of nodes in each hyperedge, is determined by the
number of paths involved in the violated FDs. Let MP be the maximum number
of paths involved in a FD. Each hyperedge constructed based on rule 1 of Defini-
tion 3 can have at most 2×MP nodes. Rule 2 and rule 3 can generate hyperedges
with at most 4×MP–2 nodes. Therefore, d ≤ 4×MP–2 for our hyperedges.

We use hypergraph to capture and fix initial FD violations, shown in
Algorithm 1. (a) We compute the initial conflict hypergraph and find an ap-
proximation V C for the minimum weighted vertex cover (lines 1-2). (b) We save
the unmodified nodes from V C in a set remaining (line 3). (c) We assign a
value from the current domain to each node u in V C, if u is a value node on the
right side of a violated FD σ, and u is the only value node w.r.t. this violation
in V C (lines 4-7). More specifically, for σ=(P, P ′, (P1, . . . , Pn → Pn+1)), if two
target nodes v1 and v2 violate σ, and u=v1�Pn+1� is the only node in V C from
the set of nodes {v1�Pi�, v2�Pi� (i∈[1, n + 1])}, then we change the value of u to
be equal to the value of v2�Pn+1� (line 5). Once a node is modified, we remove it
from the set remaining (line 6). (d) For all the remaining nodes, we give them
fresh new values outside the active domain by calling procedure gen new value
(line 8). Note that each node in V C is modified exactly once, either in (c) or (d).

5 Resolving Violations Thoroughly

The major challenge in repairing FD violations is the interplay among FDs: the
resolution of initial conflicts may introduce new violations. In this section, based
on the document after the first step, we carry out modifications in such a way
that no new violations will be introduced. After this step, we can guarantee that
the resulting document is consistent with the FDs, to be a repair of the original
document. Before we explain how this is achieved, we first give some notations.

Improving XML Data Quality with Functional Dependencies 459

Definition 4. Given an XML document T , a set Σ of FDs and a node u in T ,
we say a set of nodes {u1, u2, . . . , un} is a σ-determinant of u, if there exists
a nontrivial FD σ=(P, P ′, (P1, . . . , Pn → Pn+1)) logical implied by Σ, such that
∃v∈{�P �},∃v1∈{v�P ′�}, v1�Pi� = ui for i∈[1, n], and v1�Pn+1� = u.

We say that a set Cu of nodes is a core determinant of u, if (a) for every
nontrivial FD σ implied by Σ, and every set W that is a σ-determinant of u,
Cu∩W "=φ; and (b) for any proper subset Cu

′ of Cu, there exists some nontrivial
FD σ implied by Σ, and a set W that is a σ-determinant of u, Cu

′∩W=φ.
We use CoreDeterΣ(u) to denote the set of core determinants of u w.r.t. Σ.

Intuitively speaking, a core determinant of u is a minimum set of nodes, which
intersects with every σ-determinant of u for every nontrivial σ∈Σ+.

Example 6. Consider the XML document and FDs given in Fig. 1. {v1�phone�},
{v1�zip�} and {v1�no�} are determinants of v1�city� w.r.t. σ1, σ2 and σ3 re-
spectively; and the set {v1�phone�, v1�zip�, v1�no�} is the core determinant of
v1�city�. {v2�no�} is the determinant of v2�phone� w.r.t. σ3, and is the core de-
terminant of v2�phone�. ��
A core determinant of u is computed as follows. (a) We find all the nontrivial
FDs in Σ+ with u as a value node on the right side. The logical implication of
FDs is required to compute Σ+; it is with respect to the number of FDs in Σ,
and therefore is acceptable when dealing with Σ of a reasonable size. With a
given FD σ and a node u in the XML document T , it takes linear time in the
size of T (|T |) to check whether u is a value node of σ w.r.t. the right side path.
(b) We compute a minimum cover of the paths on the left side of these FDs, i.e.,
a minimum set of paths that intersects with at least one left side path for each
FD. This is irrelevant of |T |. (c) We get a core determinant of u by evaluating
the paths in the cover on T , with a time linear in |T |.

We can resolve the remaining violations by doing a limited number of value
modifications, based on the following finding.

Theorem 2. For every node w∈Cu, where Cu∈CoreDeterΣ(u) is a core deter-
minant of u, if there is a σ-determinant Y of w for some nontrivial FD σ, then
there exists a core determinant Cw∈CoreDeterΣ(w), such that (Cu∪{u})⊇Cw.

We provide a method to do value modifications without incurring new conflicts
in Algorithm 2. We continue to select remaining violating value node u (line 2)
and all the nodes in a core determinant Cu of u (line 3), and then modify the
values of all the selected nodes to fresh new values (line 4), until all the vio-
lations are resolved. The termination of Algorithm 2 is guaranteed by the fact
that no new violations will be introduced, since (a) we have changed values of
all the nodes in Cu to distinct fresh new values, and Cu intersects with every
σ-determinant of u; distinct values for the left side value nodes of σ guarantee
no violations, and (b) according to Theorem 2, for every node w ∈ Cu, Cu ∪ {u}
contains a core determinant of w. Thus, we have also assigned fresh new values
to every nodes in a core determinant of w; this will guarantee no new violations.

460 Z. Tan and L. Zhang

Algorithm 2. Resolve-Remaining-Violations

input : An XML document T , a set Σ of FDs.
output: A modified document T , with all the violations fixed.

while there are FD violations in T w.r.t. Σ do1

pick a violating value node u from T w.r.t. Σ;2

let Cu be a core determinant of u;3

foreach node w∈(Cu∪{u}) do val(w) := gen new value();4

// it guarantees that no new violations will be introduced

endw5

We give our repair computing method. Given an inconsistent XML document
T and a set Σ of FDs, we compute a repair of T w.r.t. Σ in two steps. (a)
Algorithm 1 is used to fix the initial violations in T . (b) Algorithm 2 is applied
to the result of Algorithm 1, to resolve all the remaining conflicts. The correctness
and complexity of the method is stated as follows.

Theorem 3. With a given set Σ of FDs, the provided method computes a repair
of an XML document T w.r.t. Σ in polynomial-time in the size of the XML
document T (|T |). ��

6 Implementation

In this section, we present several techniques to improve our algorithms both in
the repair quality and in the running time.

(1) We employ an algorithm to find an approximation of the optimum ver-
tex cover of the initial conflict hypergraph. Since the size of each hyperedge is
bounded by a constant d only determined by the set of FDs, we use the layer
algorithm [17] for a d-approximation of the optimum cover.
(2) In Algorithm 2, we continually select violating nodes, and introduce fresh
new values to each selected node and all the nodes in one of its core determinants.
We use a greedy method to select the most cost-effective node v from the vertex
cover V C at each step: we select the node v with the smallest w(v)

nv
, where nv is

the number of violations involving v.
(3) We find that FD validations on the given XML document are the most
time-consuming procedures in our repairing method. In the construction of the
initial conflict hypergraph, with a FD σ= (P, P ′, (P1, . . . , Pn → Pn+1)), the
validation against σ is optimized as follows. (a) Under a context node, the target
nodes of σ are first clustered using a hash function on the values of their child
nodes matching paths P1, . . . , Pn. More specifically, for a context node v ∈ {�p�},
∀v1, v2 ∈ {v�P ′�}, if v1�Pi� ≡ v2�Pi� for all i ∈ [1, n], then the hash function will
put v1 and v2 in the same cluster. (b) Validations against σ are only done for
the target nodes in the same cluster.

FD validation is also required in the second step of our repairing approach,
because new conflicts may occur. We do the validation incrementally. (a) The

Improving XML Data Quality with Functional Dependencies 461

target nodes whose child value nodes are modified in Algorithm 1 are identified,
and are re-clustered using the same hash function if the values of any child nodes
matching P1, . . . , Pn are modified. (b) For any comparison in a cluster, at least
one target node in the comparison should be an identified node in step (a).

7 Experimental Study

We next present an experimental study of our XML repairing algorithms. Using
both real-life and synthetic XMark [16] data, we conduct two sets of experiments
to evaluate (a) the effectiveness of our algorithm in terms of repair quality, and
(b) the efficiency and scalability of our algorithm in terms of running time.

7.1 Experimental Setting

(1) Real-life data. We scrape book information from three web sites: Google
Books, Amazon and Book Depository. By adjusting the searching keyword, we
get datasets of different sizes. For each book, we create FDs from the isbn node to
other child nodes of a book. There are many natural discrepancies between the
three sites. We assume that all the isbns are trusted, and books from different
sites are the same book if they have the same isbn. To resolve conflicts among
the three sites, we choose the value that the majority of the sites agree on; if no
such value exists, we pick the value from web sites in the order of Google Books,
Amazon and Book Depository. Note that with these rules, a deterministic “best”
merging result is available (though it is not seen by our algorithm, of course).
We denote this result as T , and refer to the original data taken from the web as
Tdirty because of its inconsistency. We then assign weights to the leaf nodes in
Tdirty as follows. (a) Google Books, Amazon and Book Depository are associated
with a weight 0.5, 0.4, 0.3, respectively. (b) Leaf nodes in Tdirty are assigned the
same weight as their original site, except the isbn nodes. (c) All the isbn nodes
are given a higher weight than other nodes.
(2) Synthetic data. We create XMark instances with different sizes, and consider
FDs expressing data semantics. The initial generated data is correct, referred to
as T . We then introduce noise to leaf nodes involved in FDs; with probability p
(the noise ratio) the value of a leaf node is replaced with another value, which is
guaranteed to cause a conflict. This inconsistent data set is referred to as Tdirty.
We call a node v “dirty” if the value of v is modified in Tdirty, otherwise we say
that v is “clean”. We randomly assign a weight w(v) in [0, a] for each dirty leaf
node v, and randomly select a weight w(v) in [b, 1] for each clean leaf node v.
Based on the assumption that a clean node usually has a slightly higher weight
than a dirty node, we set a = 0.4 and b = 0.6 in the experiments.
(3) Measuring repair quality. The repair found by the algorithm satisfies all the
FDs, but still may contain two types of errors: the noises that are not fixed,
and the new noises introduced in the repairing process. We extend the notions
of precision and recall [8] to measure repair quality, in terms of correctness
and completeness, respectively. The precision is computed as the ratio of the

462 Z. Tan and L. Zhang

number of correctly repaired nodes to the number of nodes modified by the
repairing algorithm, and recall is the ratio of the number of correctly repaired
nodes to the number of total error nodes. The total error nodes are the “dirty”
nodes in Tdirty, and the correctly repaired nodes in the repair Trep found by the
algorithm are the modified nodes in Trep, which are “dirty” in Tdirty.

We have implemented all the algorithms in Java. All the experiments are run on
a PC with Intel Pentium Dual CPU E2140, 1GB RAM and Ubuntu Linux 9.10.
Each experiment is run five times and the average reading is recorded.

7.2 Experimental Results

Exp-1: Effectiveness in terms of repair quality. We evaluate the quality of
the repair that our repairing algorithm computes. The basic settings of synthetic
data in these experiments are an XMark instance of 30M size (|T | = 30M), 20%
noise ratio (p = 20%) and a set Σ of 5 FDs (|Σ| = 5). In each of Fig. 2(a),
Fig. 2(b) and Fig. 2(c), one parameter varies. The results demonstrate that our
repairing algorithm consistently computes a repair with good quality, i.e., with a
precision value > 80% and an even higher recall value. The values of recall are
high, which means that our algorithm can repair most of the introduced errors.
As indicated by the values of precision, some new errors may be introduced by
our algorithm.

Fig. 2(b) shows that the precision and recall decrease slightly with the in-
crease of p, as expected. In Fig. 2(c), we find that the increase of |Σ| also has a
negative impact on the repair quality. The reason is that our algorithm tends to
modify nodes involved in more FDs for a low cost repair, especially when the in-
terplay among FDs becomes complicated. However, these nodes may be “clean”
even if they are involved in many FDs. The repair quality improves when we
assign higher weights to those “clean” nodes by adjusting the weight bound b in
the settings (not shown in the figures).

We also evaluate our algorithm on real-life data, reported in Fig. 2(d). We
can see that the repair quality on real-life data is even better than that on the
synthetic data, since (a) the FDs on real-life data are in the form of keys, the
interactions of FDs are therefore relatively simple, and (b) the isbn nodes are
associated with a high weight, and hence, they are rarely modified in the repair.

Exp-2: Efficiency and Scalability. We evaluate the efficiency and scalability
of our algorithm on synthetic data, in the same setting as in Exp-1. In Fig. 2(e),
we fix p, |Σ|, and vary |T |. From the results we can see that the algorithm scales
well with |T |. To further analyze the results, we give the details of time compo-
sition in Fig. 2(f). The time to cover and modify the initial conflict hypergraph
and the time to modify values based on core determinants are omitted, because
they are trivial in the overall time. We find the following. (a) The overall time is
governed by the time to construct the initial conflict hypergraph. (b) The hash
based clustering technique helps the algorithm conduct FD validations, and it is

Improving XML Data Quality with Functional Dependencies 463

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 10 20 30 40 50 60 70 80 90

A
cc

ur
ac

y

Data Size(M.)

precision
recall

(a) Accuracy vs. data size
(|T |)

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.15 0.2 0.25 0.3 0.35 0.4

A
cc

ur
ac

y

Noise Ratio

precision
recall

(b) Accuracy vs. noise ra-
tio (p)

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 3 4 5 6 7 8 9

A
cc

ur
ac

y

Number of Constraints

precision
recall

(c) Accuracy vs. number of
FDs (|Σ|)

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 20 40 60 80 100

A
cc

ur
ac

y

Data Size(M.)

precision
recall

(d) Accuracy vs. real-life
data size

 0

 1000

 2000

 3000

 4000

 5000

 10 20 30 40 50 60 70 80 90

R
un

ni
ng

 T
im

e(
S

ec
.)

Data Size(M.)

repairing

(e) Scalability with data
size (|T |)

 0

 1000

 2000

 3000

 4000

 5000

10 30 50 70 90

R
un

ni
ng

 T
im

e(
Se

c.
)

Data Size(M.)

Total Time
Hypergraph Construction
Constraint Re-validation

(f) Composition of time
vs. |T |

 0

 100

 200

 300

 400

 500

 600

 700

 0.15 0.2 0.25 0.3 0.35 0.4

R
un

ni
ng

 T
im

e(
S

ec
.)

Noise Ratio

repairing

(g) Scalability with noise
ratio (p)

 0

 100

 200

 300

 400

 500

 600

 700

0.15 0.2 0.25 0.3 0.35 0.4

R
un

ni
ng

 T
im

e(
Se

c.
)

Noise Ratio

Total Time
Hypergraph Construction
Constraint Re-validation

(h) Composition of time
vs. p

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.15 0.2 0.25 0.3 0.35 0.4

R
un

ni
ng

 T
im

e(
S

ec
.)

Noise Ratio

Cover and Modification

(i) Vertex cover and value
modification on the hyper-
graph vs. p

 0

 500

 1000

 1500

 2000

 3 4 5 6 7 8 9

R
un

ni
ng

 T
im

e(
S

ec
.)

Number of FDs

repairing

(j) Scalability with varying
number of FDs (|Σ|)

 0

 500

 1000

 1500

 2000

3 4 5 6 7 8 9

R
un

ni
ng

 T
im

e(
Se

c.
)

Number of FDs

Total Time
Hypergraph Construction
Constraint Re-validation

(k) Composition of time
vs. |Σ|

 0

 100

 200

 300

 400

 500

 20 40 60 80 100

R
un

ni
ng

 T
im

e(
S

ec
.)

Data Size(M.)

repairing

(l) Running time on real-
life data

Fig. 2. Experimental Results

critical to the scalability of the algorithm with |T |. (c) The re-validation signifi-
cantly takes less time than the initial one, which confirms that our optimization
based on incremental FD validation is efficient.

By varying p, Fig. 2(g) and 2(h) show the overall time and detailed time
composition, respectively. The results tell us that the algorithm is insensitive
to the increase of p. To better explain the results, we give the time of vertex
cover and value modification on the hypergraph in Fig. 2(i). The time increases

464 Z. Tan and L. Zhang

as expected because the conflict hypergraph becomes larger with increasing p,
but this time is still not very significant compared with the overall time. As
remarked earlier, the time of conflict hypergraph construction is the dominating
factor of the running time. The most expensive part of hypergraph construction
is the initial constraint validation, which is not sensitive to p. In light of this,
the algorithm scales well with p.

Fig. 2(j) and Fig. 2(k) show the impact of |Σ|. As expected, it takes more
time for our algorithm when new FDs are added in the experiments, and we can
see that the algorithm scales well with the increase of |Σ|.

Finally, the results for real-life data are reported in Fig. 2(l). Note that all the
FDs considered on real-life data are defined from isbn to other nodes. Therefore,
all of the hyperedges are generated by rule 1 of Definition 3. From the results
we find that the construction of the initial conflict hypergraph becomes far more
efficient if only this type of hyperedge exists.

8 Conclusions

We have proposed a framework for repairing XML data, and established the com-
plexity bounds on the optimum repair computing problem. We have also devel-
oped techniques to compute repairs, and experimentally verified their
efficiency and scalability. We are currently investigating the problem by incor-
porating more types of constraints, enriching the model with different repair
primitives, and studying the optimization techniques to improve our method.

References

1. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent
databases. In: PODS, pp. 68–79 (1999)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of databases. Addison-Wesley,
Reading (1995)

3. Arenas, M., Libkin, L.: A normal form for XML documents. TODS 29(1), 195–232
(2004)

4. Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.: Keys for XML. In: WWW,
pp. 201–210 (2001)

5. Bohannon, P., Fan, W., Flaster, M., Rastogi, R.: A cost based model and effective
heuristic for repairing constraints by value modification. In: SIGMOD, pp. 143–154
(2005)

6. Beskales, G., Ilyas, I., Golab, L.: Sampling the repairs of functional dependency
violations under dard constraints. In: VLDB (2010)

7. Chomicki, J.: Consistent query answering: Five easy pieces. In: Schwentick, T.,
Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 1–17. Springer, Heidelberg (2006)

8. Cong, G., Fan, W., Geerts, F., Jia, X., Ma, S.: Improving data quality: Consistency
and accuracy. In: VLDB, pp. 315–326 (2007)

9. Fan, W.: Dependencies revisited for improving data quality. In: PODS, pp. 159–170
(2008)

10. Fan, W., Bohannon, P.: Information preserving XML schema embedding.
TODS 33(1) (2008)

Improving XML Data Quality with Functional Dependencies 465

11. Flesca, S., Furfaro, F., Greco, S., Zumpano, E.: Repairs and consistent answers
for XML data with functional dependencies. In: Bellahsène, Z., Chaudhri, A.B.,
Rahm, E., Rys, M., Unland, R. (eds.) XSym 2003. LNCS, vol. 2824, pp. 238–253.
Springer, Heidelberg (2003)

12. Flesca, S., Furfaro, F., Greco, S., Zumpano, E.: Querying and repairing inconsistent
XML data. In: Ngu, A.H.H., Kitsuregawa, M., Neuhold, E.J., Chung, J.-Y., Sheng,
Q.Z. (eds.) WISE 2005. LNCS, vol. 3806, pp. 175–188. Springer, Heidelberg (2005)

13. Kolahi, S., Lakshmanan, L.: On approximating optimum repairs for functional
dependency violations. In: ICDT, pp. 53–62 (2009)

14. Lopatenko, A., Bravo, L.: Efficient approximation algorithms for repairing incon-
sistent databases. In: ICDE, pp. 216–225 (2007)

15. Ng, W.: Repairing inconsistent merged XML data. In: Mař́ık, V., Štěpánková, O.,
Retschitzegger, W. (eds.) DEXA 2003. LNCS, vol. 2736, pp. 244–255. Springer,
Heidelberg (2003)

16. Schmidt, A., Waas, F., Kersten, M., Carey, M., Manolescu, I., Busse, R.: XMark:
A benchmark for XML data management. In: VLDB, pp. 974–985 (2002)

17. Vazirani, V.V.: Approximation algorithms. Springer, Heidelberg (2001)
18. Vincent, M., Liu, J., Liu, C.: Strong functional dependencies and their application

to normal forms in XML. TODS 29(3), 445–462 (2004)

Identifying Relevant Matches with NOT
Semantics over XML Documents

Rung-Ren Lin1, Ya-Hui Chang4,�, and Kun-Mao Chao1,2,3

1 Department of Computer Science and Information Engineering
2 Graduate Institute of Biomedical Electronics and Bioinformatics

3 Graduate Institute of Networking and Multimedia,
National Taiwan University, Taipei, Taiwan

{r91054,kmchao}@csie.ntu.edu.tw
4 Department of Computer Science and Engineering
National Taiwan Ocean University, Keelung, Taiwan

yahui@ntou.edu.tw

Abstract. Keyword search over XML documents has been widely stud-
ied in recent years. It allows users to retrieve relevant data from XML
documents without learning complicated query languages. SLCA (small-
est lowest common ancestor)-based keyword search is a common mecha-
nism to locate the desirable LCAs for the given query keywords, but the
conventional SLCA-based keyword search is for AND-only semantics. In
this paper, we extend the SLCA keyword search to a more general case,
where the keyword query could be an arbitrary combination of AND,
OR, and NOT operators. We further define the query result based on
the monotonicity and consistency properties, and propose an efficient al-
gorithm to figure out the SLCAs and the relevant matches. Since the
keyword query becomes more complex, we also discuss the variations
of the monotonicity and consistency properties in our framework. Fi-
nally, the experimental results show that the proposed algorithm runs
efficiently and gives reasonable query results by measuring the processing
time, scalability, precision, and recall.

Keywords: keyword search, XML, Smallest LCA, NOT semantics.

1 Introduction

XML is a standard format for presenting and exchanging the information in the
World-Wide-Web, and thus the requirement of getting information from XML
documents is raised. Keyword search is a widely-used approach to retrieve mean-
ingful information from XML documents, which does not require the knowledge
of the XML document specification and the XML query language [14]. Many
keyword search mechanisms are based on the lowest common ancestor (LCA)
concept to identify the desirable subtrees. The LCA of a set of query keywords
refers to the node that contains every keyword at least once in the subtree rooted
� Corresponding author.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 466–480, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Identifying Relevant Matches with NOT Semantics over XML Documents 467

Fig. 1. A sample XML tree

Table 1. Sample keyword queries with NOT operators

Q1 Subject ∧ 101 ∧ !Monday
Q2 2010 ∧ Subject ∧ 101 ∧ !Monday
Q3 Course ∧ (101 ∨ 103) ∧ (! Friday ∨ !Math)

at this node. The SLCA keyword search was further proposed by Wu and Pa-
pakonstantinou [10]. A node n is said to be an SLCA node if: (i) n is an LCA
node, and (ii) none of n’s children are also the LCA nodes. Take Figure 1 as an
example. It displays a sample XML tree, which describes the school’s course in-
formation in year 2010, and each node is assigned a unique Dewey number. The
SLCAs of querying (Subject, Friday) will be nodes 1.2.2 and 1.2.3. However, the
original SLCA-based keyword search is for AND-only semantics. Sun et al. [8]
then provided a solution to process more general keyword search queries which
support any combination of AND and OR boolean operators. For instance, the
keyword query could be (Subject ∧ (Monday ∨ Friday)), where “∧” and “∨”
represent AND and OR operators respectively. Since its semantics is to search
the subjects which are held on Monday or Friday, the SLCAs are now nodes
1.2.1, 1.2.2, and 1.2.3.

Liu and Chen [7] then proposed a concept contributor to determine the rele-
vant matches in the subtrees rooted at SLCAs. That is, only “important” nodes,
instead of the whole subtree, will be returned. In addition, their output also sat-
isfies both monotonicity and consistency properties, which capture a reasonable
connection between the new query result and the original query result after the
data or the query updates.

In this paper, we address the issue of identifying the relevant matches where
the keywords can be combined by AND, OR, and NOT operators. In AND-only
semantics, the node is qualified to be the LCA node if it contains every query
keywords under its subtree. For the query keyword with the NOT operator, it is
intuitive that the LCA node should not contain such keyword under its subtree.
For instance, consider query Q1 in Table 1, where the NOT operator is marked

468 R.-R. Lin, Y.-H. Chang, and K.-M. Chao

as exclamation “!” in the prefix of the keyword. It asks for the subjects that are
held in room 101 but not on Monday. We can see that totally two courses, nodes
1.2.1 and 1.2.4, are held in room 101. However, since the course of node 1.2.1 is
held on Monday, the desirable answer would be node 1.2.4. Nevertheless, based
on the intuitive definition of LCA, there may not exist any node to return in some
cases, even though there are desirable answers. Consider another example query
Q2, whose semantics is similar to that of Q1 but limited to year 2010. Observe
that only node 1 (School) contains the first three keywords under its subtree, but
it is not a qualified LCA since it also contains the undesirable keyword Monday.
Hence, the meaningful information, that is, the subtree rooted at node 1.2.4,
will not be returned. We further propose the definition of the masked LCA to
overcome this problem, and will have more details in Section 2.

In summary, the main technical contributions of this paper are as follows:

– We first define the SLCA and relevant match for the keyword query with
an arbitrary combination of AND, OR, and NOT operators. In addition, we
propose the idea of the masked LCA to process special cases such as Q2.

– We also give an efficient algorithm RELMN (RELevant Matches with NOT
semantics) to figure out the SLCA nodes and the relevant matches corre-
sponding to our definitions.

– We discuss the variations of the monotonicity and consistency properties
since these properties naturally become more complex for the keyword query
with NOT semantics.

– We have performed an empirical evaluation of the query result by measuring
the precision, recall, processing time, and scalability. The experiments show
that our algorithm works efficiently and gives reasonable query results.

The remainder of this paper is organized as follows. In Section 2, we deliver
the definitions of the SLCA nodes and the relevant matches for the query with
NOT semantics. Section 3 presents the RELMN algorithm that figures out all of
the relevant matches with NOT semantics. The variations of monotonicity and
consistency properties in our framework are discussed in Section 4. In Section 5,
we show the experimental studies with the metrics precision, recall, processing
time, and scalability. Related works and conclusions are given in Section 6 and
Section 7 respectively.

2 Basic Definitions

In this section, we define the SLCA nodes and the relevant matches for the
keyword query with NOT semantics. In our approach, the keyword query should
be first converted into CNF (conjunctive normal form). Hence, the clauses in
this paper are connected with the AND operators, and literals in the same clause
are supposed to be connected with the OR operators. Besides, the literal refers
to a given keyword, and is either positive or negative. The negative literal is
represented with the exclamation mark “!” in the prefix of the keyword.

Identifying Relevant Matches with NOT Semantics over XML Documents 469

2.1 SLCA Nodes with NOT Semantics

As mentioned before, in AND-only semantics, a node is said to be an LCA node
of a query if it contains every keyword at least once under its subtree. Therefore,
it is reasonable and intuitive that the negative literals are “not” expected to be
the descendants of the LCA node. Namely, the positive literal is logically true to
node n if such keyword is contained in the subtree rooted at n, and the negative
literal is logically true to node n if n contains “no” such keyword under its
subtree. We formally define the concept of “satisfy” in the following:

Definition 1. [Satisfy]: Given a query Q = {c1 ∧ c2... ∧ cw}, ci (which consists
of several positive and negative literals) is logically true to node n if n contains
at least one positive literal of ci or does not contain at least one of the negative
literals of ci under its subtree. We also say that “node n satisfies clause ci”. �

Based on this definition, n is the LCA node of Q if n satisfies every clause of Q,
which is also stated as “n satisfies query Q”. Recall that there may not exist any
node to be the LCA for some queries such as Q2. To overcome this problem, we
further define the masked LCA (mLCA) as the relaxation response. The mLCA
of the query is a node that satisfies every pure positive clause, where a pure
positive clause refers to the clause that has no negative literals. By this relaxed
definition, a node whose descendants represent both the desirable information,
such as the subtree rooted at node 1.2.4, and the undesirable information, such
as the subtree rooted at node 1.2.1, will be kept for further processing. Moreover,
the masked SLCA (mSLCA) is an mLCA, and none of its descendants are also
mLCAs. Finally, we propose the following definition:

Definition 2. [SLCA]: A node is said to be an SLCA of query Q if: (i) n satisfies
Q, and (ii) none of n’s descendants satisfy Q. If no such node exists, the mSLCA
nodes are considered to be the SLCA nodes in our framework. �

2.2 Relevant Matches with NOT Semantics

Liu and Chen [7] defined the relevant matches under the subtree rooted at SLCA
nodes for the keyword query with AND-only semantics. We first describe their
original definitions and then define the relevant matches in our framework.

A node is a match if its tag name or the content contains a query keyword.
The descendant matches of a node n, denoted as n.dMatch, is a set of query
keywords, each of which has at least one match under the subtree rooted at n.
For simplicity, n.dMatch could also be seen as a bit array of size w, where w is
the number of keywords. Namely, the jth bit of n.dMatch is set to 1 if n contains
the jth keyword under its subtree. In addition, a node n1 will be considered as a
contributor if (i) n1 is itself or the descendant of a given SLCA, and (ii) n1 does
not have a sibling n2 such that n2.dMatch ⊃ n1.dMatch (pruning rule). The
main concept of the contributor is that if n2 contains richer information under
its subtree than n1 does, n1 should be pruned by n2. Finally, node n is considered
relevant if every node on the path from n up to an SLCA t is a contributor, and

470 R.-R. Lin, Y.-H. Chang, and K.-M. Chao

the query result for a query over the XML tree is defined as (t, M), where M is
the set of relevant matches (including value children, if any) under the subtree
rooted at an SLCA t.

Example 1. Consider Q = (2010) ∧ (Math) ∧ (Friday). Node 1 (School) is
the only SLCA node. Besides, the dMatch value of nodes 1.2.1, 1.2.2, and 1.2.3
are “010”, “100”, and “110” respectively. Note that the first keyword (2010) is
mapped to the right-most bit, and so on. By the definitions mentioned above,
nodes 1.2.1 and 1.2.2 are pruned by node 1.2.31, and those descendants of the
pruned nodes are also skipped. Therefore, the relevant matches is the node list
[1, 1.1, 1.1.1, 1.2, 1.2.3, 1.2.3.1, 1.2.3.1.1, 1.2.3.2, and 1.2.3.2.1]. �

In our framework, we modify the pruning rule of the contributor as follows:

Definition 3. [Pruning Rules]: Let n.C be the set of clauses that is satisfied by
node n, and n.P (n.N) be the set of positive (negative) literals that is contained
under the subtree rooted at n. Node n2 will be able to prune node n1 if n2

satisfies the following three rules: (1) n2.C ⊃ n1.C, (2) n2.P ⊇ n1.P , and (3)
n2.N ⊆ n1.N (referred to as Rules 1, 2, and 3). �
Obviously, Rule 1 inherits from the original pruning rule. Rules 2 and 3 are added
because if n1 has more positive literals than n2 or has less negative literals than
n2, it might contain desirable information to the users. Moreover, note that
except for the pruning rules, the definitions of contributor, relevant match and
query result in our framework are identical to the original ones.

3 The RELMN Algorithm

We propose an efficient algorithm RELMN to search the SLCAs and the relevant
matches for the keyword query with an arbitrary combination of AND, OR, and
NOT operators. We first give some more definitions, and then illustrate the
algorithm in detail.

3.1 Definitions

The match in our framework refers to a node whose tag name or value equals
to a positive literal or a negative literal. The match tree of a node n, denoted as
mTree(n), consists of the nodes along the path from each match (including its
value child, if any) up to the node n.

Given a query Q without any pure positive clause, all the leaf nodes which
do not match any negative literal would satisfy Q, and thus will be returned
according to our definition. For instance, given a query (!Monday) ∧ (!101), all
the leaf nodes except for nodes 1.2.1.2.1, 1.2.1.3.1, and 1.2.4.3.1 are the relevant
matches. On the contrary, if Q has at least one pure positive clause, the SLCA
nodes are guaranteed to be in mTree(root), where root is the root of the whole

1 Given two nodes n1 and n2, n2 prunes n1 if (i) n2.dMatch > n1.dMatch and (ii)
bitwise AND(n1.dMatch, n2.dMatch) = n1.dMatch, which can be done in O(1).

Identifying Relevant Matches with NOT Semantics over XML Documents 471

XML tree. Since the query without any pure positive clause is easier to deal
with, we assume there exists at least one pure positive clause in this paper.
Therefore, we construct mTree(root) first, because it helps to figure out the
relevant matches efficiently.

We then discuss how to achieve the pruning rules defined in Definition 3. As
shown in Example 1, the bit array can efficiently implement the pruning rule. We
therefore continue to adopt this data structure. For each node n ∈ mTree(root),
we use bit arrays C-array, P-array, and N-array to implement n.C, n.P , and
n.N . The C-array of n is a bit array of length w bits, where w is the number
of clauses. The ith bit of C-array is set to 1 if n satisfies the ith clause of the
keyword query. The P-array of n records the occurrences of the positive literals
in mTree(n), and its length equals to the number of distinct positive literals.
The jth bit of the P-array is finally set to 1 if n contains the jth positive literal
under its subtree. The N-array of n is similar to the P-array, but takes negative
literals into consideration only.

Example 2. Consider Q3 in Table 1. The positive literals are {Course, 101,
103}, and the negative literals are {!Friday, !Math}. Thus, the bit numbers
of P-array and N-array are 3 and 2 respectively. Recall that the literals are
numbered from left to right, and the first bit is the right-most bit in this paper.
Hence, the P-arrays of nodes 1.2.1 and 1.2.3 are “011” and “101”, and their
N-arrays are “10” and “11”, respectively. Moreover, node 1.2.3 does not satisfy
the third clause of Q3 because both Friday and Math appear in its subtree,
and thus its C-array is “011” while the C-array of node 1.2.1 is “111”. �
To produce the final correct C-arrays, each node is associated with one more bit
array B-array. Given a keyword query of w clauses, every node needs w blocks,
and each block corresponds to a specific clause. The block is a bit array and is
composed of several (or zero) “negative bits” and one (or zero) “positive bit”.
Suppose block blk corresponds to clause c. It will consist of k negative bit(s) if c
has k negative literal(s). On the other hand, if c has at least one positive literal,
blk also needs one positive bit. Otherwise, blk needs no positive bit. Specifically,
every negative literal corresponds to a specific negative bit, but all the positive
literals in the same clause share a common positive bit. Such design corresponds
to the concept of satisfaction given in Definition 1. The B-array for each node
will consist of the blocks of all the clauses, and all the negative bits are initialized
as 1 and the positive bit is initialized as 0. We then give an example to show the
initial state of B-array.

Continue Example 2. The first clause c1 (Course) of Q3 has only one positive
literal, and thus its corresponding block is initialized as “0”. The second clause
c2 has two positive literals. Since all the positive literals share the common
positive bit, its corresponding block is also initialized as “0”. The third clause
c3 has exactly two negative literals and has no positive literal, and thus its
corresponding block is initialized as “11”. Besides, the blocks are displayed from
right to left in the figure. Hence, the B-array of each node in mTree(root), as
shown in Figure 2 (a), is initialized as “11 0 0”.

472 R.-R. Lin, Y.-H. Chang, and K.-M. Chao

Fig. 2. The B-arrays of query Q3

3.2 Algorithm

The pseudo code of Algorithm RELMN is shown in Figure 3. Given a keyword
query with an arbitrary combination of AND, OR, and NOT operators, we
convert the keyword query into CNF in line 1. To initialize the B-array, P-array,
and N-array for each node in mTree(root) (in line 2), we first retrieve the match
lists from the B-tree index, where the key of the B-tree index is the query keyword
and its associated value is all the matches sorted by their Dewey numbers of this
query keyword. Then we construct and initialize every node along the path from
each match up to the root. Next, we iteratively process the literals of each clause
in lines 3 to 8. If the literal is positive, we call Procedure SetPositive; otherwise,
we call Procedure SetNegative.

In Procedure SetPositive, let l be the currently active literal, and m be the
match of l. Besides, suppose l corresponds to the ith bit of B-array and the jth

bit of P-array. For each node n from m up to root, if the ith bit of n.B and
the jth bit of n.P are both 1 (in line 17), it implies that another match of l
has already visited node n (including n’s ancestors). Therefore, we can quit the
SetPositive procedure. On the contrary, if line 17 is not active, we then set the
ith bit of B-array and the jth bit of P-array to 1. Procedure SetNegative is quite
analogous to SetPositive. The primary difference is to set the ith bit of B-array
to 0 at each iteration. Furthermore, we only need to check n.B[i] (in line 27) to
determine whether n is visited or not, because every negative literal has its own
negative bit in B-array. The next example shows how these two procedures work.

Example 3. Consider the second literal “103” in the second clause of Q3. It is
a positive literal and has only one match (node 1.2.3.3.1). Since it corresponds to
the second bit of B-array and the third bit of P-array, these two bits of each node
in the node list [1.2.3.3.1, 1.2.3.3, 1.2.3, 1.2, 1] are set to 1. Take another literal
as an example. Consider “!Friday” in the third clause of Q3, which corresponds
to the third bit of B-array and the first bit of N-array. “Friday” has two matches
1.2.2.2.1 and 1.2.3.2.1. In the loop of the former match, we iteratively set the
third bit of B-array of each node in the node list [1.2.2.2.1, 1.2.2.2, 1.2.2, 1.2, 1]

Identifying Relevant Matches with NOT Semantics over XML Documents 473

Input: A query input query with arbitrary
combination of AND, OR, and NOT
operators

Output: All of the relevant matches
Global Variable: Result← empty

RELMN(query)

1: Q← convert query into CNF
2: initialize the mTree(root) of Q
3: for each clause c of Q do
4: for each literal l in c do

/* suppose l maps to ith bit of B-array */
5: if l is positive then

/* suppose l maps to jth bit of P-array */
6: SetPositive(i, j)
7: else

/* suppose l maps to jth bit of N-array */
8: SetNegative(i, j)
9: convert B-array to C-array for each node

10: FindSLCA(root)
11: if Result = empty then
12: FindMaskedSLCA(root)
13: for each node n � Result
14: SearchRelevant(n)

SetPositive(i, j)
15: for each match m of l do
16: for each node n from m up to root do
17: if n.B[i] = 1 and n.P[j] = 1 then
18: return
19: set the ith bit of n.B to 1
20: set the jth bit of n.P to 1

SetNegative(i, j)
21: for each match m of l do
22: for each node n from m up to root do
23: if n.N[j] = 0 then
24: return
25: set the ith bit of n.B to 0
26: set the jth bit of n.N to 1

FindSLCA(n)
27: slca← 0
28: for each child nc of n do
29: slca ← slca + FindSLCA(nc)
30: if n satisfies every clause then
31: if slca = 0 then
32: Result = Result ��{n}
33: return 1 + slca
34: return slca

FindMaskedSLCA(n)
35: mslca← 0
36: for each child nc of n do
37: mslca ←mslca + FindMasked-

SLCA(nc)
38: if n satisfies every pure positive

clause then
39: if mslca = 0 then
40: Result = Result � {n}
41: return 1 + mslca
42: return mslca

 SearchRelevant(n)
43: if IsContributor(n) = true then
44: output n /* n is relevant */
45: for each child nc of n do
46: SearchRelevant(nc)

 IsContributor(n)
47: if n is the SLCA node then
48: return ture
49: for each sibling ns of n do
50: if ns.C ⊃ n.C and ns.P ⊇ n.P

and ns.N ⊆ n.N then
51: return false
52: return true

Fig. 3. The RELMN algorithm

to 0, and set the first bit of N-array of each node to 1. For the latter match, each
node in the node list [1.2.3.2.1, 1.2.3.2, 1.2.3] is treated as the previous ones.
And we can quit Procedure SetNegative since the first bit of N-array of node
1.2 is set to 1. �
Once the processing of all matches of a given clause c is done, node n ∈
mTree(root) satisfies c if and only if the bits of n.blk are not all zero, where
n.blk is the corresponding block of c in node n. Therefore, the final state of
the B-array is converted into C-array for each node when the setting of all the
literals are done (in line 9). As Figure 2 (b) indicates, only nodes 1.2.1 and 1.2.4
satisfy all three clauses, and clearly they are the SLCA nodes of query Q3 since
they do not have any descendant nodes that also satisfy every clause. We then
call FindSLCA, which traverses the nodes in postorder, to find the SLCA nodes

474 R.-R. Lin, Y.-H. Chang, and K.-M. Chao

(in line 10). If line 31 of FindSLCA is active, it indicates that none of n’s descen-
dants satisfy the query. Therefore, n is an SLCA node. Furthermore, if variable
Result is empty in line 11, meaning that none of the nodes satisfy the keyword
query, we further search mSLCA nodes by Procedure FindMaskedSLCA. The
main difference is that it considers pure positive clauses only (in line 38). At
the final step, Procedure SearchRelevant(n) traverses the tree in preorder and
identifies all the relevant matches of mTree(n) by Procedure IsContributor. If
n is an SLCA node, it is guaranteed to be a contributor since it has no sibling
(in line 47). If there exists n’s sibling ns which satisfies the pruning rules (in
line 50), n will be pruned by ns.

3.3 Time Complexity

Now we analyze the time complexity of RELMN. Given a query Q = c1∧c2...∧cw,
let |Mi| denote the number of total matches of ci, where 1 ≤ i ≤ w. Besides, let
d be the maximum depth of the XML tree and |M | = Σw

i=1|Mi|.
The initialization of mTree(root) takes O(d|M |) time since the arrays of each

node could be initialized in constant time. Besides, the setting of ith bit and
jth bit in Procedures SetPositive and SetNegative can be done in constant
time since it is determined when we parse and analyze the query keywords.
Hence, it takes O(d|M |) time to complete lines 3 to 8. In line 9, the conversion
takes totally O(d|M |·w) time, because it takes O(|w|) time to convert B-array
into C-array for each node. The FindSLCA and FindMaskedLCA procedures
visit every node n in mTree(root) exactly once, and determine whether n is
the SLCA node or not in constant time when C-arrays are constructed. Clearly,
both of these procedures take O(d|M |) time. The number of the nodes vis-
ited by Procedure SearchRelevant is bounded in O(d|M |) too. However, the
IsContributor procedure takes O(b) time to check each of n’s sibling where b is
the number of n’s siblings. Let bi denote the number of siblings of node ni in
mTree(root), and suppose the number of the total nodes of mTree(root) is z.
Procedure SearchRelevant takes O(Σz

i=1bi) time to visit every node and deter-
mine whether it is a contributor or not. In total, the time complexity of RELMN
is O(d|M | · w) + O(Σz

i=1bi).

4 Properties of Monotonicity and Consistency

We discuss the variations of the monotonicity and consistency properties under
NOT semantics in this section. In short, the monotonicity property describes
how |SLCA| varies with respect to data updates and query updates, and the
consistency property describes how the relevant matches vary when the data or
the query updates. Our pruning rules will make the query results satisfy these
properties presented in this section, but the proofs are omitted due to space
limitation. In the following, we deliver the modified properties and the examples.

Property 1. [Data Monotonicity]: After a new node n is added to the XML
tree, |SLCA| should be monotonically increasing if n matches a given positive

Identifying Relevant Matches with NOT Semantics over XML Documents 475

literal. On the contrary, if n matches a given negative literal, |SLCA| should be
monotonically decreasing.

For example, given query Q = (Friday) ∧ (Math). If we add a new node
1.2.2.1.2 (Math) as the sibling of node 1.2.2.1.1, then |SLCA| changes from 1 to
2. The next example which concerns negative literals is Q′ = (Days)∧ (Math)∧
(!102). If we add a new node 1.2.1.3.2 (102) as the sibling of node 1.2.1.3.1, then
|SLCA| changes from 2 to 1 after the node insertion. �
Property 2. [Query Monotonicity]: If we add a new literal, either positive or
negative, into an existing clause, |SLCA| should be monotonically increasing.
In the opposite, if we add a new literal as a new clause, |SLCA| should be
monotonically decreasing.

Consider query Q = (Days) ∧ (Math) ∧ (!103). Node 1.2.1 is the only SLCA
node. If we add “Chemical” into the second clause, Q′ = (Days) ∧ (Math ∨
Chemical)∧ (!103), |SLCA| becomes 3 since nodes 1.2.2 and 1.2.4 become new
SLCA nodes. Consider query Q∗ = (101 ∨ 102) ∧ (Chemical). If we add a new
clause “Friday” as the third clause, Q′∗ = (101 ∨ 102)∧ (Chemical) ∧ (Friday),
|SLCA| changes from 2 to 1 since node 1.2.4 is no longer an SLCA node. �
Property 3. [Data Consistency]: Let R denote the set of query results of a
given query over the XML tree, and R′ denote the set of query results after data
updates or query updates. Delta result tree δ(R, R′) is defined as R′ − R which
results δ(R, R′) ∩ R = ∅ and δ(R, R′) ∪ R = R′. Suppose δ(R, R′) is rooted at
n1, and n2 prunes n1 before the insertion of node n. If n is the descendant of
n1, then n must match a given positive literal. If n is the descendant of n2, then
n must match a given negative literal.

Consider query Q = (2010)∧ (Subject)∧ (102)∧ (!Friday). Node 1.2.3, which
is originally pruned by node 1.2.1, becomes a contributor if we add a new node
1.2.3.3.2 (102) as the sibling of node 1.2.3.3.1, because the newly added node
makes node 1.2.3 break Rules 1 and 2. Another example is that if we add a new
node 1.2.1.2.2 (Friday) as the sibling of node 1.2.1.2.1 instead of adding node
1.2.3.3.2 (102), it would make node 1.2.1 satisfy fewer clauses. Therefore, node
1.2.3 is no longer pruned by node 1.2.1 since Rule 1 is broken. �
Property 4. [Query Consistency]: Suppose the definitions of the nodes n1 and
n2 are the same as those in Property 3. The property of query consistency in
our framework could be classified into two cases, too. In the first case, if we add
a new positive literal l into the keyword query, there must exist a match of l
in the subtree rooted at n1. In the second case, if the newly added literal l is
negative, mTree(n2) must contain a match of such negative literal.

For example, consider Q = (2010) ∧ (Friday) ∧ (Math). We know that node
1.2.3 may prune node 1.2.1. If we add “Monday” into the second clause, that is,
Q′ = (2010) ∧ (Friday ∨ Monday) ∧ (Math), node 1.2.1 becomes a contributor
since Rules 1 and 2 are both broken. Consider another query, Q′′ = (2010) ∧
(Friday) ∧ (Math) ∧ (!103), where we add “!103” as a new clause instead of
adding “Monday” into the second clause. Node 1.2.1 may not be pruned by
node 1.2.3 since Rules 1 and 3 are both broken. �

476 R.-R. Lin, Y.-H. Chang, and K.-M. Chao

Table 2. Test queries for Reed College and Baseball

Reed College Baseball
QR1 title ∧ (M ∨ W) ∧ 01:00PM QB1 Indians ∧ Relief Pitcher ∧ surname
QR2 room ∧ Love in Shakespeare ∧ !02:40PM QB2 (Indians ∨ Tigers) ∧ starting pitcher ∧ surname
QR3 subj ∧ 04:00PM ∧ !T ∧ !W QB3 player ∧ !starting pitcher ∧ !relief pitcher ∧ home runs
QR4 subj ∧ !T QB4 Yankees ∧ !starting pitcher ∧ !relief pitcher ∧ home runs
QR5 subj ∧ room ∧ 301 ∧ !M QB5 player ∧ home runs ∧ 35
QR6 title ∧ F ∧ (ANTH ∨ BIOL) ∧ !09:00AM QB6 !Yankees ∧ second base ∧ home runs
QR7 instructor ∧ CHEM ∧ !M ∧ 01:10PM QB7 West ∧ !Mariners ∧ Trevor ∧ position
QR8 instructor ∧ CHEM ∧ M ∧ 01:10PM QB8 National ∧ !West ∧ team name

5 Experimental Evaluation

We have performed several experiments to evaluate the effectiveness and the
efficiency of the proposed algorithm. The measurements include precision, recall,
processing time, and scalability. The RELMN algorithm is implemented in C++
with the environment of Visual Studio 6.0 on Windows XP. We applied four data
sets to perform the experiments. They are DBLP, Treebank e, Reed College, and
Baseball, and the data sizes are 127MB, 82MB, 277KB, 1.01MB, respectively.
The first three data sets can be downloaded from [12], and the last one (Baseball)
is available in [11]. In addition, another B-tree index is built to answer the tag
name or value by a specific Dewey number. That is, the key is the Dewey number
of a given node, and the associated value is its tag name or value. Both indices
(the first B-tree index is introduced in Section 3.2) are implemented based on
the Oracle Berkeley DB.

5.1 Precision and Recall

The test queries used for the experiments discussed in this subsection are listed
in Table 2. The precision and recall of the Reed College data set is displayed
in Figure 4. The query could consist of any arbitrary combination of AND,
OR, and NOT operators. Observe that the proposed algorithm usually provides
reasonable query results. Take query QR3 for example. We want to search the
subject of the courses which start at 04:00PM but not on Tuesday or Wednes-
day. There are totally eight courses that start at 04:00PM. Two of them are
on Tuesday and three of them are on Wednesday. Since Algorithm RELMN
returns the subject of the remaining three courses, the precision and recall of
QR3 are both 100%. On the other hand, the semantics of QR4 is to search the
subjects that are not held on Tuesday. Refer to Figure 6 (a), which shows the
portion of the Reed College XML tree. Observe that every node with “subj”
is the SLCA node of QR4. Because each of them has only one value child that
describes the name of the subject, and thus satisfy “!T ”, the precision is there-
fore imperfect. This situation could be improved by changing the query. Let
QR′

4 = (subj) ∧ (days) ∧ (!T), which has an extra clause “days” than QR4.
Though semantics of QR′

4 stay the same, it gets 100% precision. Figure 5 dis-
plays the precision and recall of the Baseball data set. Recall that if none of
the nodes satisfy the keyword query, the mSLCA nodes would be considered as
the SLCA nodes. QB4 is one of such cases. Its semantics is to search the home
runs of non-pitcher players in Yankees team, and it gets perfect precision and

Identifying Relevant Matches with NOT Semantics over XML Documents 477

0%
20%

40%

60%

80%
100%

QR1 QR2 QR3 QR4 QR5 QR6 QR7 QR8
0%

20%
40%
60%

80%
100%

QR1 QR2 QR3 QR4 QR5 QR6 QR7 QR8

Fig. 4. Precision and recall of the Reed College data set

0%
20%

40%

60%

80%
100%

QB1 QB2 QB3 QB4 QB5 QB6 QB7 QB8

0%
20%

40%

60%

80%
100%

QB1 QB2 QB3 QB4 QB5 QB6 QB7 QB8

Fig. 5. Precision and recall of the Baseball data set

recall by RELMN. On the other hand, the precision and recall are also affected
by ambiguous keywords. For example, the semantics of QB5 is to find the players
who hit 35 home runs in 1998. However, “35” is also an ambiguous keyword since
many entries (walks, errors, etc) may also be 35. Hence, QB5 has a low precision.
Besides, QB8 also gets low precision and recall since “West” could be the player’s
surname and the league’s division name.

Though our approach answers desirable query results for most cases except
for ambiguous keywords, it still has room to be improved. Consider query QR2.
Its semantics is to ask the classroom of the course with the title “Love in Shake-
speare” which does not start from 2:40PM. There is only one course titled “Love
in Shakespeare” in the whole XML tree, and the course starts from 2:40PM.
Namely, the reasonable answer should be empty. But in our approach, the sub-
tree rooted at the course of “Love in Shakespeare” will be returned, and thus
we get poor precision and recall for QR2. Consider query QB6, its semantics
is to search the home runs of the second base player except for Yankees team.
The portion of the Baseball XML tree is shown in Figure 6 (b). We can see that
the node of Yankee’s second base player satisfies QB6 which is not a desirable
node to the semantics of QB6. However, such node is still being returned in our
approach, and thus causes an imperfect precision.

Fig. 6. Portions of the XML trees

478 R.-R. Lin, Y.-H. Chang, and K.-M. Chao

0

300

600

900

1200

1500

1800

QT1 QT2 QT3 QT4 QT5 QT6 QT7 QT8

T
im

e
(m

s)

0

200

400

600

QD1 QD2 QD3 QD4 QD5 QD6 QD7 QD8

T
im

e
(m

s)

Fig. 7. Processing time on the DBLP and Treebank e data sets

Table 3. Statistics of test queries of DBLP and Treebank e

DBLP Treebank e
Min fre. Max fre. Total fre. Output size Min fre. Max fre. Total fre. Output size

QD1 984 112K 137K 2.0K QT1 74 187K 236K 0.7K
QD2 984 112K 151K 21.6K QT2 74 187K 321K 92K
QD3 984 112K 161K 0.3K QT3 74 187K 350K 12
QD4 984 112K 168K 1.8K QT4 74 187K 363K 101K
QD5 112K 114K 338K 172K QT5 306 154K 202K 82K
QD6 17.4K 20.5K 57K 19K QT6 306 154K 219K 47K
QD7 5.9K 6.4K 18K 0.6K QT7 306 154K 227K 2.1K
QD8 1.9K 2.0K 5.9K 6.2K QT8 306 154K 233K 47K

5.2 Processing Time and Scalability

The processing time was measured on a 1.67GHz dual-core CPU with 1.5GB
RAM, and the cache size of Oracle Berkeley DB was set to 1.0 GB. Besides, each
query was executed three times, and we computed the average processing time
of the last two times. The experiments are based on the DBLP and Treebank e
data sets. Each processing time is divided into two parts. The first part (lower
part) represents the cost of constructing the match tree and searching the SLCA
nodes, and the second part (upper part) represents the cost of determining the
contributors and outputting the query results. Table 3 displays the statistics of
the test queries, in which “total frequency” denotes the sum of the numbers of
all matches, and “output size” denotes the number of all relevant matches. For
the first four input queries (QD1 to QD4) of the DBLP data set, we kept the
minimum and maximum frequencies of literals constant, and varied the number
of clauses (3 to 6). Each clause has exactly one literal with random positive or
negative. For QD5 to QD8, the number of clauses is fixed as 3, and the minimum
and maximum frequencies are close. As in the previous scenario, each clause has
exactly one positive or negative literal.

The processing time of QD1 to QD8 is shown in Figure 7 (a). We can see that
the cost of the first part is roughly in linear proportion to the total frequencies
of all literals. The cost of the second part mainly depends on the number of
relevant matches. Another factor to influence the cost of the second part is the
determination of contributors. For example, the numbers of relevant matches of
QD7 and QD8 are not very large, but the costs of their second parts are especially
high. The reason is that each of them has only one SLCA node, and the number
of the children rooted at the SLCA node is pretty large. Therefore, to determine
the contributors, each child of the SLCA node has to check all of its siblings.
The processing time of the Treebank e data set is shown in Figure 7 (b). We
selected the Treebank e data set because it has an extraordinary depth which is

Identifying Relevant Matches with NOT Semantics over XML Documents 479

0

500

1000
1500

2000

2500

100 200 300 400

Data Size(MB)

T
im

e(
m

s)

QB1 QB3 QB5 QB7

0
500

1000
1500
2000
2500
3000

100 200 300 400

Data Size(MB)

T
im

e(
m

s)

QR1 QR3 QR5 QR7

Fig. 8. Scalability of the Reed College and Baseball data sets

much larger than general data sets. The scenario of QT1 to QT4 is quite similar
to that of QD1 to QD4. Namely, the numbers of the clauses are from 3 to 6, and
each clause has one positive or negative literal. The numbers of clauses of QT5 to
QT8 are from 2 to 5, where each clause has exactly two literals, and the literals
are randomly set to positive or negative too. Overall, the analysis of processing
time is similar to that of the DBLP data set.

Finally, the scalability of RELMN was tested with different data sizes. We
selected the Reed College (277K) and Baseball (1.01M) data sets as the data
sources. We then duplicated the content and gave a unique tag name as the root
of the whole contents. The test queries are specified in Table 2, and the result
is depicted in Figure 8. We can see that the processing time is broadly in linear
proportion to the data size for each of the query input, which is satisfiable.

6 Related Works

The primary task of keyword search over XML documents is to figure out mean-
ingful subtrees, each of which contains the query keywords at least once. The
LCA-based strategy is commonly used to define the query result [2][4][9][10].
Since the nodes under the subtree rooted at a given LCA may not all be
meaningful, some researchers further defined the relevant nodes related to the
LCA [1][3][5][6][7]. In addition, because of the widespread use of XML data, the
INitiative for the Evaluation of XML retrieval (INEX) [13] provides a coordi-
nated effort to promote the evaluation of content-based XML retrieval.

We next discuss the performance and time complexity of some representative
algorithms in the following. Given a keyword query Q = {k1, k2, ..., kw} with w
keywords, let Mi denote the sorted match list of keyword ki, and |Mi| denote the
frequency of ki. Without loss of generality, suppose |M1| is the minimum one and
|Mw| is the maximum one. The ILE (Indexed Lookup Eager) algorithm, which
was proposed by Wu and Papakonstantinou [10], runs in O(wdM1logMw) time
to determine the SLCA nodes, where d is the maximum depth of the XML tree.
They also gave another algorithm SE (Scan Eager) which runs in O(Σw

i=1Mid)
time. The ILE algorithm performs better when |Mw| is much larger than |M1|
since it adopts a binary search strategy to quickly locate the right-most and
left-most nodes of the given node. The SE algorithm scans all the matches of
keywords exactly once, so it is a good choice when the maximum frequency and
the minimum frequency of the keywords are close.

480 R.-R. Lin, Y.-H. Chang, and K.-M. Chao

7 Conclusions

The contribution of this paper is to propose an extension of searching relevant
matches with NOT semantics. Our algorithm RELMN is mainly based on detect-
ing the positive and negative literals under the subtree rooted at SLCA nodes.
We also discuss the variant properties of monotonicity and consistency since they
become more complex if OR and NOT operators are allowed. In addition, the
experimental results show that the proposed algorithm runs efficiently and gives
reasonable query results by measuring the processing time, scalability, precision,
and recall. As part of our future work, we intend to improve the effectiveness for
keyword query with NOT semantics, such as the QR2, QB6, and QB7 cases in
Table 2.

Acknowledgements. Ya-Hui Chang was supported in part by the NSC grant
97-2221-E-019-028- from the National Science Council, Taiwan. Kun-Mao Chao
was supported in part by the NSC grants 97-2221-E-002-097-MY3 and 98-2221-
E-002-081-MY3 from the National Science Council, Taiwan.

References

1. Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: XSEarch: A Semantic Search Engine
for XML. In: VLDB, pp. 45–56 (2003)

2. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: Ranked Keyword
Search over XML Documents. In: SIGMOD, pp. 16–27 (2003)

3. Hristidis, V., Koudas, N., Papakonstantinou, Y., Srivastava, D.: Keyword Proxim-
ity Search in XML Trees. IEEE TKDE, 525–539 (2006)

4. Kong, L., Gilleron, R., Lema, A.: Retrieving Meaningful Relaxed Tightest Frag-
ments for XML Keyword Search. In: EDBT, pp. 815–826 (2009)

5. Li, G., Feng, J., Wang, J., Zhou, L.: Effective Keyword Search for Valuable LCAs
over XML Documents. In: CIKM, pp. 31–40 (2007)

6. Lin, R.-R., Chang, Y.-H., Chao, K.-M.: Faster Algorithms for Searching Relevant
Matches in XML Databases. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G.
(eds.) DEXA 2010. LNCS, vol. 6261, pp. 290–297. Springer, Heidelberg (2010)

7. Liu, Z., Chen, Y.: Reasoning and Identifying Relevant Matches for XML Keyword
Search. In: VLDB, pp. 921–932 (2008)

8. Sun, C., Chan, C.-Y., Goenka, A.K.: Multiway SLCA-based Keyword Search in
XML Data. In: WWW, pp. 1043–1052 (2007)

9. Xu, Y., Papakonstantinou, Y.: Efficient LCA Based Keyword Search in XML Data.
In: EDBT, pp. 535–546 (2008)

10. Xu, Y., Papakonstantinou, Y.: Efficient Keyword Search for Smallest LCAs in XML
Database. In: SIGMOD, pp. 527–538 (2005)

11. http://www.cafeconleche.org/books/biblegold/examples/

12. http://www.cs.washington.edu/research/xmldatasets/

13. http://www.inex.otago.ac.nz/

14. http://www.w3.org/TR/xpath-full-text-10/

http://www.cafeconleche.org/books/biblegold/examples/
http://www.cs.washington.edu/research/xmldatasets/
http://www.inex.otago.ac.nz/
http://www.w3.org/TR/xpath-full-text-10/

Evaluating Contained Rewritings for XPath
Queries on Materialized Views

Rui Zhou1, Chengfei Liu1, Jianxin Li1, Junhu Wang2, and Jixue Liu3

1 Swinburne University of Technology, Melbourne, Australia
{rzhou,cliu,jianxinli}@swin.edu.au

2 Griffith University, Gold Coast, Australia
J.Wang@griffith.edu.au

3 University of South Australia, Adelaide, Australia
Jixue.Liu@unisa.edu.au

Abstract. In this paper, we study the problem how to efficiently eval-
uate a set of contained rewritings on materialized views. Previous works
focused on how to find a set of contained rewritings given a view and
a query, but did not address how to evaluate the rewritings on mate-
rialized views. To evaluate a potential exponential number of contained
rewritings, we design two algorithms, a basic algorithm and an optimized
algorithm. Both algorithms are built on the observation that the expo-
nential number of contained rewritings are actually composed by a linear
number of component patterns. In the optimized algorithm, we further
design four important pruning rules and several heuristic rules that can
effectively reduce the number of component patterns we need to evaluate.
The experiments demonstrate the efficiency of our algorithms.

1 Introduction

Answering queries using views refers to using previously defined and materialized
views to answer new queries in order to save the cost of accessing the large
underlying database. With the prevalence of XML technologies, answering XML
queries using XML views has caught the attention of both researchers and system
designers, and is believed as a promising technique in web and XML database
applications. Since XPath serves as the core sub-language of the major XML
languages such as XQuery, XSLT, we focus on answering XPath queries using
XPath views.

There are two rewriting schemes to answer XPath queries with materialized
XPath views: equivalent rewriting [1] and maximal contained rewriting [2]. We
explain them formally as follows: given an XPath query q, an XPath view v, and
an XML database T representing a large XML document, let the materialized
view of v on T be Tv = v(T), to find an equivalent rewriting for q using v is to
find a compensation pattern qc such that qc(Tv) = q(T). Meanwhile, the pattern
produced by merging the root node of qc with the answer node of v, denoted as
qc⊕v, is called an equivalent rewriting of q. Fig. 1(a) shows an example. v (/a/b)
is a view, q1 (/a/b/c) is a query, qc (b/c) is the compensation query, and ER is the

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 481–495, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

482 R. Zhou et al.

a

b

View v

a

b

Query q2

r r

c

CR1

a

b

a

b

r

dc

a

b

View v

a

Query q1

r r

b

c

a

r

b

c

ER

d

CR2

a

b

r

d

c

b

CR3

a

b

r

d

bc

CR4

a

b

r

c

b

d

b

qc qc1 qc2 qc3 qc4

(a) (b)

Fig. 1. Equivalent rewriting and Contained rewriting

equivalent rewriting of q1 using v. In some cases (like data integration scenarios),
a view may not answer a query completely, i.e. there does not exist an equivalent
rewriting for a query using a view, but it is still reasonable to efficiently give
users part of the query answers with the view. To this end, maximal contained
rewriting (MCR) is proposed to give the best effort to answer a query using a
view. Different from equivalent rewriting, maximal contained rewriting usually
requires to find a set of compensation patterns Qc = {qc1 , . . . , qci} satisfying
Qc(Tv) ⊆ q(T), where Qc(Tv) = qc1(Tv) ∪ . . . ∪ qci(Tv), and there does not
exist another compensation pattern set Q′

c such that Qc(Tv) ⊂ Q′
c(Tv) ⊆ q(T).

Each qcj ⊕ v (j ∈ [1, i]) is called a contained rewriting (CR) of q, and it can be
produced by merging the root node of qcj with the answer node of v, similar to
constructing an equivalent rewriting. Fig. 1(b) shows an example for a maximal
contained rewriting. q2 and v are the query and the view, {qc1 , qc2 , qc3 , qc4} are
the compensation patterns, and {CR1, CR2, CR3, CR4} are the CRs.

The previous work [2] has examined, given a query q, a view v, how to find
an MCR {qc1 ⊕v, · · · , qci ⊕v} for q using v. However, in many applications, such
as query caching, to find the MCRs is not the final goal, we need to evaluate
the MCRs on the materialized views. Back to our problem, we need to evalu-
ate the compensation patterns {qc1 , · · · , qci} on the materialized view of v, Tv.
Unfortunately, the set of compensation patterns of an MCR can be exponential,
because one compensation pattern corresponds to one contained rewriting, and
the number of contained rewritings may be exponential. As one can observe from
Fig. 1(b), the maximal contained rewriting consists of an exponential number
of contained rewritings due to the combination of patterns from different paths.
Although we can speed up the evaluation by discarding some redundant CRs (if
there are any) from an MCR set, in the worst case, we still have an exponential
number of CRs in an MCR, which means all the CRs are irredundant (like the
example we have given in Fig. 1). Here, a CR is called redundant with respect
to an MCR implying that answers produced by the redundant CR can be covered

Evaluating Contained Rewritings for XPath Queries on Materialized Views 483

by other CRs belonging to the MCR set. To tackle the challenge of evaluating
an exponential number of compensation patterns, an efficient scheme is highly
sought after.

To solve the problem, rather than naturally transform it into a multiple-
query optimization problem [3], we examine and utilize the unique feature of
this problem. Our observation is that the exponential number of compensation
patterns are composed by a linear number of subpatterns, i.e. a linear number
of subpatterns are shared among those exponential number of compensation
patterns. Therefore, taking advantage of the special structural characteristics,
we can solve the problem by evaluating only a linear number of patterns in the
worst case. Moreover, to do the evaluation more wisely, we develop a set of rules
and heuristics that can effectively exclude many useless patterns. We highlight
our contributions as follows:

– We are the first to investigate the problem of evaluating contained rewritings
on materialized views by considering the particular feature of the problem:
only a linear number of patterns need to be evaluated.

– We have proposed two algorithms, basic algorithm and optimized algorithm,
and both algorithms can be built inside an existing query evaluation engine
or in a middleware outside the query evaluation engine. This provides enough
flexibility to software developers.

– We have conducted extensive experiments to show the efficiency of our al-
gorithms. The optimized algorithm is very promising, benefiting from its
pruning rules and heuristics.

The rest of this paper is organized as follows. In Section 2, we will give some
notations and background knowledge. Then we give a basic algorithm in Sec-
tion 3. Important optimization techiques are unfolded in Section 4. We report
experiment results in Section 5. Related work and conclusions are in Section 6
and Section 7.

2 Preliminaries

We will first introduce XPath tree patterns to represent XPath queries, and
then introduce how to find contained rewritings (compensation patterns) using
pattern mapping from the query pattern to the view pattern.

2.1 XPath Tree Pattern

We consider a subset of XPath language featuring child axes (/), descendant axes
(//), branches ([]), denoted as XP {/,//,[]}. An XPath query q can be expressed
as a tree pattern (Nq, Eq, rq, dq), where

– Nq is the node set, and for any node n ∈ Nq, n has a label in an infinite
alphabet Σ, denoted as label(n);

– Eq is the edge set, and ∀e ∈ Eq, type(e) ∈ {/, //}. We use the term “pc-
edge”(“ad-edge”) to represent the type of an edge, “/”(“//”);

484 R. Zhou et al.

– rq is the root node of the query; (If q starts with “/” or “//”, we add a
virtual root node with a unique label r, so that every query corresponds to
a unique tree pattern.)

– dq is the answer (also called distinguished or return) node of the query,
identified with a circle;

Similarly, an XPath view v can be expressed as a 4-tuple, (Nv, Ev, rv, dv). We
also define the following functions: (i) pc(n1, n2) holds if n1 is the parent node
of n2; (ii) ad(n1, n2) holds if n1 is an ancestor node of n2.

2.2 Useful Embedding

To rewrite an XPath query using a view, is to find the set of conditions that
are not satisfied on the view query, but may be satisfied under the distinguished
node of the view. The solution is to find an embedding from the query to the
view, and see whether the embedding is valid to produce a contained rewriting.
A valid embedding is called useful embedding. Embedding and useful embedding
are defined below.

Given a query q = (Nq, Eq, rq, dq) and a view v = (Nv, Ev, rv, dv), an embed-
ding is a mapping e : N ′

q → N ′
v, where N ′

q ⊆ Nq, N
′
v ⊆ Nv, satisfying:

– root preserving: e(rq) = rv;
– label preserving: ∀n ∈ N ′

q, e(n) ∈ N ′
v ∧ label(n) = label(e(n));

– structure preserving: ∀(n1, n2) ∈ Eq and n1, n2 ∈ N ′
q, if (n1, n2) is a pc-edge,

pc(e(n1), e(n2)) holds in v; otherwise ad(e(n1), e(n2)) holds in v;
– e is upward closed: if node n in Nq is defined by e (means n ∈ N ′

q), all
ancestors of n in Nq are defined by e. Namely, n ∈ N ′

q ⇒ ∀n′, n′ ∈ Nq and
ad(n′, n) holds in q, we have n′ ∈ N ′

q.

Not every node in Nq needs to be defined by e, and here N ′
q is the set of nodes

that are defined by e, N ′
q ⊆ Nq. An embedding implies that part of the condi-

tions of query q have been satisfied in the view v, so if the left conditions of q
(unembedded parts) are possible to be satisfied under the distinguished node of
the view, we will be able to use the view v to answer the query q. Such embed-
ding is called a useful embedding. Before giving the formal definition of useful
embedding, we give the definition of anchor node first. Given an embedding e,
for each unfully embedded path pathi of q, the last node on pathi that can be
embedded on or above dv is called an anchor node of embedding e with re-
spect to path pathi. An embedding is called a useful embedding, if both of the
following conditions hold:

1. every anchor node na satisfies either of (a), (b):
– (a) e(na) = dv;
– (b) ad(e(na), dv) holds in v and let nc be the child node of na on pathi

in q, (na, nc) is an ad-edge.
2. for the anchor node na on the distinguished path of q, either na = dq or

ad(na, dq) holds in q.

Evaluating Contained Rewritings for XPath Queries on Materialized Views 485

a

b

View v

a

b

Query q2

r r

c

CR

e2

a

d

a

b

r

dc

anchor1

anchor2

path1

path2

a

b

View v

a

Query q1

r r

c

e1

anchor

Fig. 2. An example of useful embedding

The idea behind condition (1) is: unfulfilled conditions in q have the possibility
to be satisfied under dv in the view, which requires that an anchor node either
maps to dv (condition (a)) or the anchor node maps to an ancestor of dv and the
anchor connects its descendant with “//” on the corresponding path (condition
(b)). Condition (2) implies: the return node of q should not be mapped onto
a node above dv. For ease of understanding, we give an example to illustrate
embedding, useful embedding and anchor nodes. In Fig 2, e1 is an embedding,
but not a useful embedding, because its anchor node, the a-node, does not satisfy
either condition (1)(a) or (1)(b). While e2 is a useful embedding, both condition
(1) and (2) are satisfied by e2’s anchor nodes. To be specific, on path path1, the
anchor node b-node maps onto the distinguished node of the view v (satisfying
condition (1)(a)); on path path2, the anchor node a-node maps onto a node
above the distinguished node of the view, and a-node connects its successor
d-node on path2 with “//” (satisfying condition (1)(b)); the anchor node b-
node on the distinguished path path1 is above the distinguished node in the
query q (satisfying condition (2)). As a result, e2 is a useful embedding. The
corresponding CR produced by e2 is also given on the rightmost side of Fig. 2.
In the CR, b[//d]/c is called a compensation pattern to the view. In the following,
we will use clip-away tree (CAT) to represent compensation pattern in alignment
with a pioneer work [2].

We define another concept, component pattern: given a useful embedding, let
an be an anchor node in q with respect to some path and let ac be the immediate
successor of an on that path, we call such a constructed pattern a component
pattern: the pattern has a root node with label(dv), and the root node connects
qsub(ac) with the same type of edge as edge (an, ac), here qsub(ac) is the subpat-
tern in q rooted at node ac. A component pattern may be a predicate component
pattern (not containing node dq) or a distinguished component pattern (contain-
ing node dq). In the CR in Fig. 2, b[//d] is a predicate component pattern, b/c
is the distinguished component pattern. We will use p to denote a component
pattern, and P = {p1, · · · , pn} to denote a CAT, since a CAT usually contains
several component patterns fusing at the root.

486 R. Zhou et al.

3 Basic Algorithm

We regard a materialized XPath view as a set of subtrees, whose roots have
the same label as the distinguished node of the view, obtained by matching the
view pattern to the base document. To evaluate a CAT on these trees, equals to
match the CAT pattern on each tree and combine the results. For simplicity, we
only consider one tree of the materialized view in this paper, for computation on
other trees are the same. After obtaining the CATs using useful embedding, the
problem turns to be: given a set of CAT queries (representing the compensation
patterns) and a materialized data tree Tv, how to efficiently evaluate the CAT
queries over the tree Tv. From the previous study, we know an MCR may consist
of an exponential number of CR queries, corresponding to an exponential number
of CATs, bounded by kl, where l is the number of paths in q (also the number of
leaf nodes), k is the maximum number of component patterns that are residing
on one particular path of q1. The naive method is to evaluate the exponential
number of CATs one by one, and union the final results. As a result, we need to
evaluate O(kl) CAT patterns.

However, if we consider the characteristics of the CATs, we are able to pro-
duce the same results by only evaluating up to min{|Nq| − 1, kl} component
patterns. The observation is that a CAT is composed by a number of component
patterns fusing at their roots, and one component pattern may be shared by a
few different CATs. To evaluate the CATs one by one on a materialized view will
result in repeated computation of the same component patterns. Although the
number of CATs is exponential, the number of component patterns is polyno-
mial. We now explain the bound min{|Nq|−1, kl} for the number of component
patterns: (1) Notice that component patterns share the same labeled root node,
and distinguish each other starting from the single child of the root, eg. in Fig. 2,
component patterns b[//d] and b/c share the same b-node, and distinguish each
other at the d-node and c-node. This observation implies that each node in Nq

(the node set of the query) except rq determines one possible component pat-
tern, and there are at most |Nq| − 1 component patterns. Meanwhile, kl is also
the bound for the number of component patterns, because there are at most k
component patterns on one path of query q, and there are l paths in the query q.
In consequence, the maximum number of component patterns min{|Nq| − 1, kl}
could be far less than the maximum number of CATs kl.

The idea of our basic algorithm, shown in Algorithm 1, is to break down
the CATs into component patterns, and evaluate the component patterns. As
a result, each component pattern is examined only once. We now introduce the
basic algorithm, and then develop some optimization techniques on the basic al-
gorithm in Section 4. We first evaluate all the predicate component patterns on
the materialized view Tv, and then, for each CAT P , if all the predicate compo-
nent patterns of P are satisfied on Tv, we evaluate the distinguished component
pattern of P on Tv and add the result into the final result set R. The basic

1 By a close examination, one can further find that k is bounded by the number of
nodes residing on the distinguished path from rv to dv in the view v.

Evaluating Contained Rewritings for XPath Queries on Materialized Views 487

Algorithm 1. Basic Algorithm
Input: all CATs of rewriting q using v, a materialized view Tv

Output: the union of the result of evaluating all CATs on Tv

1: union predicate component patterns of each CAT;
2: evaluate all predicate component patterns on Tv;
3: R := φ;
4: for each CAT P such that ∀pi ∈ P , pi is predicate component pattern and

pi(Tv) = true do
5: evaluate the distinguished component pattern p̂ ∈ P ;
6: R := R ∪ p̂(Tv);
7: end for
8: return R;

algorithm can be regarded as an optimization of evaluating multiple CATs on
the materialized view by taking advantage of the special feature of CATs.

4 Optimizing Techniques

In this section, we first introduce four pruning rules and three heuristic rules to
optimize the basic algorithm, and explain the rationale behind these rules. Then
we give the outline of an optimized algorithm to illustrate how to effectively
combine these rules together.

4.1 Pruning Rules

In the Basic Algorithm, every component pattern is evaluated against the mate-
rialized view Tv. In fact, some component patterns may not need to be evaluated.
We now introduce several rules to prune them. In the following, when we say
component pattern p is satisfied on Tv, we mean: p(Tv) = true if p is a predicate
component pattern; or p(Tv) �= φ if p is a distinguished component pattern.

– Rule 1: If one component pattern p is not satisfied in the materialized
view, those CATs that contain p as a component pattern do not need to be
evaluated.

Example 1. In Fig. 3, if component pattern p3 is not satisfied2, we only need to
evaluate component patterns in CAT P3 and CAT P4, since p3 appears in CAT
P1 and CAT P2.

A CAT can be regarded as a conjunction of its component patterns, and each
component pattern is a condition. Any unsatisfied condition will prevent the
CAT from producing answers, no matter whether other component patterns are
satisfied or not.
2 Each component pattern should start with a c-node root, while we didn’t include

the c-node root into those dashed rectangles for the sake of the neatness of Fig. 3.

488 R. Zhou et al.

a

c

View v

a

c

Query q

r r

d

b

c

e

b d

c

c

d

b

c

e

d

c

d
b

c

e

d

c

d d e

c

d

d ec

CAT P1 CAT P2 CAT P3

CAT P4

p1

p2

p3

p4

p5

Fig. 3. CATs of the IMCR

Pruning Rule 2 is based on the following proposition:

Proposition 1. Let CAT1 and CAT2 be two CATs having the same distin-
guished component pattern, then, for any data tree T , either CAT1(T)=CAT2(T)
or one of CAT1(T) and CAT2(T) is empty.

Proof. The result of evaluating a CAT on a tree T is the same as the result
of evaluating the distinguished component pattern of the CAT on T , when all
predicate component patters of the CAT are satisfied on T , because the predicate
component patterns only serve as conditions imposed on T . Therefore, if another
CAT Q has the same distinguished component pattern as CAT P , then no matter
what predicate component patterns P and Q possess, if both P and Q have
answers on T , their answer sets will be the same. �
– Rule 2: If the answers of one CAT P are produced, other CATs having the

same distinguished component pattern as P do not need to be evaluated.

Example 2. In Fig. 3, if CAT P1 ={p1, p3} has been evaluated (implying p3(Tv) =
true), CAT P4 = {p1, p4, p5} can be discarded, since both CATs share the same
distinguished component pattern p1, no matter whether p1(Tv) is empty or not.

There are two other optimizing methods by taking advantage of component pat-
tern containment. This type of optimization is based on the fact that checking
pattern containment is usually more light-weighted than evaluating a pattern on
a materialized view, because view size is usually much larger than pattern size.
Here, we use c(p) to denote the set of component patterns that contain p, and
c(p) to denote the set of component patterns that are contained in p. In other
words, ∀pi(pi ∈ c(p) → p ⊆ pi) and ∀pi(pi ∈ c(p) → pi ⊆ p) hold. Contain-
ment relationship between a predicate component pattern and a distinguished
component pattern can also be determined after we transform the distinguished
component pattern into a boolean pattern by adding a uniquely-labeled child
node to the distinguished node and making the distinguished node no more
distinguished [4].

Evaluating Contained Rewritings for XPath Queries on Materialized Views 489

– Rule 3: If a component pattern p is satisfied on the materialized view, then
any pattern in c(p) will be satisfied on the view.

Example 3. In Fig. 3, if p1 or p2 or p3 is satisfied, p4 can be induced to be
satisfied.

– Rule 4: If a component pattern p is not satisfied on the materialized view,
then any component pattern in c(p) cannot be satisfied on the view.

Example 4. In Fig. 3, if p4 is not satisfied, we know none of p1, p2 and p3 could be
satisfied, then all CATs P1, P2, P3, P4 do not have answers on the materialized
view.

All of the four rules introduced above try every means to prune some patterns,
and hence we can evaluate as fewer component patterns as possible. For instance,
if an unsatisfied pattern is selected and computed early, the CATs containing
this unsatisfied pattern will be eliminated early. Obviously, there is an optimal
order to schedule these component patterns, but it is unlikely for us to find this
order without knowing in advance whether a component pattern is satisfied in
the materialized view or not. To this end, we design some heuristics to find a
reasonably good evaluation order.

4.2 Heuristic Rules

In this section, we introduce a few heuristics to determine the order of evaluating
the component patterns of the input CATs. We will first list the heuristics, and
discuss the rationale behind the heuristics afterwards.

1. To evaluate frequently shared component patterns first. This rule
can be applied to both distinguished component patterns and predicate com-
ponent patterns. If the pattern is satisfied in the view, Rule 2 and Rule 3
can be applied to prune other component patterns, otherwise Rule 1 and
Rule 4 can be used to prune other component patterns. Frequently shared
patterns contribute to more CATs than rare patterns, and thus are worth to
be evaluated first.

2. To investigate component patterns belonging to the same CAT
first. The idea of this heuristic is try to produce answers early. Once the
component patterns in one CAT are fully evaluated, we can use Rule 2 to
prune other CATs sharing the same distinguished component pattern. This
heuristic is specially driven by Rule 2.

3. To group the CATs by their distinguished component patterns. For
the CATs in each group, since they share the same distinguished component
pattern, it is sufficient to evaluate only one of them. We can start with the
CAT with the least number of component patterns or apply the above two
heuristics for evaluating this subset of CATs.

All the above heuristics are designed to maximize the effect of applying the prun-
ing rules in Section 4.1. Heuristic 1 is more akin to Rule 3 and Rule 4, and it also

490 R. Zhou et al.

has substantial pruning power if the inspected pattern is not satisfied in the ma-
terialized view. In the best case, heuristic 1 could remove a maximum number of
CATs in one step. The reason is that it always picks the most shared component
pattern, and hence if the picked pattern cannot match the materialized view,
all the CATs containing that pattern can be discarded. Heuristic 2 implies an
eager strategy to find some answers as early as possible by inspecting component
patterns in the same CAT. It is akin to Rule 2, because, once a CAT is found
able to produce answers on the materialized view, other CATs containing the
same distinguished component pattern can be disregarded. Heuristic 3 also cor-
responds to Rule 2. After grouping the CATs by their distinguished component
patterns, we can apply other heuristic rules within each group. Once a CAT in
a certain group is found to be able to produce some results, other CATs in the
same group will be freed of examination.

4.3 Optimized Algorithm

We want to stress that the heuristics in Section 4.2 are orthogonal to the prun-
ing rules in Section 4.1. Any heuristic to determine an order of evaluating the
component patterns can be integrated into the algorithm shown in Algorithm 2.

We now go through Algorithm 2 step by step. In the beginning, the result set
R is set to φ. Then, each component pattern is evaluated according to an order
determined by heuristic rules from line 2 to line 14. In each loop, line 3 evaluates
the component pattern p on the materialized view Tv. If p(Tv) satisfies, we use
Rule 3 to find out other satisfied component patterns by comparing pattern
containment in line 5. In line 6, if p is a distinguished component pattern, and
all other component patterns of a CAT containing p have been satisfied already,
p(Tv) will be added into R. This means we have found some answers. All other
CATs containing p as the distinguished component pattern will be eliminated
using pruning Rule 2 at line 9. On the other hand, if p(Tv) does not satisfy, we
first find out other unsatisfied patterns in line 11, and then use Rule 1 to prune
a number of unsatisfied CATs (line 12). In the end (line 15), we return the final
answer result R.

4.4 Discussion

We provide some discussion from the engineering point of view for implementing
the basic algorithm and the optimized algorithm. Both algorithms can be built
on top of an existing query evaluation engine, recall that evaluating a compo-
nent pattern is an abstracted procedure in both algorithms. Therefore, we can
implement the algorithms as a query optimizer in a middleware, which inter-
acts with a query engine by feeding component patterns into it and receiving
the corresponding results from it. In such case, it does not matter what type
of query evaluation method the engine uses, whether the materialized view is
indexed or not. On the other hand, we can also build the algorithms inside a
query evaluation engine. The engine itself will contain functions of finding con-
tained rewritings and evaluating selected patterns over the materialized views.
Such choices provide enough flexibility to software engineers.

Evaluating Contained Rewritings for XPath Queries on Materialized Views 491

Algorithm 2. Optimized algorithm with pruning rules and heuristics
Input: all CATs of rewriting q using v, a materialized view Tv

Output: R, the answers of evaluating all CATs on Tv

1: final result R := φ;
2: for each component pattern p chosen by some heuristic do
3: evaluate p on Tv;
4: if p(Tv) satisfies or produces some answers then
5: use Rule 3 to find other component patterns that are also satisfied;
6: if p is a distinguished component pattern ∧ all the predicate component

patterns of a CAT containing p as the distinguished component pattern are
satisfied then

7: R := R ∪ p(Tv);
8: end if
9: use Rule 2 to prune other CATs;

10: else
11: use Rule 4 to find other component patterns that are not satisfied;
12: use Rule 1 to prune other CATs;
13: end if
14: end for
15: return R;

5 Experiments

We build a prototype system MCRE (MCR Evaluator) to evaluate a generated
MCR on materialized views. Our experiments are conducted on a PC with Pen-
tium(R) 4 3GHz CPU and 1G memory.

View and Query Generation. Due to the challenge of collecting view and
query specimens deployed in real applications (also mentioned in [5]), we gen-
erated views and queries synthetically. In order to cover a variety of cases, the
parameters can be tuned within a wide range. To make the generated patterns
reasonable, we enforce the generated views and queries to conform to a given
DTD, though the query evaluation can be done without knowing the DTD. The
view patterns are generated in a top-down manner. For each node in the view
query, its children are selected with four parameters: (1) a child node is selected
with probability α1; (2) the edge connecting the child to itself is labeled as //
with probability α2; (3) a descendant node is selected with probability α3 di-
rectly connecting to its parent; (4) the maximum fanout f is fixed and set within
a limit. We do not generate value predicates in the pattern, because checking
value predicate can be easily integrated into the system.

The queries are generated based on the views to ensure some rewritings exist.
The generation is performed in a bottom-up manner. For each view pattern, (1)
a node is deleted with probability β1. After deleting the node, if the node is a
internal node, we should connect the node’s parent to its children with //. Note
that we never delete the view root; (2) a pc-edge is replaced by an ad-edge with
probability β2; (3) some new nodes are added under a node with probabilities

492 R. Zhou et al.

BIOML Dataset

0

200

400

600

800

1000

1200

1400

NAÏVE BASIC HEU1 HEU2

E
la

ps
e

T
im

e
(s

)

XMark Dataset

0

100

200

300

400

500

600

700

800

NAÏVE BASIC HEU1 HEU2

E
la

ps
e

T
im

e
(s

)

Fig. 4. Average Case Study

similar to the view generation part. We do not set a limit to the fanout of query
patterns, because deleting an internal node may increase the out degree of its
parent (if the internal node has multiple children), and thus increase the fanout
of the result pattern.

Datasets. We test our algorithms on two datasets, XMark3 and BIOML4. The
former is widely used in the literature, and the latter is famous for its recursive
feature, and is ideal to build materialized views with. BIOML DTD is tailored
with only “chromosome” and its descendant elements. XML data is generated
with IBM XML Generator5. We use eXist6 database as the underlying engine
to store and query the documents. Each materialized view is generated by eval-
uating the view pattern on documents and saving back into eXist database.

5.1 Average Case Study

In this study, we investigate the performance of four different algorithms to
evaluate the CATs of the MCRs on materialized views. We use the same set of
views and queries generated above. 50 views are materialized, and a set of 20
queries are rewritten and evaluated on each materialized view. In the NAIVE
algorithm, each CAT of an MCR is evaluated on the materialized views. In BA-
SIC algorithm, only component patterns are evaluated on the materialized views,
but all the component patterns are computed. In the optimized algorithms, we
use the proposed four rules to prune unnecessary component patterns, and also
use heuristic information to schedule the evaluation order. Specifically speaking,
in HEU1, we use the first two heuristics with heuristic 2 prior to heuristic 1.
In HEU2, we first group the CATs by their distinguished component patterns
(heuristic 3), and then apply heuristic 2 and 1.

The result is shown in Fig. 4, BASIC algorithm takes almost half time of
the NAIVE algorithm, because redundant CATs are pruned in advance, and

3 XMark An XML Benchmark Project, http://www.xml-benchmark.org/
4 BIOpolymer Markup Language, http://xml.coverpages.org/bioml.html
5 IBM XML Generator, http://www.alphaworks.ibm.com/tech/xmlgenerator
6 eXist Open Source Native XML Database, http://exist.sourceforge.net/

Evaluating Contained Rewritings for XPath Queries on Materialized Views 493

Best Case on BIOML Dataset

0

50

100

150

200

250

300

350

400

NAÏVE BASIC HEU1

E
la

ps
e

T
im

e
(s

)

Best Case on XMark Dataset

0

20

40

60

80

100

120

140

160

180

NAÏVE BASIC HEU1

E
la

ps
e

T
im

e
(s

)

Fig. 5. Best Case Study

pruning these CATs is not expensive. Furthermore, HEU1 and HEU2 perform
even better, which demonstrates our heuristic methods are very effective and
encouraging. It is not obvious to find a better one between HEU1 and HEU2.
Although HEU2 seems to provide more effective pruning heuristics, it also suffers
in updating component pattern statistics for each distinguished pattern group,
and may spare some time on maintaining the auxiliary information.

5.2 Best and Worst Case Study

In the above experiments, our aim is to test the performance of NAIVE, BASIC,
HEU1 and HEU2 algorithms in the average case, where a number of views and a
number of queries are randomly generated to capture all pattern types as various
as possible. It is reasonable that our heuristic performs best in the average case.
One may wonder how far our heuristic algorithms can achieve and what is the
worst performance our heuristic methods will reach. We examine the best and
worst cases by manually designing two queries, because randomly generated
queries are not that extreme.

For the best case, the query is designed to have four paths, and on each path
there are three component patterns, two out of which are irredundant. And
hence there are 81=34 CR CATs, 16=24 irredundant CR CATs, 8 irredundant
component pattern. The query time is shown in Fig. 5. On BIOML dataset, the
BASIC algorithm beats NAIVE in two-thirds time, and HEU1 needs only 10%
query time of the BASIC algorithm. Similar observation is obtained on XMark
dataset, but the result is not that dramatic.

For the worst case part, we designed a query which does not produce redun-
dant CRs. Every component pattern produced from the query is not contained
in its pals. Therefore, in the evaluation process, every component pattern is eval-
uated on the materialized view, with no one can be pruned. In Fig. 6, HEU1
performs almost the same as BASIC, because both of them have evaluated all
component patterns. The part of updating heuristic statistics in HEU1 does not
apparently degrade, though it may take some extra time. Both BASIC and HEU1
are a little costly than NAIVE. The reason may be that NAIVE has evaluated
less number of patterns, although each larger pattern has a larger size.

494 R. Zhou et al.

Worst Case on BIOML Dataset

0

20

40

60

80

100

120

NAÏVE BASIC HEU1

E
la

ps
e

T
im

e
(s

)

WorstCase on XMark Dataset

0

15

30

45

60

75

NAÏVE BASIC HEU1

E
La

ps
e

T
im

e
(s

)

Fig. 6. Worst Case Study

6 Related Work

Answering queries using views has been studied for a long time. Halevy [6] has
done a survey on this problem over relational database. In the XML context,
equivalent rewriting and contained rewriting, have been studied for XPath [7,8,
1,9], XQuery [5], and tree patterns [2,10]. The works [7,8] propose to use mate-
rialized views to speed up query evaluation in the query caching scenario, where
to find an equivalent rewriting for a query with given views is the key subtask.
Xu and Ozsoyoglu [1] have provided a theoretical study on equivalent rewriting
based on query containment [4] and query minimization [11]. Afrati et al. [9]
have extended Xu and Ozsoyoglu’s result in fragment XP {[],∗,//}. They have
discovered a coNP-complete upper bound for some sub-fragments of XP {[],∗,//}.
Onose et al. [5] have investigated the equivalent rewriting of XQuery queries
using XQuery views. While XQuery queries are more expressive, the shortcom-
ings of using them as views are also noted in [5]. Tang et al. [12] studied the
materialized view selection problem, which is to select fewer materialized views
to answer a query equivalently. Zhou et al. [13] also studied view selection for
answering contained rewritings. Wu et al. [14] and Chen. et al [15] proposed
two different view implementations, and how to use the materialized views to
evaluate queries. View definition nodes are also materialized in [14, 15], while
our work does not have this requirement. Lakshmanan et al. [2] addressed how
to find contained rewritings, but did not cover how to efficiently evaluate the
compensation patterns over materialized views. A recent work [3] discussed how
to perform the evaluation. It is based on an approach to examine each path pat-
tern and then verify the rewriting, and each path pattern needs to be built into
an automata. While, in our approach, we use useful embedding to find the com-
pensation patterns, and try to evaluate as few component patterns as possible.
Although useful embedding is not sufficient to find all the compensation pat-
terns for XP {[],∗,//}, other complete methods exist, despite in coNP-complete.
The proposed algorithms still work if we can find all the compensation patterns.

7 Conclusions

In this paper, we have proposed two algorithms, basic algorithm and opti-
mized algorithm, to evaluate contained rewritings on materialized views. Both

Evaluating Contained Rewritings for XPath Queries on Materialized Views 495

algorithms are built on the observation that an exponential number of rewritings
in fact share a linear number of component patterns. In consequence, the idea
of our algorithms is to evaluate the component patterns, rather than to evalu-
ate the whole compensation patterns for each contained rewriting. We have also
designed four important pruning rules and several heuristic rules to effectively re-
duce the number of component patterns that need to be evaluated. Experiments
show that the optimized algorithm is advantageous in most cases.

Acknowledgments. Rui Zhou, Chengfei Liu, Jianxin Li and Jixue Liu are
supported by the Australian Research Council Discovery Grant DP0878405, and
Junhu Wang is supported by the Australian Research Council Discovery Grant
DP1093404.

References

1. Xu, W., Özsoyoglu, Z.M.: Rewriting XPath queries using materialized views. In:
VLDB, pp. 121–132 (2005)

2. Lakshmanan, L.V.S., Wang, H., Zhao, Z.J.: Answering tree pattern queries using
views. In: VLDB, pp. 571–582 (2006)

3. Gao, J., Lu, J., Wang, T., Yang, D.: Efficient evaluation of query rewriting plan
over materialized xml view. Journal of Systems and Software 83(6), 1029–1038
(2010)

4. Miklau, G., Suciu, D.: Containment and equivalence for a fragment of XPath. J.
ACM 51(1), 2–45 (2004)

5. Onose, N., Deutsch, A., Papakonstantinou, Y., Curtmola, E.: Rewriting nested
XML queries using nested views. In: SIGMOD Conference, pp. 443–454 (2006)

6. Halevy, A.Y.: Answering queries using views: A survey. VLDB J. 10(4), 270–294
(2001)

7. Balmin, A., Özcan, F., Beyer, K.S., Cochrane, R., Pirahesh, H.: A framework for
using materialized XPath views in XML query processing. In: VLDB, pp. 60–71
(2004)

8. Mandhani, B., Suciu, D.: Query caching and view selection for XML databases. In:
VLDB, pp. 469–480 (2005)

9. Afrati, F.N., Chirkova, R., Gergatsoulis, M., Kimelfeld, B., Pavlaki, V., Sagiv, Y.:
On rewriting xpath queries using views. In: EDBT, pp. 168–179 (2009)

10. Arion, A., Benzaken, V., Manolescu, I., Papakonstantinou, Y.: Structured materi-
alized views for XML queries. In: VLDB, pp. 87–98 (2007)

11. Amer-Yahia, S., Cho, S., Lakshmanan, L.V.S., Srivastava, D.: Tree pattern query
minimization. The VLDB Journal 11(4), 315–331 (2002)

12. Tang, N., Yu, J.X., Özsu, M.T., Choi, B., Wong, K.F.: Multiple materialized view
selection for xpath query rewriting. In: ICDE, pp. 873–882 (2008)

13. Zhou, R., Liu, C., Li, J.-x., Wang, J.: Filtering techniques for rewriting xPath queries
using views. In: Bailey, J., Maier, D., Schewe, K.-D., Thalheim, B., Wang, X.S. (eds.)
WISE 2008. LNCS, vol. 5175, pp. 307–320. Springer, Heidelberg (2008)

14. Wu, X., Theodoratos, D., Wang, W.H.: Answering xml queries using materialized
views revisited. In: CIKM, pp. 475–484 (2009)

15. Chen, D., Chan, C.Y.: Viewjoin: Efficient view-based evaluation of tree pattern
queries. In: ICDE, pp. 816–827 (2010)

XStreamCluster: An Efficient Algorithm for
Streaming XML Data Clustering�

Odysseas Papapetrou1 and Ling Chen2

1 L3S Research Center, University of Hannover, Germany
papapetrou@L3S.de

2 QCIS, University of Technology Sydney, Australia
ling.chen@uts.edu.au

Abstract. XML clustering finds many applications, ranging from stor-
age to query processing. However, existing clustering algorithms focus
on static XML collections, whereas modern information systems fre-
quently deal with streaming XML data that needs to be processed on-
line. Streaming XML clustering is a challenging task because of the high
computational and space efficiency requirements implicated for online
approaches. In this paper we propose XStreamCluster, which addresses
the two challenges using a two-layered optimization. The bottom layer
employs Bloom filters to encode the XML documents, providing a space-
efficient solution to memory usage. The top layer is based on Locality
Sensitive Hashing and contributes to the computational efficiency. The
theoretical analysis shows that the approximate solution of XStream-
Cluster generates similarly good clusters as the exact solution, with high
probability. The experimental results demonstrate that XStreamCluster
improves both memory efficiency and computational time by at least an
order of magnitude without affecting clustering quality, compared to its
variants and a baseline approach.

1 Introduction

In the past few years we have seen a growing interest in processing streaming
XML data, motivated by emerging applications such as management of com-
plex event streams, monitoring the messages exchanged by web-services, and
publish/subscribe services for RSS feeds [1]. Various research activities have
been triggered accordingly, including query evaluation over streaming XML
data [2], summarization of XML streams [1] as well as classification of XML
tree streams [3]. However, to the best of our knowledge, there exists no work on
clustering streaming XML data, albeit extensive research has been carried out
toward clustering static XML collections [4–7].

Streaming XML clustering is important and useful in many applications. For
example, it enables the building of individual indices for each of the clusters,
which in turn improves the efficiency of query execution over XML streams. The
� This work is partially supported by the FP7 EU Project GLOCAL (contract no.

248984).

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 496–510, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

XStreamCluster: An Efficient Algorithm for Streaming XML Data Clustering 497

problem is different than the one of clustering static XML collections, due to the
typical high computation and space efficiency requirements of online approaches.
As we explain later, existing approaches for clustering static XML collections do
not meet these requirements, and therefore cannot be applied to streaming data.
Therefore, this work designs an online approach for clustering of streaming XML.

More specifically, we focus on clustering of streaming XML documents based
on the structural similarity of the documents in terms of the common edges
shared by their XML graphs. As discussed in [5], this kind of clustering is par-
ticularly important for XML databases, as it yields clusters supporting efficient
XML query processing. First, clusters not containing the query can be efficiently
filtered out, thereby eliminating a large portion of the candidate documents in-
expensively. Second, each cluster of documents can be indexed more efficiently
in secondary memory, due to the structural similarity of the documents.

In the context of structural XML clustering, an XML document can be rep-
resented as a set of edges (e1, e2, e3, . . .). This representation makes the problem
similar to clustering of streaming categorical data. However, existing approaches
for clustering streaming categorical data are also not sufficient for streaming
XML. Although most of them are designed with special concerns on compu-
tational efficiency, according to [8] they are not sufficiently efficient in terms
of memory, especially when clustering massive-domain data where the possible
domain values are so large that the intermediate cluster statistics cannot be
maintained easily. Therefore, considering XML streams that encode massive-
domain data, it is critical to design online XML clustering approaches which are
both time and space efficient.

In the massive domains case, the edges are drawn from a universe of mil-
lions of possibilities. Therefore, maintaining the cluster statistics for all clusters
in main memory becomes challenging. Recently, an approximate algorithm was
proposed which uses compact sketches for maintaining cluster statistics [8]. The
promising results delivered by this approximate solution, motivated us to apply
an even more compact sketching technique based on Bloom filters to encode
the intermediate cluster statistics. In addition, considering XML streams con-
sisting of heterogeneous documents where a large number of clusters is created,
we reduce the number of required comparisons between each newly incoming
document and all existing clusters using another approximation technique based
on Locality Sensitive Hashing (LSH).

Precisely, we propose XStreamCluster, an effective algorithm which employs
two optimization strategies to improve time and space efficiency respectively. At
the top level, LSH is used to quickly detect the few candidate clusters for the
new document out of all clusters. This first step reduces drastically the required
document-cluster comparisons, improving the time efficiency of the algorithm. At
the bottom level, Bloom filters are employed to encode the intermediate cluster
statistics, contributing to the space efficiency. Although the two levels introduce
a small probability of errors, our theoretical analysis shows that XStreamCluster
provides similar results to an exact solution with very high probability.

498 O. Papapetrou and L. Chen

2 Related Work

As an important data mining technique, clustering has been widely studied by
different communities. Detailed surveys can be found in [9, 10]. In the scenario
of streaming data, the problem of clustering has also been addressed before,
e.g., [11–13]. Considering the large volume of incoming data, computational ef-
ficiency is one of the most critical issues addressed by these works. Recently,
the issue of space efficiency in clustering massive-domain streaming data was
stressed [8], and an approximate solution based on the count-min sketch tech-
nique was proposed. Our algorithm also provides an approximate solution by
using compact sketches to maintain intermediate cluster information in main
memory. However, since we measure the similarity between XML documents in
terms of number of shared edges (rather than the frequency of shared edges), our
algorithm utilizes the more compact structure of Bloom filters, further reducing
the memory requirements.

Clustering of static XML documents also attracted a lot of attention. Based
on the adopted similarity/distance measure, existing static XML clustering ap-
proaches can be broadly divided into the following categories: structure-based
approaches, content-based approaches, and hybrid approaches.

Early structure-based approaches usually represent XML documents as tree
structures. The edit distance is then used to measure the distance between two
XML trees, based on a set of edit operations such as inserting, deleting, and
relabeling a node or a subtree [4, 6]. However, computing tree edit distances
requires quadratic time complexity, making it impractical for clustering of XML
streams. Differently, Lian et al. [5] proposed to represent XML documents as a
set of parent-child edges from the corresponding structure graphs, which enables
the efficient calculation of structural similarity of XML documents. Therefore,
in our work, we employ the distance measure defined in [5] to design our online
clustering algorithm for streaming XML data.

An important efficiency consideration for the existing structure-based algo-
rithms is the large number of incurred document-cluster comparisons, as shown
in Section 4. Particularly for the case of massive domain data, a large number
of clusters is expected, aggravating the costs substantially. These costs become
prohibitively expensive for clustering of streaming XML, rendering the existing
algorithms unsuitable. Therefore, in this work we also include a probabilistic
method which reduces drastically the comparisons between the incoming docu-
ment and existing clusters, allowing XStreamCluster to handle streams.

Content-based XML clustering approaches are mainly used for clustering text-
centric XML documents. Vector space models have been widely used to represent
XML documents [14, 15]. Recently, there were also a few hybrid approaches
which cluster XML documents by considering both structures and contents. For
example, Doucet and Lehtonen [16] extract bags-of-words and bags-of-tags from
the content and structure of XML documents as feature vectors. The type of
clustering performed is thus substantially a textual clustering, while the results
were shown to be better than those of other competing methods in the INEX
2006 contest. Although our work focuses on structural similarity, the proposed

XStreamCluster: An Efficient Algorithm for Streaming XML Data Clustering 499

Clustern

Cluster2

Cluster1

LSH based Candidate Clusters Detection

(Section 3.2: top-level strategy)
XML Doc

BF based Distance Calculation

(Section 3.3: bottom-level strategy)

...

Clustern+1

XStreamCluster

candidate clusters

Fig. 1. The framework of XStreamCluster

algorithm can be extended to cluster XML documents based on content, as
well as the the combination of structure and content, once XML documents are
represented as vector space models. For example, we can use counting Bloom
filters to encode the feature vectors of XML documents and clusters.

3 Streaming XML Clustering with XStreamCluster

We start by introducing the framework of our algorithm, and the preliminaries
concerning the XML representation and distance measure. We then elaborate
on the two optimization strategies. XStreamCluster (Fig. 1) clusters streaming
XML documents at a single pass. When a new XML document arrives, instead of
comparing it against all existing clusters, the top-level strategy - the LSH-based
Candidate Cluster Detection - efficiently selects a few candidate clusters which
are most similar to the new document. The algorithm then proceeds to compute
the distance between the new document and each of the candidate clusters.
To reduce memory requirements, the bottom-level strategy - the Bloom filter
based Distance Calculation - computes the distance between the XML document
and each of the candidate clusters based on their Bloom filter representations.
Finally, a decision is made to either assign the new document to one of the
existing clusters, if their distance is sufficiently low, or to initialize a new cluster
for the current document.

3.1 Preliminaries

As discussed in Section 2, existing work on clustering static XML documents
adopted various similarity/distance measures, ranging from structure-based mea-
sures to content-based measures. In our work, we focus on clustering XML doc-
uments based on their structure.

In order to define the structural distance between two XML documents, the
documents are first represented as structure graphs, or s-graphs [5].

Definition 1. (Structure Graph) Given a set of XML documents C, the struc-
ture graph of C, sg(C) = (N, E), is a directed graph such that N is the set of

500 O. Papapetrou and L. Chen

<A> <A>

<D> </D>

</D> <C>
 </E>
<C> </C>
</D>

</C>

S-graph of doc1 and doc2

A

B C

D E

A

B C

D

S-graph of doc1

A

B C

D E

(a) (b) (c)

S-graph of doc2doc1 doc2

Fig. 2. The S-Graph Representation of XML documents

all the elements and attributes in the documents in C and (a, b) ∈ E if and only
if a is a parent element of element b or b is an attribute of element a in some
document in C.

For example, Fig. 2(b) shows the s-graphs of the two XML documents of Fig. 2(a).
Given the s-graphs of two XML documents, a revised Jaccard coefficient metric
is used to measure their distance.

Definition 2. (XML Distance) For two XML documents d1 and d2, the dis-
tance between them is defined as dist(d1, d2) = 1 − |sg(d1)∩sg(d2)|

max{|sg(d1)|,|sg(d2)|} where |sg(di)|
is the number of edges in sg(di) and sg(d1) ∩ sg(d2) is the set of common edges
of sg(d1) and sg(d2).

As an example, consider the two XML documents and their s-graphs in Fig. 2 (a)
and (b). Since |sg(d1)∩sg(d2)| = 3 and max{|sg(d1)|, |sg(d2)|} = 5, the distance
between the two documents is 1−3/5 = 0.4. As stated in [5], this distance metric
enables generating clusters to support efficient query answering. Note however
that XStreamCluster can be adapted to other distance measures which might
be more appropriate for other domains, as outlined in the technical report [17].

3.2 LSH-Based Candidate Clusters Detection

Traditional single-pass clustering algorithms need to compare each incoming
document against all existing clusters, to find out the cluster with the minimum
distance. However, considering XML datasets with heterogeneous structures,
there may exist a large number of clusters, requiring a huge amount of time for
comparing each document with all existing clusters. XStreamCluster addresses
this issue by reducing the number of required document-cluster comparisons
drastically. This reduction is based on an inverted index of clusters, built using
Locality Sensitive Hashing (LSH).

The main idea behind LSH is to hash points from a high-dimensional space
such that nearby points have the same hash values, and dissimilar points have
different hash values. LSH is probabilistic, that is, two similar points will end
up with the same hash value with a high probability p1, whereas two dissimilar
points will have the same hash value with a very low probability p2. Central to

XStreamCluster: An Efficient Algorithm for Streaming XML Data Clustering 501

LSH is the notion of locality sensitive hash families, i.e., an ordered collection of
hash functions, formally defined as (r1, r2, p1, p2)-sensitive hash families [18].
Definition 3. Let S denote a set of points, and Dist(·, ·) denote a distance func-
tion between points from S. A family of hash functions H is called (r1, r2, p1, p2)-
sensitive, where r1 ≤ r2 and p1 ≥ p2, if for any two points p, q ∈ S and for any
hi ∈ H:
– if Dist(p, q) ≤ r1 then Pr[hi(p) = hi(q)] ≥ p1

– if Dist(p, q) ≥ r2 then Pr[hi(p) = hi(q)] ≤ p2

For the case where the points of S are sets of elements (e.g., s-graphs are sets of
edges), and Dist(·, ·) denotes the Jaccard coefficient, a suitable locality sensitive
hash family implementation is minwise independent permutations [19]. Particu-
larly, when hashing is conducted using minwise independent permutations, the
probability that two points have the same hash value is Pr[hi(p) = hi(q)] =
1 − Dist(p, q). For the case that Dist(p, q) ≤ r1, Pr[hi(p) = hi(q)] ≥ 1 − r1.

XStreamCluster employs LSH for efficiently detecting the candidate clusters
for each document. Let H denote a locality sensitive hash family, based on
minwise independent permutations. L hash tables are constructed, each cor-
responding to a composite hash function gi(·), for i = 1 . . . L. These hash
functions g1(·), g2(·), . . . , gL(·) are obtained by merging k hash functions cho-
sen randomly from H, i.e., for a point p : gi(p) = [hi1(p) ⊕ hi2(p) . . . ⊕ hik(p)].
Each cluster s-graph is hashed to all L hash tables, using the corresponding
hash functions. When XStreamCluster reads a new document d, it computes
g1(sg(d)), . . . , gL(sg(d)) and finds from the corresponding hash tables all clus-
ters that collide with d in at least one hash table. These clusters, denoted as
C(d), are returned as the candidate clusters for the document.

There is a latent difference between our approach for constructing the LSH
inverted index of clusters and previous LSH algorithms, e.g., [18]. Previous
approaches construct gi(p) by mapping each of hij(p) to a single bit, for all
j : [1 . . . k], and concatenating the results to a binary string of k bits. Due to
this mapping to bits, the probability that two points hij(p) and hij(q) will map
into the same bit value is at least 0.5, independent of their distance Dist(p, q).
Therefore, the probability for false positives is high. Previous works compensate
for this issue by increasing the number of hash functions k, and thereby increas-
ing the number of bits in each hash key g(·). But increasing the number of hash
functions has a negative effect on computational complexity, which we want to
avoid for the streaming data scenario. To this end, instead of mapping each of
hij(p) to a single bit, we represent the value of hij(p) in the binary numeral sys-
tem. We then generate gi(p) using the logic operation of exclusive or (denoted
with XOR) on the set of hij(p) values. Our theoretical analysis shows that the
LSH based candidate cluster detection strategy retrieves the optimal cluster for
each document with high probability.
Theorem 1. The optimal cluster Copt for document d will be included in C(d)
with a probability Pr ≥ 1 − (1 − (1 − δ)k)L, where δ denotes the maximum
acceptable distance between a document d and a cluster C for assigning d to C.

Proof of the theorem can be found in the technical report [17].

502 O. Papapetrou and L. Chen

For initializing the LSH inverted index, XStreamCluster needs to set the val-
ues of δ, k and L. The value of δ corresponds to the maximum acceptable distance
between a document and the cluster for assigning the document to that cluster.
Therefore, it depends on the requirements of the particular application, as well
as the characteristics of the data. Nevertheless, as we show in the experimental
evaluation, XStreamCluster offers substantial performance benefits for a wide
range of δ. Note that δ is expressed using the standard Jaccard coefficient. Since
the interesting measure for our work is the revised Jaccard coefficient, proposed
in [5], we compute δ as follows δ ≤ (1−δ′)/(1+δ′), where δ′ is the same threshold
expressed using the revised Jaccard coefficient. In order to set the values of L and
k, the user first decides on the probability pr that a lookup in the LSH inverted
index will return the optimal cluster for a document. Then, the values for L
and k can be selected appropriately by considering Theorem 1. For example, let
δ = 0.1, and pr ≥ 0.95. Then, according to Theorem 1: 1−(1−(1−0.9k))L ≥ 0.95.
If we create L = 10 hashtables, then setting k as any value no greater than 12.8
should satisfy the required probability. However, the lower the value of k, the
more candidate clusters will be returned, which incurs more time to filter false
positive candidates. Consequently, we can set k = 12 hash functions for each
hash table, which satisfies the probability requirements and minimizes the false
positives.

After assigning the new document d to a cluster C, we need to update the L
hash keys of C in the LSH hash tables. Normally, we would need to recompute
these keys from scratch, which requires additional computation. Minwise hashing
allows us to compute the updated hash values for the cluster C, denoted with
h′
ij(C), by using the values of hij(d) and the current values of hij(C) as follows:

h′
ij(C) = min(hij(d), hij(C)). The updated values of the g1(sg(C)), . . . , gL(sg(C))

can then be computed accordingly.

3.3 Bottom-Level Strategy: Bloom Filter Based Distance
Calculation

After the top-level strategy detects a set of candidate clusters, we need to com-
pute the distance between the new document and each candidate cluster, for
finding the nearest one. As mentioned, for space efficiency XStreamCluster en-
codes s-graphs with Bloom filters. We now describe this encoding, and show how
the distance between two s-graphs can be computed from their Bloom filters.

A Bloom filter is a space-efficient encoding of a set S = {e1, e2, . . . , en} of n
elements from a universe U . It consists of an array of m bits and a family of λ
pairwise independent hash functions F = {f1, f2, . . . , fλ}, where each function
hashes elements of U to one of the m array positions. The m bits are initially
set to 0. An element ei is inserted into the Bloom filter by setting the positions
of the bit array returned by fj(ei) to 1, for j = 1, 2, . . . , λ. To encode an s-graph
with a Bloom filter, we hash all s-graph edges in an empty Bloom filter with a
predefined length m and λ hash functions.

XStreamCluster: An Efficient Algorithm for Streaming XML Data Clustering 503

Recall from Section 3.1 that the XML distance between a document d and a
cluster C is dist(d, C) = 1 − |sg(d)∩sg(C)|

max{|sg(d)|,|sg(C)|} . Therefore, we need to estimate
the values of |sg(d)|, |sg(C)|, and |sg(d)∩sg(C)| from the Bloom filter represen-
tations of sg(d) and sg(C). With BFx we denote the Bloom filter encoding of
sg(x), where x denotes a document or a cluster. Let m and λ denote the length
and number of hash functions of BFx, and tx be the number of true bits in BFx.
We can estimate |sg(x)| and |sg(x) ∩ sg(y)| as follows:

E(|sg(x)|) =
ln(1 − tx/m)
λ ln(1 − 1/m)

(1)

E(|sg(x)∩ sg(y)|) = 1 −
ln

(
m − mt∧−txty

m−tx−ty+t∧

)
− ln(m)

λ ln(1 − 1/m)
(2)

where t∧ denotes the number of true bits in the Bloom filter produced by merging
BFx and BFy with bitwise-AND. Proofs are given in [20].

Notice that the distances calculated using the estimated values of |sg(d)|,
|sg(C)|, and |sg(d)∩sg(C)|, may deviate slightly from the actual distance values.
These deviations do not necessarily lead to a wrong assignment, as long as the
nearest cluster (the one with the smallest distance) is correctly identified using
the estimated values. A wrong assignment occurs only when the nearest cluster is
not identified. Some of the wrong assignments have negligible effects, e.g., when
the difference of the distances between the document and the two clusters is
very small; others may have a significant negative effect, e.g., when the assigned
cluster is significantly worse than the optimal one. We are interested in the
latter case, which we refer to as significantly wrong assignments, and analyze
the probability of such errors.

Given a document d, the optimal cluster Copt for d, and a suboptimal clus-
ter Csub, we define the assignment of d to cluster Csub as a significantly wrong
assignment if dist(sg(d), sg(Csub)) − dist(sg(d), sg(Copt)) > Δ, where Δ is a
user-chosen threshold. Since d was assigned to Csub instead of Copt, the esti-
mated distance of d with Csub, denoted as dist(sg(d), sg(Csub)), was smaller than
the corresponding distance for Copt. Therefore, we aim to find the probability
Pr[dist(sg(d), sg(Csub)) − dist(sg(d), sg(Copt)) > Δ], given that
dist(sg(d), sg(Csub)) < dist(sg(d), sg(Copt)).

We use the following notations. |ovl(d, C)| and |ovl(d, C)| denote the actual
and expected overlap cardinalities (computed with Eqn. 2) of the sets sg(d)
and sg(C). With td and tC we denote the number of true bits in the Bloom
filter of sg(d) and sg(C), whereas t∧ denotes the number of true bits in the
Bloom filter produced by merging the two Bloom filters with bitwise-AND.
With S(td, tC , x) we denote the expected value of t∧, given that |ovl(d, C)| =
x. As shown in [20], S(td, tC , x) can be computed as follows: S(td, tC , x) =
tdtC+m(1−(1−1/m)λx)(m−td−tC)

m(1−1/m)λx .
In particular we study the worst-case scenario, where the expected cardi-

nalities of the overlap of the two clusters (|ovl(d, Csub)| and |ovl(d, Copt)|) get
the minimum possible value, given that the two clusters are candidates for

504 O. Papapetrou and L. Chen

Algorithm 1. XStreamCluster
INPUT: XML Stream D, dist. threshold δ

OUTPUT: Set of clusters C
1: Initialize L hash tables ht1,. . . , htL, corre-

sponding to g1, · · · , gL
2: C ← {}
3: for each document d from D do
4: for each hti, i : [1 . . . L] do
5: C(d) = C(d) ∪ hti.get(gi(sg(d)))
6: end for
7: Hash sg(d) in BFd

8: for each cluster C ∈ C(d) do

9: if dist(d, C) ≥ δ then

10: C(d) = C(d)/C
11: end if
12: end for
13: if |C(d)| �= 0 then
14: Assign d to cluster C = argmin

dist(d,C)
15: else
16: Initialize a new cluster C with d, C =

C ∪ {C}
17: end if
18: Update Bloom filter of C and L hashta-

bles
19: end for

the document. This value, denoted with minOvl, is determined from the pa-
rameter δ as follows: δ = 1 − minOvl/card ⇒ minOvl = card(1 − δ), with
card = min(|sg(Copt)|, |sg(Csub)|). This is without loss of generality, because the
accuracy of the estimations further increases when the overlap increases [20].
Furthermore, for simplification, we assume |sg(Copt)| and |sg(Csub)| are known,
and that |sg(d)| < |sg(Copt)| and |sg(d)| < |sg(Csub)|. We relax these assump-
tions later. For the theorem we use as shortcuts tmopt = S(td, tCopt ,minOvl) and
tmsub = S(td, tCsub

,minOvl).

Theorem 2. The probability of a significantly wrong assignment Pr[dist(sg(d),
sg(Csub)) − dist(sg(d), sg(Copt)) > Δ] is at most 1 − (1 − (tl

tmsub−1
)tmsub−1×

etmsub−1−tl) × (1 − e
− (tmopt+1−tr)2

2tr), where tl = S(td, tCsub ,minOvl − Δ′
2|sg(Copt)|),

tr = S(td, tCopt ,minOvl+ Δ′
2|sg(Csub)|), and Δ′ = Δ×|sg(Copt)|× |sg(Csub)|−minOvl×

(|sg(Csub)| − |sg(Copt)|) .

Proof of the theorem can be found in the technical report[17].
As an example, consider the case when δ = Δ = 0.2, m = 4096, λ = 2, and

|sg(Csub)| = |sg(Copt)| = 1000. Then, according to Theorem 2, the probability
of a significantly wrong assignment is less than 0.025. We can further reduce
this error probability by increasing the Bloom filter length. For example, for
m = 8192 the probability is reduced to less than 0.002, and for m = 10000, the
probability becomes less than 7 × 10−4.

In Theorem 2, for simplification we assume that |sg(Copt)| and |sg(Csub)| are
given. In practice, we can closely approximate both cardinalities using Eqn. 1. In
addition, we can obtain probabilistic lower and upper bounds for |sg(Copt)| and
|sg(Csub)|, as described in [20], and use these to derive the worst-case values (i.e.,
the ones that minimize minOvl, and maximize the probability of a significantly
wrong assignment). Integrating these probabilistic guarantees in the analysis of
Theorem 2 is part of our future work.

The Bloom filter encoding also allows an efficient updating of the s-graph
representations of a cluster when a new document is assigned to it. As explained
in [20], the bitwise-OR operation of two Bloom filters equals to the creation of
a new Bloom filter of the union of two sets. We can therefore simply merge the
corresponding Bloom filters of the document and the cluster with bitwise-OR,

XStreamCluster: An Efficient Algorithm for Streaming XML Data Clustering 505

rather than generating the new Bloom filter for the updated cluster from scratch.
The full algorithm of XStreamCluster is illustrated in Algorithm 1.

4 Experimental Evaluation

XStreamCluster was evaluated in terms of efficiency, scalability, and clustering
quality, using streams of up to 1 million XML documents. Our simulations were
carried out in a single dedicated Intel Xeon 3.6Ghz core.

Datasets. We conducted experiments with two streams. The first (STREAM1)
was generated using a set of 250 synthetic DTDs. To verify the applicability of the
experimental results for real DTDs, the second stream (STREAM2) was created
following a set of 22 real, publicly available DTDs. In particular, for STREAM1
we first generated x DTDs, out of which we created y different XML documents
with XML Generator [21]. For generating each document, we randomly selected
one of the available DTDs as an input for the XML Generator. The values
of x and y varied for each experiment, with a maximum of 250 and 1 million
respectively. The resulting documents were fed to the stream in a random order.
For generating STREAM2 we followed the same procedure, but using a set
of real, frequently used DTDs. The full list of the used DTDs and the DTD
generator are available online, in http://www.l3s.de/∼papapetrou/dtdgen.html.

Algorithms and Methodology. To evaluate in depth the contribution of each of
the strategies to the algorithm’s efficiency and effectiveness, we have compared
three different variants of XStreamCluster. Furthermore, XStreamCluster was
compared with the existing static algorithm which employs s-graphs for repre-
senting and comparing clusters and documents [5], called S-GRACE. In partic-
ular, we implemented and evaluated the following algorithms:

S-GRACE: We adapted S-GRACE [5] to streaming data. This required the
following extensions: (a) changing the clustering algorithm from ROCK to
K-Means, and (b) representing the s-graphs as extensible bit arrays, instead
of bit arrays of fixed sizes. Note that S-GRACE achieves the same quality
as comparing each document to all clusters without any optimization.

XStreamBF: XStreamCluster with only the bottom-level strategy in place
(i.e., encoding of s-graphs as Bloom filters; documents were compared to
all clusters).

XStreamLSH: XStreamCluster with only the top-level strategy (i.e., indexing
clusters using LSH; s-graphs were represented as extensible bit arrays).

XStreamCluster: The algorithm as presented in this paper.

To evaluate efficiency and scalability, we measured the average time and mem-
ory required for clustering streams of up to 1 million documents. Quality was
evaluated using the standard measure of normalized mutual information. In the
following, we report average measures after 4 executions of each experiment.
We present results with Bloom filters of 1024 bits, with 2 hash functions. The

506 O. Papapetrou and L. Chen

 0

 500

 1000

 1500

 2000

 50 100 150 200 250

T
im

e
(s

ec
)

Number of DTDs

S-GRACE
XStreamBF

XStreamLSH
XStreamCluster

 0

 20

 40

 60

 80

 100

 120

 50 100 150 200 250

M
em

or
y

(M
by

te
s)

Number of DTDs

S-GRACE
XStreamBF

XStreamLSH
XStreamCluster

Fig. 3. (a) Time requirements, and, (b) Memory requirements, for clustering
STREAM1 with respect to the number of DTDs

LSH index was configured for satisfying a correctness probability of 0.9. Due to
page constraints, we present detailed results for STREAM1, and summarize the
results for STREAM2, noting the differences.

4.1 Efficiency

With respect to efficiency, we compared the memory and execution time of each
algorithm for clustering the two streams. To ensure that time measures were not
affected by other activities unrelated to the clustering algorithm, e.g., network
latency, we excluded the time spent in reading the stream.

For the first experiment, we studied how the efficiency of the algorithms
changes with respect to the diversity of the stream. We controlled the diver-
sity of the stream by choosing the number of DTDs out of which STREAM1
was generated. Figures 3 (a) and (b) plot the time and memory requirements
of the four algorithms for clustering different instances of STREAM1, each gen-
erated by a different number of DTDs. The distance threshold for this exper-
iment was set to 0.1, and the number of documents in the stream was set to
100k. We see that XStreamCluster clearly outperforms S-GRACE in terms of
speed; it requires up to two orders of magnitude less time for clustering the same
stream. XStreamLSH presents the same speed improvement. The efficiency of
both algorithms is due to the top-level strategy for candidate clusters detection,
which drastically reduces the cluster-document comparisons. XStreamBF does
not present this speed improvement as it does not employ an LSH inverted index.

We also observe that the speed improvement of XStreamLSH and XStream-
Cluster is more apparent for higher number of DTDs. This is because more DTDs
lead to more clusters. For the S-GRACE and XStreamBF algorithms, more clus-
ters lead to longer bit arrays, thereby requiring more time to cluster a document.
Furthermore, more clusters lead to an increase in the cluster-document compar-
isons since each document needs to be compared to all clusters. This is not the
case for XStreamLSH and XStreamCluster though, which pre-filter the candi-
date clusters for each document by using the top-level strategy. Therefore, the
execution time of XStreamLSH and XStreamCluster is almost constant.

XStreamCluster: An Efficient Algorithm for Streaming XML Data Clustering 507

With respect to memory requirements (Figure 3(b)) we see that XStream-
Cluster and XStreamBF require at least one order of magnitude less memory
compared to S-GRACE. The difference is again particularly visible for a higher
number of DTDs, which results to a higher number of clusters. The huge memory
savings are due to the Bloom filter encodings employed by the two algorithms.

The experiment was also conducted using STREAM2. Since STREAM2 was
generated from a limited number of DTDs, instead of varying the number of
DTDs we varied the value of the distance threshold δ, which also had an influ-
ence on the number of clusters: reducing the δ value resulted to more clusters.
Table 1 presents example results, for δ = 0.1 and 0.2. As expected, reducing the δ
value leads to an increase in memory and computational cost for S-GRACE and
XStreamBF, due to the increase in the number of clusters. On the other hand,
the speed of XStreamCluster and XStreamLSH actually increases by reducing
the distance threshold, because the LSH index is initialized with less hash tables
and hash functions.

4.2 Scalability

To verify the scalability of XStreamCluster, we compared it against S-GRACE
and its variants for clustering streams of different sizes, reaching up to 1 million
documents. In particular, we generated instances of STREAM1 and STREAM2
with 1 million documents, and used all four algorithms to cluster them. During
clustering, we monitored memory and execution time every 100k documents. The
experiment was repeated for various configurations. Due to space limitations we
report only the results for STREAM1 corresponding to 100 DTDs where δ is set
to 0.1. The results for other settings lead to the same conclusions.

Figures 4(a) and 4(b) present the execution time and memory usage with
respect to number of documents. With respect to execution time, we see that
S-GRACE and XStreamBF fail to scale. Their execution time increases expo-
nentially with the number of documents, because of the increase in the number
of clusters. On the other hand, XStreamCluster and XStreamLSH have a linear
scale-up with respect to the number of documents, i.e., the cost for clustering
each document remains constant with the number of clusters. This is achieved
due to the efficient filtering of clusters with the LSH-based candidate cluster
detection strategy.

With respect to memory requirements (Fig. 4(b)), all algorithms scale lin-
early with the number of documents, but the algorithms that use Bloom filters

Table 1. Example results for STREAM2

Algorithm Time (sec) Memory (Mbytes) NMI
Distance thres. 0.1 0.2 0.1 0.2 0.1 0.2

S-GRACE 61 35 23.1 14 0.72 0.76
XStreamBF 363 253 1.7 1.1 0.72 0.76

XStreamLSH 8 11 19.1 13.8 0.716 0.755
XStreamCluster 4 7 2.5 3.1 0.715 0.755

508 O. Papapetrou and L. Chen

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 200 400 600 800 1000

T
im

e
(s

ec
)

Number of documents (thousands)

S-GRACE
XStreamBF

XStreamLSH
XStreamCluster

 0
 100
 200
 300
 400

 250 500 750 1000
 0

 100
 200
 300
 400

 250 500 750 1000

 0

 100

 200

 300

 400

 500

 600

 100 200 300 400 500 600 700 800 900 1000

M
em

or
y

(M
by

te
s)

Number of documents (thousands)

S-GRACE
XStreamBF

XStreamLSH
XStreamCluster

Fig. 4. (a) Execution time, and (b) Memory requirements, for clustering STREAM1
with respect to number of documents

require an order of magnitude less memory. Interestingly, for clustering 1 mil-
lion documents, XStreamCluster requires only 39 Mbytes memory, which is an
affordable amount for any off-the-shelf PC. Therefore, XStreamCluster can keep
all its memory structures in fast main memory, instead of resorting to the slower,
secondary storage. Keeping as many data structures as possible in main mem-
ory is very important for algorithms working with streams, because of their high
efficiency requirements.

4.3 Clustering Quality

We evaluated the clustering quality of XStreamCluster by using the standard
measure of Normalized Mutual Information (NMI). NMI reflects how close the
clustering result approaches an optimal classification – a ground truth – which
is usually constructed by humans [22]. An NMI of 0 indicates a random as-
signment of documents to clusters, whereas an NMI of 1 denotes a clustering
which perfectly resembles the optimal classification. For our datasets, the op-
timal classification was defined by the DTD of each document: two XML files
were considered to belong to the same class when generated from the same
DTD.

Figure 5(a) presents NMI with respect to distance threshold δ for STREAM1,
which consists of 100k documents generated from 100 different DTDs. We see
that all XStreamCluster variants achieve a clustering quality nearly equal to
S-GRACE. Quality of XStreamBF is practically equal to quality of S-GRACE,
which means that introducing the Bloom filters as cluster representations does
not result to quality reduction. XStreamCluster and XStreamLSH have a small
difference compared to S-GRACE, which is due to the aggressive filtering of clus-
ters that takes place during clustering at the top-level strategy. This difference
is negligible, especially for small distance threshold values.

We further studied how the diversity of the stream influences the algorithms’
quality, by repeating the experiment using streams generated from a differ-
ent number of DTDs. Figure 5(b) shows the NMI with respect to the number

XStreamCluster: An Efficient Algorithm for Streaming XML Data Clustering 509

 0.58
 0.6

 0.62
 0.64
 0.66
 0.68
 0.7

 0.72
 0.74
 0.76
 0.78

 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

Distance Threshold

S-GRACE
XStreamBF

XStreamLSH
XStreamCluster

 0.62
 0.63
 0.64
 0.65
 0.66
 0.67
 0.68
 0.69
 0.7

 0.71
 0.72
 0.73

 50 100 150 200 250

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

Number of DTDs

S-GRACE
XStreamBF

XStreamLSH
XStreamCluster

Fig. 5. Normalized Mutual Information for STREAM1. Varying (a) the distance
threshold, and, (b) the number of DTDs.

of DTDs used for generating STREAM1. We see that XStreamCluster vari-
ants again achieve a quality almost equal to S-GRACE. The difference between
XStreamCluster and S-GRACE reduces with an increase in the number of DTDs,
and becomes negligible for the streams generated from more than 100 DTDs.

As shown in the last column of Table 1, the same outcome was observed on
the experiments with STREAM2. XStreamBF produced an equivalent solution
to S-GRACE, whereas XStreamLSH and XStreamCluster approximated closely
the optimal quality. The difference between the approximate solution produced
by XStreamCluster and the exact solution produced by S-GRACE was less than
0.01 in terms of NMI, in all experiments.

Summarizing, XStreamCluster achieves good clustering of XML documents
requiring at least an order of magnitude less cost compared to S-GRACE, with
respect to both execution time and memory. The experimental results show that
it is especially suited for clustering large and diverse streams, both with respect
to quality and efficiency. Owing to the low memory and time requirements,
it is easily deployable in standard off-the-shelf PCs and scales to huge XML
streams.

5 Conclusions

We presented XStreamCluster, the first algorithm that addresses clustering of
streaming XML documents. The algorithm combines two optimization strate-
gies, Bloom filters for reducing the memory requirements, and Locality Sensitive
Hashing to reduce significantly the cost of clustering. We provided theoretical
analysis showing that XStreamCluster provides an approximately similar qual-
ity of clustering as exact solutions do. Our experimental results also confirmed
the efficiency and effectiveness contributed by the two strategies of XStream-
Cluster. For future work, we plan to extend this work by considering additional
distance measures, including the ones which combine both content similarity and
structure similarity.

510 O. Papapetrou and L. Chen

References

1. Mayorga, V., Polyzotis, N.: Sketch-based summarization of ordered XML streams.
In: Proc. of ICDE (2009)

2. Josifovski, V., Fontoura, M., Barta., A.: Querying XML streams. VLDB Jour-
nal 14(2) (2005)

3. Bifet, A., Gavald, R.: Adaptive XML tree classification on evolving data streams.
In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML
PKDD 2009. LNCS, vol. 5781, pp. 147–162. Springer, Heidelberg (2009)

4. Dalamagas, T., Cheng, T., Winkel, K.J., Sellis, T.: A methodology for clustering
XML documents by structure. Inf. Syst. 31(3), 187–228 (2006)

5. Lian, W., Cheung, D.W.L., Mamoulis, N., Yiu, S.M.: An efficient and scalable
algorithm for clustering XML documents by structure. IEEE TKDE 16(1), 82–96
(2004)

6. Nierman, A., Jagadish, H.V.: Evaluatating structural similarity in XML docu-
ments. In: Proc. of ACM SIGMOD WebDB Workshop, pp. 61–66 (2002)

7. Tagarelli, A., Greco, S.: Toward semantic XML clustering. In: Proc. SDM (2006)
8. Aggarwal, C.C.: A framework for clustering massive-domain data streams. In: Proc.

of IEEE ICDE (2009)
9. Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice-Hall, Englewood

Cliffs (1988)
10. Kaufman, L., Rousseuw, P.: Finding groups in data - An introduction to cluster

analysis. Wiley, Chichester (1990)
11. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving

data streams. In: Proc. of VLDB (2003)
12. Guha, S., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data streams. In:

Proc. of IEEE FOCS (2000)
13. O’Callaghan, L., Mishra, N., Meyerson, A., Guha, S., Motwani, R.: Streaming-data

algorithms for high-quality clustering. In: Proc. of ICDE (2002)
14. Candillier, L., Tellier, I., Torre, F.: Transforming XML trees for efficient classifi-

cation and clustering. In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX
2005. LNCS, vol. 3977, pp. 469–480. Springer, Heidelberg (2006)

15. Doucet, A., Ahonen Myka, H.: Naive clustering of a large XML document collec-
tion. In: INEX, pp. 81–87 (2002)

16. Doucet, A., Lehtonen, M.: Unsupervised classification of text-centric XML docu-
ment collections. In: Fuhr, N., Lalmas, M., Trotman, A. (eds.) INEX 2006. LNCS,
vol. 4518, pp. 497–509. Springer, Heidelberg (2007)

17. Papapetrou, O., Chen, L.: XStreamCluster: an Efficient Algorithm for Streaming
XML data Clustering. Technical report (2010),
http://www.l3s.de/~papapetrou/publications/XStreamCluster-long.pdf

18. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. In: Proc. of VLDB (1999)

19. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent
permutations. In: Proc. of STOC 1998, pp. 327–336. ACM, New York (1998)

20. Papapetrou, O., Siberski, W., Nejdl, W.: Cardinality estimation and dynamic
length adaptation for bloom filters. DAPD 28(1) (2010)

21. Diaz, A.L., Lovell, D.: XML generator (1999),
http://www.alphaworks.ibm.com/tech/xmlgenerator

22. Christopher, D., Manning, P.R., Schtze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2008)

http://www.l3s.de/~papapetrou/publications/XStreamCluster-long.pdf
http://www.alphaworks.ibm.com/tech/xmlgenerator

Efficient Evaluation of NOT-Twig Queries in
Tree-Unaware Relational Databases

Kheng Hong Soh2 and Sourav S. Bhowmick1,2

1 Singapore-MIT Alliance, Nanyang Technological University, Singapore
2 School of Computer Engineering, Nanyang Technological University, Singapore

assourav@ntu.edu.sg

Abstract. Despite a large body of work on xml query processing in re-
lational environment, systematic study of not-twig queries has received
little attention in the literature. Such queries contain not-predicates and
are useful for many real-world applications. In this paper, we present an
efficient strategy to evaluate not-twig queries on top of a dewey-based
tree-unaware system called Sucxent++ [11]. We extend the encoding
scheme of Sucxent++ by adding two new labels, namely AncestorValue
and AncestorDeweyGroup, that enable us to directly filter out elements
satisfying a not-predicate by comparing their ancestor group identifiers.
In this approach, a set of elements under the same common ancestor at
a specific level in the xml tree is assigned same ancestor group identifier.
Based on this encoding scheme, we propose a novel sql translation al-
gorithm for not-twig query evaluation. Real and synthetic datasets are
employed to demonstrate the superiority of our approach over industrial-
strength rdbms and native xml databases.

1 Introduction

Querying xml data over relational framework has gained popularity due to its
stability, efficiency, expressiveness, and its wide spread usage in the commercial
world. On the one hand, there has been a host of work, c.f., [3], on enabling
relational databases to be tree-aware by invading the database kernel to support
xml. On the other hand, some completely jettison the invasive approach and
resort to a tree-unaware approach, c.f., [4, 7, 11, 13, 14], where the database
kernel is not modified to support xml queries.

Generally, the tree-unaware approach reuses existing code, has a lower cost
of implementation, and is more portable since it can be implemented on top
of off-the-shelf rdbmss. This has triggered recent efforts to explore how far we
can push the idea of using mature tree-unaware rdbms technology to design and
build a relational XQuery processor [4, 5, 7]. Particularly, a wealth of existing lit-
erature has extensively studied evaluation of various navigational axes in XPath
expressions and optimization techniques in a tree-unaware environment [4, 5,
7, 11, 13, 14]. However, to the best of our knowledge, no systematic study has
been carried out in efficiently evaluating not-twig queries in this relational en-
vironment. Such queries contain not-predicates and are useful for many real-
world applications. For example, the query /catalog/book[not(review) and

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 511–527, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

512 K.H. Soh and S.S. Bhowmick

(a) Examples of NOT-twig query (b) An xml document

Fig. 1. Examples of not-twig queries and xml document

Fig. 2. Data sets and query evaluation times (in msec.)

title] retrieves all books that have a title but no reviews (Figure 1(a)(i)).
Figures 1(b)(ii) and 1(c)(iii) show graphical representations of two more not-
twig queries.

At first glance, it may seem that such lack of study may be primarily due
to the fact that we can efficiently evaluate these not-twig queries by leverag-
ing on the xml query processor of an existing industrial-strength rdbms and
relying on its query optimization capabilities. However, our initial investiga-
tion showed that fast evaluation of not-twigs still remains a bottleneck in sev-
eral industrial-strength rdbmss. To get a better understanding of this problem,
we experimented with the XBench dcsd [15] and uniprot (downloaded from
www.expasy.ch/sprot/) data sets shown in Figures 2(a) and 2(b) and queries
Q1 – Q3 in Figure 2(c). We fix the result size of Q1 to be 500. Figures 2(d)
and 2(e) report the query evaluation times in two commercial-strength rdbmss.
Note that due to legal restrictions, these systems are anonymously identified as
XSysA and XSysB in the sequel. Observe that the evaluation cost can be ex-
pensive as it can take up to 208 seconds to evaluate these queries. Also, both
these commercial systems do not support processing of xml documents having
size greater than 2gb (u2843 data set). Is it possible to design a tree-unaware
scheme that can address this performance bottleneck? In this paper, we demon-
strate that novel techniques built on top of an industrial-strength rdbms can

Efficient Evaluation of NOT-Twig Queries 513

make up for a large part of the limitation. We show that the above queries can
be evaluated in a second or less on smaller data sets and less than 13s for Q2
on u284 data sets.

We built our proposed not-twig evaluation technique on top of dewey-based
Sucxent++ system [2, 11], a tree-unaware approach designed primarily for
read-mostly workloads. As Sucxent++ is designed primarily for fast evaluation
of normal path and twig queries, it does not support efficient evaluation of not-
twig queries. Hence, in Section 3 we extend Sucxent++ encoding scheme by
adding two new labels, namely AncestorValue and AncestorDeweyGroup, to each
level and leaf elements, respectively. These labels enable us to efficiently group a
set of elements under the same common ancestor at a specific level with the same
ancestor group identifier. As we shall see later, this will allow us to efficiently
filter out elements satisfying a not-predicate by comparing their ancestor group
identifiers.

Based on the extended encoding scheme, we propose a novel sql transla-
tion algorithm for not-twig evaluation (Section 4). In our approach, we use the
AncestorDeweyGroup and AncestorValue labels to evaluate all paths in a not-twig
query. In Section 5, we demonstrate with exhaustive experiments that the pro-
posed approach is significantly faster than xml supports of XSysA and XSysB
(highest observed factor being 40 times).

Our proposed approach differs from existing efforts in evaluating not-twigs
using structural join algorithms [1, 8, 10, 16] in the following ways. Firstly,
we take relational-based approach instead of native strategy used in aforemen-
tioned approaches. Secondly, our encoding scheme is different from the above
approaches. In [16], region encoding scheme is employed to label the elements
whereas a pair of (path-id, node id) [9] is used in [10]. In contrast, we use a
dewey-based scheme where only the leaf elements and the levels of the xml tree
are explicitly encoded. Thirdly, these existing approaches typically report query
performance on documents smaller than 150mb and containing at most 2.5 mil-
lion nodes. In contrast, we explore the scalability of our approach for larger xml

documents (2.8gb size) having more than 120 million nodes.

2 Preliminaries

XML Data Model. We model xml documents as ordered trees. In our model
we ignore comments, attributes, processing instructions, and namespaces. Queries
in xml query languages make use of twig patterns to match relevant portions of
data in an xml database. A twig pattern can be represented as a tree containing
all the nodes in the query. A node mi in the pattern may be an element tag, a
text value or a wildcard ”*”. We distinguish between query and data nodes by
using the term “node” to refer to a query node and the term “element” to refer
to a data element in a document. Each node mi and its parent (or ancestor) mj

are connected by an edge, denoted as edge(mi,mj).
A twig query contains a collection of rooted path patterns. A rooted path

pattern (rp) is a path from the root to a node in the twig. Each rooted path

514 K.H. Soh and S.S. Bhowmick

represents a sequence of nodes having parent-child (pc) or ancestor-descendant
(ad) edges. We classify the rooted paths into two types: root-to-leaf and root-
to-internal paths. A root-to-leaf path is a rp from the root to a leaf node in
the query. In contrast, a rp ending at a non-leaf node is called a root-to-internal
path. If the number of children of a node in the twig query is more than one,
then we call this node a nca (nearest common ancestor) node. Otherwise, when
the node has only one child, it is a non-nca node. The level of the nca node is
called nca-level.

In this paper, we focus on twig queries with not-predicates. We refer to such
queries as not-twig queries. The twig pattern edges of a not-twig query can be
classified into one of the following two types. (a) Positive edge: This corresponds
to an edge(mi,mj) without not-predicate in the query expression. It is repre-
sented as “|” or “||” in a twig pattern for pc or ad edges, respectively. Node mj

is called the positive pc (resp. ad) child of mi. A rooted path that contains only
positive children is called a normal rooted path. (b) Negative edge: This corre-
sponds to an edge(mi,mj) with not-predicate and is represented as “|¬” or “||¬”
in the twig for pc or ad edges, respectively. In this case, node mj is called the neg-
ative pc (resp. ad) child of mi. A rooted path pattern that contains a negative
child is called a negative rooted path. For example, consider the not-twig query
in Figure 1(a)(ii). edge(book,title) and edge(book,publisher) are positive
edges whereas edge(book,review) and edge(name,website) are negative edges.
Node book has three children, in which title and publisher are positive pc

children and node review is a negative pc child. The rp catalog/book/review
is a negative rp as it contains the negative pc child review. On the other hand,
catalog/book/title is a normal rp.

NOT-Twig Pattern Matching. Given a not-twig query Q, a query node n,
and an xml tree D, an element en (with the tag n) in D satisfies the subquery
rooted at n of Q iff: (1) n is a leaf node of Q; or (2) For each child node nc of
n in Q: (a) If nc is a positive pc (resp. ad) child of n, then there is an element
enc in D such that enc is a child (resp. descendant) element of en and satisfies
the sub-query rooted at nc in D. (b) If nc is a negative pc (resp. ad) child of n,
then there does not exists any element enc in D such that enc is a child (resp.
descendant) element of en and satisfies the sub-query rooted at nc in D.

3 Encoding Scheme

In this section, we first briefly describe the encoding scheme of Sucxent++ [2,
11] and highlight its limitations in efficiently processing not-twig queries. Then,
we present how it can be extended to efficiently support queries with not-
predicates.

3.1 SUCXENT++ Schema and Its Limitations

In Sucxent++, each level � of an xml tree is associated with an attribute called
RValue (denoted as R�). Each leaf element n is associated with four attributes,

Efficient Evaluation of NOT-Twig Queries 515

Fig. 3. Storage of a shredded xml document

namely LeafOrder, BranchOrder, DeweyOrderSum, and SiblingSum. Each non-leaf el-
ement n′ is implicitly assigned the DeweyOrderSum of the first descendant leaf
element. Here we briefly define the relevant attributes necessary to understand
this paper. The reader may refer to [2, 11] for details related to their roles in
xml query processing.

The schema of Sucxent++ [2, 11] is as follows: (a) Document(DocID, Name),
(b) Path(PathId, PathExp), (c) PathValue(DocID, DeweyOrderSum, PathId, BranchOrder,

LeafOrder, SiblingSum, LeafValue), and (d) DocumentRValue(DocID, Level, RValue).
Document stores the document identifier DocID and the name Name of a given
input xml document D. Each distinct root-to-leaf path appearing in D, namely
PathExp, is associated with an identifier PathId and stored in Path table. Essen-
tially each path is a concatenation of the labels of the elements in the path from
the root to the leaf. An example of the Path table containing the root-to-leaf
paths of Figure 1(b) is shown in Figure 3. Note that ‘#’ is used as a delimiter of
steps in the paths instead of ‘/’ for reasons described in [14].

For each leaf element n in D, a tuple in the PathValue table is created to
store the LeafOrder, BranchOrder, DeweyOrderSum, and SiblingSum values of n.
The data value of n is stored in LeafValue. Given two leaf elements n1 and n2,
n1.LeafOrder < n2.LeafOrder iff n1 precedes n2 in document order. LeafOrder of
the first leaf element in D is 1 and n2.LeafOrder = n1.LeafOrder+1 iff n1 is a
leaf element immediately preceding n2. For example, the superscript of each leaf
element in Figure 1(b) denotes its LeafOrder value.

Given two leaf elements n1 and n2 where n1.LeafOrder+1 = n2.LeafOrder,
n2.BranchOrder is the level of the nearest common ancestor (nca) of n1 and n2.
For example, the BranchOrder of the location leaf element with LeafOrder value 3
in Figure 1(b) is 2 as the nca of this element and the preceding price element is
at the second level. Note that the BranchOrder of the first leaf element is 0.

Next we define RValue. We begin by introducing the notion of maximal
k-consecutive leaf-node list. Consider a list of consecutive leaf element S:
[n1, n2, n3, . . . , nr] in D. Let k ∈ [1,Lmax] where Lmax is the largest level of D.
Then, S is called a k-consecutive leaf-node list of D iff ∀0 < i ≤ r ni.BranchOrder

≥ k. S is called a maximal k-consecutive leaf-node list, denoted as Mk, if there
does not exist a k-consecutive leaf-node list S′ such that |S|<|S′|. For example,
M2 in Figure 1(b) contains four leaf elements as |S| = 4 for M2.

516 K.H. Soh and S.S. Bhowmick

The RValue of level �, denoted as R�, is defined as follows: (i) If � = Lmax − 1
then R� = 1; (ii) If 0 < � < Lmax − 1 then R� = 2R�+1 × |M�+1| + 1. For
example, consider Figure 1(b). Here Lmax = 5. The values of |M2|, |M3|, and
|M4| are 4, 1, and 1, respectively. Then, R4 = 1, R3 = 2 × 1 × |M4| + 1 = 3,
R2 = 2 × 3 × |M3| + 1 = 7, and R1 = 2 × 7 × |M2| + 1 = 57. In order to
facilitate evaluation of XPath queries, the RValue attribute in DocumentRValue

stores R�−1
2 + 1 instead of R� (denoted as R′

�). For instance, in Figure 3 the
RValue of level 1 is stored as 29 instead of 57.

DeweyOrderSum is used to encode an element’s order information together with
its ancestors’ order information using a single value. Let parent(w) denote the
parent of an element w. Consider a leaf element n at level � in D. Then, for
1 < k ≤ �, Ord(n, k) = i iff (i) there exists an element a at level k which is either
an ancestor of n or n itself; and (ii) a is the i-th child of parent(a). For example,
consider the rightmost leaf element in Figure 1(b) (denoted as d). Ord(d, 2) = 3
as the rightmost book element in the second level is an ancestor of d as well as
the third child of the root. Similarly, Ord(d, 3) = 2.

Then DeweyOrderSum of n, n.DeweyOrderSum, is defined as
∑�

j=2 Φ(j) where
Φ(j)=[Ord(n, j)-1]×Rj−1. The DeweyOrderSum of the first leaf element is 0. Re-
consider the rightmost leaf element again. It has a Dewey path “1.3.2.1.1”.
DeweyOrderSum of this element is: n.DeweyOrderSum = (Ord(n, 2) − 1) × R1 +
(Ord(n, 3) − 1) ×R2 + (Ord(n, 4) − 1) ×R3 + (Ord(n, 5) − 1) ×R4 = 2 × 57 +
1× 7+0× 3+0×1 = 121. The DeweyOrderSum of remaining elements are shown
in the DeweyOrderSum attribute of the PathValue table in Figure 3.

Limitations of SUCXENT++. DeweyOrderSum and RValue attributes are de-
signed primarily to evaluate normal twig queries. Consequently, they are unable
to directly filter out elements satisfying negative rps without having to first eval-
uate the rooted paths as normal rps and then use the intermediate results to
filter out irrelevant elements (see details in [12]). For instance, for the query in
Figure 1(a)(i), DeweyOrderSum and RValue attributes fail to reveal those title
and review elements that do not share the same common book ancestors without
exhaustively comparing them. Furthermore, they do not always support efficient
evaluation of descendant (ancestor) axis. In the subsequent sections, we shall
present a novel technique that addresses these limitations.

3.2 AncestorValue Attribute

We now elaborate on the extension of the encoding scheme of Sucxent++.
Due to space constraints, the proofs of lemmas and theorem presented in the
sequel are given in [12]. Each level � of an xml tree is added an attribute called
AncestorValue along with its existing RValue. Each leaf element n is added an
attribute called AncestorDeweyGroup. These attributes are materialized in the
DocumentRValue and PathValue tables, respectively. As we shall see later, our
proposed strategy aims to group a set of leaf elements under the same common

Efficient Evaluation of NOT-Twig Queries 517

ancestor at level � with the same ancestor group identifier. AncestorDeweyGroup

and AncestorValue attributes will be used to compute these identifiers.
AncestorValue, similar to RValue, is used for encoding the level of the nca of

any pairs of leaf elements.

Definition 1. [AncestorValue] Let Lmax be the maximum level of an xml

tree. Then the AncestorValue of level � for 0 < � < Lmax, denoted as A�, is
defined as follows: (a) If � = Lmax − 1, then A� = 1; (b) If 0 < � < Lmax − 1,
then A� = A�+1 × (|M�+1| + 1).

For example, reconsider the xml tree in Figure 1(b). Here Lmax = 5, |M4| = 1,
|M3| = 1, and |M2| = 4. Hence, A4 = 1, A3 = 1×(1+1) = 2, A2 = 2×(1+1) = 4,
and A1 = 4 × (4 + 1) = 20.

Lemma 1. Let � be a level in an xml tree where 0 < � < Lmax. Then, A� is
divisible by all A�+m where 0 < m < (Lmax − �).

Consider the previous example. Let � = 2. Then, 0 < m < 3. Hence based on
the above lemma, A2/A3 = 4/2 = 2 and A2/A4 = 4/1 = 4. Note that existing
RValue do not have such divisibility property [12].

3.3 AncestorDeweyGroup Attribute

The AncestorDeweyGroup attribute, similar to DeweyOrderSum, is used to encode
an element’s order information using a single value. The only difference be-
tween AncestorDeweyGroup and DeweyOrderSum is that the former uses each level’s
AncestorValue whereas the latter uses the RValue of each level.

Definition 2. [AncestorDeweyGroup] Consider a leaf element n at level �
in an xml document. Then, for 1 < k ≤ �, Ord(n, k) = i iff (i) there exists an
element a at level k which is either an ancestor of n or n itself; and (ii) a is the i-
th child of parent(a). Then AncestorDeweyGroup of n, n.AncestorDeweyGroup,
is defined as

∑�
j=2 Ω(j) where Ω(j)=[Ord(n, j)-1]×Aj−1.

For example, reconsider the last leaf element in Figure 1(b) with Dewey value
“1.3.2.1.1”. AncestorDeweyGroup of this element is: n.AncestorDeweyGroup =
(Ord(n, 2)−1)×A1 +(Ord(n, 3)−1)×A2 +(Ord(n, 4)−1)×A3 +(Ord(n, 5)−
1) × A4 = 2 × 20 + 1 × 4 + 0 × 2 + 0 × 1 = 44. The AncestorDeweyGroup values
of remaining leaf elements in Figure 1(b) are (in document order): 0, 4, 8, 9, 20,
24, 28, 32, 34, and 40.

4 Ancestor Group-Based Approach

We begin by formally introducing the notion of ancestor group identifier. Then,
we present how such identifiers can be used for evaluating not-twig queries.

518 K.H. Soh and S.S. Bhowmick

4.1 Ancestor Group Identifier

Informally, given an internal element n at level � > 1 of an xml tree, a unique
ancestor group identifier with respect to � is assigned to all the descendant
leaf element(s) of n. It is computed using AncestorDeweyGroup values of the leaf
elements and the AncestorValue of level of n.

Definition 3. [Ancestor Group Identifier] Let ni be a leaf element in the
xml tree D. Let na be an ancestor element of ni at level � > 1. Then Ancestor

Group Identifier of ni w.r.t na at level � is defined as G�
i =

⌊
ni.AncestorDeweyGroup

A�−1

⌋
.

For example, consider the leaf elements n1, n2, n3, and n4 (we denote a leaf ele-
ment as ni where i is its LeafOrder value) in Figure 1(b). The AncestorDeweyGroup

values of these elements are 0, 4, 8, and 9, respectively. Also, A1 = 20 and A2 = 4.
If we consider the first book element at level 2 as the ancestor element of these
elements, then G2

1 =
⌊

0
A2−1

⌋
= 0, G2

2 =
⌊

4
A2−1

⌋
= 4/20 = 0, G2

3 =
⌊

8
20

⌋
= 0,

and G2
4 =

⌊
9
20

⌋
= 0. However, if we consider the publisher element at level 3 as

ancestor element, then G3
3 =

⌊
8
4

⌋
= 2, and G3

4 =
⌊

9
4

⌋
= 2. Note that we do not

define ancestor group identifier with respect to the root element (� = 1) because
it is a trivial case as all leaf elements in the document shall have same identifier
values.

Ancestor group identifiers of non-leaf elements: Observe that in the above
definition only the leaf elements have explicit ancestor group identifiers. We
assign the ancestor group identifiers to the internal elements implicitly. The
basic idea is as follows. Let nc be the nca at level � of two leaf elements ni

and nj with ancestor group identifiers equal to G�. Then, the ancestor group
identifiers of all non-leaf elements in the subtree rooted at nc is G�. For example,
reconsider the first book element at level 2 as the root of the subtree. Then,
the ancestor group identifiers of the publisher and name elements are 0. Note
that these identifiers are not stored explicitly as they can be computed from
AncestorDeweyGroup and AncestorValue values.

Role of ancestor group identifiers to evaluate descendant axis. Observe
that a key property of the ancestor group identifier is that all descendants of an
ancestor element at a specific level must have same identifiers. We can exploit
this feature to efficiently evaluate descendant axis. Given a query a//b, let na and
nb be elements of types a and b, respectively. Then, whether nb is a descendant
of na can be determined using the above definition as all descendants of na must
have same ancestor group identifiers. As we shall see later, this equality property
is also important for our not-twig evaluation strategy.

Remark. Due to the lack of divisibility property of RValue (Lemma 1), it cannot
be used along with the DeweyOrderSum to correctly compute the ancestor group
identifiers of elements. Consequently, they are not particularly suitable for effi-
cient evaluation of not-twig queries. Due to the space limitations, these issues
are elaborated in [12].

Efficient Evaluation of NOT-Twig Queries 519

4.2 Computation of Common Ancestors

Lemma 2. Let ni and nj be two leaf elements in D at level �1 and �2, respec-
tively. Let � < �1 and � < �2. (a) If G�

i �= G�
j then ni and nj do not have a

common ancestor at level �. (b) If G�
i = G�

j then ni and nj must have a common
ancestor at level �.

Example 1. Consider the leaf elements n1, n2, n5, and n6 in Figure 1(b). The
AncestorDeweyGroup values of these elements are 0, 4, 20, and 24, respectively.
Also, A1 = 20. Then, with respect to level 2 G2

1 =
⌊

0
20

⌋
= 0, G2

2 =
⌊

4
20

⌋
= 0,

G2
5 =

⌊
20
20

⌋
= 1, and G2

6 =
⌊

24
20

⌋
= 1. Based on Lemma 2, since G2

1 �= G2
5 then n1

and n5 does not have a common ancestor at level 2. Similarly, (n1, n6), (n2, n5),
and (n2, n6) do not have common ancestors at the second level.

Since G2
1 = G2

2 , n1 and n2 must have a common ancestor at level 2 (the first
book element in Figure 1(b)).

Observe that by using Lemma 2 we can filter out leaf elements that belong to
the same common ancestor directly for negative rooted paths.

Theorem 1. Let rk and rm be two rps in a query Q on D. Let Nk and Nm be
the sets of leaf elements that match rk and rm, respectively in D. Let ni ∈ Nk

and nj ∈ Nm. For � > 1, ni must have the same ancestor as nj at level � iff
G�

i = G�
j .

Note that Lemma 2 and Theorem 1 can also be used for internal elements since
ancestor group identifier of an internal element of a subtree rooted at the nca

is identical to that of any leaf element in the subtree (Section 4.1). Also, it
immediately follows from the above theorem that ni needs to be filtered out if
rm is a negative rp in Q. Note that we ignore the trivial case of � = 1 [12].

Example 2. Assume that the price and location elements in Figure 1(b) match
a normal and a negative rps, respectively in a not-twig query. Hence, we want
to filter out all leaf elements having the same ancestor as location at level 2. Let
ni ∈ Nprice and nj ∈ Nlocation where Nprice and Nlocation are sets of leaf elements
satisfying the normal and negative rps, respectively. Here Nprice = {n2, n6, n7},
Nlocation = {n3, n11}, and A2−1 = 20. The AncestorDeweyGroup values of n2, n6,
and n7 are 4, 24, and 28, respectively. Similarly, AncestorDeweyGroup values of
n3 and n11 are 8 and 44, respectively. Then, G2

2 = G2
3 = 0, G2

6 = G2
7 = 1, and

G2
11 = 2. Consequently, based on Theorem 1 n2 has to be filtered out as n2 share

the same ancestor as n3 (at level 2) which matches the negative rp.

4.3 Evaluation of NOT-Twig Queries

We now discuss in detail how ancestor group identifiers are exploited for evaluat-
ing not-twig queries. As our focus is on not-predicates, for simplicity we assume
that edge(mi,mj) in a query is pc edge. Note that the proposed technique can
easily support ad edges as discussed in Section 4.1.

520 K.H. Soh and S.S. Bhowmick

Fig. 4. Overview of NOT-twig evaluation

Consider the evaluation of the query Q in Figure 1(a)(ii) on the xml document
in Figure 1(b). Figure 4 depicts a step-by-step evaluation of Q. In this example,
we consider the fragment of the PathValue table in Figure 3 for illustration. Note
that for clarity, in Figure 4 we only show DeweyOrderSums and AncestorDeweyGroups
in the PathValue table. The DeweyOrderSum and AncestorDeweyGroup of each leaf el-
ement are denoted as Xi and Yi, respectively, where i is the LeafOrder value of the
element. First, Q is decomposed into the following normal rooted path patterns
(without not-predicates). These paths are extracted from Q in left-to-right order
and consists of all root-to-leaf paths in Q and the rightmost root-to-internal path
representing the path after removing all qualifiers (Qa: /catalog/book/review,
Qb: /catalog/book/title,Qc: /catalog/book/publisher/name/website,Qd:
/catalog/book/publisher/name).

Evaluation order of RPs. If rps are evaluated sequentially in left-to-right or-
der ignoring the presence of negative rps, then it will produce incorrect answers.
Hence, we follow the following order. If the rooted path (say r) being evaluated
is a negative rp then it is not evaluated immediately. On the other hand, if r
is a normal rp, then it is evaluated immediately. First, elements matching r is
evaluated with those that match the first preceding normal rp (if exists). Next,
the elements will be evaluated with previously encountered negative rps (if any)
to filter out irrelevant elements. For example, in the aforementioned query Qa is
not immediately evaluated as it is a negative rp. Next, the normal rp Qb is en-
countered. Since there does not exist any normal rp preceding Qb, it is evaluated
along with the negative rp Qa. Next, the evaluation of the negative rp Qc is
skipped and normal rp Qd is encountered. Since Qb is the first preceding normal
rp, Qd is evaluated along with Qb. Lastly, Qd is evaluated in conjunction with
the previously recorded negative rp Qc. Hence, the order of evaluation of the
above query is: Qa and Qb (results are represented as Da), Qd and Da (results
are represented as Db), and Db and Qc.

Efficient Evaluation of NOT-Twig Queries 521

Evaluation of RPs. In Step 1, the negative rp Qa and normal rp Qb are
evaluated. Note that the nca level of these rps is 2. Since Qa is a negative
rp, all elements that satisfy Qb but not Qa are required. Therefore, we can
directly select these elements using Theorem 1 for level 2. All elements in the
results of Qb that share same ancestor group identifiers with the results of Qa

are removed. Since G2
8 = G2

9 = G2
5 = 1, n5 will be removed. Therefore, this step

returns elements n1 and n10 (denoted as Da) as their ancestor group identifiers
are not equal to 1. In Step 2, we compute the ancestor group identifiers of all
elements satisfying Da and Qd and retrieve those elements that share the same
identifiers. This results in the leaf elements n3, n4, and n11 (Db). Finally, we
process the previous negative rp Qc. We now retrieve all leaf elements in Db

that are missing in Qc using Theorem 1. Here � = 4 (name element). Observe
that for Db, G4

3 = G4
4 = 4 and G4

11 = 22. For Qc, G4
4 = 4. Since ancestor

group identifier of n4 satisfying Qc is identical to those of n3 and n4, we remove
n3 and n4 from Db (Step 3). Since there are no more rooted paths, the final
result is n11.

4.4 SQL Translation Algorithm

The Query Decomposition Phase. First, given a not-twig query Q, the sql

translation algorithm decomposes Q into a list of normal and negative rooted
paths T . It extracts from Q the root-to-leaf paths and rightmost root-to-internal
path (in absence of qualifiers), and store them into a list T in the following order.
First, all root-to-leaf paths are inserted according to the left-to-right order of
Q. Next, the root-to-internal path is added in T . The list also stores predicate
information. We assume that T has a size method which returns the total number
of rps in T and a countNotPred method which returns the total number of
negative rps.

The SQL Generation Phase. This phase generates the sql query Snot for
retrieving elements that satisfy Q. This query only retrieves the LeafOrder values
of the matching elements. The algorithm is shown in Algorithm 1. Given a set of
rooted paths T of Q, the generateSQLforNot procedure outputs a sql statement
consisting of three clauses: select sql, from sql, and where sql. In the sequel we
assume that a clause has an add() method which encapsulates some simple string
manipulations and simple joins for constructing valid sql statements. Also, the
NCAlevel() function computes the level of an nca in Q. We preprocess the PathId

and RValue to reduce the number of joins.
For each rooted path ri ∈ T , the procedure first checks if it is a negative rp.

Recall that a negative rp is not evaluated immediately. Specifically, all consec-
utive negative rps are recorded (using the counter cntNotPred) until the next
normal rp is encountered (Lines 03–04). When a normal rp ri is encountered,
it checks if it is a root-to-leaf path (Line 08). If it is then the algorithm gener-
ates the sql fragment that retrieves the representative leaf elements by using
instances of ri’s PathId and BranchOrder values (Line 09). Next, the algorithm
generates statement for nca computation of normal rps in the following ways.

522 K.H. Soh and S.S. Bhowmick

Algorithm 1. Algorithm generateSQLforNot.
Input: A list of normal and negative rps T
Output: sql query Snot

Initialize cntNotPred = 0;1
for (i = 1 to T .size()) do2

if (rooted path ri is negative rp) then3
cntNotPred++;4

else5
from sql.add(“PathValue AS Vi”);6
where sql.add(“Vi.PathId IN ri.getPathId()”);7
if (i < T.size()) then8

where sql.add(“Vi.BranchOrder < ri.level()”);9

if (i > 1 and cntNotPred = 0) then10
where sql.add(“Vi.AncestorDeweyGroup/AncestorValue (ri−1.NCAlevel() - 1)11
= Vi−1.AncestorDeweyGroup/AncestorValue (ri−1.NCAlevel() - 1”);

else12
set x = cntNotPred;13
while (x > 0) do14

where sql.add(“Vi.AncestorDeweyGroup/ AncestorValue15
(ri−x.NCAlevel()-1) NOT IN (”);
where sql.add(select sql.add(“Vi−x.AncestorDeweyGroup/16
AncestorValue(ri−x.NCAlevel()-1)”));
where sql.add(from sql.add(“PathValue AS Vi−x”));17
where sql.add(where sql.add(“Vi−x.PathId IN ri−x.getPathId()))”);18
where sql.add(where sql.add(“Vi−x.BranchOrder <ri.level())”));19
x- - ;20

if (i − cntNotPred > 1) then21
where sql.add(“Vi.AncestorDeweyGroup/ AncestorValue22
(ri−cntNotPred−1.NCAlevel()-1) =
Vi−cntNotPred−1.AncestorDeweyGroup/
AncestorValue(ri−cntNotPred−1.NCAlevel()-1)”);

set cntNotPred = 0;23

select sql.add(“DISTINCT Vi.DocID, Vi.LeafOrder”);24
return Snot = select sql + from sql + where sql;25

– ri is the first rp in T : Let r1 (i = 1) be a normal rp in T (without not-
predicate). In this case, r1 does not have any preceding rp. Then, r1 will not
be evaluated immediately (conditions in Lines 10 and 21 are not satisfied)
as a pair of rps is required for nca evaluation (Theorem 1).

– ri is not the first rp in T and i > 1: In this case, the algorithm may have
encountered a normal rp rj earlier (j < i). Hence, if countNotPred = 0
it will execute Line 11 to generate the sql statement to retrieve pairs of
leaf elements that have nca at the specified nca level (based on Theo-
rem 1). Otherwise, if countNotPred > 0 then the condition in Line 21 is
true. Consequently, Line 22 will be used to generate the sql fragment for
nca evaluation.

For all consecutive negative rps, the procedure directly evaluates them using
ancestor group identifiers (Lines 14-20). Specifically, Line 16 returns the ancestor
group identifiers and Line 15 filters out elements based on Lemma 2. Note that
the counter cntNotPred will be reset to 0 whenever the procedure encounters a
normal rp (Line 23).

The Final SQL Generation Phase. Finally, in this phase the final sql query
S for retrieving entire subtrees that match Q is generated. This procedure is

Efficient Evaluation of NOT-Twig Queries 523

Algorithm 2. Algorithm finalSQLGen

Input: sql query Snot, number of rps x, number of negative rps y
Output: sql query S

order sql.add(“DocID, LeafOrder”) ;1
select sql.add(“Vx+1.LeafValue, . . . Vx+1.LeafOrder”);2
from sql.add(“(“ + Snot + ”) AS Vx INNER JOIN PathValue Vx+1 ON Vx+1.DocID = Vx.DocID3
AND Vx+1.LeafOrder = Vx.LeafOrder”);
where sql.add(“Vx+1.PathID IN rx.getPathID()”);4
if (x − y > 1) then5

option sql.add(“FORCE ORDER, ORDER GROUP”);6
else7

option sql.add(“ORDER GROUP”);8

return S = select sql + from sql + where sql + order sql + option sql;9

Fig. 5. Translated sql query

outlined in Algorithm 2 and contains five clauses: select sql, from sql,where sql,
order sql, and option sql. It includes an addition instance of PathValue Vx+1

which uses the same path in the PathValue table Vx representing the rightmost
root-to-internal path in Snot (Line 04). Vx+1 is joined on DocID and LeafOrder

attributes with Vx to retrieve entire subtrees of matched elements (Line 03).
Since the results must be in document order, the tuples are sorted according
to DocID and LeafOrder attributes using the order sql clause (Line 01). Lastly,
the option clause (option sql) is used to enforce the distinct and order by
operations to use sort operator using the ORDER GROUP query hint (Lines 05 - 08).
Also, if there exists at least one normal root-to-leaf path in Q then FORCE ORDER
hint is used to enforce a “left-to-right” join order on the translated sql query
(Line 06). The performance benefits of join order enforcement is highlighted in
[4, 7, 11]. Note that the translated sql has at least one instance of PathValue

table representing the normal root-to-internal path. Further, if all root-to-leaf
paths in Q are negative rps, then join order enforcement is discarded as these
paths will be evaluated by subqueries (generated by Lines 15–19 in Algorithm 1).

Reconsider the query Q in Section 4.3. The list of root-to-leaf and root-to-
internal paths T is: [r1 = Qa, r2 = Qb, r3 = Qc, r4 = Qd]. The translated sql

is shown in Figure 5. The reader may refer to [12] for details related to this
example.

5 Performance Study

In this section, we present the experiments conducted to evaluate the perfor-
mance of our proposed approach and report some of the results obtained. A

524 K.H. Soh and S.S. Bhowmick

Fig. 6. Query sets

more detailed results is available in [12]. Prototype for our ancestor group-based
approach (denoted by ag-sx) was implemented by extending Sucxent++ using
Java JDK 1.6. The experiments were conducted on an Intel Pentium IV 3GHz
machine running on Windows XP Service Pack 2 with 2gb ram. The rdbms

used was ms sql Server 2008 Developer Edition.
We are not aware of any existing tree-unaware approaches that have under-

taken a systematic study to evaluate not-twig queries. Hence, we compared
our approach to the native xml supports of XSysA and XSysB (Recall from
Section 1). For all these approaches appropriate indexes were created. Prior to
our experiments, we ensure that statistics had been collected. The bufferpool
of the rdbms was cleared before each run. The queries in ag-sx were executed
in the reconstruct mode [13] where not only the internal elements are selected,
but also all descendants of those elements. Each query was executed 6 times
and the results from the first run were always discarded. All rows were fetched
from the answer set; however, they were not sent to output. Note that we did
not select TwigStackList¬ [16] and NJoin [10] as we were unable to get the
implementation from the authors. However, an intuitive comparison with these
approaches is discussed later.

Datasets. We use XBench dcsd [15] shown in Figure 2(a) as synthetic data
set. We also modified the data set so that we can control the number of subtrees
(denoted as K) that matches a not-twig query and the number of instances
of the rooted paths in the xml document. We set K ∈ {100, 500}. We use
the uniprot dataset shown in Figure 2(b) as real-world data set. Since the
original uniprot data is 2.8gb in size (denoted as u2843), we also truncated
this document into smaller xml documents of sizes 28mb and 284mb (denoted
as u28 and u284, respectively) to study scalability of various systems.

Querysets. Figure 6 depicts the benchmark queries. As our primary objective
is to assess the performance of not-predicates evaluation, we choose two cate-
gories of queries. In the first category (Q1 − Q12 and UQ1 − UQ4), we fix the
XPath axis in the twigs to child and generate queries by varying the number of

Efficient Evaluation of NOT-Twig Queries 525

Fig. 7. Query evaluation times of AG-SX, XSysA, and XSysB (in msec.)

normal and negative rooted paths, number of nca nodes, and structure of twigs.
For instance, Q3 − Q5, Q8, Q11, Q12, UQ1, UQ3, and UQ4 are queries with
purely not-predicates while the remaining queries contain a mixture of normal
and negative rooted paths. The number of instances of root-to-leaf paths that
matches the query set varies between 150 and 2, 035, 889. In the second cate-
gory (UQ5-UQ9), we include different XPath axes (e.g., descendant, following,
preceding) in the not-twigs to study the performance of these queries in the
presence of such axes.

5.1 Query Evaluation Times

Figure 7 depicts the not-twig query evaluation times. As XSysA and XSysB
are unable to handle xml documents having size larger than 2gb, no query
evaluation times are reported for these approaches on u2843 data set. Also, as
ag-sx is orders of magnitude faster than the not-predicate evaluation approach
on the original Sucxent++ (see [12]), we only report query evaluation times
of ag-sx. The symbol ns in Figure 7 denotes that the query is not currently
supported in the current version of a particular system.

We observe that ag-sx significantly outperforms both XSysA and XSysB for
majority of the queries (highest observed factors being 37 and 40, respectively).
As the data size increases, the performance gap between ag-sx and these ap-
proaches increases. Particularly, we noticed that except for Q5, our proposed
approach is at least 9 times faster than XSysB for all values of K. For the
real-world data sets (u28 and u284), ag-sx is faster than XSysA and XSysB
for 90% and 80% of the benchmark queries, respectively. In summary, ag-sx

outperforms XSysA and XSysB primarily due to the effectiveness of the former
approach to generate a relatively simple sql statement, which exploits ancestor
group identifiers to efficiently evaluate common ancestors and not-predicates us-
ing the equality property (Theorem 1). Also, interestingly XSysA is less efficient
than XSysB for smaller data sets (dc10 and dc100). However, it is faster than
XSysB for dc1000.

Comparison with TwigStackList¬ [16] and NJoin [10]: Based on the
results reported in [10, 16] we can make the following observations. For a data

526 K.H. Soh and S.S. Bhowmick

set of size 100mb and less than 2.5 million nodes, the average running time of
benchmark not-twig queries using TwigStackList¬ is 15 − 30s [16] whereas
majority of our queries on similar data sets take less than a second to retrieve
results. In [10], it is shown that NJoin is 2-3 faster than TwigStackList¬
for simple not-twig queries. Based on this observation, we expect ag-sx to
outperform these approaches.

6 Conclusions and Future Work

In this paper, we present an efficient strategy to evaluate not-twig queries in
a tree-unaware relational environment. We extended the encoding scheme of
dewey-based Sucxent++ [11] by adding two new labels, namely AncestorValue

and AncestorDeweyGroup, that enable us to efficiently filter out elements satisfy-
ing a not-predicate by comparing their ancestor group identifiers. We proposed
a novel not-twig query evaluation algorithm that reduce useless structural com-
parisons by exploiting these labels. Our results showed that the our proposed
approach have superior performance compared to existing state-of-the-art tree-
unaware and native approaches. In future, we plan to investigate if some of the
optimization techniques proposed in [4] (e.g., choosing right join algorithms,
eliminating redundant ordering (if any)) are beneficial for evaluating not-twig
queries in our proposed framework.

References

1. Al-Khalifa, A., Jagadish, H.V.: Multi-level Operator Combination in XML Query
Processing. In: ACM CIKM (2002)

2. Bhowmick, S.S., Leonardi, E., Sun, H.: Efficient Evaluation of High-Selective xml

Twig Patterns with Parent Child Edges in Tree-Unaware RDBMS. In: ACM CIKM
(2007)

3. Boncz, P., Grust, T., et al.: MonetDB/XQuery: A Fast XQuery Processor Powered
by a Relational Engine. In: SIGMOD (2006)

4. Georgiadis, H., Vassalos, V.: Xpath on Steroids: Exploiting Relational Engines for
Xpath Performance. In: SIGMOD (2007)

5. Georgiadis, H., et al.: Cost-based Plan Selection for XPath. In: SIGMOD (2009)
6. Gou, G., Chirkova, R.: Efficiently Querying Large xml Data Repositories: A Sur-

vey. IEEE TKDE 19(10) (2007)
7. Grust, T., et al.: Why Off-the-Shelf RDBMSs are Better at XPath Than You Might

Expect. In: SIGMOD (2007)
8. Jiao, E., Ling, T.-W., Chan, C.-Y.: PathStack: A Holistic Path Join Algorithm

for Path Query with Not-Predicates on XML Data. In: Zhou, L.-z., Ooi, B.-C.,
Meng, X. (eds.) DASFAA 2005. LNCS, vol. 3453, pp. 113–124. Springer, Heidelberg
(2005)

9. Li, H., Li Lee, M., Hsu, W.: A Path-Based Labeling Scheme for Efficient Struc-
tural Join. In: Bressan, S., Ceri, S., Hunt, E., Ives, Z.G., Bellahsène, Z., Rys, M.,
Unland, R. (eds.) XSym 2005. LNCS, vol. 3671, pp. 34–48. Springer, Heidelberg
(2005)

Efficient Evaluation of NOT-Twig Queries 527

10. Li, H., Lee, M.-L., et al.: A Path-Based Approach for Efficient Structural
Join with Not-Predicates. In: Kotagiri, R., Radha Krishna, P., Mohania, M.,
Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 31–42. Springer,
Heidelberg (2007)

11. Seah, B.-S., Widjanarko, K.G., et al.: Efficient Support for Ordered XPath
Processing in Tree-Unaware Commercial Relational Databases. In: Kotagiri, R.,
Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007.
LNCS, vol. 4443, pp. 793–806. Springer, Heidelberg (2007)

12. Soh, K.-H., Bhowmick, S.S.: Efficient Evaluation of not-Twig Queries in A Tree-
Unaware RDBMS. Technical Report (December 2009), http://www.cais.ntu.

edu.sg/~assourav/TechReports/NotTwig-TR.pdf

13. Tatarinov, I., Viglas, S., et al.: Storing and Querying Ordered xml Using a Rela-
tional Database System. In: SIGMOD (2002)

14. Yoshikawa, M., et al.: XRel: A Path-based Approach to Storage and Retrieval of
xml documents Using Relational Databases. ACM TOIT 1(1) (2001)

15. Yao, B., Tamer Özsu, M., Khandelwal, N.: XBench: Benchmark and Performance
Testing of XML DBMSs. In: ICDE (2004)

16. Yu, T., Ling, T.-W., Lu, J.: TwigStackList¬: A Holistic Twig Join Algorithm
for Twig Query with Not-Predicates on XML Data. In: Li Lee, M., Tan, K.-L.,
Wuwongse, V. (eds.) DASFAA 2006. LNCS, vol. 3882, pp. 249–263. Springer,
Heidelberg (2006)

http://www.cais.ntu.edu.sg/~assourav/TechReports/NotTwig-TR.pdf
http://www.cais.ntu.edu.sg/~assourav/TechReports/NotTwig-TR.pdf

A Hybrid Algorithm for Finding Top-k Twig
Answers in Probabilistic XML

Bo Ning1 and Chengfei Liu2

1 Dalian Maritime University, Dalian, China
ningbo@dlmu.edu.cn

2 Swinburne University of Technology, Melbourne, Australia
CLiu@groupwise.swin.edu.au

Abstract. Uncertainty is inherently ubiquitous in data of real appli-
cations, and those uncertain data can be naturally represented by the
XML. Matching twig pattern against XML data is a core problem, and
on the background of probabilistic XML, each twig answer has a proba-
bilistic value because of the uncertainty of data. The twig answers that
have small probabilistic values are useless to the users, and the users only
want to get the answers with the largest k probabilistic values. In this
paper, we address the problem of finding twig answers with top-k prob-
abilistic values against probabilistic XML documents directly. To cope
with this problem, we propose a hybrid algorithm which takes both the
probability value constraint and structural relationship constraint into
account. The main idea of the algorithm is that the element with larger
path probability value will more likely contribute to the twig answers
with larger twig probability values, and at the same time lots of use-
less answers that do not satisfy the structural constraint can be filtered.
Therefore the proposed algorithm can avoid lots of intermediate results,
and find the top-k answers quickly. Experiments have been conducted to
study the performance of the algorithm.

1 Introduction

Nowadays, uncertainty is inherently ubiquitous in data of real applications. For
instance, in sensor applications, sensors produce uncertain data since readings of
sensors are inherently imprecise. In scientific research, error-prone experimental
machinery, polluted samples, and simple human error bring the uncertainty to
experimental data. Therefore uncertain data management is becoming a critical
issue. The current relational database technologies can not deal with this problem
very well, because to store imprecise information in structured data format can
lead to high complexity of space and processing time. While the XML data
is a natural representation of uncertain data due to its flexible characteristics.
XML has hierarchical structure, therefore the probability values can be assigned
to elements and subtrees, dependency and independency of elements can be
expressed. In addition, XML supports incomplete information gracefully. The
data models for representing uncertainty in XML have been studied in [1–6].

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 528–542, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Hybrid Algorithm for Finding Top-k Twig Answers in Probabilistic XML 529

As to the query processing on probabilistic XML, the queries on the proba-
bilistic XML are often in the form of twig patterns. Compared with the query
on ordinary XML, the matched answers are associated with the probabilistic
values when querying probabilistic data. Therefore the answers as well as the
probability values need to be returned. Many kinds of twig queries with different
semantics were proposed, and their evaluations were studied in [7]. It is obvious
that the answers with small probabilistic values are useless to users who submit
the queries, and it makes sense to only return the twig answers with top-k prob-
abilistic values. There are also some other works on querying uncertain data.
On uncertain relational data, matching the twig answers with probability val-
ues above a threshold was investigated in [8], and query ranking was studied
in [9, 11, 12]. The paper [10] studied the query ranking in probabilistic XML
by possible world model, and a dynamic programming approach was deployed
that extends the approach in [9] to deal with the containment relationships in
probabilistic XML, and ranks the results by the interplay between score and un-
certainty. Those works are based on the documents generated from probabilistic
XML or the relational data model in which the possible worlds are stored.

It is more flexible if the twig answers with top-k probabilistic values can be
matched against the probabilistic XML directly. The algorithm ProTJFast and
PTopKTwig[13] belong to this catalog. In those algorithms, by the use of a novel
encoding scheme and the effective use of lower bounds, elements or paths with
small probabilities can be filtered. Matching a twig query against an ordinary
XML document only needs the answer to satisfy the structural relationship con-
straint, while finding top-k twig answers against probabilistic XML also needs
the answers to satisfy the constraint that the probabilistic values of twig answers
are k largest ones. The algorithm ProTJFast uses element streams ordered by
document order (pre-order) as input, and the process of algorithm follows the
document order. This may cause the constraint of probabilistic values not met
as soon as possible. The algorithm PTopKTwig is based on the element streams
ordered by path probabilistic value, and does not consider the structural con-
straint too much, therefore, to satisfy the structural constraint, there are lots of
times of detection whether the elements of leaf nodes in query can be matched to
be an twig answer. Although the use of enhanced lower bound makes algorithm
PTopKTwig efficient, there are still lots of useless path answers included in the
candidate twig answers that will not contribute to the final top-k answers.

In this paper, we also address the problem of efficiently finding top-k twig an-
swers against probabilistic XML directly. Our algorithm takes both of the struc-
tural constraint and probabilistic value constraint into account, and can find the
k twig answers which satisfy the structural relationships and their probabilistic
values are largest as early as possible. In our algorithm, the intermediate path
answers which do not satisfy the structural constraint and probabilistic value
constraint can be filtered rapidly. Also we improve the encoding scheme that
makes the process of calculating the probabilistic values more efficiently.

The rest of this paper is organized as follows. Section 2 introduces the back-
ground and relate work including the data model twig answers and encoding

530 B. Ning and C. Liu

scheme of probabilistic XML. In Section 3, we improve the encoding scheme by
redesigning the float vector. In Section 4, we present a hybrid algorithm HyTop-
KTwig for matching twig answers with top-k probabilities. Section 5 shows our
experimental results. Conclusions are included in Section 6.

2 Preliminaries

2.1 Probabilistic XML Model

Nierman et al. proposed the Probabilistic Tree Data Base(ProTDB) [4] to man-
age uncertain data represented in XML. Actually it belongs to the catalog of
PrXML{ind, mux} model [6], in which the independent distribution and mutually-
exclusive distribution are considered.

A probabilistic XML document TP defines a probability distribution over an
XML tree T (V, E) and it can be regarded as a weighted XML tree TP (VP ,EP). In
TP , VP = VD ∪ V , where V is a set of ordinary elements that appear in T , and
VD is a set of distribution nodes, including independent nodes and mutually-
exclusive nodes (ind and mux for short). An ordinary element, u ∈ VP , may
have different types of distribution nodes as its child elements in TP that specify
the probability distributions over its child elements in T . EP is a set of edges,
and an edge which starts from a distribution node can be associated a positive
probability value as weight.

S 1

ind

ind mux

a1 a2

b1 c1 b2 c2

0.5 0.7

0.8 0.6 0.3 0.7

(b) T ree mo d el o f p ro b ab ilis tic XML

<S1>
 <DIST type= "independant">
 <a1 P rob= '.5 '>
 <DIST type= "independant">
 <b1 P rob= '.8 '><b1>
 <c1 P rob= '.6 '><c1>
 < /DIST>
 < /a1>
 <a2 P rob= '.7 '>
 <DIST type= "mutually-exclusive">
 <b2 P rob= '.3 '><b2>
 <c2 P rob= '.7 '><c2>
 < /DIST>
 < /a2>
 < /DIST>
</S1>

(a) F ragment o f p ro b ab ilis tic XML

Fig. 1. Example of probabilistic XML

Figure 1 (a) shows an fragment of probabilistic XML document. By using the
tag DIST, Prob and VAL, the XML has the ability to express the probabilistic
distributions and the probabilistic values of elements. Figure 1 (b) is the tree
model for the probabilistic XML fragment, which contains ind and mux nodes.
The element a1 has an ind node as its child, which specifies that its twig child

A Hybrid Algorithm for Finding Top-k Twig Answers in Probabilistic XML 531

nodes, b1 and c1 are independent. The probabilities of having b1 and c1 are 0.8
and 0.6, as indicated in the incoming edges to b1 and c1 respectively. The element
a2 has a mux node as its child, which specifies that b2 and c2 cannot appear as
a2’s child at the same time. Because of the mutually-exclusive distribution, the
sum of probability values of b2 and c2 cannot be larger than one.

2.2 Twig Query and Answers

A twig query q is an XPath query with predicates, and it can be modeled as a
small tree Tq(Vq , Eq), where Vq is a set of nodes representing types(tag name)
and Eq is a set of edges. There are two kinds of edges in Eq including parent-child
edge (PC for short) and ancestor-descendant edges (AD for short). Usually, AD
edge corresponds to the descendant axis in XPath, and PC edge corresponds to
the child axis. The answer of a twig query is a set of tuples, in which there are
elements from the probabilistic XML, and those elements match the nodes in q
and satisfy all the structural relationships specified in q.

However, to find the answers of a twig query q against a probabilistic XML
document, not only the structural relationships specified in q have to be satisfied,
but also the types of distribution nodes and weights of edges from distribution
nodes have to be considered. Actually, a mux distribution node umux can be
regarded as constraint to restrict two elements under different child elements
of umux so that they do not contribute to the same result. In contrast, an ind
distribution node does not affect the existence of an answer, but determine the
probability value of the answer.

Given an answer expressed by a tuple t = (e1, e2, ..., en), there exist a subtree
Ts(Vs, Es) of TP , which contains all those elements. The probability of t can be
computed by the following equation.

prob(t) = prob(Ts) = Πei∈Esprob(ei);

2.3 Encoding Scheme

For encoding an ordinary XML, the encoding scheme should support the struc-
tural relationships and keep the document order, because matching a twig query
against ordinary XML document only needs the answer to satisfy the structural
relationships constraint. However the encoding scheme for ordinary XML can not
meet the requirements of probabilistic XML, as there are new characteristics of
probabilistic XML including the distribution nodes and the probabilistic values.
Therefore encoding scheme for probabilistic XML should contain the informa-
tion of probabilistic values and provides the ability for matching twig answers
that satisfy the probabilistic value constraint.

Region-based encoding[14, 15] and prefix encoding are two kinds of encoding
schemes for ordinary XML documents. Both encoding schemes support the struc-
tural relationships and keep the document order, and these two requirements are
essential for evaluating queries against ordinary XML documents. As to the as-
pect of encoding elements in probabilistic XML, a new requirement needs to be

532 B. Ning and C. Liu

met, that is how to record the probability values of elements on different levels.
Depending on different kinds of processing, the probability value of the current
element which is under a distribution node in PXML (node-prob for short) needs
to be recorded, and so does the probability value of the path from the root to
the current element (path-prob for short). Ning et al.[13] conclude that both
node-prob and path-prob in twig pattern matching against PXML are needed,
and property for supporting ancestor vision and ancestor probability vision are
also needed. The prefix encoding scheme naturally have the properties above,
therefore it is better to encode PXML elements by a prefix encoding scheme.

For efficiently processing twig matching against ordinary XML, Lu et al. pro-
posed a prefix encoding scheme named extended Dewey [16]. Extended Dewey
is a kind of Dewey encoding, which uses the modulus operation to create a map-
ping from an integer to an element name, so that given a sequence of integers,
it can be converted into the sequence of element names. This characteristic pro-
vides extended Dewey encoding the tag name vision of ancestor, that makes the
evaluation of twig join efficiently.

For the purpose of supporting twig pattern matching against probabilistic
XML, Ning et al.[13] extend Lu’s encoding scheme[16] by adding the properties
of the probability vision and the ancestor probability vision, and propose a new
encoding scheme called PEDewey. Compared with Extended Dewey, PEDewey
takes the distribution node into account and assigns a float vector to each ele-
ment, which records the probabilistic value information.

3 Improvement of the PEDewey Encoding

In this paper, we improve the float vector part of PEDewey for the efficient
calculation of twig answers’ probabilistic values.

In PEDewey, an additional float vector is assigned to each element. The length
of the vector is equal to that of a normal Dewey encoding, and each component
holds the node probability value of the element. Given the vector v and each
component nodei in v, the path probability value can be calculated by the fol-
lowing equation:

prob(path) = Πnodei∈vprob(nodei);

We can see from the equation that there are lots of multiplication operations
for calculating a path probability value, and it is not efficient, so we improve
the float vector by recording the natural logarithm of probability value in each
component. After that, the path probability value can be calculated by equation:

probln(path) = Σnodei∈vprobln(nodei);

During the processing of finding top-k twig answers, the probability values are
in the form of natural logarithm, and when the final answers are found, we
calculate the probability value by the equation prob(t) = eprobln(t). Notice that
the components for elements of ordinary, ind and mux are all assigned to 0 which
is the natural logarithm of 1.

A Hybrid Algorithm for Finding Top-k Twig Answers in Probabilistic XML 533

S 1

ind

ind mux

a1 b1

c1 d1 f1 g1

0.9 0.6

0.7 0.8 0.5 0.4

(a) P ro b ab ilis tic XML

s1 0

ind

a2

c2

a1 0.-2.0

c1 0.-2.0.-2.0

d 1 0.-2.0.-2.1

a2 0.-2.2
c2 0.-2.2.-2.0

b 1 0.-2.1
f1 0.-2.1.-3.0
g1 0.-2.1.-3.1

ln(0.9)

0.7

0.6

(b) P EDewey Enco d ing

ln(0.9) ln(1) ln(0.7)

ln(0.9) ln(1) ln(0.8)

ln(0.7)

ln(0.7) ln(1) ln(0.6)

ln(0.6)

ln(0.6) ln(1) ln(0.5)

ln(0.6) ln(1) ln(0.4)

Fig. 2. Example of PEDewey encoding

We redefine the operations on the float vector. (1) Given element e, function
pathProbln(e) returns the path-prob of element e in natural logarithm form,
which is calculated by adding the node-prob values of all ancestors of e in the float
vector (2) Given element e and its ancestor ea, function ancPathProbln(e, ea)
returns the path-prob of ea in natural logarithm form by adding those compo-
nents from the root to ea in e’s float vector. (3) Given element e and its ancestor
ea, function leafPathProbln(e, ea) returns the path-prob of the path from ea to
e in form of natural logarithm by adding those components from ea to e in e’s
float vector. (4) Given elements ei and ej , function twigProbln(ei, ej) returns
the probability of the twig whose leaves are ei and ej. Assume ei and ej have
common prefix ec, and the probability of twig answer containing ei and ej is:

twigProbln(ei, ej) = pathProbln(ei) + pathProbln(ej) − ancPathProbln(ei, ec);

For the PXML shown in Figure 2(a), the encodings of its elements are shown in
Figure 2(b). For example, pathProbln(c1)=-0.462 (0+(-0.10536)+0+(-0.35667)),
ancPathProbln(c1, a1)= -0.10536 (0+(-0.10536)+0), leafPathProbln (c1, a1) =
-0.35667(0+(-0.35667)) and twigProbln(c1,d1)=pathProbln(c1)+pathProbln(d1)
- ancPathProbln(c1,a1) = -0.6852, where a1 is the common prefix of c1 and d1.
At last we can get the probability value of this twig answer is 0.504 (e−0.6852).

4 HyTopKTwig : A Hybrid Algorithm

In this part, we propose an algorithm for finding top-k twig answers against
the probabilistic XML directly. Firstly, we analyze the characteristics of the
problem that finding top-k twig answers, then we propose the algorithm. At
last, we discuss the correctness of our algorithm.

4.1 Analysis of the Problem

When matching twig pattern against the ordinary XML documents, the only
consideration is the structural relationships of query. That means the answers

534 B. Ning and C. Liu

only need to satisfy the structural relationships of twig pattern. However the
problem we are going to deal with is to find not only the answers that match
the twig pattern, but also the k answers that have the largest probability values
among all the twig answers. Therefore how to find top-k answers quickly without
large amount of useless intermediate results is the challenge of the problem.

Most of the algorithms for matching twig pattern against the ordinary XML
use elements streams ordered by the document order as the input data. Although
those algorithms can be easily adjusted to solve the top-k answers problem
against probabilistic XML, the efficiency is very low. That is because all the twig
answers need to be found out no matter how small their probabilistic values are.
Many useless intermediate results are computed, and the algorithm ProTJFast
is in this case. The algorithm ProTJFast uses the elements streams ordered by
document order, and the document order is good for matching the structural
relationships, and makes the twig matching algorithm holistic. However, at the
background of our problem, the document order limits the efficiency.

Intuitively the element with larger path probability value will more likely con-
tribute to the twig answers with larger twig probability values. Based on this
idea, algorithm using the elements streams ordered by probability values is pro-
posed, for example the algorithm PTopKTwig, to deal with the top-k matching
of twig queries against probabilistic XML. The algorithm PTopKTwig mainly
takes the probability value order into account, and ignores the characteristics
of the structural relationships constraints. It needs to compare whether the two
leaf elements of leaf nodes in query can be joined to contribute to a final an-
swers lots of times. Although the use of enhanced lower bound makes algorithm
PTopKTwig efficient, without the documents order, the merge-joins can not be
performed, that leads to the low efficiency because lots of comparisons can not
be avoided.

From above we can see that there are structural relationships constraint and
largest probabilistic values constraint in our problem, and it is a tradeoff between
finding top-k probability values and satisfying the structural relationships. So we
intend to design a hybrid algorithm which takes both constraints into account,
and in our algorithm, the intermediate path answers which do not satisfy the
structural constraint and probabilistic value constraint can be filtered rapidly.

4.2 Data Structures and Notations

Firstly we give the definition of skeleton pattern, which is the key point to
balance the tradeoff between finding top-k probability values and satisfying the
structural relationships.

Definition 1. The skeleton pattern s is a subtree of twig pattern q, and it can
be obtained by deleting all the subtrees of twig pattern which do not contain any
branching node.

For example, the skeleton pattern of A[//E]//B[//D]//C is A//B.
In our algorithm, we associate each leaf node f in a twig pattern q with a

stream Tf , which contains encoding of all elements that match the leaf node f .

A Hybrid Algorithm for Finding Top-k Twig Answers in Probabilistic XML 535

The elements in the stream are sorted by their path-prob values. It is very fast
to sort those elements by using the float vector in our encodings. Notice that
in our encoding scheme, the component of float vector is in the form of natural
logarithm, so the order of those natural logarithm floating numbers should be
ascending, so that the order of real probability values is descending. We maintain
cursorList, a list pointing to the head elements of all leaf node streams. Using
the function cursor(f), we can get the position of the head element in Tf .

A list Lc for keeping top-k candidates is allocated for q. A set Sb is associated
with skeleton pattern of query q. Each element cached in Sb are the skeleton part
of the candidate answers. Initially set Sb is empty. For each element stream, we
assign a signature list. The signature for an element represents whether the
current element is a descendant of any skeleton result in set Sb. Initially, all the
signatures are zero.

4.3 Algorithm HyTopKTwig

There are three phases in main algorithm of HyTopKTwig(Algorithm 1). The
first phase (Lines 2-6) is to find the initial answers so that we can have k skeleton
results in Sb. In the second phase(Lines 7-10), we use the signature list to identify
the descendants of skeleton results in set Sb in corresponding element streams
of leaf node in query q. The function of signature list is to filter the elements
that can not contribute to the final answers. So in third phase(Line 11), we
run algorithm ProTJFast against the document ordered element streams where
useless elements have been filtered in phase two.

In the first phase, we intend to find the answers whose probability values are as
large as possible, so we use the element streams ordered by probability value. The
processing of this phase is just like that of algorithm PTopKTwig. Algorithm 1
firstly proceeds in the probability order of all the leaf nodes in query q, by calling
the function getNextP(). This function returns the tag name of the leaf node
stream which has the biggest probability value in its head element among all leaf
node streams. So that, each processed element will not be processed repetitively.
After function getNextP() returns a tag qact, we may find the twig answers
which the head element in stream Tqact contributes to, by invoking function
matchTwig(). In function matchTwig(), the twig answers containing eqact can
all be found. During the process of finding other elements that contribute to
the twig answers with eqact , there is no duplicated computation of comparing
the prefixes, due to the order of probability values and the use of cursorList.
The cursorList records the head elements in respective streams which is next
to be processed. The elements before the head elements have been compared
with elements in other streams, and the twig answers that these elements might
contribute to have been considered. Therefore we only compare eqact with the
elements after the head elements in the related streams (Lines 3-4 in Algorithm
2). Once a twig answer are found, we add the skeleton result of this answer to
the set Sb, until the size of the Sb equals to k (Line 5 in Algorithm 1). So we
can see that the task of phase 1 is to find k skeleton results.

536 B. Ning and C. Liu

Algorithm 1. HyTopkTwig(q)
Data: Twig query q, and streams Tf of the leaf node in q.
Result: The matchings of twig pattern q with top-k probabilities.
begin1

while Sizeof(Sb) < k ∧ ¬ end(q) do2

qact=getNextP (q);3

tempTwigResults=matchTwig(qact, q);4

addSkeletonResults(Sb, tempTwigResults);5

advanceCursor(cursor(qact));6

foreach qi ∈ leafNodes(q) do7

foreach ej ∈ Tqi do8

if ∃sk ∈ Sb, sk is the prefix of ej then9

ej .signature = 1;10

ProTJFastBySignature(q);11

end12

Function end(q)13

begin14

Return ∀f ∈ leafNodes(q) → eof(Tf);15

end16

Function getNextP (n)17

begin18

foreach qi ∈ leafNodes(q) do19

ei = get(Tqi);20

max = maxargi(ei);21

return nmax22

end23

Function ProTJFastBySignature(q)24

begin25

Sort the elements whose signature equals to 1 in respective element streams26

by document order.
By using algorithm ProTJFast, output the k answers with largest27

probability values.
end28

In the second phase of Algorithm 1(Lines 7-10), we update the signature lists
of element streams by assigning the signature of element below any skeleton
result in set Sb to 1. As such, we can get a subtree of original probabilistic XML
document by the signature lists. We can prove that the final top-k twig answers
against the original XML can be found in the subtree.

In the last phase of Algorithm 1(Line 11), we firstly sort the elements whose
signatures equal to 1 in respective element streams by document order. And
then we can perform the algorithm ProTJFast to output the k answers with
largest probability values. Notice that if the k of top-k query is small, we can
use algorithm TJFast at the third phase directly, because the number of elements
under the k skeleton results is also small, therefore there is no need to use the
more complex algorithm ProTJFast.

A Hybrid Algorithm for Finding Top-k Twig Answers in Probabilistic XML 537

Algorithm 2. matchTwig(qact, q)
begin1

for any tags pair [Tqa ,Tqb] (qa,qa ∈ leafNodes(q) ∧ qa, qb �= qact) do2

Advance head element in Tqa to the position of cursor(qa);3

Advance head element in Tqb to the position of cursor(qb);4

while ¬ end(q) do5

if elements eqa ,eqa match the common path pattern with eqact in6

query q, and the common prefix of eqa ,eqa match the common path
pattern which is from the root to the branching node qbran of qa and
qb in query q, and the common prefix is not a element of mux node.
then

add eqa ,eqa to the set of intermediate results.7

return twig answers from the intermediate set.8

end9

For the twig query (a) in Figure 3: S[//C]//D against probabilistic XML (b),
assume that the answers for top-2 probabilities are required. In the first phase
of Algorithm 1, streams TC and TD are scanned, and the elements in streams
are sorted by path-prob values shown in Figure 3 (c). The processing order of
elements in streams are marked by dotted arrow line in Figure 3(c), which is
obtained by invoking the getNextP () function. Firstly, getNextP () returns c3

because its probability value is largest among the elements in respective streams,
and c3 start to join the element in TD, and find a match (c3, d3), next the
Algorithm 1 add the skeleton result s2 of (c3, d3) to set Sb. Then getNextP ()
returns the element c1, and an answer (c1, d1) is found, also the skeleton result
s1 is added to set sb. At this moment, the size of set sb equals to the value of k,
so the first phase ends. In the second phase, Algorithm 1 marks the signatures of
elements that are the descendants of skeleton results in set Sb, so the signatures
of elements c1, d1, c2, d2, c3 and d3 are updated. In the last phase, the elements
of respective element streams are ordered by document order (In Figure (d)),
and then the Algorithm ProTJFast can be performed on them. So the final top-2
twig answers is (c1,d1) with probability value 0.576 and (c2,d2) with probability
value 0.512. Notice that, the temporal results (c3,d3) in phase one is not the
final answer, by the skeleton result s2 generated from temporal results (c3,d3),
we can bring the elements c2 and d2 to the final phase, and finally they can be
merge-joined to be a final answer.

4.4 Analysis of Algorithm

We can see that in the first phase of Algorithm HyTopKTwig, the element
streams are ordered by probability value, so that we can find the answers whose
probability value are as potentially large as possible, while in the last phase,
we use Algorithm ProTJFast against the element streams ordered by document
order, therefore Algorithm HyTopKTwig is a hybrid algorithm that takes both
probability value constraint and structure constraint into account.

538 B. Ning and C. Liu

S 1

ind

ind

a1

c1 d1

0.9 0.8

0.8

ind

a2

c2 d2

0.8 0.8

S 2

ind
0.8

ind

a3

c3 d3
0.9 0.5

0.9

ind

a4

c4 d4

0.7 0.5

S 3

ind

0.4

ind

a5

c5 d5

0.3 0.6

S 4

ind

0.6

R o o t

p athp ro b (c i) 0.72 0.64 0.28 0.18

0.36p athp ro b (d j) 0.64 0.64 0.20
twigp ro b (c i, d j) 0.576 (c1,d 1) 0.512 (c2,d 2) 0.14 (c4,d 4) 0.108 (c5,d 5)

S

C D

(a) Tw ig query (b) P robabilistic XM L

0.81

0.45

0.405 (c3,d 3)

c30.81

c10.72

c50.18

c40.28

c20.64

d1 0.64

d2 0.64

d4 0.20

d5 0.36

d3 0.45

c i d jp athP ro b (c i) p athP ro b (d i)

matched

matched

(c) Phase one o f Algorithm H yTopK Tw ig

S 1

ind

ind

a1

c1 d1

0.9 0.8

0.8

ind

a2

c2 d2

0.8 0.8

S 2

ind
0.8

ind

a3

c3 d3
0.9 0.5

0.9

R o o t

p athp ro b (c i) 0.72 0.64

p athp ro b (d j) 0.64 0.64

twigp ro b (c i, d j) 0.576 (c1,d 1) 0.512 (c2,d 2)

0.81

0.45

0.405 (c3,d 3)

Skele ton results S1 and S2 .

T he elem ents w ith s ignature

Final answ ers (c 1,d1) and (c 2,d2)

(c 3,d3) and (c 1,d1) returned in firs t phase.
and the s1 and s2 c an be deduc ed to be the
skeleton results .

(d) Phase tw o and three o f Algorithm H yTopK Tw ig

Fig. 3. Example of HyTopKTwig

However, are those temporary results in phase one the final answers? In Al-
gorithm PTopKTwig, an enhanced lower bound is proposed to get the final
answer quickly and to ensure the correctness of algorithm. The HyTopKTwig
algorithm also needs to ensure the correctness and trys to find other candidate
answers which may be the final answers, so we use the skeleton results to bound
the structural region of those candidate answers. The correctness of Algorithm
HyTopKTwig is proved below:

Theorem 1. Given a twig query q and an probabilistic XML database PD,
Algorithm HyTopKTwig correctly returns all the answers for q with top-k prob-
abilities on PD.

Proof. If the k skeleton results in set Sb can bound the final answers, then we
can prove the correctness of algorithm HyTopKTwig, so we change the problem
to prove that there is no element, which is not the descendant of any skeleton
results in set Sb, can contribute to the final answers.

A Hybrid Algorithm for Finding Top-k Twig Answers in Probabilistic XML 539

Assuming that there is an element e which is not the descendant of any
skeleton results in set Sb, and can match a twig answer with element ex whose
probability value is larger than the k-th twig answer (merge-joined by ek1 and
ek2). So we can get the inequations:

pathProb(ek1) ∗ preProb(ek2) < pathProb(ex) ∗ preProb(e) (1)

equation (1) can be deduced to equation (2)

pathProb(ex) > pathProb(ek1) ∗ preProb(ek2)/preProb(e) (2)

In phase one, once the function getNextP() returns a tag t, algorithm will regard
the tag t as main path and find matching with other element streams ordered
by predicate probability value, so preProb(ek2)/preProb(e) must be larger than
one because the path answer with larger predicate probability value has been
scanned, we can conclude that pathProb(ex) is larger than pathProb(ek1), this
is contradictory with that the processed main path has larger path probabil-
ity value than the unprocessed ones. Or if the pathProb(ex) is really larger than
pathProb(ek1), it means element ex has been processed before ek1, and the skele-
ton result of ex has existed in set Sb. Because the element e can be merge-joined
with ex, the element e must be the descendant of skeleton result of ex. It means
element e will be dealt with in phase three of algorithm HyTopKTwig. Therefore
we can conclude that there is no element which is not the descendant of any
skeleton results in set Sb, and can match a twig answer whose probability value
is larger than the k-th twig answer. So the correctness of algorithm HyTopKTwig
is proved.

5 Experiments

5.1 Experimental Setup

The algorithms HyTopKTwig, ProTJFast and PTopKTwig were implemented in
JDK 1.4. Both real-world data set DBLP and synthetic data are used to test the
performance of algorithm above, and the synthetic data set was generated by
IBM XML generator and a synthetic DTD. We made the corresponding proba-
bilistic XML documents from ordinary ones by inserting distribution nodes and
assigning probability values to the child elements of distribution nodes. Table 1
lists the used queries. We take the metrics elapsed time and processed element
rate rateproc =numproc/numall to compare the performance among those algo-
rithms, where numproc is the number of processed elements, and numall is the
number of all elements.

5.2 Performance Study

Influence of Document Size We evaluated Q1 against the DBLP data set
of different sizes, ranging from 20MB to 110MB, and the answers with top-20
probability values were returned. From Figure 4, we can see that the elapsed time

540 B. Ning and C. Liu

Table 1. Queries

ID queries
Q1 dblp//article[//author]//title
Q2 S//[//B]//A
Q3 S//[//B][//C]//A
Q4 S//[//B][//C][//D]//A
Q5 S//[//B][//C][//D][//E]//A

Fig. 4. Varying size Fig. 5. Varying size

Fig. 6. Varying K Fig. 7. Varying K

of ProTJFast is linear to the size of documents, while varying size of documents
has almost no impact on HyTopKTwig and PTopKTwig, and the algorithm
HyTopKTwig performs better than PTopKTwig.

Influence of Number of Answers. Query Q1 was evaluated against the
DBLP data set. From Figures 6 and 7, we can see that by varying k from 10
to 50, the elapsed time and the rate of processed elements of those algorithms
increase, the algorithm HyTopKTwig performs best, and algorithm ProTJFast
performs worst. When k is small, the performance of HyTopKTwig is much
better than ProTJFast and is better than PTopKTwig.

Influence of Multiple Predicates. To test the influence of multiple predi-
cates, the queries Q2 to Q5 were evaluated on the synthetic data set. By varying
the fan-out of query from 2 to 5, from Figures 8 and 9, we can see that the

A Hybrid Algorithm for Finding Top-k Twig Answers in Probabilistic XML 541

Fig. 8. Varying pred Fig. 9. Varying pred

elapsed times of algorithm PTopKTwig increases rapidly. The situation is simi-
lar in Figure 9 when testing the rate of processed elements. The increasing speed
of algorithm HyTopKTwig is steady and is slower than the other two, especially
when the query’s fan-out is large.

6 Conclusions

In this paper, we addressed the problem of finding top-k matching of a twig pat-
tern against probabilistic XML data. Firstly, we improved the float vector part
of PEDewey encoding, then we proposed a hybrid algorithm named HyTopK-
Twig that has three phases. The element streams in first phase are ordered by
probabilistic value, and the element streams in third phase are ordered by docu-
ment order, therefore the algorithm HyTopKTwig considers both the probability
value constraint and structural relationship constraint. Finally we presented ex-
perimental results on a range of real and synthetic data.

Acknowledgement. This work is supported by the Australian Research Coun-
cil Discovery Project (Grant No. DP0878405, DP110102407), and the Fundamen-
tal Research Funds for the Central Universities of China (Grant No. 2009QN030).

References

1. Abiteboul, S., Senellart, P.: Querying and updating probabilistic information in
XML. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M.,
Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896,
pp. 1059–1068. Springer, Heidelberg (2006)

2. Hung, E., Getoor, L., Subrahmanian, V.S.: Probabilistic interval XML. In: Cal-
vanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp.
358–374. Springer, Heidelberg (2002)

3. Hung, E., Getoor, L., Subrahmanian, V.S.: PXML: A probabilistic semistructured
data model and algebra. In: Proceeding of ICDE, pp. 467–478 (2003)

4. Nierman, A., Jagasish, H.V.: ProTDB: Probabilistic data in XML. In: Proceeding
of VLDB, pp. 646–657 (2002)

542 B. Ning and C. Liu

5. Senellart, P., Abiteboul, S.: On the complexity of managing probabilistic XML
data. In: Proceeding of PODS, pp. 283–292 (2007)

6. Kimelfeld, B., Kosharovsky, Y., Sagiv, Y.: Query efficiency in probabilistic XML
models. In: Proceeding of SIGMOD, pp. 701–714 (2008)

7. Kimelfeld, B., Sagiv, Y.: Matching twigs in probabilistic XML. In: Proceeding of
VLDB, pp. 27–38 (2007)

8. Hua, M., Pei, J., Zhang, W., Lin, X.: Ranking queries on uncertain data: A prob-
abilistic threshold approach. In: Proceeding of SIGMOD, pp. 673–686 (2008)

9. Hua, M., Pei, J., Zhang, W., Lin, X.: Efficiently answering probabilistic threshold
top-k queries on uncertain data. In: Proceeding of ICDE, pp. 1403–1405 (2008)

10. Chang, L., Yu, J.X., Qin, L.: Query Ranking in Probabilistic XML Data. In: Pro-
ceeding of EDBT, pp. 156–167 (2009)

11. Yi, K., Li, F., Kollios, G., Srivastava, D.: Efficient processing of top-k queries in
uncertain databases. In: Proceeding of ICDE, pp. 1406–1408 (2008)

12. Yi, K., Li, F., Kollios, G., Srivastava, D.: Efficient processing of top-k queries in
uncertain databases with x-relations. TKDE 20(12), 1669–1682 (2008)

13. Ning, B., Liu, C., Yu, J.X., Wang, G.: Matching Top-k Answers of Twig Patterns
in Probabilistic XML. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.)
DASFAA 2010. LNCS, vol. 5981, pp. 125–139. Springer, Heidelberg (2010)

14. Grust, T.: Accelerating XPath Location Steps. In: Proceeding of SIGMOD, pp.
109–120 (2002)

15. Zhang, C., Naughton, J., DeWitt, D., Luo, Q., Lohman, G.: On Supporting Con-
tainment Queries in Relational Database Management Systems. In: Proceeding of
SIGMOD, pp. 425–436 (2001)

16. Lu, J., Ling, T.W., Chan, C.-Y.: Ting Chen. From region encoding to extended
dewey: On efficient processing of XML twig pattern matching. In: Proceeding of
VLDB, pp. 193–204 (2005)

Optimizing Incremental Maintenance of Minimal
Bisimulation of Cyclic Graphs

Jintian Deng1, Byron Choi1, Jianliang Xu1, and Sourav S. Bhowmick2

1 Hong Kong Baptist University, China
{jtdeng,bchoi,xujl}@comp.hkbu.edu.hk

2 Nanyang Technological University, Singapore
assourav@ntu.edu.sg

Abstract. Graph-structured databases have numerous recent applica-
tions including the Semantic Web, biological databases and XML, among
many others. In this paper, we study the maintenance problem of a popu-
lar structural index, namely bisimulation, of a possibly cyclic data graph.
In comparison, previous work mainly focuses on acyclic graphs. In the
context of database applications, it is natural to compute minimal bisim-
ulation with merging algorithms. First, we propose a maintenance algo-
rithm for a minimal bisimulation of a cyclic graph, in the style of merging.
Second, to prune the computation on non-bisimilar SCCs, we propose a
feature-based optimization. The features are designed to be constructed
and used more efficiently than bisimulation minimization. Third, we con-
duct an experimental study that verifies the effectiveness and efficiency
of our algorithm. Our features-based optimization pruned 50% (on av-
erage) unnecessary bisimulation computation. Our experiment verifies
that we extend the current state-of-the-art with a capability on handling
cyclic graphs in maintenance of minimal bisimulation.

1 Introduction

Graph-structured databases have a wide range of recent applications, e.g., the
Semantic Web, biological databases, XML and network topologies. To optimize
the query evaluation in graph-structured databases, indexes have been proposed
to summarize the paths of a data graph. In particular, many indexing techniques,
e.g., [3,4,11,17,19,23], have been derived from the notion of bisimulation equiv-
alence. In addition to indexing, bisimulation has been adopted for selectivity
estimation [14, 20] and schemas for semi-structured data [2].

To illustrate the applications of bisimulation in graph-structured databases,
we present a simplified sketch of a popular graph used in XML research, shown
in the left hand side of Figure 1, namely XMark. XMark is a synthetic auction
dataset: open auction contains an author, a seller and a list of bidders, whose
information is stored in persons; person in turn watches a few open auctions. To
model the bidding and watching relationships, open auctions reference persons
and vice versa. The references are encoded by IDREFs and represented by the
dotted arrows in the figure. Two nodes in a data graph are bisimilar if they

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 543–557, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

544 J. Deng et al.

......

...

...

...

...

open_auction

author

person

watch

person

people

open_auction

site

person

open_auctions

open_auction
open_auction

seller
bidder

bidder

watch
watches

person

5

1 6

7

8

9
4

3

2

0

I

I I

I

I

I
I

I

I

I

seller

open_auction

open_auctions

watches

watch

people

site

author bidder

person

Fig. 1. Illustration – A sketch of XMark and its bisimulation

have the same set of incoming paths. A sketch of the bisimulation graph of
XMark is shown in the right hand side of Figure 1. In the bisimulation graph,
bisimilar data nodes are placed in a partition, denoted as Ii. Consider a query
q /site//open auction//seller that selects all sellers of open auctions. We can
evaluate q on the partitions and simply retrieve the data nodes in I3. Therefore,
it is crucial to minimize the bisimulation graph for efficient index to reduce I/O.

In practice, many data graphs are cyclic (e.g., [1]) and subject to updates.
Therefore, different from other applications of bisimulation, its maintenance
problem is much more important in database applications [12,21]. Furthermore,
previous work [12, 21] on maintenance of bisimulation of graphs mainly focuses
on directed acyclic graphs. In contrast, this paper focuses on the maintenance
problem of bisimulation of possibly cyclic graphs.

In this paper, we take the first step to systematically and comprehensively
investigate incremental maintenance of minimal bisimulation of cyclic graphs.
There are two key challenges in the maintenance problem. Firstly, merging algo-
rithms for bisimulation as opposed to partition refinement are more natural for
incremental maintenance of bisimulation. However, it is known [12] that merg-
ing algorithms fail to determine the minimum bisimulation of cyclic graphs. The
main reason is that nodes of SCCs must be considered together, which is not the
case in merging algorithms.

The first contribution is a maintenance algorithm for minimal bisimulation of
cyclic graphs (Section 5), in the style of merging algorithms. Our algorithm con-
sists of a split and a merge phase. In the split phase, we split and mark the index
updated nodes (i.e., the equivalence partitions) into a correct but non-minimal
bisimulation. In the merge phase, we apply a (partial) bisimulation minimization
algorithm on the marked index nodes. Our algorithm has an explicit handling
of bisimulation between SCCs, when compared to previous work. As such, our
algorithm always produces smaller (if not the same) bisimulation graphs when
compared to previous work. In case of acyclic graphs, our algorithm and the
previous work will produce the same bisimulation.

The second contribution is on a feature-based optimization for determining
bisimulation between two SCCs (Section 6). On one hand, the computation of
bisimulation between two SCCs can be costly. On the other hand, there may not
be many bisimilar SCCs, in practice. We aim at deriving structural features from
SCCs such that two SCCs are bisimilar only if they have the same or bisimilar
features. Specifically, we explore label- or edge-based, path-based, tree-based

Optimizing Incremental Maintenance of Minimal Bisimulation 545

and circuit-based features. With these, the merging algorithm has a more global
information of SCCs and may prune computation on non-bisimilar SCCs early.

Third, we conduct an experimental study that verifies the effectiveness and
efficiency of our algorithm. In particular, our feature-based optimization prunes
an average of 50% unnecessary bisimulation computation. The results validate
the practical feasibility of extending the current state-of-the-art with a capability
of maintaining minimal bisimulation on cyclic graphs.

2 Related Work

Previous work on maintaining bisimulation can be categorized into two: merging
and partition-refinement algorithms. There have been two previous merging algo-
rithms [12,21] for incremental maintenance of bisimulation of cyclic graphs. The
algorithm proposed in [12] contains a split and a merge phase. Upon an update
on the data graph, the bisimulation graph is split to a correct but non-minimal
bisimulation of the updated graph. Next, the bisimulation graph is minimized
in the merge phase. For acyclic graphs, [12] produces the minimum bisimulation
of the updated graph. If the graph is cyclic, [12] returns a minimal bisimulation
only. Thus, to support cyclic graphs, the minimum bisimulation is occasionally
re-computed from scratch. [21] proposes a split-merge-split algorithm with a
rank flag for SCCs, which is originally proposed in [6]. [21] also returns a minimal
bisimulation in response to an update of a cyclic graph. However, there is neither
experimental evaluation [21] nor implementation for us to perform comparisons.
A difference between our work and the previous work is that we introduce explicit
handling of SCCs and propose features to optimize bisimulation maintenance.

A recent partition-refinement algorithm [10] can be considered as a variant of
Paige and Tarjan’s algorithm [18] – a construction algorithm for the minimum
bisimulation. The algorithm proposes its own split to handle edge changes. It
has been extended to support maintenance of k-bisimulation. Their experiment
shows that [10] produces a bisimulation that is always within 5% of the minimum
bisimulation. It is shown, through a later experiment, that [12] may produce even
smaller bisimulations, which we compared via experiments in Section 7.

Bisimulation (relation) [16] has its root at symbolic model checking, state
transition systems and concurrency theories. In a nutshell, two state transition
systems are bisimilar if and only if they behave the same from an observer’s
point of view. Bisimulation minimization has been extensively studied through
experiments in [7], in the context of modeling checking. A conclusion of [7] is
that minimization may not be worthwhile for model checking as it may easily be
more costly than checking invariance properties of systems. In comparison, when
bisimulation is used as an index structure for query processing, bisimulation
minimization and therefore its maintenance are far more important.

3 Background

This section presents the background and the notations of this paper.

546 J. Deng et al.

Definition 3.1. A graph-structured database (or data graph) is a rooted di-
rected labeled graph G(V , E, r, ρ, Σ), where V is a set of nodes and E: V × V
is a set of edges, r ∈ V is a root node and ρ : V → Σ is a function that maps a
vertex to a label, and Σ is a finite set of labels.

For clarity, we may often denote a data graph as G(V, E) when r, ρ and Σ are
irrelevant to our discussions. Since our work focuses on cyclic graphs, we recall
some relevant definitions below.

Cyclic graphs. A strongly connected component (SCC) in a graph G(V , E) is a
subgraph G′(V ′, E′) whose nodes are a subset of nodes V ′ ⊆ V where the nodes
in V ′ can reach each other. The SCCs of a graph can be determined by classical
graph contraction algorithms, e.g., Gabow’s algorithm, in O(|V |+|E|), where
each SCC is reduced to a supernode. The resulting graph is a directed acyclic
graph DAG, which is often called the reduced graph. In subsequent discussions, we
use SCCs to refer to non-trivial SCCs (SCCs with more than one node) only. In the
definition below, we highlight two special kinds of nodes in SCCs, namely, exit
and entry nodes.

Definition 3.2. A node n of an SCC G′(V ′, E′) of a graph G(V , E) is an exit
node if there exists an edge (n, n1) where n ∈ V ′ and n1 �∈ V ′. Similarly, n is
an entry node if there exists an edge (n0, n) where n0 �∈ V ′ and n ∈ V ′.

Bisimulation. Next, we recall the relevant definitions of bisimulation.

Definition 3.3. Given two graphs G1(V1, E1, r1, ρ1) and G2(V2, E2, r2, ρ2),
an upward bisimulation ∼ is a binary relation between V1 and V2:

∀ v1 ∈ V1, v2 ∈ V2 . v1 ∼ v2 →
∀ (v′

1, v1) ∈ E1 ∃ (v′
2, v2) ∈ E2 . v′

1 ∼ v′
2 ∧ ρ1(v′

1) = ρ2(v′
2) ∧

∀ (v′′
2 , v2) ∈ E2 ∃ (v′′

1 , v1) ∈ E1 . v′′
1 ∼ v′′

2 ∧ ρ1(v′′
1) = ρ2(v′′

2).

Two graphs G1 and G2 are upward bisimilar if an upward bisimulation ∼ can
be established between G1 and G2.

Examples of bisimilar nodes can be found in Figure 1, where the bisimilar nodes
are placed in the same rounded rectangle. Definition 3.3 presents upward bisim-
ulation in the sense that two nodes can be bisimilar only if their parents are
bisimilar. The definition can be paraphrased in terms of paths, which is often
convenient to simplify our discussions1 .

Proposition 3.1: Two nodes are upward bisimilar if and only if the incoming
path set of the two nodes are the same. 	

A set of bisimilar nodes is often referred to as an equivalence partition of nodes,
or simply partitions. Hence, a bisimulation of a graph can be described as a
partition graph. In the context of indexing, the partitions are sometimes referred

1 We should remark that there have been other notions of bisimulation, such as down-
ward bisimulation and k-bisimulation, that have been applied in indexing/selectivity
estimation but have not been the focus of this paper. Our techniques can be extended
to support them with minor modifications.

Optimizing Incremental Maintenance of Minimal Bisimulation 547

(a) (d)(c)(b)

1

2

3

4

5

6

7

8 10

11

12

13

14

15

9 19

18 20

17

{1}

{2,7}

*
*

*
*

{1}

{17}

{18} {13}

{12}
*

*

*

*

*

*

{1}

{3,8,18} {13}

{14}

{16}

{12}

2116

{5,10}{3,8}

{4,9}

{6,11}

{14,19}

{16,21}

{15,20}

{13,18}

{12,17} {2,7}

{3,8}

{5,10}

{4,9}

{6,11}

{19}

{21}

{20} {15}

{16}

{14}

{2,7,17}

{4,9,19}

{6,11,21}

{15}{5,10,20}

Fig. 2. (a) A cyclic data graph; (b) the minimal bisimulation graph; (c) the split
bisimulation graph; and (d) an updated minimal bisimulation graph

to as index nodes, or simply Inodes, whereas the nodes of the data graph are
referred to as data nodes, or simply nodes.

In this work, we consider the notion of bisimulation minimality defined in
Definition 3.5. First, we recall the notion of stability.

Definition 3.4. Given two partitions of nodes X and I, X is stable with respect
to I if either (i) X is contained in the children of the nodes in the partition I
or (ii) X and the children of the nodes in I are disjoint.
Definition 3.5. Given a bisimulation B of a graph G, B is minimal if for any
two partitions I, J ∈ B, either (i) the nodes in I and J have different labels, or
(ii) merging I and J results in some partition K ∈ B unstable.
Definition 3.6. A bisimulation B of a graph G is the minimum bisimulation
if B contains the minimum number of partitions, among all bisimulations of G.
According to [12], the minimum bisimulation of a graph is unique.

Bisimulation minimization. Next, we illustrate the intuitions of merging al-
gorithm for bisimulation minimization with a brief example shown in Figure 2.
Assume the nodes of the data graph shown in Figure 2(a) have the same label.
The node id is shown next to each node. We use {} to denote an Inode. A merg-
ing algorithm initially places each node in a single partition. Assume that the
algorithm merges pairs of partitions top-down, which attempts to merge Nodes
2 and 7. However, the algorithm has not yet determined Nodes 5 and 10. Hence,
the algorithm terminates and fails to return the minimum bisimulation shown
in Figure 2(b), unless it memorizes the SCCs containing Nodes 2 and 7 together.

4 Bisimulation of Cyclic Graphs

This section presents a minimization algorithm for bisimulation of cyclic graphs,
shown in Figure 3, which is a component of the maintenance algorithm. We focus
on the logic of handling SCCs during the minimization.

The algorithm can be divided into two parts. First, Lines 01-06, if n1 and
n2 are not both in some SCCs, we compute bisimulation between n1 and n2 in
the style of any merging algorithm. We assume the existence of a procedure
next nodes top order(G) of a node n which returns the next n’s child in topo-
logical order in G. Then, we recursively invoke bisimilar cyclic.

548 J. Deng et al.

Procedure bisimilar cyclic

Input: Nodes n1 and n2 where ρ(n1) = ρ(n2); B, the current bisimulation
Output: An updated bisimulation relation B′

01 if n1 and n2 are not both in some SCC

02 if ∀p1 ∈ n1.parent ∃p2 ∈ n2.parent s.t. p1 ∼ p2 then
03 add (n1, n2) to B
04 for all c1 in n1.next nodes top order(G1)
05 for all c2 in n2.next nodes top order(G2)
06 B = bisimilar cyclic(c1, c2, B)

07 else /* check bisimulation of the two SCCs */
08 assume n1 and n2 are in SCCs S1 and S2, respectively

if feature pruning(S1, S2) return B /* Sec. 6*/

09 clone S1 to S′
1; create an artificial node n′

1 for n1

10 for all (n, n1) ∈ S′
1.E

11 replace (n, n1) with (n, n′
1) ∈ S′

1

12 clone S2 to S′
2; create an artificial node n′

2 for n2

13 for all (n, n2) ∈ S′
2.E

14 replace (n, n2) with (n, n′
2) ∈ S′

2

15 clone B to B′; add (n1, n2) to B′ /* assume n1 ∼ n2 */

16 for all c1 in n1.next nodes top order(S′
1)

17 for all c2 in n2.next nodes top order(S′
2)

18 B′ = bisimilar cyclic(c1, c2, B′)
19 if (n′

1, n′
2) in B′ then B = B ∪ B′ /* S1 ∼ S2 */

20 return B

Fig. 3. Bisimulation minimization of cyclic graphs

Second, if both n1 and n2 are in some SCCs, Lines 07-20 check if S1 and S2,
as opposed to simply n1 and n2, can be bisimilar. We prune non-bisimilar SCCs
by using the feature-based optimization presented in Section 6, in Line 08. For
presentation clarity, we assume that n1 and n2 are in two different SCCs. Then,
we break the SCCs and check bisimulation recursively, in Lines 09-15. The main
idea is illustrated with Figure 4. Specifically, we redirect the incoming edges
of n1 in SCC (Lines 09-11) to an artificial node n′

1. Similarly, we redirect the
incoming edges of n2 to n′

2 (Lines 12-14). We clone the current bisimulation
relation determined thus far (Line 15). Assuming that n1 and n2 are bisimilar,
we check the possible bisimulation between the children of n1 and n2 by call-
ing bisimilar cyclic recursively (Lines 16-18). If we can construct a possible
bisimulation between n′

1 and n′
2 (Line 19), then S1 and S2 are bisimilar.

The main idea of bisimilar cyclic on handling SCCs is that bisimilar
cyclic explicitly breaks a cycle, whereas previous work overlooks cycles.
bisimilar cyclic may be recursively called due to nested SCCs (Line 18).
Without breaking a cycle in each call, bisimilar cyclic may not terminate
and the feature-based optimization (Line 07) may always derive features of the
“topmost” SCC.

Optimizing Incremental Maintenance of Minimal Bisimulation 549

... ...???

’

’
n 1

n1
2

2

n1 2 n n

n

Fig. 4. Breaking one cycle in an SCC in bisimilar cyclic

Analysis. For presentation clarity, bisimilar cyclic did not incorporate with
classical indexing techniques. bisimilar cyclic runs in O(|E|2) due to the for
loops at Lines 04-06 and Lines 16-18, assuming that feature pruning can be
performed more efficiently than O(|E2|).

5 Maintenance of Bisimulation

In this section, we present the overall maintenance algorithm. For simplicity,
we present an edge insertion algorithm insert in Figure 5. Edge deletions are
discussed at the end of this section. Our algorithm consists of a split phase and
a merge phase. In the following, we focus on the split phase, as the merge phase
is essentially bisimilar cyclic.

The split phase. The split phase is presented in Lines 05-20. We maintain
two variables to record two kinds of nodes that are needed to be split. More
specifically, we use S to record the nodes of SCCs needed to be split and Q to
record the nodes that are not in any SCCs but needed to be split. In the split
phase, we mark the affected Inodes, which will be examined in the merge phase.

Suppose the insertion makes the Inode of n2 unstable. To initialize S (Line
03), we set S to the Inode of n2 and n2, i.e., {(In2 , n2)}, if n2 is in an SCC.
Otherwise, S is empty. Similarly, we initialize Q to In2 if n2 is not in any SCC
and Q is empty otherwise (Line 04). Next, we split the Inodes in S and Q
recursively until they are empty (Line 05).

(1) We process the nodes in S as follows (Lines 06-12): We select a node n from
S and retrieve its Inode In. We split n from In as the SCC of n is potentially
non-bisimilar to the SCC of other nodes in In (Line 09). We mark the split Inodes
so that they will be checked in the merge phase (Line 10). In Lines 11-12, we
insert the children of the split Inode to S and Q, similar to Lines 03-04.

(2) The handling of Q is shown in Lines 13-20. We select an Inode In from Q
(Line 14). If In is not stable, we split In into a set of stable Inodes I, as in the
pervious work [12] for acyclic graphs (Lines 15-16). We mark Inodes in I in Line
18. In Lines 19-20, we update the affected nodes S and Q, similar to Lines 03-04.

The split phase essentially traverses the bisimulation graph B and SCCs in the
data graph to spilt and collect the Inodes that are affected by the update. SCCs
themselves may be affected by an update. In Line 21, we call Gabow’s algorithm
to update SCC information of a graph, which is needed in the merge phase.

The merge phase. The merge phase can be done by applying the minimization
algorithm presented in Section 4 (Figure 3). An optimization is that we apply
merging on only the Inodes that are marked in the split phase.

550 J. Deng et al.

Procedure insert

Input: an insertion of an edge (n1, n2) to a graph G; its minimal bisimulation B
Output: An updated graph G′ and its updated minimal bisimulation B′

01 G′ = insert (n1, n2) into G
02 if n2 is new

then create a new Inode In2 ; insert In2 into B; mark In2

else if In2 is not stable
03 S = {(In2 , n2) | n2 is in an SCC}
04 Q = {In2 | n2 is not in any SCC}
05 while Q �= ∅ or S �= ∅
06 if S �= ∅ then /* split the relevant SCC */
07 pick a node (In, n) from S ; remove (In, n) from S
08 while In is not stable or a singleton
09 split In into I1 = In - {n} and I2 = {n}
10 mark I1 and I2

11 S = S ∪ {(Ins ,ns) | ns is ni’s child, ni ∈ I2 and ns in the SCC of n}
12 Q = Q ∪ {Inq | nq is a child of ni, ni ∈ I2 and nq not in any SCCs}
13 if Q �= ∅ then /* split nodes not related to SCCs */
14 pick a node In ∈ Q; remove In from Q
15 if In is not stable or a singleton
16 split In into a stable set I /* [12] */
17 for each I in I
18 mark I
19 S = S ∪ {(Ins ,ns) | ns is ni’s child, ni ∈ I and ns in the SCC of n}
20 Q = Q ∪ { Inq | nq ∈ child of ni, ni ∈ I and nq not in any SCCs}
21 Gabow(G′) /* update the SCC information in G′ */

22 (G′, B′) = bisimilar cyclic marked(G, B) /* merging the marked Inodes */
23 return (G′, B′)

Fig. 5. Insertion for minimal bisimulation of cyclic graphs

Example 5.1. We illustrate Algorithm insert with an example. Reconsider the
cyclic data graph that is shown in Figure 2(a). Its minimal bisimulation is shown
in Figure 2(b). Assume that we insert an edge (20,17) into the data graph.
Algorithm insert initially puts {12,17} into Q (Line 04). Then, in Line 16,
Node 17 is split from {12,17}. The split Inodes are marked, with a “*” sign in
the figure. The split phase proceeds recursively and finally produces the graph
in Figure 2(c). Then, we update the SCC information of the data graph. By
bisimilar cyclic marked, we obtain the bisimulation at Figure 2(d).

While the previous work [12] produces the same split graph (Figure 2(c)), it
returns the bisimulation in Figure 2(c), due to the lack of the handling on SCCs.
Subsequently, any subgraphs that are connected to the SCC (Nodes 17-20), e.g.,
Node 21, are not merged, as the SCCs are not merged.

Analysis. The recursive procedure in Lines 05-20 traverses the graph O(|E|).
With optimization in [18], stablizing a set can be done in O(log(|V |)). Hence.

Optimizing Incremental Maintenance of Minimal Bisimulation 551

the split phase runs in O(|E|log(|V |). Gabow’s algorithm in Line 21 runs in
O(|V | + |E|). The merge phase with optimization runs in O(|E|2). Thus, the
overall runtime of Algorithm insert is O(|E|2).
Edge deletions. While our discussions focused on insertions, our technique can
be generalized to support edge deletions with the following modifications. (i) In
Line 01, we delete the edge from the data graph. (ii) If n2 is connected after the
deletion, we check the stability of In2 in Line 02, initialize S and Q and then
invoke the split phase as before.

6 Feature-Based Optimization

The maintenance algorithm presented in Section 5 involves splitting the up-
dated bisimulation into a non-minimal bisimulation followed by bisimulation
minimization. As discussed, determining if two SCCs are bisimilar can be com-
putationally costly, O(|E|2). In practice, SCCs may often be non-bisimilar. This
motivates us to optimize the minimization of cyclic graphs by proposing features
to prune computations on non-bisimilar SCCs. The main idea is to derive features
of SCCs such that two SCCs can be bisimilar only if their features are the same or
bisimilar. Ideally, the features are discriminative enough and can be efficiently
constructed and used. Furthermore, features may be efficiently maintainable so
that they are constructed once and maintained with the bisimulation.

6.1 Properties of Bisimulation of Cyclic Graphs

Prior to the discussions on features, we list some properties of bisimulation of
cyclic graphs. These properties show that a number of classic properties of graphs
are not suitable for our feature-based optimization. Due to space constraints, we
omitted the proofs, which are established by simple proof by contradictions [5].

Property 1. Two SCCs with the same cycle height may not be bisimilar. Two
SCCs with different cycle heights can be bisimilar.

Property 2. Two SCCs with the same number of simple cycles may not be bisim-
ilar. Two bisimilar SCCs may have different number of simple cycles.

Property 3. Two SCCs with different numbers of entry nodes can be bisimilar.

The design of features exploits the following proposition on bisimulation of SCCs.
The intuition is that as long as we find a node in a SCC that is not bisimilar to
any node in another SCC, the two SCCs will not be bisimilar.

Proposition 6.2: An SCC G1(V1, E1) is not bisimilar to another SCC G2(V2,
E2) if and only if there is a node v in V1 such that it is not bisimilar to any
node in V2. 	

552 J. Deng et al.

6.2 Features of SCCs

Merging algorithms for bisimulation minimization are iterative in nature. The
current merging step of a SCC may not have sufficient information for determining
bisimulation between SCCs. Hence, we propose some features that give merging
algorithms some “lookahead” of SCCs to check Proposition 6.2.

1. Label-based or edge-based features. We begin with the label-based and
edge-based features, which are straightforward, and have many alterative imple-
mentations. For example, we may use all label and edge types that appeared in
an SCC as an SCC feature. Two bisimilar graphs must contain the same type of
labels and edges. In our experiments, we found that the incoming label or edge
sets of an entry node are relatively concise and effective in distinguishing non-
bisimilar SCCs. For example, in Figure 1, the incoming label set of the entry node
open auction is {open auction, watch} and that of the entry node watches
is {person, bidder}. The construction and maintenance of such labels can be
efficiently supported by hashtables.

2. Path-based features. Regarding path-based features, one may be tempted
to use all simple paths in an SCC. However, determining all simple paths of a
cyclic graph is a problem in PSPACE [15].

Proposition 6.3: Two SCCs are bisimilar only if they have the same set of
simple path(s) from their entry node(s). 	

Next, the longest paths of a cyclic graph are not appropriate for our problem
either, as they cannot be determined in PTIME.

In this work, we propose to use the set of incoming paths with a length at
most k (or simply k-paths) as a feature of the entry nodes, where k is a user
parameter. The value of k may be increased when maintenance of bisimulation
spends substantial time on bisimulation computation. From Proposition 3.1,
two bisimilar graphs must have the same set of k-paths. Contrarily, two graphs
with different sets of k-paths are non-bisimilar. Hence, k-paths can be used
as a feature. It is straightforward that k-paths can be efficiently constructed.
However, since k-paths is local, k-paths may not contain a node that is not
bisimilar to any nodes in any other SCCs. Another simple remark is that a node
in an SCC may appear in a k-path set multiple times.

3. Feature of canonical spanning tree. We further explore more complex
structural features of SCCs. First, we define the weight used in determining the
canonical spanning tree. The weight of an edge (n1, n2) is directly proportional
to the count of (ρ(n1), ρ(n2))-edges in the graph. We exploit a popular trick to
perturb the edge’s weight such that each kind of edges has a unique weight.

Given the weight defined above, we can compute a minimum spanning tree, in
the style of a greedy breath first traversal in O(|V |+|E|). As the weight is defined
to be directly proportional to the edge count, a minimum spanning contains
more infrequent edge kinds of a graph. However, minimum spanning trees of
a directed graph are often difficult to maintain. In comparison, maintenance of
spanning trees of an undirected graph is much simpler, e.g., in amortized time
O(|V |1/3log(|V |)) [9]. Hence, we perform some simple tricks on the data graph

Optimizing Incremental Maintenance of Minimal Bisimulation 553

(c)

4

3

watches

person

12

open_auction

5

watch

sellerauthor
6

bidder

(a)

watches

open_auction

seller

808

watch

person
576

bidder

82
author

576 78 808

200

(b)

576.5

200

bidder
576

808.5

808
7882

watches

watch

person

author seller

open_auction

Fig. 6. The construction of the canonical spanning tree from a simplified open auction

when constructing the spanning tree. First, we ignore the direction of the edges.
Second, we adopt Prim’s algorithm to construct the minimum spanning tree of
the undirected graph. From the root of the minimum spanning tree, we derive
the edge direction, which gives us the canonical spanning tree. Note that the edge
direction is simply needed for checking bisimulation between canonical spanning
trees and the direction of the edges in the canonical spanning tree may differ
from that of the edges in the original graph.

Proposition 6.4: Two SCCs are bisimilar only if their minimum canonical span-
ning trees returned by Prim’s algorithm are bisimilar. 	

It should be remarked that SCCs are often nested. In the worst case, the total size
of the spanning trees of all possible entry nodes of an SCC is O((|V |+ |E|)2). In
addition, computing bisimulation between large canonical spanning trees can be
costly. Therefore, we introduce a termination condition to the Prim’s algorithm
– we do not expand the spanning tree further from a node n when there is an
ancestor of n having the same label as n. The total size of the canonical spanning
trees is then O(|V | × |E|).
Example 6.2. We illustrate the construction of a canonical spanning discussed
above with an example shown in Figure 6. Figure 6(a) shows a simplified SCC of
open auction from XMark with a scaling factor 0.1. The count of each edge type
is shown on the edge. We perturb the weight to make each weight in the SCC
unique. We ignore the direction of the edges, shown in Figure 6(b). Then, it is
straightforward to compute the spanning tree (shown in Figure 6(c), where the
number on an edge shows the order of the edge returned by Prim’s algorithm).
Finally, the direction of the edges are derived from the root of the spanning tree
open auction.

4. Circuit-based features. While the time for checking bisimulation between
minimum spanning trees is very close to that between SCCs, one may be tempted
to explore structural features further. Here, we illustrate that complicated struc-
tural features can lead to inefficient maintenance. For example, circuit bases con-
tain much more structural information than spanning trees. It has been shown
that the minimum circuit bases of directed graphs is unique [8]. However, de-
termining the circuit bases is O(|V |3). It is therefore more efficient to simply
compute the bisimulation of two SCCs than using the feature of circuit bases.

Proposition 6.5: Two SCCs are bisimilar if their circuit bases are bisimilar. 	

554 J. Deng et al.

6.3 Offline versus Online Feature Construction

Since the proposed features can be constructed relatively efficiently, they may
be constructed and used during bisimulation computation, i.e., runtime. Then,
during runtime, we may incorporate the features with not only the labels but
also the partial bisimulation constructed so far. Specifically, some nodes in SCCs
have been associated with Inode. The ids of Inodes together with the labels, as
opposed to the labels alone, are used in online feature construction.

In comparison, the features may be built offline and maintained with each
update of the graph. However, given a cyclic graph, we may determine features
for each entry node, in the worst case, to build all possible features offline.
However, this size requirement may sometimes be prohibitive, in practice.

7 Experimental Evaluation

This section presents an experimental study that verifies the efficiency of our
algorithms. Our implementation is written in JDK building on top of Ke et
al. [12]. It is available at http://code.google.com/p/minimal-bisimulation-cyclic-
graphs/. The experiments were run on a laptop computer with a dual CPU at 2.0
GHz and 2GB RAM running Ubuntu hardy.

Datasets. We used both synthetic and real-life graph data to test various aspects
of our algorithms. (i) XMark is a synthetic XML dataset provided by the XMark
Benchmark Projects [22]. The cycles in XMark is essentially composed by IDREFs
of open auction to person and vice versa. We ran Gabow’s algorithm on XMark.
We note that there are few very large SCCs. It is easy to verify that very few,
or none, of the SCCs are bisimilar. Hence, we randomly decompose SCCs into
smaller SCCs as follows: We define a parameter s to set the average number
of open auction nodes and another parameter r to define the ratio between
open auction and person nodes in an SCC. For example, when s and r are set
to 10 and 1.2, respectively, an SCC contains approximately 10 open auctions
and 12 persons. In our experiment, the dataset generated directly from XMark
is referred to Large and the decomposed Large is refered to Cyclic.

In the experiment on Algorithm insert, we generated a dataset Base to test
the performance difference between insert and Ke et al. The performance differ-
ence can hardly be shown because Large only contains few large SCCs and Cyclic
contains numerous random non-bisimilar SCCs. Therefore, we constructed Base
by connecting two XMark graphs with the same scaling factor (s.f.) and remov-
ing a number of edges from the graph. When the edges are inserted by Algo-
rithm insert, the bisimilar SCCs will be recovered and merged.

We tested insert over real-life data Cite. Cite is a citation graph extracted
from papers on high energy physics [13]. It covers those papers in the period
from Jan. 1993 to Apr. 2003 and contains 35k papers in total. Cite represents
each paper as a data node and a citation in paper i to paper j as an edge. We
removed self-citing edges, for simplicity. Cite is highly cyclic. Similar to Cyclic,
we removed citation edges randomly and used them for insertions.

Optimizing Incremental Maintenance of Minimal Bisimulation 555

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

B
is

im
ul

at
io

n
T

im
e(

s)

The scaling factor of Large

(a) Large w/o features

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

B
is

im
ul

at
io

n
T

im
e(

s)

The scaling factor of Cyclic

(b) Cyclic w/o features

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10

F
ea

tu
re

 F
ilt

er
in

g
R

at
io

The scaling factor of Cyclic

:label

(c) Label-based pruning

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10

F
ea

tu
re

 F
ilt

er
in

g
R

at
io

The scaling factor of Cyclic

:kPath, where k=4

(d) k-path pruning

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10

F
ea

tu
re

 F
ilt

er
in

g
R

at
io

The scaling factor of Cyclic

:spanning tree

(e) Tree-based pruning

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10

B
is

im
ul

at
io

n
T

im
e(

s)

The scaling factor of Cyclic

(f) Cyclic w. features

5

7

9

11

13

15
16

 0 20 40 60 80 100 120

In
de

x
S

iz
e(

x
10

00
)

x-th insertion

Insert
Ke et al.

(g) Bisim. size of Base

5
10
15
20
25
30
35
40
45

 0 20 40 60 80 100 120

A
cc

um
ul

at
iv

e
T

im
e(

x
10

s)

x-th insertion

(h) Insertion time (Base)

 0

 20

 40

 60

 80

 100

 120

 20 40 60 80 100 120

A
cc

um
ul

at
iv

e
T

im
e(

x
10

s)

x-th insertion

(i) Insertion time (Cite)

Fig. 7. Performance results on bisimilar cyclic with and without feature optimiza-
tion on Large and Cyclic and insert performance on Base and Cite

Performance analysis. To test the runtime of bisimilar cyclicwith feature-
based optimization, we ran 100 random Large and Cyclic for each s.f. ranging
from 0.01 to 0.1 (i.e., 17k nodes to 168k nodes). Figures 7(a) and 7(b) show that
the runtimes are roughly linear to s.f.. At the same s.f., the runtimes for Large
are longer than those for Cyclic. The reason is that Cyclic contains are more
smaller random SCCs, which are often non-bisimilar, and bisimilar cyclic
identifies them relatively earlier. In comparison, bisimilar cyclic in Large
may spend more time in checking sub-SCCs inside a large SCC.

Next, we verified the effectiveness of the features by using each feature on 100
Cyclic graphs for each s.f.. The features were computed in runtime and k in the
path-based feature is 4. We skipped the edge-based feature as its performance
is similar to the label-based feature, in Cyclic. The pruning of each feature is
plotted in Figures 7(c), 7(d) and 7(e). The y-axis is the percentage of pruned

556 J. Deng et al.

non-bisimilar SCCs. In all, the label-based, path-based and canonical-tree feature
pruned (on average) 14%, 62% and 73%, respectively. Figure 7(f) shows the
runtime of bisimilar cyclic with all feature optimization. On average, it is
4% faster than the one without optimization (Figure 7(b)). We remark that on
average, 7.7% of the runtime was due to online feature construction.

Lastly, we conducted an experiment on Algorithm insert over Base and Cite.
The results are shown in Figures 7(g),(h) and (i). Figure 7(g) shows the size of
the minimal bisimulation produced by insert and Ke et al. [12]. We did not
show the minimum bisimulation as insert always produces a bisimulation that
is within 2% of the minimum. Initially, both insert and [12] are very close. After
some number of insertions, the two bisimilar SCCs in the Base were recovered.
We ran this experiment multiple times and found that the drop occurs randomly
between 100th and 120th insertion. As illustrated in Figure 7(g), the difference
in the size of bisimulation returned by insert and [12] depends on the number
and the size of bisimilar SCCs in a graph. In this particular graph, insert returns
a bisimulation graph that is 100% smaller than that by [12].

The accumulative runtime of insert over Base is shown in Figure 7(h). The
accumulative runtime increases as we insert more edges into Base. After some
insertions, insert ran slower because the two SCCs in Base became similar.
bisimilar cyclic checked many nodes before it declared the SCCs were not
bisimilar. The runtime of [12] is close to 0s as it does not process SCCs, as the
minimal bisimulation remains the same.

The accumulative runtime of insert over Cite is shown in Figure 7(i). As
expected, the runtime increases as more edges are inserted. Between the 30th
and 40th insertion, the largest SCC in Cite was involved and insert ran slower.
In most of the cases, the runtime of insert is close to 0s when it did not process
the SCCs. The average runtime for one insertion is around 10s. However, there is
no bisimilar SCCs in Cite and insert and [12] returned the same bisimulation.

8 Conclusions

In this paper, we studied the optimization in maintaining the minimal bisim-
ulation of cyclic graphs. Our first contribution is a bisimulation minimization
algorithm that explicitly handles SCCs and a maintenance algorithm for minimal
bisimulation of cyclic graphs. Second, we propose a feature-based optimization
to avoid computing non-bisimilar SCCs. Third, we presented an experiment to
verify the effectiveness and efficiency of our algorithms. Our experimental results
show that the features can prune unnecessary bisimulation computation and our
maintenance algorithm can return smaller bisimulation graphs than previous
work, depending on the size and number of bisimilar SCCs in the data graph. As
for future work, we plan to refine the selection of discriminative features to fur-
ther reduce the maintenance time. We are studying on maintenance algorithms
that can produce either the minimum bisimulation or one whose size is bounded
by a theoretical guarantee.

Optimizing Incremental Maintenance of Minimal Bisimulation 557

References

1. Batagelj, V., Mrvar, A.: Pajek datasets,
http://vlado.fmf.uni-lj.si/pub/networks/data/

2. Buneman, P., Davidson, S.B., Fernandez, M.F., Suciu, D.: Adding structure to un-
structured data. In: Afrati, F.N., Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186,
Springer, Heidelberg (1996)

3. Buneman, P., Grohe, M., Koch, C.: Path queries on compressed XML. In: VLDB
(2003)

4. Chen, Q., Lim, A., Ong, K.W.: D(k)-index: an adaptive structural summary for
graph-structured data. In: SIGMOD (2003)

5. Deng, J., Choi, B., Xu, J., Bhowmick, S.S.: Optimizing incremental mainte-
nance of minimal bisimulation of cyclic graphs. Technical report, HKBU (2010),
http://www.comp.hkbu.edu/~jtdeng/techreport.pdf

6. Dovier, A., Piazza, C., Policriti, A.: An efficient algorithm for computing bisimu-
lation equivalence. Theor. Comput. Sci. 311(1-3), 221–256 (2004)

7. Fisler, K., Vardi, M.Y.: Bisimulation minimization and symbolic model checking.
Form. Methods Syst. Des. 21(1), 39–78 (2002)

8. Gleiss, P.M., Leydold, J., Stadler, P.F.: Circuit bases of strongly connected di-
graphs. Working Papers 01-10-056, Santa Fe Institute (2001),
http://ideas.repec.org/p/wop/safiwp/01-10-056.html

9. Henzinger, M.R., King, V.: Maintaining minimum spanning trees in dynamic
graphs. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997.
LNCS, vol. 1256. Springer, Heidelberg (1997)

10. Kaushik, R., Bohannon, P., Naughton, J.F., Shenoy, P.: Updates for structure
indexes. In: VLDB (2002)

11. Kaushik, R., Shenoy, P., Bohannon, P., Gudes, E.: Exploiting local similarity for
indexing paths in graph-structured data. In: ICDE (2002)

12. Ke, Y., Hao, H., Ioana, S., Jun, Y.: Incremental maintenance of XML structural
indexes. In: SIGMOD (2004)

13. Leskovec, J.: Stanford large network dataset collection,
http://snap.stanford.edu/data

14. Li, H., Lee, M.L., Hsu, W., Cong, G.: An estimation system for XPath expressions.
In: ICDE (2006)

15. Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph databases.
In: VLDB (1989)

16. Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs
(1989)

17. Milo, T., Suciu, D.: Index structures for path expressions. In: Beeri, C., Bruneman,
P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 277–295. Springer, Heidelberg (1999)

18. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Com-
put. 16(6), 973–989 (1987)

19. Polyzotis, N., Garofalakis, M.: XCluster synopses for structured XML content. In:
ICDE (2006)

20. Polyzotis, N., Garofalakis, M.: XSketch synopses for XML data graphs. ACM
Trans. Database Syst. 31(3) (2006)

21. Saha, D.: An incremental bisimulation algorithm. In: Arvind, V., Prasad, S. (eds.)
FSTTCS 2007. LNCS, vol. 4855, pp. 204–215. Springer, Heidelberg (2007)

22. Schmidt, A., Waas, F., Kersten, M., Carey, M.J., Manolescu, I., Busse, R.: XMark:
A benchmark for XML data management. In: VLDB (2002)

23. Spiegel, J., Polyzotis, N.: Graph-based synopses for relational selectivity estima-
tion. In: SIGMOD (2006)

http://vlado.fmf.uni-lj.si/pub/networks/data/
http://www.comp.hkbu.edu/~jtdeng/techreport.pdf
http://ideas.repec.org/p/wop/safiwp/01-10-056.html
http://snap.stanford.edu/data

Social Based Layouts for the Increase of Locality
in Graph Operations�

Arnau Prat-Pérez, David Dominguez-Sal, and Josep L. Larriba-Pey

DAMA-UPC, Departament d’Arquitectura de Computadors
Universitat Politècnica de Catalunya,

Campus Nord, C/Jordi Girona 1-3, 08034 Barcelona, (Catalonia, Spain)
{aprat,ddomings,larri}@ac.upc.edu

Abstract. Graphs provide a natural data representation for analyzing
the relationships among entities in many application areas. Since the
analysis algorithms perform memory intensive operations, it is impor-
tant that the graph layout is adapted to take advantage of the memory
hierarchy.

Here, we propose layout strategies based on community detection to
improve the in-memory data locality of generic graph algorithms. We
conclude that the detection of communities in a graph provides a layout
strategy that improves the performance of graph algorithms consistently
over other state of the art strategies.

Keywords: graph mining, performance, community detection.

1 Introduction

The number of application and research areas where data can be intuitively cast
into relationship networks (i.e. graphs) is huge [2]. Just to cite a few examples,
Internet is represented by the web sites and the links among these sites [24], social
networks are represented by the individuals and their friendship or professional
connections [24], protein interaction networks are represented by the proteins
and how they are linked to perform particular biological functions [7] and bibli-
ographic networks represent how the authors are linked by their co-authorship
relationships [17]. In all these cases, the graphs are large and querying them
requires significant computational effort to meet specific time restrictions.

Graph based applications query their data periodically in order to extract
information about the relationships among nodes, or about their topology. For
instance, computing routes in navigation systems [11], getting information from
recommendation systems [6], analyzing the security of computer networks [33],
visualizing proteins [7], designing drugs [20] or analyzing the relevance of par-
ticular users in social networks [21] are applications where computing connected

� The members of DAMA-UPC thank the Ministry of Science and Innovation of Spain
and Generalitat de Catalunya, for grant numbers TIN2009-14560-C03-03 and GRC-
1087 respectively.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 558–569, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Social Based Layouts for the Increase of Locality in Graph Operations 559

components, looking for the minimum distance between pairs of nodes and
computing cycles, forests, minimum spanning trees and centrality have been
proven to be very important. All those operations require graph traversals,
which are typically variants of Breadth First Search (BFS) and Depth First
Search (DFS) and can be accelerated if the graph layout exploits the cache
architecture.1

There has been an effort to improve the locality for some specific graph op-
erations by means of designing compact structures for storing the graph [27] or
by changing the way that specific algorithms access the data set [32, 36]. How-
ever, the issue of creating generic strategies that benefit different types of graph
algorithms is still to be investigated. Leskovec et al. showed that typical large
graphs coming not only from social relations but other fields such as citations
networks, web graphs, authorship relations or data file sharing in peer to peer
networks, have their nodes clustered into communities [24]. We have used this
result to derive cache-aware graph layouts, which target social networks, but
which in fact are flexible to target many other data sets.

This paper has three main contributions. The first one is the proposal of a
new method for laying out a graph in order to improve data locality. These
method is called COM, and is based on the conjecture that the nodes that
belong to a community are spatially related and are likely to be traversed to-
gether. However, community detection techniques are difficult to scale to huge
graphs because of their computational complexity. Thus, our second contribu-
tion is the proposal of COM(x). COM(x), which is based on COM, restricts
the search of communities to sets of “x” nodes that are connected by BFS,
reducing the cost of laying out the data while improving the performance of
traversals. Finally, the third contribution of this paper is to provide a compar-
ison of state of the art techniques for laying out social graphs. These strategies
are BFSL [1] (from Breadth First Search Layout), a sparse matrix reordering
strategy, i.e. the Cuthill-McKee reordering scheme [9] (referred to as CUTHILL
from now on), Multilevel Spectral Bisection [3] (referred to as SPECTRAL), and
GPART [18].

We conclude that laying out the graphs following the community structure
(COM) not only allows for better performance of traversals than the state of the
art strategies due to higher hit rates in the L1 and L2 caches, but also reduces
the sparseness of the graph and leads to more compact memory layouts.

This paper is structured as follows. First, we present the related work in
Section 2. Then, we propose communities as a data layout and its variations
in Section 3. In Section 4, we describe the computational environment and the
characteristics of the benchmarks generated. Section 5 describes the experiments
we have performed to prove the goodness of community based layouts, and in
Section 6 we perform a profiling of BFS traversal to understand the impact of
the layouts on the memory hierarchy. Finally, in Section 7, we summarize our
conclusions and give directions for future work.

1 In this paper, we focus on the BFS. For the DFS there is an extended version of this
work in [34].

560 A. Prat-Pérez, D. Dominguez-Sal, and J.L. Larriba-Pey

2 Related Work

The memory hierarchy of the computer has a very important impact in applica-
tions that work with large data sets. The research literature has published many
cache-aware solutions for different data structures such as lists [5], heaps [37],
etc. However, most solutions for graphs are oriented towards data structures
for storing them in external memory [36], assume a certain simple distribution
(such as a uniform distribution, which is not typical for social networks) of the
nodes and edges in the graph [4] or optimize certain expensive computing graph
algorithms [32]. Our approach contrasts with them because we target irregular
graphs that emerge naturally in social networks and we focus on the data layout
but not on the final algorithm.

Given that graphs are typically represented as matrices, the first proposals
of graph reorganization techniques correspond to matrix manipulation, which
exchange the rows and columns of the matrix in order to move all the non-zero
values in the matrix towards the diagonal. Social graphs correspond to very
sparse matrices, in other words, they contain more zeroes than connections in
a matrix representation of nodes and edges, thus the exchange of rows allow
for increasing the density of non-zeroes in certain parts of the matrix. This
diagonalization operation is known as the the bandwidth minimization problem
(BMP), which is NP-complete [31]. The most popular solution to this problem
was presented by Cuthill and McKee in [9], which performs a BFS traversal with
a heuristic to select the nodes in decreasing order of degree. Other approaches
for matrix manipulation, such as the algorithm proposed by Gibbs et al. [15],
achieve faster execution time than CUTHILL but not better quality. Alternative
approaches to matrix reorganization are spectral methods [35] such as Multilevel
Spectral Bisection (SPECTRAL), which compute certain eigenvectors of the
matrix that indicate the closeness between nodes.

Regarding the optimization of large graphs, Al-Furaih and Ranka proposed
several reorganization methods to obtain better memory performance for particle
interaction problems arising from physics in [1]. Among these methods, they
concluded that layouts based on BFS (BFSL from now on) performed the best,
with a low preprocessing overhead. Some other hierarchical methods which are
used to reshape graphs are METIS [22], and GPART [18], which are based on
locating graph partitions.

Finally, we find a survey of graph algorithms that encourage algorithm access
patterns with a high locality in [36]. This approach is different from ours, where
we do a generic optimization of the graph data structure based on the data
relations, not on the particular algorithm. We believe that the combination of our
graph layout with cache conscious algorithms would increase the performance.

3 Community Based Data Layouts

The analysis real world graphs (which are typically neither uniform nor completely
random) has found that graphs are characterized by probability distribution

Social Based Layouts for the Increase of Locality in Graph Operations 561

laws that model the inhomogeneities of the graph, and the overall organization
of the edges among nodes [23]. The distribution of edges reveal the presence of
communities [13], which are groups of nodes with high densities of edges and low
densities of edges between nodes of other groups.

Communities are groups of vertices which probably share common proper-
ties and/or play similar roles within the graph. Communities may correspond to
groups of pages of the World Wide Web dealing with related topics [14], func-
tional modules such as cycles and pathways in metabolic networks [30], groups of
related individuals in social networks [16], etc. The vertices within a community
are highly connected, so the probability for an edge to exist between pairs of
vertices that belong to a community is high.

The rationale behind the use of communities to layout the data of a graph is
as follows. In general, graph traversals such as BFS and DFS, visit the graphs
in a way where topologically close nodes are visited in nearby iterations. Thus,
intuitively, if we put those nodes that belong to the same community close in
memory, we will achieve higher spatial locality, because those nodes will be
topologically close.

Although the problem of community detection is intuitively clear, there is
not a standard formal definition for communities. Thus, several methods have
been proposed [13,10,19,29]. We will base our work on the community detection
method for large networks proposed by Clauset et al. in [8], because it has been
classified as one of the most efficient methods for detecting non overlapping
communities on large networks. In the next section, we explain the algorithm
that we use to layout the graph using communities.

3.1 Community Layout - COM

We propose Community Layout (COM) as an algorithm to arrange the layout
of graph data, following the topology of the communities. In order to detect the
communities, we take the community detection procedure proposed by Clauset
et al., which is widely used in the literature [8, 26]. Clauset et al. propose a
greedy algorithm, which uses a metric called modularity. Modularity measures
the quality of a partition of the network into non overlapping communities. At
the beginning of the algorithm, each node is a community. At each step, the al-
gorithm merges the two most related communities until the modularity does not
increase. In other words, for every pair of communities, the algorithm searches
for those that improve the modularity maximally if merged. The algorithm is
executed until no improvement on the modularity can be reached.

After the communities have been detected, COM arranges the layout of the
graph. For each community found, COM labels all the nodes with consecutive
node identifiers and stores them contiguously in memory.

3.2 Truncated Community Layout - COM(x)

Since applying COM over huge graphs may be very time consuming due to the
complexity of the community extracting algorithm (O(md log(n)), where m is the

562 A. Prat-Pérez, D. Dominguez-Sal, and J.L. Larriba-Pey

number of edges, n the number of nodes and d is the depth of the “dendogram”
describing the network’s community structure), we propose a faster alternative
that we call Truncated Community layout COM(x).

Although some communities in the graph are very large, there are typically
many smaller communities. Since it is not necessary to consider the whole graph
topology to locate such small communities. COM(x) simplifies the community
detection problem, exploring the graphs in chunks of x connected nodes. COM(x)
is an iterative algorithm that, at each step, selects an unvisited node n from the
graph and builds a subgraph following a BFS traversal of unvisited nodes start-
ing from n. Once COM(x) finds x connected unvisited nodes (or the connected
component has no more nodes to visit), it applies COM on this subset of nodes
to build the layout of the graph. This procedure is repeated until all the nodes
in the graph have been visited once.

In general, COM(x) detects a larger number of communities than COM. For
instance, if a community is larger than x or if a community is not fully included in
the subset of x nodes, COM(x) takes them as two separate communities. Thus,
if our conjecture that the arrangement of the graph in communities improves
the data locality is true, then the layout generated by COM(x) will not be as
efficient as for COM. Nevertheless, we will see in the experimental section that
for most of the graphs, COM(x) achieves speedups not very far from COM with
a significantly shorter preprocessing time.

4 Experimental Setup

In this section, we present the experimental setup used to test how the graph
layout affects the performance of the application. We implement the graphs
with the aid of DEX, which is a very compact and efficient graph representation
library [25]. DEX stores the adjacency lists of nodes and edges in bitmaps, which
are more cache-friendly and more suitable for large graphs than the standard
adjacency lists. DEX stores the adjacency lists in a B-Tree that maps the ids
of the nodes to compressed bitmaps, which are a compact implementation of
an adjacency list. BFS is implemented using a queue and a visited node vector
which helps in the backtracking procedure.

The computer used to execute the experiments has the following character-
istics. It has an Intel Xeon processor at 2.83 Ghz, with 32 KB of L1 cache for
instructions and 32 KB for data, 2x6 MB of L2 shared cache and 64 GB of main
memory. The algorithms compared are the following:

1. BFSL [1] , CUTHILL [9], SPECTRAL [3] and GPART [18], which correspond
to the state of the art.

2. BFSL(x) which we propose as the simplest way to find community like struc-
tures. It consists in performing several BFS traversals of a graph. Each
traversal starts from a different node selected at random. Once x nodes from
the graph have been visited, the traversal stops and a new one is started.
The process continues until all the nodes of the graph have been visited.

3. COM and COM(x) which are described in section 3.

Social Based Layouts for the Increase of Locality in Graph Operations 563

Table 1. Different graphs created for the experiments

Num.
nodes

Max.
degree

Avg.

degree

Min.
community

size

Max.
community

size

100K 500 40 20 500
500K 100 8 4 100
500K 500 40 20 500
500K 1000 80 40 1000
500K 2000 160 80 2000

1,000K 500 40 20 500

4.1 Social Network Generation

We generated several graphs with the aid of the graph generator proposed by
Lancichinetti et al. [23]. This tool generates graphs that have the character-
istics of social network graphs and allows us to compare the performance of
the strategies for different graph sizes and densities. The seven parameters used
to configure the graphs are the following: the number of nodes, the maximum
degree, the average degree, the minimum community size, the maximum com-
munity size, the degree distribution exponent, the community size distribution
exponent and the mixing factor.

Table 1 shows the different graphs we have created for the experiments and
the values for the parameters used to generate them. We have used six different
graphs in our experiments. Four of them have the same size, 500K nodes, and we
increase the number of edges by increasing the maximum and average degree, and
the minimum and maximum community sizes. The degree distribution exponent
was set to 2, the community size distribution exponent was set to 1 and the
mixing factor which was set to 0.2. All of them are set by default in the software
to make the graphs adapt to the characteristics of social data graphs [23].

In the experiments we refer to the layout output by the graph generator
as RANDOM. It becomes the baseline of our testing workbench. Additionally,
the graph generator provides information about the communities created, i.e.
nodes that belong to the same community. We use this information to know the
communities created by the graph generator for the 1,000K node graph, to avoid
using the community detection algorithm, which is computationally expensive.

5 Experiments

5.1 Comparison of Layout Methods

In this section, we compare the different methods previously described, for the
social network with 500K nodes and an average of 160 nodes per edge. Each
observation is obtained as follows: we execute ten series of ten executions of
the BFS traversal algorithm for a fixed graph layout, starting each series from
a different node selected at random. Our reported observation is the average
execution time of the 100 measurements. The results for the execution of the
DFS traversal follow a similar trend as the BFS, and can be found in [34].

564 A. Prat-Pérez, D. Dominguez-Sal, and J.L. Larriba-Pey

Fig. 1. Average execution time of BFS for different layouts. The graph has 500K nodes
and 160 edges per node on average.

In Figure 5.1(a), we show the average execution time for the previously de-
scribed BFS traversal experiment. The leftmost bar in each plot corresponds to
the original graph with the nodes laid out in the order given by the network data
generator. We observe that all the reorganization techniques under test provide
a significant reduction of the execution time because of a better spatial locality.

Among all the techniques that we are testing, COM is the best layout in
terms of performance. It improves the performance of the second best algorithm
by 18% and over the basic layout by 58%. Regarding the previously published
techniques, BFSL, CUTHILL, SPECTRAL and GPART, we observe that reduce
the execution time by a similar amount of time, approximately 28%, which is
not as good as for COM.

CUTHILL reorganizes the data in the matrix in blocks of nodes that have
a high connectivity, and therefore the execution time is reduced. On the other
hand, BFSL is effective because it groups the nodes that are accessed in sequence
in a BFS traversal. However, this locality is better for the first nodes of the
traversal than for the rest. If the BFS traversal started from a different node
than the one selected to build the layout, then the nodes would be accessed in
a very different order, and thus it would not get such a good locality. In order
to deal with this problem, BFSL(x) clusters the groups of nodes with a depth
limit. BFSL(x) detects groups of x nodes with spatial locality. This intuition is
confirmed by Figure 5.1, which shows that BFSL(128) is better than the BFSL.
We note that BFSL(x) resembles a simple community detection algorithm of
fixed size, and thus it seems natural that COM, which is more precise setting
the communities, performs better.

5.2 Scalability Analysis

The scalability of the algorithms is very important because we aim at arranging
layouts for arbitrarily large or dense graphs. In this experiment, we test the
speedup trends of the different layout techniques with respect to the size of the
graph. We vary the two dimensions of the graph size: the number of edges, and
the number of nodes.

Figure 2 shows the performance of BFS for graphs with a variable number of
edges. According to previous studies, typical graphs have an average number of

Social Based Layouts for the Increase of Locality in Graph Operations 565

Fig. 2. Speedup of BFS for graphs with
different edge densities. The number of
nodes is fixed to 500K.

Fig. 3. Speedup of BFS for graphs with
different number of nodes. The average
number of edges per node is 40.

edges that range from a few units to a few hundred units [24, 12]. We observe
that all the techniques improve their locality on denser graphs because graphs
with more edges have matrices where more nodes can be clustered together. We
see that COM is the algorithm with the best performance for all the tested edge
densities. The detection of communities is flexible to locate groups of nodes that
are very connected with respect to the density of the rest of the graph, which is
independent of the average edge degree.

Figure 3 shows the evolution of the performance for varying numbers of nodes
using BFS. We observe that state of the art approaches are stable with an
approximate speedup of 1.20. However, COM is able to obtain speedups of at
least 1.30, and up to 1.37. This happens because if the number of nodes is
larger but the average number of edges is constant, then the probability that
two random nodes are connected is smaller, and thus the graph is sparser. COM
detects these clusters of nodes and groups them in nearby regions of memory.
For the rest of layouts, the arrangement improves the speedup over RANDOM
but below COM.

Overall, BFSL, BFSL(x), SPECTRAL and GPART did not prove better than
CUTHILL. So, in the following sections, we will use CUTHILL as the baseline.

5.3 Community Size Discussion

In our previous experiments, we showed that COM is the best algorithm in terms
of performance and scalability. However, as already mentioned in Section 3, the
detection of communities is an expensive computing operation. Thus, we propose
COM(x), which is discussed in this section.

Figure 4 depicts the preprocessing time to generate the layout of a 100K
and 1,000K node graph in logarithmic scale. We were not able to compute the
communities for the largest graph because it exceed three computing days. For
this particular configuration, we used the communities provided by the graph
generator for estimating the speedup of COM. In Figure 4, we see that COM(x)
reduces the search space to find the community to a subset of x nodes, which is
very effective to reduce the preprocessing time. For example, COM(2048) has a
preprocessing time comparable to CUTHILL.

566 A. Prat-Pérez, D. Dominguez-Sal, and J.L. Larriba-Pey

Fig. 4. Preprocessing time for arranging
the graph layout for 100K and 1000K
nodes and 160 edges per node

Fig. 5. Speed up of BFS for different lay-
outs for 100K and 1000K nodes and 160
edges per node

Fig. 6. Number of L1 misses of BFS for
500K nodes and 160 edges per node

Fig. 7. Number of L2 misses of BFS for
500K nodes and 160 edges per node

In Figure 5, we show the speedup of the BFS traversal for the graphs of 100K
and 1,000K nodes. We observe that CUTHILL and COM(2048) behave similarly
with respect to the traversal speedup. Nevertheless, the values between 2048 and
the full graph show a progressive increase in the speedup for COM(x) which is far
above CUTHILL. Large values of x provide better overall performance because
larger subsets of nodes are more likely to contain the large communities.

Given that for very large graphs the larger communities tend to increase too,
it is necessary to set large values of x in order to detect these communities. Al-
though the computational time for COM(2048) is still comparable to CUTHILL,
we obtained a performance speedup slightly worse for this configuration. Nev-
ertheless, if we set the limit higher to ease the location of large communities,
such as COM(32768), the speedup is over CUTHILL. All in all, COM(x) is an
efficient approach that addapts to the necessities of the graph application by
adjusting the value of the parameter x.

6 Profiling

In this section, we evaluate the behavior of the architecture at hand with a profile
of the execution of BFS. We repeated the experiments reported in Section 5.1
with the Oprofile daemon activated [28]. We measure the main factors that
determine the memory performance of an application, which are the number
of misses in the memory hierarchy of the processor (the number of misses in
the L1 and L2 caches). We report our observations in Figures 6-7. For each of

Social Based Layouts for the Increase of Locality in Graph Operations 567

the executions, we divided the measure into the accesses to the two main data
structures of the traversals: (a) the boolean vector that indicate whether a node
is visited or not and (b) the adjacency lists.

Regarding the cache hierarchy, in Figure 6 we observe that the number of
misses in the L1 cache diminishes with any rearrangement of the graph under
study. However, we observe that the reduction is not homogeneous between the
accesses to the two data structures. We observe that the number of misses to
the vector is up to one order of magnitude larger than to the adjacency lists.
Each time a node is visited, the traversal checks whether its neighbors have been
visited or not in order to continue the exploration. Since COM arranges the nodes
by dense regions and there are more edges inside the community than outside,
then it is more likely that the neighboring nodes in the graph lay contiguous in
memory. We also find that the number of misses to the adjacency lists by COM
is smaller and thus, performs better. Although the volume of cache misses is
smaller than for the visited vector, we find it is less relevant fo the execution
time.

When we turn to the analysis of the L2, in Figure 7 we observe that the
behavior is different. The fraction of misses to the boolean vector is one order of
magnitude smaller than to the adjacency lists. This is because the boolean vector
fits in the L2 cache but not in the L1. Therefore, the data structure to optimize is
the adjacency lists in contrast to the boolean vector for L1. Nevertheless, COM
is also the algorithm that reduces more the misses to the adjacency lists.

The profiling of the traversals demonstrates that our performance improve-
ment comes from a smaller number of misses in when accessing both caches,
specially for L1 which produces the largest benefit.

7 Conclusions and Future Work

The research described in this paper has the objective to improve the perfor-
mance of graph algorithms by improving the spatial locality of the in-memory
graph representation. We have departed from the conjecture that the nodes that
belong to a community are spatially related and have a significant importance
in shaping the traversals of graph algorithms. Our first important result shows
that layouts based on communities like the one we propose, COM, improves the
performance of common graph algorithms more significantly than other state
of the art layouts because of a better usage of the cache hierarchy. Moreover,
for graph traversals, COM works better in laying out the graphs than the same
traversal algorithms used as a layout strategy.

Our second important result is related to the cost of community detection in
large graphs. Given that this is a very expensive procedure, we propose trun-
cated approaches to layout the graph based on community detection. This new
technique, called COM(x), is able to preprocess data at a comparable speed to
previous state of the art proposals and gets results comparable to COM. Further-
more, the quality of the layout is proportional to the value of the parameter “x”
while the preprocessing speed is inversely proportional. This behaviour allows
the user to adjust the value of the parameter “x” according to his necessities.

568 A. Prat-Pérez, D. Dominguez-Sal, and J.L. Larriba-Pey

The future of our research will go towards the adaptation of community based
techniques to environments where graphs have additional information besides the
graph structure. Our main focus goes towards the reorganization of attributed
and labeled graphs (i.e. typed graphs) where the nodes and edges have associated
information that can be taken into account for improving the speed and quality
to find communities in the graph.

References

1. Al-Furaih, I., Ranka, S.: Memory hierarchy management for iterative graph struc-
tures. In: IPPS/SPDP, pp. 298–302 (1998)

2. Angles, R., Gutiérrez, C.: Survey of graph database models. ACM Comput.
Surv. 40(1), 1–39 (2008)

3. Barnard, S., Simon, H.: Fast multilevel implementation of recursive spectral bisec-
tion for partitioning unstructured problems. CPE 6(2), 101–117 (1994)

4. Baswana, S., Sen, S.: Planar graph blocking for external searching. Algorith-
mica 34(3), 298–308 (2002)

5. Bender, M.A., Cole, R., Demaine, E.D., Farach-Colton, M.: Scanning and travers-
ing: Maintaining data for traversals in a memory hierarchy. In: Möhring, R.H.,
Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 139–151. Springer, Heidelberg
(2002)

6. Mirza, B.J., Keller, B.J., Ramakrishnan, N.: Studying recommendation algorithms
by graph analysis. JIIS 20(2), 131–160 (2003)

7. Brown, K., Otasek, D., Ali, M., McGuffin, M., Xie, W., Devani, B., van Toch,
I.L., Jurisica, I.: Navigator: Network analysis, visualization and graphing toronto.
Bioinformatics 25(24), 3327–3329 (2009)

8. Clauset, A., Newman, M., Moore, C.: Finding community structure in very large
networks. Physical Review E 70(6) (2004)

9. Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In:
Proceedings of the 1969 24th National Conference, pp. 157–172. ACM, New York
(1969)

10. Dourisboure, Y., Geraci, F., Pellegrini, M.: Extraction and classification of dense
communities in the web. In: WWW, pp. 461–470 (2007)

11. Duckham, M., Kulik, L.: Simplest Paths: Automated Route Selection for Naviga-
tion. In: Kuhn, W., Worboys, M.F., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825,
pp. 169–185. Springer, Heidelberg (2003)

12. Facebook: Press room - statistics,
http://www.facebook.com/press/info.php?statistics

(Last retrieved in January 2010)
13. Flake, G., Lawrence, S., Giles, C.: Efficient identification of web communities. In:

KDD, pp. 150–160 (2000)
14. Flake, G., Lawrence, S., Giles, C., Coetzee, F.: Self-organization and identification

of web communities. IEEE Computer 35(3), 66–71 (2002)
15. Gibbs, N., Poole, J., Stockmeyer, P.: An algorithm for reducing the bandwidth

and profile of a sparse matrix. SIAM Journal on Numerical Analysis 13(2), 236–
250 (1976)

16. Girvan, M., Newman, M.E.: Community structure in social and biological networks.
PNAS 99(12), 7821–7826 (2002)

http://www.facebook.com/press/info.php?statistics

Social Based Layouts for the Increase of Locality in Graph Operations 569

17. Gómez-Villamor, S., Soldevila-Miranda, G., Giménez-Vañó, A., Mart́ınez-Bazan,
N., Muntés-Mulero, V., Larriba-Pey, J.: Bibex: a bibliographic exploration tool
based on the dex graph query engine. In: EDBT, pp. 735–739 (2008)

18. Han, H., Tseng, C.: Exploiting locality for irregular scientific codes. TPDS, 606–618
(2006)

19. Ino, H., Kudo, M., Nakamura, A.: Partitioning of web graphs by community topol-
ogy. In: WWW, pp. 661–669 (2005)

20. Ivanciuc, O., Balaban, A.: Graph theory in chemistry. In: The Encyclopedia of
Computational Chemistry, pp. 1169–1190 (1998)

21. Musia�l, K., Kazienko, P., Bródka, P.: User position measures in social networks.
In: SNA-KDD, pp. 1–9. ACM, New York (2009)

22. Karypis, G., Kumar, V.: METIS: Unstructured graph partitioning and sparse ma-
trix ordering system, vol. 2. The University of Minnesota (1995)

23. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing com-
munity detection algorithms. PRE 78(4) (2008)

24. Leskovec, J., Lang, K., Dasgupta, A., Mahoney, M.: Statistical properties of com-
munity structure in large social and information networks. In: World Wide Web
Conference, pp. 695–704 (2008)

25. Mart́ınez-Bazan, N., Muntés-Mulero, V., Gómez-Villamor, S., Nin, J., Sánchez-
Mart́ınez, M., Larriba-Pey, J.: Dex: high-performance exploration on large graphs
for information retrieval. In: CIKM, pp. 573–582 (2007)

26. Newman, M., Girvan, M.: Finding and evaluating community structure in net-
works. Physical Review E 69(2), 026113 (2004)

27. Niewiadomski, R., Amaral, J.N., Holte, R.: A performance study of data layout
techniques for improving data locality in refinement-based pathfinding. JEA 9, 1–2
(2004)

28. Oprofile: Oprofile documentation, http://oprofile.sourceforge.net/docs/
(Last retrieved in January 2010)

29. Padrol-Sureda, A., Perarnau-Llobet, G., Pfeifle, J., Muntés-Mulero, V.: Overlap-
ping community search for social networks. In: ICDE, pp. 992–995 (2010)

30. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community
structure of complex networks in nature and society. Nature 435(7043), 814–818
(2005)

31. Papadimitriou, C.: The np-completeness of the bandwidth minimization problem.
Computing 16(3), 263–270 (1976)

32. Park, J., Penner, M., Prasanna, V.: Optimizing graph algorithms for improved
cache performance. IEEE TPDS 15(9), 769–782 (2004)

33. Phillips, C., Swiler, L.: A graph-based system for network-vulnerability analysis.
In: NSPW, pp. 71–79 (1998)

34. Prat-Pérez, A.: Master thesis: Social based layouts for the increase of locality in
graph operations (2010), http://www.dama.upc.edu

35. Barnard, S.T., Pothen, A., Simon, H.D.: A spectral algorithm for envelope reduc-
tion of sparse matrices. In: SC, pp. 493–502 (1993)

36. Vitter, J.: Algorithms and data structures for external memory. FTTCS 2(4), 305–
474 (2006)

37. Wilson, P., Lam, M., Moher, T.: Effective “static-graph” reorganization to improve
locality in garbage-collected systems. In: PLDI, pp. 177–191 (1991)

http://oprofile.sourceforge.net/docs/
http://www.dama.upc.edu

Generating Random Graphic Sequences�

Xuesong Lu and Stéphane Bressan

School of Computing,
National University of Singapore
{xuesong,steph}@nus.edu.sg

Abstract. The graphs that arise from concrete applications seem to
correspond to models with prescribed degree sequences. We present two
algorithms for the uniform random generation of graphic sequences. We
prove their correctness. We empirically evaluate their performance. To
our knowledge these algorithms are the first non trivial algorithms pro-
posed for this task. The algorithms that we propose are Markov chain
Monte Carlo algorithms. Our contribution is the original design of the
Markov chain and the empirical evaluation of mixing time.

1 Introduction

In this paper we are interested in the random generation of graphic sequences.
The problem is trivial if one wishes to generate graphic sequences according to
the underlying graph distribution. The problem is particularly difficult if one
wishes to generate graphic sequences uniformly at random.

There is evidence that useful graphs in most applications domains follow a
prescribed degree sequence or degree law (typically the power law). Numerous
algorithms have been developed that generate graphs from prescribed degree se-
quences [1–3] and laws [4] or that evaluate their structure and dynamics [5]. The
latter example mines and evaluates the interestingness of motifs in all kinds of
graphs such as transcription networks, ecological food webs and neuron synaptic
connection networks.

It is therefore necessary to provide algorithms that generate graphic sequences
(realizable degree sequences), in particular uniformly at random, in order to eval-
uate these algorithms. Using random graphs or graphic sequence with an under-
lying distribution of random graphs would neglect rare but possibly significant
graphic sequences.

The rest of the paper is organized as follows. Section 2 introduces preliminary
definitions and results as well overviews the relevant related work. Section 3
presents two algorithms for the uniform generation of random graphic sequences.
Section 4 presents an empirical evaluation of the effectiveness and efficiency of
the algorithms proposed. Finally, we conclude in Section 5.

Further discussions, results and detailed proofs are available in [28].

� This research is supported by NUS grant R-252-000-328-112.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part I, LNCS 6587, pp. 570–579, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Generating Random Graphic Sequences 571

2 Background and Related Work

2.1 Degree Sequences

Without loss of generality and for the sake of simplicity of exposition we consider
simple graphs, that is undirected graphs without self-loops and multiple edges.
The degree sequence of a graph [26] is the non-increasing sequence of natural
numbers corresponding to the degrees of vertices in G.

For a variety of applications, authors have considers the realizability, construc-
tion, enumeration and, less so, counting and generation of graphs with prescribed
degree sequences. The list of applications is long and increasing. For instance, the
authors of [14] assess the interest of data mining results by comparing them with
the results obtained from mining random graphs with the same degree sequence.
Interesting patterns and rules are those who are specific to the original graph
rather than those frequently appearing in graphs with the same degree sequence.
The authors of [10] propose a notion of k -degree anonymity and anonymization
algorithms for privacy preservation in graphs in general and in social networks
in particular. In this approach, identity disclosure and its prevention depend and
rely on degree sequence.

One particularly interesting problem is the random generation of graphs with
prescribed degree sequences. The authors of [1] present and compare three
mainstream algorithms: a näıve configuration algorithm that is painstakingly
matching stubs under the prescribed sequence constraints, a local optimization
algorithm and a Markov Chain Monte Carlo algorithm called the switching algo-
rithm. Recently, the authors of [3] have proposed a polynomial time algorithm
that avoids the drawbacks of backtracking and uncontrolled rejection of the three
approaches above. The exact problem statement may vary depending on the na-
ture of the graph and on additional constraints. For instance, the authors of
[2] consider the uniform generation of random simple connected graphs with a
prescribed degree sequence.

Other applications need to determine the structure and dynamics of graphs
with prescribed degree sequences. For instance, the authors of [5] mine and
evaluate the significance of motifs in transcription networks, ecological food webs
and neuron synaptic connection networks. The authors of [6] investigate the
number of vertices and the number of cycles in the largest component of random
graphs with a given degree sequence. Connected components [8] and Hamilton
cycles [7] are also investigated in the graphs with prescribed degree sequences.

2.2 Graphic Sequences

Therefore it is important to consider, upstream from the problems of graphs
with prescribed degree sequences, the realizability, construction, enumeration,
counting and generation of degree sequences themselves.

However, not every non-increasing sequence of natural numbers is a degree se-
quence. Non-increasing sequence of natural numbers that is the degree sequence
of a graph is called a graphic sequence [26] or a realizable degree sequence.

572 X. Lu and S. Bressan

The realizability of degree sequences is first investigated by Havel [17]. Hakimi
[16] then complements the work and obtains a sufficient and necessary condition
for a degree sequence to be graphic. The authors of [22] shows the equivalence
of seven previously proposed necessary and sufficient criteria for a sequence of
integers to be graphic.

The original construction problem is trivial since a sequence of zeros is graphic.
We shall use this trivial graphic sequence as a starting state in the Markov Chain
Monte Carlo method that we devise in this paper.

As remarked by the Ruskey of [9] the enumeration of graphic sequences has
been largely overlooked. They propose an algorithm that enumerates graphic
sequences with prescribed length. The algorithm leverages Havel and Hakimi
condition [17]. The authors conjecture and verify experimentally that their al-
gorithm is running in constant amortized time, i.e. in time proportional to the
size of the output. Nevertheless its worst case complexity remains exponential
(see [23] and the following discussion about counting.)

Barnes and Savage propose in [24] an algorithm for the enumeration of graphic
sequences with prescribed sum.

There is no known analytical formula for the counting of graphic sequences
with prescribed length. Burns [23] gives a upper bound of 4n/(log n)C

√
n and a

lower bound of 4n/Cn.
Other authors have addressed related but different problems. Barnes, in [19],

proposes a recurrence and a polynomial-time algorithm for counting graphic
sequences with prescribed sum. Stanley, in [20] and Peled, in [21], count the
number of ordered graphic sequences (as opposed to graphic sequences which
are multi-sets) as a (exponential) function of the number of odd cycles in the
corresponding forest.

While the construction problem, without or with further constraints, is rather
simple, the counting problem seems difficult. This apparent paradox makes the
problem of counting, and the problem of generating graphic sequences uniformly
at random, interesting and challenging. To our knowledge, we are the first to
address the random generation of graphic sequences with prescribed length.

2.3 Random Walks on Markov Chains

Markov chain Monte Carlo (MCMC) algorithms are random walks on Markov
chains. They stem from the Monte Carlo methods used in applied statistics where
they were used for simulation and sampling [11]. Sinclair, in his monograph [12],
has formalized and popularized their use for random generation and counting.

An MCMC algorithm (see [12]) builds and randomly walks on a Markov chain
whose states correspond to the objects being sampled. If the Markov chain is
carefully designed, if it is finite and ergodic (irreducible and aperiodic), then
it has a stationary distribution. Namely, the stationary probability vector of
the Markov chain is π = πP , where P is the transition matrix of the Markov
chain. For instance, the stationary distribution is uniform if the Markov chain’s
graph is regular. It is not necessary that all the states of the Markov chain
correspond to object being sampled as a rejection mechanism can filter out those

Generating Random Graphic Sequences 573

undesirable objects. The mixing time of the Markov chain is the number of steps
t required to reach the stationary distribution. A sufficiently long random walk,
longer than the mixing time of the chain, will reach states at random according
approximately to the stationary distribution.

For a given generation problem the challenge is to devise a rapidly mixing
ergodic Markov chain whose states are the objects to be generated with the
desired stationary distribution. For example, the authors of [1] and those of [14],
among others, use MCMC algorithms to generate random graphs with prescribed
degree sequences. The authors of [15] use it to sample graph patterns. As their
Markov chain is not a regular graph, they modify the weights of certain edges,
as suggested by Sinclair in [12], to obtained the wished stationary distribution.
In this paper, we devise MCMC algorithms to generate graphic sequences with
prescribed length and graphic sequences with prescribed length and sum. Our
contribution is the design of the corresponding Markov Chains and the empirical
evaluation of the (rapid) mixing times.

3 Generating Random Graphic Sequences

We now present algorithms for the random generation of graphic sequences. It is
straightfoward to generate random graphic sequences with prescribed length, and
prescribed length and sum, according to the underlying distribution of graphs.
This is done by generating the corresponding random graph (see [13]) and ob-
serving its degree sequence. However generating graphic sequences uniformly at
random is more challenging. We propose two algorithms to generate uniformly
at random graphic sequences with prescribed length, and prescribed length and
sum, respectively. We contribute the first non trivial algorithms for these tasks
and study their effectiveness and efficiency. We also discuss practical optimiza-
tion of the algorithms.

3.1 Uniformly Random Graphic Sequence with Prescribed Length

We consider graphic sequences with prescribed length uniformly at random. We
call this model Du(n).

Here a näıve algorithm to generate sequences in the model Du(n) consists in
enumerating the different graphic sequences (for instance using the algorithm of
[9]) and then choosing one at random among the different ones. This approach
runs in exponential time.

A Markov chain Monte Carlo approach may be able to give us acceptable
approximations (almost uniform) algorithms in polynomial time. The two issues
at hand are the construction of the Markov chain and the evaluation of its mixing
time.

We can now present the construction of the Markov chain for the algorithm
Du(n) that we advocate. We consider a chain that contains both graphic and
non-graphic sequences. The initial state1 is the zero sequence as it is graphic. At
1 The initial state could be any other state and we use the words “state”and “sequence”

indistinctively.

574 X. Lu and S. Bressan

each transition, we increment or decrement by 1 one element in the sequence.
We only consider a new state if its elements are in the [0, n − 1] interval. We
only consider the new state if it is in non-increasing order. We do not consider
states that are non-graphic (This is tested using one of the available necessary
and sufficient conditions [16–18].) and whose sum is even. However the Markov
chain contains both graphic and non-graphic sequences. We call this Markov
chain MC, We call P its transition matrix.

We consider the Markov chain MC′ with transition matrix P 2. We cannot
directly construct and walk on MC′. Rather we will walk on MC and consider
even numbers of steps.

We remark that two adjacent states in MC cannot be both graphic or both
non-graphic. Therefore MC has the interesting property that states that cor-
respond to graphic sequences can only be reached in an even number of steps
(from a graphic state). This may look as if compromised the aperiodicity of the
Markov chain but it does not as far as we are concerned since we will walk even
numbers of steps and are only interested in graphic states.

Furthermore, because we have not included in MC the non-graphic states
whose sum is even, only graphic states can be reached in an even number of steps
(from a graphic state). We show in [28] that MC′ is irreducible and aperiodic,
therefore ergodic, and that all graphic states are included in MC′.

Unfortunately different states have different stationary probabilities. It is pos-
sible to modify the weight to make the stationary distribution uniform. We use
a technique suggested by Sinclair in [12] and used by the authors of [15], that
consists in allocating appropriate weights to the transitions. The result that au-
thorizes and justifies these changes is given by Cover and Thomas in [25]. Namely
the stationary probability of each state is proportional to the sum of the weights
of its incident transitions, with the following transition matrix P .

p(i,j) =

{
w(i,j)∑

l∈adj(i) w(i,l)
if j ∈ adj(i)

0 if j �∈ adj(i),
(1)

where w(i, j) is the weight of edge corresponding to the transition from state i
to j.

We show in [28] that the stationary probability of graphic state in MC′ is pro-
portional to the total weight incident to that state and the stationary probability
for a non-graphic state is zero for the transition Matrix P 2.

For state i and j where i and j are adjacent, the weight w(i, j) is assigned as
per Equation 2 where di is the degree of state i. Remember that i and j cannot
be both graphic or both non-graphic.

w(i, j) =

{
1
di

if i is a graphic state and j is a non-graphic state
1
dj

if i is a non-graphic state and j is a graphic state. (2)

Note that w(i, j) = w(j, i). Consequently, the sum of weights of every graphic
state is 1. We have shown that the stationary distribution of graphic states is
uniform.

Generating Random Graphic Sequences 575

In summary, Du(n) is an algorithm that builds and randomly walks in the
Markov chain MC with transition matrix P , yet outputs only evenly (or oddly,
depending on the initial state) reachable states. It simulates the ergodic Markov
chain MC′ with transition matrix P 2 which has a uniform stationary distribution
thanks to a modification of the weights in MC. The algorithm is illustrated in
Algorithm 1. The parity of t depends on the initial state.

Algorithm 1. Algorithm Du(n)
Input: n : the length of the sequence; t : the steps of random walk
Output: DS : a graphic sequence generated from uniform distribution

1 Start from any initial state S0 of non-increasing sequence;
2 i = 1;
3 while i ≤ t do
4 Compute locally the transition matrix P ;
5 Transfer from state Si−1 to Si according to P ;
6 i = i + 1;
7 end
8 DS = St;

3.2 Uniformly Random Graphic Sequence with Prescribed Length
and Sum

We consider random graphic sequences with prescribed length and sum uniformly
at random. We call this model Du(n, s).

We propose an algorithm, which we call Du(n, s). It is also a Markov chain
Monte Carlo algorithm. The Markov chain in which Du(n, s) is walking is similar
to the one in which Du(n) is walking. However Du(n, s) considers less states
than Du(n) since the graphic sequences of the model Du(n, s) are only those
with prescribed sum s. The states in the Markov chain in which Du(n, s) is
walking are restricted to those that correspond to sequences with sum s , for
graphic states and s − 1 and s + 1, for non-graphic states. We do not illustrate
the algorithm as it is a simple variation of Algorithm 1.

3.3 Practical Optimization for Du(n)

A practical optimization for Du(n) is based on the observation that complement
graphs have related graphic sequences. We define the complement sequence of a
graphic sequence (d1, d2, . . . , dn) as (n − 1 − dn, n − 1 − dn−1, . . . , n − 1 − d1).
In [28] we prove that the complement sequence of a graphic sequence is graphic.
The proof uses Erdös-Gallai Lemma [18].

The number of states that Algorithm 1 visits can then be reduced to half.
The Markov chain only includes states that correspond to sequences with sum of
degrees less than or equal to n(n− 1)/2. For every random sequence generated,
we then further toss a coin to decide whether we output the sequence or its
complement (or keep the sequence or discard it for those sequences who equal
their complement.)

576 X. Lu and S. Bressan

4 Performance Evaluation

In this section, we empirically evaluate the effectiveness and efficiency of the
proposed algorithms. We implement the algorithms and run the experiments on
a Microsoft Windows 7 machine with an Intel Core 2 Quad 2.83G CPU and 3GB
memory. All the algorithms are implemented using Visual C++ 9.0.

The effectiveness and efficiency of Du(n) and Du(n, s) are evaluated by mea-
suring the fitness of a sample generated by the algorithm to the uniform dis-
tribution after each transition. We use for that purpose the standard deviation.
We have verified and confirmed the results and the conclusions below with other
tests of fitness such as χ2 and Jensen-Shannon divergence. We evaluate the ef-
ficiency, that is the number of steps, needed to achieve a desired effectiveness,
measured by the test of fitness.

4.1 Performance of Du(n)

We vary the length n of the sequences from 3 to 11 for Du(n). We measure
the standard deviation for number of steps in MC varying from n × (n + 1) to
10 × n × (n + 1) (there are half this number of steps in MC′) in increments of
n × (n + 1).

Figure 1 illustrates the standard deviation for varying number of steps for
Du(n). For each n the number of generated graphic sequences is k × d(n) where
d(n) is the number of distinct graphic sequences of length n and k = 100 in the
experiments. The numbers of distinct graphic sequences of some lengths can be
found in A004251 of Sloane and Plouffe’s encyclopedia [27]. We observe from

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

n(n+1) 2n(n+1) 3n(n+1) 4n(n+1) 5n(n+1) 6n(n+1) 7n(n+1) 8n(n+1) 9n(n+1) 10n(n+1)

S
ta

nd
ar

d
D

ev
ia

tio
n

fr
om

 th
e

U
ni

fo
rm

 d
is

tr
ib

ut
io

n

Steps of Random Walk

n=3
n=4
n=5
n=6
n=7
n=8
n=9
n=10
n=11

Fig. 1. Standard Deviation from Uni-
form for varying number of steps for
Du(n) for different n

 0

 50

 100

 150

 200

 250

 300

 350

 10 20 30 40 50 60 70 80 90 100

R
un

ni
ng

 T
im

e
(S

ec
on

d)

Number of Vertices

Du(n)

Fig. 2. Running time of Du(n)

Figure 1 that the algorithm is quickly reaching a minimum standard deviation
(which is not 0 because of the parameter k). We can also see that this empirical
mixing time increases with n. Empirically, we conservatively estimate the mixing
time to be n3 number of steps. Figure 2 shows the average running time for the
generation of 10 graphic sequences of Du(n) for n varying from 10 to 100 in
increments of 10. The curve is expected to be of the order of n3 by construction.

Generating Random Graphic Sequences 577

It however reveals the actual value of a high constant which is the cost of one
step in the Markov chain. We further notice that this constant depends on n.
Therefore the actual complexity of the algorithm should combine the number of
steps with the processing at each step. We can generate a graphic sequence of
100 elements uniformly at random in 340 seconds.

The mixing time and the running time can be effectively divided by 2 using
the practical optimization that we have proposed. Figure 3 and Figure 4 show
the mixing and running performance of Du(n) with the practical optimization.
We can generate a graphic sequence of 100 elements uniformly at random in 160
seconds.

 0

 100

 200

 300

 400

 500

 600

 700

n(n+1) 2n(n+1) 3n(n+1) 4n(n+1) 5n(n+1) 6n(n+1) 7n(n+1) 8n(n+1) 9n(n+1) 10n(n+1)

S
ta

nd
ar

d
D

ev
ia

tio
n

fr
om

 th
e

U
ni

fo
rm

 d
is

tr
ib

ut
io

n

Steps of Random Walk

n=3
n=4
n=5
n=6
n=7
n=8
n=9
n=10
n=11

Fig. 3. Standard Deviation from Uni-
form for varying number of steps for
Du(n) with the practical optimization
for different n

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 10 20 30 40 50 60 70 80 90 100

R
un

ni
ng

 T
im

e
(S

ec
on

d)

Number of Vertices

Optimized Du(n)

Fig. 4. Running time of Du(n) with
the practical optimization

4.2 Performance of Du(n, s)

We vary the length n of the sequences from 3 to 13 for Du(n, s). We fix the
value of s to 2×�n×(n−1)

4 . With this value of s, the number of distinct graphic
sequences is the largest for length n. We measure the standard deviation for
number of steps in MC varying from 2 to 20 in increments of 2.

Figure 5 illustrates the standard deviation for varying number of steps for
Du(n, s). For each n the number of generated graphic sequences is k × d(n, s)
(k = 100 in the experiments) where d(n, s) is the number of distinct graphic
sequences of length n and sum s = 2 × �n×(n−1)

4 . The standard deviation for
n = 3 and s = 4 is always 0 because the graphical sequence can only be (2, 1, 1).
The standard deviations for lower values of n and s are not stable because of
the small numbers of distinct graphic sequences. Empirically, we conservatively
estimate the mixing time to be n number of steps. Figure 6 shows the average
running time for the generation of 10 graphic sequences of Du(n, s) for n varying
from 1000 to 10000 in increments of 1000. The curves are expected to be of the
order of n by construction. Similarly to Du(n), they reveal the cost of each step
in the Markov chain. We can generate a graphic sequence of 10000 elements with
sum 49, 995, 000 uniformly at random in 4200 seconds.

578 X. Lu and S. Bressan

 0

 5

 10

 15

 20

 25

 30

2 4 6 8 10 12 14 16 18 20

S
ta

nd
ar

d
D

ev
ia

tio
n

fr
om

 th
e

U
ni

fo
rm

 d
is

tr
ib

ut
io

n

Steps of Random Walk

n=3, s=4
n=4, s=6
n=5, s=10
n=6, s=16
n=7, s=22
n=8, s=28
n=9, s=36
n=10, s=46
n=11, s=56
n=12, s=66
n=13, s=78

Fig. 5. Standard deviation from Uni-
form for varying number of steps for
Du(n, s) for different n and s = 2 ×
�n×(n−1)

4

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
un

ni
ng

 T
im

e
(S

ec
on

d)

Number of Vertices

Du(n,s)

Fig. 6. Running time of Du(n, s), for n
varies in {1000, 2000, . . . , 10000}

5 Conclusion

We have presented two new algorithms for the uniform random generation of
graphic sequences. We have proved their correctness. We have empirically eval-
uated their performance. To our knowledge these algorithms are the first non
trivial algorithms proposed for this task. There is strong evidence that the prob-
lem, if not #P-complete, is intrinsically difficult. The algorithms that we propose
are Markov chain Monte Carlo algorithms. Our contribution is the original design
of the Markov chain and the empirical evaluation of its mixing time. Neverthe-
less the practical problem of generating graphic sequences uniformly at random
remains open for large lengths. We are currently investigating alternative ap-
proaches such as local optimization approaches.

References

1. Milo, R., Kashtan, N., Itzkovitz, S., Newman, M.E.J., Alon, U.: On the uniform
generation of random graphs with prescribed degree sequences. Arxiv preprint
cond-mat/0312028 (2003)

2. Viger, F., Latapy, M.: Efficient and simple generation of random simple connected
graphs with prescribed degree sequence. In: Wang, L. (ed.) COCOON 2005. LNCS,
vol. 3595, pp. 440–449. Springer, Heidelberg (2005)

3. Genio, C.I.D., Kim, H., Toroczkai, Z., Bassler, K.E.: Efficient and exact sampling
of simple graphs with given arbitrary degree sequence. CoRR abs, 1002.2975 (2010)

4. Gkantsidis, C., Mihail, M., Zegura, E.: The Markov chain simulation method for
generating connected power law random graphs. In: Proc. 5th Workshop on Algo-
rithm Engineering and Experiments (ALENEX). SIAM, Philadelphia (2003)

5. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network
motifs: Simple building blocks of complex networks. Science 298, 824–827 (2002)

6. Molloy, M., Reed, B.: A critical point for random graphs with a given degree
sequence. Random Structures and Algorithms 6, 161–179 (1995)

7. Cooper, C., Frieze, A., Krivelevich, M.: Hamilton cycles in random graphs with a
fixed degree sequence. SIAM J. Discrete Math. 24(2), 558–569 (2010)

Generating Random Graphic Sequences 579

8. Chung, F., Lu, L.: Connected components in random graphs with given expected
degree sequences. Annals of Combinatorics 6(2), 125–145 (2002)

9. Ruskey, F., Eades, P., Cohen, B., Scott, A.: Alley CATs in search of good homes.
Congressus Numerantium 102, 97–110 (1994)

10. Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: SIGMOD (2008)
11. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their

applications. Biometrika 57(1), 97–109 (1970)
12. Sinclair, A.: Algorithms for Random Generation and Counting: A Markov Chain

Approach. Progress in Theoretical Computer Science. Birkhauser, Boston (1992)
13. Nobari, S., Lu, X., Karras, P., Bressan, S.: Fast Random Graph Generation. Ac-

cepted and to appear in EDBT (2011)
14. Gionis, A., Mannila, H., Mielikäinen, T., Tsaparas, P.: Assessing data mining re-

sults via swap randomization. In: SIGKDD, pp. 167–176 (2006)
15. Hasan, M.A., Zaki, M.: Musk: Uniform sampling of k maximal patterns. In: SIAM

Data Mining (2009)
16. Hakimi, S.: On the realizability of a set of integers as degrees of the vertices of a

graph. SIAM J. Applied Math. 10, 496–506 (1962)
17. Havel, V.: A remark on the existence of finite graphs (Hungarian). Časopis Pěst.

Mat. 80, 477–480 (1955)
18. Erdös, P., Gallai, T.: Graphs with prescribed degrees of vertices. Mat. Lapok (1960)
19. Barnes, T.: A recurrence for counting graphical partitions. The Electronic Journal

of Combinatorics 2(1) (1995)
20. Stanley, R.P.: A zonotope associated with graphical degree sequences (manuscript)

(1989); appeared in Applied Geometry and Discrete Math. Dimacs Series. AMS,
Providence (1991)

21. Peled, U.N., Srinivasan, M.K.: The polytope of degree sequences. Linear Algebra
Appl. 114, 349–377 (1989)

22. Sierksma, G., Hoogeveen, H.: Seven criteria for integer sequences being graphic.
Journal of Graph Theory 15(2), 223–231 (1991)

23. Burns, J.M.: The number of degree sequences of graphs. Phd thesis. Massachusetts
Institute of Technology (2007)

24. Barnes, T.M., Savege, C.D.: Efficient generation of graphical partitions. Discrete
Applied Mathematics 78, 17–26 (1997)

25. Cover, T.M., Thomas, J.A.: Elements of information theory. Chapter 4.3
26. Skiena, S.: Implementing discrete mathematics: combinatorics andgraph theory

with mathematica. Addison-Wesley, MA (1990)
27. Sloane, N., Plouffe, S.: The Encyclopedia of Integer Sequences. Academic Press,

London (1995)
28. Lu, X., Bressan, S.: Generating Random Graphic Sequences. School of Computing,

National University of Singapore, Technical Report TRA1/11 (January 2011)

Author Index

Adaikkalavan, Raman I-341
Agrawal, Divyakant I-2
Amalfi, Maria II-225
Ansiaux, Arnaud II-388
Artale, Alessandro II-225
Assent, Ira I-138
Aufaure, Marie-Aude II-413
Augsten, Nikolaus II-31

Bandos, Jean II-450
Bandyopadhyay, Subhadip II-400
Bao, Zhifeng II-429
Bellatreche, Ladjel II-438
Bennamane, Amyn II-388
Bhowmick, Sourav S. I-511, I-543,

II-463
Bouguettaya, Athman II-321
Bressan, Stéphane I-570

Cagnati, Alain II-388
Cai, Peng II-442
Cal̀ı, Andrea II-225
Cazalens, Sylvie II-210
Cećılio, José II-446
Chakravarthy, Sharma I-341
Chang, Ya-Hui I-466
Chao, Kun-Mao I-466
Cheema, Muhammad Aamir II-58,

II-104
Chen, Arbee L.P. II-235
Chen, Feng II-442
Chen, Gang II-149
Chen, Ke II-149
Chen, Lei I-123, I-284
Chen, Ling I-496
Chen, Yi II-467
Cheng, Josephine I-1
Chester, Sean II-367
Choi, Byron I-543
Choi, Dong-Wan II-266
Chung, Chin-Wan I-38, II-266
Costa, João II-446
Cui, Bin I-53

Das, Sudipto I-2
Deng, Jintian I-543
Ding, Guohui II-179
Dobbie, Gillian I-16
Dominguez-Sal, David I-558
Doulkeridis, Christos II-280
Du, Juan II-442

El Abbadi, Amr I-2
Elmore, Aaron J. I-2

Fan, Ju II-47
Fujino, Kazuhisa II-119
Fujiwara, Yasuhiro I-311
Furtado, Pedro II-446

Gao, Ming I-326
Gao, Xiaofeng I-372, II-335
Gao, Yuan II-149
Ge, Jiaqi II-450, II-454, II-458
Geesaman, Jerry II-450
Giacometti, Arnaud I-153
Gopalkrishnan, Vivekanand I-138
Goyal, Vikram II-251
Gu, Yu II-134, II-434
Guo, Deke I-284
Guo, Na II-434

Hacid, Hakim II-388
Han, Jiawei I-389
Han, Qiaosha I-53
Hasan, Mahady II-104
He, Yukai I-168
Hitaka, Toshio II-352
Hlaing, Aye Thida II-119
Hsiao, Hui-Fang I-224
Htoo, Htoo II-119
Hu, Haibo II-462
Hu, Haiyang I-300
Hu, Hua I-300
Huang, Zi I-269, II-1

Jiang, Daxin II-465
Jiang, Guochang I-300
Jiang, Nan I-300

582 Author Index

Jin, Cheqing I-326
Jin, Tao II-164
Jones, Josette II-450

Kalnis, Panos I-93
Kang, Yong-Bin II-16
Kazimianec, Michail II-31
Keng Pung, Hung I-93
Khouri, Selma II-438
Kidawara, Yutaka I-418
Kim, Sangjae I-404
Kiran, R. Uday I-183
Kitsuregawa, Masaru I-311
Kiyoki, Yasushi I-418
Koehler, Henning II-429
Kotani, Naoya II-352
Krishnaswamy, Shonali II-16

Laha, Arijit II-400
Lamarre, Philippe II-210
Larriba-Pey, Josep L. I-558
Lee, Jaehwan John II-458
Lee, Ken C.K. I-78
Lee, Min-Joong I-38
Lee, Sang-goo II-296
Lee, Yoon Joon I-404
Lei, Po-Ruey I-193
Li, Chuanwen II-134, II-434
Li, Fang II-458
Li, Fangfang II-134
Li, Guoliang II-47
Li, Hongyan I-389
Li, Jianxin I-481
Li, Xiao-Li I-22
Li, Yujia I-68
Li, Zhoujun I-269
Lin, Qianlu II-58
Lin, Rung-Ren I-466
Lin, Xuemin I-434, II-104
Liu, Chengfei I-481, I-528
Liu, Hechen I-357
Liu, Hong-Cheu II-195
Liu, Jiajun II-1
Liu, Jixue I-481
Liu, Mengchi I-16
Liu, Xiaoling I-68
Liu, Ziyang II-467
Lu, Chun-Ta I-193
Lu, Xuesong I-570

Ma, Haixin II-442
Madria, Sanjay Kumar II-251
Maeda, Akira II-73
Marcel, Patrick I-153
Martins, Pedro II-446
Mathur, Devika II-400
Meng, Xiaofeng I-208
Mondal, Anirban II-251

Nadungodage, Chandima Hewa II-458
Nayak, Richi II-377
Ng, See-Kiong I-22
Ng, Wilfred I-254
Nguyen, Hoang Vu I-138
Ning, Bo I-528
Nørv̊ag, Kjetil II-280

Ohsawa, Yutaka II-119
Onizuka, Makoto I-311

Padhariya, Nilesh II-251
Palakal, Mathew II-450
Papadimitriou, Panagiotis I-93
Papapetrou, Odysseas I-496
Park, Jaehui II-296
Pecenka, Dave II-450
Peng, Wen-Chih I-193
Pitt, Ellen II-377
Prat-Pérez, Arnau I-558
Probhakar, Sunil II-454
Provetti, Alessandro II-225

Qian, Weining II-442
Qin, Biao II-454
Qin, Xiongpai II-306
Qu, Qiang I-389
Quiané-Ruiz, Jorge-Arnulfo II-210

Raghuram, Sandeep II-450
Räıssi, Chedy I-93
Rani, Pratibha II-400
Reddy, P. Krishna I-183
Reddy, Raghunath II-400
Rosenthaler, Lukas II-93
Ruan, Chun I-239
Ryeng, Norvald H. II-280

Sathyesh, Rakesh II-454
Schneider, Markus I-357
Schuldt, Heiko II-93
Sha, ChaoFeng I-108

Author Index 583

Shankar, Roshan II-251
Shen, Heng Tao I-269, II-1
Shi, Baile I-68
Shi, Yan I-372, II-335
Shie, Bai-En I-224
Shou, Lidan II-149
Soh, Kheng Hong I-511
Sonehara, Noboru II-119
Song, Inchul I-404
Soulet, Arnaud I-153
Su, Ing-Jiunn I-193
Subotic, Ivan II-93
Suga, Yoshiharu II-352
Sun, Aixin II-463

Tan, Aloysius I-22
Tan, Zijing I-450
Tanaka, Katsumi II-83
Tezuka, Taro II-73
Thollot, Raphaël II-413
Thomo, Alex II-367
Tian, XiuXia I-108
Tinsley, Eric II-450
Tseng, Vincent S. I-224

Valduriez, Patrick II-210
Varadharajan, Vijay I-239
Venkatesh, S. II-367
Vlachou, Akrivi II-280

Wang, En Tzu II-235
Wang, Guoren I-284, II-179
Wang, Haixun II-462
Wang, Huiju II-306
Wang, Jianmin II-164
Wang, Jianyong I-168
Wang, Junhu I-481
Wang, Shan II-306
Wang, Wei II-58, II-467
Wang, Wen-Chi II-235
Wang, XiaoLing I-108
Wang, Yazhe I-78
Wang, Yitong I-68
Wang, Zhanwei II-306
Wang Ling, Tok I-16, II-429
Wen, Lijie II-164

Whitesides, Sue II-367
Wu, Weili I-372, II-335

Xia, Yuni II-450, II-454, II-458
Xiao, Chuan II-58
Xie, Long I-78
Xu, Jianliang I-543
Xue, Mingqiang I-93

Yamamoto, Yusuke II-83
Yamamuro, Masashi II-352
Yamamuro, Takeshi II-352
Yan, Da I-254
Yan, Xifeng I-389
Yang, Kai I-372
Yao, Junjie I-53
Ye, Zhen II-321
Yu, Ge II-134, II-434
Yu, Philip S. I-22, I-224, I-389
Yuan, Chengxiang I-300
Yuan, Mingxuan I-123
Yuan, Ye I-284

Zaslavsky, Arkady II-16
Zettsu, Koji I-418
Zhang, Can II-442
Zhang, Ce I-53
Zhang, Liyong I-450
Zhang, Rong I-418
Zhang, Weiming II-442
Zhang, Wenjie I-434, II-104
Zhang, Xiaoming I-269
Zhang, Yansong II-306
Zhang, Ying I-434
Zheng, Baihua I-78, II-462
Zhong, Jiaofei I-372, II-335
Zhou, Aoying I-108, I-326, II-442
Zhou, Chunjie I-208
Zhou, Lizhu I-168, II-47
Zhou, Minqi II-442
Zhou, Rui I-481
Zhou, Xiaofang II-1, II-321, II-429
Zhou, Yanhong I-53
Zhu, Feida I-389
Zhu, Gaoping I-434
Zhu, Ke I-434
Zhuang, Yi I-300

	Title Page
	Preface
	Organization
	Table of Contents – Part I
	Keynote Talks
	Smarter Planet: Empower People with Information Insights
	Database Scalability, Elasticity, and Autonomy in the Cloud
	Introduc
	Database Scalability in the Cloud
	Scalability
	Data Fusion: Multi-key Atomicity in Key-Value Stores
	Data Fission: Database Partitioning Support in DBMS

	Database Elasticity in the Cloud
	Database Autonomy in the Cloud
	Concluding Remarks
	References

	Ten Year Award
	What Have We Learnt from Deductive Object-Oriented Database Research?
	References

	Social Network
	ECODE: Event-Based Community Detection from Social Networks
	Introduction
	Related Work
	The Proposed Technique
	Problem Definition
	Virtual Links between Events
	Similarity Measures
	ECODE Algorithm
	Assign People to Corresponding Communities

	Experimental Results
	Conclusions
	References

	A User Similarity Calculation Based on the Location for Social Network Services
	Introduction
	Related Work
	Preliminary
	Location Category
	Significant Score
	Similarity Score
	Significant Score Propagation

	User Similarity Calculation
	Overall Process
	Order of Match Nodes
	User Similarity Calculation

	Experiment
	Dataset
	Finding a Similar User
	Performance of Proposed Method
	Top-k Location

	Conclusion
	References

	Modeling User Expertise in Folksonomies by Fusing Multi-type Features
	Introduction
	Expertise Evidence in Folksonomy
	Feature Correlation
	Expertise Evidences

	CRF Based Expertise Model in Folksonomy
	Model Formulation
	Parameter Learning

	Empirical Study
	Experimental Setup
	Quantitative Result

	Related Work
	Conclusion
	References

	Identifying Topic Experts and Topic Communities in the Blogspace
	Introduction
	Related Work
	Experts on a Specific Topic
	Clusters of Keywords
	Approach of Identifying Experts

	Blog Communities on a Specific Topic
	Some Symbols and Definitions about Blog Graph
	Identifying Topic Blog Communities

	Experiments
	Identifying Experts on a Specific Topic
	Identifying Topic Blog Communities

	Conclusion
	References

	Social Network and Privacy
	Utility-Oriented K-Anonymization on Social Networks
	Introduction
	Preliminaries and Related Work
	Structural Re-identification Attack and K-Anonymity
	Related Work

	Graph Utility Measurement
	Hierarchical Random Graph
	Constructing HRG
	Hierarchical Community Entropy

	HRG Based K-Anonymization
	Basic Idea and Algorithm Framework
	Estimating Local Structure Information
	Generating Candidate Edge Operation Set
	Refining Target Local Structure Information

	Experimental Evaluation
	Utility Loss v.s. Graph Size
	Utility Loss v.s. k

	Conclusion
	References

	Distributed Privacy Preserving Data Collection
	Introduction
	Related Work
	Problem Formulation
	The System and the Adversaries
	Notion of Privacy
	Using Secret Sharing

	Towards the Solution
	A Sketch of the Solution
	Technical Details

	Analysis
	Information Leakage
	γ-Concealing Property

	Experimental Evaluation
	Evaluation of γ-Concealing Property
	Evaluation of $Distance Preserving$ Mapping
	Evaluation of Utility Preservation
	Evaluation of System Time

	Conclusions
	References

	Privacy Preserving Query Processing on Secret Share Based Data Storage
	Introduction
	Preliminary
	Secret Share Scheme
	Data Division at DO
	Private Data Reconstruction at DR

	Storage Model and Privacy Preserving Index
	Storage Model
	Privacy Preserving Index

	Proposed Privacy Preserving Index
	Key Generation Function $key_generation$
	Index Creation Function $index_creation$

	Query Processing
	Experiments Evaluation
	Security Analysis
	Efficiency Evaluation

	Related Work
	Conclusions
	References

	Node Protection inWeighted Social Networks
	Introduction
	Problem Description
	Distance between Weight Sequences
	Absolute Distance
	Relative Distance
	Rate Distance

	Graph Construction Algorithm
	Algorithm Structure
	Assign New Weights
	Clustering
	Weight Adjustment

	Experiments
	DataSets
	Utilities
	Results

	Related Works
	Conclusion
	References

	Data Mining I
	An Unbiased Distance-Based Outlier Detection Approach for High-Dimensional Data
	Introduction
	Background and Literature Review
	Approach
	Outlier Score Function
	The HighDOD Method
	Theoretical Analysis

	Empirical Results and Analyses
	Conclusions
	References

	A Relational View of Pattern Discovery
	Introduction
	Basic Notions
	Relational Algebra
	Pattern Discovery

	Pattern-Oriented Relational Algebra
	Pattern-Oriented Attributes
	Cover, Semi-cover and Anti-cover Operators
	Domain Operator
	Scope of the Pattern-Oriented Relational Algebra

	Characterizing Pattern-Oriented Queries
	Downward Closed Query
	Local and Global Dependent Queries

	Rewriting Pattern-Oriented Queries
	Algebraic Laws Involving Cover-Like Operators
	Algebraic Reformulation of the Levelwise Algorithm

	Related Work
	Conclusion
	References

	Efficient Incremental Mining of Frequent Sequence Generators
	Introduction
	Problem Formulation
	Sequences and Generators
	Incremental Generator Mining

	GenTree: The Generating Tree
	The Concept of GenTree
	The Construction of GenTree
	The Node Type Switching of GenTree

	The IncGen Algorithm
	The IncGen-App Algorithm
	The IncGen-Ins and IncGen-Mix Algorithms

	Performance Study
	Test Environment and Datasets
	Performance Evaluation

	Related Works
	Conclusions
	References

	An Alternative Interestingness Measure for Mining Periodic-Frequent Patterns
	Introduction
	The Proposed Model and Pruning Techniques
	Proposed Model
	Pruning Techniques

	Proposed Algorithm
	ExPF-tree: Structure and Construction
	Mining ExPF-tree

	Experimental Results
	Conclusions
	References

	Data Mining II
	A Framework of Mining Semantic Regions from Trajectories
	Introduction
	Related Work
	A Framework of Mining Semantic Regions
	Overview
	Problem Formulation
	Discovering Semantic Regions
	Mining Frequent Semantic Regions

	Experiments
	Evaluation of Semantic Regions
	Accuracy of Frequent Semantic Regions

	Conclusion
	References

	STS: Complex Spatio-Temporal Sequence Mining in Flickr
	Introduction
	Preliminaries
	Problem Definition
	RelatedWork

	Approximation Algorithms
	Local Optimization Algorithms
	Global Optimization Algorithm

	Experimental Evaluation
	Conclusions and Future Work
	References

	Mining High Utility Mobile Sequential Patterns in Mobile Commerce Environments
	Introduction
	Related Work
	Problem Definition
	Proposed Methods
	Algorithm UMSP$_DFG$
	An Improved Tree-Based Method: An Improved Tree-Based Method: UMSP$_DFG$

	Experimental Results
	Conclusions
	References

	Reasoning about Dynamic Delegation in Role Based Access Control Systems
	Introduction
	An Overview of the Formal Framework
	Administrative Privilege Delegation Correctness
	Role and Access Right Assignment Correctness
	Degrees of Trust and Effective Trust
	Conflict Resolution
	Other Features

	Role Based Authorization Programs
	Syntax of RBAP
	Domain-Independent Rules

	Formal Semantics of RBAP
	Discussion and Related Work
	References

	Probability and Uncertainty
	Robust Ranking of Uncertain Data
	Introduction
	Probabilistic Data Model
	Related Work
	Robust Ranking Semantics
	U-Popk Algorithms
	Algorithm for Independent Tuples
	Algorithm for Tuples with Exclusion Rules

	Experiments
	Ranking Quality Comparison on IIP Iceberg Databases
	Scalability Evaluation

	Conclusion
	References

	Probabilistic Image Tagging with Tags Expanded By Text-Based Search
	Introduction
	Related Works
	Initial Tags
	Tags Expanding from Text-Based Search Result
	Initial Tags Denoising
	Tag Expansion
	Probability Flow

	Tag Refinement
	Correlation and Transition between Tags
	Tag Refinement

	Evaluations
	Dataset
	Image Tagging
	Image Retrieval

	Conclusions
	References

	Removing Uncertainties from Overlay Network
	Introduction
	Challenges and Our Contributions

	Probabilistic Lower Bounds of Query Delay of a Dynamic Overlay Network
	Topology Constructive and Data Placement Methods of Overlay Network
	Dynamic Multi-way Trie Tree Structure
	Mapping Overlay Network to Dynamic Trie Tree
	Data Placement Rule of Overlay Network
	Case Study

	Range Queries
	Performance Evaluation
	Conclusions
	References

	Probabilistic and Interactive Retrieval of Chinese Calligraphic Character Images Based on Multiple Features
	Introduction
	Background
	The PMF-Tree Index
	Preliminaries
	The Data Structure
	Building PMF-Tree
	Probabilistic k-NN Search Algorithm

	Experimental Results
	Effectiveness of the Retrieval Method
	Efficiency of PMF-Tree Index

	Conclusions
	References

	Stream Processing
	Real-Time Diameter Monitoring for Time-Evolving Graphs
	Introduction
	Contributions
	Problem Motivation

	Related Work
	Preliminary
	Monitoring the Diameter
	Ideas Behind G-Scale
	Reference Node Filtering
	Incremental Update

	Theoretical Analysis
	Accuracy
	Complexity

	Experimental Evaluation
	Efficiency and Scalability
	Effectiveness of Each Approach
	Exactness of the Monitoring Results

	Conclusions
	References

	Handling ER-topk Query on Uncertain Streams
	Introduction
	Our Contribution

	Data Models and Query Definition
	Our Solution
	domGraph
	probTree
	Handle a Request

	Experiments
	Related Work
	Conclusion
	References

	Seamless Event and Data Stream Processing: Reconciling Windows and Consumption Modes
	Introduction
	Integrated Event Stream Processing
	Event Consumption Modes
	Recent Consumption Mode
	Continuous Consumption Mode
	Chronicle Consumption Mode
	Cumulative Consumption Mode
	Consumption Modes in Other Systems

	Windows
	Tuple-based Window
	Time-based Window
	Summary

	Reconciliation of Windows and Consumption Modes
	Independent Approach
	Windows-Only Approach
	Hybrid Approach
	Analysis

	Conclusions and Future Work
	References

	Querying Moving Objects with Uncertainty in Spatio-Temporal Databases
	Introduction
	Related Work
	Modeling the Uncertainty of Moving Objects
	The Formalization of Uncertain Movements
	The Pendant Model as the Combination of Certain and Uncertain Movements
	Operations on the Pendant Model

	Spatio-Temporal Predicates with Uncertainty and Queries
	Definitions of Spatio-Temporal Uncertain Predicates
	Spatio-Temporal Uncertainty Queries

	Algorithms to Determine STUP
	Conclusions and Future Work
	References

	A Novel Hash-Based Streaming Scheme for Energy Efficient Full-Text Search in Wireless Data Broadcast
	Introduction
	Related Work
	Preliminary and System Model
	System Model
	Inverted List
	Hash Function and Collisions
	Data Structure of a Bucket

	Hash-Based Full-Text Search Methods
	Basic-Hash Data Streaming Scheme
	Merged-Hash Data Streaming Scheme
	Information Retrieval Protocol

	Performance Analysis
	Analysis for Basic-Hash
	Analysis for Merged-Hash

	Simulation and Performance Evaluation
	Comparison between $Basic-Hash$ and $Merged-Hash$
	Comparison with Other Methods

	Conclusion
	References

	Graph
	Efficient Topological OLAP on Information Networks
	Introduction
	Problem Formulation
	Techniques and Framework
	T-Distributiveness
	T-Monotonicity
	T-OLAP Query Processing Framework

	Experimental Results
	Synthetic Data
	Real Data

	Related Work
	Conclusion
	References

	An Edge-Based Framework for Fast Subgraph Matching in a Large Graph
	Introduction
	Preliminaries
	Filtering and Verification Framework
	Representing Vertices and Edges
	Vertex and Edge Signatures

	Pre-processing
	Filtering
	Selecting a Spanning Tree
	Discovering Candidate Vertices

	Verification
	Heuristics for Fast Verification
	The FastMatch Algorithm
	The GetQualifiedCandidateVertices Function
	Improving the Connection-Aware Forward Checking Heuristic
	Discussion

	Evaluation
	Effect of the Size of the Query Graph
	Effect of the Average Degree of the Query Graph

	Related Work
	Conclusions
	References

	Context-Sensitive Query Expansion over the Bipartite Graph Model for Web Service Search
	Introduction
	Motivation
	Bipartite Graph Modeling to Service Context
	Topic Sensitive Bipartite Graph Constructing

	Bipartite Graph-Based Query Expansion
	Terms Filtering
	Semantics Bridging between Application (Query) Space and Service Space
	Query Expansion

	Experimental Results
	Experiment Data Set
	Data Status
	Evaluation Metrics
	Performance

	Related Work
	Conclusion and Future Work
	References

	BMC: An Efficient Method to Evaluate Probabilistic Reachability Queries
	Introduction
	Background
	Problem Definition
	Preliminaries

	Framework
	Upper Bound Index
	Dynamic Monte Carlo Simulation
	Experiment
	Real Dataset
	Synthetic Dataset
	Accuracy

	Related Work
	Conclusion
	References

	XML
	Improving XML Data Quality with Functional Dependencies
	Introduction
	Preliminaries
	Problem Formulation
	Fixing Initial Conflicts Based on Hypergraph
	Resolving Violations Thoroughly
	Implementation
	Experimental Study
	Experimental Setting
	Experimental Results

	Conclusions
	References

	Identifying Relevant Matches with NOT Semantics over XML Documents
	Introduction
	Basic Definitions
	SLCA Nodes with NOT Semantics
	Relevant Matches with NOT Semantics

	The RELMN Algorithm
	Definitions
	Algorithm
	Time Complexity

	Properties of Monotonicity and Consistency
	Experimental Evaluation
	Precision and Recall
	Processing Time and Scalability

	Related Works
	Conclusions
	References

	Evaluating Contained Rewritings for XPath Queries on Materialized Views
	Introduction
	Preliminaries
	XPath Tree Pattern
	Useful Embedding

	Basic Algorithm
	Optimizing Techniques
	Pruning Rules
	Heuristic Rules
	Optimized Algorithm
	Discussion

	Experiments
	Average Case Study
	Best and Worst Case Study

	Related Work
	Conclusions
	References

	XStreamCluster: An Efficient Algorithm for Streaming XML Data Clustering
	Introduction
	Related Work
	Streaming XML Clustering with XStreamCluster
	Preliminaries
	LSH-Based Candidate Clusters Detection
	Bottom-Level Strategy: Bloom Filter Based Distance Calculation

	Experimental Evaluation
	Efficiency
	Scalability
	Clustering Quality

	Conclusions
	References

	XML and Graph
	Efficient Evaluation of NOT-Twig Queries in Tree-Unaware Relational Databases
	Introduction
	Preliminaries
	Encoding Scheme
	SUCXENT++ Schema and Its Limitations
	AncestorValue Attribute
	AncestorDeweyGroup Attribute

	Ancestor Group-Based Approach
	Ancestor Group Identifier
	Computation of Common Ancestors
	Evaluation of NOT-Twig Queries
	SQL Translation Algorithm

	Performance Study
	Query Evaluation Times

	Conclusions and Future Work
	References

	A Hybrid Algorithm for Finding Top-k Twig Answers in Probabilistic XML
	Introduction
	Preliminaries
	Probabilistic XML Model
	Twig Query and Answers
	Encoding Scheme

	Improvement of the PEDewey Encoding
	$HyTopKTwig$: A Hybrid Algorithm
	Analysis of the Problem
	Data Structures and Notations
	Algorithm $HyTopKTwig$
	Analysis of Algorithm

	Experiments
	Experimental Setup
	Performance Study

	Conclusions
	References

	Optimizing Incremental Maintenance of Minimal Bisimulation of Cyclic Graphs
	Introduction
	Related Work
	Background
	Bisimulation of Cyclic Graphs
	Maintenance of Bisimulation
	Feature-Based Optimization
	Properties of Bisimulation of Cyclic Graphs
	Features of SCCs
	Offline versus Online Feature Construction

	Experimental Evaluation
	Conclusions
	References

	Social Based Layouts for the Increase of Locality in Graph Operations
	Introduction
	Related Work
	Community Based Data Layouts
	Community Layout - COM
	Truncated Community Layout - COM(x)

	Experimental Setup
	Social Network Generation

	Experiments
	Comparison of Layout Methods
	Scalability Analysis
	Community Size Discussion

	Profiling
	Conclusions and Future Work
	References

	Generating Random Graphic Sequences
	Introduction
	Background and Related Work
	Degree Sequences
	Graphic Sequences
	Random Walks on Markov Chains

	Generating Random Graphic Sequences
	Uniformly Random Graphic Sequence with Prescribed Length
	Uniformly Random Graphic Sequence with Prescribed Length and Sum
	Practical Optimization for $D_u(n)$

	Performance Evaluation
	Performance of $D_u(n)$
	Performance of $D_u(n, s)$

	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

