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Preface

This volume contains the papers presented at RECOMB 2011: the 15th Annual
International Conference on Research in Computational Molecular Biology held
in Vancouver, Canada, during March 28–31, 2011. The RECOMB conference
series was started in 1997 by Sorin Istrail, Pavel Pevzner, and Michael Waterman.
RECOMB 2011 was hosted by the Lab for Computational Biology, Simon Fraser
University, and took place at the Fairmont Hotel Vancouver. This year, 43 papers
were accepted for presentation out of 153 submissions. The papers presented
were selected by the Program Committee (PC) assisted by a number of external
reviewers. Each paper was reviewed by at least three members of the PC, or
by external reviewers, and there was an extensive Web-based discussion over a
period of two weeks, leading to the final decisions. Accepted papers were also
invited for submission to a special issue of the Journal of Computational Biology.
The Highlights track, first introduced during RECOMB 2010, was continued, and
resulted in 53 submissions, of which 5 were selected for oral presentation.

In addition to the contributed talks, RECOMB 2011 featured keynote ad-
dresses on the broad theme of Next-Generation Sequencing, and Genomics. The
keynote speakers were Evan Eichler (University of Washington), Daphne Koller
(Stanford University), Elaine Mardis (Washington University, St. Louis), Marco
Marra (BC Genome Sciences Centre), Karen Nelson (J. Craig Venter Institute),
and Jun Wang (Beijing Genomics Institute). Finally, RECOMB 2011 featured a
special industry panel on Next-Generation Sequencing and Applications, chaired
by Inanc Birol.

RECOMB 2011 was made possible by the dedication and hard work of many
individuals and organizations. We thank the PC and external reviewers who
helped form a high-quality conference program, the Organizing Committee, co-
ordinated by Cedric Chauve, the Organization and Finance Chair and Amanda
Casorso, the event coordinator, for hosting the conference and providing the ad-
ministrative, logistic, and financial support. We also thank our sponsors, includ-
ing Genome BC, CIHR, SFU, NSERC, BC Cancer Foundation, PIMS, MITACS,
Ion Torrent and Pacific Biosystems, as well as our Industrial Relations Chair,
Inanc Birol and Sponsorship Chair Martin Ester. Without them the conference
would not have been financially viable. We thank the RECOMB Steering Com-
mittee, chaired by Martin Vingron, for accepting the challenge of organizing this
meeting in Vancouver. Finally, we thank all the authors who contributed papers
and posters, as well as the attendees of the conference for their enthusiastic
participation.

February 2011 Vineet Bafna
S. Cenk Sahinalp
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Tobias Petri, Robert Küffner, and Ralf Zimmer

Geometric Interpretation of Gene Expression by Sparse Reconstruction
of Transcript Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

Yosef Prat, Menachem Fromer, Michal Linial, and Nathan Linial

A Ribosome Flow Model for Analyzing Translation Elongation
(Extended Abstract) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

Shlomi Reuveni, Isaac Meilijson, Martin Kupiec, Eytan Ruppin, and
Tamir Tuller



XVI Table of Contents

Design of Protein-Protein Interactions with a Novel Ensemble-Based
Scoring Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

Kyle E. Roberts, Patrick R. Cushing, Prisca Boisguerin,
Dean R. Madden, and Bruce R. Donald

Computing Fragmentation Trees from Metabolite Multiple Mass
Spectrometry Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

Kerstin Scheubert, Franziska Hufsky, Florian Rasche, and
Sebastian Böcker
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Bacterial Community Reconstruction Using

Compressed Sensing

Amnon Amir1,� and Or Zuk2,�

1 Department of Physics of Complex Systems,
Weizmann Institute of Science, Rehovot, Israel

2 Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
amnon.amir@weizmann.ac.il, orzuk@broadinstitute.org

Abstract. Bacteria are the unseen majority on our planet, with millions
of species and comprising most of the living protoplasm. We propose
a novel approach for reconstruction of the composition of an unknown
mixture of bacteria using a single Sanger-sequencing reaction of the mix-
ture. Our method is based on compressive sensing theory, which deals
with reconstruction of a sparse signal using a small number of measure-
ments. Utilizing the fact that in many cases each bacterial community is
comprised of a small subset of all known bacterial species, we show the
feasibility of this approach for determining the composition of a bacte-
rial mixture. Using simulations, we show that sequencing a few hundred
base-pairs of the 16S rRNA gene sequence may provide enough infor-
mation for reconstruction of mixtures containing tens of species, out of
tens of thousands, even in the presence of realistic measurement noise.
Finally, we show initial promising results when applying our method for
the reconstruction of a toy experimental mixture with five species. Our
approach may have a potential for a simple and efficient way for identi-
fying bacterial species compositions in biological samples.

Availability: supplementary information, data and MATLAB code are
available at: http://www.broadinstitute.org/~orzuk/publications/

BCS/

1 Introduction

Microorganisms are present almost everywhere on earth. The population of bac-
teria found in most natural environments consists of multiple species, mutually
affecting each other, and creating complex ecological systems [28]. In the human
body, the number of bacterial cells is over an order of magnitude larger than the
number of human cells [37], with typically several hundred species identified in
a given sample taken from humans (for example, over 400 species were charac-
terized in the human gut [17], while [38] estimates a higher number of 500-1000,
and 500 to 600 species were found in the oral cavity [36, 13]). Changes in the
human bacterial community composition are associated with physical condition,
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and may indicate [33] as well as cause or prevent various microbial diseases [22].
In a broader aspect, studies of bacterial communities range from understanding
the plant-microbe interactions [40], to temporal and meteorological effects on
the composition of urban aerosols [4], and is a highly active field of research [35].

Identification of the bacteria present in a given sample is not a simple task, and
technical limitations impede large scale quantitative surveys of bacterial commu-
nity compositions. Since the vast majority of bacterial species are non-amenable
to standard laboratory cultivation procedures [1], much attention has been given
to culture-independent methods. The golden standard of microbial population
analysis has been direct Sanger sequencing of the ribosomal 16S subunit gene
(16S rRNA ) [25]. However, the sensitivity of this method is determined by the
number of sequencing reactions, and therefore requires hundreds of sequences for
each sample analyzed. A modification of this method for identification of small
mixtures of bacteria using a single Sanger sequence has been suggested [29] and
showed promising results when reconstructing mixtures of 2-3 bacteria from a
given database of ∼260 human pathogen sequences.

Recently, DNA microarray-based methods [21] and identification via next gen-
eration sequencing (reviewed in [23]) have been used for bacterial community re-
construction. In microarray based methods, such as the Affymetrix PhyloChip
platform [4], the sample 16S rRNA is hybridized with short probes aimed at iden-
tification of known microbes at various taxonomy levels. While being more sensi-
tive and cheaper than standard cloning and sequencing techniques, each bacterial
mixture sample still needs to be hybridized against a microarray, thus the cost of
such methods limit their use for wide scale studies. Methods based on next gen-
eration sequencing obtain a very large number of reads of a short hyper-variable
region of the 16S rRNA gene [2, 12, 24]. Usage of such methods, combined with
DNA barcoding, enables high throughput identification of bacterial communities,
and can potentially detect species present at very low frequencies. However, since
such sequencing methods are limited to relatively short read lengths (typically a
few dozens and at most a few hundred bases in each sequence), the identification is
non unique and limited in resolution, with reliable identification typically up to the
genus level [26]. Improving resolution depends on obtaining longer read lengths,
which is currently technologically challenging, and/or developing novel analytical
methods which utilize the (possibly limited) information from each read to allow
in aggregate a better separation between the species.

In this work we suggest a novel experimental and computational approach for
sequencing-based profiling of bacterial communities (see Figure 1). We demon-
strate our method using a single Sanger sequencing reaction for a bacterial mix-
ture, which results in a linear combination of the constituent sequences. Using
this mixed chromatogram as linear constraints, the sequences which constitute
the original mixture are selected using a Compressed Sensing (CS) framework.

Compressed Sensing (CS) [5, 14] is an emerging field of research, based on
statistics and optimization with a wide variety of applications. The goal of CS
is recovery of a signal from a small number of measurements, by exploiting the
fact that many natural signals are in fact sparse when represented at a certain
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appropriate basis. Compressed Sensing designs sampling techniques that con-
dense the information of a compressible signal into a small amount of data. This
offers the possibility of performing fewer measurements than were thought to
be needed before, thus lowering costs and simplifying data-acquisition methods
for various types of signals in many distantly related fields such as magnetic
resonance imaging [32], single pixel camera [16], geophysics [30] and astron-
omy [3]. Recently, CS has been applied to various problems in computational
biology, e.g. for pooling designs for re-sequencing experiments [18,39], for drug-
screenings [27] and for designing multiplexed DNA microarrays [10], where each
spot is a combination of several different probes.

The classical CS problem is solving the under-determined linear system,

Av = b (1)
where v = (v1, ..., vN ) is the vector of unknown variables, A is the sensing matrix,
often called also the mixing matrix and b = (b1, ..., bk) are the measured values
of the k equations. The number of variables N , is far greater than the number of
equations k. Without further information, v cannot be reconstructed uniquely
since the system is under-determined. Here one uses an additional sparsity as-
sumption on the solution - by assuming that we are interested only in solution
vectors v with only at most s non-zero entries, for some s � N . According
to the CS theory, when the matrix A satisfy certain conditions, most notably
the Restricted Isometry Property(RIP) [6, 7], one can find the sparsest solution
uniquely by using only a logarithmic number of equations, k = O(s log(N/s)),
instead of a linear number (N) needed for general solution of a linear system.
Briefly, RIP for a matrix A means that any subset of 2s columns of A is almost
orthogonal (although since k < N the columns cannot be perfectly orthogonal).
This property makes the matrix A invertible for sparse vectors v with sparsity
s, and allows accurate recovery of v from eq. (1) - for more details on the RIP
condition and the reconstruction guarantees see [6, 7].

In this paper, we show an efficient application of pooled Sanger-sequencing
for bacterial communities reconstruction using CS. The sparsity assumption is
fulfilled by noting that although numerous species of bacteria have been char-
acterized and are present on earth, at a given sample typically only a small
fraction of them are present at significant levels. The proposed Bacterial Com-
pressed Sensing (BCS) algorithm uses as inputs a database of known 16S rRNA
sequences and a single Sanger-sequence of the unknown mixture, and returns
the sparse set of bacteria present in the mixture and their predicted frequencies.
We show a successful reconstruction of simulated mixtures containing dozens of
bacterial species out of a database of tens of thousands, using realistic biological
parameters. In addition, we demonstrate the applicability of our method for a
real sequencing experiment using a toy mixture of five bacterial species.

2 The BCS Algorithm

In the Bacterial Community Reconstruction Problem we are given a bacterial
mixture of unknown composition. In addition, we have at hand a database of the
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orthologous genomic sequences for a specific known gene, which is assumed to be
present in a large number of bacterial species (in our case, the gene used was the
16S rRNA gene). Our purpose is to reconstruct the identity of species present
in the mixture, as well as their frequencies, where the assumption is that the
sequences for the gene in all or the vast majority of species present in the mixture
are available in the database. The input to the reconstruction algorithm is the
measured Sanger sequence of the gene in the mixture (see Figure 1). Since Sanger
sequencing proceeds independently for each DNA strand present in the sample,
the sequence chromatogram of the mixture corresponds to the linear combination
of the constituent sequences, where the linear coefficients are proportional to the
abundance of each species in the mixture.

Fig. 1. Schematics of the proposed BCS reconstruction method. The 16S
rRNA gene is PCR-amplified from the mixture and then subjected to Sanger sequenc-
ing. The resulting chromatogram is preprocessed to create the Position Specific Score
Matrix (PSSM). For each sequence position, four linear mixture equations are derived
from the 16S rRNA sequence database, with vi denoting the frequency of sequence i in
the mixture, and the frequency sum taken from the experimental PSSM. These linear
constraints are used as input to the CS algorithm, which returns the sparsest set of
bacteria recreating the observed PSSM.

Let N be the number of known bacterial species present in our database. Each
bacterial population is characterized by a vector v = (v1, ..., vN ) of frequencies
of the different species. Denote by s = ‖v‖�0 the number of species present in
the sample, where ‖.‖�0 is the �0 norm which simply counts the number of non-
zero elements of a vector ‖v‖�0 =

∑
i 1{vi �=0}. While the total number of known

species N is usually very large (in our case on the order of tens to hundreds
of thousands), a typical bacterial community consists of a small subset of the
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species, and therefore in a given sample, s � N , and v is a sparse vector. The
database sequences are denoted by a matrix S, where Sij is the j’th nucleotide
in the orthologous sequence of the i’th species (i = 1, .., N, j = 1, .., k).

We represent the results of the mixture Sanger sequencing as a 4×k Position-
specific-Score-Matrix (PSSM) comprised of the four vectors a, c,g, t, represent-
ing the measured frequencies of the four nucleotides in sequence positions 1..k.
The frequency of each nucleotide at a given position j gives a linear constraint
on the mixture:

N∑
i=1

vi1{Sij=‘A′} = aj (2)

and similarly for the nucleotides ‘C′,‘G′ and ‘T ′.
Define the k × N mixture matrix A for the nucleotide ‘A’:

Aij =
{

1 Sij = ‘A′

0 otherwise (3)

and similarly for the nucleotides ‘C′, ‘G′, ‘T ′. The constraints given by the se-
quencing reaction can therefore be expressed in matrix form as:

Av = a, Cv = c, Gv = g, Tv = t (4)

The crucial assumption we make in order to cope with the insufficiency of in-
formation is the sparsity of the vector v, which reflects the fact that only a
small number of species are present in the mixture. We therefore seek a sparse
solution for the set of equations (4). CS theory shows that under certain condi-
tions on the mixture matrix and the number of measurements (see below), the
sparse solution can be recovered uniquely by solving the following minimization
problem [8, 15, 41]:

v∗ = argmin
v

‖v‖�1 = argmin
v

N∑
i=1

|vi| s.t. Av = a, Cv = c, Gv = g, Tv = t

(5)
which is a convex optimization problem whose solution can be obtained in poly-
nomial time. The above formulation requires our measurements to be precisely
equal to their expected value based on the species frequency and the linearity
assumption for the measured chromatogram. This description ignores the ef-
fects of noise, which is typically encountered in practice, on the reconstruction.
Clearly, measurements of the signal mixtures suffer from various types of noise
and biases. Fortunately, the CS paradigm is known to be robust to measurement
noise [6,9]. One can cope with noise by enabling a trade-off between sparsity and
accuracy in the reconstruction merit function, which in our case is formulated
as:

v∗ = argmin
v

1
2
(
‖a−Av‖2

�2+‖c−Cv‖2
�2+‖g−Gv‖2

�2+‖t−Tv‖2
�2

)
+τ‖v‖�1 (6)
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This problem represents a more general form of eq. (5), and accounts for noise
in the measurement process. This is utilized by insertion of an �2 quadratic error
term. The parameter τ determines the relative weight of the error term vs. the
sparsity promoting term. Many algorithms which enable an efficient solution of
problem (6) are available, and we have chosen the widely used GPSR algorithm
described in [19]. The error tolerance parameter was set to τ = 10 for the
simulated mixture reconstruction, and τ = 100 for the reconstruction of the
experimental mixture. These values achieved a rather sparse solution in most
cases (a few species reconstructed with frequencies above zero), while still giving
a good sensitivity. The performance of the algorithm was quite robust to the
specific value of τ used, and therefore further optimization of the results by fine
tuning τ was not followed in this study.

3 Results

3.1 Simulation Results

In order to asses the performance of the proposed BCS reconstruction algorithm,
random subsets of species from the greengene database [11] were selected. Within
these subsets, the relative frequencies of each species were drawn at random
from a uniform frequency distribution normalized to sum to one (results for a
different, power-law frequency distribution, are shown later), and the mixture
Sanger-sequence PSSM was calculated . This PSSM was then used as the input
for the BCS algorithm, which returned the frequencies of database sequences
predicted to participate in the mixture (see Figure 1 and online Supplementary
Methods).

A sample of a random mixture of 10 sequences, and a part of the corresponding
mixed sequence PSSM, are shown in Figure 2A,B respectively. Results of the
BCS reconstruction using a 500 bp long sequence are shown in Figure 2C. The
BCS algorithm successfully identified all of the species present in the original
mixture, as well as several false positives (species not present in the original
mixture). The largest false positive frequency was 0.01, with a total fraction of
0.04 false positives. In order to quantify the performance of the BCS algorithm,
we used two main measures: RMSE and recall/precision. RMSE is the Root-
Mean Squared-Error between the original mixture vector and the reconstructed

vector, defined as RMSE(v,v∗) = ‖v − v∗‖�2 =
(∑N

i=1(vi − v∗i )2
)1/2

. This
measure accounts both for the presence or absence of species in the mixture, as
well as their frequencies. In the example shown in Figure 2 the RMSE score of
the reconstruction was 0.03. As another measure, we have recorded the recall,
defined as the fraction of species present in the original vector v which were
also present in the reconstructed vector v∗ (this is also known as sensitivity),
and the precision, defined as the fraction of species present in the reconstructed
vector v∗ which were also present in the original mixture vector v. Since the
predicted frequency is a continuous variable, whereas the recall/precision relies
on a binary categorization, a minimal threshold for calling a species present in
the reconstructed mixture was used before calculating the recall/precision scores.
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Fig. 2. Sample reconstruction of a simulated mixture. A. Frequencies and
species for a simulated random mixture of s = 10 sequences. Species were randomly
selected from the 16S rRNA database, with frequencies generated from a uniform dis-
tribution. B. A 20 nucleotide sample region of the PSSM for the mixture in (A). C.
True vs. predicted frequencies for a sample BCS reconstruction for the mixture in (A)
using k = 500 bases of the simulated mixture. Red circles denote species returned by
the BCS algorithm which are not present in the original mixture.

Effect of Sequence Length. To determine the typical sequence length re-
quired for reconstruction, we tested the BCS algorithm performance using differ-
ent sequence lengths. In Figure 3A (black line) we plot the reconstruction RMSE
for random mixtures of 10 species. To enable faster running times, each simula-
tion used a random subset of N = 5000 sequences from the sequence database
for mixture generation and reconstruction. It is shown in Figure 3A that using
longer sequence lengths results in a larger number of linear constraints and there-
fore higher accuracy, with ∼300 nucleotides sufficing for accurate reconstruction
of a mixture of 10 sequences. The large standard deviation is due to a small
probability of selection of a similar but incorrect sequence in the reconstruction,
which leads to a high RMSE. Due to a cumulative drift in the chromatogram
peak position prediction, typical usable experimental chromatogram lengths are
in the order of k ∼500 bases rather than the ∼1000 bases usually obtained when
sequencing a single species (see online Supplementary Methods for details).

In order to asses the effect of similarites between the database sequences
(which leads to high coherence of the mixing matrix columns) on the performance
of the BCS algorithm, a similar mixture simulation was performed using a
database of random nucleotide sequences (i.e. each sequence was composed of
i.i.d. nucleotides with 0.25 probability for ‘A’,‘C’,‘G’ or ‘T’). Using a mixing
matrix derived from these random sequences, the BCS algorithm showed better
performance (green line in Figure 3A), with ∼ 100 nucleotides sufficing for a
similar RMSE as that obtained for the 16S rRNA database using 300 nucleotides.
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Fig. 3. Reconstruction of simulated mixtures. A. Effect of sequence length on
reconstruction performance. RMSE between the original and reconstructed frequency
vectors for uniformly distributed random mixtures of s = 10 species from the 16S
rRNA database (black) or randomly generated sequences (green). Error bars denote
the standard deviation derived from 20 simulations. B. Dependence of reconstruction
performance on number of species in the mixture. Simulation is similar to (A) but using
a fixed sequence length (k = 500) and varying the number of species in the mixture.
Blue line shows reconstruction performance on a mixture with power-law distributed
species frequencies (vi ∼ i−1). C. Recall (fraction of sequences in the mixtures identi-
fied, shown in red) and precision (fraction of incorrect sequences identified, shown in
black) of the BCS reconstruction of uniformly distributed database mixtures shown
as black line in (B). The minimal reconstructed frequency for a species to be declared
as present in the mixture was set to 0.25%.

Effect of Number of Species. For a fixed value of k=500 nucleotides per se-
quencing run, the effect of the number of species present in the mixture on recon-
struction performance is shown in Figure 3B,C. Even on a mixture of 100 species,
the reconstruction showed an average RMSE less than 0.04, with the highest
false positive reconstructed frequency (i.e. frequency for species not present in
the original mixture) being less than 0.01. Using a minimal frequency threshold
of 0.0025 for calling a species present in the reconstruction, the BCS algorithm
shows an average recall of 0.75 and a precision of 0.85. Therefore, while the se-
quence database did not perform as well as random sequences, the 16S rRNA
sequences exhibit enough variation to enable a successful reconstruction of mix-
tures of tens of species with a small percent of errors.

The frequencies of species in a biologically relevant mixture need not be uni-
formly distributed. For example, the frequency of species found on the human
skin [20] were shown to resemble a power-law distribution. We therefore tested
the performance of the BCS reconstruction on a similar power-law distribution
of species frequencies with with vi ∼ i−1. Performance on such a power-law
mixture is similar to the uniformly distibuted mixture (blue and green lines in
Figure 3B respectively) in terms of the RMSE. A sample power-law mixture
and reconstruction are shown in Figure S4A,B. The recall/precision of the BCS
algorithm on such mixtures (Figure S4C) is similar to the uniform distribution
for mixtures containing up to 50 species, with degrading performance on larger
mixtures, due to the long tail of low frequency species.
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Effect of Noise on BCS Solution. Experimental Sanger sequencing chro-
matograms contain inherent noise, and we cannot expect to obtain exact mea-
surements in practice. We therefore turned to study the effect of noise on the
accuracy of the BCS reconstruction algorithm. Measurement noise was modeled
as additive i.i.d. Gaussian noise zij ∼ N(0, σ2) applied to each nucleotide read at
each position. Noise is compensated for by the insertion of the �2 norm into the
minimization problem (see eq. (6)), where the factor τ determines the balance
between sparsity and error-tolerance of the solution. The effect of added random
i.i.d. Gaussian noise to each nucleotide measurement is shown in Figure 4. The
reconstruction performance slowly degrades with added noise both for the real
16S rRNA and the random sequence database.

Using a noise standard deviation of σ = 0.15 (which is the approximate exper-
imental noise level - see later) and sequencing 500 nucleotides, the reconstruction

Fig. 4. Effect of noise on reconstruction. A. Reconstruction RMSE of mixtures
of s = 10 sequences of length k = 500 from the 16S rRNA sequence database (black) or
random sequences (green), with Gaussian noise added to the chromatogram. B. Recall
(red) and precision (black) of the 16S rRNA database mixture reconstruction shown
in (A).

Fig. 5. Reconstruction with experimental noise level. A. Reconstruction RMSE
as a function of number of species present in the mixture. Frequencies were sampled
from a uniform distribution. Noise is set to σ = 0.15. Sequence length is set to k = 500.
Black and green lines represent 16S rRNA and random sequences respectively. B. Recall
vs. precision curves for different number of 16S rRNA sequences as in (A) obtained by
varying the minimal inclusion frequency threshold. C. Sample reconstruction of s = 40
16S rRNA sequences from (A).
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performance as a function of the number of species in the mixture is shown in
Figure 5. Under this noise level, the BCS algorithm reconstructed a mixture of
40 sequences with an average RMSE of 0.07 (Figure 5B), compared to ∼ 0.02
when no noise is present (Figure 3B). By using a minimal frequency threshold
of 0.006 for the predicted mixture, BCS showed a recall (sensitivity) of ∼ 0.7,
with a precision of ∼0.7 (see Figure 5B), attained under realistic noise levels. To
conclude, we have observed that the addition of noise leads to a graceful degra-
dation in the reconstruction performance, and one can still achieve accurate
reconstruction with realistic noise levels.

3.2 Reconstruction of an Experimental Mixture

While these simulations show promising results, they are based on correctly con-
verting the experimentally measured chromatogram to the PSSM used as input
to the BCS algorithm (see Figure 1). A major problem in this conversion is the
large variability in the peak heights and positions observed in Sanger sequenc-
ing chromatograms (see Figure S2). It has been previously shown that a large
part of this variability stems from local sequence effects on the polymerase ac-
tivity [31]. In order to overcome this problem, we utilize the fact that both peak
position and height are local sequence dependent, in order to accurately predict
the chromatograms of the sequences present in the 16S rRNA database. The CS
problem is then stated in terms of reconstruction of the measured chromatogram
using a sparse subset of predicted chromatograms for the 16S rRNA database.
This is achieved by binning both the predicted chromatograms and the measured
mixture chromatogram into constant sized bins, and applying the BCS algorithm
on these bins (see online Supplementary Methods and Figure S1).

We tested the feasibility of the BCS algorithm on experimental data by re-
constructing a simple bacterial population using a single Sanger sequencing chro-
matogram. We used a mixture of five different bacteria: (Escherichia coli W3110,
Vibrio fischeri, Staphylococcus epidermidis, Enterococcus faecalis and Photobac-
terium leiognathi). A sample of the measured chromatogram is shown in Figure
6A (solid lines). The BCS algorithm relies on accurate prediction of the chro-
matograms of each known database 16S rRNA sequence. In order to asses the
accuracy of these predictions, Figure 6A shows a part of the predicted chro-
matogram of the mixture (dotted lines) which shows similar peak positions and
heights to the ones experimentally measured (solid lines). The sequence position
dependency of the prediction error is shown in Figure 6B. On the region of bins
125-700 the prediction shows high accuracy, with an average root square error of
0.08. The loss of accuracy at longer sequence positions stems from a cumulative
drift in predicted peak positions, as well as reduced measurement accuracy. We
therefore used the region of bins 125-700 for the BCS reconstruction.

Results of the reconstruction are shown in Figure 6C. The algorithm success-
fully identifies three of the five bacteria (Vibrio fischeri, Enterococcus faecalis
and Photobacterium leiognathi). Out of the two remaining strains, one (Staphy-
lococcus epidermidis) is identified at the genus level, and the other (Escherichia
coli) is mistakenly identified as Salmonella enterica. While Escherichia coli and
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Fig. 6. Reconstruction of an experimental mixture. A. Sample region of the
mixed chromatogram (solid lines). 16S rRNA from five bacteria was extracted and
mixed at equal proportions. Dotted lines show the local-sequence corrected prediction
of the chromatogram using the known mixture sequences. B. Square root distance
between the predicted and measured chromatograms shown in (A) as a function of bin
position, representing nucleotide position in the sequence. Prediction error was low for
sequence positions ∼ 100−700. C. Reconstruction results using the BCS algorithm.
Runtime was ∼20 minutes on a standard PC. Shown are the 8 most frequent species.
Original strains were : Escherichia coli, Vibrio fischeri, Staphylococcus epidermidis,
Enterococcus faecalis and Photobacterium leiognathi (each with 20% frequency).

Salmonella enterica show a sequence difference in 33 bases over the PCR ampli-
fied region, only two bases are different in the region used for the BCS recon-
struction, and thus the Escherichia coli sequence was removed in the database
preprocessing stage (see online Supplementary Methods). When this sequence
is manually added to the database (in addition to the Salmonella enterica se-
quence), the BCS algorithm correctly identifies the presence of Escherichia coli
rather than Salmonella enterica in the mixture. Another strain identified in the
reconstruction - the Kennedy Space Center clone KSC6-79 - is highly similar in
sequence (differs in five bases over the region tested) to the sequence of Staphy-
lococcus epidermidis used in the mixture.

4 Discussion

In this work we have proposed a framework for identifying and quantifying the
presence of bacterial species in a given population using information from a sin-
gle Sanger sequencing reaction. Simulation results with noise levels comparable
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to the measured noise in real chromatograms indicate that our method can re-
construct mixtures of tens of species. When not enough information is present
in the sequence (for example when a large number of sequences is present in the
mixture), performance of the reconstruction algorithm decays gracefully, and
still retains detection of the prominent species.

In order to test the applicability of the BCS algorithm to real experimental
data, we performed a reconstruction of a toy mixture containing five bacterial
species. Results of the sample reconstruction (identification of 3 out of 5 species
at the strain level, and the additional 2 at the genus level, when E. coli is
not omitted from the database) indicate that with appropriate chromatogram
preprocessing, BCS can be applied to experimental mixtures. However, further
optimization of the sequencing and preprocessing is required in order to obtain
more accurate results.

Essentially, the amount of information needed for identifying the species
present in the mixture is logarithmic in the database size [5, 14], as long as
the number of the species present in the mixture is kept constant. Therefore, a
single sequencing reaction with hundreds of bases contains in principle a very
large amount of information and should suffice for unique reconstruction even
when the database contains millions of different sequences. Compressed Sensing
enables the use of such information redundancy through the use of linear mix-
tures of the sample. However, the mixtures need to be RIP in order to enable
an optimal extraction of the information. In our case, the mixtures are dictated
by the sequences in the database, which are clearly dependent. While two se-
quences which differ in a few nucleotides have high coherence and clearly do not
contribute to RIP, even a single insertion or deletion completely brings the two
sequences to being ’out of phase’, thus making it easier to distinguish between
them using CS(provided that the insertion/deletion did not occur to close to
the end of the sequenced region). Since the mixing matrix is built using each
sequence in the database separately, we do not rely on correct alignment of the
database sequences, and, moreover, while a species actually present in the mix-
ture is likely to appear in the solution with high frequency, sequences of similar
species which are different by one or a few insertion or deletion events, will vio-
late the linear constrains present in our optimization criteria, and are not likely
to ’fool’ the reconstruction algorithm.

While limited to the identification of species with known 16S rRNA sequences,
the BCS approach may enable low cost simple comparative studies of bacterial
population composition in a large number of samples. Our method, like any
other method, can perform only as well as is allowed by the inherent inter-
species variation in the sequenced region. For example, if two species are com-
pletely identical at the 16S rRNA locus, no method will be able to distinguish
between them based on this locus alone. In the simulations presented, we defined
a species reconstruction to be accurate having up to 1 nucleotide difference from
the original sequence. Since sequence lengths used were typically around 500bp,
the reconstruction sequence accuracy was approx. 0.2%. Average sequence dif-
ference between genus was measured as approx. 3%, whereas between species
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is approx. 2% [42], and therefore simulation performance was measured at sub-
species resolution. However, there are cases of species with identical or nearly
identical 16S rRNA sequences, and therefore these species can not be discrim-
inated based on 16S rRNA alone. Sequencing of additional loci (such as in the
MLST database [34]) are likely to be required in order to achieve higher re-
construction resolution. Our proposed method can easily be extended to more
than one sequencing reaction per mixture, whether they come from the same
region or distinct regions, by simply joining all sequencing results as linear con-
straints. Such an extension can lead to a larger number of linear constraints.
This increases the amount of information available for our reconstruction algo-
rithm, which will enable us to both overcome experimental noise present in each
sequencing, and distinguish between species more accurately and at a higher
resolution.
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Abstract. We describe algorithms for incorporating prior sequence knowledge
into the candidate generation stage of de novo peptide sequencing by tandem
mass spectrometry. We focus on two types of prior knowledge: homology to
known sequences encoded by a regular expression or position-specific score ma-
trix, and amino acid content encoded by a multiset of required residues. We show
an application to de novo sequencing of cone snail toxins, which are molecules
of special interest as pharmaceutical leads and as probes to study ion channels.
Cone snail toxins usually contain 2, 4, 6, or 8 cysteine residues, and the number of
residues can be determined by a relatively simple mass spectrometry experiment.
We show here that the prior knowledge of the number of cysteines in a precursor
ion is highly advantageous for de novo sequencing.

1 Introduction

There are two basic approaches to peptide sequencing by tandem mass spectrometry
(MS/MS): database search [16], which identifies the sequence by finding the closest
match in a protein database, and de novo sequencing [5], which attempts to compute
the sequence from the spectrum alone. Database search is the dominant method in shot-
gun proteomics because it can make identifications from lower quality spectra with
less complete fragmentation. De novo sequencing finds use in special applications for
which protein databases are difficult to obtain. These applications include unsequenced
organisms [31], biotech products such as monoclonal antibodies [3,28], phosphopeptide
epitopes [13], endogenous antibodies [29], and peptide toxins [2,27,37].

In many de novo sequencing applications, partial knowledge of the sequence is rel-
atively easy to obtain. For example, antibodies contain long conserved segments and
10- to 13-residue hypervariable segments (complementarity determining regions), and
a peptide from a digest may overlap both types of regions. A fairly simple database-
search program can recognize MS/MS spectra of peptides with N- or C-terminus in
a known conserved segment, and these spectra can then be de novo sequenced to de-
termine the variable segment. As another example, nerve toxins from arthropods and
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mollusks contain highly conserved cysteine scaffolds with the number and positions
of the cysteines well-conserved but the other residues variable. The numbers of cys-
teines in various precursors can be determined by a relatively simple mass spectrome-
try experiment: derivatize cysteines and measure the mass shifts. In the absence of such
an experiment, the researcher can simply try each guess at the number of cysteines.
These two examples are by no means exhaustive. Partial knowledge may also be ob-
tained from previous experiments or computations, sequenceable overlapping peptides,
“split” isotope envelopes from certain post-translational modifications, residue-specific
derivatizations, amino acid analysis, Edman sequencing, manual inspection, compara-
tive genomics, and so forth.

In this paper we explore the possibility of using partial knowledge to guide de novo
sequencing. Related previous work has used close homology to a database protein to
help assemble de novo peptide sequences into a protein sequence [3] and also to cor-
rect sequencing errors [25]. We apply partial knowledge to the candidate generation
stage rather than the later stages (scoring, protein assembly, and correction of mistakes)
for several reasons. First, we aim to use much weaker partial knowledge, for example,
the number of cysteines rather than close homology (say 90% identity) to a known se-
quence. Second, our partial knowledge is often exact rather than probabilistic. Third, it
is logically cleaner to maintain the scorer as a function of only the candidate sequence
and the mass spectrum, independent of any protein database or biological knowledge.
Fourth, we find it convenient to use a single scorer (ByOnic) for all peptide identifi-
cation tasks, so that we can freely combine database search and de novo sequencing
results, even within a single run of the program. Almost all MS/MS data sets contain
numerous spectra identifiable by database-search, from keratin and trypsin if nothing
else, and leaving these spectra to be identified de novo reduces the number of true iden-
tifications and falsely increases the number of “interesting” de novo sequences.

The rest of the paper is organized into the following sections: problem formula-
tion, algorithms, validation of the approach on known conotoxins, and announcement
of novel conotoxins. At this point, we believe we have completely sequenced about 15
novel mature conotoxins from two species (Conus stercusmuscarum and Conus textile),
but in this bioinformatics paper we report only two new toxins, one from each species,
while we wait for peptide synthesis to validate our sequences. Currently only about 130
mature conotoxins (meaning exact termini and modifications) are known after 40 years
of study [23], so 15 novel conotoxins represents a substantial contribution to the field.
(We have also observed about 35 mature conotoxins that match database sequences in
C. textile, slightly exceeding the original analysis of the same data sets [36,37].) Most
studies add only one or two de novo sequences at a time. For example, Nair et al. [27]
and Ueberheide et al. [37] each manually sequenced one novel toxin.

2 Problem Formulation

In a tandem mass spectrometer, charged peptides break into a variety of charged and
neutral fragments. The mass spectrometer measures the mass over charge (m/z) of these
fragments and outputs a tandem mass spectrum, a histogram of ion counts (intensities)
over an m/z range from zero to the total mass of the peptide. Given a mass spectrum,
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the goal of de novo peptide sequencing is to generate a sequence of possibly modified
amino acid residues whose fragmentation would best explain the given spectrum.

Formally, a spectrum S is a triple (S, M, c) where S is a set of pairs of positive real
numbers {(m1, s1), . . . , (mn, sn)}, M is a positive real number, and c is an integer. M
denotes the total mass of the peptide whose fragmentation produced S and is the sum of
the masses of the amino acids in its sequence. The peptide charge is c, which is typically
in the range +1 to +4 for the spectra we consider. Each pair (mi, si) in S denotes a peak
in the spectrum at m/z of mi of intensity si. Let A be a set of symbols representing
amino acid residues and modifications. We define a peptide p as a nonempty string over
the alphabet A.

We assume that we have access to a peptide scoring function h which, given a pep-
tide p, spectrum S, and a set of allowable modifications, returns the probability that
S is produced by p. Let A be a set of distinct positive numbers representing the fixed
masses of the symbols in A. The problem of de novo candidate generation is this:
Given an integer k (say k = 100, 000), tandem mass spectrum S, a set of symbols A
and their masses A, find a set C of k candidate peptides p over the alphabet A such that
maxp∈C h(S,A, A, p) is maximized.

The parameter k above sets a limit on the number of candidate sequences we can
afford to score. We cannot afford to score all possible sequences, because the number
of possible peptides of a given mass M is exponential in the length of the peptide. Prior
work [2,12,30] has shown the advantage of considering sets of spectra, but in this paper
we generally focus attention on the de novo sequencing of single spectra.

In accord with almost all de novo sequencing programs, such as Lutefisk [35],PEAKS
[26], EigenMS [7], NovoHMM [17] and PepNovo [19], we have factored the problem
into candidate generation and scoring phases. Candidate generation typically uses a dy-
namic programming best-path algorithm [10,11,26], to compute thousands of possible
sequences. The scoring phase then scores each of these candidates, using more detailed
global information such as proton mobility, fragmentation propensities, and mass mea-
surement recalibration [7], that does not conform to the separability requirement (the
“principle of optimality”) of dynamic programming. Here we describe how to incor-
porate partial knowledge into the candidate-generation phase. For scoring, we use the
scorer in ByOnic [6], which is primarily a database-search program.

De novo sequencing is well known to be a difficult problem, due to incomplete frag-
mentation, noise peaks, mixture spectra, and the large numbers of peptides and frag-
ments within error tolerance for any given mass. The best de novo sequencing programs
rarely give a completely correct answer on a peptide of mass 2000 Da. High-accuracy
instruments [20] and CID/ETD pairs [12,30] help, yet conotoxins remain especially
challenging targets due to prevalent modifications and high proline content, which tends
to suppress fragmentation.

3 Constraints and Algorithms for Constrained De Novo Search

Sequence constraints restrict the search from the space of all possible peptides of the
given precursor mass to a proper subset of the space, in which all peptides satisfy certain
a priori criteria. For example, we might assume that the peptide contains 4 cysteines,
as do all α-conotoxins.
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To demonstrate the feasibility and utility of such a constrained search approach to de
novo sequencing, and to explore its role in a de novo sequencing protocol, we imple-
mented two types of constraints in our peptide candidate generator: a multiset constraint
and a regular expression constraint. We describe these constraints and our algorithm to
generate candidates satisfying them below. We also implemented a simple search algo-
rithm, similar to SALSA [24], for searching for spectra that satisfy mass and regular
expression constraints. We describe this below.

3.1 Multiset Constraint

Let A be the set of amino acid symbols (including modifications). A multiset constraint
is a vector c : A → N describing a subset of A�—the set of all strings over A. We
denote this subset by S(c). Thus, the vector

c(G) = 1; c(V) = 2; c(C) = 4; and c(x) = 0, ∀x ∈ A \ {G, V, C};

is an example of a multiset constraint. A multiset constraint defines S(c) in the follow-
ing way: if c(x) = n, then x must appear at least n times in every string in S(c). All x
such that c(x) = 0 impose no constraints on S(c). Thus, in the above example,

S(c) = {w : w ∈ A� and w contains at least one G, at least two V, and at least fourC}.

For example, VGCCQCPARCKCCV satisfies the constraint in the above example, but
CCPARCCVR does not.

3.2 An Algorithm for Generating Multiset-Constrained Candidates

Let A be the set of amino acid symbols (including modifications). Let S = (T, M) be
a given (deisotoped and decharged) spectrum, let c be a multiset constraint, and let N
be a positive integer. The objective of the de novo candidate generation algorithm is to
output a set of N peptides, all satisfying the multiset constraint c, containing a peptide
that best explains the spectrum S. Our algorithm proceeds in two stages. In the first
stage, we construct a directed multigraph G, in which each vertex is a tuple containing
an integer mass in the interval [0, M ] and a count of the number of each of the symbols
in c consumed by a prefix ending at the vertex. Arcs are added between vertices whose
mass differs by that of an amino acid and have a compatible count. An arc of G is
assigned a cost obtained as a function of the best peaks in T supporting the vertices
of the arc. In the second stage, we obtain the N shortest paths in G. Each path must
start at the vertex representing mass zero with no symbols from the multiset constraint
consumed, and must reach a vertex representing the mass M in which all the symbols
appearing in the multiset constraint are consumed.

Intuitively, our dynamic programming algorithm generates a graph with multiple
stages where a stage represents a partial set of constraints satisfied so far. More formally,
let V (G) denote the vertex set of the directed multigraph G. Let A denote the set of
masses of the amino acids represented by the symbols in A. By span(A) we mean the
union of the set of numbers that can be written as a sum of elements of A, and the
set {0}. We denote by Ac the set of symbols {a1, . . . , an} in the constraint c—i.e.,
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c(ai) > 0—and by Ac the corresponding masses of the amino acids they represent.
Then,

V (G) =

{
(m, v) : m ∈ span(A) and m ≤ M ; v ∈

n∏
i=1

{0, . . . , c(ai)}
}

, (1)

where the product is the usual cartesian product of sets. Thus, each vertex (m, v) rep-
resents the mass of a prefix weighing m, and n bounded counters, which we denote by
v1, . . . , vn. The i-th counter keeps a count of the number of ai symbols consumed by
the prefix—ending at that vertex—of any peptide passing through that vertex.

Vertices x = (m1, u) and y = (m2, v) in V (G) are related by an arc from x to y if
and only if either of the following conditions is satisfied:

1. m2 − m1 ∈ A \ Ac, and u = v, or

2. m2 − m1 is the mass of ai ∈ Ac, and vk =

{
uk + 1 if k = i, and

uk, otherwise.

Figure 1 (a) shows a visual representation of the directed multigraph constructed from
a small multiset constraint.

We annotate each vertex of the multigraph G with supporting peaks, if any, from
the given spectrum. For example, consider the directed multigraph constructed under
a constraint c(C) = 4, and consider the vertex (320, (2)). This vertex represents a
mass of 320 Da, and represents a prefix containing two C out of the minimum of four
required, assuming carbamidomethylated Cysteine. We then search the peak list in the
spectrum for b-ions (e.g., peaks in the interval 321.00728 ± ε Da) and y-ions (e.g.,
peaks in the interval M − 300.98 ± ε) supporting this vertex, for a given fragment
mass error tolerance of ε. After annotating all vertices in this way, we assign costs to
each arc in G. In determining the cost of each arc, we use this information about the
presence of supporting peaks, their intensity, and the agreement of the mass difference
of peaks across an arc with an amino acid mass. Vertices with no support contribute to
a penalty for all their arcs. Finally, we attempt to obtain the K least cost paths between
the starting vertex of mass zero and a final vertex of mass M and with its prefix symbol
counts matching or exceeding the multiset constraint.

More formal details of the algorithm are listed in pseudocode form in Algorithm 1.
When Ac is empty, the algorithm guarantees that every peptide is considered, as is
clear from lines 13-19. Line 5 guarantees that no peptide of a mass larger than that
reported by the spectrum is considered. Line 26 guarantees that the list of peptides,
implied by the list of paths considered, must be of mass M . This argument also holds
for unconstrained symbols when Ac is not empty. When Ac is not empty, consider any
prefix of any peptide w ∈ S(c). If the prefix contains no constrained letters, then by
the arguments above, it is guaranteed to be present as a path in the directed multigraph.
If it contains some constrained letters, then their counts and the prefix’s mass together
must be represented by some vertex in V (G), because of lines 3-12. Finally, only paths
ending in a vertex who counts match the multiset constraint and whose mass matches
the mass M reported in the spectrum are used for generating peptides. The converse
argument proceeds along a similar path. (Note that our algorithm does not generate
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Algorithm 1. GENERATING MULTISET-CONSTRAINED DE NOVO CANDIDATES

Require: Constraint c : A → N,Ac, Ac; Spectrum S = (T, M); Number of candidates K
1. V (G) ← (0, (0, . . . , 0))
2. while more vertices in V (G) remain to be expanded do
3. (m, (v1, . . . , vn)) ← next unexpanded vertex from V (G)
4. for every a ∈ A do
5. if m + mass(ai) ≤ M then
6. if a ∈ Ac then
7. Let a be the i-th symbol in Ac, denoted by ai

8. if (m + mass(ai), (v1, . . . , vi + 1, . . . , vn)) �∈ V (G) then
9. (m′, v′) ← (m + mass(ai), (v1, . . . , vi + 1, . . . , vn))

10. V (G) ← V (G) ∪ {(m′, v′)}
11. Mark (m′, v′) as unexpanded
12. end if
13. else
14. if (m + mass(ai), (v1, . . . , vn)) �∈ V (G) then
15. (m′, v′) ← (m + mass(ai), (v1, . . . , vn))
16. V (G) ← V (G) ∪ {(m′, v′)}
17. Mark (m′, v′) as unexpanded
18. end if
19. end if
20. Add arc from (m, v) to (m′, v′)
21. end if
22. end for
23. end while
24. Annotate each vertex with peaks in T corresponding to its mass
25. Assign weights to each arc
26. Obtain K shortest paths between (0, (0, . . . , 0)) and (M, (c(a1), . . . , c(an)))
27. if no such path exists then
28. Stop and report an unsatisfiable constraint error
29. else
30. Translate each path of vertices into a string over A
31. Stop and return this set of peptides
32. end if

unreachable vertices—for example, (0, (1)) in the example above—though we choose
to ignore this detail in equation 1 above.)

We have omitted several details about some of the steps of our algorithm, such as the
arc weighting computation, presence of duplicate and conflated paths, incorporation
of terminal modifications, and speed and memory optimizations. While these details
may be necessary in an implementation of the algorithm—and our own implementation
includes them—they are largely independent of the focus of this paper: demonstrating
the feasibility and utility of constrained de novo search. We comment on these details
where necessary. A complexity analysis of similar constrained shortest paths problems
was carried out by Barrett et al. [4].
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3.3 Acyclic Regular Expression Constraint

Let A be the set of amino acid symbols (including modifications) and let n be a positive
integer. An n-letter acyclic regular expression constraint is a string c ∈ (A ∪ {A})n

describing a subset of A�, which we denote by S(c). Thus, the string ACCAAAKACC
is an example of a 10-letter acyclic regular expression (or regex) constraint. An n-letter
regex constraint c has the following interpretation. Every string in S(c) must belong to
An, and must agree with c at every position, except those containing an A. In the above
example of a regex constraint,

S(c) = {w : w ∈ An and w has C in positions 2,3,9, and 10, and K in position 7}

For example, GCCPTCKPCC satisfies the regex constraint but CCPCKPCC and AGC-
CPTCKCC do not.
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Fig. 1. (a) The directed multigraph resulting from the multiset constraint “c(G) = 1” given a
spectrum of 128.06 Da. Vertices are labeled with the integer mass of and a count of the con-
strained symbols in the prefix they represent. In this case, only two paths—GA and AG—satisfy
the multiset and mass constraint. (b) The directed multigraph resulting from the regex constraint
“GAS” given a spectrum of total mass 215.09 Da. Vertices are labeled with the integer mass
and the length of the prefix they represent. In this case, the path that satisfies the regex and mass
constraint—GAS—is unique.

3.4 An Algorithm for Generating Regex-Constrained Candidates

In its graph and flow, our algorithm for generating regex-constrained peptides is similar
to the algorithm for multiset-constrained peptides given above. The main difference is
in the information represented in each vertex. Let c be an n-letter regex constraint. In
this case,

V (G) = {(m, v) : m ∈ span(A) and m ≤ M ; v ∈ {0, . . . , n}} , (2)

Each vertex represents the mass of a prefix of every path passing through it, and a count
of the number of letters in the prefix. Vertices x = (m1, v) and y = (m2, v+1) in V (G)
are related by an arc from x to y if and only if m2 − m1 ∈ A. Other details are similar
to the multiset algorithm described above; the differences are formally presented in
Algorithm 2 below. Figure 1 (b) shows a visual representation of the directed multigraph
constructed for a small regex constraint.
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3.5 Constrained Spectral Search and Clustering

Given a spectrum, in many cases, de novo sequencing of the complete peptide may
be difficult. Typically, this is due to the quality of the spectrum, unavailability of the
complete ladder of peaks in any single spectrum due to digestion, or low mass accuracy
of the fragments or the precursor. In such instances, it is desirable to have tool that can
quickly search for other spectra that describe the unknown peptide under consideration.
We implemented a simple spectral search tool for this purpose, similar to SALSA [24].
Given a spectrum, we consider the set of its peaks as vertices and construct a directed
multigraph G in which we add an arc between any two peaks separated by the mass
of some amino acid, including modified amino acids. Then, we enumerate all maximal
distinct paths in G. This results in a list of short peptide fragments, not necessarily of
the mass reported in the spectrum, all of which are supported by peaks in the given
spectrum. This “spectral fingerprint” can be used to search for spectra containing peaks
supporting a particular peptide fragment. In the context of conotoxin spectra, we have
found this tool to be useful for filtering out spectra that contain a “CC fingerprint” and
thus, are likely to be sequenceable conotoxins. It can also be used for clustering spectra.

Algorithm 2. GENERATING REGEX-CONSTRAINED DE NOVO CANDIDATES

Require: Constraint c : {1, . . . , n} → A; Spectrum S = (T, M); Number of candidates K
1. V (G) ← (0, 0)
2. while more vertices in V (G) remain to be expanded do
3. (m, i) ← next unexpanded vertex from V (G)
4. if i = n then
5. Go to line 23
6. end if
7. if c(i + 1) = “A” then
8. B ← A
9. else

10. B ← {c(i + 1)}
11. end if
12. for every a ∈ B do
13. if m + mass(a) ≤ M then
14. if (m + mass(a), i + 1) �∈ V (G) then
15. (m′, i′) ← (m + mass(a), i + 1)
16. V (G) ← V (G) ∪ {(m′, i′)}
17. Mark (m′, i′) as unexpanded
18. end if
19. Add arc from (m, i) to (m′, i′)
20. end if
21. end for
22. end while
23. (Same as lines 24-25 in Algorithm 1 above)
24. Obtain K shortest paths between (0, 0) and (M, n)
25. (Same as lines 27-32 in Algorithm 1 above)
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In addition to the above algorithms, we have also implemented algorithms that allow
ordered multiset-constraints (e.g., two C followed, not necessarily immediately, by a
W), combine multiset and regex constraints (e.g. GCCKP followed by two C), and
impose mass intervals in which a constraint must be satisfied. We postpone discussion
of these algorithms to future work.

4 Application to Conotoxins
We obtained MS/MS data of Conus textile venom from Brian Chait’s laboratory at
Rockefeller University and of C. textile and C. stercusmuscarum venom from John
Yates’s laboratory at the Scripps Research Institute. The Rockefeller data [37] were
LTQ MS/MS spectra, both CID and ETD, with low-accuracy precursor and fragment
masses. We did not obtain Rockefeller’s charge-enhanced precursor data [37], only
the standard carbamidomethylated cysteine. Sample preparations and data acquisition
strategies were as described previously [37,36]. The Scripps data [36] were HCD and
CID Orbitrap MS/MS spectra with high-accuracy precursor and fragment masses.

Both C. textile data sets had been analyzed previously by database search and, in the
case of the Rockefeller data, a limited amount of manual de novo sequencing. C. textile
is one of the better studied cone snails, with a large amount of venom, and GenBank
contains about 100 (redundant) C. textile entries, more than half of which are putative
toxins. One of the goals in proteomic analysis is to observe the toxins in their mature
forms, meaning with the post-translational modifications and exact termini. Conotoxins
are heavily modified peptides of lengths about 10–40 residues, and known modifica-
tions include bromotryptophan, hydroxyproline, hydroxyvaline, oxidized methionine,
and amidated C-terminus. Both the Rockefeller and Scripps studies claimed 31 C. tex-
tile toxins observed in their final form. The venom contains about 90 toxins, as es-
timated by the number of disulfide-bonded precursors [37]. For C. stercusmuscarum,
there is very little sequence data available, only seven GenBank entries, none of which
are annotated as toxins, so this data was essentially unanalyzed when we received it.

4.1 Validation on Known Sequences

We implemented the algorithms for constrained de novo search listed above into a single
command-based interactive tool which we call CONOVO. The tool is capable of reading
in a set of CID or ETD spectra and accepting a sequence of commands to operate on
them. These include commands for de-isotoping and de-charging spectra, adding, delet-
ing and ignoring peaks in spectra, normalizing peak intensities in a spectrum, generating
a spectral fingerprint, collecting the top peaks from several spectra into a single spec-
trum, constructing, examining, and modifying directed multigraphs for de novo search,
and generating candidate peptides. We wrote scripts for processing all the spectra that
we received from the Yates and Chait laboratories. Our scripts processed each spectrum
by issuing commands to CONOVO to load, deisotope and decharge the spectrum, and
then generate candidates under various constraints, or without any constraints. After
candidate generation in each case, the candidates were scored by the ByOnic scorer [6]
and the highest scoring candidate was logged along with a detailed report explaining
the score. We pointed our scripts to the spectra and executed the scripts without any
subsequent human intervention.
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We first report results from 79 C. textile CID spectra from both laboratories. These
spectra describe cysteine-rich conotoxins whose complete and correct sequences are
known. Our scripts sequenced these spectra using purely multiset-constrained and
purely regex-constrained de novo search. We also ran an unconstrained de novo search
under the same conditions as the multiset-constrained de novo search. The answer found
under all three conditions on these spectra agreed with the correct answer, modulo K-
Q, I-L, M-F, and GG-N substitutions, if any. Our scripts executed all of the following
multiset-constraints on each spectrum: c(C) = 2, c(C) = 3, . . ., c(C) = 6. We obtained
regex constraints directly from the correct answer by retaining all C and substituting all
other letters with A in the correct answer.

Figure 2 shows the decimal logarithm of the position of the correct answer in the
generated candidate list in the constrained case (X-axis) and the unconstrained (Y-axis)
case. The left plot shows the multiset-constrained case and the right plot shows the
regex-constrained case. Points near or on the diagonal x = y line result from spectra
on which both the constrained search and the unconstrained search produced the right
answer at the same or similar position in their respective candidates list. Points below
the diagonal result from spectra on which the constrained search produced the correct
candidate at a position in its candidates list that was an order of magnitude lower than
the position of the correct candidate on the unconstrained candidates list. For example,
the point (4.47, 2.03) in the multiset case (left) corresponds to the correct C. textile
conotoxin scaffold precursor SCCNAGFCRFGCTPCCY, which was generated at posi-
tion 29,610 by the unconstrained search and at positions 109 and 1 under the c(C) = 6
and the ACCAAAACAAACAACCA constraints. The plot confirms our hypothesis that
constraints can be extremely effective in improving the efficiency of the de novo search
by reducing the search space to a subset where all the candidates satisfy a priori knowl-
edge. We note that a regex constraint is more effective than a multiset constraint, but it
requires much stronger a priori knowledge: one must supply the exact position of every
letter in the constraint.
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Fig. 2. A comparison of a multiset-constrained (left) or regex-constrained (right) de novo search
with an unconstrained de novo search for peptide candidates for 79 cysteine-rich conotoxin spec-
tra of the venom of C. textile
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4.2 Discovery of Novel Conotoxins

In addition to known conotoxins, CONOVO also found peptides that appear to be new. In
this paper, we report two sequences that were, to the best of our knowledge, unknown;
we will report all other sequences once they have been verified by synthesis.

Figures 3(a) and 3(b) show the spectra describing the novel conotoxin found in the
C. textile venom and the C. stercusmuscarum venom respectively. Figures 3(c) and 3(d)
show spectra describing a prefix and a suffix of the novel C. stercusmuscarum toxin. In
the C. Textile data, CONOVO found the sequence

C[+57]C[+57]GP[+16]TAC[+57]LAGC[+57]KPC[+57]C[+57][-1]

in at least 16 spectra of mass 1786 Da and 1802 Da. The 1802 Da spectra indicate a PTM
on the second proline. The identifications were obtained from the multiset-constrained
search described in Section 4.1. Figure 3(a) shows one of the spectra describing this
novel conotoxin.

In the C. stercusmuscarum data, CONOVO found the following sequence:

APAC[+57]C[+57]GPGASC[+57]PRYFKDNFLC[+57]GC[+57]C[+57]

The prefix APACCGPGASCPR, but with a few incorrect letters, was found in the multiset-
constrained search described above. After the constrained search completed, we col-
lected potentially related spectra with a spectral fingerprint search described above.

We sequenced the spectrum in Figure 3(c) and obtained APACCGPGASCPRYF,
which, due to its odd number of C, we guessed was a prefix of the complete sequence
of the toxin. We then found a spectrum for the complete toxin (Figure 3(b)) using a
wild-card with mass up to 2000 Da. (Notice that this spectrum would be hard to find by
spectrum similarity to Figure 3(a).) This spectrum is not sequenceable on its own. We
then found the spectrum shown in Figure 3(d) using spectral search.

5 Discussion
Constrained de novo sequencing is a new peptide identification approach that is espe-
cially well suited to studies focused on diverse but homologous protein families such as
conotoxins or antibodies. We found the approach advantageous in the conotoxin stud-
ies described here, and by the end of the project, our data-analysis approach was fully
automated, with human intervention required only to inspect ByOnic’s scoring reports,
and reconcile spectra that clearly contained closely related or identical peptides, but had
incompatible top-scoring sequences.

Constrained sequencing is advantageous in different ways. First, in the case of se-
quenceable spectra with complete fragmentation, constraints reduce the space of plau-
sible candidates while incorporating specific expert knowledge, thus boosting the ef-
ficacy of the scorer by eliminating spurious candidates. Such a reduction in candidate
space could in principle be achieved by running an unconstrained search followed by
an elimination step imposing the constraints, but for long peptides, this is not feasi-
ble. If the size of the generated candidates list is limited—as is the case in practice for
long peptides—then the correct answer may not even be generated by an unconstrained
search, rendering the elimination step ineffective. In this case, a constrained search is



Constrained De Novo Sequencing of Peptides with Application to Conotoxins 27

Fig. 3. (a) A novel C. textile toxin. All mass errors are less than 4 ppm. Despite the high mass
accuracy, this spectrum would be quite challenging to sequence without some prior knowledge,
because of the two PTMs (hydroxyproline and amidated C-terminus) and the missing cleavages at
b1/y14 and b4/y11 (after hydroxyproline). The closest known conotoxin is CCGPTACMAGCR-
PCC, two substitutions away. (b) A novel C. stercusmuscarum toxin with no BLAST hits in
GenBank with E-value below 1.0. This spectrum gives what we believe is the complete toxin,
observed in the undigested venom. Mass errors are less than 10 ppm, but with software recalibra-
tion of the m/z readings, the errors can be reduced to less than 4 ppm. (c) The N-terminal half of
the novel C. Stercus muscarum toxin, also observed in the undigested venom. All errors are less
than 4 ppm. (d) The C-terminal half of the novel C. Stercus muscarum toxin, observed in a tryptic
digest of the venom. With software recalibration, all errors are less than 4 ppm.

a natural and effective solution. The reduction in the size of the candidate space may
span orders of magnitude as revealed by a simple counting argument (see Figure 4) and
illustrated by our experiments.

Second, constraints can actually bridge missing cleavages and sequence otherwise
unsequenceable spectra. Consider a spectrum containing all the peaks supporting any
candidate of the form PEPTIDEA′A′A′A′ where A′ does not contain C, and all the
peaks supporting PEPTIDECCCC. It is plausible that a scorer may rank candidates from
both sets equally or even prefer the former candidates over the latter as a result of
peak position noise. Yet, even a simple regex constraint like PEPTIDECAAA would
be sufficient for the scorer to rule out the former set in favor of the latter candidate. In
such a case, the gain from a single-letter regex constraint is more significant than the
reduction in space provided by fixing a single letter.
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Fig. 4. Size of the candidate space: A without constraints; B with multiset constraints; C with
regex constraints like CCA3 or 4CA3 to 7C; and D with an α-conotoxin regex constraint [39]

Nevertheless, constraints are no panacea for de novo sequencing. While the multiset-
constrained candidate generation succeeded in sequencing a majority of the known se-
quences and discovering some unknown sequences, it was not successful on all spectra.
In most such cases, we were able to obtain a candidate within an edit distance of three
or four of the correct answer. We were then able to complete the sequence either man-
ually, or by running a search on a database of newly discovered sequences, or by using
the letters found so far, as a regex constraint. We used ByOnic’s wild-card feature [8,9]
to be useful in computing missing masses in incomplete de novo sequences, which we
were later able to fill using constrained or unconstrained de novo search.

For lower accuracy spectra, there were instances where our de novo search produced
several plausible candidates. We discovered a heuristic for separating false positives in
such instances. We checked whether the mass errors of the b- and y-ions matched in
magnitude. We rejected candidates, for example, in which y-ions had mass errors of 50
ppm which b-ions had mass errors of 5 ppm.

We also found that constraints were not very useful on spectra of very high or low
quality, since the former were readily sequenceable without constraints while the latter
were mostly unsequenceable. We also note that incorrect constraints—e.g., requiring a
letter that is absent in the correct sequence—can ruin a de novo search. The user should
start with a weak constraint and gradually strengthen it as more of the sequence becomes
known. Thus, several iterations of a combination of multiset and regex constraints and
ByOnic’s wild card may prove to be an effective de novo protocol.

We found spectral search to be a handy tool for gathering spectral evidence for low
confidence letters and for ruling out competing candidates. While spectral clustering
would have been helpful, we did not use any clustering in this project.
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Motivation. Metabolic networks are a representation of current knowledge
about the metabolic reactions available to a given organism. These networks
can be placed into various mathematical frameworks, of which the constraint-
based framework [1] has received the most attention over the past 15 years.
This results in a predictive model of metabolism. Metabolic models can yield
predictions of two types: quantitative, such as the growth rate of an organism
under given experimental conditions [2], and qualitative, such as the viability of
a mutant [3] or minimal media required for growth [4]. Qualitative predictions,
on which we focus, tend to be more robust and reliable than quantitative ones,
while remaining experimentally testable and biologically relevant.

Here, we summarize new theoretical results related to metabolic models. These
results are transformed into an algorithmic pipeline that reveals key structural
properties of metabolic networks, such as blocked reactions, enzyme subsets, ele-
mentary modes, essential reactions and synthetic lethality. While the constraint-
based approach to metabolic network analysis is over 15 years old, this work is, to
our knowledge, the first time the theory of linear programming is used to reveal
structural elements of metabolic models, rather than just predict a growth phe-
notype. We believe that a deeper understanding of these models will ultimately
result in their wider applicability to biological questions.

Methods. Theorems 1 and 2 state that cut sets and modes are closely related
in both fully reversible as well as fully irreversible networks. This relationship
is based on the duality between the rowspace and the nullspace of a matrix,
which is different from the Boolean duality described by Klamt and Gilles [5].
The same relationship holds between minimal cut sets and elementary modes.
Theorems 1 and 2 provide a characterization of cut sets, which yields both an
efficient method for identifying such sets as well as several important structural
insights.

Theorem 3, based on a special case of Theorem 2, provides an efficient method
for identifying all blocked reactions in a metabolic network. It is helpful to iden-
tify these both for simplifying subsequent analysis (they can be deleted) and
for pinpointing the areas in which our knowledge of metabolism may currently
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be incomplete. Theorem 4 is another application of Theorem 2 and provides
an efficient method for identifying all enzyme subsets in a metabolic network.
This method was used previously by Gagneur and Klamt [6], but the fact that it
actually identifies all enzyme subsets had not been established to our knowledge.

Theorem 5 is a result about the reduction of a stoichiometric matrix to canon-
ical form. We say that S is in canonical form if it contains no blocked reactions,
no effectively unidirectional reactions (reversible reactions which can only pro-
ceed in the forward or only in the reverse direction), no enzyme subsets, and
no linearly dependent rows. We propose a 4-step reduction process that elimi-
nates each of these undesirable structural elements in turn. The highly technical
theorem 5 states that this 4-step reduction process we propose is guaranteed
to converge after a single iteration, unlike the one proposed by Gagneur and
Klamt [6]. Finally, Theorem 6 is an auxiliary result about the numerical stabil-
ity of blocked reactions. It says that if a reaction is blocked, then any reaction
obtained from it by a small perturbation will be blocked as well.

Results. We have applied the algorithmic pipeline based on the methods above
to each of the 52 genome-scale metabolic networks representing 37 different
species, downloaded from the UCSD Systems Biology group website [7] and
parsed by a script we developed. The most significant result is our finding that,
of the 45 networks containing a well-defined biomass reaction, 20 are certifi-
ably unable to exhibit growth. Another remarkable result for these networks is
that their canonical form (obtained by the process outlined in the discussion of
Theorem 5) tends to be significantly smaller than their original stoichiometric
matrix, providing an average 23-fold reduction in size (the average is computed
only over networks that contain a biomass reaction). The fraction of blocked
reactions in these networks was 35.3% on average. This could mean one of the
following: either the state of our knowledge of the metabolism in these organ-
isms is incomplete, and the reactions are indications of systematic gaps in our
knowledge, or the constraint-based formalism is too stringent for these reactions
(in our opinion, the former is much more likely to be the case). In addition, a
significant fraction of the remaining (unblocked) reactions in each network are
part of an enzyme subset. The average fraction of unblocked reactions in an
enzyme subset is 54%. It is also interesting that the biomass reaction is always
in an enzyme subset when it is not blocked, likely because of the large number
of metabolites it typically involves.
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1 Introduction

Over the past decade gene expression data sets have been generated at an in-
creasing pace. In addition to ever increasing data generation, the biomedical
literature is growing exponentially. The PubMed database (Sayers et al., 2010)
comprises more than 20 million citations as of October 2010. The goal of our
method is the prediction of putative upstream regulators of observed expres-
sion changes based on a set of over 400,000 causal relationships. The resulting
putative regulators constitute directly testable hypotheses for follow-up.

2 Methods

In order to find those regulators, we first construct a causal graph GC whose
nodes are transcript levels, compound concentrations, and states of biological
processes. To represent causality, each node appears twice, once with a + sign
(upregulation) and once with a − sign (downregulation). A directed edge from
node a to node b means that the abundance or activity of b is regulated by the
abundance or activity of a. Each node is annotated with various identifiers, and
each edge is annotated with the article it is based on and the specific excerpt that
gave rise to it, to facilitate hypothesis validation for the scientists. We licensed
the substrate for our method from two vendors: Ingenuity Inc. and Genstruct
Inc. This yields 250,000 unique relationships covering 65,000 full-text articles
indexed by PubMed. Pollard et al., 2005 presented a similar approach, but did
not provide any details on implementation.

The gene expression data determines the subset G+ of all genes that are sig-
nificantly overexpressed and the subset G− of all genes that are significantly
� Joint first author, corresponding author: daniel.ziemek@pfizer.com
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underexpressed. We define G± := G+ ∪ G−. We choose a distance threshold Δ
which determines the maximum length of the paths we consider. Given a hypoth-
esis h ∈ V (GC), we classify each node of GC into one of three possible sets: S+

h :=
{v ∈ V (GC)|d(h, v) ≤ Δ, d(h, v) < d(h,−v)}, S−

h := {v ∈ V (GC)|d(h,−v) ≤
Δ, d(h,−v) < d(h, v)}, S0

h := {v ∈ V (GC)|d(h, v) > Δ or d(h, v) = d(h,−v)},
where d(·, ·) is the distance between two nodes in the graph GC . In order to eval-
uate the goodness-of-fit of a hypothesis h to the observed expression data, we
score 1 for each correct prediction, -1 for each incorrect prediction and 0 for each
ambiguous prediction made by h about G±. We define nσ,τ := |Sσ

h∩Gτ | for σ, τ ∈
{+,−}. That is, the score of hypothesis h is s(h, G±) = n+++n−−−n+−−n−+.

However, a good score does not necessarily mean good explanatory power,
because of possible connectivity differences between the nodes of GC . Therefore
we also look at statistical significance. For a given hypothesis h and a given
score s0 := s(h, G±), we would like to compute the probability of h scoring s0

or better with a random set of genes G±
R := G+

R ∪G−
R , chosen with |G+

R| = |G+|
and |G−

R| = |G−|. We have developed a method for computing this probability
in time cubic in |G±|.

When processing a particular data set, our algorithm begins by computing the
scores for each hypothesis and ranks the set of all hypotheses by their score. The
correctness p-value p of a hypothesis is typically required to be below a certain
threshold. The enrichment p-value pE of a hypothesis is also required to pass
a certain threshold. pE is the probability of finding n++ + n−− + n+− + n−+

differentially expressed transcripts for a putative hypothesis h under the null
model and represents a standard measure in gene set overrepresentation methods
(e.g. Draghici et al., 2003) . Finally, we may also filter out those hypotheses
whose number of correct predictions, C := n++ + n−−, is below a certain user-
defined threshold.

Table 1. The top five causal hypotheses from the three oncogene expression signatures
(Bild et al., 2006) are shown in the table, where C is the number of transcript changes
correctly explained by the hypothesis; I incorrectly & A ambiguously. A +/- indicates
the inferred directionality of the hypothesis.

Myc E2F3 H-Ras

Gene Rank Score C I A p Gene Rank Score C I A p Gene Rank Score C I A p

MYC+ 1 22 23 1 1 2 · 10−14 CDKN2A - 1 12 13 1 1 3 · 10−9 TNF + 1 36 47 11 6 1 · 10−15

ZBTB16 - 2 10 10 0 0 4 · 10−11 E2F1 + 2 10 11 1 0 8 · 10−6 IL1B + 2 28 32 4 1 5 · 10−15

ALK + 3 9 9 0 0 3 · 10−12 E2F family + 3 5 5 0 0 7 · 10−5 F2 + 3 23 27 4 0 4 · 10−16

TP53 - 4 8 12 4 0 2 · 10−3 PROX1 + 4 4 4 0 0 4 · 10−6 EGF + 4 21 26 5 0 1 · 10−12

HDAC6 - 5 3 3 0 0 6 · 10−5 ITGB1 - 5 3 3 0 0 6 · 10−5 TGFB1 + 5 21 31 10 2 5 · 10−8

. . . . . . HRAS + 10 15 19 4 0 5 · 10−9

3 Validation and Results

Using simulations we established that our method is able to recover embedded
regulators given our causal graphs with high-accuracy in the presence of noise.
In order to test the performance of the causal reasoning algorithm on a biolog-
ical data set we sought out experimental data which had a single, well defined
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perturbation that should be identified by the algorithm. Bild et al., 2006 used re-
combinant adenoviruses to infect non-cancerous human mammary epithelial cells
with a construct to overexpress one of five oncogenes; c-Myc, H-Ras, c-Src, E2F3
and β-catenin. The data from this paper was not present in the causal interaction
knowledge base when we applied our causal reasoning algorithm to these published
signatures. For three signatures (c-Myc, H-Ras, E2F3) either the overexpressed
protein or a protein immediately downstream from it, is correctly identified by our
algorithm as the top-ranked predicted hypothesis (Table 1). c-SRC and β-catenin
had very few matching genes. Our method did not return highly significant results
in those cases, meaning that no confident predictions were possible.

Wealsousedour algorithmto comparemyocardial gene expression changes asso-
ciatedwith isoprenaline-induced(pathological)hypertrophywithexercise-induced
(adaptive) hypertrophy in mice, obtained from the public domain (Galindo et al.,
2009). In the isoprenaline group, the analysis supports biological networks of sev-
eral hallmarks of cardiac disease and cardiomyocyte stress (e.g. Aragno et al.,
2008). These include hypotheses indicative of increased hypoxia, increased NOS
production, oxidative stress, inflammatory response and endoplasmic reticulum
stress. In contrast, the exercise-induced hypertrophy demonstrates perturbation
of the same biological networks as in the isoprenaline group but with reversed
direction of regulation, e.g. decreased hypoxia.

The outlined results provide evidence that method based on the outlined score
and statistical measures can accurately detect the underlying cause of a biological
gene expression signature and identify regulatory modules from within a larger,
more complex data set. In our experience the output of our method was easy
to interpret for biologists, and several hypotheses have already been selected for
follow-up. It is our hope that the interplay between experimental work based on
our method, the discovery of novel biology and the subsequent enrichment of the
causal graph will lead to a virtuous cycle allowing for the continued expansion
of the boundaries of biological knowledge.
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Abstract. As whole genome sequencing has become a routine biologi-
cal experiment, algorithms for assembly of whole genome shotgun data
has become a topic of extensive research, with a plethora of off-the-shelf
methods that can reconstruct the genomes of many organisms. Simulta-
neously, several recently sequenced genomes exhibit very high polymor-
phism rates. For these organisms genome assembly remains a challenge
as most assemblers are unable to handle highly divergent haplotypes in
a single individual. In this paper we describe Hapsembler, an assem-
bler for highly polymorphic genomes, which makes use of paired reads.
Our experiments show that Hapsembler produces accurate and contigu-
ous assemblies of highly polymorphic genomes, while performing on par
with the leading tools on haploid genomes. Hapsembler is available for
download at http://compbio.cs.toronto.edu/hapsembler.

Keywords: Genome assembly, polymorphism.

1 Introduction

In the last decade the sequencing and assembly of genomes have become routine
biological experiments. Almost all genome projects today use the whole-genome
shotgun sequencing approach: many copies of the genome are randomly sheared,
and each part is sequenced to generate a read. Based on the overlaps between
these reads an assembly algorithm then reconstructs contigs (contiguous regions)
of the original, sequenced genome. Genome assembly has been the topic of exten-
sive research, with a plethora of off-the-shelf methods that can reconstruct the
genomes of many species. Simultaneously, de novo assembly of some organisms
remains a challenge. Assembly tools currently available are optimized for the as-
sembly of large mammalian genomes [1], [8], or smaller, bacterial genomes from
High Throughput Sequencing (HTS) data [14], [3], [2]. In both of these settings
the difficulty of genome assembly is due to the relative sizes of the reads and the
genome: short reads cannot span longer repeats, and make the assembly of the
genome difficult. While many of these assembly tools also consider the possibil-
ity of polymorphisms in the sequenced individuals, the low frequency of SNPs
and other variants in these genomes makes addressing these polymorphisms a
relatively tractable problem.
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Simultaneously, there are now several known organisms with extremely high
polymorphism rates [11],[13]: for example the C. savignyi genome has a SNP
rate of 5% (50-fold higher than human). Because this variability is also present
between the sequenced individual’s paternal and maternal chromosomes, assem-
bling these genomes is very difficult with current methods. Previous efforts to
assemble these highly polymorphic genomes have used one of two approaches:
either they allow for promiscuous overlaps, to connect the reads from different
haplotypes[20], or they enforce strict overlapping requirements, thus separat-
ing the haploid genomes (haplomes) [10]. The first approach has the drawback
that the spurious overlaps make it difficult to reconstruct long segments of the
genome. The second approach will unnecessarily subdivide the genome, as many
real overlaps will be removed. Furthermore, higher coverage will be needed, as
the effective total size of the genome is doubled. In the C. savignyi genome as-
sembly the two haplomes were aligned to each other to better reconstruct the
genome [12], however only 60% of the genome could be assembled automatically,
and the rest was finished via manual analysis of the contigs [10].

In this paper we present Hapsembler, a haplotype-aware genome assembly al-
gorithm. Hapsembler combines the classical overlap-layout-consensus approach
for genome assembly with a haplotype-aware, Bayesian approach for error correc-
tion and a novel structure we term the matepair graph, that helps to reconstruct
the genome via a thorough analysis of the paired sequencing reads.

2 Methods

Hapsembler consists of three main modules: the alignment module, the error
correction module, and the graph module. The alignment module is used to
compute pairwise sequence alignments between reads that obey certain criteria.
This procedure employs an efficient kmer hashing technique to detect overlaps
longer than a user defined length. This initial set of overlaps is used to correct
sequencing errors by a probabilistic error correction procedure based on Naive
Bayes [15]. The corrected reads are then passed through another overlapping
stage to compute the final set of overlaps.

The graph module builds an overlap graph (a.k.a string graph [7]) using the
overlaps reported by the alignment module. This graph is used to construct
“path sets” representing possible tilings between paired reads. A mate pair graph
is then constructed in which nodes represent mate pairs, and edges represent
possible overlaps between mate pairs as constrained by the path sets. Finally,
contigs are determined by finding maximal paths in the mate pair graph.

In the following subsections we give a detailed explanation of these steps.

2.1 Overlap Computation

To compute overlaps between the reads, we employ a kmer hashing technique
similar to [9]. After masking frequent kmers, reads that share a sufficient number
of kmers (see Appendix 1 for these and other parameters) are aligned using a
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modified Needleman-Wunsch algorithm. This modified algorithm uses the posi-
tions of matching kmers to estimate the overlapping portion of the reads. For
instance, if a kmer is at index 60 in read R and at index 45 in read R′, the
start of the reads are assumed to be 15 base pairs apart. Consequently, only the
corresponding diagonal and diagonals within a distance of d are computed in
the dynamic programming matrix. The parameter d is dynamically set to e ∗ l,
where e is a user defined error tolerance rate and l is the length of the read. In
general, different kmers that are shared between two reads may suggest different
starting indices. To prevent redundant calls to the Needleman-Wunsch proce-
dure, we bundle such indices based on their proximity. Overlaps greater than a
minimum length lmin with identity (1 − e) or more are reported.

2.2 Error Correction

Real sequence reads often have errors even after aggressive quality trimming. To
correct these errors at an early stage, we employ a double pass overlap compu-
tation approach. In this approach, the initial set of overlaps are used to correct
the reads. For each read, the set of all pairwise alignments initially found are
used to decide, for each base of the read, whether the position is correct or is
a sequencing error. Note that, in the case of diploid organisms, error correction
is further complicated, as disagreements between reads may be due to either
errors, or polymorphisms (SNPs or small indels). To avoid overcorrecting reads
with SNPs, we employ a Naive Bayesian method at this stage.

Briefly, this method works by scoring each pairwise alignment using base
quality values and using this score to derive the probability that two reads are
sampled from the same haploid genome (haplome). The consensus sequence for
the read is then computed by weighting each alignment’s contribution with this
probability.

Formally, let Cx ∈ {A, C, G, T } denote the xth base of a read R. Ambiguous
bases (eg. N) are not used to correct other errors; they can, however, them-
selves be corrected. Suppose that R has pairwise alignments with the reads
{S1, S2, ..., Sn}. Let Fi denote the base aligned with x in the pairwise alignment
between R and Si. Then the probability of Cx assuming a particular nucleotide
is given by:

p(Cx|Fi=1,2,...,n) = p(Cx)
n∏

i=1

p(Fi|Cx) (1)

Above p(Cx) is the prior probability of Cx and it is equal to 1− 10−q/10 if it has
the same value as the nucleotide present in the read, where q is the Phred style
[16] quality score associated with the base. Otherwise it is equal to (10−q/10)/3.
p(Fi|Cx) is given by the equation:

p(Fi|Cx) = p(Fi|Cx, Bi)p(Bi) + p(Fi|Cx,¬Bi)p(¬Bi) (2)
= p(Fi|Cx, Bi)p(Bi) + p(Fi)p(¬Bi) (3)
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p(Fi|Cx, Bi) is the conditional probability of Fi given Cx and Bi where Bi is a
binary variable indicating whether the two reads belong to the same locus of the
genome/haplome or not. When two reads belong to different loci, the bases are
independent of each other hence p(Fi|Cx,¬Bi) = p(Fi) (i.e. we have conditional
independence). Here, we abuse the notation slightly and use p(Bi) to denote
the posterior probability of Si and R belonging to the same locus. To estimate
p(Bi), we first have to compute the following probabilities:

p(BR,Si |R, Si) = p(B)
k∏

j=1

p(Rj , S
i
j |B) (4)

p(¬BR,Si |R, Si) = p(¬B)
k∏

j=1

p(Rj , S
i
j |¬B) (5)

= p(¬B)
k∏

j=1

p(Rj)p(Si
j) (6)

Above, k is the number of bases in the pairwise alignment between R and Si.
p(Rj , S

i
j |B) denotes the conditional probability of the jth position in the align-

ment. If the reads R and Si belong to the same region, this means the disagree-
ments between the two sequences should be due to sequencing errors alone. In
other words, if the two bases differ, at least one of them must be an error. Let
q denote the quality value of the jth base in read R and qi denote the quality
value of the corresponding base in read Si. If Rj �= Si

j :

p(Rj , S
i
j|B) = (1 − 10−q/10)((10−qi/10)/3) (7)

+(1 − 10−qi/10)((10−q/10)/3) (8)

+2((10−q/10)/3)((10−qi/10)/3) (9)

If Rj = Si
j , on the other hand, either both reads are correct or they both have

a sequencing error:

p(Rj , S
i
j |B) = (1 − 10−q/10)(1 − 10−qi/10) (10)

+((10−q/10))((10−qi/10)/3) (11)

The prior probability p(B), of two reads belonging to the same location is set to
a value near 1.0 since we only compare reads that have a sufficient overlap. The
posterior probability p(Bi) is then estimated as:

p(Bi) =
1

1 + exp(log p(¬BR,Si |R, Si) − log p(BR,Si |R, Si))
(12)
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Fig. 1. Possible edges in a bidirected overlap graph. The directed lines to the right
represent the reads where the arrowed end is the 3’ end while the flat end is the 5’ end.
w1 and w2 are the lengths of the reads that are not covered by the overlap.

The consensus nucleotide of read R for position x is chosen to be the nucleotide
that gives the highest probability p(Cx|Fi=1,2,...,n). In practice, we use the log
probabilities to avoid multiplication. We also compute a look-up table in advance
to avoid doing the same computations many times.

Note that the equations above do not account for indel (insertion/deletion) er-
rors. Although indels could be handled similarly, there are no associated quality
values with missing bases. Consequently, we handle indels separately. If a signif-
icant fraction of reads are calling for a deletion (at least 3 votes for deletion and
at most 1 vote for no deletion; these parameters are conservative for the rela-
tively low coverage levels used in this study, to avoid over-correction) the base is
deleted. A similar rule is applied for insertion and the insertion base is selected
using the same procedure as above where log p(Cx) is taken to be log(1/4). For
the computation of p(Bi), we use a default gap quality value. After all the reads
are corrected as above, we do another pass of the overlapping phase, now with
the corrected reads.

2.3 Building the Overlap Graph

Once the overlaps between the reads are finalized we build a bidirected overlap
graph where the nodes are reads and the edges represent overlaps between the
reads. Formally, a bidirected graph G is a graph with node and edge sets V and
E, where each edge can acquire either of the two types of arrows at each vertex;
in-arrow and out-arrow [6], [19]. As a result, there are 3 possible types of edges
in a bidirected graph; in-out, out-out and in-in (Figure 1). A walk in a bidirected
graph must obey the following rule: If we come to a node using an in-arrow we
must leave the node using an out-arrow. Similarly, if we come to a node using
an out-arrow we must leave using an in-arrow. In the former case, the node is
said to be in-visited and in the latter case it is said to be out-visited.

The Figure 1 omits non-proper overlaps that are caused by reads that are
entirely contained by other reads. These reads are excluded when building the
overlap graph.
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Fig. 2. Transitive edge reduction. Since we can reach the node c from a via b, we do
not need the edge between a and c. Note that during this procedure, we check whether
the two paths have the same overall length within a permissible difference f , where
f is defined as the total number of indels that are present in the pairwise alignments
associated with the overlaps. Otherwise, the edge is not deleted.

Many edges in the initial overlap graph will be redundant since they can
be inferred by other edges. These edges are removed from the graph using an
operation called transitive edge reduction [7] as illustrated in Figure 2.

2.4 Finding Paths between Mate Pairs

At this stage, we have a simplified overlap graph in which most nodes have 1
incoming and 1 outgoing edge. However, some nodes will have degrees of 3 or
more due to repeats or polymorphic regions. In this section, we will show how
to use the mate pairs to resolve such nodes to generate longer paths.

For each mate pair in our dataset, we assume there is a given approximate
insert size mean μl and standard deviation σl. Ideally, we would like to find a
single path between each pair with a length in the range μl ± (kσl), where k
is a real number controlling the largest deviation from the mean we are willing
to allow. In general, there may be an exponential number of such paths in the
graph. However, we can identify the subgraph containing all paths between two
nodes shorter than a given length in polynomial time.

This idea can be summarized as follows. Let nodes a and a′ be a mate pair.
First, we perform Dijkstra’s [4] shortest path finding algorithm starting from a
(and leaving the node using an out-arrow). While Dijkstra’s algorithm is origi-
nally invented for directed or undirected graphs, the generalization to bidirected
graphs is straightforward. The only difference is that instead of a single distance
from the source, we have to keep track of the shortest in-distance and out-
distance separately for each node. We also modify the algorithm so that only
the nodes that are within a distance of μ∗ = μl + (kσl) are enqueued. During
this search, if we do not encounter a′ it means there is no path in the graph
between a and a′ less than the given length. This situation can arise for several
reasons: (1) the insert size deviation might be higher than the expected for that
mate pair, (2) there might be a region with no coverage between the mates, or
(3) we might be missing overlaps (due to sequencing errors, short overlaps, etc).
If we encounter a′ during the search, we do another pass of Dijkstra’s, this time
starting from a′. During this second pass, we enqueue a node if and only if the
sum of its shortest distance from a, its current distance from a′ and the read’s
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Fig. 3. Overlapping mate pairs. By comparing the previously computed sets of Saa′

and Sbb′ , we can determine whether the two mate pair nodes should be connected or
not.

length is less than μ∗. Furthermore, we put such nodes into a set which we shall
call Saa′ together with their shortest in/out-distances from a and a′.

After this second pass, we end up with a set of nodes, Saa′ , that are guaranteed
to lie on at least one path that has length less than μ∗ between a and a′. It is
easy to show that this set is also exhaustive; that is all vertices v that satisfy
indist(a, v) + outdist(a′, v) + length(v) < μ∗ or outdist(a, v) + indist(a′, v) +
length(v) < μ∗, where in/outdist(x, y) denotes the in/out distance of node y
from node x, are included in Saa′ .

Note that we find this set of nodes in polynomial time even though there
might be an exponential number of paths between a and a′.

2.5 Building the Mate Pair Graph

The process described above is repeated for each mate pair, yielding a set of sets
S̄. We then use these sets to build the mate pair graph.

Consider two mate pair sets Saa′ and Sbb′ . To decide if these mate pairs have
paths that overlap with each other, we first check whether each of the following
conditions hold:

a ∈ Sbb′ (13)
a′ ∈ Sbb′ (14)
b ∈ Saa′ (15)
b′ ∈ Saa′ (16)

Whenever there is less than two positive answers to the checks, an overlap of
paths is not possible. Otherwise, we check if the length of the paths and orien-
tations are compatible. For example, if we find that a′ ∈ Sbb′ and b ∈ Saa′ , we
check whether the following inequalities hold (Figure 3):

indist(a, b) + outdist(a′, b) + length(b) < μ∗ (17)
outdist(b, a′) + indist(b′, a′) + length(a′) < μ∗ (18)
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where μ∗ is defined as above. Recall that we store these distances together with
the nodes, hence these checks are done in constant time. However, this algorithm
may become problematic in terms of memory for large insert sizes since we store
a set proportional to the size of the insert for each mate pair (for fixed coverage
and read length). In practice, we use a slightly different version of this algorithm
which can be implemented to give linear space complexity independent of the
insert size. In this version, we perform two extra Dijkstra’s starting from each
end of a mate pair, this time in opposite directions (i.e. leaving the node using an
in-arrow). As before, we only enqueue nodes that are within the distance cutoff.
This gives us two additional sets Sâ and Sâ′ . Then for each node b in Saa′ we
check if its mate pair b′ is in Sâ or Sâ′ depending on the orientation of the node.
If the path lengths are compatible with the insert sizes (see above) then we put
an edge between aa′ and bb′ in the mate pair graph. Since we can immediately
determine which edges aa′ should be incident to, we do not have to store the
set of aa′ after we process aa′. As a result, this alternative algorithm takes only
linear space in the number of nodes.

2.6 Processing the Mate Pair Graph

The mate pair graph is structurally similar to the overlap graph and can undergo
similar simplifying procedures, namely nested mate pair removal and transitive
edge reduction.

When a mate pair lies entirely within an other mate pair, it creates an unnec-
essary bubble or dead end in the mate pair graph . Such nested mate pairs are
detected and marked while building the mate pair graph. For a mate pair aa′,
this is done by checking the sets Sâ and Sâ′ to see if there is any mate pair bb′

such that b ∈ Sâ, b′ ∈ Sâ′ and:

outdist(a, b) + dist(a, a′) + outdist(a′, b′) < μ∗ (19)

where dist(a, a′) is the shortest distance between the pair aa′ as computed during
Dijkstra’s algorithm. If there is any such mate pair, aa′ is removed from the mate
pair graph.

Finally, we perform transitive edge reduction on the mate pair graph. When
creating the mate pair graph, three values are stored with each edge. For ex-
ample, for the mate pair edge between aa′ and bb′ of Figure 3, we would store
the distances indist(a, b), outdist(b, a′) and indist(a′, b′). Given three mate pair
nodes where each node is connected to the other two, we decide whether one of
the edges can be inferred from the other two using these distances.

2.7 Polymorphism and Repeat Resolution with the Mate Pair
Graph

In essence, polymorphism resolution is very similar to repeat resolution and
Hapsembler is designed to exploit paired reads to handle both problems at once.
Figure 4 illustrates how the graph module works on a toy example. In this
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Fig. 4. Polymorphism and repeat resolution. Left: The diploid genome and mate pairs
sampled from it. We do not know the exact distances between the pairs but we assume
that we are given an upper bound (in this case 13bp). Middle: The overlap graph after
removal of contained reads (i.e. GAA, GCA and GCG) and transitive edge reduction.
The nodes are labelled with the mate pairs they belong to and arbitrarily numbered.
The minimum overlap size is set to 2bp. Right: The paths between the mate pairs
shorter than the given upper bound and the resulting mate pair graph. In practice,
we do not need the exact paths and we only compute the set of nodes that lie on at
least one path. The node d is removed since it is contained by node c. In addition, the
edge between f and i is removed during transitive edge reduction. The resulting paths
correspond to the two haplomes.

example, we have a diploid genome1 which has several SNPs. After the overlap
graph is built and simplified, we still have several ambiguous nodes (nodes with
degree 3 or more). Some of these ambiguities are due to short repeats and some
due to regions that are identical in both haplomes. Nevertheless, the mate pair
graph built upon this overlap graph is less tangled. Indeed, the simplified mate
pair graph has exactly two disjoint paths, each spelling the sequence of one
haplome.

Although the toy example given in Figure 4 is completely resolved by our
algorithm, in general the mate pair graph might still have ambiguous nodes.
In particular, as with repeats, haplotype resolution is limited to the size of the
inserts. After simplification, we report each uninterrupted path in the mate pair
graph as a contig. If there are long chains in the simplified overlap graph that
have not been visited during the mate pair graph traversal (or if all the reads are
unpaired), these are also reported as contigs. The consensus sequence for each
contig is generated using a greedy multiple sequence alignment.

1 For simplicity, we assume the genome is single stranded.
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3 Results

We analyzed the performance of Hapsembler in two categories: read correction
and assembly. For each category, we performed experiments with simulated and
real reads. Since Hapsembler is built for polymorphic data, we compiled a ref-
erence sequence using the C. savignyi reference assembly as described in [11].
This draft assembly is organized in 374 “hypercontigs”, where each hypercontig
is a pairwise alignment of two sequences, each representing a single haplotype.
To use in our experiments, we picked the largest three hypercontigs, totalling
roughly 33mbp (haploid size = 16.5mbp).

Since C. savignyi has a very complex genome with many long repeats and
a very high polymorphism rate, we only used Sanger reads in our experiments
with this genome. However, we also give results on a bacterial genome using
Roche/454 reads. For these experiments we downloaded 454 reads from an on-
going sequencing project on evolution of antibiotic resistant E. coli (NCBI Short
Read Archive, accession code: SRR024126). This dataset includes 110,388 reads
amounting to 10x sequence coverage. The reads were downloaded using the clip-
ping option and barcode trimmed. As our reference we used the NCBI reference
E. coli sequence (NC 000913.2).

3.1 Error Correction

To test the effect of our error correction we first simulated Sanger reads at
different coverage levels from the C. savignyi reference. For these simulations,
we downloaded the raw Sanger reads from the C. savignyi sequencing project
[18] to use as templates. Using the length of these reads as a distribution, we
uniformly sampled Sanger reads generating 13x, 10x, and 7x haploid coverage
levels. The templates are also used to model errors by converting the quality
scores to error probabilities. For instance, if a base has quality 20, we introduce
an error with probability 0.01.

We compare the performance of our error correction method to the method
of [17] (referred to as H-SHREC throughout this text). We choose this imple-
mentation of SHREC for its ability to handle indel type errors. The results on
simulated Sanger reads is summarized in table 1. Even though the reads are
sampled from a highly polymorphic reference, Hapsembler is able to correct a
large fraction of errors while introducing relatively few errors. H-SHREC fails to
reduce the total numbers of errors for all three datasets.

Next we assessed the effect of our error correction on two real datasets. As our
first dataset we used a subset of the real Sanger C. savignyi reads as follows. After
vector and quality trimming, we mapped the reads to the reference sequence we
described above using MUMmer (version 3.22)[5]. A read is considered eligible if
at least 90% of its sequence maps to a location with a minimum of 95% identity.
For each eligible read, we also included its mate pair. This procedure yielded
558,936 reads totalling 358mbp. As our second dataset we used the 454 E. coli
reads described above.
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Table 1. The effect of error correction on simulated Sanger reads. The reads are first
quality trimmed and then subjected to error correction. Total bases is calculated as
the sum of all of the reads after trimming. Miscorrections denote errors introduced by
the error correction procedure. Number of errors and miscorrections are calculated via
alignments to the original error-free reads.

Coverage Total No. of errors Method No. of errors No. of
(mbp) after trimming after correction miscorrections

13x 194 3,924,331 Hapsembler 598,111 45,911
H-SHREC 4,750,235 2,221,266

10x 148 3,056,019 Hapsembler 631,957 48,997
H-SHREC 4,370,374 2,443,059

7x 102 2,199,861 Hapsembler 741,785 51,746
H-SHREC 2,893,788 1,453,007

Since in this case we do not have the ground truth, we assessed the per-
formance of both methods by mapping the reads to the reference sequences
before and after error correction. Results are summarized in table 2. In the C.
savignyi dataset, after correcting with Hapsembler, the number of reads map-
ping perfectly increases by more than 6-folds. H-SHREC moderately improves
the number of reads mapping perfectly, however the number of reads mapping
at the 95% threshold decreases, suggesting that the overall number of errors
might have increased. On the E. coli dataset, Hapsembler and H-SHREC perform
similarly.

3.2 Assembly

We first evaluated the performance of Hapsembler on the 454 E. coli dataset. We
compare the results achieved by Hapsembler with Velvet [14] and Euler [3], which
have support for 454 reads. Since Hapsembler is designed to work with paired
reads we also simulated an artificial pairing of these reads as follows. Reads are
mapped to the reference sequence and sorted by their mapping positions allowing
duplicate mappings. For each read mapping to the forward strand, an unpaired
read mapping on the opposite strand that has distance closest to 8000bp is taken.
If there is no such read with distance 8000±2400, then the read is left unpaired.
This mapping yielded 33,160 pairs with insert size mean and standard deviation
of 8534.67 and 713.35 respectively. The rest of the reads are left as single reads.
Table 3 show the results for contigs of size 500bp or greater.

To evaluate Hapsembler on a polymorphic genome, we simulated 13x coverage
of paired Sanger reads from the C. savignyi reference haplomes with errors added
as described above. The start of the first reads are chosen uniformly and the
start the paired reads are selected using a normal distribution with mean and
standard deviation 10kbp and 1kbp respectively. The results are summarized
in table 4. Of particular emphasis for polymorphic assembly is the ability of an
algorithm to report haplotype-specific contigs, rather than mozaics from the two
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Table 2. The effect of error correction on real Roche/454 and Sanger reads. C. sav-
ignyi dataset consists of 558,936 Sanger reads and E. coli dataset consists of 110388
Roche/454 reads. Reads are mapped to the reference sequences using MUMmer. Num-
ber of reads mapped is calculated by counting the reads that map with at least 95%
identity and 95% coverage. A read is considered to be perfect if the entire read maps
with 100% identity. The numbers in paranthesis denote the number of discarded reads
(by H-SHREC) that map in each category. H-SHREC discards a total of 13600 and
1132 reads from the C. savignyi and E. coli datasets respectively.

Data Error No. of No. of reads Total size
correction reads mapped of perfect

mapped perfectly reads (mbp)

C. savignyi Hapsembler 421,819 126,306 83.9
H-SHREC (11,401) 391,016 (761) 48,994 32.6

None 411,626 20,689 13.6

E. coli Hapsembler 89,817 10,292 3.9
H-SHREC (738) 88,814 (10) 9,573 3.7

None 88,624 4,154 1.6

Table 3. Assembly of E.coli with real and artificially paired 454 reads. Coverage and
accuracy are computed by mapping contigs to E. coli reference sequence (4639kbp)
using MUMmer. N50 is defined as the largest contig size such that the sum of contigs
at least as long is greater than half the genome size.

Reads Tool N50 No. of Total Size Coverage Accuracy
(kbp) Contigs (kbp) (%) (%)

Hapsembler 72.4 128 4600 90.3 98.6
unpaired Velvet 41.2 199 4585 89.5 98.4

Euler 8.1 913 4731 88.6 98.6

Hapsembler 103.7 111 4693 90.9 98.6
paired Velvet 41.9 189 4607 89.5 98.2

Euler 9.4 765 4593 88.4 98.6

haplotypes. However, conserved sequences and low coverage regions make this
difficult, and the longer contigs may have several “jumps” between the haplomes.
To estimate the long-range linkage information in the contigs, we computed
maximal haplotype blocks in the assembly, for which all of the SNPs match
one haplome. In Figure 5 we plot the fraction of genome covered by haplotype
specific blocks of a certain size or greater, measured in the number of SNPs.
The figure shows that half of the genome is covered by haplotype-specific blocks
containing 300 adjacent SNPs or more.
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Table 4. Assembly of three hypercontigs of C. savignyi with simulated paired reads.
Contigs are mapped to the reference haplomes using MUMmer. Coverage is calculated
by taking only the best hit of each location of the contigs. Accuracy is calculated as
percent identity excluding SNPs. N50 is defined as the largest contig size such that such
that the sum of contigs at least as long is greater than half the genome size, where the
genome size is taken as the sum of the two haplomes.

Tool N50 No. of Total Size Coverage Accuracy
(kbp) Contigs (mbp) (%) (%)

Hapsembler 23.4 2886 34 87.4 99.4

Fig. 5. Fraction of genome in haplotype blocks. X axis denote the number of adjacent
SNPs covered by a contiguous region of a contig. Y axis shows the fraction of genome
covered by the haplotype blocks.

4 Discussion

In this paper we presented Hapsembler, an assembly algorithm for whole genome
shotgun data that is optimized for highly polymorphic genomes. Due to the
large number of differences between the maternal and paternal copies of the
chromosomes, these genomes have classically been difficult to assemble, with
custom algorithms [12] and extensive manual intervention [10] required to achieve
a high quality assembly. Hapsembler, to our knowledge, is the first tool that
specifically targets this problem.

Hapsembler combines the use of mate pairs with a sophisticated error correc-
tion procedure to achieve a better assembly. Nevertheless, the methods required
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for this improvement are computationally expensive. Currently the most time con-
suming steps are read overlapping and mate pair graph building stages. While
Hapsembler takes 36 minutes to assemble the E. coli dataset, Euler and Velvet
take only a few minutes each. Fortunately, both of these bottlenecks are suit-
able for parallel computation. For example, the overlapping stage of 558k reads
from the C. savignyi dataset takes less than 40 minutes using four quad-core In-
tel 3 GHz Xeon compute nodes. Nevertheless, further improvements are necessary
to make Hapsembler work on large scale whole-genome datasets. Similarly, addi-
tional future work is necessary to take advantage of high-coverage High Through-
put Sequencing reads (Solexa/Illumina or AB/SOLiD) in combination with lower-
coverage Sanger reads. Finally we believe that exploring additional representation
methods for polymorphic genome assemblies is a fruitful area for future research.
We believe that representing haplotypes as paths on a genome graph (similar to
Allpaths [2]) may allow for representation of the inherent complexity of polymor-
phic genomes.
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Appendix 1: Parameters

To run H-SHREC (version 1.0) we use the largest strictness value the program
accepts for each dataset. For the C. savignyi datasets, we set the number of iter-
ations to 1 (more iterations introduced more errors). For E. coli, 3 iterations are
used. The other parameters are left at defaults. Velvet (version 1.0.13) is tested
with all odd kmer sizes between 17 and 27 inclusive. The results are reported
with the kmer size (19) that achieved the highest N50 value. The expected cov-
erage is set to 10. For Euler (version 1.1.2), we test all odd kmer sizes between
21 and 27 and choose the size (23) that maximized the N50 value.

Hapsembler is run with an error threshold of 0.07 and minimum overlap size
of 30bp. The kmer size is set to 13. Kmers that appear more than 100 times
the expected coverage in the data are masked. The minimum number of kmers
required to perform Needleman-Wunsch is set to 1. These parameters are kept
constant for all the datasets reported.

http://www.broadinstitute.org/annotation/ciona/
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A plethora of epigenetic modifications have been described in the human genome
and shown to play diverse roles in gene regulation, cellular differentiation and the
onset of disease. Although individual modifications have been linked to the ac-
tivity levels of various genetic functional elements, their combinatorial patterns
are still unresolved and their potential for systematic de novo genome annota-
tion remains untapped. Here, we use a multivariate Hidden Markov Model to
reveal chromatin states in human T cells, based on recurrent and spatially co-
herent combinations of chromatin marks. We define 51 distinct chromatin states,
including promoter-associated, transcription-associated, active intergenic, large-
scale repressed and repeat-associated states. Each chromatin state shows specific
enrichments in functional annotations, sequence motifs and specific experimen-
tally observed characteristics, suggesting distinct biological roles. This approach
provides a complementary functional annotation of the human genome that re-
veals the genome-wide locations of diverse classes of epigenetic function.
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Abstract. In recent years, many algorithms have been developed to narrow down
the set of candidate disease genes implicated by genome wide association stud-
ies (GWAS), using knowledge on protein-protein interactions (PPIs). All of these
algorithms are based on a common principle; functional association between pro-
teins is correlated with their connectivity/proximity in the PPI network. However,
recent research also reveals that networks are organized into recurrent network
schemes that underlie the mechanisms of cooperation among proteins with dif-
ferent function, as well as the crosstalk between different cellular processes. In
this paper, we hypothesize that proteins that are associated with similar diseases
may exhibit patterns of “topological similarity” in PPI networks. Motivated by
these observations, we introduce the notion of “topological profile”, which rep-
resents the location of a protein in the network with respect to other proteins.
Based on this notion, we develop a novel measure to assess the topological sim-
ilarity of proteins in a PPI network. We then use this measure to develop algo-
rithms that prioritize candidate disease genes based on the topological similarity
of their products and the products of known disease genes. Systematic experi-
mental studies using an integrated human PPI network and the Online Mendelian
Inheritance (OMIM) database show that the proposed algorithm, VAVIEN, clearly
outperforms state-of-the-art network based prioritization algorithms. VAVIEN is
available as a web service at http://www.diseasegenes.org.

1 Introduction

Characterization of disease-associated variations in human genome is an important step
toward enhancing our understanding of the cellular mechanisms that drive complex dis-
eases, with profound applications in modeling, diagnosis, prognosis, and therapeutic
intervention [1]. Genome-wide linkage and association studies in healthy and affected
populations provide chromosomal regions containing hundreds of polymorphisms that
are potentially associated with certain genetic diseases [2]. These polymorphisms often
implicate up to 300 genes, only a few of which may have a role in the manifestation
of the disease. Investigation of that many candidates via sequencing is clearly an ex-
pensive task, thus not always a feasible option. Consequently, computational methods
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a. Network Connectivity c. Topological Similarityb. Information Flow

Fig. 1. Key principles in network-based disease gene prioritization. Nodes and edges respectively
represent proteins and interactions. Seed proteins (proteins known to be associated with the dis-
ease of interest) are shown in light blue, proteins that are implicated to be associated with the same
disease by the respective principle are shown in dark red, other proteins are shown in white. (a)
Network Connectivity [3,10,11,12,13] infers association of the red protein with the seed proteins
because it interacts heavily with them. (b) Information Flow [14, 15, 16, 17] infers association of
the red protein with seed proteins because it exhibits crosstalk to them via indirect interactions
through other proteins. (c) Topological Similarity, proposed in this paper, infers association of
the red protein with the seed proteins because it (indirectly) interacts with a hub protein in a way
topologically similar to them.

are primarily used to prioritize and identify the most likely disease-associated genes by
utilizing a variety of data sources such as gene expression [3, 4] and functional annota-
tions [5,6,7]. Protein-protein interactions provide an invaluable resource in this regard,
since they provide functional information in a network context and can be obtained at a
large scale via high-throughput screening [8].

In the last few years, many algorithms have been developed to utilize protein-protein
interaction (PPI) networks in disease gene prioritization [9,10,11,12,13,14,15,16,17,
18,19]. These algorithms take as input a set of seed proteins (coded by genes known to
be associated with the disease of interest or similar diseases), candidate proteins (coded
by genes in the linkage interval for the disease of interest), and a network of interactions
among human proteins. Subsequently, they use protein-protein interactions to infer the
relationship between seed and candidate proteins and rank the candidate proteins ac-
cording to these inferred relationships. The key ideas in network-based prioritization of
disease genes are illustrated in Figure 1.

Network connectivity is useful in disease gene prioritization. Network-based anal-
yses of diverse phenotypes demonstrate that products of genes that are implicated in
similar diseases are clustered together into highly connected subnetworks in PPI net-
works [20, 21]. Here, the similarity between diseases refers to the similarity in clinical
classification of diseases. Motivated by these observations, many studies search the PPI
networks for interacting partners of known disease genes to narrow down the set of
candidate genes implicated by GWAS [10, 11, 12, 13] (Figure 1(a)). These algorithms
are also extended to take into account the information provided by the genes implicated
in diseases similar to the disease of interest [3].

Information flow based methods take into account indirect interactions. Methods
that consider direct interactions between seed and candidate proteins do not utilize
knowledge of PPIs to their full potential. In particular, they do not consider interactions
among proteins that are not among the seed or candidate proteins, which might also
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Fig. 2. Motivating example for using topological similarity to prioritize candidate disease genes.
Two PPI subnetworks connecting key cancer driver genes, APC-HAPLN1 (p < 0.0068) and
APC-P2RX7 (p < 0.0212), were found significant when bimodality of coexpression with
proteomic targets were calculated [23]. Darker nodes represent proteins coded by genes that
carry “driver mutations”. Blue nodes represent growth factor receptors (GFRs). Although APC-
HAPLN1 and APC-P2RX7 do not directly interact or exhibit significant crosstalk with growth
factors and products of driver genes, their relative locations with respect to these proteins exhibit
similarities.

indicate indirect functional relationships between candidate and seed proteins. For this
reason, connectivity-based (“local”) methods are vulnerable to false negative and posi-
tive interactions [22]. Information flow based (“global”) methods ground themselves on
the notion that products of genes that have an important role in a disease are expected
to exhibit significant network crosstalk to each other in terms of the aggregate strength
of paths that connect the corresponding proteins (Figure 1(b)). These methods include
random walk with restarts [14,15] and network propagation [16,17], which significantly
outperform connectivity based methods [9].

Topological similarity indicates functional association. Despite their differences, all
network-based disease gene prioritization algorithms are based on a unique principle:
the association between proteins is correlated with their connectivity/proximity in the
PPI network. However, recent research also reveals that networks are organized into
recurrent network schemes that underlie the interaction patterns among proteins with
different function [24, 25]. A well-known network schema, for example, is a chain of
membrane-bound receptors, protein kinases, and transcription factors, which serves as
a high-level description of the backbone of cellular signaling. Dedicated mining al-
gorithms identify more specific network schemes at a higher resolution, indicating that
similar principles are used recurrently in interaction networks [26,27]. Inspired by these
results, in this paper, we develop a network-based disease gene prioritization algorithm
that uses topological similarity to infer the association between seed and candidate pro-
teins (Figure 1(c)). Below, we further motivate this approach with an example from the
systems biology of cancer.

Motivating example. While the APC gene has been identified to be one of the most
important genes that plays a role in the development of colorectal cancer, there are mul-
tiple proteins that work in parallel with Apc to create these cancers [28, 29]. Although
the actual mechanisms of selection are not clear, it is known that, proteins that are not
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directly interacting with APC, and have similar functions in a cell, such as tumor sup-
pressor genes PTEN [30], TRP53 [31] and p21 [32] when mutated with APC increase
the tumor burden. In a recent study, Bebek et al. [23] present a pipeline where bimodal-
ity of coexpresssion is used to prioritize proteomics targets identified in a mouse model
of colorectal cancer. Some of the significant proteins identified are shown in Figure 2 in
a PPI network. The identified targets HAPLN1, P2RX7 (colored purple in the figure) are
linked to growth factor receptors (GFRs) (EGFR, TGFR1, FGFR1, colored blue in the
figure), but not connected to each other. As seen in the figure, similarities of these two
proteomic targets in their function and role in disease are also reflected in their relative
topology with respect to APC and growth factors.

Contributions of this study. We propose a topological similarity based disease gene
prioritization scheme in this paper. For this purpose, we develop a measure of topolog-
ical similarity among pairs of proteins in a PPI network and use the network similarity
between seed and candidate proteins to infer the likelihood of disease association for
the candidates. We present the proposed methods in Section 2. Systematic experimental
studies using an integrated human PPI network and the Online Mendelian Inheritance
(OMIM) database are presented in Section 3. These results show that the proposed
algorithm, VAVIEN1, clearly outperforms state-of-the-art network based prioritization
algorithms. We conclude our discussion in Section 4.

2 Methods

In this section, we first describe the disease gene prioritization problem within a formal
framework. Subsequently, we formulate the concept of topological similarity of pairs of
proteins in terms of their proximity to other proteins in the network. Finally, we discuss
how topological similarity of proteins is used to prioritize candidate disease genes.

2.1 Disease Gene Prioritization Problem

Let D denote a disease of interest, which is potentially associated with various genetic
factors (e.g., sleep apnea, Alzhemier’s disease, autism). Assume that a genome-wide
association study (GWAS) using samples from control and affected populations is con-
ducted, revealing a linkage interval that is significantly associated with D. Potentially,
such a linkage interval will contain multiple genes, which are all candidates for being
mechanistically associated with D (i.e., the mutation in a gene in the linkage interval
might have a role in the manifestation of disease). This set of candidate genes, denoted
C, forms the input to the disease gene prioritization problem.

The aim of disease gene prioritization is to rank the genes in C based on their po-
tential mechanistic association with D. For this purpose, a set of genes that are already
known to be associated with D or diseases similar to D is used (where similarity be-
tween diseases is defined phenotypically, e.g., based on the clinical description of dis-
eases). The idea here is that genes in C that are mechanistically associated with D are
likely to exhibit patterns of association with such genes in a network of PPIs. This set

1 From va-et-vient (Fr.); an electrical circuit in which multiple switches in different locations
perform identical tasks (e.g., control lighting in a stairwell from either end).
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of genes is referred to as the seed set and denoted S. Each gene v ∈ S is assigned a
disease-association score σ(v, D) ∈ (0, 1], representing the known level of association
between v and D. The association score for v and D is set to 1 if it is a known as-
sociation listed in OMIM database. Otherwise, it is computed as the maximum clinical
similarity between D and any other disease associated with v [33] (a detailed discussion
on computation of similarity scores can be found in [34]).

In order to capture the association of the genes in C with those in S, network-based
prioritization algorithms utilize a network of known interactions among human pro-
teins. The human protein-protein interaction (PPI) network G = (V , E , w) consists of a
set of proteins V and a set of undirected interactions E between these proteins, where
uv ∈ E represents an interaction between u ∈ V and v ∈ V . Since PPI networks
are noisy and incomplete [35], each interaction uv ∈ E is also assigned a confidence
score representing the reliability of the interaction between u and v [36, 37, 25]. For-
mally, there exists a function w : E → (0, 1], where w(uv) indicates the reliability of
interaction uv ∈ E .

In this paper, the reliability score is derived through a logistic regression model where
a positive interaction dataset (MIPS Golden PPI interactions [38]) and a negative in-
teraction dataset (Negatome [39]) are used to train a model with three variables: (i)
co-expression measurements for the corresponding genes derived from multiple sets of
tissue microarray experiments (normal human tissues measured in the Human Body
Index Transcriptional Profiling (GEO Accession: GSE7307) [40]), (ii) the proteins’
small world clustering coefficient, and (iii) the protein subcellular localization data of
interacting partners [41]. Co-expression values are used since co-regulated genes are
more likely to interact with each other than others [36, 25]. On the other hand, the net-
work feature that we are extracting, the small world clustering coefficient, is a measure
of connectedness. This coefficient shows how likely the neighbors (interacting peers)
of a protein are neighbors of each other [42]. We also incorporate the protein subcel-
lular localization data into the logistic model, since this would eliminate interactions
among proteins that are not biologically significant [25]. The logistic regression model
is trained on randomly selected 1000 positive and negative training data sets for 100
times and regression constants are determined to score each PPI.

Given S and G, network-based disease gene prioritization aims to compute a score
α(v, D) for each v ∈ C, representing the potential association of v with disease D. For
this purpose, we develop a novel method,VAVIEN, to rank candidate genes based on
their topological similarity to the seed genes in G.

2.2 Topological Similarity of Proteins in a PPI Network

Recent research shows that molecular networks are organized into functional interaction
patterns that are used recurrently in different cellular processes [24,26]. In other words,
proteins with similar function often interact with proteins that are also functionally
similar to each other [27]. Motivated by this observation, VAVIEN aims to assess the
functional similarity between seed and candidate proteins based on their topological
similarity, that is the similarity of their relative location with respect to other proteins
in the network. For this purpose, we first define the topological profile of a protein in a
PPI network.
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Topological profile of a protein. For a given protein v ∈ V and a PPI network G, the
topological profile βv of v is defined as a |V|-dimensional vector such that for each u ∈
V , βv(u) represents the proximity of protein v to protein u in G. Clearly, the proximity
between two proteins can be computed in various ways. A well-known measure of
proximity is the shortest path (here, the most reliable path) between the two proteins,
however, this method is vulnerable to missing data and noise in PPI networks [22]. A
reliable measure of network proximity is effective conductance, which is based on a
model that represents the network as an electrical-circuit. In this model, each edge is
represented as a capacitor with capacitance proportional to its reliability score. Effective
conductance can be computed using the inverse of the Laplacian matrix of the network,
however, this computation is quite costly since it requires computation of the inverse of
a sparse matrix [43]. Fortunately, however, computation of effective conductance and
random walks in a network are known to be related [44] and proximity scores based on
random walks can be computed efficiently using iterative methods.

VAVIEN computes the proximity between pairs of proteins using random walk with
restarts [45, 46]. This method is used in a wide range of applications, including identi-
fication of functional modules [47] and modeling the evolution of social networks [48].
It is also the first information flow based method to be applied to disease gene prioriti-
zation [15, 14] and is shown to clearly outperform connectivity based methods.

Random walk with restarts computes the proximity between a protein v and all other
proteins in the network as follows: A random walk starts at v. At each step, if the
random walk is at protein u, it either moves to an interacting partner t of u (i.e., ut ∈ E)
or it restarts the walk at v. The probability P (u, t) of moving to a specific interacting
partner t of u is proportional to the reliability of the interaction between u and t, i.e.,
P (u, t) = w(ut)/W (u) where W (u) =

∑
t′:t′u∈E w(ut′) is the weighted degree of u

in the network. The probability of restarting at a given time step is a fixed parameter
denoted r. After a sufficiently long time, the probability of being at node u at a random
time step provides a measure of the proximity between v and u, which can be computed
iteratively as follows:

x(k)
v = (1 − r)Px(k−1)

v + rev. (1)

Here x
(k)
v denotes a probability vector such that x

(k)
v (u) equals the probability of being

at protein u at the kth iteration of the random walk, x
(0)
v = ev, and ev is the restart

vector such that ev(u) = 1 if u = v and 0 otherwise. For a given value of r, the

topological profile of protein v is defined as βv = limk→∞ x
(k)
v .

Note that the concept of topological profile introduced here is not to be confused by
the gene closeness profile used by the CIPHER algorithm for disease gene prioritiza-
tion [18]. Here, topological profile is constructed using the proximity of a protein of
interest to every other protein in the network. It is therefore a global signature of the
location of the protein in the PPI network. In contrast, gene closeness profile is based
only on the proximity of a protein of interest to proteins coded by known disease genes.
Furthermore, the proposed algorithm is different from random walk based prioritization
algorithms in that these algorithms score candidate proteins directly based on random
walk proximity to seed proteins [15]. In contrast, VAVIEN uses random walk proximity
as a feature to assess the topological similarity between seed and candidate proteins,
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which in turn is used to score candidate proteins. We now describe this approach in
detail.

Topological similarity of two proteins. Let u and v ∈ V denote two proteins in the
network. The topological similarity of u and v is defined as

ρ(βu, βv) = corr(βu, βv) =

∑
t∈V (βu(t) − 1

|V|)(βv(t) − 1
|V|)√∑

t∈V (βu(t) − 1
|V| )

2
√∑

t∈V (βv(t) − 1
|V|)

2
, (2)

where corr(X, Y ) denotes the Pearson correlation coefficient of random variables X
and Y . The idea behind this approach is that, if two proteins interact with similar pro-
teins, or lay on similar locations with respect to hub proteins in the network, then their
topological profiles will be correlated, which will be captured by ρ(βu, βv).

2.3 Using Topological Similarity to Prioritize Candidate Genes

The core idea behind the proposed algorithm is that candidate genes whose products
are topologically similar to the products of seed genes are likely to be associated with
D. Based on this idea, we propose three schemes to prioritize candidate genes based on
their topological similarity with seed genes. All of these schemes are implemented in
VAVIEN.

Proritization based on average topological similarity with seed genes (ATS). For
each u ∈ C, the topological profile vector βu is computed using random walk with
restarts. Similarly, topological profile vectors βv of all genes v ∈ S are computed
separately. Subsequently, for each u ∈ C, the association score of u with D is computed
as the weighted average of the topological similarity of u with the genes in S, where
the contribution of each seed gene is weighted by its association with D, i.e.:

αATS(u, D) =
∑

v∈S σ(v, D)ρ(u, v)∑
v∈S σ(v, D)

. (3)

Prioritization based on topological similarity with average profile of seed genes
(TSA). Instead of computing the topological similarity for each seed gene separately,
this approach first computes an average topological profile that is representative of the
seed genes and computes the topological similarity of the candidate gene and this av-
erage topological profile. More precisely, the association score of u ∈ C with D is
computed as:

αTSA(u, D) = ρ(βu, β̄S), (4)

where

β̄S =
∑

v∈S σ(v, D)βv∑
v∈S σ(v, D)

. (5)

Prioritization based on topological similarity with representative profile of seed
genes (TSR). The random walk with restarts model can be easily extended to compute
the proximity between a group of proteins and each protein in the network. This can
be done by generalizing the random walk to one that makes frequent restarts at any of
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the proteins in the group. This is indeed the idea of disease gene prioritization using
random walk with restarts [15]. This method is also useful for directly computing a
representative topological profile for S, instead of taking the average of the topological
profiles of the genes in S. More precisely, for given seed set S and association scores
σ for all genes in S, the proximity of the products of genes in S to each protein in the
network is computed by replacing the restart vector in Equation 1 with vector eS where

eS(t) =
σ(t, D)∑

v∈S σ(v, D)
, (6)

if t ∈ S and eS(t) = 0 otherwise. Then, the topological profile βS of S is computed
as βS = limk→∞ x(k). The random walk based approach to disease gene prioritization
estimates the association of each candidate gene with the disease as the proximity be-
tween the product of the candidate gene and S under this model, i.e., it directly sets
α = βS . In contrast, we compute the association of u ∈ C with D as

αTSR(u) = ρ(βu, βS). (7)

Once α is computed using one of (3), (4), or (7), VAVIEN ranks the candidate genes in
decreasing order of α.

3 Results

In this section, we systematically evaluate the performance of VAVIEN in capturing
true disease-gene associations using a comprehensive database of known disease-gene
associations. We start by describing the datasets and experimental settings. Next, we
analyze the performance of different schemes implemented in VAVIEN and the effect of
parameters. Subsequently, we compare the performance of VAVIEN with three state-of-
the-art network based prioritization algoritms.

3.1 Datasets

Disease association data. The Online Mendelian Inheritance in Man (OMIM) database
provides a publicly accessible and comprehensive database of genotype-phenotype re-
lationship in humans. We acquire disease-gene associations from OMIM and map the
gene products known to be associated with disease to our PPI network. The dataset
contains 1931 diseases with number of gene associations ranging from 1 to 25, average
being only 1.31. Each gene v in the seed set S is associated with the similarity score
σ(v, D), indicating the known degree of association between v and D as mentioned
before.

Human protein-protein interaction (PPI) network. In our experiments, we use the
human PPI data obtained from NCBI Entrez Gene Database [49]. This database inte-
grates interaction data from several other databases available, such as HPRD, BioGrid,
and BIND. After the removal of nodes with no interactions, the final PPI network con-
tains 8959 proteins and 33528 interactions among these proteins. We assign reliability
scores to these interactions using the methodology described in Section 2.1.
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3.2 Experimental Setting

In order to evaluate theperformanceofdifferentmethods in prioritizingdisease-associated
genes, we use leave-one-out cross-validation. For each gene u that is known to be asso-
ciated with a disease D in our dataset, we conduct the following experiment:

– We remove u from the set of genes known to be associated with D. We call u
the target gene for that experiment. The remaining set of genes associated with D
becomes the seed set S.

– We generate an artificial linkage interval, containing the target gene u with other
99 genes located nearest in terms of genomic distance. The genes in this artificial
linkage interval (including u) compose the candidate set C.

– We apply each prioritization algorithm to obtain a ranking of the genes in C.
– We assess the quality of the ranking provided by each algorithm using the evalua-

tion criteria described below.
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Fig. 3. The performance of the three prioritization algorithms implemented in VAVIEN as a func-
tion of the restart probability used in computing proximity via random walk with restarts. The
performance here is measured in terms of the average rank of the target gene among 100 candi-
date genes, a lower value indicating better performance.

Evaluation criteria. We first plot ROC (precision vs. recall) curves, by varying the
threshold on the rank of a gene to be considered a “predicted disease gene”. Precision
is defined as the fraction of true disease genes among all genes ranked above the partic-
ular threshold, whereas recall is defined as the fraction of true disease genes identified
(ranked above the threshold) among all known disease genes. Note that, this is a con-
servative measure for this experimental set-up since there exists only one true positive
(the target gene) for each experiment. For this reason, we also compare these methods
in terms of the average rank of the target gene among 100 candidates, computed across
all disease-gene pairs in our experiments. Clearly, lower average rank indicates better
performance. Finally, we report the percentage of true disease genes that are ranked as
one of the genes in the top 1% (practically, the top gene) and also in the top 5% among
all candidates.
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3.3 Performance Evaluation

Performance of methods implemented in VAVIEN and the effect of restart param-
eter. We compare the three different algorithms (ATS, TSA and TSR) implemented in
VAVIEN in Figure 3. Since the topological profile of a protein depends on the restart
probability (the parameter r) in the random walk with restarts, we also investigate the
effect of this parameter on the performance of algorithms. In the figure, the average
rank of the target gene among 100 candidate genes is shown for each algorithm as a
function of restart probability. As seen in the figure, the three algorithms deliver com-
parable performance. However, TSA, which makes use of the average profile of seed
genes to compute the topological similarity of the candidate gene to seed genes achieves
the best performance. Furthermore, the performance of all algorithms implemented in
VAVIEN appears to be robust to the selection of parameter r, as long as it is in the
range [0.3− 0.9]. In our experiments, we set r = 0.5 and use TSA as the representative
algorithm since this combination provides the best performance.

Performance of VAVIEN compared to existing algorithms. We also evaluate the per-
formance of VAVIEN in comparison to state-of-the-art algorithms for network-based
disease gene prioritization. These algorithms are the following:

– Random walk with restarts: This algorithm prioritizes candidate genes based on
their proximity to seed genes, using a random walk with restarts model, i.e., α is
set to βS [15].

– Network prioritization: This algorithm is very similar to random walk with restarts,
with one key difference. In network prioritization, the stochastic matrix in ( 1) is re-
placed with a flow matrix in which both the incoming and outgoing flow to a protein
is normalized (i.e., P (u, t) = w(ut)/

√
W (u)W (t) in network propagation) [16].

– Information flow with statistical correction: Based on the observation that the per-
formance of information flow based algorithms (including random walk with restarts
and network propagation) depend on network degree, this algorithm applies statis-
tical correction to the random walk based association scores based on a reference
model that takes into account the degree distribution of the PPI network [33].

While software implementing these algorithms are available (e.g., PRINCE [16] im-
plements network propagation, DADA [50] implements statistical correction), we here
report results based on our implementation of each algorithm. We implement all algo-
rithms using identical settings for data integration and incorporation of disease sim-
ilarity scores, differing from each other only in how network information is utilized
in computing disease association scores. The objective of this approach to provide a
setting in which the algorithmic ideas can be directly compared, by removing the influ-
ence of implementation details and datasets used. It should be noted, however, that the
performance of these algorithms could be better than the performance reported here if
available software and/or different PPI datasets are used.

The ROC curves for the three existing methods and VAVIEN are shown in Figure 4,
demonstrating the relationship between precision and recall for each algorithm. Other
performance measures for all methods are listed in Table 1. As seen in both the figure
and the table, VAVIEN clearly outperforms all of the existing algorithms in ranking
candidate disease genes. In particular, it is able to rank 40% of true disease genes as the



64 S. Erten, G. Bebek, and M. Koyutürk

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Recall

P
re

ci
si

on

 

 

DADA

VAVIEN

Random walk

Network propagation

Fig. 4. ROC curves comparing the performance of the proposed method with existing
information-flow based algorithms

top candidate among 100 candidates and it ranks 62% of true disease genes in the top
5% of all candidates.

Information flow based algorithms are previously shown to be biased with respect to
the degree of the target genes [33]. In other words, these methods work poorly in iden-
tifying loosely connected disease genes. Previous efforts reduce this bias to a certain
extent by introducing several statistical correction schemes [33]. Motivated by these
observations, we here investigate the effect of the bias introduced by degree distribu-
tion on the performance of different algorithms. The results of these experiments are
shown in Figure 5. In this figure, the change on the performance (average rank of the
target gene) of different methods is plotted with respect to the degree of the target gene.
As clearly seen, VAVIEN is the algorithm that is affected least by this bias and it outper-
forms other methods in identifying loosely connected disease genes. It is particularly
impressive that VAVIEN’s performance is less affected by degree distribution as com-
pared to DADA, since DADA is designed explicitly with the purpose of removing the
effect of network degree.

As argued in the previous sections, information flow based proximity and topological
similarity capture different aspects of the relationship between functional association

Table 1. Comparison of VAVIEN with existing algorithms for network-based disease gene prior-
itization. VAVIEN outperforms state-of-the-art information flow based algorithms with respect to
all performance criteria.

METHOD Avg. Rank Ranked in top 1% Ranked in top 5%
VAVIEN 17.52 40.48 62.46

Random walk 18.58 38.42 59.01
Network propagation 18.28 37.97 57.96

Random walk with statistical correction 17.86 39.41 59.76
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Fig. 5. Relation between the degree of target disease gene and its corresponding rank among 100
candidates for VAVIEN and existing algorithms

Fig. 6. Venn Diagram comparing the true disease genes ranked by each method as the most likely
candidate. The sets labeled RWR, NP, and VAVIEN represent the set of true disease genes that
are ranked top by random walk with restarts, network propagation, and topological similarity,
respectively. Each number in an area shows the number of true candidates in that set (e.g., 20 true
disease genes were ranked top by network propagation and VAVIEN, but not random walk with
restarts).

and network topology. Consequently, we expect that the proposed topological similar-
ity and information flow based algorithms will be successful in identifying different
disease associated genes. In order to investigate whether this is the case, we compare
target genes that are correctly identified as the true disease gene by each algorithm.
These results are shown by a Venn diagram in Figure 6. In this figure, each value repre-
sents the number of true disease genes that are ranked 1st among 100 candidates by the
corresponding algorithm(s). Among 1996 disease-gene associations, VAVIEN is able to
rank the true candidate first in 808 of the cases. 93 of these genes are not ranked as
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the top candidate by neither random walk with restarts nor network propagation. On
the other hand, the number of true candidates that are uniquely identified by each of
the other two algorithms is lower (15 for random walk with restarts, 25 for network
propagation), demonstrating that VAVIEN is quite distinct in its approach and it is more
powerful in extracting information that is missed by other algorithms. Furthermore, the
93 candidates uniquely identified by VAVIEN mostly code for loosely connected pro-
teins (with 67 of them having <= 5 known interactions). This observation supports our
claim that VAVIEN is indeed less effected by the bias introduced by degree distribution,
as compared to information flow based network proximity.

4 Conclusion

In this paper, we present an algorithm, called VAVIEN, for harnessing the topologi-
cal similarity of proteins in a network of interactions to prioritize candidate disease-
associated genes. After investigating the performance of the three schemes implemented
in VAVIEN with respect to the restart parameter, we conduct a comprehensive set of
experiments on OMIM data and show that VAVIEN outperforms existing information
flow based models, as well as their statistically adjusted version, in terms of ranking
the true disease gene highest among other candidate genes. These results demonstrate
that in addition to the connectivity patterns in PPI networks, topological patterns in
these networks are also useful in generating novel insights into systems biology of
complex diseases. VAVIEN is available online as a web service at http://www.
diseasegenes.org.
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The availability of expression quantitative trait loci (eQTL) data can help un-
derstanding the genetic basis of variation in gene expression. However, it has
proven difficult to accurately predict functional genetic changes due to low sta-
tistical power. To address this challenge, we developed a novel computational
approach for combining eQTL data with complementary regulatory network
to identify modules of genes, their underlying genetic polymorphism and their
shared regulatory proteins activity. The resulting eQTL model implicates novel
central protein complexes that share not only a regulatory protein but also an
underlying genetic variation. Our method manifests higher sensitivity than prior
computational efforts.

Computationally, we tackle the important problem of automatic prediction
of eQTL-target relations. The integrated approach makes it possible to capture
weaker linkage signals and to avoid groups of genes that happen by chance to be
linked to the same genomic interval. In terms of biological and medical discovery,
using our framework on eQTL data in yeast, we implicate a novel role of eQTLs
on genes comprising protein complexes, including the aerobic cellular respiration
complex, affected by genetic changes in the mitochondrial inner membrane pro-
teins Crd1/Cat5, and the Sum1p/Rfm1p/Hst1p middle sporulation repression
complex, which is influenced by genetic variation residing within the Rfm1 itself.

Our discovery of previously uncharacterized modules in the well-studied seg-
regating yeast population underscores the utility of our integrated methods in
genetic analysis. Thus, our study establishes a broadly applicable, comprehensive
approach to reveal eQTL-target relationships.
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Abstract. This paper presents a graph-based algorithm for identify-
ing complex metabolic pathways in multi-genome scale metabolic data.
These complex pathways are called branched pathways because they can
arrive at a target compound through combinations of pathways that split
compounds into smaller ones, work in parallel with many compounds,
and join compounds into larger ones. While most previous work has
focused on identifying linear metabolic pathways, branched metabolic
pathways predominate in metabolic networks. Automatic identification
of branched pathways has a number of important applications in areas
that require deeper understanding of metabolism, such as metabolic en-
gineering and drug target identification. Our algorithm utilizes explicit
atom tracking to identify linear metabolic pathways and then merges
them together into branched metabolic pathways. We provide results on
two well-characterized metabolic pathways that demonstrate that this
new merging approach can efficiently find biologically relevant branched
metabolic pathways with complex structures.

1 Introduction

The quantity and quality of metabolic data has greatly increased in the last few
decades, as indicated by the growth of such databases as the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [17] and MetaCyc [8]. Gaining
understanding from these vast quantities of metabolic data requires novel com-
putational tools that enable automatic identification and thorough analysis of
biologically relevant metabolic pathways. These computational tools may reveal
novel or alternative metabolic pathways, potentially spanning multiple species,
that could not have been identified by manual means. Importantly, the ability
to find metabolic pathways in multi-genome scale data has applications in fields
such as metabolic engineering, which focuses on discovering and implementing
new metabolic schemes.

The central problem in computational metabolic path finding is the following:
given a start and target compound, find and return biologically relevant or real-
istic pathways of enzymatic reactions that produce the target compound from
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the start compound. Previous work in this area has primarily focused on finding
linear sequences of reactions between start and target compounds [25]. However,
more complex metabolic pathways, termed branched pathways, are dominant in
metabolic networks and provide a more complete picture of metabolic processes
[22,24]. Branched pathways consist of multiple pathways that interact biochemi-
cally. For example, a start compound may be split into smaller compounds which,
in parallel, undergo several different chemical reactions. The resulting products
can then combine to form the target compound. The identification of branched
pathways enables the analysis of metabolic processes with a more comprehensive
perspective as compared to the limited picture provided by linear pathways.

The main contribution of this paper is a novel algorithm for identifying
branched metabolic pathways by using atom tracking information to merge lin-
ear pathways. The merging approach of the presented algorithm is different from
previous graph-based approaches, which start from a single linear pathway and
then find new linear pathways to attach as branches [24,16]. The results demon-
strate that the new algorithm is able to efficiently find different network topolo-
gies in multi-genome scale data obtained from KEGG. The rest of the paper
proceeds as follows: Section 2 describes the relevant previous work in the area of
graph-based metabolic pathfinding; Section 3 describes how our new algorithm
merges linear pathways to find branched pathways; Section 4 contains the re-
sults of our algorithms, validated on two well-characterized branched metabolic
pathways; Section 5 concludes the paper.

2 Previous Work

Graph-based Models for Finding Metabolic Pathways. Graphs provide a natu-
ral, well-studied computational model for identifying biologically relevant path-
ways in metabolic networks [11]. Graph-based metabolic path finding algorithms
complement stoichiometric approaches, as they focus on different aspects of mod-
eling and understanding metabolism [25,12,13]. Stoichiometric models are typ-
ically utilized for modeling specific organisms or metabolic systems [15]. Most
stoichiometric models are based on the steady-state assumption and therefore
require explicit labeling of internal and external compounds [19]. This can be a
disadvantage as there are feasible biochemical pathways that do not obey the
steady-state assumption and/or a compound that labeled as internal could easily
be provided as an external compound [25]. However, both types of models are
important for gaining insights into metabolic networks.

Graph-based methods have suffered from the disadvantage of finding path-
ways with spurious connections [3]. Several approaches have been developed
to try to overcome this problem, such as removing certain currency metabolites
from the graph [31,14,27], adding weights based on the degree of the nodes [9,12]
or using measures of structural similarity between compounds [21,26]. However,
an approach more closely related to the underlying biochemistry is to use atom
mapping data [2,3]. Atom mapping data provides a systematic way of under-
standing a biochemical reaction by providing a specific mapping between each
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atom in the input compounds of a reaction to an atom in the output compounds.
In the last few years, the availability of atom mapping data has been steadily
increasing, with one of the primary sources being the KEGG RPAIR database
[18,20].

Previous work has mainly used atom mapping data for finding metabolic
pathways by only allowing connections through reactions where at least one
atom is being transfered from input to output compound [12,23] or only returning
pathways that conserve at least one atom, typically carbon [2,3,4,5]. However,
there are often instances where it is biochemically relevant to find pathways
which conserve a high percentage of atoms from start to target compounds [6,24].
The algorithm presented in this paper is based on our earlier work that finds
atom conserving pathways by explicitly tracking multiple atoms in metabolic
networks [16].

Foundation for the Presented Work. The algorithm presented in this paper uti-
lizes a graph-based structure that incorporates atom mapping data called an
atom mapping graph, Gam, whose design is based on the observation that the
same atom mapping pattern between two compounds often appears in multi-
ple reactions [2]. Gam is a directed bipartite graph containing compound nodes
and mapping nodes. The compound nodes have unique identifiers for both the
compound as well as its atoms. The compound nodes are connected by directed
edges to mapping nodes that explicitly specify, via the unique identifiers, what
atoms from the input compound become the atoms in the output compound.
Each atom mapping only maps the atoms between a pair of compounds and
so the mapping nodes in Gam only have one input edge and one output edge
connected to two different compound nodes, while the compound nodes have a
degree equal to the number of mappings they participate in. Since the same atom
mapping can occur in many different reactions, a correspondence is stored be-
tween the mapping nodes and the reactions in which they occur. A more detailed
description of the construction of Gam can be found in [16].

Previously, we developed and validated an algorithm for identifying the k
shortest linear pathways in Gam that conserve at least a given number of atoms
between desired start and target compounds [16]. This problem has been shown
to be PSPACE-complete and NP-complete when a compound can only be used
once in a pathway [6]. Previously unnamed, we will call the linear path find-
ing algorithm from [16] LPAT, for Linear Pathfinding with Atom Tracking. Our
results demonstrated that LPAT is able to search across the thousands of re-
actions and compounds from multiple species contained in KEGG and return
realistic metabolic pathways in a few minutes. Based on LPAT, we also developed
and validated a novel graph-based algorithm for identifying branched metabolic
pathways. Also previously unnamed, we will call the branched path finding al-
gorithm from [16] BPAT-S, for Branched Pathfinding using Atom Tracking and
Seed pathways. The first step of BPAT-S uses LPAT to obtain a set of linear
pathways between the desired start and target compounds. BPAT-S then anno-
tates and stores the linear pathways with information about the specific reactions
and compounds through which atoms are lost or gained. These annotated lin-
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ear pathways are called seed pathways and indexed for efficient processing and
attachment of branches. The branches are identified by calling LPAT to find lin-
ear pathways between compounds through which atoms are lost to compounds
through which atoms are gained. These linear branches are then attached to the
seed pathway to give rise to branched pathways, which are ranked first by the
number of atoms they conserve and then by the total number of reactions they
contain. In our previous study, we demonstrated that BPAT-S can efficiently
find and return branched pathways that correspond to known branched path-
ways [16]. To the best of our knowledge, the only other algorithm with similar
abilities is the recently developed ReTrace algorithm. ReTrace takes a similar
approach as BPAT-S, but is based on pathways that only conserve one atom
[24]. In this paper, we present a novel algorithm that takes a significantly dif-
ferent approach from BPAT-S or ReTrace by merging linear pathways to form
branched pathways and extends the topologies of pathways that can be identified
automatically.

3 BPAT-M: Branched Pathfinding by Merging Linear
Pathways

This section describes a new algorithm, Branched Pathfinding using Atom Track-
ing and Merging (BPAT-M), for finding branched pathways by merging linear
pathways returned by LPAT. BPAT-M removes the division between seed and
branch pathways found in BPAT-S, thus enabling BPAT-M to find pathway
topologies that BPAT-S cannot. BPAT-M utilizes the observation that a signifi-
cant portion of time is spent finding the branches in BPAT-S, but these branches
may already be contained in the set of linear pathways found by LPAT. This
redundancy is eliminated in BPAT-M by carefully inventorying the linear path-
ways. BPAT-M takes advantage of the fact that linear pathways can only be
merged together if the pathways do not have overlapping atoms in their target
compounds. The atom tracking information from the linear pathways provided
by LPAT are processed by BPAT-M to construct three data structures Q, C, and
M . These data structures enable the efficient merging of linear pathways to find
branched pathways. The construction of Q, C and M is described in 3.1. Section
3.2 then describes Algorithm 1, which harnesses the extensive indexing of linear
pathways contained in Q, M and C to find and return n branched pathways
ranked first by the number of atoms conserved and second by the number of
reactions.

3.1 Construction of Q, C and M from Target Atom Markings
(TAMs)

A target atom marking (TAM) of a linear pathway is a set of indices correspond-
ing to the specific atoms in the target compound that have been conserved from
the start compound. Typically, the number of TAMs found is much less than the
theoretical maximum number due to chemical constraints. On the right of Figure
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1 there are three linear pathways from α-d-glucose 6-phosphate to stachyose and
their associated TAMs. TAMs play a central role in the performance of BPAT-M
because they allow a quick way to determine which linear pathways can not be
merged together. Two pathways can not be merged together if the intersection of
their TAMs is nonempty, that is if they contain the same atom index or indices.
If two pathways have disjoint TAMs, they can not necessarily be merged because
the algorithm must check whether they share a common reaction. However, if
two pathways are mergeable, then the TAM of the merged pathway is the union
of the TAMs of the pathways.

Fig. 1. Three linear pathways from α-d-glucose 6-phosphate to stachyose and their
associated carbon TAMs, as indicated by the magenta circles. The two potentially
mergeable pairs of paths are PATH 1 with PATH 3 and PATH 2 with PATH 3. The
result of merging PATH 1 and PATH 3 is displayed on the right.

The ability to use the TAMs to quickly determine if pathways are not merge-
able motivates the construction of the data structure, Q, which maps a TAM
to a list of linear pathways containing that TAM. For a particular TAM, t, this
means that Q[t] returns all linear pathways whose TAM is equal to t, sorted by
their length. For example, using the pathways depicted in Figure 1, Q[TAM 1]
would return the pathways labeled PATH 1 and PATH 2. After Q is constructed,
all disjoint combinations of the TAMs from the linear pathways are computed
and stored in a list C. For example, for the hypothetical TAMs, t1 = {0, 1, 2},
t2 = {0, 1}, t3 = {2, 3} and t4 = {4, 5}, C would contain {t1, t4}, {t2, t3, t4},
{t2, t3}, {t2, t4} and {t3, t4} as all disjoint combinations. C is then sorted in de-
creasing order by the total size of the combination. In this example, {t2, t3, t4}
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would be first entry in C because it is of size six. Sorting C this way is im-
portant because the goal is to find pathways that conserve a larger number of
atoms. For each combination c ∈ C, the TAMs are accessed by their indices, so
if c = {t2, t3, t4}, c[1] = t2, c[2] = t3 and c[3] = t4. C is then used to dictate
how the search proceeds to merge combinations of linear pathways to obtain
branched pathways.

Once potentially mergeable linear pathways have been identified using Q and
C, they must be further compared to see if they can be merged through a
common reaction, r. The data structure M is constructed to store the results
of comparing pairs of linear pathways for mergability, thus the comparison is
only performed once. M maps all pairs of mergeable linear pathways to a tuple
containing r and the number of mapping nodes from the target compound that
r occurs. M is constructed by first identifying all pairs of pathways, p1 and p2,
with disjoint TAMs. The mapping nodes of p1 and p2 are compared starting from
the target compound. This comparison identifies the position, m, of the mapping
nodes closest to the target compound that differs between the two pathways is
identified. In Figure 1, the comparison between PATH 1 and PATH 3 would
identify RP01111 and RP00075 as the different mapping nodes closest to the
target compound and m would be 2, using zero-based indexing. The final step
is to look up the reactions that are associated with the two mapping nodes at m
and determine if the mapping nodes share common reaction that can be used to
merge the two pathways. If there is no common reaction, then the pathways are
not mergable. In the case of PATH 1 and PATH 3 in Figure 1, both RP01111
and RP00075 are found in the reaction R00803 (EC Number 2.4.1.7) in KEGG.
The right side of Figure 1 depicts PATH 1 and PATH 3 merged by R00803. This
information about the mergability of PATH 1 and PATH 3 in Figure 1 would
then be stored as M [PATH1, PATH3] = (R00803, 2). In the construction of M ,
only the mapping nodes that differ closest to the target compound are considered
as potential merge points because if merging two paths results in a larger TAM,
they must share a common reaction at this point. It is possible that two paths
may interact closer to the start compound, but this is currently not considered
by the algorithm because it does not impact the TAM.

3.2 Finding Branched Pathways Using Q, C and M

After processing and indexing the linear pathways to construct Q, C and M ,
these data structures are given as input to Algorithm 1 along with n number
of branched pathways to return and a fixed beam width w, which can be used
to bound the search. Algorithm 1 then returns the final result of BPAT-M, the
top n branched pathways it finds ranked first by the number of atoms conserved
and then by the number of reactions. Despite reducing the number of linear
pathways combinations that need to be tested by using biochemical constraints,
the number of such combinations sometimes remains quite large. Therefore, the
algorithm performs a beam search with a fixed beam width, w, which is pro-
vided by the user. The heuristic used for the beam search is discussed in more
detail later in the section, and its usage means that BPAT-M does not guarantee
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Algorithm 1. BPAT-M Search
Input: Pathways organized by their TAMs, Q; Sorted list of all combinations of dis-

joint TAMs, C; Mergeable pairs of paths, M ; Number of pathways to return, n;
Limit on Intermediate Branched Pathways (IBPs), w;

Output: Sorted list of branched pathways P , containing linear pathways and merge
points, sorted first by number of atoms conserved, then by total number of nodes

1: P ← {}
2: for each c in C do
3: if P contains more than n pathways and the nth pathway conserves more atoms

than the size of c then
4: Truncate P to n pathways
5: Break
6: T ← {} //for storing the IBPs, sorted by the same criteria as P
7: for each pair of linear pathways (pi, pj) in (Q[c[1]] × Q[c[2]]) do
8: if M(pi, pj) exists then
9: Add IBP containing pi, pj , M(pi, pj) to T

10: for k = 3 to size of c do
11: N ← T
12: T ← {}
13: for each IBP P in N do
14: for each linear pathway pq in Q[c[k]] do
15: for each linear pathway pl in P do
16: if M(pq, pl) exists and is a valid merge point in P then
17: Add new IBP containing P merged with pq and M(pq, pl) to T
18: if T contains more than w pathways then
19: Truncate T to w pathways
20: Add all pathways in T to P
21: Return P

finding the optimal combination. However, the results demonstrate that the
search performs well in practice.

Algorithm 1 works by taking each combination of TAMs c ∈ C in turn and
using them to build branched pathway combinations. The first two TAMs, c[1]
and c[2], are used to obtain the set of associated pathways for each TAM from
Q and all pairs of pathways are tested for mergeability using M (lines 7-9). If a
pair of pathways are mergeable, then they are stored in the set of Intermediate
Branched Pathways (IBPs), T . The IBPs store a list of mergeable linear path-
ways and their merge points. Then, for each subsequent TAM in c (line 10), all
of the pathways associated with the TAM c[k], pq ∈ Q[c[k]] are retrieved (line
14). Each pq ∈ Q[c[k]] is then tested for mergeability with each linear pathway
in each IBP (lines 13-16). If pq is mergeable with a linear pathway, pl in IBP,
that is M [pq, pl] contains a merge point, pq can potentially be merged with the
IBP to create a branched pathway that conserves more atoms. However, because
pl has already been merged with other pathways, it must be verified that the
merge point between pq and pl is still valid (line 16).

A merge point is always valid if pl has not been merged with another pathway
in the IBP at the same mapping node it would use to merge with the new
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pathway, pq. However, if pl has been previously merged at the same point with
another pathway in the IBP, the merge point with pq can still be valid if the
reaction in the merge point of pq and pl is the same reaction used previously and
the substrate compound in pq is not contained in the other pathways. Otherwise,
the merge point is invalid. As an example, there could be a reaction r that takes
the substrate compounds a, b and c. If two pathways, p1 and p2 were merged
together through r, with pl containing a and pq containing b, there are two
possibilities for a third pathway p3, that is potentially mergable with p1 at r.
If p3 contains c, then the merge point is still valid and the resulting branched
pathway would contain p1, p2 and p3 merged through r. However, if p3 contained
b, then the merge point is invalid, as p2 has already been merged through b. By
checking for validity, multiple pathways being merged through the same reaction
are handled in a general way and only limited by the substrates used in the
reaction.

In Algorithm 1, if the merge point is valid, pq is merged with the IBP and the
resulting branched pathway is stored as another IBP (line 17). Therefore, each IBP
gives rise to a number of new IBPs equal to the number of pq that have valid merge
points with the IBP. This means that there is a theoretical combinatorial explosion
of IBPs for each Ci and we have observed that very large numbers of IBPs can be
generated in practice. This resulted in the introduction of the beam width, w, to
limit the number of combinations generated. After adding the pathways for each
TAM, only the top w IBPs, sorted by number of atoms conserved and the sum of
the length of the linear pathways, are carried over for each subsequent TAM (lines
18-19). Since the pathways are first ranked by the number of atoms they conserve
and C is sorted by the size of each combination, the search can terminate when
n pathways have been found and the next combination to try is smaller than the
TAM of the nth pathway (lines 3-5).

The final way in which the run time and/or space required by BPAT-M is
reduced is by limiting the number of pathways that are kept for each TAM in
Q. This is done by sorting the pathways by length and only keeping a user
specified number of the shortest pathways for each TAM. Future work is needed
to investigate the impact of these parameters and develop easier ways for users
to understand and select the proper limitations for their application. At this
point, it’s recommended to perform a larger search by setting the parameter
values high to utilize the computational and storage resources available. Our
results demonstrate that even with the heuristic limits, BPAT-M performs well
in practice.

4 Results

We present two representative, biologically interesting, test cases for branched
metabolic pathways. Both begin from α-d-Glucose 6-Phosphate (G6P), a com-
mon form of intracellular glucose. The target compound of the first pathway is
lycopene and the target compound of the second pathway is cephalosporin C.
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4.1 Experimental Setup

All KEGG data used in the following experiments was downloaded on February
10, 2010. After processing the KEGG RPAIR to obtain a universal index for
each atom in each compound, Gam was constructed using 11,892 RPAIR entries
involving 6,002 compounds and corresponding to 7,510 reactions from more than
1,200 organisms. In the results presented in this paper the full Gam was used,
but subgraphs of Gam corresponding to particular organisms, reactions or com-
pounds of interest can easily be created and searched. Additionally, reversibility
information was obtained from XML representations of the KEGG metabolic

(a) (b)

Fig. 2. Top ranked branched metabolic pathways for G6P to lycopene, with the linear
pathways conserving 2 carbons, as found by (a) BPAT-S and in (b) BPAT-M. In the
interest of space, in (a) 34 mapping nodes and 28 compound nodes and (b) 14 mapping
nodes and 11 compound nodes along the linear paths between merge points are hidden
from view. The full figures can be viewed in online supplementary material (URL at
the end of the paper).
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pathway maps, distributed in the the KEGG Markup Language (KGML). A
reaction is considered irreversible if it is consistently labeled as such across all
of the KEGG metabolic pathway maps. Otherwise, the reaction is considered
reversible. The processing of the KGML pathway maps resulted in 4,360 reac-
tions being labeled irreversible. Once the reaction direction is determined, this
information is then used to label RPAIR entries reversible or irreversible, which
is used in the construction of Gam. For each RPAIR entry, all associated reac-
tions have to be checked for directionality. If all of the reactions are irreversible
and consistent in the labeling of the compounds as substrates and products then
the RPAIR entry is considered irreversible. Otherwise, the entry is labeled as
reversible. This resulted in 6,386 RPAIR entries being considered irreversible.

The implementation was done in Java using the Chemical Development Kit
[29] and the Java Universal Network/Graph Framework (http://jung.sourceforge.
net/). All result figures are drawn using Graphviz (http://www.research.att.com/
sw/tools/graphviz/). All experiments were run on the Shared University Grid at
Rice (SUG@R), using a single core from a 2.83GHz Intel Xeon E5440 with access
to 16GB of RAM for each pathway. The parameters for BPAT-S and BPAT-M
were generally chosen to perform the most exhaustive search, given the resources
available. In the branched pathway figures the ellipses are compounds, with the
start and target compounds highlighted in green, the pink diamonds contain the
KEGG ID and EC numbers for the reactions that occur at the branching points
of the pathway. Each edge corresponds to one molecule of each compound. In
the interest of space and clarity, the intermediate mapping and compound nodes
of linear pathways composing the branched pathway have been removed from
the figures, leaving only the reactions that occur at the branching points and
their immediate input and output compounds, as well as the start and target
compounds. The figures depicting the full branched pathways can be found in
the online supplementary material (URL at the end of the paper).

4.2 α-d-Glucose 6-Phosphate to Lycopene

Lycopene is a C40 carotenoid having a bright red color and is found in fruits
and vegetables, such as tomatoes and watermelons. Lycopene’s nutritional and
pharmaceutical potential has resulted in a number of investigations on using
metabolic engineering techniques to increase yield and/or produce lycopene
in microbial hosts [1,32]. The known biosynthesis pathway of lycopene is rel-
atively well understood and has an interesting “woven” topology; isopentenyl
diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) are produced by
either the 2-C-methyl-d-erythritol 4-phosphate/1-deoxy-d-xylulose 5-phosphate
(MEP/DOXP) or mevalonate (MVA) pathways, and then DMAPP combines
with IPP to make two molecules of geranyl diphosphate which are combined
with IPP in two more sequential reactions resulting in two molecules of ger-
anylgeranyl diphosphate, which combine to make the C40 molecule prephytoene
diphosphate that becomes lycopene [28]. BPAT-S and BPAT-M were given as the
start compound G6P, the target compound lycopene and three as the number of
carbons to conserve. For BPAT-M, k for LPAT was set to 1,000,000, resulting in
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36,405 linear pathways without cycles, which had 16 mutually exclusive target
atom markings and generated 6,301 combinations. The number of pathways in
each cluster was limited to 2,500 and w was set to 500, due to memory limita-
tions. For BPAT-S, due to run time limitations, k for LPAT was set to 500,000,
resulting in 22,064 linear pathways without cycles. In both cases, LPAT required
about one minute to find the linear pathways.

The top ranked results from BPAT-S and BPAT-M are depicted in Figures
2(a) and 2(b), respectively. BPAT-M performs better than BPAT-S, in that it can
find find the known “woven” topology starting with IPP and DMAPP. BPAT-S
cannot identify the known topology because it only allows branches off of an
initial seed pathway. Additionally, BPAT-M completed in 74.1 minutes, while
BPAT-S required 463.2 minutes. Due to space constraints, the intermediates
to IPP and DMAPP are not displayed in Figure 2. The full figures found in
the online supplementary material (URL at the end of the paper) show that
the BPAT-M result correctly finds the lycopene pathway that utilizes the MEP
pathway to synthesize IPP and DMAPP; the BPAT-S result utilizes both the
MEP/DOXP pathway for DMAPP and MVA pathway for IPP thus revealing
the variety available. The MEP/DOXP and MVA pathways demonstrate how
search tools for metabolic pathways can illuminate different alternative pathways
that may be found in different organisms, which can have applications in areas
such as metabolic engineering. At the same time, the ability to find alternative
or novel pathways makes it more difficult to judge the performance of different
algorithms. Both the BPAT-M and BPAT-S results are biochemically correct in
the usage of MEP/DOXP and MVA pathways, but one may be preferred over
the other based on the specific application in mind.

4.3 α-d-Glucose 6-Phosphate to Cephalosporin C

Cephalosporin C is a β-lactam antibiotic, synthesized by certain bacteria and
fungi, but not used clinically because of its low potency [10]. However, it is an
important precursor for a number of related antibiotics and has been a tar-
get for increased production using metabolic engineering approaches [30]. The
biosynthetic pathway for cephalosporin C includes an reaction that synthesizes
δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine (ACV) from l-valine, l-cysteine and l-
2-aminoadipate. The pathway then proceeds through isopenicillin N which then
undergoes a series of reactions resulting in cephalosporin C [30]. BPAT-M and
BPAT-S were given as input G6P as the start compound, cephalosporin C as
the target compound and three as the minimal number of carbons to conserve.
For both BPAT-S and BPAT-M, k for LPAT was set to 1,000,000, resulting in
31,280 linear pathways without cycles found in less than one minute. For BPAT-
M the number of pathways in each cluster was limited to 5,000 and w was set
to 1,000. BPAT-M found 5 mutually exclusive target atom markings resulting in
18 combinations. BPAT-M took 1.9 minutes to complete the search and BPAT-S
took 366.4 minutes.

The top ranked pathways for BPAT-S and BPAT-M are depicted in Figures 3(a)
and 3(b), respectively. The simplified figures demonstrate that both BPAT-M and
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(a) (b)

Fig. 3. Top ranked branched metabolic pathways for G6P to cephalosporin C, with
the linear pathways conserving 3 carbons, as found by (a) BPAT-S and (b) BPAT-
M. In the interest of space, in (a) 33 mapping nodes and 25 compound nodes and in
(b) 27 mapping nodes and 21 compound nodes along the linear paths between merge
points are hidden from view. The full figures can be viewed in the online supplementary
material (URL at the end of the paper).

BPAT-S find the correct overall metabolic scheme, containing the crucial reaction
catalyzed by ACV synthetase, which requires three different substrate compounds
and produces ACV as the product [7]. Similar to the lycopene pathway, BPAT-
M is able to identify this scheme much quicker than BPAT-S. BPAT-S is able
to identify the branch through acetyl-CoA which contributes its acetyl group,
containing two carbons, to deacetylcephalosporin C to make cephalosporin C.
BPAT-M does not identify the pathway through acetyl-CoA since it is not in
the original set of linear pathways that conserved three carbons. The full path-
way figures, found in the online supplementary material (URL at the end of the
paper), reveal that BPAT-M is able to find shorter and pathways more similar
to the known pathways through l-valine and l-2-aminoadipate. While BPAT-S
finds a similar branched pathway to l-2-aminoadipate, it returns a long and un-
likely pathway to l-valine. The unlikely pathway to l-valine is due the approach
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taken by BPAT-S of attaching branches that maximize the number of atoms to
a single seed pathway.

5 Discussion

We have described and tested a new algorithm, BPAT-M, for identifying branched
metabolic pathways that utilizes atom tracking information to efficiently merge
together biochemically interacting linear pathways. The experimental results
highlight both the strengths and weakness of the approach taken by BPAT-M.
These results reveal that the algorithm’s performance may depend on the un-
derlying structure of the pathway they seek to find. The merging approach used
by BPAT-M will likely perform better if all of the branches conserve at least the
given number of atoms and are of similar length. If this is the case, then BPAT-
M can also find more complex topologies, because it is not limited to requiring
all branches to start and end from the same pathway. This is typical of large
compounds made from similar components, and the lycopene result highlights
this ability of BPAT-M. The lycopene pathway utilizes a “woven” topology that
is returned as the top result by BPAT-M, but BPAT-S is unable to find. In both
cases, BPAT-M took significantly less time than BPAT-S.

Despite the promising results, it is clear that the approach would benefit from
a number of improvements. Future work will allow multiple start and target com-
pounds to be used as input, utilize other sources of metabolic data and examine
ways to mine the resulting pathways to help the user understand them. The re-
sults also highlight that comparing the resulting branched metabolic pathways
is nontrivial, especially if the goal is to find alternative or novel pathways, and
further work is required to develop meaningful evaluation methods. Results from
ReTrace, as described in [24], are not presented because ReTrace has several pa-
rameters that affect the search. We observed that the results and runtime varied
widely depending on the parameters given to ReTrace. We found that ReTrace,
given the same KEGG data, efficiently finds branched pathways similar to those
presented in Section 4, but do not contain as many branches. This may be due
to a number of factors and performing a valid and exhaustive comparison will
be the subject of future work. While it can be difficult to identify a priori which
method will perform better, it is reasonable to try different algorithms and an-
alyze the results to gain better understanding of metabolic pathways.
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Abstract. Probabilistic approaches for sequence alignment are usually
based on pair Hidden Markov Models (HMMs) or Stochastic Context
Free Grammars (SCFGs). Recent studies have shown a significant cor-
relation between the content of short indels and their flanking regions,
which by definition cannot be modelled by the above two approaches.
In this work, we present a context-sensitive indel model based on a pair
Tree-Adjoining Grammar (TAG), along with accompanying algorithms
for efficient alignment and parameter estimation. The increased preci-
sion and statistical power of this model is shown on simulated and real
genomic data. As the cost of sequencing plummets, the usefulness of com-
parative analysis is becoming limited by alignment accuracy rather than
data availability. Our results will therefore have an impact on any type
of downstream comparative genomics analyses that rely on alignments.
Fine-grained studies of small functional regions or disease markers, for ex-
ample, could be significantly improved by our method. The implementa-
tion is available at http://www.mcb.mcgill.ca/∼blanchem/software.html

Keywords: context-sensitive indel model, statistical alignment, tree-
adjoining grammar.

1 Introduction

Short insertions and deletions (indels) play a critical role in human evolution,
accounting for a comparable amount of sequence divergence from chimpanzee
as point mutations [32]. They are also significant factors in a variety of genetic
diseases [1,6]. Short indels have a similarly large impact, albeit implicit, on any
conclusions drawn from comparative sequence analysis, as their accurate de-
tection is necessary to obtain meaningful sequence alignments. The increasing
availability of sequence data from different species has prompted recent genome-
wide studies of the indel process and its effects [5,18,21,30,31]. The aim of our
current work is to use a key result from these studies, namely that indel rates are
highly dependent on the surrounding sequence context, to revisit and improve
current methods of probabilistic sequence alignment. We do not intend for our
model to scale to genome-sized sequences, but rather for it to be used to refine
uncertain regions previously aligned using faster and simpler models.

V. Bafna and S.C. Sahinalp (Eds.): RECOMB 2011, LNBI 6577, pp. 85–103, 2011.
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Score-based models of evolution used in sequence alignment are in the pro-
cess of being replaced by probabilistic models [19,23]. Similar transitions have
successfully occurred in other areas of bioinformatics such as phylogenetics [8],
spurred by advantages of using stochastic models that apply equally to sequence
alignment. These advantages include more informative parameter estimates, the
ability to assess uncertainty in the results, and a neutral model under which tests
for selection can be performed. Research on probabilistic indel models and their
application to sequence alignment dates back to seminal work by Bishop and
Thompson [4] which was refined by Thorne, Kishino and Felsenstein [33]. Most
subsequent work in this field, such as allowing overlapping indels [22], or exten-
sions to multiple alignment [10,13], builds on the observation that indel models
can be formulated as pair Hidden Markov Models (pair-HMMs) [7]. The pair-
HMM representation offers the benefit of its accompanying generic algorithms
such as Forward, Viterbi and Baum-Welch, which can be used for alignment and
training without the need for model-specific algorithms. It has also led to the use
of more general formalisms from linguistics in order to create new, more pow-
erful models. For example, Stochastic Context Free Grammars (SCFGs) have
been used to develop a model of evolution where the dependence between nu-
cleotides resulting from pair-bonds in RNA stems could be explicitly modelled
[25,12]. Tree-Adjoining Grammars (TAGs) were used to generalize this work to
incorporate pseudoknots in the RNA secondary structure [20,34].

One form of inter-site mutational dependence with genome-wide prevalence
that is not addressed by any of the current probabilistic models is the rela-
tionship between short inserted and deleted sequences and their flanking re-
gions. More specifically, these indels often have a tandem match nearby in the
sequence (Figure 1). Two biological mechanisms, namely replication slippage
and unequal crossing over during recombination, are known to cause exactly
this phenomenon [17]. Recent genome-wide studies have revealed that the vast
majority (roughly 90%) of short indels have at least a partial tandem match
[21,31], making it reasonable to assume that these, or similar, mechanisms are
the primary driving force behind the processes of short insertion and deletion
and, consequently, evolution in general. Sequence alignment is far from a solved
problem [23], so it is logical to seek to use this context signal to improve accuracy
through better detection of indels. Some work toward this end has already been
done for score-based pairwise alignment, beginning with Benson who extended
the Smith-Waterman algorithm to include duplications events which insert an
arbitrary number of copies of the repeat sequence [2], increasing the time com-
plexity to O(n4). On sequences with pre-identified tandem repeats, the running
time is reduced to O(n2). This problem of aligning sequences of annotated re-
peats was revisited under a more general model that includes tandem excisions
by Berard et al., who proposed a O(n4) alignment algorithm [3]. Subsequent
work allowed for additional events including multiple-excisions, but at the cost
of an exponential running time [26].

Our aim in this report is to introduce a similar notion of context-sensitive
indels into the more modern statistical alignment framework, noting that a
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Fig. 1. Short indels are often flanked by a tandem match. The crossing dependencies
shown in the insertion and deletion identified in this sample alignment cannot be
modelled by pair-HMMs SCFGs.

similar project was successfully undertaken for context-sensitive substitutions
[29]. We propose a pair-TAG framework for doing this. In Section 3, we show
how certain properties of this model lead to dynamic programming algorithms
that are more efficient than previous work using TAGs and even SCFGs. A
pairwise aligner based on our model was implemented and tested on a variety
of genome sequences, and the increased precision and statistical power of this
model are shown on simulated and real genomic data.

2 TAG Indel Model

We seek to generalize the current HMM-based alignment approach to allow for
an indel rate that increases in proportion to the similarity between the inserted
or deleted sequence and its flanking sequence as shown in Figure 1. Unfortu-
nately, the “crossing” dependencies between the flanking and indel sites as shown
cannot, by definition, be modelled by a HMM or SCFG since languages of the
type x1, x2, . . . , xn, x1, x2, . . . , xn, i.e. repeated strings, are neither regular nor
context-free. We therefore turn to a slightly more powerful formalism called
the Tree-Adjoining Grammar (TAG), a mildly context-sensitive generalization
of CFGs introduced by Joshi in 1975 for application in computational linguis-
tics [14]. The key property of TAGs that we are interested in is their ability to
recognize tandem repeats of arbitrary strings [15].

A TAG is defined by a quintuple {Σ, NT, Γ, A, S}, where Σ is the set of
terminal symbols, NT the non-terminal symbols, and S is the Start symbol. Γ
and A are the sets of initial and auxiliary trees respectively. TAG trees are binary,
with each node associated with either a terminal or non-terminal symbol from the
grammar. All interior nodes of initial trees are labelled with non-terminal nodes,
except the root which may be labelled with the Start symbol. All leaf nodes
of an auxiliary tree are labelled with terminal nodes except for one designated
foot node, which is labelled with the same non-terminal as the tree’s root. A
TAG combines initial and auxiliary trees to form new trees using two operations:
substitution and adjunction. A substitution replaces the leaf of one tree with the
root of another while an adjunction operation replaces the internal node of one
tree with an auxiliary tree. Please see Figure 2 for examples of these operations.
A TAG tree can be mapped to a string by reading the terminal symbols in its
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Fig. 2. The two TAG operations. (a) An auxiliary tree is substituted onto a leaf of an
initial tree. (b) An auxiliary tree is adjoined at the internal node of an initial tree.

leaves in a pre-order traversal. The set of strings generated by a TAG is therefore
the set of strings associated with all trees that it can generate.

Substitution, adjunction, and emission probabilities can be added to a TAG
in order to generate a stochastic model [27]. Such models have not been widely
adopted in practice as TAG parsing algorithms have time complexity O(n6) [35],
as opposed to the less-prohibitive O(n) and O(n3) of their respective HMM and
SCFG counterparts. Still, they have seen some application in bioinformatics.
Uemura et al. developed a model to detect RNA secondary structures including
pseudoknots using a custom O(n5) algorithm [34] that was later extended by
Matsui et al. to align a sequence to a known secondary structure [20]. Sequence
alignment requires a pair TAG which, analogous to the pair-HMM, would emit a
pair of sequences with the corresponding quadratic increase in time complexity
(O(n10) for the pseudoknot model (O(n12) in the general case). It is therefore of
little surprise that our model, presented below, is, to the best of our knowledge,
the first TAG-based sequence aligner. Our approach relies on creating a TAG
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nucleotides.
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that is expressive enough to model repeats while still being simple enough to be
parsed in an almost-left-to-right manner.

We begin the description of our model by briefly reviewing the pair HMM se-
quence aligner, which we wish to generalize. A detailed description can be found
in Durbin et al. [7]. This model is illustrated in Figure 3, and has a Start state, an
End state, and three emitting states: Match, Insert and Delete. The pair align-
ment is generated from left to right, with each state emitting a single alignment
column. The transition and emission probabilities are derived from reversible in-
del and substitution models, respectively. The Viterbi algorithm (and traceback)
can be used to compute the maximum likelihood (ML) alignment in O(n2). Our
air-TAG indel model is illustrated in Figure 4. It is comprised of Start tree,
S, and initial trees Γ = {M, I, D, E}, corresponding to Match, Insert, Delete,
and End states, respectively. Context sensitive indel operations are supported
through the addition of the auxiliary trees, A ∈ {BCD, BCI, CD, CI, C}, cor-
responding to Begin Context Delete, Begin Context Insert, (continue) Context
Delete, (continue) Context Insert, and Close context, respectively. A new context
indel is begun by substituting either a BCD or BCI tree onto a tree from the
first group. The indel (and flanking region) can then be extended by adjoining
CD or CI trees to nodes marked with a “*”. The C tree is adjoined in order to
“Close” the indel. Subsequent events are added by substituting new trees onto
the BCD or BCI leaf nodes. This model is projected onto a HMM-like graph
in Figure 3 for comparison purposes, where solid and dashed arrows represent
substitutions and adjunctions, respectively. It is not a true HMM since multiple
paths are required to generate an alignment. Similar to pair-HMM aligners, it is
based on the assumption that indels cannot overlap.
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Fig. 4. The pair-TAG indel grammar. Left: Non-context initial trees, and the start
tree, are combined through substitution (Start, Match, Insert, Delete, End). Right:
Auxiliary trees are combined through adjunction to nodes marked with a ”*” ( Begin
Context Insert, Begin Context Delete, Continue Context Insert, Continue Context
Delete, Close context).
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Let sub(X, Y ) and adj(X, Y ) denote the probability of substituting or adjoin-
ing, respectively, tree Y onto tree X . We determine these values using a simple
reversible model defined by the following six parameters:

RI : Exponential Indel Rate PI : Geometric Indel Length
RCI : Exponential Context Indel Rate PCI : Geometric Context Indel Length
t : Total Time (2 · divergence time) PA: Geometric Alignment Length

The substitution probabilities are listed in Table 1, where the function at row i
and column j corresponds to sub(i, j). Due to the symmetry of the model, the D
and BCD columns need not be shown since, for example sub(I, D) = sub(D, I).
All other substitutions, such as sub(I, S), have probability 0. The derivation of
sub(M, j), where j ∈ {E, M, I, D, BCI, BCD}, is illustrated in Figure 5(a). The
probability is the product of the probabilities on each edge in the path from M
to j. Similar schematics were used to derive each entry in Table 1. There are
only two possible adjunctions, “continue indel” and “close indel”, so the only
nonzero adjunction probabilities are adj(BCD, CD) = adj(BCI, CI) = PCI

and adj(BCD, C) = adj(BCI, C) = 1 − PCI .
We now describe the emission model. Indel (I, D), Match (M) and Con-

text Indel (BCI, BCD, CI, CD) trees emit one, two and three nucleotides,
respectively, at their leaves. Emission probabilities are represented using the
following notation: emi(x) is the probability an indel emits x; emi(x, y) is the
probability a match emits x in sequence 1 and y in sequence 2; and emi(x, y, z)
is the probability a context indel emits a match of x, y followed by an indel of
z to the right in the alignment. The probabilities of emissions of one and two
nucleotides are described using a Jukes Cantor model with rate λ [16]. Let Pr[x]
be the stationary probability of nucleotide x, and Pr[y |x, n] be the probability
that x mutates into y, given expected number of substitutions, n, according to
this model. It follows that emi(x) = Pr[x] and emi(x, y) = Pr[x] · Pr[y |x, tλ].

Non-context-dependent emission models would have emi(x, y, z) = emi(x, y) ·
emi(z). The fundamental contribution of our model is in introducing a depen-
dency between the match and indel sites. We accomplish this by introducing
a second Jukes Cantor parameter, γ, that represents the expected number of
substitutions between the two sites. We can then use Equation 1 to compute the
distribution of the probability of the indel having occurred via a tandem repeat
event. Since the exact time of the indel event is unknown, we must integrate

Table 1. TAG Substitution probabilities where X ∈ {S, M, CI, CD}. Entry at row i
and column j corresponds to sub(i, j). In the case where j = E, sub(i, j) = 1 − PA.

M I BCI

X PA · e−2t(RI+RCI) PA · (1 − e−2t(RI+RCI )) · RI

2(RI + RCI)

PA · (1 − e−2t(RI+RCI)) · RCI

2(RI + RCI)

I PA · (1 − PI) · e−t(RI+2RCI) PA · PI
PA · (1 − PI) · (1 − e−t(RI+2RCI)) · RCI

RI + 2RCI

D PA · (1 − PI) · e−t(RI+2RCI) PA · (1 − PI) · (1 − e−t(RI+2RCI)) · RI

RI + 2RCI

PA · (1 − PI) · (1 − e−t(RI+2RCI)) · RCI

RI + 2RCI
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Fig. 5. (a) Example how substitution probabilities for the Match tree, as listed in
Table 1, are derived. The derivation is most easily shown as a HMM-like projection,
where silent states are inserted to ensure that probabilities total one. (b) The terms of
Equation 1, as they relate to an illustration of a context insertion. All possible states of
p and q are summed over, and all values of u are integrated over, in order to compute
emi(x, y, z).

over all time points, and sum over each possible state in the context site (p) and
indel site (q) at each time. These variables are illustrated in Figure 5(b). The
five terms in the equation correspond to branches connecting the five states in
the figure. The level of dependence can be tuned using the context parameter
γ, from strictly allowing tandem repeats with γ = 0 to full independence as γ
approaches infinity. Equation 1 expands to a sum of exponential terms when the
Jukes-Cantor probabilities are used, and can be solved exactly.

emi(x, y, z) =
∑ ∑

p,q∈{A,C,G,T}

∫
t

0
Pr[x] · Pr[p | x, (t − u)λ] · Pr[y | p, uλ] · Pr[q | p, γ] · Pr[z | q, uλ] du

(1)

Figure 6 shows an example of a TAG derivation for a single base insertion fol-
lowed by a two-base context deletion. An Insert tree is first substituted into the
Start tree. A Begin Context Delete tree is then substituted into the resulting
tree. The context deletion is continued then closed by adjoining the Context
Delete and Close trees, respectively. The process is terminated by substituting
the End tree. The resulting alignment is emitted as shown in the figure, and the
probability of this alignment is a product of all sub(·), adj(·), and emi(·) terms
shown.

3 Pairwise Alignment and Parameter Estimation

The most basic question that can be answered using a probabilistic model of
evolution is to determine the probability that two sequences are homologous.
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Fig. 6. An example of a TAG derivation as it emits an alignment. The derivation tree
is illustrated after each of the three substitutions and two adjunctions. The emitted
alignment is also displayed in the lower left. The probabiliy of this derivation can be
computed as the product of the (eight total) emission, substitution, and adjunciton
operations shown.

Algorithmic solutions to this problem can usually be trivially modified to pro-
duce ML alignments along with posterior probabilities for alignment columns.
Two model properties are often used to speed up these algorithms. The first is re-
versibility. Felsenstein’s pulley principle states that under a reversible model, the
probability that sequences A and B are descended from common ancestor C can
be computed by assuming one descendant is the ancestor of the other [9]. This al-
lows likelihoods to be computed directly, without exploring all possible ancestral
states. The second property is Markov dependence, which allows all alignments
to be efficiently totalled by the Forward algorithm using dynamic programming
[7]. An example of a table entry used for this algorithm is illustrated in Figure
7, where F 1(i, p) stores the probability that the pair of subsequences formed by
the first i characters of A and the first p characters of B are homologous. Markov
dependence enables F 1(i, p) to be computed from F 1(i− 1, p), F 1(i, p− 1), and
F 1(i − 1, p − 1), allowing the table to be quickly filled from left to right. The
Markov property applies to pair-HMM models, but is lost when moving to more
general formalisms such as pair-SCFGs or pair-TAGs, whose respective parsing
algorithms, Inside/CYK [7] and Tag-Parse [35] necessitate tables of increasingly
higher dimension (also illustrated in Figure 7). The cost of updating each table
entry also increases from O(1) for the Forward algorithm to O(n · m) for the
Inside algorithm, and to O(n2 · m2) for TAG-Parse, for a pair of sequences of
lengths m and n. Assuming n ≥ m and a constant model size, the space/time
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Fig. 7. Illustration of the subproblems considered in the dynamic programming algo-
rithms used to parse our TAG Indel model (TAG No Context; TAG Context Delete;
TAG Context Insert) along side those required for a pair-HMM, pair-SCFG and general
pair-TAG. For each type of model, we show the input strings A and B, the substrings
“covered” by each subproblem, and the indices required to denote them.

complexity of Forward is O(n2)/O(n2), Inside is O(n4)/O(n6), and TAG-Parse
is O(n8)/O(n12).

The TAG Indel model we presented in Figure 4 was designed to mitigate most
of the computational overhead, noted above, of moving beyond pair-HMMs. By
limiting substitutions and adjunctions to a single point on each tree to the right
of previously emitted columns, we ensure a unique “left-to-right” derivation for
any alignment. The only exception is columns inserted or deleted by the context
operations emitted to the right of adjunction points. These “context windows”
are independent since indels do not overlap and can, without any loss of gen-
erality, also be derived in a left-to-right fashion. The TAG-Indel derivation can
therefore be described as a combination of two different left-to-right processes,
context and non-context, linked together in series. These ideas are perhaps best
visualized in the HMM-like projection of the TAG-Indel model shown in Figure
3. The black arrows refer to TAG substitutions and the dashed arrows refer to
context adjunctions. Alignments are generated as in the pair-HMM by beginning
at the S state and then repeatedly transitioning to connected states, emitting
columns as specified. When a BCD or BCI state is reached, the model then
switches into a context window, transitioning on the dotted connections and si-
multaneously emitting two columns at a time. The model eventually moves to
the C state and reverts back to a non-context mode.

Let s be a TAG Indel tree that is substituted or adjoined in the process of de-
riving an alignment of sequences A and B. It follows directly from the definition
of our model that the range of characters during the derivation up to and includ-
ing s can be described as one of the three cases illustrated in Figure 7: TAG No
Context, TAG Context Insert or TAG Context Delete. The total probability of
all possible alignments of the emitted characters given that s was the last tree
used in the derivation is denoted F 1(s, i, j), F 2(s, i, j, k, p), and F 3(s, i, p, q, r) for
the three cases respectively. The recursions to compute these values are provided
in Appendix Section A.1, as is pseudocode for Context-Forward, a O(n4)
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context-sensitive generalization of the Forward Algorithm. The vast majority
of context indels are extremely short, however [31], and by bounding this length
with some small constant L, the complexity reduces to O(n2L2). Context-Forward
can be modified into Context-Viterbi by changing the summations to max op-
erators, and storing traceback information in addition to likelihoods. The re-
sulting procedure can be used to obtain the ML alignment, or to sample from
the ML alignments in a similar manner as is done for HMMs [7]. We define the
Context-Backward tables, B{1,2,3}, as storing the probability that the remaining
subsequences of A and B (dashed lines in Figure 7) are emitted, given that state
s was used in the corresponding Forward entry. For example, B2(CD, i, j, k, p)
is the probability that the model emits A[i+1,j−1], A[k+1,n] and B[p+1,m] given
that it already emitted A[1,i], A[j,k] and B[1,p], and s was the last tree used in
the latter derivation. The details of Context-Backward are given in Appendix
Section A.2. The Context-Forward and Context-Backward tables can be com-
bined to generate ML estimators for the substitution, emission and adjunction
probabilities as is done by the Baum-Welch algorithm for HMMs [7]. We use
these estimators in an Expectation-Maximization (EM) loop to train the model,
which is described in full in Appendix Section A.3.

4 Results and Discussion

The training and alignment algorithms described above were implemented in
C++. The program succeeds at aligning pairs of 100-bp sequences in less than 5
seconds on a typical desktop computer, eventually allowing whole-genome piece-
wise realignment on a large cluster in a few hours. The first results we present are
from a simulation experiment designed to validate the model design and training
procedure, as well as the statistical test used later to measure goodness of fit
to real data. We simulated a set of 250 pairwise alignments using our model
for each possible parameter assignment (144 total) from the following values,
limiting context indel lengths to ten to speed up training:

RI , RCI ∈ {0, 0.01, 0.1, 0.5}, λ, γ ∈ {0.01, 0.1, 0.5}, PI = 0.75, PCI = 0.5, PA = 0.9875.

These values were chosen in an attempt to represent those that could be encoun-
tered when aligning human to species as close as chimpanzee and distant as mouse.
t = 1 was used for all tests, as time cannot be estimated independently from the
rates. For each of the 144 parameter assignments, both the HMM and TAG indel
models were trained on the generated data. The estimated parameters were ac-
curate to within a few percent of the true parameters in most cases. There were
exceptions in pathological cases, such as {RI = 0.5, RCI = λ = γ = 0.01} where
the estimate of λ was completely wrong but these cases are unrealistic, and as li-
able to fool othermodels.To show that estimating these context indel parameters is
meaningful, we contrasted the fit of the TAG indel model to that of the pair-HMM
using two goodness of fit tests: the Likelihood Ratio Test (LRT) and the Bayesian
Information Criterion (BIC), both of which correct for the number of free parame-
ters. After training both models on the data as described above, we computed the
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total log likelihoods of the Viterbi alignments for each parameter set. The LRT
showed that the TAG-Indel model fits the data significantly better than the HMM
(p < 10−6) whenever the rate of context indel is non-trivial (RCI ≥ 0.01). The
BIC is a stricter test that corrects for the data size in addition to assigning an in-
creased penalty for the number free parameters. Under this criterion, the model
with the lower BIC value is to be chosen. Figure 8(a) plots the relationship be-
tween ΔBIC = BIC[HMM] - BIC[TAG] and the parameters used to generate the
data (ΔBIC > 0 favours the TAG model). The TAG Indel model fits the data bet-
ter under most conditions and as expected, the fit increases in proportion to RCI ,
RCI/RI , and in inverse proportion to λ and γ.

Table 2. Estimated parameters obtained by training our model on batches of sub-
sequences randomly sampled from the human genomes, along with homologus subse-
quences from the genomes of seven mammalian species

Species λ γ RI RCI PI PCI

Chimp 0.020968 0.144747 0.000111 0.000669 0.576667 0.633721
Gorilla 0.026970 0.118685 0.000193 0.000672 0.553240 0.691680
Macaque 0.094694 0.236328 0.000579 0.001951 0.587768 0.672405
Marmoset 0.158098 0.209717 0.000951 0.003485 0.450678 0.778480
Tarsier 0.341867 0.332006 0.003834 0.007663 0.453935 0.634864
Dog 0.414850 0.473482 0.004827 0.010788 0.539543 0.537534
Mouse 0.528795 0.388574 0.007306 0.013690 0.494740 0.646847

Having validated the training algorithm and goodness of fit test, we proceed
to experiments on genomic sequence data. Our model in its current form is
not designed to align entire genomes. Rather, we propose it as a method to
resolve uncertain gaps within sequences that have at least been roughly aligned.
We therefore use short subsequences from BlastZ [28] pairwise alignments of the
human genome to other species as downloaded from the UCSC Genome Browser
[24]. The subsequences were sampled as follows. The chromosome 22 alignment
(.axt file) was divided into blocks of length 60 (including gaps), and 500 blocks
were chosen at random1. Implementation improvements such as banding [11]
and faster numeric estimation procedure could be used to vastly increase the
sample lengths in the future. The reference alignments between human (hg19)
and chimp (panTro2), gorilla (gorGor1), rhesus macaque (rheMac2), marmoset
(calJac2), tarsier (tarSyr1), dog (canFam2), and mouse (mm9), were sampled in

1 Alignment blocks with gaps near the block’s boundary (gap of length ≥ k within
k sites of the boundary) were excluded, to ensure all gaps’ contexts are present.
We observe that that this procedure will bias the observed indel length distribu-
tion (against longer indels), but note that 1) most indels are short enough to not
be significantly affected [5,31], and 2) we are less interested in the absolute rates
detected than in the relative context signal and presenting the potential benefits of
a proof-of-concept version of our model.
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this way. Gaps were then removed from each BlastZ alignment block, and the
TAG indel model was trained on each sample. We repeated this procedure ten
times and report the average results below.

(a) (b)

Fig. 8. (a) BIC analysis on simulated data. Lines for λ = 0.1 and γ = 0.1 not shown,
but they are bound by below and above by λ = 0.5, γ = 0.5 and λ = 0.01 and
γ = 0.01 respectively. *: log ΔBIC = log10(BIC(HMM)−BIC(TAG)) if BIC(HMM) >
BIC(TAG), 0 if BIC(HMM) = BIC(TAG), and − log10 |BIC(HMM) − BIC(TAG)| if
BIC(HMM) < BIC(TAG). (b) Indel length distribution for Human/Dog alignment.

The estimated parameters for the alignments between human and the selected
species are given in Table 2. In each case the context indel rate was much higher
than the non-context rate, supporting the hypothesis that most short indels are
the result of tandem events. The relative rate of context events does lower as
the species become more diverged. The γ values, on the other hand, increase,
reflecting higher numbers of substitutions occurring in or around the indel. It
is likely that subsequent insertions and deletions, which we do not model, also
disrupt the context signal for more diverged species and are the source, rather
than a mechanistic difference, of the lower relative rates. The length distributions
of both the context and non-context indels are similar to each other, and the
numbers for human/chimp are comparable to what has previously been observed
using other methods [31]. Figure 8(b) illustrates, as an example, the indel length
distributions for human/dog. Figure 9(a) shows the ΔBIC score in relation to
divergence from human (as measured by the substitution rate λ). Our model
provides a superior fit to the data at low divergence (such as chimp and gorilla),
and improves as the divergence increases. There is a point where, as mentioned
above, the context signal begins to be lost due to excessive divergence (after dog
in Figure 9(a)). Still, ΔBIC remained significantly above zero even for mouse.

Finally, we demonstrate how modelling context-sensitive indels improves align-
ment accuracy. Since the true alignments are not known, we used the parameters
estimated from the genomic data to simulate “gold standard” alignments for each
organism. Using the same number of trials and dimensions of data as above, we
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(a) (b)

Fig. 9. (a) BIC test on pairs of genomic sequences involving human and each of the
species listed. Δ BIC is the difference in BIC score between the TAG model and the
HMM model. (b) Alignment accuracy results for simulated pairs of sequences involving
human and each of the listed species.

again trained both the TAG and HMM models on pairs of simulated orthol-
ogous sequences, and computed the maximum-likelihood pairwise alignments
with each model2. The fraction of alignment errors (pair of aligned nucleotides
present in the gold standard and not in the computed alignment) made by each
method is reported in Figure 9(b). For closely related species, both models pro-
duce roughly equally accurate alignments. This is likely due to the fact that the
sequences surrounding indels are sufficiently conserved to accurately pinpoint
the indel location without the need for a context-dependent model. However, for
more diverged species, the TAG alignments make significantly fewer alignment
errors, allowing a ∼ 10% reduction in alignment errors for marmoset, tarsier,
dog, and mouse. As in the BIC test, we see the performance gains begin to drop
off at mouse, as the distance becomes large enough to degrade the context signal.

In conclusion, we developed a probabilistic indel model that generalizes cur-
rent pair-HMM approaches by adding context-indel events whose probabilities
are governed by their similarity to their flanking sequences. This approach was
motivated by recent studies showing the prevalence of such events across the hu-
man genome, and the fact that many gaps in alignments produced by context-free
approaches are still very uncertain, especially in regions exhibiting high diver-
gence. We therefore claim that the accuracy of current methods can be improved
by taking into account this context signal. As probabilistic models based on pair-
HMMs are being increasingly favoured over score-based approaches, we elected
to generalize the pair-HMM using a pair-TAG to include context sensitivity. Our
simulation experiments demonstrated that our TAG indel model can accurately

2 To adjust for the fact that the true direction of replication is unknown, and to
attempt to remove unfair bias in favour of the TAG model, we reversed the direction
of half the simulated sequence pairs.
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detect context-sensitive indels and their associated parameters from sequence
data. We also showed that it fits pair sequence data from alignments between
human and species ranging from chimpanzee to mouse significantly better than
a pair-HMM. The estimated rates from these alignments were used to generate
“gold-standard” alignments, which the TAG model was able to more accurately
recover than the pair-HMM as divergence increased. We therefore conclude that
our TAG indel model provides a significant improvement over current methods,
and has demonstrated the potential to be used to refine uncertain regions in
existing alignments, especially in diverged sequences. These results will have an
impact on any analyses that rely on alignments, such as fine-grained studies of
small functional regions or disease markers. In the future, we are interested in
adding more complex events to our model such as indels within or between the
context indel and flanking region, scaling the input data sizes, and applying it
to multiple alignment and ancestral sequence reconstruction.
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A Appendix

A.1 Context-Forward Algorithm

The dynamic programming recursions for Context-Forward are listed below.

F 1(D, i, p) = emi(Ai) ·
∑

s∈{S,D,I,M,BCD,BCI}
F 1(s, i − 1, p) · sub(s, D)

F
1
(I, i, p) = emi(Bp) ·

∑
s∈{S,D,I,M,BCD,BCI}

F
1
(s, i, p − 1) · sub(s, I)

F 1(M, i, p) = emi(Ai, Bp) ·
∑

s∈{S,D,I,M,BCD,BCI}
F 1(s, i − 1, p − 1) · sub(s, M)

F 1(E, i, p) =
∑

s∈{S,D,I,M,BCD,BCI}
F 1(s, i, p) · sub(s, E)

F
2
(BCD, i, j, k, p) = emi(Ai, Ak, Bp) ·

∑
s∈{S,D,I,M,BCD,BCI}

F
1
(s, i − 1, p − 1) · sub(s, BCD)

F 3(BCI, i, p, q, r) = emi(Ai, Bp, Br) ·
∑

s∈{S,D,I,M,BCD,BCI}
F 1(s, i − 1, p − 1) · sub(s, BCI)

F 2(CD, i, j, k, p) = emi(Ai, Ak, Bp) ·
∑

s∈{BCD,CD}
F 2(s, i − 1, j, k − 1, p − 1) · adj(s, CD)

F 3(CI, i, p, q, r) = emi(Ai, Bp, Br) ·
∑

s∈{BCI,CI}
F 3(s, i − 1, p − 1, q, r − 1) · adj(s, CI)

F 1(BCD, i, p) =
∑

s∈{BCD,CD}

∑
0<u<i

F 2(su, u + 1, i, p) · adj(CD, C)

F 1(BCI, i, p) =
∑

s∈{BCI,CI}

∑
0<v<p

F 3(s, i, v, v + 1, r) · adj(CI, C)

The first four equations, which update non context entries of the form F 1(s, i, p)
are computed exactly as in the Forward algorithm. The context entries are simi-
lar except an extra two indices are kept for the context indel, and three characters
are emitted instead of two or one. Finally, context indels can be “closed” once
the inserted or deleted sequence is immediately flanking the current alignment.
Pseudocode for the Context-Forward algorithm is shown below.
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Context-Forward

1 Initialize all entries in F to 0
2 F 1(S, 0, 0) ← 1
3 Compute F 1(D, 1, 0) and F 1(I, 0, 1)
4 for i ← 1 to n
5 for p ← 1 to m
6 for s ∈ {S, M, D, I, BCD, BCI}
7 Compute F 1(s, i, p)
8 for j ← i + 1 to n
9 for k ← j to n

10 Compute F 2(BCD, i, j, k, p) and F 2(CD, i, j, k, p)
11 for q ← p + 1 to m
12 for r ← q to m
13 Compute F 3(BCI, i, p, q, r) and F 3(CI, i, p, q, r)
14 Compute and Return F (E, n, m)

A.2 Context-Backward Algorithm

The recursions for computing B{1,2,3} are presented below. Each entry is asso-
ciated with a state s and a range (ranges and indices are illustrated in 7), and
stores the probability that the model emits the subsequences not in the range,
given that the last emission inside the range was s.

B
1(s, i, p)

s∈{S,M,D,I,E,BCD,BCI}
=

∑
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

emi(Ai+1) · B1(D, i + 1, p) · sub(s, D)

emi(Bp+1) · B1(I, i, p + 1) · sub(s, I)

emi(Ai+1, Bp+1) · B1(M, i + 1, p + 1) · sub(s, M)∑
k>i+1

emi(Ai+1, Ak, Bp+1) · B
2(BCD, i + 1, k, k, p + 1) · sub(s, BCD)

∑
r>p+1

emi(Ai+1, Bp+1, Br) · B
3(BCI, i + 1, p + 1, r, r) · sub(s, BCI)

B
2(BCD, i, k, k, p) =

{
B2(BCD, k, p) · adj(CD, C) (if k = i + 1)
emi(Ai+1, Ak+1, Bp+1) · B2(CD, i + 1, k, k + 1, p + 1) · adj(BCD, CD) (otherwise)

B3(BCI, i, p, r, r) =

{
B3(BCI, i, r) · adj(CI, C) (if r = p + 1)
emi(Ai+1, Bp+1, Br+1) · B3(CI, i + 1, p + 1, r, r + 1) · adj(BCI, CI) (otherwise)

B
2(CD, i, j, k, p) =

{
B2(BCD, k, p) · adj(CD, C) (if j = i + 1)
emi(Ai+1, Ak+1, Bp+1) · B2(CD, i + 1, j, k + 1, p + 1) · adj(CD, CD) (otherwise)

B
3(CI, i, p, q, r) =

{
B3(BCI, i, r) · adj(CI, C) (if q = p + 1)
emi(Ai+1, Bp+1, Br+1) · B3(CI, i + 1, p + 1, q, r + 1) · adj(CI, CI) (otherwise)

The pseudocode for Context-Backward is provided. Its running time is identical
to Context-Forward.

Context-Backward

1 Initialize all entries in B to 0
2 B1(E, n + 1, m + 1) ← 1
3 for i ← n to 0
4 for p ← m to 0
5 for s ∈ {E, M, D, I, BCD, BCI}
6 Compute B1(s, i, p)
7 for j ← n to i + 1
8 for k ← j to i + 1
9 Compute B2(BCD, i, j, k, p) and B2(CD, i, j, k, p)

10 for q ← m to p + 1
11 for r ← q to p+
12 Compute B3(BCI, i, p, q, r) and B3(CI, i, p, q, r)
13 Compute and Return B1(S, 0, 0)



102 G. Hickey and M. Blanchette

A.3 Expectation-Maximization Loop for Estimating Parameters

Let Φ = (emi(·), sub(·), adj(·)), and Ψ = (λ, γ, RI , RCI , Pi, PCI , PA). The param-
eters are learned though iterative re-estimation, beginning with a random seed.
First the ML estimates of the substitution, adjunction and emission probabili-
ties, Φ̂, are computed from the Context-Forward and Context-Backward tables.
We define t(Ψ) → Φ to be the system of equations (Table 1, Equation 1), that
maps the model parameters to the TAG probabilities. In general, t−1(Φ) → Ψ
cannot be computed analytically so we use gradient descent to obtain an approx-
imate solution, Ψ̂ , that minimizes w(t(Ψ̂ )) − w(Φ̂))2. w(·) is a heuristic scaling
factor that weights each probability by the likelihood of the state that produces
it (obtainable directly from the dynamic programming tables). For example,
w(emi(s, x, y)) = Pr[s] · emi(s, x, y) and w(adj(s1, s2)) = Pr[s1] · adj(s1, s2).
This ensures that probabilities associated with transitioning out of, or emitting
from, unlikely states, which can be high and meaningless, do not dominate the
objective function. The entire training procedure is outlined in the following
pseudocode.

Context-Train

1 Φ̂ ← Random Seed.
2 Pr[A, B] ← 0
3 converge ← false
4 while converge = false
5 Pr′[A, B] ← Context-Forward()
6 Context-Backward()
7 Compute Φ̂

8 Estimate Ψ̂ ≈ t−1(Φ̂)
9 converge ← (Pr′[A, B] = Pr[A, B])

10 Pr[A, B] ← Pr′[A, B])
11 Return Ψ̂

Φ̂ is estimated directly from the Context-Forward and Context-Backward tables:

For s ∈ {S, E, D, I, M, BCD, BCI}:

Pr[s] =
∑
i,p

F
1(s, i, p) · B(s, i, p)

sub(s, D) =
∑
i,p

F
1(s, i, p) · emi(Ai+1) · sub(s, D) · B

1(D, i + 1, p)/ Pr[s]

sub(s, I) =
∑
i,p

F
1(s, i, p) · emi(Bp+1) · sub(s, I) · B

1(Ix, i, p + 1)/ Pr[s]

sub(s, M) =
∑
i,p

F
1(s, i, p) · emi(Ai+1, Bp+1) · sub(s, M) · B

1(M, i + 1, p + 1)/ Pr[s]

sub(s, E) =
∑
i,p

F
1(s, i, p) · sub(s, E) · B

1(E, i + 1, p)/ Pr[s]

sub(s, BCD) =
∑
i,p

F
1(s, i, p)

∑
k>i+1

emi(Ai+1, Ak, Bp+1) · sub(s, BCD) · B
2(BCD, i + 1, k, k, p + 1)/ Pr[s]

sub(s, BCI) =
∑
i,p

F
1(s, i, p)

∑
r>p+1

emi(Ai+1, Bp+1, Br) · sub(s, BCI) · B
3(BCI, i + 1, p + 1, r, r)/ Pr[s]
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For s ∈ {BCD, CD}:

Pr[s] =
∑

i,j,k,p

F
2(s, i, j, k, p) · B

2(s, i, j, k, p)

adj(s, C) =
∑

i,k,p

F
2(s, i, i + 1, k, p) · adj(s, C) · B

2(BCD, k, p)/ Pr[s]

adj(s, CD) =
∑

i,j,k,p

F
2(s, i, j, k, p) · emi(Ai+1, Ak+1, Bp+1) · adj(s, CD) · B

2(CD, i + 1, j, k + 1, p + 1)/ Pr[s]]

Pr[s] =
∑

i,p,q,r

F
3(s, i, p, q, r) · B(s, i, p, q, r)

adj(s, C) =
∑

k,p,r

F
3(s, i, p, p + 1, r) · adj(s, C) · B

3(BCI, k, p)

adj(s, CI) =
∑

i,p,q,r

F3(s, i, p, q, r) · emi(Ai+1, Bp+1, Br+1) · adj(s, CI) · B3(CI, i + 1, p + 1, q, r + 1)/ Pr[s]

emi(x) =

∑
i,p|Ai=α,Bp=− F1(D, i, p) · B1(D, i, p) +

∑
i,p|Ai=−,Bp=x F1(i, i, p) · B1(I, i, p)∑

i,p F1(D, i, p) · B1(D, i, p) +
∑

i,p F1(i, i, p) · B1(I, i, p)

emi(x, y) =

∑
i,p|Ai=x,Bp=y F1(M, i, p)B1(M, i, p)∑

i,p F1(M, i, p) · B1(M, i, p)

emi(x, y, z) =

∑
s∈{BCD,CD},i,j,k,p|Ai=x,Bp=y,Ak=z F2(s, i, j, k, p) · B(s, i, j, k, p)+∑
s∈{BCI,CI},i,p,q,r|Ai=x,Bp=y,Br=z F3(s, i, p, q, r) · B(s, i, p, q, r)∑

s∈{BCD,CD} F2(s, i, j, k, p) · B(s, i, j, k, p) +
∑

s∈{BCI,CI} F3(s, i, p, q, r) · B(s, i, p, q, r)
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Motivation. Next generation sequencing technologies have been decreasing the
costs and increasing the world-wide capacity for sequence production at an un-
precedented rate, making the initiation of large scale projects aiming to sequence
almost 2000 genomes [1]. Structural variation detection promises to be one of the
key diagnostic tools for cancer and other diseases with genomic origin. In this
paper, we study the problem of detecting structural variation events in two or
more sequenced genomes through high throughput sequencing . We propose to
move from the current model of (1) detecting genomic variations in single next
generation sequenced (NGS) donor genomes independently, and (2) checking
whether two or more donor genomes indeed agree or disagree on the variations
(in this paper we name this framework Independent Structural Variation Dis-
covery and Merging - ISV&M), to a new model in which we detect structural
variation events among multiple genomes simultaneously.

Combinatorial Modeling and Problem Definition. Here we introduce the
problem of Simultaneous Structural Variation discovery in Multiple Genomes
(SSV-MG). Given one reference genome and a number of paired-end sequenced
genomes, our aim is to predict structural variation (SV) events in these genomes
simultaneously. In [2], the MPSV problem was defined to compute a unique
assignment of each discordant paired-end read to a maximal SV cluster such
that the total number of implied SV events is minimized. The SSV-MG problem
also aims to identify maximal SV clusters and assign each discordant paired-end
read to one of the SV clusters under a maximum parsimonious criteria which we
formally define in this paper. The goal is to simultaneously predict SVs in several
donor genomes by means of minimizing a weighted sum of structural differences
between the donor genomes as well as the reference genome. For each SV event
identified by an SSV-MG algorithm, a weight (cost) is associated based on the
set of the distinct genomes sharing the SV event (i.e. having a discordant paired-
end read which is assigned to the SV cluster). If an SV event is shared among
many distinct genomes, its weight is relatively small, while an SV event which
is unique to only one individual has a larger weight.
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�� Corresponding authors.

V. Bafna and S.C. Sahinalp (Eds.): RECOMB 2011, LNBI 6577, pp. 104–105, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Simultaneous Structural Variation Discovery 105

Complexity, Approximate Algorithms and Heuristics. We show that the
SSV-MG problem is NP-hard and there exists a constant c for which SSV-MG
has no approximation factor within cωmax

ωmin
log n, unless P = NP , where ωmax and

ωmin are the maximum and minimum possible weights among all SV clusters. We
present a tight approximation algorithm (which we name SSC throughout the
manuscript) for the SSV-MG problem, based on the greedy algorithm for the set
cover problem. In addition, we provide two heuristics for solving the SSV-MG
problem as well as alternative algorithms for special cases of the problem. The
first heuristic, SSC-W, uses the weights of the SV clusters to calculate the cost-
effectiveness of each cluster, while the second heuristic, SSC-W-CR, deploys the
concept of conflict resolution (introduced in [3]) to obtain more accurate results.
SSC-W is a greedy method similar to the weighted set cover algorithm with
one major difference. Here the weight of each subset is not fixed throughout the
algorithm, but rather is dependent to the elements which are assigned to the
subsets.

Results. We compared our proposed SSV-MG framework against an ISV&M
framework (i.e. VariationHunter [2,3]) using two different data sets. The first
dataset is a Yoruba family which constitute a father-mother-child trio (NA18507,
NA18508 and NA18506), while the second dataset is a CEU trio (NA12878,
NA12891 and NA12892) which was sequenced in the 1000 genomes project [1].
The total number of Alu insertion predictions which match a loci reported in
dbRIP was consistently higher for SSC and SSC-W in comparison to ISV&M.
This suggests that using the SSV-MG approach will improve the true positive
rate for Alu insertion predictions. Note that an ISV&M analysis [3] reported
that among the top 3000 predicted loci, 410 were predicted as de novo (that is,
unique to the child). This number clearly is extremely high and far from being
true. However, using the SSC algorithm, this number was reduced to only 20
de novo events, while the number was reduced to zero when we used SSC-W.
We also predicted deletion events in both the YRI and CEU trios using the
ISV&M and SSV-MG approaches. For a positive control, we used the fosmid
deletion calls reported for NA18507 by Kidd et al. and deletions reported for
YRI population by Conrad et al. For the CEU trio, we used the set of validated
deletions reported by 1000 genome project for the same trio [1]. The SSV-MG
algorithms detected more known positive predictions than the ISV&M approach
for both datasets. SSC-W-CR found the best set of results.
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Abstract. Many applications of computational biology require a vari-
able selection procedure to sift through a large number of input variables
and select some smaller number that influence a target variable of inter-
est. For example, in virology, only some small number of viral protein
fragments influence the nature of the immune response during viral infec-
tion. Due to the large number of variables to be considered, a brute-force
search for the subset of variables is in general intractable. To approxi-
mate this, methods based on �1-regularized linear regression have been
proposed and have been found to be particularly successful. It is well un-
derstood however that such methods fail to choose the correct subset of
variables if these are highly correlated with other ”decoy” variables. We
present a method for sifting through sets of highly correlated variables
which leads to higher accuracy in selecting the correct variables. The
main innovation is a filtering step that reduces correlations among vari-
ables to be selected, making the �1-regularization effective for datasets on
which many methods for variable selection fail. The filtering step changes
both the values of the predictor variables and output values by projec-
tions onto components obtained through a computationally-inexpensive
principal components analysis. In this paper we demonstrate the useful-
ness of our method on synthetic datasets and on novel applications in
virology. These include HIV viral load analysis based on patients’ HIV
sequences and immune types, as well as the analysis of seasonal variation
in influenza death rates based on the regions of the influenza genome that
undergo diversifying selection in the previous season.

1 Introduction

With the advent of high-throughput technologies for profiling biological systems,
scientists are faced with the problem of sifting through large volumes of data to
identify some subset of variables that explain some target variable y. Because of
the asymmetries in acquisition costs, such datasets typically consist of a modest
number n of p−dimensional observations, with n � p. Each observation typically
consists of a scalar target y and a vector of input variables x ∈ Rp, among which
it is expected that some subset of variables is useful for predicting the target. The
task faced by the scientist is one of identifying the q � p relevant variables given
n observations, with little a priori knowledge that would allow us to differentiate
among the p variables.
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In such situations, the statistics literature often prescribes the use of well-

studied linear models of the form y =
p∑

j=1

xjβj + ε for describing the relation

between input variables and the target, where the amplitudes and signs of these
non-zero βj ’s then determine the influence that each variable has on the out-
put. Under such models, the problem of variable selection consists of estimating
weights βj under the additional assumption that the weights are sparse, or that
only a few of the weights are non-zero. The variable selection problem can be
posed as the problem of solving, given n observations indexed by i, the opti-
mization problem of the form

min
β

n∑
i=1

(
yi −

p∑
j=1

xi
jβj

)2 s.t
p∑

j=1

[
|βj | �= 0

]
= q, (1)

where q is the desired number of variables to be included in the model. In
contrast to the problem of regression, where the emphasis is on estimating the
sign and magnitude of the effect of each variable on the output, the problem of
variable selection can here be seen as the recovery of the support of the vector
of weights β, or the set of indices j for which βj �= 0. It is well understood that
the above problem is generally intractable for even moderate values of p, as it
requires a combinatorial search through all possible subsets of input variables.
An alternative to solving the above problem is to instead constrain the sum of
absolute values βj so that we obtain a convex optimization problem for which
there are efficient solvers [4]. Among the most effective approaches that use this
strategy is the Lasso [20], which formulates the problem of estimating the weights
as

min
β

n∑
i=1

(
yi −

p∑
j=1

xi
jβj

)2 + λ

p∑
j=1

|βj |, (2)

where λ > 0 is a regularization parameter that controls the sparsity of the re-
sulting solution β̂. Solutions to the above problem have been widely studied in
recent years under various assumptions: in particular, the behavior of solutions
has been studied in terms of asymptotic signed support recovery error [17,21].
It has been shown that recovering the correct support requires that there be few
correlations among variables [22]. Unfortunately, the presence of such correla-
tions is the norm rather than an exception for biological data. These variables
typically represent different aspects of the biological processes of interest and are
often well-modeled as being generated from a smaller set of shared latent vari-
ables. For instance, gene expression levels are typically correlated, as they are a
function of the unobserved states of cellular pathways. Similarly, immune assays
are correlated, as they are driven by a single set of pathogens in the patient and
by the unique properties of the patient’s immune system. For such problems,
latent variables act that influence input variables must be accounted for in order
to select the correct subset of predictive variables.
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2 The Problems Caused by Correlations

In terms of the effect of shared latent variables support recovery, there are two
regimes to be considered:

A) The target variable y is generated from latent variables z and the variables
in x correlate with the targets as proxies for these latent variables (Fig. 1(a)).

B) The target variable y is generated from a small number of input variables
in x, but other input variables may also correlate weakly with y, as they are
influenced by the shared latent variables z (Fig. 1(b)). This can lead the estima-
tion algorithms astray, especially when the true solution contains a large number
of input variables.

Some examples of A) include survival analysis and genome-wide association
studies, where both the output and the input variables to be selected (e.g.: such
as genetic markers or gene expression profiles) may be influenced by confounding
variables (e.g.: gender or ethnicity). In such situations, the sparsity assumption
is inappropriate, as it is sufficient to obtain accurate estimates of the confounders
in order to minimize the prediction error. For example, consider the case where
several variables among x are simply multiple noisy versions of a single latent
variable z which, were it directly observable, would be most predictive of the
target variable y. Although any subset of x containing a single noisy version of
z would be predictive, the best estimate of z will make use of the average of
all of z’s proxy variables, and so a non-sparse solution is the one that correctly
minimizes prediction error.

In situations of type B), the assumption of sparsity in Equations (1) and (2)
is more appropriate, but the use of the �1-norm can lead to errors in variable
selection. To illustrate this, let us again assume that several variables in x are

x1 x2 x3

z

y

(a)

x1 x2 x3

z

y

(b)

Fig. 1. Directed graphical models demonstrating two examples of situations A and
B in which a single latent variable z influences the input variables x. a) The target
variable y is generated from latent variable z and the variables x1, x2, x3 correlate with
y as proxies for z; b) y is generated from x2 alone, but other observed variables x1, x3

may also correlate weakly with y, as they share the influence of z with x2
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perturbed versions of a single latent variable z, but this time y is determined as
a noisy version of one of the variables in x. In this case, other variables in both
x and z may be merely proxies of the true correlate and so cannot further help
in predicting y. Instead, the problem of finding the single true correlate among
x is made more difficult by these correlations, as other observed variables serve
as decoys. The problem is especially difficult if one of these decoy variables
has a large sample variance, as under the �1-norm penalty in Equation (2), it
is possible to use a lower weight to capture its effect on y than is needed for
capturing the effect of the true correlate. Thus the optimization criterion may
in fact be lower for incorrect choices of the support, even though this problem
would not plague the original �0-regularized problem of Equation (1), where the
magnitude of the weight of the selected variable only matters in affecting the
prediction error. Simple normalization of the data is not a sufficient remedy,
especially when multiple variables are involved (q > 1), as normalized versions
of correlated variables remain correlated.

For many datasets in virology and immunology, it is often the case that we
encounter situation B), where we are interested in discovering correlated causes
that directly explain an output variable. Consider, for example, the task of an-
alyzing the immune responses of different patients to different viral peptides
associated with a particular viral infection, which has important applications
in vaccine design. Detecting which of these immune responses are effective in
controlling viral infection requires that we account for the dependence between
the immune response and the patients’ latent immune types. Without account-
ing for these dependencies, the variable selection process may fail to detect the
correct subset of responses that together control the infection, selecting instead
proxy variables whose measurements are correlated with those of the relevant
ones. In the next section we describe this problem in more detail using datasets
from virology and immunology.

3 Datasets

3.1 Sifting through HIV Epitopes to Explain Viral Load

The Human Immunodeficiency Virus (HIV) is strongly affected by the cytotoxic
lymphocyte (CTL) immune responses of the host. The virus tends to mutate at
sites exposed to CTL surveillance through the cellular presentation of relevant
HIV peptides by human leukocyte antigen (HLA) molecules. The presentation
and subsequent immune recognition of particular peptides has been reported to
associate with a drop in the concentration of viral particles in the patient’s blood
(viral load), while the recognition of other peptides seems to be less effective.
The relationship between the immune response and viral replication patterns
is of vital interest in immunology, but understanding it is complicated by the
correlations among the immune responses, the involvement of multiple peptides
in an effective immune response and the existence of many latent causes. Among
the latent causes are the HLA molecules themselves, each with its own particular
binding preferences, and each responsible for a number of different peptides to be
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presented for potential CTL recognition. Evasive mutations have different fitness
costs to the virus, and these costs again may depend not on a single mutation,
but on multiple correlated mutations. A number of other latent variables are
also expected to exist, such as prior infections and other immune mechanisms
that can affect either viral mutation or recognition in different sites.

To analyze the relationships between viral peptides that are recognized by the
immune response (epitopes) and the corresponding viral load, several datasets
can be used. A patient’s own HLA molecules and invading HIV sequences can be
sequenced, and then the known HLA binding preferences can be used to estimate
the evolutionary pressure at different points in the HIV proteome. Here we use
a Western Australia cohort of HIV-positive patients [6,15], where the targets
y1, · · · , yn consist of the log of viral load measurements in n = 140 HIV-positive
patients, and the variables x are derived from each patient’s HIV sequence and
the HLA types. In particular, each variable corresponds to one of the p = 492
9-mer peptides from the HIV Gag protein, which plays an important role in
immune surveillance. For each of these peptides, the patient-specific binding
score is then estimated as the minimum over binding energies of the bound
configurations of that peptide and each of the patient’s six HLA variants [6]. This
produces p binding score variables x for each of the n patients with observed
HIV Gag sequences. The resulting set of 140×492 binding measurements xi

j can
be collected into a binding matrix X whose columns correspond to the immune
responses for different peptides, from which we would like to select a subset that
predicts the log-viral load for each patient.

3.2 The Analysis of the Seasonal Variation in Influenza Genomic
Sites and Their Relationship with the Pneumonia and Influenza
Index for the Subsequent Season

The adaptations of viruses are generally localized to a small number of sites in
their genome, with correlations between viral mutations and immune responses.
We assembled a dataset that relates the seasonal variation in influenza genomic
sites and the pneumonia and influenza index (P&I), a measure of seasonal mor-
tality rates. It has been previously established that only a handful of sites can
be used to characterize different strains [1]. However, in each season, a certain
set of sites can be found where the variation across sequenced strains will be
atypically high in the presence of correlations between increases and decreases
in seasonal variation across sites. Under the hypothesis that such evidence of
diversifying selection indicates the likelihood of certain cluster transitions [13]
in the subsequent season, we investigate whether seasonal variation in entropy of
different sites may be predictive of P&I, whereby selected sites may also further
inform both influenza research and public health policy.

We focused on p = 2232 sites in the influenza virus polymerase, which contains
the acidic (PA) and basic 1, 2 (PB1, PB2) protein subunits, as the polymerase is
known to regulate the replication and transcription of the influenza viral RNA in
infected cells [18]. We obtained protein sequences collected during the flu seasons
of 1968-1997 in the US for the PA,PB1,PB2 proteins [2]. For each of these flu
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Fig. 2. An example of variable selection in the presence of highly-correlated input
variables. a), b) Correlation matrices for X before and after removing five principal
components of X; c) The distribution over the highest 20 eigenvalues of XT X; d) The
correlation between columns of X and viral load y, with epitopes found by variable
selection under �0 and �1-norm constraints indicated. The epitope LASLRSLFG at j =
486 corresponds to the epitope whose binding scores are maximally correlated with viral
load. Once the first principal component of X is removed, the epitope QEPIDKELY is
selected by variable selection using both �0 and �1-norm constraints.

seasons, we obtained the total percentage of deaths among patients aged 65 or
older that could be attributed to flu and pneumonia (the P&I index) in the next
flu season [9]. For each of the polymerase protein subunits and for each of the
30 flu seasons, we then computed the entropy of the frequency of amino acid
occurrence at each site for each protein subunit. We excluded the seasons of
1973 and 1984 due to an insufficient number of sequences collected during these
years. The resulting set of 27 × 2232 site-specific entropies for the influenza
polymerase subunits then form the entropy matrix X whose columns correspond
to sites from which we would like to identify some subset that predict influenza
mortality. As in the previous HIV example, this problem is made difficult by the
presence of many pairwise correlations between the entropies at different sites
in the polymerase subunits.
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4 Correlation Sifting

The binding and entropy matrices X for the HIV and influenza datasets, like
many other scientific datasets, exhibit many pairwise correlations among vari-
ables. This can be seen from the matrix XT X (Figure 2(a)), which exhibits a
sharply decaying spectrum of eigenvalues, so that the input variables in X are
well approximated using a small number of latent factors (Figure 2(c)). Con-
sider a principal components analysis (PCA) given by XTX = VDVT , where
the eigenvalues of the matrix XT X correspond to elements along the diagonal
of p × p matrix D, and V is a p × p matrix whose columns are corresponding
eigenvectors, or principal components of X. We denote by Vk the k < p columns
of V corresponding to the k largest eigenvalues of XT X. Similarly, define Vk̄ as
the remaining n − k columns of V. We define the pair of matrices

Z = XVk, R = X− ZVT
k . (3)

Now, we can rewrite the problems of either (1) or (2) in matrix-vector form as

min
β

∥∥∥y − ZVT
k β − Rβ

∥∥∥2

2
+ λ‖β‖1, (4)

where y = [y1 · · · yn]T and β = [β1 · · · βp]T . We then relax the above problem
by introducing θ as a proxy for VT

k β, but allowing it to change independently
of β:

min
β,θ

∥∥∥y − Zθ − Rβ
∥∥∥2

2
+ λ‖β‖1 (5)

The above minimization over β and θ is decoupled and can be performed inde-
pendently. Because R and Z are orthogonal, the optimal solution (β̂, θ̂) satisfies

θ̂ =
(
ZT Z

)−1

ZTy, (6)

and so θ̂ is the solution to a least-squares problem with outputs y and matrix
of inputs Z. As the above equation does not depend on β̂, this allows us to solve
for θ̂ first and then solve for β̂ as a function of θ̂.

The correlation sifting method is summarized in Table 1. We see here that
for k = 0, our method reduces to the regular Lasso, and for β̂ = 0 (or λ → ∞),
our method consists of principal components regression [7] in which we perform
ordinary least-squares regression on the principal components of X. For any fixed
λ and k, the method consists of a single PCA step followed by solving a modified
Lasso problem, the latter which presents a unique global optimum and can be
solved efficiently [4]. The effect of regressing on k leading principal components is
that the matrix RTR computed from the remaining components now has a lower
maximum eigenvalue relative to the noise variance σ2 (see Figures 2(a) and 2(b)
for an example). If we set k to be too high, we may remove signal power necessary
for correct support recovery and so we may increase the corresponding error rate.
However, we have also shown that by setting k to be low, we must contend with
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Table 1. The correlation sifting algorithm. The algorithm consists of computing the
principal components of X, performing a least-squares estimate and then solving a
modified Lasso problem.

– For X ∈ R
n×p, compute the principal components V, where XT X = VDVT .

– Let Vk denote the k < p columns of V corresponding to the k largest eigen-
values of XT X.

– Compute Z = XVk,R = X − ZVT
k

– Compute θ̂ =
(
ZT Z

)−1

ZT y and let ỹ = y − Zθ̂.

– Compute the optimum β̂ to the modified Lasso problem

min
β

∥∥∥ỹ − Rβ
∥∥∥2

2
+ λ‖β‖1. (7)

correlations among variables to be selected. In practice, we recommend that
the value of k should be selected based on cross-validation prediction error, the
usefulness of which we will demonstrate using synthetic experiments in the next
section.

4.1 The Effect of Removing Correlations

To illustrate how the above algorithm fixes the problem of variable correlations
for variable selection, we will use examples with both synthetic data and real HIV
data. For the sake of illustration, in both problems we will assume that there is
a single variable to be selected. In the first example, we have generated data for
p = 2 correlated variables x1, x2, shown in Figure 3 (left). The underlying model
was generated as y = 0.01x2 + ε, where ε is a normal random variable. Suppose
that we were to apply the Lasso to this synthetic dataset with the regularization
parameter λ set such that a single variable is to be included in the solution.
The choice of which variable is to be included will be determined solely on the
basis of which variable has greater correlation (up to a scaling factor)

∑n
i=1 xiyi

with the output variable. Because the variables x1, x2 are both highly correlated
and exhibit uneven variances, the variable with the largest sample variance is
the one that is selected, which in this example yields the erroneous selection of
variable x1 (Figure 3, left). Note that standardization of the variances of the
variables does not remove the problem of x1 being more correlated with y than
x2, despite the fact that x2 is the correct variable to be selected (Figure 3,
center). However, applying the correlation sifting method to yield transformed
variables r1, r2 and transformed output ỹ corrects this problem (Figure 3, right)
such that now r2 is more correlated with ỹ than r1 and so r2 is selected. The
effect of the correlation sifting method is to project the input variables onto the
remaining PCA components such that the influence of proxy variables on the
output via the principal components of X that have large eigenvalues is reduced.

The effect of removing correlations can also be seen in our second example,
which consists of HIV-gag binding scores and HIV viral load measurements in
140 patients. Here we suppose as above that only one of the peptides influences
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patient viral load under a linear model y = Xβ∗+ε where εi is a zero-mean noise
variable. Let this peptide be indexed by j and let the corresponding element of β∗

be β∗
j . If we were to perform variable selection under an �0-norm constraint, we

would solve the problem in Equation (1) by minimizing the prediction error with
q = 1, or (j, β̂j) = argmin

l,βl

‖y − xlβl‖2. Figure 2(d) shows the selected variable

j = 476 (the peptide the peptide QEPIDKELY ) from the above procedure for
the 140 × 492 binding matrix X. However, performing variable selection using
the Lasso (Equation (2)) with the �1-norm penalty λ set sufficiently high to
select a single variable yields j′ = 486, or the peptide LASLRSLFG, a solution
that differs from the �0-norm constrained solution. Figure 2(d) provides some
insight by showing the sample correlation between the two variables j = 476, j′ =
486 and the output. Here, the variable corresponding to the binding score for
peptide LASLRSLFG has significantly higher correlation with the output than
peptide QEPIDKELY and so the former is selected by the Lasso, despite the
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Fig. 3. The effect of removing correlations before variable selection. Suppose that we
were to apply the Lasso with the regularization parameter λ set such that a single
variable is to be included in the solution. The choice of which variable is to be included
will be determined solely on the basis of which variable has greater correlation (up to a
scaling factor)

∑n
i=1 xiyi with the output variable. Because the variables x1, x2 are both

highly correlated and exhibit uneven variances, the variable with the largest sample
variance is the one that is selected, which in this example yields the erroneous selection
of variable x1 (left). Note that standardization of the variances of the variables does
not remove the problem of x1 being more correlated with y than x2, despite the fact
that x2 is the correct variable to be selected (center). However, applying the correlation
sifting method to yield transformed variables r1, r2 and transformed output ỹ corrects
this problem (right).
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fact that the latter is the one that ought to be selected according to the �0-
norm constraint. As in the previous example, this is due to the both the larger
variance of the binding score for peptide LASLRSLFG as compared to that
of QEPIDKELY and the fact that both sets of binding scores are correlated.
Furthermore, standardizing variables to have the same variance may remove the
first problem of uneven variances, but not the second one of correlations among
variables to be selected.

Having provided illustrations of the correlation sifting method, we will begin
to illustrate its uses using synthetic datasets, where the set of variables that
generate the output is known and so we can measure the error rate of correlation
sifting in recovering the correct set of variables as compared to other methods
for variable selection.

5 Results

5.1 Empirical Analysis of the Algorithm Using Synthetic Data

We generated synthetic data sets with n = 100, p = 500 in which many corre-
lated and irrelevant variables were introduced in tandem with a small number
of relevant variables to be selected. For any given dataset, we created a random
sparse vector β∗ with sparsity index ρ (fraction of elements of β∗ that are non-
zero) set to ρ = 0.02, 0.05, 0.1. We then generated an n×p matrix Z such that the
jth column of Z consists of n samples drawn from a Gaussian distribution with
variance 5

1.2j , j = 1, · · · , 20 or 0.3 for 20 < j ≤ p. We then generated a p × p
random non-orthogonal set of basis vectors V with elements drawn indepen-
dently and identically from N (0, 1). The product ZVT was then standardized
to create matrix X so that

∑
i xi

j = 0 and
∑

i(x
i
j)

2 = 1. We then generated
y = Xβ∗ + ε where εi was drawn from N (0, σ2) where the noise variance σ2 is
related to the signal variance by the signal-to-noise ratio SNR = var(Xβ∗)/σ2.
Finally, we generated 100 synthetic datasets in the above fashion where each
dataset consists of a particular set of X,y, β∗, ε for a particular joint setting of
ρ, SNR.

For each of the 100 datasets, we applied correlation sifting, where we used
the Least Angle Regression (LARS) algorithm of [4] to solve the modified Lasso
problem of Table 1. Once a vector β̂ with a given sparsity index has been es-
timated for a given dataset by solving the correlation sifting problem, we then
computed the support recovery error, defined as number of entries in β̂ which
disagree in sign with β∗. Figure 4 shows the error rate over the 100 datasets as
a function of the sparsity index of the solution β̂, where the sparsity index is de-
fined as the fraction of elements of the solution that are non-zero. Note that each
curve is expected to be approximately U-shaped, given that excessively sparse
or dense solutions will yield a higher error. However, methods with higher accu-
racy should yield a lower support recovery error across sparsity index values. We
show error rates obtained for ρ = 0.02, 0.05, 0.1 and for SNR = 2, 4, 8 using the
correlation sifting method with k = 1, 2, 5, 10. The corresponding error rates ob-
tained by regular Lasso are shown for comparison, in addition to the error rates
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Fig. 4. Average error rates from 100 synthetically-generated data sets are shown as a
function of the sparsity index of the estimated vector β̂ obtained from the correlation
sifting method for different values of sparsity and signal-to-noise ratios (SNRs), where
an error is defined as the event β̂j �=s β∗

j for j = 1, · · · , p. Error rates are shown for the
correlation sifting with k = 1 (blue), k = 2 (green), k = 5 (red), k = 10 (cyan). The
dotted curves correspond to error rates obtained from regular Lasso (black dotted),
the adaptive Lasso method of [24] (green dotted), the elastic net method of [23] (red
dotted) and the method of [17] (blue dotted).

for the elastic net [23], adaptive Lasso [24] and method of [17] that are commonly
used for variable selection. These methods consist of modified Lasso problems
with a second regularization constant in addition to the �1-norm penalty of the
regular Lasso. For the elastic net, the additional regularization constant penal-
izes the �2-norm of the solution in addition to its �1-norm. In the case of the
adaptive Lasso method, the second regularization constant allows us to re-scale
the �1-norm penalty for each weight individually as a function of the variance for
each input variable. For the method of [17], the second regularization constant is
similar to the parameter k in correlation sifting in that it consists of a threshold
correlation value between inputs and output that is used to select variables with
which to compute an SVD of X.
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In order to evaluate the accuracy of these methods in support recovery, we
systematically explored a range of parameter values for each method. Figure
4 shows the recovery error as a function of the sparsity index of the solutions
obtained from each method. In particular, for the Lasso and the methods of
[17,23,24], we show the error curves corresponding to parameter values that
achieved the lowest average error across sparsity index values. As can be seen,
the result of correctly accounting for the correlations among variables under the
correct model y = Xβ∗ + ε is that the error rates are correspondingly lower
than those obtained from solving the regular Lasso or the methods of [17,23,24].
We see that the difference in support recovery error between the correlation
sifting method and other methods for variable selection increases as we increase
either the amount of noise added to the outputs or the number of variables in
the support. Thus, the comparative advantage between the correlation sifting
method and other methods for variable selection is expected to be smaller in
high SNR & sparsity index regimes and becomes more significant as the amount
of noise or the size of the support is increased.

Figure 4 shows that our method achieves lower error than the other methods
for a variety of the choices of k, indicating that it should also do so even if
a single value for k is chosen using some standard model selection technique
such as cross-validation. Furthermore, the U-shape of the curves also indicates
that in terms of solution sparsity, controlled by λ, unambiguous error minima
are achieved for similar values of the λ for different choices of k. This behavior
suggests that this minimum would also be robust to slight variations in the
dataset size, and so cross-validation for both λ and k (the only two parameters
of the model) should also result in selecting the settings where our method
achieves lower support recovery error relative to other methods. To show this,
we repeated the above experiments in a leave-one-out cross-validation setting
in which we select both the values for λ and k that minimize the total mean-
squared error (MSE) on held-out data for each of the 100 synthetic datasets for
each of the 9 joint settings of SNR and sparsity index ρ. We then computed
the support recovery error obtained from the complete synthetic dataset for the
selected value of λ and k. We also performed the same cross-validation procedure
for the parameters of the regular Lasso and the methods of [17,23,24] and we
computed support recovery error obtained from the complete synthetic dataset
for the selected value of λ and k. We found that for the above 100 synthetic
datasets with the 9 joint settings of SNR and sparsity indices, the correlation
sifting method achieved a significantly lower support recovery error as compared
to achieved by the Lasso and methods of [17,23,24] for 8/9 joint settings of SNR
and sparsity index (p < 0.05/9, Bonferroni-corrected, one-sided t-test).

5.2 Identifying HIV-Gag Epitopes That Are Predictive of Viral
Load

We then applied correlation sifting to the HIV data from Section 3.1. In contrast
to the synthetic datasets from the previous section, here we are not provided with
a known list of relevant variables and corresponding weights β∗. Instead we need
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to evaluate how likely it is that our method will point to HIV-Gag sites that are
most likely to influence patients’ viral load in clinical studies. To accomplish this,
we will analyze the power of our method in two ways. First, as in the synthetic
experiments, we generate β∗ of varying sparsity index values and from it, the
simulated vector y of log viral loads obtained by multiplying the set of HIV-Gag
binding scores X with the simulated β∗. The second test of our method will
employ cross-validation on the HIV-Gag binding matrix X and log viral loads
whereby we evaluate the ability of different methods to predict viral load for
new HIV patients. Here, it is assumed that correct support recovery will lead to
models that generalize better on test outputs, so that lower prediction error on
test data should indicate a low support recovery error.
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Fig. 5. Average error rates from 100 synthetically-generated HIV viral load data sets
are shown as a function of the sparsity index of the estimated vector β̂ obtained from
the correlation sifting method for different values of sparsity and signal-to-noise ratios
(SNRs). Error rates are shown for the correlation sifting with k = 1 (blue), k = 2
(green), k = 5 (red), k = 10 (cyan). The dotted curves correspond to error rates
obtained from regular Lasso (black dotted), the adaptive Lasso method of [24] (green
dotted), the elastic net method of [23] (red dotted) and the method of [17] (blue dotted).
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Fig. 6. a) Mean squared error (MSE) of predicting measured log viral load in HIV-
positive patients using the binding scores of [6] as a function of the sparsity index of the
estimated solution; b) MSE of predicting the pneumonia & influenza (P&I) index for
the years 1969-1972, 1974-1983 and 1985-1997 using the entropy of amino acid variation
per site in the PA protein. MSEs were computed using leave-one-out cross-validation
for the regular Lasso (black dashed), the best method amongst those of [17,23,24] based
on test error (blue dotted), and the method of this paper with k = 1 (blue), k = 2
(green), k = 5 (red), k = 10 (cyan).

To perform the first set of experiments for the 140 × 492 HIV-Gag binding
matrix X, we applied the correlation sifting method as described above for this
series of datasets in tandem with the methods from the previous section. We
used the same noise variances and sparsity index values as in the synthetic ex-
periments. The resulting error rates are shown in Figure 5. As in the previous
example with synthetic data, the presence of many correlated and irrelevant vari-
ables can be mitigated by correlation versus the alternative methods such as the
regular Lasso, adaptive Lasso and elastic net methods.We see that concomitant
with our results on synthetic data, the correlation sifting method outperforms
the regular Lasso and the methods of [17,23,24] in terms of its support recov-
ery error. Note that in contrast to the previous synthetic experiments where
matrices X were generated from Gaussian distributions, here the variables had
highly non-Gaussian distributions. The results on the synthetic HIV data then
suggest that the correlation sifting method is not too sensitive to distributional
assumptions about the input variables.

We then applied correlation sifting to the set of experimental log-viral load
measurements y for the 140 patients with the matrix X of binding scores for
each peptide in the HIV-Gag protein. Using leave-one-out cross-validation, we
assessed the MSE on test data. Here we compared our method to the regular
Lasso and the best method among those of [17,23,24] based on test error. The
resulting MSE for test data is shown in Figure 6(a) as a function of the sparsity
index of the estimated vectors β̂. As can be seen, the estimated vector β̂ ob-
tained using our method leads to better predictions of log-viral load in unseen
HIV-positive patients relative to the models learned by the regular Lasso and the
methods of [17,23,24]. For the joint setting of k and λ that minimizes test error,
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the correlation sifting method selects 20 epitopes. From the Epitope Location
Finder (ELF) database (http://www.hiv.lanl.gov/content/sequence/ELF/), we
find that five of these 20 epitopes (ISPRTLNAW, LDRWEKIRL, AADTGNSSQ,
EVKDTKEAL, DLNTMLNTV) have been associated with viral load and dis-
ease progression in HIV patients [3,5,8,10,12,14]. In contrast, upon examination
of the epitopes discovered by the method of [17] (which achieved the best test
error among the methods we compared against), we find that of the 20 epi-
topes discovered by this method, none were associated with viral load or disease
progression in HIV patients.

5.3 Discovering the Effect of Diversifying Selection on Seasonal
Influenza Epidemics

We can also use correlation sifting in order to select variables that are predictive
of next year’s influenza mortality from the dataset of Section 3.2, which consists
of site-specific entropy scores for the current year’s influenza strains. Using leave-
one-out cross-validation, we assessed the MSE for test data using our method for
variable selection for different values of k. For comparison, we show the test errors
obtained from using the regular Lasso and the methods of [17,23,24] that achieved
the minimum error on test sets. The resulting MSE for test data are shown in
Figure 6(b) as a function of the sparsity index of the estimated vectors β̂. As the
correlation sifting method consists of solving a modified Lasso problem, the max-
imum sparsity index corresponds to the maximum n − 1 = 26 possible non-zero
elements in the solution β̂. As in the previous example on HIV, by removing the
effect of correlations amongst variables, the estimated vector β̂ obtained using our
method leads to lower test error relative to the models learned by the regular Lasso
and the methods of [17,23,24]. As additional validation, we performed full cross-
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Fig. 7. a) Predicted versus observed P&I based on full leave-one-out cross-validation
(Pearson’s correlation r = 0.5117, p = 0.0064); b) The 3-D structure for the C-terminal
region of the influenza A virus polymerase PB2 subunit. Sites in the region that were
identified by our method are displayed.
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Fig. 8. Sites in the influenza PB1,PB2 and PA protein subunits identified by the cor-
relation sifting method

validation where for each training set, we performed model selection by further
splitting the training set into training and validation data and we made test
predictions using the model selected based on minimum validation error. A plot
of the resulting predicted versus observed P&I indices is shown in Figure 7(a):
here we see that the sparse linear model provides a reasonable approximation to
the relationship between the current year’s sequence variation and next year’s
mortality rate (Pearson’s correlation r = 0.5117, p = 0.0064). Interestingly, last
year’s P&I index, total protein entropy for each year and the number of se-
quences collected in a given year were not found to be significantly predictive of
this year’s P&I (data not shown). Furthermore, knowledge of the previous year’s
dominant influenza strain (either H1N1 or H3N2) was not found to be predictive
of the next year’s P&I. Figures 7(b) and 8 show the sites in the PB2, PB1 and
PA subunits that led to the minimum test error in cross-validation. We find that
many of these have previous experimental support: for example, sites 191 and
714 in the PB2 subunit have been implicated in PB2 binding to the importin α5
antibody and in the significant increase in polymerase activity [19]. Site 12 in
PB1 has been shown to be part of the core interface between PB1 and the PA
subunit [16]. Finally, sites 553 and 569 in PB2 are thought to lie in the binding
domain of PB2 (Figure 7(b)).

6 Discussion

We have developed a novel, computationally efficient method for variable selec-
tion consisting of a single PCA on the matrix of variables, an ordinary least-
squares estimation, and finally solving a modified version of the Lasso problem.
The most similar previous approach to mitigating the effect of variable correla-
tions is that of [17], which used supervised principal components to filter y, but
did not remove correlations among variables X. Other related methods include
that of [11] and PCA regression [7]. The method of [11] uses an SVD to ac-
count for the presence of correlations between input variables before performing
regression. However, this method differs significantly from ours, as the method
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of [11] is not designed for variable selection and is instead aimed at improving
predictive accuracy. PCA regression, on the other hand, is a special case of the
correlation sifting method with λ → ∞ such that there is no variable selection
problem being solved.

We have shown through extensive experiments on synthetic data that cor-
relation sifting decreases the average support recovery error in comparison to
this method, as well as other methods for variable selection [23,24] based on �1

regularization. We compared our method to the above methods on real-world
HIV and influenza datasets in which many correlated and irrelevant variables
exist. Through leave-one-out cross-validation and based on literature surveys of
the biology of the HIV and influenza viruses, we found that the variables selected
using our method were significantly predictive of the target variablewhereas meth-
ods such as those of [17,20,23,24] were more susceptible to support recovery error
due to the presence of variable correlations. We emphasize that the correlation
sifting method is especially useful for situations where the output variable is best
modeled as a function of observed variables that share common latent causes.
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Abstract. Genomic distance between two genomes, i.e., the smallest
number of genome rearrangements required to transform one genome
into the other, is often used as a measure of evolutionary closeness of the
genomes in comparative genomics studies. However, in models that in-
clude rearrangements of significantly different “power” such as reversals
(that are “weak” and most frequent rearrangements) and transpositions
(that are more “powerful” but rare), the genomic distance typically cor-
responds to a transformation with a large proportion of transpositions,
which is not biologically adequate.

Weighted genomic distance is a traditional approach to bounding the
proportion of transpositions by assigning them a relative weight α > 1. A
number of previous studies addressed the problem of computing weighted
genomic distance with α ≤ 2.

Employing the model of multi-break rearrangements on circular
genomes, that captures both reversals (modelled as 2-breaks) and trans-
positions (modelled as 3-breaks), we prove that for α ∈ (1, 2], a minimum-
weight transformation may entirely consist of transpositions, implying
that the corresponding weighted genomic distance does not actually
achieve its purpose of bounding the proportion of transpositions. We
further prove that for α ∈ (1, 2), the minimum-weight transformations
do not depend on a particular choice of α from this interval. We give
a complete characterization of such transformations and show that they
coincide with the transformations that at the same time have the shortest
length and make the smallest number of breakages in the genomes.

Our results also provide a theoretical foundation for the empirical
observation that for α < 2, transpositions are favored over reversals in
the minimum-weight transformations.

1 Introduction

Genome rearrangements are evolutionary events that change genomic architec-
tures. Most frequent rearrangements are reversals (also called inversions) that
“flip” continuous segments within single chromosomes. Other common types of
rearrangements are translocations that “exchange” segments from different chro-
mosomes and fission/fusion that respectively “cut”/“glue” chromosomes.

V. Bafna and S.C. Sahinalp (Eds.): RECOMB 2011, LNBI 6577, pp. 124–133, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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Since large-scale rearrangements happen rarely and have dramatic effect on
the genomes, the number of rearrangements (genomic distance1) between two
genomes represents a good measure for their evolutionary remoteness and often
is used as such in phylogenomic studies. Depending on the model of rearrange-
ments, there exist different types of genomic distance [10].

Particularly famous examples are the reversal distance between unichromoso-
mal genomes [12] and the genomic distance between multichromosomal genomes
under all aforementioned types of rearrangements [11]. Despite that both these
distances can be computed in polynomial time, their analysis is somewhat com-
plicated, thus limiting their applicability in complex setups. The situation be-
comes even worse when the chosen model includes more “complex” rearrange-
ment operations such as transpositions that cut off a segment of a chromosome
and insert it into some other place in the genome. Computational complexity of
most distances involving transpositions, including the transposition distance, re-
mains unknown [13,4,8]. To overcome difficulties associated with the analysis of
genomic distances many researchers now use simpler models of multi-break [3],
DCJ [14], block-interchange [7] rearrangements as well as circular instead of
linear genomes, which give reasonable approximation to original genomic dis-
tances [1].

Another obstacle in genomic distance-based approaches arises from the fact
that transposition-like rearrangements are at the same time much rare and “pow-
erful” than reversal-like rearrangements. As a result, in models that include both
reversals and transpositions, the genomic distance typically corresponds to re-
arrangement scenarios with a large proportion of transpositions, which is not
biologically adequate. A traditional approach to bounding the proportion of
transpositions is weighted genomic distance defined as the minimum weight of
a transformation between two genomes, where transpositions are assigned a rel-
ative weight α > 1 [10]. A number of previous studies addressed the weighted
genomic distance for α ≤ 2. In particular, Bader and Ohlebusch [4] developed
a 1.5-approximation algorithm for α ∈ [1, 2]. For α = 2, Eriksen [9] proposed a
(1 + ε)-approximation algorithm (for any ε > 0).

Employing the model of multi-break rearrangements [3] on circular genomes,
that captures both reversals (modelled as 2-breaks) and transpositions (modelled
as 3-breaks), we prove that for α ∈ (1, 2], a minimum-weight transformation may
entirely consist of transpositions. Therefore, the corresponding weighted genomic
distance does not actually achieve its purpose of bounding the proportion of
transpositions. We further prove that for α ∈ (1, 2), the minimum-weight trans-
formations do not depend on a particular choice of α from this interval (thus are
the same, say, for α = 1.001 and α = 1.999), and give a complete characteriza-
tion of such transformations. In particular, we show that these transformations
coincide with those that at the same time have the shortest length and make
the smallest number of breakages in the genomes, first introduced by Alekseyev
and Pevzner [2].

1 We remark that the term genomic distance sometimes is used to refer to a particular
distance under reversals, translocations, fissions, and fusions.
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Fig. 1. a) Graph representation of a two-chromosomal genome P = (+a−b)(+c+e+d)
as two black-obverse cycles and a unichromosomal genome Q = (+a+b−e+c−d) as a
gray-obverse cycle. b) The superposition of the genomes P and Q. c) The breakpoint
graph G(P, Q) of the genomes P and Q (with removed obverse edges).

Our results also provide a theoretical foundation for the empirical observation
of Blanchette et al. [6] that for α < 2, transpositions are favored over reversals
in the minimum-weight transformations.

2 Multi-break Rearrangements and Breakpoint Graphs

We represent a circular chromosome on n genes x1, x2, . . . , xn as a cycle graph on
2n edges alternating between directed “obverse” edges, encoding genes and their
directionality, and undirected “black” edges, connecting adjacent genes (Fig. 1a).
A genome consisting of m chromosomes is then represented as m such cycles.
The edges of each color form a perfect matching.

A k-break rearrangement [3] is defined as replacement of a set of k black
edges in a genome with a different set of k black edges forming matching on the
same 2k vertices. In the current study we consider only 2-break (representing
reversals, translocations, fissions, fusions) and 3-break rearrangements (including
transpositions).

For two genomes P and Q on the same set of genes,2 represented as black-
obverse cycles and gray-obverse cycles respectively, their superposition is called
the breakpoint graph G(P, Q) [5]. Hence, G(P, Q) consists of edges of three colors
(Fig. 1b): directed “obverse” edges representing genes, undirected black edges
representing adjacencies in the genome P , and undirected gray edges represent-
ing adjacencies in the genome Q. We ignore the obverse edges in the breakpoint
graph and focus on the black and gray edges forming a collection of black-gray
alternating cycles (Fig. 1c).

2 From now on, we assume that given genomes are always one the same set of genes.
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Fig. 2. A transformation between the genomes P and Q (defined in Fig. 1) and the
corresponding transformation between the breakpoint graphs G(P, Q) and G(Q,Q)
with a 2-break followed by a complete 3-break

A sequence of rearrangements transforming genome P into genome Q is called
transformation. The length of a shortest transformation using k-breaks (k = 2
or 3) is called the k-break distance between genomes P and Q.

Any transformation of a genome P into a genome Q corresponds to a trans-
formation of the breakpoint graph G(P, Q) into the identity breakpoint graph
G(Q, Q) (Fig. 2). A close look at the increase in the number of black-gray cycles
along this transformation, allows one to obtain a formula for the distance be-
tween genomes P and Q. Namely, the 2-break distance is related to the number
c(P, Q) of black-gray cycles in G(P, Q), while the 3-break distance is related to
the number codd(P, Q) of odd black-gray cycles (i.e., black-gray cycles with an
odd number of black edges):

Theorem 1 ([14]). The 2-break distance between genomes P and Q is

d2(P, Q) = |P | − c(P, Q).

Theorem 2 ([3]). The 3-break distance between genomes P and Q is

d3(P, Q) =
|P | − codd(P, Q)

2
.

3 Breakages and Optimal Transformations

Alekseyev and Pevzner [2] studied the number of breakages3 in transformations.
The number of breakages made by a rearrangement is defined as the actual
number of edges changed by this rearrangement. A 2-break always makes 2
breakages, while a 3-break can make 2 or 3 breakages. A 3-break making 3
breakages is called complete 3-break. We treat non-complete 3-breaks as 2-breaks.

3 In [2], the term break is used. We use breakage to avoid confusion with k-break
rearrangements.
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Alekseyev and Pevzner [2] proved that between any two genomes, there always
exists a transformation that simultaneously has the shortest length and makes
the smallest number of breakages. We call such transformations optimal.

For a 3-break r, we let n3(r) = 1 if r makes 3 breakages (i.e., r is a complete
3-break) and n3(r) = 0 otherwise. For a transformation t, we further define

n2(t) =
∑
r∈t

(1 − n3(r)) and n3(t) =
∑
r∈t

n3(r)

that is, n2(t) and n3(t) are correspondingly the number of 2-breaks and complete
3-breaks in t. If 2-breaks and complete 3-breaks are assigned respectively the
weights 1 and α, then the weight of a transformation t is

Wα(t) = n2(t) + α · n3(t).

It is easy to see that a transformation t has the length n2(t) + n3(t) = W1(t)
and makes 2 · n2(t) + 3 · n3(t) = 2 · W3/2(t) breakages overall. Therefore, a
transformation is optimal if and only if it simultaneously minimizes W1(t) and
W3/2(t). We generalize this result in Section 4 by showing that 3/2 can be replaced
with any α ∈ (1, 2).

For a rearrangement r applied to a breakpoint graph, let Δrc
odd and Δrc

even

be the resulting increase in the number of respectively odd and even black-gray
cycles, respectively. Clearly, Δrc

odd + Δrc
even = Δrc gives the increase in the

total number of black-gray cycles.

Lemma 1. For any 3-break r,

– |Δrc| ≤ 1 + n3(r);
– Δrc

odd is even and |Δrc
odd| ≤ 2;

– |Δrc
even| ≤ 1 + n3(r).

Proof. A 3-break r operating on black edges in the breakpoint graph G(P, Q)
destroys at least one and at most three black-gray cycles. On the other hand, it
creates at least one and at most three new black-gray cycles. Therefore, |Δrc| ≤
3 − 1 = 2. Similarly, if n3(r) = 0, then |Δrc| ≤ 2 − 1 = 1.

By similar arguments, we also have |Δrc
odd| ≤ 3 and |Δrc

even| ≤ 3.
Since the total number of black edges in destroyed and created black-gray

cycles is the same, Δrc
odd must be even. Combining this with |Δrc

odd| ≤ 3, we
conclude that |Δrc

odd| ≤ 2.
If Δrc

even = 3, then the destroyed cycles must be odd, implying that Δrc
odd =

−2. However, it is not possible for a 3-break to destroy two cycles and cre-
ate three new cycles. Hence, Δrc

even �= 3. Similarly, Δrc
even �= −3, implying

that |Δrc
even| ≤ 2. If n3(r) = 0 (i.e., r is a 2-break), similar arguments imply

|Δrc
even| ≤ 1. �
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Fig. 3. A 3-break r with Δrc
odd = 2 and Δrc

even = −2, transforming two even black-
gray cycles into two odd black-gray cycles. Such 3-breaks may appear in shortest trans-
formations (Lemma 2) but not in optimal ones (Theorem 3).

Lemma 2. A transformation t between two genomes is shortest if and only if
Δrc

odd = 2 for every r ∈ t. Furthermore, if t is a shortest transformation between
two genomes, then for every r ∈ t,

– if n3(r) = 0, then Δrc
even = −1;

– if n3(r) = 1, then Δrc
even = 0 or −2.

Proof. A transformation t of a genome P into a genome Q increases the num-
ber of odd black-gray cycles from codd(P, Q) in G(P, Q) to codd(Q, Q) = |P | in
G(Q, Q) with the total increase of |P | − codd(P, Q) = 2 · d3(P, Q). By Lemma 1,
Δrc

odd ≤ 2 for every r ∈ t and thus

2 · d3(P, Q) =
∑
r∈t

Δrc
odd ≤

∑
r∈t

2 = 2 · |t|,

implying that |t| = d3(P, Q) (i.e., t is a shortest transformation) if and only if
Δrc

odd = 2 for every r ∈ t.
Now let t be a shortest transformation and thus Δrc

odd = 2 for every r ∈ t.
For a 2-break r to have Δrc

odd = 2, it must be applied to an even black-gray
cycle and split it into two odd black-gray cycles. Thus any such r also decreases
the number of even black-gray cycles by 1, i.e., Δrc

even = −1.
If a complete 3-break r has Δrc

odd = 2, then Δrc
even = Δrc − Δrc

odd ≤
2−2 = 0. By Lemma 1, we also have Δrc

even ≥ −2 and Δrc
even �= −1, implying

that Δrc
even = 0 or −2. �

By the definition, any optimal transformation is necessarily shortest. However,
not every shortest transformation is optimal. The following theorem character-
izes optimal transformations within the shortest transformations:

Theorem 3. A shortest transformation t between two genomes is optimal if and
only if for any r ∈ t, Δrc

even �= −2.

Proof. Let t be a shortest transformation between two genomes. By Lemma 2,
n3(t) = u + v where u is the number of complete 3-breaks with Δrc

even = 0 and
v is the number of complete 3-breaks with Δrc

even = −2 (Fig. 3).
Hence n2(t) 2-breaks and n3(t) = u + v complete 3-breaks transform G(P, Q)

into G(Q, Q) with |P | = |Q| trivial black-gray cycles, which all are odd. By
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Lemma 2, for the increase in the number of odd and even black-gray cycles in
the breakpoint graph, we have:{

codd(P, Q) + 2(n2(t) + u + v) = |P |,
ceven(P, Q) − n2(t) − 2v = 0,

implying that

W3/2(t) = n2(t) +
3
2
(u + v)

= ceven(P, Q) − 2v +
3
2

(
|P | − codd(P, Q)

2
− ceven(P, Q) + 2v

)
= ceven(P, Q) +

3
2

(
|P | − codd(P, Q)

2
− ceven(P, Q)

)
+ v,

which is minimal if and only if v = 0, i.e., Δrc
even �= −2 for any r ∈ t. �

Lemma 2 and Theorem 3 imply:

Corollary 1. A transformation t between two genomes is optimal if and only if
for any r ∈ t,

– if n3(r) = 0, then Δrc
odd = 2 and Δrc

even = −1;
– if n3(r) = 1, then Δrc

odd = 2 and Δrc
even = 0.

Theorem 4. A transformation t between genomes P and Q is optimal if and
only if {

n2(t) = ceven(P, Q),

n3(t) = |P |−codd(P,Q)
2 − ceven(P, Q).

(1)

Proof. Let t be an optimal transformation between genomes P and Q. Then
with n2(t) 2-breaks and n3(t) complete 3-breaks, it transforms G(P, Q) into
G(Q, Q) with |P | = |Q| trivial black-gray cycles, which are all odd. By Corol-
lary 1, we have {

codd(P, Q) + 2(n2(t) + n3(t)) = |P |,
ceven(P, Q) − n2(t) = 0,

implying formulae (1).
Vice versa, a transformation t between genomes P and Q, satisfying (1),

has the length n2(t) + n3(t) = |P |−codd(P,Q)
2 = d3(P, Q), implying that t is a

shortest transformation. By Lemma 2, Δrc
even = −1 for every 2-break r ∈ t and

Δrc
even = 0 or −2 for every complete 3-break r ∈ t. Let v be the number of

complete 3-breaks r ∈ t with Δrc
even = −2. Then the increase in the number of

even black-gray cycles along t is

−ceven(P, Q) = −n2(t) − 2v = −ceven(P, Q) − 2v,

implying that v = 0 and thus t is optimal by Theorem 3. �
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Theorem 4 implies that for some genomes, every optimal transformation con-
sists entirely of complete 3-breaks:

Corollary 2. For genomes P and Q with ceven(P, Q) = 0, every optimal trans-
formation t has n2(t) = 0 and thus consists entirely of complete 3-breaks.

Corollary 3. For an optimal transformation t between genomes P and Q,

Wα(t) = ceven(P, Q) + α ·
(
|P | − codd(P, Q)

2
− ceven(P, Q)

)
.

4 Weighted Multi-break Distance

Let T (P, Q) be the set of all transformations between genomes P and Q. For a
real number α ≥ 0, we define the weighted distance Dα(P, Q) between genomes
P and Q as

Dα(P, Q) = min
t∈T (P,Q)

Wα(t),

that is, the minimum possible weight of a transformation between P and Q.
Two important examples of the weighted distance are the “unweighted” dis-

tance D1(P, Q) = d3(P, Q) and the distance D3/2(P, Q) equal the half of the
minimum number of breakages in a transformation between genomes P and Q.
By the definition of an optimal transformation, we have D3/2(P, Q) = W3/2(t0),
where t0 is an optimal transformation between genomes P and Q. Below we
prove that Dα(P, Q) = Wα(t0) for any α ∈ (1, 2].

Theorem 5. For α ∈ (1, 2],

Dα(P, Q) = Wα(t0),

where t0 is any optimal transformation between genomes P and Q.
Furthermore, for α ∈ (1, 2), if Dα(P, Q) = Wα(t) for a transformation t

between genomes P and Q, then t is an optimal transformation.
Proof. Let t be any transformation and t0 be any optimal transformation be-
tween genomes P and Q.

We classify all possible changes in the number of even and odd black-gray
cycles resulted from a single rearrangement r. By Lemma 1, Δrc

odd may take
only values −2, 0, 2, while |Δrc| = |Δrc

odd + Δrc
even| ≤ 1 (if r is a 2-break)

or ≤ 2 (if r is a complete 3-break). The table below lists the possible values
of Δrc

odd and Δrc
even, satisfying these restrictions, along with the amount of

rearrangements of each particular type in t, denoted xi for 2-breaks and yj for
complete 3-breaks.

n3(r) = 0 n3(r) = 1
Δrc

odd 0 0 0 -2 2 0 0 0 0 0 2 2 2 -2 -2 -2
Δrc

even 0 1 -1 1 -1 0 1 -1 2 -2 0 -1 -2 0 1 2
amount in t x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11
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For the transformation t, we have{
n2(t) = x1 + x2 + x3 + x4 + x5,

n3(t) = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10 + y11.

Calculating the total increase in the number of odd and even black-gray cycles
along t, we have{
−2x4 + 2x5 + 2y6 + 2y7 + 2y8 − 2y9 − 2y10 − 2y11 = |P | − codd(P, Q),
x2 − x3 + x4 − x5 +y2 − y3 +2y4 − 2y5 − y7 − 2y8 + y10+2y11= −ceven(P, Q).

Theorem 4 further implies{
n2(t0) = −x2 + x3 − x4 + x5 − y2 + y3 − 2y4 + 2y5 + y7 + 2y8 − y10 − 2y11,

n3(t0) = x2 − x3 + y2 − y3 + 2y4 − 2y5 + y6 − y8 − y9 + y11.

Now we can evaluate the difference between the weights of t and t0 as follows:

Wα(t) − Wα(t0) = n2(t) − n2(t0) + α · (n3(t) − n3(t0))
= x1 + 2x2 + 2x4 + y2 − y3 + 2y4 − 2y5 − y7 − 2y8 + y10 + 2y11

+ α ·(−x2 +x3 + y1 + 2y3 − y4+ 3y5 + y7 + 2y8 + 2y9 + y10)
= x1 + (2 − α) · x2 + α · x3 + 2x4 + α · y1 + y2 + (2α − 1) · y3

+ (2 − α) · y4 + (3α − 2) · y5 + (α − 1) · y7 + (2α − 2) · y8

+ 2α · y9 + (α + 1) · y10 + 2 · y11.

Since α ∈ (1, 2] and xi, yj ≥ 0, all summands in the last expression are nonneg-
ative and thus Wα(t) − Wα(t0) ≥ 0. Since t is an arbitrary transformation, we
have

Dα(P, Q) = Wα(t0).

For α ∈ (1, 2), if Dα(P, Q) = Wα(t) then Wα(t)−Wα(t0) = 0, implying that only
x5 and y6 (appearing with zero coefficients in the expression for Wα(t)−Wα(t0))
can be nonzero and thus t is optimal by Corollary 1. �

5 Discussion

We proved that for α ∈ (1, 2], the minimum-weight transformations include the
optimal transformations (Theorem 5) that may entirely consist of transposition-
like operations (modelled as complete 3-breaks) (Corollary 2). Therefore, the
corresponding weighted genomic distance does not actually impose any bound
on the proportion of transpositions.

For α ∈ (1, 2), we proved even a stronger result that the minimum-weight trans-
formations coincide with the optimal transformations (Theorem 5). As a conse-
quence we have that a particular choice of α ∈ (1, 2) imposes no restrictions for
the minimum-weight transformations as compared to other values of α from this
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interval. The value α = 3/2 then proves that the optimal transformations coincide
with those that at the same time have the shortest length and make the smallest
number of breakages, studied by Alekseyev and Pevzner [2]. We further charac-
terized the optimal transformations within the shortest transformations (i.e., the
minimum-weight transformations for α = 1) by showing that the optimal trans-
formations avoid one particular type of rearrangements (Theorem 3, Fig. 3).

It is worth to mention that the weighted genomic distance with α ≥ 2 is
useless, since it allows (for α = 2) or even promotes (for α > 2) replacement of
every complete 3-break with two equivalent 2-breaks, thus eliminating complete
3-breaks at all.

The extension of our results to the case of linear genomes will be published
elsewhere.
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1 Introduction

Multiple sequence alignment (MSA), which is of fundamental importance for
comparative genomics, is a difficult problem and error-prone. Therefore, it is
essential to measure the reliability of the alignments and incorporate it into
downstream analyses. Many studies have been conducted to find the extent,
cause and effect of the alignment errors [4], and to heuristically estimate the
quality of alignments without using the true alignment, which is unknown [2].
However, it is still unclear whether the heuristically chosen measures are gen-
eral enough to take into account all alignment errors. In this paper, we present
a new alignment reliability score, called PSAR (Probabilistic Sampling-based
Alignment Reliability) score.

2 Methods

The PSAR score is computed based on suboptimal alignments that are sampled
from the posterior probability distribution of alignments, which is approximated
by pairwise comparisons between each sequence and the rest of an input MSA.
Specifically, given an input MSA (Figure 1A), PSAR selects one sequence at a
time and makes a sub-alignment by leaving the chosen sequence out of the MSA.
To re-compare the left-out sequence with the sub-alignment, all gaps in the left-
out sequence and all columns in the sub-alignment that consist of only gaps
are removed (Figure 1B). The pairwise comparison of the pre-processed left-out
sequence and sub-alignment is based on a special type of a pair hidden Markov
model (pair-HMM) that emits columns of an MSA given the left-out sequence
and the sub-alignment. To sample suboptimal alignments, PSAR first constructs
dynamic programming (DP) tables by using the forward algorithm [1] based on
the pair-HMM (Figure 1C), and then traces back through the DP tables based
on a probabilistic choice at each step [1] (Figure 1D-E). The reliability score of
an input MSA is computed by measuring the consistency with the suboptimal
alignments.
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Fig. 1. Procedure of probabilistic sampling

3 Results

We evaluated the performance of our method PSAR in comparison with the
GUIDANCE method [2], using the simulated data. The GUIDANCE method
computes the alignment certainty score by using perturbed MSAs (alignment
samples) that are generated based on perturbed phylogenetic trees. This evalua-
tion focused on measuring how accurately each method classifies pairs of aligned
characters in an input MSA into reliable or unreliable classes. By varying cut-
off values, we counted the number of true positive pairs that are labeled as a
reliable one as well as aligned in the true alignment, and the number of false
positive pairs that are also labeled as a reliable one but not aligned in the true
alignment. We found that the performance of the PSAR score is superior to the
GUIDANCE score across multiple settings with different input MSAs. We also
applied PSAR to compute the alignment reliability scores of the alignments of 16
amniota vertebrates for the upstream region of a gene GRIA2 downloaded from
the Ensembl database. We found two regions with relatively low PSAR scores
but high conservation scores by the PhastCons program [3]. We can obtain more
accurate conservation scores of the above suspicious regions by analyzing the
conservation scores computed from the set of suboptimal alignments as an ad-
ditional information.

4 Conclusion

We propose a new probabilistic sampling-based alignment reliability score, and
find that our approach is superior to existing ones. This suggests that the subop-
timal alignments are highly informative source for assessing alignment reliability.
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Abstract. Can we find the family trees, or pedigrees, that relate the
haplotypes of a group of individuals? Collecting the genealogical infor-
mation for how individuals are related is a very time-consuming and
expensive process. Methods for automating the construction of pedi-
grees could stream-line this process. While constructing single-generation
families is relatively easy given whole genome data, reconstructing multi-
generational, possibly inbred, pedigrees is much more challenging.

This paper addresses the important question of reconstructing monog-
amous, regular pedigrees, where pedigrees are regular when individuals
mate only with other individuals at the same generation. This paper
introduces two multi-generational pedigree reconstruction methods: one
for inbreeding relationships and one for outbreeding relationships. In con-
trast to previous methods that focused on the independent estimation of
relationship distances between every pair of typed individuals, here we
present methods that aim at the reconstruction of the entire pedigree.
We show that both our methods out-perform the state-of-the-art and
that the outbreeding method is capable of reconstructing pedigrees at
least six generations back in time with high accuracy.

The two programs are available at http://cop.icsi.berkeley.edu/

cop/

1 Introduction

Pedigrees, or family trees, are important in computer science and in genetics.
The pedigree graph encodes all the possible Mendelian inheritance options, and
provides a model for computing inheritance probabilities for haplotype or geno-
type data. Even thirty years after the development of some of the first pedi-
gree algorithms [19,11], pedigree graphical models continue to be a challenging
graphical model to work with. Known algorithms for inheritance calculations
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are either exponential in the number of individuals or exponential in the num-
ber of loci [20]. There have been numerous and notable attempts to increase the
speed of these calculations [30,1,12,7,14,22,9]. Recent work from statistics has
focused on fast and efficient calculations of linkage that avoid the full inheritance
calculations [5,36]. Recent contributions to genetics from pedigree calculations
include fine-scale recombination maps for humans [8], discovery of regions linked
to Schizophrenia [25], discovery of regions linked to rare Mendelian diseases [26],
and insights into the relationship between cystic fibrosis and fertility [13].

Manual methods for constructing human pedigree graphs are very tedious. It
requires careful examination of genealogical records, including marriage records,
birth dates, death dates, and parental information found in birth certificates.
Medical researchers then must carefully check records for consistency, for in-
stance making sure that two married individuals were alive at the same time
and making sure that children were conceived while the parents were alive. This
process is very time consuming. Despite the care taken, there are sometimes
mistakes [4,24,32].

For constructing non-human pedigrees, of diploid organisms, it is often im-
possible to know the pedigree graph since there are no genealogical records [2,6].
In this case it is particularly important to develop methods of automatically
generating pedigrees from genomic data.

The problem of reconstructing pedigrees from haplotype or genotype data is
not new. The oldest such method that the authors know of is due to Thomp-
son [35]. Her approach is essentially a structured machine learning approach
where the aim is to find the pedigree graph that maximizes the probability of
observing the data, or likelihood. (This approach is directly analogous to max-
imum likelihood methods for phylogenetic reconstruction which also try to find
the phylogenetic tree that maximize the likelihood.) Notice that this method re-
constructs both the pedigree graph and the ancestral haplotypes which is a very
time-consuming step. Thus, this approach is limited to extremely small fami-
lies, perhaps 4-8 people, since the algorithms for computing the likelihood of a
fixed pedigree graph are exponential [20] and there are an exponential number
of pedigree graphs to consider [33].

The current state-of-the-art method is an HMM-based approximation of the
number of meioses separating a pair of individuals [31]. This approach dispenses
with any attempt to infer haplotypes of ancestral individuals, and instead focuses
on the number of generations that separate a pair of individuals. In this approach
the hidden states of the HMM represent the identity-by-descent (IBD) of a pair of
individuals. Two individuals are identical-by-descent for a particular allele if they
each have a copy of the same ancestral allele. The probability of the haplotype
data is tested against a particular type of relationship. The main draw-back of
this approach is that it may estimate a set of pair-wise relationships that are
inconsistent with a single pedigree relating all the individuals.

Thatte and Steel [34] examined the problem of reconstructing arbitrary pedi-
gree graphs from a synthetic model of the data. Their method used an HMM
model for the ancestry of each individual to show that the pedigree can be
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reconstructed only if the sequences are sufficiently long and infinitely dense.
Notice that this paper uses an unrealistic model of recombination where every
individual passes on a trace of their haplotypes to all of their descendants. Kirk-
patrick [17] introduced a more simple, more general version of the reconstruction
algorithm introduced by Thatte and Steel.

Attempts to construct sibling relationships are known to be NP-hard, and at-
tempts to infer pedigrees by reconstructing ancestral haplotypes are be NP-hard.
Two combinatorial versions of the sibling relationship problem were proven to be
NP-hard, both whole- and half-sibling problem formulations [2,29]. If ancestral
haplotypes are reconstructed in the process of inferring a pedigree, as in Thomp-
son’s structured machine learning approach, then the inheritance probabilities
of data must be computed on the pedigree graph. For instance, we might want
to compute the likelihood, or the probability of observing the data given inher-
itance in the pedigree. This calculation is NP-hard for both genotype [28,21]
and haplotype [16] data. This means that any efficient pedigree reconstruction
method will need to find ways to avoid both these hardness problems.

Our contribution to pedigree reconstruction is two algorithms that avoid the
exponential likelihood calculations. We do this by specifically not reconstructing
ancestral haplotypes and by not trying to optimize sibling groups. We use esti-
mates of the length of genomic regions that are shared identical-by-descent. In
two related individuals, a region of the genome is identical-by-descent (IBD) if
and only if a single ancestral haplotype sequence was the source of the sequence
inherited in the two individuals. The length of IBD regions gives a statistic that
accurately detects sibling relationships at multiple generations. We have two algo-
rithms: one for constructing inbred pedigrees (CIP) and one for constructing out-
bred pedigrees (COP). For our outbreeding algorithm the statistic is testable in
polynomial time. For our inbreeding algorithm, the statistic is computable in time
dependent on the number of meioses in the predicted pedigree. Our outbreeding
method works to reconstruct at least six generations back in time. Both methods
are more accurate than the state-of-the-art method by Stankovich, et al [31].

The remainder of the paper is organized into sections on pair-wise IBD,
practical reconstruction algorithms, and results. The section on pair-wise IBD
considers the expected length of a genomic region shared between a pair of in-
dividuals. This establishes the limits of reconstruction methods that are based
only on pair-wise relationships. The section on practical algorithms introduces
our CIP and COP algorithms, which go beyond pair-wise relationships and actu-
ally use transitive relationship information to infer a pedigree graph. The results
section considers simulation results and results running the algorithm on several
HapMap Phase III populations.

2 Background

A pedigree graph has diploid individuals as nodes and edges from parents to
children. The edges are typically implicitly directed down from parent to child,
without drawing the actual direction arrow on the edge. Circle nodes are females,
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boxes are females. Let the generations be numbered backwards in time, with
larger numbers being older generations. Let g be the number of generations of
individuals in the graph. For example, if g = 1, then we are discussing only the
extant individuals, whereas if g = 2 the graph contains the extant individuals
and their parents.

In this paper, we will only consider monogamous, regular pedigrees, where a
pedigree is regular when individuals only mate with other individuals at the same
generation. Of course, a pedigree is monogamous if and only if every individual
mates with at most one other individual, so that there are no half-siblings.

Recombination along the genome is typically modeled as a Poisson process,
where the distance between recombination breakpoints is drawn from an expo-
nential distribution. The mean of the exponential is a function of the recombi-
nation rate [10,3]. This is a model for recombination without interference, where
interference means that the presence of one recombination breakpoint suppresses
the occurrence of breakpoints in neighboring regions of the sequence [23]. The
simulation and experimental results seem to support the use of the simplify-
ing assumption made by using the Poisson model for recombination, however
relaxing this assumption might be one way to improve on the model.

3 A Lower Bound for Pair-Wise Relationships with
Out-Breeding

In order to shed light on the problem we first provide a lower bound on the best
that one could do in pedigree reconstruction. Stankovich, et al [31] have been
able to detect up to 3rd cousins (or relationships of 8 total meioses). We claim
that this should be near optimal in the case of an infinite population size. Notice
that in the infinite population size, there is no inbreeding. Therefore, the graph
relating people has a path-like subgraph connecting every pair of individuals
(i.e. the subgraph is a path having exactly two founders whose adjacent edges
can be contracted to form a simple path). This implies that in order to estimate
pedigree graphs that are more accurate than the conglomerate of a set of pair-
wise relationship estimates, we need to exploit features of the relationships that
are not simply outbred paths between pairs of individuals. Specifically, we need
to consider sets of individuals and the graphs that connect them, and we need
to consider graphs, not paths, that connect pairs of individuals. This means that
we need to be considering inbreeding and transitive relationships (i.e. person a
is related to person c through person b).

Now, we derive a lower bound on the pair-wise outbred relationships. In an
infinite population, consider two individuals i, and j, where their most recent
common ancestor is g generations ago. For instance, if g = 2 they are siblings.
Note that they have two common ancestors in this case. For general g, each indi-
vidual has 2g ancestors, where exactly two of them are shared across i and j; this
is where we use the fact that the population is infinite and monogamous, since
the probability of having more than two shared ancestors is zero and monogamy
ensures that there are at least two shared ancestors.
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Each of the ancestors of i and j has two haploids. Each of the haploids arrived
from a different pedigree. Consider only the haploids that arrived from the shared
pedigree (the case g = 2, i.e. siblings, is different since there there is IBD sharing
on both haploids of i and j). These haploids of i and j are generated by a random
walk over the ancestors of i and j in the gth generation. The total number of
haploid ancestors in that generation is 2g for each of i and j. Out of those, four
are shared across i and j (two shared ancestors, each has two haploids). Let k
be the number of meioses separating individuals i and j, where k = 2(g−1). For
this reason, the expected number of bases shared between i and j is 4L

2k = L
2k−2 ,

where L is the length of the genome.
On the other hand, we can calculate the average length of a shared region

between the two haploids. The number of recombinations across all generations
is Poisson distributed with parameter krL, where r is the recombination rate,
L is the length of the genome. Now, the length, X , of a shared region that
originated from one of the four shared haploids is X1 +X2 where Xi ∼ exp(kr).
Notice that Xi is the length of the IBD region conditioned on starting at an
IBD position. Therefore from an arbitrary IBD position, we need to consider
the length of the IBD region before arriving at that position, X1, and the length
after that position, X2. So the expected length, E[X ], is 2

kr . Since the probability
to move from one shared haploid to another is negligible, we get that this is the
expected length of a shared region.

Now, if tk is the expected number of regions shared between two individuals
separated by k meioses, we know that tk

2
kr = L

2k−2 , and therefore, tk = krL
2k−1 ,

where rL is the expected number of recombinations after one generation. There-
fore, t10 < 1 since rL = 30, and it is impossible to detect a pair-wise relationship
with high probability between 4th cousins.

This is not to say that it is impossible to accurately construct a 6-generation
pedigree, only that it is impossible to accurately construct a 6-generation pedi-
gree from pair-wise relationship estimates. As noted earlier, to get accuracy on
deep pedigrees, we need to consider relationships on sets of individuals, inbreed-
ing and transitive relationships.

4 Algorithms for Constructing Pedigrees

The principle innovation of this method is to reconstruct pedigree graphs without
reconstructing the ancestral haplotypes. This is the innovation that allows this
algorithm to avoid the exponential calculation associated with inferring ancestral
haplotypes, and allows the algorithm to be efficient.

The approach we employ is a generation-by-generation approach. We recon-
struct the pedigree backwards in time, one generation at a time. Of course if
we make the correct decisions at each generation, then we will construct the
correct pedigree. However, since we use the predictions at previous generations
to help us make decisions about how to reconstruct subsequent generations, we
can accumulate errors as the algorithm proceeds backwards in time.

Given a set of extant individuals with haplotype information available, we
want to reconstruct their pedigree. We construct the pedigree recursively, one
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generation at a time. For example, the first iteration consists of deciding which of
the extant individuals are siblings. The next iteration would determine which of
the parents are siblings (yielding cousin relationships on the extant individuals).

At each generation, we consider a compatibility graph on the individuals at
generation g, where the nodes are individuals and the edges are between pairs
of individuals that could be siblings. The presence or absence of edges will be
determined by a statistical test, discussed later. For the moment, assume that
we have such a graph.

Now, we will find sibling sets in the compatibility graph. We do this by par-
titioning the graph into disjoint sets of vertices with the property that each set
in the partition has many edges connecting its vertices while there are few edges
connecting vertices from separate sets in the partition. Of course any partition-
ing method can be used, and later we will introduce a partitioning heuristic. For
rhetorical purposes, we will now discuss how to use a Max-Clique algorithm to
partition the graph. The graph is partitioned by the following iterative proce-
dure. Iteratively, find the Max-Clique, for all the individuals in the Max-Clique,
make them siblings, by creating monogamous parents in generation g + 1. Re-
move those Max-Clique individuals from the graph. Now, we can iterate, by
finding the next Max-Clique and again creating a sibling group, etc.

Next, we consider how to create the edges in the compatibility graph. Let
individuals k and l be in generation g. Recall that we have an edge in the com-
patibility graph if k and l could be siblings. To determine this, we look at pairs
i and j of descendants of k and l, respectively. Let ŝij be the observed average
length of shared segments between haplotyped individuals i and j. This can be
computed directly from the given haplotype data and need only be computed
once as a preprocessing step for our algorithm. Now, for a pair of individuals
k and l in the oldest reconstructed generation, Xi,j is the random variable for
the length of a shared region for individuals i, j under the pedigree model that
we have constructed so far. Later, we will discuss two models for Xi,j . For now,
consider the test for the edge (k, l)

vk,l =
1

|D(k)||D(l)|
∑

i∈D(k)

∑
j∈D(l)

(ŝij − E[Xij ])2

var(Xij)
(1)

where D(k) is the set of extant individuals descended from ancestor k, and
D(k) is known based on the pedigree we have constructed up to this point. We
compute vk,l, making edges when vk,l < c for all k, l in the oldest generation,
g, for some threshold c. Notice that this edge test is similar to a χ2 test but
does not have the χ2 null distribution, because the term in the sum will not
actually be normally distributed. We choose the the threshold, c, empirically by
simulating many pedigrees and choosing the threshold which provides the best
reconstruction accuracy.

Now, we need to calculate E[Xi,j ] and V ar(Xi,j). We propose two models for
the random variable Xij , the outbred model (COP) and the inbred model (CIP).
The outbred, COP, model only allows prediction of relationships between two
individuals that are unrelated at all previous generations. The inbred model, CIP,
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allows prediction of a relationship that relates two individuals already related in
a previous generation.

4.1 IBD Model for Constructing Outbred Pedigrees (COP)

To obtain the edges in the graph, we do a test for relationship-pairs of the form
shown in Figure 1. If a pair of extant individuals are related at generation g
via a single ancestor at that generation, then the length of the regions they
share IBD will be distributed according to the sum of two exponential variables,
specifically, exp(2(g − 1)λ). This is the waiting time, where time corresponds to
genome length, for a random walk to leave the state of IBD sharing. So, we have
Xij = X1 + X2 where Xi ∼ exp(2(g − 1)λ). This means that we can quickly
analytically compute E[Xij ] and V ar(Xij).

g generations
with 2g − 2 meioses
between i and j

i j

k l

Fig. 1. Pair of Individual Related at Generation g. To test whether individuals
k and l are siblings at generation g, we look at the distribution on the length of genetic
regions shared IBD between all pairs of i and j descended from k and l, respectively.

4.2 IBD Model for Constructing Inbred Pedigrees (CIP)

We will do a random-walk simulation to allow for inbreeding, resulting in an
algorithm with exponential running-time. The number of states in the IBD pro-
cess is exponential in the number of meioses in the graph relating individuals i
and j. So, the random-walk simulation is exponential in the size of the inferred
pedigree.

For individuals k and l in generation g, and their respective descendants i and
j, we consider the case given in Figure 2. The triangles represent the inferred
sub-pedigree containing all the descendants of the individual at the point of
the triangle, and individuals at the base of the triangle are extant individuals.
Note that the triangles may overlap, indicating shared ancestry at an earlier
generation (i.e. inbreeding).

Brief Description of the IBD Simulation. Let Xi,j be the length of a shared
region based on the pedigree structure of the model. In order to estimate this
quantity, we can sample random walks in the space of inheritance possibilities.
Specifically, consider the inheritance of alleles at a single position in the genome.
When there are n non-founder individuals, define an inheritance vector as a
vector containing 2n bits, where each pair of bits, 2i and 2i + 1, represents the
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Fig. 2. Test Case. Specific individuals in the pedigree are indicated with either circles
or squares. The triangle represents all the descendants of a particular individual. This
represents the case where individuals i and j are cousins via the oldest generation.

grand-parental origin of individual i’s two alleles. Specifically, bit 2i represents
the maternal allele and is zero if the grand-paternal allele was inherited and is one
otherwise. Similarly, bit 2i+ 1 represents the paternal allele of individual i. The
set of possible inheritance vectors comprise the 22n vertices of a 2n-dimensional
hypercube, where n is the number of non-founders in the pedigree. A random
walk on the hypercube represents the recombination process by choosing the
inheritance vectors of neighboring regions of the genome.

Given an inheritance vector, we can model the length, in number of positions,
of the genomic region that is inherited according to that inheritance vector. The
end of that genomic region is marked by a recombination in some individual,
and constitutes a change in the inheritance vector. The random walk on the
hypercube models the random recombinations, while the length of genomic re-
gions are modeled using an exponential distribution. This model is the standard
Poisson model for recombinations. Details can be found below.

Poisson Process. Given a pedigree and individuals of interest i and j, we will
compute the distribution on the length of shared regions. Here we mean sharing
to be a contiguous region of the genome for which i and j have at least one IBD
allele at each site.

We can model the creation of a single zygote (i.e. haplotype) as a Poisson
process along the genome where the waiting time to the next recombination
event is exponentially distributed with intensity λ = −ln(1 − θ) where θ is the
probability of recombination per meiosis (i.e. per generation, per chromosome)
between a pair of neighboring loci. For example, if we think of the genome as
being composed of 3000 blocks with each block being 1MB in length and the
recombination rate θ = 0.01 between each pair of neighboring blocks, then we
would expect 30 recombinations per meiosis, and the corresponding intensity for
the Poisson process is λ = 0.01.

Now, we have 2n meioses in the pedigree, with each meiosis creating a zygote,
where n is the number of non-founder individuals. Notice that at a single posi-
tion in the genome, each child has two haplotypes, and each haplotype chooses
one of the two parental alleles to copy. These choices are represented in an



144 B. Kirkpatrick et al.

inheritance vector, a binary vector with 2n entries. The 22n possible inheritance
vectors are the vertices of a 2n-dimensional hypercube. We can model the re-
combination process as a random walk on the hypercube with a step occurring
each time there is a recombination event. The waiting time to the next step
is drawn from exp(2nλ), the meiosis is drawn uniformly from the 2n possible
meioses, and a step taken in the dimension that represents the chosen meiosis.
The equilibrium distribution of this random walk is uniform over all the 22n

vertices of the hypercube.

Detailed IBD Simulation. Recall that we are interested in the distribution of the
length of a region that is IBD. Recall that IBD is defined as the event that a
pair of alleles are inherited from the same founder allele. For individuals i and
j, let D be the set of hypercube vertices that result in i and j sharing at least
one allele IBD. Given x0 a hypercube vertex drawn uniformly at random from
D, we can compute the hitting time to the first non-IBD vertex by considering
the random walk restricted to D ∪ {d} where d is an aggregate state of all the
non-IBD vertices. The hitting time to d is the quantity of interest. In addition,
we also need to consider the length of the shared region before reaching x0, which
is the time reversed version of the same process, for the same reason that we
summed two exponential random variables while computing the lower bound in
Section 3.

The transition matrix for this IBD process is easily obtained as Pr[xi+1 =
u|xi = v] = 1

2n when vertices u and v differ by exactly one coordinate, and
Pr[xi+1 = u|xi = v] = 0 otherwise. Transitions to state d are computed as
Pr[xi+1 = d|xi = u] = 1 −

∑
v∈D Pr[xi+1 = v|xi = u].

Now we can either analytically compute the hitting time distribution or esti-
mate the distribution by simulating paths of this random walk. Since the number
of IBD states may be exponential, it may be computationally infeasible to find
eigenvectors and eigenvalues of the transition matrix [10]. We choose to simu-
late this random walk and estimate the distribution. This simulation is at worst
exponential in the number of individuals.

4.3 Heuristic Graph Partitioning Method

The Max-Clique algorithm was used to illustrate the graph partitioning method.
Max-Clique is currently used for the CIP algorithm, since the running-time there
is dominated by the IBD simulation. However, the Max-Clique algorithm is expo-
nential, thus not efficient for large input sizes. Therefore, for the COP algorithm,
we consider an efficient heuristic for partitioning the vertices of the compatibility
graph. This method is beneficial, because it looks for densely connected sets of
vertices, rather than cliques, which allows for missing edges.

The algorithm is used to partition the vertices, V (Gg), of graph Gg, into a par-
tition P = {P1, P2, ..., PC}, where Pi ∩ Pj = ∅ for all i, j, and V (Gg) = ∪C

i=1Pi.
For a given partition set, let Ei be the edges of the subgraph induced by ver-
tices Pi. We wish to find a partition such that each set in the partition is
a clique or quasi-clique of vertices. The objective function is to find a parti-
tion that maximizes

∑C
i=1(a + 1)|Ei| −

(|Pi|
2

)
where a = 0.1 is a parameter
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of the algorithm. This objective function is chosen, because it is equivalent to∑C
i=1 a|Ei| −

((|Pi|
2

)
− |Ei|

)
, where the term in parentheses is the number of

missing edges in the clique. Details of the partitioning method can be found in
Karp and Li [15].

The running-time of this graph-partitioning heuristic largely determines the
running-time of the pedigree reconstruction algorithm. The partitioning algo-
rithm runs in polynomial time in the size of the graph, if the size of each set
in the partition is constant. The step of creating the graph is polynomial in the
size of the previous generation graph. Clearly it is possible, if no relationships
are found, for the size of the graph at each generation to double. So, in the worst
case, this algorithm is exponential. However, in practice this method performs
quite well for constructing eight-generation pedigrees on large inputs.

5 Results

Pedigrees were simulated using a variant of the Wright-Fisher model with
monogamy. The model has parameters for a fixed population size, n, a Pois-
son number of offspring λ, and a number of generations g. In each generation
g, the set of ng individuals is partitioned into ng/2 pairs, and for each pair we
randomly decide on a number of offspring using the Poisson distribution with
expectation λ = 3.

The human genome was simulated as 3,000 regions, each of length 1MB, with
recombination rate 0.01 between each region and where each founder haplotype
had a unique allele for each region. The two assumptions here are 1) if two
haplotypes share the same alleles in a mega-base region, then that region is
identical by descent, and 2) haplotypes can be obtained for input to the pedigree
reconstruction methods. Notice that Stankovich, et al also require haplotypes
as input to their method [31]. The requirement that haplotypes are given is
not highly restrictive since our algorithms search for haplotype regions that
are shared between individuals, and since we consider regions of length 1Mb
(typically > 500 SNPs), it is quite easy to determine whether two individuals
have a shared haplotype across 1Mb.

In each experiment we end up having the true pedigree generated by the
simulation, as well as an estimated pedigree. We evaluate the accuracy of the
estimated pedigree by comparing the kinship matrices of the two pedigrees.
Kinship is a model-based quantity defined as the frequency of IBD allele-sharing
between a pair of individuals in a pedigree (averaged over the alleles of each
individual). Since both pedigrees have the same set of haplotyped individuals,
the comparison we consider is an L1 distance between the kinship estimates of
those individuals. Let KP and KQ be the kinship matrices of the actual pedigree
P and the estimated pedigree Q, respectively. Then the evaluation method is∑

i<j

|KP
i,j − KQ

i,j |

for haplotyped individuals i and j.
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Fig. 3. Reconstruction under High Inbreeding. Here the pedigrees were simu-
lated with a fixed population size of n = 10 individuals per generation. Over multiple
generations, this results in a high level of inbreeding. The inaccuracy on the y-axis is
measured by computing the kinship distance. (Reconstruction accuracy of 50 simulated
pedigrees were averaged.)

We compare the COP and CIP methods on inbred pedigree simulations with
high and moderate inbreeding, respectively n = 10 and n = 50, in Figures 3
and 4. These figures show the kinship-based inaccuracy on the y-axis and the
number of generations in the reconstructed pedigree on the x-axis. As the depth
of the estimated pedigree increases the error in the kinship of the estimated
pedigree increases. However the accuracy is still much better than the accuracy
of a randomly constructed pedigree, which is the highest, i.e. worst, line in each
figure. Both methods perform better on the smaller population size.

Size of Reconstructed Pedigrees. Both the COP and CIP methods can recon-
struct pedigree with four generations. The COP method for outbred pedigrees
can reconstruct pedigrees going back to the most-recent common ancestor of the
extant individuals. Provided with enough individuals, the method can construct
pedigrees many generation deep. For example, given 400 individuals the method
can construct 6 generations. As Figure 5 shows, the performance relative to a
random reconstruction method is very good and so is the variance of the COP
reconstruction method.

Comparison with GBIRP. We compare our two methods with the state-of-the-
art method, called GBIRP, by Stankovich, et al [31]. Since GBIRP is limited to
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Fig. 4. Reconstruction under Less Inbreeding. Pedigrees here were simulated
with a population size of n = 50. The y-axis show inaccuracy measured by kinship
distance. (Reconstruction accuracy of 50 simulated pedigrees were averaged.)

small pedigrees, we compare the methods on three-generation simulated pedi-
grees with population size n = 10. The simulated pedigrees are connected graphs,
so we can look at two accuracy measures, relationships that are mis-specified and
relationships that should have been predicted but where not. GBIRP predicts
meiosis distance, gij , between pairs of individuals, i, j, without inferring pedigree
relationships. In order to compare GBIRP with the actual pedigree, we extract
the minimum number of meiosis, aij , separating every pair of individuals i and j
in the simulated pedigree. From our predicted pedigrees, we again extract a min-
imum meiosis distance pi,j. Now can compute L1 distances between the actual
and predicted meiosis distances. These quantities are

∑
i<j:gi,j 	=∞ |ai,j − gi,j |,

and
∑

i<j:pi,j 	=∞ |ai,j − pi,j |. This is the number of meioses, or edges in the
pedigree graph, which are wrong on paths connecting all pairs of extant in-
dividuals. This is plotted in the left panels of Figures 6 and 7. Now, for a
pair of extant individuals, there is always some relationship in the simulated
pedigree, since it is a connected graph. But it is possible that one of the in-
ference algorithms did not predict a relationship. Specifically this quantity is∑

i<j:gi,j=∞ 1, and
∑

i<j:pi,j=∞ 1, and it is plotted in the right panel of both
figures.

Figure 6 was done with the simulation method described above. However, in
Figure 7, to obtain pedigrees with even more outbreeding, a large population size
was simulated and a sub-pedigree with the desired number of extant individuals
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Fig. 5. Reconstruction for Deep Pedigrees. Pedigrees here were simulated with a
population size of n = 400. (Reconstruction accuracy of 400 simulated pedigrees were
averaged.)

was extracted from the large simulation. Notice that with more inbred pedigrees,
under this measure of accuracy, the CIP algorithm performs superior to both
the COP and the GBIRP methods. The accuracy of all of the methods improve
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Fig. 6. Comparison with GBIRP on Inbred Simulations. The three-generation
pedigrees here were simulated with n = 10 extant individuals, since GBIRP could
not process larger pedigrees. The accuracy of 1000 simulated pedigrees were computed
and plotted. Here the CIP method performs the best, i.e. closest to zero on both
plots.
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Fig. 7. Comparison with GBIRP on Outbred Simulations. The three-generation
pedigrees here were simulated with n = 10 extant individuals, since GBIRP could not
process larger pedigrees. Here, the simulated pedigree relating the extant individuals
was outbred. The accuracy of 1000 simulated pedigrees were computed and plotted.
All methods perform better than they did on the inbred data set. Over all, the COP
method performs best on the outbred data.

when given outbred simulation data, with both CIP and COP performing very
well. However, COP performs the best with outbred input data, as expected by
the modeling assumptions of the method.

Relationships in the HapMap and Wellcome Trust Data. Taking haplotype data
from HapMap, we ran the COP algorithm on unrelated individuals. Given the
parents of the CEU and YRI trios, the algorithm discovers no relationships
for eight generations. The CIP algorithm, on a subset of the CEU and YRI
individuals (due to running time constraints), similarly finds no relationships
for three generations. The results of on the CEU and YRI populations that we
examined match the results of Pemberton, et al [27].

Taking the individuals from the Wellcome Trust data that have at least 85%
IBS with some other individual, we ran COP to construct an eight-generation
pedigree. There were no relationships inferred for the first seven generations,
and there were several relationships inferred at the 8th generation (i.e. seventh
cousin relationships).

6 Discussion

The reconstruction of pedigrees from haplotype data is undoubtedly a natu-
ral question of interest to the scientific community. Reconstructing very small
families, or first generation relationships is a relatively easy task, but recon-
structing a full inbred pedigree involving a few generations is inherently dif-
ficult since the traces left in our genomes by an ancestor drops exponentially
with the distance to the ancestor. Here, we proposed a reconstruction method
for pedigrees given haplotype data from the most recent generation. We use
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a generation-by-generation pedigree reconstruction approach that takes haplo-
type data as input and finds the pedigree(s) that relate the individuals. Notably,
our methods are the first to reconstruct multi-generational pedigrees, rather
than a set of pair-wise relationships which may not be consistent with each
other.

We present two methods of inferring the pedigrees that relate the input hap-
lotypes. Both our methods proceed from the bottom of the pedigree towards
the top. The main difference between our methods is that in CIP we assume an
inbreeding model, and in COP we assume an outbreeding model. We show that
our methods perform considerably better than the state of the art.

One of the basic questions that we ask is how many generations back would
it be possible to reconstruct a pedigree. By simulations, we show that one can
reconstruct at least fifth cousins with some accuracy. Furthermore, we obtain a
lower bound showing that given two individuals with the most-recent-common
ancestor being five generations back there is a constant probability for the two
not to share any genomic region inherited from the common ancestor. This bound
obviously does not apply to inbred pedigrees or to multi-way relationships (i.e.
rather than pair-wise relationships, consider relationships on a set of individuals).
One of the open problems naturally arising from this is whether our lower bound
can be extended to the case of inbreeding and to multi-way relationships. More
generally, a major challenge would be to understand what are the limitations of
pedigree reconstruction and under which conditions.

We note that our methods and analysis are limited to a restricted scenario
in which there is monogamy and the generations are synchronous. If monogamy
is broken then our approach will not work since the sibling relationships in the
compatibility graph at each level will not be a simple partition. It is plausible
that a different graph formulation may still provide an accurate solution to more
complex pedigrees, however the exact formulation that will resolve such pedigrees
is currently unknown and is left as an open challenge.

There are significant open challenges with pedigree reconstruction. For exam-
ple, it would be nice to obtain confidence values on the inferred pedigree edges.
However this seems very difficult, even if we can draw pedigrees from the poste-
rior distribution of pedigree structures given the data. Since edges in a pedigree
are not labeled, obtaining confidence values for a pedigree P would translate to:
drawing pedigree samples, Q, from the distribution, identifying the edges in P
and Q that provide the same relationships, and scoring the edges of P according
to the probability of pedigree Q. As discussed in Kirkpatrick, et al [18], the sec-
ond step, identifying the edges in P and Q that provide the same relationships,
is a hard problem.

Acknowledgments

B.K. was supported by the NSF Graduate Research Fellowship. E.H. is a faculty
fellow of the Edmond J. Safra Bioinformatics program at Tel-Aviv University.
E.H was supported by the Israel Science Foundation grant no. 04514831.



Pedigree Reconstruction Using Identity by Descent 151

References

1. Abecasis, G.R., Cherny, S.S., Cookson, W.O., Cardon, L.R.: Merlin-rapid analysis
of dense genetic maps using sparse gene flow trees. Nature Genetics 30, 97–101
(2002)

2. Berger-Wolf, T.Y., Sheikh, S.I., DasGupta, B., Ashley, M.V., Caballero, I.C., Chao-
valitwongse, W., Putrevu, S.L.: Reconstructing sibling relationships in wild popu-
lations. Bioinformatics 23(13), i49–i56 (2007)

3. Bickeboller, H., Thompson, E.A.: Distribution of genome shared ibd by half-sibs:
Approximation by the poisson clumping heuristic. Theoretical Population Biol-
ogy 50(1), 66–90 (1996)

4. Boehnke, M., Cox, N.J.: Accurate inference of relationships in sib-pair linkage
studies. American Journal of Human Genetics 61, 423–429 (1997)

5. Bourgain, C., Hoffjan, S., Nicolae, R., Newman, D., Steiner, L., Walker, K.,
Reynolds, R., Ober, C., McPeek, M.S.: Novel case-control test in a founder pop-
ulation identifies p-selectin as an atopy-susceptibility locus. American Journal of
Human Genetics 73(3), 612–626 (2003)

6. Brown, D., Berger-Wolf, T.: Discovering kinship through small subsets. In: Moul-
ton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 111–123. Springer,
Heidelberg (2010)

7. Browning, S.R., Briley, J.D., Briley, L.P., Chandra, G., Charnecki, J.H., Ehm,
M.G., Johansson, K.A., Jones, B.J., Karter, A.J., Yarnall, D.P., Wagner, M.J.:
Case-control single-marker and haplotypic association analysis of pedigree data.
Genetic Epidemiology 28(2), 110–122 (2005)

8. Coop, G., Wen, X., Ober, C., Pritchard, J.K., Przeworski, M.: High-Resolution
Mapping of Crossovers Reveals Extensive Variation in Fine-Scale Recombination
Patterns Among Humans. Science 319(5868), 1395–1398 (2008)

9. Doan, D., Evans, P.: Fixed-parameter algorithm for haplotype inferences on general
pedigrees with small number of sites. In: Moulton, V., Singh, M. (eds.) WABI 2010.
LNCS, vol. 6293, pp. 124–135. Springer, Heidelberg (2010)

10. Donnelly, K.P.: The probability that related individuals share some section of
genome identical by descent. Theoretical Population Biology 23(1), 34–63 (1983)

11. Elston, R.C., Stewart, J.: A general model for the analysis of pedigree data. Human
Heredity 21, 523–542 (1971)

12. Fishelson, M., Dovgolevsky, N., Geiger, D.: Maximum likelihood haplotyping for
general pedigrees. Human Heredity 59, 41–60 (2005)

13. Gallego Romero, I., Ober, C.: CFTR mutations and reproductive outcomes in a
population isolate. Human Genet. 122, 583–588 (2008)

14. Geiger, D., Meek, C., Wexler, Y.: Speeding up HMM algorithms for genetic linkage
analysis via chain reductions of the state space. Bioinformatics 25(12), i196 (2009)

15. Karp, R.M., Li, S.C.: An efficient method for quasi-cliques partition (2011)
(manuscript in preparation)

16. Kirkpatrick, B.: Haplotypes versus genotypes on pedigrees. In: Moulton, V., Singh,
M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 136–147. Springer, Heidelberg (2010)

17. Kirkpatrick, B.: Pedigree reconstruction using identity by descent. Class project,
Prof. Yun Song, 2008. Technical Report No. UCB/EECS-2010-43 (2010)

18. Kirkpatrick, B., Reshef, Y., Finucane, H., Jiang, H., Zhu, B., Karp, R.M.: Algo-
rithms for comparing pedigree graphs. CoRR, abs/1009.0909 (2010)

19. Lander, E.S., Green, P.: Construction of multilocus genetic linkage maps in humans.
Proceedings of the National Academy of Science 84(5), 2363–2367 (1987)



152 B. Kirkpatrick et al.

20. Lauritzen, S.L., Sheehan, N.A.: Graphical models for genetic analysis. Statistical
Science 18(4), 489–514 (2003)

21. Li, J., Jiang, T.: An exact solution for finding minimum recombinant haplotype
configurations on pedigrees with missing data by integer linear programming. In:
Proceedings of the 7th Annual International Conference on Research in Computa-
tional Molecular Biology, pp. 101–110 (2003)

22. Li, X., Yin, X.-L., Li, J.: Efficient identification of identical-by-descent status in
pedigrees with many untyped individuals. Bioinformatics 26(12), i191–i198 (2010)

23. McPeek, M.S., Speed, T.P.: Modeling interference in genetic recombination. Ge-
netics 139(2), 1031–1044 (1995)

24. McPeek, M.S., Sun, L.: Statistical tests for detection of misspecified relationships
by use of genome-screen data. Amer. J. Human Genetics 66, 1076–1094 (2000)

25. Ng, M.Y., Levinson, D.F.: et al. Meta-analysis of 32 genome-wide linkage studies
of schizophrenia. Mol. Psychiatry 14, 774–785 (2009)

26. Ng, S.B., Buckingham, K.J., Lee, C., Bigham, A.W., Tabor, H.K., Dent, K.M.,
Huff, C.D., Shannon, P.T., Jabs, E.W., Nickerson, D.A., Shendure, J., Bamshad,
M.J.: Exome sequencing identifies the cause of a mendelian disorder. Nature Ge-
netics 42(1), 30–35 (2010)

27. Pemberton, T.J., Wang, C., Li, J.Z., Rosenberg, N.A.: Inference of unexpected ge-
netic relatedness among individuals in hapmap phase iii. Am. J. Hum. Genet. 87(4),
457–464 (2010)

28. Piccolboni, A., Gusfield, D.: On the complexity of fundamental computational
problems in pedigree analysis. Journal of Computational Biology 10(5), 763–773
(2003)

29. Sheikh, S.I., Berger-wolf, T.Y., Khokhar, A.A., Caballero, I.C., Ashley, M.V.,
Chaovalitwongse, W., Chou, C., Dasgupta, B.: Combinatorial reconstruction of
half-sibling groups from microsatellite data. In: 8th International Conference on
Computational Systems Bioinformatics (CSB) (2009)

30. Sobel, E., Lange, K.: Descent graphs in pedigree analysis: Applications to haplo-
typing, location scores, and marker-sharing statistics. American Journal of Human
Genetics 58(6), 1323–1337 (1996)

31. Stankovich, J., Bahlo, M., Rubio, J.P., Wilkinson, C.R., Thomson, R., Banks, A.,
Ring, M., Foote, S.J., Speed, T.P.: Identifying nineteenth century genealogical links
from genotypes. Human Genetics 117(2-3), 188–199 (2005)

32. Sun, L., Wilder, K., McPeek, M.S.: Enhanced pedigree error detection. Hum.
Hered. 54(2), 99–110 (2002)

33. Thatte, B.D.: Combinatorics of pedigrees (2006)
34. Thatte, B.D., Steel, M.: Reconstructing pedigrees: A stochastic perspective. Jour-

nal of Theoretical Biology 251(3), 440–449 (2008)
35. Thompson, E.A.: Pedigree Analysis in Human Genetics. Johns Hopkins University

Press, Baltimore (1985)
36. Thornton, T., McPeek, M.S.: Case-control association testing with related indi-

viduals: A more powerful quasi-likelihood score test. American Journal of Human
Genetics 81, 321–337 (2007)



A Quantitative Model of Glucose Signaling in

Yeast Reveals an Incoherent Feed Forward Loop
Leading to a Specific, Transient Pulse of

Transcription

Sooraj KuttyKrishnan1, Jeffrey Sabina2, Laura Langton3,
Mark Johnston4, and Michael R. Brent3

1 University of Washington
2 Ion Torrent

3 Washington University
4 University of Colorado Denver

The ability to design and engineer organisms demands the ability to predict
kinetic responses of novel regulatory networks built from well-characterized
biological components. Surprisingly, few validated kinetic models of complex
regulatory networks have been derived by combining models of the network
components. A major bottleneck in producing such models is the difficulty
of measuring in vivo rate constants for components of complex networks. We
demonstrate that a simple, genetic approach to measuring rate constants in vivo
produces an accurate kinetic model of the complex network that Saccharomyces
cerevisiae employs to regulate the expression of genes encoding glucose trans-
porters. The model predicts a transient pulse of transcription of HXT4 (but not
HXT2 or HXT3) in response to addition of a small amount of glucose to cells,
an outcome we observed experimentally. Our model also provides a mechanistic
explanation for this result: HXT24 are governed by a type 2, incoherent feed
forward regulatory loop involving the Rgt1 and Mig2 transcriptional repressors.
The efficiency with which Rgt1 and Mig2 repress expression of each HXT gene
determines which of them have a pulse of transcription in response to glucose.
Finally, the model correctly predicts how lesions in the feed forward loop change
the kinetics of induction of HXT4 expression.
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Abstract. A new method based on a mathematically natural local search frame-
work for max cut is developed to uncover functionally coherent module and BPM
motifs in high-throughput genetic interaction data. Unlike previous
methods which also consider physical protein-protein interaction data, our method
utilizes genetic interaction data only; this becomes increasingly important as
high-throughput genetic interaction data is becoming available in settings where
less is known about physical interaction data. We compare modules and BPMs
obtained to previous methods and across different datasets. Despite needing no
physical interaction information, the BPMs produced by our method are compet-
itive with previous methods. Biological findings include a suggested global role
for the prefoldin complex and a SWR subcomplex in pathway buffering in the
budding yeast interactome.

1 Introduction

When two genes are mutated together, sometimes a surprising phenotype emerges com-
pared to the phenotype of the individual gene mutants. When studying the yeast genome,
often this can be quantified as the growth rate of the double mutant, compared with the
expected growth rate of the double deletion mutant based on the growth rate of the sin-
gle deletion mutants, termed epistasis. One of the most exciting developments in exper-
imental data for large-scale function prediction has been technology, such as SGA [29],
dSLAM [21] and E-MAP [26], that can produce high-throughput screens of massive
numbers of pairwise mutant combinations. Complete E-MAPs have been published for
a set of S. cerevisiae (budding yeast) genes involved in chromosome function [8], for
a set involved in signaling pathways [11], as well as a set of genes in S. pombe (fission
yeast) [24]. The most complete to date SGA study of S. cerevisiae genes was recently
done by Costanzo et al. [9]. For computational biologists, pairwise genetic interaction
data from E-MAP and other sources can be modeled as a complete, weighted, signed
graph, that can be mined by itself, or together with other sources of interaction data, to
produce functional predictions.

One of the most well-studied and useful network motifs found in genetic interaction
data is the between-pathway model (BPM), introduced first by Kelley and Ideker [17]
and Ulitsky and Shamir [31]. This is a network motif consisting of a particular pattern
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of genetic and physical interactions that is thought to signify two coherent sets of genes
that may be compensatory or adaptive. In particular, each BPM subgraph consists of
two subsets of genes, where physical interactions tend to occur between pairs of genes
in the same subset, and synthetic lethal interactions tend to occur between pairs of genes
in different subsets. The two subsets are called pathways in earlier papers [17,31,20,5],
but now the term modules is becoming more standard (to emphasize that it is only a
gene set that is being predicted, not directional, or temporal information in a pathway).
We will also use the term module in this work to refer to each of the two subsets of
genes in a BPM.

It was shown by Kelley and Ideker, Ulitsky and Shamir, and in subsequent work [20,5],
that BPM modules in the interactome of S. cerevisiae (budding yeast) show significant
biological enrichment for functional coherence, based on known ontological annotation.
Recently, functional coherence of predicted BPM modules based on gene expression
data has also been demonstrated [13]. All early methods were based on binary genetic
interaction data, that is, a pair of proteins are in a synthetic lethality relationship, or they
are not. For example, Brady et al. [5] showed that a search for maximal graph cuts can
be used to help find BPMs based on this binary genetic interaction data.

In a 2010 Recomb paper, Kelley and Kingsford [16] considered whether the BPM
paradigm could be adapted to make use of the more expressive non-binary quantitative
genetic interaction data available from an E-MAP or SGA. Their approach interprets
the E-MAP weights on the edges as probabilities, and they introduce a new method for
clustering E-MAP data they call Expected Graph Compression based on the probabilis-
tic graph that results. They compare the functional coherence of the modules that they
found with those found by earlier papers of Bandyopadhyay et al. [2] and Ulitsky et
al. [32].

In this work, we show that a new method based on local search for maximal cuts can
improve the discovery of validated modules and BPMs in E-MAP data. The strength of
our approach includes:

1. The method is mathematically natural, algorithmically simple, and fast in practice
(though there are some open questions about theoretical convergence times, see
below).

2. We achieve improved GO enrichment of BPM modules compared to previous
studies.

3. Unlike all previous studies based on E-MAP data, our method makes use of the
graph-theoretic structure of the genetic interaction data only when constructing the
BPMs, allowing the location of known physical interactions to statistically validate
modules. Thus, our method can find novel BPMs in network neighborhoods where
less is known about physical interactions between genes.

Finally, there have been enough different studies on finding BPMs in yeast genetic inter-
action data that in addition to looking at the differences between what these methods can
uncover, it becomes interesting to look at which modules are found again and again by
all the different algorithms. Looking for these strong signals, we uncover some possible
global mechanisms of fault-tolerance within the yeast interactome involving chaperones
and chromatin remodeling.
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1.1 Related work

As mentioned above, the primary studies on uncovering BPMs in binary yeast interac-
tion data come from Kelley and Ideker [17], Ulitsky and Shamir [31], Ma et al. [20] and
Brady et al. [5]. The corresponding computational problem involves finding appropriate
subgraphs in an unweighted graph.

Papers by Bandyopadhyay et al [2] and Ulitsky et al. [32] look for modules in yeast
E-MAP data; a recent paper of Kelley and Kingsford [16] explicitly tries to generalize
the notion of BPMs to E-MAP data. We directly compare our BPMs and modules to
all three previous methods that analyzed the Collins et al. E-MAP data. In addition,
we use our LocalCut method to also generate BPMs based on the Boone lab’s recent
SGA map of budding yeast genetic interactions, one based on an E-MAP for budding
yeast genes involved in cell signaling pathways [11], as well as an E-MAP dataset of S.
Pombe [24]. We discuss what is similar and different on a systems scale about BPMs
across different methods and different datasets.

2 Data

The Collins et al. [8], Fiedler et al. [11], and Roguev et al. [24] scalar genetic interaction
datasets were downloaded from The Krogan Lab (http://interactome-cmp.ucsf.edu/).
The Boone Lab [9] reports three variants (lenient, intermediate, stringent), of their SGA
data. We report here results from the intermediate set (interaction values with an abso-
lute value greater than 0.08 with a p-value < .05), though we ran the LocalCut algo-
rithm on all three variants and saw similar results. These genetic interaction datasets
span four different sets of genes: the Collins gene sets relate to chromosome function,
the Fiedler gene set to signaling, the Roguev gene set to a genetic cross-section of S.
Pombe, and the Boone to nearly 75% of the S. cerevisiae genome. To validate the BPMs
generated by the LocalCut algorithm on each of the S. cerevisiae datasets, we also ob-
tained a set of physical interactions by considering interactions between genes in these
datasets in the BioGRID 3.0.66 release where the experiment type was ‘physical’ [27].

3 Results

Table 1 compares the results of our LocalCut algorithm to those of previous work of
Bandyopadhyay et al. [2], Kelley-Kingsford [16], and Ulitsky et al. [32] on the Collins
et al. [8] chromosome function E-MAP data. In order to make the results comparable
across methods, we restrict to considering BPMs where each of its two modules con-
tain between 3 and 25 genes. (This removes many BPMs from the Kelley-Kingford set,
where 1 module contained only 1 or 2 genes, making it more comparable with other
results). Such modules we call “accepted” in Table 1. A module is then declared en-
riched in Table 1 if, according to the program FuncAssociate [3], it is enriched for any
term that describes a set of less than 500 proteins in the GO hierarchy, with a p-value
≤ .01. (Note that all FuncAssociate results are based on GO terms from a version of
GO downloaded on 6/28/2010 except for the results of Ulitsky et al. which come from
a slightly more recent set of GO terms updated on 1/11/2011). All methods excel at
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Table 1. Comparison of our LocalCut algorithm to previous analyses of the Collins et al. E-MAP
data [8]. We achieve a greater number of enriched modules as well as a higher percentage of
BPMs with both modules enriched for either the same or related function.

Modules BPMs

Dataset Accepted Enriched Accepted

Enriched
for same
Function

Enriched
for same
or related
Function

Enriched for
Different
Functions

One Mod
Enriched

No Mods
Enriched

Bandyopadhyay et al. 37 35 96 41 (43%) 53 (55%) 36 (38%) 7 (7%) 0 (0%)
Ulitsky et al. 43 43 111 43 (39%) 71 (64%) 40 (36%) 0 (0%) 0 (0%)
EGC (Kelley-Kingsford) 40 40 98 35 (36%) 52 (53%) 45 (46%) 1 (1%) 0 (0%)

Our Results (LocalCut) 112 103 58 39 (67%) 43 (74%) 6 (10%) 9 (16%) 0 (0%)

producing enriched modules, though it is perhaps impressive that we do so looking at
genetic interactions only, whereas other methods also use physical interaction informa-
tion to construct modules. However, the real strength of our method becomes apparent
when looking at how the modules are combined into BPMs. A BPM is declared en-
riched for the same function if at least one enrichment term is in common between both
modules. A BPM is declared enriched for related functions using the same definition
as Kelley and Kingsford [16], i.e. if both modules are enriched, and each has an en-
richment term whose most recent common ancestor describes fewer than 500 proteins.
A BPM is declared enriched for different functions if both modules are enriched, but
it doesn’t meet the criteria above. LocalCut gives a much higher percentage of BPMs
enriched for the same function or related functions than previous methods. We remark
that LocalCut tends to produce more modules but fewer BPMs than the other methods.
That’s because the other methods tend to reuse modules several times as part of differ-
ent BPMs, whereas LocalCut’s modules tend to be unique to a particular BPM. Coupled
with the enrichment results, it thus seems that other methods are reusing a smaller set of
modules, and combining them into BPMs that are not necessarily functionally coherent
as a module pair.

In Table 2, we seek to determine how sources of genetic interaction data affects the
network of BPMs as discovered by LocalCut on the same gene set. In particular, we
looked at LocalCut run on the original Collins et al. E-MAP data, as compared to the
SGA data of Boone et al. restricted to the same gene set as the Collins et al. E-MAP
data, as well as the full Boone network. On both the original data and on the restricted
Boone dataset, the performance of LocalCut seems comparable as approximately the
same percentage of modules are enriched, and a similar percentage of BPMs result
that are enriched for the same or related functions. However, fewer total modules and
BPMs are found in the Boone data restricted to this gene set, which is not surprising
because there are many more 0-weight edges due to missing or corrupted data in the
Boone data on the restricted set of genes (218,386 nonzero edges in the Collins et al.
E-MAP data versus 15,467 nonzero edges reported by the Boone Lab on the same set
of genes; the full Boone dataset has 145,805 nonzero edges). And in fact, the modules
found by LocalCut based on Collins et al. interaction data are quite different than those
generated from the restricted Boone data when measuring the Jaccard index (see [14,23]
for definition of Jaccard index). Only 2 modules have a Jaccard index greater than .8.
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Table 2. A comparison of the results of our algorithm on different datasets. Boone (restricted)
refers to the Boone dataset restricted to only contain those genes also in the Collins et al. data.
LocalCut finds fewer BPMs on the restricted Boone dataset than on the Collins et al. E-MAP;
not surprising since there are more missing or zero-weight edges in the restricted Boone dataset.
However, the proportion that are enriched for same or related function is nearly identical across
both these data sources. On the full Boone dataset, while many more modules and BPMs are
found by LocalCut, many more are not known to be functionally enriched, perhaps because this
is a less-understood set of yeast genes with fewer annotations.

Modules BPMs

Dataset Accepted Enriched Accepted

Enriched
for same
Function

Enriched
for same
or related
Function

Enriched for
Different
Functions

One Mod
Enriched

No Mods
Enriched

Collins et al. 112 103 58 39 (67%) 43 (74%) 6 (10%) 9 (16%) 0 (0%)
Boone (restricted) 55 52 29 18 (62%) 23 (79%) 2 (7%) 4 (14%) 0 (0%)
Boone (full) 285 104 149 8 (5%) 17 (11%) 9 (6%) 56 (38%) 67 (45%)

However, more than 50% of the modules have Jaccard indices greater than .25, meaning
the modules uncovered by LocalCut are roughly as similar across datasets (E-MAP and
SGA) as the modules uncovered across methods (i.e. LocalCut modules as compared to
Kelley-Kingsford, Ulitsky et al. or Bandyopadhyay et al.)

In Table 3, we look at how making perturbations in the edge weights can affect the
results of the LocalCut algorithm. In Variant 1 we set all positive weights to 0. In Variant
2, every weight whose absolute value is above 2.5 (the threshold for synthetic lethality
and synthetic rescue as defined by [8]) is set to 2.5 or -2.5, consistent with its sign. In
Variant 3, we run LocalCut on the binary version of the data, where every edge weight
above 2.5 is set to +1, and any weight below -2.5 is set to -1, and all other weights are 0.
Variant 4 is the negative half of Variant 3; any weight whose value is below 2.5 is set to
-1 and all other weights are 0 (representing synthetic lethality or not). For Variant 5, we

Table 3. We examine how perturbing edge weights affects the performance of our LocalCut al-
gorithm. The results validate our supposition that the nuances of scalar data are more informative
than binary weights, and that positive-weight interaction edges matter as well as negative-weight
edges.

Modules BPMs

Dataset Accepted Enriched Accepted

Enriched
for same
Function

Enriched
for same
or related
Function

Enriched for
Different
Functions

One Mod
Enriched

No Mods
Enriched

LocalCut 112 103 (92%) 58 39 (67%) 43 (74%) 6 (10%) 9 (16%) 0 (0%)
LocalCut – Variant 1 50 46 (92%) 26 17 (65%) 19 (73%) 2 (8%) 5 (19%) 0 (0%)
LocalCut – Variant 2 133 61 (46%) 68 4 (6%) 6 (9%) 9 (13%) 33 (49%) 20 (29%)
LocalCut – Variant 3 54 37 (69%) 30 3 (10%) 7 (23%) 6 (20%) 17 (57%) 0 (0%)
LocalCut – Variant 4 21 14 (67%) 12 1 (8%) 2 (17%) 3 (25%) 7 (58%) 0 (0%)
LocalCut – Variant 5 98 82 (84%) 49 21 (43%) 30 (61%) 5 (10%) 12 (24%) 2 (4%)
LocalCut – Control 0 0 (0%) 0 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
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use the E-MAP weights augmented with interpolation: that is, we download the E-MAP
weights as filled in by Ulitsky, Krogan and Shamir [30] using their method to interpolate
for missing data in the original E-MAP.. The control variant aims to produce nonsense
by exchanging the signs of all the weights on the edges. Of these variants, clearly all of
them produce degraded performance, except possibly Variant 1, which produces fewer
modules and BPMs, but has nearly the same percentage of the modules enriched for
same or related function. This is an interesting result in light of the discussion in the
work of Kelley and Kingsford about whether considering positive edge weights helps or
hurts in the construction of BPMs [16]; LocalCut finds more BPMs with no degradation
in functional enrichment if positive edge weights are included. The other variants show
that, to some extent, the full range of interaction data is helpful in constructing modules
and BPMs, and less is discovered if only the binary synthetic lethality or rescue data
is used. We are also pleased that the control variant (exchanging the role of positive
and negative edge weights in the data) yields only noise– no consistent BPMs with
both modules of size between 3 and 25. This proves that the existence of meaningful
negative-weight bipartite subgraphs is a true biological property of the yeast genetic
interaction network, not a computational artifact; another way to say this is that there
are no small bipartite subgraphs in the Collins et al. E-MAP data with positive weight
between the two modules and negative weight within each module.

While previous work focused on the Collins et al. E-MAP, in this paper we look at
the results of LocalCut on other high-throughput genetic interaction datasets. In par-
ticular, we look at two other genetic interaction network datasets for Baker’s yeast, an
E-MAP for cell signaling genes generated by Fiedler et al. [11] and the full set of ge-
netic interactions generated using SGA by Boone et al. [9] We also ran LocalCut on
the first E-MAP dataset generated for S. pombe, fission yeast [24]. We find the structure
of the negative weight bipartite subgraphs is very different between the chromosome
function network and the signaling network. In particular very few BPMs are found by
LocalCut in the signaling dataset. In both the S. pombe and the full Boone network, a
much smaller proportion of the BPMs we find are enriched for the same function. We

Table 4. Results of applying LocalCut to different datasets. Notice that the BPM network motif
is very rare among the Fiedler et al. cell signaling genes, as compared to the others, implying
perhaps that this network is organized at a different level of complexity or with different mecha-
nisms of fault-tolerance. On the other hand, the fact that fewer modules and BPMs are enriched
in the full Boone dataset across nearly all S. cerevisiae genes and the S. pombe network is more
likely caused by the fact that our knowledge and therefore annotation of basic S. cervisiae cell
cycle genes far exceeds our knowledge of the other networks, rather than intrinsic differences in
network organization.

Modules BPMs

Dataset Accepted Enriched Accepted

Enriched
for same
Function

Enriched
for same
or related
Function

Enriched for
Different
Functions

One Mod
Enriched

No Mods
Enriched

Collins et al. 112 103 58 39 (67%) 43 (74%) 6 (10%) 9 (16%) 0 (0%)
Fiedler et al. 10 8 5 0 (0%) 4 (80%) 0 (0%) 0 (0%) 1 (20%)
Boone (Full) 285 104 149 8 (5%) 17 (11%) 9 (6%) 56 (38%) 67 (45%)
S. pombe 31 18 16 1 (6%) 1 (6%) 4 (25%) 9 (56%) 2 (13%)
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Table 5. Location of physical interaction edges in LocalCut BPMs. In each dataset, many more
physical interactions occur within modules than between modules; as one would expect if the
modules were compensatory.

Physical Interactions in LocalCut BPMs

Dataset Within Modules Expected Within Between Modules Expected Between
Collins et al. 172 (8.6%) 20 18 (0.9%) 20
Fiedler et al. 13 (12.7%) 1 1 (0.9%) 1
Boone (restricted) 138 (14.4%) 27 10 (1.1%) 26
Boone (full) 147 (3.1%) 41 17 (0.3%) 39

suspect that this is because because GO annotation of function is probably weaker for
these gene sets than for the well-studied chromosome cell machinery. Thus, LocalCut’s
BPMs are more likely to discover novel function in these datasets.

Finally, as remarked above, unlike competing methods, LocalCut constructs its mod-
ules and BPMs looking at genetic interactions only; thus the location of physical inter-
action edges can be used to validate the quality of the BPMs produced by LocalCut
(whereas other methods take location of physical interaction edges into account when
constructing BPMs). We considered 84,785 known physical interactions between pairs
of genes in S. cerevisiae. These interactions are from the BioGRID 3.0.66 release of Bi-
oGRID where the experiment type was ‘physical’, excluding physical interaction hubs,
i.e. genes that have more than 300 physical interactions with other genes. Of these re-
maining physical interactions, 2235 intersect with gene pairs in Collins et al. [8], 1900
with Fiedler, et al. [11], 441 with Boone (restricted), and 1274 with Boone (full). Not all
of these physical interactions participate in BPMs, and some participate multiple times.
However, if LocalCut produces meaningful instances of the BPM motif, we would ex-
pect that of the physical interaction edges that do appear, many more would appear
within BPM modules than between BPM modules. Table 5 shows that this is indeed
the case over all of the S. cerevisiae datasets.

All BPMs produced by LocalCut on all datasets are available in full at http://bcb.cs.
tufts.edu/localcut

4 Discussion

We have introduced LocalCut, a method that uses maximal weighted graph cuts to find
modules and BPM motifs in high-throughput genetic interaction data. We have shown
that it is competitive in functional enrichment measures to other methods despite not
needing to consider physical interaction data as other methods do. We ran LocalCut
on different high-throughput genetic interaction datasets involving different sets of S.
cerevisiae genes, some generated with different technologies (E-MAP or SGA) and one
E-MAP dataset for S. pombe, and compared the resulting networks.

A recent paper of Jaimovich et al. tried to add directionality prediction to methods to
determine fault tolerance in genetic interaction networks [15]. More specifically, while
BPMs are often motivated by discussing two equally important, alternative, compen-
satory modules (termed bi-directional compensation), an alternative explanation could
be that one module is crucial for functions that compensate for the abnormal cellular
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state resulting from the loss of the other module (termed unidirectional compensation)
[21,4]. The work in [15] used a novel method of exploring phenotype responses to dif-
ferent conditions to attempt to discriminate between unidirectional and bi-directional
compensation; we do not duplicate their methods here. However, looking across the set
of BPMs produced by our methods and previous methods on the yeast chromosome
function genes as a group, we do find several complexes that appear again and again
in modules opposite different sets of genes. Could these particular complexes be agents
of such unidirectional compensation, i.e. possible global mechanisms of fault tolerance
of the cell? There are several intriguing clues that suggest that they might be. For ex-
ample, two of the most popular complexes that shows up in GO enrichment in multiple
BPMs, not just for us, but also in the E-MAP BPM sets and modules of Bandyopadhyay
et al. [2], and Kelley-Kingsford [16] are the Prefoldin complex, and a subunit of the
SWR1 complex consisting of genes ARP6, SWC3, SWC5, SWR1, VPS71, VPS72, and
YAF9. The Prefoldin complex is particularly intriguing as a global mechanism of fault-
tolerance because it is a chaperone; the effects of an alternative chaperone (HSP90) and
its ability to buffer difficult conditions in the cell has been recently described [28]. The
SWR1 complex is also intriguing because it is involved in chromatin remodeling and si-
lencing near telomeres [18], perhaps another way for the cell to compensate when other
modules go awry. For the Prefoldin complex, the genes GIM3, GIM4, GIM5, PAC10,
PFD1, and YKE2 appear in multiple BPMs for us, Bandyopadhyay et al. and Kelley-
Kingsford; an additional gene BUD27 annotated as being part of the Prefoldin complex
appears also in the BPMs generated by Bandyopadhyay et al., but not for LocalCut or
Kelley-Kingsford. The Prefoldin complex is completely missing from the BPMs when
we run LocalCut on the Boone et al. SGA dataset [9], but this appears to be a miss-
ing/corrupted data problem; in particular, they report no genetic interaction data at all
on two of the genes in the Prefoldin complex.

We looked at other complexes of size 3 or greater that appear in their entirety in our
and in other BPMs; for example the CAF-1 complex consisting of genes CAC2, MSI1
and RLF2 appears in everyone’s set of BPMs. Indeed, it has been suggested that CAF-1
participates in one of multiple redundant modules for chromatin assembly [1,12]. Op-
posite the module containing CAF-1, we almost always find parts of the HIR complex,
where the double mutants missing both CAF-1 and HIR1 result in a synergistic reduc-
tion in silencing at telomeres. Another complex that appears in our BPMs as well as
the BPMs of Boone et al. and Kelley-Kingsford (but not Bandyopadhyay et al.) is the
MRE11 complex, involved in DNA damage repair [10].

Finally, we consider an interesting example BPM that LocalCut finds in S. pombe.
Figure 1 shows the between-pathway interactions between the two modules; where the
stronger the edge, the more negative the interaction. In module 1 (on the left), all 14
genes and 6 of the 7 genes in module 2 are enriched for “response to DNA damage
stimulus” (GO:0006974). Some of the strongest negative edges come, in module 1,
from the 3 genes HUS1, RAD1, RAD9 that make up the checkpoint clamp complex;
a conserved heterotrimeric complex involved in DNA damage response [7] and from
CRB2, thought to be related to the important BRCAI breast-cancer gene in humans [6].
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5 Methods

5.1 The Graph Model

We model the E-MAP and SGA interactions as a weighted complete graph G, where
vertices represent genes participating in the E-MAP or SGA, and if i and j are vertices
in G, the edge eij is assigned a weight as follows:

1. If the E-MAP or SGA value for the genetic interaction of genes i and j is a negative
value (i.e. of the form −z, for some positive z ∈ R), then eij is assigned the weight
−z2.

2. If the E-MAP or SGA value for the genetic interaction of genes i and j is a positive
value (i.e. of the form z, for some positive z ∈ R), then eij is assigned the weight
z2.

3. If the E-MAP or SGA value for the genetic interaction of genes i and j is zero or
missing, then eij is assigned the weight 0.

5.2 The Algorithm

Consider an arbitrary bipartition (A, B) of the vertex set of G. For such a bipartition,
let Same(v) =

∑
i evi, for all vertices i that appear in the same subset of the partition

as v, and Opposite(v) =
∑

j evj , for all vertices j that appear in the opposite partition
to v. Call a vertex v unhappy if Same(v) < Opposite(v), otherwise call v happy. Let
flip(v) denote the operation that, starting with a bipartition (A, B), creates a bipartition
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Fig. 1. A sample BPM generated by LocalCut from E-MAP data in S. pombe. Black lines rep-
resent negative weights (aggravating interactions) in the E-MAP data and red lines represent
positive weights (alleviating interactions) in the data. The width of the line directly corresponds
to how aggravating or alleviating the interaction is between the pair of genes.
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that is identical in all ways, except v switches sides; that is, if v was in A, it is now
placed in B, and vice versa.

Consider the following subroutine Weighted-Flip:

foreach vertex u do
Assign u uniformly at random with equal probability to set A or set B

end
while there exists at least one unhappy vertex do

Choose v at random from the set of unhappy vertices
flip (v)

end
output bipartition (A, B)

Theorem 1. The subroutine terminates, and results in a bipartition (A,B) where all
vertices are happy. Furthermore, if E is the set of edges with endpoints either both in
A or both in B, and F is the set of edges with one endpoint in each of A and B, then
when the subroutine terminates,

∑
e∈E w(e) ≥

∑
f∈F w(f).

Proof. It is first shown that there is a minimum positive amount, ε, dependent on the
set of edge weights W , by which the weight going across the partition must decrease
in any flip of an unhappy vertex. This is because for all partitions of the vertex set
into two sets, we can look at the weight going across the partition, and since this is a
(albeit large) finite set, there is a positive δ which is the minimum nonzero difference
between the weights going across any two of these sets, and ε is clearly bigger than or
equal to δ which is greater than 0. As the total sum of the absolute values of all the
weights on all the edges is certainly an upper bound on the maximum negative weight
that can cross the partition, and any flip decreases the amount of weight crossing the
partition by at least a positive amount ε, the algorithm terminates. When the algorithm
terminates, if N(v) denotes the edges adjacent to v we have for every vertex v that,∑

e∈{E∪N(v)} w(e) ≥
∑

f∈{F∪N(v)} w(f); otherwise we could flip v. Thus summing
over each edge twice (once for each endpoint) we get

∑
e∈E 2w(e) ≥

∑
f∈F 2w(f),

and thus
∑

e∈E w(e) ≥
∑

f∈F w(f). �

We note that this reduces exactly to the procedure Flip in the work of Brady et al. [5]
when the weights are 0 or 1 and the graph is the unweighted graph H instead of the
graph G (but all the inequality signs are reversed because all edges are given weight -1
instead of 1). Thus we have replaced a local search for maximal cuts in an unweighted
graph with a version for weighted graphs, with both positive and negative edge weights.

While the above theorem proves convergence, it does not show convergence in poly-
nomial time. In fact, the time complexity to convergence time for this algorithm is
equivalent to a well-known open problem in combinatorial optimization. In particular,
a partition of the vertices of a weighted graph such that all vertices are happy is called
a local max cut of the graph. In the special case that the graph is cubic (i.e. all vertices
have degree 3), Loebl [19] showed a local max cut can be found in polynomial time
if all weights are nonnegative (using a more complicated algorithm than the one we
describe above); a polynomial time algorithm for cubic graphs allowing negative edge
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weights was later found by Poljak [22]. For general graphs, convergence in the worst
case is conjectured to be exponential time, because the problem is PLS-Complete, as
shown by Shäeffer and Yannakakis [25].

By squaring the weights in step 1 of our algorithm, however, the absolute values of all
nonzero weights greater than 1 are pulled away from 0, while weights with an absolute
value less than 1 are pulled closer to zero. In practice, this speeds convergence, because
any vertex that changes sides, will result in a larger gain in weight than with many
weights close to 0. In practice, we found that this squaring step sufficed to allow us
to run on the E-MAP and SGA data and reach convergence in a reasonable amount of
time. To generate a bipartition it takes less than 20 minutes per gene. Since this is highly
parallelizable to generate the potential modules for an entire dataset is very fast.

Note that the algorithmic procedure Weighted-Flip used to generate the local max cut
is randomized, and it will typically generate many different local max cuts. However, if
there is a large bipartite subgraph with favorable weights, it will tend to show up as a
bipartite subgraph in many if not most of the local cuts, whereas subgraphs that are not
naturally weighted bipartite are likely not to be conserved in all the different local cuts.
We exploit this to identify such subgraphs and generate candidate BPMs.

Definition 1. Given a gene v in G, run Weighted-Flip M times on G. Label each gene
with the number of times it appears in the same side as v in one of the M sets (A,B)
generated this way, as well as with the number of times it appears on the opposite side
from v. If gene w appears consistently (at least C% of the time) in the same partition
as v, or consistently in the opposite partition from v, then w is included in the stable
bipartite subgraph of v; otherwise w is not included. The stable bipartite subgraph of
v in G, then, is the subgraph induced by all included vertices, where v along with the
vertices appearing consistently on the same side as v form one partition, and the rest
of the included vertices form the other.

For each v, we output v’s stable bipartite subgraph as one of our putative between-
pathway models. Note, however, that different runs of the Weighted-Flip procedure
may generate different sets of results because of the random choices in the initial parti-
tion configuration and the choice of the unhappy node that needs to be flipped at each
iteration step. However, we set M and C large enough so that the set of BPMs reported
will be fairly consistent, regardless of the random choices made by our algorithm. In
particular, we determined empirically that setting M = 250 and C = 0.90 gave rel-
atively stable subgraphs of genes. We varied the values of C from from 0.70 to 0.95.
Not surprisingly, we found that the greater values produced more consistent results. We
chose 0.90 to try to maximize stability without deleting potential BPMs. We chose M
high enough to ensure consistent results.

Using our algorithm, different genes v may generate the same or highly similar puta-
tive BPMs. Thus we then prune our set in order to report a collection of non-redundant
BPMs as follows.

5.3 Removing BPM Redundancies

As described in the previous section, each gene’s stable bipartite subgraph becomes a
putative BPM. If the BPM generated is a true instance of compensatory modules, we
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would expect our algorithm to produce the same or similar BPM when run on another
gene in the BPM. Because of the natural noise in the dataset, these BPMs are not ex-
act matches. To fairly compare our results with alternate studies, we must remove the
redundant, highly-overlapping BPMs from our set. We do this as follows. We first sort
all the BPMs created by LocalCut according to their interaction weight I , where I is
calculated by summing the edge weights of all genetic interactions within the two mod-
ules of the BPM, minus the sum of the weights of all interactions appearing between
the two modules of the BPM, all divided by the number of genes in the entire BPM.

I =
Σ( interactions within each module ) − Σ( interactions between two modules)

number of genes in BPM

Starting with the BPM with the largest interaction weight, we add a BPM to our final
output set if its Jaccard index is less than the fixed threshold (set at .66 for these results)
from every previously added BPM.
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25. Schäffer, A., Yannakakis, M.: Simple local search problems that are hard to solve. SIAM J.
Comput. 20, 56–87 (1991)



Inferring Mechanisms of Compensation from E-MAP and SGA Data 167

26. Schuldiner, M., Collins, S.R., Thompson, N.J., Denic, V., Bhamidipati, A., Punna, T.,
Ihmels, J., Andrews, B., Boone, C., Greenblatt, J.F., Weissman, J.S., Krogan, N.J.: Ex-
ploration of the function and organization of the yeast early secretory pathway through an
epistatic miniarray profile. Cell 123(3), 507–519 (2005)

27. Stark, C., Breitkreutz, B.-J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID:
a general repository for interaction datasets. Nucleic Acids Research 34(suppl 1), D535–
D539 (2005)

28. Taipale, M., Jarosz, D., Lindquist, S.: HSP90 at the hub of protein homeostasis: emerging
mechanistic insights. Nature Reviews Molecular Cell Biology 11, 515–528 (2010)

29. Tong, A.H.Y., Lesage, G., Bader, G.D., Ding, H., Xu, H., Xin, X., Young, J., Berriz, G.F.,
Brost, R.L., Chang, M., Chen, Y., Cheng, X., Chua, G., Friesen, H., Goldberg, D.S., Haynes,
J., Humphries, C., He, G., Hussein, S., Ke, L., Krogan, N., Li, Z., Levinson, J.N., Lu, H.,
Menard, P., Munyana, C., Parsons, A.B., Ryan, O., Tonikian, R., Roberts, T., Sdicu, A.-M.,
Shapiro, J., Sheikh, B., Suter, B., Wong, S.L., Zhang, L.V., Zhu, H., Burd, C.G., Munro,
S., Sander, C., Rine, J., Greenblatt, J., Peter, M., Bretscher, A., Bell, G., Roth, F.P., Brown,
G.W., Andrews, B., Bussey, H., Boone, C.: Global mapping of the yeast genetic interaction
network. Science 303(5659), 808–813 (2004)

30. Ulitsky, I., Krogan, N., Shamir, R.: Towards accurate imputation of quantitative genetic
interactions. Genome Biology (January 2009)

31. Ulitsky, I., Shamir, R.: Pathway redundancy and protein essentiality revealed in the
S. cerevisiae interaction networks. Molecular Systems Biology 3(104) (2007), PMCID:
PMC1865586

32. Ulitsky, I., Shlomi, T., Kupiec, M., Shamir, R.: From E-MAPs to module maps: dissecting
quantitative genetic interactions using physical interactions. Molecular Systems Biology
(January 2008)



IsoLasso: A LASSO Regression Approach to

RNA-Seq Based Transcriptome Assembly

(Extended Abstract)

Wei Li1, Jianxing Feng2, and Tao Jiang1,3

1 Department of Computer Science and Engineering,
University of California, Riverside, CA

2 College of Life Science and Biotechnology, Tongji University, Shanghai, China
3 School of Information Science and Technology, Tsinghua University, Beijing, China

{liw,jiang}@cs.ucr.edu, feng@tongji.edu.cn

Abstract. The new second generation sequencing technology revolu-
tionizes many biology related research fields, and posts various compu-
tational biology challenges. One of them is transcriptome assembly based
on RNA-Seq data, which aims at reconstructing all full-length mRNA
transcripts simultaneously from millions of short reads. In this paper, we
consider three objectives in transcriptome assembly: the maximization
of prediction accuracy, minimization of interpretation, and maximization
of completeness. The first objective, the maximization of prediction ac-
curacy, requires that the estimated expression levels based on assembled
transcripts should be as close as possible to the observed ones for ev-
ery expressed region of the genome. The minimization of interpretation
follows the parsimony principle to seek as few transcripts in the pre-
diction as possible. The third objective, the maximization of complete-
ness, requires that the maximum number of mapped reads (or “expressed
segments” in gene models) be explained by (i.e., contained in) the pre-
dicted transcripts in the solution. Based on the above three objectives,
we present IsoLasso, a new RNA-Seq based transcriptome assembly tool.
IsoLasso is based on the well-known LASSO algorithm, a multivariate
regression method designated to seek a balance between the maximiza-
tion of prediction accuracy and the minimization of interpretation. By
including some additional constraints in the quadratic program involved
in LASSO, IsoLasso is able to make the set of assembled transcripts
as complete as possible. Experiments on simulated and real RNA-Seq
datasets show that IsoLasso achieves higher sensitivity and precision si-
multaneously than the state-of-art transcript assembly tools.

1 Introduction

The second generation sequencing technology has become an increasingly impor-
tant tool in biological and biomedical research areas, such as individual genome
sequencing [1], gene expression level estimation [2], comparative genomics [3],
etc. RNA-Seq, a technology to study transcriptome via the second generation
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sequencing, was first introduced in a series of studies in 2008 [2,4,5,6,7,8,9],
and has quickly become widely accepted as a fundamental tool for transcrip-
tome research [10,11,12,13]. The revolutionary new sequencing technology al-
lows RNA-Seq to lower the sequencing cost and increase the data throughput
substantially, but it also posts many challenging computational biology prob-
lems, one of which is transcriptome assembly and abundance estimation from
RNA-Seq reads. A variety of new algorithms and tools have been developed for
this problem [14,15,16,17,18,19]. Some splicing site discovery tools, for example
TopHat [19] and SpliceMap [20], identify new alternative splicing events by ex-
ploring RNA-Seq reads that span different parts of the reference genome under
study. Some de novo assembly tools, such as AbySS [14], try to assemble new
transcripts solely from RNA-Seq reads. Other assembly tools (including Cuf-
flinks [16], Scripture [17] and IsoInfer [18]) map reads to the reference genome
and build transcript models (or isoforms) from these mapped reads.

Among these tools, IsoInfer [18] enumerates all possible “valid” isoforms and
uses a quadratic program (QP) to estimate the expression levels of a given set
of isoforms. IsoInfer then chooses the best subset of valid isoforms such that the
estimated abundance of every “expressed segment” of the reference genome (e.g.,
an exon) is proportional to the observed reads falling into the segment. On the
other hand, Cufflinks [16] assembles isoforms using a parsimony strategy, i.e.,
it attempts to identify the minimum number of isoforms to cover all the reads.
To do this, Cufflinks decomposes the “overlap graph” of compatible reads into
a smallest path cover, and then calculates the expression levels of the isoforms
(i.e., paths in the cover) using the probabilistic model proposed in [21].

The strategies that IsoInfer and Cufflinks adopted correspond to two different
model selection principles: prediction accuracy and interpretation [22]. IsoInfer
selects isoforms to maximize the prediction accuracy, i.e., to minimize the error
or discrepancy between the predicted and observed expression levels in all ex-
pressed segments. IsoInfer employs a search algorithm similar to the “best subset
variable selection” algorithm [23] to find the best subset of isoforms. However,
the huge search space prevents the algorithm from doing a thorough search, and
many heuristic restrictions must be applied to make the search tractable. On the
other hand, Cufflinks minimizes interpretation, i.e., the number of variables (or
isoforms) that are required to explain all the mapped reads. Here, the prediction

Table 1. Transcriptome assembly objectives of each algorithm. Although Cufflinks
has a transcript abundance estimation step, the prediction accuracy is not considered
explicitly during the assembly process. Also, theoretically both Cufflinks and IsoLasso
take completeness into consideration, but in practice they may not fully guarantee it
and thus are marked “partially” in the table.

Algorithm Prediction accuracy Interpretation Completeness

IsoInfer Yes Partially Yes
Cufflinks No Yes Partially
Scripture No No Yes
IsoLasso Yes Yes Partially
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accuracy is not considered explicitly during the transcriptome assembly process.
By defining a “partial order” between reads, Cufflinks filters out “uncertain”
paired-end reads which may result in a sub-optimal path cover in the solution,
or miss some alternative splicing events. Finally, Scripture [17] reconstructs all
possible isoforms by enumerating all possible paths in the “connectivity graph”.
This approach may lead to many incorrect isoforms for complex genes with a
large number of exons, since the number of paths may be huge for such gene
models.

Another important objective in transcriptome assembly is completeness, which
requires that all exons (and exon junctions) appear in at least one isoform in the
solution (as done in IsoInfer [18]), or all mapped reads be contained in at least
one isoform (as done in Cufflinks [16]). In IsoInfer, the completeness is achieved
by solving a set cover instance that covers all expressed segments and exon
junctions. Since all the reads represented in the overlap graph are partitioned
into disjoint paths in Cufflinks, they are guaranteed to be supported by at least
one isoform (i.e., path). However, some “uncertain” paired-end reads (i.e., reads
that cannot be included in partial order and thus absent in the overlap graph)
may not be covered by the solution. Scripture adopts a conservative approach
to enumerate all possible paths in its connectivity graph, which is guaranteed to
cover all expressed segments and exon junctions. Like Cufflinks, the prediction
accuracy is not considered explicitly during the transcript assembly process of
Scripture. Moreover, retaining all possible isoforms clearly leads to a bad inter-
pretation. Table 1 lists all the principles (or objectives) that IsoInfer, Cufflinks
and Scripture abide by in the transcript assembly process.

In this paper, we present a new isoform assembly algorithm, IsoLasso, which
balances prediction accuracy, interpretation and completeness. IsoLasso uses the
LASSO algorithm, or Least Absolute Shrinkage and Selection Operator [24],
which is a shrinkage least squares method in statistical machine learning. By
adding an L1 norm penalty term to the least squares objective function, LASSO
achieves sparsity by setting the expression levels of unrelated isoforms to zero,
thus balancing both prediction accuracy and interpretation. The LASSO algo-
rithm is widely applied in many computational biology areas, such as genome-
wide association analysis [25,26], gene regulatory network [27], microarray data
analysis [28], etc. In IsoLasso, we expand the quadratic programming problem of
LASSO to take completeness into consideration. Our experiments demonstrate
that IsoLasso runs efficiently and achieves overall higher sensitivity and precision
than IsoInfer, Cufflinks and Scripture.

The rest of this paper is organized as follows. Section 2.1 presents our algo-
rithm for generating (or enumerating) candidate isoforms and its relationship
to minimum path covers used in Cufflinks [16]. These candidate isoforms will
be fed to our LASSO algorithm described in Section 2.2 for estimating isoform
expression levels (or, equivalently, for inferring expressed isoforms). Section 2.3
expands the basic LASSO approach to take completeness into consideration.
Experimental results are presented in Section 3, which include comparisons be-
tween IsoLasso, IsoInfer, Cufflinks, and Scripture on simulated and real datasets.
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Fig. 1. (Left) Removal of “uncertain” reads may cause splicing junctions undetected
in Cufflinks. Three paired-end reads, p1, p2 and p3, concern different splicing junctions.
Both pairs (p1, p2) and (p2, p3) are compatible, but the pair (p1, p3) is not. Removing
any of these reads will cause one or more junctions undetected. (Right) “Infeasible”
paths in the connectivity graph. In the example above, there are four possible combina-
tions of segments: ACD, ACE, BCD, and BCE. However, ACE and BCD are infeasible
since they cannot be assembled from the mapped paired-end reads.

Section 4 concludes the paper. For the convenience of the reader, we defer some
mathematical definitions and the proofs of theorems to the Appendix.

2 Methods

2.1 Enumerating Candidate Isoforms

IsoInfer [18], Scripture [17] and Cufflinks [16] enumerate candidate isoforms in
different ways. IsoInfer, assuming that expressed segment (or exon) boundaries
in a gene are given, enumerates all possible combinations of segments. Note that
it is possible that some lowly expressed segment are not hit by short reads and
thus many of the isoforms enumerated by IsoInfer might have very low expression
levels. Scripture enumerates all possible maximal paths in a connectivity graph;
but some of these isoforms may be “infeasible” because they cannot be assembled
from the mapped reads (Figure 1 (right) shows such an example). Cufflinks tries
to build an overlap graph from partially ordered reads, and assembles putative
transcripts by decomposing the overlap graph into a parsimonious path cover.
However, a strict partial order between reads is required here. Since the actual
sequence between the ends of each paired-end read is unknown, Cufflinks has to
exclude some paired-end reads (called uncertain reads) to maintain the partial
order. Removing uncertain reads may lead to two potential problems: (1) the
path cover solution is actually sub-optimal and (2) some alternative splicing
events are missed, if the reads including these events are removed. For instance,
Figure 1 (left) provides an example that removing such “uncertain” reads leaves
some splicing junctions undetected. Note that uncertain reads should be treated
separately from repeat sequences or incorrectly mapped reads.

Here, we describe our method of enumerating isoforms based on the connec-
tivity graph ([17]) in Algorithm 1, from which the enumerated isoforms will be
the set of candidate isoforms to be considered in the LASSO algorithm. The
algorithm first enumerates isoforms from the connectivity graph as in [17], and
then uses two additional steps to remove isoforms that are impossible to assem-
ble. We will prove some important properties of Algorithm 1: if there are no
“uncertain” reads, then every isoform output by Algorithm 1 can be assembled
from a maximal path in the overlap graph given in [16]. Moreover, the isoforms
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enumerated by Algorithm 1 form a superset of all possible maximal paths in
the overlap graph. In other words, our LASSO algorithm in general considers
more isoforms than Cufflinks in the transcript assembly process. Before giving
a detailed description of this algorithm and proofs of these properties, we first
briefly review some necessary notations first introduced in [16] and [17].

A gene sequence S of length n is an ordered character sequence S = S1S2 · · ·Sn,
Si ∈ {A, T, G, C}. Define B(n) as the set of binary vectors of length n. For a vector
b ∈ B(n), bi indicates the ith element of vector b. For a subset U ⊂ B(n), define
OR(U) = b ∈ B(n) with bi = 1 iff there is an element c ∈ U such that ci = 1.
For a binary vector b ∈ B(n), define the start (or end) of b as the first (or last)
non-zero index of b, and is denoted as l(b) (or u(b)). Hence, each isoform on gene
S could be represented as a binary vector b ∈ B(n) with bi = 1 iff the nucleotide
Si is included in this isoform. A single-end or paired-end read mapped to S could
also be represented as an element b ∈ B(n) with bi = 1 iff this read contains Si.
A paired-end read is denoted as p = (b1, b2), where b1 and b2 are the two mapped
single-end reads, and l(b1) < l(b2). Given a set of single-end or paired-end reads
R, the coverage of Si, or cvg(Si), is the number of reads b with bi = 1.

A single-end read b is compatible with an isoform t, denoted as b ∼ t, iff bi = ti
for l(b) ≤ i ≤ u(b). Similarly, a paired-end read p = (b1, b2) is compatible with
isoform t, denoted as p ∼ t, iff b1 ∼ t and b2 ∼ t. Given a set of single-end
(or paired-end) reads R mapped to gene S, the connectivity graph (CG) [17]
is a directed acyclic graph (DAG) G = (V, E), where V = {v1, v2, . . . , vn} and
e = (vi, vj) ∈ E iff one of the following conditions is true:

Condition 1. There exists a single-end read or an end of some paired-
end read b ∈ R such that bi = 1, bj = 1, and bk = 0,
∀i < k < j;

Condition 2. cvg(Si) > 0, cvg(Sj) > 0, and cvg(Sk) = 0, ∀i < k < j.

Note that Condition 2 is designed to connect two mapped reads separated by a
coverage gap. Based on the definition of CG, a path h in the CG could be readily
treated as an isoform by defining the isoform t as ti = 1 iff vi ∈ h. Therefore, a
read b is compatible with h (denoted as b ∼ h) iff b ∼ t. The isoform enumeration
algorithm depicted in Algorithm 1 takes the connectivity graph as the input, and
outputs a set of maximal candidate isoforms T . The algorithm consists of three
phases, Enumeration, Filtration and Condensation. In the Enumeration phase,
all maximal paths in the connectivity graph are enumerated. However, some of
these isoforms are “infeasible” in the sense that they cannot be assembled from
the mapped reads (see Figure 1 (right) for an example). In this case, the second
phase (i.e., the Filtration phase) is required to remove such isoforms. For each
isoform t generated in the Enumeration phase, the Filtration phase first finds
all reads that are compatible with t, and then checks if t can be assembled from
these compatible reads (it replaces t otherwise). Finally, the Condensation phase
removes all the isoforms that are not maximal candidates.

Cufflinks assembles transcripts based on the overlap graph (OG), which is is
constructed from a set of mapped single-end or paired-end reads after remov-
ing uncertain reads and extending reads to include their nested reads [16]. It
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input : A CG G = (V, E), and a set of mapped single-end or paired-end reads
R

output: A set of isoforms T
begin

Enumeration:
T ← ∅
for vj ∈ V with indeg(vj) = 0 do

Enumerate all possible maximal paths P that begin at vj and end at
some vk with outdeg(vk) = 0
T ← T ∪ P

Filtration:
for t ∈ T do

Let t′ = OR({b ∈ R|b ∼ t})
T ← (T\{t}) ∪ {t′}

Condensation:
for t ∈ T do

Let Rt = {b ∈ R|, b ∼ t}
for t′ ∈ T\{t} do

Let Rt′ = {b ∈ R|, b ∼ t′}
if Rt ⊂ Rt′ then

T ← (T\{t})

end
Algorithm 1. Isoform Enumeration

generates transcripts by partitioning the overlap graph into a minimum path
cover, where a path cover is a set of disjoint paths in the overlap graph such
that every read appears in one and only one path. A minimum path cover is
a path cover with the minimum number of paths. The following theorems and
corollary state the relationship between the set of isoforms generated by Algo-
rithm 1 and the set of transcripts that could be constructed from the overlap
graph. Formal definitions of uncertain reads, nested reads and the overlap graph,
and complete proofs of these theorems are given in the Appendix. Let us consider
a fixed gene.

Theorem 1. Suppose that R contains no uncertain or nested reads. If we denote
the set of isoforms constructed by Algorithm 1 as T and the set of the isoforms
formed by enumerating maximal paths on the OG (constructed from R) as TOG,
then T = TOG.

Corollary 1. If R contains no uncertain or nested reads, then for every min-
imum path cover H of the OG, there exists a set of maximal isoforms T ′ ={
t1, . . . tm

}
⊂ T , such that m = |H | and for every read b on a path h ∈ H,

b ∼ ti, 1 ≤ i ≤ m.

Note that each nested read r in R is removed in [16] by extending the reads that
r is nested in. On the other hand, if there are uncertain reads in R, Algorithm
1 may generate some isoforms that do not correspond to any paths on the OG
when these uncertain reads cover some unique splicing junctions as shown in
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Figure 1 (left). The following theorem states the relationship between maximal
paths on the OG and the isoforms generated by Algorithm 1 when uncertain
reads are present in R.

Theorem 2. Suppose that no reads in R are nested and denote the set of iso-
forms constructed by Algorithm 1 as T . For every maximal path h on the OG
constructed by removing uncertain reads in R, T contains an isoform which is
compatible with every read on the path h.

2.2 The LASSO Approach of Estimating Isoform Expression Levels

The Mathematical Model of RNA-Seq. Typical alternative splicing (AS)
events include alternative 5′ (or 3′) splice sites, exon skipping, intron retention,
mutually exclusive exons, etc., but all these events can be dealt with in a unified
mathematical model where a gene is partitioned into a sequence of expressed
segments (or simply segments) based on exon-intron boundaries [18]. More pre-
cisely, a gene is divided into a set of segments such that every segment is a
continuous region in the reference genome uninterrupted by exon-intron bound-
aries. Then, a given set of candidate isoforms T = {t1, t2, . . . , tN} for a gene
can be represented as a binary matrix A = (aij)N×M , where M is the number
of segments of the gene. Each isoform corresponds to a row in this matrix such
that aij = 1 if isoform ti includes the jth segment, and 0 otherwise.

If we assume that a read is uniformly sampled from expressed isoforms, then
the number of reads falling into each segment follows a binomial distribution,
which can be approximated by a Poisson distribution [21] or Gaussian distribu-
tion [18] if the number of sequenced reads is large and the length of segments
is small compared with the length of the reference genome. As a result, the
expected number of reads falling into the ith segment, ri, is proportional to
both the segment length li and the sum of the expression levels of all isoforms
containing the ith segment [21,18]:

ri = li

N∑
j=1

ajixj (1)

where xj , the expected number of reads per base in isoform tj , represents the
expression level of tj . Note that the expression level of an isoform can also
be measured as RPKM (i.e., Reads Per Kilobase of exon model per Million
mapped reads, [2]). If there are totally E mapped reads, then an isoform tj with
expression level xj has an expression level (in RPKM) 109xj/E.

Notice that compared with the traditional multivariate regression model, the
intercept is zero since we expect no read falling into the ith segment, if none of
the isoforms contain the segment, or if the expression levels of these isoforms are
all zero.

We observe that the above model simplifies the real situation. Because of
the sequencing errors and repeat sequences in the reference genome, it is some-
times hard to decide whether a read really comes from a certain gene or exon
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(i.e., the so called multi-read problem, which has been studied recently in [29]).
Recent studies on RNA-Seq data also show that the above binomial model of
read distribution may be an over-simplification [30,31]. Some more complicated
approaches have been proposed instead, such as using generalized Poisson dis-
tribution [32], considering the locality of bases [30], applying “effective length
normalization” [31,33], etc. In particular, the “effective length normalization”
model can be easily incorporated in our model, by replacing the segment length
li in Equation (1) with the “effective” segment length l′i, where the length is
calibrated by considering repeat sequences in the reference genome [33].

The LASSO Approach. Given all mapped short reads and candidate isoforms
of a gene, the expression levels X = {x1, . . . xN} of the candidate isoforms can
be estimated by minimizing the following residual sum of squares:

X∗ = argmin
X

f(X) =
M∑
i=1

(
ri

li
−

N∑
j=1

ajixj)2 (2)

with respect to the restrictions that xj ≥ 0 for all 1 ≤ j ≤ N . However, such an
approach may have several potential problems. For example, for a large value of
N and a small value of M , the solution is not unique. It is also possible that
a large number of estimated expression levels are small non-zero values which
damage the interpretability. To address this latter problem, IsoInfer enumerates
combinations of isoforms and chooses a minimum set of isoforms such that the
error

∑M
i=1(

ri

li
−
∑N

j=1 ajixj)2 is in a specified range. To deal with an exponential
number of subsets of candidate isoforms, IsoInfer has to adopt several heuristics
to make the algorithm practical. Also, some “shrinkage” methods which restrict
the scale of X can be used, like ridge regression [34], LASSO (or its variations
like LARS [35], elastic-net [36], etc).

To achieve the minimization of interpretation without going through the ex-
haustive enumeration step in IsoInfer, we propose a new algorithm, called Iso-
Lasso, based on LASSO. The LASSO approach minimizes the following objective
function which seeks a balance between minimizing the overall error and mini-
mizing the number of expressed isoforms:

f(X) =
M∑
i=1

(
ri

li
−

N∑
j=1

ajixj)2 + λ

N∑
j=1

|xj | (3)

The sparsity of variables, i.e., minimizing the number of isoforms with non-
zero expression levels, is obtained through the addition of an L1 normalization
term, λ

∑N
j=1 |xj |, to the original sum of squares. Since the expression level of

each isoform should be non-negative, the above objective function leads to the
following quadratic programming (QP) problem:

min f(X) =
M∑
i=1

(
ri

li
−

N∑
j=1

ajixj)2 + λ

N∑
j=1

xj (4)

s.t. xj ≥ 0, 1 ≤ j ≤ N



176 W. Li, J. Feng, and T. Jiang

which is equivalent to the following “constrained form” [24]:

min f(X) =
M∑
i=1

(
ri

li
−

N∑
j=1

ajixj)2 (5)

s.t. xj ≥ 0, 1 ≤ j ≤ N

N∑
j=1

xj ≤ γ

The parameter λ (or γ) controls the number of isoforms with non-zero expression
levels in the solution. In the constrained form of LASSO (Equation (5)), a larger
value of γ will exert less restriction on the values of X , which prefer a smaller
sum of squares but more non-zero expression levels. In practice, a proper value
of γ is selected via the “regularization path” [37], where several values of γ,
γ1, . . . γk, are examined. If the values of the objective function in Equation (5)
and the number of non-zero variables are e1, . . . ek and L1, . . . Lk, respectively,
in these trials, then we define

i∗ = argmin
1≤i≤k

{Li : ei ≤ β ∗ min {e1, . . . ek}} (6)

and select γ = γi∗ , where β is a user-controlled parameter.

2.3 Completeness Requirement

To ensure completeness, i.e., each segments (or junction) with mapped reads
covered by at least one isoform, the sum of expression levels of all isoforms that
contain this segment (or junction) should be strictly positive. Formally, we add
additional constraints to the above QP:

min f(X) =
M∑
i=1

(
ri

li
−

N∑
j=1

ajixj)2 (7)

s.t. xj ≥ 0, 1 ≤ j ≤ N

N∑
j=1

xj ≤ λ

N∑
j=1

xjaji ≥ p, if segment i has mapped reads (8)

N∑
j=1

xjajiajk

k−1∏
h=i+1

(1 − ajh) ≥ p, if the junction between segments

i and k contains mapped reads (9)



IsoLasso: A LASSO Regression Approach to RNA-Seq 177

where p is a small positive threshold value to be decided empirically. The con-
straints (Equation (8) and Equation (9)) will ensure that all segments and junc-
tions with mapped reads be covered by isoforms with positive expression levels
in the solution of this QP.

The above QP problem can be solved by any standard QP solver, such as the
“quadprog” function in Matlab [38]. In practice, however, if a gene contains too
many segments and junctions, then there will be a large number of constraints
involved, which make the above QP impractical to solve. As a compromise, we
introduce the above constraints only for segments (or junctions) with expression
levels above a certain threshold.

3 Experimental Results

3.1 Simulated Mouse RNA-Seq Data

We use UCSC mm9 gene annotation to generate simulated single-end and paired-
end reads. An in silico RNA-Seq data generator, Flux Simulator [39], is used to
generate simulated reads. Flux Simulator first randomly assigns an expression
level to every isoform in the annotation, and then simulates the library prepara-
tion process in a typical RNA-Seq experiment (including reverse transcription,
fragmentation, size selection, etc). After that, reads are generated in the se-
quencing step. Various error models can be incorporated in these steps; but in
our simulations, only error-free reads are simulated to compare the performance
of different algorithms in the ideal situation.

The distribution of the expression levels of all 49409 isoforms in the UCSC
mm9 gene annotation is plotted in Figure 2 (A).
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Fig. 2. The distribution of simulated isoform expression levels (A), and the expression
level estimation accuracies of IsoLasso (B), IsoInfer without TSS/PAS (C), Cufflinks
(D), and Scripture (E). Note that Scripture computes a “weighted score” instead of
RPKM value for each predicted isoform.
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Matching Criteria. All assembled isoforms (referred to as “candidate iso-
forms”) are matched against all known isoforms in the annotation (referred to
as “benchmark isoforms”). Two isoforms match iff:

1. They include the same set of exons; and
2. All internal boundary coordinates (i.e., all the exon coordinates ex-

cept the beginning of the first exon and the end of the last exon) are
identical.

Two single-exon isoforms match iff the overlapping area occupies at least 50%
the length of each isoform.

Following [18], we use sensitivity, precision and effective sensitivity to evalu-
ate the performance of different programs. Sensitivity and precision are defined
as follows: if K out of M benchmark isoforms match K ′ out of N candidate
isoforms, then

sensitivity = K/M (10)
precision = K ′/N (11)

Note that several candidate isoforms may match the same benchmark isoform.
Effective sensitivity is calculated based on the isoforms satisfying Condition

I defined in [18]. Isoforms satisfying Condition I are those with all segment
junctions covered by at least one short read. If there are S benchmark isoforms
satisfying Condition I and K of them are matched, then

effective sensitivity = K/S (12)

Intuitively, isoforms satisfying Condition I are those that are relatively easy to
predict, since all their segment junctions are covered by short reads. It is shown
in [18] that an isoform with a higher expression level is more likely to satisfy this
condition.

3.2 Comparisons between IsoLasso, IsoInfer, Cufflinks, and
Scripture

Sensitivity, precision and effective sensitivity. In this section, we use the
sensitivity, precision and effective sensitivity defined above to compare IsoLasso
with the most recent versions of IsoInfer (version V0.9.1, downloaded from web-
site http://www.cs.ucr.edu/~jianxing/IsoInfer.html), Cufflinks (version
0.9.1, downloaded from website http://cufflinks.cbcb.umd.edu), and Scrip-
ture (beta version, downloaded from website http://www.broadinstitute.org/
software/scripture/home). We use TopHat [19] to map all simulated short
reads with multi-reads discarded. Then, the read mapping information serves
as the input for all four programs. Since IsoInfer is based on the assumption
that the boundaries of all genes and exons are known, we infer exon bound-
aries from mapped junction reads using TopHat and infer gene boundaries by
clustering overlapping mapped reads. Note that IsoInfer is actually designed to
take advantage of any known transcription start site and poly-A site (TSS/PAS)

http://www.cs.ucr.edu/~jianxing/IsoInfer.html
http://cufflinks.cbcb.umd.edu
http://www.broadinstitute.org/software/scripture/home
http://www.broadinstitute.org/software/scripture/home
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Fig. 3. Sensitivity (left), precision (middle) and effective sensitivity (right) on single-
end reads

20M 40M 60M 80M 100M
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of paired−end reads

S
en

si
tiv

ity

 

 

IsoLasso
IsoInfer without TSS/PAS
Cufflinks
Scripture

20M 40M 60M 80M 100M
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of paired−end reads

P
re

ci
si

on

 

 

IsoLasso
IsoInfer without TSS/PAS
Cufflinks
Scripture

20M 40M 60M 80M 100M
0.5

0.6

0.7

0.8

0.9

1

Number of paired−end reads

E
ffe

ct
iv

e 
se

ns
iti

vi
ty

 

 

IsoLasso
IsoInfer without TSS/PAS
Cufflinks
Scripture

Fig. 4. Sensitivity (left), precision (middle) and effective sensitivity (right) on paired-
end reads

information, although it also works without such information. Since the other
three programs do not use the TSS/PAS information, neither does IsoInfer use
such information in the comparison.

Figure 3 and Figure 4 plot the sensitivity, precision and effective sensitiv-
ity using various numbers of single-end and paired-end reads, respectively. On
single-end reads, all transcriptome assembly tools achieve a higher sensitivity
and precision as more reads are used for the assembly. Among them, IsoLasso
outperforms all other programs with respect to all three criteria. This is perhaps
because IsoLasso is able to maintain a good interpretation by filtering out many
lowly expressed false predictions (which leads to a high precision), while keep-
ing highly expressed isoforms and a high effective sensitivity. Scripture seems
to benefit the most when more reads are available. Also, IsoInfer exhibits a
sharp increase in precision from less than 20% to more than 50%, at the cost of
decreased effective sensitivity (by about 10%).

On paired-end reads, IsoLasso also achieves the best precision and sensitivity
as well as a good balance between precision and effective sensitivity. However,
it is surprising to see that when the number of paired-end reads increases from
20M to 100M, a less than 10% increase in sensitivity and precision is observed
for all the algorithms. Also, none of the algorithms have a significant increase
in effective sensitivity. In fact, both Cufflinks and IsoInfer see their effective
sensitivities decreased a bit when more single-end and paired-end reads are used.
This is because more benchmark isoforms would satisfy Condition I of [18] as
the sequencing depth increases. In this case, more isoforms are expected to be
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expressed for each gene, which result in a more complicated overlap graph for
Cufflinks and a larger search space for IsoInfer.

Cufflinks reaches a high precision by filtering out many lowly expressed iso-
forms, but this sacrifices the effective sensitivity. On the other hand, Scripture
achieves the highest effective sensitivity by enumerating all possible paths in the
connectivity graph, but its precision is low since many of the paths are false
positives.

Expression Level Estimation. All programs estimate the expression levels of
predicted isoforms using different measures. Both IsoLasso and IsoInfer estimate
expression levels in RPKM [2], while Cufflinks uses the term FPKM (expected
number of Fragments Per Kilobase of transcript sequence per Millions base pairs
sequenced) [16]. Scripture does not predict expression levels directly; instead, it
computes a “weighted score” for each isoform to indicate how likely the isoform
is expressed.

Fig. 2 (B) ∼ (E) plot the predicted and true expression levels for all predicted
isoforms which are matched to the benchmark isoforms and have expression
levels > 1 RPKM, using the 80M paired-end read dataset. The plots show that
IsoLasso, IsoInfer and Cufflinks estimate expression levels quite accurately (the
squared correlation coefficient between the predicted and true expression levels
is R2 > 0.89), while the “weighted score” of Scripture does not directly reflect
the true expression level of isoforms (R2 = 0.50). Cufflinks shows the highest
prediction accuracy in expression level estimation (R2 = 0.91) partly because it
uses an accurate iterative statistical model to estimate the expression levels [16],
which could potentially be incorporated into our method as a refinement step.

More Isoforms, More Difficult to Predict. Intuitively, genes with more
isoforms are more difficult to predict. We group all the genes by their numbers of
isoforms, and calculate the sensitivity and effective sensitivity of the algorithms
on genes with a certain number of isoforms as shown in Figure 5 (middle) and
(right). Figure 5 (left) shows the total number of isoforms and isoforms satisfying
Condition I ([18]) grouped by the number of isoforms per gene.

Figure 5 shows that genes with more isoforms are more difficult to predict
correctly, as both sensitivity and effective sensitivity decrease for genes with more
isoforms. IsoLasso and Scripture outperform IsoInfer and Cufflinks in general.
IsoLasso has a higher sensitivity and effective sensitivity on genes with at most 5
isoforms, but Scripture catches up with IsoLasso on genes containing more than
5 isoforms.

Running Time. Figure 6 plots the running time of all four transcript assembly
programs using various numbers of paired-end reads. The time for data prepara-
tion is excluded, including mapping reads to the reference genome and preparing
required input files for both IsoLasso and IsoInfer. Surprisingly, although em-
ploying a search algorithm, IsoInfer runs much faster than that of any other
algorithm. This is partly due to the heuristic restrictions that IsoInfer adopts to
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Fig. 5. The total number of isoforms and isoforms satisfying Condition I (left), and
the sensitivity (middle) and effective sensitivity (right) of the algorithms grouped by
the number of isoforms per gene. Here, 100M paired-end reads are simulated.
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Fig. 6. The running time for all the algorithms

reduce the search space (e.g., requiring the candidate isoforms to satisfy Condi-
tion I and some other conditions), and the programming languages used in each
tool (IsoInfer, IsoLasso, Scripture and Cufflinks use C++, Matlab, Java, and
Boost C++, respectively). All programs are run on a single 2.6 GHz CPU, but
Cufflinks allows the user to run on multiple threads, which may substantially
speed up the assembly process.

3.3 Real RNA-Seq Data

Reads from two real RNA-Seq experiments are used to evaluate the performance
of IsoLasso, Cufflinks and Scripture. We exclude IsoInfer from the comparison
because its algorithm is similar to (and improved by, as seen from the simula-
tion results) the algorithm of IsoLasso. One RNA-Seq read dataset is generated
from the C2C12 mouse myoblast cell line ([16], NCBI SRA accession number
SRR037947), and the other from human embryonic stem cells (Caltech RNA-Seq
track from the ENCODE project [40], NCBI SRA accession number SRR065504).
Both RNA-Seq datasets include 70 million and 50 million 75 bp paired-end reads
which are mapped to the UCSC mus musculus (mm9) and homo sapiens (hg19)
reference genomes using Tophat [19], respectively.
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Isoforms inferred by programs IsoLasso, Cufflinks and Scripture are first
matched against the known isoforms from mm9 and hg19 reference genomes.
There are a total of 11484 and 12193 known mouse and human isoforms recov-
ered by at least one program, respectively (Figure 7 (A) and (B)). Among these
isoforms, 4485 (39%) and 4274 (35%) isoforms are detected by all programs,
while 8204 (71%) and 8084 (66%) isoforms are detected by at least two pro-
grams. These numbers show that, although there is a large overlap (more than
60%) among the known isoforms recovered by these programs, each program
also identifies a substantially large number of “unique” isoforms. Such “unique-
ness” of each program is shown more clearly if we compute the overlap between
their predicted isoforms directly (see Figure 7 (C) and (D)). Each of the three
programs predicts more than 40,000 isoforms on both dataset, but only shares
2% to 20% isoforms with other programs. About 49.5% of the mouse isoforms
(46% in human) inferred by IsoLasso are also predicted by at least one of other
two programs, which is substantially higher than Cufflinks (27.7% in mouse and
38.4% in human) and Scripture (4.6% in mouse and 7.4% in human). This may
indicate that IsoLasso’s prediction is more reliable than those of Cufflinks and
Scripture since it receives more support from other (independent) programs.

Note that among all the isoforms inferred by IsoLasso, Cufflinks and Scrip-
ture, 9741 mouse isoforms and 11381 human isoforms are predicted by all three
programs. These isoforms could be considered as “high-quality” ones. However,
fewer than a half of these “high-quality” isoforms (4485 in mouse and 4274 in
human) could be matched to the known mouse and human isoforms (see Fig-
ure 7 (A) and (B)). This suggests that the current genome annotations of both
mouse and human are still incomplete. An example of the “high-quality” iso-
forms is shown in Figure 7 (E). Here, an isoform with an alternative 5′ end of
gene Tmem70 in mouse is predicted by all three programs but cannot be found
in the mm9 RefSeq annotation or GenBank mRNAs (track not shown in the
figure).

Fig. 7. The numbers of matched known isoforms of mouse (A) and human (B), and the
numbers of predicted isoforms of mouse (C) and human (D), assembled by IsoLasso,
Cufflinks and Scripture. (E) shows an alternative 5” start isoform of gene Tmem70 in
mouse C2C12 myoblast RNA-Seq data [16]. This isoform does not appear among the
known isoforms, but is detected by IsoLasso, Cufflinks and Scripture. Tracks from top
to bottom: Cufflinks predictions, IsoLasso predictions, Scripture predictions, the read
coverage, and the Tmem70 gene in the mm9 RefSeq annotation.
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4 Conclusion

RNA-Seq transcriptome assembly is a challenging computational biology prob-
lem that arises from the development of second generation sequencing. In this
paper, we proposed three fundamental objectives/principles in the transcrip-
tome assembly: prediction accuracy, interpretation, and completeness. We also
presented IsoLasso, an algorithm based on the LASSO approach that seeks a
balance between these objectives. Experiments on simulated and real RNA-Seq
datasets show that, compared with the existing transcript assembly tools (IsoIn-
fer, Cufflinks and Scripture), IsoLasso is efficient and achieves the best overall
performances in terms of sensitivity, precision and effective sensitivity.
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Appendix: Mathematical Definitions, Notations and
Proofs of the Theorems

Definitions

The formal definitions of uncertain reads, nested reads and the overlap graph
are given in [16], and are reviewed below for the reader’s convenience.

A single-end read b is nested in another single-end read b′ iff bi = b′i, l(b) ≤
i ≤ u(b), and at least one of the following two conditions is true: (1) l(b) 
= l(b′)
and (2) u(b) 
= u(b′). A paired-end read p is nested in another paired-end read p′

iff l(p) ≥ l(p′), u(p) ≤ u(p′) and at least one of the following conditions is true:
(1) l(p) 
= l(p′) and (2) u(p) 
= u(p′). If a single-end read b is nested in b′, b can
always be removed safely without losing any information.

Two single-end reads b and b′ are compatible, denoted as b ∼ b′, iff there exists
one isoform t such that b ∼ t, b′ ∼ t, and b and b′ are not nested to each other.
If b and b′ are not compatible, we denote b � b′. Two paired-end reads p and p′

are compatible, denoted as p ∼ p′, iff there exists an isoform t such that p ∼ t,
p′ ∼ t and p is not nested in p′ or vice versa. If p and p′ are not compatible, we
denote p � p′.

Define a partial order ≤ between two single-end reads b and b′: b ≤ b′ iff
b ∼ b′ and l(b) ≤ l(b′). It is impossible to extend the partial order to paired-
end reads, since the sequence within a paired-end read is not completely known.
Alternatively, for two paired-end reads p and p′, define p ≤ p′ with respect to a
given read set R iff the following conditions are true: (1) p ∼ p′, (2) l(p) ≤ l(p′),
u(p) ≤ u(p′), and (3) there is no paired-end read p′′ ∈ R such that p ∼ p′, p ∼ p′′

but p � p′′. Write p ≤ p′′|R if p ≤ p′ with respect to a given read set R, or write
simply p ≤ p′ if there is no ambiguity. If reads p, p′ and p′′ exist such that p ∼ p′,
p′ ∼ p′′ and p � p′′, then p, p′ and p′′ are said to be uncertain since no partial
order can be given to these reads.

Given a set of mapped single-end or paired-end reads R = {b1, b2, . . . }, the
overlap graph (OG) [16] is a DAG G = (V, E), where V = {v1, v2, . . . , v|R|}
and e = (vi, vj) ∈ E iff bi ≤ bj . A maximal path of length k on the OG is
a path h = {vi1 ≤ vi2 ≤ · · · ≤ vik

} on the OG, such that there exists no path

http://flux.sammeth.net
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h′ =
{
vj1 ≤ vj2 ≤ · · · ≤ vjk′

}
with h ⊂ h′. Because the vertices in the OG have

a one-to-one relationship with the mapped reads, we also treat vertices in the
OG as binary vectors to simplify notations below. For example, if a path h =
{vi1 ≤ vi2 ≤ · · · ≤ vik

}, we will use OR(h) to denote OR({bi1 ≤ bi2 ≤ · · · ≤
bik}).

Proofs of the Theorems

The following lemmas are necessary. Suppose that R is the set of reads mapped
to gene S.

Lemma 1. Denote the vertex set of the CG as V = {v1, v2, . . . , vn}. For 1 ≤
i < j ≤ n, there is a path from vi to vj if cvg(Si) > 0 and cvg(Sj) > 0.

Proof. We use an induction on n = j − i to prove this lemma. If j − i = 1, then
there is an edge between vi and vj by Condition 2 of the CG’s edge construction.
Assume that ∀k < n, there is a path from vi to vj if cvg(Si) > 0 and cvg(Sj) > 0,
j − i = k. For k = n, if cvg(Sl) = 0 for every i < l < j, then there is an edge
between vi and vj by Condition 2 of the CG’s edge construction. Otherwise, if
there exists i < l′ < j such that cvg(Sl′) > 0, then l′ − i < n and j − l′ < n.
Using the assumption above, there is a path from vi to vl′ and a path from vl′

to vj . Therefore, there is a path from vi to vj . ��

Lemma 2. For any read set Q ⊆ R, if every two reads in Q are compatible,
then there is a maximal path h in the CG such that ∀b ∈ Q, b ∼ h.

Proof. Let t = OR(Q). We construct h by defining its vertex set V (h) and edge
set E(h) separately. For every 1 ≤ i < m, ti = 1, if the set {k > i|tk = 1} is
not empty, denote j = mink{k > i, tk = 1}. If there is a read b ∈ Q such that
bi = bj = 1 and bk = 0, i < k < j, then there must be an edge e in CG from vi to
vj by Condition 2 of CG’s edge construction, and we put e in E(h). Otherwise,
there must be a path h′ from vi to vj by Lemma 1, because cvg(Si) > 0 and
cvg(Sj) > 0. We put edges in h′ in E(h). Define V (h) as the set of vertices
induced by E(h). A trivial case is that |{1 ≤ i < m, ti = 1}| = 1. In this case,
let V (h) = vi, ti = 1 for completeness.

We claim that all reads in Q are compatible with h. This is because for a
single-end read (or an end of some paired-end read) b in Q, if bi = 1 then
vi ∈ V (h). If bi = bj = 1 and bk = 0, i < k < j, vi and vj are directly connected
by edge (vi, vj) in h, which means that {vk|i < k < j} ∩ V (h) = ∅. Therefore
b ∼ h.

Once h is obtained, it is easily extended to a maximal path without violating
its compatibility with every read in Q. ��

Lemma 3. Suppose that R has no uncertain or nested reads. For every maximal
path h on the OG constructed based on R, OR(h) ∈ T .

Proof. Let t = OR(h) and Rt be the set of reads corresponding to path h. By
Lemma 2, there is a maximal path h′ on the CG such that every read b ∈ Rt is
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compatible with h′. Denote the isoform corresponding to h′ as t′. Then, t′ ∈ T
after the Enumeration phase of Algorithm 1 and b ∼ t′.

Let Rt′ = {b ∈ R|b ∼ t′}. For any b ∈ Rt, b ∼ t′ so b ∈ Rt′ , then we have
Rt ⊆ Rt′ . Furthermore, for any b′ ∈ Rt′ , b′ ∼ t′, and thus we have b ∼ b′, ∀b ∈
Rt, ∀b′ ∈ Rt′ . If there is a read b ∈ Rt′ but b /∈ Rt, the vertex corresponding
to b in the OG could be added to path h, because b is compatible with all the
reads in Rt and b is not a nested or uncertain read. However, this contradicts the
assumption that h is maximal. Therefore, Rt = Rt′ and t ∈ T after the Filtration
phase of Algorithm 1. Note that t would not be removed in the Condensation
phase Algorithm 1 because t is maximal. ��

Lemma 4. Suppose that R has no uncertain or nested reads. For every isoform
t output by Algorithm 1, there exists a maximal path h on the OG such that
OR(h) = t.

Proof. Let t be an isoform enumerated by Algorithm 1 and Rt = {b ∈ R|b ∼ t}.
Since R contains no uncertain or nested reads, the vertices corresponding to Rt

in the OG form a path h. If h is not maximal, it can be “expanded” to a maximal
path h′ by adding some vertices not in h. According to Lemma 3, there is an
isoform t′ ∈ T such that t′ = OR(h′). Denoting Rt′ = {b ∈ R|b ∼ t′}, then
we have Rt ⊂ Rt′ . Therefore, t would be removed in the Condensation phase of
Algorithm 1, which contradicts the fact that t is output by Algorithm 1. ��

Lemmas 3 and 4 immediately lead to Theorem 1 and its corollary, Corollary 1.

Theorem 1. Suppose that R contains no uncertain or nested reads. If we denote
the set of isoforms constructed by Algorithm 1 as T and the set of the isoforms
formed by enumerating maximal paths on the OG (constructed from R) as TOG,
then T = TOG.

Corollary 1. If R contains no uncertain or nested reads, then for every min-
imum path cover H of the OG, there exists a set of maximal isoforms T ′ ={
t1, . . . tm

}
⊂ T , such that m = |H | and for every read b on a path h ∈ H,

b ∼ ti, 1 ≤ i ≤ m.

The following theorem holds when uncertain reads are present in R.

Theorem 2. Suppose that no reads in R are nested and denote the set of iso-
forms constructed by Algorithm 1 as T . For every maximal path h on the OG
constructed by removing uncertain reads in R, T contains an isoform which is
compatible with every read on the path h.

Proof. The proof is similar to the proof of Lemma 3. Let t = OR(h) and 1 ≤ l1 <
l2 < · · · < lm ≤ n be indices in t such that ti = 1 iff and only if i ∈ {l1, l2, . . . , lm}.
Let Rt be the set of reads corresponding to path h. By Lemma 2, there is a
maximal path h′ on the CG such that every read b ∈ Rt is compatible with
h′. Denote the isoform corresponding to h′ as t′. Therefore, t′ ∈ T after the
Enumeration phase of Algorithm 1 and b ∼ t′.
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Let Rt′ = {b ∈ R|b ∼ t′}. For any b ∈ Rt, b ∼ t and thus we have b ∼ t′ and
Rt ⊆ Rt′ . Furthermore, t′′ = OR(Rt′ ) would be in T after the Filtration phase
of Algorithm 1 and t′′ is compatible with every read in Rt.

During the Condensation phase of Algorithm 1, if t′′ is not removed, the
theorem holds. Otherwise, there must be another t′′′ ∈ T such that all reads
compatible with t′′ are also compatible with t′′′. In other words, all reads in Rt

would be compatible with t′′′. ��
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Abstract. Haplotypes, as they specify the linkage patterns between dis-
persed genetic variations, provide important information for understand-
ing the genetics of human traits. However haplotypes are not directly
available from current genotyping platforms, and hence there are exten-
sive investigations of computational methods to recover such information.
Two major computational challenges arising in current family-based dis-
ease studies are large family sizes and many ungenotyped family mem-
bers. Traditional haplotyping methods can neither handle large families
nor families with missing members. In this paper, we propose a method
which addresses these issues by integrating multiple novel techniques.
The method consists of three major components: pairwise identical-by-
descent (IBD) inference, global IBD reconstruction and haplotype restor-
ing. By reconstructing the global IBD of a family from pairwise IBD and
then restoring the haplotypes based on the inferred IBD, this method
can scale to large pedigrees, and more importantly it can handle families
with missing members. Compared with existing methods, this method
demonstrates much higher power to recover haplotype information, es-
pecially in families with many untyped individuals.
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1 Introduction

Humans are diploid, with two homologous chromosomes each from one parent.
When inherited from a parent to a child, SNPs on one chromosome tend to stay
together unless meiotic recombination breaks such linkage. Haplotypes, as they
represent such linkage information between SNPs, are critical for understanding
the genetics of human diseases [3][2][10]. Haplotype information cannot be di-
rectly obtained in wet labs based on current genotyping technologies; therefore
haplotypes need to be recovered using computational methods. Current disease
studies in families pose two major challenges to haplotyping methods. The first
is family size. In order to assay enough recombination breakpoints to narrow
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down the disease loci, it is desirable to recruit as many family members as pos-
sible to a study. However, current haplotyping technologies are not applicable to
these large families because most methods take time exponential to family sizes.
This exponential time complexity is mainly due to the fact that most of these
methods are designed under the backbone of the Lander-Green algorithm [6]. Re-
cent improvements to the Lander-Green scheme [11][5][1][4] reduce the absolute
processing time but does not alter its inherent exponential nature. There exists
another type of methods, which exploits the Mendelian law of inheritance in-
stead of enumerating the inheritance patterns and works much more efficiently
[7][12][8]. However, this type of methods requires direct parent-child relation-
ships in order for the Mendelian constraints to be applied. This limitation gives
rise to the second computational challenge—ungenotyped family members. As
is typical in a family-based study, many individuals in a family are not available
for genotyping because they are deceased or otherwise not participating. Once
there are untyped individuals in a family, the Mendelian constraints cannot be
applied effectively. Most rule-based methods approach this issue by enumerating
the genotypes of these untyped individuals which turns out to be computation-
ally infeasible if many family members are missing.

We have recently developed an algorithm to efficiently infer identical-by-
descent (IBD) status among family members [9]. The approach overcomes these
difficulties by first constructing hidden Markov models (HMMs) for all relative
pairs with genotypes, and then constructing the global (pedigree-wise) IBD rela-
tionship from the inferred pairwise IBD relationships from these HMMs. We by-
pass the enumeration of all possible genotypes of these untyped family members
using the “inheritance-generating function”, which summarizes the inheritance
relationship between two individuals. The inheritance-generating function can
be efficiently calculated using a recursive formula similar to the calculation of
kinship coefficients. Therefore, the method essentially solves the computational
problem of large pedigrees. However, at the final step, the approach uses an enu-
merative procedure to restore the inheritance from pairwise IBD, which again
is exponential to the family size. In this paper, we replace it with a much more
efficient algorithm based on graph partitioning. On top of that, we integrate
our previous linear system based haplotyping method [8] into the framework to
recover allelic phases of each individual. The haplotyping method exhausts all
available constraints imposed by inheritance and genotypes, which maximizes
the usage of information in a family. All together, this work constitutes a new
haplotyping scheme which can efficiently reconstruct haplotypes at a genome-
wide level in a large family with many untyped individuals. The two-stage IBD
inference and the subsequent haplotype reconstruction significantly alleviate the
computational burden complicated by large families. We evaluate the effective-
ness of our method on both real and synthetic datasets. On families with many
untyped individuals, our method exhibits significantly higher power in recover-
ing haplotypes as compared with other state-of-art haplotyping methods. The
proposed method also demonstrates good scalability on large pedigrees which
other methods cannot handle.
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Fig. 1. The general framework of the proposed method

To give a clear picture of the method, we summarize its workflow in Fig.
1. The method consists of three steps: pairwise IBD inference from genotypes,
global IBD reconstruction from pairwise IBD, and haplotype reconstruction from
global IBD. Within each step, a computational technique is employed, namely,
the hidden Markov model, graph partition and disjoint-set data structures. We
will present the details of each of the three steps in the following sections 2.1,
2.2 and 2.3. We will show the performance of the method in section 3.

2 Methods

2.1 Inference of Pairwise IBD

The first step involves how to infer pairwise IBD sharing between relatives. This
method is introduced in [9]. We briefly reiterate its essential elements here for
the completeness of the paper. The method to infer pairwise IBD involves two
key components: a) construct an HMM for pairs of relatives, and b) incorporate
population level linkage disequilibrium into the model.

a) HMM for a pair of relatives. The IBD status between a pair of alleles can
be modeled using a 2-state hidden Markov model, with transition probabilities
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between IBD and non-IBD states settled by profiling the degree of relatedness
between the two individuals carrying these two alleles. In order to quantify such
a relationship, we propose the “inheritance-generating function” to summarize
all possible inheritance paths between two individuals. Intuitively, the longer the
inheritance path between the two alleles, the less the probability that they de-
scend from the same ancestral allele, because a longer inheritance path involves
more segregations. In addition to transition probabilities, to fully parameterize
the proposed hidden Markov models we also specify the emission probabilities.
Given that two alleles are IBD, they must be the same genotype if assuming
no genotyping errors. On the other hand, if two alleles are not IBD, it is purely
out of chance for them to be the same genotype and such a probability can
actually be determined by the allele frequencies at this locus. We further ex-
tend the model to incorporate more complex situations of missing genotypes
and genotyping errors by refining the emission probabilities. HMMs between a
pair of individuals can then be derived based on HMMs between pairs of alleles.
The decoding process is basically the Viterbi algorithm for maximum likelihood
inference or the forward-backward algorithm for point-by-point posterior prob-
abilities. Both approaches take time linear to the number of markers. Results
from both decoding algorithms will be utilized later.

b) Incorporating LD. Linkage disequilibrium at the population level, which
largely reflects distant ancestral sharing among individuals, may create short
identical haplotype segments among seemly unrelated individuals. We quan-
tify such allelic dependence by adding an additional state (called the LD state)
to the hidden Markov model which explicitly tags short stretches of IBD not
originating from family relatedness. By doing so, one can make full use of the
information embedded in the whole range of all available markers. Furthermore,
by directly modeling linkage disequilibrium as distant ancestral sharing we end
up with a unified hidden Markov framework, with more versatile power to fit
the data because it allows synergistic interaction between IBD and LD state.
The parameters related to the LD state in the model are learned from the tar-
geted data, where we estimate the closeness of two unrelated individuals based
on their genome-wide allelic sharing. The transition probabilities from the IBD
state to the non-IBD and LD state are proportionally distributed according to
their prior probabilities since non-IBD and LD both refer to alleles of distinct
founder origins and are thus indistinguishable on a single family basis. With
the help of the LD state, we can delimit the effects arising from relatedness or
linkage disequilibrium.

2.2 From Pairwise IBD to Global IBD

Given that two individuals share one allele IBD, there is still ambiguity which one
of the two homologous alleles of an individual is shared with the other individual.
However, we want to further recover this information, or more specifically, we want
to reconstruct the global IBD which explicitly labels each of the two homologous
alleles of an individual with their ancestral alleles. In this section, we will first
introduce a method for an ideal situation where all pairwise IBD relationships
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are consistent. In the second part of this subsection we will present an alternative
backup approach for inconsistent data by utilizing posterior decoding.

To construct the global IBD in a family, a simple approach is to enumerate
all possible inheritance patterns and check their consistency with pairwise IBD,
which was implemented in [9]. However, this algorithm is not efficient. Here,
we introduce a new approach in a graph theory setting. We first define an IBD
graph to organize the relationships among all individuals in a pedigree. In brief,
all individuals sharing two alleles will be merged into one node. Individuals shar-
ing one allele will be connected by an edge. The groups of people who share the
maternal or paternal allele of an individual can be recognized by finding two
distinct cliques in her neighbors. By starting at one individual and iteratively
propagating the paternal and maternal partition onto the neighboring individ-
uals, we can settle the global IBD sharing. We will discuss the details of this
approach in the following order: first we will formally define how to construct an
IBD graph. Second, we will describe how to partition the neighbors of an indi-
vidual into paternal sharing and maternal sharing groups and how to propagate
such information further onto neighbors’ neighbors. Third, we will give a proof
of the correctness of this procedure. Last, we will discuss some special cases not
covered in the algorithm.

We construct an IBD graph based on the pairwise IBD sharing between fam-
ily members. Individuals sharing two alleles IBD with each other are identical,
thus we use a single node to represent them. We use an edge to indicate the
relationship of sharing one allele IBD. Formally speaking, let G = (V, E), where
V = {vi|vi = {i}∪{j|IBD(i, j) = 2}}, (va, vb) ∈ E if IBD(i, j) = 1, i ∈ va, j ∈ vb.
Here, we assume the pairwise IBD relationships are consistent, therefore pick-
ing whichever two individuals respectively from two nodes, their relationships
should be coherent.

Before getting into details of the algorithm, we first introduce some basic
notations. We use A = {a1, ..., an} to indicate n different ancestral alleles in a
family.1 We define Ai = {x1

i , x
2
i } to be the ancestral configuration of individual

i, where x1
i , x

2
i ∈ A specifies the ancestral sources of each of the two homologous

alleles. First, we assume no inbreeding, i.e., x1
i �= x2

i . We define an operation
ak → Ai to indicate assigning ancestral allele ak to whichever x1

i or x2
i that is

not yet assigned.
The algorithm starts by picking one individual from the family. Assume that

this individual has two homologous alleles of distinct ancestral sources, which
we denote as {a1, a2}, a1 �= a2. Consider all of its neighbors in graph G, they
must either carry a1 or a2, and based on this we can partition them into two
groups, which we denote as N1 and N2. It is not hard to notice that both N1

and N2 are fully connected cliques, whereas between N1 and N2 there are a
restricted number of edges, or more specifically, any node in N1 can has at most
one edge connected to N2 and vice versa. Figure 2 gives an example showing

1 Notice that the ancestral alleles are just labels to be assigned to different individ-
ual alleles, they are not in any particular order, nor explicitly associated with any
particular founders in a family.
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Fig. 2. Partition of the neighbors of an individual into two ancestral groups, where
each group forms a clique

the neighbors of a node and how they form two cliques. This feature can help us
perform such a partition quite efficiently. Once we obtain this partition, we can
subsequently assign ancestral alleles to each of the two groups and further to
their neighbors. These two procedures actually constitutes the two basic steps of
the algorithm: we call the former one an initial “seeding” step and the latter one
an iterative “propagation” step. We formally define the procedures of “seeding”
and “propagation” in Algorithm 1 and 2.

In the propagation step, we make a queue to store all the newly assigned yet
not fully assigned individuals. In this way all individuals will be visited at most
twice in this process, hence the propagation step can be finished in linear time
with respect to the number of individuals. We can prove by induction that after
the seeding and the propagation step all ancestral alleles are correctly assigned
to each individual.

Algorithm 1. Seeding
Find an individual s with more than 4 neighbors, |N(s)| > 4.
Partition N(s) into two cliques: N1(s) and N2(s).
for k = 1, 2 do

ak → As

for each individual Aj ∈ Nk(i) do
ak → Aj

end for
end for

Lemma 1. After the seeding and propagation step, for any ancestral allele ai,
it is assigned to all of the individuals who carry this allele and none of the
individuals who do not carry this allele.

Proof. Basis: in the seeding step, As = {a1, a2}, any individual containing an-
cestral alleles a1 or a2 must be a neighbor of s, and on the other hand, any
neighbor of s must either share a1 or a2 with s and we have partitioned them
accordingly into two groups, therefore they will all receive proper assignment.
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Algorithm 2. Propogation
k = 2
while there is any individual that is partially assigned do

Find the next partially assigned individual Ai = {am, x}.
k = k + 1
ak → Ai

for each neighbor j of individual i do
if am /∈ Aj then

ak → Aj

end if
end for

end while

Induction hypothesis: assume that at step k of the propagation, ancestral
alleles {a1, ..., ak} are all correctly assigned.

Induction: at step k+1, assume Aj = {am, x}, m ≤ k is an individual not
yet fully assigned, applying the induction hypothesis, x must be an ancestral
allele not in {a1, ..., ak}. Thus, we let x = ak+1. Any neighbor of j which does
not contain am must contain ak+1, we can safely assign ak+1 to them. On the
other hand, any individual which contains ak+1 must be a neighbor of j, there-
fore at step k+1, any individual containing ancestral allele ak+1 receives proper
assignment. �

The iterative propagation step will not stop until all nodes in a connected com-
ponent are fully assigned. Different connected components of the IBD graph can
be handled independently by applying the “seeding” and “propagation” proce-
dures individually on each of them. Notice that it is not necessary to distinguish
paternal alleles from maternal alleles when assigning ancestral allele types.

There are two situations we have not yet addressed, the first is when we can-
not find a node with more than 4 neighbors in the “seeding” step. If a node
has 4 or fewer neighbors, the partition of these neighbors can be ambiguous.
Figure 3 shows such an example, where either way of partition can be a possible
configuration. In this case, we should consider both of these two partitions and
we will eventually have two alternative IBD assignments in the end. The second
situation is when an individual is inbred, i.e., having two homologous alleles
from the same ancestral source. Since the paternal and maternal alleles are of
the same ancestry, this individual can have only one group of relatives, i.e., one

Fig. 3. The partition can be ambiguous when there are fewer than 5 neighbors
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clique in the IBD graph. In this situation, we only need to propagate her allele
to this single group of neighbors and beyond that everything stays the same in
the “seeding” or “propagation” processes. One situation that can be confused
with the inbreeding is when an individual has actually two distinct ancestral
alleles but one of them is not shared with any other individual. In this case, the
inbreeding and non-inbreeding situations are not distinguishable. Therefore, in
the case that one person has only one clique of neighbors, the assignment of one
of its two alleles is always ambiguous. Both assignments in such a case will be
considered.

Finding optimal inheritance for error-prone data
The graph partition procedure introduced above takes the pairwise IBD rela-
tionships for sure (e.g., using Viterbi decoding) and assumes all pairwise rela-
tionships are consistent. However when there are errors, we may not be able
to find a global IBD configuration which satisfies all pairwise relationships. In
these situations, we should have a backup plan which can tolerate possible in-
consistencies. Here, we introduce an alternative enumerative approach utilizing
results from posterior decoding. The problem is essentially formulated as an op-
timization problem where the search space consists of all possible inheritance
patterns and the optimization criterion is defined below. Intuitively, we try to
accommodate as many high probability pairwise IBD relationships as possible.
We define a target function to aggregate the information over all pairwise rela-
tionships. In a straightforward way, we can use the following pseudo-likelihood
function which encapsulates all pairwise relationships by multiplying their pos-
terior probabilities.

L({A1, ..., An}) =
∏
i,j

L(IBD(Ai, Aj)),

where the product is over all unordered pairs of individuals in a family and
Ai is a specific ancestral allele assignment of individual i. By maximizing the
target function, we are essentially trying to accommodate as many pairwise
relationships of higher confidence levels as possible while sacrificing a few of
those of lower confidence levels.

Since we need to maximize the target function over all possible inheritance
patterns of a family, the search space could be rather huge for large families.
A straightforward search involves the enumeration of 22k transmissions, where
k is the number of non-founders in a family. We develop a branch-and-bound
searching strategy to significantly speed up the procedure, by taking advantage
of the property that a partial assignment always has a larger likelihood than
that of a full assignment.

L({Ai1 , ..., Aim}) ≥ L({A1, ..., An}), {Ai1 , ..., Aim} ⊂ {A1, ..., An}

Therefore, once the value of a partial assignment drops below the value of the
current optimal solution, we can safely skip further enumerations and backtrack.
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2.3 Haplotype Reconstruction

Genotypes can be phased at each marker according to the corresponding global
IBD. Intuitively, we can first focus on individuals carrying homozygous alleles
because they are naturally phased and we can thus resolve the genotypic values
of the ancestral alleles inherited by them. This information is subsequently used
to phase the other individuals sharing the same ancestral alleles and so on so
forth. However, from a strict mathematical perspective, both homozygous and
heterozygous loci carry some information to resolve these uncertainties. To be
more specific, the constraints imposed by the global IBD and genotypes actually
form a binary linear system.

Given the global IBD, the alleles of family members form two basic types of
relationships and both of them can be explicitly expressed using binary linear
equations. The first type of relationship is imposed by shared ancestry, which
enforces that descendant alleles originating from the same ancestral allele should
be the same. This type of relationship can be expressed as equivalence in a linear
equation (Fig. 4, Type 1). The second type of relationship is imposed by het-
erozygous alleles, which dictates that the paternal allele and maternal allele of
a heterozygous individual must be complementary to each other (Fig. 4, Type
2). This relationship can be expressed as +1 equivalence in a binary equation. A
binary system naturally embeds the property that double complements should
lead back to equivalence. The entire constraint system will appear as illustrated
in Fig. 4, where two types of constraints and the constants are enforced. To
summarize the whole process of building the system, first we treat each pair
of heterozygous alleles and each missing allele as variables and each homozy-
gous allele as a constant, second we build the binary linear system by enforcing
both types of constraints and finally we solve the system and resolve the allele
assignments.

Instead of using conventional techniques like Gaussian elimination, we can
actually solve this linear system in a more efficient manner using the disjoint-set
data structure. The general idea behind this is that we use disjoint-sets to repre-
sent independent variable sets and manipulate these sets (using
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Fig. 5. Phasing the genotypes according to the global IBD

“union-find” algorithm) to encode different constraints. By doing so, we can
quickly generate a solution or detect inconsistency of the system in linear time.
We omit further technical details here, the algorithmic procedures for efficiently
solving such a system are described in [8]. Figure 5 shows an example how the
parental sources (phases) of each pair of alleles are resolved in a family by en-
forcing the constraints imposed by the global IBD.

3 Experiments

We examine the performance of our method on both synthetic and real datasets.
To examine the power of the method to recover haplotypes, we run the method
on a family with simulated genotypes. The family is drawn from a real data
study assayed on the Affymetrix 6.0 SNP chip. This study has a total of 24
families and we use the available allele frequencies and haplotype segments from
all these families to generate the appropriate founder haplotypes, which mimic
the actual linkage disequilibrium in the data. Recombination rate is modeled
at 1cM per Mb. The maps of SNP loci, the missing rate and the typing error
rate used in the simulation are exactly the same as those of the real data, which
assumes to be typical of the Affymetrix 6.0 SNP chip.

Here, we examine the contribution of different relatives in determining the
haplotypes of an individual. We start with a family with only three typed in-
dividuals and gradually increase the number of typed individuals one by one in
each subsequent experiment. We compare the efficacy of our method (named
PED-IBD) with that of MERLIN. MERLIN [1] is a popular linkage analysis
software package implementing the Lander-Green algorithm. As far as we know,
MERLIN is probably the fastest program among all implementations of the
Lander-Green algorithm and most of these programs are actually not feasible on
large families. Fig. 6 shows the family structures and the ratio of phased loci.
In the first setting, three of the family members are genotyped however none
of them form direct parent-child relationships. In this situation, our method
can correctly phase approximately 22% of the heterozygous loci. In comparison,
MERLIN cannot recover any loci. The purpose of this first setting is to exam-
ine the powers of the methods when no parent-child Mendelian constraints can
be obtained. PED-IBD has obviously higher phased ratio than MERLIN in the
beginning three settings. The performance of MERLIN catches up only after
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direct parent-child pairs are added as in the last two settings. This phenomenon
suggests that MERLIN relies heavily on close relationships to resolve the un-
certainty, but our method can make better use of all available information in
the pedigree. Comparing the precision, which is the correctly phased loci out
of all phased loci, two methods are similar, with the precision of our method
at 94.04%, 93.69%, 96.40%, 97.81%, and MERLIN at 94.21%, 94.41%, 95.38%,
95.90% for the last four settings. We also simulate a big family of 21 members
with 11 genotyped individuals, MERLIN quitted halfway in running this family
presumably because of the exponential memory requirement or time complexity
involved. Fig. 7 shows the ratio of phased loci yielded by our method on dif-
ferent members of the family. The leftmost two bars show the overall ratio of
total phased loci and correctly phased loci of this family. The other bars are re-
sults from individual family members. The result agrees with common sense that
individuals with more close relatives generally get higher ratios of their allelic
phases resolved. Direct parent-child relationships also offer a major contribution
here, where individuals having a genotyped parent or child have significantly
more phased loci than others. The running time of the method scales quadrati-
cally with the number of genotyped individuals and linearly with the number of
markers. On this specific family of 11 genotyped individuals, the program takes
around 5 minutes to finish 10K markers on a regular PC.

The second data set we use is from a real data study of hypertension. These
families and their members are collected according to familial aggregations of the
disease therefore the family sizes and their structures should presumably reflect
one typical pattern in many family based studies. Here we want to evaluate
the power of our method under a realistic distribution of family structures,
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Fig. 7. Proportion of total phased and correctly phased loci for different members of
a family. Shaded nodes are genotyped individuals

as this may provide some empirical basis in assessing the effectiveness of the
method for other real datasets. We have a total of 196 families, among them 141
families have more than 1 typed members and there are an average of 4 typed
individuals in each of these families. All families are genotyped on Affymetrix
6.0 SNP array. We want to examine the impacts of four important factors on the
efficacy of phasing: family size (number of typed members), relationship between
family members, missing genotypes and genotyping errors. Statistics (Fig. 8, 9)
of different families are binned according to the number of typed individuals in
each family. The line indicates the averaged values of all families in each bin. We
exclude singleton individuals because there is no available information to phase
them.

Fig. 8 (a) shows the proportion of loci that are phased out of all heterozygous
loci given different numbers of typed individuals in a family. In general more
typed individuals add more information to the family and lead to a higher phased
ratio. However, the relationships between individuals also make a difference.
Breaking down the phased ratios in families of two typed members (Fig. 8 (b)),
we can observe that parent-child relationships are much more powerful than
others in resolving the phase uncertainty. It may seem counterintuitive that full-
sibship does not offer any gain than half-sibship, but we can understand this
result by considering the fact that full siblings can actually share both paternal
and maternal haplotypes at certain chromosomal regions and in these regions
they are like identical twins hence mutually non-informative. The influence of
missing genotypes is minor, as shown in Fig. 9(a), most of the missing genotypes
can be imputed. However this could also be due to the relative low missing rate of
the data which is just 0.3%. The disturbance caused by genotyping errors turns
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Fig. 8. (a) Proportion of heterozygous loci that are phased in different families. (b)
Proportion of phased loci for different relationships.

out to be the final bottleneck on the haplotyping effectiveness. As demonstrated
in Fig. 8 (a), most loci can be unambiguously phased given a large enough family
size, however that proportion quickly approaches an upper bound. The total
phased ratio fluctuates around 96% for families above the size of 5. To see how
this major drawback is caused by genotyping errors, examining genotypes against
the inheritance patterns of these families (Fig. 9 (b)), we can observe that around
3% of loci are not consistent with inheritance. Large families are generally more
sensitive to typing errors because one such error in a single individual affects the
entire locus of the family. In a summary, these four major factors: family size,
family structure, missing genotypes and typing errors are exhibiting intertwined
effects on haplotyping effectiveness, therefore in assessing the phasing capacity
for a real study, all these factors should be taken into account.
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4 Discussions

We introduce a new method to efficiently reconstruct haplotypes in large fam-
ilies with many ungenotyped individuals. Our approach stands on three major
components: pairwise IBD inference, global IBD reconstruction and haplotype
restoring. By taking a two-step—genotype to pairwise IBD, pairwise IBD to
global IBD—approach, we can significantly reduce the time complexity for re-
solving the IBD sharing pattern among family members. This makes our method
scale well to large families which traditional methods cannot handle. The subse-
quent haplotyping algorithm is based on linear systems, it exhausts all available
constraints imposed by global IBD and genotypes, thus maximizes the usage of
information in a family. Compared with other popular methods, our method has
much higher power to recover allelic phases in families with many missing mem-
bers. On a real dataset of 196 families, the method yield more than 90% phased
loci on families with more than five typed individuals. The proposed method
constitutes an important advance in haplotyping technology which bridges the
technical gap in existing methods on large families with missing members.
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Learning Cellular Sorting Pathways Using

Protein Interactions and Sequence Motifs

Tien-ho Lin, Ziv Bar-Joseph, and Robert F. Murphy�

Lane Center for Computational Biology, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, USA

Abstract. Proper subcellular localization is critical for proteins to per-
form their roles in cellular functions. Proteins are transported by different
cellular sorting pathways, some of which take a protein through several
intermediate locations until reaching its final destination. The pathway
a protein is transported through is determined by carrier proteins that
bind to specific sequence motifs. In this paper we present a new method
that integrates sequence, motif and protein interaction data to model
how proteins are sorted through these targeting pathways. We use a
hidden Markov model (HMM) to represent protein targeting pathways.
The model is able to determine intermediate sorting states and to as-
sign carrier proteins and motifs to the sorting pathways. In simulation
studies, we show that the method can accurately recover an underlying
sorting model. Using data for yeast, we show that our model leads to
accurate prediction of subcellular localization. We also show that the
pathways learned by our model recover many known sorting pathways
and correctly assign proteins to the path they utilize. The learned model
identified new pathways and their putative carriers and motifs and these
may represent novel protein sorting mechanisms.

Supplementary results and software implementation are available from
http://murphylab.web.cmu.edu/software/2010 RECOMB pathways/

1 Introduction

To perform their function(s), protein usually need to be localized to the spe-
cific compartment(s) in which they operate. Subcellular localization of proteins
is typically achieved by targeting pathways involving carrier proteins. Disrup-
tion of these pathways leading to inaccurate localization plays an important role
in several diseases, including cancer [8, 16, 13], Alzheimer’s disease [9], hyper-
oxaluria [25] and cystic fibrosis [32]. Thus, an important problem in systems
biology is to determine how proteins are localized to their target compartments,
the carriers and motifs that govern this localization and the pathways that are
being used.

Recent advances in fluorescent microscopy coupled with automated image-
based analysis methods provide rich information about the compartments to
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which proteins are localized in yeast [15, 6] and human [23, 3, 22]. Several com-
putational methods have been developed to predict subcellular localization by
integrating sequence data with other types of high throughput data [14, 11,
21, 28, 26, 2]. These methods either treat the problem as a one vs. all classifica-
tion problem [11,14] or utilize a tree that corresponds to the current knowledge
regarding intermediate compartments, for example LOCtree [21], BaCelLo [24]
and discriminative HMMs [18]. The tree based methods were shown to be supe-
rior to the one vs. all methods; however, these methods do not attempt to learn
the sorting tree, relying instead on current (partial) knowledge.

A number of methods have learned decision trees for predicting subcellu-
lar localization. These include PSLT2 [28] which refines the location into sub-
compartments using a decision tree learned from data and YimLOC [30] which
learns a decision tree for the mitochondrion compartment only using features
that include predictions from SherLoc [29], an abstract-based localization clas-
sifier. While the decision trees generated by these methods are often quite ac-
curate, they are not intended to reflect targeting pathways, and they utilize
features that, while useful for classification, are not related to the biochemical
process of protein sorting.

In contrast to the global localization prediction methods, several experimental
researchers have focused on trying to assign a specific sorting pathway to a
small number of proteins. For example, proteins containing a signal peptide
are exported through the secretory pathway [19], while some proteins without a
classical N-terminal signal peptide are found to be exported via the non-classical
secretory pathway [27]. A number of computational methods were developed to
use this information to predict, for a given pathway, whether a protein goes
through that pathway or not based on its sequence (for example, SignalP [5]
and SecretomeP [4]). However, these methods rely on the pathway as an input
and cannot be used to infer new pathways.

While the above experimental methods provide some information on sorting
pathways, no method exists to try and infer global sorting pathways from current
localization information. In this paper, we show that by integrating sequence,
motif and protein interaction data we can develop global models for the process
in which proteins are localized to subcellular compartments. We use a hidden
Markov model (HMM) to represent sorting pathways. Carrier proteins and motifs
are used to define internal states in this model and the compartments serve as
the final (goal) state. Using this model we identified several sorting pathways,
the carrier proteins that govern them and the proteins that are being sorted
according to these pathways. Simulation data indicates that the models we learn
are accurate. Using data from yeast we show that our model leads to accurate
classification of protein compartments while at the same time enabling us to
recover many known pathways and the proteins that govern these pathways.
Several new predictions are provided by the model representing new putative
sorting pathways.
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2 Methods

2.1 Modeling Targeting Pathway by Hidden Markov Models

We used a HMM to model the process of targeting proteins to their compart-
ments. HMM is a generative model and thus provides the set of events that lead
to the observed localization of the proteins (see Figure 1). An allowed pathway
through the HMM state space structure represents a possible protein targeting
pathway. All proteins start at the same start state (representing their translation
in the cytoplasm). The assigned (final) compartment of a protein is represented
by a state in the model that does not have any outgoing transitions. Interme-
diate states correspond to intermediate compartments or to sorting events (for
example, interaction with a protein carrier). These internal states emit observed
features that are related to the sorting events, namely motifs (implying that the
targeted protein uses that motif to direct it to that state) and carrier proteins
that target proteins to the state. The emitted features of a protein are observed
and determine its path in the state space. Emission is probabilistic and so cer-
tain proteins can pass through states even if they do not contain any of the
motifs and do not interact with any of the carriers for that state. Note that
while the compartment information is available during training, we do not know
how many intermediate states should be included in the model (some sorting
pathways may be short and others long, and several compartments can share
parts of the pathways). Thus, unlike traditional HMM learning tasks that focus
on learning the transition and emission probabilities, for our model we also need
to learn the set of states that are used in the targeting HMM.

(A) original model (B) simplified model
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Fig. 1. (A) The graphical model representation of the original HMM for targeting
pathways and (B) the simplified HMM. (C) A sample state space: The top block
is the root and its outgoing arrows correspond to initial probabilities. Bottom nodes
are compartment states. The blocks are states and the arrows are transitions, with
transition probabilities labeled. The items listed inside a blocks are top features emitted
by the states, and emission probabilities are given on the left. Diamond-shaped blocks
are silent states that emit the background feature only.
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2.2 A HMM for the Targeting Pathways Problem

We will discuss the likelihood of our HMM in detail here (see Figure 1). As
discussed above, in our HMM model all proteins move from a single start state to
their final compartment. For reasons that will become clear when talking about
learning the parameters of the model, we associate each state in our model with
a specific level. The root state is level 0, all compartment states are associated
with the final level (T ) and each intermediate state is associated with a specific
level t (0 < t < T ). We require that a state at level t can be reached from
the root after exactly t transitions; connections that are more than one level
apart move through several “silent” states so that transitions are only between
adjacent levels. Silent states only emit a “background” feature (probabilities of
the background feature are discussed later). Let Xt denote a hidden state at level
t, t = 1, 2, · · · , T in a T -level model. The value of Xt can be one of J possible
states, Xt ∈ {1, 2, · · · , J}.

In addition to transition probabilities states are associated with emission prob-
abilities. State Xt emits a feature index Zt. Zt can either be one of M motifs
(represented as a likelihood score for each protein), or one of K binary features
which include interactions with selected carriers, binary genome features based
on UniProt (specifically, occurrences of deterministic motifs), or the background
feature emitted by silent states. Hence Zt ∈ {1, 2, · · ·M + K + 1}, where the
motifs are indexed from 1 to M and the features are indexed from M + 1 to
M + K.

Let S denote the sequence observed for each protein, F be the binary features
from interaction databases and UniProt, and Y be the compartment assignments
for a protein. The data likelihood of our HMM model (Figure 1), is defined as:

Pr(S, F, Y |Θ) =
∑
X1

· · ·
∑
XT

∑
Z1

· · ·
∑

ZT−1

Pr(S, F, Y, X1, · · ·XT , Z1, · · ·ZT−1|Θ)

These joint probabilities can be decomposed based on the HMM independence
assumptions as follows:

Pr(S, F, Y,X1, · · ·XT , Z1, · · ·ZT−1|Θ)

= Pr(X1)

T−1∏
t=1

Pr(Xt+1|Xt)Pr(Zt|Xt)Pr(S|Z1, · · ·ZT−1)Pr(F |Z1, · · ·ZT−1)Pr(Y |ZT ).

(1)
The parameters of our HMM are the initial, transition and emission proba-

bilities, Θ = (π, A, B), defined as

πi = Pr(X1 = i), Aij = Pr(Xt+1 = j|Xt = i), Bik = Pr(Zt = k|Xt = i).

where πi is the initial probability of transition from the root to state i, Aij is
the transition probability between state i and state j, and Bik is the emission
probabilities from state i to emission k. Since each state only transits to a small
number of states and emits a small number of features, these matrices are sparse.
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2.3 Defining the Emission and Transition Probabilities for Our
Model

Our input data is composed of the sequences of all proteins, their interactions
and their compartments. Note that these observations are static and so may
depend on all levels in the HMM. The emission probability for the sequence S
is thus Pr(S|Z1, · · ·ZT−1). Since probability depends on several motif models
(one per level), which may be dependent (for example for overlapping motifs)
and is thus computationally intractable given many combinations of motifs. As
is commonly done [31] we approximate this term by the product of the condi-
tional probabilities of the sequence given an individual emission at each level:∏T−1

t=1 Pr(S|Zt). Similarly we calculate the conditional probability of the binary
features Pr(F |Z1, · · ·ZT−1) using the product of the conditional probabilities
of individual emissions (unlike for the sequence data this computation is exact
since they are provided as independent events):

∏T−1
t=1 Pr(F |Zt). This leads to

the more typical HMM model shown in Figure 1B.
To translate the sequence information to a probability we use the likelihood

of the sequence given the motif, Pr(S|λk), where λk is the motif model (we use
a profile HMM model in this paper but any other probabilistic model including
a PWM would work). This likelihood is termed the motif score, and indicates
how well the sequence agrees with the motif model. For states emitting one of
the binary features or the background feature, the likelihood of the sequence is
Pr(S|λ0), where λ0 is the background model for which we use a 0th-order Markov
model, which assumes that each position in the sequence are generated indepen-
dently according to amino acid frequencies. Combined, the sequence likelihood
is given by

Pr(S|Zt = k) =
{

Pr(S|λk) if 1 ≤ k ≤ M
Pr(S|λ0) if M + 1 ≤ k ≤ M + K + 1 (2)

The binary features observations, F = (F1, F2, · · · , FK), Fk ∈ {0, 1} correspond
to observed protein interactions and deterministic motifs as discussed above. As
mentioned above we assume independence between these features leading to:

Pr(F |Zt = k) =
K∏

j=1

Pr(Fj |Zt = k)

The conditional probability of observing a feature Fj given an emission Zt is

Pr(Fj = 1|Zt = k) =
{

νj if k �= M + j
ν0 if k = M + j

, 1 ≤ j ≤ K (3)

where νj is probability of observing this interaction across all proteins in our
dataset (background distribution) and 1−ν0 is the probability of false negatives,
.i.e. proteins that should go through this state but do not have this interaction
/ motif. Note that we need to use νj since an interaction or a motif may be
observed even if the corresponding feature is not emitted by one of the states
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1. Estimate the associations between features and compartments using a hypergeometric test.

2. Select features significantly associated with at least one compartment.

2. Start with an initial structure estimated from associations between features and compartments.

3. While BIC score improves do

a. For each level do

i. Create a candidate structure as follows

ii. Add a node (state) at this level

iii. Link from all upper nodes and link to all lower nodes

iv. Run EM to optimize parameters

v. Remove edges (transitions) rarely visited based on the parameters

vi. Remove emissions rarely used based on the parameters

vi. Run EM again to adjust parameters

b. Choose the candidate structure with highest BIC score

c. If improving, update to that structure; otherwise stop

Fig. 2. Algorithm for structure search

since many interactions are not related to protein sorting but rather to another
pathway in which this protein is a member.

The conditional probability of the compartment given the final state is denoted
by: Pr(Y |XT ). If a single compartment is given for a protein, the bottom state
XT is known for that protein and so this probability is 1 for that compartment
and 0 for others. If the training data contains multiple compartments for a
protein, it is reflected by the given compartment likelihood Pr(Y = y|XT = c),
which is assumed to be uniform for all compartments listed for that protein.

2.4 Approximation and Feature Levels

Unlike a typical HMM learning problem, the emission data we observe (sequence
and interaction data) is static and so cannot be directly associated with any
sequence of events. In addition, since our features are static, they can be emitted
multiple times along the same path. However, if this happens the independence
assumptions of HMMs are violated. Specifically, if a feature is emitted by a state
in level t and then again by a state in level t + 1 then it is not true anymore
that the probability of emitting the feature given the state is independent of any
emission events in previous states (since, if it was emitted before the protein can
still emit it again). We thus constrain all features in our model so that each is
only associated with a specific level and can only be emitted by states on that
level. The level is determined in the initial structure estimation step discussed
in the next section. Since no transitions are allowed between states on the same
level no feature can thus be emitted more than once along the path and so the
independence assumption holds. This requirement guarantees that the likelihood
function obtained from the model presented in Figure 1B is a constant factor
approximation of the likelihood function of our original model (Figure 1A). See
Appendix for details.

2.5 Structure Learning

In addition to learning the parameters (emission and transition probabilities) we
also need to learn the set of states that should be included in our model. The
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learning algorithm is formally presented in Figure 2. We start by associating
potential features (protein interactions and known motifs) with compartments.
For a potential feature, we use the hypergeometric distribution to determine
the significance of this association (by looking at the overlap between proteins
assigned to each compartment and proteins that are associated with each of
the features). We next identify a set of significantly associated compartments
(p-value < 0.01 with Bonferroni correction) for each potential feature. Features
that are significantly associated with at least one compartment are selected and
the remaining features are removed.

After feature selection, we estimate an initial structure by using the associ-
ation between features and compartments. All features that correspond to the
same set of associated compartments are grouped and assigned to a single state,
such that this state emits these features with uniform probability. These features
are fixed to the level corresponding to the number of compartments they are sig-
nificantly associated with and can only be emitted by states on that level (we
tried optimizing these feature levels as part of the iterative learning process but
this did not improve performance while drastically increasing run time). Initial
transition between states is determined from the inclusion relationship of the set
of compartments (states for which features are associated with more compart-
ments are assigned to higher levels). We initially only allow transitions between
two states where the second state contains features that are associated with a
subset of the compartments of the first state. The transition probability out of
a state is also set to the uniform distribution.

Starting with this initial model, we use a greedy search algorithm which at-
tempts to optimize the Bayes Information Criterion (BIC), which is the data log
likelihood plus a penalty term for model selection.

BIC = −2 logPr(S,F,Y|Θ) + |Θ| log N

where S,F,Y are the collection of sequences, feature observations, and compart-
ments of the proteins in the training data. Θ = π, A, B) denote the parameters
of the HMM. |Θ| is the number of parameters according to the structure, which
is a function of the number of states and the number of transitions and emissions
of each state. Complicated structures will have large |Θ| while simple structures
will have small ones. N is the number of proteins in our training data.

To improve the initial structure described above we perform local moves in the
following way. For each level we consider adding a state which is fully connected
to all states in levels above and below it and emits all features on that level.
We run standard EM algorithm [10] to optimize the parameters of the model
for all states (transition and emission probabilities). Transitions and emissions
with probabilities lower than a specific threshold are removed. Features not
emitted by any states are also removed, so the feature set becomes smaller and
smaller. Then we run EM algorithm again because the parameters are changed.
A candidate model and structure is created by this process for each level, and
the one with the highest BIC score is chosen. This procedure is repeated until
the BIC score no longer improves.
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3 Results

3.1 Simulated Data

We first tested our method using simulated data in order to determine how well
it can recover a known underlying structure given only information on destina-
tions, carriers and motifs. We manually created structures with 7, 14, 23, 25,
and 31 states with multiple emitted features per state (see Supporting Website
for the structure of these models). For each structure we simulate the proba-
bilistic generative procedure and record the emitted features. 1,200 proteins are
generated from the model, with varying levels of noise (leading to false positive
and false negative features for proteins). We also tested various sizes of input
sets with a fixed noise level.

Predicting Protein Locations. While it is not its primary goal, our method
can provide predictions regarding the final localization of each protein. For each
training dataset, we therefore generated a test dataset with 4,000 proteins from
the same model and evaluated the accuracy of predicting protein localization for
the test data using the structure and model learned by our method. Our method
is compared to predictions made by the true model (note that due to noise, the
true model can make mistakes as well) and by a linear support vector machine
(SVM) learned from the training data using the features associated with each
protein. Prediction accuracy on the 25-states dataset is shown in Figure 3 and the
accuracy of other simulated datasets are available on the Supporting Website. As
can be seen, when noise levels are low our model performs well and its accuracy is
similar to that obtained by the true model for both simple and more complicated
models. Both the learned model and the true model outperform SVM which
does not try to model the generative process in which proteins are sorted in cells
relying instead on a one vs. all classification strategy.
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Fig. 3. (A) Testing error of simulated dataset generated from a structure with 25 states
with varying levels of noise (false positive and false negative in features). The training
sample size was fixed at 1400. (B) Testing error versus different training sample sizes.
The noise level was fixed at 2%. (C) The ratio of overlapping nodes and edges between
the learned model and the true model with varying levels of noise. The training sample
size was fixed at 1400.
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Recovering the True Structure. To quantitatively evaluate how well a
learned structure resembles the true structure, we use the graph edit distance
to measure their topological similarity [12]. First we need to match the nodes
in a learned structure to a node in the true structure. We run the Viterbi algo-
rithm on proteins in the testing data, and count the state co-occurrence matrix
W whose elements Wij is the co-occurrence of state i in the learned model and
state j in the true model, i.e. the number of proteins in which the two states i
and j occur in the Viterbi path inferred by the two models. The optimal one-
to-one matching M , denoted as a set containing pairs of matched state indexes,
can be found by running the Hungarian algorithm on the co-occurrence matrix
W optimizing the objective function

∑
(i,j)∈M Wij .

With the optimal matching we use the maximum common subgraph (MCS)
and minimum common supergraph in the graph edit distance methodology to
quantify similarity between two structures. Given two graphs G1 and G2, let Ĝ
and Ǧ be the MCS and minimum common supergraph of G1 and G2. Denote |G|
as the size, or the number of edges and nodes of a graph, we define the overlap
rate as |Ĝ|/|Ǧ|, i.e. the percentage of overlapping edges and nodes. The overlap
rate comparing to the true model on the 25-states dataset is shown in Figure 3C.
Structural comparison on other datasets is available on the supporting website.
As can be seen, our algorithm successfully recovers the correct structure in all
cases with 0% noise. As the noise increases the accuracy decreases. However,
even for very high levels of noise the two models share a substantial overlap
(around 40% of states and trnasitions could be matched).

3.2 Yeast Data

We next evaluated our method using subcellular locations of yeast proteins de-
rived from fluorescence microscopy (the UCSF yeast GFP dataset [15]). This
dataset contains 3,914 proteins that were manually annotated, based on imag-
ing data, to 22 compartments. We used the following features to learn the
model. Protein-protein interaction (PPI) data was downloaded from BioGRID
(BiG) [33]. Protein sequences were downloaded from UniProt [1], and known
motifs were downloaded from InterPro [20]. The above features are filtered by
a hypergeometric test to identify features with a significant association with a
final destination (p-value < 0.01 with Bonferroni correction) before learning the
model. In addition to these known features, we applied the discriminative HMM
motif finder we have previously described [18] to extract motifs present in one
compartment but absent in other compartments. We extract 20 motifs for each
compartment, and compared setting all to length 4 versus setting the length to
range from 3 to 7. The performance in all following evaluations are similar and
we show results based on motif length as 4. Furthermore, we use the occurrences
of three signal sequences listed in UniProt.

1. Signal peptides: UniProt defines this sequence feature based on the literature
or consensus vote of four programs, SignalP, TargetP, Phobius and Predotar.
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2. Transmembrane region: UniProt annotates a sequence with this feature ei-
ther based on literature or consensus vote of four programs, TMHMM, Mem-
sat, Phobius and Eisenberg.

3. GPI anchor: UniProt annotation for this feature either relies on literature
or prediction by the program big-PI.

Predicting Protein Locations. As with the simulated data, we first evalu-
ated the accuracy of predicting the final subcellular location for each protein.
This provides a useful benchmark for comparison to all other computational
methods for which this is the end result. The performance is evaluated by 10-
fold cross-validation. In each fold both feature selection and motif finding are
restricted to the training data without accessing the testing data. The result
is shown in Table 1. We compared our method with the k-Nearest Neighbors
(kNN) from Lee et al [17] which was shown by the authors to outperform other
methods. As can be seen in Table 1 PPI information (BiG) provides the major
contribution for accurate predictions while InterPro motifs do not contribute as
much. This agrees with previous studies [28, 17]. When adding more features
the performance improves and the best result is achieved using all features. Note
that the accuracy of our method is very close to that of the kNN method. How-
ever, it is important to note that our method performs the much harder task of
simultaneously learning the sorting pathways as well as predicting locations.

Table 1. The accuracy of predicting the final subcellular location. For kNN we use
the reported accuracy based on PPI information from BiG, deterministic InterPro
motif annotation from UniProt, and amino acid composition of different length, gaps,
and chemical properties [17]. For HMM we listed the mean and standard deviation
of accuracy in 10-fold cross validation. The features for HMM also include InterPro
and BiG, and three signal sequences from UniProt and novel motifs learned using
discriminative HMM of length 4.

Methods and features Accuracy

kNN BiG + InterPro + AA comp 65%
HMM InterPro 48% ±4
HMM BiG 61% ±2
HMM BiG + InterPro 61% ±2
HMM BiG + InterPro + Signals + DiscHMM 4 63% ±2

Evaluation of the Learned Structure. To evaluate the accuracy of the
learned structure, we collected information about known targeting pathways
from the literature. We were able to find information regarding 13 classical and
non-classical targeting pathways (pathways followed by a minor fraction of pro-
teins or that differ from the first discovered pathway are often referred to as
non-classical pathways). For each of these pathways we identified a set of carri-
ers or motifs that govern the pathway and, when available, the set of proteins
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that are predicted to use this pathway. Figure 4 presents the pathways we col-
lected from the literature. For example the classical HDEL pathway into ER
has two steps. In the first, proteins with signal peptide (SP) are introduced into
this pathway by the SRP complex. In the second, proteins with the HDEL motif
are retained in ER by interaction with proteins Erd1 and Erd2. The full list of
carriers and motifs for these pathways is provided on the supporting website.

We first wanted to check if the databases we used for obtaining features con-
tain the carrier information for the literature pathway. We filtered pathways for
which carrier information in the BIG database did not contain the genes asso-
ciated with the pathway (and thus no method can identify this pathway based
in this input data) leaving 10 pathways that could, in principal, be recovered
by computational models. Sorting steps that were filtered out in this way are
represented as shaded links in Figure 4.

To determinewhetherwe accurately recovered a pathway in ourmodelwe looked
at the carriers and motifs that are associated with that pathway in the literature.
A step in a literature pathway can be matched to a state if the state emits any car-
rier or motif in that step. A known pathway is considered recovered in a learned
structure if its steps can be matched to the states along a path from the root to the
compartment to which it leads. A pathway is partially recovered if only some of
its steps can be matched. For example, the MVB pathway (Figure 4) is only par-
tially recovered (66.7%) because the third step does not have a well-represented
carrier in the data sources. The numbers of recovered pathways for different sets

ER VacuoleCell peripheryPeroxisome MitochondriaNuclear

ER

Cytosol

Golgi

Trans-Golgi

Endosome

NLS

39%

Pex5
Pex7 PMP

MTS

HDEL

2 steps 33%

1 step 25%

Ste6
CVT

FBPase

MVB

2 steps 23% 

1 step 9%

Vac

Vps41

Sec

2%

Fig. 4. Protein targeting pathways collected from the literature. Each pathway is a
path from cytosol to a compartment at the bottom, consisting of one or more steps
(the links) that transport proteins between intermediate locations. Each step has a
list of carriers and motifs responsible for the transportation by which we can verify
whether the pathway is recovered. Shaded links denote steps whose carriers are under-
represented on BiG (covering less than 5% of proteins transported to the corresponding
compartment in the GFP dataset). Dashed lines denote steps taken by default without
specific carriers. The percentage under pathway name is the protein sorting precision
when the pathway is recovered, as described in Table 3.
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of features are listed in Table 2. The ranges correspond to the different folds in our
cross validation analysis. Fractions represent partial matches as discussed above.
When using the full set of input features our algorithm is able to recover roughly
80% of known pathways. Most of these pathways are recovered in all 10 folds (Ta-
ble 2). Note that because some carriers do not appear in our database not all steps
in all pathways can be matched and the best possible recovery is 8.7. Thus, the 7.7
recovery obtained is very close to optimal.

For example, because of lack of evidence (the motif and carrier detection
steps did not find the Vam3, Vam7, or the Vps41 features), the classical vacuole
import pathway (Vac in Figure 4) and the alternative Vps41 pathway can only
be 50% recovered (each missing a step). For both, the step of signal peptide (SP)
is accurately found, but alternative motifs/carriers are selected to route proteins
to the vacuole or cell periphery.

We further collected lists of proteins indicated as following specific pathways
in the literature for 4 of the pathways, NLS, HDEL, Sec and MVB, and tested
whether the recovered pathways indeed sort proteins on the correct path to the
correct destination (allowing close compartments as above). For each protein,
we use the Viterbi algorithm to infer the highest probability path of states the
protein is expected to follow according to our learned model, and compare the
Viterbi path to the known pathways. Again counting partial match of a multi-
step pathway as above, on average using all features results in correctly assigning
21% of 63 proteins. Focusing on a representative feature set, detailed protein path
results for each pathway are also given in Table 3. The recovered NLS pathway
sorted 39% of proteins correctly, and the recovered HDEL pathway sorted 33%
correctly but sorted the other 25% via SP. Similarly the recovered MVB pathway
sorted 23% to go through two of the three steps (SP and MVB) and other 9% to
one of the three steps. The recovered Sec pathway only sorted 2% of the proteins
to go through SP and end at cell periphery. However, this was due to the fact
that while 17 of the 28 proteins collected from literature as being secreted were
included in the GFP dataset, the majority are labeled as ER and vacule and
none are labeled as cell periphery. Overall the GFP dataset include 40 out of the
63 proteins whose pathway is known, of which only 28% are labeled in agreement
with our lierature survey.

It is important to note that our analysis of the learned structure may under-
estimate its accuracy, since it may have recovered correct pathways that could
not be verified due to insufficient detection of relevant motifs or carriers in the
input data.

Table 2. Pathway recovery results of structure learned from different feature sets. The
precision of inferred protein path is also listed here. Median, minimum and maximum
among the 10 folds are shown.

Features Pathway recovery Inferred protein path

HMM BiG 5.9 (4.7 - 8.0) 9% (4% - 10%)
HMM BiG + InterPro + Signals 7.2 (5.7 - 8.7) 9% (6% - 11%)
HMM BiG + InterPro + Signals + DiscHMM 4 7.7 (6.7 - 8.7) 21% (16% - 23%)
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Table 3. Recovery and protein sorting results of each pathway using the features BiG
+ InterPro + Signals + DiscHMM 4

Compartment Pathway Recovery Steps Sorting
(#proteins) (folds)

Nucleus NLS(15) 10/10 all 39%

Pex5 1/10 all
Peroxisome Pex7 10/10 all

PMP 9/10 all

ER HDEL(11) 10/10 SP+HDEL 33%
SP 25%

Cell periphery Sec(28) 10/10 SP 2%

Vac 10/10 SP
MVB(9) 10/10 SP+MVB 23%

Vacuole SP 9%
Vps41 10/10 SP
CVT 10/10 all

Figure 5 shows one of the learned structures obtained using all features. Be-
sides carriers and motifs included in our literature pathway collection (marked
as boldface), many other features were found that are also known to participate
in protein trafficking as curated in SGD [7] (marked with an asterisk). For those
compartments not covered by our collection of known pathways, the general
topology of this structure agrees with our basic understanding of cell biology.
For example microtubule share a step with spindle pole, which in turn share a
step with nuclear periphery, and cell periphery share steps with bud neck, which
in turn share steps with bud and actin.

4 Discussion

The goal of this research is to propose hypotheses about protein targeting mech-
anisms, not just to make predictions. We propose, for what we believe is the first
time, a method to learn targeting pathways from protein localization annotation,
based on co-occurrence of interacting partner and sequence motif. Our method
is able to recover a significant part of known pathways collected from the liter-
ature, and to infer the correct path of proteins known to follow these pathways.
Given that the sorting routes taken by many proteins are currently unknown,
however, the most important part of our work is the potential to identify novel
pathways. In this regard, we note that, just like hand-constructed pathways, any
novel putative pathways contained in our learned model can be readily tested
experimentally by perturbing motifs and/or carriers. An additional advantage
of building comprehensive sorting models is that potential inconsistencies in
canonical models can be identified and experiments performed to resolve them.

Acknowledgments. This work was supported in part by NIH grant R01
GM075205. The authors would like to thank Jennifer Bakal for programming
support.
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Appendix: Approximation of the Original Model

Here we will describe how to approximate the full model in Figure 1A by the
simplified model in Figure 1B, given that each feature has a fixed level. Recall
that the joint probabilities of the original model in Figure 1A is given in Equa-
tion (1). First we focus on the emission probabilities of the feature observations,
and show that the likelihood ratio of the emission versus the background equals
the product of this likelihood ratio on all levels.

Pr(Fj = 1|Z1, · · ·ZT−1)
νj

=
T−1∏
t=1

Pr(Fj = 1|Zt)
νj

(4)

where νj is the likelihood given the background feature. From Equation (4) we
can naturally obtain

Pr(Fj = 1|Z1, · · ·ZT−1) = ν2−T
j

T−1∏
t=1

Pr(Fj = 1|Zt)

for each feature, and it is combined as

Pr(F |Z1, Z2, · · ·ZT−1) =
(∏

j

ν2−T
j

) T−1∏
t=1

Pr(F |Zt) (5)

The full emission probability for each feature, Pr(Fj |Z1, Z2, · · ·ZT−1), is defined
as a noisy observation (with false positive and false negative) of the OR function
over Zt,
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Pr(Fj = 1|Z1 = k1, Z2 = k2, · · ·ZT−1 = kT−1) =
{

νj if ∀t kt �= M + j
ν0 if ∃t kt = M + j

However the OR function is unnecessary because we require feature Fj to have
a fixed level, so only one level can emit the corresponding emission such that
Zt = kt = M + j. Now to prove Equation (4), when one of the levels indeed emit
the corresponding emission, we start from the right hand side of Equation (4)
and apply Equation (3),

T−1∏
t=1

Pr(Fj = 1|Zt)
νj

=
ν0ν

T−2
j

νT−1
j

=
ν0

νj
=

Pr(Fj = 1|Z1, · · ·ZT−1)
νj

and reach the left hand side of Equation (4). Similarly when none of the levels
emit the corresponding emission,

T−1∏
t=1

Pr(Fj = 1|Zt)
νj

=
νT−1

j

νT−1
j

=
νj

νj
=

Pr(Fj = 1|Z1, Z2, · · ·ZT−1)
νj

Hence we have derived Equation (4) given the requirement that each feature
must have a fixed level.

The above derivation for feature likelihood term is exact, but approximation
is necessary for the sequence likelihood term. Similar to feature observations, we
approximate the likelihood ratio of emission probabilities for sequence by a set
of motifs over the background likelihood as the product of this likelihood at each
level,

Pr(S|Z1, Z2, · · ·ZT−1)
Pr(S|λ0)

≈
T−1∏
t=1

Pr(S|Zt)
Pr(S|λ0)

(6)

where λ0 is the null model as in Equation (2). We assume that motifs are in-
dependent to each other since motif length is set to be short (either set to 4
peptides or 3 to 7 peptides) comparing to the sequence length, as is the case
in most known targeting motifs. This is a common assumption (e.g. [31]) and
necessary for avoiding overfitting. However as we discussed in section 2.4 this
assumption requires that no motif is emitted twice in different levels, which is
achieved by fixing the level of each feature. Similar to Equation (5) we also write
the sequence likelihood term as

Pr(S|Z1, Z2, · · ·ZT−1) = Pr(S|λ0)2−T
T−1∏
t=1

Pr(S|Zt). (7)

By combining Equation (5) and (7), we show that the likelihood of the full
model in Figure 1A and the likelihood of the simplified model in Figure 1B is
approximately up to a constant factor, so that optimizing the simplified model
also optimizes the original model.
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example, provide information about the structure of the protein in its
folded state. NMR studies of symmetric protein homo-oligomers present
a unique challenge. Current techniques can determine whether an NOE
restrains a pair of protons across different subunits or within a single
subunit, but are unable to determine in which subunits the restrained
protons lie. Consequently, it is difficult to assign NOEs to particular pairs
of subunits with certainty, thus hindering the structural analysis of the
oligomeric state. Hence, computational approaches are needed to address
this subunit ambiguity. We reduce the structure determination of protein
homo-oligomers with cyclic symmetry to computing geometric arrange-
ments of unions of annuli in a plane. Our algorithm, disco, runs in ex-
pected O(n2) time, where n is the number of distance restraints, and is
guaranteed to report the exact set of oligomer structures consistent with
ambiguously-assigned inter-subunit distance restraints and orientational
restraints from residual dipolar couplings (RDCs). Since the symmetry
axis of an oligomeric complex must be parallel to an eigenvector of the
alignment tensor of RDCs, we can represent each distance restraint as a
union of annuli in a plane encoding the configuration space of the sym-
metry axis. Oligomeric protein structures with the best restraint satis-
faction correspond to faces of the arrangement contained in the great-
est number of unions of annuli. We demonstrate our method using two
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assignments each; and a dimeric mutant of the immunoglobulin-binding
domain B1 of streptococcal protein G (GB1) using ambiguous NOEs. In
both cases, disco computes oligomer structures with high accuracy.

1 Introduction

Structural characterization of proteins yields insight into their biological func-
tions, which has become increasingly important for understanding the biochem-
ical basis of human disease. Once the mechanism by which pathogens affect a
host is better understood, one can begin to ask how it might be possible to al-
leviate the affects of infection, or prevent infection altogether. Determining the
high-resolution 3D structures of proteins can enable design of molecules (drugs)
to inhibit the native function of a pathogenic protein, or modify helpful proteins
to perform a novel function to help stave off infection. One such protein redesign
study modified a phenylalanine adenylation domain of the nonribosomal pep-
tide synthetase enzyme gramicidin S synthetase A, an enzyme that originally
manufactured the decapeptide gramicidin S, a strong antibiotic, to incorporate
different substrates into the assembly line [1], thus showing it may be possible to
use computational algorithms to engineer enzymes to produce new molecules of
potential pharmacological interest. In addition, the same protein design method-
ology can help predict antibiotic resistance mutations in harmful pathogens such
as methicillin-resistant Staphylococcus aureus (MRSA) [2], giving drug research
the opportunity to keep one step ahead of its bacterial adversaries. Compu-
tational protein redesign is an increasingly popular tool for efficiently explor-
ing possible modifications to protein sequence, but usually requires a structural
model of the enzyme or protein of interest.

The majority of proteins assemble as symmetric homo-oligomers [3,4], in-
cluding many membrane proteins, yet the symmetry complicates assignment
of inter-subunit distance restraints, and hence oligomeric structure determina-
tion by NMR. The pace of structure determination of membrane proteins has
lagged significantly behind soluble globular proteins [5], in part due to these
challenges arising from symmetry. Structure determination of symmetric trimers
and higher-order homo-oligomers is hindered by subunit ambiguity [6]: even if an
NOE between two protons can be assigned as intra-subunit or inter-subunit
through X-filtered NOESY [7], current experimental techniques are still unable
to determine precisely in which subunits the restrained protons lie (see Figure 1).

Even with precise unambiguous distance restraint assignments, structure de-
termination of monomeric proteins by NMR remains a difficult task. Structure
determination protocols that rely only on local distance restraints have been
proven strongly NP-Hard [8] and therefore vitiate guarantees of efficiency, ac-
curacy, and completeness. Remarkably, the addition of global orientational con-
straints on internuclear vectors from residual dipolar couplings (RDCs) and a
reduction to sparse distance restraints enabled a polynomial-time algorithm for
monomeric structure determination [9]. For symmetric homo-oligomers of at
least three subunits, subunit ambiguity complicates assignment of inter-subunit
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Fig. 1. Subunit ambiguity: An ambiguous inter-subunit NOE between two protons
for a hypothetical symmetric trimer has two possible assignments. Without loss of
generality, we can choose one proton to lie within the blue subunit. The other proton
must lie in either the green or red subunits. The choice of assignment can potentially
lead to vastly different overall folds for the trimer. Left: A ring-shaped scaffold satisfies
the blue-green assignment (solid line), but not the blue-red assignment (dashed line).
Right: A star-shaped scaffold satisfies the blue-red assignment (solid line), but not the
blue-green assignment (dashed line).

distance restraints, and hence, calculation of oligomer structures, since näıvely
enumerating possible assignment combinations requires exponential time. Potluri
et al. [10,6] employed a branch and bound search algorithm which computed sym-
metric oligomer structures using ambiguously-assigned inter-subunit distance
restraints and was guaranteed to return a superset of all oligomer structures
satisfying the restraints. The algorithm avoided computing explicit distance re-
straint assignments, but provided no bound on running time. In this paper, we
show how the addition of RDCs allows polynomial-time algorithms for structure
determination of symmetric homo-oligomers, but with guarantees on solution
quality as well as running time.

Fig. 2. Building a trimer structure using symmetry: Left: Compute the position and
orientation of the symmetry axis (vertical arrow) relative to the subunit structure (blue
α-helix). Middle: Copy the subunit structure and rotate by 120◦ about the symmetry
axis to place the second subunit (red α-helix). Right: Copy the subunit structure again
and rotate by 240◦ to place the final subunit (green α-helix).
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In practice, approaches such as simulated annealing coupled with simplified
molecular dynamics, which lack both combinatorial precision and guarantees on
running time and solution quality, are used routinely for structure determina-
tion. These approaches require careful selection of annealing parameters, may
not always converge, or can potentially miss structures consistent with the ex-
perimental restraints due to under-sampling. Since for every vector orientation
that satisfies an RDC value, there exists an equally-satisfying inverse vector,
restraints on internuclear vector orientation from RDCs are typically not in-
cluded in the first annealing run. After an initial fold has been calculated from
complementary restraints, RDCs are used to refine the structure with further
annealing runs. We instead propose to incorporate RDCs into the beginning of
the structure determination method, thereby creating a framework in which we
analyze inter-subunit distance restraints without requiring a complete oligomer
structure. Instead, the oligomer structure can be represented in terms of its
axis of symmetry and the structure of its subunit (see Figure 2). Therefore, we
perform structure determination in the configuration space of symmetry axes:
two translational degrees of freedom (a plane, R

2) and two rotational degrees of
freedom (a unit sphere, S2).

Previous work [11,10,6] also formulated structure determination of homo-
oligomers in a symmetry configuration space. Potluri et al. [10,6] computed the
orientation and position of the symmetry axis using only inter-subunit distance
restraints and a hierarchical subdivision of the configuration space (R2 × S2).
Regions of the space were pruned if geometric bounds proved they contained no
satisfying symmetry axis configurations. Wang et al. [12] computed symmetry
parameters for oligomer models using ambiguously-assigned distance restraints
by partitioning Cartesian space instead of axis configuration space. After choos-
ing three of the distance restraints as a geometric base, AmbiPack computed
symmetry axis parameters by computing the rigid transformation across the in-
terface between two identical subunits. The three chosen distance restraints were
used to define a coarse relative orientation between the subunits at the interface,
which was iteratively refined against the remaining distance restraints. Due to
the reliance on random sampling and local numerical optimization, the method
may potentially miss structures that satisfy the distance restraints. Wang et
al. [11] computed the orientation of the symmetry axis using just RDCs. The
axis position was computed by generating putative dimer models on a grid over
R

2 and scoring the inter-subunit interface using a residue-pairing molecular me-
chanics function. Since dimer models were ranked only according to molecular
mechanics scores, van der Waals energies, and RDC satisfaction, it was not nec-
essary to assign or use inter-subunit NOEs. However, in doing so, the method
misses the opportunity to incorporate the structural information provided by
these distance restraints.

Work by Nilges [13] calculated oligomer models without explicit knowledge of
the symmetry axis. Instead, structure calculation relied on symmetry potentials
during runs of simulated annealing, and has been successfully employed in struc-
ture determination of homo-oligomers including a trimer [14] and a hexamer [15].
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A non-crystallographic symmetry potential ensured subunits shared the same lo-
cal conformation modulo relative placement and global orientation, while an ad-
ditional potential arranged the subunits symmetrically by minimizing differences
in distances for a chosen subset of the distance restraints. Building on the am-
biguous distance restraint approach, Bardiaux et al. [16] implemented network
anchoring into ARIA to simultaneously perform distance restraint assignment and
oligomeric structure calculation.

To avoid the pitfalls of structure determination methods based on stochastic
search, we instead propose algorithms that provide guarantees on the quality of
the computed structures. In this paper, we describe a novel algorithm, disco,
that computes oligomeric structures of protein complexes with cyclic symmetry
(Cn) using RDCs and distance restraints such as NOEs, disulfide bonds, and
distance restraints derived from paramagnetic relaxation enhancement (PREs).
Along with returning the computed structural ensemble, disco guarantees the
complete set of oligomer structures satisfying the RDCs and inter-subunit dis-
tance restraints can be computed exactly and in polynomial time. The following
contributions are made in this paper:

– A novel geometric arrangement algorithm, disco, is presented to compute
structures of homo-oligomeric protein complexes with Cn symmetry from
RDCs, distance restraints such as NOEs, PREs, and disulfide bonds, and a
structure of the subunit;

– disco guarantees all symmetric homo-oligomers satisfying the RDCs and
the distance restraints are discovered, computed exactly, and computed in
expected O(n2) time, where n is the number of distance restraints;

– disco can characterize the uncertainty in the position of the symmetry axis
by computing the variance in atomic coordinates of oligomers sampled uni-
formly from the exact set of oligomer structures satisfying the RDCs and
distance restraints;

– We introduce a technique to analyze ambiguous distance restraints that can
discriminate between mutually consistent and inconsistent restraints; and

– We present results on the performance of disco on two symmetric proteins:
E. coli Diacylglycerol Kinase (DAGK) [17] and a dimeric mutant of the
immunoglobulin-binding domain B1 of streptococcal protein G (GB1) [18].

2 Methods

2.1 Solving for Protein Orientation

A single scalar RDC value r, measured experimentally, probes the orientation of
an internuclear vector v through the following tensor equation: r = DmaxvT Sv
where Dmax is the dipolar interaction constant, and S is the Saupe order matrix
which represents an alignment tensor describing the average weak alignment of
a protein in solution [19]. Our algorithm, disco, uses the observation that, for
a Cn oligomer, one of the eigenvectors of the alignment tensor must be parallel
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to the symmetry axis of the complex [20,21], and hence computes the orienta-
tion of the symmetry axis from the RDCs. When it is possible to determine
the high-resolution structure of the subunit based on entirely intra-molecular
restraints [22,23,24], the alignment tensor can be least squares fit to the RDCs
and the subunit structure using singular value decomposition [25].

For trimers and higher-order oligomers, we expect an alignment tensor with
zero rhombicity. In this case, the symmetry axis is parallel to the eigenvector of
the alignment tensor whose eigenvalue has the largest magnitude. For dimers,
which eigenvector corresponds to the symmetry axis cannot be uniquely deter-
mined from a single set of RDCs alone, so all possibilities must be examined.
If the alignment tensor has three distinct eigenvalues, then each corresponding
eigenvector is evaluated by executing disco three times. We call any oligomer
structure whose symmetry axis orientation has been computed from RDCs an
oriented oligomer structure. Hence, the space of oriented oligomer structures
corresponds to the space of symmetry axis positions; to build complete oligomer
structures, all that remains is to choose a set of appropriate symmetry axis
positions.

2.2 Solving for the Symmetry Axis Position

Inter-subunit distance restraints such as NOEs, PREs, and disulfide bonds can
be used to restrict the position of the symmetry axis – even when precise subunit
assignments are not known. Using the symmetry axis orientation computed from
RDCs, each possible assignment for a distance restraint restricts the positions of
the symmetry axis to an annulus in the plane (R2). However, distance restraints
whose possible assignments include intra-subunit assignments will correspond to
incorrect (or decoy) annuli if the true assignment of the restraint is intra-subunit.
Therefore, distance restraints with possible intra-subunit assignments must not
be used, unless disco is extended as described in Section 2.5.

(a) (b)

Fig. 3. (a) Symmetric distance restraint geometry. See Section 2.2 for complete ex-
planation. (b) Unions of annuli (grey) for three hypothetical distance restraints (a, b,
and c): This example shows two MSRs (blue).
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First, chose a coordinate system so the z-axis (ẑ) is parallel to the symmetry
axis. Then consider a single assignment for a strictly inter-subunit distance re-
straint with minimum and maximum distances dl, du between atoms p,q ∈ R3

(see Figure 3(a)). Since the restraint must be inter-subunit, let p lie in subunit A
and q lie in subunit B. If we assume the position and orientation of only subunit
A are known, then p is known, but q is unknown. Let qA be the position of the
symmetric partner of q in subunit A. Due to the symmetry, q is related to qA

by a rotation about the symmetry axis (whose position t is also unknown):

q = R(qA − t) + t (1)

where R denotes a rotation about ẑ by an angle α = 2π
m and m is the oligomeric

number of the protein. Therefore, to compute positions of the symmetry axis
whose oligomer structures satisfy the distance restraint assignment, disco com-
putes values of t such that distance restraint is satisfied: dl ≤ |R(qA−t)+t−p| ≤
du. Since we chose a coordinate system in which the symmetry axis is parallel
to ẑ, we can simplify this problem to two dimensions instead of three. Construct
a plane P perpendicular to ẑ such that it contains q and qA. Let A3(p, dl, du)
be a three-dimensional annulus centered at p whose radii dl, du are equal to the
lower and upper distance bounds of the distance restraint. The intersection of
P with A3(p, dl, du) yields a two-dimensional annulus A2(p′, rl, ru) where p′ is
the projection of p along ẑ onto P and the radii are: rl =

√
d2

l − |p− p′|2 and
ru =

√
d2

u − |p− p′|2. Therefore, the distance restraint is satisfied when

q ∈ A2(p′, rl, ru). (2)

By substituting (1) into (2), we relate the symmetry axis position t to satisfying
positions of q:

R(qA − t) + t ∈ A2(p′, rl, ru). (3)

To solve for t, we return to (1) which can be rewritten: (R − I)t = RqA − q.
Next, we substitute (2) for q and lift the operators to set operators to consider
set membership in place of strict equality: (R− I)t ∈ RqA�A2(p′, rl, ru) where
� represents the Minkowski difference [26]. We evaluate the Minkowski difference
by simply translating the annulus:

(R − I)t ∈ A2(RqA − p′, rl, ru). (4)

Consider all solutions to (4) for t as a set T , which represents the set of sym-
metry axis positions whose oligomer structures satisfy the distance restraint
assignment:

T = {t ∈ R
2 | (R − I)t ∈ A2(RqA − p′, rl, ru)}. (5)

To describe T , we make use of the following proposition which describes the
matrix (R− I) ∈ R2×2. The proof of this proposition is provided in the Supple-
mentary Information (SI) [27], Section A.
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Proposition 1. The matrix (R − I) is the composition of a 2D rotation W =
1
h [ u− x̂ v − ŷ ] and a scaling h = |u− x̂| where R = [ u v ] and x̂, ŷ are the
unit axes.

Using Proposition 1 and (5), we can rewrite (4):

hWT = A2(RqA − p′, rl, ru). (6)

Since T represents a set and hW is invertible, we have replaced the set inclusion
of (4) with strict equality. Solving for T , we see it must also be an annulus in
two dimensions:

T = A2

(
1
h

W−1(RqA − p′),
rl

h
,
ru

h

)
. (7)

Therefore, disco computes the annulus T exactly and in closed form using (7).

2.3 Analysis of Multiple Distance Restraints

If {(pi,qi)} is a set of unambiguous distance restraints, disco evaluates (7) for
each i to compute a set of annuli T = {Ti} that lies on a set of planes {Pi}.
In the cases where Ti = ∅ (i.e., when A3(pi, dl, du) and Pi do not intersect),
the restraint cannot be satisfied by any oriented oligomer structure. Effectively,
Ti = ∅ indicates the corresponding restraint is inconsistent with respect to the
RDCs and the symmetry. Since all the Pi planes are mutually parallel and each
Pi is perpendicular to ẑ, each Ti is projected onto the xy-plane. In the ideal case
with no noise and no incorrect assignments, the intersection of all annuli in T
will result in a non-empty region of the xy-plane. Each symmetry axis position
t ∈

⋂
i Ti corresponds to an oriented oligomer structure that satisfies every

distance restraint. However, noise and incorrect assignments can cause
⋂

i Ti to
be empty. Instead, disco computes the geometric arrangement of T using a
randomized incremental algorithm [28] (implemented using the CGAL software
library [29]), which returns all intersection points of the circles bounding the
annuli, all edges between intersection points, and all faces bounded by the edges.
Next, disco computes the faces of the arrangement contained in the greatest
number of unions of annuli, the maximally satisfying regions (MSRs), which
correspond to oriented oligomer structures that satisfy the maximal number of
distance restraints (See Figure 3(b)).

If the distance restraints possess ambiguity, disco computes one annulus for
each possible assignment. In one case, precise atom assignments are not known
(atom ambiguity, often due to overlapping chemical shifts). Instead, each distance
restraint has a set of possible assignments {(pj ,qj)} where pj and qj are the
two atoms for assignment j. Instead of corresponding to a single annulus, the
distance restraint corresponds to a set of annuli – one for each j. The restraint
could be interpreted with any one of these possible assignments, and all of them
are mutually exclusive. To avoid a combinatorial enumeration of assignment
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possibilities, we conservatively encode the choices using a logical or operator by
computing the set union of (7):

Ti =
⋃
j

A2

(
1
h

W−1(Rq(j)
A − p′

j),
rl

h
,
ru

h

)
(8)

where q(j)
A represents the symmetric partner of qj in subunit A. In the case

where precise subunit assignments are not known (i.e., subunit ambiguity), disco
computes an annulus for each of the m − 1 possible subunit assignments by
varying the angle of rotation described by the matrix R in (7) to choose different
subunits:

Ti =
m−1⋃
j=1

A2

(
1
h

W−1(RjqA − p′),
rl

h
,
ru

h

)
(9)

where Rj is a rotation about the ẑ axis by an angle of jα and m is the oligomeric
number of the protein. In both cases, disco computes the arrangement of the
unions of annuli and selects as MSRs faces from the arrangement contained in
the greatest number of unions of annuli. The following lemma describes the time
complexity required to compute the MSRs. A proof of the complexity is provided
in the SI [27], Section B.

Lemma 1. For an oligomeric protein complex with cyclic symmetry and n dis-
tance restraints assigned ambiguously, the MSRs can be computed in expected
O(n2) time.

2.4 Evaluation

Once MSRs have been computed, disco evaluates the distance restraints using
the continuous set of oligomer models described by the MSRs. We characterize
a distance restraint as inconsistent if its corresponding union of annuli does not
contain any of the MSRs. No oriented oligomer structure whose symmetry axis
position was chosen from a MSR could satisfy an inconsistent restraint. Since
the MSRs computed by disco represent continuous sets of symmetry axis posi-
tions, the corresponding oligomer structures are also continuous sets. To perform
detailed structural analysis and for visualization, the MSRs are sampled on a
uniform grid at a fine resolution to generate a discrete set of symmetry axis po-
sitions. One of the advantages of disco is that by computing the exact MSRs, it
is unnecessary to sample the entire symmetry axis position configuration space.
Instead, we can sample only within the MSR at a much finer resolution than
would be possible using a grid search over the full configuration space. disco
combines the sampled axis positions with the symmetry axis orientation com-
puted from the RDCs to define a set of rigid transformations that, when applied
to the subunit structure, generate symmetric oligomer structures. Figure 2 illus-
trates an example using a trimer. Each resulting structure is energy-minimized
in Xplor-NIH [30] using a fixed backbone, but flexible side chains to relieve
minor steric clashes.
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2.5 Extensions to disco

One restriction of disco as described above is that distance restraints must
not have possible intra-subunit assignments. Since PREs have potential intra-
subunit assignments as well as inter-subunit assignments, if the true assignment
for a PRE is intra-subunit, then the annulus analysis presented in Section 2.2
will yield a decoy union of annuli. This union of annuli does not truly con-
strain the symmetry axis since an intra-subunit distance restraint cannot possi-
bly describe the symmetry of the oligomer structure. One might hope to resolve
the intra/inter-subunit assignment ambiguity directly, but no experimental or
computational methods are currently known to perform such an assignment for
PREs. However, disco’s restriction can be relaxed if a set of distance restraints
with no possible intra-subunit assignments are also available.

We therefore divide the available distance restraints into two classes: distance
restraints with no possible intra-subunit assignments are considered trusted, and
the remaining distance restraints are considered untrusted, since they may yield
decoy unions of annuli. disco processes the trusted and untrusted distance re-
straints in two different phases of the algorithm. Phase one uses only the trusted
restraints to compute MSRs (Section 2.2), which we refer to as trusted MSRs.
In phase two, disco computes unions of annuli for the untrusted distance re-
straints, but does not immediately compute their arrangement. Instead, disco
compares each of the untrusted unions of annuli to the trusted MSRs. If an
untrusted union of annuli does not intersect the trusted MSRs, that union of
annuli is discarded. The remaining unions of annuli that intersect the trusted
MSRs are used along with the original trusted unions of annuli to compute a new
arrangement, from which the final MSRs are selected. The final MSRs represent
oligomer structures that are guaranteed to satisfy the trusted distance restraints,
and also a subset of the untrusted distance restraints. This two-phase approach
ensures all distance restraints contribute to the structure determination (despite
some restraints having possible intra-subunit assignments), while avoiding the
need to choose explicit intra/inter-subunit assignments.

3 Results

We evaluated the performance of disco on two proteins: DAGK [17] and a
dimeric mutant of GB1 [18] (henceforth referred to simply as GB1). We com-
pared structures computed by disco to known structures (i.e., reference struc-
tures) from the PDB [31] for DAGK: 2kdc, model 1 and GB1: 1q10, model
1. The subunit structure used by disco was the first subunit in the reference
structure, which was determined using traditional protocols. This mirrors the
experimental situation where the subunit structure can be determined with con-
fidence [22,23,24], but the main bottleneck is subunit assignment and the assem-
bly of subunit structures to form the oligomer structure.

We measured the structural similarity between structures computed by disco
and the reference structures using the RMS deviation in backbone atom position.
All computed structures were within 0.14 Å to the reference for DAGK, and 0.25
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Fig. 4. Top: distance restraint satisfaction scores (lower is better) and van der Waals
energies. Bottom: backbone alignment between the blue diamond structure from the
top row (blue) and the reference structure (red). For this illustration, the structures
are offset from one another by 1.0 Å so they appear distinct.

Å for GB1. After energy-minimization, we evaluated the RMS distance restraint
violation and van der Waals energy (using the pairwise Lennard-Jones potential)
of each oligomer structure [6]. Figure 4 shows the scores of the computed struc-
tures, which are comparable to those of the references. Since disco can compute
the MSRs exactly and discrete structures are sampled uniformly from the MSRs,
the variance in backbone atom position of the computed structural ensemble ac-
curately represents uncertainty about the position of the symmetry axis inherent
in the distance restraints. Statistics of the computed ensembles, including back-
bone RMSDs and the variance, are summarized in Table 1. Sections 3.1 and 3.2
describe in more detail the results for DAGK and GB1 respectively.

3.1 DAGK with Subunit Ambiguity

DAGK is a C3 homo-trimeric membrane protein of 121 residues per subunit for
which 67 NH RDCs, 200 PREs, and 24 disulfide bonds are available [17]. The
PREs and disulfide bonds are inter-subunit distance restraints whose assign-
ments are complicated by subunit ambiguity and therefore have two possible
assignments each (See Figure 1). Additionally, it was not known whether the
two PRE-related atoms were in the same subunit, or different subunits. There-
fore, we used the two-phase extension to disco, labeling the disulfide bonds as
trusted, and the PREs as untrusted.
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Table 1. Statistics of oligomer structures computed by disco

DAGK GB1

Orientation difference1 0.16◦ 0.66◦

MSR sample resolution2 0.025 Å 0.005 Å
Computed ensemble size 20 36

Average all-atom variance 9.2 × 10−3 Å2 2.7 × 10−2 Å2

Average backbone variance 5.8 × 10−3 Å2 7.9 × 10−4 Å2

Backbone atom RMSD3 0.05–0.14 Å 0.20–0.25 Å
1Difference in orientation between computed and reference symmetry axes. 2Grid resolution at
which symmetry axis positions were sampled from MSRs. 3Range of RMSDs in the computed

ensemble vs. reference.

During phase one, disco computed the arrangement of unions of annuli from
the trusted disulfide bonds. disco allows sidechains to move during energy-
minimization, but uses the rigid subunit structure to compute the annuli from the
distance restraints. To account for motions of the sidechains during minimization
that could potentially relieve violated distance restraints, we slightly increased
the distances allowed by the restraint. We chose a padding percentage β such
that the lower distance bound of each restraint is multiplied by (1 − β) and
the upper by (1 + β). For these tests, we chose β = 3%. Figure 5 (A) shows
the arrangement and MSRs from phase one. The symmetry axis position of the
reference structure is contained within the trusted MSR indicating the annulus
analysis is able to correctly describe the satisfying symmetry axis positions of
the oligomer structure for DAGK. Since disco is able to compute the MSRs
exactly (and thus, the set of satisfying oriented oligomer structures exactly),
the absence of any additional MSRs farther away rules out the possibility of a
satisfying oligomer structure that is dissimilar to those already discovered by
the algorithm. The MSRs for DAGK are sensitive to the padding percentage β
chosen. With β = 5%, oligomer structures sampled from the MSRs differed from
the reference structure by as much as 2.7 Å backbone RMSD, but had a distance
restraint RMSD of no worse than 0.38 Å.

The single trusted MSR computed satisfied 21 of the 24 disulfide bond re-
straints. The remaining 3 disulfide bond restraints were labeled inconsistent by
disco, each resulting in small violations in the oligomer structures. For com-
parison, the same three disulfide bond restraints were also unsatisfied in the
reference structure. Additional details of the inconsistent disulfide bonds are
presented in the SI [27], Section C. Phase two of disco discarded 46 of the
200 PREs (also padded by β = 3%) since their annuli did not intersect the
trusted MSR. The remaining 154 untrusted PREs were combined with the orig-
inal 24 trusted disulfide bonds to compute a new arrangement and the final
MSRs which are shown in Figure 5 (B). As with the trusted MSR, disco also
computed a single final MSR which again contains the symmetry axis position of
the reference structure. If a large enough number of decoy unions of annuli still
intersect the trusted MSR, it is possible for disco to be led astray and compute
final MSRs that do not correctly describe the oligomer structure of the protein.



234 J.W. Martin et al.

−80 −60 −40 −20 0 20 40 60 80 100

−80

−60

−40

−20

0

20

40

60

80

−8.7

−8.6

−8.5

−8.4

−8.3

−8.2

−8.1

−10.4 −10.3 −10.2 −10.1 −10

−15 −10 −5 0 5 10

−20

−15

−10

−5

0

5

A
ng

st
ro

m
s

Angstroms

Fig. 5. (A): Unions of annuli from 24 disulfide bonds for DAGK. Even though an
annulus marked consistent does not appear to intersect the MSR, it is the member
of a union which does. (B): Unions of annuli from 24 disulfide bonds and 154 PREs.
The outer ring represents outer boundaries for 27 PREs with large upper distances
(∼125 Å), for which only the lower bounds were meaningful. Inset: close-up of MSR
and reference axis position.

However, the presence of the reference axis position within the final MSRs shows
that the two-phase analysis is able to remove enough decoy unions of annuli
to prevent them from conspiring to increase support for an incorrect answer.
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Fig. 6. Distance restraint unions of annuli for
GB1 using 296 NOEs with simulated ambigu-
ity. The six inconsistent unions are not labeled.
Inset: close-up of the MSR and reference axis
position.

3.2 GB1 with Simulated
Atom Ambiguity

GB1 is a C2 homo-dimer of 56
residues per subunit for which 56
NH RDCs and 296 experimen-
tal inter-subunit NOEs (assigned
without subunit ambiguity, since
GB1 is a dimer) are available [18].
We simulated atom ambiguity by
expanding the published NOE as-
signments to include nuclei with
similar chemical shifts, resulting in
an average of 6.7 possible atom as-
signments per restraint. Window
sizes of 0.05 ppm and 0.5 ppm were
used for 1H and 13C/15N shifts re-
spectively. A search over the three
alignment tensor eigenvectors re-
vealed that MSRs computed from
the Dxx eigenvector resulted in the
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greatest distance restraint satisfaction. Figure 6 shows the single MSR computed
for GB1 (with β = 0) in comparison to the position of the symmetry axis of the
reference structure. The ambiguity simulation resulted in 1993 total annuli. Re-
markably, 32% of these annuli enclosed no points (i.e., are the empty set) and
therefore, no satisfying symmetry axis positions exist, indicating these possi-
ble assignments are inconsistent with the computed symmetry axis orientation
and ultimately the RDCs. disco also found six inconsistent inter-subunit NOEs
whose unions of annuli did not intersect the MSR, each resulting in small vi-
olations in the oligomer structures. The reference structure violates 12 of its
inter-subunit NOEs, although each to a lesser degree. Additional details of the
inconsistent NOEs are presented in the SI [27], Section D.

4 Conclusion

disco can accurately determine the oligomer structures of proteins with Cn sym-
metry using RDCs and distance restraints. The MSRs are computed exactly and
in expected O(n2) time, thus ensuring no satisfying oriented oligomer structures
are missed by the algorithm. disco analyzes inter-subunit distance restraints,
even when assigned ambiguously, but avoids enumerating explicit assignment
combinations. A small number of distance restraints with low uncertainty work
best, but disco performs well even when using a large number of noisy restraints.
Using the two-phase protocol, disco can incorporate structural constraint pro-
vided by distance restraints with possible intra-subunit assignments in phase
two. As a prerequisite, phase one of the protocol requires restraints with strictly
inter-subunit assignments.

In practice, the Dzz eigenvector of the alignment tensor may differ slightly
from the orientation of the true symmetry axis of the oligomer. To account
for uncertainty in the symmetry axis position (possibly due to dynamics or
experimental uncertainty), one can estimate the distribution of symmetry axis
orientations described by the RDCs by considering the uncertainty of each RDC
value. In future work, symmetry axis orientations sampled from this distribution
can be analyzed by disco to select for the orientations whose resulting oligomer
structures best satisfy the distance restraints. Since disco computes the exact set
of oriented oligomer structures that satisfy the distance restraints, the variance
in atom position (Table 1) yields a meaningful measure of the range of oligomer
structures allowed by the distance restraints, whereas in methods that rely on
stochastic search, the variance is merely an artifact of the sampling. The entire
disco protocol has been completely automated in a software package that is
freely available and open-source.
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LNCS, vol. 1982, pp. 171–182. Springer, Heidelberg (2001)

30. Schwieters, C.D., Kuszewski, J.J., Tjandra, N., Clore, G.M.: The Xplor-NIH NMR
molecular structure determination package. Journal of Magnetic Resonance 160,
65–73 (2003)

31. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H.,
Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucl. Acids Res. 28, 235–
242 (2000)

http://www.cs.duke.edu/donaldlab/Supplementary/recombll/DISCO/


Paired de Bruijn Graphs: A Novel Approach

for Incorporating Mate Pair Information into
Genome Assemblers

Paul Medvedev1,�, Son Pham1,�, Mark Chaisson2,
Glenn Tesler3, and Pavel Pevzner1

1 Department of Computer Science and Engineering, Univ. of California, San Diego
2 Pacific Biosciences of California, Menlo Park, CA

3 Department of Mathematics, Univ. of California, San Diego

Abstract. The recent proliferation of next generation sequencing with
short reads has enabled many new experimental opportunities but, at the
same time, has raised formidable computational challenges in genome as-
sembly. One of the key advances that has led to an improvement in contig
lengths has been mate pairs, which facilitate the assembly of repeating
regions. Mate pairs have been algorithmically incorporated into most
next generation assemblers as various heuristic post-processing steps to
correct the assembly graph or to link contigs into scaffolds. Such methods
have allowed the identification of longer contigs than would be possible
with single reads; however, they can still fail to resolve complex repeats.
Thus, improved methods for incorporating mate pairs will have a strong
effect on contig length in the future.

Here, we introduce the paired de Bruijn graph, a generalization of the
de Bruijn graph that incorporates mate pair information into the graph
structure itself instead of analyzing mate pairs at a post-processing step.
This graph has the potential to be used in place of the de Bruijn graph
in any de Bruijn graph based assembler, maintaining all other assembly
steps such as error-correction and repeat resolution. Through assembly
results on simulated error-free data, we argue that this can effectively
improve the contig sizes in assembly.

1 Introduction

The recent proliferation of next generation sequencing with short reads has en-
abled new experimental opportunities, such as the 10K genomes project, which
aims to sequence and assemble the genomes of approximately one species in every
vertebrate genus [7]. At the same time, the short read length and sheer demand
for powerful assemblers has raised formidable computational challenges. Thus,
genome assembly continues to represent one of the most difficult and important
algorithmic problems in bioinformatics.

The first generation of assemblers followed the overlap-layout-consensus
paradigm, where overlaps were heuristically used to join reads together into
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contigs [13,1]. Later, the introduction of de Bruijn graphs led to significant im-
provements in assembly [15,9,18]. In contrast to the overlap-layout-consensus
approach, these assemblers first constructed a graph where the original genome
is spelled by a series of walks through the graph, and non-branching walks cor-
respond to substrings (contigs) of the genome. Compared to the earlier heuristic
approaches, de Bruijn graphs produced longer contigs and gave rise to more
powerful techniques for correcting errors and resolving repeats — identical, or
nearly identical, stretches of DNA [19]. Their success led to the development of
other types of graphs for sequence assembly: A-Bruijn graphs [17] and closely
related string graphs [14], which together have become an essential part of most
modern assembly tools, including EULER-SR [5], Velvet [22], ALLPATHS [3],
ABySS [20], and others.

Despite these advances, the challenge of resolving repeats remains. When the
length of a repeat is longer than twice the read length, it becomes difficult to
correctly match its upstream and downstream regions. In order to alleviate this
problem, sequencing technologies were extended to produce mate pairs [21] —
pairs of reads between which the genomic distance (called the insert size) is well
estimated. Because insert sizes could be much longer than the read length, mate
pairs were able to span long repeats and could potentially match up the regions
surrounding a repeat.

The challenge of algorithmically incorporating mate pair information into de
Bruijn graph assemblers was first addressed by [16], who proposed a heuristic
to look for a path between the two reads of a mate pair with a length of the
insert size. If exactly one such path was found, then a mate pair transformation
could be applied to “unwind” this path in the graph. Essentially, this amounted
to transforming two mated reads into one long read where the gap between the
mates was filled in with the nucleotide sequence representing the found path,
thus potentially connecting the surrounding regions of a repeat. Several other
heuristic approaches for utilizing mate pair information in the de Bruijn graph
were developed [22,3,11].

Such methods had a great impact on genome assembly, allowing the construc-
tion of much longer contigs; however, they could still fail in complex repeat-rich
regions, where there are multiple paths between the read pairs. Many current
technologies (including Complete Genomics [6] and Helicos [8]) still generate
very short reads (around 25 nt) for which the resulting de Bruijn graph is very
tangled (even for bacterial genomes). In such cases, mate pair transformations
often fail because of multiple paths. Additionally, the percentage of mate pairs
that can be successfully transformed deteriorates when the insert size is high [4],
and the search for paths between mates becomes prohibitively time-consuming.
Unfortunately, these difficulties result in shorter contigs in complex repeat-rich
regions. The limitations of the existing heuristics for analyzing mate pairs is thus
a major hurdle towards assembling large contigs with short reads.

We believe that the shortcomings of current mate pair algorithms stem from
the fact that they are heuristic approaches that are applied after the construction
of the de Bruijn graph. The de Bruijn graph does an excellent job of incorporating
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the sequence information from the single reads; however, it ignores any mate
pair information that is available. This information has to be recovered after the
graph construction, and only then applied in a heuristic manner. In this paper,
we propose the paired de Bruijn graph, a generalization of the de Bruijn graph
that incorporates the mate pair information into the structure of the graph itself,
as opposed to a post-processing step. Just as moving from the heuristic overlap-
layout-consensus paradigm to the de Bruijn graph paradigm resulted in better
assemblies, we believe that moving from heuristic mate pair algorithms to paired
de Bruijn graphs could result in a more effective use of mate pair information.
The paired de Bruijn graph is a potential replacement of the de Bruijn graph in
existing de Bruijn graph based assemblers; existing assembly stages, including
error correction and scaffolding, would not need to be substantially modified.

Through assembly results on simulated error-free data, we argue that when
mate pair information is used in this manner, the read length (once above a
small threshold) becomes much less relevant [4]. We find that the contig sizes in
an assembly are largely dictated by the average insert size — when it exceeds
6000 nt, we can assemble all of E. coli into one contig and most of the human
chromosome 22 into 15 contigs. Though this paper falls short of analyzing real
data, we believe that, similar to how early error-free studies of de Bruijn graphs
laid the foundation for their use in assembly [15], the paired de Bruijn graph
can become the basis of practical assemblers.

2 From de Bruijn Graphs to Paired de Bruijn Graphs

2.1 Preliminaries

To simplify the presentation, we assume that the genome is a circular string,
i.e., one circular, single-stranded chromosome, and that all reads have the same
length �; extending our approach for multiple linear chromosomes or varying
read length is straightforward. Moreover, we assume that reads are error-free
(see Section 5 for a discussion). In this setting, a mate pair is an ordered pair
of strings of length � drawn from the genome at positions i and j, respectively.
Normally, the relative distance between reads is expressed in terms of the insert
size, the number of nucleotides from the first nucleotide of a to the last nucleotide
of b: j−i+�. However, for the purposes of our construction, it is more convenient
to express it in terms of d = j − i, the difference in their leftmost coordinates.
Note that d is the insert size minus one read length (see Fig. 1(a)).

As with any de Bruijn graph based approach, our algorithms have a param-
eter k that dictates the size of the substrings into which the reads are chopped
up. Thus, though our input is a set of mate pairs of reads of any length, we
immediately chop them up into smaller pieces. Formally, each mate pair of reads
is replaced by its constituent � − k (sub-)mate pairs, where the reads of each
(sub-)mate pair now have length k + 1. Therefore, for the remainder of the pa-
per, we will assume without loss of generality that the reads are immediately
given with length k + 1. We now give some definitions.
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A-Bruijn graphs: Let G be a directed graph on m vertices. The gluing of
vertices v and w is defined by substituting v and w by a single vertex (called
the successor of v and w) and retaining all edges incident to either v or w as
edges incident to their successor. Let A be a boolean m×m matrix representing
“glues” [17]. The A-Bruijn graph A(G) is obtained by gluing all vertices v and
w of G for which Av,w = 1. One can execute these glues in an arbitrary order
under the assumption that each gluing instruction Av,w = 1 is applied to the
successors of vertices v and w in the graph resulting from the previous gluing
instructions.

Below we describe three A-Bruijn graphs: de Bruijn graphs (for unpaired reads);
paired de Bruijn graphs (for mate pairs with an exact distance), and approximate
paired de Bruijn graphs (for mate pairs with an approximate distance).

k-mers and labels: Define a k-mer as a string of length k. Below we assume
that the parameter k is fixed. Given a circular string S = s1 . . . sn, let Sk(i) be
the k-mer si . . . si+k−1 (where the index is taken modulo n). The set of all k-mers
Sk(i) (for 1 ≤ i ≤ n) is called the k-spectrum of S. For a k-mer a = a1 . . . ak,
we define two (k − 1)-mers, prefix(a) = a1 . . . ak−1 (remove last character) and
suffix(a) = a2 . . . ak (remove first character). We say that k-mer a aligns at
position i if a = Sk(i).

(k, d)-mers and bilabels: A bilabel (a|b) is a pair of strings, a and b, of
equal length. Define left(a|b) = a and right(a|b) = b. A k-mer bilabel indicates
both a and b have length k. Define prefix(a|b) = (a1 . . . ak−1|b1 . . . bk−1) and
suffix(a|b) = (a2 . . . ak|b2 . . . bk). Given an integer d (usually d ≥ k), a (k, d)-mer
of S is a pair of k-mers Sk(i) and Sk(i+d) that start exactly d nucleotides apart.
We use the bilabel notation (Sk(i)|Sk(i + d)) for (k, d)-mers. For a string S and
parameters d and Δ, we say k-mer bilabel (a|b) aligns at position i if a = Sk(i)
and b = Sk(i + d + x) for some −Δ ≤ x ≤ Δ. A (k, d, Δ)-mer of S is a bilabel
(a|b) that aligns somewhere to S.

2.2 De Bruijn Graphs (Modelling Unpaired Reads)

Let C be a set of (k+1)-mers from a circular string S. We construct an A-Bruijn
graph based on C as follows.

• First we define an initial graph G0 consisting of m = 2|C| vertices and |C|
isolated edges. For each (k + 1)-mer a ∈ C, introduce two new vertices u, v
and form an edge u → v. Label the edge by the (k + 1)-mer a; label u by
the k-mer prefix(a); and label v by the k-mer suffix(a).

• Second, we glue certain vertices of G0 together, by forming an m×m binary
matrix A and setting Ai,j = 1 to indicate that vertices i and j should be
glued together. For this construction, we set Ai,j = 1 when vertices i and j
have the same label.

The labeled directed graph G = DB(C, k) obtained from these gluings is the de
Bruijn graph of C [17] (for an illustration, see Fig. 1(b,c,d)). It may be considered
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Fig. 1. An illustration of matepairs and of the de Bruijn graph. (a) A mate pair is a pair
of reads with a distance of d between their start positions. (b) A circular genome S and
two mate pairs, with d = 4 and d = 5. (c–d) The de Bruijn graph construction for k = 2.
In (c), the outside circle shows a separate black edge for each 3-mer (equivalently, each
element of the 3-spectrum). The dotted red lines indicate vertices that will be glued.
The inner circle shows the result of applying some of the glues. Note that this is an
intermediate step of the construction in which we only show the gluings of vertices
arising from the same position of S. (d) The final de Bruijn graph, resulting from all
the glues.

as either a simple graph (without parallel edges but with loops), or as a multi-
graph where the multiplicity of each edge is determined by the number of times
the (k+1)-mer it represents is present in C. Consider a walk through edge/label
sequence e1, . . . , er. The labels satisfy suffix(ei) = prefix(ei+1), and we may de-
fine the string of length r + k spelled by this walk as walkword(e1, . . . , er) by
successively overlapping the labels with a shift of one character at a time.

Traditionally, the de Bruijn graph is also defined on a string S by setting the
vertex set equal to the k-spectrum of S. For every (k + 1)-mer a of S, define an
edge prefix(a) → suffix(a) labeled by a. Explicitly, for each Sk+1(i) of S, define
an edge Sk(i) → Sk(i + 1) labeled by Sk+1(i) (for i = 1, . . . , n).

In the case that C is the (k + 1)-spectrum of S, the de Bruijn graph built on
C using the gluing approach is identical to the one built directly on the genome
S. Moreover, there is a covering cycle that spells S, where a covering cycle is a
cyclical walk that visits every edge at least once. In this graph, the cycle is the
sequence of edges Sk+1(1), . . . , Sk+1(n). The covering cycle property is crucial
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Fig. 2. (a) The number of repeated k-mers in the E. coli genome, for various values of
k. (b) The number of repeated (k, d)-mers, for various values of d with k = 50.

for assembly because it implies that all walks whose interior vertices have just
one out-neighbor must spell substrings in S (contigs).

2.3 Graph Complexity

The usefulness of a graph representation of a genome can vary widely. In general,
the number of vertices can serve as a rough indicator of how useful the graph is
— as the number of vertices grows (and the number of edges stays the same),
the graph is likely to become less entangled, and the contigs are likely to become
longer. Fig. 2(a) shows that in the de Bruijn graph, the number of repeated k-
mers in E. coli drops as k increases, indicating that the de Bruijn graph has more
vertices and likely becomes less entangled. Alternatively, consider pairs of k-mers,
i.e., (k, d)-mers. Fig. 2(b) shows that, after fixing k = 50, the number of repeated
(k, d)-mers drops as d increases. This is not surprising due to the repeat structure
of genomes — the bigger the d, the less common it is to have pairs of repeats spaced
a distance of d apart. Figs. 2(a) and (b) illustrate alternatives for improving con-
tig lengths: increasing the read length (pursued by companies such as Pacific Bio-
sciences) versus increasing the insert size (advocated by Chaisson et al., 2009 [4]).
While the increase in the read length remains a difficult technological challenge,
increasing the insert size (up to tens of thousands of nucleotides) is already within
the power of current technologies. Thus, if we could build a graph whose vertices
represent (k, d)-mers instead of k-mers, then the length of the contigs is likely to
increase as the insert size grows. This is the basic motivation for the paired de
Bruijn graph, and, as we will show in Section 3, the contig lengths in the paired
de Bruijn graph do in fact increase with d.

2.4 Paired de Bruijn Graphs (Modelling Paired Reads with Exact
Distance)

We now define a graph modelling mate pairs in the special case that all pairs
are exactly the same distance d apart. This is an idealized case unachievable
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Fig. 3. (a–b) The paired de Bruijn construction for k = 2, d = 4 from the same
string S as in Fig. 1. In (a), the outer circle has an edge from every element of the
(3, 4)-spectrum. (b) The paired de Bruijn graph after all the gluings; notice that it has
only one branching vertex, versus four in the de Bruijn graph (Fig. 1(d)). (c–e) The
construction of the approximate paired de Bruijn graph for k = 2, d = 5, Δ = 1.
In (c), one possible covering spectrum is shown in the outside circle, with black edges
for elements with mate pair distance 6 and blue edges for distance 5. Since Δ = 1, we
glue vertices if they have equal left labels and their right labels are a distance at most
2 apart from each other in the de Bruijn graph (Fig. 1(d)). The final multigraph after
all vertex gluings is shown in (d), and the resulting simple graph, used to spell the
contigs, is shown in (e). Notice that this graph now has three branching vertices.
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with current sequencing technologies, but the next section will generalize the
construction to varying distances. Given a set of (k + 1, d)-mers C (modelling
mate pairs), construct an A-Bruijn graph as follows:

• Define an initial graph G0 on m = 2|C| vertices. For each bilabel (a|b) ∈ C
(representing a (k + 1, d)-mer), introduce two new vertices u, v and form an
edge u → v. Label the edge by (a|b); label u by prefix(a|b); and label v by
suffix(a|b).

• Glue vertices of G0 together when they have the same label. The graph G
so obtained is called the paired de Bruijn graph of C.

This procedure is illustrated in Fig. 3(a,b). An alternate construction of the
paired de Bruijn graph is to define the vertex set as the (k, d)-mers present in
C, and the edges as connecting prefix(a|b) to suffix(a|b) for every element of C.

As with the regular de Bruijn graph, in this construction, every vertex of G
inherits the label common to all the vertices of G0 that were glued together to
form it, and this label is unique to that vertex. Any walk through the graph
on edge sequence e1, . . . , er spells out an (r + k)-mer bilabel (L|R) where L is
formed from the left labels, L = walkword(left(e1), . . . , left(er)), and R is formed
from the right labels, R = walkword(right(e1), . . . , right(er)).

The (k, d)-spectrum of a string S is {(Sk(i)|Sk(i + d)) : i = 1, . . . , n}. When
C is the (k + 1, d)-mer spectrum of S, there is a covering cycle whose left labels
spell S in G. The cycle consists of consecutive edges

(Sk(i)|Sk(i + d)) → (Sk(i + 1)|Sk(i + d + 1)) for i = 1, . . . , n.

Just as with the de Bruijn graph, this is a key property that makes the paired
graph useful for spelling contigs.

2.5 Approximate Paired de Bruijn Graphs (Modelling Inexact
Distance)

We now define a graph modelling mate pairs where the distance between the two
reads in each pair is only known to lie within some range d±Δ. The parameter
Δ can be estimated based on the mate pair generation protocol.

Let C be an arbitrary set of (k + 1, d, Δ)-mers, representing the input data.
The key insight is that if two (k, d, Δ)-mers (a|b) and (a|b′) both arise from the
same instance of a in S, then in the de Bruijn graph of S, there is a directed
path from b to b′, or vice-versa, with distance at most 2Δ. This insight was used
for repeat resolution in [11], albeit as a post-construction modification step. We
construct an A-Bruijn graph from C as follows:

• The initial graph G0 consists of |C| isolated edges on 2|C| vertices. For each
(a|b) ∈ C, introduce an edge u → v on two new vertices. Label the edge by
the (k + 1)-mer bilabel (a|b). Label u by prefix(a|b) and v by suffix(a|b).

• For each k-mer α, glue together all vertices with labels (α|β), (α|β′) if there
exists a directed path from β to β′ (or vice-versa) in the de Bruijn graph
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D = DB(C, k) of length at most 2Δ. Here, we assume that the construction
of D implicitly breaks the (k+1)-mer bilabels of C into independent (k+1)-
mers.

The graph G = APDB(C, k, d, Δ) so obtained is the approximate paired de
Bruijn Graph of C (Fig. 3(c,d,e)). The effect of this gluing is to merge all vertices
(k-mer bilabels) that might align to the same position in the genome; vertices
that align to the same position are thus guaranteed to be merged. However, the
converse does not hold; vertices aligning to different positions in the genome
are sometimes merged, either due to repeats that are not resolved by the given
parameters, or due to chance short paths in D.

In the case that k > 2Δ, we observed that if there is a directed path between
β and β′ in the de Bruijn graph D of length at most 2Δ, then β and β′ should
share an overlap of at least k − 2Δ characters. This observation leads to an
alternate rule to glue vertices of G0: for each k-mer α, glue together all vertices
with labels (α|β), (α|β′) if β and β′ share an overlap of at least k−2Δ characters.
Note that this rule can only be used if k > 2Δ and may lead to a different graph;
however, it is easier to implement.

Unlike our earlier constructions of the de Bruijn and paired de Bruijn graphs,
the vertices of G do not inherit a single label from G0; the vertices glued together
have the same left label, but may have different right labels. In an edge walk
e1, . . . , er on G, the left labels spell the word walkword(left(e1), . . . , left(er)).
However, the right labels typically do not successively overlap by k−1 characters
as they did for the paired de Bruijn graph. Though we currently ignore these
after gluing, we recognize that there is a potentially untapped benefit to using
the right labels to later improve the assembly (see Section 5).

A set C of (k+1)-mer bilabels is a covering spectrum of S if for every position
i = 1, . . . , n, we have (Sk+1(i)|Sk+1(i + d + x)) ∈ C for at least one x in the
range −Δ ≤ x ≤ Δ. For each position i, there are 2Δ+1 choices of x. Note that
there are many different covering spectra, and different choices of C may lead
to different graphs. However, the graph will satisfy the key property of having a
covering cycle that spells out S.

Theorem 1. Let S be a circular string, and C a set of (k, d, Δ)-mers that is a
covering spectrum of S. Then there is a covering cycle through the graph G =
APDB(C, k, d, Δ) that spells out S.

Proof. For i = 1, . . . , n, let ei ∈ C be any (k + 1)-mer bilabel in C aligning
to position i in S. To prove e1, . . . , en is a cycle in G, we need to show that
consecutive edges ei = ui → vi with label (a|b), and ei+1 = ui+1 → vi+1

with label (a′|b′), share the connecting vertex, vi = ui+1. (Indices are taken
modulo n.) Since C is a covering spectrum of S, the graph D is the ordinary
de Bruijn graph of S. In G0, vi has label (Sk(i + 1), suffix(b)) and ui has label
(Sk(i + 1), prefix(b′)). Since these both align to position i + 1 in S, the distance
between the start of b and b′ in S is at most 2Δ. Thus in D, the directed distance
from b to b′ (or vice-versa) is at most 2Δ, so these vertices were glued together
when forming G. �	
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3 Results

We implemented a prototype assembly program for mate paired data using the
(approximate) paired de Bruijn graph approach and experimented with E. coli
(4.6 Mbp) and Human chromosome 22 (49 Mbp). We removed all ambiguous
bases (such as Ns) from chr22, resulting in 35 Mbp of sequence. The reads
were generated with perfect coverage, meaning for every position in the genome
we generated a single (k, d, Δ)-mer aligning to it. The insert size was picked
uniformly at random from the specified range. We report as contigs the (left)
words spelled by all maximal walks of the graph whose interior vertices have just
one out-neighbor. We validated that any generated contigs mapped perfectly
back to the original genome — this was the case for all the contigs.

Constructing the de Bruijn graph and finding all its non-branching paths
takes time O(n log n), where n is the number of k-mers. The construction of
the approximate paired de Bruijn graph has an additional cost of searching all
neighbors within a distance 2Δ of each node. Therefore, the running time of the
algorithms is O(n log n+n min{2Δ, n}), where n is the number of (k, d, Δ)-mers.
However, since de Bruijn graphs are sparse, the searches in the graph are usually
very fast, and in practice, even the run on chr22 with Δ = 200 took less than 2
hours on a 8 core processor with 16G RAM. Moreover, the algorithm could be
easily distributed over a large cluster to deal with larger Δ.

Our motivation for the paired de Bruijn graph approach was that the number
of repeated (k, d)-mers quickly drops as d increases (Fig. 2(b)), and hence the
contigs of the paired de Bruijn graph based on these (k, d)-mers could be longer.
To test this hypothesis, we generated a set of mate pairs with varying insert sizes
and plotted the length of the obtained contigs (Fig. 4(a)). To isolate the effect
of the insert size, the coverage of the data was perfect (the (k, d)-spectrum),
the insert sizes were perfect (Δ = 0), and the read length was fixed to 50. We
observed that contig lengths improved dramatically as the insert size increased.
With an insert size of 6000 nt, all of E. coli was covered with just one contig, while
for chr22, an insert size of 5000 nt enabled us to cover 98% of the chromosome
with the 15 largest contigs. We thus believe that properly using mate pairs has
a strong potential to increase contig lengths.

To explore the role that read length plays relative to the insert size, we gen-
erated sets of mate pairs with varying read lengths but with a fixed insert size
(1000 nt). To isolate the effect of the read length, we had perfect coverage and
no variation in the insert size. For E. coli, we found that, for an insert size of
1000 nt, once the read length grew over a small threshold of 10–20 nt, the contig
lengths nearly reached the theoretical optimum that could be achieved by sim-
ply generating reads of length equal to the insert size (Fig. 4(b)). For Human,
we needed to increase the read length to 300 nt in order to reach the optimum
with 1000 nt insert size (Fig. 4(b)). However, for a longer insert size (5000 nt), a
read length of 50 came close (Fig. 4(a)) to achieving the optimum (which, with
5000 nt reads, was a single contig). Therefore, by properly using mate pairs with
large enough insert size, one can significantly reduce the limitations caused by
short read length.
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Fig. 4. Cumulative contig lengths (for standard and paired de Bruijn graphs) on sim-
ulated data with perfect coverage. Contigs are sorted in order from largest to smallest.
Point (x, y) means the largest x contigs have cumulative length y. (a) To analyze the
effect of the insert size (IS) on the assembly, we kept the read length fixed at 50, but
varied the insert size. We also generated non-paired reads of length 50. For E. coli, the
curve for insert size 6000 is not shown because there was only one contig, representing
the whole genome. (b) To analyze the effect of read length on contig lengths, we fixed
the insert size to 1000 but varied the read length. We also generated non-paired reads
of length 1000, giving an upper bound on how good the assembly can be in this case. (c)
To analyze the effect of variations in the insert size (Δ), we fixed the mean insert size
(1000) and read length (50). We also show the baseline contig lengths in a non-paired
dataset, with read length 50 and perfect coverage.
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We measure the effect of increasing variability in the insert size (Δ) on the
assembly. We fix the insert size to be 1000 nt and generate 50-long reads with
perfect coverage, while varying Δ (Fig. 4(c)). We found that the assembly dete-
riorates with increasing Δ, especially for the Human genome. When Δ is large,
the chance of two vertices of the de Bruijn graph being connected increases, and,
hence, the number of vertices (bilabels) that do not align but nevertheless get
glued together increases. In this situation, the read length is still important in
determining the complexity of the (non-paired) de Bruijn graph. Some recent
datasets achieve a small Δ, such as the Bentley et al. [2] human dataset with a
mean insert size of 208 nt and a standard deviation of 13 nt. Nevertheless, we
see robustness with respect to Δ as an important direction for improving the
practical usefulness of our method.

4 Towards a Practical Paired de Bruijn Graph Assembler

We believe that, similarly to early studies of idealized fragment assembly with
error-free k-mers [15], the (approximate) paired de Bruijn graphs can be of use
in practical assemblers that utilize paired reads. Though this paper falls short of
analyzing real data, we present here potential ways to remove our simplifications,
and to move from the current de Bruijn graph assemblers to (approximate)
paired de Bruijn graphs.

Base calling errors in reads. As with regular assembly, reads with base-
calling errors may perturb the graph. Error correction algorithms for single reads
may be used to improve the accuracy of the reads, while future error correction
algorithms may also incorporate the mate pair information. Graph correction
algorithms employed by current de Bruijn based assemblers [5,22] may also be
applied to (approximate) paired de Bruijn graphs.

Insert size outliers. If a small percentage of read pairs are spaced outside the
range d±Δ, they will likely form isolated edges or terminal branches, which can
be detected and discarded.

Double strandedness. The approximate paired de Bruijn graph is asymmetric
in its treatment of the two reads (a|b), and in the reverse complement, these
are switched to (b′|a′) (where a′, b′ are the reverse complements of a and b).
This makes existing methods [10,12,22] for accounting for double-strandedness
difficult to apply. However, we may explicitly introduce the reverse complement
of every read; perform assembly; match up reverse complement contigs after
assembly; and reconcile any differences through a consensus stage.

5 Conclusion

In this paper, we introduced the paired de Bruijn graph and motivated its use
in genome assembly. Instead of incorporating mate pairs into a post-graph-
construction step, we have used them to construct the graph itself. Any
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procedures that could be performed on the regular de Bruijn graph (e.g., er-
ror correction) can be performed in the same manner on the paired de Bruijn
graph. For instance, even when there are repeats that the paired de Bruijn graph
does not resolve, mate pair transformations can still be applied to the graph to
help resolve the remaining repeats.

By eliminating the need for mate pair transformations, the paired de Bruijn
graph approach provides a potential method for assembly with short read mate
pairs (like the ones generated by Complete Genomics [6] and Helicos [8]). By not
requiring unique paths between paired reads in the de Bruijn graph, the paired
approach could more efficiently resolve repeats despite the short read length.
Moreover, the algorithms we describe can be extended to the strobes generated
by Pacific Biosciences, which extend the notion of the mate pair to a set of
multiple (more than two) reads separated by some distances.

A future direction lies in the use of the right labels on edges of the approximate
paired de Bruijn graph. Currently, we spell out each contig using only the left
label. The positions of the right labels are only known approximately, but this
is often sufficient to form a righthand word displaced approximately d from the
lefthand word. Moreover, after encountering an edge (a|b) in a walk, we must
encounter some edge (b|c) approximately d edges away (unless it is past the
end of the walk). This compatibility requirement may help to narrow the choice
of valid paths when encountering branching vertices, thereby resolving longer
repeats and improving contig lengths.
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Abstract. Much modern work in phylogenetics depends on statistical
sampling approaches to phylogeny construction to estimate probability
distributions of possible trees for any given input data set. Our theoret-
ical understanding of sampling approaches to phylogenetics remains far
less developed than that for optimization approaches, however, partic-
ularly with regard to the number of sampling steps needed to produce
accurate samples of tree partition functions. Despite the many advan-
tages in principle of being able to sample trees from sophisticated prob-
abilistic models, we have little theoretical basis for concluding that the
prevailing sampling approaches do in fact yield accurate samples from
those models within realistic numbers of steps. We propose a novel ap-
proach to phylogenetic sampling intended to be both efficient in practice
and more amenable to theoretical analysis than the prevailing meth-
ods. The method depends on replacing the standard tree rearrangement
moves with an alternative Markov model in which one solves a theoret-
ically hard but practically tractable optimization problem on each step
of sampling. The resulting method can be applied to a broad range of
standard probability models, yielding practical algorithms for efficient
sampling and rigorous proofs of accurate sampling for some important
special cases. We demonstrate the efficiency and versatility of the method
in an analysis of uncertainty in tree inference over varying input sizes.
In addition to providing a new practical method for phylogenetic sam-
pling, the technique is likely to prove applicable to many similar problems
involving sampling over combinatorial objects weighted by a likelihood
model.

1 Introduction

Much of the theory and classic methods of phylogeny reconstruction were devel-
oped for a variety of optimization formulations of the problem (e.g., parsimony,
likelihood or distance based). Optimization approaches have fallen into disfa-
vor, however, due to the frequent presence of multiple optima or near-optima
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and a general desire to quantify uncertainty in the resulting trees. As a result,
algorithms based on the idea of sampling over the space of phylogenetic trees
for a given data set are now generally preferred to optimization approaches in
order to provide better statistical support while answering questions such as
whether a given bipartition is more likely than another conflicting bipartition.
Popular sampling methods such as MrBayes [1] use Markov chains over a class of
tree rearrangement moves such as nearest neighbor interchange (NNI), subtree
pruning and re-grafting (SPR) and tree bisection and reconnection (TBR) [2] to
estimate partition functions of trees under some implied probability distribution
on tree topologies, branch lengths, ancestral sequences, and population genetic
parameters. Despite their advantages, though, sampling-based approaches suffer
from a comparatively poorly developed theoretical literature. In particular, there
are few theoretical results regarding the mixing properties of their underlying
Markov chains, particularly the number of steps for which one must run a model
to sample accurately from its partition function. As a result, we rarely have any
sound theoretical basis for concluding that a phylogeny sampling algorithm has
been run sufficiently long to generate an accurate sample.

Among the few positive results are the methods of Diaconis and Holmes [3], for
uniform sampling over all phylogenetic trees, and the recent result of Stefankovic
and Vigoda [4], showing rapid mixing of SPR Markov chains when data is gen-
erated by phylogenies with sufficiently short branches. Mossel and Vigoda [5],
and Stefankovic and Vigoda [6] have shown that Markov chains based on stan-
dard NNI or SPR moves do not always mix well. Their results are valid for a
likelihood-based method on problem instances where input data can be repre-
sented by a mixture of two tree topologies. The question of a polynomial bound
for mixing time on data generated from a single tree, with arbitrary branch
lengths, is still open. There is, therefore, a need for either new theoretical in-
sights into the mixing properties of the prevailing methods or the development of
new sampling methods for which we can more readily analyze these properties.

In this paper, we pursue the latter approach, developing an alternative Markov
chain-based phylogeny sampling algorithm that is more amenable to theoretical
mixing time analysis and allows one to prove non-trivial mixing time bounds in
important special cases. The key algorithmic insight of our method is that one
can convert the hard sampling problem inherent in standard tree sampling into
an easier sampling problem that uses, as a subroutine, the solution of a theo-
retically hard but practically tractable optimization problem (an instance of the
minimum spanning tree problem with degree constraints). By repeatedly solving
the embedded optimization problem provably to optimality, one can in turn solve
the sampling problem with a small number of Monte Carlo steps. Our method
can be used to sample from the likelihood distribution of labelled tree topologies,
also known as the ancestral likelihood. We use this optimization-based method to
theoretically bound the mixing time for the well known Cavender-Farris-Neyman
(CFN) model [7,8,9], proving that our optimization based Markov chain mixes
in time polynomial in the number of leaves (taxa) and the number of char-
acters in the input for the CFN model. We then demonstrate the practical



254 N. Misra et al.

effectiveness of the method through a small empirical analysis of how uncertainty
in tree topology increases with increasing numbers of taxa under a standard like-
lihood model. Our method can be readily generalized to sampling from the set
of Steiner trees on arbitrary weighted graphs and might have applications to
many similar problems involving sampling over combinatorial objects weighted
by a likelihood function.

We begin by presenting some basic notation and background on likelihood
models, and explain our new approach in their context. We then describe the
Integer Linear Programming (ILP) formulation for the optimization subroutine
in our sampler, and show how using this powerful procedure in each move, the
mixing time of the CFN model of ancestral likelihood can be bounded by a
polynomial number of steps in the input size. Finally, we close with some exper-
imental results intended to demonstrate the practical use of our method.

2 Notation

We begin by defining some basic terminology and notation used throughout this
manuscript. We refer the reader to the text by Felsenstein for a more thorough
introduction to the topic of phylogenetics and the concepts and terminology
presented below [2]. Let H be an input matrix that specifies a set χ of N taxa,
over a set C = {c1, . . . cM} of M characters, such that Hij represents the jth

character of the ith taxon. Further, let nk be the set of admissible states of the
kth character ck. The set of all possible states is the space S ≡ n1×n2 . . .×nM .
We will represent the ith character of any element b ∈ S, by (b)i. The state
space S can be represented as a graph G = (VG , EG) with the vertex set VG = S
and edge set EG = {(u, v)|u, v ∈ S, dh[u, v] = 1}, where dh[u, v] is the Hamming
distance between u and v.

The set of all possible trees can be conveniently classified using the concept of
phylogenetic X-Trees. A phylogenetic X-Tree T (χ) displaying a set of taxa χ is
defined as follows: there is a bijection or labeling between the set of taxa χ and
the leaves of T (χ). Furthermore, all internal nodes are of degree three or more.
The latter requirement is equivalent to contracting the edges between any pair of
degree-two internal nodes. Clearly, removing an edge in any tree disconnects the
tree into two subtrees, each of which has a non-empty intersection with the set
of taxa. Thus, each edge corresponds to a bipartition or a split of the taxa. The
topology of a phylogenetic X-Tree is defined as the set of all splits obtained by
removing an edge of T (χ). A popular approach to solving the phylogeny inference
problem is to search through the space of all topologically distinct phylogenetic
X-Trees for a given set of taxa. This search space is usually defined over the space
of binary tree topologies (i.e., where all internal nodes are of degree three). Any
instance of a phylogenetic X-Tree with an internal node with degree greater than
three (also known as a polytomy) can be treated as a special case of a binary
tree where two internal nodes represent the same vertex in the graph G. From
now on we will refer to such binary phylogenetic X-Trees simply as phylogenies.
Each phylogeny on N leaves has N − 2 degree 3 internal nodes.
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It is well known that there are (2N−2)!
2N−1(N−1)!

distinct rooted tree topologies
for phylogenies with N leaves. Diaconis and Holmes have shown that the set
of tree topologies can be conveniently visualized using a connection between
perfect matchings on 2N − 2 points and phylogenies with N leaves [3]. Given a
phylogeny T , we will use their method to assign a number to each internal node.
We arbitrarily assign distinct labels to the leaves (from 1 to N) each of which
corresponds to an element in χ. Since we are interested in unrooted phylogenies,
we arbitrarily root the tree along any of the 2N − 3 edges. Initially, all internal
nodes are unlabeled. Each internal node is assigned a label between N + 1 and
2N − 2 in the following sequence: 1. At each step, find an unlabeled internal
node that has both its descendants labeled. In case there is more than one such
internal node, choose the one that has a descendant with the lowest label; 2.
Assign the lowest available label to this internal node; and 3. Recurse until all
nodes are labeled. Diaconis and Holmes showed that this mapping is a bijection
by showing how to transform any matching into a binary tree as follows. Assume
we have a perfect matching P on 2N − 2 points, such that the first N points
represent the leaves of some binary tree T . Since, more than half of the points
are leaves, at least one pair of leaves (say u and v) must be matched in P . We
can represent this matched pair by a subtree where u and v are joined to an
internal node with the smallest label (namely N + 1). If there is more than one
pair of matched leaves, we take the pair that contains the leaf with the smallest
label and connect them with the internal node N +1. Now if we remove this pair
of matched leaves and treat the internal node N +1 as a new leaf, the remaining
perfect matching on 2N − 4 = 2(N − 1) − 2 points has N − 2 + 1 leaves along
with a subtree associated with the new leaf node N +1. If we iterate this process
k times we reduce the matching to 2(N − k)− 2 points and obtain a forest with
2N − 2 − 2k components on the vertices {1, . . . , 2N − 1}, such that the leaf of
each subtree has a label between 1 and N . After N − 2 steps, we join the final
pair of nodes to get a binary tree with nodes 1 to N as leaves.

3 Likelihood Model

We will represent each phylogeny by a 4-tuple T (χ, φ, α, τ ). We overload the
symbol T to represent both the topology of the phylogeny as well as a bijection
between leaves l(T ) and input taxa χ and a mapping from internal nodes of T
onto a set φ ⊆ S such that φi represents the label for the ith internal node.
Next, we assign a likelihood to T assuming that the taxa have evolved via point
mutations. Let α = {αk|αk[j, i] > 0 ∀i = j, ck ∈ C} be a set of rate matrices,
such that αk[j, i] represents the rate for a transition from state i to j for char-
acter ck. We will assume α is reversible with respect to πk[i] (representing the
equilibrium frequency of state i at site k), such that αk[i, j]πk[j] = αk[j, i]πk[i]
and satisfies the conservation equation

αk[i, i] = −
∑
j �=i

αk[j, i] (1)
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The likelihood of each edge e = (u, v) ∈ T is given by

L(e) =
∏

ck∈C

exp(τeαk)[(u)k, (v)k]

=
∏

ck∈C

(
I[(u)k, (v)k] + τeαk[(u)k, (v)k] + . . . +

τn
e

n!
αn

k [(u)k, (v)k] + . . .

)
(2)

where, τe ∈ [0,∞) is the branch length representing relative time and I is the
identity matrix. We root the tree arbitrarily at internal node 2N−2, represented
by sequence r, and compute likelihood of edges directed away from the root. Let
π[r] =

∏
ck∈C πk[(r)k] be the equilibrium density of the sequence representing

the root. The ancestral likelihood of the phylogeny is then given by

L (T (χ, φ, α, τ )) = π[r]
∏
e∈T

L(e) (3)

The problem we want to solve is that of generating random samples from this
likelihood distribution. We can simplify the problem somewhat by integrating
out the set of branch lengths τ . Since we know the end points for each edge,
this integral is easy to compute using a spectral decomposition of αk in terms of
its eigenvalues Λk = {−λ} and corresponding eigenvectors {|λ〉}. However, since
the smallest eigenvalue is zero (corresponding to the equilibrium distribution),
we need to provide a suitable prior over branch lengths, in order to ensure
that the integral is convergent. Choosing a suitable prior for an unbounded
parameter requires care because a flat prior is not always an uninformative
prior [2]. In practice, an exponentially decaying prior Pr(τe) = ηe−ητe is usually
recommended by popular methods such as MrBayes and we will follow the same
convention in this paper. Combining this prior with our likelihood model gives
us an expression for the posterior distribution:

L (T (χ, φ, α)) = π[r]
∏
e∈T

∫ ∞

0

L(e)Pr(τe)dτe

= π[r]
∏

(u,v)∈T

∫ ∞

0

∏
ck∈C

( ∑
−λ∈Λk

〈(u)k|λ〉〈λ|(v)k〉e−λτe

)
ηe−ητedτe (4)

Note that αk is typically of dimension 20 or less, so the spectral decomposition
is not a computational bottleneck and the likelihood L (T (χ, φ, α)) can be com-
puted in O(NM) time. We will not focus on sampling the branch lengths τe

in this paper, however for completeness we note that τe can be sampled exactly
and efficiently from the distribution represented by the integrand in the previous
equation using rejection sampling [10]. In section 5, we will use a particularly
simple closed form expression for the likelihood maxima for the standard CFN
model to derive some theoretical results for our method. Note, that in contrast
to our approach, methods based on fixing the tree topology followed by sampling
branch lengths are known to get trapped in local optima.
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Our New Model

Assume we are given the labels φ for the internal nodes and let T∗(χ, φ, α) be
a most likely phylogeny. Let T (χ, α) = {T∗(χ, φ, α) : φ ⊂ S}. We will restrict
ourselves to sampling from the likelihood distribution over the set T (χ, α). The
intuition behind our approach is that this pruning might allow us to sample from
the remaining phylogenies efficiently and reliably, if we can solve the optimization
problem efficiently.

But same tree topology

’

But same tree topology

Fig. 1. A typical transition in our modified sampler: A move to a neighboring ancestral
sequence is followed by an optimization step to reset the topology to be a most likely
one

Now, consider the following family of distributions L(v)β for β ∈ [0,∞).
Such distributions are usually called “heated” distributions and β, the inverse
temperature, in analogy with the usual definition of temperature in physical
processes. These distributions are consistent with our intuitive understanding
that high β or low temperatures accentuate the “roughness” of the probability
landscape. Such distributions are commonly used for approximately sampling
from smoothed versions of distributions from which it is hard to sample (case
with β < 1) or in simulated annealing for approximate optimization (β > 1). In
this paper we will focus on the former scenario.

The rest of this paper is organized as follows — in section 4 we present an
Integer Linear Program (ILP) for finding the optimal topology T∗ given the labels
φ for the set of internal nodes. In section 5 we present our Monte Carlo Markov
Chain (MCMC) algorithm for sampling phylogenies in T (χ, α) and show that for
the CFN model, the proposed Markov chain mixes in a number of optimization
steps polynomial in the number of taxa and sequence length at sufficiently high
temperatures. In section 6 we present results from experiments performed on
simulated data sets. In section 7, we summarize the main contributions of the
work and discuss future directions.
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4 ILP for Solving the Degree Constrained Spanning Tree
Problem

Each phylogeny is specified by the set φ of N −2 internal nodes and the set χ of
N taxa labeled according to the Diaconis-Holmes convention. Their convention
provides valuable information regarding which nodes are potential descendants
for a given internal node. We root the tree at internal node 2N − 2 and initially
connect each pair of vertices (both taxa and internal nodes) by a directed edge.
Edges between taxa are removed and each edge between an internal node and
a taxon is directed towards the taxon. Edges between two internal nodes are
directed towards the node with smaller label. The internal node with the largest
label (2N −2) has all edges directed away from it, from which we have to choose
three, each taxon has all edges directed towards it, from which we have to choose
1. For all the remaining internal nodes we have to choose one edge directed
towards it (from its parent) and two edges directed away from it (towards its
children). An edge directed from vertex u to v corresponds to a Boolean variable
su,v with edge cost wuv = − ln[

∫∞
0

L(e = (u, v))dτe]. The set of all such edges
and the vertices form the graph G. Since the taxa are assigned labels in arbitrary
order, we will try to find the minimum cost phylogeny over all possible orderings
of the taxa. The following ILP finds the minimum cost tree compatible with
these in and out degree constraints,

Minimize
∑

(u,v)∈G

wuvsu,v

subject to
∑

v

sv,u = 1 ∀u ∈ G \ {2N − 2}∑
v

su,v = 2 ∀u ∈ φ \ {2N − 2}∑
v

s2N−2,v = 3

su,v ∈ {0, 1} ∀(u, v) ∈ G (5)

Lemma 1. The ILP in equation 5 finds the minimum cost directed spanning
tree given the edge costs wuv .

Proof. To prove the correctness of our method we show all feasible solutions to
this ILP are acyclic. The degree constraints will then ensure that any feasible
solution corresponds to a connected subgraph with no cycles, implying a tree.
Suppose for a contradiction a feasible solution contains a cycle over a subset
A ⊆ G. Since G is finite and elements of G are ordered (the directionality of
the edge representing which vertex is a potential descendant of another vertex
in G), A must contain a vertex v such that all vertices in A \ {v} are ancestors
of v. The only way to obtain a cycle over A is for v to be connected to two (or
more) ancestors. But this would violate the in-degree constraint in the ILP.
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5 Mixing Time for the Cavender-Farris-Neyman Model

In this section we use the Cavender-Farris-Neyman (CFN) model for binary
sequences to establish some theoretical results regarding the convergence of the
heated Markov chain. While we prove rapid mixing only for the CFN model, a
special case of the class of likelihood model described above, we note that the
proof will apply trivially to some generalizations of the CFN (e.g., non-binary
data) and that the sampling technique itself applies to the full class of likelihood
functions. The CFN model assigns an edge probability pe to each edge, such that
the likelihood for k mutations along e is pk

e(1−pe)M−k. We will use the Hamming
distance between two sets of internal nodes as a distance measure over the space
T (χ, α). We will identify each set of internal nodes φ with the minimum cost
tree T (φ) obtained by the method in section 4. Given a phylogeny T (φ), we will
call the set of all phylogenies at a Hamming distance 1 the neighborhood of T (φ)
(represented by Nbd(φ)). We can think of the space T (χ, α) as a graph with each
phylogeny as a vertex and edges connecting each pair of neighboring phylogenies.
The Markov chain is defined by nearest neighbor moves over T (χ, α). We have
the following bound on the change in cost function at each step of the Markov
chain.

Lemma 2. For any two neighboring phylogenies u ∈ Nbd(v), (eM)−3β≤ L(u)
L(v) ≤

(eM)3β

Proof. Given any edge e = (u, v) with branch length l = − ln(1 − 2p), and
dh(u, v) = k, the likelihood is given by (pk(1 − p)M−k)β . The optimal branch
length maximizing this likelihood can be solved as l = − ln(1 − 2k/M). If we
perturb one character for one internal node (say u), the maximum fractional
change in edge likelihood is

(
(1 − 1/M)M−1/M

)β
> (1/eM)β when k = 0. Since

each internal node has three edges, the maximum change in likelihood for any
tree topology is (eM)3β . Also, the likelihood for each tree topology is a lower
bound on the optimal likelihood. If we consider the topology that is optimal at
u with likelihood L(u) then we get an upper bound (eM)−3β ≤ L(u)

L(v) ≤ (eM)3β .

This previous result is sufficient to ensure rapid mixing at sufficiently high tem-
peratures. We use path coupling method of Bubley and Dyer [11] to prove this
result. We will use the Hamming distance dh(X, Y ) between two phylogenies X
and Y as a distance metric. Path coupling arguments are based on establishing
a coupling of Markov chain moves between each pair of nearest neighbors such
that the distance between them decreases on average at each iteration of the
Markov chain. For completeness we state the main lemma from [11].

Lemma 3. Let M be Markov chain over a graph G(V, E) and let ρ define a set
of edge distances over G such that ρ(e) ≥ 1 ∀e ∈ E. Furthermore, let d be a
distance metric over V such that given any pair of vertices u, v ∈ V ,

d(u, v) = minP (u,v)

∑
(x,y)∈P (u,v)

ρ(x, y) (6)
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where the minima is taken over the set of all paths P (u, v) between u and v.
Suppose that for all edges Ē = {(u, v)|ρ(u, v) = d(u, v)} ⊆ E there exists a
coupling of Markov processes {ut = M t.u} and {vt = M t.v}, such that the
following bound holds

d(u, v) − E[d(M.u, M.v)] ≥ αd(u, v) ∀(u, v) ∈ Ē (7)

for some α > 0, where M.v represents the state after one step of the Markov
chain starting at v. Then the total variation distance Δ(t) = maxu∈V |M t.u −
π| ≤ e−αt ln[D], where D is the diameter of G and π is the invariant probability
measure on V .

Theorem 1. For the CFN model, the heated Markov chain mixes in time
O(NM ln[NM ]/(1− tanh(3 ln(M)β)) for β < − ln[1− 1/(NM + 1)]/3 ln(M)

Proof. Suppose we have two random processes Xt and Yt, evolving according to
the Markov chain over phylogenies. We will concatenate the bit strings repre-
senting the internal nodes into one string of NM bits for each random variable.
Suppose at time t = 0, X0 and Y0 differ in the kth bit. We define the coupling
as follows — Select any bit b (representing a character for one of the internal
nodes) uniformly at random. If the b = k , with probability 1/2 flip the kth bit
of variable X0 and hold the state for Y0 or vice versa; if b = k with probability
1/2 select identical proposal states for both random variables X1 and Y1 and
with probability 1/2 do nothing. If b = k, with probability > 1/2 both variables
converge in one step. For each of the other choices, the Hamming distance ei-
ther stays the same or increases by one. In each instance the probability that
Hamming distance decreases is

dh(X0, Y0)−E[dh(X1, Y1)]≥
1/2− (NM − 1)1

2 |Pr[X1accepts]− Pr[Y1accepts]|
NM

(8)
Now, using lemma 2 we get the bounds

Pr[X1accepts] =
L(X1)

L(X1) + L(X0)
≤ 1

1 + e−3 ln(M)β
(9)

and

Pr[Y1accepts] =
L(Y1)

L(Y1) + L(Y0)
≥ e−3 ln(M)β

1 + e−3 ln(M)β
(10)

combining these three equations we get

dh(X0, Y0)− E[dh(X1, Y1)] ≥ 1/2
(

1/NM − (
1

1 + e−3 ln(M)β
− e−3 ln(M)β

1 + e−3 ln(M)β
)
)

= 1/2 (1/NM − tanh(3 ln(M)β)) (11)

This implies for β < − ln[1 − 1/(NM + 1)]/3 ln(M), the distance between
neighboring phylogenies decreases in expectation at a rate greater than α =
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1/2NM(1−NM tanh(3 ln(M)β). Finally, using the path coupling lemma 3 and
the fact that our graph has diameter NM , we get the following condition for the
total variation distance Δ(t) between the distribution of Xt and Ytfor α > 0.

Δ(t) = Pr[Xt = Yt] ≤ e−αtNM (12)

and the mixing time to reach a total variation distance 1/2 is τ = ln[2NM ]/α.

While we have provided a proof just for the CFN model, the basic technique can
be extended trivially to multi-state models, such as the Jukes-Cantor model.

6 Experiments

We implemented our method in C++ and used the gnu linear programming kit
GLPK for solving the ILP. The Markov chain was simulated using the replica
sampling heuristic as described next. In each of the experiments reported here,
three Markov chains were simulated independently, at different values of β, for
some user defined time steps N1. One chain was always maintained at β0 = 1
while the ith chain was heated to βi = (1 + iδ)−1, for some user defined value
of δ. At each optimization step the branch lengths were set to the maximum
likelihood value, although in principle our method can sample from the full
posterior distribution of branch lengths at each step. After N1 steps of each
chain, a pair of chains was picked uniformly at random and an exchange was
proposed, followed by the usual Metropolis accept/reject criterion evaluated at
the temperature of the colder of the two chains. After every Nex attempts at
exchanging states between the Markov chains, a measurement was made. We
used data simulated using the CFN model on a user defined tree topology for
our experiments, as described in the following section.

Our goals in validation were to verify that the model runs efficiently for moder-
ate sized trees and to demonstrate its ability to ask questions about the ancestral
likelihood function. For this purpose, we conducted a small study measuring the
accuracy with which the true source tree of each data set can be inferred from
the data for varying input sizes. We can assess this uncertainty by examining
how often each bipartition in the source tree of a given data set occurs over the
sample of trees. We quantify this measure of bipartition mismatch by the mean
number of bipartitions that differ between observed tree and source tree across
samples.

6.1 Data Sets

We report two sets of experiments on simulated data from 10, 25 and 35 taxa
trees. Each set was prepared as follows: A tree topology with N leaves was gener-
ated by randomly choosing a matching by enumerating 2N −2 points in random
order and matching successive points. Each edge was assigned a branch length by
generating an exponentially distributed random number with user defined mean
(mean was fixed by specifying the edge probability) and 100 characters were sim-
ulated using the CFN model starting from the root 2N − 2. We initialized the
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Markov chain simulator by the simple heuristic of starting with the set of leaves
S = χ and true ancestral nodes. One tenth of the characters in each ancestral
node were then randomly perturbed. This process was repeated independently
for each chain participating in the replica exchange. All the experiments we re-
port here had edge probabilities no more than 0.1, so these perturbations result
in a fairly random initial state.

We first report results on experiments where we varied the number of taxa,
keeping all other simulation and sampling parameters constant. In each case data
was simulated on trees with each edge probability fixed at 0.1, so, on average,
one in ten characters mutated along each edge of the tree. For the Monte Carlo
sampling step, we used 3 coupled chains maintained at temperatures (or β−1) =
1, 1.01 and 1.02. The temperatures were chosen heuristically [1]. After every 10
steps, two chains were picked at random and an attempt at swapping their states
was made. These experiments were performed to assess the feasibility (both in
run time performance and Markov chain convergence) of the proposed method.

For the second set of experiments, we fixed the number of taxa to 25 and sim-
ulated data for edge probabilities values of 0.01, 0.05 and 0.1. These experiments
were performed to estimate the variation in the uncertainty in inferring the true
topology as well as the rate of convergence of the Markov chain.

6.2 Results

Figure 2 shows inferred likelihoods per Monte Carlo step for each tree. The plot
reveals that the sampler relaxes to a high likelihood tree in each case. Further,
the number of steps until the likelihood plateaus increases monotonically with
the number of taxa, as expected. However, due to the low temperature and our
use of the replica exchange heuristic in these empirical tests, we cannot assert
with certainty that these chains are well-mixed. The dashed horizontal lines,
representing the ancestral likelihood for the source tree, seem to indicate that
each chain is quite probably close to equilibrium.

Analysis of run times further shows the method to be very fast in practice
despite the need for solving a hard optimization problem at each step. Table 1
shows mean run-times expressed in numbers of Monte Carlo steps solved per
second. Run time does increase with numbers of taxa, but is still more than
1500 steps per minute for 35 taxa trees. The method is thus practical for tens
of thousands of steps of Markov chain sampling on moderate problem sizes. For
instance, each run presented in Figure 2 took less than 23 minutes.

Table 1 also shows the results of the uncertainty analysis. While the most
likely ancestral tree is known to be statistically inconsistent in general, we see
that the sampler is extremely efficient in identifying true bipartitions for these
data sets.

The second set of experiments probes the ancestral likelihood landscape as
we vary the mutation probabilities while keeping the number of taxa fixed at
25. Figure 3 shows the negative log-likelihood plots for three experiments with
varying edge lengths. Once again we find that the sampled trajectories relax
fairly rapidly to a high likelihood tree that is close to the likelihood of the source
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Fig. 2. Inferred negative log-likelihood as a function of Monte Carlo step for trees of
10, 25, and 35 taxa

Table 1. Run time and mismatch between true and sampled tree topologies for three
input sizes

No. of taxa ILP steps per second Average mismatch

10 728.21 0.39

25 70.45 2.38

35 29.26 2.58

tree. Data sets with shorter branches (lower mutation probability) seem to relax
faster, although we once again cannot assert that with certainty.

Table 2 gives us additional insight into the likely dynamics of the Markov
chain. As the mutation probabilities along tree edges increase, so does the accu-
racy of inferring the source tree. On the other hand, looking at Figure 3 seems
to suggest that the sampler relaxes more rapidly for high edge probability data.
This set of experiments thus tends to strongly suggest that near equilibrium,
the ability of the sampler to estimate the source tree deteriorates as edge prob-
abilities become small. This agrees with our intuition that given two speciation
events, it should be relatively easier to infer the order in which they occur if the
sequences at the two branch points are “well separated,” i.e., the branch length
between the internal edges is large. At the same time, in the neighborhood of
trees with long branches, the ancestral likelihood is comparably ”flatter” (for
the same reason that the peak of the likelihood curve in Lemma 2 is at the
shortest branch). As a result, the Markov chain moves about the state space
comparably faster (leading to a lower rejection ratio in Table 2 ), but at each
new node the optimal tree does not differ much from the true tree. On the
other hand, for extremely short branches, the most likely ancestral sequences
are closely clustered together around a smaller region of the state space and
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Fig. 3. Inferred negative log-likelihood as a function of Monte Carlo step for trees with
25 taxa and varying edge probabilities

Table 2. Rejection ratio and mismatch between true and sampled tree topologies for
three different edge probabilities for 25 taxa data sets

Average edge probabilities Average mismatch Average rejection ratio

0.01 14.05 0.97

0.05 4.82 0.94

0.10 2.93 0.87

Markov chain rarely ventures out of this central region (leading to a high rejec-
tion ratio). However, since most ancestral nodes have largely similar sequences
for the low edge probability case, it is relatively more common to swap the or-
der of bifurcation events connecting two ancestral nodes, leading to a higher
mismatch between the average estimated topology and the source tree. For the
0.01 edge probability case, the source tree had numerous higher degree internal
nodes (or edges with zero branch lengths) and that may be the likely cause for
the mismatch. In phylogenetics, it is well known that near polytomies or very
closely spaced bifurcation events are generally harder to reconstruct from fixed
length sequences [12] and our experiments seem to suggest a similar effect on
our ancestral likelihood sampler.

6.3 Discussion

Our experiments show that our method provides an efficient sampler over the
ancestral likelihood model for relatively large numbers of taxa. Although the
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method involved solving a formally intractable problem at each step of Markov
chain sampling, in practice it proves extremely fast for even moderately large
data sets. Furthermore, our novel formulation allows us to examine aspects of tree
likelihood distribution inaccessible to standard samplers. Maximum ancestral
likelihood has been known to be a statistically inconsistent estimator of the
tree topology in general. Our experiments seem to indicate that the discrepancy
between the topology of the average ancestral reconstruction and the source tree
is small and robust to the number of leaves in the tree, except when the source
tree has extremely short branch lengths.

7 Conclusions

We have developed a novel approach to phylogenetics designed to leverage meth-
ods for fast combinatorial optimization to efficiently sample over the space of
phylogenetic trees under standard likelihood models. The method depends on an
alternative formulation of phylogenetic likelihood to enable sampling over inter-
nal node states instead of tree topologies. The work establishes a new approach
to performing efficient, accurate sampling over phylogenies and to establishing
mixing time bounds for such sampling in practice. To demonstrate its theoretical
value, we have and established mixing time bounds for the important practical
case of the Cavender-Farris-Neyman model. These bounds can be extended to
some generalizations of that model and provide a new strategy for establishing
provable bounds on more general likelihood models. We further demonstrate the
practical efficiency and utility of the method through a study of uncertainty
in topology inference across samples under a standard likelihood function. The
ideas developed here for efficient optimization-based sampling may be applicable
to many similar problems involving sampling over likelihoods of combinatorial
objects.
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Abstract. Proliferation of drug-resistant diseases raises the challenge
of searching for new, more efficient antibiotics. Currently, some of the
most effective antibiotics (i.e., Vancomycin and Daptomycin) are cyclic
peptides produced by non-ribosomal biosynthetic pathways. The isola-
tion and sequencing of cyclic peptide antibiotics, unlike the same activity
with linear peptides, is time-consuming and error-prone. The dominant
technique for sequencing cyclic peptides is NMR-based and requires large
amounts (milligrams) of purified materials that, for most compounds, are
not possible to obtain. Given these facts, there is a need for new tools to
sequence cyclic NRPs using picograms of material. Since nearly all cyclic
NRPs are produced along with related analogs, we develop a mass spec-
trometry approach for sequencing all related peptides at once (in contrast
to the existing approach that analyzes individual peptides). Our results
suggest that instead of attempting to isolate and NMR-sequence the
most abundant compound, one should acquire spectra of many related
compounds and sequence all of them simultaneously using tandem mass
spectrometry. We illustrate applications of this approach by sequencing
new variants of cyclic peptide antibiotics from Bacillus brevis, as well as
sequencing a previously unknown familiy of cyclic NRPs produced by
marine bacteria.

1 Introduction

In 1939 Renê Dubos discovered that the peptide fraction Tyrothricin, isolated
from the soil microbe Bacillus brevis, had an ability to inhibit the growth of
Streptococcus pneumoniae, rendering it harmless. Although discovered 10 years
after Penicillin, it was the first mass produced antibiotic deployed in Soviet hos-
pitals in 1943. Unfortunately, the identification of amino acid sequences of cyclic
peptides, once a heroic effort, remains difficult today. The dominant technique
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for sequencing cyclic peptide antibiotics is 2D NMR spectroscopy, which requires
large amounts of highly purified materials that, are often nearly impossible to
obtain.

Tyrothricin is a classic example of a mixture of related cyclic decapeptides
whose sequencing proved to be difficult and took over two decades to complete.
By the 1970s, scientists had sequenced 5 compounds, Tyrocidine A-E, from the
original mixture. However, these five are not the only peptides produced by B.
brevis and even today it remains unclear whether all of the antibiotics produced
by this bacterium have been documented (see reference [1] for a list of 28 known
peptides from B. brevis).

Figure 1 (a) shows structure of Tyrocidine A. Table S1 illustrates that most
cyclic decapeptides in the Tyrocidine/Tryptocidine family can be represented as
shown (the rounded amino acid masses in daltons are also shown):
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It may come as a surprise that there are no genes in B. brevis whose codons
encode any of the Tyrocidine peptides! Tyrocidines, similar to many antibiotics
such as Vancomycin or Daptomycin, represent cyclic non-ribosomal peptides
(NRPs) that do not follow the central dogma “DNA produces RNA produces
Protein”. They are assembled by nonribosomal peptide synthetases that rep-
resent both the mRNA-free template and building machinery for the peptide
biosynthesis [2]. Thus, NRPs are not directly inscribed in genomes and cannot
be inferred with traditional DNA sequencing. Cyclic NRPs are of great phar-
macological importance as they have been optimized by evolution for chemical
defense and communication. Cyclic NRPs include antibiotics, antitumor agents,
immunosuppressors, toxins, and many peptides with still unknown functions.

Most NRPs are cyclic peptides that contain nonstandard amino acids, increas-
ing the number of possible building blocks from 20 to several hundreds. The now

(a) Tyrocidine A (b) Cyclomarin A (c) Reginamide A

Fig. 1. Structures of Tyrocidine A (a), Cyclomarin A (b), and Reginamide A (c)
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dominant 2D NMR-based methods for NRP characterization are time-consuming,
error prone, and requires large amounts of highly purified
material. Because NRPs are often produced by difficult to cultivable microor-
ganisms, it may not be possible to get sufficient quantities for 2D structure elu-
cidation, therefore it is important to develop a nmol scale structure elucidation
approach [3,4]. Such methods promise to greatly accelerate cyclic NRP screening
and may illuminate a vast resource for the discovery of pharmaceutical agents [5].

The first automated Mass Spectrometry (MS) based approach to sequenc-
ing cyclic peptides correctly sequenced 2 out of 6 Tyrocidines analyzed by Ng et
al. [6]. While the correct sequences for 4 other Tyrocidines were highly ranked, Ng
et al., 2009 [6] came short of identifying them as the highest-scoring candidates.
Leao et al., [7], 2010, and Liu et al., [8], 2010, recently applied the algorithm
from [6] for analyzing new cyclic peptides. In [7], the authors study peptides pro-
duced by the cyanobacterium Oscillatoria sp. that inhibit the growth of green
algae and demonstrated that they function in a synergistic fashion, i.e., mixtures
of these analogous peptides are needed to inhibit green algal growth. This obser-
vation emphasizes the importance of studying various peptide variants and calls
for the development of a technology able to simultaneously sequence all peptides
produced by a single organism.

Our first attempt to sequence cyclic NRPs from Oscillatoria sp. via MS us-
ing the algorithm described by Ng et al., [6] was inconclusive. We (Leao et
al. 2010 [7]) resorted to purification of the most abundant peptide with the
goal to sequence it via 2D NMR (purification of individual NRPs is often diffi-
cult since various NRP variants have similar physicochemical properties). This
amounted to a large effort that involved applications of various NMR technolo-
gies (including HSQC, HMBC, COSY, and NOESY) but still failed to identify
some inter-residue dependencies. Applications of both NMR and MS to finally
sequence four compounds using NRP-Dereplication algorithm from [6] repre-
sented a large and time-consuming effort of a multidisciplinary team. A better
approach would be to generate MS/MS spectra of all variant NRPs (without
the need to purify large amounts of individual peptides) and to multiplex se-
quence them. By multiplex sequencing we mean simultaneous (and synergetic)
sequencing of related peptides from their spectra.

Using this approach, we sequenced many known members of the Tyrocidine
family as well as some still unknown Tyrocidine variants. Finding new Tyroci-
dine variants is surprising since this family has been studied for sixty years now.
We further sequenced a previously unknown family of NRPs isolated from a bac-
terial strain that produces natural products with anti-asthma activities (named
Reginamides). To validate these new sequences (obtained from a single mass spec-
trometry experiment) we analyzed one of them (named Reginamide A) using
(rather time consuming) NMR experiments. The mass spectrometry approach re-
vealed the sequence of masses with molecular composition (C3H5NO, C6H11NO,
C6H11NO, C7H12N2O2, C6H11NO, C9H9NO, C6H11NO, C6H11NO) that was
matched by NMR as the cyclic peptide AIIKIFLI with structure shown in
Figure 1 (c). We emphasize that NMR confirmation of a compound with a known
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sequence (derived by MS) is much easier than NMR sequencing of a completely
unknown compound. The crux of our approach is the analysis of the entire spec-
tral network [9] of multiple Tyrocidines/Reginamides (Figure 4 (b-c) and Table 2
and 3) rather than analyzing each Tyrocidine/Reginamide isomer separately. The
derived sequences of the Reginamides represent the first automated sequencing
of a cyclic peptide family before NMR and highlights the future role that mass
spectrometry may play in sequencing cyclic peptides. MS-CyclicPeptide soft-
ware is available from the NCRR Center for Computational Mass Spectrometry
at http://proteomics.ucsd.edu.

2 Results

Spectral datasets. We analyzed Tyrocidine, Cyclomarin, and Reginamide fam-
ilies of cyclic peptides (see Methods section for the detailed description of ex-
perimental protocols).

The Cyclomarins represent a family of cyclic heptapeptides with anti-
inflammatory activity, isolated from a marine Streptomyces strain [10, 11, 12].
The structure of Cyclomarin A is shown in Figure 1 (b). We sequenced four
variants of the Cyclomarins that differ in a single amino acid residue.

The Reginamides represent a newly isolated family of cyclic octapeptides iso-
lated from a marine Streptomyces strain that also produces secondary metabo-
lites with anti-asthma activities (Splenocins). Multiple variants of Reginamide
isomers were sequenced using MS. Due to limited quantities of these cyclic pep-
tides and severe separation challenges, it was only possible to purify one of the
variants (named Reginamide A) for validating the derived sequences by NMR.
Multi-dimensional NMR analysis confirmed the sequence of Reginamide A, de-
rived by our multiplex sequencing algorithm.

Sequencing of individual peptides. Below we describe an algorithm for se-
quencing individual cyclic peptides. The goal of this algorithm is not improving
the method of [6], but rather proposing the ground for multiplex peptide se-
quencing, something that the algorithm from [6] is not suited for.

Consider the cyclic peptide VOLFPFFNQY (Tyrocidine A) with integer
masses (99, 114, 113, 147, 97, 147, 147, 114, 128, 163). We will interchangeably
use the standard notation (VOLF...) and the sequence of rounded masses (99,
114, 113, 147, ...) to refer to a peptide. One may partition this peptide into three
parts as OLF-PFF-NQYV with integer masses 374, 391 and 504 respectively. In
general, a k-partition is a decomposition of a peptide P into k subpeptides with
integer masses m1 . . .mk (we refer to mass(P ) =

∑k
i=1 mi as the parent mass

of peptide P ). A k-tag of a peptide P is an arbitrary partition of mass(P ) into
k integers. A k-tag of a peptide P is correct if it corresponds to masses of a
k-subpartition of P , and incorrect otherwise. For example, (374, 391, 504) is a
correct 3-tag, while (100, 1000, 169) is an incorrect 3-tag of Tyrocidine A.

A (linear) subtag of a cyclic k-tag Tag = (m1, · · · , mk) is a (continuos) linear
substring mi · · ·mj of the k-tag (we assume mi · · ·mj = mi · · ·mkm1 · · ·mj

in the case j < i). There are k(k − 1) subtags of a k-tag. The mass of a
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subtag is the sum of all elements of the subtag and the length of a subtag
is the number of elements in the subtag. We define Δ(Tag) as the multiset
of k(k − 1) subtag masses. For a peptide P , the theoretical spectrum of P is
defined as Δ(P ). For example, the theoretical spectrum of a cyclic peptide
AGPT = (71Da, 57Da, 97Da, 101Da) consists of 12 masses (57, 71, 97, 101,
128, 154, 172, 198, 225, 229, 255, and 269).

The problem of sequencing a cyclic peptide from a (complete and noiseless)
spectrum corresponds to the Beltway Problem [13] and can be stated as follows:

Cyclic Peptide Sequencing Problem

• Goal: Given a spectrum, reconstruct the cyclic peptide1 that generated this
spectrum.

• Input: A spectrum S (a set of integers).
• Output: A cyclic peptide P , such that Δ(P ) = S.

While the Beltway Problem is similar to the well-studied Turnpike Problem [14,
15], the former is more difficult than the latter one [13]. Moreover, de novo se-
quencing of cyclic peptides is much harder than the (already difficult) Beltway
Problem. Indeed, the real spectra are incomplete (missing peaks) and noisy (ad-
ditional peaks). Table S2 represents an experimental spectrum of Tyrocidine A
and illustrates that while the experimental spectrum captures many masses from
the theoretical spectrum (45 out of 90 masses), it also contains 30 other masses
(corresponding to noisy peaks and neutral losses). The limited correlation be-
tween the theoretical and experimental spectra makes the spectral interpretation
difficult.

Given a tag Tag and an experimental spectrum S (represented as a set of inte-
ger masses), we define Score(Tag, S) as the number of elements (masses) shared
between Δ(Tag) and S (ignoring multiplicities of elements in Δ(Tag)). For ex-
ample, for the 3-tag Tag = (374, 391, 504) of Tyrocidine A, Score(Tag, S) = 5,
since the spectrum S contains 5 out of 6 elements in Δ(Tag) = (374, 391, 504,
765, 878, 895).

The problem of sequencing a cyclic peptide from an incomplete and noisy
spectrum can be stated as follows:

Cyclic Peptide Sequencing Problem from Incomplete/Noisy Spectrum

• Goal: Given an incomplete and noisy spectrum, reconstruct the cyclic peptide
that generated this spectrum.

• Input: A spectrum S (a set of integers) and an integer k (peptide length)
• Output: A cyclic peptide P of length k, such that Spectrum and Δ(P ) are as

similar as possible, i.e. Score(P, S) is maximized among all cyclic peptides
of length k.

A tag is valid if all its elements are larger than or equal to 57 (minimal mass of
an amino acid). A valid (k + 1)-tag derived from a k-tag Tag by breaking one
1 We emphasize that the peptide might have amino acids with arbitrary masses, rather

than the 20 standard amino acids.
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of its masses into 2 masses is called an extension of Tag. For example, a 4-tag
(374, 100, 291, 504) is an extension of a 3-tag (374, 391, 504). All possible tag
extensions can be found by exhaustive search since for each k-tag (m1 . . . mk)
there exist at most

∑k
i=1 mi extensions.

Our algorithm for sequencing individual peptides starts from scoring all 2-tags
and selecting t top-scoring 2-tags, where t is a parameter. It further iteratively
generates a set of all extensions of all top-scoring k-tags, combines all the exten-
sions into a single list, and extracts t top scoring extensions from this list. Table 1
(a) shows the reconstructed 7-tags for the Tyrocidine family and illustrates that
the highest-scoring tags are incorrect for most Tyrocidines. However, by simul-
taneously sequencing pairs of spectra of related peptides, one can achieve better
results. For the sake of simplicity, we illustrate how our approach works with
integer amino acid masses. However, with available high precision mass spec-
trometry data we are able to derive the elemental composition of each amino
acid (see Text S5).

Furthermore, we describe an algorithm for combining information from all high
scoring tags to generate a spectral profile (Figure 2) that compactly represents
all high-scoring tags (similar to sequence logos [16]). Each Tag = (m1 . . . mk)
with

∑k
i=1 mi = M defines an M -dimensional boolean vector

−−→
Tag with 1s at

k positions
∑j

i=1 mi for 1 ≤ j ≤ k. For example, a tag (3,2,4) defines a vec-
tor 001010001. Given a vector x = x1 . . . xM , we define its i-shift as the vector
xM−i+1xM−i+2 . . . xMx1 . . . xM−i and its reversal as the vector xMxM−1 . . . x2x1.
We define the reversed i-shift as the reversal of the i-shift. For example, 2-shift of
001010001 is 010010100, and reversed 2-shift is 001010010. Given vectors x and
y, we define alignment(x,y) as a shift or reversed shift of x with maximum dot-
product with y. For x = 001010001 and y = 101000000, alignment(x,y) =
101000100.

Our algorithm for constructing the spectral profile (generated from a spectrum
with parent mass M) starts from ordering t high-scoring k-tags Tag1 . . . T agt in
the decreasing order of their scores and defines T0 as an M -dimensional vector
with all zeros. It proceeds in t steps, at each step aligning the tag Tagi against
the vector Ti−1. At step i, it finds alignment(

−−→
Tagi, Ti−1) between

−−→
Tagi and Ti−1

and adds it to Ti−1 to form Ti = alignment(
−−→
Tagi, Ti−1) + Ti−1. After t steps,

the algorithm outputs the vector Tt

t as the spectral profile.
For example, for Tyrocidine A, the two 7-tags with the highest scores are

Tag1 = (114, 147, 244, 260, 111, 119, 274) and Tag2 = (114, 147, 244, 291, 80,
133, 260). After the first step, we form a vector T1 =

−−−→
Tag1 with 1s at positions

114, 261, 505, 765, 876, 995 and 1269. At the second step, we align
−−−→
Tag2 and T1

and form a vector T2 with 1s at positions 765, 995, 796, 1009 and 2s at positions
114, 261, 505, 876, and 1269. Repeating these steps for 100 high-scoring tags
for Tyrocidine A results in the spectral profile shown in Figure 2(a). Table S4
provides the annotations of the spectral profiles for Tyrocidine A, B and C.

Sequencing of peptide pairs. We define a spectral pair as spectra S and
S′ of peptides P and P ′ that differ by a single amino acid. Consider a
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Fig. 2. (a) Spectral profile of 100 highest scoring 7-tags for Tyrocidine A. Intensities
of correct peaks account for 68% of total intensity. (b) Spectral profile of 100 highest
scoring 10-tags for Tyrocidine A generated by multiplex sequencing of Tyrocidines.
Intensities of correct peaks account for 86% of total intensity. (c) Spectral profile of
100 highest scoring 7-tags generated for Cycolmarin A by multiplex sequencing of
four Cyclomarins (Cycolmarin A, Cyclomarin C, Dehydro Cyclomarin A and Dehydro
Cyclomarin C). For Cyclomarin A, amino acids a, b, c, d, e, f and g stand for Alanine
(71Da), β-methoxyphenylalanine (177Da), Valine (99Da), N-methylleucine (127Da),
2-amino-3,5-dimethylhex-4-enoic acid (139Da), N-(1,1-dimethyl-2,3-epoxyprophyl)-β-
hydroxytryptophan (286Da) and N-methyl-δ-hydroxyleucine (143Da). In Cyclomarin
C, f is replaced by N-prenyl-β-hydroxytryptophan (270Da). Dehydrations also occur
on residue f . Intensities of correct peaks accounts for 59% of total intensitites. (d)
Spectral profile of 100 top scoring 8-tags of Reginamide A generated by multiplex
sequencing of Reginamides. The top scoring 8-tag of Reginamide A, also verified by
NMR, is (71, 113, 113, 128, 113, 147, 113, 113). Intensities of correct peaks account for
81% of total intensity.

spectral pair (S, S′) and set δ = Mass(S′) − Mass(S). Given a k-tag Tag =
(m1 . . . mk) of a spectrum S and an offset δ, we define a corresponding k-tag
Tagi

S→S′ = (m1 . . . mi + δ . . . mk) of S′ for each 1 ≤ i ≤ k. For example for
Tag = (213, 260, 244, 147, 114, 128, 163) of Tyrocidine A, Tag1

Tyc A→Tyc A1 =
(227, 260, 244, 147, 114, 128, 163) is the corresponding tag of Tyrocidine A1. Any
k-tag of S corresponds to at most k k-tags of S′, and any correct k-tag of S cor-
responds to (at least) one correct k-tag of S′. Given a k-tag Tag of a spectrum
S, define its PairwiseScore as

PairwiseScore(Tag, S, S′) =
Score(Tag, S) + max1≤i≤k Score(Tagi

S→S′ , S′)
2

The algorithm for pairwise sequencing of the cyclic peptides is exactly the same
as the algorithm for sequencing individual cyclic peptide but instead of using
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Table 1. Individual (a), pairwise (b) and multiplex (c) de novo sequencing of Tyro-
cidines. The correct tag is selected from the set of 1000 top-scoring tags (the top scoring
correct tag and its rank are shown). Table S3 shows the process of extensions of top
scoring tags of Tyrocidine A from 2-tags to 7-tags. Rank 1 · · · 7 for the highest scoring
tag of Tyrocidine A1 means that the seven highest scoring tags have equal score, and
one of them is the correct tag. Composite masses such as [113+147] for Tyrocidine
A mean that the sequencing algorithm returned 260Da instead of 113Da and 147Da
corresponding to Leu and Phe. [99 + 114/128] for Tyrocidine A/A1 pair means that
the mass 99 + 114 = 213 in the first position of Tyrocidine A is substituted by the
mass 99 + 128 = 227 in Tyrocidine A1. Part (c) shows 10-tags resulting from multiplex
sequencing of six Tyrocidines (projected to Tyrocidine A). Correct masses are shown
in bold. MS stands for Multiplex Score, and WMS stands for weighted Multiplex Score
(See Text S2 for details).

Peptide The highest-scoring correct 7-tag (among all generated tags) Rank

Tyc A [99+ 114] [113+ 147] 97 147 147 114 [128+ 163] 384 · · · 1000
Tyc A1 [99+ 128] [113+ 147] [97+ 147] 147 114 128 163 1 · · · 7
Tyc B [99+ 114] 113 147 97 [147+ 186] 114 [128+ 163] 14 · · · 134
Tyc B1 99 128 [113+ 147] [97+ 186] 147 [114+ 128] 163 2 · · · 13
Tyc C 99 114 [113+ 147] [97+ 186] [186+ 114] 128 163 6 · · · 72
Tyc C1 99 128 [113+ 147] [97+ 186] 186 114 [128+ 163] 4 · · · 38

(a) Individual
Pair The highest-scoring correct 7-tag (among all generated tags) Rank

Tyc A/A1 [99+ 114/128] [113+ 147] [97+ 147] 147 114 128 163 2 · · · 5
Tyc B/B1 99 114/128 [113+ 147] [97+ 186] 147 [114+ 128] 163 1
Tyc C/C1 99 114/128 [113+ 147] [97+ 186] 186 [114+ 128] 163 1
Tyc A/B 99 114 [113+ 147] [97+ 147/186] 147 [114+ 128] 163 2 · · · 6
Tyc B/C 99 114 [113+ 147] [97+ 186] 147/186 [114+ 128] 163 1
Tyc A1/B1 99 128 [113+ 147] [97+ 147/186] 147 [114+ 128] 163 1 · · · 4
Tyc B1/C1 99 128 [113+ 147] [97+ 186+ 147/186] 114 128 163 43 · · · 82

(b) Pairwise

Family Sequences (10-tags) MS WMS Rank

Tyrocidines

99 114 113 147 97 147 147 114 128 163 232 29.14 1
99 114 113 147 97 147 147 69 173 163 228 28.78 2
99 114 141 119 97 147 147 114 128 163 222 28.14 3
99 114 113 147 97 147 147 114 111 180 222 27.85 4

(c) Multiplex

Score(Tag, S) for scoring a single tag, it uses PairwiseScore(Tag, S, S′). Table
1 (b) shows that while pairwise sequencing improves on sequencing of individual
cyclic peptides, it does not lead to correct reconstructions of all Tyrocidines.

Identifying spectral pairs. While the described algorithm assumed that we
know which spectra form spectral pair, i.e. which peptides differ by a single
substitution, such an information is not available in de novo sequencing appli-
cations. The problem of whether spectra of two linear peptides form a spectral
pair was investigated by Bandeira et al., [9]. In this section we address a more
difficult problem of predicting whether the spectra of two cyclic peptides form a
spectral pair based only on their spectra. Our approach extends the dereplication



Multiplex De Novo Sequencing of Peptide Antibiotics 275

goal: Given spectra of related cyclic peptides (of the same length), sequence of one of them, and
their (estimated) spectral network, reconstruct all the cyclic peptides that generated
this spectra.
input: Spectra S = (S1, · · · , Sm) of m related cyclic peptide, their (estimated) Spectral
Network G, an integer k, a k-tag Tag of Su for some 1 ≤ u ≤ m, a scoring function
Score(Tag, S) for individual spectra.
output: an approximate solution multitag(Tag, u, S, G) of constrained multiplex cyclic peptide
sequencing problem.

for j = 1 to m do
Tagj ← null

end for
Tagu ← Tag
repeat

Change ← 0
for all spectral pairs (Sj , Sr) in E(G) do

δ = ParentMass(Sr) − ParentMass(Sj)
if Tagj �= null and r �= u then

for i = 1 to k do
Tag′

r ← (i, δ)-modified Tagj

if Score(Tag′
r , Sr) > Score(Tagr , Sr) then

Tagr ← Tag′
r

Change ← Change + 1
end if

end for
end if

end for
until Change = 0
return (Tag1, · · · , Tagm)

Fig. 3. Algorithm for generating multitags from a candidate Tag of a spectrum Su

in the spectral network formed by spectra S1, . . . , Sm corresponding to the spectral
network G. Given a k-tag Tag of the spectrum Su, the algorithm initializes Tagu = Tag
and Tagj = Null for all other 1 ≤ j ≤ m. We assume that Score(Null, Si) = −∞ for
all 1 ≤ i ≤ m. E(G) stands for the edge set of the spectral network G. Since the sum∑m

i=1 Score(Tagi, Si) is monotonically increasing, the algorithm converges (typically
after few iterations).

algorithm from [6] by comparing spectra of mutated peptides (rather than com-
paring a spectrum against a sequence of a mutated peptide) and is based on the
observation that related peptides usually have high-scoring corresponding tags.
A simple measure of similarity between spectra is the number of (S, S′)-shared
peaks (see Table S6). In the following we introduce Δ(S, S′) distance between
spectra, that, in some cases, reveals the similarity between spectra even better
than the number of (S, S′)-shared peaks. Given a set of k-tags TagList for a
spectrum S, we define:

MaxScore(TagList, S) = max
Tag∈TagList

Score(Tag, S)

Given an additional spectrum S′, we define:

MaxPairwiseScore(TagList, S, S′) = max
Tag∈TagList

PairwiseScore(Tag, S, S′)

Finally, given a set of k-tags TagList for a spectrum S and a set of k-tags
TagList′ for a spectrum S′, define Δ(TagList, T agList′, S, S′) (or, simply,
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Table 2. Reconstructed peptides from the spectra corresponding to vertices in the
spectral network shown in Figure 4(b). The spectra were dereplicated using (known)
Tyrocidines A, A1, B, B1, C and C1 by applying the multitag algorithm described
in Figure 3. Four of the sequences are reported previously (see Table S12). For one
spectrum with previously reported parent mass, 1292 Da, our reconstruction slightly
differs from that of [1].

PM Tag Score Comment
1269 99 114 113 147 97 147 147 114 128 163 21 Tyrocidine A
1283 99 128 113 147 97 147 147 114 128 163 26 Tyrocidine A1
1291 99 114 113 147 97 186 147 97 128 163 18 New
1292 99 114 113 147 97 186 131 114 128 163 22 PM matches Tryptocidine A[1]
1306 99 128 113 147 97 186 147 114 112 163 23 New
1308 99 114 113 147 97 186 147 114 128 163 25 Tyrocidine B
1322 99 128 113 147 97 186 147 114 128 163 32 Tyrocidine B1
1331 99 114 113 147 97 186 147 114 128 186 24 Tryptocidine B[1]
1345 99 128 113 147 97 186 147 114 128 186 27 previously reported[1]
1347 99 114 113 147 97 186 186 114 128 163 24 Tyrocidine C
1361 99 128 113 147 97 186 186 114 128 163 30 Tyrocidine C1
1370 99 114 113 147 97 186 186 114 128 186 26 Tyrocidine D[1]
1384 99 128 113 147 97 186 186 114 128 186 24 previously reported[1]

Table 3. Dereplication of Reginamide variants represented by the spectral network in
the Figure 4(c)) from the Reginamide A, using multitag algorithm

PM Peptide Score

897 71 99 113 128 113 147 113 113 31
911 71 113 113 128 113 147 113 113 31
925 71 113 113 142 113 147 113 113 25
939 71 113 113 156 113 147 113 113 31
953 71 113 113 170 113 147 113 113 29
967 71 113 113 184 113 147 113 113 28
981 113 85 113 184 113 147 113 113 28
995 71 113 113 212 113 147 113 113 24
1009 113 113 113 184 113 147 113 113 26
1023 71 113 113 240 113 147 113 113 20

Δ(S, S′)) as the differences between the sum of scores of the best-scoring tags
for S and S′ and the sum of pairwise scores of the best-scoring tag of S/S′ and
S′/S pairs:

Δ(S, S′) = MaxScore(TagList, S) + MaxScore(TagList′, S′)
−MaxPairwiseScore(TagList, S, S′) −MaxPairwiseScore(TagList′, S′, S)

It turned out that Δ(S, S′) is a good indicator of whether or not peptides P and
P ′ that produced S and S′ are only one amino acid apart. Table S6 illustrates
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Fig. 4. (a) The spectral network of six Tyrocidines analyzed in [6] reveals 7 (correct)
spectral pairs differing by a single substitution and one (incorrect) spectral pair (Tyc
A1 and Tyc C1) differing by two substitutions. (b) The spectral network of Tyrocidines
after clustering similar spectra (see Text S3 for details). The sequences were derepli-
cated from Tyrocidines A, A1, B, B1, C and C1 in Table 2 (green node) using the
multitag algorithm. (c) The spectral network of Reginamides after clustering similar
spectra (see Text S4 for details). The sequences were dereplicated from Reginamide
A in Table 3 (green node) using the multitag algorithm.

that all seven spectral pairs of Tyrocidines have Δ less than or equal to five,
while for remaining pairs, Δ is greater than or equal to seven, with exception
of Tyrocidine A1/C1 pair representing two substitutions at consecutive amino
acids FF → WW. Such substitutions at consecutive (or closely located) positions
are difficult to distinguish from single substitutions. For example, the theoretical
spectrum for FF → WW substitutions (each with 39 Da difference in the mass
of amino acids) is very similar to the theoretical spectrum of a peptide with a
single substitution on either of Phe residues with 78 Da difference.

Spectral Network Construction. Given a set of peptides P1, · · · , Pm, we
define their spectral network as a graph with m vertices P1, · · · , Pm and edges
connecting two peptides if they differ by a single amino acid substitution. In
reality, we are not given peptides P1, · · · , Pm, but only their spectra S1, · · · , Sm.
Nevertheless, one can approximate the spectral network by connecting vertices
Si and Sj if the corresponding peptides are predicted to differ by a single amino
acid, i.e. if Δ(S, S′) is less than a threshold. Figure 4(a) show the spectral network
of six Tyrocidines analyzed in [6].

Multiplex sequencing of peptide families. We now move from pairwise se-
quencing to multiplex sequencing of spectral networks of (more than two) related
cyclic peptides. While we use the notion of spectral networks from [9], the algo-
rithm for sequencing linear peptides from spectral networks (as described in [9])
is not applicable for sequencing cyclic peptides.
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In multiplex sequencing of peptide families, we are given a set of spectra of
peptides of the same length n, without knowing their amino acid sequences,
and without knowing which ones form spectral pairs. Sequencing of individual
cyclic peptides is capable of generating a set of candidate k-tags, that typically
contains a correct tag (at least for k smaller than n). However, sequencing of
individual spectra typically fails to bring the correct peptide to the top of the
list of high-scoring peptides or even, in some cases, fails to place it in this list.
To alleviate this problem, we analyze all spectra in the spectral network and
introduce a multiplex scoring that utilizes the information from all spectra.

Below we formulate the multiplex sequencing problem. Given a spectral net-
work G of spectra S = (S1, · · ·Sm), we call a set of peptides (P1, · · ·Pm) G-
consistent if for every two spectra Si and Sj connected by an edge in G, Pi and
Pj differ by a single amino acid.

Multiplex Cyclic Peptide Sequencing Problem

– Goal: Given spectra of related cyclic peptides (of the same length) and their
(estimated) spectral network, reconstruct all cyclic peptides that generated
this spectra.

– Input: Spectra S = S1, · · · , Sm, their (estimated) Spectral Network G, and
an integer k.

– Output: A G-consistent2 set of peptide P1, · · · , Pm (each of length k) that
maximizes

∑m
i=1 Score(Pi, Si) among all sets of G-consistent peptides of

length k.

Let S = (S1, · · ·Sm) be a set of spectra of m peptides forming a spectral net-
work and let Tag = (Tag1, · · · , T agm) be a multitag, which is a set of tags
such that Tagi is a k-tag of spectrum Si (for 1 ≤ i ≤ m). In Text S1 we
describe multiplex scoring of multitags, taking into account dependencies be-
tween spectra in the spectral network. This is in contrast to scoring multitags
as

∑m
j=1 Score(Tagj, Sj) that is equivalent to independent optimization of indi-

vidual scores on all individual k-tags. This approach will not give any payoff in
comparison to individual spectral sequencing.

MultiplexScore defined in Text S1 scores a multitag against all spectra
in the spectral network. However, generating a correct multitag from m lists
of t top-scoring tags in spectra S1, . . . , Sm is impractical since (i) the num-
ber of candidate multitags (tm) is large, and (ii) some lists may not contain
correct individual tags. We therefore generate candidate multitags from indi-
vidual tags and score them against all spectra using MultiplexScore. Figure
3 describes the algorithm for generating a k-multitag from a single individ-
ual k-tag using the spectral network G. Given a candidate individual tag Tag

2 Since we work with estimated (rather than exact) spectral networks, the multiplex
cyclic peptide sequencing may not have a solution (i.e. a set of G-consistent peptides
does not exist). Given a parameter u, a set of peptides is called (G, u)-consistent if
for all but u edges (Si, Sj), Pi and Pj differ by a single amino acid. The algorithm
address finding (G, u)-consistent sets of peptides for a small parameter u.
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of a spectrum Su, 1 ≤ u ≤ m, our algorithm generates a candidate multitag
multitag(Tag, u,S, G) = (Tag1, · · · , T agm), satisfying Tagu = Tag. Note that
given a tag Tag = (m1, · · · , mk), the (i, δ)-modification of Tag is defined as
(m1, · · · , mi + δ, · · · , mk).

We now define multiplex score on an individual tag Tag of a spectrum Su as
follows:

MultiplexScore(Tag, u,S, G) = MultiplexScore(multitag(Tag, u,S, G),S, G)

The multiplex sequencing algorithm (i) generates lists of individual tags for each
spectrum in the spectral network, (ii) constructs the spectral network G, (iii)
selects an individual Tag that maximizes MultiplexScore(Tag, u,S, G) among
all individual tags, and (iv) outputs multitag(Tag, u,S, G) as the solution of
the multiplex sequencing problem.

Multiplex sequencing algorithm is exactly the same as the individual sequenc-
ing algorithm, with the only difference that we use MultiplexScore here, instead
of Score (individual sequencing). Again we start with high scoring 2-tags (in
MultiplexScore sense), and extend them, keeping t highest scoring tags in each
step. Table 1 (c) illustrates that the multiplex sequencing algorithm sequences
all six Tyrocidines studied in [6] correctly.

Figure 2 (b-d) shows spectral profiles for t = 100 high scoring tags of multiplex
sequencing of Q-TOF spectra of Tyrocidines, Cyclomarins, and Reginamides.

Figure 4(b) and Table 2 show spectral network and sequences of Tyrocidines,
predicted by multiplex sequencing algorithm (using ESI-IT spectra, see Text S3
for details). Figure 4(c) and Table 3 show similar results for Reginamides (see
Text S4 for details).

To analyze Reginamides, the Q-TOF and ESI-IT tandem mass spectrom-
etry data was collected on both ABI QSTAR and ThermoFinnigan LTQ. In
both cases, sequencing of Reginamide A resulted in a sequence of integer masses
(71, 113, 113, 128, 113, 147, 113, 113). Using accurate FT spectra collected on
ThermoFinnigan, we further derived amino acid masses as (71.03729, 113.08406,
113.08405, 128.09500, 113.08404, 147.06849, 113.08397, 113.08402) that pointed
to amino acids Ala (71.03711), Ile/Leu (113.08406), Lys (128.09496) and Phe
(147.06841) and revealed the elemental composition. These sequences were fur-
ther confirmed by NMR (see Text S6).

3 Methods

Generating mass spectra. Q-TOF tandem mass spectrometry data for Ty-
rocidines, Cyclomarines, and Reginamides were collected on ABI-QSTAR. In
addition, ESI-IT tandem mass spectrometry data were collected for Tyrocidines
and Reginamides on a Finnigan LTQ-MS. All spectra were filtered as described
in [6,17] by keeping five most intense peaks in each 50 dalton window. All masses
were rounded after subtraction of charge mass and multiplication by 0.9995 as
described in [18]. High resolution FT spectra of Reginamides were also collected
on a Finnigan. Typical mass accuracy of IT instruments are between 0.1 to 1 Da,
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while typical accuracy of TOF and FT instruments are between 0.01 to 0.1Da,
and 0.001 to 0.01Da respectively.

Isolation of Reginamide A. CNT357F5F5 sample was obtained from a cul-
tured marine streptomyces in five 2.8 L Fernbach flasks each containing 1 L of
a seawater-based medium and shaken at 230 rpm at 27 �. After seven days of
cultivation, sterilized XAD-16 resin was added to adsorb the organic products,
and the culture and resin were shaken at 215 rpm for 2 hours.

The resin was filtered through cheesecloth, washed with deionized water, and
eluted with acetone. Pure Reginamide A eluted at 12.6 min to give 2.0 mg of
pure material.

Generating NMR spectra. CD3OD and C5D5N were purchased from Cam-
bridge Isotope. 1H NMR, 13C NMR, 1H−1H COSY, 1H−1H TOCSY (mixing
time 90 ms), HMBC (2J or 3J1H−13C = 7 Hz), HSQC (1J1H−13C = 145 Hz),
and ROESY (mixing time = 400 ms) spectra were generated on the Bruker
(AVANCE III 600) NMR spectrometer with 1.7 mm cryoprobe. All the NMR
spectra are provided in the Supplementary Information.

Parameter Setting. Text S7 discusses setting of parameters of the algorithm.
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Fractal and Transgenerational Genetic Effects

on Phenotypic Variation and Disease Risk

Joe Nadeau

Institute for Systems Biology

To understand human biology and to manage heritable diseases, a complete
picture of the genetic basis for phenotypic variation and disease risk is needed.
Unexpectedly however, most of these genetic variants, even for highly heritable
traits, continue to elude discovery for poorly understood reasons. The genetics
community is actively exploring the usual explanations for missing heritability.
But given the extraordinary work that has already been done and the exceptional
magnitude of the problem, it seems likely that unconventional genetic properties
are involved.

We made two surprising discoveries that may dramatically change our under-
standing of the genetic basis for phenotypic variation and disease risk, and that
may also explain much of missing heritability. The first property involves fractal
genetics, where a very large number of often closely linked genetic variants act
in a remarkably strong, non-additive and context-dependent manner to control
phenotypic variation, suggesting that networks of gene interactions are more
important than the constant action of individual variants. The second property
involves transgenerational genetic effects, where genetic variants acting in one
generation affect phenotypes in subsequent generations. Because these transgen-
erational effects are common, strong and persistent across multiple generations,
they rival the action of genetic variants that are inherited in the conventional
manner. The search is ongoing to identify the molecular basis for this non-DNA
inheritance. Together these discoveries in model organisms shed light on genetic
phenomena that impact human biology but that are difficult to extremely detect
directly in human populations. In particular, inheritance of traits and diseases
without the corresponding genetic variants could revolutionize our understand-
ing of inheritance.
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Abstract. High-throughput sequencing coupled to chromatin immuno-
precipitation (ChIP-Seq) is widely used in characterizing genome-wide
binding patterns of transcription factors, cofactors, chromatin modifiers,
and other DNA binding proteins. A key step in ChIP-Seq data analysis
is to map short reads from high-throughput sequencing to a reference
genome and identify peak regions enriched with short reads. Although
several methods have been proposed for ChIP-Seq analysis, most ex-
isting methods only consider reads that can be uniquely placed in the
reference genome, and therefore have low power for detecting peaks lo-
cated within repeat sequences. Here we introduce a probabilistic ap-
proach for ChIP-Seq data analysis which utilizes all reads, providing a
truly genome-wide view of binding patterns. Reads are modeled using a
mixture model corresponding to K enriched regions and a null genomic
background. We use maximum likelihood to estimate the locations of the
enriched regions, and implement an expectation-maximization (E-M) al-
gorithm, called AREM (aligning reads by expectation maximization), to
update the alignment probabilities of each read to different genomic lo-
cations. We apply the algorithm to identify genome-wide binding events
of two proteins: Rad21, a component of cohesin and a key factor in-
volved in chromatid cohesion, and Srebp-1, a transcription factor im-
portant for lipid/cholesterol homeostasis. Using AREM, we were able
to identify 19,935 Rad21 peaks and 1,748 Srebp-1 peaks in the mouse
genome with high confidence, including 1,517 (7.6%) Rad21 peaks and
227 (13%) Srebp-1 peaks that were missed using only uniquely mapped
reads. The open source implementation of our algorithm is available at
http://sourceforge.net/projects/arem

Keywords: ChIP-Seq, Mixture Model, Expectation-Maximization,
Cohesin, CTCF, Srebp-1, Repetitive Elements, High Throughput
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1 Introduction

In recent years, high-throughput sequencing coupled to chromatin immunopre-
cipitation (ChIP-Seq) has become one of the premier methods of analyzing
protein-DNA interactions [1]. The ability to capture a vast array of protein bind-
ing locations genome-wide in a single experiment has led to important insights
in a number of biological processes, including transcriptional regulation, epi-
genetic modification and signal transduction [2,3,4,5]. Numerous methods have
been developed to analyze ChIP-Seq data and typically work well for identi-
fying protein-DNA interactions located within non-repeat sequences. However,
identifying interactions in repeat regions remains a challenging problem since
sequencing reads from these regions usually cannot be uniquely mapped to a
reference genome. We present novel methodology for identifying protein-DNA
interactions in repeat sequences.

ChIP-Seq computational analysis typically consists of two tasks: one is to iden-
tify the genomic locations of the short reads by aligning themtoa reference genome,
and the second is to find genomic regions enriched with the aligned reads, which is
often termed peak finding. Eland, MAQ, Bowtie, and SOAP are among the most
popular for mapping short reads to a reference genome [6,7,8,9] and provide many
or all of the potential mappings for a given sequence read. Once potential map-
pings have been identified, significantly enriched genomic regions are identified us-
ing one of several available tools [10,11,12,13,14,15,16,17,18]. Somepeakfinders are
better suited for histone modification studies, others for transcription factor bind-
ing site identification. These peak finders have been surveyed on several occasions
[19,20,21].

Many short reads cannot be uniquely mapped to the reference genome. Most
peak finding workflows throw away these non-uniquely mapped reads, and as
a consequence have low power for detecting peaks located within repeat re-
gions. While each experiment varies, only about 60% [in house data] of the
sequence reads from a ChIP-Seq experiment can be uniquely mapped to a ref-
erence genome. Therefore, a significant portion of the raw data is not utilized
by the current methods. There have been proposals to address the non-uniquely
mapped reads in the literature by either randomly choosing a location from a
set of potential ones [22,23] or by taking all potential alignments [12], but most
peak callers are not equipped to deal with ambiguous reads.

We propose a novel peak caller designed to handle ambiguous reads directly by
performing read alignment and peak-calling jointly rather than in two separate
steps. In the context of ChIP-Seq studies, regions enriched during immunopre-
cipitation are more likely the true genomic source of sequence reads than other
regions of the genome. We leverage this idea to iteratively identify the true ge-
nomic source of ambiguous reads. Under our model, the true locations of reads
and binding peaks are treated as hidden variables, and we implement an al-
gorithm, AREM, to estimate both iteratively by alternating between mapping
reads and finding peaks.

Two ChIP-Seq datasets were used in this study: 1) cohesin, a new dataset
generated in house, and 2) Srebp-1, a previously published dataset [5].
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We generated the cohesin dataset by performing ChIP-Seq using mouse em-
bryonic fibroblasts and an antibody targeting Rad21 [24], a subunit of cohesin.
Cohesin is an essential protein complex required for sister chromatid cohesion. In
mammalian cells, cohesin binding sites are present in intergenic, promoter and
3’ regions-especially in connection with CTCF binding sites [25,26]. It was found
that cohesin is recruited by CTCF to many of its binding sites, and plays a role
in CTCF-dependent gene regulation [27,28]. Cohesin has been shown to bind
to repeat sequences in a disease-specific manner [24], making it a particularly
interesting candidate for our study.

The second dataset is Srebp-1, a transcription factor important in allostatic
regulation of sterol biosynthesis and membrane lipid composition [29]. This par-
ticular dataset [5] examines the genomic binding locations for Srebp-1 in mouse
liver. Regulation of expression by Srebp-1 is important for regulation of choles-
terol; repeat-binding for this transcription factor has not been shown previously
[30,29]. We choose these datasets because both proteins have well characterized
regulatory motifs, allowing us to directly test the validity of our peak finding
method.

On a 2.8Ghz CPU, AREM takes about 20 minutes and 1.6GB RAM to call
peaks from over 12 million alignments and about 30 minutes and 6GB RAM
to call peaks from nearly 120 million alignments. Each dataset takes less than
40 iterations to converge. AREM is written in Python, is open-source, and is
available at http://sourceforge.net/projects/arem.

2 Methods

2.1 Notations

Let R = {r1, · · · , rN} denote a set of reads from a ChIP-Seq experiment with
read ri ∈ Σl, where Σ = {A, C, G, T}, l is the length of each read, and N denotes
the number of reads. Let S ∈ ΣL denote the reference sequence to which the
reads will be mapped. In real applications, the reference sequence usually consists
of multiple chromosomes. For notational simplicity, we assume the chromosomes
have been concatenated to form one reference sequence.

We assume that for each read we are provided with a set of potential align-
ments to the reference sequence. Denote the set of potential alignments of read
ri to S by Ai = {(lij , qij) : j = 1, · · · , ni}, where lij and qij denote the start-
ing location and the confidence score of the j-th alignment, and ni is the total
number of potential alignments. We assume qij ∈ [0, 1] for all j, and use it to
account for both sequencing quality scores and mismatches between the read
and the reference sequence. There are several programs available to generate the
initial potential alignments and confidence scores.

2.2 Mixture Model

We use a generative model to describe the likelihood of observing the given set of
short reads from a ChIP-Seq experiment. Suppose the ChIP procedure results in
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the enrichment of K non-overlapping regions in the reference sequence S. Denote
the K enriched regions (also called peak regions) by {(sk, wk) : k = 1, · · · , K},
where sk and wk represent the start and the width, respectively, of the i-th
enriched region in S. Let Ek = {sk, · · · , sk + wk − l} denote the set of locations
in the enriched region k that can potentially generate a read of length l. Let Es

k,
Ew

k denote the start and width of region k. We will use E0 to denote all locations
in S that are not covered by

⋃K
k=1 Ek.

We use variable zi ∈ {1, · · · , ni} to denote the true location of read ri, with
zi = j representing that ri originates from location lij of S. In addition, we use
variable ui ∈ {0, 1, · · · , K} to label the type of region that read ri belongs to.
ui = k represents that read ri is from the non-enriched regions of S if k = 0, and
is from k-th enriched region otherwise. Both zi and ui are not directly observable,
and are often referred to as the hidden variables of the generative model.

Let P (ri|zi = j, ui = k) denote the conditional probability of observing read
ri given that ri is from location lij and belongs to region k. Assuming different
reads are generated independently, the log likelihood of observing R given the
mixture model is then

� =
N∑

i=1

log

⎡⎣ ni∑
j=0

K∑
k=0

P (ri|zi = j, ui = k)P (zi = j)P (ui = k)

⎤⎦ ,

where P (zi) and P (ui) represent the prior probabilities of the location and the
region type, respectively, of read ri. P (zi) is set according to the confidence
scores of different alignments

P (zi = j) =
qij∑ni

k=1 qik
. (1)

P (ui) depends on both the width and the enrichment ratio of each enriched
region. Denote the enrichment ratio of the ChIP regions vs non-ChIP regions by
α, which is often significantly impacted by the quality of antibodies used in ChIP
experiments. We parametrize the prior distribution on region types as follows

P (ui = k) =
1

(α − 1)
∑

j wj + L
×

{
L −

∑
j wj if k = 0

αwk o.w.
(2)

2.3 Parameter Estimation

The conditional probability P (ri|zi = j, ui = k) can be modeled in a number
of different ways. For example, bell-shaped distributions are commonly used to
model the enriched regions. However, for computational simplicity, we will use a
simple uniform distribution to model the enriched regions. If read ri comes from
one of the enriched regions, i.e., k = 0, we assume the read is equally likely to
originate from any of the potential positions within the enriched region, that is,

P (ri|zi = j, ui = k) =
1

wk − l + 1
IEk

(lij), (3)

where IA(x) is the indicator function, returning 1 if x ∈ A and 0 otherwise.
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If the read is from non-enriched regions, i.e., k = 0, we use pb
i to model

the background probability of an arbitrary read originating from location i of
the reference sequence. (We assume pb

i has been properly normalized such that∑L
i=1 pb

i = 1.) Then the conditional probability P (ri|zi = j, ui = k) for the case
of k = 0 is modeled by

P (ri|zi = j, ui = 0) = IE0(lij) pb
lij

. (4)

Numerous ChIP-Seq studies have demonstrated that the locations of ChIP-Seq
reads are typically non-uniform, significantly biased toward promoter or open
chromatin regions [1]. The pb

i ’s takes this ChIP and sequencing bias into account,
and can be inferred from control experiments typically employed in ChIP-Seq
studies.

Next we integrate out the ui variable to obtain the conditional probability of
observing ri given only zi

P (ri|zi = j) = P (ui = 0)IE0(lij) pb
lij

+
K∑

k=1

P (ui = k)
wk − l + 1

IEk
(lij). (5)

Note that because E0, E1, · · · , EK are disjoint, only one term in the above sum-
mation can be non-zero. This property significantly reduces the computation for
parameter estimation since we do not need to infer the values of ui variables any
more.

The log likelihood of observing R given the mixture model can now be written
as

�(r1, · · · , rn; Θ) =
N∑

i=1

log

⎡⎣ ni∑
j=0

P (ri|zi = j)P (zi = j)

⎤⎦ , (6)

where Θ = (s1, w1, · · · , sK , wK , α) denotes the parameters of the mixture model.
We estimate the values of these unknown parameters using maximum likelihood
estimation

Θ̂ = arg max
Θ

�(r1, · · · , rn; Θ). (7)

2.4 Expectation-Maximization Algorithm

We solve the maximum likelihood estimation problem in Eq. (7) through an
expectation-maximization (E-M) algorithm. The algorithm iteratively applies
the following two steps until convergence:

Expectation step: Estimate the posterior probability of alignments under the
current estimate of parameters Θ(t):

Q(t)(zi = j|R) =
1
C

P (ri|zi = j, Θ(t))P (zi = j), (8)

where C is a normalization constant.
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Maximization step: Find the parameters Θ(t+1) that maximize the following
quantity,

Θ(t+1) = argmax
Θ

N∑
i=1

ni∑
j=0

Q(t)(zi = j|R) log P (ri|zi = j, Θ). (9)

2.5 Implementation of E-M Updates

The mixture model described above contains 2K + 1 parameters. Since K, the
number of peak regions, is typically large, ranging from hundreds to hundreds
of thousands, exactly solving Eq. (9) in the maximization step is nontrivial.
Instead of seeking an exact solution, we identify the K regions from the data by
considering all regions where the number of possible alignments is significantly
enriched above the background.

For a given window of size w starting at s of the reference genome, we first
calculate the number of reads located within the window, weighted by the current
estimation of posterior alignment probabilities,

f(s, w) =
N∑

i=1

ni∑
j=1

Q(t)(zi = j|R) I[s,s+w−l](lij). (10)

We term this quantity the foreground read density. As a comparison, we also
calculate a background read density b(s, w), which is estimated using either
reads from the control experiment or reads from a much larger extended region
covering the window. Different ways of calculating background read density are
discussed in [13].

Provided with both background and foreground read densities, we then define
an enrichment score φ(s, w) to measure the significance of read enrichment within
the window starting at position s with width w. For this purpose, we assume the
number of reads are distributed according to a Poisson model with mean rate
b(s, w). If f(s, w) is an integer, the enrichment score is defined to be φ(s, w) =
− log10(1 − g(f, b)), where

g(x, λ) = e−λ
x∑

k=0

λk

k!
(11)

denotes the chance of observing at least x Poisson events given the mean rate of
λ. However, if f(s, w) is not an integer, the enrichment score cannot be defined
this way. Instead, we use a linear extrapolation to define the enrichment score
φ(s, w) = − log10(1 − g̃(f, b)), where function g̃ is defined as

g̃(x, λ) = g(�x�, λ) + [g(�x�, λ) − g(�x�, λ)] (x − �x�). (12)

If two potential alignments of a read have the same confidence score and are
located in two peak regions with equal enrichment, the update of posterior align-
ment probabilities in Eq. (8) will assign equal weight to these two alignments.
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This is so because we have assumed that peak regions have the same enrichment
ratio as described in Eq. (2), which is not true as some peak regions are more en-
riched than others in real ChIP experiments. To address this issue, we have also
implemented an update of the posterior probabilities that takes the calculated
enrichment scores into account as

Qt(zi = j|R) ←
K∑

k=1

[ φ(Es
k, Ew

k ) P (zi = j) IEk
(zi)] (13)

which is then normalized. In practice, we found this implementation usually
behaves better than the one without using enrichment scores.

We use entropy to quantify the uncertainty of alignments associated with each
read. For read i, the entropy at iteration t is defined to be

Ht
i = −

ni∑
j=1

Qt(zi = j|R) log Qt(zi = j|R). (14)

We stop the E-M iteration when the relative square difference between two con-
secutive entropies is small, that is, when∑N

i=0(H
t
i −Ht−1

i )2∑N
i=0(H

t−1
i )2

< ε, (15)

where ε = 10−5 for results reported in this paper.
AREM seeks to identify the true genomic source of multiply-aligning reads

(also called multireads). Many of the multireads will map to repeat regions of
the genome, and we expect repeats to be included in the K potentially enriched
regions. To prevent repeat regions from garnering multiread mass without suf-
ficient evidence of their enrichment, we impose a minimum enrichment score.
Effectively, unique or less ambiguous multireads need to raise enrichment above
noise levels for repeat regions to be called as peaks. The minimum enrichment
score is a parameter of our model and its effect on called peaks is explored in
Results.

3 Results

Building on the methodology of the popular peak-caller Model-based Analysis
of ChIP-Seq (MACS) [13], we implement AREM, a novel peak caller designed
to handle multiple possible alignments for each sequence read. AREM’s peak
caller combines an initial sliding window approach with a greedy refinement step
and iteratively aligns ambiguous reads. We use two ChIP-Seq datasets in this
study: Rad21 and Srebp-1. Rad21, a subunit of the structural protein cohesin,
contained 7.2 million treatment reads and 7.4 million control reads (manuscript
in preparation). Srebp-1, a regulator of cholesterol metabolism, had 7.7 million
treatment reads and 6.4 million control reads [5].
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Fig. 1. A) AREM workflow diagram. B-E de novo discovery of motifs. From top to
bottom: B) CTCF in MACS peaks from uniquely mapping reads, C) CTCF in AREM’s
peaks with multireads, C) Srebp-1 in MACS peaks from uniquely mapping reads and
D) Srebp-1 in AREM’s peaks with multireads.

Using AREM, we identify 19,935 Rad21 peaks covering more than 10 million
base pairs at a low False Discovery Rate (FDR) of 3.7% and 1,474 Srebp-1 peaks
covering nearly 1 million bases at a moderate FDR of 8%. For comparison, we
also called peaks using MACS and SICER [15], another popular peak finding
program. To compare our results, we use FDR and motif presence as indicators
of bona fide binding sites.

3.1 AREM Identifies Additional Binding Sites

We seek to benchmark both AREM’s peak-calling and its multiread methodol-
ogy. To benchmark peak-calling, we limit all reads to their best alignment and
run AREM, MACS and SICER. In the Rad21 dataset, AREM identifies 456
more peaks than MACS and 1920 more peaks than SICER but retains a similar
motif presence (81.6% MACS, 82.5% SICER, 81.3% AREM) and has a lower
FDR (2.8% MACS, 12.7% SICER, 1.9% AREM) (see Table 1). For Srebp-1,
AREM identifies more than double the number of peaks compared to MACS
and 816 more than SICER, though the FDR is slightly higher (4.85% MACS,
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Fig. 2. Graphs displaying varying parameters and number of possible alignments per
read. A) Total number of peaks discovered. B) Percentage of peaks with repetitive
sequences. C) False Discovery Rate. D) Percentage of peaks with motif.

9% SICER, 8% AREM), and motif presence is slightly lower (46.6% MACS, 59%
SICER, 39% AREM). In both datasets, AREM appears to be more sensitive to
true binding sites, picking up more total sites with motif instances, although it
trades off some specificity in Srebp-1.

To see if AREM can identify true sites that are not significant without mul-
tireads, we performed peak-calling with multireads, removing peaks that over-
lapped with those identified using AREM without multireads. Up to 1,546 (8.1%)
and 272 (18.9%) previously unidentified peaks were called from Rad21 and
Srebp-1, respectively. These new peaks have a similar motif presence compared
to previous peaks but overlap with annotated repeat regions more often.

3.2 AREM’s Sensitivity Is Increased with Ambiguous Reads

Several methods for dealing with ambiguous reads have been proposed, includ-
ing retaining all possible mappings, retaining one of the mappings chosen at
random, and distributing weight equally among the mappings. The first option
will clearly lead to false positives, particularly in repeat regions as the number of
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Table 1. Comparison of peak-calling methods for cohesin and Srebp-1. Three
peak callers (MACS, SICER, and AREM) were run on both datasets. For AREM,
the maximum number of retained alignments per read is varied (from 1 to 80). The
total number of peaks and bases covered by peaks is reported as well as the FDR
by swapping treatment and control. For both datasets, AREM’s minimum enrichment
score was fixed at 1.5 with 20 maximum alignments per read. For comparison, the
motif background rate of occurence was 4.5% (CTCF) and 27% (Srebp-1) in 100,000
genomic samples, sized similarly to Rad21 MACS peaks and Srebp-1 MACS peaks,
respectively.

Method # Alignments # Peaks Peak Bases FDR New Peaks Motif Repeat

Cohesin

MACS 2,368,229 18,556 9,546,641 2.8% — 81.67% 56.55%
SICER 2,368,229 17,092 17,374,108 12.71% — 82.55% 70.42%
AREM 1 2,368,229 19,012 9,353,567 1.9% — 81.32% 55.30%
AREM 10 7,616,647 19,881 10,225,479 3.8% 1,404 81.04% 58.88%
AREM 20 12,312,878 19,935 10,531,465 3.7% 1,517 80.88% 59.66%
AREM 40 20,527,010 19,863 10,744,836 3.2% 1,546 80.93% 60.34%
AREM 80 34,537,311 19,820 10,972,796 2.9% 1,538 80.73% 60.91%

Srebp-1

MACS 10,482,005 721 495,968 4.85% — 46.60% 53.95%
SICER 10,482,005 622 963,778 9.0% — 59.00% 77.33%
AREM 1 10,482,005 1,438 880,284 8.0% — 39.08% 53.47%
AREM 10 28,347,869 1,815 996,346 10.5% 262 39.22% 56.04%
AREM 20 44,493,532 1,748 959,646 8.0% 227 39.95% 55.97%
AREM 40 72,453,642 1,685 983,459 8.2% 248 40.34% 56.46%
AREM 80 118,744,757 1,695 987,746 7.3% 272 40.66% 56.73%

retained mappings increases. We compare the latter two methods to our E-M im-
plementation, varying the number of retained reads and summarizing the results
in Table 1. Although both random selection and fractionating reads increases the
number of peaks called, our E-M method outperforms them, yielding 1546 more
peaks for Rad21, and 272 for Srebp-1 with comparable quality. As the num-
ber of retained alignments increases, the disparity gets smaller. AREM shows
fairly consistent results across datasets with a large increase in total number of
alignments (nearly 40-fold for Rad21, over 10-fold for Srebp-1).

For a given sample, the iterations show a continued shift of the max alignment
probabilities to either 1 or 0. This shift is consistent across datasets with larger
numbers of max alignments (data not shown), but does depend on other param-
eters. What is apparent is that AREM’s E-M heuristic performs well, allowing
for significant shift toward a “definitive” alignment; at the same time, it does
not force a shift on reads with too little information, preventing misalignment
and resulting spurious peak-calling.
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3.3 AREM Is Sensitive to Repeat Regions

An important parameter in our model is the minimum enrichment score for all
K regions. Since repeat regions have such similar sequence content, many reads
will share the same repetitive elements. If one of the shared repeat elements has a
slightly higher enrichment score by chance, the E-M method will iteratively shift
probability into that repeat region, snowballing the region into what appears to
be a full-fledged sequence peak. To distinguish repetitive peaks arising by small
enrichment fluctuations from true binding sites within or adjacent to repetitive
elements, we impose a minimum enrichment score on all regions. Using lower
threshold scores, our method may include false positives from these random
fluctuations. However, true binding peaks near repetitive elements may be missed
if the score is too high.

To explore the effect of varying the minimum enrichment score, we varied the
minimum score from 0.1 to 2, keeping the maximum number of alignments fixed
at 20. For Rad21, we see a declining number of discovered peaks ranging from
28,305 to 19,634 peaks. In addition to a decline in discovered peaks as minimum
enrichment score increases, we also see a decrease in the reported FDR and the
percent of peaks in repeat regions from 11.28% to 2.95% FDR and 71.56% to
59.02%. Lastly, the percent of peaks with motif increases from 63.64% to 81.12%.
These additional peaks appear to be of lower quality: motifs are largely absent
from them and the FDR is much higher (see Figure 2).

For our method, detecting peaks near repeat regions is a tradeoff between sen-
sitivity and specificity. As the minimum score increases, the method approaches
the uniform or “fraction” distribution, in which only the initial mapping qual-
ity scores (and not the enrichment) affect alignment probabilities. The frac-
tion method is explored explicitly, showing increased power compared to unique
reads only, but decreased sensitivity to true binding sites compared to other
AREM runs.

4 Discussion

Repetitive elements in the genome have traditionally been problematic in se-
quence analysis. Since sequenced reads are short and repetitive sequences are
similar, many equally likely mappings may exist for a given read. Our method
uses the low-coverage unique reads near repeat regions to evaluate which po-
tential alignments for each read are the most likely. Our method’s sensitivity to
repeat regions is adjustable, but increasing sensitivity may introduce false posi-
tives. Further refinement of our methodology may lead to increased specificity.

Our results imply that functional CTCF binding sites exist within repeat
regions, revealing an interesting relationship between repetitive sequence and
chromatin structure. Another application of our method would be to explore
the relationship between repetitive sequence and epigenetic modifications such
as histone modifications. Regulation of and by transposable elements has been
linked to methylation marks [31], and transposable elements have a major role
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in cancers [32]. Better identification of histone modifications in regions of repet-
itive DNA increases our understanding of key regulators of genome stability and
diseases sparked by translocations and mutations.
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14. Spyrou, C., Stark, R., Lynch, A., Tavaré, S.: BayesPeak: Bayesian analysis of ChIP-
seq data. BMC Bioinformatics 10, 299 (2009)

15. Zang, C., Schones, D., Zeng, C., Cui, K., Zhao, K., Peng, W.: A clustering approach
for identification of enriched domains from histone modification ChIP-Seq data.
Bioinformatics 25, 1952 (2009)

16. Blahnik, K., Dou, L., O’Geen, H., McPhillips, T., Xu, X., Cao, A., Iyengar, S.,
Nicolet, C., Ludascher, B., Korf, I., et al.: Sole-Search: an integrated analysis pro-
gram for peak detection and functional annotation using ChIP-seq data. Nucleic
Acids Research 38, e13 (2010)

17. Qin, Z., Yu, J., Shen, J., Maher, C., Hu, M., Kalyana-Sundaram, S., Yu, J., Chin-
naiyan, A.: HPeak: an HMM-based algorithm for defining read-enriched regions in
ChIP-Seq data. BMC Bioinformatics 11, 369 (2010)

18. Salmon-Divon, M., Dvinge, H., Tammoja, K., Bertone, P.: PeakAnalyzer: Genome-
wide annotation of chromatin binding and modification loci. BMC Bioinformat-
ics 11, 415 (2010)

19. Kharchenko, P., Tolstorukov, M., Park, P.: Design and analysis of ChIP-seq exper-
iments for DNA-binding proteins. Nature Biotechnology 26, 1351–1359 (2008)

20. Pepke, S., Wold, B., Mortazavi, A.: Computation for ChIP-seq and RNA-seq stud-
ies. Nature Methods 6, S22–S32 (2009)

21. Wilbanks, E., Facciotti, M.: Evaluation of Algorithm Performance in ChIP-Seq
Peak Detection. PloS One 5, e11471 (2010)

22. Kagey, M., Newman, J., Bilodeau, S., Zhan, Y., Orlando, D., van Berkum, N.,
Ebmeier, C., Goossens, J., Rahl, P., Levine, S., et al.: Mediator and cohesin connect
gene expression and chromatin architecture. Nature (2010)

23. Schmid, C., Bucher, P.: MER41 Repeat Sequences Contain Inducible STAT1 Bind-
ing Sites. PloS One 5, e11425 (2010)

24. Zeng, W., De Greef, J., Chen, Y., Chien, R., Kong, X., Gregson, H., Winokur, S.,
Pyle, A., Robertson, K., Schmiesing, J., et al.: Specific loss of histone H3 lysine
9 trimethylation and HP1γ/cohesin binding at D4Z4 repeats is associated with
facioscapulohumeral dystrophy (FSHD) (2009)

25. Rubio, E., Reiss, D., Welcsh, P., Disteche, C., Filippova, G., Baliga, N., Aeber-
sold, R., Ranish, J., Krumm, A.: CTCF physically links cohesin to chromatin.
Proceedings of the National Academy of Sciences 105, 8309 (2008)

26. Liu, J., Zhang, Z., Bando, M., Itoh, T., Deardorff, M., Clark, D., Kaur, M., Tandy,
S., Kondoh, T., Rappaport, E., et al.: Transcriptional dysregulation in NIPBL and
cohesin mutant human cells. PLoS Biol. 7, e1000119 (2009)

27. Wendt, K., Yoshida, K., Itoh, T., Bando, M., Koch, B., Schirghuber, E., Tsutsumi,
S., Nagae, G., Ishihara, K., Mishiro, T., et al.: Cohesin mediates transcriptional
insulation by CCCTC-binding factor. Nature 451, 796–801 (2008)

28. Nativio, R., Wendt, K., Ito, Y., Huddleston, J., Uribe-Lewis, S., Woodfine, K.,
Krueger, C., Reik, W., Peters, J., Murrell, A.: Cohesin is required for higher-order
chromatin conformation at the imprinted IGF2-H19 locus (2009)

29. Hagen, R., Rodriguez-Cuenca, S., Vidal-Puig, A.: An allostatic control of mem-
brane lipid composition by SREBP1. FEBS Letters (2010)

30. Yokoyama, C., Wang, X., Briggs, M., Admon, A., Wu, J., Hua, X., Goldstein, J.,
Brown, M.: SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls
transcription of the low density lipoprotein receptor gene. Cell 75, 187–197 (1993)



296 D. Newkirk et al.

31. Huda, A., Jordan, I.: Epigenetic regulation of Mammalian genomes by transposable
elements. Annals of the New York Academy of Sciences 1178, 276–284 (2009)

32. Chuzhanova, N., Abeysinghe, S., Krawczak, M., Cooper, D.: Translocation and
gross deletion breakpoints in human inherited disease and cancer II: Potential
involvement of repetitive sequence elements in secondary structure formation be-
tween DNA ends. Human Mutation 22, 245–251 (2003)

33. Rhead, B., Karolchik, D., Kuhn, R., Hinrichs, A., Zweig, A., Fujita, P., Diekhans,
M., Smith, K., Rosenbloom, K., Raney, B., et al.: The UCSC genome browser
database: update 2010. Nucleic Acids Research (2009)

34. Boeva, V., Surdez, D., Guillon, N., Tirode, F., Fejes, A., Delattre, O., Barillot,
E.: De novo motif identification improves the accuracy of predicting transcription
factor binding sites in ChIP-Seq data analysis. Nucleic Acids Research (2010)

35. Bailey, T., Elkan, C.: The value of prior knowledge in discovering motifs with
MEME. In: Proc Int. Conf. Intell. Syst. Mol. Biol., vol. 3, pp. 21–29 (1995)

Appendix

Alignment

We aligned the data using Bowtie [7] with the Burrows-Wheeler index provided
by the Bowtie website. The index is based on the unmasked MM9 reference
genome from the UCSC Genome Browser [33]. We clipped the first base of all raw
reads to remove sequencing artifacts and allowed a maximum of two mismatches
in the first 28 bases of the remaining sequence. We generated several alignment
collections for both Srebp-1 and Rad21 by varying k, the maximum number of
reported alignments. We restricted our study to search the 1, 10, 20, 40, and
80 best alignments. Table 1 shows that the total number of alignments was
only starting to plateau at k=80, indicating that many sequences have more
than 80 possible alignments, for practicality we restricted our search as above.
We calculated map confidence scores from Bowtie output as in [8]. We also
provide an option for using the aligner’s confidence scores directly rather than
recalculating them from mismatches and sequence qualities. During preparation
of the sequencing library, unequal amplification can result in biased counts for
reads. To eliminate this bias, we limit the number of alignments to one for each
start position on each strand. In particular, we choose the best alignment (based
on quality score) for each position; in the event that all alignments have the same
quality score, we choose a random read to represent that particular position.

Peak Finding

Our peak finding method is an adapted version of the MACS [13] peak finder.
Like MACS, we empirically model the spatial separation between +/- strand
tags and shift both treatment and control tags. We also continue MACS’ con-
servative approach to background modeling, using the highest of three rates as
the background (in this study, genome-wide or within 1,000 or 10,000 bases). As
a divergence from MACS, we use a sliding window approach to identify large
potentially enriched regions then use a smoothened greedy approach to refine
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called peaks. We call peaks within this large region by greedily adding reads
to improve enrichment, but avoid local optima by always looking up to the full
sliding window width away. The initial large regions correspond to the K regions
used for the E-M steps of Section 2.5. During the E-M steps, local background
rates are used as during final peak-calling. Peaks reported in this study are above
a p-value of 10−5. All enrichment scores and p-values are calculated using the
poisson linear interpolation described in equation 12. Once E-M is complete on
the treatment data and peaks are called, we reset the treatment alignment prob-
abilities, swap treatment and control and rerun the algorithm, including E-M
steps, to determine the False Discovery Rate (FDR). For all algorithms tested in
this study, we define the FDR as the ratio of peaks called using control data to
peaks called using treatment data. This method of FDR calculation is common
in ChIP-Seq studies (e.g., [13,15]).

Motif Finding

Motif presence helps determine peak quality, as shown in [34]. To determine if
our new peaks were of the same quality as the other peaks, we performed de
novo motif discovery using MEME [35] version 4.4. Input sequence was limited
to 150 bp (Rad21) and 200 bp (Srebp-1) around the summit of the peaks called
by MACS from uniquely mapping reads. All sequences were used for Srebp-1,
while 1,000 sequences were randomly sampled a total of 5 times for Rad21. The
motif signal was strong in both datasets and we extracted the discovered motif
position weight matrix (PWM) for further use. We also performed the motif
search using Srebp-1 and CTCF motifs catalogued in Transfac 11.3, and found
similar results. For the CTCF motif, we did genomic sampling (100,000 samples)
to identify a threshold score corresponding to a z-score of 4.29. For Srebp-1, we
used the threshold score reported by MEME (see Figure 1).
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Abstract. Matching a mass spectrum against a text (a key computa-
tional task in proteomics) is slow since the existing text indexing algo-
rithms (with search time independent of the text size) are not applica-
ble in the domain of mass spectrometry. As a result, many important
applications (e.g., searches for mutated peptides) are prohibitively time-
consuming and even the standard search for non-mutated peptides is be-
coming too slow with recent advances in high-throughput genomics and
proteomics technologies. We introduce a new paradigm – the Blocked
Pattern Matching (BPM) Problem - that models peptide identification.
BPM corresponds to matching a pattern against a text (over the alpha-
bet of integers) under the assumption that each symbol a in the pattern
can match a block of consecutive symbols in the text with total sum a.

BPM opens a new, still unexplored, direction in combinatorial pat-
tern matching and leads to the Mutated BPM (modeling identification
of mutated peptides) and Fused BPM (modeling identification of fused
peptides in tumor genomes). We illustrate how BPM algorithms solve
problems that are beyond the reach of existing proteomics tools.

1 Introduction

Matching a tandem mass spectrum (MS/MS) to a database is very slow as com-
pared to matching a pattern to a database. The fundamental algorithmic ad-
vantage of the latter approach is that one can index the database (e.g., by con-
structing its suffix tree [24]) so that the complexity of the subsequent queries is
not dependent on the database size. Since efficient indexing algorithms remain
unknown in proteomics1, many important applications, for example, database
1 By efficient indexing we mean indexing that typically reduces spectral matching to a

single look-up in the indexed database rather than a large number of look-ups (propor-
tional to the database size). While there is no shortage of useful indexing approaches
in proteomics (e.g., fast parent mass indexing like in [36] or peptide sequence tags like
in [38]), such approaches may result in a large number of look-ups.
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searches for mutated peptides, remain extremely time-consuming. Moreover,
even the standard applications, such as searching for non-modified peptides, are
becoming prohibitively slow with recent advances in genomics and proteomics.
On one hand, the total size of known sequenced bacterial proteomes (most of
them sequenced using next generation DNA sequencing technologies) already
amounts to billions of amino acids. On the other hand, Ion Mobility Separation
(next generation proteomics technology) promises to increase the rate of spectra
acquisition by two orders of magnitude.

Tandem mass spectrometry analyzes peptides (short 8-30 amino acid long
fragments of proteins) by generating their spectra2. The still unsolved problem
in computational proteomics is to reconstruct a peptide from its spectrum: even
the advanced de novo peptide sequencing tools correctly reconstruct only 30
- 45% of the full-length peptides identified in MS/MS database searches [20].
After two decades of algorithmic developments, it seems that de novo peptide
sequencing “hits a wall” and that accurate full-length peptide reconstruction is
nearly impossible due to the limited information content of MS/MS spectra.

Recently, with the introduction of MS-GappedDictionary, Jeong et al.,
2010 [26] advocated the use of gapped peptides to overcome the limitations of full-
length de novo sequencing algorithms. Given a string of n integers a1, a2, . . . , an

(a peptide) and k integers 1 ≤ i1 < ... < ik < n, a gapped peptide is a string
of (k + 1) integers a1 + . . . + ai1 , ai1+1 + . . . + ai2 , . . . , aik+1 + . . . + an. For
example, if a peptide LNRVSQGK is represented as a sequence of its rounded
amino acid masses 113, 114, 156, 99, 87, 128, 57, 128 then 113+114,
156+99+87,128+57, 128 represents a gapped peptide 227, 342, 185, 128.
MS-GappedDictionary is a database filtration approach based on gapped pep-
tides that are both long and accurate. Gapped peptides have higher accuracy
and orders of magnitude higher filtering efficiency than traditional peptide se-
quence tags3. In contrast to a short peptide sequence tag, a gapped peptide
typically has a single match in a proteome, reducing peptide identification to a
single database look-up. MS-GappedDictionary generates 25-50 gapped peptides
per spectrum (Pocket Dictionary) and guarantees that one of them is correct
with high probability.

MS-GappedDictionary has a potential to be much faster than traditional pro-
teomics tools because it matches patterns rather than spectra against a protein
database, but algorithms to efficiently match such patterns to a database remain
unknown. Therefore, this paper addresses the last missing piece in the series of
recent developments aimed at the next generation of peptide identification algo-
rithms [30,29,28,26], an efficient algorithm for matching gapped peptides against
a proteome.

2 Spectra are complex objects that, for the sake of brevity, are not formally described
in this paper.

3 A peptide sequence tag is a substring ai, . . . , aj of a peptide. While peptide sequence
tags are used in many proteomics tools [38,37], the algorithms for generating long
sequence tags remain inaccurate. As a result, in practice, applications of peptide
sequence tags are limited to 3 amino acid long tags.
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We describe two closely related MS/MS database search problems using
gapped peptides. First, we describe algorithms to efficiently match a single
gapped peptide to a database, and second, we present algorithms to solve the
more general problem of matching multiple gapped peptides to a proteome. We
present an indexing algorithm that is very relevant to approximate matching
research because the indexing problem for gapped peptides falls under the cate-
gory of a new recently proposed pattern matching paradigm – pattern matching
with address errors [2,4,3,5,7,6,27]. In this model, the pattern content remains
intact, but the relative positions (addresses) may change. Our work introduces a
new direction in rearrangement matching by considering problems where “mass”
(rather than the order of symbols) of the substring is important. Additionally,
we present a novel pattern matching algorithm for the multiple gapped peptide
matching problem that leads to a new peptide identification tool with search
time that is nearly independent of the database size in practice. The resulting
peptide identification software tool is so fast that its running time is dominated
by spectral preprocessing rather than scanning the database4. In practice, it
results in a peptide identification tool that is orders of magnitude faster than
the state-of-the-art proteomics tools (four orders of magnitude speed-up over Se-
quest [19] and two orders of magnitude speed-up over InsPecT [38] in scanning
the protein database).

In addition to exact matching, we describe approximate matching of gapped
peptides that enables identification of mutated and fused peptides (character-
istic for fusion proteins in cancer [18]). Such mutation tolerant framework can
be adapted to detect annotation errors, programmed frame shifts, fusion pro-
teins, and other features that remain beyond the reach of existing proteomics
algorithms.

Due to the page limit, we describe only one of possible applications of the
Blocked Pattern Matching paradigm to peptide identification. While traditional
MS/MS searches assume that a proteome is known, proteogenomics searches use
spectra to correct the proteome annotations [25,22,32,12]. The previous pro-
teogenomics approaches searched spectra against the 6-frame translation of the
genome in the standard genetic code. However, many species use non-standard
genetic code [31,1] that is difficult to establish for a newly sequenced species. In
particular, in addition to the standard ATG Start Codon, GTG and TTG also
code for initial Methionine (rather than for Valine and Leucine as in the stan-
dard genetic code) in many bacterial genomes. The frequency of non-standard
Start Codons varies widely: in E.Coli, GTG and TTG account for 14% and 3%
of Start Codons (not to mention extremely rare ATG and CTG Start Codons),
while in Aeropyrum pernix GTG and TTG are more common than ATG [35].
After a new bacterium is sequenced, the propensities of its Starts Codons are
unknown making accurate gene predictions problematic [10]. Non-standard Start
Codons GTG and TTG (or whatever other) can be discovered by finding mutated

4 The running time of the existing proteomics algorithms [19,38] can be partitioned
into spectral preprocessing time (approximated as α ·#Spectra) and database scan-
ning time (approximated as β · #Spectra · ProteomeSize).
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peptides (GTG and TTG correspond to Valine and Leucine mutated to Methio-
nine in the first peptide position). We illustrate applications of this approach to
gene annotations in Anthrobacter sp.

2 The Blocked Pattern Matching Problem

Let T = T [1], T [2], ..., T [n] be a text over a finite alphabet Σ ⊂ N and P =
P [1], P [2], ..., P [m] be a pattern over an alphabet N of all natural numbers. Let
S = T [i], T [i+ 1], ..., T [j] be a substring of T . Then S (the mass of substring S)
=

∑j
�=i T [�].

Substrings T [i], ..., T [j] and T [j + 1], ..., T [k] are called consecutive. A block in
T is a sequence of consecutive substrings. The mass of a block B (denoted B) is
a string comprised of the masses of the consecutive substrings of B. Formally, if
B = S1 · · ·Sk then B = S1, ..., Sk. We say that a pattern P matches a text T if
there is a block B in T with B = P .

Example. Let T = 114, 77, 57, 112, 113, 186, 57, 99, 112, 112, 186, 113, 99 be a
text over an alphabet of 18 symbols that represents masses of 20 amino acids
rounded to integers. The consecutive substrings (57, 112, 113), (186, 57), and
(99, 112, 112) define a block B in T with B = 282, 243, 323. Thus, a pattern 282,
243, 323 matches the text T .

Definition 1. The Blocked Pattern Matching (BPM) Problem is defined as
follows:

Input: A length-n text T over Σ and a length-m pattern P over N.
Output: All blocks B in the text T such that B = P .

Since BPM is a new algorithmic problem, we start from its theoretical analysis
and describe an O(nm) and O(n log n) BPM algorithms (Section 3). We further
consider the indexing version of BPM, where the text preprocessed enable fast
subsequent queries (Section 3.2). The indexing scheme handles a single-element
pattern, but is a base for an efficient practical filter. We present an algorithm
with a linear-time preprocessing and a query time, of O(m · (

√
n · tocc + tocc))

(tocc is the number of substrings matching the mass of the query in the text).
The BPM problem is related to the pattern matching problem for spatial point
sets in 1-dimension described in [11], but we are interested in an exact solution
to the problem. The solution in [11] presents an algorithm that returns false
positives. Additionally, a simpler version of the BPM problem is described in [21]
for patterns of length 1. We generalize the problem for patterns of any length.

Modern mass spectrometers are capable of producing a million spectra per
day and each spectrum corresponds to 25-50 gapped peptides in its Pocket Dic-
tionary. While we describe efficient theoretical BPM algorithms, even these fast
algorithms become too slow in practice when applied to billions of gapped pep-
tides. In Section 4 we describe a modification of the classical keyword tree con-
cept that leads to a practical (albeit memory demanding) BPM algorithm. In
Section 4.2 we describe how constructing the keyword tree of patterns (rather
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than indexing the text) leads to a practical algorithm for solving the following
problem:

Definition 2. The Multiple Blocked Pattern Matching (MBPM) Problem is
defined as follows:

Input: A text T over Σ and a set P of patterns over N.
Output: All blocks B in the text T such that B = P , for some P ∈ P.

3 BPM Algorithms

3.1 BPM Algorithms without Text Indexing

Finding all occurrences of a pattern of length 1 can be done in time O(n) with a
simple L1BPM algorithm (Fig. 1). Given a pattern P [1], ..., P [m], separately find
all occurrences of P [1], P [1] + P [2], P [1] + P [2] + P [3], ...,

∑m
i=1 P [i]. Every text

location where all occurrences start is an occurrence of a pattern P . This results
in a simple O(nm) solution to the BPM problem that serves as a key to our
indexing idea in Section 3.2. Below, we describe a faster BPM algorithm below.

Algorithm Length-1 Blocked Pattern Matching (L1BPM)

Input: A text T of length n, a pattern P = P [1].

1 construct a new text S = S[1], ..., S[n] where S[i] =
∑i

�=1 T [�]
2 initialize two pointers � and r to location 1 on S
3 while r ≤ n do:
4 if S[r] − S[�] = P [1] then:
5 there is a match at location �
6 increment � by 1
7 if S[r] − S[�] < P [1] then increment r by 1
8 if S[r] − S[�] > P [1] then increment � by 1
9 endwhile

Fig. 1. The linear time BPM algorithm with a length-1 pattern

Given a natural number i, we define i∗ as a boolean string of length i starting
with 1 in the first position and ending with i−1 zeros (e.g., 5∗ = 10000). Given a
string T = T [1], T [2], ..., T [n], we define a boolean string BT as the concatenation
of strings T [1]∗, T [2]∗, ... and T [n]∗.

We say that a binary array B = B[1], ..., B[M ] point matches a binary array
A = A[1], ..., A[N ] at location i, if A[i + �− 1] = 1 for all � such that B[�] = 1.

Example: Let A = 001001000010101000100 and B = 10001. B point matches
in locations 11 and 15 of A because those are the only two locations where every
1 in B is aligned with a 1 in A.
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Clearly, a pattern P matches a text T at location i iff there is a point matching
of BP in BT at location (

∑i−1
�=1 T [�])+ 1. The following lemma shows that point

matching can be computed by a convolution defined as (T ⊗P )[j] =
∑m

i=1 T [j +
i− 1] · P [i], j = 1, ..., n−m + 1.

Lemma 1. Let T and P be binary arrays of length N and M , respectively. The
point matching of P in T can be computed in time O(N log M).

Proof. Let −T be a binary array −T [1], . . . ,−T [N ], where −x stands for 1− x.
The point matching locations between P and T are the locations j where T [j +
i − 1] ≥ P [i], i = 1, ..., m. For every text location j, (P ⊗ −T )[j] = 0 iff for
every 1 in the pattern, there is also a 1 in the text matched to it, i.e. there is a
point matching of P at location j of T . The convolution T ⊗P can be computed
by Fast Fourier Transform [15] in time O(n log m). �	

Below we consider patterns consisting of integers bounded by d (d-bounded pat-
terns). The lemma above implies that we can solve the BPM problem for d-
bounded patterns in time O(n log n) where n is the length of the text5.

3.2 BPM Indexing for Length-1 Patterns

We would like to solve the BPM indexing problem with a fast preprocessing and
with query time that does not depend on the text length. We start with the
simpler problem of text indexing for length-1 d-bounded patterns. Extension to
arbitrary mass values is described in the Appendix.

Split the text T into consecutive substrings T 1
1 , ..., T 1

� n
2·d � of size 2 · d elements

each except, possibly, the last one. Let S1
i = S1

i [1], ..., S1
i [2 · d] such that S1

i [j] =∑j
�=1 T 1

i [�]. Similarly, split T , starting from index d, into consecutive substrings
T 2

1 , ..., T 2
� n

2d− 1
2 �

of size 2 · d elements each except, possibly, the last one, and

construct S2
i = S2

i [1], ..., S2
i [2 · d] such that S2

i [j] =
∑j

�=1 T 2
i [�].

Example: Let Σ = {1, 2, 3}, d = 3, and T = 1, 1, 2, 1, 3, 3, 2, 1, 3, 2, 3, 1, 1. Then
T 1

1 = 1, 1, 2, 1, 3, 3, T 1
2 = 2, 1, 3, 2, 3, 1, T 1

3 = 1 and S1
1 = 1, 2, 4, 5, 8, 11, S1

2 =
2, 3, 6, 8, 11, 12, S1

3 = 1
T 2

1 = 1, 3, 3, 2, 1, 3, T 2
2 = 2, 3, 1, 1 and S2

1 = 1, 4, 7, 9, 10, 13, S2
2 = 2, 5, 6, 7

For λ = 1, 2, construct data structures Iλ that will enable us to quickly find,
for a given mass �, all T λ

i whose prefixes have mass �. For example, in the exam-
ple above, since 8 appears in 5th position in S1

1 and 4th position in S1
2 , I1 will

have a record [8, < 1, 5 >, < 2, 4 >]. Applying it to all masses, we arrive to the
data structures:

I1 = [1, < 1, 1 >, < 3, 1 >], [2, < 1, 2 >, < 2, 1 >], [3, < 2, 2 >], [4, < 1, 3 >],
[5, < 1, 4 >], [6, < 2, 3 >], [8, < 1, 5 >, < 2, 4 >], [11, < 1, 6 >], [12, < 2, 6 >]

5 In the Appendix we describe an efficient algorithm for the infinite alphabet.
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I2 = [1, < 1, 1 >], [2, < 2, 1 >], [4, < 1, 2 >], [5, < 2, 2 >], [6, < 2, 3 >],
[7, < 1, 3 >, < 2, 4 >], [9, < 1, 4 >], [10, < 1, 5 >], [13, < 1, 6 >]

Our indexing algorithm below makes use of the Set Intersection Problem.

Definition 3. Let U be a finite set, and let S1, ..., Sk be subsets of U . The Set
Intersection Problem is that of constructing Si ∩ Sj, for a given pair, i, j.

While computing the set intersection is difficult [17,16,9], Cohen and Porat [13]
provide an algorithm that preprocesses the data in time O(N), where N =∑k

i=1 |Si|, and, subsequently provides the intersection of sets Si and Sj in time
O(

√
N · int + int), where int = |Si ∩ Sj |.

Theorem 1. Let T be a text of length n over a finite alphabet Σ ⊂ N. Then it
is possible to preprocess T in time O(n) such that subsequent BPM queries for
d-bounded patterns P = P [1], can be answered in time O(d·fint(n)+tocc), where
tocc is the number of blocks in T with mass P and fint(·) is the complexity of a
Set Intersection algorithm.

Proof. We construct data structures I1 and I2 as described above. It is easy to
see that (i) the size of I1 (I2) is O(n), (ii) the number of entries in I1 (I2) is
O(d), and (iii) I1(I2) can be constructed in time O(n). The advantage of the
I1, I2 data structures is that finding a block with mass ms ≤ d in the text T
(with n entries) is equivalent to finding it in the much smaller I1, I2 (with O(d)
entries).

The segmentation of T to the T 1 and T 2 substrings implies that for a block
of mass ms starting at location x = a · d + i of T , there exists a block of mass
ms starting at location i either in T 1

a
2 +1 (for even a) or T 2

a+1
2

(for odd a). This

observation enables us to run Algorithm L1BPM where, I1 and I2 play the role of
array S (see Fig 1) and identify occurrences of a block of mass ms ≤ d. However,
now the length of this array is O(d). The only problem is that I1 (or I2) are
actually aggregates of all segments S1

i (or S2
i ) and thus we may declare a block

when it really does not exist, since it “started” in one segment but “ended” in
another.

This problem may be solved by ensuring that we indeed have a block that
began and ended in the same segment. Line 4 in Algorithm L1BPM, needs to be
modified so that not only I[r] − I[�] = P [1] but also I[r] and I[�] have common
segments in their lists. More precisely, the intersection of the set of segments in
I[r] and the set of segments in I[�], with their appropriate indices, gives precisely
the set of locations with blocks of the required mass. �	

Translated to our problem and combined with the Cohen and Porat [13] algo-
rithm, we get6:

Theorem 2. Let T be a text of length n over a finite alphabet Σ ⊂ N. Then it
is possible to preprocess T in time O(n) such that subsequent BPM queries for
6 In Appendix, we present a scheme with the query time O(P [1]2) and the preprocess-

ing time O(n1.5).
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patterns P = P [1], can be answered in time O(P [1] · (
√

n · tocc + tocc)), where
tocc is the number of blocks in T with mass P .

4 MBPM Algorithms

4.1 Transforming the Text into a Set of Patterns

Unfortunately, generalizing the previous scheme beyond length-1 patterns re-
quires efficient set-intersection of more than two sets. However, from a practical
point of view, it is possible to use our previous construction to index locations
where all of P [1], P [1] + P [2], ...,

∑m
�=1 P [�] match. While this results in a use-

ful theoretical filter, below we describe text indexing for patterns of arbitrary
length that further reduces query time at the expense of significantly increasing
the memory requirements.

Since typical spectral searches identify peptides shorter than 30 amino acids,
one can limit attention to k-mers in the proteome with k ≤ 30. From the per-
spective of the BPM, we are only interested in patterns that match no more than
k symbols in the text. There exist 2k−1 ways to break a k-mer into its substrings
b1, . . . , bn resulting in 2k−1 possible partitions b1, . . . , bn of each k-mer. For ex-
ample, there exist 8 partitions arising from the 4-mer (114, 77, 99, 57): (114, 77,
99, 57), (114+77, 99, 57), (114, 77+99, 57), (114, 77, 99+57), (114+77,99+57)
(114+77+99, 57), (114, 77+99+57), and (114+77+99+57).

Given a set of strings T , we define KeywordTree(T ) as the keyword tree of
these strings [24]. One can generate all 2k−1 partitions for each k-mer in a text T ,
construct the keyword tree of these partitions, and match each pattern against
the constructed keyword tree. While this approach is fast, it suffers from exces-
sive memory requirements. Below we describe a more memory-efficient solution
of the BPM Problem for d-bounded patterns. In practice, gaps in the gapped
peptides typically do not exceed 500 Da, moreover MS-GappedDictionary can be
run in such a way that it discriminates against large gaps [26]. While the number
of d-bounded partitions that can be generated from a k-mer is large, below we
describe a BPM algorithm that does not require generation of all d-bounded
partitions.

Given a position i in a d-bounded pattern P = p1, . . . , pi−1, pi, pi+1, . . . , pn

and a parameter 1 ≤ δ ≤ n − i + 1, (i, δ)-extension of P is a pattern
p1, . . . , pi−1, pi+pi+1+. . .+pi+δ−1, pi+δ, . . . , pn. obtained from P by substituting
δ symbols in P (starting from the i-th symbol) by their sum. Given a d-bounded
pattern P , we define P (i, d) as the set of all (i, δ)-extensions of P that result in d-
bounded patterns. For example, for a pattern P = (114, 77, 99, 55, 112),P (2, 300)
consists of patterns (114, 77, 99, 55, 112), (114, 176, 55, 112) and (114, 231, 112).

A pattern P in the set of patterns T is called i-unique if no other pattern in T
has the same prefix of length i (i-prefix) as P . We now describe a more memory
efficient BPM (and MBPM) text indexing algorithm (Fig 2). Let T0 be the set
of all k-mers in text T , where each k-mer appears only once. We iteratively
construct the set Ti from the set Ti−1 by considering all non-i-unique patterns
in Ti−1 and substituting each such pattern P by the set of patterns P (i, d). Ti is
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the resulting set of patterns with duplicates removed (i.e., each pattern appears
only once). The MBPM algorithm iteratively generates the sets T1, . . . , Ti = T (T, d)
and stops when all patterns in the set Ti become i-unique. We further construct
KeywordTree(Ti) (denoted KeywordTree(T, d)) and classify each vertex in this
tree as unique or non-unique according to the following rule. Let q1, . . . , qi be a
pattern spelled by the path from the root to the vertex v in KeywordTree(T, d).
The vertex v is unique if the algorithm MBPM(T,P , d) classified q1, . . . , qi as a
prefix of an i-unique pattern at some iteration, and non-unique otherwise.

Algorithm Multiple Blocked Pattern Matching (MBPM)

Input: A text T of length n, a set of d-bounded patterns P , and a parameter
k (k-mer size).
1 construct T ← set of all k-mers in T
2 initialize i ← 1
3 while there exist non-i-unique patterns in T do:
4 remove duplicates from T
5 for each non-i-unique pattern P ∈ T do:
6 substitute P by P (i, d) in T
7 endfor
8 increment i by 1
9 endwhile
10 construct KeywordTree(T )
11 for each pattern P ∈ P do:
12 PartitionMatch(P, KeywordTree(T ))
13 endfor

Fig. 2. MBPM algorithm for matching a set of d-bounded patterns P against the text T .
The PartitionMatch function works as follows. Let p1, . . . , pi−1 be the longest prefix
of p1, . . . , pn that matches the tree and let v be the last vertex of the path labeled
by p1, . . . , pi−1 in the tree (i.e., no outgoing edge from v is labeled by pi). If v is a
non-unique vertex, we declare that the pattern p1, . . . , pn does not match the the text.
Otherwise, we attempt to match the suffix pi, . . . , pn against the path in the keyword
tree that start at vertex v. Such matching simply amounts to checking whether the
pattern pi, . . . , pn represents a partition of the string spelled by these path. If it is the
case, the pattern p1, . . . , pn matches the tree, otherwise there is no match.

To solve the MBPM Problem, we match each pattern p1, . . . , pn against
KeywordTree(T, d). In standard searches with the keyword trees, a pattern p1,
. . . , pn matches a tree if there exists a path in the keyword tree that spells
p1, . . . , pn, otherwise the pattern does not match the tree [24]. In contrast, for
our application (with special processing of i-unique patterns), failure to find a
path that spells p1, . . . , pn does not necessarily implies that the pattern p1, . . . , pn

does not match the tree (see PartitionMatch function described in Fig.2).
For a “random” proteome T with 100,000 amino acids it takes only 4 it-

erations to stabilize T (T, 500) at ≈ 5 million patterns. However, the memory
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requirements significantly increase for real proteomes that typically contain re-
peats (Figure 3 in the Appendix). The Appendix describes practical MBPM
solutions that further trade speed for memory.

4.2 Matching the Keyword Tree of Patterns against the Text

In the extreme case of trading memory for speed, one can construct the keyword
tree of all patterns from the set P (rather than of all k-mers from the text
T ) while solving the MBPM Problem (this amortizes the time for scanning the
text). One can further match all k-mers from the text against KeywordTree(P).
A pattern P (that does not belong to a set of patterns P) is called (i,P)-unique
with respect to the set P if its i-prefix matches at most one pattern in P .

Matching KeywordTree(P) against a text T amounts to constructing
KeywordTree(T, d,P) that we describe below. We use an analog of the MBPM
algorithm to transform a text into a set of patterns and observe that there is no
need to apply this transformation to a non-i-unique pattern that is (i,P)-unique.
Thus, the only difference in constructing KeywordTree(T, d,P) (as compared to
KeywordTree(T, d)) is that it substitutes the notion of i-unique patterns by the
notion of (i,P)-unique patterns in the for loop of the MBPM algorithm (Fig. 2).

The algorithm iteratively generates the sets T1, . . . , Ti = T (T, d,P) until
all patterns in the set Ti become (i,P)-unique, constructs the keyword tree
of T (T, d,P) (denoted KeywordTree(T, d,P)), and matches KeywordTree(P)
against KeywordTree(T, d,P) [24] using the matching algorithm that is simi-
lar to the PartitionMatch algorithm described in the previous section. While
KeywordTree(T, d,P) can be large in practice, one can partition the text T into
smaller segments so that their keyword trees fit into memory and solving the
MBPM Problem for each of the resulting trees. In the extreme case, one can
partition T into single k-mers resulting in a memory-efficient yet fast implemen-
tation (Fig. 4 in the Appendix).

4.3 Mutation-Tolerant Peptide Identification

Let Ti(a) be a text obtained from a text T = t1, . . . tn by substituting a symbol
a instead of the i-th symbol of T (for 1 ≤ i ≤ n and a ∈ A). For example,
if T = 57, 112, 113, 113, 186, T3(99) = 57, 112, 99, 113, 186. To accommodate for
insertions and deletions, we denote Ti(∅) as the deletion of the i-th symbol of
T and Ti(a+) as the insertion of a symbol a before the i-th symbol of T . For
example, T3(∅) = 57, 112, 113, 186 and T3(128+) = 57, 112, 128, 113, 113, 186.
A mutated block in the text T is a block in Ti(a) (for some i and a) that is
not a block in T . For example, substrings (112,128) and (113,113,186) form a
mutated block in the text T = 57, 112, 113, 113, 186 because they form a block
in T3(128+). Let Nd be a set of natural numbers smaller than d and Σ ⊂ Nd.

Definition 4. The Mutated Blocked Pattern Matching Problem is defined as
follows:
Input: A text T over the alphabet Σ and a pattern P over the alphabet Nd.
Output: All mutated blocks B in the text T matching the pattern P .
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While the Mutated Blocked Pattern Matching Problem is limited to peptide
identified with a single mutations, this is a reasonable limitation in proteomics.
Indeed, Single Amino Acid Polymorphisms (SAAPs) are rarely clustered in the
same region of proteins. Also, the false discovery rate in searches for peptides
with two or more mutations becomes very high due to the Bonferroni correction
to reflect the huge size of the (virtual) database of all mutated peptides [23].

Given a text T = t1, . . . tn, we define a text Ti,j = t1, . . . ti−1, ti, tj , tj+1, . . . , tn.
A fused block is a block in Ti,j (for 1 ≤ i, j ≤ n) that is not a block in T .
E.g., substrings (57,112) and (113,186) form a fused block in the text T =
57, 112, 113, 113, 186 because they form a block in T2,4.

Definition 5. The Fused Blocked Pattern Matching Problem is defined as
follows:
Input: A text T over the alphabet Σ and a pattern P over the alphabet Nd.
Output: All fused blocks B in the text T matching the pattern P .

Below we describe a simple approach to solving the Mutated and Fused Pat-
tern Matching Problems that is based on the observation that for every pat-
tern p1, . . . , pn matching a mutated/fused block in the text, either its prefix
p1, . . . , pn/2, or its suffix pn/2+1, . . . , pn of length n/2 matches a (non-mutated)
block in the text. Therefore, in the case of the Mutated BPM Problem with a pat-
tern p1, . . . , pn, one can first solve the BPM problems for the prefix p1, . . . , pn/2

and the suffix pn/2+1, . . . , pn and further check if some of the found matches
can be locally extended into a match of the full pattern p1, . . . , pn. The local
extension can identify both mutated and post-translationally modified peptides
as described in [38]. In the case of the Fused BPM Problem, the algorithm is
a bit more involved since the found matches of prefixes and suffixes should be
combined rather than locally extended as in [38]. In this case, we find all blocks
Bprefix(i) matching the prefix p1, . . . , pi−1 and all blocks Bsuffix(i) matching
the suffix pi+1, . . . , pn, correspondingly (for all 1 < i < n). Afterwards, we at-
tempt to fuse pairs of blocks from Bprefix(i) and Bsuffix(i) to match the full
length pattern p1, . . . , pn. In practice, the identification of fused peptides is typi-
cally limited to long peptides when both p1, . . . , pi−1 and pi+1, . . . , pn are rather
long [34] and thus the sets Bprefix(i) and Bsuffix(i) are expected to be small
making the algorithm practical.

4.4 Results

Benchmarking. We implemented various algorithms described in the main text
and the Appendix and tested them on various spectral dataset. Due to page limit,
below we only discuss the performance of the algorithm described in Section 4.2
(that we refer to as MS-BPM) on a single Shewanella oneidensis spectral dataset
extensively studied in [22]. While other algorithms we described outperform
MS-BPM on small proteomes and small spectral datasets, MS-BPM showed the best
performance in searches against giant databases like the 6-frame translation of
the human genome.
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To evaluate the speed of various peptide identification tools, we measure the
time to match a million spectra against a proteome consisting of a million amino
acids (measured in seconds per mil2) on a desktop machine (Intel Core i7-965,
3.20 Ghz with 24GB of RAM). For example, Sequest [19] (a popular peptide iden-
tification tool) takes ≈ 106 seconds per mil2, while InsPecT [38] (currently the
fastest peptide identification algorithm) takes ≈ 1.7×104 seconds per mil2,7. The
running time of these algorithms can be partitioned into spectral preprocessing
time (approximated as α ·#Spectra) and database scanning time (approximated
as β ·#Spectra ·ProteomeSize). Spectral preprocessing may include transform-
ing raw spectra into its log-likelihood representation, parent mass correction,
spectral calibration, etc. [29]. In MS-BPM, spectral preprocessing amounts to gen-
erating the Pocket Dictionary (using MS-GappedDictionary [26]) and takes≈ 0.2
seconds per spectrum. Since the spectral preprocessing time is usually negligible
as compared to scanning time (at least for large databases), it is usually ignored.
However, MS-BPM turned out to be so fast (scanning time is 100 seconds per mil2)
that spectral preprocessing time is actually larger than the scanning time8.

Identification of spectra of mutated peptides is a non-trivial algorithmic prob-
lem: such searches remain much slower than searches for non-mutated peptides9.
Below we show that MS-BPM speeds up searches for mutated peptides by two or-
ders of magnitude (as compared to MS-Alignment [39]) making them as fast as
InsPecT searches for non-mutated peptides.

We performed a controlled experiment where we selected 5000 identified spec-
tra from the Shewanella oneidensis spectral dataset corresponding to 5000 dis-
tinct non-overlapping peptides. For each identified peptide in the Shewanella
proteome, we selected one position at random and randomly mutated the amino
acid in this position into one of other 19 amino acids. MS-BPM (ran in the mode
that solves the Mutated BPM Problem) took 246 seconds to match all gapped
peptides generated for these spectra against the mutated proteome. This re-
sults in 3.8 × 104 seconds per mil2 speed that is similar to InsPecT’s speed
in (much simpler) searches for non-mutated peptides. We therefore argue that
MS-BPM has a potential to make searches for mutated and fused peptides as

7 These estimates are derived from a proteogenomics search of the 6-frame translation
of human genome (2.5 billion amino acids) as described in [29].

8 We used MS-GappedDictionary [26] to generate gapped peptide reconstructions for
300000 mass spectra from Shewanella oneidensis (analyzed in [22]). The Shewanella
oneidensis proteome is ≈ 1.3 million amino acids long. MS-GappedDictionary gen-
erated over 12× 106 500-bounded gapped peptides (≈ 40 gapped peptides per spec-
trum). Constructing the keyword tree of all (12 × 106) gapped peptides took only
150 seconds. Searching 12 million gapped peptides against the Shewanella proteome
took 40 seconds resulting in less than 100 seconds per mil2 speed.

9 MS-Alignment [39] tool for identification of mutated peptides, is two orders of mag-
nitude slower than InsPecT (for non-mutated peptides). Since it takes on the order
of 100 days (a single CPU time) to search 1 million spectra against the human pro-
teome with MS-Alignment, such searches are rather time consuming even with large
computing clusters.
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routine as searches for non-mutated peptides are today thus opening possibili-
ties for previously infeasible biological inquires.

Gene Annotations in Arthrobacter. The biological findings resulting from
our analysis of various spectral datasets for mutated and fused peptides will
be described elsewhere. Here, due to page limit, we only analyze a dataset of
221673 spectra from Arthrobacter sp. strain FB24 generated in Dick Smith’s lab
at PNNL using a LTQ-FT tandem mass spectrometer. 71760 non-modified spec-
tra were identified in search against the 6-frame translation of the Arthrobacter
genome of (≈ 10.1 Mb amino acids) with a spectral probability threshold of
10−10 [30]. We analyzed the remaining 149913 spectra using the Mutated BPM
algorithm. We transformed spectra into gapped peptides, searched them against
the six-frame translation of Arthrobacter genome, and used an extremely se-
lective spectral probability threshold 10−13 to report mutated peptides. This
resulted in a small set of identified spectra that passed a stringent statistical
significance threshold10.

To identify alternative start codons, we collected all identified peptides with
a mutation in the 1st position. Out of 123 identified mutated peptides, the
most prevalent mutations can be alternatively explained as precursor mass errors
(1 or 2 Da offsets), acetylation (42 Da offset) and oxidation (16 Da offset).
For example, a Glu to Gln mutation (≈ 1 Da offset) can be explained by a
precursor mass error, while a Ser to Glu mutation (≈ 42 Da offset) can be
explained as acetylation. These alternative explanations represent useful peptide
identifications (but not mutations) and account for ≈ 50% of the identified
peptides.

The next class of the most prevalent mutations belong to amino acids that
mutate into Methionine and reveal potential alternative Start Codons. The most
common mutations in these peptides were Val into Met (4 peptides) and Leu into
Met (5 peptides) in the first positions. All mutations from Val and Leu to Met
represented GTG and TTG, potential Start Codons11. Seven of nine predictions
were verified to be start codons in existing annotations. Additionally, we found
the peptide LDTTVADTEVTMPEGQGPRwhich is not part of the annotated Arthrobac-
ter sp proteome (mutation from initial Leu into Met). The closest match returned
by BLAST is from an N-terminal peptide in Arthrobacter aurescens provid-
ing an additional evidence that this peptide represents a new coding region in
Arthrobacter sp. that evaded the annotation. Lastly, MEQPIISGVAHDR is not at
the beginning of the protein representing either an erroneously annotated Start

10 The goal of this section is to illustrate the capabilities of the Mutated BPM algorithm
rather than to provide a comprehensive re-annotation of Arthrobacter.

11 The list of peptides identified with Val(GTG) to Met mutation at the first
position are: MDSNDVQADLK, MLIAQRPTLSEEVVSENR, MIEETLLEAGD-
KMDK, and MSTVESLVGEWLPLPDVAEMMNVSITK. The list of peptides
identified with Leu(TTG) to Met mutation at the first position are: ML-
TANAYAAPSADGDLVPTTIER, MEGPEIQFSEAVIDNGR, MLAEALEHLVR,
MDTTVADTEVTMPEGQGPR and MEQPIISGVAHDR.
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site, or a single nucleotide polymorphism, or DNA sequencing error, or false
peptide identification.

5 Discussion

We introduced a new class of combinatorial pattern matching problems and
proposed various algorithms for their solution. These algorithms represent both
the initial attempts to study the theoretical complexity of BPM and practical
applications of BPM in proteomics. Our results demonstrate that BPM has a
potential to greatly speed up protein identifications, a key task in computational
proteomics.
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Appendix

A The BPM Convolution Algorithm in the Infinite
Alphabet Case

In the infinite alphabet case our reduction to bit-vectors BT and BP may be
too large, even exponential in the input size. However, these vectors are quite
sparse, with the vast majority of entries being 0. Therefore, we can overcome
the exponential blowup in size by encoding the arrays as sets of the indices of
the bit vector locations whose value is 1. The size of these sets is proportional
to the original arrays.

The problem is that we are confronted with the problem of finding the convo-
lution vector W of the two vectors BT , BP that are not given explicitly. While in
the regular fast convolution the running time is O(|BT | log |BP |), the aim here
is to compute W in time proportional to the number of non-zero entries in W .
This problem was posed in by Muthukrishnan in [33] and solved by Cole and
Hariharan in [14]:
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Theorem 3. The convolution of sparse arrays V1 and V2 (with n1 and n2 of
non-zero entries, respectively) can be computed in time O(w log2 n2), by a Las
Vegas randomized algorithm with failure probability that is inverse polynomial in
n2, where w is the number of non-zero entries in the convolution vector.

The Cole-Hariharan algorithm, although randomized, is very fast in practice.
However, our situation is even better. We are assuming a static database T where
we can afford some preprocessing that subsequently will allow fast queries. In
this case, there is a fast deterministic algorithm [8], that preprocesses the V1

array in time O(n2
1) and subsequently achieves the following time for the sparse

convolution:

Theorem 4. Given two sparse arrays V1 and V2 (with n1 and n2 of non-zero
entries, respectively), their convolution can be computed in time O(w log3 n2),
where w is the number of non-zero entries in the convolution vector.

B BPM Text Indexing: Unbounded Patterns and the
Expected Intersection Size

While Theorem 2 provides faster algorithm than the one based on the naive O(n)
time for Set Intersection, we are willing to spend more time in preprocessing but
speedup the queries. It is clear that one can preprocess all pairs i, j, i, j = 1, .., k
and pre-compute all intersections in O(|U |·k2) time. In our case, for a d-bounded
pattern P [1], we can consider all O(d) entries of the I1, I2 data structures. Each
one has O(n

d ) elements. Thus, the total size of this preprocessed table is O(n ·d).
Since d is small in practice (smaller than 500 Da), a table of all intersections can
be constructed in the preprocessing stage, making the query time O(d + tocc).

In the case of unbounded pattern, O(d ·n) may reach O(n2). Below we present
a scheme where the query time never exceeds O(P [1]2) and the preprocessing
time never exceeds O(n1.5).

In the case of unbounded pattern, O(d ·n) may reach O(n2). Below we present
a scheme where the query time never exceeds O(P [1]2) and the preprocessing
time never exceeds O(n1.5).
Preprocessing: For each one of the mass values 1, 2, ...,

√
n, we construct the

I1, I2 data structures together with the intersection tables. It results in O(n
√

n)
preprocessing time and space.
Query Processing: Given a query pattern P [1]. If P [1] ≤

√
n then the BPM

query is processed in time O(P [1]+ tocc) using the intersection tables. If P [1] >√
n then the intersections are computed in the naive way. This means that the

query time is O(P [1] · smin + tocc), where smin is the size of the smallest set
whose intersection is computed. However, since P [1] >

√
n then the size of each

segment is less than n
P [1] , i.e., every segment size is less than

√
n. But since

P [1] >
√

n, it means that every segment size does not exceed P [1]. We conclude:

Theorem 5. Let T be a text over fixed finite alphabet Σ ⊂ N. Then it is possible
to preprocess T in time O(n1.5) such that subsequent BPM queries for patterns
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P = P [1], can be answered in time O(P [1]2 + tocc), where tocc is the number of
blocks in T with mass P , and O(P [1]) is the length of a block with mass P .

Above we considered the worst case complexity of calculating the intersection.
In Appendix, we show that the particular situation in our application guarantees
that even a naive implementation of the set intersection leads to an expected
optimal time, since the intersections are generally “large”.

In the main text, two options for the worst case of calculating the intersection
were considered. We now show that the particular situation in our application
guarantees that even a naive implementation of the set intersection leads to an
expected optimal time, since the intersections are generally “large”.

Lemma 2. Let S1, ..., Sk be subsets of U = {1, ..., n}, such that the subsets are
constructed uniformly at random and such that there is a constant c for which
we are guaranteed that the cardinality of every set Sk is at least n

c . Then for any
i, j ∈ {1, ..., k}, |Si ∩ Sj | is Ω( n

c2 ).

Proof. Fix sets Si, Sj and e ∈ U . Because the sets are constructed uniformly at
random and each set has at least n

c elements, then the probability of e being in
Si is at least 1

c , and the probability of e being in Sj is at least 1
c . The probability

of e being in both is at least 1
c

2. �	

Theorem 6. Let T be a text over fixed finite alphabet Σ ⊂ N. Then it is possible
to preprocess T in time O(n log n) such that subsequent BPM queries for patterns
P = P [1], can be answered in expected time O(P [1] + tocc), where tocc is the
number of blocks in T with mass P .

Proof. By Theorem 6, the query can be answered in worst case time O(P [1] ·
ti + tocc), where ti is the intersection time. Thus it is sufficient to show that
the expected set-intersection time is the size of the intersection, thus tocc will
incorporate the set-intersection time.

If we assume that the alphabet is uniformly distributed in the text, then for
every list of segments in Iλ, λ = 1, 2, the distribution of segments is uniformly
random. In addition, since the text alphabet is Σ = {i1, ..., ic}, where Σ ⊂ N, and
i1 < i2 < · < ic, then for every substring of ic entries in I1(I2), every segment
appears at least once. Thus the conditions of Lemma 2 hold and therefore the
expected intersection size is Θ( n

P [1]·i2c ), which is also the running time required
for the naive intersection implementation.

However, our initial motivation was for T to be the proteome. Even without
assumptions on the amino acid distribution, we can still prove that the expected
intersection size is Θ( n

P [1] ). Let P [1] = m. Assume that in a set-intersection
computation Si ∩ Si+m there are k entries (segments) in set Si that are not
elements of Si+m (and |Si| − k entries are elements of Si+m). Because of the
construction of the Sj sets, it must be the case that all these k entries are
elements of ∪ic−1

�=1 Si+m+�. This means that for the ic queries of sizes P [1] =
m, ..., m + ic, the sum of the sizes of the intersections that Si participates in
throughout the running of the algorithm is Ω(|Si|). Since this is true for every
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Si, and since ic is a constant, then our theorem is proved for any distribution of
the alphabet in T . �	

C From Theory to Practice: Reducing Memory
Requirements of MBPM Algorithms

C.1 Strongly Non-i-Unique Patterns

A non-i-unique pattern P = p1, . . . , pi, pi+1, . . . , pn in the set of patterns T is
called weakly non-i-unique if all patterns with i-prefix p1, . . . , pi have the same
(i + 1)-prefix p1, . . . , pi, pi+1. Otherwise, P is called strongly non-i-unique. A
variation of the MBPM algorithm that substitutes “non-i-unique” by “strongly
non-i-unique” in the for loop (Fig. 2) is more memory efficient in the case of
real proteomes. The MATCH function becomes more involved in this case and is
not discussed here. To further reduce memory, we use a directed acyclic graph
structure (to be described elsewhere) rather than the keyword tree to index the
text.

C.2 (i, w)-Unique Patterns

A pattern P in the set of patterns P is called (i, w)-unique if there are w or
less patterns in P with the same i-prefix as P . The notion of (i, w)-unique
patterns generalizes the notion of i-unique patterns (i-unique patterns are (i, 1)-
unique). We now describe construction of KeywordTree(T, d, w) that requires
significantly less memory than KeywordTree(T, d). The only difference in con-
structing KeywordTree(T, d, w) is that it substitutes the notion of i-unique pat-
terns by the notion of (i, w)-unique patterns in the MBPM algorithm (Fig. 2).

The algorithm iteratively generates the sets T1, . . . , Ti = T (T, d, w) until all
patterns in the set Ti become (i, w)-unique. We further construct the keyword
tree of T (T, d, w) (denoted KeywordTree(T, d, w)) and classify each vertex in this
tree as unique or non-unique. Let q1, . . . , qi be a pattern spelled by the path from
the root to the vertex v in the keyword tree. The vertex v is unique if the MBPM
algorithm classified q1, . . . , qi as a prefix of an (i, w)-unique pattern at some
iteration, and non-unique otherwise. To solve the MBPM Problem, we match
each pattern p1, . . . , pn against KeywordTree(T, d, t) using the matching algo-
rithm that is similar to the matching algorithm described for KeywordTree(T, d)
with the following difference. While in the matching for KeywordTree(T, d) we
attempted to match the suffix pi, . . . , pn against the path in the keyword tree
that start at vertex v, we now attempt to match the suffix pi, . . . , pn against
the paths in the keyword tree that start at vertex v. Figure 3 shows the size
of T (T, d, w) for various values of w and illustrates that (i, w)-unique patterns
lead to a practical algorithm with a reasonable memory-speed trade-off that en-
able applications of the MBPM algorithm to entire bacterial proteomes (less than
10 million amino acid long). Large proteomes (e.g., eukaryotic proteomes with
typical length under 100 million amino acids) can be processed by partitioning
them into shorter (10 million amino acids long) segments.
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A

B

Fig. 3. Number of distinct patterns generated by the MBPM algorithm for various param-
eters and texts. The y-axis represents the number of patterns in the set Ti generated
after the i-th iteration of the MBPM algorithm (x-axis represents the iteration number i).
A) Size of Ti for i = 0...14 with k = 15 and varying parameter w for the first 100,000
amino acids of the Shewanella proteome compared to the size of set Ti for a random
sequence of 100000 amino acids with w = 1. B) Size of Ti or i = 0...14 with k = 15 and
varying w’s for the complete Shewanella proteome.
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A

B

C

D

Fig. 4. Matching a keyword tree of patterns (KeywordTree(P)) against a text T . A)
KeywordTree(P) built for a set P of 5 patterns: (129, 147, 97), (129, 147, 113), (204, 128,
226), (260, 97, 226) and (260, 128, 103). B) A text T containing a single k-mer EMPIL
(129, 131, 97, 113, 113). C) The MBPM algorithm extends the original set of 5 patterns
and constructs the keyword tree Keyword(T, 300,P) of the resulting set of patterns. D)
Matching KeywordTree(P) against Keyword(T, 300,P) reveals the pattern matching
the text. (shown as a bold path in the keyword tree).
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C.3 i-Long Patterns

We previously described the memory overhead arising from processing non-i-
unique k-mers
p1, . . . , pi, . . . pj , pj+1, . . . , pn and p1, . . . , pi, . . . pj , p

′
j+1, . . . , p

′
n sharing long com-

mon j-prefix (j is significantly larger than i). One way to reduce this overhead
is not to extend the substring pi, . . . , pj of these patterns in the MBPM algorithm.
This approach leads to some complications since in this case k-mers will repre-
sent a mosaic of processed and unprocessed substrings that have to be taken into
account during the follow-up pattern matching step. However, it result in fast
and memory efficient implementation capable of indexing the entire bacterial
and even eukaryotic proteomes.

A substring pi, . . . , pj of a pattern p1, . . . , pi, . . . , pj, . . . , pn is called long if∑k=j
k=i pk ≤ d. Given a set of patterns T , let Patterns(T , p1, . . . , pi) be the

subset of patterns in T with prefix p1, . . . , pi. We call a position i in a pattern
P = p1, . . . , pn a break if Patterns(T , p1, . . . , pi) = Patterns(T , p1, . . . , pi, pi+1).
A pattern P with k breaks can be divided into k + 1 substrings between consec-
utive breaks that are classified into long and short. One can modify the MBPM al-
gorithm to avoid processing long substrings, resulting in vastly reduced memory
requirements (for real genomes). An actual implementation features a number of
further refinements aimed at reducing memory. For example, while substituting
a pattern P = p1, . . . , pi, . . . , pn by P (i, d) in the MBPM algorithm, each pattern
in P (i, d) is represented by its i-prefix (rather than its full length) complemented
by a pointer to the position of the keyword tree of the text where its (i+1)-prefix
starts.

C.4 Matching the Keyword Tree of Patterns against the Text

Figure 4 illustrates matching a set of gapped peptides by building a keyword
tree, to a text implicitly converted into a keyword tree. We can see that it is not
necessary to explicitly construct the keyword tree for the patterns in the text.
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Layered on top of information conveyed by DNA sequence and chromatin are
higher order structures that encompass portions of chromosomes, entire chro-
mosomes, and even whole genomes. Interphase chromosomes are not positioned
randomly within the nucleus, but instead adopt preferred conformations. Dis-
parate DNA elements co-localize into functionally defined aggregates or factories
for transcription and DNA replication. In budding yeast, Drosophila and many
other eukaryotes, chromosomes adopt a Rabl configuration, with arms extending
from centromeres adjacent to the spindle pole body to telomeres that abut the
nuclear envelope. Nonetheless, the topologies and spatial relationships of chro-
mosomes remain poorly understood. Here we developed a method to globally
capture intra- and inter-chromosomal interactions, and applied it to generate a
map at kilobase resolution of the haploid genome of Saccharomyces cerevisiae.
The map recapitulates known features of genome organization, thereby vali-
dating the method, and identifies new features. Extensive regional and higher
order folding of individual chromosomes is observed. Chromosome XII exhibits a
striking conformation that implicates the nucleolus as a formidable barrier to in-
teraction between DNA sequences at either end. Inter-chromosomal contacts are
anchored by centromeres and include interactions among transfer RNA genes,
among origins of early DNA replication and among sites where chromosomal
breakpoints occur. Finally, we constructed a three-dimensional model of the
yeast genome. Our findings provide a glimpse of the interface between the form
and function of a eukaryotic genome.
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Abstract. Protein engineering by combinatorial site-directed mutage-
nesis evaluates a portion of the sequence space near a target protein,
seeking variants with improved properties (stability, activity, immuno-
genicity, etc.). In order to improve the hit-rate of beneficial variants in
such mutagenesis libraries, we develop methods to select optimal posi-
tions and corresponding sets of the mutations that will be used, in all
combinations, in constructing a library for experimental evaluation. Our
approach, OCoM (Optimization of Combinatorial Mutagenesis), encom-
passes both degenerate oligonucleotides and specified point mutations,
and can be directed accordingly by requirements of experimental cost
and library size. It evaluates the quality of the resulting library by one-
and two-body sequence potentials, averaged over the variants. To ensure
that it is not simply recapitulating extant sequences, it balances the qual-
ity of a library with an explicit evaluation of the novelty of its members.
We show that, despite dealing with a combinatorial set of variants, in
our approach the resulting library optimization problem is actually iso-
morphic to single-variant optimization. By the same token, this means
that the two-body sequence potential results in an NP-hard optimization
problem. We present an efficient dynamic programming algorithm for the
one-body case and a practically-efficient integer programming approach
for the general two-body case. We demonstrate the effectiveness of our
approach in designing libraries for three different case study proteins tar-
geted by previous combinatorial libraries—a green fluorescent protein, a
cytochrome P450, and a beta lactamase. We found that OCoM worked
quite efficiently in practice, requiring only 1 hour even for the massive
design problem of selecting 18 mutations to generate 107 variants of a
443-residue P450. We demonstrate the general ability of OCoM in en-
abling the protein engineer to explore and evaluate trade-offs between
quality and novelty as well as library construction technique, and identify
optimal libraries for experimental evaluation.

1 Introduction

Biotechnology is harnessing proteins for a wide range of significant applications,
from medicine to biofuels [16,12]. In order to enable such applications, it is often
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necessary to modify extant proteins, developing variants with improved properties
(stability, activity, immunogenicity, etc. [22,3,20]) for the task at hand. However,
there is a massive space of potential variants to consider. Some protein engineer-
ing techniques (e.g., error-prone PCR [1] and DNA shuffling [28]) rely primarily
on experiment to explore the sequence space, while others (e.g., structure-based
protein redesign [11,2]) employ sophisticated models and algorithms in order to
identify a small number of variants for experimental evaluation.

Computational design of combinatorial libraries [30,18,29,31,33] provides a
middle ground between the primarily experimental and primarily computational
approaches to development of improved variants. Library-design strategies seek
to experimentally evaluate a diverse but focused region of sequence space in or-
der to improve the likelihood of finding a beneficial variant. Such an approach
is based on the premise that prior knowledge can inform generalized predictions
of protein properties, but may not be sufficient to specify individual, optimal
variants (resulting in both false positives and false negatives). Libraries are par-
ticularly appropriate when the prior knowledge does not admit detailed, robust
modeling of the desired properties, but when experimental techniques are avail-
able to rapidly assay a pool of variants. Example scenarios would be instances
where a three-dimensional structure is not available [13], or cases where definitive
decisions regarding specific amino acid substitutions are non-obvious [22].

Nature employs both random mutation and recombination in generating di-
verse variants, and modern molecular biology has reconstituted these processes as
highly controlled in vitro techniques. Here we develop library design methods for
mutagenesis, wherein individual residue positions and corresponding mutations
are first chosen, and then all possible combinations are constructed and subjected
to screening or selection (Fig. 1). Most library optimization work has focused on
recombination (i.e., selecting breakpoints), including approaches by Arnold and
co-workers [30,15,17], Maranas and co-workers [26,25], and us [31,35,33,34]. Mayo
and co-workers [29] have extended structure-based variant design to structure-
based mutagenic library design, and applied it to the design of a library of green
fluorescent proteins. Maranas and co-workers [18] have developed methods for
optimizing both recombination and mutagenesis libraries, and applied them to
the design of libraries of cytochrome P450s. LibDesign [14] is another useful tool
for combinatorial mutagenesis, however it requires as input a predesigned library
specification (positions and mutations). As we discuss further below, we develop
here a more general method that encompasses different forms of computational
library evaluation and optimization and experimental library construction, and
explicitly optimizes both the quality and the novelty of the variants in the library.

Two techniques are commonly employed to introduce mutations in construct-
ing combinatorial mutagenesis libraries (Fig. 1). When point mutagenesis is em-
ployed (Fig. 1, left), an individual oligonucleotide specific to a desired mutation
is incorporated; there is a separate oligonucleotide for each such mutation. Com-
binatorial shuffling techniques [28] mix and match the mutated genes. When
degenerate oligonucleotides are employed (Fig. 1, right), multiple amino acid-
level mutations at a position are encoded by a single degenerate 3-mer (see [8]).
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As with point mutagenesis, a library is generated by combinatorial shuffling.
While the degenerate oligo approach is experimentally cheaper (a library costs
about the same as a single variant), it can result in redundancy (multiple codons
for the same amino acid) and junk (codons for undesired amino acids or stop
codons), and is thus more appropriate when a larger library and lower hit rate
are acceptable (e.g., when a high-throughput screen is available [5]).

Our method, OCoM (Optimization of Combinatorial Mutagenesis), encom-
passes both these approaches to experimental library construction. The key ques-
tion is which mutations to introduce, given that the goal is isolation of functional
variants with desired properties. A library-design strategy should therefore as-
sess the predicted quality of prospective library members, e.g., by a sequence
potential [18] or explicit structural evaluation [29]. We adopt a general sequence
potential based on statistical analysis of a family of homologs to the target.
The potential reveals both important residues (single-body conservation) and
residue interactions (two-body coupling) for maintenance of protein stability
and activity. Importantly, optimizing quality as a sole objective function might
well result in libraries composed of sequences that are highly similar or even
identical to extant proteins, an undesirable outcome. Thus it is necessary to
balance quality assessment with novelty or diversity assessment. While this bal-
ance has been explicitly optimized for site-directed recombination [33], previous
mutagenic library-design methods have only addressed this issue indirectly, e.g.,
by controlling factors such as the overall library size and the number of posi-
tions being mutated. Here we develop a new metric to explicitly account for the
novelty of the variants compared to extant sequences, and we simultaneously
optimize libraries for both novelty and quality.

While we have previously characterized the complexity of recombination li-
brary design for both quality [31] and diversity [35], to our knowledge, mutagen-
esis library design has never been similarly formalized or characterized. We show
that, despite the combinatorial number of variants in the library, the OCoM de-
sign of an entire library is equivalent to the design of a single variant. Thus,
like single-variant design, library optimization is NP-hard when accounting for
a two-body potential. This stands in contrast to the polynomial-time algorithms
for combinatorial recombination library design [31,35]. Consequently, we develop
an integer programming approach that works effectively in practice on general
OCoM problems, along with a polynomial-time dynamic programming approach
that is appropriate for those without the two-body sequence potential.

To summarize the key contributions of OCoM, it supports a general scoring
mechanism for variant quality, explicitly evaluates variant novelty, subsumes
different approaches to library construction, accounts for bounds on library size
and mutational sites, and evaluates the trade-offs between quality and diversity.
While we focus on a statistical sequence potential for proposing and assessing
mutations, our method is general and could employ a potential based on an
initial round of experiments (e.g., from a randomization approach to remove
phylogenetic bias [10]) or a list of high-quality results from structure-based design
(e.g., [2]) from which it is desired to construct a library.
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Fig. 1. Combinatorial mutagenesis libraries. (left) Specific point mutations at selected
positions are introduced and shuffled to generate a library of all combinations of muta-
tions. (right) Degenerate oligonucleotides (represented here in a regular expression-like
notation, rather than IUPAC codes) are incorporated at selected positions, and shuf-
fled to generate a library. Each degenerate oligo can code for a multiset of amino acids;
consequently, some mutations may be represented more than others in the resulting
library (e.g., in the first position, two codons for E vs. just one for D).

Our results illustrate the effectiveness of our approach. We show library plans
for 3 proteins previously examined in combinatorial library experiments: a green
florescent protein, a cytochrome P450, and a beta-lactamase. Our results span
6 orders of magnitude of library size, from 102 to 107 members. For each pro-
tein, libraries optimized under a range of constraints display distinct trade-offs
between quality and novelty, as well as for the choice of library construction
method (point mutations or degenerate oligos).

2 Methods

Given a target protein, our goal is to design an optimal combinatorial mutage-
nesis library, as measured by the overall quality and novelty of its variants.

Quality. To evaluate quality, we employ one- and two-body position-specific
sequence potentials. Our current implementation uses potential scores derived
from statistical analysis of an evolutionarily diverse multiple sequence alignment
(MSA) of homologs of the target protein, but the method is generic to any
potential of the same form. Details have been previously published [31,19]. The
one-body term φi(a) for amino acid a position i captures conservation as the
negative log frequency of a in the ith column of the MSA. Similarly, the two-body
term φij(a, b) for amino acid a at i and b at j captures correlated/compensating
mutations as the negative log frequency of the pair (a, b) at the ith and jth
columns, minus the independent terms φi(a) and φj(b) (to avoid double counting
when summing the potentials). We filter the MSA to 90% sequence identity and
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restrict φij to a relatively small, significant set of residue pairs by a χ2 test of
significant correlation (p-value 0.01).

φi(a) = − log
|{P ∈ S : P [i] = a}|

|S| (1)

φi,j(a, b) = − log
|{P ∈ S : P [i] = a ∧ P [j] = b}|

|S| − φi(a) − φj(b) (2)

The quality score of variant S is then
∑

i φi(S[i]) +
∑

ij φij(S[i], S[j]) and the
total quality score of a library is the sum of the quality scores of its variants. As
these are based on negative logarithms, smaller is better.

Novelty. Given a whole sequence, we can assess its novelty in terms of how
similar it is to the closest homolog (other than the target) in the MSA. That
is, compute the minimum percent sequence identity to an extant sequence; the
smaller the score, the more novel the variant. Without explicitly accounting for
this, a library focused on quality could simply recapitulate natural sequences
(which are of course high quality), wasting experimental effort.

To compute the percent sequence identity, we need an entire sequence. How-
ever, during the course of optimization, we want to be able to assess the impact
on novelty of each mutation under consideration. Thus we introduce a position-
specific novelty score νi(a) for amino acid a at position i, analogous to the qual-
ity score discussed above. The novelty contribution νi(a) assesses the sequence
space distance between the mutant sequence containing a at i and homologs in
the MSA.

νi(a) = min
H∈S\S

n∑
j=1

I{Si←a[j] = H [j]}
n

(3)

where S is the target and Si←a is the target with a mutation to amino acid a
at position i, S is the MSA, n is the length of S and number of columns of S,
and I{} the indicator function that returns 1 iff the predicate is true. Note that
each νi(a) can be precomputed from the target and the MSA.

As with quality, the novelty score of variant S is then
∑

i νi(S[i]), and the
novelty score of a library sums the novelty scores of its variants. (Again, smaller
is better.) The value for a variant is much like the percent sequence identity,
except that each position does not account for mutations at other positions
in computing the identity, and thus could underestimate the contribution. The
value for a library is then much like the average percent sequence identity, and
reduces the error in the total over the positions, since the library is comprised of
the various combinations of mutations. While these thus are only approximations
to the overall sequence identity, the error is independent of the actual mutations
being made, and thus does not affect the optimization. We find in practice for the
case studies presented in the results that the one-body potential is very highly
correlated (over 0.99) with the full n-body one. Thus there is no need to go to
a higher-order potential.
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Library from tubes. Recall (Fig. 1) that there are two common molecular biology
techniques for generating combinatorial mutagenesis libraries: point mutations
and degenerate oligonucleotides. A convenient abstraction subsuming these two
methods of library construction is to consider for each position a multiset of
amino acids, which we call a tube (as in the experiment). For point mutation, a
tube contains a selected set of amino acids to be incorporated at a position. For
degenerate oligonucleotides, a tube contains a multiset of amino acids encoded by
all codons represented by a degenerate oligonucleotide 3-mer. In this abstraction
we always mean 3-mer. Note that the representation even supports multiple
degenerate oligonucleotides (or a degenerate oligonucleotide and a specific one)
at a position, which might be desirable to obtain the best balance of library
quality, novelty, and size [8].

Given a set of tubes, one per position, the resulting library is defined by the
cross-product of the tubes, with separate variants for each instance of an amino
acid appearing multiple times in the multiset (Fig. 1). Note that in a multiset,
every recurring appearance of an amino acid introduces redundancy, a scenario
that is especially undesirable when screening is difficult. In optimizing a library,
we select one tube for each position, from a preenumerated set of allowed tubes.
These are in turn determined by the amino acids that should be considered as
possible substitutions. Our current implementation only allows those appearing
at expected uniform frequency 5% or greater in the MSA. This averages to 4 to
5 per position in our case studies, for at most 25−1 = 31 tubes when considering
all sets of point mutations. For degenerate oligos, we only allow tubes that have
a ratio of at least 3 : 2 between codons for allowed substitutions and those for
disallowed ones. We also eliminate tubes that code for the same proportions of
amino acids in a larger multiset, for example, we would keep [GC]TC, coding for
{L, V} instead of [GC]T[GC], coding equivalently but redundantly for {L, L, V,
V}. Finally, we disallow tubes with STOP codons, though recognize that with
a very high-throughput screen, those may still be acceptable. All combinations
of the 4 nucleotides in each of 3 positions would yield 3375 possible degenerate
oligos, but after our global filters there are fewer than 1000, which are further
filtered for each position according to allowed substitutions, for an average of 10
in our case studies.

With the pieces in place, we can now formally define our problem.

Problem 1 (OCoM). Given a protein sequence S of length n and, for each posi-
tion i a set Ti of allowed tubes, optimize a library L = T1 × T2 × . . .× Tn where
for each i, Ti ∈ Ti, so as to minimize

∑
S′∈L

α

⎛⎝ n∑
i=1

φi(S′[i]) +
n−1∑
i=1

n∑
j=i+1

φi,j(S′[i], S′[j])

⎞⎠ + (1 − α)

(
n∑

i=1

νi(S′[i])

)

The experimental cost can be constrained by the number of sites being substi-
tuted, the number of amino acids (including duplicates) in each tube, and the
size of the library.
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The parameter α controls the relative trade off between quality and novelty.
For the results, we try a range of values, recognizing that in the future it is
desirable to consider all trade-offs and select plans that are Pareto optimal [7].

Efficient library evaluation. Our optimization problem is expressed as a sum
over all variants in the library. However, in practice, we do not want to enu-
merate all the variants in order to compute the value of the objective function.
In previous work, we showed how to lift one- and two-body position-specific
sequence potentials for single variants to corresponding potentials for recombi-
nation libraries [31,33]. We do the same here for combinatorial mutagenesis. For
simplicity, consider just the one-body term φi; the two-body term φij and the
novelty νi work similarly.

∑
S′∈T1×T2×...×Tn

n∑
i=1

φi(S′[i]) =
n∑

i=1

∑
a∈Ti

|T1| · |T2| · . . . · |Tn|
|Ti|

φi(a)

= |L|
n∑

i=1

∑
a∈Ti

φi(a)
|Ti|

(4)

This follows by recognizing that amino acid type a at position i contributes φi(a)
to each variant, i.e., each choice of amino acid types for the other positions.

Thus we develop a tube-based library potential by averaging over the set of
amino acids in the tube:

θi(T ) = α

∑
a∈T φi(a)
|T | + (1 − α)

∑
a∈T νi(a)
|T | (5)

θi,j(Ti, Tj) = α

∑
a∈Ti

∑
b∈Tj

φi,j(a, b)

|Ti| · |Tj |
(6)

For simplicity of subsequent formulas, we assume that α is fixed before comput-
ing θi; recall that we do not have a two-body novelty term.

Note that our tube-based scores avoid a potential pitfall by automatically
accounting for the relative frequencies of amino acids at a position, and their
relative contribution to the library. That is, if one position has three amino acid
types and another two (Fig. 1), then the contributions of the constituent amino
acids are weighted by 1/3 and 1/2, respectively.

With the tube scores thus computed, our objective function is simplified:

f(T1, . . . , Tn) =
n∑

i=1

θi(Ti) +
n−1∑
i=1

n∑
j=i+1

θij(Ti, Tj) (7)

Complexity. As Eq. 7 makes clear, once we have normalized tube scores, library
optimization looks just like single-variant optimization, though over an “alpha-
bet” of tubes rather than amino acids or rotamers. It immediately follows from
the NP-hardness of protein design with a two-body potential [21] that OCoM-
based combinatorial mutagenesis library design is NP-hard.
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Dynamic programming. Without the two-body sequence potential, we can read-
ily develop an efficient dynamic programming algorithm. Let M(i, T ) be the best
score of a library optimized through position i, with tube T at position i. Be-
cause the one-body score allows for the choice of the optimal T at each position
without consideration of any other position, the optimal library determined by
the additional choice of T at i depends only on the library through i− 1. Thus

M(i, T ) =

{
θi(T ) i = 1

min
T ′∈Ti−1

M(i− 1, T ′) + θi(T ) i > 1 (8)

The time and space complexity is quadratic in the size of the input: O(nm) for
n the length of the sequence and m the maximum number of allowable tubes at
any position. We can easily add a dimension to the DP matrix to count total
mutational sites (up to M), for a total complexity of O(nmM).

Integer programming. In order to solve the full library design problem, including
the two-body potential, we develop an integer programming formulation that
works well in practice using the IBM ILOG CPLEX solver.

Define singleton binary variable si,t to indicate whether or not tube t is at
position i. Similarly, define pairwise binary variable pi,j,t,u to indicate whether
or not the tubes t, u are at i, j respectively.

We rewrite our objective function (Eq. 7) in terms of these binary variables:

Φ =
∑
i,t

si,t · θi(t) +
∑

i,j,t,u

pi,j,t,u · θi,j(t, u) (9)

In order to guarantee that the variable assignments yield a valid combinatorial
library, we impose the following constraints:

∀i :
∑

t

si,t = 1 (10)

∀i, t, j > i :
∑

u

pi,j,t,u = si,t (11)

∀j, u, i < j :
∑

t

pi,j,t,u = sj,u (12)

Eq. 10 ensures that exactly one tube is chosen at each position i. Eq. 11 and
Eq. 12 maintain consistency between singleton and pairwise variables.

In order to specify desired properties of the mutated sites and library size, we
impose the following additional constraints.

log(λ) ≤
∑

i

∑
t

si,t log(|t|) ≤ log(Λ) (13)

μ ≤
∑

i

∑
t�={S[i]}

si,t ≤ M (14)
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The bounds on the library size (Eq. 13) and number of mutations per position
(Eq. 14) may be set by the technology and resources available for library con-
struction and screening. The expression t = {S[i]} determines whether or not
the tube has only the wild-type amino acid, and thereby whether or not that is
a mutated position. We could likewise incorporate additional constraints on the
number of mutated positions. We use these as constraints instead of terms in
the objective function because there are likely to be a relatively small number
of values to try, and the results can be compared and contrasted. Furthermore,
our objective function incorporates an explicit novelty score; these terms some-
what implicitly affect diversity. A larger λ means more variants, which must be
different from each other in some way, except in the case of redundant codons.
A larger μ allows, but does not guarantee, greater site diversity.

3 Results

We applied OCoM to optimize libraries for three different proteins for which
combinatorial libraries had previously been developed. We found that OCoM
worked quite efficiently in practice, requiring only 1 hour even for the massive
design problem of selecting 18 mutations to generate 107 variants for a 443-
residue sequence. We demonstrate the general ability of OCoM in enabling the
protein engineer to explore and evaluate trade-offs between quality and nov-
elty as well as library construction technique, and identify optimal libraries for
experimental evaluation.

Green Fluorescent Protein (GFP). GFP presents a valuable engineering target
due to its widespread use in imaging experiments; the availability of distinct col-
ors, some engineered, enables in vivo visualization of differential gene expression
and protein localization and measurement of protein association by fluorescence
resonance energy transfer [32]. Following the work of Mayo and colleagues, we
targeted the wild type 238-residue GFP from Aequorea victoria (uniprot entry
name GFP AEQVI) with mutation S65T [29]. The sequence potential is derived
from the 243 homologs in Pfam PF01353.

Fig. 2(left) illustrates the trade-offs between library quality and novelty scores
for fixed library size bounds and library construction techniques, over a range of
α values (recall that higher α places more focus on quality). While we targeted
100- and 1000-member libraries, depending on the input and choice of parame-
ters, not every exact library size is possible. Thus these numbers represent lower
bounds on the library sizes; the upper bounds are slightly relaxed. The curves are
fairly smooth but sometimes steep as a swift change in one property is made at
relatively little cost to the other. Interestingly, the ≈100-member library curves
intersect the ≈1000-member library curves. To the left of that point, the ≈100-
member libraries yield better quality for a given novelty, while to the right,
the ≈1000-member libraries yield a better novelty for a given quality, and thus
would be preferred if that screening capacity is available. The curves intersect
where the larger library approaches its maximum quality and the smaller library
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degenerate oligos

mutations Q N

10[EG] 53[LV] 73[AR] 124[EK] 161[IV] 162[KR] 213[AE] 229[IS] 7.36 -2.98

10[EG] 53[LV] 73[KR] 124[EK] 136[IV] 161[IL] 162[KR] 228[GS] 4.63 -2.97

10[EG] 73[KR] 115[EK] 124[EK] 136[IV] 161[IL] 162[KR] 228[GS] 4.28 -2.97

10[EG] 73[ER] 104[AG] 115[EK] 124[EK] 136[IV] 161[IL] 162[KR] 4.12 -2.97

10[EG] 73[KR] 104[AG] 124[EK] 136[IV] 161[ILL] 162[KR] 3.25 -2.72

10[DEEGGG] 73[KR] 124[EK] 136[IV] 161[ILL] 1.83 -1.97

73[KR] 124[EK] 136[IV] 161[ILL] 220[FLLLLL] 1.61 -1.73

point mutations

mutations Q N

44[GL] 53[LV] 73[KR] 161[IV] 162[KI] 213[AE] 228[GV] 229[IS] 4.63 -2.97

10[EG] 53[LV] 73[KR] 115[EK] 124[EK] 136[IV] 161[IL] 162[KR] 4.28 -2.97

10[EG] 73[KR] 115[EK] 124[EK] 136[IV] 161[IL] 162[KR] 228[GS] 4.12 -2.97

10[EG] 73[KR] 104[AG] 115[EK] 124[EK] 136[IV] 161[IL] 162[KR] 3.25 -2.72

10[EGK] 73[KR] 104[AG] 124[EKR] 136[IV] 161[IL] 1.83 -1.97

10[DEGKQ] 73[KR] 124[EKR] 136[IV] 161[IL] 1.61 -1.73

Fig. 2. GFP plans under varying quality-novelty trade-offs, at fixed library size bounds,
with two library construction techniques. Smaller scores are better. The left panels plot
the scores of plans (one per point) for libraries of ≈100 members (red diamond solid)
and ≈1000 members (blue square dash). The right panels detail the ≈100-member
library plans, with selected positions and their wild-type amino acid types (underlined)
and mutations.

reaches its maximum novelty; thus adjusting α only sends library plans along
the vertical or horizontal.

The right panels of Fig. 2 summarize the mutations comprising each library.
Within the degenerate oligo plans we notice single substitutions at each site,
while within the point mutation plans we notice a set of different substitutions
at the same site, including some that fall outside the natural degeneracy in the
genetic code. We also notice that a number of mutations are attractive across a
range of α values, and under both construction techniques. Several times both
construction methods identify the same site and same mutation. And in both
cases, we see concentration of mutations on less conserved sites (e.g., 124[EK]
where Lysine is the consensus residue at 31%) for better quality, and spreading
mutations over the sequence for better novelty.

Fig. 3(left) illustrates trends in planning GFP libraries of a wide range of sizes.
The y-axis gives the total quality score summed over the unique variants in the
library (lower is better). Compared to the number of variants in the library to be
screened, this is a measure of the library efficiency. The point mutation libraries
remain linear at an approximate slope of 1 on this log-log plot; essentially, each
mutation is picking up a constant “penalty” against quality. While, as we also
see in Fig. 2, degenerate oligo libraries tend to have better quality scores due
to their multiset nature, the redundancy leads to fewer unique variants and
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Fig. 3. Efficiency evaluation of plans for different GFP (left) and P450 (right) library
sizes, under degenerate oligos (blue solid squares) and point mutations (red dashed
diamonds). The y-axis plots the total quality score (φ; lower is better) of the unique
variants in the library (i.e., removing duplicates from degenerate oligos). The degener-
ate oligo curve is labeled with the number of unique variants.

thus fewer expected “hits” for the same screening effort. Consequently, up to a
factor of 103 more degenerate oligo variants than point mutation variants need
to be screened to achieve the unique library size, consistent with trends in other
studies [23]. On the other hand, degenerate oligo libraries are also cheaper to
construct. These curves help elucidate the trade-offs. The degenerate oligo curve
flattens out at 106 to 107 largely because the algorithm has reduced capacity
to find more unique reasonable quality variants on this particular and relatively
smaller protein.

To further study the use of degeneracy in library generation, we compared li-
braries using selected degenerate oligos with those using saturation mutagenesis,
either with the NNK degenerate codon (coding all 20 amino acids) or the NDT
degenerate codon (12 diverse amino acids). Reetz et al. [23] have studied the
relative efficiency of the two saturation mutagenesis techniques, in the context
of directed evolution. Using OCoM, we can further compare and contrast the
selection of positions to mutate, at different levels of degeneracy. We separately
optimized relatively conserved core residues (positions 57–72 [29]) and relatively
less conserved surface ones. Fig. 4 shows the efficiency of libraries (using the
total quality metric of the preceding paragraph) for different number of sites to
mutate. As in our above library studies, there are sufficient degrees of freedom
in any method, and both in the core and on the surface, to continue taking
mutations at roughly the same penalty. Strikingly, the relative efficiency (ratio)
of saturation, half saturation, and any choice is about the same in the core or
on the surface, across the number of sites mutated. We also evaluated the use of
“double-degenerate” oligos, combining two different degenerate oligos in a single
tube. However, for these studies they yielded exactly the same plans as did the
regular degenerate oligos. There was apparently insufficient motivation to select
amino acids sufficiently different not to be naturally covered by the degeneracy
in the genetic code.
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NNK core
NNK out
NDT core
NDT out
degenerate oligo core
degenerate oligo out

Fig. 4. Efficiency evaluation (as in Fig. 3) for GFP libraries optimized at different
levels of degeneracy, for core or surface, at different numbers of mutated sites

Cytochrome P450. Cytochrome P450 is an essential enzyme at all levels of cel-
lular life and thus extensively studied, especially given its significant engineering
applications in biofuels [4]. We chose as a target a P450 from Bacillus subtilis,
CYP102A2 (uniprot gene synonym cypD), used in previous library studies [18].
The P450 family is very diverse, so we identified a set of 194 homologs to our
target by running PSI-BLAST for 3 iterations, and then multiply aligned them
with ClustalW. As in the earlier studies, we focused on residues 6–449 because
the remaining portions of the MSA were too sparse for meaningful statistics.

The trade-off curves (Fig. 5) are more distinct than those for GFP, and are
quite sharp and sparse. This may be a result of looking here at a small library
size with relatively few mutations, relative to the much larger size of this protein.
The degenerate oligo plans focus on a few positions (an average of 4), while the
point mutation plans are more spread over the sequence (an average of 7).

With increasing library size (Fig. 3(right)), we see similar trends as for GFP.
As the library size increases, more and more screening effort (up to three orders
of magnitude) is required to find fewer good unique variants in the degenerate
oligo libraries. This illustrates a fundamental difference between the two library
construction methods, and highlights a key advantage: using discrete oligos for
each individual point mutation can always specifically target beneficial amino
acids, even with increasing library size.

Beta Lactamase. The beta lactamase enzyme family hydrolyzes the beta lactam
ring of penicillin-like drugs thereby conferring resistance to bacteria and pre-
senting a potential drug target [6]. As it supports easy and inexpensive activity
screening, beta lactamase is an ideal candidate for testing combinatorial library
methods [9,15,31,33]. We took as target the TEM-1 beta lactamase from E. coli,
and developed the sequence potential from an MSA of 149 homologs aligned to
263 residues used in our previous recombination work [31]. We found the trends
too similar to our other case studies to merit repetition of detail here, but we
note that in contrast to P450, but like GFP (of a more similar size), the trade-off
curves are less sharp and more full. Like GFP and P450, the targeted mutation
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degenerate oligos

mutations Q N

21[LS] 50[RT] 51[NSTY] 208[EGQR] 325[FLLL] 10.23 -0.03

48[AG] 50[RT] 51[NSTY] 208[EGQR] 325[FLLL] 9.43 -0.03

48[AG] 50[KMRT] 51[AITV] 176[IV] 325[FLLL] 8.65 -0.03

21[FLLLLL] 48[AG] 152[FLLLLL] 176[IV] 1.51 -0.01

point mutations

mutations Q N

24[KT] 48[AG] 79EK] 152FL] 176[IL] 208[AR] 231[DQ] 372[KS] 8.96 -0.04

25[DE] 48[AG] 84[AS] 161[GN] 176[IV] 238[AN] 266[IV] 372[EK] 4.25 -0.04

48[AG] 84[AS] 161[GN] 176[IV] 238[AN] 266[IV] 372[EK] 3.51 -0.03

48[AG] 84[ASV] 161[DGN] 176[IV] 372[EDK] 3.09 -0.03

Fig. 5. P450 plans under varying quality-novelty trade-offs; see Fig. 2 for description

sites are similar, but the repertoire of substitutions can differ. For example, at
Lys261 the degenerate oligo plans make D,E,N substitutions, while the point
mutations make A,D,E,Q,V substitutions.

4 Discussion and Conclusion

OCoM provides a powerful and general mechanism to optimize combinatorial
mutagenesis libraries so as to improve the “hit-rate” of novel variants with prop-
erties of interest. It enables protein engineers to study the trade-offs among pre-
dicted quality and novelty, library size, and expected success over two different
approaches to library construction. While it readily allows effort to be focused
on residues or regions of interest, that is not required; OCoM supports global
design of a protein, accounting for interrelated effects of mutations. While the
design problem is NP-hard in theory and clearly combinatorial in practice, our
encoding of the constraints and homology-based filtering of poor choices, along
with the power of the IBM ILOG solver, yielded an implementation that was
able to compute the optimal 107 size library for each test case in under an hour.

As we have implemented here, 2-body quality scores are considered state-
of-the art, and necessary for evaluation of stability and activity of new pro-
teins [24,27]. However, there may be cases, such as large proteins (or complexes)
with high degrees of sequence variability (and thus large tube sets), where only a
1-body potential will be practical because of the combinatorial explosion. In such
cases, our dynamic programming formulation will still enable the optimization
of libraries based on conservation statistics.

Since OCoM is modular, it is easily extensible to additional forms of variant
and library evaluation and constraint, and those are key steps for our future work.
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For example, rather than a general sequence potential and global design, it could
be targeted to exploration of sequence space most affecting activity or stability,
or it could be extended to incorporate evaluation of immunogenicity [20,19]. And
as mentioned in the introduction, the potential could be derived from initial
experiments or from structure-based analysis. Although beyond the scope of
this paper, prospective application of OCoM in designing libraries for targets of
engineering interest is of course the whole motivation of the work.

Acknowledgments. We thank Alan Friedman (Purdue) for helpful discussions
on library design. This work was funded in part by NSF grant CCF-0915388 to
CBK.

References

1. Cadwell, R.C., Joyce, G.F.: Randomization of genes by PCR mutagenesis. PCR
Methods Appl. 2, 28–33 (1992)

2. Chen, C.Y., Georgiev, I., Anderson, A.C., Donald, B.R.: Computational structure-
based redesign of enzyme activity. PNAS 106, 3764–3769 (2009)

3. Fox, R., et al.: Improving catalytic function by ProSAR-driven enzyme evolution.
Nat. Biotechnol. 25, 338–344 (2007)

4. Fukuda, H., et al.: Reconstitution of the isobitene-forming reaction catalyzed by
cytochrome p450 and p450 reductase from Rhodotorula minuta: Decarboxylation
with the formation of isobutene. Biochem. Bioph. Res. Co. 201, 516–522 (1994)

5. Griswold, K.E., Aiyappan, N.S., Iverson, B.L., Georgiou, G.: The evolution of
catalytic efficiency and substrate promiscuity in human theta class 1-1 glutathione
transferase. J. Mol. Biol. 364, 400–410 (2006)

6. Harding, F.A., et al.: A beta-lactamase with reduced immunogenicity for the tar-
geted delivery of chemotherapeutics using antibody-directed enzyme prodrug ther-
apy. Mol. Cancer. Ther. 4, 1791–1800 (2005)

7. He, L., Friedman, A.M., Bailey-Kellogg, C.: Pareto optimal protein design. In:
3dsig: Structural Bioinformatics and Computational Biophysics, pp. 69–70 (2010)

8. Herman, A., Tawfik, D.S.: Incorporating synthetic oligonucleotides via gene re-
assembly (ISOR): a versatile tool for generating targeted libraries. Protein Eng.
Des. Sel. 20, 219–226 (2007)

9. Hiraga, K., Arnold, F.: General method for sequence-independent site-directed
chimeragenesis. J. Mol. Biol. 330, 287–296 (2003)

10. Jackel, C., Bloom, J.D., Kast, P., Arnold, F.H., Hilvert, D.: Consensus protein
design without phylogenetic bias. J. Mol. Biol. 399, 541–546 (2010)

11. Jiang, L., et al.: De novo computational design of retro-aldol enzymes. Sci-
ence 319(5868), 1387–1391 (2008)

12. la Grange, D.C., den Haan, R., van Zyl, W.H.: Engineering cellulolytic ability into
bioprocessing organisms. Appl. Microbiol. Biotechnol. 87, 1195–1208 (2010)

13. Levin, A.M., Murase, K., Jackson, P.J., Flinspach, M.L., Poulos, T.L., Weiss, G.A.:
Double barrel shotgun scanning of the Caveolin-1 scaffolding domain. ACS Chem.
Biol. 2, 493–500 (2007)

14. Marco, A.M., Daugherty, P.S.: Automated design of degenerate codon libraries.
Protein Eng. Des. Sel. 18, 559–561 (2005)

15. Meyer, M., Hochrein, L., Arnold, F.: Structure-guided SCHEMA recombination of
distantly related beta-lactamases. Protein Eng. Des. Sel. 19, 563–570 (2006)



Optimization of Combinatorial Mutagenesis 335

16. Nelson, A., Reichert, J.M.: Development trends for therapeutic antibody fragments.
Nat. Biotech. 27, 331–337 (2009)

17. Otey, C., Landwehr, M., Endelman, J., Hiraga, K., Bloom, J., Arnold, F.:
Structure-guided recombination creates an artificial family of cytochromes P450.
PLoS Biol. 4, e112 (2006)

18. Pantazes, R., Saraf, M., Maranas, C.: Optimal protein library design using recom-
bination or point mutations based on sequence-based scoring functions. Protein
Eng. Des. Sel. 20, 361–373 (2007)

19. Parker, A.S., Griswold, K., Bailey-Kellogg, C.: Optimization of therapeutic pro-
teins to delete T-cell epitopes while maintaining beneficial residue interactions. In:
Proc. CSB, pp. 100–113 (2010)

20. Parker, A.S., Zheng, W., Griswold, K., Bailey-Kellogg, C.: Optimization algorithms
for functional deimmunization of therapeutic proteins. BMC Bioinf. 11, 180 (2010)

21. Pierce, N., Winfree, E.: Protein design is NP-hard. Protein Eng. 15, 779–782 (2002)
22. Reetz, M.T., Carballira, J.: Iterative saturation mutagenesis (ISM) for rapid di-

rected evolution of functional enzymes. Nat. Protocols 2, 891–903 (2007)
23. Reetz, M.T., Kahakeaw, D., Lohmer, R.: Addressing the numbers problem in di-

rected evolution. ChemBioChem. 9, 1797–1804 (2008)
24. Russ, W.P., Lowery, D.M., Mishra, P., Yaffee, M.B., Ranganathan, R.: Natural-like

function in artificial WW domains. Nature 437, 579–583 (2005)
25. Saraf, M.C., Gupta, A., Maranas, C.D.: Design of combinatorial protein libraries

of optimal size. Proteins 60, 769–777 (2005)
26. Saraf, M.C., Horswill, A.R., Benkovic, S.J., Maranas, C.D.: FamClash: A method

for ranking the activity of engineered enzymes. PNAS 12, 4142–4147 (2004)
27. Socolich, M., Lockless, S.W., Russ, W.P., Lee, H., Gardner, K.H., Ranganathan, R.:

Evolutionary information for specifying a protein fold. Nature 437, 512–518 (2005)
28. Stemmer, W.P.C.: DNA shuffling by random fragmentation and reassembly: in

vitro recombination for molecular evolution. PNAS 91, 10747–10751 (1994)
29. Treynor, T., Vizcarra, C., Nedelcu, D., Mayo, S.: Computationally designed li-

braries of fluorescent proteins evaluated by preservation and diversity of function.
PNAS 104, 48–53 (2007)

30. Voigt, C.A., Martinez, C., Wang, Z.G., Mayo, S.L., Arnold, F.H.: Protein building
blocks preserved by recombination. Nat. Struct. Biol. 9, 553–558 (2002)

31. Ye, X., Friedman, A.M., Bailey-Kellogg, C.: Hypergraph model of multi-residue
interactions in proteins: Sequentially–constrained partitioning algorithms for op-
timization of site-directed protein recombination. J. Comput. Biol. 14, 777–790
(2007); In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M.
(eds.) RECOMB 2006. LNCS (LNBI), vol. 3909, pp. 15–29. Springer, Heidelberg
(2006)

32. Zhang, J., Campbell, R., Ting, A., Tsien, R.: Creating new fluorescent probes for
cell biology. Nat. Rev. Mol. Cell. Biol. 3, 906–918 (2002)

33. Zheng, W., Friedman, A., Bailey-Kellogg, C.: Algorithms for joint optimization of
stability and diversity in planning combinatorial libraries of chimeric proteins. J.
Comput. Biol. 16, 1151–1168 (2009); In: Vingron, M., Wong, L. (eds.) RECOMB
2008. LNCS (LNBI), vol. 4955, pp. 300–314. Springer, Heidelberg (2008)

34. Zheng, W., Griswold, K., Bailey-Kellogg, C.: Protein fragment swapping: A method
for asymmetric, selective site-directed recombination. J. Comput. Biol. 17, 459–
475 (2010); In: Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 321–338.
Springer, Heidelberg (2009)

35. Zheng, W., Ye, X., Friedman, A., Bailey-Kellogg, C.: Algorithms for selecting
breakpoint locations to optimize diversity in protein engineering by site-directed
protein recombination. In: Proc. CSB, pp. 31–40 (2007)



Seeing More Is Knowing More: V3D Enables

Real-Time 3D Visualization and Quantitative
Analysis of Large-Scale Biological Image Data

Sets

Hanchuan Peng and Fuhui Long
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Everyone understands seeing more is knowing more. However, for large-scale 3D
microscopic image analysis, it has not been an easy task to efficiently visual-
ize, manipulate and understand high-dimensional data in 3D, 4D or 5D spaces.
We developed a new 3D+ image visualization and analysis platform, V3D, to
meet this need. The V3D system provides 3D visualization of gigabyte-sized
microscopy image stacks in real time on current laptops and desktops. V3D
streamlines the online analysis, measurement and proofreading of complicated
image patterns by combining ergonomic functions for selecting a location in an
image directly in 3D space and for displaying biological measurements, such as
from fluorescent probes, using the overlaid surface objects. V3D runs on all ma-
jor computer platforms and can be enhanced by software plug-ins to address
specific biological problems. To demonstrate this extensibility, we built a V3D-
based application, V3D-Neuron, to reconstruct complex 3D neuronal structures
from high-resolution brain images. V3D-Neuron can precisely digitize the mor-
phology of a single neuron in a fruitfly brain in minutes, with about a 17-fold
improvement in reliability and tenfold savings in time compared with other neu-
ron reconstruction tools. Using V3D-Neuron, we demonstrate the feasibility of
building a high-resolution 3D digital atlas of neurite tracts in the fruitfly brain.
V3D can be easily extended using a simple-to-use and comprehensive plugin
interface.

V. Bafna and S.C. Sahinalp (Eds.): RECOMB 2011, LNBI 6577, p. 336, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



 

V. Bafna and S.C. Sahinalp  (Eds.): RECOMB 2011, LNBI 6577, pp. 337–338, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

T-IDBA: A de novo Iterative de Bruijn Graph Assembler 
for Transcriptome* 

(Extended Abstract) 

Yu Peng, Henry C.M. Leung, S.M. Yiu, and Francis Y.L. Chin 

 Department of Computer Science, The University of Hong Kong, 
Pokfulam Road, Hong Kong 

{ypeng,cmleung2,smyiu,chin}@cs.hku.hk 

Abstract. RNA-seq data produced by next-generation sequencing technology is 
a useful tool for analyzing transcriptomes. However, existing de novo transcrip-
tome assemblers do not fully utilize the properties of transcriptomes and may 
result in short contigs because of the splicing nature (shared exons) of the 
genes. We propose the T-IDBA algorithm to reconstruct expressed isoforms 
without reference genome. By using pair-end information to solve the problem 
of long repeats in different genes and branching in the same gene due to alterna-
tive splicing, the graph can be decomposed into small components, each corre-
sponds to a gene. The most possible isoforms with sufficient support from the 
pair-end reads will be found heuristically. In practice, our de novo transcrip-
tome assembler, T-IDBA, outperforms Abyss substantially in terms of sensitiv-
ity and precision for both simulated and real data. T-IDBA is available at 
http://www.cs.hku.hk/~alse/tidba/ 

Keywords: de novo transcriptome assembly, de bruijn graph, alternative  
splicing, isoforms, next-generation sequencing. 

1   Introduction 

RNA sequencing (RNA-Seq) is a recently developed technique to sequence RNAs 
using the next-generation sequencing technologies. It is important in the analysis of 
transcriptomes and has been used successfully in multiple aspects [1-4]. Similar to the 
genome assembly problem, the de novo transcriptome assembly problem (the problem 
of reconstructing isoforms without a reference genome and annotated information) is 
very important. However, there has been little progress on the de novo transcriptome 
assembly problem. Most, if not all, existing approaches apply de novo genome as-
sembly techniques (i.e. de Bruijn graph, string graph) directly to solve the de novo 
transcriptome assembly problem (e.g. [5, 6]) without fully utilizing the properties of 
transcriptomes. The performance of these approaches, in particular for the reconstruc-
tion of isoforms for the same gene, is not satisfactory. 

There are three main difficulties for de novo transcriptome assembly. (1) Splicing 
nature of the genes: the same exon may appear in multiple isoforms which introducea 
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lot of branches in the de Bruijn graph or the string graph. (2) Repeat patterns in dif-
ferent genes: subgraphs corresponding to different genes may merge together. (3) 
Different expression levels: it is difficult to identify low-expressed isoforms. 

In this paper, we tackle the de novo transcriptome assembly problem. We analyze 
the properties of mammalian transcriptomes and observe that not too many genes 
(less than 1.4%) contain repeat patterns of length greater than 90 bp. This implies that 
if we can construct a de Bruijn graph using substrings of length 90 in the reads, sub-
graphs that correspond to different genes are more likely to be isolated. However, the 
current next-generation sequence technology may not produce such long reads and 
there are gap problems even if such long reads are available. To resolve this problem, 
we first build an accumulated de Bruijn graph [7] based on single-end reads up to say 
50 bp (for reads of length 75 bp) and then extend to 90 bp based on pair-end reads. 
The graph will decompose into many connected components, most of which contain 
only a single or a few mRNAs. Finally, the branching problem introduced by the 
shared exons is resolved by a heuristic path finding algorithm based on pair-end reads 
to generate all possible isoforms. 

T-IDBA can reconstruct 83.7% and 46.7% isoforms for simulated data and real 
mouse embryonic stem cells data [8] respectively. The precision of all predicted con-
tigs are 93.4% and 79.7% respectively. It outperforms Abyss [9] which can only re-
construct 39.4% and 8.6% isoforms for the datasets and the precision of the contigs 
are 98.0% and 48.0% respectively. 
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Abstract. The differential analysis of genes between microarrays from
several experimental conditions or treatments routinely estimates which
genes change significantly between groups. As genes are never regulated
individually observed behavior may be a consequence of changes in other
genes. Existing approaches like co-expression analysis aim to resolve such
patterns from a wide range of experiments. The knowledge of such a back-
ground set of experiments can be used to compute expected gene behav-
ior based on known links. It is particularly interesting to detect previously
unseen specific effects in other experiments. Here, a new method to spot
genes deviating from expected behavior (PAttern DEviation SCOring –
Padesco ) is devised. It uses linear regression models learned from a back-
ground set to arrive at gene specific prediction accuracy distributions.
For a given experiment it is then decided whether each gene is predicted
better or worse than expected. This provides a novel way to estimate the
experiment specificityof each gene. We propose a validation procedure to
estimate the detection of such specific candidates and show that these
can be identified with an average accuracy of about 85 percent.

1 Introduction

Microarrays are often measurements of two or multiple conditions. A natural way
to analyze such data is through differential expression. It results in candidate
gene lists containing several hundreds of genes. Detailed biological downstream
studies are usually not feasible for all of these genes. Further filtering towards
more promising candidates is necessary. Moreover, most candidates are likely in-
direct targets of initially affected genes or, more generally, they follow a pattern
which can be observed similarly in other experiments. Such genes may not be
of immediate interest. In return, striking differences to known behavior indicate
specificity for a certain experiment and such genes are suited for further analysis.
We will now introduce how Padesco models common patterns and in which way
differences to known patterns are obtained.

Patterns. Hirsch et al. [15] noted that disease specific effects eventually trigger
core biological pathways and thus frequently lead to ”a transcriptional signa-
ture that is common to a diverse set of human diseases”. Such signatures can
be learned and used for experiment specific predictions. Padesco detects how
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well the behavior of a gene can be derived from other genes. It allows to detect
genes which show both differential and unexpected – and thereby interesting –
behavior. The target gene patterns we learn are derived through Support Vector
Regression (SVR) and basically constitute linear models describing its depen-
dencies to other genes. Since we aim at unexpected changes rather than states
we use fold-changes, not expression values to describe gene behavior.

Deviations. Not all differential genes detected by differential expression anal-
ysis are specific. A background set of experiments must be heterogeneous to
assess this. Padesco’s key idea is that we can decide whether the behavior of
a gene can be predicted worse than expected and is thus a specific gene. It is
important to note that there may well be genes which are difficult or easy to
predict in general. Our scoring scheme is designed to account for this individual
prediction complexity by estimating an empirical distribution of deviations in a
cross-validation (CV) setting.

Evaluation. Evaluation of differential expression results is difficult. Simulations
may show methodological strengths and weaknesses, but biological evaluation is
only possible through comparison to published knowledge or downstream ex-
periments. We discuss Padesco’s performance both by means of an exhaustive
simulation experiment and a detailed discussion of literature supporting genes
found to be interesting by our approach. The simulation shows that genes deviat-
ing from their common behavior would be neglected due to differential expression
analysis alone, since they often show only moderate differential expression.

Scoring. Padesco is trained on a background set of experiments consisting of
1437 microarrays from 25 experiments sharing 4117 genes. A leave-one-out cross-
validation (LOOCV) across all experiments is done yielding predictions for a
genes fold-change for all pairs of arrays within the omitted experiment. We es-
timate how well a gene can be predicted by deriving the empirical distribution
of its deviations from the measured fold-changes. We then devise a score based
on the median absolute deviation to score a gene in an unseen experiment. We
assume that a gene in a differential setting is interesting if it exhibits a change
in its gene expression. We thus use differentially expressed genes. Furthermore,
a gene may be predicted better than expected, which points at stronger pres-
ence of a trained gene-gene dependency within this experiment. Although the
problem is related we do not focus it in this work. If a gene is predicted worse
than expected this suggests changes in a known dependency structure.

1.1 Related Work

Padesco is a natural extension to co-expression approaches like [8,27,22] or [35]
as well as residual scoring schemes like [21] and [26]. Co-expression aims to con-
struct gene sets by clustering, or construction of co-regulated gene sets across
many samples. Our trained patterns are similar, yet not identical to these pre-
viously derived co-expression patterns. Mentionable differences are the use of
fold-changes rather than raw measurements and our predictivity criterion. The
idea that a gene can be predicted from other genes and the prediction error
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may model condition-specific changes is a concept previously applied as residual
scoring ([21,26]). To achieve meaningful residual scores these approaches must be
applied on homogeneous training data like a certain disease subtype. These scor-
ing schemes fail on very heterogeneous experiment data. Padesco aims to bridge
the gap between mere co-regulation detection and residual scoring. For heteroge-
neous training sets a background sensitive view on differential experiment results
is provided. The most common framework for both residual scoring and differ-
ential analysis is provided by BioConductor ([12]). In general, identified sets of
differentially expressed genes maximize sample discrimination. Such markers,
or gene signatures, are promising targets for further analysis. [37] for instance,
used gene expression profiling to identify transcription signatures for breast can-
cer prognosis classification. Gene expression profiles have been used by [27] to
reveal pathway dysregulation in prostate cancer. Comprehensive resources like
GEO (Gene Expression Omnibus,[7]) enable the analysis of co-expression across
many experiments. The comparison can for instance be quantified by measures
of reproducibility in-between experiments ([11]). Padesco’s linear models are
loosely related to those used for imputation of missing values (IMV). Here, either
data from single ([13]) or multiple experiments ([17]) is used. To our knowledge
fold-change predictions have not been applied so far. SVR has been previously
used by [20] for IMV.

2 Material and Methods

2.1 Data Sets

Padesco is trained on a set of experiments compiled by [22]. It consists of 3924
microarrays from 60 human data sets. These sets comprise 62.2 million expression
measurements. They consist of at least 10 and up to 255 samples. Genes are
filtered for a minimum amount of variance across samples. We restrict the data
set to Affymetrix array platforms (HG-U95A, HG-U95Av2, HU6800, HuGeneFl,
HG-U133A and HG-U133comb). There is no direct necessity for a comparability
of absolute expression levels since our method works on fold-changes. We restrict
to a subset G of 4117 genes which occur in more than 50% of all experiments
and contain at least 75% valid (i.e. non-missing) measurements. 25 experiments
with a total of p=1437 microarrays fulfill this constraint. We obtain a matrix of
fold-changes F by sampling p pairs of arrays (Figure 1(b) and Section 2.5) from
the space of all possible pairs within experiments.

For 13 selected experiments we combine arrays into sample groups, e.g. tumor
vs. normal samples. This is required for differential expression analysis (Sec-
tion 2.3) that compare the expression of genes between different sample groups.
Some experiments, for instance time course measurements, can not be subdi-
vided into sample groups but are used as background experiments. Overall, 62
sample groups have been analyzed. Comparisons are performed as one sample
group versus the others from the same experiment, i.e. one comparison is per-
formed for experiments with n = 2 sample groups and n comparisons otherwise.
We thus conducted 59 comparisons in total.
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2.2 Basic Protocol

Padesco uses a two step approach for the selection of candidate genes from ex-
pression measurements. Prior to the application of Padesco, expression patterns
must be trained on a background set bs of experiments (Section 2.1). We apply
Support Vector Regression (SVR, Sections 2.4 and 2.5) to train one model for
each gene using bs. Predicted labels are within-experiment fold-changes of this
gene. Training features are the fold-changes of all other genes. For a new experi-
ment (not contained in bs), Padesco selects genes by two consecutive filter steps.
First, the measured genes are analyzed for differential expression (Section 2.3)
based on Wilcoxon’s rank sum test ([41]). In general, any differential expression
approach can be applied as Padesco does not rely on a particular method. The
novel second filter step is based on an analysis of the trained regression models.
Here we discard genes that conform to the patterns learned from the background
experiments. We analyze the gene prediction errors using residual scoring (sec-
tion 2.7) by comparing its predicted against the observed fold-changes. We then
assess its pattern conformance in terms of the distribution of its residuals across
the leave-one-out cross-validation (LOOCV) as described below. We show our
basic work flow in figure 1(a).

To arrive at a background distribution of errors for each gene, we perform a
leave-one-out cross-validation omitting each experiment once. Each fold induces
|G| models. The prediction performance can thus be evaluated independently for
each gene in each experiment. The background-training set for an (experiment
e, gene g)-pair contains all but this experiment using the gene as dependent
variable. Once trained, the application of Padesco involves only one prediction
per gene using the model trained on all known experiments.

2.3 Differential Analysis

We apply a common differential microarray analysis setup as primary filter step.
Different experimental sample groups are compared by the Wilcoxon rank sum
statistic. For a given gene, a p-value is computed for each sample group com-
parison as measure of significance of the differential expression. P-values are
corrected for multiple testing using the procedure of Benjamini-Hochberg ([2]).
In this primary filter step we assume genes as differentially expressed if they
exhibit significance-level α of 0.01.

2.4 Support Vector Regression

Padesco is based on the training of predictive regression models using ν-Support
Vector Regression (SVR, [36,34], Section 2.5). We focus Support Vector Ma-
chines (SVMs) which have acquired general acceptance for microarray applica-
tions and have been used for a wide range of tasks ([36,29]). In particular array
and tissue classification ([10,5]). They have been shown to yield very competitive
results for applications in molecular biology ([30]). In their most common for-
mulation, SVMs work on a set D of real-valued vectors with associated labelsL,
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D = {〈x, l(x)〉|x ∈ Rn, l(x) ∈ L}. For Support Vector Regression (SVR) the
labels are real numbers (L = R). The ε-SVR estimates a function f : Rn → L
such that at most ε deviation (|f(x) − l(x)| < ε) from the correct values of
all training data is allowed. ν-SVR is an extension of ε-SVR which estimates
an optimal value for ε. The ν parameter controls the number of support vec-
tors and points outside of the ε-insensitive tube. A parameter C controls how
strong deviations from the optimal model are penalized. In our experiments we
apply the libSVM implementation of ν-SVR ([3]). A linear kernel is used in
our experiments. We examined the linear kernel as well as the radial basis ker-
nel. Final parameters have been chosen as (C, ν) = (100, 0.2) using an exhaustive
grid search combined with leave-one-experiment out (LOO) for hyper-parameters
C ∈ {10i|i = −2,−1, . . . , 4} and ν ∈ {0.2, . . . , 0.8}. This initial screening has
shown that on average the linear kernel provides similar performance to the ra-
dial basis kernel (screening γ ∈ {10i|i = −4,−3, . . . , 1}) and a stable prediction
performance across a wide range of parameters in our setting rendering an ad-
ditional CV unnecessary in our setting. We will now show how to use SVR to
train models which are capable of predicting fold-changes from other genes.

2.5 Model Building

We derive SVR models to predict gene expression fold-changes. A model to pre-
dict the fold-change of a gene is trained on fold-changes of the other (n−1) genes
in a CV setting skipping an experiment at a time. Here, the linear kernel enables
the immediate training on data sets containing missing values. We addition-
ally examined an orthogonal coding scheme ([39]), 0-imputation and average-
imputation but neither did increase the average performance of the method.
Since imputation methods may introduce additional errors we omit instances
carrying missing values (mis) as a label from both prediction and training. Raw
data is represented as a matrix D of expression values dij ∈ R ∪ {mis} with p
rows (arrays) and n columns (genes). We denote the set of genes G = {g1, . . . , gn}
and the set of arrays A = {a1, . . . , ap}. Each array a ∈ A belongs to an exper-
iment e(a) ∈ E, E = {e1, . . . , ek} where each experiment e divides into sample
groups Se = {se

1, . . . , s
e
|Se|}. Thus, each array maps to one condition se(a) ∈ Se.

A single measurement is real-valued and written as mg
a for gene g ∈ G in array

a ∈ A. Padesco is trained on a set of fold-change vectors derived from arrays
a, b ∈ A, a = b from the same experiment e(a) = e(b) but different conditions
i.e. se(a) = se(b). The fold-change for gene g between array a and array b is
computed as follows:

fg
a,b =

{
mis, if (mg

a = mis) or (mg
b = mis)

log2(
mg

a+c
mg

b+c
) otherwise.

(1)

By adding a constant c, small expression values up to an estimated noise level
will not lead to extreme fold-changes. The value of c was screened similar to SVR
hyper-parameters during the initial parameter screening and thus set to 50. In a
LOOCV, models are trained for the prediction of fold-changes of a gene g in an
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(a) Basic structure of Padesco (b) Schematic view of the fold-change (fc)
matrix F

Fig. 1. 1(a). A matrix F (see Figure 1(b)) of gene expression fold-changes (fcs) is
computed. A leave-one-out cross validation (LOOCV) is performed for each gene and
omitting each experiment once resulting in |G|∗|E| models. For a new experiment e, g’s
fcs are predicted with the model for (g,e) and compared to the measured fcs (residual
scoring). Based on the LOOCV a deviation score (padscore) is derived. It enables
deviation filtering of significant genes. 1(b). rows: fcs of array pairs; columns:
genes; fcs f1 . . . fp are computed among pairs from the same experiments. Training:
linear models are derived from fcs in the training set (gray shades) with training labels
of gene l (red). Prediction is done using the fcs in the test-set (blue areas) for the
test labels of gene l (yellow). They result in predicted fcs which can be compared to
measured fcs (residual scoring). Deviation: based on a leave-one-out validation each
gene is assigned a background distribution of deviations. A median absolute deviation
based score (padscore) is derived to estimate whether a prediction is better or worse
than expected.

experiment e. For target gene g with associated label l(g) the training is done
using pairwise fold-change vectors of arrays within the same experiment. The
induced fold-changes fg

e constitute the target values. The experiment e to be
predicted is omitted completely during training i.e. all its sample groups. Note
that this setting avoids over-fitting more rigorously. It enables the estimation of
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prediction performance. The LOOCV results in |E| = 25 models for each gene
and |G| ∗ |E| models overall. Note that the factor |E| is only relevant for initial
training purposes. The prediction requires the calculation of the prediction value
for |G| genes using existing models only. For our validation we obtain a model
for g in each experiment e.

2.6 Fold-Change Prediction

We now simulate the real-world setting: the experiment e has never been seen
during training and we like to do a prediction for a gene of interest g. First,
we calculate the fold-changes for all genes among all t pairs in this particular
experiment. This corresponds to a vector fh

i for each h ∈ G and each experiment
pair i = 1 . . . t. We are especially interested in the values fg = {fg

i |i = 1 . . . t}
holding the measured fold-changes for g and predict them using the model for
g. This yields f′g = {f ′g

i |i = 1 . . . t} constituting the vector of all predicted
fold-changes for g in experiment e.

2.7 Scoring Performance Deviation

We now have a measured fold-change vector fg and a predicted fold-change vector
f′g for an experiment e for a gene g. We compare them using the uncentered
Pearson correlation ρg,e. Given the two n-dimensional vectors fg and f′g it is
calculated as:

ρg,e = (
∑n

i=1 fg
i ·f ′g

i )√∑n
i=1 fg

i
2 ∑n

i=1 f ′g
i

2 (2)

We also compute a discretized version of fg. We set all fold-changes above a
threshold tf to 1 and all below to 0. Thereby, we can compute an Area Under
Curve (AUC) value by varying tf for f′g and leave the threshold for fg fixed at 2.

We now know how well a gene performs in a single experiment. Yet, we cannot
say whether this is more or less than we expected. To arrive at a deviation of
known patterns we compute the empirical distribution Dg of all {ρg,e|e ∈ E}.
The deviation for an experiment e and gene g is expressed in units of median
absolute deviations (padscore) with respect to this distribution. Given the me-
dian medg of Dg and the corresponding median absolute deviation madg the
padscore is given by:

(medg − ρg,e)/madg (3)

In order to be retained by Padesco genes must simultaneously satisfy the signifi-
cance level of differential expression in a specific sample group given by a certain
α-level as well as a minimum padscore. These genes are referred to as specific.
Remaining unspecific genes are significantly regulated, but could be predicted
by the SVR models.
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2.8 Permutation Test for the Evaluation of Padesco

Gold standards on the experiment-specific expression of genes are not available.
We use a permutation test to simulate genes deviating from their common be-
havior. By copying (spiking) the expression values from a significant gene g+

to an insignificant gene g− within an experiment e we force genes to violate
their common behavior and trivially become significant. We have two choices in
parameters here. First, we can choose a z-score level tz for significance. Second,
we can choose a padscore level tp to select interesting genes. The following per-
mutation test selects these thresholds and estimates the associated performance
for spike-in controls. We sample from the significant genes, and spike into the
insignificant genes. We then recompute the padscore for the previously insignifi-
cant gene. This process is repeated s times where s is the number of significant
genes. SPIKE denotes the set of spiked genes. After all repeats have been com-
puted we obtain sensitivity=tp/(tp+ fn) and precision=tp/(tp+ fp) and repeat
the evaluation for all possible thresholds tz and tp in the experiment. A gene
g’s recomputed padscore p determines whether it is tp, fn or fp based on these
thresholds (see Table 1).

Table 1. Classification assignment for the evaluation. A threshold on z-score (tz) and
padscore (tp) is chosen. After spiking (see Section 2.8) a gene g’s recomputed padscore p
determines its type.

Type Abbreviation Condition

true positive tp g ∈ SPIKE ∧ p ≥ tp

false positive fp g 
∈ SPIKE ∧ p ≥ tp

false negative fn g ∈ SPIKE ∧ p < tp

3 Results

Evaluation of Expression Fold-change Predictions. We use the uncentered
correlation to measure how well the regression models can predict expression
fold-changes of gene g in experiment e. The prediction performance is signifi-
cantly better than random for the majority of genes: the uncentered correlation
achieved an average value of ρu = 0.7 in our experiment. 91% of the predictions
exhibit a ρu > 0. After discretization we achieve an AUC of 81% on 15.7% cases
with a fold-change of more than two. We argue that the remaining specific can-
didates that cannot be predicted well are particularly interesting because they
exhibit an experiment-specific expression that could not be learned from the
training data.

Prediction of Fold-changes for Individual Genes. Gene signatures, i.e. sets
of genes that are differentially regulated between different cellular states are
frequently published along with microarray experiments. Such signatures are
expected to e.g. yield diagnostic markers that could help to differentiate be-
tween healthy and sick individuals. Here, we examine a gene signature that has
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Fig. 2. Scatter plot of predicted vs. measured fold-changes. Microarray studies
frequently derive gene signatures, i.e. sets of differentially expressed genes discrimi-
nating between experimental conditions. Gene signatures can be predicted well by our
SVR models, as shown here for a gene signature distinguishing ALL and MLL leukemic
genotypes published along with the data set of armstrong-mll ([1]). For every gene, our
SVR models predict expression changes between ALL and MLL correctly, although
the precise values of the measured fold-changes are not reproduced exactly. A gene is
depicted as a single point, i.e. as average of all fold-changes of the given gene (section
2.5) over the array-pairs comparing the conditions ALL and MLL.

been compiled by [1] to distinguish a particular chromosomal translocation in-
volving the MLL (mixed-lineage leukemia) gene from the regular ALL (acute
lymphoblastic leukemia) genotype. The MLL translocation is significant as it
frequently leads to an early relapse after chemotherapy. In Figure 2 we compare
our predictions against the experimentally determined expression fold-changes
for this gene signature. For all genes, the direction of differential expression can
be correctly derived from our predictions, although the values of the measured
fold-changes are not reproduced exactly. Similar results have been obtained for
other published signatures.

Permutation Test Based Evaluation. Padesco filters genes based on a stan-
dard differential expression z-score (Wilcoxon test, Section 2.3) and a novel
padscore (Section 2.7) indicating experiment-specific expression. This second
score indicates whether genes can be predicted less well than expected from
the training (background) set of experiments. They are selected due to their
padscore since they do not conform to their trained patterns. Cutoffs on the
two scores are required for the selection of specific candidate genes that exhibit
differential as well as experiment specific expression. The permutation test in-
troduced in Section 2.8 generates artificial pattern deviations through spiked
genes. As shown in figure 3 at a padscore cutoff of 2.0 specific candidates are
accurately detected (85% precision). The precision increases for differentially ex-
pressed genes (z > 3). Based on the evaluation we picked a padscore threshold
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Fig. 3. Precision (percent, colormap) vs. number of detected genes (log
base 2, contour). As gold standards are not available, we estimate the performance
of specific candidate gene detection by a permutation test. This test evaluates how well
known spike-in controls can be recovered by Padesco for arbitrary z-score (differential
expression) and padscore/m-score (experiment specific expression) thresholds. Specific
candidate genes can be reliably identified (85% precision) using a padscore above 1.5
even if they exhibit only moderate levels of differential expression (z-score < 4). By
combined z-score and padscore thresholds candidate gene lists can efficiently be reduced
for follow-up studies. Analyzed here are 59 condition comparisons from 13 experiments.
At the chosen p-score (2.0) and z-score (3.0) thresholds, some 250 specific candidates
(contour) are detected by Padesco.

of 2.0 and a z-score threshold of 3.0 to receive a moderate number of candidates
exhibiting a high precision. Thereby we selected some 250 specific candidates.

Specific Candidates. In this section we discuss sample results in two experi-
ments that examine prostate cancer ([32,40]) and one study on leukemia ([1]). As
a further example we provide results from a Toxoplasma gondii infection study
by [4]. Padesco does not aim to whole relevant pathways but allows to focus on
a small subset of interesting genes for further analysis. [38] discuss key pathways
which are likely to be disturbed to promote cancer in almost any cell type. De-
velopment of cancer is strongly coupled to the perturbation of one or more such
pathways. The interleukin 2 pathway has been shown to be deregulated in many
cancer types and was also described to be involved in prostate cancer. IL2RB
dimerization with the α-subunit leads to a higher affinity towards interleukin-2.
IL-2 treatment was previously shown to lead to reduced prostate tumor growth
in rats ([14,24]). Another cancer therapy using IL-2 has been developed by [25].
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Eicosanoids are known to interact with immune messengers like interleukins.
In the first experiment by [40] tumor samples were compared against normal and
HUVEC (Human Umbilical Vein Endothelial Cells) samples, where 27 genes have
been detected as differentially expressed. For an initial screening of functional sig-
nificance we apply a gene ontology over-representation analysis (DAVID, [6,18])
on the differentially expressed genes, i.e. without padscore filter. As for [40] a
screening for significance (Benjamini-Hochberg corrected scores, α = 0.01) shows
no significant enrichment, yet 3 genes (IPR, EPR3R and CYT450J) are found to
belong to the eicosanoid metabolism (p=0.08). With padscore filter Interleukin
2 receptor β (IL2RB) is the only gene found to be interesting in this experi-
ment. Padesco reported an unusual expression of IL2RB in the tumor samples,
which could explain the decoupling of eicosanoid pathway members from IL2RB
regulation.

The second examined experiment on prostate cancer is described in [32]. Here,
60 differentially expressed genes were identified. DAVID analysis shows no signif-
icant over-representation. After Padesco-filtering, 4 genes remain that we discuss
in the following. HCK (padscore=7.2), an src related tyrosin kinase is most inter-
esting in terms of the padscore. [33] describes its association with gpl130 and the
formation of a complex with IL-6R which promotes high affinity binding of IL-6.
In prostate cancer, IL-6 is a key protein. It has been suggested to contribute
to prostate cancer progression towards an androgen-independent state. We ob-
serve MGC17330 (PIK3IP1, padscore=2.6) to be the second padscore relevant
gene. It is a negative regulator of PI3K. Src kinases are upstream mediators for
the PI3K signaling pathway with important roles in proliferation, migration and
survival. It is described to be a tumor suppressor in heptacellular carcinomas
([9]). It shows only a weak positive fold-change in this experiment which may
explain why it fails as a suppressor here. Mutations within the PI3K pathway
have been described by [38] to be involved in a number of tumor types. The third
gene found is ATP2B1 (PMCA1, padscore=2.6). It is a Ca2+ ATPase subunit.
An unusual reduction in gene expression can be observed in our data. This re-
duction is discussed by [28]. Ca2+ pumps are likely to provide good therapeutic
targets for anticancer drug development as suggested by [23] and [28]. They em-
phasize the role of Ca2+ (intracellular calcium) in the life-and-death decisions of
the cell such that disturbed control of Ca2+ may lead to an inappropriate cell
fate. The fourth candidate – C2orf3 (padscore=2.03) – has also been identified
by an approach by [16]. They analysed three prostate cancer sets but since more
than a hundred genes are identified and C2orf3 is no top-ranking gene this can-
didate has not been subject to further discussion. The transcription repressor
binds GC-rich sequences of the epidermal growth factor receptor, beta-actin and
calcium-dependent protease promoters.

[4] analyze diverse parasite infections on human macrophages and dendritic
cells. We find CCR1 to be the most prominent gene (padscore = 9.29) in the
Toxoplasma infection subgroup. Mice lacking this chemokine receptor CCR1 have
shown dramatically increased mortality after Toxomplasma gondii infection [19].
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Fig. 4. Common Regulation and Experiment Deviation. The heat map shows
a cluster of genes which are usually correlated (pairwise Pearson’s Correlation above
0.8, ’yoon-p53 (Yoon)’ [42] is given as reference). Here, AUH with a padscore of 5.09
is detected as interesting in ’chaussabel-parasite (Cha)’ [4].

4 Discussion

Genes are not regulated individually ([22,35]). Frequently, patterns of co- or anti-
regulation can be observed such that the up-regulation of a gene A is a good
hint that another gene B will also be up-regulated while a third gene C will
rather be down-regulated. The disruption of such patterns pinpoints genes with
experiment-specific expressions. We call such genes specific candidates in con-
trast to the remaining unspecific candidates that exhibit only generic expression
patterns. Padesco detects specific candidates by analyzing fold-change based
co-expression patterns with Support Vector Regression (SVR) models trained
on a background set of microarray experiments. After training, we select spe-
cific candidate genes via a two stage filter. The first filter step is a routine
analysis of differential expression (significant genes). A novel second filter se-
lects genes that show deviations from generic expression patterns predictable by
linear models (interesting genes).

In order to avoid the predictions of false specific candidates Padesco depends
on a good prediction performance of the underlying SVR models. The prediction
performance can be evaluated rigorously as the prediction target experiment is
excluded from training in a leave one out cross-validation setting where all con-
ditions of particular experiments are left out. This not only excludes condition
specific but also experiment specific biases. We examined 4117 genes across 25 ex-
periments consisting of 1437 individual microarrays. Predictions by Padesco are
better than expected by chance in 91% of the cases. It has been criticized that
gene signatures rarely help to identify the involved biological processes or the
causal regulatory mechanisms ([31]). [15] further argued that a gene signatures
frequently do not represent specific attributes of the measured biological condi-
tions. We analyzed gene signatures published together with the corresponding
microarray experiments. These signatures were selected by the authors of the
corresponding studies to discriminate between experimental conditions (sample
groups). We found that expression changes for genes in signatures are predicted



Experiment Specific Expression Patterns 351

well by our SVR models trained on other, unrelated experiments. An example
is the signature distinguishing ALL and MLL ([1]). Although the ALL/AML
signature certainly provides discriminating marker genes, it does not capture
experiment specific expression patterns according to Padesco.

The extend of differential expression alone does not indicate experiment spe-
cific involvement of genes. Based on the prediction performance we identified
specific candidates genes that exhibit experiment specific expression, i.e. expres-
sion changes that cannot be explained (predicted) by our models. This analysis
is related to co-expression studies and complements differential expression analy-
sis. It enables to focus on concise candidate lists for follow-up studies that consist
of experiment-specific candidates only. We screened for filter thresholds and es-
timated Padesco’s performance from permutation tests as comprehensive gold
standards for the experiment specific expression of genes are not available. This
newly devised simulation approach suggests that specific candidates are identi-
fied reliably by Padesco (> 85% precision at padscore > 1.5) even if they show
only marginal levels of differential expression. On the other hand, more than 90%
of the genes selected by differential expression alone exhibit only generic expres-
sion patterns and could thus be excluded from further studies. Specific candidates
are likely to represent characteristic features of the corresponding experimental
conditions.

We evaluated Padesco selected genes for two data sets on prostate cancer.
Besides interesting new candidates, we found several genes with a known in-
volvement in the disease. Some of them, such as IL-2RB, have already been
reported as promising drug targets. We demonstrated that such examples are
more difficult to detect by differential expression analysis alone. Instead, differ-
ential expression tends to pick up genes that act similarly in other, biologically
unrelated experiments. Thus, in combination with differential expression analy-
sis, Padesco is a promising protocol for the detection and analysis of particularly
distinctive features of microarray experiments.
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Large-scale data collection technologies have come to play a central role in biological 
and biomedical research in the last decade. Consequently, it has become a major goal 
of functional genomics to develop, based on such data, a comprehensive description 
of the functions and interactions of all genes and proteins in a genome. Most large-
scale biological data, including gene expression profiles, are usually represented by a 
matrix, where n genes are examined in d experiments. Here, we view such data as a 
set of n points (vectors) in d-dimensional space, each of which represents the profile 
of a given gene over d different experimental conditions. Many known methods that 
have yielded meaningful biological insights seek geometric or algebraic features of 
these vectors.  

To properly appreciate our approach, it is useful to discuss the activity in the ma-
chine-learning area as a modern-day approach to the classical questions of statistics. 
The data at hand is considered as being sampled from some distribution and the ques-
tion is to get a comprehensive description of that distribution. When data items are (or 
can be naturally viewed as) points in space, it is possible to utilize any “unexpected” 
geometric properties that this set of points (corresponding to data items) has. For in-
stance, unanticipated pairs of points (even nearly) in the same direction from the ori-
gin are likely a reflection of an interesting property in the domain from which the data 
set came. This is our interpretation of correlation analysis. Likewise, a generic point 
set in Euclidean space is not expected to be stretched in any special directions. There-
fore if your data set, viewed geometrically, is stretched in certain directions, it can 
often be used to discover interesting phenomena, this is our interpretation of SVD 
analysis, and its principal component analysis (PCA) implementation. 

Correlations and stretch are only two of the numerous properties that one may con-
sider in a point set in Euclidean space. Our work considers another very basic property 
that we know not to exist in generic sets: (Nearly) linearly-dependent sets of points of 
cardinality that is substantially smaller than the dimension of the host space. When such 
an unexpected property of the data set is discovered, two questions suggest themselves: 
(i) Is this phenomenon only coincidental? and (ii) How can this geometric property of the 
data help us learn something about the system which it represents? In this study, we aim 
to address these questions. We confirm the robustness of this property under multiple 
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perturbations and the generality for multiple model organisms, and further demonstrate 
the significance of the biological insights it unveils.  

The geometric principle that underlies this is close in spirit, and inspired by, recent 
advances in compressive sensing and sparse signal recovery (Candes and Tao, 2005; 
Donoho, 2006). A conceptually new method that we call SPARCLE (SPArse ReCov-
ery of Linear combinations of Expression) is introduced. In practice, we wish to  
discover linear dependencies within groups of expression profiles, using full tran-
scriptome measured under multiple environmental conditions. To this end, for each  
 

 

Fig. 1. Sparse reconstruction of S. cerevisiae genes expression profiles, and SPARCLE-based 
machine learning prediction. (A) Number of expression profiles needed to linearly reconstruct 
each profile in the yeast transcriptome. 6254 yeast genes in 85 experiments analyzed. The 
common representation uses considerably less genes than the rank of the matrix (85). (B) The 
expression profile reconstruction for MEP1 (ammonium transporter) as recovered by 
SPARCLE. The expression profile of the gene (bottom) is displayed as a linear combination of 
the profiles of its supporting genes, with their corresponding coefficients (left). For comprehen-
sibility, only the 15 genes with the largest absolute value coefficients are shown, as well as a 
third of the 85 conditions. (C) Prediction of S. cerevisiae genes' associations according to GO 
Biological Process, where accuracy is traded off with coverage. A comparison of SPARCLE-
based AdaBoost learning (SPARCLE+AB), correlation-based AdaBoost learning (Correla-
tions+AB), correlations-based shortest path (SPath) method (Zhou, et al., 2002), and pairwise 
correlations for the raw data (Correlations). (D) Similar predictions of P. falciparum genes' 
associations. 
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gene, we seek the smallest number of expression profiles, whose linear span contains 
the expression profile of that gene. We exemplified SPARCLE on Saccharomyces 
cerevisiae transcriptome that consists of 170 conditions and ~6200 genes (Knijnen-
burg, et al., 2009), recovering the expression profiles using short (Fig. 1A) representa-
tions. Specifically, each profile reconstructed as a linear combination of a small  
subset of other profiles (Fig. 1B). We further confirmed the stability and robustness of 
SPARCLE results under perturbations to the data. The value of the information re-
trieved by the SPARCLE approach was demonstrated by using its results as a basis 
for machine learning classification of gene associations. A comprehensive evaluation 
was performed on the immensely explored budding yeast and the poorly annotated 
malaria-parasite Plasmodium falciparum transcriptomes (Knijnenburg, et al., 2009). 
The evaluation covers the PPI networks and all resolution levels of the GO annotation 
database, and included accurate prediction of pairwise genes’ associations (Fig. 1 
C,D), using the AdaBoost platform. We demonstrate, applying the SPARCLE based 
machine learning method, the large potential of using such a poorly studied geometric 
approach to extract meaningful insights from raw high-throughput data.  It is a first 
step of utilizing the above-described geometric perspective toward a deeper under-
standing of the complexity of gene associations. 

A detailed study is available in Prat et al. (2011) Bioinformatics, in press. This 
study is partially supported by the ISF grant and the Prospects EU Framework VII. 
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We describe the first genome wide analysis of translation based on a model
aimed at capturing the physical and dynamical aspects of this process. The
Ribosomal Flow Model (RFM) is a computationally efficient approximation of
the Totally Asymmetric Exclusion Process (TASEP) model (e.g. see [1]). The
RFM is sensitive to the order of codons in the coding sequence, the tRNA pool
of the organism, interactions between ribosomes and their size (see Figure 1).
The RFM predicts fundamental outcomes of the translation process, including
translation rates, protein abundance and ribosomal densities [2] and the relation
between all these variables, better than alternative (’non-physical’) approaches
(e.g. see [3,4]). In addition, we show that the RFM model can be used for accurate
inference of initiation rates, the effect of codon order on protein abundance and
the cost of translation. All these variables could not be inferred by previous
predictors.

In the RFM, mRNA molecules are coarse-grained into sites of C codons;
(in the Figure C = 3); in practice we use C = 25, a value that is close to
various geometrical properties of the ribosome. Ribosomes arrive at the first site
with initiation rate λ but are only able to bind if this site is not occupied by
another ribosome. A ribosome that occupies the ith site proceeds, with rate λi,
to the consecutive site provided the latter is not occupied by another ribosome.
Transition rates are determined by the codon composition of each site and the
tRNA pool of the organism (Figure 1). Denoting the probability that the ith site
is occupied at time t by pi(t), the rate of ribosome flow into/out of the system is
given by: λ(1 − p1(t)) and λnpn(t) respectively. The rate of ribosome flow from
site i to site i + 1 is given by: λipi(t)(1 − pi+1(t)).
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Fig. 1. An illustration of the RFM. A. The RFM is based on the TASEP and is
sensitive to the order of codons in the coding sequence, the tRNA pool of the organism,
interactions between ribosomes and their size. B. To accelerate simulation times we
approximate the stochastic dynamics of the TASEP by a set of differential equations
describing the flow of ribosomes.

From applying the RFM in a systems biological study of translation it follows
that increasing the number of available ribosomes (or equivalently the initiation
rate) increases the genomic translation rate and the mean ribosome density only
up to a certain point, beyond which both saturate. Strikingly, assuming that the
translation system is tuned to work at the pre-saturation point leads to the best
predictions of experimental data. This implies that, in all the analyzed organisms
(from bacteria to Human), ribosome allocation (initiation rate) is optimized to
the pre-saturation point. The fact that similar results were not observed for
heterologous genes indicates that this feature is under selection.

Remarkably, the gap between the performances of the RFM in comparison with
alternative predictors is strikingly large in the case of heterologous genes [5,6],
testifying to the model’s promising biotechnological value in predicting the protein
abundance of heterologous proteins before expressing them in the desired host.
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Abstract. Protein-protein interactions (PPIs) are vital for cell signal-
ing, protein trafficking and localization, gene expression, and many other
biological functions. Rational modification of PPI targets provides a
mechanism to understand their function and importance. However, PPI
systems often have many more degrees of freedom and flexibility than
the small-molecule binding sites typically targeted by protein design al-
gorithms. To handle these challenging design systems, we have built upon
the computational protein design algorithm K∗ [8,19] to develop a new
design algorithm to study protein-protein and protein-peptide interac-
tions. We validated our algorithm through the design and experimental
testing of novel peptide inhibitors.

Previously, K∗ required that a complete partition function be com-
puted for one member of the designed protein complex. While this re-
quirement is generally obtainable for active-site designs, PPI systems
are often much larger, precluding the exact determination of the parti-
tion function. We have developed proofs that show that the new K∗ al-
gorithm combinatorially prunes the protein sequence and conformation
space and guarantees that a provably-accurate ε-approximation to the
K∗ score can be computed. These new proofs yield new algorithms to
better model large protein systems, which have been integrated into the
K∗ code base.

K∗ computationally searches for sequence mutations that will opti-
mize the affinity of a given protein complex. The algorithm scores a
single protein complex sequence by computing Boltzmann-weighted par-
tition functions over structural molecular ensembles and taking a ratio of
the partition functions to find provably-accurate ε-approximations to the
K∗ score, which predicts the binding constant. The K∗ algorithm uses
several provable methods to guarantee that it finds the gap-free optimal
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sequences for the designed protein complex. The algorithm allows for
flexible minimization during the conformational search while still main-
taining provable guarantees by using the minimization-aware dead-end
elimination criterion, minDEE. Further pruning conditions are applied
to fully explore the sequence and conformation space.

To demonstrate the ability of K∗ to design protein-peptide interac-
tions, we applied the ensemble-based design algorithm to the CFTR-
associated ligand, CAL, which binds to the C-terminus of CFTR, the
chloride channel mutated in human patients with cystic fibrosis. K∗ was
retrospectively used to search over a set of peptide ligands that can in-
hibit the CAL-CFTR interaction, and K∗ successfully enriched for pep-
tide inhibitors of CAL. We then used K∗ to prospectively design novel
inhibitor peptides. The top-ranked K∗-designed peptide inhibitors were
experimentally validated in the wet lab and, remarkably, all bound with
μM affinity. The top inhibitor bound with seven-fold higher affinity than
the best hexamer peptide inhibitor previously available and with 331-
fold higher affinity than the CFTR C-terminus.

Abbreviations used: PPI, protein-protein interaction; CFTR, Cystic
fibrosis transmembrane conductance regulator; CAL, CFTR-associated
ligand; DEE, Dead-end elimination; MC, Monte Carlo; CF, cystic fibro-
sis; NHERF1, Na+/H+ Exchanger Regulatory Factor 1; GMEC, global
minimum energy conformation; BLU, biochemical light unit; ROC, re-
ceiver operating curve; AUC, area under the curve.

1 Introduction

The ability to accurately design protein-protein interactions (PPIs) would pro-
vide a powerful method to create new interactions or disrupt existing ones. PPI
binding is very difficult to fully characterize due to a PPI’s large, flexible and
energetically shallow binding surface. This complexity is evidenced by the diffi-
culty that has been encountered when trying to design small molecules to disrupt
a target PPI [22,52]. Protein design methods provide a promising approach to
rationally design PPIs, but most protein design studies have focused on smaller
protein-small molecule systems. The intricacies of PPIs require improved accu-
racy in protein design algorithms. In light of these challenges, we have developed
the computational protein design algorithm, K∗, to study protein-protein and
protein-peptide interactions.

Typically, protein design algorithms focus on finding the single global mini-
mum energy conformation (GMEC) by searching over a reduced conformation
space using a fixed backbone and discrete side-chain rotamers [10]. The new
design algorithm, K∗, improves the scoring of mutation sequences by including
continuous rotamer flexibility during the conformational search, and using an
ensemble-based (as opposed to single structure-based) score to better predict
the binding affinity of each mutated protein sequence [8,19]. We build upon the
previous K∗ algorithm by developing new proofs that show that K∗ can be ap-
plied to protein-protein interactions and implementing the necessary changes in
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the existing software. We highlight the benefits of using this approach by suc-
cessfully predicting and designing peptide inhibitors of the protein complex of
the CFTR-associated ligand (CAL) bound to the cystic fibrosis transmembrane
conductance regulator (CFTR).

1.1 Protein Design and K∗

Structure-based computational protein design seeks to find amino-acid sequences
that are compatible with a specific protein fold. Often, additional functional
constraints are applied to the problem in order to design a protein with a given
catalytic or binding activity. Because the conformational space of a protein is
large, design algorithms often assume a fixed backbone conformation and re-
duce side-chain configuration space by using discrete conformations called ro-
tamers [14,27,41,46]. Thus, the traditional design problem can be defined as:
for a given fixed backbone conformation, find the side chain rotamers such that
the energy function for the entire protein structure is minimized, also known as
finding the GMEC [10,11,12,34]. As stated, the protein design problem has been
shown to be NP-hard and NP-hard to approximate [7,44].

The complexity of the protein design problem has motivated the development
of several different algorithms. Heuristic algorithms try to explore the most rel-
evant parts of protein conformational space by employing self-consistent mean
field theory [33], genetic algorithms [12,30], Monte Carlo (MC) and simulated an-
nealing protocols [28,35,40], or belief propagation [16,55]. These algorithms have
no guarantee on how close their results are to the optimal solution so it is possible
to miss good candidate structures. Provable algorithms do not suffer from this
deficiency. These algorithms include branch-and-bound techniques [23,26,38], in-
teger linear programming [1,32], tree decomposition [39], or dead-end elimination
(DEE), the most commonly used provable technique [13,26]. DEE uses provable
pruning criteria to remove rotamers from the search space that cannot be part
of the GMEC [13,18,21,36,43].

These methods strive to find the GMEC for a given design problem, but
proteins exist as a thermodynamic ensemble and not just a single low-energy
structure [20]. There is evidence that accounting for this ensemble can help find
true native protein structures [3,31,56]. The new design algorithm, K∗, uses this
ensemble by computing Boltzmann-weighted partition functions over structural
molecular ensembles to find provably-accurate approximations to the binding
constant for a protein complex [8,19]. K∗ first prunes the conformational space
with minimized DEE (minDEE) [19], and then uses the A* algorithm to enumer-
ate conformations in order of their lower energy bounds to compute the partition
functions. The K∗ algorithm has been shown previously to design a switch in
enzyme specificity for an enzyme in the non-ribosomal peptide synthetase path-
way [8] and to predict resistance mutations for antibiotic targets [15]. We develop
new proofs for the K∗ algorithm and enhance the ability of the software to handle
large systems so novel protein-protein interactions can be designed.
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1.2 CFTR and CAL

CFTR is an epithelial chloride channel that is mutated in cystic fibrosis (CF)
patients. The most common disease-associated mutation is a single amino acid
deletion that causes CFTR misfolding and endoplasmic reticulum retention. If
rescued from folding errors, mutant CFTR still maintains residual channel ac-
tivity, but is rapidly degraded. The PDZ domain-containing proteins CAL and
Na+/H+ Exchanger Regulatory Factor 1 (NHERF1) competitively bind the C-
terminus of CFTR. They are involved in the endocytic trafficking of CFTR to
either degradation or recycling pathways, respectively (Fig. 1C) [9,25].

The PDZ domain is a common structural motif in proteins and generally
binds to the C-termini of other proteins. When bound to the PDZ domain, the
C-terminus of a protein essentially forms another β-strand with the existing
PDZ domain β-sheet (Fig. 1A). The specific β-sheet interactions and major
binding pocket can be seen in Fig. 1B. PDZ domains can be separated into
classes that are known to bind different amino acid sequence motifs [42]. The
CAL PDZ domain is a class I PDZ domain which means it recognizes the C-
terminal sequence X-S/T-X-I/V/L (where X is any amino acid), consistent with
the CFTR C-terminus sequence DTRL.

RNA interference experiments have demonstrated that knocking down CAL
increases expression of mutant CFTR in the membrane [53]. This suggests that
inhibiting the CAL-CFTR interaction could also enhance CFTR membrane ex-
pression and could provide a potential avenue to ameliorating cystic fibrosis
symptoms. In this study we seek to use computational design to find a peptide
inhibitor to disrupt CAL-CFTR binding.

Fig. 1. (A) Cartoon representation of the CAL PDZ domain (green) bound to a CFTR
C-terminus mimic (gray) (Structure from: [45]) (B) Detailed view of the CAL PDZ
domain binding site. (C) CFTR trafficking pathway adapted from [25].

1.3 Previous Work

Design methodologies have been previously developed to study protein-protein
interactions and, more specifically, PDZ domain interactions. These methods can
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be divided into sequence- and structure-based methods. Sequence-based methods
rely on large sequence alignments in order to determine the likelihood that a
given peptide binds to a certain protein from a given protein family. Two previous
methods have specifically been applied to PDZ domains [4,50]. The methods
analyze the sequence alignments as well as known protein-peptide interactions
for the PDZ domain family to predict which peptides are likely to bind a given
PDZ domain.

Previous structure-based computational techniques have been applied to
protein-protein interactions.These techniques have used eitherMCmethods [29], a
combination of MC and DEE [48], charge optimization with discrete rigid-rotamer
DEE/A* [2] or belief propagation [31] to predict and/or improve the binding of
protein-protein complexes. One study successfully used a self-consistent mean
field approach to improve the binding of two PDZ domains to their respective
peptide ligand [47]. That study focused on finding mutations to the PDZ domain
that could increase binding affinity, while our work focuses on methods to find
a peptide inhibitor to bind a specific PDZ domain.

The methodology presented here complements these methods while obtaining
some significant advantages over what has been done previously. Compared to the
sequence-based methods, no structural information is lost in our approach. Also,
the sequence-based methods require a large number of sequences for proteins in a
given family as well as large amounts of binding data on the family. Our methods
do not require this multitude of data in order to improve the binding of a protein
complex. Our methods are general, requiring only a starting template structure to
design other PPI systems. All but one of the structure-based methods mentioned
above focus on finding the single GMEC conformation. In addition, only the work
of [2] utilizes provable techniques, but none use both provable techniques and pro-
tein ensembles. Our statistical mechanics-based method has provable guarantees
for finding the optimal sequence, and also scores each sequence with a partition
function-based ranking, which better reflects natural binding affinity. Finally, the
K∗ method uses the minDEE pruning criteria [19] in order to allow for continuous
minimization of rotamers during the mutation search.

In this paper we present a novel ensemble-based algorithm for the design
of protein-protein interactions. The K∗ algorithm uses a statistical mechanics-
derived ranking to score protein complexes that will improve binding. The fol-
lowing contributions are made in this work:
– Introduction of an ensemble-based algorithm, K∗, for protein-protein inter-

face design;
– Development of proofs showing that the sequence ranking score can be com-

puted with provable accuracy;
– The use of K∗ to retrospectively predict CAL-CFTR peptide-array data;
– The use of K∗ to prospectively search 2166 peptide inhibitor sequences (ap-

proximately 1015 possible conformations) and predict novel peptides that
successfully inhibit the CAL-CFTR protein complex;

– Experimental (wet-lab) testing of the top 11 novel designed inhibitors. In-
hibitors were found with up to a 331-fold improvement in binding over the
wildtype CFTR sequence.
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2 Methods

2.1 K∗ Algorithm

K∗ computationally searches over protein sequence mutations for a given protein-
protein or protein-peptide complex and assigns each sequence a score, called a
K∗ score. To compute the score for a given protein-protein complex sequence,
K∗ evaluates the low-energy conformations for the sequence and uses them to
compute a Boltzmann-weighted partition function. Unfortunately, it is not pos-
sible to compute exact partition functions for a given protein complex, because
that would require integrating an exact energy function over a protein’s entire
conformation space. Instead, partition functions are computed for each protein
binding partner using rotamer-based ensembles defined as follows:

q
A

=
∑
a∈A

exp(−Ea/RT ), q
B

=
∑
b∈B

exp(−Eb/RT ), q
AB
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ab∈AB

exp(−Eab/RT )

where q
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is the partition function for protein A bound to protein B, and q
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q
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are the partition functions for the unbound proteins, A and B. The K∗ score is
defined as the ratio of partition functions: K∗ = q

AB

q
A

q
B

, which is an approximation
of the protein complex binding constant, KA [19]. Sequences are ranked based
on their K∗ score where sequences with a higher K∗ score are considered to have
a better binding constant for the bound complex.

Fig. 2 shows the general framework for the K∗ algorithm. In order to effi-
ciently search protein conformation space, K∗ searches over discrete side-chain
conformations called rotamers. Side-chain rotamers are statistically overrepre-
sented discrete side-chain conformations that are used to efficiently search the
continuous side-chain conformation space. During a partition function calcula-
tion, K∗ uses dead-end elimination (DEE) to prune side-chain conformations
that provably cannot be part of low-energy structures. Originally, DEE was only
able to prune over rigid side-chain rotamers [13]. K∗ utilizes the newer DEE
pruning criteria, minDEE [19], in order to prune side-chains where the discrete
rotamers are allowed to minimize during the search in order to relieve poten-
tial clashes that can arise from only allowing rigid side-chain placements. After
minDEE pruning, the branch-and-bound algorithm A* [38] is used to enumer-
ate low-energy conformations [19]. These conformations are then Boltzmann
weighted and incorporated into the partition function. The partition function is
computed with respect to the input model described above, so the accuracy of
the partition function is bounded by the accuracy of the input model.

Most of the steps in K∗ are provable. That is, guarantees can be made on
the optimality of the results from a given step. The minDEE pruning criteria
provably maintains that all rotamers that cannot be a part of the lowest en-
ergy conformations are pruned from the protein search space. The A* algorithm
provably enumerates the protein conformations gap-free in order of increasing
lower bounds on energy. Finally, K∗ uses these low energy conformations to
compute an ε-approximation to the partition function, where ε is a user-selected
parameter. The ability to compute this partition function approximation hinges
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on the first two provable steps. If we were to use heuristic steps to find the low
energy conformations, it could not be guaranteed that all the low energy con-
formations are found and we would lose the ability to calculate a provably-good
ε-approximation to the partition function. Because of the provable aspects of
K∗, if K∗ makes an errant prediction, we can be certain that it is due to an
inaccuracy in the input model and not a problem (such as inadequate optimiza-
tion) with our search algorithm. This makes it substantially easier to improve
the model based on experimental feedback, as we show in Sec. 3.2.

Fig. 2. Overview of K∗ Algorithm. K∗ takes as input an initial protein structure,
a rotamer library to search over side-chain conformations, and an energy function
to evaluate conformations. Minimization-aware DEE is used to prune rotamers that
are not part of the lowest energy conformations for a given sequence. The remaining
conformations from DEE are enumerated in order of increasing energy lower bounds
using A*. Finally, the conformations are Boltzmann-weighted and used to compute
partition functions and ultimately a K∗ score for each sequence.

2.2 Extension of K∗ to Mutations/Flexibility on Two Protein
Strands

K∗ has previously been successfully applied to alter enzyme active site speci-
ficity [8] and predict resistance mutations of a highly adaptive protein [15]. These
studies show the great potential that K∗ has to design biological systems. How-
ever, protein-protein systems can be much larger than these previous systems
K∗ has studied. When applied to PPI systems, the original K∗ design methodol-
ogy does not produce the provable guarantees it obtained for enzyme active sites.
As described above, these guarantees are a key part of the K∗ algorithm. Most
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importantly, the provable properties allow the calculation of the ε-approximation
of the K∗ score, which predicts the KA for the protein complex.

According to previous work, the guarantees for calculating the K∗ score re-
quire that one of the partition functions in the protein complex be computed
exactly. While this requirement is generally true for active-site designs, PPI sys-
tems are often much larger and the full partition function calculation is not
computationally tractable. Specifically, the previous K∗ proofs [19] for intermu-
tation pruning and calculation of an ε-approximation to the K∗ score relied on
this requirement. We now show that it is possible to improve the K∗ algorithm
to maintain these critical provable guarantees. As a result, systems where both
binding partners in the protein complex are flexible or mutable during the search
can be accurately studied by K∗.

The idea behind intermutation pruning is that it is possible to provably show
that, in some cases, a K∗ score that is currently being computed for one sequence
will never be better than a K∗ score that has already been found for another
sequence. This pruning step significantly reduces the number of K∗ scores that
must be fully computed and speeds up the algorithm. Since in a positive design
we only desire the top few sequences, we use a parameter (γ) to limit the number
of sequences for which we must find an ε-approximation. Below, we develop
the new pruning condition, by maintaining that the partition function for each
protein complex partner is an ε-approximation.

We seek to show that there exists a halting condition for the conformation
enumeration such that we know we have an ε-approximation to the bound par-
tition function for a given protein complex. Given that K∗

i ≥ γK∗
0 , where K∗

i

is the K∗ score of the current sequence, K∗
0 is the best score observed so far,

and γ is a user-specified parameter defining the number of top scoring sequences
for which we want an ε-approximation, there exists an intermutation pruning
criteria for PPI designs. In the following lemma, note that n is the number of
conformations in the search that remain to be computed, k is the number of
conformations that have been pruned from the search with DEE, E0 is the lower
energy bound on all pruned conformations, R is the universal gas constant, and
T is the temperature. The full partition function for the protein-protein com-
plex, and unbound proteins are qAB , qA , and qB respectively, while q∗

AB
, q∗

A
, and

q∗
B

denote the current calculated value of the partition functions during the
computational search.

Lemma 1. If the lower bound Et on the minimized energy of the (m+1)th con-
formation returned by A∗ satisfies Et ≥ −RT (ln(γεK∗

0q∗
A
q∗

B
−k exp(−E0/RT ))−

ln n), then the partition function computation can be halted, with q∗
AB

guaran-
teed to be an ε-approximation to the true partition function, q

AB
, for a mutation

sequence whose score K∗
i satisfies K∗

i ≥ γK∗
0 .

This lemma shows that even when designing for protein-protein interactions,
there exists a provable sequence pruning criterion during the K∗ search. The
proof of Lemma 1 is provided in the supplementary information (SI) [49].

Now we show that we can obtain a provable guarantee on the accuracy
of the K∗ score for each protein sequence. Since both partition functions are
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ε-approximations, we no longer obtain an ε-approximation to the K∗ score but
rather the following:

Lemma 2. When mutations (or flexible residues) are allowed on both strands
in a computational design, the computed K∗ score is a σ-approximation to the
actual K∗ score, where σ = ε(2 − ε).

Since neither of the protein complex partition functions are calculated fully, theK∗

score approximation is an 2ε-approximation as opposed to the ε-approximation of
the previous method. This implies that we must compute better partition function
approximations than before to maintain the same level of K∗ score approximation.
Nevertheless, the fact that the K∗ score can still be provably approximated, confers
all the advantages of a provable algorithmas stated in Sec. 2.1. The proof of Lemma
2 is provided in the SI [49].

3 Results

Using the results of Sec. 2.2, we applied the updated K∗ algorithm to the CAL-
CFTR system. The CAL PDZ domain has been implicated in the trafficking of
CFTR. We seek to find peptide inhibitors of the CAL PDZ domain to disrupt
CAL-CFTR binding, and in this section we describe how we used K∗ to discover
successful peptide inhibitors. First, in order to obtain accurate designs we trained
the energy term weights using known inhibitory constants for natural CAL PDZ
domain peptide inhibitors. Next, the K∗ algorithm was applied retrospectively
to predict peptide-array binding data to validate the design methodology. The
retrospective test showed we were able to enrich for peptide inhibitors, so we then
used K∗ to prospectively find new peptide inhibitors of CAL. Top predicted se-
quences were then synthesized and experimentally validated and we determined
that they all bind CAL with μM affinity.

3.1 Computational Designs with K∗

The previously determined NMR structure of the CAL PDZ domain bound to
the C-terminus of CFTR was used to study the binding of CAL to CFTR [45].
The CFTR peptide in the NMR structure was truncated to the six most C-
terminal amino acids and mutated to the amino acid sequence WQTSII to mimic
the best peptide hexamer for CAL discovered thus far (unpublished data). An
acetyl group was modeled onto the N-terminus of the peptide using restrained
molecular dynamics and minimization where the N-terminus of the peptide was
allowed to move, while the remainder of the protein complex was restrained
using a harmonic potential [6]. An 8 Å shell around the peptide hexamer was
used as the input structure to K∗. The four most C-terminal residues, TSII,
were allowed to mutate to the following residues during the design search: Thr
(all amino acids except Pro), Ser (T/S), Ile (all amino acids except Pro), and Ile
(I/L/V). In addition, the Probe program [54] was used to determine the side-
chains on CAL that interact with the CFTR peptide mimic. These nine residues
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that interact with the peptide, as well as the two most N-terminal residues on
the peptide, were allowed to be flexible during the design search. The peptide
was also allowed to rotate and translate as a rigid body during the search, as
previously described for small molecules [8,15,19]. To explore the feasibility of
our new algorithms, unless otherwise noted, full partition functions were not
computed and a maximum of 103 conformations were allowed to contribute to
each partition function. The system size was addressed in part by efficiently
parallelizing the partition function calculation in the design software.

Rotamer values were taken from the Penultimate Rotamer Library modal
values [41]. The energy function used to evaluate protein conformations has been
previously described [8,15]. The energy function, Energy = vdW+Coul+EEF1,
consists of a van der Waals term, a Coulombic electrostatics term, and an EEF1
implicit solvation term [37]. For all but one of the design runs, the Amber [51]
forcefield terms were used, with the Charmm [5] forcefield parameters used for the
other run.

3.2 Training of Energy Function Weights

In order to obtain accurate predictions for the CAL-CFTR system, scaling pa-
rameters for the three energy function components (See 3.1) were determined.
In order to determine how best to weight each of these terms, we trained the
scaling terms using experimental data from the CAL-CFTR system. Sixteen Ki

values for natural ligands of CAL measured in [9] were used for the training.
K∗ scores were computed for each of the 16 natural ligands values. Note, for
this training, the CAL-CFTR structure only included the four most C-terminal
residues of the peptide inhibitor. The energy weights were searched using a gra-
dient descent method to optimize the correlation between the K∗ scores and the
experimental K−1

i values.
The best correlation found through the parameter search that maintains rea-

sonable K∗ scores is shown in Fig. 3A. The correlations throughout the search
range from 0.0 to 0.75 which highlights the importance of choosing the cor-
rect weighting factors. The resulting parameters used for the retrospective and
prospective studies (design runs) described in Secs. 3.3-3.4 is as follows: van der
Waals scaling = 0.9, dielectric constant for electrostatic scaling = 20, and a sol-
vation scaling = 0.76. These parameters are reasonable and similar to parameters
used in previous designs. The dielectric constant might appear high (typically
the interior of a protein is thought to have a dielectric of 2-4), but since the pep-
tide design occurs at the surface of the protein, this might necessitate a higher
dielectric constant.

3.3 Retrospective Test against Peptide Array Data

Using the energy weights discovered through the training process, K∗ pep-
tide inhibitor designs were conducted for sequences from a CAL peptide-array.
The peptide-array data from [9] was used to validate the K∗ peptide inhibitor
predictions. Briefly, the peptide array consisted of 6223 C-termini (11-mers) of
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Fig. 3. (A) Correlation between K∗ score and experimental K−1
i values for CAL PDZ

peptide inhibitors. Pearson Correlation of 0.75. (B) ROC curve showing the ability of
K∗ designs to enrich for peptide sequences that can bind the CAL PDZ domain. The
AUC is 0.84.

human proteins. The array was incubated with the CAL PDZ domain in order
to determine binding of CAL to the 11-mers. The K∗ algorithm was used to
evaluate 4-mer structural models of the peptide-array sequences to verify the
accuracy of the predictions.

Since the peptide array data is somewhat noisy, to compare the array data
with the K∗ predictions, the quantitative array data, measured in biochemical
light units (BLUs), was converted into a binary CAL binding event. In other
words, by setting a binding cutoff on the peptide array, we classify each sequence
as either a CAL binder or non-binder. The cutoff value was determined as three
standard deviations away from the average BLU value of the array. Since K∗ is
being compared against a binary binding event, the design algorithm can be
viewed as a filter enriching for sequences that bind CAL.

Fig. 3B shows the resulting receiver operating curve (ROC) when comparing
the K∗ scores to the CAL binding event of the peptide array. The ROC curve has
an area under the curve (AUC) of 0.84 which shows that K∗ greatly enriches for
peptides that bind CAL. Consider if we were conducting this as a prospective
test and we were to test the top 30 K∗ ranked sequences. According to the
peptide array, 11 of the top 30 sequences would be found to bind CAL. Notably,
this is a 20-fold increase over the number of binders that would be expected to
be found if the binding sequences were distributed randomly in the rankings.

Class I PDZ domains like CAL are known to bind the canonical sequence
motif: X-S/T-X-L/V/I. Therefore a much more stringent test of the K∗ design
algorithm is to determine the degree to which K∗ enriches for binders if we
restrict the peptide array to sequences that have the class I motif. With this
new restriction, K∗ is still able to significantly enrich for CAL peptide binders
producing a ROC curve with an AUC of 0.71. When considering the top 30
K∗ ranked sequences, 17 of the 30 sequences are binders, which results in a
2-fold increase over the expected random distribution.
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3.4 Prospective validation of the K∗ Algorithm

Since K∗ was able to successfully enrich for CAL binders based on peptide array
data, we took the analysis a step further by using K∗ to prospectively find novel
CAL peptide inhibitors.

Computational Predictions. K∗ was used to search over all peptide sequences
within the class I PDZ domain sequence motif to find new CAL peptide in-
hibitors. For computational efficiency the number of conformations enumerated
by A* for each partition function was limited to 103 conformations. In order
to choose the most promising peptide inhibitors, a second K∗ design was done
where K∗ scores for the top 30 sequences were re-calculated with the number
of enumerated conformations per partition function increased to 105. Several
top-ranked sequences were chosen to be experimentally tested. First, the top 7
ranked sequences from the second run were chosen. In addition, two sequences
that significantly increased in ranking from the first to second run (rank 29 to 9,
and rank 28 to 11) were chosen as well. Finally, a K∗ run was conducted using
Charmm forcefield parameters instead of Amber parameters. Two sequences that
scored high on both the Amber and Charmm runs were chosen to be experimen-
tally tested as well. In total 11 K∗-predicted peptide inhibitor sequences were
experimentally tested (Fig. 4A).

Comparison with minDEE and DEE. To determine the importance of
the ensemble-based K∗ rankings we compared the predictions to two single-
structure GMEC-based methods, minDEE [19], and rigid-rotamer DEE (rigid-
DEE) [24]. Both minDEE, and rigidDEE were run with the same parameters
as the K∗ designs, except that they used reference energies. We compared the
top 30 sequences from minDEE and rigidDEE and found they had no sequences
in common. This supports our findings that in over 69 protein design systems
minDEE finds low energy sequences that rigidDEE discards because rigidDEE
does not allow minimization [17,19]. In addition, when we compare the top 30
rigidDEE and minDEE results to the top K∗ designs we find that they have
only three and four sequences in common, respectively. If we were to have used
only GMEC-based approaches instead of K∗, we would not have predicted most
of the experimentally-successful sequences that K∗ found. In addition, the over-
all sequence rankings show a very poor correlation between the minDEE and
K∗ predictions; the same is true of the rigidDEE and K∗ predictions (R2 = 0.1
and 0.09 respectively).

Experimental Procedure. To test the ability of K∗ to predict CAL-CFTR
peptide inhibitors, the inhibitory constants of top-ranking peptide sequences
from the K∗ CAL-CFTR design were experimentally determined. As a con-
trol, the best known peptide hexamer was also retested. The corresponding N-
terminally acetylated peptides were purchased from NEO BioScience and the
Ki values for the peptides were detected using fluorescence polarization, us-
ing the method previously described in [9]. Briefly, the CAL PDZ domain was
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Sequence K∗ Ranking Experimental
(out of 2166) Ki (μM)

Ac-WQVTRV 9 2.1
Ac-WQFTRL 1† 6.7
Ac-WQKTRL 2 8.6
Ac-WQRTRL 5 10.0
Ac-WQKTRI 4 11.6
Ac-WQKTRV 1 12.9
Ac-WQRTRI 7 14.4
Ac-WQFTKL 2† 15.0
Ac-WQLTKL 11 15.6
Ac-WQKTKL 6 18.2
Ac-WQRTRV 3 18.4

A. B.

Fig. 4. (A) Top-ranked K∗ predictions that we experimentally tested by fluorescence
polarization. Ki values marked in green denote that the binding affinity was higher than
the best previously known hexamer (14.8 μM). †Sequence rank obtained by ordering
the quantity: RA+RC

2
, where RA is the sequence rank from a design run using the

Amber forcefield and RC is the sequence rank from a run using the Charmm forcefield.
(B) Ensemble of top 100 conformations for the peptide with tightest binding to CAL
(WQVTRV).

incubated with a labeled peptide of known binding affinity. Each top ranking
peptide was serially diluted and the protein-peptide mixture was added to each
dilution. Finally, the amount of competitive inhibition was tracked using residual
fluorescence polarization.

Experimental Validation. All of our designed inhibitors are novel and none had
been predicted or experimentally tested before. Remarkably, all of the predicted
peptides bind CAL with high affinity (Fig. 4A). The previously best known pep-
tide hexamer (WQTSII) to bind CAL has a Ki of 14.8 μM. Seven of the eleven
tested sequences show an improvement in binding compared to the best-known
peptide hexamer, and the best peptide displayed 2.1 μM affinity, representing a 7-
fold improvement over the previously best-known hexamer. For comparison, note
that the Ki for the wild-type CFTR sequence (TEEEVQDTRL) is 690 μM and
the highest known affinity natural ligand (ANGLMQTSKL) for CAL is 37 μM.
The goal of this experiment was to find a peptide inhibitor for CAL binding to
CFTR. Using the K∗ design algorithm we successfully found a peptide inhibitor
with 331-fold higher affinity than the interaction we were trying to inhibit. Thus,
we have successfully designed peptide inhibitors of the CAL PDZ domain.

4 Conclusions

We presented a novel, provable, ensemble-based protein design algorithm for
protein-peptide and protein-protein interactions. As a demonstration of K∗’s
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design capabilities we showed that K∗ can accurately predict sequences that
will tightly bind the CFTR trafficking regulator, CAL. In order to make accurate
predictions we first trained 3 energy weighting parameters for the energy function
used to evaluate each conformation. The gradient descent search for the optimal
parameters is important because a poor choice of parameters can lead to a bad
correlation with experimental results. With training we were able to obtain a
Pearson correlation of 0.75 which is very good for the current state of protein
design.

We have demonstrated that K∗ can accurately enrich for and predict pep-
tide inhibitors for the CAL-CFTR system. The retrospective tests comparing
K∗ scores to the CAL peptide-array demonstrate our strong ability to enrich for
sequences that bind CAL over the human protein sequence space. Even when
the search is made more difficult by adding stringent restrictions to the sequence
space by searching only within the class I PDZ sequence motif, K∗ is able to
enrich for binding peptides. Finally, the experimental validation in the wet lab
of top-ranked K∗ sequences confirms that K∗ is able to predict novel CAL
peptide inhibitors. Compared to the inhibitory constant of the natural CFTR
C-terminus, the designed sequences are much stronger binders. Indeed, our ap-
proach was able to find peptide sequences that bound tighter than the previously
best known hexamer sequence.

It has been demonstrated that knockdown of CAL using RNA interference can
lead to increased CFTR membrane expression and that CAL-mediated degrada-
tion of CFTR requires an intact CAL PDZ domain [53]. Peptides that are able
to inhibit CAL-CFTR binding may provide a method of treatment to increase
mutant CFTR membrane expression. Ultimately, this approach could lead to the
development of a drug to treat cystic fibrosis. Since peptides themselves often
make poor drugs, we are continuing to extend the K∗ software to incorporate
non-natural amino acids into the design search space. We can design compounds
that inhibit CAL, but cannot be broken down inside the human body as easily
as peptides. In addition, we plan to use negative design (as we showed was pos-
sible in [15]) in order to ensure that the peptides predicted by K∗ do not bind
other PDZ domain containing proteins. Specifically, the PDZ domain containing
protein NHERF1 is involved in the endocytic recycling of CFTR back to the
membrane [25]. So the goal of future studies is to ensure that designed peptides
inhibit CAL but do not inhibit NHERF1.

The K∗ algorithm is a general algorithm that can now be applied to many
protein-protein interface systems. In addition, PDZ domains are prevalent in
human proteins and are a very important structural motif to understand. The
application of K∗ to CAL-CFTR demonstrates the potential that this method
has to analyze many other PDZ domains and protein-protein interfaces.

Acknowledgments

We thank all members of the Donald Lab, in particular Mr. Pablo Gainza for
helpful discussions and comments.



Design of PPIs with a Novel Ensemble-Based Scoring Algorithm 375

References

1. Althaus, E., et al.: Journal of Computational Biology 9(4), 597–612 (2002)
2. Altman, M.D., et al.: Proteins 70(3), 678–694 (2008)
3. Berezovsky, I.N., et al.: PLoS Comput. Biol. 1(4), e47 (2005)
4. Brannetti, B., Helmer-Citterich, M.: Nucleic Acids Res. 31(13), 3709–3711 (2003)
5. Brooks, B.R., et al.: Journal of Computational Chemistry 4(2), 187–217 (1983)
6. Case, D.A., et al.: Journal of Computational Chemistry 26(16), 1668–1688 (2005)
7. Chazelle, B., et al.: INFORMS Journal on Computing 16(4), 380–392 (2004)
8. Chen, C., et al.: Proc. Natl. Acad. Sci. USA 106(10), 3764–3769 (2009)
9. Cushing, P.R., et al.: Biochemistry 47(38), 10084–10098 (2008)

10. Dahiyat, B.I., Mayo, S.L.: Protein Science 5(5), 895–903 (1996)
11. Dahiyat, B.I., Mayo, S.L.: Science 278(5335), 82–87 (1997)
12. Desjarlais, J.R., Handel, T.M.: Protein Science 4(10), 2006–2018 (1995)
13. Desmet, J., et al.: Nature 356(6369), 539–542 (1992)
14. Dunbrack, R.L., Karplus, M.: J. Mol. Biol. 230(2), 543–574 (1993)
15. Frey, K.M., et al.: Proc. Natl. Acad. Sci. USA 107(31), 13707–13712 (2010)
16. Fromer, M., Yanover, C.: Bioinformatics 24(13), i214–i222 (2008)
17. Gainza, P., Roberts, K.E., Donald, B.R. (2011) (submitted)
18. Georgiev, I., et al.: Bioinformatics 22(14), e174–e183 (2006)
19. Georgiev, I., et al.: Journal of Computational Chemistry 29(10), 1527–1542 (2008)
20. Gilson, M., et al.: Biophysical Journal 72(3), 1047–1069 (1997)
21. Goldstein, R.: Biophysical Journal 66(5), 1335–1340 (1994)
22. Gorczynski, M.J., et al.: Chemistry & Biology 14(10), 1186–1197 (2007)
23. Gordon, D.B., Mayo, S.L.: Structure 7(9), 1089–1098 (1999)
24. Gordon, D.B., et al.: Journal of Computational Chemistry 24(2), 232–243 (2003)
25. Guggino, W.B., Stanton, B.A.: Nature Reviews. Molecular Cell Biology 7(6), 426–

436 (2006)
26. Hong, E., et al.: Journal of Computational Chemistry 30(12), 1923–1945 (2009)
27. Janin, J., Wodak, S.: Journal of Molecular Biology 125(3), 357–386 (1978)
28. Jiang, X., et al.: Protein Science 9(2), 403–416 (2000)
29. Joachimiak, L.A., et al.: Journal of Molecular Biology 361(1), 195–208 (2006)
30. Jones, D.T.: Protein Science 3(4), 567–574 (1994)
31. Kamisetty, H., et al.: Proteins 79(2), 444–462 (2011)
32. Kingsford, C.L., et al.: Bioinformatics 21(7), 1028–1039 (2005)
33. Koehl, P., Delarue, M.: Journal of Molecular Biology 239(2), 249–275 (1994)
34. Koehl, P., Levitt, M.: Journal of Molecular Biology 293(5), 1161–1181 (1999)
35. Kuhlman, B., Baker, D.: Proc. Natl. Acad. Sci. USA 97(19), 10383–10388 (2000)
36. Lasters, I., et al.: Protein Eng. 8(8), 815–822 (1995)
37. Lazaridis, T., Karplus, M.: Proteins 35(2), 133–152 (1999)
38. Leach, A.R., Lemon, A.P.: Proteins 33(2), 227–239 (1998)
39. Leaver-Fay, A., et al.: Pacific Symposium on Biocomputing 10, 16–27 (2005)
40. Lee, C., Subbiah, S.: Journal of Molecular Biology 217(2), 373–388 (1991)
41. Lovell, S.C., et al.: Proteins 40(3), 389–408 (2000)
42. Nourry, C., et al.: Sci. STKE 2003(179), re7 (2003)
43. Pierce, N.A., et al.: Journal of Computational Chemistry 21(11), 999–1009 (2000)
44. Pierce, N.A., Winfree, E.: Protein Eng. 15(10), 779–782 (2002)
45. Piserchio, A., et al.: Biochemistry 44(49), 16158–16166 (2005)
46. Ponder, J.W., Richards, F.M.: Journal of Molecular Biology 193(4), 775–791 (1987)
47. Reina, J., et al.: Nat. Struct. Mol. Biol. 9(8), 621–627 (2002)



376 K.E. Roberts et al.

48. Reynolds, K.A., et al.: Journal of Molecular Biology 382(5), 1265–1275 (2008)
49. Roberts, K.E., Cushing, P.R., Boisguerin, P., Madden, D.R., Donald, B.R.: Sup-

plementary material: Design of protein-protein interactions with a novel ensemble-
based scoring algorithm (2011), available online
http://www.cs.duke.edu/donaldlab/Supplementary/recomb11/kstar-ppi

50. Thomas, J., et al.: Proteins 76(4), 911–929 (2009)
51. Weiner, S.J., et al.: Journal of Computational Chemistry 7(2), 230–252 (1986)
52. Wells, J.A., McClendon, C.L.: Nature 450(7172), 1001–1009 (2007)
53. Wolde, M., et al.: Journal of Biological Chemistry 282(11), 8099–8109 (2007)
54. Word, J.M., et al.: Journal of Molecular Biology 285(4), 1711–1733 (1999)
55. Yanover, C., Weiss, Y.: Advances in Neural Information Processing Systems, pp.

84–86 (2002)
56. Zhang, J., Liu, J.S.: PLoS Comput. Biol. 2(12), e168 (2006)

http://www.cs.duke.edu/donaldlab/Supplementary/recomb11/kstar-ppi


Computing Fragmentation Trees from

Metabolite Multiple Mass Spectrometry Data

Kerstin Scheubert1, Franziska Hufsky1,2,
Florian Rasche1, and Sebastian Böcker1
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Abstract. Since metabolites cannot be predicted from the genome se-
quence, high-throughput de-novo identification of small molecules is high-
ly sought. Mass spectrometry (MS) in combination with a fragmentation
technique is commonly used for this task. Unfortunately, automated anal-
ysis of such data is in its infancy. Recently, fragmentation trees have been
proposed as an analysis tool for such data. Additional fragmentation
steps (MSn) reveal more information about the molecule.

We propose to use MSn data for the computation of fragmentation
trees, and present the Colorful Subtree Closure problem to for-
malize this task: There, we search for a colorful subtree inside a vertex-
colored graph, such that the weight of the transitive closure of the subtree
is maximal. We give several negative results regarding the tractability
and approximability of this and related problems. We then present an
exact dynamic programming algorithm, which is parameterized by the
number of colors in the graph and is swift in practice. Evaluation of our
method on a dataset of 45 reference compounds showed that the quality
of constructed fragmentation trees is improved by using MSn instead of
MS2 measurements.

Keywords: metabolomics, computational mass spectrometry, multiple-
stage mass spectrometry, hardness results, parameterized algorithms.

1 Introduction

The phenotype of an organism is strongly determined by the small chemical com-
pounds contained in its cells. These compounds are called metabolites; their mass
is typically below 1000 Da. Unlike biopolymers such as proteins and glycans, the
chemical structure of metabolites is not restricted. This results in a great vari-
ety and complexity in spite of their small size. Except for primary metabolites
directly involved in growth, development, and reproduction, most metabolites
remain unknown. Plants, filamentous fungi, and marine bacteria synthesize huge
numbers of secondary metabolites, and the number of metabolites in any higher
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eukaryote is currently estimated between 4 000 and 20 000 [9]. Unlike for pro-
teins, the structure of metabolites usually cannot be deduced by using genomic
information, except for very few metabolite classes like polyketides.

Mass spectrometry (MS) is one of the key technologies for the identifica-
tion of small molecules. Identification is usually achieved by fragmenting the
molecule, and measuring masses of the resulting fragments. The fragmentation
mechanisms of electron ionization (EI) during gas chromatography MS (GC-
MS) are well described [12]. Unfortunately, only thermally stable and volatile
compounds can be analyzed by this technique. Liquid chromatography MS (LC-
MS) can be adapted to a wider array of (even thermally unstable) molecules,
including a range of secondary metabolites [9]. LC-MS uses the more gentle
electrospray ionization (ESI) and a selected compound is fragmented in a sec-
ond step using collision-induced dissociation (CID), resulting in MS2 spectra.
Different from peptides where CID fragmentation is generally well understood,
this understanding is in its infancy for metabolites. The manual interpretation of
CID mass spectra is cumbersome and requires expert-knowledge. Even search-
ing spectral libraries is problematic, since CID mass spectra are limited in their
reproducibility on different instruments [14]. Additionally, compound libraries
to search against are vastly incomplete. For these reasons, automated de novo
interpretation of CID mass spectra is required as an important step towards the
identification of unknowns.

Multiple-stage mass spectrometry (MSn) allows to further fragment the prod-
ucts of the initial fragmentation step. To this end, fragments of the MS2 frag-
mentation are selected as precursor ions, and subjected to another fragmentation
reaction. Several precursor ions can be selected successively. Selection can either
be performed automatically for a fixed number of precursor ions with maximal
intensity, or manually by selecting precursor ions. Fragments from MS3 frag-
mentations can, in turn, again be selected as precursor ions, resulting in MS4

spectra. Typically, the quality of mass spectra is reduced with each additional
fragmentation reaction. Furthermore, measuring time is increased, reducing the
throughput of the instrument. Hence, for untargeted analysis by LC-MS, analysis
is usually limited to few additional fragmentation reactions beyond MS2.

In the past years some progress has been made in searching of spectral and
compound libraries using CID spectra [14,15,11], and there exist some pioneering
studies towards the automated analysis of such spectra [16, 10, 18]. Recently, a
method for de novo interpretation of metabolite MS2 data has been developed [6,
17]. It helps to identify metabolite sum formulas and further to interpret the
fragmentation processes, resulting in hypothetical fragmentation trees. These
fragmentation trees can be compared to each other to identify compound classes
of unknowns [17]. In fact, applying this method of computing fragmentation
trees to MSn data is possible, but dependencies between different fragmentation
steps are not taken into account. For peptide sequencing, MS3 spectra have been
used to increase the accuracy of de novo peptide sequencing algorithms [2].

Here, we present a method for automated interpretation of MSn data. We
adjust the fragmentation model for MS2 data from [6] to MSn data to reflect the
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succession of fragmentation reactions. This results in the Colorful Subtree
Closure problem that has to be solved in conjunction with the original Maxi-
mum Colorful Subtree problem [6]. We show that the Colorful Subtree
Closure problem is NP-hard, and present intractability results regarding the
approximability of this and the Maximum Colorful Subtree problem. De-
spite these negative results, we present an exact algorithm for the combined
problem: This fixed-parameter algorithm, based on dynamic programming, has
a worst-case running time with exponential dependence only on the number of
peaks k in the spectrum. In application, we choose some fixed k′ such as k′ = 15,
limit exact calculations to the k′ most intense peaks in the mass spectra and at-
tach the remaining peaks heuristically. We apply our algorithm to a set of 185
mass spectra from 45 compounds, and show that adding MSn information to
the analysis improves quality of results but does not affect the running time in
comparison to the algorithm for MS2 data from [6].

2 Constructing Fragmentation Trees from MS2 and MSn

Data

Fragmentation of glycans and proteins is generally well understood, but this is
not the case for metabolites and small molecules. That makes it difficult both to
predict the fragmentation process, and to interpret metabolite MS data. Böcker
et al. [6] propose fragmentation trees to interpret MS2 data: In a fragmenta-
tion tree nodes are annotated with molecular formulas of fragments, and edges
represent fragmentation reactions or neutral losses.

The algorithm to compute a fragmentation tree proceeds as follows [6]: Each
fragment peak is assigned one or more molecular formulas with mass sufficiently
close to the peak mass [5]. The resulting molecular formulas including the parent
molecular formula, are considered vertices of a directed acyclic graph (DAG).
We assume that the parent molecular formula is either given or can be calcu-
lated from isotope pattern analysis. Vertices in the graph are colored, such that
vertices that explain the same peak receive the same color. Edges represent neu-
tral losses, that is, fragments of the molecule that are not observed, as they
were not ionized. Two vertices u, v are linked by a directed edge if the molec-
ular formula of v is a sub-molecule of the molecular formula of u. Edges are
weighted, reflecting that some edges are more likely to represent true neutral
losses than others. Also, peak intensities and mass deviations are taken into ac-
count in these weights. Now, each subtree of the resulting graph corresponds to
a possible fragmentation tree. To avoid the case that one peak is explained by
more than one molecular formula, only colorful subtrees that use every color at
most once are considered. In practice, it is very rare that a peak is indeed created
by two different fragments, whereas our optimization principle without restric-
tion would always choose all explanations of a peak. Therefore, searching for a
colorful subtree of maximum weight means searching for the best explanation of
the observed fragments:
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Maximum Colorful Subtree problem. Given a vertex-colored DAG G =
(V, E) with colors C and weights w : E → R. Find the induced colorful subtree
T = (VT , ET ) of G of maximum weight w(T ) :=

∑
e∈ET

w(e).

We now modify this problem to take into account MSn data when con-
structing fragmentation trees. From the experimental data, we construct a DAG
G = (V, E) together with a vertex coloring c : V → C, called fragmentation
graph. Recall that the vertices of V correspond to potential molecular formulas
of the fragments, colors C correspond to peaks in the mass spectra, and molecular
formulas corresponding to the same peak mass have the same color. In contrast
to the fragmentation graph where each edge indicates a direct succession, the
MSn data does not only hint to direct but also to indirect successions. So, in
the graph constructed from the MSn data we also have to score the transitive
closure of the induced subtrees. The transitive closure G+ = (V, E+) of a DAG
G = (V, E) contains the edge (u, v) ∈ E+ if and only if there is a directed path
in G from u to v. In case G is a tree, the transitive closure can be computed
in time O(|V |2) using Nuutila’s algorithm [13]. The MSn data gives additional
information about the provenience of certain peaks/colors, but does not differ-
entiate between different explanations of these peaks via molecular formulas, so
we will score not edges but pairs of colors.

To score the closure, let w+ : C2 → R be a weighting function for pairs of
colors. We define the transitive weight of an induced tree T = (VT , ET ) with
transitive closure T + = (VT , E+

T ) as:

w+(T ) :=
∑

(u,v)∈E+
T

w+
(
c(u), c(v)

)
(1)

Again, we limit our search to colorful trees, where each color is used at most
once in the tree. Scoring the transitive closure of an induced colorful subtree, we
reach the following problem definition:

Colorful Subtree Closure problem. Given a vertex-colored DAG G = (V, E)
with colors C and transitive weights w+ : C2 → R. Find the induced colorful
subtree T of G of maximum weight w+(T ).

We will see in the next section that this is again a computationally hard
problem. But the problem we are interested in is even harder as it combines the
two above problems:

Combined Colorful Subtree problem. Given a vertex-colored DAG G =
(V, E) with colors C, edge weights w : E → R, and transitive weights w+ :
C2 → R. Find the induced colorful subtree T of G of maximum weight w∗(T ) =
w(T ) + w+(T ).

3 Hardness Results

Fellows et al. [8] and Böcker and Rasche [6] independently showed that the Maxi-
mum Colorful Subtree problem is NP-hard. It turns out that the Colorful
Subtree Closure problem is NP-hard even for unit weights:
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Fig. 1. Proof of Theorem 1: Example for the construction of G for Φ = (x1 ∨x2 ∨x3)∧
(x1 ∨ x2 ∨ x5) ∧ (x3 ∨ x4 ∨ x5) ∧ (x4 ∨ x5 ∨ x1)

Theorem 1. The Colorful Subtree Closure problem is NP-hard even if
the input graph is a binary tree with unit weights w+ ≡ 1.

Proof. To prove NP-hardness we use a reduction from the NP-hard 3-Sat*
problem [3]:

3-SAT*. Given a Boolean expression in conjunctive normal form (CNF) con-
sisting of a set of length three clauses, where each variable occurs at most three
times in the clause set. Decide whether the expression is satisfiable.

Given an instance of 3-SAT* as a CNF formula Φ = c1∧· · ·∧cm over variables
x1, . . . , xn we construct an instance of Colorful Subtree Closure. Since
variables occurring only with one literal are trivial, we assume that the formula
contains both literals of each variable. We first construct a colorful binary tree
H with root vertex r and n leaves, that has height h := �log2 n� and is a perfect
binary tree up to height h − 1. This tree uses p := n + 2h − 1 colors, namely
r1, . . . , rp. To each leaf i, 1 ≤ i ≤ n, we connect two vertices using the same
color xi and representing the different truth assignments for xi. One vertex in
the color xi represents xi = true, the other one xi = false. If a truth assignment
to xi satisfies clause cj we connect a vertex colored cj to the vertex in the color
xi, that corresponds to this truth assignment (Fig. 1). The resulting tree G
possesses n+2h−1+n+m colors, namely r1, . . . , rp, x1, . . . , xn, c1, . . . , cm. The
tree is binary, since each variable occurs in at most three clauses and we assumed
that both literals are contained in the formula. Finally, we define unit weights
w+ ≡ 1.

The resulting tree G has as many leaves as there are literals in Φ, hence the
construction is polynomial. We claim that Φ is satisfiable if and only if the col-
orful subtree T of G with maximum transitive closure has score

∑h−1
i=1 i2i +nh+

n(h + 1)+ m(h + 2). To prove the forward direction, assume a truth assignment
φ that satisfies Φ. Define A ⊆ V (G) to be the subset of vertices in the colors xi

that correspond to the assignment φ. Then, for every 1 ≤ j ≤ m there exists
at least one vertex colored cj in the neighborhood of A. Add an arbitrary rep-
resentative of these vertices colored cj to the set B ⊆ V (G). The union of the
sets A ∪B ∪ {r1, . . . , rp} forms a colorful subtree T of G with transitive closure
that has score

∑h−1
i=1 i2i + nh + n(h + 1)+ m(h + 2), as

∑h−1
i=1 i2i corresponds to
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the score of the perfect binary tree up to height h− 1, nh is the additional score
from the leaves of H , n(h + 1) the additional score induced by the colors xi and
m(h + 2) the additional score induced by the colors cj . No colorful subtree with
higher score of the transitive closure can exist.

To prove the backward direction assume there is a colorful subtree T of G with
maximum transitive closure that has score

∑h−1
i=1 i2i +nh+n(h+1)+m(h+2).

Any optimal solution uses all colors from H , all colors xi and all colors cj . The
truth assignment corresponding to the vertices of T colored xi satisfies Φ, as
for all 1 ≤ j ≤ m exactly one vertex colored cj is connected to these vertices,
otherwise T would not contain all colors. �	

We now turn to the inapproximability of the above problems. Dondi et al. [7]
show that the Maximum Motif problem, that is closely related to the Max-
imum Colorful Subtree problem, is APX-hard even if the input graph is a
binary tree. In fact, Proposition 8 in [7] implies that the Maximum Colorful
Subtree problem is APX-hard for such trees. We infer that there exists no Poly-
nomial Time Approximation Scheme (PTAS) for the problem unless P = NP [1].
In Proposition 10 Dondi et al. [7] prove the even stronger result that there is
no constant-factor approximation for Maximum Level Motif problem, unless
P = NP.

Lemma 1. The Maximum Colorful Subtree problem is APX-hard even if
the input graph is a binary tree with unit weights w ≡ 1.

Lemma 2. The Maximum Colorful Subtree problem has no constant-fac-
tor approximation unless P = NP, even if the input graph is a tree with unit
weights w ≡ 1.

We now concentrate on the Colorful Subtree Closure problem. We show
that the problem is MAX SNP-hard even for unit weights, but we have to drop
the requirement that the tree is binary in this case. We infer the non-existence
of a PTAS unless P = NP [1].

Theorem 2. The Colorful Subtree Closure problem is MAX SNP-hard
even if the input graph is a tree with unit weights w+ ≡ 1.

The construction used in the proof of Theorem 2 is very similar to that of
Theorem 1. We defer the details to the full version of the paper.

We infer that the Combined Colorful Subtree problem is computation-
ally hard and also hard to approximate, as it generalizes the above two problems.
Note that the input graphs in our application are transitive graphs, whereas we
assume trees in our hardness proofs. One might argue that the problem is ac-
tually simpler for transitive graphs; but for a given tree T = (V, E) with unit
weights, its transitive closure G := T + can be complemented with a binary
weighting w : E+ → {0, 1} such that w(e) = 1 if and only if e ∈ E. So, the
Colorful Subtree Problem remains hard for transitive input graphs. Also
note that the input graphs constructed from mass spectra, possess a topological
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sorting that respects colors. Again, one might argue that the problem is actually
simpler for such graphs. It turns out that this is not the case, either: Dondi
et al. [7] show that the Maximum Motif problem is APX-hard even for leveled
trees. All the trees constructed in our reductions are leveled, and all our results
are also valid on leveled trees. Similar to above, leveled trees can be encoded in
“color-sorted” graphs using binary weightings. Thus, the problems remain hard
for graphs with this property.

The Maximum Colorful Subtree problem becomes tractable if the input
graph is a colorful graph with non-negative edge weights. But the Colorful
Subtree Closure problem remains hard, even in this case:

Theorem 3. The Colorful Subtree Closure problem is MAX SNP-hard
even if the input graph is a colorful DAG with a single source and binary weights.

As we consider a colorful DAG, we can discard all colors and search for a subtree
with maximum transitive closure. The transitive closure need not to be defined
on colors, but can also be defined on vertices. So, each transitive edge has in-
dividual 0/1 weight. We defer the proof of Theorem 3 to the full version of the
paper. This proof can be easily adapted to a DAG with maximal vertex degree
three.

Surprisingly, we can still find a swift and exact algorithm for the Colorful
Subtree Closure problem, presented in the next section.

4 An Exact Algorithm for the Combined Colorful
Subtree Problem

Several heuristics for the simpler Maximum Colorful Subtree problem have
been evaluated both regarding quality of scores [6] and quality of fragmentation
tree [17]. Results of using only the heuristics were of appalling quality, so we
refrain from using only heuristics to solve the Combined Colorful Subtree
problem. Furthermore, no constant-factor approximation can exist, unless P =
NP. But despite the hardness of the problem, we will now present an exact
algorithm with reasonable running time in applications. The algorithm is fixed-
parameter tractable with respect to the number of colors k = |C|, and uses
dynamic programming to find the optimum. Note that in application, we can
choose k arbitrarily, see below. Let n := |V | and m := |E| be the number of
vertices and edges in the input graph G = (V, E), respectively.

Let W ∗(v, S) be the maximum score w∗(T ) of a colorful subtree with root v
using colors S ⊆ C. Then W ∗(v, S) can be calculated as

W ∗(v, S) = max

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
max

u:c(u)∈S\{c(v)}

⎧⎪⎨⎪⎩
W ∗(u, S \ {c(v)}) + w(v, u)

+
∑

c′∈S\{c(v)}
w+

(
c(v), c′

)⎫⎪⎬⎪⎭
max

(S1,S2):S1∩S2={c(v)}
S1∪S2=S

W ∗(v, S1) + W ∗(v, S2)

(2)
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where, obviously, we have to exclude the cases S1 = {c(v)} and S2 = {c(v)}
from the computation of the second maximum. We initialize W ∗(v, {c(v)}) = 0,
and set the weight of nonexistent edges to −∞. To prove the correctness of
recurrence (2), we note that we only have to differentiate three cases: A subtree
root v can have no children, one child, or two or more children. The case of no
children, that is v is a leaf, is covered by the initialization. If v has one child u,
we add the score of the tree rooted in u, the score of the new edge (v, u), and
scores of all new transitive edges. This is done in the first line of the recurrence.
If v has two or more children, we can “glue together” two trees rooted in v,
where we arbitrarily distribute the children of v and the colors of S to the two
trees.

We now analyze the running time of recurrence (2). Extending a tree by a
single vertex takes O(2km) time, as we can calculate the sum in constant time
by going over the 2k partitions in a reasonable order. Gluing together two trees,
the k colors are partitioned into three groups: those not contained in S, elements
of S1, and elements of S2. There are 3k possibilities to perform this partition, so
running time is O(3kn). This results in a total running time of O(3kn + 2km).
Running time can be improved to O∗(2k) using subset convolutions and the
Möbius transform [4], but this is of theoretical interest only. In comparison to the
algorithm presented in [6], the worst-case running time is not affected by scoring
the transitive closure. The necessary space is O(2kn). In our implementation,
we only iterate over defined values in W ∗: An entry is not defined if there exists
no subtree rooted in v using exactly the colors in S. This algorithm engineering
technique does not improve worst-case running times and memory consumption,
but greatly improves them in practice. To decrease memory consumption, we
use hash maps instead of arrays.

Unfortunately, the above method is limited by its memory and time con-
sumption. In application, exact calculations are limited to k′ ≤ k colors for
some moderate k′, such as k′ = 15. These colors correspond to the k′ most in-
tense peaks in the mass spectra, as these contribute most to our scoring. The
remaining peaks are added in descending intensity order by a greedy heuristic:
For each vertex v with an unassigned color, we try to attach v to every vertex u
of the tree constructed so far, where some or all of the children of u in the tree
may become children of v. We omit the technical details, and just note that our
heuristic is inspired by Kruskal’s algorithm for computing a maximum spanning
tree.

5 Scoring

Particularly in fragmentation spectra, the charge of metabolites is mostly ±1,
so we may assume that m/z and mass are equal. Note that our calculations are
not limited to a charge of one, though.

The transitive closure score w+ is defined using the MSn data. Recall that
this score is defined for peaks or, equivalently, colors. In detail, we score three
cases, see Fig. 2:
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Fig. 2. Scoring of the transitive closure referring to the three cases. A dashed peak is
not occurring in the spectrum drawn but in another one (typically the MS2 spectrum).
A connection pk → pl indicates that pl is a fragment of pk while a connection pk  pl

indicates that peak pl is unlikely to be a fragment of pk.

– A spectrum with parent peak pk and peak pl indicates that the fragment
corresponding to pl has evolved from the fragment corresponding to pk. To
reward this, we increase the transitive score of the tree by σ1 ≥ 0 if the
fragment corresponding to pk is a direct or indirect ancestor of the fragment
corresponding to pl, see Fig. 2(a).

– Given a spectrum that contains peak pl but not peak pk, and mass pl <
mass pk. This indicates that the fragment corresponding to pl has not evolved
from the fragment corresponding to pk. To penalize this, we add σ2 ≤ 0 to
the score if the fragment corresponding to pk is a direct or indirect ancestor
of the fragment corresponding to pl, see Fig. 2(b).

– Given two spectra with different collision energies and two peaks pk and
pl with mass pl < mass pk. If the spectrum with higher collision energy
contains only pk but the spectrum with lower collision energy contains both
peaks, the fragment corresponding to pl has probably not evolved from the
fragment corresponding to pk. To penalize this case, we add σ3 ≤ 0 to the
score if the fragment corresponding to pk is a direct or indirect ancestor of
the fragment corresponding to pl, see Fig. 2(c).

In all cases, σ1, σ2, and σ3 are not used to score edges of the fragmentation tree
but instead, edges of the transitive closure of the tree. Two peaks are identified
to correspond to the same fragment if their masses differ in less than 0.1 Da. For
each fragment only the peak with maximum intensity is taken into account for
further calculations.

The scoring scheme of the fragmentation graph is the same as introduced in [6],
taking the following properties into account: peak intensities, mass deviation
between explanation and peak, chemical properties, collision energies and neutral
losses. First, every peak is given a base score of b, b ≥ 0. To score the mass
deviation we evaluate the logarithmized Gaussian probability density function
with SD σ at the measuring error value. Further we use the density function
of the normal distribution with mean 0.59 and SD 0.56 to score the hetero
atom to carbon ratio of the decompositions. Due to the collision energies of
the different spectra, some peaks cannot represent fragments of other peaks. A
fragment appearing at lower collision energy than its predecessor is penalized
with log(α), α � 1. If there is no spectrum containing both, neither containing
none of the peaks we add only a penalty of log(β), α < β < 1. Common neutral
losses are rewarded with log(γ), γ > 1, while radical neutral losses are penalized



386 K. Scheubert et al.

by log(δ), δ < 1, and large neutral losses by log(1− mass(neutral loss)
parent mass ). In addition

to the scoring from [6], we use an extension that takes into account rare neutral
losses: If a rare neutral loss occurs in a fragmentation step we penalize it by
adding log(η), η � 1. We also penalize neutral losses that consists carbon or
only nitrogen atoms by adding log(ε), ε � 1. In contrast, radical losses are not
penalized, since they sometimes occur in fragmentation reactions. Due to space
constraints, we defer a list of all rare neutral losses and radical losses to the full
version of the paper.

6 Results

To evaluate our work we implemented the algorithm in Java 1.6. As test data
we used 185 mass spectra of 45 compounds, mostly representing plant secondary
metabolites. The 185 mass spectra are composed of 45 MS2 spectra, 128 MS3

spectra and twelve MS4 spectra (unpublished). All spectra were measured on
a Thermo Scientific Orbitrap XL instrument, we omit the experimental details.
Peak picking was performed using the Xcalibur software supplied with the instru-
ment. The data set was analyzed with the following options: For decomposing
peak masses we use a relative error of 20 ppm and the standard alphabet contain-
ing carbon (C), hydrogen (H), nitrogen (N), oxygen (O), phosphorus (P), and
sulfur (S). For the construction of the fragmentation graph, we use the collision
energy scoring parameters α = 0.1, β = 0.8, the neutral loss scoring parameters
γ = 10, δ = 10−3, ε = 10−4, η = 10−3, the intensity scoring parameter λ = 0.1,
the base score b = 0 and the standard deviation of the mass error σ = 20/3 as
described in [6, 17]. We can identify the molecular formulas of the compounds
from isotope pattern analysis and by calculating the fragmentation trees for all
candidate molecular formulas [17]. In this paper, we assume that this task has
been solved beforehand, and that all molecular formulas are known.

Comparing Trees. We evaluate the impact of using MSn instead of MS2 data, as
well as the influence of scoring parameters σ1, σ2, σ3 from Sec. 5, using pairwise
tree comparison. In each fragmentation tree, vertices are implicitly labeled by
molecular formulas of the corresponding fragments. We limit our comparison to
those fragments that appear in both trees, and discard orphan fragments. We
distinguish four cases:

– A fragment is identically placed, if its parent fragments are identical in both
trees.

– A fragment is pulled up, if its parent fragment in the second tree is one of
its predecessors in the first tree (and the fragment is not identically placed).

– A fragment is pulled down, if its parent fragment in the first tree is one of its
predecessors in the second tree (and the fragment is not identically placed).

– A fragment is regrafted, if it is not identically placed, pulled up or pulled
down.
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The obvious way to evaluate our method would be to compare our results against
some gold standard. Unfortunately, such gold standard is not available for our
study. Rasche et al. [17] have evaluated the method from [6] by expert anno-
tation of MS2 fragmentation trees for a subset of the compounds used in this
paper. Unfortunately, the input data (that is, fragments observed in the MS2

and MSn mode of the instrument) differ strongly. Hence, a comparison against
these expert-annotated fragmentation trees is impossible.

As mentioned in Sec. 4 the exact algorithm is memory and time consuming.
So, we use the exact algorithm for only the k′ most intense peaks, and attach
the remaining peaks using a greedy heuristic. We find that decreasing k′ from
20 to 15, has a comparatively small effect on the computed fragmentation trees:
97.1% of the fragments were identically placed, 0.4% were pulled up, 0.6% were
pulled down, and only 1.9% were regrafted. On the other hand, average running
time per compound was decreased from 30.8 min to 3.97 s. In the remainder
of this section, we set k′ = 15 and use only the 15 most intensive peaks for
exact computations. Choosing a moderate k′ = 15 has a much stronger effect
here, than it was observed for the Maximum Colorful Subtree problem [6],
where constructed fragmentation trees were practically identical for k′ = 15 and
k′ = 20. We attribute this to the transitive scoring, which appears to be harder
to grasp by the heuristic.

To show the effect of evaluating MSn data, we individually varied the three
score parameters, and compared the resulting trees to the trees constructed
without scoring the transitive closure, see Fig. 3. As σ1 increases, the fraction
of changes in the trees (pull ups, pull downs and regrafts) converges to about
14%. A similar behavior is observed as σ2, σ3 are decreased. The main difference
between the bonus score σ1 and the penalty scores σ2 and σ3 is that increasing
σ1 results in more pull downs than pull ups, while decreasing penalty scores
σ2, σ3 produces more pull ups than pull downs. This can be explained as follows:
Reward scores can rather be realized if fragments are inserted deep, that is, far
from the root. In contrast, negative penalty scores are avoided if the fragments
are inserted “shallow”, that is, close to the root. So, σ1 � 0 tends to deepen the
trees, whereas σ2, σ3 � 0 tends to broaden the trees.

Fig. 3. Percentage of pull ups, pull downs, regrafted fragments, and total changed
fragments when varying score parameters σ1, σ2, and σ3. Left: Varying σ1 with σ2 = 0
and σ2 = 0 fixed. Middle: Varying σ2 with σ1 = 0 and σ3 = 0 fixed. Right: Varying σ3

with σ1 = 0 and σ2 = 0 fixed.
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Based on the above analysis, we decided to use the following parameter values:
k′ = 15, σ1 = 3, σ2 = −0.5, and σ3 = −0.5. We choose a large σ1 as the un-
derlying MSn observation is a clear signal that some fragment should be placed
as a successor of another fragment. In comparison, the MSn reasoning behind
σ2 and σ3 is somewhat weaker, so we choose smaller absolute values for these
parameters that less influence the trees. The crucial comparison is now between
the fragmentation trees computed without scoring the transitive closure and the
fragmentation trees computed with the above scores. As we have only one MS2

spectrum per compound and one spectrum contains too few peaks to calculate a
reasonable tree, we transform the MSn data to “pseudo-MS2” data by merging
all fragmentation spectra of a compound into one. This simulates MS2 spectra
with different collision energies. By merging all spectra into one, we loose all in-
formation about dependencies between peaks/colors. This is implicitly achieved
by setting σ1, σ2, σ3 = 0. Between these trees 76.21% of the fragments are iden-
tically connected, 4.90% are pull ups, 1.79% pull downs and 17.11% regrafted
fragments. Hence, almost one quarter of all fragments are changed due to the
information from MSn data.

We cannot evaluate whether these changed neutral losses are true or false and,
hence, whether MSn fragmentation trees are truly better than the MS2 trees. But
we will now show an example where the MSn tree agrees well with the observed
MSn data: To this end, we consider the fragmentation trees of Phenylalanine,
with and without scoring the transitive closure, see Fig. 4. The two fragmentation
trees are almost identical, with the single exception of fragment C7H9 at 93.1 Da:
This fragment is connected to C9H9O2 at 149.0 Da in the MS2 tree, and to
C8H10N at 120.1 Da in the MSn tree. In the MS2 interpretation, the neutral loss
C2O2 is explained as two common neutral losses CO and, hence, it is preferred
over the neutral loss CHN (hydrogen cyanide). Using MSn data, we can resolve
this: the peak at 93.1 Da does occur in the MS3 spectrum with parent peak at
120.1 Da, therefore C7H9 at 93.1 Da probably resulted (directly or indirectly) as
a fragment of C8H10N at 120.1 Da. This is rewarded by our algorithm, adding
σ1 = +3 to the score of the modified tree. The fact that the peak at 107.0 Da is
missing in the MS3 spectrum with parent peak at 120.1 Da, does not change the
score: In the MS2 analysis, fragment C7H7O cannot be a successor of C8H10N
at 120.1 Da, nor are 91.1 Da, 93.1 Da, or 103.1 Da assumed to be its successor.
Another example where the MSn tree agrees well with the observed MSn data
is tryptophan. Due to space constraints, we defer the details of this analysis to
the full version of the paper.

As shown in Sec. 3, the theoretical worst case running time of our algorithm is
identical with that of the Maximum Colorful Subtree algorithm in [6]. We
investigated whether this also holds in application. Running times were measured
on an Intel Core 2 Duo, 2.4 GHz with 4 GB memory, with parameter k′ = 15.
We find that total running times of the algorithm, with and without using MSn

data, are practically identical: Average running time is about 3.8 s, and the
maximal running time for one compound was 17.6 s. We omit further details.
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Fig. 4. Left: Fragmentation trees of phenylalanine. Solid edges are neutral losses
present in both trees, the red dotted (green dashed) edge is present in the MS2 (or
MSn) tree only, respectively. Right: MS2 spectrum of the parent peak (top) and MS3

spectrum of the 120.1 Da fragment (bottom). Dashed peaks are not contained in the
particular spectrum.

7 Conclusion

In this paper, we have presented a framework for computing metabolite fragmen-
tation trees using MSn data. Our fragmentation model results in the Combined
Colorful Subtree problem, a conjunction of the Maximum Colorful Sub-
tree problem and the Colorful Subtree Closure problem. Both problems
are NP-hard, and no PTAS can exist for either problem. The latter problem
remains MAX SNP-hard even if the input graph is colorful.

We have presented an exact dynamic programming algorithm for the Com-
bined Colorful Subtree problem, showing that the problem is fixed-parame-
ter tractable with respect to the parameter “number of colors”. We have intro-
duced a scoring scheme based on the dependencies between the different fragmen-
tation steps. To reduce memory and time requirements, we limit exact computa-
tions to the k′ ≤ k most intense peaks in the spectrum. Although the Combined
Colorful Subtree problem is computationally hard, the resulting algorithm
is fast in practice.

For our application, the score of the transitive closure w+ : C2 → R is defined
on pairs of colors. From the theoretical standpoint, one can modify the problem
such that the score w+ : E+ → R is defined on edges of the transitive closure
of the fragmentation graph G = (V, E). In this case, our algorithm from Sec. 4
cannot be used, and it remains an open problem whether this modified version
of the Colorful Subtree Closure problem is fixed-parameter tractable with
respect to the number of colors. Clearly, the problem is in FPT for unit weights.
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We have seen that using additional information from MSn data does change
the computed fragmentation trees. In our experiments, one quarter of fragments
were differently inserted when including MSn information. As our scoring scheme
is “chemically reasonable”, we argue that the trees are actually improved using
MSn data. Unfortunately, MSn is less suited for high-throughput measurements,
as individual measurements are more time-consuming. On the other hand, for
about three quarters of the fragments, trees remain identical between MS2 and
MSn. Thus, calculating fragmentation trees from MS2 data extracts valuable
information concealed in these spectra and results in largely reasonable trees.

In the future, we want to increase the speed and decrease the memory con-
sumption of our exact algorithm. Also, we want to use MSn fragmentation trees
to fine-tune the scoring parameters for computing MS2 fragmentation trees. The
next step of the analysis pipeline is a method for automated comparison of frag-
mentation trees.
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6. Böcker, S., Rasche, F.: Towards de novo identification of metabolites by analyz-
ing tandem mass spectra. Bioinformatics 24, 149–155 (2008); Proc. of European
Conference on Computational Biology (ECCB 2008)

7. Dondi, R., Fertin, G., Vialette, S.: Complexity issues in vertexcolored graph pattern
matching. J. Discrete Algorithms (2010) (in press), doi:10.1016/j.jda, 09.002

8. Fellows, M., Fertin, G., Hermelin, D., Vialette, S.: Sharp tractability borderlines
for finding connected motifs in vertex-colored graphs. In: Arge, L., Cachin, C.,
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Abstract. Computational techniques have been successful at predict-
ing protein function from relational data (functional or physical interac-
tions). These techniques have been used to generate hypotheses and to
direct experimental validation. With few exceptions, the task is modeled
as multi-label classification problems where the labels (functions) are
treated independently or semi-independently. However, databases such
as the Gene Ontology provide information about the similarities between
functions. We explore the use of the Metric Labeling combinatorial
optimization problem to make use of heuristically computed distances
between functions to make more accurate predictions of protein function
in networks derived from both physical interactions and a combination of
other data types. To do this, we give a new technique (based on convex
optimization) for converting heuristic semimetric distances into a metric
with minimum least-squared distortion (LSD). The Metric Labeling
approach is shown to outperform five existing techniques for inferring
function from networks. These results suggest Metric Labeling is use-
ful for protein function prediction, and that LSD minimization can help
solve the problem of converting heuristic distances to a metric.

1 Introduction

Networks encoding pairwise relationships between proteins have been widely
used for protein function prediction and for data aggregation and visualization.
Sometimes these networks are derived from a single data source such as protein-
protein interactions [17,37,30]. In other instances, they are constructed from
integration of large collection of experiments involving different data types, such
as gene expression [11], protein localization [16], etc. The precise meaning of an
edge can differ, but a common feature of these networks is that two proteins
connected by an edge often have similar functions. By extension, these networks
generally have the property that two proteins that are “close” in the network are
more likely to have closely related functions. This correlation has given rise to a
number of computational approaches to extract hypotheses for protein function
from relational data [34,33,14,29,18,7].
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Nearly all of these computational methods treat the function prediction prob-
lem as a labeling problem, where the labels are drawn from a vocabulary of bi-
ological functions or processes. They typically ignore any relationships between
the functions, treating them as independent labels. However, there are usually
known relationships among functions that ought to be useful to make more accu-
rate predictions of protein function. For example, the Gene Ontology (GO) [36]
is a manually curated database of biological functions and processes that repre-
sents the hierarchical relationships among different functions as a DAG. However,
most prediction methods have ignored such a structure.

In the few cases it has been done, integrating Gene Ontology knowledge into
protein function prediction methods [1,7] and clustering [5] has resulted in im-
proved predictions. For example, Barutcuoglu et al. [1] developed a Bayesian
framework for combining multiple SVM classifiers based on the GO constraints
to obtain the most probable, consistent set of predictions. Their approach used a
hierarchy of support vector machine (SVM) classifiers trained on multiple data
types. This method also exploits the relationship between functions in GO but
does not exploit distances between functions directly. Taking another approach,
Deng et al. [7] uses the correlations between which proteins are labeled with
each functions but they estimate these correlations from training data and do
not consider GO structure.

1.1 Metric Labeling for Function Prediction

Here, we propose to integrate Gene Ontology relationships with relational data
by modeling the protein function prediction problem as an instance of Metric
Labeling [20] which is a special case of MRF [21] in which the distance function
among labels is a metric. The Metric Labeling problem seeks to assign labels
(here, protein functions) to nodes in a graph (here, proteins or genes) to minimize
the distance (in the metric) between labels assigned to adjacent nodes in addition
to the cost of assigning labels to nodes. The advantage of this formulation is that
rather than treating function labels as independent, unrelated entities, their
similarities can be directly incorporated into the objective function. A more
detailed description of the Metric Labeling problem is given in Section 2.1.

The Metric Labeling formulation can be seen as an generalization of mini-
mum multiway cut [39], which implicitly assigns distance 0 between two identical
functions and distance 1 between any pair of distinct functions. Metric Label-
ing softens this to account for varied levels of similarities between the functions.
Metric Labeling can also be seen as special case of Markov Random Field
(MRF). MRFs encode the same combinatorial problem, but the distance func-
tion is not restricted to metrics or semimetrics [21]. However, optimization with
such arbitrary distance functions is NP-Hard [6,21], and there is no approxima-
tion algorithm that can approximate the global optimum within a non-trivial
bound. In contrast, there are practical approximation algorithms for Metric
Labeling with logarithmic approximation guarantees [4,20]. In this paper, we
will use the integer programming formulation by [4] which yields an O(log k)
approximation algorithm for Metric Labeling where k is number of labels.
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1.2 Constructing a Metric Distance between GO Functions

Metric Labeling (and MRF models) have typically been used in applications
related to computer vision [21,26,2] where often the distance between the labels
naturally can be expressed by metrics. In the case of function prediction from
relational data, while heuristic relationships between functions can be readily
computed from the structure of the Gene Ontology graph, it is more difficult to
make these distances obey the requirements of a metric. Recall that a metric
d(·, ·) over items X satisfies the following 4 properties for all x, y, z in X :

d(x, y) ≥ 0 (Nonnegativity) (1)
d(x, y) = 0 if and only if x = y (2)
d(x, y) = d(y, x) (Symmetry) (3)
d(x, z) ≤ d(x, y) + d(y, z) (Triangle Inequality) (4)

Typically, properties (1)–(3) can be easily satisfied, but often natural distance
measures do not satisfy the triangle inequality (4). When d satisfies (1)-(3) but
not the triangle inequality (4), it becomes a semimetric.

To apply Metric Labeling when the distance function on the labels is
merely a semimetric, we will first convert the semimetric into a metric that is
as similar to the semimetric as possible. Approximating a semimetric by a close
metric and MRF optimization when the distances are semimetric are topics of
recent interest, and Kumar and Koller [24] have recently suggested an algorithm
based on minimizing the distortion. If S is a semimetric, and M is a metric ap-
proximating S, the contraction of this mapping is the maximum factor by which
distances are shrunk in M and the expansion or stretch of this mapping is the
maximum factor by which distances are stretched in M. The distortion of this
approximation is the product of the contraction and the expansion. Although
distortion minimization has traditionally been used in metric embeddings, dis-
tortion considers the error introduced in the largest outlier and does not take
into account the distribution of the error over all the distances. For imperfect
data that is far from a metric, intuition indicates that minimizing the error
introduced in the other distances would yield a better metric.

To design metric approximations to semimetrics that better preserve all dis-
tances, we propose a least squared minimization algorithm that tries to minimize
the total squared error among all distances. To contrast it with traditional dis-
tortion, we call this approach least squared distortion (LSD). This problem can
easily be solved in polynomial time because it is a convex case of quadratic
programming. Thus, to apply Metric Labeling in cases when the distances
among the labels are not metric, we first map the semimetric to a close metric
using the LSD algorithm and then run Metric Labeling on the new met-
ric. Experiments on protein function prediction suggest this is a good metric
approximation method. The issue of converting a set of heuristically estimated
distances to a metric arises in many practical contexts and the LSD approach
may also be useful for other applications.
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1.3 Improvement in Function Prediction

We test the LSD algorithm and the Metric Labeling approach for func-
tion prediction on relational data for 7 species: S. cerevisae, A. thaliana, D.
melanogaster, M. musculus, C. elegans, S. pombe and Human. For S. cerevisae,
we apply the algorithms to an integrated data set that derives pairwise relation-
ships between proteins from several lines of evidence such as gene expression,
protein localization data, and known protein complexes. For all 7 species, we also
test the approaches on networks derived from high-throughput protein-protein
interaction experiments.

The algorithms are tested in a variety of settings. The set of functional labels
are drawn from the Gene Ontology’s Biological Process sub-ontology. The num-
ber of considered GO terms is varied between 90 and 300 in order to evaluate the
effect of the size and specificity of the label set on performance. Various metrics
and semimetrics relating the GO terms are also tested. A simple shortest-path
metric is compared with two other semimetrics derived from lowest common
ancestor in the Gene Ontology DAG, semimetrics computed from a training
set of labels, and semimetrics computed from both training set and GO. See
Section 2.4.

1.4 Our Contributions

We introduce the use of Metric Labeling for protein function prediction from
relational data and show that under many reasonable metrics it outperforms the
approaches based on Markov Random Fields [25], Functional Flow [29], mini-
mum multiway cut [39,19], neighborhood enrichment [14], and simple majority
rule [33]. We test on 7 species in both protein-protein and integrated networks
using several different collections of GO terms. The results indicate that the clean
Metric Labeling formulation is useful for automated function prediction.

In addition, we introduce the LSD objective function for finding a metric that
approximates a semimetric with the goal of preserving many distances rather
than just limiting the maximum distortion. The convex optimization approach
for this problem may be useful in other contexts where reasonable heuristic
distances do not satisfy the triangle inequality. We compare the performance of
running first our LSD metric approximation algorithm and then running Metric
Labeling on the LSD’s output metrics with a recent algorithm by Kumar and
Koller [24] and Metric Labeling with LSD metric approximation results in
better predictions.

2 Methods

2.1 The Metric Labeling Problem

The Metric Labeling problem has been extensively investigated from a the-
oretical point of view [20,4]. Formally, we have a graph G = (P, E) over a set
P of n nodes (here, proteins), E of edges and a set L of k possible labels (here,
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functions) that we want to assign to objects. We have a metric d(·, ·) satisfying
properties (1)–(4) defined between any labels in L. We are also given a function
c(p, �) that provides the cost of assigning label � ∈ L to p ∈ P . Metric La-
beling seeks an assignment f : P → L of labels to proteins that minimizes the
objective function:

Q(f) =
∑
p∈P

c(p, f(p)) +
∑

(p,q)∈E

w(p, q)d(f(p), f(q)). (5)

where w(p, q) = w(q, p) is the weight of the edge between proteins p and q in
the graph. The first summation is called the assignment costs and depends only
on individual choice of label we make for each protein and second summation is
called the separation costs and is based on the pair of choices we make for two
interacting proteins.

The intuition is that pairs of proteins that are highly related (w(p.q) is high)
ought to be assigned labels that are highly similar (d(f(p), f(q)) is low). The
assignment costs prevent the problem from becoming trivial by forbidding the
assignment of the same label to every protein. For a protein p with a known
function b, typically c(p, b) will be 0 and c(p, �) = ∞ for all � ∈ L except b.

2.2 Integer Programming Formulation of Metric Labeling

The Metric Labeling problem defined above can be written as an ILP [4].
In this formulation, x(u, i) is binary variable indicating that vertex u is labeled
with i and x(u, i, v, j) is binary variable indicating that vertex u is labeled with
i and vertex v is labeled with j for edge (u, v) ∈ E. The objective is then to

minimize
∑
v∈V

∑
i∈L

c(u, i)x(u, i) +
∑

(u,v)∈E

∑
i∈L

∑
j∈L

w(u, v)d(i, j)x(u, i, v, j). (6)

The variables are subject to the following constraints:∑
i∈L x(u, i) = 1 ∀u ∈ V (7)∑

j∈L x(u, i, v, j) = x(u, i) ∀u ∈ V, v ∈ N(u), i ∈ L (8)

x(u, i, v, j) = x(v, j, u, i) ∀u, v ∈ V, i, j ∈ L (9)
x(u, i) ∈ {0, 1} ∀u ∈ V, i ∈ L (10)

x(u, i, v, j) ∈ {0, 1} ∀(u, v) ∈ E, i, j ∈ L (11)

Constraints (7) mean each vertex must receive some label. Constraints (8) force
consistency in the edge variables: if x(u, i) = 1 and x(v, j) = 1, they force
x(u, i, v, j) to be 1. Constraints (9) express the fact that (u, i, v, j) and (v, j, u, i)
refer to the same edge.

Solving this integer programming instance optimally is NP-complete. Since we
are dealing with large networks, we use the O(log k) approximation algorithm
given by Chekuri et al. [4] that is based on solving the linear programming
relaxation to identify a deterministic HST metric [9] of the given metric such
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that the cost of our fractional solution on this HST metric is at most O(log k)
times the LP cost on the original metric. We implemented and ran the LP
formulation in GLPK [13].

2.3 Metric Approximation via Least Square Distortion
Minimization

The algorithms suggested above have guaranteed performance bounds when the
distance d is a metric. However, finding a metric distance in practical contexts
can be difficult. Ideally, the distance encodes a large amount of knowledge about
the relationship between protein functions. It is likely that such as distance
will not satisfy the triangle inequality. We define a novel metric approximation
algorithm, called LSD, based on minimizing the total least squared error be-
tween a given semimetric set of distances and the computed metric distances.
Least squared error approximation is intuitive because the error of every dis-
tance contributes to the total error of the metric approximation instead of only
the maximum expansion and contraction as in distortion case.

The LSD algorithm is defined as a quadratic program below, where S =
{s1, . . . , s(n

2)} is the given set of semimetric distances between each pair of n

items, and M = {m1, . . . , m(n
2)} is corresponding set of metric distances, where

for all i, si and di represent distances between the same pair of proteins. Let
I = {1, . . . ,

(
n
2

)
} be the set of indices of distances.

To find a good approximation to the distances in S we seek values for the
{mi} variables to

minimize
∑
i∈I

(si −mi)2. (12)

We require that the mi values satisfy the following constraints for all i, j, k ∈ I
that should be related by the triangle inequality:

mi + mj − mk ≥ 0 (13)
mi + mk −mj ≥ 0 (14)
mk + mj −mi ≥ 0 (15)

The objective function can be written as (1/2)xT Qx + cT x where n× n matrix
Q is symmetric, and c is any n × 1 vector. In our case, the matrix Q is positive
definite and if the problem has a feasible solution then the global minimizer is
unique. In this case, the problem can be solved by interior point methods in
polynomial time. We implemented and ran the problem in CPLEX [38].

2.4 Metrics and Semimetrics

We test 4 different distance measures between protein functions:

1. dSP(x, y) = the shortest path distance in the GO DAG between x and y
divided by diameter of GO. This is a metric and intuitively simple.
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2. dLCA(x, y) = (b + c)/(2a + b + c), where a is shortest path distance from the
root of the ontology to the lowest common ancestor u of x and y and b is
the shortest distance from x to u and c is the shortest distance from y to u.
The LCA distance measure does not satisfy triangle inequality and is only a
semimetric.

3. dLin(x, y) = (log Pr(x) + log Pr(y))/(2 log Pr(lca(x, y))), where Pr(x) is the
empirical probability (computed from the training annotations) that a pro-
tein is annotated with x, and lca(x, y) is the LCA of x and y. This is defined
in [28] as a similarity measure, and we take its reciprocal as a distance.
It is similar to the LCA distance above but uses the probabilities of each
annotation instead of GO distances. It has mostly been used in NLP appli-
cations [3,27]. However, it has recently been used in other applications of
Gene Ontology distances [32,8]. It is a semimetric.

4. dKB(x, y) =
∑

p1∈Px

∑
p2∈Py

sp(p1, p2)/(diameter · |Px| · |Py |), where Px and
Py are sets of proteins in the training set annotated with x and y respec-
tively, sp(x, y) is the shortest path distance between x and y, diameter is
the diameter of network.

We also consider the combination of a structure-based d ∈ {dSP, dLCA, dLin}
with the knowledge-based dKB using the formula:

dcomb(x, y) = (1 − α)d(x, y) + αdKB(x, y) , (16)

where α is a weight of contribution of training set estimations. For α < 1, none
of the combined distances are metric (but are semimetric).

When the distance is not a metric, we first run the LSD metric approximation
algorithm (Section 2.3) to obtain a metric and then run Metric Labeling on
those metric distances. When it is a metric, we just run Metric Labeling.

In addition, we test two schemes for the assignment costs c(u, i) of assigning
label i to node u. Either they are chosen to be uniformly 1 or non-uniformly
according to the density of a label in a particular region of the graph as follows:
We estimated for each protein p and label i cost c(p, i) = np/(npinp) = 1/npi

where np and npi are number of neighbors of p and number of neighbors of p
in the training set that have function i respectively. In the case where p has no
neighbors with function i, c(p, i) = 2. When a function of protein is known, the
cost of assigning that function is 0 whereas assigning any other function is ∞.

2.5 Network Data

We tested our algorithm on the protein-protein interaction (PPI) networks of 7
species obtained from BIOGRID [35]: S. cerevisiae, C. elegans, D. melanogaster,
A. thaliana, M. musculus, H. sapiens, and S. pombe. We used all physical inter-
actions in BIOGRID. Duplicate edges were counted as single edges. We consider
only the largest connected component. We used GO annotations downloaded
from the Gene Ontology as our true annotations. Only non-EIA annotations are
considered. When considering only PPI networks, weight of every edge is 1.
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For S. cerevisiae, we also considered an integrated network derived from sev-
eral data sources, including gene expression [11], protein localization [16], protein
complexes [12,15], and protein interaction [35]. We used protein complex dataset
by assigning binary interactions between any two proteins participating in the
same complex, yielding 49313 interactions. For gene expression data, we assigned
binary interactions between genes whose correlation in [11] is greater than 0.8 or
smaller than −0.8. We assigned binary interactions between any proteins that
are annotated to the same location in [16].

We combined these data sources into one network by using noisy-or with their
reliability scores, where the interaction score between nodes u and v is taken to
be w(u, v) = Score(u, v) = 1 −

∏
i∈Euv

(1 − ri) where Euv are the experiments
in which u and v were observed to interact. The reliability ri of each source i
was estimated by the percent of edges from i that connect proteins of shared
function in the training data.

2.6 Comparison to Other Methods

We ran the algorithms on a Mac that had 2 GHz Intel Core 2 Duo processor and
2 Gb memory. The Metric Labeling algorithm took approximately 15 minutes
to run. We compared Metric Labeling predictions with several well-known
direct function prediction methods:

Majority: Each protein is annotated with the function that occurs most often
among its neighbors as described in [33]. The main disadvantage of this
method is that the full topology of network is not considered.

Neighborhood: For each protein, we consider all other proteins within a radius
r = 2 as described in [14] and a χ2-test is used to determine if each function
is overrepresented.

GenMultiCut: This approach is described in [39] and [19]. It tries to cluster the
network by minimizing the number of edges between clusters. This algorithm
is a simpler version of our algorithm in which distance between two functions
are either 1 (if they are not the same) or 0 (if they are equal). Hence, it
cannot take the relations among functions into account. We followed the
same approach as [29] and ran an ILP formulation for this problem 50 times,
each time perturbing the weights by a very small offset drawing from uniform
distribution on (−wmax10−5, wmax10−5) where wmax is the maximum edge
weight in the graph. Then probability of assigning a function to a protein will
be the fraction of number of annotations of this protein with that function.
We implemented this by using MathProg and GLPK. It runs in < 1 minute
on yeast.

FunctionalFlow: Each function is independently flowed through the whole net-
work according to an update rule and each node is assigned to functions
depending on the amount of flow it receives [29].

MRF: This method is from [25]. It is based on kernel logistic regression which is
the improvement over previous MRF models [7,23]. This method also tries
to exploit the relation between different functions by identifying a set of
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functions that are correlated with the function of interest. However, it does
not use the structure of GO when estimating the correlation. This approach
takes < 5 minutes to run on yeast.

We also compared LSD with a recent approach for MAP estimation under a
semimetric:

Semimetric MAP Estimation Algorithm: This algorithm from [24] tries
to approximate a given semimetric distance function using a mixture of r-
hierarchically well-separated tree (r-HST) metrics [9]. Then, it solves each
resulting r-HST metric labeling problem. We followed the same approach
as in GenMultiCut, run the formulation 50 times by perturbing the edges
and assign the fraction of number of annotations of this protein with that
function as probability of annotating this protein with that function. We
modified code provided by the authors to work on our data sets. It ran in
less than a 1 minute on yeast.

Solving LSD optimally takes an hour to three hours depending on number of
elements in the ontology. However, we only run that once to come up with
metrics. This time can easily be reduced to several minutes by considering an
iterative approach that starts with point set which elements satisfy triangle
inequality and adding other points iteratively by minimizing the total distance
modifications made so that current set of points after each iteration will keep
satisfying triangle inequality. However, solution of this iterative approach is not
guaranteed to be optimal anymore.

2.7 Evaluating Performance

We use fivefold cross-validation to compare the predictive performance of the al-
gorithms. The dKB distance and the non-uniform assignment costs are computed
using only the remaining 80% of annotated proteins each time. All performance
measurements are the average of the 5 runs. Each method described in Sec-
tion 2.6 yields a score, and we assess performance at different false positive rates
by varying the score thresholds from 0 to 1 by 0.05 increments. We varied the
number of considered functions from 90 to 300. The GO terms are selected for
each species to match sets of terms used in previous publications [22] and the
annotations known for each species. Depending on the number of annotations
required, those annotations that are seen more than others and also that are not
ancestors of each other are selected. The annotations for each case and for each
species can be found in the online supplementary material. We counted each
annotation seperately as a separate example.

3 Results

3.1 Function Prediction in Yeast Using a PPI Network

Predictive performance on the yeast PPI network is shown in Fig. 1. The curves
show that Metric Labeling combined with our LSD metric approximation
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Fig. 1. ROC curves comparing various algorithms with Metric Labeling approaches
using 90 ontology terms. SemiMap indicates the semimetric-to-metric conversation
algorithm by Kumar and Koller [24] is run; LSD means we first run our LSD minimiza-
tion algorithm and then Metric Labeling. The trade-off α between the GO-based
distance and the training distance (Eqn. 16) is either 0.1 or 0.3 as indicated.

algorithm performs better than the other tested algorithms. Metric Labeling
is more accurate than GenMultiCut in every case since GenMultiCut ignores the
effect of distances between functions. FunctionalFlow also does not perform as
well as Metric Labeling, which again may be due to its independence assump-
tion between functions. Metric Labeling still performs well when number of
elements in the ontology is increased to 150 and 300 (Fig. 2).

Metric Labeling also outperforms the MRF-based algorithm [25]. This may
be because the correlation estimations between functions used in that approach
depend solely on training data whereas our distances are estimated from both
the training set and the structure of the GO DAG. This indicates that, while
the Gene Ontology is an imperfect, incomplete, manually edited resource, the
distances between annotations in the ontology do contain useful information that
can be exploited to make more accurate predictions.

Among various distance heuristics we used, the LCA and Lin distances are bet-
ter in general since they take the lowest common ancestor into account. The dLin

and dLCA distances perform about the same but they both perform better than
the dSP metric (Fig. 3a). This further indicates that lowest common ancestor
is a good distance estimator when there are hierarchical relations among points
as shown previously in WordNet [10]. This also echos results in several other
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Fig. 2. Performance degrades as the number of terms increases

papers [27,3,31] in terms of showing effectiveness of lowest common ancestor as
a measure between ontology terms. In addition, in almost all cases the nonuni-
form assignment costs performs slightly better than uniform assignment costs,
although the effect is not large, and if nonuniform assignment costs are not
available, uniform assignment costs can be nearly as effective.

Running the LSD minimization for semimetrics and then running Metric
Labeling performs better than Semimetric MAP Estimation algorithm [24] in
most of the cases. This shows optimizing least squared error, rather than the
classical distortion, for metric approximation is effective in the protein function
prediction application.

3.2 Trade-off between GO-Distances and Network Distances

We also investigate how performance varies as the tradeoff between a distance
computed from the GO structure (dSP, dLCA, dLin) and a distance computed from
proximity in the network (dKB) is varied. Figure 3b shows the performance of
Metric Labeling with LSD metric approximation and the LCA distance for
different trade-offs α between the GO-based structural distance (dLCA) and the
trained distances dKB as described in Eqn. 16. In almost all cases, using distances
based solely on GO performs better than using only dKB but using estimations
both from training set and Gene Ontology structure performs better than using
either one alone.

Combining the Gene Ontology knowledge with training set estimations using
low values of α (α = 0.1 or α = 0.3) achieves the best performance by a slight
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Fig. 3. (a) Performance of Metric Labeling combined with the LSD minimization
using various distance measures. Uni indicates the assignment costs of Metric Label-
ing are uniformly 1 except for known annotations and Nonuni means assignment costs
are nonuniform as described in Section 2.4. Shortest, LCA, Lin indicate the different
distances functions in Section 2.4. (b) Performance of the dLCA distance combined with
the dKB distance with various α using the LSD algorithm.

margin for most of the cases. When the number of elements in ontology increases,
best performance is achieved by running Metric Labeling with combination
of dLin distances and training set estimates when α = 0.7. After the initial
benefit of using some of the dKB distances, the performance starts to decrease
as the weight α is increased. This may mean that dKB is most effective when it
operates as a tie-breaker between terms that have the same GO distances. (The
dependence on α of the performance of the other GO-based distances dSP, dLin

is similar).

3.3 Robustness on the Yeast PPI Network

Metric Labeling combined with LSD metric approximation is more robust to
noise in both misannotations and edge removal. We tested for robustness of the
predicted results in two ways. First, we removed various percentages of edges
randomly from the PPI network and re-run our algorithm. Performance clearly
decreased but even when 50% and 40% of the PPI edges are removed on 90 and
150 element ontologies respectively a Metric Labeling approach performs as
well as other algorithms run on the true PPI network. The fewer elements the
ontology has, the more robust it is in terms of edge removal. The Lin and LCA
distance measures again outperform shortest path distance and running LSD
minimization for semimetrics and then Metric Labeling does better than
using the Semi-Metric MAP Estimation algorithm [24]. The LSD minimization
may handle the noise in the data better during its error minimization.
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Secondly, we also tested robustness by misannotating various percentages of
protein annotations and then running our algorithm. Performance even when
30% of the proteins are misannotated on both 90 and 150 element ontologies is
still comparable with its performance with the true labels, and it is not worse
than other algorithms on the true labels. However, in the case of misannotations,
combining GO knowledge with training set estimations (α = 0.1 or α = 0.3) no
longer performs the best. Rather, the GO structure-based distances in isolation
perform the best as expected.

3.4 Performance on Other Networks

When we created integrated network from multiple sources as described in Sec-
tion 2.5, the performance increases slightly (last curve in Fig. 1). This shows
that the Metric Labeling approach is also useful on relational data other
than PPI networks. We also tested our algorithm on several species. Among
those species, performance strongly depends on how complete PPI network is,
with sparser networks generally exhibiting worse performance. Again, the Met-
ric Labeling approach performs competitively with existing methods. Due to
space limitations, the complete results for the 7 considered species are available
at http://www.cbcb.umd.edu/kingsford-group/metriclabeling.

4 Conclusions

We show that GO structural information can be exploited to achieve better
protein function prediction. We also show that the clean, combinatorial problem
of Metric Labeling can effectively use these distances and produce accurate
predictions in a reasonable amount of computational time.

Our novel LSD metric approximation algorithm combined with Metric La-
beling performs better than the semimetric MAP estimation algorithm in most
cases. This is interesting since distortion defined as in Section 1 has nearly al-
ways been used as the performance measure for metric embeddings. However,
as mentioned, distortion does not consider the distribution of the error on all
points. Its minimization considers just the minimization of the boundary cases
(of maximum contraction and expansion). LSD minimization instead tries to
minimize the total least squared error which makes sense both intuitively and
experimentally as we have seen on protein function prediction. Its effectiveness
on different application domains is an open question, but the LSD approach is
likely to be useful for the common problem of converting a set of heuristic dis-
tances into a metric for subsequent processing with an algorithm (such as that
for Metric Labeling) that assume a metric. The LSD metric approximation is
completely independent of Metric Labeling. Either of these algorithms can be
changed without affecting the other. However, this is not the case for Semimetric
MAP Estimation algorithm, for which the two phases of metric estimation and
prediction are not independent.

http://www.cbcb.umd.edu/kingsford-group/metriclabeling
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Abstract. Molecular Dynamics (MD) simulations can now predict ms-
timescale folding processes of small proteins — however, this presently
requires hundreds of thousands of CPU hours and is primarily applicable
to short peptides with few long-range interactions. Larger and slower-
folding proteins, such as many with extended β-sheet structure, would
require orders of magnitude more time and computing resources. Fur-
thermore, when the objective is to determine only which folding events
are necessary and limiting, atomistic detail MD simulations can prove
unnecessary. Here, we introduce the program tFolder as an efficient
method for modelling the folding process of large β-sheet proteins using
sequence data alone. To do so, we extend existing ensemble β-sheet pre-
diction techniques, which permitted only a fixed anti-parallel β-barrel
shape, with a method that predicts arbitrary β-strand/β-strand orienta-
tions and strand-order permutations. By accounting for all partial and
final structural states, we can then model the transition from random
coil to native state as a Markov process, using a master equation to
simulate population dynamics of folding over time. Thus, all putative
folding pathways can be energetically scored, including which transitions
present the greatest barriers. Since correct folding pathway prediction is
likely determined by the accuracy of contact prediction, we demonstrate
the accuracy of tFolder to be comparable with state-of-the-art methods
designed specifically for the contact prediction problem alone. We vali-
date our method for dynamics prediction by applying it to the folding
pathway of the well-studied Protein G. With relatively very little com-
putation time, tFolder is able to reveal critical features of the folding
pathways which were only previously observed through time-consuming
MD simulations and experimental studies. Such a result greatly expands
the number of proteins whose folding pathways can be studied, while the
algorithmic integration of ensemble prediction with Markovian dynamics
can be applied to many other problems.
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1 Introduction

Protein folding and unfolding is a key mechanism used to control biological ac-
tivity and molecule localization [1]. The simulation of folding pathways is thus
helpful to decipher the cell behavior. Classical molecular dynamics (MD) meth-
ods [2] can produce reliable predictions but unfortunately the heavy computa-
tional load required by these techniques limits their application to inputs tens of
amino acids long and prevents their application to large sequences (i.e. hundreds
of amino acids). Recently, P. Faccioli et al. proposed an effective solution of the
Fokker-Planck equation to compute dominant protein folding pathways [3], but
the same size limitations remain.

The development of distributed computing technologies has dramatically ex-
tended the range of application of MD techniques. For instance, Pande and
co-workers achieved a 1.5 millisecond folding simulation of a 39 residue protein
NTL9 [4]. In spite of this achievement, this strategy still seems limited to small
polypeptides (about 50 residues) and, more importantly, requires several months
of parallel computing and typically thousands of GPU’s.

In this paper, we introduce a complete methodology to address these com-
putational complexity limitations. Our approach aims to complement the range
of techniques already offered. Unlike MD simulations which use an all-atom de-
scription of structures together with a fine-tuned energy force field, here we use
a residue-level representation of the structure with a statistical residue contact
potentials. This simplification enable us to sample intermediate structures and
build a coarse-grained model of the energy landscape and subsequently simulate
folding processes.

Since the seminal work of Levitt and Warshel [5], it is widely acknowledged
that simplified representations of protein structures and motions are required to
circumvent computational limitations. A conceptual breakthrough came when
Amato and co-workers applied motion planning techniques to the protein folding
problem [6,7]. The method is much faster than classical MD techniques and
enables the study of the folding of large proteins. However, this approach does not
predict structures, rather it requires the three-dimensional structure of the native
state to compute potential intermediate structures and unfolding pathways, on
which the folding simulations are performed. It follows that the methodology
cannot be applied to proteins with unknown structures and cannot be relied
upon to study misfolding processes.

In fact, all the methods previously described face a difficulty common with
MD: efficient sampling of the conformational landscape. MD algorithms explore
the landscape through force-directed local search and progressive modification
of the structure. However, the scalability and numerical efficiency when model-
ing large molecular structures remains problematic, limiting their application to
small molecular systems. On the other hand, motion planning algorithms use a
3D structure of the native fold to predict distant structural intermediates. Ac-
cordingly, the accuracy of the method can suffer when intermediates sampled
are far away from the native state. Recently, Hosur et al. [8] have combined
efficient motion planning techniques with machine-learning to model proteins as
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an ensemble, but this approach is effective only in the local neighborhood of the
input structure.

Such obstacles have been addressed for RNA molecules by the development of
structural ensemble prediction algorithms [9,10], and the derivation of a finely-
tuned energy model based on experimental data [11]. Combined together, these
techniques enable us to compute the RNA secondary structure energy landscapes
and sample structures from sequence information alone. Wolfinger et al. [12] fur-
ther demonstrated how an RNA energy landscape can be constructed by con-
necting these samples together and estimating the transition rates between pairs
of interconverting states. The resulting ordinary differential equation (ODE)
system can be solved to predict and characterize RNA folding pathways. The
method has since been improved to analyze the motion of large RNAs [13].

In this paper, we propose to expand the methodology developed for RNAs to
the more complicated case of proteins. First, we design an algorithm to sample
the complete conformational landscape of large protein sequences given sequence
data alone. Then, we use this sampling algorithm to build a coarse-grain repre-
sentation of the energy landscape of a protein, from which we construct an ODE
system modeling transition rates between folding intermediates that we solve to
simulate protein folding.

We choose to address specifically β-sheet structures. The folding of these
structures is particularly difficult to simulate. Indeed, β-sheets are stabilized
by inter-strand residue interactions, and thus the folding and assembly of these
structures is largely influenced by long-range interactions and global confor-
mational rearrangements. For instance, Voeltz et al. recently showed that the
rate-limiting step in the NTL9 fold was beta-sheet hairpin formation [4].

Since the original work of Mamitsuka and Abe [14], several groups have pro-
posed models to predict general β-sheets [15,16,17]. However, none of these meth-
ods are capable of computing ensembles of β-sheet structures (i.e. perform an
exact enumeration of all β-structures without duplicates) and therefore cannot
be used to sample the β-sheet energy landscape.

We recently introduced a structural ensemble predictor for transmembrane
β-barrel (TMB) proteins [18], continuing earlier work on molecular structure
modeling [19,20]. However, TMBs are a special case of β-sheets where each strand
pairs with its two sequence neighbors via an anti-parallel interaction (except
the “closing” pair which involves the first and last strands). Here, we expand
these techniques to allow any β-strand organization in the β-sheet, with parallel
and anti-parallel orientations, and enable the sampling of general β-sheets. This
algorithm is implemented in the program tFolder.

We use tFolder to sample the β-sheet conformational landscape and build a
coarse-grain model of the energy landscape. More specifically, we cluster protein
configurations according to contact distance metrics, and associate each cluster
with an intermediate folding state. We use the difference between the ensem-
ble free energies of the clusters to compute the transition rates and build an
ODE system that models the energy landscape. Finally, we solve this system to
estimate the distribution of conformations over folding time.
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This methodology reconciles the MD and motion planning approaches for
studying folding pathways. Using tFolder, we are now able to simulate in a
couple of minutes on a single desktop the folding of large proteins, and to predict
the folding pathways (as well as possible misfolding pathways) of proteins with
unknown structures. Thus we are able to provide a broader range of applications,
while offering computational efficiency comparable with motion planning tech-
niques. Although we focus on β-sheet proteins, our method in principle could be
extended to describe the folding pathways of a wider class of protein structures.

This paper is organized as follows. In section 2 we describe the tFolder algo-
rithm and explain how we construct the coarse grained energy landscape model.
Then, in section 3, we benchmark our methods. First, we evaluate the accuracy
of tFolder for simple inter-strand residue contact prediction and show that it
performs comparably with more sophisticated techniques specifically designed
for this task. Importantly, our contact predictions are not dependent on the
separation between the residue indices, which means an improved “very” long-
range contact prediction accuracy. Then, we illustrate the insights provided by
our methods by analyzing the energy landscape of the extensively studied Pro-
tein G. We show that tFolder predicts the correct folding pathways, and in-
terestingly, our simulation reveals a possible off-pathway structure. All these
simulations can be performed on query sequences using our program tFolder,
available at http://csb.cs.mcgill.ca/tFolder

2 Methods

To predict realistic protein folding pathways, we exploit well-established ensem-
ble prediction algorithms [18] for their ability to accurately predict the energy
scores of millions of feasible structural conformations from sequence alone. Our
approach proceeds in two steps: (1) Given an arbitrary peptide sequence, we
produce ensemble predictions of the energetic weight for all possible β-sheet
structures and sub-structures, utilizing an enhancement to standard ensemble
predictors which allows permutation. (2) Using each conformation’s energetic
score and metrics of conformational similarity, we derive the likelihood of dy-
namic state-to-state transitions and assemble a set of complete folding paths.
In this way, we can identify and rank the most likely pathways from an un-
folded conformation to a fully folded conformation based on predicted energy
landscapes.

Modelling β-Sheet Ensembles

We model the set of all possible β-sheet conformations a peptide can attain using
a statistical-mechanical framework. Conceptually, each structure is described by
the set of residue/residue contacts that form hydrogen bonds between β-strand
backbones, and is assigned a Boltzmann-distributed pseudo-energy, determined
by the specific residues involved in contacts. To characterize the energetic land-
scape of this ensemble, a partition function Z can be calculated over all structural
states S = {1...n} such that
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Z =
n∑

i=1

e−
ESi
RT ,

with energies ESi , temperature T, and the Boltzmann constant R. For example,
from this the relative abundance of a structure Si can be easily derived:

p(Si) =
e−ESi

Z
.

Our energy model is based on statistical potentials and follows directly from
prior prediction tools that have been shown to be accurate [18][21]. An energy
Ei,j is given to each residue/residue pair within the β-sheet fold following Ei,j =
−RT [log(p(i, j)) − Zc], where Zc is a statistical recentering constant and p(i, j)
is the probability of these two residues appearing in a β-sheet environment, as
observed across all non-sequence-homologous solved structures in the PDB [18].
Further, we assign separate probabilities based on the hydrophobicity of the
environment on either face of a β-sheet.

A naive approach to computing the partition function would thus be to enu-
merate all possible structures and compute each structure’s contribution to the
sum individually. However, as was previously shown for the special case of anti-
parallel β-strands in transmembrane β-barrel proteins, a much more efficient
method exists using dynamic programming [18]. We have generalized this ap-
proach to enable the computation of arbitrary single β-sheet fold topologies.

Permutable β-Templates

We introduce the concept of permutable β-templates to enable the calculation
of the partition function of a β-sheet with arbitrary β-strand topologies. This
extends existing ensemble prediction techniques by allowing any combination
of parallel and anti-parallel β-strands to be including within a single β-sheet
fold, and by removing any sequence dependency between β-strand/β-strand
pairing partners. Prior methods supported only all-anti-parallel β-strands and
required β-strand/β-strand interactions to be separated only by coil (and not
other strands) [18].

To efficiently encode these generic shapes, each strand is labeled {1...n} to
allow a stepwise permutation through β-strand ordering, and a signed permuta-
tion is defined such that each β-strand is assigned to be parallel or anti-parallel
relative to the first strand in the sheet (Figure 1). Algorithmically, tFolder is
capable of constructing a dynamic program over all such permutations to cal-
culate the partition function. In practice, since such an encoding can result in
unrealistic combinations of β-strand/β-strand pairings (such as if β-strands 1
and 4 had too short a coil between them in Figure 1), we impose that valid
foldings must satisfy steric and biologically derived constraints. These include a
minimum and maximum β-strand length, maximum shear between neighboring
β-strands (the amount of inclination that causes the β-sheet to deviate from a
perfect rectangle), and minimum inter-strand loop size. These constraints serve
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Fig. 1. An illustration of how a permutable β-template can be encoded as a signed
permutation. The permutation lists the strands in the order that they occur in the
sheet, with the sign indicating whether the strand is parallel (+) or anti-parallel (-) to
the first strand.

to limit the exploration of unrealistic conformations, minimizing excess compu-
tation and allowing directed investigation into specific motifs.

The energy of a structure with n strands, can be recursively defined as E(Sn) =
E(Sn−1) + Pairing(sn−1, sn), where E(Sn−1) is the interaction energy between
the first n − 1 strands, and Pairing(sn−1, sn) is the energy of the pairing of
strand n−1 with strand n (See Figure 2(a)). tFolder exploits the shared struc-
ture between instances in the ensemble by computing this recursion using a
dynamic programming algorithm. The result of each recursive call is stored in
a table indexed by the parameters of the call. Subsequent recursive calls made
with the same parameters perform a table lookup instead of re-computing the
value of the recursion.

For a sheet of n strands, the table has n rows, where the kth row has en-
tries corresponding to valid configurations of the first k strands. For the kth
strand, these configurations are partitioned by the location of four indices k1,
k2, k3, k4, which denote the boundaries of the region occupied by the k strands
(Figure 2(b)). To begin, the algorithm enumerates all possible positions of the
first two strands, and for each stores the strand pair interaction energy in entry
E21222324 of the table. For each subsequent strand k, the value of Ek1k2k3k4 is
computed as:

Ek1k2k3k4 =
∑

i1i2i3i4

Ei1i2i3i4 + Pairing(i, k),

(a) β-sheet decomposition
recursion

(b) Indices of intermediate structures

Fig. 2. (a) Illustrates how the energy function of a β-sheet can be recursively defined
as the sum of the contribution of the last two strands with the contribution of the
remaining structure. (b) Indicates the indices used to store the energies of intermediate
structures for the recursion.
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where i1, i2, i3, i4 are enumerated for all valid settings for the boundaries of the
preceding strands, given the boundaries of the kth strand. Once the recursion
has filled the table, the partition function Z is calculated by summing over all
possible settings of n1, n2, n3, n4:

Z = exp

(
−

∑
n1n2n3n4

En1n2n3n4

)
.

The table constructed to calculate the partition function can be used to sam-
ple the distribution of configurations of a given topology, utilizing the approach
established by Ding and Lawrence for RNA secondary structure [22], and success-
fully applied previously by Waldispühl et al. to sample conformations of β-barrel
proteins[20]. To do this, we perform a traceback through the table and, at ith
step, sample the indices within which the first i strands are contained, according
to the Boltzmann representation of these i-stranded structures (Figure 3).

Fig. 3. Illustration of of how the sampling procedure performs a traceback through
the table, over the indices of intermediate structures. During each step of the sampling
procedure, the location of a single strand is sampled from the region indicated by
the vertical bars. The triangles denote the location of the strand sampled during the
previous step.

2.1 Predicting Folding Dynamics

Conceptually, we model the folding process as a path through a graph of vary-
ingly folded conformations of a protein. In this graph, different protein confor-
mations are represented as states, and two states that inter-convert in a folding
pathway are connected by an edge, analogous to work with RNA described pre-
viously [12]. The tFolder algorithm provides a means to efficiently sample the
energetically accessible conformations that make up the states of this graph.
We further propose a means to determine the connectivity between states and
demonstrate how this can be applied to calculate the dynamics of the folding
process.

Since we do not know the final structure, we begin by sampling configurations
from all possible permutations of β-sheet topology, as described above. For every
pair of states, we add an edge between two states if (1) the states have compatible
topologies, and further, (2) the states show structural similarity.

Two templates are compatible if they are identical to each other, modulo
the addition or removal of a single strand pairing. This operation can result in
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the growth of a core structure, or the nucleation of an independent strand pair
(see Figure 4). Note that the requirements for satisfying the second criterion of
structural similarity depends on the metric used to estimate structural similarity
between two conformations. In practice, we use a contact based metric and deem
two structures to be structurally similar if the metric is below the transition
threshold.

Given the graph constructed according to these two criteria, the change in
the probability of the system being in state i at time t is calculated from the
total flux into and out of state i,

dpi

dt
=

∑
jεX

rijpj(t),

where pi is the probability of state i, X is the state space, and rij is the rate
of transition from state i to state j. Given that two states are connected in the
graph, the rate at which two states inter-convert is proportional to the difference
between free energies of the states(ΔG); the system tends toward energetically
favorable states. We calculate the transition rate rij between states i and j using
the Kawasaki rule (with parameter r0 to scale the time dimension):

rij = r0 exp (−ΔGij/2RT ) .

The dynamics of the system are calculated by treating the folding process as a
continuous time discrete state Markov process. Given the matrix of folding rates
R, where Rij = rij and initial state density p(0), the distribution over states
p(t) of the system at time t is given by the explicit solution to the system of
linear differential equations,

p(t) = exp (Rt)p(0).

Since we sample hundreds of states from each β-strand topology, we partition the
state space into macro states using clustering, in order to work with a tractably
sized system. Under this approximation, we consider two clusters the graph to
be connected if the minimum distance between any two states from each cluster
are connected. We define the ensemble free energy difference ΔGij between two
macrostates i and j by summing over the states from which they are composed.

Fig. 4. The topologies that are compatible with a given state (shaded gray) result
from the addition of a single pairing between strands (dashed box). The ’+’ indicates
that there is no pairing between the gray structure and the white strand pair.
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ΔGij = E(χi) − E(χj) =
∑
xεχi

E(x) −
∑
xεχj

E(x).

Although this approximation lessens the computational burden, it represents
a trade off. The granularity achievable by our simulation is at the level of
the macrostates. Note, energy barriers are not explicitly incorporated into the
model, since entire β-strands are either added or removed between states without
partially-formed intermediates.

3 Results

Evaluation of Contact Prediction

To evaluate the contact prediction performance of tFolder, we tested it us-
ing a 31 protein benchmark1. Proteins were selected from the Protein Data
Bank that had dominantly beta structure and low sequence homology. From
each of these the β-topology was extracted and used as input for tFolder,
along with the amino-acid sequence and fixed strand length of 4–6 residues.
Since predicting folding dynamics involves a permutation over all β-topologies,
this demonstrates the expected accuracy of each folding state along the path-
way. We sample 500 configurations of each protein, and use these ensembles
to compute a stochastic contact map and distribution of strand locations (See
Figure 5(a) and 5(b) for example). The contact map represents the probabil-
ity of observing a given contact, and predicted contacts are the set of all con-
tacts with probability above a threshold value t. The selection of t influences
the measured performance (Figure 5(c)), so to objectively set the threshold,
we chose a t that maximizes the F-measure. We evaluated the quality of our
contact maps based on the Accuracy (no. of correctly predicted contacts

no. of predicted contacts ), Coverage
(no. of correctly predicted contacts

no. of observed contacts contacts ), and F-measure (2·Accuracy·Coverage
Accuracy+Coverage ) of our pre-

dictions. We calculated these measures in terms of β-contacts, which we defined
as residues located withing β-strands less than 8Å apart (between Cα atoms) in
the PDB structure. A summary of tFolder performance on Protein G, as well
as average performance on the 31 protein dataset, is presented in Table 1. Here
we distinguish between results for long range contacts, greater than 0, 12, or
24 residues apart. Thus, tFolder maintains reasonable predictive accuracy even
with large contact separations

In order to evaluate the performance of tFolder with respect to other ap-
proaches for contact prediction, results on this protein dataset are presented in
Table 2 along with a comparison with two leading contact prediction alogrithms,
SVMcon and BETApro. The method SVMcon used ten of the proteins in this
dataset for the training of their SVM, so they were excluded from the evaluation
for the comparison of methods. It can be seen that tFolder is able to perform
comparably, in particular for the F-measure of contacts with sequence separa-
tion greate than 24 residues. Although these methods sometimes perform better

1 Complete benchmark results available at the tFolder website.
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Table 1. The performance of tFolder for contact prediction is evaluated based on
the Accuracy, Coverage, and F-measure of experimentally observed contacts. These
performance metrics are reported for contacts that are more than 0, 12, and 24 residues
apart, showing that tFolder maintains reasonable predictive accuracy even with large
contact separations. Additionally, these metrics are evaluated when predicted contacts
are within ±2 residues of an observed contact.

Protein G 31 protein benchmark
Exact ± 2 Exact ± 2

≥ 0 ≥ 12 ≥ 24 ≥ 0 ≥ 12 ≥ 24 ≥ 0 ≥ 12 ≥ 24 ≥ 0 ≥ 12 ≥ 24
Accuracy 13.3 10.6 14.0 52.1 54.1 58.3 8.6 7.0 8.4 24.2 32.1 39.8
Coverage 56.3 53.8 37.5 97.9 61.5 87.5 9.1 11.6 11.9 43.5 44.5 51.1

F-measure 21.5 17.7 20.4 68.0 57.6 70.0 8.3 9.3 19.0 27.3 29.7 45.2

for contact prediction, it is important to note that the predictive performance
of tFolder is less sensitive to the distance of contact separation. Since critical
protein folding steps can involve both short-range and long-range β-sheet con-
tacts, it is especially important for long-range contacts to be predicted correctly
to allow an accurate folding pathways to be reconstructed. Furthermore, since
we cannot apply cross validation techniques to BETApro and SVMcon, we also
indicate their performance for CASP 7.

Table 2. Comparison of the performance of tFolder contact prediction with contact
prediction algorithms SVMcon and BETApro. The methods are evaluated based on
their ability to perform contact prediction for contacts greater than 12 and 24 residue
separation respectively. The metric values for contacts within ±2 residues of an ob-
served contact are reported in parentheses.

≥ 12 ≥ 24
Method F-measure Accuracy Coverage F-measure Accuracy Coverage

tFolder 9.0 (24.0) 6.7 (29.4) 8.8 (37.2) 20.1 (41.8) 11.7 (41.0) 15.1 (44.8)

BETApro 10.8 (28.1) 41.5 (78.1) 4.8 (16.0) 6.2 (22.8) 28.0 (57.7) 1.1 (7.2)
(CASP 7) 35.4 5.1 19.7 3.2

SVMcon 27.8 (55.7) 26.7 (69.7) 32.9 (48.4) 19.9 (40.0) 15.6 (54.0) 29.1
(CASP 7) 27.7 4.7 13.1 2.8

Predicting the Folding Pathways of the B1 Domain of Protein G

To demonstrate the efficacy of our techniques for predicting protein folding path-
ways, we reconstruct the folding landscape of the B1 domain of Protein G — a
well-studied protein for which the pathway has been elucidated through many
experimental studies and MD simulations. To do this, all possible permutations
of a 4-strand β-sheet topology were sampled and clustered. For each of these
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sets of structures, the cluster with the highest probability of being observed was
selected to be representative of each topology.

The graph of the folding pathway was constructed by considering all pairs of
clusters. If the minimum distance beween two clusters was less than the transi-
tion treshold, we considered that there was exchange between the two states. We
tried several metrics, including segment overlap, mountain metric, and a contact
based metric [24] [25], selecting the contact based metric, because it performed
best empirically. The resulting graph of protein conformations is illustrated in
Figure 6(a). Inspection of this graph, along with the folding dynamics computed
from this graph in Figure 6(b), reveals folding intermediates consistent with those

(a) contact map

(b) Per-residue Contact Probability

(c) Relationship between contact threshold
and performance metrics

Fig. 5. Summary of the distribution of structures predicted by tFolder for Protein
G (a) Shows the contact probability predicted by tFolder between all pairs of amino
acids. Green squares indicate contacts predicted by tFolder, whereas red squares rep-
resent pairs of amino acids that are less than 8Å from each other in the observed
structure. A higher intensity of green indicates a higher predicted probability of the
contact, and yellow squares are an indication of agreement between prediction and
observed contacts. (b) Shows the probability of the location of each strand, computed
from the ensemble of sampled structures.The bars at the top of the plot indicate the
location of the strands from the experimentally determined structure. (c) Shows the
relationship between the threshold used to determine a contact from the contact map,
and the values of the three metrics Accuracy, Coverage, and F-measure. The threshold
can be set to maximize the value of the F-measure, representing a reasonable trade-off
between Coverage and Accuracy.
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previously reported by Song et al. [26]. It should also be noted that although
we compute other configurations of the sequence that are energetically favor-
able (faded states), they are not predicted to form because they are unreachable
from the unfolded state. Interestingly, a four-stranded off-pathway structure is
predicted to form, which has not been observed previously. Furthermore, our
results agree with the work of Hubner et al., who show that the anti-parallel
beta-hairpin, predicted to form an interaction between residues 39–44 and 50–
55, center around known nucleation points W43, Y50, F54 [27].

Algorithm Running Time

The computational bottleneck of our approach is the computation of the par-
tition function of a template. The primary factors influencing this calculation
are the length of sequence and the number of strands in the β-topology (the
depth of the recursion). The partition function for sequences between 40–130
residues and 4–6 strands was calculated using a single 2.66GHz processor with
512 MB of RAM. The effect of these two parameters on the computation time
is depicted in Figure 7 below. Further, computing the parition function across
multiple β-templates is trivially parallelizable. The ability to formulate quick,
coarse-grained predictions in a matter of minutes, rather than days of atomistic-
detail simulation, is a fundamental benefit of our technique.

4 Discussion

We present tFolder, a novel approach for quickly predicting protein folding
pathways through the accurate prediction of the conformational landscape of ar-
bitrary β-sheet proteins. What distinguishes tFolder from other computational
approaches that attempt to probe protein folding processes is that tFolder
does not require vast computational resources; in fact, it can be ran on a sin-
gle personal computer. To achieve this performance we use a simplified model
for protein folding, allowing us to very rapidly compute a coarse-grained pic-
ture of the folding of a protein from sequence information alone. This contrasts
with methods that attempt to determine folding mechanisms by trying to unfold
proteins from their native state. Such methods require the a priori knowledge
of the native structure, and as such are not applicable to study protein se-
quences with unknown structures. When computing protein folding pathways,
our method explores all possible β-sheet configurations, and thus does not face
such limitations. Interestingly, this independence from known structures could
provide insights into off-pathway kinetics, such as the aggregation of proteins
into amyloid structures.

Although tFolder only predicts coarse folding pathway transitions in β-sheet
proteins, its strength lies in its ability to quickly separate conformational tran-
sitions that are critical to folding from those transitions that could simply result
from minor structural fluctuations. This complements the use of MD simula-
tions as the MD can be used to explore the nuanced structural interactions
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(a)

(b)

Fig. 6. (a)The graph of the folding landscape of Protein G predicted by tFolder is
illustrated above. The gray shaded region indicates the states predicted to be reachable
from the unfolded state. The dark arrows indicate transitions between states, and the
size of the arrow indicates the favored direction of transition along each edge. Faded
arrows are drawn between states that have compatible topologies but do not reach
the transition threshold. The size of each state indicates its relative representation
at equilibrium. The faded structures indicate states that are unreachable from the
unfolded state. (b)The folding dynamics of Protein G shows how the probability of
observing any of the reachable states changes over the time the protein folds. Each line
is annotated with an image of the state it represents.
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Fig. 7. The time required to compute the partition function increases with increasing
size of amino acid sequence, and number of strands. The time was computed by aver-
aging over n=3 trials, for sequences ranging from 40–130 residues in length, with 4–6
strands.

that certainly occur near a transition highlighted by tFolder. Further, although
we are able to produce good results using a fairly simplistic energy model,
a more complicated formulation, such as one including entropic forces, would
clearly improve tFolder’s analysis. More advanced heuristics also exist [13] that
more efficiently extract folding pathway information, which could be applied to
tFolder.

Understanding the folding dynamics of β-sheet proteins, especially which β-
strand contacts drive folding and conformational stability, could help create bet-
ter models of hierarchical folding, protein aggregation, and evolutionary pres-
sure. Significant overlap likely exists between many proteins’ folding pathways
to even permit a classification of common transition elements (e.g. [28]); how-
ever, creating such a database would only be possible with sufficiently fast and
accurate algorithms. tFolder takes a step toward this end by demonstrating
techniques for efficiently predicting ensembles of arbitrary β-sheet proteins, and
for combining these predictions to construct accurate protien folding transition
landscapes.
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Abstract. In a network orientation problem one is given a mixed graph,
consisting of directed and undirected edges, and a set of source-target
vertex pairs. The goal is to orient the undirected edges so that a max-
imum number of pairs admit a directed path from the source to the
target. This problem is NP-complete and no approximation algorithms
are known for it. It arises in the context of analyzing physical networks of
protein-protein and protein-dna interactions. While the latter are nat-
urally directed from a transcription factor to a gene, the direction of
signal flow in protein-protein interactions is often unknown or cannot
be measured en masse. One then tries to infer this information by us-
ing causality data on pairs of genes such that the perturbation of one
gene changes the expression level of the other gene. Here we provide a
first polynomial-size ilp formulation for this problem, which can be ef-
ficiently solved on current networks. We apply our algorithm to orient
protein-protein interactions in yeast and measure our performance us-
ing edges with known orientations. We find that our algorithm achieves
high accuracy and coverage in the orientation, outperforming simplified
algorithmic variants that do not use information on edge directions. The
obtained orientations can lead to better understanding of the structure
and function of the network.

Keywords: network orientation, protein-protein interaction, protein-
dna interaction, integer linear program, mixed graph.

1 Introduction

High-throughoutput technologies are routinely used nowadays to detect physical
interactions in the cell, including chromatin immuno-precipitation experiments
for measuring protein-dna interactions (pdis) [10], and yeast two-hybrid as-
says [6] and co-immunoprecipitation screens [8] for measuring protein-protein
interactions (ppis). These networks serve as the scaffold for signal processing in
the cell and are, thus, key to understanding cellular response to different genetic
or environmental cues.
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While pdis are naturally directed (from a transcription factor to its regulated
genes), ppis are not. Nevertheless, many ppis transmit signals in a directional
fashion, with kinase-substrate interactions (kpis) being one of the prime exam-
ples. These directions are vital to understanding signal flow in the cell, yet they
are not measured by most current techniques. Instead, one tries to infer these
directions from perturbation experiments. In these experiments, a gene (cause)
is perturbed and as a result other genes change their expression levels (effects).
Assuming that each cause-effect pair should be connected by a directed pathway
in the physical network, one can predict an orientation (direction assignments)
to the undirected part of the network that will best agree with the cause-effect
information.

The resulting combinatorial problem can be formalized by representing the
network as a mixed graph, where undirected edges model interactions with un-
known causal direction, and directed edges represent interactions with known
directionality. The cause-effect pairs are modeled by a collection of source-target
vertex pairs. The goal is to orient (assign single directions to) the undirected
edges so that a maximum number of source-target pairs admit a directed path
from the source to the target.

Previous work on this and related problems can be classified into theoretical
and applied work. On the theoretical side, Arkin and Hassin [1] studied the
decision problem of orienting a mixed graph to admit directed paths for a given
set of source-target vertex pairs and showed that this problem is NP-complete.
The problem of finding strongly connected orientations of graphs can be solved
in polynomial time [3,5]. For a comprehensive discussion of the various kinds
of graph orientations (not necessarily reachability preserving), we refer to the
textbook of Bang-Jensen and Gutin [2].

For the special case of an undirected network (with no pre-directed edges),
the orientation problem was shown to be NP-complete and hard to approxi-
mate to within a constant factor of 11/12 [12]. On the positive side, Medve-
dovsky et al. [12] provided an ilp-based algorithm, and showed that the prob-
lem is approximable to within a ratio of O(1/ log n), where n is the number
of vertices in the network. The approximation ratio was recently improved to
O(log log n/ logn) [7]. The authors considered also the more general problem
on mixed graphs, but the polylogarithmic approximation ratio attained was not
satisfying as its power depends on some properties of the actual paths.

On the practical side, several authors studied the orientation problem and
related annotation problems using statistical approaches [16,13]. However, these
approaches rely on enumerating all paths up to a certain length between a pair
of nodes, making them infeasible on large networks.

Our main contribution in this paper is a first efficient ilp formulation of
the orientation problem on mixed graphs, leading to an optimal solution of the
problem on current networks. We implemented our approach and applied it to a
large data set of physical interactions and knockout pairs in yeast. We collected
interaction and cause-effect pair information from different publications and in-
tegrated them into a physical network with 3,658 proteins, 4,000 ppis, 4,095
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pdis, along with 53,809 knockout pairs among the molecular components of the
network. We carried out a number of experiments to measure the accuracy of
the orientations produced by our method for different input scenarios. In partic-
ular, we studied how the portion of undirected interactions and the number of
cause-effect pairs affect the orientations. We further compared our performance
to that of two layman approaches that are based on orienting undirected net-
works, ignoring the edge directionality information. We demonstrate that our
method retains more information to guide the search, achieving higher numbers
of correctly oriented edges.

The paper is organized as follows: In the next section we provide preliminar-
ies and define the orientation problem. In Section 3 we present an ilp-based
algorithm to solve the orientation problem on mixed graphs. In Section 4 we
discuss our implementation of this algorithm and in Section 5 we report on its
application to orient physical networks in yeast. For lack of space, some proofs
are shortened or omitted.

2 Preliminaries

We focus on simple graphs with no loops or parallel edges. A mixed graph is a
triple G = (V, EU, ED) that consists of a set of vertices V , a set of undirected
edges EU ⊆ {e ⊆ V | |e| = 2}, and a set of directed edges ED ⊆ V × V .
We assume that every pair of vertices is either connected by a single edge of a
specific type (directed or undirected) or not connected. For convenience, we also
use the notations V (G), EU(G), and ED(G) to refer to the sets V , EU, and ED,
respectively.

Let G1 and G2 be two mixed graphs. The graph G1 is a subgraph of G2 iff
the relations V (G1) ⊆ V (G2), EU(G1) ⊆ EU(G2), and ED(G1) ⊆ ED(G2) hold;
in this case we also write G1 ⊆ G2. Similarly, an induced subgraph G[V ′] is a
subset V ′ ⊆ V of the graph’s vertices and all their pairwise relations (directed
and undirected edges).

A path in a mixed graph G of length m is a sequence p = v1, v2, . . . , vm,
vm+1 of distinct vertices vi ∈ V (G) such that for every i ∈ {1, . . . , m}, we have
{vi, vi+1} ∈ EU (G) or (vi, vi+1) ∈ ED(G). It is a cycle iff v1 = vm+1. Given
s ∈ V (G) and t ∈ V (G), we say that t is reachable from s iff there exists a
path in G that goes from s to t. In this case we also say that G satisfies the
pair (s, t). The transitive closure C(G) of a mixed graph G is the set of all its
satisfied vertex pairs. A mixed graph with no cycles is called a mixed acyclic
graph (mag).

Let G be a mixed graph. An orientation of G is a directed graph G′ =
(V (G), ∅, ED(G′)) over the same vertex set whose edge set contains all the di-
rected edges of G and a single directed instance of every undirected edge, but
nothing more. We are now ready to state the main optimization problem that
we tackle:

Problem 2.1 (maximum-mixed-graph-orientation).
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Input: A mixed graph G, and a set of vertex pairs P ⊆ V (G) × V (G).
Output: An orientation G′ of G that satisfies a maximum number of pairs

from P .

3 An ILP Algorithm for Orienting Mixed Graphs

In this section we present an integer linear program (ilp) for optimally orienting
a mixed graph. The inherent difficulty in developing such a program is that a
direct approach, which represents every possible path in the graph with a single
variable (indicating whether, in a given orientation, this path exists or not),
leads to an exponential program. Below we will work toward a polynomial size
program.

Many algorithms for problems on directed graphs first solve the problem for
the graph’s strongly connected components independently and, then, work along
the directed acyclic graph (dag) of strongly connected components to produce
a solution for the whole instance. Our ilp-based approach for orienting mixed
graphs has the same high level structure: In Section 3.1 we define a generalization
of strongly connected components to mixed graphs, called strongly orientable
components, and show how the computation of a solution for the orientation
problem can be reduced to the mixed acyclic graph of strongly orientable com-
ponents. For mags, in turn, we present (in Section 3.2) a polynomial-size ilp
that optimally solves the orientation problem.

3.1 A Reduction to a Mixed Acyclic Graph

Let G be a mixed graph. The graph G is strongly orientable iff it has a strongly
connected orientation. The strongly orientable components of G are its maximal
strongly orientable subgraphs. It is straightforward to prove that a graph can
be partitioned into its strongly orientable components (by noting that if the
vertex sets of two strongly orientable graphs intersect, then their union is also
strongly orientable). The strongly orientable component graph, or component
graph, Gsoc of G is a mixed graph that is defined as follows: Its vertices are
the strongly orientable components C1,. . . ,Cn of G. Its edges are constructed as
follows: There is a directed edge (Ci, Cj) in Gsoc iff (v, w) ∈ ED(G) for some
v ∈ V (Ci) and w ∈ V (Cj). There is an undirected edge {Ci, Cj} in Gsoc iff
{v, w} ∈ EU(G) for some v ∈ V (Ci) and w ∈ V (Cj). Note that Gsoc must be
acyclic. The strongly orientable components of a mixed graph G and, hence, the
graph Gsoc, can be computed in polynomial time as follows: Repeatedly identify
cycles in the graph and orient their undirected edges in a consistent direction.
After orienting all cycles the strongly connected components that are made up by
the directed edges are exactly the strongly orientable components of the initial
graph.

To complete the reduction we need to specify the new set of source-target
pairs. This also involves a slightly more general definition of the orientation
problem where the collection of input pairs is allowed to be a multi-set. Let
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P be the input multi-set for the original graph G. The multi-set Psoc for the
reduced graph is constructed as follows: for every pair (s, t) ∈ P we insert a pair
(C, C′) into Psoc, where C and C′ are the strongly orientable components that
contain s and t, respectively. The following lemma establishes the correctness
for the reduction from instances (G, P ) to (Gsoc, Psoc).

Lemma 3.1. Let G be a mixed graph and P a set of vertex pairs from G. For
every k ∈ N there exists an orientation G′ of G that satisfies k pairs from P iff
there exists an orientation G′

soc of Gsoc that satisfies k pairs from Psoc.

A mixed acyclic graph Gsoc = (V, EU, ED) is, in general, neither a forest nor a
directed acyclic graph. Its structure inherits from both of these concepts: The
undirected graph (V, EU, ∅) is a forest whose trees are connected by the directed
edges ED without producing cycles. This observation gives rise to the following
definition of topological sortings for mixed graphs: A mixed graph G admits a
topological sorting if (1) the connected components of (V, EU, ∅) are trees and
(2) they can be arranged in a linear order T1, . . . , Tn, such that directed edges
from ED can only go from a vertex in Ti to a vertex in Tj if i < j. The linear
order T1, . . . , Tn of the trees is called a topological sorting of G. Note that the
definition of topological sortings for mags also works for dags – with every tree
being a single vertex. Moreover, similar to dags, every mag admits a topological
sorting.

3.2 An ILP Formulation for Mixed Acyclic Graphs

Given an instance of a mag G and a multiset of vertex pairs P , our ilp consists
of a set of binary orientation variables, describing the edge orientations, and
binary closure variables, describing reachability relations in the oriented graph.
The objective of satisfying a maximum number of vertex pairs can then be
phrased as summing over closure variables for all pairs from P .

The ilp relies on a topological sorting T1, . . . , Tn of the input mag, which
allows formulating constraints that force a consistent assignment of values to the
orientation and closure variables. The formulation is built iteratively on growing
parts of the graph following the topological sorting. Specifically, for every i ∈
{1, . . . , n}, we define Gi = G[V (T1)∪· · ·∪V (Ti)] and Pi = P ∩(V (Gi)×V (Gi)),
and for every i ∈ {2, . . . , n}, we define Ei = ED(G) ∩ (V (Gi−1) × V (Ti)). We
will first define the variables of the ilp and discuss their intuitive meaning. Then
we will define the constraints and the objective function of the ilp, followed by
a discussion about the correctness. The ilp I for G and P is made up by the
variable set variables(I) that is the union of the binary variables:{

o(v,w) | {v, w} ∈ EU(G)
}

(1){
c(v,w) | (v, w) ∈ V (G) × V (G)

}
(2)

{p(v,v′,w′,w) | ∃ 2 ≤ i ≤ n : (v, w) ∈ V (Gi−1) × V (Ti)∧
(v′, w′) ∈ Ei} (3)
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The orientation variables (1) are used to encode orientations of the edges: an
assignment of 1 to o(v,w) means that the undirected edge {v, w} is oriented from
v to w. The closure variables (2) are used to represent which vertex pairs of the
graph are satisfied: an assignment of 1 to c(v,w) will imply that there exists a
directed path from v to w in the constructed orientation. During the construction
we will set closure variables c(v,w) with (v, w) ∈ ED(G) to 1, and closure variables
c(v,w) where w is not reachable from v in G to 0. Path variables are used to
describe the satisfaction of a vertex pair (v, w) by using an intermediate directed
edge (v′, w′): an assignment of 1 to p(v,v′,w′,w) will imply that there exists a
directed path from v to w that goes through the directed edge (v′, w′).

The ilp contains the constraints

o(v,w) + o(w,v) = 1 for all {v, w} ∈ EU(G) (4)

c(v,w) ≤ o(x,y) for all v, w ∈ V (Ti), and all x, y ∈ V (Ti)
where y comes directly after x on the
unique path from v to w in Ti, 1 ≤ i ≤ n (5)

c(v,w) ≤
∑

(v′,w′)∈Ei

p(v,v′,w′,w)

for all (v, w) ∈ V (Gi−1)× V (Ti), 2 ≤ i ≤ n (6)
p(v,v′,w′,w) ≤ c(v,v′), c(w′,w)

for all (v, w) ∈ V (Gi−1)× V (Ti), (v′, w′) ∈ Ei, 2 ≤ i ≤ n (7)

and the objective

maximize
∑

(s,t)∈P

c(s,t) (8)

Constraints (4) force that each undirected edge is oriented in exactly one direc-
tion. The remaining constraints (5) to (7) are used to connect closure variables
to the underlying orientation variables. They force that every closure variable
c(v,w) can only be set to 1 if the orientation variables describe a graph that has
a directed path from v to w. Whenever v and w are in the same undirected
component (which is a tree since the whole graph is a mag), they can only be
connected via an orientation of the unique undirected path between them. For
vertex pairs of these kind constraint (5) ensures the above property. Next we
consider the case where v and w are in different components Ti and Tj with
i < j. We need to associate c(v,w) with all possible paths from v to w; this is
done by using the path variables: If there is a path from v to w then it must
visit a directed edge (v′, w′) that starts in some component that precedes Tj and
ends at Tj (Constraint (6)). Path variables are, in turn, constrained by (7). The
objective function maximizes the number of closure variables with assignment 1
that correspond to pairs from P . The above discussion contains the basic ideas
to prove the following lemma, which formally implies the correctness of the ilp.
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Lemma 3.2. The following properties hold:

Completeness: For every orientation G′ of G there exists an assignment a :
variables(I) → {0, 1} with {(v, w) ∈ V (G) × V (G) | a(c(v,w)) = 1} = C(G′)
that satisfies the constraints (4) to (7).

Soundness: For every assignment a : variables(I) → {0, 1} that satisfies the
constraints (4) to (7) there exists an orientation G′ of G with {(v, w) ∈
V (G) × V (G) | a(c(v,w)) = 1} ⊆ C(G′).

The ilp has polynomial size and can be constructed in polynomial time: The
construction starts by sorting the mag topologically. Constant length constraints
(4) are constructed for all undirected edges. For every ordered pair (v, w) of
vertices v and w that are inside the same undirected component Ti, we construct
at most |EU| constraints of type (5) using reachability queries to Ti. The sum
constraints (6) are constructed for all ordered vertex pairs (v, w) where the
undirected component of v comes before the undirected component of w in the
topological sorting of the mag. Each sum iterates over the directed edges that
lead into the component of w. Thus, each sum’s length is bounded by O(|ED|)
and it can be written down in polynomial time. The constraints (7) of constant
length are constructed by iterating over the same vertex pairs and directed edges.
In total, the size of the ilp is asymptotically bounded by O(|V (G)|2(|ED| +
|EU|)).

One may ask if it is possible to apply the ilp construction to general mixed
graphs instead of mags. The mag-based construction explores the graph itera-
tively by using a topological sorting. It relies on the fact that connecting paths in
mags are either unique (inside the undirected components) or can only go from
a component Ti to a component Tj if i < j. In a mixed graph G = (V, EU, ED)
that contains cycles, connecting paths in (V, EU) are, in general, not unique
and there may be directed edges going back and forth between components of
(V, EU). This prevents the iterative construction and implies a construction that
needs to revise already constructed parts of the formulation instead of just ap-
pending new constraints at each step. We are not aware of any method that
directly produces polynomial size ilp formulations for general graphs.

4 Implementation Details

Our implementation is written in c++ using boost c++ libraries (version num-
ber 1.43.0) and the commercial ibm ilog cplex optimizer (version number 12)
to solve ilps. The input of our program consists a mixed graph G = (V, EU, ED)
and a collection P of vertex pairs from G. The program predicts an orientation
G′ for G that satisfies a maximum number of pairs from P .

The program starts by computing strongly connected orientations for all
strongly orientable components of the input graph. This can be done in polyno-
mial time, as described in Section 3.2. Our program implements a linear time
approach for this step that is based on combined ideas from [15] and [5]. Next,
the program computes the acyclic component graph Gsoc of G and transforms
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the collection of pairs P into the collection of pairs Psoc. Finally, the program
computes an optimal orientation for the resulting instance (Gsoc, Psoc) via the
ilp approach from Section 3.2. This results in an orientation for all undirected
edges that are not inside strongly orientable components and the number of
satisfied pairs, which is optimal. Altogether, the program outputs an optimal
orientation for the input instance and, if desired, the satisfied pairs and their
number.

Due to the combinatorial nature of our approach, there is possibly more than
one orientation that results in an optimal number of satisfied pairs. To deter-
mine if an undirected edge e = {v, w} has the same orientation in all maximum
solutions, one can utilize our computational pipeline as follows: First compute
the number of satisfied pairs in an optimal solution sopt. Let (v, w) be the orien-
tation of e in this solution. Then run the experiment again, but this time with
{v, w} replaced by (w, v) in the input network. After that set a confidence value
ce = sopt − se, where se is the maximum number of satisfied pairs for the modi-
fied instance. The edge e is said to be oriented with confidence iff ce ≥ 1; in this
case its direction is the same in all optimal orientations of the input.

5 Experimental Results

5.1 Data Acquisition and Integration

We gathered physical interactions (ppis, pdis, and kpis) and cause-effect pair
information for Saccharomyces cerevisiae from different sources. We used the ppi
data set “Y2H-union” from Yu et al. [17], which contains 2,930 highly-reliable
undirected interactions between 2,018 proteins. The pdi data were taken from
MacIsaac et al. [11], an update of which can be found at http://fraenkel.mit.
edu/improved_map/. We used the collection of pdis with p < 0.001 conserved
over at least two other yeast species, which consists of 4,113 unique pdis spanning
2,079 proteins. The kpis were collected from Breitkreutz et al. [4] by taking the
directed kinase-substrate interactions out of their data set. This results in 1361
kpis among 802 proteins. A set of 110,487 knockout pairs among 6,228 proteins
where taken from Reimand et al. [14].

We integrated the data to obtain a physical network of undirected and directed
interactions. We removed self loops and parallel interactions; for the latter, when-
ever both a directed and an undirected edge were present between the same pair
of vertices, we maintained the former only. Pairs of edges that are directed in
opposite directions were maintained, and will be contracted into single vertices
in later phases of the preprocessing. The resulting physical network, which we
call the integrated network spans 3,658 proteins, 2,639 ppis, 4,095 pdis and 1,361
kpis. For some of the following experiments we want to control the amount of
directed edges better, to investigate their contribution in a purified manner. To
this end we will also use the subnetwork of 2,579 proteins of the integrated net-
work that is obtained by taking only the directed pdis and pkis, leaving the ppis
out; we call it the refined network. To orient the physical networks, we use the
set of 110,487 knockout pairs and consider the subset of pairs with endpoints

http://fraenkel.mit.edu/improved_map/
http://fraenkel.mit.edu/improved_map/
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being in the physical network. The integrated network contains 53,809 of the
pairs; the refined network contains 34,372 of the pairs.

5.2 Application and Performance Evaluation

To study the behavior and properties of our algorithm, we apply it to the physi-
cal networks and monitor properties of the instance from the intermediate steps
and the resulting orientations. For the former, we examine the contraction step,
monitoring the size of the component graph obtained (number of vertices, directed
edges and undirected edges), and the number of cause-effect pairs after the con-
traction. For the latter, we run the algorithm in a cross-validation setting, hiding
the directions of some of the edges and testing our success in orienting them.

The component graph for the integrated network contains 763 undirected
edges and 2,910 directed edges among 2,569 vertices. We filter from the cor-
responding set of pairs Psoc those pairs that have the same source and target
vertices; these pairs lie inside strongly orientable components and are already
satisfied. About 85% (44,825) of the initial pairs from the large knockout pair
data remain in the contracted graph and can be used to guide the orienta-
tion produced by our ilp algorithm. Considering the whole integrated network
with the large set of knockout pairs, the component orientation and component
contraction steps take 3 seconds and the solution of the ilp takes 70 seconds.
Considering only the refined network, the preprocessing as elaborated takes 5
seconds, as there are eventually more components in the contracted graph, and
57 seconds for the solution of the ilp, as there are less choices to be made. Com-
puting confidence scores for undirected edges requires rerunning the steps of the
computational pipeline for each of these edges, resulting in about 3.4 hours for
the integrated network and 5 hours for the refined network (in which more test
edges remain after the cycle contraction).

Next, we wished to evaluate the orientations suggested by our algorithm. To
this end, we defined a subset of the directed edges in the input graph (kpis or
pdis) as undirected test edges. Guided by the set of knockout pairs, our program
computes orientations for all undirected edges, including the test edges. In the
evaluation of the orientation we focus on test edges that survive the contraction
and remain in the component graph, as the orientation of the other test edges
depends only on the cycles they lie in and not on the input cause-effect pairs.
We further focus on confident orientations, as other orientations are arbitrary.
We define the coverage of an orientation as the percent of remaining test edges
that are oriented with confidence. The accuracy of an orientation is the percent
of confidently oriented test edges whose orientation is correct.

When using the integrated network and all 1,361 kpis as test edges, 166 (12%)
of them remain after cycle contraction. The algorithm covers 158 (95%) of the
remaining test edges, orienting correctly 137 (86%) of the covered ones. In the
refined network 290 (21%) of the kpis remain, 264 (91%) of them are covered,
and 228 (86%) of those are oriented correctly. When using the integrated network
and the 4,095 pdis as test edges 712 (17%) of the test edges remain, 634 (89%)
of them are covered, and 614 (96%) of those are oriented correctly. In the refined
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Fig. 1. (a) Remaining, covered and accurate test edges as a function of the percentage
of input test edges. x-axis: percentage of kpis that are used as test edges. y-axis:
numbers of test edges that remain (squares), are covered (triangles) and accurately
oriented (circles). (b) The number of covered and accurately oriented test edges as a
function of the percentage of cause-effect pairs guiding the orientation.

network 996 (24%) of the pdis remain, 895 (90%) of them are covered, and 868
(97%) of those are oriented correctly. Expectedly, more test edges remain in the
refined network; coverage and accuracy are high in all these experiments.

Effects of the portion of undirected edges. The previous results hint that to obtain
a higher percentage of remaining edges, it is helpful to consider networks with a
smaller number of undirected edges and larger number of directed edges. To test
the effect of the portion of undirected edges more systematically, we focused on
the refined network and used different portions (chosen at random) of kpis as test
sets. All kpis that are not test edges are deleted from the network. The results
are depicted in Figure 1(a), demonstrating that the percentage of remaining test
edges increases when we consider small fractions of them. This stems from the fact
that a smaller number of test edges gives rise to fewer component contractions in
the input graph. Interestingly, the coverage and accuracy go up when considering
larger amounts of test edges. The reason is that while many parts of the graph are
contracted, the initial large number of input test edges leads to a large number of
test edges after the contractions. As a result, there is more information to guide
the orientation compared to the smaller test sets.

Effects of the amount of cause-effect pairs. Next, we wished to study the effect
of the amount of cause-effect pairs on the orientation. We used as input the in-
tegrated network, with the kpis serving as test edges, and applied the algorithm
with increasing portions (chosen at random) of pairs. Out of the 166 test edges
that remain after contraction, different numbers of covered and accurate edges
were attained depending on the input pairs. As evident from Figure 1(b), the
more pairs the higher the number of covered edges, albeit with similar accuracy
(86-90%), supporting our use of the cause-effect pairs to guide the orientation.
Although this is not our objective, it is interesting to note that a high percentage
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(approximately 85%) of the knockout pairs are satisfied throughout the experi-
ments. The much smaller fraction of unsatisfied pairs may be due to noise in the
expression data, incomplete interaction data or molecular events that are not
covered by the physical interactions considered here.

5.3 Comparison to Layman Approaches

To the best of our knowledge, there exists no previous method to orient mixed
graphs, but one can try to adapt methods for undirected graphs to the mixed
graph case. The only previous method for orienting large undirected graphs
is the one from Medvedovsky et al. [12]. In our terminology, it first computes
the graph’s component graph, which is a tree for undirected input graphs. It
then applies an ilp-formulation, using the fact that there is at most one path
between any two vertices. We consider two ways of transforming mixed graphs
into undirected graphs to which this method can be applied. Both approaches
take their action after the construction of the component graph for the mixed
input graph. While our approach, which we call mixed, uses an ilp at this
point, the deletion approach removes all directed edges from the component
graph, yielding a forest of its undirected components to which an ilp is applied.
The undirected approach considers all directed edges as being undirected and
applies a second component contraction step to produce a forest to which the ilp
is applied. The same forest can be obtained by starting from the input graph,
making all directed edges undirected, and applying a single contraction step.

Table 1. (a) Properties of the intermediate steps of the three orientation approaches.
(b) A comparison of the three orientation approaches with cross-validation experiments
using different fractions of cause-effect pairs.

(a)

deletion undirected mixed

# of undirected edges in the input 2639 8089 2639
# of directed edges in the input 5450 0 5450

# of vertices in the component graph 2569 1483 2569
# of undirected edges in the component graph 763 1445 763
# of directed edges in the component graph 0 0 2910

# of pairs between different vertices in Psoc 44825 24423 44825
# of pairs between different vertices in Psoc

that are satisfied in Gsoc
4705 23587 29792

(b)

100% cause-effect pairs 10% cause-effect pairs

deletion undirected mixed deletion undirected mixed

# of test edges
that remain 290 226 290 290 226 290
that are covered 240 215 265 102 133 144
that are accurate 212 187 229 87 112 121
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The behaviors of the intermediate steps of the three approaches when applied to
the integrated network are shown in Table 1(a). In comparison to undirected,
mixed maintains a higher number of vertices in the component graph, as less
cycles are contracted. In comparison to deletion, mixed maintains a much
higher amount (6 fold) of pairs that are satisfied in the component graph and,
therefore, potentially affect the orientation process. This is due to the fact that
the edge deletion separates large parts of the graph. Overall, one can see that
mixed retains more information for the ilp step in the form of vertices in the
component graph and causal information from the knockout pairs.

To compare the orientations produced by the three approaches, we applied
them to the refined network using the kpis as test edges and different por-
tions of the cause-effect pairs. As the baseline for computing the coverage of the
three approaches should be the same – the number of test edges after the initial
contraction – we report in the following the absolute numbers of covered (con-
fidently oriented) and correctly oriented interactions, rather than the relative
coverage and accuracy measures. Table 1(b) present these results, comparing
the numbers of remaining, covered and correctly oriented test edges among the
three approaches. Evidently, mixed yields higher numbers of test edges, covered
edges, and correctly oriented edges.

6 Conclusions

We presented an ilp algorithm that efficiently computes optimal orientations
for mixed graph inputs. We implemented the method and applied it to the ori-
entation of physical interaction networks in yeast. Depending on the input the
method yields very high coverage and accuracy in the orientation. Our experi-
ments further show that the algorithm works very fast in practice and produces
orientations that cover (accurately) larger portions of the network compared to
the ones produced by previous approaches that ignore the directionality infor-
mation and operate on undirected versions of the networks.

While in this paper we concentrated on the computational challenges in net-
work orientation, the use of the obtained orientations to gain biological insights
on the pertaining networks is of great importance. As demonstrated by [9], the
directionality information facilitates pathway inference. It may also contribute
to module detection; in particular, it is intriguing in this context to map the cor-
respondence between contracted edges (under our method) and known protein
complexes.
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Abstract. Scaffolding, the problem of ordering and orienting contigs,
typically using paired-end reads, is a crucial step in the assembly of high-
quality draft genomes. Even as sequencing technologies and mate-pair
protocols have improved significantly, scaffolding programs still rely on
heuristics, with no gaurantees on the quality of the solution. In this work
we explored the feasibility of an exact solution for scaffolding and present
a first fixed-parameter tractable solution for assembly (Opera). We also
describe a graph contraction procedure that allows the solution to scale
to large scaffolding problems and demonstrate this by scaffolding several
large real and synthetic datasets. In comparisons with existing scaffold-
ers, Opera simultaneously produced longer and more accurate scaffolds
demonstrating the utility of an exact approach. Opera also incorporates
an exact quadratic programming formulation to precisely compute gap
sizes.

Keywords: Scaffolding, Genome Assembly, Fixed-parameter Tractable,
Graph Algorithms.

1 Introduction

With the advent of second-generation sequencing technologies, while the cost of
sequencing has decreased dramatically, the challenge of reconstructing genomes
from the large volumes of fragmentary read data has remained daunting. Newly
developed protocols for second-generation sequencing can generate paired-end
reads (reads from the ends of a fragment of known approximate length) for a
range of library sizes [1] and third-generation strobe sequencing protocols [2]
provide linking information that, in principle, can be valuable for assembling a
genome. In recent work, the importance of paired reads has been further high-
lighted, with some authors even questioning the need for long reads in the pres-
ence of libraries with large insert lengths [4,5].
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Scaffolding, the problem of using the connectivity information from paired
reads to order and orient partially reconstructed contig sequences in the genome,
has been well-studied in the assembly literature with several algorithms proposed
in recent years [7,8,9,6,10,5,3]. In work in 2002, Huson et al [6] presented a nat-
ural formulation of this problem (in terms of finding an ordering of sequences
that minimizes paired read violations) and showed that its decision version is
NP-complete. Several related problems are also known to be NP-complete [8,10]
and hence, to maintain efficiency and scalability, existing algorithms have re-
lied on various heuristic solutions. For instance, in [6], the authors proposed a
greedy solution that iteratively merges scaffolds connected by the most paired
reads. Similarly, the algorithm proposed in the Phusion assembler [11] relies on
a greedy heuristic based on the distance contraints imposed by the paired reads.
Other approaches, used in assemblers such as ARACHNE and JAZZ [12,13], also
employ error-correction steps to minimize the potential impact of misjoins from
heuristic searches.

In addition to paired reads, similarity to a reference genome [14,15,16] and
restriction-map based approaches [8,17] have been used to order contigs, partly
because they can lead to a more computationally tractable problem. However,
while reference-guided assembly uses potentially misleading synteny information,
restriction-map based approaches can produce an ambiguous order and find it
hard to place small contigs [17]. Paired-end reads therefore remain the most
general source of information for generating high-quality scaffolds.

In this work, we focus on the problem of scaffolding of a set of contigs using
paired-end reads, though similar ideas could be extended to multi-contig con-
straints from sources such as strobe sequencing and restriction maps [2]. Unlike
existing solutions which use heuristics, we provide a combinatorial algorithm
that is guaranteed to find the optimal scaffold under a natural criterion similar
to [6]. By exploiting the fixed-parameter tractability of the problem and a con-
traction step that leverages the structure of the graph, our scaffolder (Opera)
effectively constructs scaffolds for large genomic datasets. The fundamental ad-
vantages of this approach are twofold: Firstly, the algorithm provides a solution
that explains/uses as much of the paired read data as possible (as we show, this
also translates into a more complete and reliable scaffold in practice). Secondly,
the algorithm provides a clear guarantee on the quality of the assembly and
avoids overly aggressive assembly heuristics that can produce large scaffolds at
the expense of assembly errors.

While libraries from new sequencing technologies generate a vast amount of
paired-end reads that provide detailed connectivity information, assembly and
mapping errors from shorter read lengths and an abundance of chimeric mate-
pairs in some protocols [1] can complicate the scaffolding effort. We show how
these sources of error can be handled in our optimization framework in a robust
fashion. We also employ a quadratic programming formulation (and an efficient
solver) to compute gap sizes that best agree with the mate-pair library de-
rived contraints. Our experiments with several large real and synthetic datasets
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suggest that these theoretical advantages in Opera do translate to larger, more
reliable and well-defined scaffolds when compared to existing programs.

2 Methods

2.1 Definitions

In a typical whole-genome shotgun sequencing project, randomly sheared frag-
ments of DNA are sequenced, using one or more of the several sequencing tech-
nologies that are now available. The resulting reads are then assembled in silico
to produce longer contig sequences [18]. In addition, the reads are often gener-
ated from the ends of long fragments (of known approximate sizes and from one
or more libraries) and this information is used to link together contigs and order
and orient them (see Fig. 1).

Consider a set of contigs C = {c1, . . . , cn}. For every ci ∈ C, we denote the
two possible orientations as ci and −ci. A scaffold is then given by a signed
permutation of the contigs as well as a list of gap sizes between adjacent contigs
(see Fig. 1(d)). Given two contigs ci and cj linked by a paired-read (i.e. one
end falls on ci and the other end on cj), the relative orientation of the contigs
suggested by the paired-read can be encoded as a bidirected edge in a graph (see
Fig. 1(a, c)). We then say that a paired-read is concordant in a scaffold if the

A B or B A

A B

A B or B A
Scaffold Order Scaffold Order

A B

A B or B A A B or B A

(a)A B A B

(b)

(c)

1k 2k3k 0.5k1k 7k4k

(d)

Fig. 1. Paired-read and Scaffold Graph. (a) Paired-read constraints on order and orien-
tation of contigs (pointed boxes) (b) A set of paired-read and contigs (c) The resulting
scaffold graph (d) A scaffold for the graph in (c).
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suggested orientation is satisfied and the distance between the reads is less then
a specified maximum1 library size τ .

2.2 Scaffold Graph

Given a set of contigs and a mapping of paired-reads to contigs, we use an “edge
bundling” step as described in [6] to construct a scaffold graph (actually bidi-
rected multi-graph) where contigs are nodes and are connected by scaffold edges
representing multiple paired-reads that suggest a similar distance and orienta-
tion for the contigs (see Fig. 1(b, c)). After the bundling step, existing scaffolders
typically filter edges with reads less than an arbitrary (sometimes user-specified)
threshold. This is done to reduce the number of incorrect edges in the graph
from chimeric paired-reads. Instead of setting this threshold arbitrarily and in-
dependent of genome size or sequence coverage, we use the following simulation
to determine an appropriate threshold: we simulate chimeric reads by selecting
paired-reads at random and exchanging their partners. This is then repeated till
a significant proportion of the reads (say 10%) are chimeric. We then bundle
the chimeric reads as before and repeat the simulation a 100 times to determine
the scaffold edge with most chimeric reads supporting it (say d) and set the
threshold to be one more than that (i.e. d + 1). This then effectively removes
the “stochastic noise” introduced by chimeric constructs and allows the main
scaffolding algorithm to focus on systematic assembly and mapping errors that
lead to incorrect scaffold edges.

Extrapolating the notion of concordance to scaffold edges we get the following
natural formulation of the Scaffolding Problem:

Definition 1 (Scaffolding Problem). Given a scaffold graph G, find a scaf-
fold S of the contigs that maximizes the number of concordant edges in the graph.

As this problem is analagous to that in [6] (where the optimality criterion is the
number of concordant paired-reads) it is easy to modify their proof to show that
the decision version of the scaffolding problem is NP-complete.

2.3 Fixed-Parameter Tractability

The scaffolding problem that we defined (as well as the one in [6]) does not
specifically delineate a structure for the scaffold graph. In practice, however, the
scaffold graph is constrained by the fact that paired-read libraries have an upper-
bound τ and contigs have a minimum length, lmin. This defines an upper-bound
on the number of contigs that can be spanned by a paired-read i.e. the width
of the library (or w, where w ≤ τ

lmin
). Here we show that considering width as

a fixed parameter, we can indeed construct an algorithm that is polynomial in
the size of the graph. This is similar to the work in [19], where the focus is on
a bounded version of the graph bandwith problem. The scaffolding problem can
1 In principle, a lower-bound can also be determined and used in defining concordant

edges.
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be seen as a generalization of a bounded version of the graph bandwith problem
where nodes and edges in the graph have orientations and lengths and not all
edge constraints have to be satisfied.

For ease of exposition we first consider the special case where the optimal
scaffold in a scaffold graph has no discordant edges (i.e. a bounded-width graph).
We consider the case of discordant edges in Section 2.4. Also, without loss of
generality, we assume that the graph is connected (otherwise, we can compute
optimal scaffolds for each component independently). Finally, it is easy to see
that we can limit our search to scaffolds where all gap sizes are 0 (we show how
more appropriate gap sizes can be computed in Section 2.7). We begin with a
few definitions: For a scaffold graph G = (V, E), a partial scaffold S′ is a scaffold
on a subset of the contigs and the dangling set, D(S′), is the set of edges from
S′ to V − S′. The active region A(S′) is then the shortest suffix of S′ such that
all dangling edges are adjacent to a contig in A(S′). A partial scaffold S′ is said
to be valid if all edges in the induced subgraph are concordant.

We now describe a dynamic-programming based search over the space of scaf-
folds to find the optimal scaffold. Note that a naive search for an optimal scaffold
would enumerate over all possible signed permutations of the contigs and count
the number of concordant scaffold edges. Since there are 2|V ||V |! possible signed
permutations, this approach is clearly not feasible. Instead, we can limit our
search over an equivalence class of partial scaffolds as shown in the following
lemma.

Lemma 1. Consider two valid partial scaffolds S′
1 and S′

2 of the scaffold graph
G. If (A(S′

1), D(S′
1)) = (A(S′

2), D(S′
2)) then (1) S′

1 and S′
2 contain the same set

of contigs; and (2) both or neither of them can be extended to a solution.

Proof. For (1), suppose there exists a contig c which appears in S′
2 but not in

S′
1. Since G = (V, E) is a connected graph, there exists a path (in an undirected

sense) z1 = y, z2, . . . , zi = c in G = (V, E) where y is the first contig in the active
region of both S′

1 and S′
2 while z2, . . . , zi ∈ V − S′

1. For S′
2, since y is the first

contig which appears in the active region of S′
2, we have z2, . . . , zi ∈ S′

2. Hence,
(z1, z2) is a dangling edge of S′

1 but not a dangling edge of S′
2 which gives us a

contradiction.
For (2), let S′′ be any scaffold of V − S′

1 = V − S′
2. Since S′

1 and S′
2 have

the same active region, S′
1S

′′ has no discordant edges if and only if S′
2S

′′ has no
discordant edges. �	

Based on the above lemma, the algorithm in Figure 2 starts from an empty
scaffold S = ∅, extends it a contig at a time to search over the equivalence class
of partial scaffolds, and finds a scaffold with no discordant edges (if it exists).
The proof of correctness of the algorithm follows directly from Lemma 1.

We prove the runtime complexity of the algorithm in the following theorem.

Theorem 1. Given a scaffold graph G = (V, E) and an empty scaffold, the
algorithm Scaffold-Bounded-Width runs in O(|E||V |w) time.
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Scaffold-Bounded-Width(S′)
Require: A scaffold graph G = (V, E) and a valid partial scaffold S′

Ensure: Return a scaffold S of G with no discordant edges and where S′ is a prefix
of S

1: if S′ is a scaffold of G then
2: return S′

3: end if
4: for every c ∈ V − S′ in each orientation do
5: Let S′′ be the scaffold formed by concatenating S′ and c;
6: Let A be the active region of S′′;
7: Let D be the dangling set of S′′;
8: if (A,D) is unmarked then
9: Mark (A, D) as processed;

10: if S′′ is valid then
11: S′′′ ← Scaffold-Bounded-Width(S′′);
12: If S′′′ 
= FAILURE, return S′′′;
13: end if
14: end if
15: end for
16: Return FAILURE;

Fig. 2. An algorithm for generating a scaffold for a bounded-width scaffold graph

Proof. The number of contigs in an active region is bounded by w and each
contig has two possible orientations. Hence, the set of possible active regions is
O((2|V |)w). Every contig in an active region has ≤ w dangling edges. Thus, a
given active region has at most O(2w2

) possible dangling sets. The number of
equivalence classes is therefore bounded by O(2w2

(2|V |)w) = O(|V |w) (treating
w as a constant). For each equivalence class, updating the active region and the
dangling set in steps 6 and 7 takes O(|E|) time. �	

The runtime analysis presented here is clearly a coarse-grained analysis and with
some more work, tighter bounds can be proven (for example, since we extend the
scaffold in only one direction, we do not need to keep track of the dangling set).
However, the main point here is that for a fixed w, the worst-case runtime of the
algorithm is polynomial in the size of the graph, i.e. we have a fixed-parameter
tractable algorithm for the problem. In the next section, we discuss how this
analysis can be extended to the case where not all edges in the optimal scaffold
are concordant.

2.4 Minimizing Discordant Edges

Treating the width parameter as a fixed constant is a special case of the scaf-
folding problem and correspondingly the NP-completeness result discussed in
Section 2.2 does not hold. In the following theorem (with proof in the appendix)
we show that the decision version of the scaffolding problem (allowing for dis-



Reconstructing Optimal Genomic Scaffolds 443

cordant edges) is NP-complete even when the width of the paired-end library is
treated as a constant.

Theorem 2. Given a scaffold graph G and treating the library width w as a
fixed-parameter, the problem of deciding if there exists a scaffold S with less
than p discordant edges is NP-complete.

Theorem 2 suggests that we cannot hope to design an algorithm that is poly-
nomial in p, the number of discordant edges. However, treating p as a fixed-
parameter as well, we can extend the algorithm in Section 2.3 and still maintain
a runtime polynomial in the size of the graph. The basic idea here is that we need
to extend the notion of equivalence class by keeping track of discordant edges
from the partial scaffold (denoted by X(S′) for a partial scaffold S′). Also, we
redefine the dangling set to contain only concordant edges and note that as the
scaffold is only extended in one direction, the dangling set is completely deter-
mined by the active region and the set of discordant edges. Then the following
lemma is a straightforward extension of Lemma 1:

Lemma 2. Consider two partial scaffolds S′
1 and S′

2 of G with less than p dis-
cordant edges. If (A(S′

1), X(S′
1)) = (A(S′

2), X(S′
2)) then (1) S′

1 and S′
2 contain

the same set of contigs; and (2) both or neither of them can be extended to a
solution.

Based on this lemma an extension of the algorithm in Figure 2 that handles
discordant edges is presented in Figure 3. In addition, we extend the runtime
analysis in the following lemma:

Lemma 3. Consider a scaffold graph G = (V, E) and let p be the maximum al-
lowed number of discordant edges. The algorithm Scaffold runs in O(|V |w|E|p+1)
time.

Proof. As before, the set of possible active regions is O(|V |w). Also, there are
at most O(|E|p) possible sets of discordant edges. Finally, for each equivalence
class, updating the active region and the set of discordant edges in steps 6 and
7 takes O(|E|) time. �	
To convert this algorithm into one that optimizes over p, we can rely on a
branch-and-bound approach where (1) a quick heuristic search is used to find
a good solution and define an upper-bound on p and (2) the upper-bound is
refined as better solutions are found and the search is not terminated till all
extensions have been explored in step 4. We implemented such an approach but
found that in some cases our heuristic search would return a poor upper-bound
and thus affect the runtime of the algorithm. To get around this, our current
implementation tries each value of p (starting from 0) and stops when a scaffold
can be constructed (the total runtime is still O(|V |w|E|p+1)).

Note that while the worst-case runtime bound suggests that if p increases by
one, runtime would increase by a factor proportional to the size of the graph,
in practice, we observe only a constant factor increase (i.e. runtime growth is
Cp where C ≤ 5). For real datasets, we can further exploit the structure of the
graph and one idea that improves runtimes significantly is detailed below.
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Scaffold(S′, p)

Require: A scaffold graph G = (V, E) and a partial scaffold S′ with at most p
discordant edges

Ensure: Return a scaffold S of G with at most p discordant edges and where S′ is
a prefix of S

1: if S′ is a scaffold of G then
2: return S’
3: end if
4: for every c ∈ V − S′ in each orientation do
5: Let S′′ be the scaffold formed by concatentating S′ and c;
6: Let A be the active region of S′′;
7: Let X be the set of discordant edges of S′′;
8: if (A,X) is unmarked then
9: Mark (A, X) as processed;

10: if |X| ≤ p then
11: S′′′ ← Scaffold(S′′, p);
12: If S′′′ 
= FAILURE, return S′′′;
13: end if
14: end if
15: end for
16: Return FAILURE;

Fig. 3. An algorithm for generating a scaffold with at most p discordant edges

2.5 Graph Contraction

Contigs assembled from a whole-genome shotgun sequencing data come in a
range of sizes and often a successful assembly produces several contigs longer
than paired-read library thresholds (τ). For a particular library size, we label
such contigs as border contigs and note the fact that a scaffold derived from
such a scaffold graph will not have concordant library edges spanning a border
contig. For a scaffold graph G = (V, E), we then define G′ = (V ′, E′) as a fenced
subgraph of G if edges in E from V − V ′ to V ′ are always adjacent to a border
contig. For example, Figure 4(b) shows a fenced subgraph of the scaffold graph
in Figure 4(a).

We now prove a lemma on the relationship between optimal scaffolds of G′

and G.

Lemma 4. Given a scaffold graph G = (V, E), let G′ = (V ′, E′) be a fenced
subgraph of G. Suppose S′ = {S′

1, . . . , S
′
n} forms the optimal scaffold set of G′

(disconnecting scaffolds connected by discordant edges). There exists an optimal
scaffold set S of G where every S′

i is a subpath of some scaffold of S.

Proof. Let S be an optimal scaffold set of G that does not contain S′ as subpaths.
We construct a new scaffold set that does, by first removing all contigs in V ′.
For each remaining partial scaffold whose end was adjacent to a border contig
b, we append that end to the corresponding scaffold S′

i (with b on its end and
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Fig. 4. Contracting the Scaffold Graph. (a) Original scaffold graph G. (b) A fenced
subgraph of G (with optimal scaffolds “3 4 -5” and “8 -9 10”). (c) The new graph after
contraction of optimal scaffolds for the subgraph in (b).

in the right orientation). This new scaffold is at least as optimal as S. To see
this, note that the number of concordant edges between nodes in V −V ′ as well
as those between nodes in V and V − V ′ has remained the same. Also, since S′

is optimal for G′ the number of concordant edges in V ′ could only have gone
up. �	

Based on the lemma, we devise a recursive, graph contraction based algorithm
to compute the optimal scaffold and this is outlined in Figure 5 and illustrated
by an example in Figure 4.

2.6 Handling of Repeat Contigs

Repeat regions in the genome are often assembled (especially by short-read assem-
blers) as a single contig and in the scaffolding stage, information from paired-reads

ContractAndScaffold(G)

Require: A Scaffold Graph G
Ensure: An optimal scaffold S of G
1: Identify a minimal fenced subgraph G′ of G using a traversal from a border contig.
2: Solve the scaffolding problem for G′ to obtain a set of scaffolds S′

1, . . . , S
′
n (see

Section 2.4).
3: From G, form a new scaffold graph G′′ by contracting all contigs in S′

i to a node
si, for each i = 1, . . . , n.

4: Call ContractAndScaffold(G′) to obtain the scaffold S ′′ of G′′.
5: From S ′′ construct S by replacing every si by S′

i, for each i = 1, . . . , n.

Fig. 5. A recursive graph contraction based algorithm to compute an optimal scaffold
for a scaffold graph G
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could help place such contigs in multiple scaffold locations. The optimization al-
gorithm described here can be naturally extended to handle such cases but due
to space constraints we do not explore this extension here and instead filter such
contigs (based on read coverage greater than 1.5 times the genomic mean) before
scaffolding with Opera.

2.7 Determination of Gap Sizes

After the order and the orientation of contigs in a scaffold have been computed,
the constraints imposed by the paired-reads can also be used to determine the
sizes of intervening gaps between contigs. This then serves as an important guide
for genome finishing efforts as well as downstream analysis. Since scaffold edges
can span multiple gaps and impose competing constraints on their sizes, we
adopt a maximum likelihood approach to compute gap sizes:

max
G

p(E|G) = max
G

Πi∈E
1√

2πσi
2
e
− (si(G)−μi)2

σi
2 (1)

where, E is the set of scaffold edges (whose sizes follow normal distribution with
parameters μi, σi), G is the set of gap sizes, and si(G) is the observed separation
for scaffold edge i determined from the gap sizes. If ci is the total length of contig
sequences spanned by a scaffold edge and Gi is the set of gaps spanned, then we
can reformulate this as the minimization of the following quadratic function:

∑
i∈E

((ci +
∑

j∈Gi
gj) − μi)2

σi
2

(2)

where gj are the gap sizes. The resulting quadratic program (with gap sizes
bounded by τ) can be shown to have a positive definite Q matrix with a unique
solution that can be found by the Goldfarb-Idnani active-set dual method in
polynomial time [20]. This procedure thus efficiently computes gap sizes that
optimize a clear likelihood function while taking all scaffold edges into account.
As we show below, this also leads to improved estimates for gap sizes in practice.

3 Experimental Results

3.1 Datasets

To evaluate Opera, we compared it against existing programs (Velvet [5], Bambus
[10] and SOPRA [3]) on a dataset for B. pseudomallei [23] as well as synthetic
datasets for E. coli, S. cerevisiae and D. melanogaster (chromosome X). The
synthetic datasets were generated using Metasim [21] (with default Illumina
error models) and the reference genome in each case was downloaded from the
NCBI website. Similar to the real dataset, for the synthetic sets, we simulated a
high-coverage read library as well as a low-coverage paired-read library. Detailed
information about the datasets can be found in Table 1.
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Table 1. Test datasets and sequencing statistics. Note that for a library where insert
size is μ±σ, τ was set to μ+6σ and in all cases lmin was set to 500bp. For the synthetic
datasets, 10% of the large-insert library reads were made chimeric by exchanging read-
ends at random.

E. coli B. pseudomallei S. cerevisiae D. melanogaster

Size (Mbp) 4.6 7 12.1 22.4

Chromosomes 1 2 16 1

Reads (length, 80bp, 300±30bp 100bp (454 reads) 80bp, 300±30bp 80bp, 300±30bp
insert size, coverage) 40X 20X 40X 40X

Paired-reads (length, 50bp, 10±1Kbp 20bp, 10±1.5Kbp 50bp, 10±1Kbp 50bp, 10±1Kbp
insert size, coverage) 2X 2.8X 2X 2X

In all cases (except for B. pseudomallei), the reads were assembled and scaf-
folded using Velvet (with default parameters and k = 31). For Bambus and
Opera, contigs assembled by Velvet were provided as input and scaffolded with
the aid of the paired-read library. For SOPRA, we used the combined Velvet-
SOPRA pipeline as described in [3]. In the case of B. pseudomallei, the 454 reads
were assembled using Newbler (http://www.454.com) and scaffolded using Bam-
bus and Opera (Velvet and SOPRA cannot directly take contigs as input).

3.2 Scaffold Contiguity

For each dataset and for each method, we assessed the contiguity of the reported
set of scaffolds, by the N50 size (the length � of the longest scaffold such that
at least half of the genome is covered by scaffolds longer than �) and the length
of the longest scaffold. We also report the total number of scaffolds as well as
the number of scaffolds with more than one contig (see Table 2). As can be seen
from Table 2, Opera consistently produces the smallest number of scaffolds, the
largest N50 sizes and the largest single scaffold.

Table 2. A comparison of scaffold contiguity for different methods

E. coli B. pseudomallei S. cerevisiae D. melanogaster

Scaffolds (non-singletons) Velvet 241 (2) - 1131 (26) 2148 (23)

Bambus 200 (9) 183 (62) 1085 (39) 2062 (42)

SOPRA 545 (90) - 2171 (308) 4927 (149)

Opera 3 (2) 3 (2) 31 (22) 36 (15)

N50 (Mbp) Velvet 3.02 - 0.55 1.88

Bambus 0.73 0.25 0.36 1.05

SOPRA 0.05 - 0.04 0.03

Opera 3.02 3.81 0.65 3.18

Max. Length (Mbp) Velvet 3.02 - 0.96 4.31

Bambus 1.35 0.47 0.72 2.33

SOPRA 0.14 - 0.15 0.82

Opera 3.02 3.81 1.04 7.69
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Table 3. Comparison of scaffold correctness for different methods. Breakpoints were
not assessed for B. pseudomallei due to the lack of a finished reference for the sequenced
strain.

E. coli B. pseudomallei S. cerevisiae D. melanogaster

No. of breakpoints Velvet 3 - 6 11

Bambus 31 - 57 107

SOPRA 1 - 67 10

Opera 0 - 1 4

No. of discordant edges Velvet 4 - 7 16

Bambus 19 673 55 423

Opera 1 19 3 4

3.3 Scaffold Correctness

To check the correctness of the reported scaffolds, we aligned the corresponding
contigs to the reference genome using MUMmer [24]. Consecutive contigs in a
scaffold that do not have the same order and orientation in the reference genome
were then counted as breakpoints in the scaffold (see Table 3). In all datasets,
Opera reports scaffolds with fewer breakpoints and therefore with greater agree-
ment with the reference genome. Table 3 also reports the number of discordant
edges seen in the scaffolds for the various methods (SOPRA is not compared
as it uses a different set of contigs) and as expected Opera produces the best
results under this criteria.

3.4 Running Time and Gaps

The current implementation of Opera is in JAVA (for ease of programming) and
has not been optimized for runtime. However, despite this Opera had favorable
runtimes on all datasets (see Table 4). This is likely due to the fact that it can
effectively contract the scaffold graph while it searches for the optimal scaffold.
We also compared the gap sizes estimated by the scaffolders and, in general,
Velvet and Opera had the most consistent scaffolds and gap sizes. For gaps
(≥ 1Kbp) shared by their scaffolds, both Velvet and Opera produced accurate
gap size estimates for S. cerevisiae, but Velvet had more gaps with relative error
> 10% (13 compared to 7 for Opera). For D. melanogaster, both scaffolders had

Table 4. Runtime Comparison. Note that we do not report results for Velvet as it
does not have a stand-alone scaffolding module

E. coli B. pseudomallei S. cerevisiae D. melanogaster

Time Bambus 50s 16m 2m 3m

SOPRA 49m - 2h 5h

Opera 4s 7m 11s 30s
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many more gaps with relative error > 10%, but Opera was slightly better (31
versus 36 for Velvet).

4 Discussion

In this paper we explored a formal approach to the problem of scaffolding of a
set of contigs using a paired-read library. As we describe in the methods, despite
the computational complexity of the problem, we can devise a fixed-parameter
tractable algorithm for scaffolding. Furthermore, by exploiting the structure of
the scaffold graph (using a graph contraction procedure), this method can scaf-
fold large graphs and long paired-read libraries (for example, the B. pseudomallei
graph has more than 900 contigs).

Our experimental results, while limited, do suggest that Opera can more fully
utilize the connectivity information provided by paired-reads. When compared
with existing heuristic approaches, Opera simultaneously produces longer scaf-
folds and with fewer errors. This highlights the utility of minimizing the number
of discordant edges in the scaffold graph and suggests that good approximation
algorithms for this problem could achieve similar results with better scalability.

We plan to explore several promising extensions to Opera including the use of
strobe-sequencing reads and information from overlaping contigs to improve the
scaffolds. Another extension is to incorporate additional quality metrics (such as
a lower-bound for the library size) to help differentiate between solutions that
are equally good under the current optimality criterion. A C++ version of Opera
(handling repeat contigs as well) will be publicly available soon.
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Appendix: Proof of Theorem 2

Proof. Given a scaffold, it is easy to see that it can be checked in polynomial
time and hence the problem is in NP.

We now show a reduction from the (1, 2)-traveling salesperson problem. Given
a complete graph H = (V, E) whose edges are of weight either 1 or 2, the (1, 2)-
traveling salesperson problem asks if a weight k path exists that visits all vertices.

To construct a scaffold graph G = (V ′, E′), we set V ′ = V and E′ to a subset
of E in which all edges with weight 2 are discarded (for every pair of such nodes
(u, v) ∈ E, there are actually two bidirected edges in E′ corresponding to the
permutations uv and −u − v). Note that the graph G can be constructed from
H in polynomial time and while the reduction is for the case w = 0 it extends in
a straightforward fashion for other values (by inserting a path of w contig nodes
between every pair of nodes from V ).

We now show that H has a path of weigth L + 2(|V | − 1 − L) if and only if
G has a solution which omits |E′| −L edges, where L is the number of weight-1
edges in a scaffold of G.

Suppose H has a path of length L + 2(|V | − 1 − L), i.e., the path has L
edges of weight 1 and (|V | − 1 − L) edges of weight 2. Then, in G, we can
construct a scaffold S which consists of these L edges of weight 1 (by choosing
the appropriate bidirected edge). S is a valid scaffold which omits |E′|−L edges
in G.

Suppose G has a scaffold which omits |E′|−L edges (for multiple independent
scaffolds, consider them in any order). Since the weights of all edges in G are 1,
all edges in the solution connect two adjacent nodes. As H is a clique, if there
is no edge in a pair of adjacent nodes in the solution, there must be an edge of
weight 2 in H . Then, a travelling-salesperson path of length L + 2(|V | − 1 − L)
can be constructed by selecting all such missing edges from H . �	
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Abstract. Sequencing studies have been discovering a numerous number of rare
variants, allowing the identification of the effects of rare variants on disease sus-
ceptibility. As a method to increase the statistical power of studies on rare vari-
ants, several groupwise association tests that group rare variants in genes and
detect associations between groups and diseases have been proposed. One ma-
jor challenge in these methods is to determine which variants are causal in a
group, and to overcome this challenge, previous methods used prior information
that specifies how likely each variant is causal. Another source of information
that can be used to determine causal variants is observation data because case
individuals are likely to have more causal variants than control individuals. In
this paper, we introduce a likelihood ratio test (LRT) that uses both data and
prior information to infer which variants are causal and uses this finding to de-
termine whether a group of variants is involved in a disease. We demonstrate
through simulations that LRT achieves higher power than previous methods. We
also evaluate our method on mutation screening data of the susceptibility gene
for ataxia telangiectasia, and show that LRT can detect an association in real
data. To increase the computational speed of our method, we show how we can
decompose the computation of LRT, and propose an efficient permutation test.
With this optimization, we can efficiently compute an LRT statistic and its signif-
icance at a genome-wide level. The software for our method is publicly available
at http://genetics.cs.ucla.edu/rarevariants.

1 Introduction

Current genotyping technologies have enabled cost-effective genome-wide association
studies (GWAS) on common variants. Although these studies have found numerous
variants associated with complex diseases [1,2,3], common variants explain only a
small fraction of disease heritability. This has led studies to explore effects of rare
variants, and recent studies report that multiple rare variants affect several complex
diseases [4,5,6,7,8,9,10,11,12,13,14]. However, the traditional statistical approach that
tests each variant individually by comparing the frequency of the variant in individuals
who have the disease (cases) with the frequency in individuals who do not have the
disease (controls) yields low statistical power when applied to rare variants due to their
low occurrences.
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Identifying genes involved in diseases through multiple rare variants is an important
challenge in genetics today. The main approach currently proposed is to group variants
in genes and detect associations between a disease and these groups. The rationale
behind this approach is that multiple rare variants may affect the function of a gene.
By grouping variants, we may observe a larger difference in mutation counts between
case and control individuals and hence, power of studies increases. Recently, several
methods have been developed for the groupwise approach such as the Cohort Allelic
Sums Test (CAST) [15], the Combined Multivariate and Collapsing (CMC) method
[16], a weighted-sum statistic by Madsen and Browning (MB) [17], a variable-threshold
approach (VT) [18], and Rare variant Weighted Aggregate Statistic (RWAS) [19].

In combining information from multiple rare variants, a groupwise association test
faces two major challenges. The first is unknown effect sizes of variants on the disease
phenotype. To address this challenge, MB and RWAS discuss a disease risk model
in which rarer variants are assumed to have higher effect sizes than common variants
[17,19]. This model provides a simulation framework that would be appropriate for
testing the groupwise tests on rare variants because it describes associations usually
not found in traditional GWAS. RWAS is shown to outperform other grouping methods
under this disease risk model [19]. The second challenge is that only a subset of the rare
variants in the gene will have an effect on the disease and which of these variants are
causal is unknown. Including non-causal variants in a groupwise association test may
reduce power because it may weaken effects of causal variants. RWAS and VT attempt
to overcome this challenge by utilizing prior information of which variants are likely
causal, and prior information can be obtained from bioinformatics tools such as Align-
GVGD [20] , SIFT [21] and PolyPhen-2 [22]. By incorporating prior information into
the methods, RWAS and VT reported that they achieved higher power [18,19].

These methods do not achieve the best performance even under the assumptions of
their disease model (as we show below) and we improve on the previous methods by
taking advantage of the following ideas. First, observational data can give us a clue
to which variants are causal in data because casual variants occur more frequently in
cases than in controls. Hence, a method that infers causal variants from data would
outperform methods that do not, and previous methods fall into the latter category. In
addition, previous methods such as RWAS, MB, and VT compute their statistics using a
linear sum of mutation counts. In these methods, a large discrepancy in mutation counts
between cases and controls has the same effect on a statistic as a sum of two small
discrepancies with half the size of the large one. However, the large discrepancy should
contribute more than the sum of small discrepancies because a variant that causes the
large difference in mutation counts is more likely to be involved in a disease. To em-
phasize the large discrepancy, a nonlinear combination of mutation counts is necessary.
Finally, the set of rare variants in the gene and their distribution among cases and con-
trols can be used to estimate the effect sizes of the rare variants on the disease. This
estimate can then be used to improve the statistical power of the method.

In this paper, we present a novel method for the groupwise association test based on
a likelihood ratio test (LRT). LRT computes and compares likelihoods of two models;
the null model that asserts no causal variants in a group and the alternative model that
asserts at least one causal variant. To compute likelihoods of the models, LRT assumes
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that some variants are causal and some are not (called “causal statuses of variants”) and
computes the likelihood of the data under each possible causal status. This allows LRT
to compute likelihoods of the null and alternative models, and a statistic of LRT is a
ratio between likelihoods of the two models.

LRT takes advantage of both prior information and data to compute likelihoods of
underlying models, and hence it uses more information than previous methods to iden-
tify a true model that generated data. Simulations show that LRT is more powerful than
previous methods such as RWAS and VT using the same set of prior information. We
also show by using real mutation screening data of the susceptibility gene for ataxia
telangiectasia that LRT is able to detect an association previously reported by [23] and
[19].

Unfortunately, to compute the LRT statistic directly, we must consider a number of
possible models exponential in the number of rare variants in the gene. In addition, we
must perform this computation once in each permutation and we must perform mil-
lions of permutations to guarantee that we control false positives when trying to obtain
genome-wide significance. We address these computational challenges by decompos-
ing the computation of LRT and developing an efficient permutation test. Unlike the
standard approach to compute the LRT statistics which requires exponential time com-
plexity, we make a few assumptions and derive a method for computing the LRT statis-
tic whose time complexity is linear. For the permutation test, we further decompose
the LRT statistic and take advantage of the distribution of allele frequency. These tech-
niques allow us to compute a statistic of each permutation efficiently, and hence we
can perform a large number of permutations to obtain genome-wide significance. We
provide the software package for LRT at http://genetics.cs.ucla.edu/rarevariants.

2 Material and Methods

2.1 Computation of Likelihoods of Haplotypes

We consider likelihoods of two models under LRT; the likelihood of the null model (L0)
and the likelihood of the alternative model (L1). The null model assumes that there is
no variant causal to a disease while the alternative model assumes there is at least one
causal variant. To compute the likelihood of each model, let D+ and D− denote a set
of haplotypes in case and control individuals, respectively. We assume there are M
variants in a group, and let V i be the indicator variable for the “causal status” of variant
i; V i = 1 if variant i is causal, and V i = 0 if not causal. Let V = {V 1, ..., V M}
represent the causal statuses of M variants, and there exist 2M possible values for V .
Among them, let vj = {v1

j , ..., vM
j } be jth value, consisting of 0 and 1 that represent

one specific scenario of causal statuses [19]. We use ci to denote the probability of
variant i being causal to a disease. Then, we can compute the prior probability of each
scenario vj as

P (vj) =
M∏
i=1

c
vi

j

i (1 − ci)1−vi
j . (1)

We define L(D+, D−|vj) as the likelihood of observing case and control haplotypes
given jth scenario. Then, L0 and L1 can be defined as
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L0 = L(D+, D−|v0)P (v0) (2)

L1 =
2M−1∑
j=1

L(D+, D−|vj)P (vj) (3)

where v0 is a scenario where vi
0 = 0 for all variants; no causal variants. In the Appendix

we describe how we can compute L(D+, D−|vj).
The statistic of LRT is a ratio between L1 and L0, L1/L0, and we perform a permu-

tation test to compute a p-value of the statistic.

2.2 Computation of Likelihoods of Variants

We decompose L0 and L1 in (Equations 2, 3) such that we compute likelihoods of vari-
ants instead of likelihoods of haplotypes to reduce the computational complexity. To
compute L1 in (Equation 3), we need to compute likelihoods of 2M scenarios of causal
statuses, which is computationally expensive if there are many rare variants in a group.
To decompose likelihoods of haplotypes, we make two assumptions. The first assump-
tion is low disease prevalence, and the second assumption is no linkage disequilibrium
between rare variants [16,24,25].

Assume there are N/2 case and N/2 control individuals. Let Hk={H1
k ,H2

k , . . . ,HM
k }

denote kth haplotype, where Hk
i = {0, 1}. Hi

k = 1 if ith variant in kth haplotype is
mutated, and Hi

k = 0 if not. Let pi denote population minor allele frequency (MAF)
of variant i, and p+

i and p−i represent the true MAF of case and control individuals,
respectively. We denote relative risk of variant i by γi. Then, L0 and L1 of (Equations
2, 3) can be decomposed into (see the Appendix for the derivation)

L0 =
M∏
i=1

⎧⎨⎩(1 − ci)
∏

Hk∈D+

pi
Hi

k(1 − pi)1−Hi
k

∏
Hk∈D−

pi
Hi

k(1 − pi)1−Hi
k

⎫⎬⎭ (4)

L0 + L1 =
M∏
i=1

{
(1 − ci)

∏
Hk∈D+

pi
Hi

k(1 − pi)1−Hi
k

∏
Hk∈D−

pi
Hi

k(1 − pi)1−Hi
k

+ci

∏
Hk∈D+

p+
i

Hi
k(1 − p+

i )1−Hi
k

∏
Hk∈D−

pi
Hi

k(1 − pi)1−Hi
k

}
(5)

where p+
i and p−i are

p+
i =

γipi

(γi − 1)pi + 1
(6)

p−i = pi (assuming the disease prevalence is very small) (7)

We estimate the population MAF of a variant (pi) using an observed overall sample
frequency.

pi =
p̂+

i + p̂−i
2

where p̂+
i and p̂−i represent observed case and control MAF, respectively.

This decomposition reduces the time complexity of computing L1 from exponential
to linear, substantially increasing the computational efficiency.
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2.3 Efficient Permutation Test for LRT

We propose a permutation test that is substantially more efficient than a naive permu-
tation test that permutes case and control statuses in each permutation. The naive per-
mutation test is computationally expensive because every haplotype of case and control
individuals needs to be examined in each permutation, and hence it requires more com-
putation as the number of individuals increases. Moreover, to compute a p-value at a
genome-wide level, more than 10 million permutations are necessary assuming a sig-
nificance threshold of 2.5 × 10−6 (computed from the overall false positive rate of
0.05 and the Bonferroni correction with 20,000 genes genome-wide). It is often com-
putationally impractical to perform this large number of permutations with the naive
permutation test. Hence, we develop a permutation test that does not permute case and
control statuses, and this makes the time complexity independent of the number of in-
dividuals and allows the permutation test to be capable of performing more than 10
million permutations.

First, we reformulate L0 and L1 (Equations 4, 5) such that they are composed of
terms that do not change and terms that change per each permutation (see the Appendix
for the derivation).

L0 =
M∏
i=1

Xi (8)

L0 + L1 =
M∏
i=1

{
Xi + KiY

Np̂+
i

i

}
(9)

where

Xi = (1 − ci)p
2Npi

i (1 − pi)2N−2Npi

Ki = ci(1 − p+
i )N (1 − pi)N

(
pi

1 − pi

)2Npi

Yi =
(

p+
i

1 − p+
i

· 1 − pi

pi

)
In (Equations 8 and 9), it is only a p̂+

i term that changes when the dataset is permuted
because pi and p+

i are invariant per permutation, meaning Xi, Ki, and Yi are con-
stant. Np̂+

i follows the hypergeometric distribution with the mean equal to Npi and
the variance equal to N

2 pi(1 − pi) under permutations. Hence, we sample Np̂+
i from

the hypergeometric distribution, and since this sampling strategy does not permute and
examine haplotypes of individuals, it is more efficient than the naive permutation test
when studies have a large number of individuals.

To speed up sampling from the hypergeometric distribution, we pre-compute hy-
pergeometric distributions of all rare variants (e.g. variants whose MAF are less than
10%) before performing the permutation test. Computing the hypergeometric distribu-
tion requires several factorial operations, which is computationally expensive. The pre-
computation of distributions allows the permutation test to avoid having the expensive
operations repeatedly per permutation, and the number of pre-computed distributions
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is limited due to the small range of MAF. For common variants, we sample Np̂+
i from

the normal distribution, which approximately follows the hypergeometric distribution
when p̂+

i is not close to 0 or 1. Sampling from the normal distribution is substantially
more efficient than sampling from the hypergeometric distribution, and hence there is
no need to pre-compute the normal distribution.

We find that our permutation test is efficient enough to calculate a p-value of the
LRT statistic at a genome-wide level. For example, using a dataset that contains 1000
cases and 1000 controls with 100 variants, 10 million permutations take about 10 CPU
minutes using one core of a Quad-Core AMD 2.3 GHz Opteron Processor. Note that
the time complexity of our method is O(N + kMP ) where N is the total number of
individuals, M is the number of variants, P is the number of permutations, and k is
the number of iterations in the local search algorithm discussed below (see “Estimating
PAR of a group of variants using LRT” section for more details). We find that k is very
small in permutations and MP � N for a large number of permutations (e.g. 100
millions). Thus, the time complexity of our method becomes approximately O(MP ),
and this shows that the amount of computation our method needs mostly depends on
the number of variants and the number of permutations.

We note that our permutation test can also be applied to previous grouping meth-
ods such as RWAS [19]. RWAS assumes that its statistic (a weighted sum of z-scores
of variants) approximately follows the normal distribution, and the p-value is obtained
accordingly. Since the permutation test does not make any assumptions on the distribu-
tion of a statistic, it may provide a more accurate estimate of a p-value and improve the
power of previous methods.

2.4 Power Simulation Framework

The effect sizes and the causal statuses of variants are two major factors that influence
the power of the groupwise association test. To simulate these two factors, we adopt the
same simulation framework as one discussed in Sul et al. and Madsen and Browning
[17,19]. In this framework, population attributable risk (PAR) defines the effect sizes
of variants, and we assign the predefined group PAR to a group of variants. The group
PAR divided by the number of causal variants is the marginal PAR, denoted as ω, and
every variant has the same ω.

The effect size of a variant also depends on its population MAF in this simulation
framework. We assign each variant population MAF (pi) sampled from Wright’s for-
mula [26,27], and we use the same set of parameter values for the formula as discussed
in Sul et al. and Madsen and Browning (see [17,19] for details). Using ω and population
MAF, we can compute relative risk of variant i (γi) as following.

γi =
ω

(1 − ω)pi
+ 1 (10)

(Equation 10) shows that a rarer variant has the higher effect size. Given relative risk
and population MAF of a variant, we compute the true case and control MAF of the
variant according to (Equations 6 and 7). We then use the true case and control MAF to
sample mutations in case and control individuals, respectively.
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To simulate the causal status of a variant, we assign each variant the probability of
being causal to a disease. Let ci denote this probability for variant i, and in each dataset,
a variant is causal with the probability ci, and not causal with the probability 1 − ci.
Relative risk of a causal variant is defined in (Equation 10) while that of non-causal
variant is 1.

Given all parameters of variants, we generate 1,000 datasets, and each dataset has
1,000 case and 1,000 control individuals with 100 variants. Since we are interested in
comparing power of the groupwise tests, we only include datasets that have at least two
causal variants. The number of significant datasets among the 1,000 datasets is used as
an estimate of power with the significance threshold of 2.5 × 10−6.

2.5 Estimating PAR of a Group of Variants Using LRT

We need a few model parameters to compute the LRT statistic, and we use data, prior
information, and the LRT statistic itself to estimate the parameters. More specifically,
we need to know relative risk of variant i, γi, to compute p+

i in (Equation 6). According
to (Equation 10), γi depends on population MAF (pi) and the marginal PAR (ω) which
is the group PAR divided by the number of causal variants. We can estimate pi from
observational data, and we use prior information (ci) of variants to compute the ex-
pected number of causal variants, which we use as an estimate of the number of causal
variants.

To estimate the group PAR, we use the LRT statistic because we are likely to observe
the greatest statistic when LRT is given the group PAR that generated observational
data. We apply a local search algorithm to find the value of PAR that maximizes the
LRT statistic; we compute the statistic assuming a very small PAR value (0.1%), and
iteratively compute statistics using incremental values of PAR (0.2%, 0.3%, etc.) until
we observe a decrease in the LRT statistic. After we find the maximum LRT statis-
tic, we perform the permutation test with the same local search algorithm to find the
significance of the statistic.

3 Results

3.1 Type I Error Rate of LRT

We examine the type I error rate of LRT by applying it to “null” datasets that contain no
causal variants. We measure the type I error rates under three significance thresholds;
0.05, 0.01, and 2.5×10−6 (the significance threshold for the power simulation). A large
number of null datasets are necessary to accurately estimate the type I error rate under
the lowest significance threshold (2.5 × 10−6). Thus, we create 10 million datasets,
and each dataset contains 1000 case and 1000 control individuals with 100 variants.
We estimate the type I error rate as the proportion of significant datasets among the 10
million datasets.

To efficiently measure the type I error rates of LRT, we use the following approach.
We first test LRT on all 10 million datasets with 100,000 permutations. This small
number of permutations makes it possible to test LRT on all null datasets and allows
us to estimate the type I error rates under the 0.05 and 0.01 significance thresholds. As
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for the lowest significance threshold, we need to test LRT with a very large number of
permutations (e.g. 100 million) to obtain a genome-wide level p-value. To reduce the
amount of computation, we exclude datasets whose p-values cannot be lower than 2.5×
10−6 with 100 million permutations. More specifically, to obtain a p-value less than
2.5× 10−6, the number of significant permutations (permutations whose LRT statistics
are greater than the observed LRT statistic) must be less than 250 with 100 million
permutations. We exclude datasets having more than 250 significant permutations after
the 100,000 permutations. We then apply the adaptive permutation test on the remaining
datasets; we stop the permutation test when the number of significant permutations is
greater than 250. The proportion of datasets whose permutation tests do not stop until
100 million permutations is the type error rate under the 2.5 × 10−6 threshold.

We find that the type I error rates of LRT are 0.0500946, 0.0100042, and 2.6 ×
10−6 for the significance thresholds of 0.05, 0.01, and 2.5 × 10−6, respectively. This
shows that the type I error rates are well controlled for LRT under the three different
thresholds.

3.2 Power Comparison between LRT and Previous Grouping Methods

We compare power between LRT and previous methods using two simulations. We
design these simulations to observe how LRT’s implicit inference of which variants are
causal affects the power compared to methods which do not make this kind of inference.
In the first simulation, we generate datasets in which variants have true ci = 0.1. This
means that only a subset of variants is causal, and causal statuses of variants vary per
datasets. In the second simulation, all 100 variants in datasets are causal; true ci of all
variants is 1.

We test four different methods in this experiment; LRT, Optimal Weighted Aggre-
gate Statistic (OWAS), MB, and VT. OWAS computes a difference in mutation counts
between case and control individuals for each variant, or z-score of a variant, and as-
signs weights to z-scores according to the non-centrality parameters of z-scores [19].
Sul et al. reported that OWAS achieves slightly higher power than RWAS [19]. Thus,
we test OWAS instead of their proposed method, RWAS, to compare power between
a weighted sum of z-scores approach and the LRT approach. Since OWAS needs to
know the effect sizes of variants, we give OWAS the true group PAR that generated
data. OWAS divides the true group PAR by the expected number of causal variants to
compute the marginal PAR (ω) and then compute relative risk of variants (Equation 10).
We also apply our permutation test for LRT (see Material and Methods) to OWAS to
estimate its p-value more accurately. To test VT, we use an R package available online
[18]. LRT, OWAS, and VT are given prior information that is equivalent to true ci of
datasets, and we perform 10 million permutations to estimate p-values of their statistics.

Results of the two simulations show that LRT outperforms the previous groupwise
tests in the first simulation, and it has almost the same power as OWAS in the second
simulation. In the first simulation, LRT has higher power than other tests at all group
PAR values (Figure 1A); at the group PAR of 5%, LRT achieves 94.5% power while
OWAS and VT achieve 53.7% and 83.6% power, respectively. This shows that data may
provide useful information about causal statuses of variants, and a method that takes ad-
vantage of data achieves higher power than those that do not. When prior information,
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however, can alone identify which variants are causal as in the second simulation, LRT
and OWAS have almost the identical power (Figure 1B). This is because both meth-
ods know which variants are causal from prior information. Hence, this experiment
demonstrates that LRT is generally a more powerful approach than the weighted sum of
z-scores approach because it achieves higher power in studies where prior information
cannot specify which variants are causal.

3.3 LRT on Real Mutation Screening Data of ATM

We apply LRT to real mutation screening data of the susceptibility gene for ataxia
telangiectasia [23]. This gene, called ATM, is also an intermediate-risk susceptibility
gene for breast cancer. Tavtigian et al. conducted mutation screening studies and col-
lected data from 987 breast cancer cases and 1021 controls. Tavtigian et al. increased
the number of cases and controls to 2531 and 2245, respectively, by collecting data
from seven published ATM case-control mutation screening studies. This dataset is
called “bona fide case-control studies,” and 170 rare missense variants are present in
this dataset. Sul et al. also analyzed the dataset with RWAS [19].

To obtain prior information of variants in the dataset, Tavtigian el al. used two mis-
sense analysis programs, Align-GVGD [20] and SIFT [21]. A difference between the
two programs is that while SIFT classifies a variant as either deleterious (SIFT scores
≤ 0.05) or neutral (SIFT scores > 0.05), Align-GVGD classifies a variant into seven
grades from C0 (most likely neutral) to C65 (most likely deleterious). To convert the
seven grades of Align-GVGD into ci values, we arbitrarily assign ci values from 0.05
to 0.95 in increments of 0.15 to the seven grades. As for converting SIFT scores into ci

values, we assign ci value of 1 to variants whose SIFT scores are ≤ 0.05 and ci of 0 to
other variants. This is the same conversion used in [19].

When LRT uses prior information from Align-GVGD, it yields a p-value of 0.0058,
which indicates a significant association between a group of rare variants and the

Fig. 1. Power comparison among four different groupwise association tests on datasets where
ci = 0.1 for all variants (A) and ci = 1 (B) over different group PAR values
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disease. This result is consistent with the findings of [23] and [19]; Tavtigian et al. and
Sul et al. both obtained significant p-values when they used outputs of Align-GVGD as
prior information. The result shows that we can apply LRT to real data to discover an
association.

LRT yields a non-significant p-value of 0.39341 when it does not use prior infor-
mation, and this is also consistent with results of [23] and [19]; Tavtigian et al. and
Sul et al. reported non-significant p-values when they analyzed the data without prior
information. When SIFT scores are used as prior information, LRT similarly reports a
non-significant p-value of 0.08384, and Sul et al. also obtained a non-significant p-value
[19]. However, the analysis of Tavtigian et al. with SIFT scores showed a significant as-
sociation [23]. According to [19], the reason for this difference may be that LRT and
RWAS need to know the relative degree of how deleterious a variant is to better de-
tect an association. However, it may be difficult to know this relative deleteriousness of
variants with SIFT scores because variants are either deleterious or neutral. Thus, this
experiment shows that more informative prior information such as the seven grades of
Align-GVGD may yield better results with LRT.

4 Discussion

We developed a likelihood ratio test (LRT) to increase power of association studies on
a group of rare variants. The power of statistical methods that group rare variants de-
pends on which rare variants to group or to exclude from the group because including
non-causal variants in the group decreases power [19]. Although prior information pro-
vides useful information of how likely each variant is casual to a disease, determining
whether a variant is causal or not in data only from prior information is often infeasi-
ble. LRT takes advantage of data to identify causal variants, and when it is not possible
to identify causal variants from prior information, we showed that LRT outperforms
previous methods.

To evaluate LRT on real data, we used mutation screening data of the ATM gene
[23]. Tavtigian et al. and Sul et al. both found the significant association in the data
[23,19], and we showed that LRT also detected the association using the output of
Align-GVGD as prior information of variants. This shows that LRT can be applied to
detect an association in real association studies.

One of the two assumptions that we made to efficiently compute the LRT statis-
tic and its p-value is the independence between variants. Several studies suggest that
there would be very low linkage disequilibrium between rare variants due to their low
occurrences [16,24,25]. However, if non-negligible LD is expected between variants,
especially when common variants are in linkage disequilibrium in the group, we can
change our permutation test as follows to take into account LD and to correctly control
the false positive rate. Instead of separately sampling Np̂+

i of each common variant
from the normal distribution, we sample Np̂+

i of all common variants from the multi-
variate normal distribution (MVN). This approach is similar to the approach of Han et
al who used the MVN framework to correct for multiple testing on correlated markers
[28]. The covariance matrix of the MVN we create consists of correlations (r) between
common variants, and hence Np̂+

i sampled from this MVN takes into account LD be-
tween variants. For rare variants, we use our proposed method that samples Np̂+

i of
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each rare variant from the hypergeometric distribution because LD between rare vari-
ants is expected to be very low.

The other assumption of our method is the low disease prevalence, and this assump-
tion does not influence the false positive rate of our method while it may affect the
power. The false positive rate of LRT is controlled even though the disease we consider
is highly prevalent because we perform the permutation test. Therefore, LRT can still be
applied to association studies involving diseases with high prevalence while its power
may not be as high as the power it achieves on diseases with low prevalence.

The software package for computing the LRT statistic and performing the proposed
permutation test is publicly available online at http://genetics.cs.ucla.edu/rarevariants.
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Appendix

Computation of L(D+, D−|vj) in LRT

We show how the likelihood of haplotypes under certain causal statuses of variants,
L(D+, D−|vj), can be computed. Let Hk denote kth haplotype, and Hk = {H1

k ,
H2

k , . . . , HM
k }. Hi

k = 1 if ith variant in kth haplotype is mutated, and Hi
k = 0 oth-

erwise. Let pi denote population minor allele frequency (MAF) of ith variant, and we

can compute the probability of a haplotype Hk as P (Hk) =
∏M

i=1 p
Hi

k

i (1 − pi)1−Hi
k .

Then, we define the likelihood of haplotypes as

L(D+, D−|vj) =
∏

Hk∈D+

P (Hk|+, vj)
∏

Hk∈D−
P (Hk|−, vj) (11)

where + and − denote case and control statuses. In order to compute P (Hk|+/−, vj),
we first denote F as disease prevalence and γHk

vj
as the relative risk of kth haplotype

under vj . We define γHk
vj

as γHk
vj

=
∏M

i=1 γ
vi

jHi
k

i . Let H0 denote the haplotype with no
variants, and using Bayes’ theorem and independence between Hk and vj , and between
disease status (+ and −) and vj , we can define the P (Hk|+ /−, vj) as

P (Hk|+, vj) =
P (Hk, +|vj)

P (+)
=

P (+|Hk, vj)P (Hk)

F
=

γHk
vj P (+|H0, vj)P (Hk)

F
(12)

P (Hk|−, vj) =
P (Hk,−|vj)

P (−)
=

(1 − P (+|Hk, vj))P (Hk)

1 − F
(13)

P (+|H0, vj), or the probability of having a disease given no variants in the haplotype
under jth causal statuses, can be computed as

2M−1∑
k=0

γHk
vj

P (+|H0, vj)P (Hk) = F

P (+|H0, vj) =
F∑2M−1

k=0 γHk
vj P (Hk)

Decomposition of Likelihoods of Haplotypes into Likelihoods of Variants in LRT

First, we consider two variants case. We have 4 possible causal statuses, denoted as
v00, v01, v10, v11 and 4 possible haplotypes, denoted as H00, H01, H10, H11. Let p1 and
p2 denote population MAF of two variants and p+

1 and p+
2 are MAF of case individuals

at two variants. The original LRT statistic based on (2) and (3) compute the following
likelihoods
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L0 = (1 − c1)(1 − c2)
∏

Hk∈D+

P (Hk|+, v00)
∏

Hk∈D−
P (Hk|−, v00)

L0 + L1 = (1 − c1)(1 − c2)
∏

Hk∈D+

P (Hk|+, v00)
∏

Hk∈D−
P (Hk|−, v00)

+ (1 − c1)c2

∏
Hk∈D+

P (Hk|+, v01)
∏

Hk∈D−
P (Hk|−, v01)

+ c1(1 − c2)
∏

Hk∈D+

P (Hk|+, v10)
∏

Hk∈D−
P (Hk|−, v10)

+ c1c2

∏
Hk∈D+

P (Hk|+, v11)
∏

Hk∈D−
P (Hk|−, v11) (14)

Our first assumption for decomposition is that F or disease prevalence is very small.
Then, we can decompose P (Hk|−, vj) for all causal statuses j, as

P (Hk|−, vj) = p
H1

k
1 (1 − p1)1−H1

k × p
H2

k
2 (1 − p2)1−H2

k = P (Hk|+, v00) (15)

Then, we decompose P (Hk|+, vj) for different vj , and first, let’s consider v11 where
two variants are both causal. We make another assumption here, which is the inde-
pendence between rare variants; there is no linkage disequilibrium (LD) [16,24,25]. If
variants are independent, P (H00|+, v11) can be formulated as

P (H00|+, v11) =
P (H00)

P (H00) + P (H10)γ1 + P (H01)γ2 + P (H11)γ1γ2

=
(1 − p1)(1 − p2)

(1 − p1)(1 − p2) + p1(1 − p2)γ1 + (1 − p1)p2γ2 + p1p2γ1γ2

=
(1 − p1) × (1 − p2)

((1 − p1) + p1γ1)× ((1 − p2) + p2γ2)
= (1 − p+

1 )(1 − p+
2 )

The last derivation comes from (6) where p+
i = piγi

(1−pi)+piγi
. Similarly, we can define

the probabilities of other haplotypes (H01, H10, H11) as

P (H01|+, v11) = (1 − p+
1 )p+

2

P (H10|+, v11) = p+
1 (1 − p+

2 )
P (H11|+, v11) = p+

1 p+
2

Combining these probabilities, we have the following decomposition of P (Hk|+, v11).

P (Hk|+, v11) = p+
1

H1
k (1 − p+

1 )1−H1
k × p+

2

H2
k(1 − p+

2 )1−H2
k (16)

Using the similar derivation, decomposition of P (Hk|+, v01) and P (Hk|+, v10) is

P (Hk|+, v01) = p1
H1

k (1 − p1)1−H1
k × p+

2

H2
k(1 − p+

2 )1−H2
k (17)
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P (Hk|+, v10) = p+
1

H1
k (1 − p+

1 )1−H1
k × p2

H2
k(1 − p2)1−H2

k (18)

By the 4 decompositions (15,16,17,18), we can finally decompose the likelihoods of
haplotypes (14) as

L0 = (1 − c1)(1 − c2)
∏

Hk∈D+

p
H1

k
1 (1 − p1)

1−H1
k p

H2
k

2 (1 − p2)1−H2
k

∗
∏

Hk∈D−
p

H1
k

1 (1 − p1)1−H1
k p

H2
k

2 (1 − p2)
1−H2

k

L0 + L1 = (1 − c1)(1 − c2)
∏

Hk∈D+

p
H1

k
1 (1 − p1)

1−H1
k p

H2
k

2 (1 − p2)1−H2
k

∗
∏

Hk∈D−
p

H1
k

1 (1 − p1)1−H1
k p

H2
k

2 (1 − p2)
1−H2

k

+ (1 − c1)c2
∏

Hk∈D+

p1
H1

k (1 − p1)1−H1
k p+

2
H2

k (1 − p+
2 )1−H2

k

∗
∏

Hk∈D−
p

H1
k

1 (1 − p1)1−H1
k p

H2
k

2 (1 − p2)
1−H2

k

+ c1(1 − c2)
∏

Hk∈D+

p
+
1

H1
k (1 − p

+
1 )

1−H1
k p2

H2
k (1 − p2)

1−H2
k

∗
∏

Hk∈D−
p

H1
k

1 (1 − p1)1−H1
k p

H2
k

2 (1 − p2)
1−H2
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If we generalize (19) to M variants, we have the likelihood of M variants as in (4, 5)
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Reformulation of L0 and L1 in LRT for an Efficient Permutation Test

First, computation of L0 (4) can be reformulated as

L0 =
M∏
i=1

⎧⎨⎩(1 − ci)
∏

Hk∈D+

pi
Hi

k(1 − pi)1−Hi
k

∏
Hk∈D−

pi
Hi

k(1 − pi)1−Hi
k

⎫⎬⎭
=

M∏
i=1

⎧⎨⎩(1 − ci)
∏

Hk∈D±
pi

Hi
k(1 − pi)1−Hi

k

⎫⎬⎭
=

M∏
i=1

{
(1 − ci)p

2Npi

i (1 − pi)2N−2Npi

}
�

M∏
i=1

Xi

Similarly, we can reformulate L1 as

L1 =

M∏
i=1

{
(1 − ci)

∏
Hk∈D+

pi
Hi

k (1 − pi)
1−Hi

k
∏

Hk∈D−
pi

Hi
k (1 − pi)

1−Hi
k

+ ci

∏
Hk∈D+

p+
i

Hi
k (1 − p+

i )1−Hi
k

∏
Hk∈D−

p−
i

Hi
k (1 − p−

i )1−Hi
k

}

=

M∏
i=1

{
Xi + cip

+
i

Np̂
+
i (1 − p+

i )N−Np̂
+
i p−

i

Np̂
−
i (1 − p−

i )N−Np̂
−
i

}

=

M∏
i=1

⎧⎨⎩Xi + ci(1 − p+
i )N

(
p+

i

1 − p+
i

)Np̂
+
i

(1 − p−
i )N

(
p−

i

1 − p−
i

)Np̂
−
i

⎫⎬⎭
Using the fact that Np̂+

i + Np̂−i = 2Npi under permutations,

L1 =
M∏

i=1

⎧⎨⎩Xi + ci(1 − p+
i )N (1 − p−

i )N

(
p+

i

1 − p+
i

)Np̂
+
i

(
p−

i

1 − p−
i

)2Npi−Np̂
+
i

⎫⎬⎭
=

M∏
i=1

⎧⎨⎩Xi + ci(1 − p
+
i )

N
(1 − p

−
i )

N

(
p−

i

1 − p−
i

)2Npi
(

p+
i

1 − p+
i

· 1 − p−
i

p−
i

)Np̂
+
i

⎫⎬⎭
�

M∏
i=1

{
Xi + KiY

Np̂
+
i

i

}



Conservative Extensions of Linkage

Disequilibrium Measures from Pairwise to
Multi-loci and Algorithms for Optimal Tagging

SNP Selection�

Ryan Tarpine1, Fumei Lam2,��, and Sorin Istrail1

1 Center for Computational Molecular Biology, Department of Computer Science,
Brown University, Providence, RI 02912

2 Department of Computer Science, University of California, Davis, CA 95616
{ryan,sorin}@cs.brown.edu, flam@cs.ucdavis.edu

Abstract. We present results on two classes of problems. The first re-
sult addresses the long standing open problem of finding unifying prin-
ciples for Linkage Disequilibrium (LD) measures in population genetics
(Lewontin 1964 [10], Hedrick 1987 [8], Devlin and Risch 1995 [5]). Two
desirable properties have been proposed in the extensive literature on this
topic and the mutual consistency between these properties has remained
at the heart of statistical and algorithmic difficulties with haplotype and
genome-wide association study analysis. The first axiom is (1) The abil-
ity to extend LD measures to multiple loci as a conservative extension of
pairwise LD. All widely used LD measures are pairwise measures. De-
spite significant attempts, it is not clear how to naturally extend these
measures to multiple loci, leading to a “curse of the pairwise”. The sec-
ond axiom is (2) The Interpretability of Intermediate Values. In this
paper, we resolve this mutual consistency problem by introducing a new

LD measure, directed informativeness
−→I (the directed graph theoretic

counterpart of the informativeness measure introduced by Halldorsson
et al. [6]) and show that it satisfies both of the above axioms. We also

show the maximum informative subset of tagging SNPs based on
−→I

can be computed exactly in polynomial time for realistic genome-wide
data. Furthermore, we present polynomial time algorithms for optimal
genome-wide tagging SNPs selection for a number of commonly used LD
measures, under the bounded neighborhood assumption for linked pairs
of SNPs. One problem in the area is the search for a quality measure
for tagging SNPs selection that unifies the LD-based methods such as
LD-select (implemented in Tagger, de Bakker et al. 2005 [4], Carlson et
al. 2004 [3]) and the information-theoretic ones such as informativeness.
We show that the objective function of the LD-select algorithm is the
Minimal Dominating Set (MDS) on r2-SNP graphs and show that we
can compute MDS in polynomial time for this class of graphs. Although

� Supported by National Science Foundation.
�� Work done while in the Department of Computer Science and Center for Computa-

tional Molecular Biology, Brown University.

V. Bafna and S.C. Sahinalp (Eds.): RECOMB 2011, LNBI 6577, pp. 468–482, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Conservative Extensions of Linkage Disequilibrium Measures 469

in LD-select the “maximally informative” solution is obtained through a
greedy algorithm, and therefore better referred to as “locally maximally
informative,” we show that in fact, Tagger (LD-select) performs very
close to the global maximally informative optimum.

1 Desiderata for Linkage Disequilibrium Measures

Linkage Disequilibrium (LD) is of fundamental importance for population ge-
netics and evolutionary studies. In the past 10 years, there has been extensive
literature on the study of patterns of LD in the human genome; one of the major
driving hopes is that these LD patterns and measurements hold the key to de-
veloping powerful computational tools for mapping complex disease loci through
genome-wide association studies.

The authors of published criticism about measures of LD have often accompa-
nied their criticism with commentary on criteria or axioms that an ideal measure
should satisfy. Some of these criteria are presented as mathematical properties
and some are presented only informally. The aim of our approach is to develop
an axiomatic framework by formalizing two such desiderata about LD measures
proposed in the literature and then to study the problem of finding LD measures
satisfying both of them.

1.1 Axiom 1: The Extendability of LD Measures to Multi-loci as a
Unique Conservative Extension of the Pairwise Values

Currently, all extensively used LD measures are defined pairwise. In order to
measure LD for a genomic region with three of more loci, an aggregation func-
tion is then required to combine the pairwise values in the region. The choice
of the aggregation function is necessarily ad hoc, with many options on general
principles, and the effect of this ad hoc choice is hard to evaluate. For example,
one could use a weighted sum of all the pairwise values, the min-max of pair-
wise values, or a graph theoretic objective (e.g., all connected nodes within a
threshold) [3]. Our formulation of this axiom is to obtain an LD measure that
generalizes to many sites, and is a conservative extension of the values for pair-
wise LD. To our knowledge, none of the measures in use have such a conservative
extension.

We call this major unresolved difficulty, the curse of pairwise. The name is
inspired by discussions with Andy Clark during our collaboration on the Min-
imum Informative Subset of SNPs Problem [7]. In this problem, we would like
to genotype the minimum set of informative SNPs for a region with the prop-
erty such that the remaining SNPs can be inferred from the subset of the SNPs
typed. Solving this problem required a new information theoretic measure, called
Informativeness, that quantifies how much information a set of SNPs S captures
about a target SNP t. The optimization problem asks for the minimum subset of
SNPs S′ ⊂ S that contains the same amount of information as the entire set of
SNPs S. This problem reduces to a well-studied problem in computer science, the
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Set Cover Problem. Based on that insight, exact algorithms were obtained in [7]
that work in polynomial time for genome-wide data, and compute the globally
minimum informative subset of SNPs. We present in this paper a contribution
of the same type.

This paper introduces a sister measure to Informativeness, called Directed
Informativeness. The approach is based on graph theoretic and algorithmic re-
sults. Finding the Minimum Informative Subset under Directed Informativeness
is also NP-complete, but as in the case of informativeness, we have a polynomial
time and practical algorithm that works for genome-wide data. However, the
new measure has unexpected properties unifying a number of aspects of the ex-
tensively used LD measures, and as a consequence, it is consistent with the two
axioms we propose. In particular, like Informativeness, Directed Informativeness
can be extended to multiple loci as a conservative pairwise-to-all extension.

1.2 Axiom 2: The Interpretability of Intermediary Values

Criticism of D′:
“Because the magnitude of D′ depends strongly on sample size, samples are
difficult to compare . . . intermediate values of D′ should not be used for com-
parison of the strength of LD between studies, or to measure the extent of
LD.” Ardlie, Kruglyak, Seielstad [1]

Intermediate values of r2 are easily interpretable.
Pritchard and Przeworski show the relationship between r2, Pearson cor-
relation coefficient χ2 and effective population size N [11]. We show that
directed informativeness can be related to r2, thus obtaining as a corollary
the relationship of directed informativeness to χ2 and effective population
size.

2 Directed Informativeness and the Minimum
Informative Subset Tagging SNPs Problem

A Single Nucleotide Polymorphism (SNP) is a position in the genome at which
two or more different alleles occur in the population, each with frequency above a
certain threshold. The goal of association studies is to correlate genetic variation
with the occurrence of disease. The difficulty arises in the large number of can-
didate sites and the combinatorial explosion in the number of subsets of SNPs
when multiple sites are considered. In chromosome-wide studies, whole genome
scans are performed and it is desirable for cost efficiency reasons to select only
a subset of SNPs which accurately represent the genetic variation of the entire
population [2, 7, 9].

We introduce a measure for association which extends the minimum informa-
tive subset, a concept from data compression that has been studied in tagging
and in the analysis of haplotype block robustness [2, 12, 13].
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2.1 Informativeness

We first introduce the graph theoretic measure of informativeness from [7], which
aims to capture how well a set of SNPs can predict a target SNP (our notation
follows closely that of [7]). The central idea is to define a measure of informative-
ness to quantify the accuracy of predicting an untyped SNP by a set of proximal
SNPs. The input is an n×m matrix M representing n binary (0/1) haplotypes of
length m, together with an n×1 disease vector t. The vector t takes values 0 and
1 to distinguish between ’case’ and ’control’ individuals. Consider the n×(m+1)
matrix M ′, obtained from the matrix M by appending column t. The value in
the ith row and jth column of M ′ is denoted by M ′

i,j . For a column s of M ′ and
haplotypes i, j, let Ds

i,j denote the event that SNP s differs in positions i and j
(Mi,s = Mj,s).

Definition 1. The informativeness of SNP s with respect to the disease vector
t is

I(s, t) = Probi�=j(Ds
i,j |Dt

i,j).

We can also interpret the informativeness of a SNP with respect to the disease
vector in terms of graph theory. Associate with each column s of M ′ a complete
bipartite graph Gs on n vertices, with bipartition defined by the alleles of s.
Each vertex in Gs corresponds to a row of M ′, and there are edges between any
two rows which differ at column s, i.e.,

E(Gs) = {{i, j} |Mi,s = Mj,s}.
Let V (Gs,0) denote the vertices in graph Gs corresponding to allele 0 and V (Gs,1)
denote the vertices in Gs corresponding to allele 1. For 1 ≤ i < j ≤ n, let

δij(s, t) =

{
1 if Mi,s = Mj,s and Mi,t = Mj,t

0 otherwise.

Then the informativeness of s with respect to t can be expressed in terms of the
bipartite graphs Gs and Gt as

I(s, t) =

∑
1≤i<j≤n δij(s, t)

|E(Gt)|
.

In [7], this measure was used to detect how well a target SNP can be predicted
from a set of tagging SNPs and to solve the k most informative SNPs prob-
lem by observing that the minimum informative subset problem is equivalent to
the minimum set cover problem. The advantage of this measure is that it can
easily be generalized to define informativeness for multi-locus SNPs [7], there-
fore satisfying Axiom (1) of the desired properties for a linkage disequilibrium
measure.

For S′ ⊆ S, let

I(S′, t) = Probi�=j

(
DS′

i,j |Dt
i,j

)
=

|E(S′) ∩ E(t)|
|E(t)|
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2.2 Directed Informativeness

Using the graph-theoretic interpretation of informativeness as a starting point,
we modify the graph under consideration to define a measure we call directed
informativeness and relate this measure to existing measures of linkage disequi-
librium. For site s, denote the major allele by 0 and the minor allele by 1. We
create a directed bipartite graph

−→
Gs for site s, with vertex set {1, 2, . . . n} and

directed edge set

E(
−→
Gs) = {(i, j) |Mi,s = 0 and Mj,s = 1}.

In this directed bipartite graph, all the edges are between different alleles and
are oriented from the major allele to the minor allele. This addition of edge
orientations in the graph will allow us to make a connection between the graph
theoretic interpretation of informativeness with existing linkage disequilibrium
measures. Note that by considering the underlying undirected graph of

−→
Gs for

each site s, we obtain the undirected graph Gs defined in [7]. However, the
pattern of intersection between the directed edges will play an important role in
our extended definition of directed informativeness.

For 1 ≤ i < j ≤ n, let

−→
δij(s, t) =

⎧⎪⎨⎪⎩
1 if M s

i = M t
i = 0 and M s

j = M t
j = 1

−1 if M s
i = M t

j = 0 and M s
j = M t

i = 1
0 otherwise.

Definition 2. The directed informativeness of SNP s with respect to SNP t is
defined as

−→I (s, t) =

∑
1≤i<j≤n

−→
δij(s, t)

|E(Gt)|

2.3 Directed Informativeness and the Conservative Extension to
Multi-loci Axiom

One problem with the LD measures r2 and D′ is that they are not adequate
for SNP subset selection/tagging SNPs and do not extend to multiple SNPs in
a canonical way. In contrast, we demonstrate how the directed informativeness
measure can be extended to multiple sites while satisfying the desired properties.

Let S = {s1, s2, . . . sk} and T = {t1, t2, . . . tl} be disjoint subsets of loci. For
each site si ∈ S and tj ∈ T , consider the associated directed graphs Gsi and Gtj .
Each of the graphs Gsi and Gtj are defined on vertex set {1, 2, . . . n}. Let GT

be the graph with vertex set {1, 2, . . . n} and with edge set E(Gt1) ∪ E(Gt2 ) ∪
. . . ∪ E(Gtl

). Note that GT is a graph (not a multigraph), and any edge (i, j)
appearing in two or more graphs Gtj (1 < i < l) appears only once in GT . Let
E(GT ) denote the edge set of graph GT . Then the directed informativeness of
SNP subset S with respect to SNP t is
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−→I (S, t) =

∑
e∈E(Gs)

−→
δ e(S, t)

|E(Gt)|

3 Directed Informativeness and the Interpretability of
Intermediary Values Axiom

We now relate the directed informativeness measure I with the widely used
linkage disequilibrium measure r2. This direct relationship provides insight into
the observation in [7] that “optimizing for either [informativeness or r2] optimizes
very well for the other. These results thus suggest that informativeness and
haplotype r2, although distinct measures, are closely related in practice.”

Note that while r2 is a symmetric measure with respect to the pair of sites
considered, the directed informativeness measure is not (i.e.,

−→I (s, t) = −→I (t, s)).
The following theorem shows that the two measures are related by a natural
product symmetrization.

Theorem 1. For any two SNPs s and t, linkage disequilibrium measure r2 be-
tween s and t is equal to

r2(s, t) =
−→I (s, t)

−→I (t, s).

Proof. Recall that r2(s, t) = (p00p11−p01p10)
2

p0+p+0p1+p+1
. For each i, j ∈ {0, 1}, let Cij =

pijn, where n is the size of the sample. We will show that

(1) C00C11 − C01C10 =
∑

1≤i<j≤n

−→
δij(s, t)

(2) C0+C1+C+0C+1 = |E(Gs)||E(Gt)|

To prove (1), observe that each haplotype occurrence of 00 and 11 in columns
i and j contribute +1 to both the left and right hand sides of the equation,
while each haplotype occurrence of 01 and 10 contribute −1 to both the left and
right hand sides of the equation. Furthermore, all remaining haplotype pairs
contribute 0 to both equations.

To prove (2), note that

C0+C1+ = |E(Gs)|
and

C+0C+1 = |E(Gt)|.
This proves the theorem. �	
Pritchard and Przeworski show the relationship between LD measure r2, Pearson
correlation coefficient χ2 and effective population size N [11]. As a corollary, the
directed informativeness between two SNPs can also be related to the χ2 Pearson
correlation coefficient and effective population size.
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Corollary 1. For any two SNPs s and t,

χ2(s, t) =
−→I (s, t)

−→I (t, s)
N

.

4 Formalizing LD-Select/Tagger

A SNP Threshold Graph (STG) is constructed as follows: Given a set S of n
SNPs (|S| = n), construct a set V of vertices where each vertex corresponds to
a single SNP in S (|V | = n). There exists an edge between two vertices u and
v if and only if there is linkage disequilibrium (LD) above a certain threshold τ
between the SNPs represented by u and v.

LD-Select [3] and Tagger (without multimarker tests) [4] are essentially greedy
heuristics which attempt to find the minimum dominating set for this graph. A
dominating set for a graph G = (V, E) is a subset V ′ ⊆ V such that every vertex
not in V ′ is connected to at least one member of V ′ by an edge. The minimum
dominating set problem is to find the smallest such set. In the context of SNP
selection, finding the smallest possible set V ′ means finding the smallest set of
tagging SNPs such that every SNP is either in the set or is in LD above τ with
at least one SNP in the set.

In general graphs, the dominating set problem is NP-complete. However, SNP
Threshold Graphs have certain properties which allow them to be solved opti-
mally in polynomial time.

4.1 LD Measure Assumptions

In order to construct the graph, we make the following assumptions about the
LD measure under consideration:

1. The measure is symmetric: ∀s, ∀t, LD(s, t) = LD(t, s). Pairwise measures
usually fulfill this criterion; e.g., r2.

2. Long-range LD (LD between SNPs hundreds of kilobases apart) is not mean-
ingful and can be ignored. This induces a “neighborhood” around each SNP,
with SNPs beyond the edges of the neighborhood ignored because they are
too far away. To simplify things, a fixed neighborhood size w is often cho-
sen [6].

4.2 SNP Selection Graph Properties

These assumptions yield a graph with the following properties:

1. The graph is undirected
2. There is a linear ordering on the vertices. Each vertex uniquely represents

one SNP, so the ordering on the SNPs gives an ordering on the vertices.
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3. Because we are not interested in long-range LD, there are restrictions on
which vertices may be connected by edges. This is more meaningful than
just a limit to the degree of nodes; based on the vertex ordering, we know
that if the neighborhood is centered on SNP i and w is odd, then vertex i
can only have edges to vertices i− (w − 1)/2 through i + (w − 1)/2.

This final property is key in finding the minimum dominating set efficiently. LD-
Select and Tagger perform well in practice because the greedy approximation
algorithm they use is known to find an O (log d)-approximation for graphs of
maximum degree d, and the degree is bounded by both the window size and the
actual extent of LD between SNPs.

The final property allows us to apply the dynamic programming (DP) algo-
rithm given by Halldorsson et al. [6] with a novel measure of informativeness to
compute the minimum dominating set. We call our method MIS-DS because it
utilizes the minimum informative subset (MIS) algorithm to solve the dominat-
ing set problem.

4.3 Minimum Dominating Set Algorithm

The DP algorithm of Halldorsson et al. requires an upper bound k on the number
of tagging SNPs in order to run (since it computes a dynamic programming
matrix, it must know the dimensions of the matrix in advance). An obvious
upper bound would be n, the total number of SNPs, but this is unnecessarily
high. Instead, we first run a greedy heuristic such as LD-Select [3] to establish
a tighter upper bound. We then use the size of the resulting set as the value of
the parameter k. We run the DP algorithm with the following informativeness
measure I:

Iτ (S′, t) =

{
1 ∃s ∈ S′ such that LD(s, t) ≥ τ

0 otherwise

where LD(s, t) computes r2 between SNPs s and t.

Iτ is a binary measure of whether SNP t is in LD above τ with at least one of
the SNPs in the set S′. The DP algorithm finds in time O(nk2w) the set S′ of
size k which maximizes ιk =

∑
t Iτ (S′, t), which in this case counts the number

of SNPs which are either in the set S′ or have LD above τ with a SNP in S′.
As long as k is equal to or greater than the size of the minimum dominating
set, this value will be n, the total number of SNPs. This allows us to find the
size of the minimum dominating set regardless of how well the greedy heuristic
performed.

The DP matrix contains implicitly the maximum informativeness ι′ possible
for all upper bounds 0 ≤ k′ ≤ k. Therefore, we can check whether k − 1 would
have gotten the same result ι, and if so, whether k − 2 would have done the
same, etc. Finding the maximum informativeness takes time O(2w) for each k′

(because we must examine the DP matrix for each assignment As, of which there
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are 2w), so in total time O(k2w) we can find the smallest k� such that ιk� = n.
Then backtracking in the DP matrix will yield the set S� such that |S�| = k�

and S� is a dominating set, i.e., the smallest possible set of tagging SNPs which
captures all of the SNPs with r2 ≥ τ .

The MIS-DS algorithm is a globally optimal solver for the dominating set
problem that works on arbitrarily large genome-wide data and runs in polyno-
mial time. It is not restricted to r2; it can be used with any pairwise measure of
LD that fulfills the criteria above, such as D′, Q, and so on.

4.4 Comparison of LD-Select/Tagger vs. Optimal

To test the performance of MIS-DS we used as out dataset the first 100 SNPs
with MAF ≥ 0.05 of chromosome 22 from the HapMap3 release 2 phasing data.
The following tables show the number of tagging SNPs required to capture all
of the SNPs above the r2 threshold:

r2 threshold 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
Tagger pairwise 64 55 49 45 39 34 27 18 13
MIS-DS w = 17 67 61 54 50 45 39 32 24 18
First 50 SNPs:

r2 threshold 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
Tagger pairwise 40 34 31 29 26 22 17 13 9
MIS-DS w = 17 40 35 31 30 27 24 19 14 10
First 40 SNPs:

r2 threshold 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
Tagger pairwise 33 28 26 25 23 20 16 14 9
MIS-DS w = 17 35 33 29 28 26 24 20 15 12

Considering that the MIS-DS algorithm is optimal within the window size,
we immediately assumed that Tagger’s smaller result set was due to a lack of
this constraint. Examining some of Tagger’s results confirmed this to be true: in
more than one case, a tagging SNP was capturing another SNP with 11 SNPs
in between. This would require a centered window size of 25 (12 to the left,
12 to the right, and the center position), which is not feasible with our current
implementation. In terms of physical distance, the SNPs are about 20 kb apart,
so the LD is certainly significant. Future research will involve expanding the
algorithm to handle larger window sizes.

4.5 Tagger “Best N”

It is well understood that by choosing tagging SNPs using an r2 threshold τ
the same power is approximately achieved by increasing the sample size by a
factor of 1/τ [11]. In this sense, the experimenter understands the trade-off be-
tween using a low threshold versus a high threshold—a low threshold means
fewer tagging SNPs to genotype but requires a larger sample size. However, this
is only true when every SNP of interest is in LD above the threshold with a
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tagging SNP. When using Tagger’s “best N” method (the “Max tags” feature
of Haploview), the experimenter is told exactly how many SNPs were captured
within the threshold, but nothing is known about the SNPs that were not cap-
tured. It is possible that some of them are in LD just below the threshold with
the chosen tagging SNPs. It is also possible that they are not in significant LD
with any of them; moreover, it is possible that if the experimenter had set the
threshold slightly lower, then the “best N” tagging SNPs would have been very
different. This is because lowering the threshold adds edges to the SNP Thresh-
old Graph, which can considerably increase the degrees of certain nodes, and
this changes the minimum dominating set—the set could be much smaller and
contain different vertices.

A better algorithm would not require a binary measure of whether LD be-
tween two SNPs is above a certain level or not—it would take into account the
fractional LD value as is. One possibility is using the MIS DP algorithm with
the informativeness measure:

Imax(S′, t) = max
s∈S′

LD(s, t)

Imax computes the maximum LD between SNP t and any SNP in set S′. Max-
imizing

∑
t Imax(S′, t) would then attempt to make sure every SNP is in some

level LD with tagging SNPs, rather than focusing entirely on LD above an arbi-
trary threshold.

5 Comparison of Directed Informativeness with
(Undirected) Informativeness

5.1 Prediction vs. Distinguishability

The measure of informativeness was defined in order to capture distinguisha-
bility between haplotypes. Given a sample of haplotypes, find the smallest set
of SNPs such that these SNPs are capable of distinguishing between the origi-
nal haplotypes—if two haplotypes were different when all the known SNPs were
genotyped, then these haplotypes will still be different when only considering the
tagging SNPs. For a single SNP s, its associated graph Gs can be used to infer
which allele each individual has because it is a complete bipartite graph—it is
clear which individuals possess one allele and which contain the other. However,
once the measure is extended to compute the informativeness of a set of SNPs
S′, the union of the edges E(S′) =

⋃
s∈S′ E(s) is no longer sufficient to infer the

alleles of the SNP t for which I(S′, t) is near 1, because the graph is no longer
bipartite.

Directed informativeness, on the other hand, captures the ability to impute
non-genotyped SNPs directly from the tagging SNPs. The directed edges of

−→
Gs

make clear exactly which haplotypes contain 0 and which contain 1. For a set of
SNPs S′, the directedness of the edges in E(S′) makes it possible to determine
for each vertex whether its allele is 0 or 1 simply by comparing its outdegree
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and indegree: if the outdegree is greater (or equal), then the allele is 0. This is
because each edge represents a SNP s ∈ S′ for which the allele was 0 at this
vertex and 1 at its endpoint. If the outdegree is greater, then there is more
evidence that the allele is 0 than 1. If the indegree and outdegree are equal, then
the predicted allele is still 0 since 0 is the major allele, by definition more likely
if no other information is known.

5.2 Non-monotonicity vs. Monotonicity

Because informativeness is calculated by counting edges in an undirected graph,
adding more tagging SNPs can never decrease informativeness. That is, I(S′, t) ≤
I(S′ ∪ {s}, t) for all s. This is not the case with directed informativeness. If the
edges contributed by an additional tagging SNP s have the opposite orientation
with respect to edges in t’s graph, then those edges will decrease the directed in-
formativeness, not increase it. This means that we cannot assume every tagging
SNP in the neighborhood of a non-genotyped SNP t should be used to predict
it, because if any of those tagging SNPs have a different allele pattern than t
then they could potentially decrease the directed informativeness and hinder im-
puting the SNP. Otherwise, even tagging every SNP would fail to produce total
directed informativeness because each SNP would interfere with its dissimilar
neighbors.

Ramifications to Minimum Informative Subset problem. Non-
monotonicity means that we must change the definition of the minimum informa-
tive subset problem [6] in order to make it relevant to directed informativeness.
We define it as:

−→I (S′, T ) =
∑
t∈T

max
S′

t⊆S′∩N(t)

−→I (S′
t, t)

Rather than using all the tagging SNPs in the neighborhood of t to predict t,
we use the subset of the tagging SNPs in the neighborhood which maximizes
directed informativeness. We modified the algorithm of Halldorsson et al. to use
this metric to compute the minimum directed informative subset.

6 Empirical Results

6.1 Haplotype Discrimination

One measure-agnostic method for testing the level of information captured by
a set of tagging SNPs is haplotype discrimination. Given a set of m unique
haplotypes, are the tagging SNPs sufficient to distinguish between all m, or do
they collapse into a smaller set? For this test we used as our dataset the 189
unique haplotypes generated by taking the first 40 SNPs with a minor allele
frequency of at least 0.05 of chromosome 22 of the CEU population in HapMap3
release 3. Since the Tagger algorithm involves some degree of randomness, for
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each test we ran Tagger 10 times and used the results of the run which yielded
the highest mean r2 as reported by Tagger.

Figure 1(a) shows what fraction of those haplotypes are still unique after
viewing only the tagging SNPs chosen by different algorithms.

We chose 33 to be the upper bound for the number of tagging SNPs because
this was the number of SNPs selected by Tagger when run without a limit with
the threshold r2 ≥ 0.9. Lower thresholds and aggressive tagging both require
fewer tags.

The measure I2 is defined by I2(S, t) =
−→I (S, t)

−→I (t, S). This is the measure
created by taking the pairwise identity with r2 and extending it to multiple loci.
Tagging SNPs for I2 are chosen by using the minimum directed informative
subset algorithm with I2 as the measure. We discuss I2 below.

(a) (b)

(c) (d)

Fig. 1. For all graphs the x-axis shows the number of tagging SNPs chosen. (a) A com-
parison of haplotype discrimination according to the tagging SNPs chosen by different
measures. (b) A comparison of the ability to impute non-genotyped alleles by looking
into a dataset where the alleles are known using the tagging SNPs chosen by different
measures. The Y axis shows the fraction of the alleles of the original dataset correctly
imputed. (c) A comparison of the ability to impute non-genotyped alleles using only
the tagging SNPs chosen by different measures. (d) Similar to (c) but restricted to
large numbers of tagging SNPs.
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6.2 Haplotype Imputation

Another measure of how representative tagging SNPs are is whether by looking at
only the tagging SNPs, can the untyped SNPs be inferred. There are two methods
for imputation: looking up the missing SNPs in a reference panel where these
SNPs are known, and computing the missing alleles using only the genotyped
SNPs themselves. We tested both types of imputation, using the 207 unique
haplotypes generated by taking the first 100 SNPs with a minor allele frequency
of at least 0.05 of chromosome 22 of the CEU population in HapMap3 release 3.

Using a Reference Panel. For the first type of imputation we tested each
measure in a method similar to Halldorsson et al. [6]: an untyped SNP of an
individual is inferred by looking at the typed SNPs in its neighborhood. If there
are haplotypes in the training set that had the same allele as the individual on
all the tagging SNPs, then a majority vote is taken to estimate which allele the
individual has. If the votes are split 50/50, or if there are no training haplotypes
which share every allele, then votes are taken from the haplotypes which differ
by at most one allele. If even these votes are split or if no training haplotypes
match, then the process continues by counting votes from haplotypes which differ
on up to two alleles (and so on).

Given the tagging SNPs assigned by each measure, we tested the percentage
of SNPs correctly imputed by this method. The results can be seen in figure 1(b).

(Undirected) informativeness is the best measure for imputation using a ref-
erence panel because of its ability to distinguish haplotypes. This property is
exactly what is needed in order to look up the correct haplotype to observe the
missing SNPs. The SNPs which are tagged maximizing informativeness are like
a key into the reference panel: they are sufficient to find the exact haplotype, if
present, because they distinguish between all of the different known haplotypes.

Tagging SNPs Only. To impute non-genotyped SNPs using only the tagging
SNPs, for I2 we used the method detailed above in Section 5.1. For tagging SNPs
chosen by Tagger, there are two cases. If a SNP t is captured by a single tagging
SNP s, then we assume for each individual that his allele for t is the same as
the allele genotyped for s. If t is captured by a haplotype, then we compare the
individual’s haplotype (i.e., the alleles of the test SNPs) to the test haplotype
given by Tagger. If they are equal, then the predicted SNP is said to have the
allele 1, otherwise 0. The results of this analysis can be seen in figure 1(c).

It is evident that no measure is best for all numbers of tagging SNPs. I2

does the best for few tagging SNPs, but aggressive tagging with Tagger with an
r2 threshold of 0.7 results in more accurate imputation for a large range (28-
42) of tagging SNPs. However, 39 SNPs is sufficient to capture all of the SNPs
according that threshold, so allowing for more SNPs beyond that point does not
result in any improvement—any increase or decrease beyond 39 SNPs is only
due to randomness in the Tagger algorithm. More tagging SNPs allow higher r2

thresholds to perform better, but each performs optimally only within a certain
range. A zoomed-in view of the performance with high numbers of tagging SNPs



Conservative Extensions of Linkage Disequilibrium Measures 481

can be seen in figure 1(d). I2 performs consistently, and near-optimally, across
all ranges.

Directed informativeness alone is not a suitable measure for tagging SNP
selection, due to an aspect of its asymmetric nature. If

−→I (S, t) is near 1.0, then
most of the edges of Gt are present in GS . However, it is possible that there
are edges present in GS which are not in Gt—this has no effect on directed
informativeness, because its definition involves counting only edges present in
Gt. Our algorithm for SNP imputation is negatively affected by these additional
edges, because it uses these edges to infer what the alleles of t would be if it were
genotyped. A measure which makes sure that E(GS) is similar to E(Gt), not only
a (near) superset, is I2. The additional factor of

−→I (t, S) ensures that E(GS)
does not contain too many additional edges. We find that I2 is an excellent
measure for tagging SNP selection.

However, in certain circumstances I2 does not perform as well as the aggres-
sive mode of Tagger. We believe that this is due to the fact that I2, like r2, can
only capture SNPs using tagging SNPs which are “similar” to them. Haplotype
markers are more powerful and enable the capture of SNPs which are not similar
to any one of the SNPs in the haplotype.

7 Computational Complexity of the Minimum Directed
Informative Set of SNPs/Tagging SNPs Problem

In this section, we establish the complexity of the Minimum Directed Informative
SNPs problem.

Lemma 1. The Minimum Directed Informative SNPs problem is NP-complete.

Proof. The proof follows the proof for the complexity of the Minimum (undi-
rected) Informative SNPs problem, with a reduction from the set cover problem.
Given a collection C of subsets of a finite set X , and positive integer k ≤ |C|,
the set cover problem asks if there exist C′ ⊆ C with |C′| ≤ k such that every
element of X belongs to at least one member of C′. We construct a SNP matrix
M with |X |+ 1 haplotypes and |C|+ 1 SNPs. For each subset Cj ∈ C, define a
SNP M [∗, j] such that

M [i, j] =

{
0 if i ≤ |X | and Xi ∈ Cj

1 otherwise

The SNP t = M [∗, |C|+1] is dened by the vector [0, 0, . . . , 0, 1] with exactly |X |
zeros and a single one. Then C′ ⊆ C covers X if and only if the corresponding
subset of SNPs S′ are informative with respect to t.

A polynomial time algorithm – that is practical for genome-wide data sets – for
Directed Informativeness is obtained by generalizing the algorithm used for the
Informativeness measure [6] (and available from the authors).
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Abstract. Protein loops often play important roles in biological func-
tions such as binding, recognition, catalytic activities and allosteric
regulation. Modeling loops that are biophysically sensible is crucial to de-
termining the functional specificity of a protein. A variety of algorithms
ranging from robotics-inspired inverse kinematics methods to fragment-
based homology modeling techniques have been developed to predict
protein loops. However, determining the 3D structures of loops using
global orientational restraints on internuclear vectors, such as those ob-
tained from residual dipolar coupling (RDC) data in solution Nuclear
Magnetic Resonance (NMR) spectroscopy, has not been well studied. In
this paper, we present a novel algorithm that determines the protein loop
conformations using a minimal amount of RDC data. Our algorithm ex-
ploits the interplay between the sphero-conics derived from RDCs and
the protein kinematics, and formulates the loop structure determination
problem as a system of low-degree polynomial equations that can be
solved exactly and in closed form. The roots of these polynomial equa-
tions, which encode the candidate conformations, are searched system-
atically, using efficient and provable pruning strategies that triage the
vast majority of conformations, to enumerate or prune all possible loop
conformations consistent with the data. Our algorithm guarantees com-
pleteness by ensuring that a possible loop conformation consistent with
the data is never missed. This data-driven algorithm provides a way to
assess the structural quality from experimental data with minimal mod-
eling assumptions. We applied our algorithm to compute the loops of
human ubiquitin, the FF Domain 2 of human transcription elongation
factor CA150 (FF2), the DNA damage inducible protein I (DinI) and the
third IgG-binding domain of Protein G (GB3) from experimental RDC
data. A comparison of our results versus those obtained by using tra-
ditional structure determination protocols on the same data shows that
our algorithm is able to achieve higher accuracy: a 3- to 6-fold improve-
ment in backbone RMSD. In addition, computational experiments on
synthetic RDC data for a set of protein loops of length 4, 8 and 12 used
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in previous studies show that, whenever sparse RDCs can be measured,
our algorithm can compute longer loops with high accuracy. These results
demonstrate that our algorithm can be successfully applied to compute
loops with high accuracy from a limited amount of NMR data. Our algo-
rithm will be useful to determine high-quality complete protein backbone
conformations, which will benefit the nuclear Overhauser effect (NOE)
assignment process in high-resolution protein structure determination.

1 Introduction

Protein loops are the segments of polypeptide chain that connect two secondary
structure elements (SSEs) such as α-helices or β-strands. In addition to serving
as linkers between SSEs, loops often play crucial roles in protein folding and
stability pathways, and in many other important biological functions such as
binding, recognition, catalytic activities and allosteric regulation [42,7,55,27].

While the global fold, i.e., the conformations and orientations of the SSEs of
a protein, can often be determined with high accuracy via traditional experi-
mental techniques such as X-ray crystallography or nuclear magnetic resonance
(NMR) spectroscopy, modeling loops that seamlessly close the gap between two
consecutive SSEs by satisfying the geometric, biophysical, and data constraints
remains a difficult and open problem. In X-ray crystallography, for instance, the
disorder in a protein crystal can render interpretation of the resulting electron
density for loops difficult. As a result, protein structures found in the Protein
Data Bank (PDB) [3] often have missing loops or disordered loops. The problem
of computing loops that are biophysically reasonable and geometrically valid
is called the loop closure problem. Since its introduction four decades ago in
the classic paper by Gō and Scheraga [26], the loop closure problem has been
an active area of research. In fact, modeling of loops can be regarded as an ab
initio protein folding problem at a smaller scale. It is also an important prob-
lem in de novo protein structure prediction. Therefore, solutions and algorithms
for accurate modeling of loops are highly desirable for understanding of the
physical-chemical principles that determine protein structure and function.

Exploring the conformation space of a protein loop to identify low energy
loop conformations is a difficult computational problem. Methods to identify
such loops include database search and homology modeling [64,60,20], ab initio
methods based on the minimization of empirical molecular mechanics energy
functions [22,54,30], and robotics-inspired inverse kinematics and optimization-
based methods [16,40,69,17,8,31]. These techniques work in two phases: first, the
protein conformation space is explored to find a set of candidate loop constructs,
which are then evaluated in the second phase using an appropriate empirical
energy function to select the most promising set of loops.

Database methods [64,60,20] identify a set of candidate loops from a library of
fragments derived from a protein structure database such as the PDB [3] that fit
the anchor residues on either end of a loop. These loops are further ranked using
criteria such as the sequence homology and conformational energy. Since these
methods heavily rely on the statistical diversity of the structure database, the
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accuracy of loop predictions depends on how well the loop is represented in the
database. However, in general, database methods suffer from limited sampling
of the loop conformations by the fragments in the database.

Ab initio loop modeling methods sample the conformation space randomly or
use robotics-based sampling algorithms to generate a large number of loop con-
formations. Loop closure and energy minimization are done by using methods
such as random tweak [54,21], analytical loop closure techniques [17,69], molec-
ular dynamics simulation [5], Markov Chain Monte Carlo (MCMC) simulated
annealing [13,22], and other optimization techniques [30]. The accuracy of loop
prediction here depends on the efficacy of the conformational space exploration
techniques used, and on the quality and proper parameterization (e.g., implicit
or explicit solvent effects) of the force field employed to evaluate the conforma-
tional energy. These algorithms are computationally expensive due to a large
number of random moves accompanied by repeated energy computations.

The protein loop closure problem is an inverse kinematics (IK) problem in
computational biology, i.e., given the poses of terminal anchor residues, it asks
to find all possible values of the degrees of freedom (DOFs) (i.e., the dihedrals φ
and ψ) for which the fragment connects both the anchor residues. This problem
has been studied widely in robotics and biology [16,40,69,17,8,31]. Tri-peptide
loop closure, for which the number of DOFs is six and exactly six geometric
constraints are stipulated due to the closure criterion, can be solved analyti-
cally [69,17,39,11] using exact IK solvers to give at most 16 possible solutions. For
longer loops, the loop closure problem is underconstrained, so a continuous fam-
ily of solutions are possible without additional constraints. Optimization-based
IK solvers such as random tweak [54,21], and the cyclic coordinate descent (CCD)
algorithm [8] have been successful in dealing with a large number of DOFs, and
have found many applications [52,29,65]. These methods iteratively solve for the
DOFs until the loop closure constraints are satisfied. However, the problem of
loop closure subject to orientational restraints (e.g., from NMR data) has not
been studied rigorously in the robotics or computational biology literature, and
no practical deterministic algorithm exists to our knowledge.

Protein structure determination using nuclear Overhauser effect (NOE) dis-
tance restraints is NP-hard [50]. Traditional protein structure determination
from solution NMR data starts with an elongated polypeptide backbone chain,
and uses NOEs and dihedral angle restraints in a simulated annealing/simplified
molecular dynamics (SA/MD) protocol [12,28,41,32,51] to compute the protein
structure. Residual dipolar coupling (RDC) restraints are only incorporated in
the final stages of the structure computation to refine the structures [6,51]. NOE-
based structure determination protocols are known to be prone to local minima
or lead to wrong convergence. To overcome the shortcomings of NOE-based
methods, approaches in [18,46,4,56,25,1] have been proposed that primarily use
RDC data, which provides precise global orientational restraints on internuclear
vector orientations, to determine protein backbone structure. However, most of
these approaches employ stochastic search, and therefore lack any algorithmic
guarantee on the quality of the solution or running time. In recent work from
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our lab [66,68,19,71], polynomial-time algorithms have been proposed for high-
resolution backbone global fold determination from a minimal amount of RDC
data. These algorithms represent the RDC equations and protein kinematics in
algebraic form, and use exact methods in a divide-and-conquer framework to
compute the global fold. In addition, these algorithms use a sparse set of RDC
measurements (e.g., only two RDCs per residue), with the goal of minimizing
the number of NMR experiments, hence the time and cost to perform them.

A high-resolution protein backbone is often a starting point for structure-
based protein design [23,10,24,35]. An accurate backbone structure facilitates
the assignment of NOESY spectra (i.e., NOE assignment), which is a prerequi-
site for high-resolution structure determination protocols, including side-chains.
For example, the algorithms in [66,68,19,71] have been used in [67,73,72] to de-
velop new algorithms for NOE assignment, based on which in [72] we recently
developed a new framework for high-resolution protein structure determination,
which was used prospectively to solve the solution structure of the FF Domain
2 of human transcription elongation factor CA150 (FF2) (PDB id: 2kiq). The
global folds obtained by [66,68,19,71] have all the loops missing which requires a
new algorithm that can compute the missing loops from RDCs. To alleviate this
problem, a heuristic local minimization approach [51] for loops was used in [72].

In this paper, we give a solution to the loop closure problem. We present
an efficient deterministic algorithm, pool, that computes the missing loops
from RDC data. Our algorithm exploits the interplay between protein backbone
kinematics and the global orientational restraints derived from RDC data to
naturally discretize the conformation space by polynomial-root solutions, and
represents the candidate conformations using a tree. A systematic depth-first
search of the conformation tree is used to enumerate all possible loop conforma-
tions that are consistent with the data. pool uses efficient pruning strategies
(Section 2.6) capable of pruning the majority of the conformations that are prov-
ably not part of a valid loop, thereby achieving a huge reduction in the search
space. Unlike other algorithms, e.g. [4], that attempt to compute backbone struc-
ture using as many as 15 RDCs per residue recorded in two alignment media, our
algorithm uses as few as 2 RDCs per residue in one alignment medium, which
is often experimentally feasible. As we will show in Section 3.2, when given the
same data, our algorithm performs better than traditional SA/MD-based ap-
proaches, e.g., [51]. Additional RDCs, and other data that provide constraints
in torsion-angle space (e.g., talos [14,53] dihedral restraints) or in Euclidean
space (e.g., sparse NOEs), whenever available, can directly be incorporated into
our algorithm. In summary, we make the following contributions in this paper:

1. Derivation of quartic equations for backbone dihedrals φ and ψ from experi-
mentally-recorded RDC sphero-conics and backbone kinematics, that can be
solved exactly and in closed form;

2. Systematic search of the roots of the polynomial equations that encode the
conformations, using efficient pruning methods to prune the vast majority
of conformations;
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3. Design and implementation of an efficient algorithm to determine the loop
conformations from a limited amount of experimental RDC data;

4. Promising results from the application of our algorithm both on experimental
NMR data sets for four proteins, and on simulated data sets for protein loops
studied previously in [36,17,8].

2 Theory and Methods

2.1 Overview
pool solves the following loop closure problem. Let the residues of the protein
be numbered from 1 to n (from N- to C-terminus). Suppose the global fold of
the protein has been determined from RDCs in a principal order frame (POF)
of RDCs, as we showed was feasible in [66,68,19,72,71]. In principle, the global
fold of proteins could also be computed using protein structure prediction [2], or
homology modeling [33,34]; alternatively, X-ray structures (with missing loops)
can be used. Given two consecutive SSEs with n1 and n2 being the last residue of
the first SSE and first residue of the second SSE, respectively, the missing loop
[n1, n2] is defined as the fragment between residues n1 and n2 with both end
residues included. The residues n1 and n2 that are part of the SSEs will be called
the stationary anchors, and those of a candidate loop will be called the mobile
anchors. We assume that the n1 mobile anchor of the loop is attached to the n1

stationary anchor of the first SSE. Then the loop closure problem is stated as fol-
lows: in the POF, given the poses of the stationary anchors n1 and n2 (points in
R3 × SO(3)), compute a complete set of conformations of fragments [n1, n2] so
that n2 mobile anchor of each fragment in the set assumes the pose of the sta-
tionary anchor n2, while satisfying the RDC data and standard protein geometry.

Our algorithm builds upon the initial work from our lab [19,68,72,71], where
the authors developed polynomial time algorithms to compute high-resolution
backbone global fold de novo from N-HN and Cα-Hα RDCs in one alignment
medium. These sparse-data algorithms have been extended to incorporate combi-
nations of different types of RDCs (see Table 1) in one or two alignment media.
The new generalized framework is called rdc-analytic [72,71]. pool imple-
ments a novel algorithm to determine protein loop backbone structures from a
minimal amount of RDC data, and is a crucial addition to the rdc-analytic
suite, which did not compute loops before.

Table 1 describes the RDC types that pool uses to compute the backbone
dihedrals exactly and in closed form (Section 2.3). A φ-defining RDC is used to
compute the backbone dihedral φ, and a ψ-defining RDC is used to compute the
backbone dihedral ψ. The input data to pool include: (1) the global fold of the

Table 1. A φ-defining RDC is used to compute the backbone dihedral φ, and a ψ-
defining RDC is used to compute the backbone dihedral ψ exactly and in closed form

φ-defining RDC Cα-Hα, Cα-C′, Cα-Cβ

ψ-defining RDC N-HN, C′-N, C′-HN
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Fig. 1. (a) An example conformation tree. (b) The internuclear vectors (shown using
arrows) for which RDCs are possible to measure. The magenta and red arrows represent
φ-defining and ψ-defining RDCs, respectively. (c) The pringle-shaped RDC sphero-
conic curves inscribed on a unit sphere constrain the internuclear vector v (green
arrow) to lie on one of them. The kinematic circle (shown in blue almost edge-on) of
v intersects the sphero-conic curves in at most four points (green dots) leading to a
maximum of four possible orientations for the internuclear vector v.

protein computed by [68,19,72]; (2) the alignment tensor, which generally can
be computed from the global fold using [37,66]; (3) at least one φ-defining and
one ψ-defining RDCs per residue, and optionally other data, e.g., talos [14,53]
dihedral restraints and sparse NOEs; and (4) the primary sequence of the protein.

Solving a system of equations from RDCs, protein kinematics and loop closure
constraints simultaneously is a difficult computational problem since it leads to
solving a high-degree polynomial system. However, since RDCs are very precise
measurements, an algorithm which is able to compute protein fragments by
inductively solving low-degree polynomial equations derived from RDCs and
backbone kinematics, and drives the computation to satisfy the loop closure
criterion, will achieve the desired objective. Our algorithm pool is based on this
key insight. Starting from a stationary anchor, it solves each DOF sequentially
using the equations derived in Sections 2.3 and 2.4. The discrete values of the
DOFs computed from the polynomial roots, are represented by a conformation
tree grown recursively as we solve for the DOFs progressively. An internal (i.e.,
non-leaf) node in the tree represents the conformation of a part of a candidate
loop, and a leaf node represents a candidate loop conformation computed from
RDCs. Figure 1 (a) illustrates a conformation tree for a loop. As each node is
visited in a depth-first traversal of the tree, if the conformation represented
by that node fails the conformation filters (Section 2.6), it is called a dead-
end node, and the sub-tree rooted at that node is pruned. Dead-end nodes
identified at lower levels (i.e., closer to the root) of the conformation tree prune
more conformations than those identified at higher levels. Finally, all remaining
unpruned conformations (leaf nodes) already close to the stationary anchor (since
they satisfy the reachability criterion; see Section 2.6), are evaluated for loop
closure. At this stage minimization techniques can be applied to improve the
closure. Conformations satisfying the closure criterion are added to the final
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ensemble of loops. pool enumerates all loop conformations that satisfy the RDC
data and pass the conformation filters; therefore, it guarantees completeness.

2.2 RDC Sphero-Conics

The residual dipolar coupling r between two spin- 1
2 nuclei a and b is given by

r = DmaxvT Sv, (1)

where v is the unit internuclear vector between a and b, Dmax is the dipo-
lar interaction constant, S is the Saupe order matrix [49], or alignment tensor,
that specifies the ensemble-averaged anisotropic orientation of the protein in the
laboratory frame. S is a 3 × 3 symmetric, traceless, rank 2 tensor with five
independent elements [57,58,43,19]. The constant Dmax is given by

Dmax =
μ0�γaγb

4π2

〈
r−3
ab

〉
, (2)

where μ0 is the magnetic permeability of vacuum, � is Planck’s constant, γa and
γb are the gyromagnetic ratios of the nuclei a and b, respectively, and

〈
r−3
ab

〉
rep-

resents the vibrational ensemble-averaged inverse cube of the distance between
the two nuclei. Letting Dmax = 1 (i.e., scaling the RDCs appropriately), and
considering a global coordinate frame that diagonalizes the alignment tensor S,
often called the principal order frame (POF), Eq. (1) can be written as

r = Sxxx2 + Syyy
2 + Szzz

2, (3)

where Sxx, Syy and Szz are the three diagonal elements of a diagonalized align-
ment tensor S, and x, y and z are, respectively, the x, y and z components of the
unit vector v in a POF that diagonalizes S. Since v is a unit vector, i.e.,

x2 + y2 + z2 = 1, (4)

an RDC constrains the corresponding internuclear vector v to lie on the intersec-
tion of a concentric unit sphere (Eq. (4)) and a quadric (Eq. (3)) [44]. This gives a
pair of closed curves inscribed on the unit sphere that are diametrically opposite
to each other (see Figure 1 (b), (c)). These curves are known as sphero-conics or
sphero-quartics [9,47].

Using Eq. (4) in Eq. (3), we can rewrite Eq. (3) in the following form:

ax2 + by2 = c, (5)

where a = Sxx − Szz , b = Syy − Szz, and c = r − Szz. Henceforth, we refer to
Eq. (5) as the reduced RDC equation. For background on RDCs and RDC-based
structure determination, the reader is referred to [57,58,43,19].
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2.3 Analytic Solutions for Peptide Plane Orientations from
φ-Defining and ψ-Defining RDCs in One Alignment Medium

The derivation below assumes standard protein geometry, which is exploited
in the kinematics [66]. We choose to work in an orthogonal coordinate system
defined at the peptide plane Pi with z-axis along the bond vector N(i) → HN(i),
where the notation a → b means a vector from the nucleus a to the nucleus b. The
y-axis is on the peptide plane i and the angle between y-axis and the bond vector
N(i) → Cα(i) is fixed. The x-axis is defined based on the right-handedness. Let
Ri,POF denote the orientation (rotation matrix) of Pi with respect to the POF.
Then R1,POF denotes the relative rotation matrix between the coordinate system
defined at the first residue of the current SSE and the principal order frame.
Ri,POF is used to derive Ri+1,POF inductively after we compute the dihedral angles
φi and ψi. Ri+1,POF, in turn, is used to compute the (i + 1)st peptide plane.

Proposition 1. Given the diagonalized alignment tensor components Sxx and
Syy, the peptide plane Pi, and a φ-defining RDC r for the corresponding internu-
clear vector of residue i, there exist at most 4 possible values of the dihedral angle
φi that satisfy the RDC r. The possible values of φi can be computed exactly and
in closed form by solving a quartic equation.

Proof. Let the unit vector v0 = (0, 0, 1)T represent the N-HN bond vector of
residue i in the local coordinate frame defined on the peptide plane Pi. Let
v1 = (x, y, z)T denote the internuclear vector for the φ-defining RDC for residue
i in the principal order frame. We can write the forward kinematics relation
between v0 and v1 as follows:

v1 = Ri,POF Rl Rz(φi) Rr v0 . (6)

Here Rl and Rr are constant rotation matrices that describe the kinematic
relationship between v0 and v1 . Rz(φi) is the rotation about the z-axis by φi.

Let c and s denote cosφi and sinφi, respectively. Using this while expanding
Eq. (6) we have

x = A0 + A1c + A2s, y = B0 + B1c + B2s, z = C0 + C1c + C2s, (7)

in which Ai, Bi, Ci for 0 ≤ i ≤ 2 are constants. Using Eq. (7) in the reduced
RDC equation Eq. (5) and simplifying we obtain

K0 + K1c + K2s + K3cs + K4c
2 + K5s

2 = 0, (8)

in which Ki, 0 ≤ i ≤ 5 are constants. Using half-angle substitutions

u = tan(
φi

2
), c =

1 − u2

1 + u2
, and s =

2u

1 + u2
(9)

in Eq. (8) we have

L0 + L1u + L2u
2 + L3u

3 + L4u
4 = 0, (10)
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in which Li, 0 ≤ i ≤ 4 are constants.
Eq. (10) is a quartic equation which can be solved exactly and in closed form.

Let {u1, u2, u3, u4} denote the set of (at most) four real solutions of Eq. (10).
For each ui, the corresponding φi value can be computed using Eq. (9). �	

Proposition 2. Given the diagonalized alignment tensor components Sxx and
Syy, the peptide plane Pi, the dihedral φi, and a ψ-defining RDC r for the corre-
sponding internuclear vector on peptide plane Pi+1, there exist at most 4 possible
values of the dihedral angle ψi that satisfy the RDC r. The possible values of ψi

can be computed exactly and in closed form by solving a quartic equation.

Proof. The proof is provided in the supporting information (SI) Appendix A
available online [61]. �	

Proposition 3. Given the diagonalized alignment tensor components Sxx and
Syy, the peptide plane Pi, a φ-defining RDC and a ψ-defining RDC for φi and
ψi, respectively, there exist at most 16 orientations of the peptide plane Pi+1

with respect to Pi that satisfy the RDCs.

Proof. This follows directly from Proposition 1 and Proposition 2. �	

2.4 Analytic Solutions for the φ Angle of Glycine from Cα-Hα RDC

The amino acid residue glycine (Gly) has two Hα atoms which we denote by
Hα2 and Hα3 , respectively. The Cα-Hα RDC measured for Gly is the sum of the
RDCs for these two bond vectors. We show that given the Cα-Hα RDC for a
Gly residue we can compute all possible solutions for the dihedral φ.

Proposition 4. Given the diagonalized alignment tensor components Sxx and
Syy, the peptide plane Pi, and the Cα-Hα RDC r for residue i which is a glycine,
there exist at most 4 possible values of the dihedral angle φi that satisfy the Cα-Hα

RDC r. The possible values of φi can be computed exactly and in closed form by
solving a quartic equation.

Proof. The proof is provided in the SI Appendix B available online [61]. �	

2.5 Sampling the DOFs When RDCs Are Missing

Theoretically, for a loop with n (> 6) DOFs, n− 6 DOFs are redundant. There-
fore, n− 6 equality constraints are necessary to solve for the loop conformations
so that the number of conformations is discrete. We systematically sample (at 5◦

resolution) the dihedrals from the Ramachandran map (and talos dihedral re-
straints if available) for the DOFs for which RDCs are missing, and use analytic
equations to solve for the other dihedrals for which RDCs are available, to com-
pute an ensemble of loops complete to the resolution of sampling. If RDCs can
be recorded for the missing ones in a second alignment medium, pool can use
them (see the online SI Appendix C [61]). Table 2 shows that when as many
as 5 RDCs are missing in a loop, pool still could compute the loops accurately.
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2.6 Pruning with Conformation Filters

Loop conformations are generated by traversing a conformation tree in a depth-
first search order (Section 2.1). At each node, conformation filters are applied as
predicates. If the node passes all the filters, then the subtree rooted at that node
is visited; otherwise, the subtree is pruned. Failing a predicate at lower levels
(closer to the root) of the conformation tree prunes more conformations than
that detected at higher levels (farther from the root). In fact, pruning at depth i
eliminates O(bn−i) conformations, where b is the average number of branches in
the conformation tree, and n is the height of the conformation tree. For loops
with constrained work-space, substantial pruning can be achieved resulting in
significant speedup. pool uses the following conformation filters.

Real Solution Filter. While solving the equations derived in Sections 2.3
and 2.4 to compute the dihedrals, all non-real roots with the imaginary parts
greater than a chosen threshold are discarded [72]. Also, multiplicities of the roots
are eliminated, thereby pruning the subtrees rooted at the eliminated-roots.

Ramachandran and talos Filters. There exist regions in the Ramachandran
map (Rama-map) that are forbidden for any biophysically relevant (φ, ψ) values
for a given residue type. Therefore, any disallowed value for a dihedral suggested
by the Rama-map, whenever it appears in the conformation tree, is pruned. We
used the data from [38], and implemented a residue-specific Ramachandran filter.
Our implementation considers four residue types: Gly, Pro, pre-Pro, and other
general amino acid types (called general). It has been specifically optimized for
O(1)-time queries for the favored or allowed intervals for φ, and ψ given φ. If MT
is the Rama-map for residue type T , and IT is the set of all allowed φ-intervals
for T , we evaluate if φ ∈ IT for a computed φ. Similarly, when a ψ is computed,
we evaluate if ψ ∈ IT |φ. talos [14,53] dihedral information, whenever available,
are used as follows. If for the dihedral φi of the residue i of type T , IL is the
talos-predicted interval, then for a computed φ for the residue i, we evaluate
if φ ∈ IT ∩ IL . Similarly, for a computed ψ, the predicate ψ ∈ IT |φ ∩ IL is
evaluated. The subtree rooted at the node representing the dihedral is pruned if
any of these predicates fail. Further, in the absence of RDC data for a dihedral,
finite-resolution uniform sampling of the Rama-map is used for that dihedral.

Steric Filter. We use our in-house implementation of the steric checker similar
to that in [70]. During the depth-first search of the conformation tree, at each
node corresponding to a newly added residue, the steric check is performed for
(i) self-collision, i.e., if the fragment clashes with itself, and (ii) collision with the
rest of the protein. If the clash score [70] is greater than a user-defined threshold,
then the branch is pruned and the search backtracks.

Reachability Criterion. As each node of the conformation tree is visited, we
test if the rest of the fragment, if grown using the best possible kinematic chain,
can ever reach the stationary anchor. The node is pruned if this test fails. For
long loops, this test prunes a large fraction of conformations, especially at the
tree nodes at higher level (farther from the root).
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Closure Criterion. When the distance between the mobile anchor (i.e., the
conformation at a leaf node), and the stationary anchor is less than a user-
specified threshold (chosen to be 0.2 Å), called the closure distance, and defined
as the root-mean-square distance between the N, Cα and C′ atoms of the mo-
bile anchor and stationary anchor, the conformation is accepted and added to
the ensemble of computed loops. Otherwise, the conformation is subject to a
gradient-descent minimization over the last few dihedrals to improve the closure
distance to below 0.2 Å while maintaining the user-defined RDC RMSD thresh-
olds. If after minimization the closure is achieved, the conformation is accepted;
otherwise, rejected. The RDC RMSD between back-computed and experimental
RDCs is computed using the equation RMSDx =

√
1
n

∑n
i=1(r

b
x,i − re

x,i)2, where
x is either a φ-defining or a ψ-defining RDC type, n is the number of RDCs, re

x,i

is the experimental RDC, and rb
x,i is the corresponding back-computed RDC.

Pruning using Unambiguous NOEs. When unambiguous backbone NOEs
are available, they can be used as predicates to prune unsatisfying conformations.

3 Results and Discussion

To study the effectiveness of our algorithm, we applied it on experimental NMR
data sets for four proteins. Further, to study the robustness of our algorithm to

Table 2. (a) The anchor residues are always included. (b) number of residues. (c) ex-
perimental RDCs used. The Cα-Hα, Cα-C′ and N-HN RDC RMSDs of loops computed
by pool are less than 2.0, 0.2 and 1.0 Hz, respectively. (d) Missing means unavailable.
(e) Backbone RMSD computed vs. the NMR reference loops. The results show that the
loops computed by pool are more accurate than those computed by xplor-nih [51].

Protein Loopa Lengthb Types of RDCsc RDCs missingd RMSDe (Å) RMSDe (Å)
(pool) (xplor-nih)

Ubiquitin 7-12 6 Cα-Hα, N-HN 2 0.64 1.40

Ubiquitin 17-23 7 Cα-Hα, N-HN 2 0.60 2.25

Ubiquitin 33-41 9 Cα-Hα, N-HN 2 0.89 2.07

Ubiquitin 45-48 4 Cα-Hα, N-HN 0 0.27 1.58

Ubiquitin 50-65 16 Cα-Hα, N-HN 2 0.66 3.94

Ubiquitin 7-12 6 Cα-C′, N-HN 3 0.37 0.67

Ubiquitin 17-23 7 Cα-C′, N-HN 3 0.60 3.54

Ubiquitin 33-41 9 Cα-C′, N-HN 5 0.58 3.11

Ubiquitin 45-48 4 Cα-C′, N-HN 0 0.11 1.02

Ubiquitin 50-65 16 Cα-C′, N-HN 4 1.06 4.48

FF2 18-27 10 Cα-Hα, N-HN 3 1.41 3.20

FF2 33-38 6 Cα-Hα, N-HN 3 0.34 1.09

FF2 42-48 7 Cα-Hα, N-HN 4 1.31 2.14

DinI 8-17 10 Cα-Hα, N-HN 5 1.57 4.17

DinI 32-39 8 Cα-Hα, N-HN 3 0.61 3.45

DinI 45-49 5 Cα-Hα, N-HN 2 0.28 2.27

DinI 53-58 6 Cα-Hα, N-HN 2 0.42 2.62

GB3 8-13 6 Cα-Hα, N-HN 0 0.43 1.07

GB3 19-23 5 Cα-Hα, N-HN 0 0.34 0.23

GB3 36-42 7 Cα-Hα, N-HN 1 0.27 1.34

GB3 46-51 6 Cα-Hα, N-HN 0 0.65 3.61
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Fig. 2. Overlay of the loops (green) of ubiquitin computed by pool using Cα-Hα and
N-HN RDCs vs. the corresponding loops (red) in the NMR reference structure (1d3z
model 1) without any structural alignment

the variations in standard peptide geometry, we tested it on synthetic datasets for
three sets of canonical loops of length 4, 8 and 12 residues that were investigated
by three other protein loop closure algorithms [8,17,36].

3.1 Tests on Experimental NMR Data

We applied pool to compute the loops of four proteins: FF2 (PDB id: 2kiq) [72],
human ubiquitin (PDB id: 1d3z) [15], the DNA damage inducible protein I (DinI)
(PDB id: 1ghh) [45], and the third IgG-binding domain of Protein G (GB3) (PDB
id: 2oed) [62]. The RDC data for FF2 was recorded using Varian 600 and 800
MHz spectrometers at Duke University. Details of the NMR experimental pro-
cedures are provided in the SI Appendix D available online [61]. For ubiquitin,
DinI and GB3, NMR data were obtained from BioMagResBank (BMRB) [63].
For each of these proteins, we used the NMR model 1 with loops removed as the
respective test structures. RDCs were perturbed within the experimental-error
window [66] to account for experimental errors.

Table 2 summarizes the results computed by pool. For ubiquitin we used
two different combinations of RDCs, viz. (Cα-Hα, N-HN) and (Cα-C′, N-HN) to
test the performance of our algorithm on different types of RDC data. In most
cases, sub-angstrom RMSD loops were computed by pool. Figure 2 shows the
overlay of the loops computed for ubiquitin using Cα-Hα and N-HN RDCs with
the corresponding loops from the NMR reference structure. For FF2, DinI and
GB3, the results show that pool is able to compute accurate loops when as
many as 5 RDCs are missing.

The run-time analysis of pool is similar to that in [68]. In practice, for short
loops, pool runs in minutes, and for longer loops (e.g., ubiquitin 50-65) it runs
in hours on a 2.5 GHz dual-core processor Linux workstation.

3.2 Comparison vs. Traditional Structure Determination Protocols

To investigate whether traditional SA/MD-based structure determination proto-
cols can compute accurate loop conformations using sparse data, we ran xplor-
nih [51] on the same input used by pool for ubiquitin, FF2, DinI and GB3.
Table 2 summarizes the results. In Figure 3, a comparison is made between the
results obtained by applying pool versus those obtained by applying xplor-nih.
The loops computed by pool have much smaller (3- to 6-fold less for longer
loops) backbone RMSD vs. the reference structures than those computed using
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Fig. 3. pool-computed loops achieve up to 6–
fold improvement in backbone RMSD compared
to xplor-nih-computed loops

Fig. 4. Overlay of the lowest
RMSD loop (green) computed
by pool for 4, 8 and 12-residue
loops vs. the X-ray structures of
the reference loops (red) without
any structural alignment

Table 3. The minimum RMSD (Å) from X-ray structures for these four algorithms.
The loops computed by pool using only one φ-defining and one ψ-defining RDC per
residue simulated using an alignment tensor estimated using PALES [76,75]. sos, csjd
and ccd results were obtained from Table 1, Table 1 and Table 2 of [36], [17] and [8],
respectively. These three methods do not use any experimental NMR data.

4-residue loops 8-residue loops 12-residue loops

Loop pool sos csjd ccd Loop pool sos csjd ccd Loop pool sos csjd ccd
1dvjA 20 0.74 0.23 0.38 0.61 1cruA 85 0.72 1.48 0.99 1.75 1cruA 358 1.54 2.39 2.00 2.54
1dysA 47 0.25 0.16 0.37 0.68 1ctqA 144 0.91 1.37 0.96 1.34 1ctqA 26 0.65 2.54 1.86 2.49
1eguA 404 0.42 0.16 0.36 0.68 1d8wA 334 0.28 1.18 0.37 1.51 1d4oA 88 1.83 2.44 1.60 2.33
1ej0A 74 0.18 0.16 0.21 0.34 1ds1A 20 0.70 0.93 1.30 1.58 1d8wA 46 0.93 2.17 2.94 4.83
1i0hA 123 0.27 0.22 0.26 0.62 1gk8A 122 0.87 0.96 1.29 1.68 1ds1A 282 1.50 2.33 3.10 3.04
1id0A 405 0.63 0.33 0.72 0.67 1i0hA 122 0.45 1.37 0.36 1.35 1dysA 291 0.76 2.08 3.04 2.48
1qnrA 195 0.47 0.32 0.39 0.49 1ixh 106 0.68 1.21 2.36 1.61 1eguA 508 1.25 2.36 2.82 2.14
1qopA 44 0.36 0.13 0.61 0.63 1lam 420 0.42 0.90 0.83 1.60 1f74A 11 0.76 2.23 1.53 2.72
1tca 95 0.12 0.15 0.28 0.39 1qopB 14 0.87 1.24 0.69 1.85 1qlwA 31 1.27 1.73 2.32 3.38
1thfD 121 0.25 0.11 0.36 0.50 3chbD 51 0.96 1.23 0.96 1.66 1qopA 178 0.87 2.21 2.18 4.57
Average 0.37 0.20 0.40 0.56 Average 0.69 1.19 1.01 1.59 Average 1.14 2.25 2.34 3.05

xplor-nih. For example, for ubiquitin loop 50-65, the loop computed by pool
has backbone RMSD 0.66 Å, a 6-fold decrease vs. the loop computed by xplor-
nih (3.94 Å). This shows that when given sparse data, our algorithm is able to
compute more accurate loop conformations than the SA/MD-based protocols.

3.3 Comparison with Loop Prediction Algorithms

We compared the performance of pool with three other loop prediction algo-
rithms including the ccd method by Canutescu and Dunbrack [8], the csjd
algorithm by Coutsias et al. [17], and the self-organizing superimposition (sos)
algorithm by Liu et al. [36]. Unlike these algorithms, which do not use any data,
pool is a sparse data-driven algorithm. While ccd, csjd and sos algorithms
have applications in protein structure prediction, none of them is specifically
designed to incorporate geometric restraints from experimental NMR data. Our
algorithm pool provides an approach to fill this gap by being able to compute
loops using sparse NMR data, specifically, RDCs.

In our study, we used the same test set as in [36,17,8]. This set consists of 10
loops each with 4, 8 and 12 residues long chosen from a set of nonredundant X-ray
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crystallographic structures from the PDB. Since there is no experimental RDC
data available for these proteins, we simulated the RDCs using pales [76,75].
Details of the RDC simulation are described in the SI Appendix E available
online [61]. The alignment tensor, the RDC data, and the two anchor peptide
planes of the loop were used by pool to compute the loop conformations.

Table 3 summarizes the results for pool, ccd, csjd and sos algorithms. In
Figure 4, examples of minimum RMSD loop conformations determined by pool
are shown. For 4-residue loops the average minimum RMSD of the computed
loops by pool is larger than that for sos, but smaller than that for csjd and ccd.
This can be explained by the fact that sos allows slight deviations from standard
protein geometry. For 8 and 12-residue loops pool computes more accurate loops
than other algorithms. For example, for 12-residue loops, the average minimum
RMSD of the loops are 1.14, 2.25, 2.34 and 3.05 Å for pool, sos, csjd and
ccd, respectively, which shows a 2-fold improvement in accuracy by pool. For
five of these loops, pool computed loops with sub-angstrom accuracy. Further,
the reference loops in Table 3 have deviations from standard protein geometry;
therefore, the RDCs simulated on them inherits these deviations, in addition
to a Gaussian noise of 1 Hz added to account for experimental errors. These
results suggest that pool is robust to both experimental uncertainties in RDCs,
and minor deviations from standard protein geometry assumptions. Therefore,
pool can be useful to compute longer loops with high accuracy using a minimal
amount of RDC data.

4 Conclusions

While the global fold of a protein can often be determined from experimental
NMR data [25,66,68,72,71], determining loop conformations from sparse exper-
imental RDCs is a difficult problem. We described a novel, efficient, and practi-
cal deterministic algorithm, pool, that determines accurate loop conformations
from sparse RDC data. Empirical comparison with traditional structure deter-
mination protocols [51] demonstrates that pool is able to achieve up to 6-fold
improvement over the latter methods under sparse-data settings.

Since an accurate and complete protein backbone is a prerequisite for NOE-
assignment algorithms [28,72] and side-chain resonance assignment methods [74]
in traditional NMR structure determination protocols, pool will be useful in
high-resolution protein structure determination. Whenever RDCs can be col-
lected for proteins with known X-ray structures containing missing loops, pool
can be used to determine the loop conformations.

Since RDCs also provide sensitive probes to protein conformational dynam-
ics [59,48] over nano- to millisecond timescales, it will be interesting to extend
our algorithm to capture and characterize the motional fluctuations, and decon-
volve the dynamics from measured RDCs. In such cases, the ensemble of loops
computed by pool will effectively define a normal distribution of conformations
centered at the experimentally-measured RDCs, and as such encode a unimodal
dynamic ensemble about a protein’s native fold. Our algorithm can even be a
stepping stone to computing ensembles reflecting more complex dynamics.
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Availability. The source code of our algorithm is available open-source under
the GNU Lesser General Public License (Gnu, 2002).
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Motivation. Next-generation DNA sequencing technologies are enabling
genome-wide measurements of somatic mutations in large numbers of cancer
patients. A major challenge in interpretation of this data is to distinguish func-
tional driver mutations that are important for cancer development from ran-
dom, passenger mutations. A common approach to identify driver mutations
is to find genes that are mutated at significant frequency in a large cohort of
cancer genomes. This approach is confounded by the observation that driver mu-
tations target multiple cellular signaling and regulatory pathways. Thus, each
cancer patient may exhibit a different combination of mutations that are suffi-
cient to perturb the necessary pathways. However, the current understanding of
the somatic mutational process of cancer [3,5,6] places two additional constraints
on the expected patterns of somatic mutations in a cancer pathway. First, an
important cancer pathway should be perturbed in a large number of patients.
Thus we expect that with genome-wide measurements of somatic mutations a
driver pathway will exhibit high coverage, where most patients will have a muta-
tion in some gene in the pathway. Second, since driver mutations are relatively
rare and typically a single driver mutation is sufficient to perturb a pathway,
a reasonable assumption is that most patients have a single driver mutation in
a pathway. Thus, the genes in a driver pathway exhibit a pattern of mutually
exclusive driver mutations, where driver mutations are observed in exactly one
gene in the pathway in each patient. There are numerous examples of sets of
mutually exclusive mutations [5,6].

Methods. Motivated by these biological observations and the availability of so-
matic mutation data on large sets of patients, we introduce the problem of finding
sets of genes with the following properties: (i) coverage: most patients have at
least one mutation in the set; (ii) exclusivity: nearly all patients have no more
than one mutation in the set. We define a measure on sets of genes that quantifies
how much sets exhibit both properties and show that finding sets of genes that
� Corresponding author.

�� This work is supported by NSF grant IIS-1016648, the Department of Defense Breast
Cancer Research Program, the Alfred P. Sloan Foundation, and the Susan G. Komen
Foundation. BJR is also supported by a Career Award at the Scientific Interface from
the Burroughs Wellcome Fund.

V. Bafna and S.C. Sahinalp (Eds.): RECOMB 2011, LNBI 6577, pp. 499–500, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



500 F. Vandin, E. Upfal, and B.J. Raphael

optimize this measure is NP-hard. In contrast, we prove that a straightforward
greedy algorithm produces an optimal solution with high probability when given
a sufficiently large sets of patients and subject to some statistical assumptions
on the distribution of the mutations.

Since the number of patients in currently available datasets is only in the
hundreds and the statistical assumptions for the greedy algorithm may be too
restrictive (e.g. they are not satisfied by copy number aberrations), we also in-
troduce a second approach. We use a Markov Chain Monte Carlo (MCMC)
algorithm to sample from sets of genes with a distribution that gives signifi-
cantly higher probability to sets of genes with high coverage and exclusivity.
Our MCMC algorithm is based on the Metropolis-Hastings method. Although
the Metropolis-Hastings method defines a chain that is guaranteed to converge to
the desired stationary distribution, there is in general no guarantee how rapidly
the chain will converge. While there has been significant progress in recent years
in developing mathematical tools for analyzing the convergence time [4], our
ability to analyze useful chains is still limited, and in practice most MCMC
algorithms rely on simulations to provide evidence of convergence to stationar-
ity [2]. Nevertheless, we prove that our MCMC algorithm converges rapidly to
the equilibrium distribution.

Results. We apply the MCMC algorithm to analyze sequencing data from 623
genes in 188 lung adenocarcinoma patients and 601 genes in 84 glioblastoma
patients. In both datasets, we find sets of 2-3 genes that are mutated in large
subsets of patients and are largely exclusive. These sets include genes in the
Rb, p53, and mTor signaling pathways, all pathways known to be important
in cancer. In glioblastoma, the set of three genes that we identify was shown
to be associated with shorter survival [1]. Finally, we show that the MCMC
algorithm efficiently identifies sets of six genes with high coverage and exclusivity
in simulated mutation data with thousands of genes and patients.
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Abstract. The analysis of the impact of mutations on folding properties
of RNAs is essential to decipher principles driving molecular evolution
and to design new molecules. We recently introduced an algorithm called
RNAmutants which samples RNA sequence-structure maps in polynomial
time and space. However, since the mutation probabilities depend of the
free energy of the structures, RNAmutants is bias toward G+C-rich regions
of the mutational landscape. In this paper we introduce an unbiased
adaptive sampling algorithm that enables RNAmutants to sample regions
of the mutational landscape poorly covered by previous techniques. We
applied the method to sample mutations in complete RNA sequence-
structures maps of sizes up to 40 nucleotides. Our results indicate that
the G+C-content has a strong influence on the evolutionary accessible
structural ensembles. In particular, we show that low G+C-contents favor
the apparition of internal loops, while high G+C-contents reduce the size
of the evolutionary accessible mutational landscapes.

1 Introduction

Our understanding of the mechanisms regulating cell activity has considerably
improved over the last two decades. Ribonucleic acids (RNAs) have emerged
as one of the most important biomolecules, playing key roles in various aspects
of the gene transcription and regulation processes. For instance, ribozymes are
involved in the cleavage of messenger RNAs (mRNAs), and riboswitches undergo
structural changes to regulate gene expression.

To achieve their functions, RNAs use sophisticated structures which are mainly
determined by their sequence. Any modification of the sequence may result in a
change in its structure and a loss (or an improvement) in function. The devel-
opment of tools to estimate the effect of mutations on structures, or conversely
the influence of structure conservation on the mutational process, is essential for
understanding the mechanisms of molecular evolution [1], the origin of genetic
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diseases [2] or to develop bioengineering applications such as the design of RNA
molecules (a.k.a. inverse folding) [3].

To understand the role of specific nucleotides, mutagenesis experiments pro-
ceed to point-wise mutations in order to observe putative changes in the expres-
sion profile of the experiments (i.e. the experimental observation) revealing a
modification of the functionality of the molecule. Such experiments are critical
to identify mutations modifying the function and structure of RNAs. However,
all experiments are time-consuming and have a substantial cost, and it follows
that exhaustive experimental studies are impossible.

While it is not realistic to conduct large scale experimental studies on the
complete RNA mutational landscape, this limitation could be circumvented in
computational studies. Indeed, the structure of RNAs can be predicted from
sequence data only [4,5]. More importantly, the secondary structure can be pre-
dicted with dynamic programming techniques in polynomial time and space [4,6]
using a nearest neighbor energy model [7]. These algorithms are implemented
in various programs [8,9,10] and enable to predict the secondary structures of
thousands of sequences in a short time. Therefore it has becomes possible to
compute the complete mutational landscape small RNA sequences [11] and to
simulate the evolution of the structure of populations of RNAs [12,13].

Several groups intended to explore the mutational landscape of RNAs and to
quantify the dependences between sequences and structures. The most represen-
tative work in this area has been achieved by P. Schuster and co-worker on the
sequence-structure maps and neutral networks [14,15]. So far, all these studies
were limited by brute force approaches requiring to compute individually the
structure of a number of mutants growing exponentially with the length of the
sequence (e.g. there is 4n sequences of length n), thus making an exhaustive ex-
ploration of the mutational landscape intractable on sequences with more than
20 nucleotides.

To address this issue, we have developed the program RNAmutantswhich, from
an input sequence, computes the structural ensembles of all sequences with k mu-
tations in polynomial time and space [16]. To achieve this algorithmic advance,
we expanded the seminal dynamic programming rules introduced 30 years ago by
Zuker and Stiegler [4]. The dramatic improvement of the algorithmic complexity
(from an exponential to a polynomial running time) enabled us to investigate
problems that could not have been addressed with previous techniques. For in-
stance, we provided evidences that the complete sequence of the 3’UTR of the
GB RNA virus C has been optimized to preserve its secondary structure from
the deleterious effect of mutations [16]. RNAmutants has been developed upon a
formal grammar-based model [17,18] which, in particular, can be used to com-
pute k-mutants (i.e. sequences with exactly k mutations) with the lowest free
energy structure.

Formally, RNAmutants takes an input sequence and computes the minimum
free energy (MFE) structure and the Boltzmann partition function of all k-
mutants sequences in the k-Hamming neighborhood (i.e. ensemble of sequences
with exacly k mutations) of the input sequence. In addition, it samples k-mutants
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together with a secondary structure. This naturally extends the seminal Zuker
and Stiegler’s [4], McCaskill’s [6] and Ding and Lawrence’s algorithms [19] which
do not consider sequence variations.

In this model, the probabilities of the sequences in the k-mutants ensembles
are determined by their ensemble free energies. It follows that these ensembles are
dominated by sequences with high G+C-contents and that RNAmutants has a bias
towards A/U→C/G mutations. This bias is a serious drawback for complete and
rigorous analysis of RNA sequence-structure maps or the prediction of mutations
altering the native structure. Indeed, sampling sequences with a large number of
mutations will necessarily produce mutants with high G+C-content folding into
long single stem structures, while in reality a broader range of structures are
observed. The nucleotide distribution can also be used to indirectly control the
folding and functional properties on RNAs. For instance, Chan et al. showed
a correlation between the G+C-content and the RNAi efficiency [20]. Finally,
RNAs may also experience a stabilizing selection, independent of their structural
stability, acting directly on their nucleotide composition [21]. But, such scenarios
are impossible to model using the original RNAmutants algorithm.

In this paper, we develop an unbiased adaptive sampling algorithm enabling to
control of the nucleotide composition of the sequences sampled by RNAmutants.
These techniques alleviate RNAmutants from its previous limitations and enable
us to study mutational processes at a finer resolution level. Importantly, this
algorithmic advance is achieved at a minimal computational cost and can be
generalized to sample any regions of the mutational and structural landscapes
which are difficult to reach with classical algorithms.

This article is organized as follows. In section 2, we formally define the prob-
lem addressed, explain why a brute force approach fails, and show how a mul-
tivariate Boltzmann model can be integrated into RNAmutants to control the
nucleotide composition of sampled sequences. Then, in section 3 we illustrate
the efficiency of our techniques by providing an analysis of complete sequences-
structure maps of RNAs of sizes up to 40 nucleotides (while previous exhaustive
studies were limited to sizes of 20). Our computational experiments reveal inter-
esting properties of RNA sequence-structure maps that can be parameterized by
the G+C-content. In particular, we find that low G+C-contents favor the appari-
tion of bulges and internal loops, thus the possible insertion of non-canonical
interactions and tertiary structure motifs (Section. 3). We also show that the
diversity of mutants improving the stability of the fold is effectively optimal for
medium G+C-contents (around 50%) and that high G+C-contents reduce the size
of the evolutionary reachable mutational landscape (Section. 3). These finding
suggest that the G+C-content is essential to balance the competition between the
evolutionary accessibility (i.e. the sequence diversity) and the structural stability.

2 Methods

Notations, Definitions and Existing Works. Throughout this document,
we will abstract an RNA molecule ω as a sequence of bases over an alphabet
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B := {A, C, G, U}. The length of an RNA sequence will be denoted by n = |ω|.
Following standard notations, we will denote by ωi the base at position i, and
by ωi,j the portion of ω delimited by positions i and j inclusive. A secondary
structure s for an RNA ω is defined as a set of base pairs of the form (i, j) ∈ [1, n]2

with i < j, such that any two base pairs {(i, j), (k, l)} ⊂ s do not share an
extremity ({i, j}∩{k, l} = ∅), and are either non-overlapping ([i, j]∩ [k, l] = ∅)
or stricly inclusive ([i, j] ⊂ [k, l] or [k, l] ⊂ [i, j]). Moreover in order to avoir
steric clashes, a minimal number of bases θ is usually required between the two
extremities of a base pair (i, j) (i + θ < j). Let us denote by Sω,θ the set of all
secondary structures compatible with a given RNA ω under the θ constraint.

Free-Energy model. For the sake of clarity, we will illustrate our claims and
algorithms on a generalization of the energy model proposed by Nussinov and Ja-
cobson [22], assigning additive free-energy contributions to each base-pair. This
model may appear overly simplistic in comparison with the Turner model [4],
but it is sufficient to capture the key algorithmic elements while remaining eas-
ier to grasp. It should however be noted that the implementations used for our
experiments make use of the full Turner model, as was described in the initial
presentation of RNAMutants [16].

In this section, each base-pair (a, b) ∈ s within a sequence ω is associated with
a free-energy contribution Δωa,ωb

and unpaired bases are not taken into account
by the model. Consequently the overall free-energy E(ω, s) of a structure s over
a sequence ω is given by E(ω, s) =

∑
(i,j)∈s Δωi,ωj . Note that this energy model

captures the incompatibility of a base-pair (x, y) ∈ B2 upon setting Δx,y = +∞.

Partition Function. Following McCaskill [6], one can define a Boltzmann dis-
tribution and assign to each structure s a Boltzmann factor Bω(s) := e

−E(ω,s)
RT

where is T the temperature and R the universal gas constant. This induces a
Boltzmann probability distribution on the set Sω,θ of structures compatible with
ω such that

P (s | ω) =
Bω(s)
Zω

(1)

where Zω is the partition function defined as Zω =
∑

s∈Sω,θ
Bω(s).

Restricting our attention to an interval [i, j] of ω, we can easily observe that
within a secondary structure on [i, j], the first position i is either unpaired and
is followed by a secondary structure on [i + 1, j], or paired to some position
l ∈ [i + θ + 1, j], in which case the non-crossing condition forces the existence of
two independent structures on intervals [i + 1, l − 1] and [l + 1, j]. Furthermore
this case decomposition is complete as shown by Waterman [23].

A restricted version of the partition function, only considering the subinterval
ωi,j of sequence ω, can then be defined as Z[i,j] =

∑
s∈Sωi,j ,θ

Bω(s), and be
computed recursively by Z[i,i−1] = 1 and

Z[i,j] = Z[i+1,j] +
j∑

l=i+θ+1

e−
Δωi,ωl

RT Z[i+1,l−1] · Z[l+1,j]. (2)
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Function GenMuts(i, j, k,w, ω): Returns a sequence/structure couple over
interval (i, j) at distance k of ω, drawn with respect to a w-weighted Boltz-
mann probability.

if i > j then return ε (Empty sequence); // Terminal case

rand ← Random(Z[
i,j
k

]);
for b ∈ B do // Unpaired case

rand ← rand −w|b|GC · Z[
i+1,j

k−σωi,b

] ;
if rand < 0 then return

[•
b

]
· GenMuts(i + 1, j, k − σωi,b,w, ω);

for b, b′ ∈ B
2 do // Paired case

for l′ ← i + θ + 1 to j do
δ → l′ − (i + θ + 1); // Boustrophedon search

if δ is even then l ← i + θ + 1 +
⌊

l′
2

⌋
else l ← j −

⌊
l′−1

2

⌋
;

for k′ ← 0 to k − σωiωl,bb′ do

rand ← rand − w|bb′|GC · e−
Δ

b,b′
RT · Z[

i+1,l−1
k′

] · Z[
l+1,j

k−k′−σωiωl,bb′

] ;
if rand < 0 then

return
[
(
b

]
· GenMuts(i + 1, l − 1, k′,w, ω) ·

[
)
b′
]
·

GenMuts(l + 1, j, k − k′ − σωiωl,bb′ ,w, ω);

The partition function Zω := Z[1,n] can therefore be computed in Θ(n3)/Θ(n2)
time and space. Direct applications of this algorithm include the derivation of
base-pairing probabilities [6] and statistical sampling [19].
RNAMutants. For the sake of completeness, let us remind that the RNAMutants
algorithm [16] starts from an initial sequence ω and traverses the space of all
sequences parameterized by their Hamming distance to ω. A parameterized ana-
logue of the partition function is then obtained by summing over sequences/
structures couples that are compatible with a given interval (i, j) and a pre-
scribed number of mutations k.

Let us first remind that the Hamming distance σ : Bn ×Bn → N between two
sequences of equal length is defined by σε,ε = 0 and by σx.X′,y.Y ′ = �x �=y+σX′,Y ′ .
A partition function over k mutants over a subinterval [i, j] is then defined by

Z[
i,j
k

] =
∑
ω′s.t.

σω,ω′=k

∑
s∈Sω′

i,j
,θ

Bω′(s)

and can be recursively computed by Z[
i,i−1

0

] := 1, Z[
i,i−1

k

] := 0, ∀k > 0, and

Z[
i,j
k

] =
∑
b∈B

Z[
i+1,j

k−σωi,b

]+
∑

b,b′∈B2

j∑
l=i+θ+1

k−σωiωl,bb′∑
k′=0

e−
Δ

b,b′
RT ·Z[

i+1,l−1
k′

] ·Z[
l+1,j

k−k′−σωiωl,bb′

] .
(3)
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A direct computation of the above recursion yields a Θ(n3 ·k2) time and Θ(n2 ·k)
space algorithm for computing the sequence/structure partition function, k being
the maximal number of mutations.

Improved Statistical Sampling. Statistical sampling was introduced by Ding
and Lawrence [19] and implemented within the SFold software. By contrast
with previous algorithms which considered only the minimal free energy struc-
ture [4] or a deterministic subset of its suboptimals [24], this algorithm performs
a stochastic backtrack and generates any suboptimal structure s for a sequence ω
with respect to its Boltzmann probability (see Equation 1). Following a general
weighted sampling scheme [25], the algorithm starts from an interval [1, n], and
chooses at each step one of the possible cases (First base being either unpaired
or paired to some l) with probability proportional to the contribution of the case
to the local partition function.

A direct adaptation of this principle based on Equation 3 gives Function
GenMuts (upon setting w := 1). By contrast with its original implementa-
tion [16], this sampling procedure uses a Boustrophedon search [26,27], decreas-
ing the worst-case complexity of the stochastic backtrack from Θ(n2k) [16] to
Θ(nk log n). Therefore the generation of m structure/sequence couples at Ham-
ming distance k of ω can be performed in Θ(n3 · k2 + m · nk log n) worst-case
complexity.

Reaching Regions of Predefined G+C-content. Now let us address the
problem of sampling sequence/structure couples (ω′, s′) having predefined G+C-
content GC(s) = #G(ω)+#C(ω)

|ω| . The main difficulty here is that the interplay be-
tween the Boltzmann distribution and the combinatorial explosion of the number
of sequences induces a drift of the expected G+C-content. Furthermore the G+C-
content distribution is concentrated around its mean. Therefore a suitable se-
quence/structure will seldom be obtained by chance if the expected G+C-content
does not match the targeted one. Our sampling procedure must also remain unbi-
ased within areas of targeted G+C-content, i.e. generate each sequence/structure
(ω′, s′) such that σω′,ω = k and GC(ω′) = gc∗ with probability

p(ω′, s′ | k, gc∗) =
Bω′(s′)∑

(ω′′,s′′) s.t.
GC(ω′′)=gc∗
and σω′′,ω=k

Bω′′(s′′)
. (4)

Direct Rejection Yields Exponential-Time Sampling. A natural idea for
achieving an unbiased sampling consists in sampling from the complete set of
structure/sequence and reject sequences of unsuitable G+C-content. Since an un-
suitable couple can be generated repeatedly, the worst-case complexity (infinite)
of such an algorithm is perhaps not very informative. Therefore we propose an
average-case analysis, using methods developed in the analysis of algorithms
community to determine the asymptotical limit of the G+C-content distribution.
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Algorithm 1. Rejection algorithm
Input : RNA ω, targeted G+C-content gc∗, number of samples m, number of

mutations k and weight w.
Output: Set of m sequence/structure samples

FillMatrices(ω,k,w);
samples ← ∅;
while |samples| < m do

candidate ← GenMuts(1, n, ω, k, w);
if GC(candidate) = gc∗ then samples ← samples ∪ {candidate};

return samples;

Theorem 1. Assuming an homopolymer model (any base pair can form), a
Nussinov-style energy function and an unconstrained number of mutations, the
distribution of the number of G+ C is asymptotically normal of mean μ · n and
standard deviation σ

√
n, for μ and σ positive real constants. The probability of

sampling a sequence/structure of G+C-content gc∗ is asymptotically equivalent
to

p(gc∗ | n) ∼ 1
σ
√

2πn
· e−

n(gc∗−μ)2

2σ2 . (5)

Successive attempts of Algorithm 1 are mutually independent, therefore the
expected number of calls to GenMuts is the inverse of the probability assigned to
a G+C-content of gc∗. It follows that, unless μ = gc∗, the average-case complexity
is asymptotically dominated by a term exponential in n, and Algorithm 1 has
exponential complexity for some (most) targeted G+C-contents.

A Weighted Sampling Approach. We adapt a general approach recently
proposed by Bodini et al [28], which uses weights to efficiently bias a random
generation process towards areas of interest, while respecting a (renormalized)
prior distribution. Namely let w ∈ R+ be a weight associated with each occur-
rence of G or C , we define the w-weighted partition function as

Z [w]
[k] := Z [w][

1,n
k

] =
∑

ω′ s.t.
σω,ω′=k

∑
s′∈Sω′,θ

Bω′(s′) ·w|ω′|GC . (6)

which can be computed by the following recurrence

Z [w][
i,j
k

] =
∑
b∈B

w|b|GCZ [w][
i+1,j

k−σωi,b

]

+
∑

b,b′∈B2

j∑
l=i+θ+1

k−σωiωl,bb′∑
k′=0

w|bb′|GC e−
Δ

b,b′
RT Z [w][

i+1,l−1
k′

]Z [w][
l+1,j

k−k′−σωiωl,bb′

]
(7)

where |x|GC := n ·GC(x) denotes the number of occurrences of G or C within x.
Upon multiplying by a weight w whenever a Guanine or Cytosine is generated,
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a w-weighted probability distribution is induced on the sequence/structure and
any sequence/structure (ω′, s′) such that GC(ω′) = gc∗ and σω,ω′ = k has
probability

p(ω′, s′ | w, k) =
w|x|GC · Bω′(s)

Z [w]
[k]

. (8)

Function GenMuts implements a sampling procedure for the w-weighted distri-
bution. Processing its output with Algorithm 1 discards any structure/sequence
whose G+C-content differs from gc∗, and the probability of sampling a struc-
ture/sequence (ω′, s′) of G+C-content gc∗ is therefore

p′(ω′, s′ | gc∗,w, k) =
w|ω′|GCBω′(s′)∑

(ω′′,s′′)
s.t. GC(ω′′)=gc∗
and σω′′,ω=k

w|ω′′|GCBω′′(s′′)
= p(ω′, s′ | gc∗, k) (9)

since |ω′|GC = |ω′′|GC = n · gc∗. Our weighted sampling/rejection pipeline is
consequently unbiased within the subset of sequence/structures having targeted
G+C-content.

Let us now discuss the algorithmic gain achieved by this approach. Let us
assume knowledge of a weight w∗ such that μw∗ = gc∗. First, let us point
out that the proof of Theorem 1 does not rely on any specificity of the energy
model/weighted scheme, but rather on intrinsic properties (strong connected-
ness and aperiodicity) of the context-free grammar used to model the struc-
ture/sequence space. It follows that Theorem 1 holds even in the presence of
weights, with an additional dependency in w for μw the expected G+C-content
and σw its standard deviation. It also follows that the exponential part of the
complexity cancels out, and the expected number of calls to GenMuts drops to
Θ(

√
n) per sample. Consequently, the generation of m structure/sequence cou-

ples at Hamming distance k of ω and G+C-content gc∗ can be performed in
Θ(n3 · k2 + m · n

√
n · k log n) average-case complexity.

Adaptive Weighted Sampling. To conclude, we need to find a weight w∗

such that gc∗ = μw∗ . We claim that w∗ can be computed using a bisection
method as illustrated in Figure 1. Namely let ugc∗,k be the cumulated Boltzmann
factors over all structures/sequences at distance k of ω, having G+C-content gc∗,
then the probability of generating a sequence with G+C-content gc is exactly
p′′w,gc,k := ugc,k ·wn·gc/Z [w]

[k] . It follows that

∀k ≥ 0, μw,k =
n∑

x=0

x

n
· p′′w,gc,k =

n∑
x=0

x

n
·
ux/n,k ·wx

Z [w]
[k]

⇒ ∂μw,k

∂w
=

n∑
x=0

x2 · ux/n,k ·wx−1

n · Z [w]
[k]

> 0.

We conclude that μw,k is strictly increasing as a function of w and that a bi-
section search will converge exponentially fast toward the unique solution of
gc∗ = μw∗ .
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Start
w := 1
res := ∅

GenMuts(k,w)
Filter on GC%
Augment res

Update w

|res|≥m?
Stop

Return res

no

yes

Fig. 1. General flow of the adaptive sampling procedure

Moreover following Equation 9 we know that the emission probability of each
structure/sequence couple having suitable G+C-contents is not affected by the
weighting scheme. Therefore samples obtained during any iteration of the bisec-
tion method can be accumulated into the resulting sample set res, and returned
as soon as the targeted number of samples m is reached. The unbiasedness of
each sampling, in addition with the independence of events, therefore yields an
unbiased set of samples.

Implementation Remarks. Our implementation of the adaptive sampling
described by Figure 1 uses the sampled sets to estimate expected G+C-contents.
Since the G+C-content asymptotically follows a normal law of standard deviation
in σ

√
n, a sampled set of size M := K × m ∈ Ω(4nσ2/ε2), for some K >

1, will guarantee a 95% probability of falling within a confidence interval of
[(1 − ε)w∗, (1 + ε)w∗], ∀ε > 0. The generation of such a growing number of
samples will however remain negligible compared to the computation of the
partition function. An exact expected value of μw can also be computed exactly
in Θ(n3 · k2) using dynamic programming, following ideas underlying Miklos et
al [29].

The value of w∗ can also be exactly computed. Indeed the partition function
can be expressed as Zw

[k] =
∑n

x=0 ux/n,k · wx, i.e. a polynomial of degree n in
w. Therefore it suffices to evaluate Zw

[k] for n different values of w to determine
the coefficients ux/n,k using a simple Gaussian elimination. From there, one can
use numerical recipes (e.g. Grobner bases [30]) to find the unique root w∗ of the
polynom:

gc∗ =
n∑

x=0

x · ux/n,k ·w∗x

n · Zw∗
[k]

⇔ 0 =
n∑

x=0

(x − n · gc∗) · ux/n,k ·w∗x.

Also since the weighted partition functions Zw
[k] are computed prior to sampling,

one can combine these two strategies into an hybrid approach, initially applying
the bisection search and then dynamically switching to an exact computation
after n computations of Zw

[k].

3 Results

Now we illustrate how RNAmutants can be used to explore RNA sequence-
structure maps and analyze an evolutionary scenario based on the improvement
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Fig. 2. Typical run of the adaptive sampling algorithm for sampling 10000 sequences
having 70% G+C-content at Hamming distance k=16 of an ribosome entry site
RNA(PDB: 2HUA A). The smoothed G+C-content distributions are plotted with solid
(unweighted) and dashed thick lines for each iteration of the bisection method. Grey
shaded area correspond to their cumulative distribution. Here the adaptive sampling
returns a suitable sample set after 5 iterations during which 15.104 sequences are gen-
erated. Based on observed probabilities an unweighted model would require generating
about 3.107 sequences.

of the structure stability. This study can be motivated by a recent work of Cow-
perthwaite et al. [12] showing that energetically stable single stem structures
correlate with the abundances of RNA sequences in the Rfam database [31].

Benchmark Methodology. In these experiments, we analyzed sequences of
size 20, 30 and 40 nucleotides. We also defined five G+C-content regimes at 10%,
30%, 50%, 70% and 90% (±10%). For each G+C-content we generated 20 seeds
of length 20 and 30, and 10 seeds of length 40. Thus yielding a total of 250 seeds.
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Fig. 3. X-axis: Number of mutations in mutants. Y-axis: Number of stacks in secondary
structures. Blue: 10% GC, Green: 30%, Yellow: 50%, Orange: 70%, Red: 90%.
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For each seed we ran RNAmutants and sampled approximately 1000 secondary
structures in each k-neighborhood1. Each run explores the complete mutational
landscape (i.e. 4n sequences where n is the length of the sequence) and currently
takes less than a minute for a size of 20 nucleotides, about 45 minutes for a 30
nucleotides, and about 5 hours for 40 nucleotides. In each experiment, we report
the evolution of four parameters for each value of k (i.e. number of mutations).
Namely, the number of stacks in the secondary structures sampled with the
mutants (See Fig. 3), the number of bulges and internal loops (See Fig. 4), and
the entropy of the sampled sequences (See Fig. 5).

Low G+C-contents Favor Structural Diversity. In these experiments, we
seek to characterize how sequences may constrain the variety of structures. RNA
secondary structures can be characterized by their number of hairpins, stacks,
bulges, internal loops and multi-loops. Here, because our sequences are relatively
small, the large majority of the structures have a single stem shape. Thus, they
have a single hairpin and no multi-loop, and we choose to report only the number
of stacks and loops (bulges and internal loops). In Fig. 3 and 4 we report these
statistics in each k-neighborhood of the seed.

Since the number of stacks correlates with single stems structures and thus
more stable structures, one could expect that the number of stacks will natu-
rally increase with the number of mutations. This intuition explains the results
of simulations performed on sequences of length 20 (See Fig. 3(a)). However,
surprisingly, this property does not hold for longer sequences with low G+C-
contents. In Fig. 3(b) and 3(c), we observe that the number of stacks increases
first, and then drops for large numbers of mutations (approximately k ≥ n/3).
Symmetrically, the number of bulges and internal loops initially drops and then
increases.
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Fig. 4. X-axis: Number of mutations in mutants. Y-axis: Number of bulges and internal
loops in secondary structures. Blue: 10% GC, Green: 30%, Yellow: 50%, Orange: 70%,
Red: 90%.

1 Our implementation enables us to control the minimal number of sequences to sample
at a targeted G+C-content in each k neighborhood.
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These experiments enable us estimate the strength of an evolutionary pressure
which stems from an improvement of the stability of the folds. Our data indicate
that for short period of evolution this “structural” pressure is always dominant.
But after longer periods of evolution, low G+C-contents enable more diversity
in the structural ensembles. In other words, if we make the assumption that
bulges and internal loops represent more sophisticated structures that could be
associated to functional shapes. Then, under this scenario, we showed that the
structures are first stabilized (i.e. backbone is created) and subsequently refined
for functions.

Our results suggest a couple of hypothesis. First the size is an important
factor of the structural diversity, and the analysis of sequence-structure maps of
sequences of length larger than 20 may result in very different conclusions than
those drawn for small sequences [15,12]. Next, sequences with a low G+C-content
(below 40%) may allow a broader “choice” of structures. Low G+C-contents seem
to favor the apparition of bulges and internal loops, making the apparition of
non-canonical interactions and RNA 3D motifs [32,33,34] easier. Such tertiary
structure motifs are frequently associated with specific RNA functions, and we
conjecture that low G+C-contents favor their synthesis.

High G+C-contents Reduce the Sequence Diversity. Our next analysis
aims to reveal how the structural stability (i.e. the folding energy) may influ-
ence the diversity of sequences and then the mutational space explored across
evolution. We need for that to compute the entropy of the sequences in each k-
neighborhood. First, we align all k-mutants and compute the Shannon entropy
at position i: σ(i) =

∑
x={A,C,G,U}−fi(x) · log4(fi(x)), where fi(x) is the fre-

quency of the nucleotide x in the i-th column of the alignment. Then, we average
these measures and compute the average entropy per position 1/N ·

∑N
i=i σ(i),

where N is the length of the alignment (i.e. also the length the sequences and
the target structure since no gaps are allowed). Our results are shown in Fig. 5.

Before discussing these results, we note that the G+C-content biases the en-
tropy values. Indeed, when the distribution of nucleotides is no longer uniform
(i.e. when the G+C-content is shifted away from 50%), the maximal entropy
value decreases. We report the theoretical limits reachable for G+C-contents of
30% and 70% (approximately 0.94 and indicated with a dotted line in Fig. 5), and
10% and 90% (approximately 0.74 and indicated with a dashed line in Fig. 5).
Obviously, the upper bound for a G+C-content of 50% is 1.

Once again, as expected the maximum entropy is reached for sequences with
G+C-contents of 50%. Medium G+C-contents offer a larger sequence accessibil-
ity. More interestingly, the maximal entropy value reached in these experiments
seems to vary between extreme G+C-contents regimes. We observe that sequences
at 10% of GC achieve the optimal entropy value, but that sequences at 90% GC
significantly fail to explore the complete mutational landscape. This remark sug-
gests that high G+C-contents reduce the evolutionary accessibility and the variety
of sequences designed under this scenario. Finally, unlike our previous experi-
ments (cf. section 3), we note that the size of the sequences has no influence on
these results.
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Fig. 5. X-axis: Number of mutations in mutants. Y-axis: Entropy of sampled mutant
sequences. Blue: 10% GC, Green: 30%, Yellow: 50%, Orange: 70%, Red: 90%. Dotted
line represents the maximal entropy value that can be obtained for GC contents of 30%
and 70%. And the dashed line represents the maximal entropy value for GC contents
of 10% and 90%.

4 Conclusion

In this paper, we showed how adaptive sampling techniques can be used to ex-
plore regions poorly covered by classical sampling algorithms. We applied this
methodology to RNAmutants, and showed how regions of the mutational land-
scape with low G+C-contents could be efficiently sampled and analyzed.

Importantly, the techniques developed in this work can be generalized to many
other sequential and structural additive properties, such as the number of muta-
tions, number of base pairs or the free energy. The versatility of these techniques
suggests a broad range of novel applications as well as algorithm improvements.

This methodology is well-suited to the exploration of large sequence-structure
maps. We expect that their application in various ways will reveal novel prop-
erties of the RNA evolutionary landscapes [14,15,1,13]. More practically, as re-
cently reported by Barash and Churkin, our algorithms are also well-suited to
predict multiple deleterious mutations in structural RNAs [35]. We expect that
our adaptive sampling techniques will help improve our prediction accuracy.

All these algorithms have been implemented in a new version of our RNAmutants
software suite available at http://csb.cs.mcgill.ca/RNAmutants. This new
distribution includes various new features such as an RNA duplex model for
simple hybridizations and weighted substitution events.
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Abstract. This work considers biological sequences that exhibit combi-
natorial structures in their composition: groups of positions of the aligned
sequences are “linked” and covary as one unit across sequences. If mul-
tiple such groups exist, complex interactions can emerge between them.
Sequences of this kind arise frequently in biology but methodologies for
analyzing them are still being developed. This paper presents a non-
parametric prior on sequences which allows combinatorial structures to
emerge and which induces a posterior distribution over factorized se-
quence representations. We carry out experiments on three sequence
datasets which indicate that combinatorial structures are indeed present
and that combinatorial sequence models can more succinctly describe
them than simpler mixture models. We conclude with an application
to MHC binding prediction which highlights the utility of the posterior
distribution induced by the prior. By integrating out the posterior our
method compares favorably to leading binding predictors.

Keywords: Sequence models, Chinese restaurant process, Chinese
restaurant franchise, MHC binding, mixture models.

1 Introduction

Proteins and nucleic acids, polymers whose primary structure can be described
by a linear sequence of letters, are found in nature in an astounding diversity.
Understanding the diversity of biological sequences has been a major topic in
computational biology. Through inheritance, and close functional coupling, the
nearby sequence positions in a family of biological sequences are often at a link-
age disequilibrium, i.e., the letters at nearby sites tend to covary. However, in
their folded form, these molecules also have secondary, tertiary, and quaternary
structure, which may reveal geometric proximity, and provide a basis for poten-
tial interactions of residues at distant sequence sites and even across different
molecules. This creates significant difficulties in modeling diversity of certain
families of sequences, where both the nearby and distant sequence positions
may exhibit patterns of covariation. This difficulty is exacerbated by the fact
that with only a limited number of sequences available for analysis we could
arrive at multiple diversity models which are almost equally well supported by
data. We model such sequence data starting with a basic componential strategy
outlined in Figure 1. We show four aligned subsequences from Influenza HA1
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(a) Observations (b) Profiles

Fig. 1. 1(a) Four aligned short subsections of the sequences exhibiting the combina-
torial pattern according to the partition highlighted by color. The blue component,
zsite = 1, comes in two variants, TGCATC and CATGAT, while the green component,
zsite = 2, follows either ACA or CTG. All four combinations of types of these segments
are found in the data. Each of those configurations can be combined with two further
variants, GGG and AAA, in the red component, zsite = 3. 1(b) Slight perturbations on the
basic types are possible as captured by the profiles inferred whose appropriate sections
are shown. The profiles and subsequences correspond to appropriate sections of the In-
fluenza HA1 genes analyzed in Section 4. The sequence sites switch among profiles in
groups—the entire component follows one of the three profiles. (In general, some com-
ponents may be less entropic than others and the sequences may then not be mapped
to all three different types.) The four sequences in this example can be represented by
the pointers zprof for each of the three components which map the components to the
appropriate profiles: 213, 113, 223, and 222. Such compression of the variability can
increase statistical power of techniques mapping genotypic and phenotypic variation
as we demonstrate for the case of MHC binding prediction in Section 4.

genes whose diversity is well explained by first partitioning the sites into three
groups and then representing each partition’s induced subsequences by one of
several prototypes. The site groupings do not need to follow linear patterns, and
distant sites may be grouped together. Assuming that the three types in the three
groups can be arbitrarily mixed, the model represents 27 different variants, and
could thus also be expressed as a mixture with that many components. However,
the use of a traditional mixture model would require considerably more data for
training, as having obtained only 50–100 sequences it is likely that we did not
see all 27 combinations. On the other hand, it is likely that we observed all
three types in all three components multiple times, thus facilitating parameter
estimation in a componential model. Furthermore, the componential structure
itself may be of importance. If for instance, a phenotype of interest is linked only
to one variant of one of the components, then the mixture model would capture
this variant in nine components needed to represent the relevant type in combi-
nation with three types in each of the other two components. Thus a traditional
clustering would lead to nine different statistical tests, lowering statistical power
by an order of magnitude. In this sense, the combinatorial structure allows for
pooling the traditional mixture components based on the finer-grained patterns
of covariation. In this paper we outline a probabilistic model that can be used
to discover such structure in several gene and protein families while coping with
the dearth of sequence data and the possible additional correlations among the
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Table 1. Sequence families exhibiting combinatorial structures

Family Forces shaping componential diversity

Immunoglobulin/TCR Clonal V(D)J recombination
Pathogenic proteins Recombination, mutation
MHC/KIR Large and small scale recombination, mutation

groups. Such combinatorial diversity is ubiquitous at larger scales such as entire
chromosomes. However, some very important biomolecules have relatively short
segments that are under significant diversifying selection. In Table 1, we high-
light molecules involved in host-pathogen interactions and whose subsequences
fit the model discussed above. All these families of molecules have to maintain
their biological function, while exhibiting a high degree of variation concentrated
in a short subsequence, and the solution to these conflicting requirements has
componential structure.

As the first example, we point to the genes encoding immunoglobulin and
T cell receptor proteins which are split into multiple gene segments in the
germline. These segments are made contiguous by recombination in somatic tis-
sues by the well known V(D)J recombination process [3]. To assemble an antigen
receptor gene, one V (variable), one J (joining) and, sometimes, one D (diversity)
segment are joined to create an exon that encodes the binding portion of the
receptor chain. As there are typically many V, D, and J gene segments, V(D)J
recombination creates an immense combinatorial diversity of antibody and TCR
binding specificities, responding to the diversity of the immune system’s targets.

Pathogen proteins whose subsequences are often targets of immunoglobulin
and TCR binding also exhibit combinatorial diversity. For instance, VAR2CSA,
a member of the P. falciparum erythrocyte membrane 1 protein family and a
potential vaccine candidate for pregnancy-associated malaria, contains short seg-
ments in which the isolate variation can be well summarized by a small number of
very different types. While human-infecting P. falciparum isolates exhibit com-
binatorial diversity resulting from fairly arbitrary mixing of segment types, each
type is remarkably conserved across isolates that have them, including isolates of
P. reichenowi which infects other primates [2]. This indicates a possible role of
recombination with other var gene segments in creating combinatorial diversity
in the binding domains of these proteins, which have to facilitate adhesion to
the placenta while avoiding recognition by the immune system.

The third example we highlight is the major histocompatibility complex
(MHC) class I family of molecules which again participate in the interaction
between the host immune system and pathogens. In virtually all cells of higher
organisms, these molecules present antigenic cellular peptides on the cellular sur-
face for surveillance by cytotoxic T cells. The T cell receptor proteins discussed
above may bind to the complex made of the MHC molecule and the antigenic
peptide which can lead to the destruction of the infected cell. To properly facil-
itate the surveillance of the cellular proteome, MHC molecules are again faced
with complex requirements: Across different situations, the MHC molecules will
encounter a large number of different targets that may need to be carried to
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the surface, but at any given time, the cellular presentation should be limited
to useful targets. Furthermore, as pathogens adapt to immune pressure quickly,
a population of hosts is more resilient if it is diverse in its immune surveillance
properties. Nature’s solution here is somewhat different than in the case of the
TCR and immunoglobulin. The immune system needs to learn to tolerate normal
self proteins and the variation in binding properties through clonal recombina-
tion in one individual would complicate this tolerance. Instead, in humans, three
highly diverse loci encode for MHC class I, leading to diversity of MHC binding
specificities across individuals, not within one host. The residues forming the
peptide binding groove of the MHC molecules have been found to be under a
diversifying selection. The statistical study of MHC alleles has yielded evidence
of both large-scale recombination events (involving entire exons) and low-scale
recombination events (involving apparent exchange of short DNA segments), but
convergent evolution in parts of the MHC from different alleles is also supported
by the data [5]. Thus, a variety of mutation and recombination events, whose
combinations were selected based on the resulting binding properties of the MHC
groove lead to the immense diversity at this locus, the most polymorphic in the
human genome.

In these three examples, and many more (Figure 1 illustrates diversity in an
influenza protein), the functional requirements have created sequence families
that exhibit high levels of diversity with combinatorial structure similar to the
one illustrated in Figure 1. Models that capture such structure have immediate
applications in low-level tasks such as sequencing, haplotype recovery, as well as
in higher level tasks involving the matching of the genetic diversity to phenotypic
variation. In the case of the immunoglobulin, this structure is essentially encoded
in the human genome, and the different V, D, and J variants can be directly
read off there. But, when diversity is maintained on a population level, as is
the case with most pathogen proteins and RNA molecules, as well as MHC or
KIR (receptor on natural killer cells) among human proteins, then we can only
recover the structure by analyzing sequences from a number of individuals. This
is complicated by two effects: first, the illustration in Figure 1 is a simplification.
The groups of sites are only approximately independent of each other. Some
residual weak linkage is expected to exist even in the case of the optimal sequence
partition. Secondly, due to the high polymorphism in the families of interest
the structure in Figure 1 can only be estimated reliably when sufficient data
is available. When data is scarce, multiple different solutions are possible that
differ little in the data fit.

In this paper we propose a model that differs from existing models in the
way it addresses these two issues. In [1,2], the partition is assumed to consist of
contiguous segments, a constraint that does not hold for many interesting diver-
sity patterns (cf. Figure 1), and a single optimal segmentation (cf. the pattern
library/epitome approach of [7,8]). A combinatorial optimization algorithm for
site clustering that does not promote contiguous segments is proposed in [12],
but, as the basic generative model creates blocks with limited diversity [6,8], the
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result is again a single optimal segmentation which can be sensitive to the size
of the sequence set used to estimate it.

We propose a Bayesian hierarchical site clustering approach with a minimal
number of parameters which not only captures weak linkage among components
at the first level of the clustering hierarchy, but also naturally adjusts to the size
of the dataset. Furthermore, we develop a sampling procedure that produces an
estimate of the posterior over possible sequence partitions. In Section 4 we illus-
trate for three families of proteins—MHC class I, Influenza HA1 and KIR—that
the componential model discussed here is a better fit than traditional mixture
models, which cluster entire sequences (phylogenetic methods fall in this cate-
gory). We also show an example where by using the distribution over multiple
partitions we improve on the ability to match the genetic diversity with the phe-
notype variation. In particular, by representing MHC sequences by the latent
variables in our model we train simple MHC class I–peptide binding estimators.
We show that by integrating over possible MHC sequence representations based
on different partitions we obtain better predictions than when we use the latent
variables for the MAP estimate of the segmentation structure.

2 Model

Most approaches to capturing diversity in sets of aligned sequences treat each se-
quence as a whole, applying clustering techniques (e.g., neighbor-joining or max-
imum likelihood approaches) or building a hierarchical clustering of sequences
(e.g., a phylogenetic tree). A special case of such approaches are mixture models
which describe aligned sequences as being sampled from a mixture of a small
number of “latent profiles,” also known as “position-specific scoring matrices,”
e.g., [10]. As outlined above, a considerable drawback of a whole sequence mix-
ture model is that each observed sequence corresponds in its entirety to one
latent profile. Our model is a generalized mixture model that relaxes this con-
straint and allows different sequence positions to correspond to different profiles.
To retain some structure, however, our model introduces a latent partitioning
that groups site positions into linked sites that must be sampled from the same
profile. Each such “site group” thus induces a different mixture model on its
component sites. This allows us to capture combinatorial diversity that is not
captured by a flat mixture model—n site groups with k profiles would need nk

mixed profiles if the data was to be represented by a flat mixture. Moreover, as
discussed in Section 1, we wish to also couple the mixture models in order to
capture additional weaker links among the site groups. Our model achieves this
by implicitly coupling the mixing proportions of the different mixtures.

When analyzing data with traditional mixture models, one is faced with the
perennial problem of choosing the number of mixture components. Since the
model we are proposing can be thought of as a refined mixture model, it is
not immune to this issue. While information-theoretic techniques do exist for
estimating the structural parameters in mixture models, they are difficult to
justify when the number of components required to represent a large dataset
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is large [24]. In a number of biological applications [17,22,23,24] nonparametric
methods based on the Chinese restaurant process (CRP), or the closely related
Dirichlet process, have been shown to elegantly circumvent such issues by effec-
tively introducing a prior distribution on the number of latent components. A
second advantage is that the induced prior automatically accommodates more
latent components as the amount of data grows. This allows us to infer conserva-
tive representations with few components when little data is available while being
flexible enough to represent complex patterns emerging from larger datasets.

Our model relies on a composition of two nonparametric priors—the Chi-
nese restaurant process (CRP) [16] and the related Chinese restaurant franchise
(CRF) [21]. By incorporating these two nonparametric priors we circumvent fix-
ing the number of site groups and the number of profile variants a priori, and
instead average over these choices under a posterior distribution.

In this section we present our model by means of a sequential, generative
description. In this description we use the index s to index sequences and i to
index the sites (sequence positions) within a sequence. Let M denote an S × I
matrix of aligned sequences, so that ms denotes the s-th sequence and ms,i

denotes the i-th symbol in the s-th sequence. Our model relies on four sets of
latent random variables: zsite, zclust, zprof and θ, sampled in top-down fashion
according to a CRF that is conditioned on a partition sampled from a CRP.

2.1 Chinese Restaurant Process Linkage Model

The CRP [16] is a nonparametric prior on partitions of a set of items. In its gen-
erative form it describes a sequential process that produces a dataset exhibiting
clusters. The language of the CRP likens the sequential process to a (potentially
endless) stream of customers entering a restaurant one by one. Upon entering,
each patron randomly chooses a table to sit at with probability proportional to
the number of customers already seated there, or sits at an empty table. Each
table is assigned a parameter that is shared by all customers at that table. For
clustering, the datapoints are thought of as patrons, and the clusters as tables,
which are parameterized by the tables’ parameter.

The first step in our model is to sample a partition of the site indices into
groups of linked sites. At this level of the model site indices are not yet associated
with any data—we only use the CRP seating process to induce a site partitioning.
The partition is sampled from a CRP where sites act as customers and site groups
as tables. Representing the allocation of sites to groups (tables) by a set of latent
variables zsite(i), i = 1, . . . , I, the process operates as follows: Customers (site
indices) enter the restaurant one by one and choose to sit either at an existing
table or to open a new table. At each step of the sequential process, let the
number of existing site tables be denoted by nsite, and the number of site indices
at table t by csite(t), t = 1, . . . , nsite. If we parameterize the CRP by αsite, then
the seating probabilities for site i given the seating assignment for all previous
sites 1, . . . , i− 1 are given as

p(zsite(i) = t|zsite(1:i− 1)) ∝
{

csite(t) if t ≤ nsite

αsite if t = nsite + 1 .
(1)
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From this definition we see that just as the number of sites visiting the restaurant
can in principle be unbounded, so can the number of tables at which they sit.
However, as the number of sites grows, it becomes less likely that new tables will
be opened; indeed, the growth rate can be shown to be O(αsite log i). Note the
role of the parameter αsite in scaling this growth rate in the prior distribution.

In the following, a site group is treated as an inseparable entity which can be
grouped further. In the overall process, it is the preliminary site grouping which
captures most of the site linkage in the observed data.

2.2 Chinese Restaurant Franchise Observation Model

The second part of our model represents a combinatorial observation model over
aligned sequences in the form of a CRF [21] that is conditioned on the initial
partitioning zsite by the CRP. The CRF is a generalization of the CRP to allow
multiple parallel restaurants to share parameters. Specifically, where in the CRP
each table is given a parameter which is shared among its occupants, in the CRF
these parameters can also be shared across multiple CRPs. It will turn out that
the “parameters” that are being shared in our application are pointers to profiles,
rather than the profiles themselves. As such, our model can be thought of as an
instance of a dependent nonparametric process, discussed by MacEachern [11],
where individual parameters are replaced by stochastic processes. In the CRF we
interpret each observed sequence as its own restaurant. But instead of thinking
of site positions as customers, as in a standard application of the CRF, we now
consider the previously induced site groups to be customers. Each restaurant is
visited by all site groups, so that the union of the site groups at each restaurant
captures the entire set of sequence indices. The CRF is defined as follows. At
each sequence ms the nsite site groups indicated in zsite are seated at tables a
second time according to the rules of a CRP. The seating arrangement of the site
groups is represented by latent variables zclust(s, t), t = 1, . . . , nsite. Denote by
nclust(s) the number of (second-level) tables formed at sequence s at each step
of the process, and let cclust(s, u), u = 1, . . . , nclust(s) denote the number of site
groups present at the table u. If we parameterize the sequential seating process
at each restaurant by αclust, then conditioned on the seating assignment of the
site groups 1, . . . , t− 1, the seating probabilities for group t are

p(zclust(s, t) = u|zclust(s, 1:t − 1)) ∝
{

cclust(s, u) if u ≤ nclust(s)
αclust if u = nclust(s) + 1 .

(2)

In order to produce observed sequences, the CRF model next introduces param-
eters. Each table u in a sequence restaurant s in the CRF is assigned a latent
variable zprof(s, u), that indicates which of a set of shared parameters θ is used
at table u of restaurant s. We will refer to one such shared parameter θp as
a “sequence profile.” As before, at each step of the sequential algorithm, the
variable nprof denotes how many distinct profiles the set of zprof variables points
to. The function cprof(p), p = 1, . . . , nprof reports how many of the tables in all
processed sequence restaurants picked profile p. In the sequential description of
the CRF, the choice of profile made by each table is influenced by the number
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of other tables that have previously chosen that profile. That is, the process can
be thought of as another CRP in which distinct profiles can be thought of as
tables. If we use parameter αprof to define this CRP, then the probability that
table u in restaurant s chooses profile p, given the profile choices of all tables in
restaurants 1, . . . , s− 1 and tables 1, . . . , u− 1 in restaurant s, is given by

p (zprof(s, u)=p|zprof(1:s−1, ·), zprof(s, 1:u−1)) ∝
{

cprof(p) if p ≤ nprof

αprof if p = nprof+1.
(3)

For sequences with an alphabet of size A, each sequence profile θp, p = 1, . . . , nprof

is comprised of I A-vectors, one for each site index. Each vector θp(·, i) is a proba-
bility distribution over the A possible symbols that could be observed at position
i. When a new table in one of the restaurants chooses a new profile θp which has
not yet been chosen before, the profile vectors θp(·, i), i = 1, . . . , I are sampled
from a Dirichlet prior, parameterized by αdir.

Once all latent variables and profiles have been sampled, the observed se-
quences are generated as follows: given the latent variables zsite, zclust, zprof and
profiles θ, we generate the symbol at position i in sequence s by sampling from
a multinomial with parameter θp(·, i), where p = zprof(s, zclust(s, zsite(i))).

The sampling procedure generates data that exhibit the combinatorial struc-
ture discussed in Figure 1 and found in a variety of biological sequence fami-
lies. Of course, our goal is to reverse this process. Starting from the observed
sequences we need to reconstruct the latent variables zsite, zclust, zprof and the
profile sequences, while making explicit our uncertainty over these structures.
In the next section we develop an inference algorithm that achieves this by ap-
proximating the full posterior over latent structures.

3 Inference

We use a collapsed Gibbs sampler in which the profiles θ are integrated out.
The algorithm cycles through resampling the site grouping zsite, the secondary
grouping of site groups zclust and the assignment of profiles zprof, at each step
conditioning on all remaining latent variables. A central property of the CRP and
CRF that facilitates this sampling process is exchangeability. Exchangeability
allows us to treat any customer of a restaurant as if it were the last customer to
enter the restaurant. This is consistent with our modeling assumption that sites
have unique positions that need to be grouped, but that the ordering of these
positions is of little value, since parts may be non-contiguous. The consequence of
this exchangeability is that we can now easily sample an updated table seating for
any customer in a restaurant. In the following we show the main computations for
resampling the site grouping zsite. The posteriors for sampling updated variables
zclust and zprof can be derived analogously to Teh et al. [21].

3.1 Resampling Site Groupings zsite

We denote by z−i
site, z

−i
clust and z−1

prof the latent variables that remain when site i is
removed from the representation. Let n−i

site be the number of distinct site tables
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when site i is removed. Similarly, let c−i
site(t) be the number of site indices seated

at table t when site i is removed. Due to the exchangeability of site indices in
the top CRP, we may treat site i as if it were the last to enter the restaurant.
In order to sample a new site grouping we must compute the probability that a
particular site i is seated at a table, given all other relevant information:

p
(
zsite(i) = t|m·,i, z−i

clust, z
−i
prof

)
. (4)

Because we treat i as the last customer to enter the restaurant the prior proba-
bility of seating site i at table t is given by

p
(
zsite(i) = t|z−i

site

)
∝

{
c−i
site(t) if t ≤ n−i

site

αsite if t = n−i
site + 1 .

(5)

In a collapsed sampler, if t is an existing site table then we compute the likelihood
of seating site i at table t by integrating the induced conditional likelihood of
sequence symbols at position i against the prior distributions on θp(·, i), ∀p. If
we define for zsite(i) = t ≤ n−1

site (an existing table was chosen) the count that a
symbol at position i is of type a and is generated by profile p as

ct(a, p) =
∑

s

1(ms,i = a, zprof(s, zclust(s, t)) = p), (6)

then for t ≤ n−1
site the integrated likelihood of the observed sequence symbols in

position i can be computed as

p(m·,i|zsite(i) = t, z−i
clust, z

−i
prof) =

∏
p

Γ (
∑

a αdir(a))∏
a Γ (αdir(a))

∏
a Γ (αdir(a)+ct(a, p))

Γ (
∑

a αdir(a)+ct(a, p))
. (7)

It is more complicated to compute the likelihood that site index i is seated at
a new table t = n−1

site + 1 since the creation of a new site index table triggers a
cascade of other choices that need to be made for the zclust and zprof variables.
In computing the likelihood of a new site table, the parameters θp(·, i), as well
as these new choices need to be integrated out. Rather than computing this
complicated integral, we adopt a simpler strategy and approximate the likelihood
by sampling a set of new assignments for zclust(s, n−1

site + 1), s = 1, . . . , S and if
necessary also zprof(s, zclust(s, n−1

site +1)), s = 1, . . . , S by following the sequential
generative model outlined before. Once sample allocations have been generated
for the proposal that t = n−1

site + 1, we can compute the integrated likelihood of
the seating proposal by similar means as in equation (7), giving us the last term

p(m·,i|zsite(i) = nsite + 1, z−i
clust, z

−i
prof) . (8)

Combining this likelihood with those computed in (7) and the prior in equa-
tion (5) allows us to compute the posterior in equation (4) from which we may
now sample a new site group allocation for site index i. If an existing site group
is chosen, nothing more needs to be done. If a new site group is created we copy
the previously sampled allocations into the current state zclust and zprof.
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Fig. 2. Comparison of the log likelihood assigned by the combinatorial model (blue
scatter) with the log likelihood assigned by a mixture model of comparable complexity
(red scatter) as a function of different model complexities. From left to right are shown
results for MHC, Flu and KIR sequences. Flu sequences require only relatively few
profiles and site groups (cf. Figure 1); thus only two model complexities were explored.

3.2 Resampling zclust and zprof

Once the site partition zsite has been resampled, the resampling of zclust and
zprof conditioned on zsite is performed in similar fashion as in the standard CRF.
As before, our implementation integrates out the profile parameters to improve
sampling efficiency. The computations can be readily derived from Teh et al. [21].

4 Results

To demonstrate the versatility of our model we applied it to three sequence
datasets in which we expect combinatorial patterns to exist. In the following we
have focused our analysis on a small number of the most polymorphic sites in
each dataset. The first dataset are 526 aligned amino-acid sequences of length 50
for MHC class I proteins from all three alleles A, B, C. The flu dataset comprises
aligned 22-long amino-acid sequences for 255 HA1 genes in influenza strains cov-
ering the years 1968–2003. The KIR dataset are sequences of unordered (i.e.,
unphased) pairs of haplotype measurements at 229 SNPs. These SNPs encode
variability of a killer cell immunoglobulin-like receptor. If we knew the phase, we
could order each pair and turn the data into aligned sequences that could easily
be analyzed as outlined before. We have thus extended our model to work with
unphased KIR data by introducing extra latent variables zphase that encode the
phasing information for each pair. The modified algorithm iterates between sam-
pling phasing variables to turn aligned sequences of pairs into aligned sequences,
and then sampling new latent variables zsite, zclust, as well as zprof, as before.

We have carried out experiments to demonstrate that our model successfully
isolates combinatorial structures from the data and learns a much more par-
simonious sequence model that yields higher log likelihood than a comparable
mixture model. For each of the datasets we set up a combinatorial sequence
model and computed posterior samples for different settings of the model pa-
rameters αsite, αcluster, αprofile, and αdir. Each combination of parameters induces
a different nonparametric prior over aligned sequences. We wish to compare the
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average data likelihoods assigned by the posterior combinatorial models to the
likelihoods obtained from flat mixture models. To facilitate this comparison, we
ensure that the mixture models we compare against have similar complexity as
the nonparametric model. We estimate the complexity of a given model by mea-
suring how many parameters it would take to represent a set of sequences in a
typical posterior sample. If for example a sample with nsite site tables and nprof

profiles of length I with a symbol alphabet of size A was found, we require a
total of I(nsite − 1)+nprofI(A− 1) parameters as a shared representation across
all sequences. The first I(nsite−1) parameters encode which site position is allo-
cated to which site group while the remaining account for the profile parameters.
In comparison, a mixture model that links all site positions asserts that n′

site = 1
and for n′

prof profiles requires n′
profI(A − 1) parameters. Assuming that a single

set of such parameters is fixed, to encode a set of sequences we would need to also
infer for each sequence the posterior distributions over latent variables (mixture
components for the mixture model, or profile pointers zprof in our model). Then
any remaining uncertainty as to the identity of the letters in individual positions
would also have to be collapsed by encoding these individual letters. Information
theory prescribes techniques for making the minimum required code length for
encoding all this directly dependent on the uncertainties in the data, with less
uncertain pieces encoded with shorter messages, so that the total code length in
bits reduces to the log2 likelihood under the model [18]. By adding the cost of
encoding the parameters that are shared by the sequences (profiles, partitioning
information), we would obtain a description length of the dataset. The cost of
encoding parameters would be proportional to the number of the parameters.
Similarly, for comparing model fits, statistical literature recommends the use of
the Bayesian information criterion (BIC) [19] or the Akaike information criterion
(AIC) which combine the log likelihood of the data with a penalty reflecting the
number of free parameters. However, rather than comparing the two models by
an MDL, BIC or AIC score for only one model complexity, we present a stronger
argument here: it turns out that for a wide range of model complexities, the log
likelihood of the data is higher under the combinatorial model than under the
mixture model.

To show this, for posterior samples of varying complexity under our model,
we compute the smallest number of mixture profiles that would exceed it in
complexity, i.e., n′

prof so that I(nsite − 1) + nprofI(A − 1) ≤ n′
profI(A − 1). We

then fit five mixture models on the data using n′
prof profiles and compute the

average log likelihood assigned to the data. In Figure 2 we show for the three
datasets the average log likelihood of the combinatorial model across samples
as a blue scatter and the average log likelihood of the mixture model as a red
scatter. For all three datasets, the log likelihood of the combinatorial model ex-
ceeds that of the mixture model considerably. Additionally, our model provides
a better representation for sequence clustering. The clustering induced by our
combinatorial model for Influenza HA1 sequences matches the hemagglutinin in-
hibition clusters of Smith et al. [20] closer than the clusters obtained by simple
mixture modeling, achieving an average adjusted rand index [4] of 0.70 versus
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Fig. 3. (a) Factorized representation for the first 18 SNPs inferred by our model on the
KIR data. Empty fields in the profiles denote that no further variants were found for a
site group. (b) The 5 profiles for the first 18 SNPs learnt by a mixture model on KIR
data. (c) AUC scores for the MHC I binding prediction task across 26 MHC proteins.
Averaging regression results across posterior samples significantly improves the AUC
score over using only the MAP sample to fit a regression.

0.551. In Figure 3(a), we visualize profiles as well as site groups for the first 18
SNPs of the KIR dataset for one posterior sample of the combinatorial model.
Figure 3(b) shows relevant parts of the 5 profiles that were inferred by a simpler
mixture phasing model. As can be seen, our model factorizes the profiles inferred
by the simpler mixture model into a parsimonious form that can still explain the
mixture variants. The green group has variants CACGTTA and TCTAGCG, while the
red group follows either CAGG or TTAT. Three of the four possible combinations
of these patterns occur in the profiles estimated by the mixture model. As a
side effect of the compact representation, our model allows for a more careful
use of data for profile parameter inference. Mixture models can capture many
combinations, but they achieve this by using a substantially greater number
of parameters, while still missing many of the combinations outside the region
shown. This leads to significantly lower likelihood in comparison with the com-
ponential model of similar parametric complexity, as shown in Figure 2.

4.1 MHC Class I Binding Prediction

The latent structure inferred under the model fit to MHC class I sequences
above can be used to match these sequences to their binding affinities, and in
this way predict epitopes for different MHC molecules. We model the binding
affinity (measured in terms of the log IC50 concentration) of an MHC class I
protein to an epitope as a linear function that allows sharing across several re-
1 To compute these scores we encoded the sampled latent state of each sequence as

a binary vector and clustered these into the same number of clusters as the target
clustering. The results were averaged over many samples from the posterior.
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lated protein variants. For any particular protein, our sequence model produces
a combinatorial representation in terms of site groups and their associated pro-
files2. For a given set of M MHC proteins, we encode this latent structure in
binary vectors bs, s = 1, . . .M . This structure compresses the links produced by
co-evolution of the specific sites in the MHC groove. Assuming that some of this
co-evolution is driven by selection for particular binding specificity patterns, the
latent structure under our model is expected to be useful in binding prediction
tasks. For each protein s, a given set of ns epitopes examples is encoded as bi-
nary vectors esj , j = 1 . . . , ns. If we denote the corresponding binding affinities
as ysj , j = 1, . . . , ns, then the linear regression we solve in terms of Θ is written
as ysj = e�sjΘbs. The sharing among related proteins is induced by the latent
structure bs. We evaluated two variants of this regression. The first variant uses
only the MAP sample from our model posterior to produce a single encoding bs,
while the second fits one regression for each posterior sample (each inducing a
different encoding bs) and then averages the final prediction across samples. The
two regression tasks were trained on a total of about 28000 binding affinities over
26 different human MHC molecules. Some MHC molecules were characterized by
only a handful of binding measurements, while others were tested against over
a thousand different peptides. The results in Figure 3(c) show the AUC score
(averaged over five cross-validation runs) obtained from classification into bind-
ing and non-binding epitopes. Integration across latent structure significantly
boosts the prediction accuracy. Averaged across the 26 MHC variants the aver-
aged predictor yields an AUC score of 0.8846, while the MAP variant achieves a
score of only 0.8197. Our result compares favorably with state of the art methods
summarized in Peters et al. [14]. The reviewed methods achieve average AUCs
of 0.8500 to 0.9146 on a subset of 21 of the 26 proteins for which our averaging
method gives a mean of 0.8911. Importantly, the method of Nielsen et al. [13]
uses carefully designed nonlinearities and separately known properties of amino-
acids to produce improved prediction results. Other leading methods [9,15] use
further feature design or exploit the protein structure to boost prediction re-
sults. In contrast, even though we use a simple binary representation of epitopes
and MHCs, we produce comparable results by virtue of a refined latent sharing
structure which is integrated out.

5 Conclusion

This paper presented a nonparametric combinatorial sequence prior that was
found to be a good match for a wide range of sequence families. An impor-
tant feature of the model is that it induces a posterior distribution over latent
factorized representations. Our work on MHC binding prediction demonstrates
that integrating out this distribution can be an important ingredient in infer-
ences that follow the initial sequence analysis. One way to explain why averaging
2 The parameters used for the combinatorial sequence model were αsite = 0.1, αclust =

5, αprof = 10, αdir = 0.5. Posterior samples typically had 3 profiles and 10 site groups
over sequences of length 34.
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across predictors should be beneficial in the case of MHCs is to consider the po-
tential for suboptimal parsing of the MHC groove. Although many MHC alleles
currently present in human populations are known, we cannot directly access the
extinct alleles. Thus, our estimate of the site covariation and the resulting opti-
mal sequence partition must suffer from the limited number of sequences used
to fit our model. Picking any one segmentation with a high likelihood over MHC
sequences may lead to an oversimplification of the sequence representation. A
posterior over the partitions, accompanied with latent variables giving sequence
types in different parts, reflects more information about a set of amino acids in
each MHC sequence than a latent structure based on one optimal segmentation.
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Abstract. One of the criteria for inferring a species tree from a collection of gene
trees, when gene tree incongruence is assumed to be due to incomplete lineage
sorting (ILS), is minimize deep coalescence, or MDC. Exact algorithms for infer-
ring the species tree from rooted, binary trees under MDC were recently intro-
duced. Nevertheless, in phylogenetic analyses of biological data sets, estimated
gene trees may differ from true gene trees, be incompletely resolved, and not nec-
essarily rooted. In this paper, we propose new MDC formulations for the cases
where the gene trees are unrooted/binary, rooted/non-binary, and unrooted/non-
binary. Further, we prove structural theorems that allow us to extend the algo-
rithms for the rooted/binary gene tree case to these cases in a straightforward
manner. Finally, we study the performance of these methods in coalescent-based
computer simulations.

1 Introduction

Biologists have long acknowledged that the evolutionary history of a set of species—
the species tree—and that of a genomic region from those species—the gene tree—
need not be congruent; e.g., [10]. While many processes can cause gene/species tree
incongruence, such as horizontal gene transfer and gene duplication/loss, we focus in
this paper on incomplete lineage sorting, or ILS, which is best understood under the
coalescent model [13,20,21], as we illustrate in Fig. 1. The coalescent model views
gene lineages moving backward in time, eventually coalescing down to one lineage.
In each time interval between species divergences (e.g., t in Fig. 1), lineages entering
the interval from a more recent time period may or may not coalesce—an event whose
probability is determined largely by the population size and branch lengths.

Thus, a gene tree is viewed as a random variable conditional on a species tree. For
the species tree ((AB)C), with time t between species divergences, the three possible
outcomes for the gene tree topology random variable, along with their probabilities are
shown in Fig. 1. With the advent of technologies that make it possible to obtain large
amounts of sequence data from multiple species, multi-locus data are becoming widely
available, highlighting the issue of gene tree discordance [4,8,14,17,19,25].

Several methods have been introduced for inferring a species tree from a collection
of gene trees under ILS-based incongruence. Summary statistics, such as the majority-
rule consensus (e.g., [2,8]) and democratic vote (e.g., [1,3,26,27]), are fast to compute
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A CB

t
A CB A CB A C B

ST gt1 gt2 gt3

Fig. 1. Gene/species tree incongruence due to ILS. Given species tree ST , with constant popula-
tion size throughout and time t in coalescent units (number of generations divided by the popula-
tion size) between the two divergence events, each of the three gene tree topologies gt1, gt2, and
gt3 may be observed, with probabilities 1 − (2/3)e−t, (1/3)e−t, and (1/3)e−t, respectively.

and provide a good estimate of the species tree in many cases. However, the accuracy
of these methods suffer under certain conditions. Further, these methods do not pro-
vide explicit reconciliation scenarios; rather, they provide summaries of the gene trees.
Recently, methods that explicitly model ILS were introduced, such as Bayesian infer-
ence [5,9], maximum likelihood [7], and the maximum parsimony criterion Minimize
Deep Coalescence, or MDC [10,11,25]. We introduced the first exact algorithms for
inferring species trees under the MDC criterion from a collection of rooted, binary gene
trees [22,23]. Nevertheless, in phylogenetic analyses of biological data sets, estimated
gene trees may differ from the true gene trees, may be incompletely resolved, and may
not be rooted. Requiring gene trees to be fully resolved may result in gene trees with
wrong branching patterns (e.g., those branches with low bootstrap support) that mas-
querade as true gene/species tree incongruence, thus resulting in over-, and possibly
under-, estimation of deep coalescences.

Here we propose an approach to estimating species trees from estimated gene trees
which avoids these problems. Instead of assuming that all gene trees are correct (and
hence fully resolved, rooted trees), we consider the case where all gene trees are mod-
ified so that they are reasonably likely to be unrooted, edge-contracted versions of the
true gene trees. For example, the reliable edges in the gene trees can be identified using
statistical techniques, such as bootstrapping, and all low-support edges can be con-
tracted. In this way, the MDC problem becomes one in which the input is a set of
gene trees which may not be rooted and may not be fully resolved, and the objective
is a rooted, binary species tree and binary rooted refinements of the input gene trees,
that optimizes the MDC criterion. We provide exact algorithms and heuristics for in-
ferring species trees for these cases. We have implemented several of these algorithms
and heuristics in our PhyloNet software package [24], which is publicly available at
http://bioinfo.cs.rice.edu/phylonet, and we evaluate the performance of these algorithms
and heuristics on synthetic data.

2 Preliminary Material

Clades and clusters. Throughout this section, unless specified otherwise, all trees are
presumed to be rooted binary trees, bijectively leaf-labelled by the elements of X (that
is, each x ∈ X labels one leaf in each tree). We denote by TX the set of all binary rooted
trees on leaf-set X . We denote by V (T ), E(T ), and L(T ) the node-set, edge-set, and
leaf-set, respectively, of T . For v a node in T , we define parent(v) to be the parent of
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v in T , and Children(v) to be the children of v. A clade in a tree T is a rooted subtree
of T , which can be identified by the node in T rooting the clade. For a given tree T , we
denote the subtree of T rooted at v by CladeT (v), and when the tree T is understood,
by Clade(v). The clade for node v is Clade(v), and since nodes can have children, the
children of a clade Clade(v) are the clades rooted at the children of v. The set of all
clades of a tree T is denoted by Clades(T). The set of leaves in CladeT (v) is called
a cluster and denoted by ClusterT (v) (or more simply by Cluster(v) if the tree T is
understood). The clusters that contain either all the taxa or just single leaves are called
trivial, and the other clusters are called non-trivial. The cluster of node v is Cluster(v).
As with clades, clusters can also have children. If Y is a cluster in a tree T , then the
clade for Y within T , denoted by CladeT (Y ), is the clade of T induced by Y . The set
of all clusters of T is denoted by Clusters(T). We say that edge e in gt is outside cluster
Y if it satisfies e /∈ E(Cladegt(Y )), and otherwise that it is inside Y . Given a set
A ⊆ L(T ), we define MRCAT (A) to be the most recent (or least) common ancestor
of the taxa in A. Finally, given trees t and T , both on X , we define H : V (t) → V (T )
by HT (v) = MRCAT (Clustert(v)).

We extend the definitions of Clades(T) and Clusters(T) to the case where T is un-
rooted by defining Clades(T) to be the set of all clades of all possible rootings of T ,
and Clusters(T) to be the set of all clusters of all possible rootings of T . Thus, the sets
Clades(T) and Clusters(T) depend upon whether T is rooted or not.

Given a cluster Y ⊆ X of T , the parent edge of Y within T is the edge incident
with the root of the clade for Y , but which does not lie within the clade. When T is
understood by context, we will refer to this as the parent edge of Y .

A set C of clusters is said to be compatible if there is a rooted tree T on leaf-set S
such that Clusters(T ) = C. By [18], the set C is compatible if and only if every pair A
and B of clusters in C are either disjoint or one contains the other.

Valid coalescent histories and extra lineages. Given gene tree gt and species tree ST ,
a valid coalescent history is a function f : V (gt) → V (ST ) such that the following
conditions hold: (1) if w is a leaf in gt, then f(w) is the leaf in ST with the same la-
bel; and, (2) if w is a vertex in Cladegt(v), then f(w) is a vertex in CladeST (f(v)).
Note that these two conditions together imply that f(v) is a node on the path be-
tween the root of ST and the MRCA in ST of Clustergt(v). Given a gene tree gt
and a species tree ST , and given a function f defining a valid coalescent history of gt
within ST , the number of lineages on each edge in ST can be computed by inspec-
tion. An optimal valid coalescent history is one that results in the minimum number
of lineages over all valid coalescent histories. We denote the number of extra lineages
on an edge e ∈ E(ST ) (one less than the number of lineages on e) in an optimal
valid coalescent history of gt within ST by XL(e, gt), and we denote by XL(ST, gt)
the total number of extra lineages within an optimal valid coalescent history of gt
within ST , i.e., XL(ST, gt) =

∑
e∈E(ST ) XL(e, gt); see Fig. 2. Finally, we denote

by XL(ST,G) the total number of extra lineages, or MDC score, over all gene trees
in G, so XL(ST,G) =

∑
gt∈G XL(ST, gt). Given gene tree gt and species tree ST ,

finding the valid coalescent history that yields the smallest number of extra lineages is
achievable in polynomial time, as we now show. Given cluster A in gt and cluster B in
ST , we say that A is B-maximal if (1) A ⊆ B and (2) for all A′ ∈ Clusters(gt), if
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Fig. 2. Illustration of optimal and non-optimal reconciliations of a rooted, binary gene tree gt
with a rooted, binary species tree ST , which yield 1 and 4 extra lineages, respectively

A ⊂ A′ then A′ ⊆ B. We set kB(gt) to be the number of B-maximal clusters within gt.
Finally, we say that cluster A is ST -maximal if there is a cluster B ∈ Clusters(ST )
such that B = X and A is B-maximal.

Theorem 1. (From [22]) Let gt be a gene tree, ST be a species tree, both binary rooted
trees on leaf-set X . Let B be a cluster in ST and let e be the parent edge of B in ST .
Then kB(gt) is equal to the number of lineages on e in an optimal valid coalescent
history. Therefore, XL(e, gt) = kB(gt) − 1, and XL(ST, gt) =

∑
B[kB(gt) − 1],

where B ranges over the clusters of ST . Furthermore, a valid coalescent history f that
achieves this total number of extra lineages can be produced by setting f(v) = HST (v)
(i.e., f(v) = MRCAST (Clustergt(v))) for all v.

In other words, we can score a candidate species tree ST with respect to a set G of
rooted binary trees with XL(ST,G) =

∑
gt∈G

∑
B∈Clusters(ST )[kB(gt)− 1]. Finally,

Corollary 1. Given collection G of k gene trees and species tree ST , each tree labelled
by the species in X , we can compute the optimal coalescent histories relating each gene
tree to ST so as to minimize the total number of extra lineages in O(nk) time, and the
MDC score of these optimal coalescent histories in O(n2k) time, where |X | = n.

The analysis of the running time follows from the following lemma:

Lemma 1. Given a rooted gene tree gt and a rooted binary species tree ST , we can
compute all HST (v) (letting v range over V (gt)) in O(n) time. We can also compute
the set of ST -maximal clusters in gt in O(n2) time.

2.1 The MDC Problem: Rooted, Binary Gene Trees

The MDC problem is the “minimize deep coalescence” problem; as formulated by
Wayne Maddison in [10], this is equivalent to finding a species tree that minimizes
the total number of extra lineages over all gene trees in G. Thus, the MDC problem can
be stated as follows: given a set G of rooted, binary gene trees, we seek a species tree
ST such that XL(ST,G) =

∑
gt∈G XL(ST, gt) is minimized.

MDC is conjectured to be NP-hard, and no polynomial-time exact algorithm is known
for this problem. However, it can be solved exactly using several techniques, as we now
show.
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Algorithms for MDC. The material in this section is from [22]. The simplest technique
to compute the optimal species tree with respect to a set G of gene trees is to compute
a minimum-weight clique of size n − 2 (where |X | = n) in a graph which we now
describe. Let G be the set of gene trees in the input to MDC, and let MDC(G) be the
graph with one vertex for each non-trivial subset of X (so MDC(G) does not contain
trivial clusters), edges between A and B if the two clusters are compatible (and so
A ∩ B = ∅, A ⊂ B, or B ⊂ A). A clique inside this graph therefore defines a set of
pairwise compatible clusters, and hence a rooted tree on X . We set the weight of each
node A to be w(A) =

∑
gt∈G [kA(gt)−1]. We seek a clique of size n−2, and among all

such cliques we seek one of minimum weight. By construction, the clique will define a
rooted, binary tree ST such that XL(ST,G) is minimized.

The graph MDC(G) contains 2n − n− 1 vertices, where n = |X |, and is therefore
large even for relatively small n. We can constrain this graph size by restricting the
allowable clusters to a smaller set, C, of subsets of X . For example, we can set C =
∪gt∈GClusters(gt) (minus the trivial clusters), and we can define MDC(C) to be the
subgraph of MDC(G) defined on the vertices corresponding to C. However, the cliques
of size n−2 in the graph MDC(C) may not have minimum possible weights; therefore,
instead of seeking a minimum weight clique of size n − 2 within MDC(C), we will
set the weight of node A to be w′(A) = Q − w(A), for some very large Q, and seek a
maximum weight clique within the graph.

Finally, we can also solve the problem exactly using dynamic programming. For
A ⊆ X and binary rooted tree T on leaf-set A, we define

lT (A,G) =
∑
gt∈G

∑
B

[kB(gt) − 1],

where B ranges over all clusters of T . We then set

l∗(A,G) = min{lT (A,G) : T ∈ TA}.

By Theorem 1, l∗(X ,G) is the minimum number of extra lineages achievable in any
species tree on X , and so any tree T such that lT (X ,G) = l∗(X ,G) is a solution to the
MDC problem on input G. We now show how to compute l∗(A,G) for all A ⊆ X using
dynamic programming. By backtracking, we can then compute the optimal species tree
on X with respect to the set G of gene trees.

Consider a binary rooted tree T on leaf-set A that gives an optimal score for l∗(A,G),
and let the two subtrees off the root of T be T1 and T2 with leaf sets A1 and A2 =
A −A1, respectively. Then, letting B range over the clusters of T , we obtain

lT (A,G) =
∑
gt∈G

∑
B

[kB(gt)− 1] =

∑
gt∈G

∑
B⊆A1

[kB(gt) − 1] +
∑
gt∈G

∑
B⊆A2

[kB(gt)− 1] +
∑
gt∈G

[kA(gt) − 1].

If for i = 1 or 2, lTi(Ai,G) = l∗(Ai,G), then we can replace Ti by a different tree on Ai

and obtain a tree T ′ on A such that lT ′(A,G) < lT (A,G), contradicting the optimality
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of T . Thus, lTi(Ai,G) = l∗(Ai,G) for i = 1, 2, and so l∗(A,G) is obtained by taking
the minimum over all sets A1 ⊂ A of l∗(A1,G)+ l∗(A−A1,G)+

∑
gt∈G [kA(gt)−1].

In other words, we have proven the following:

Lemma 2. l∗(A,G) = minA1⊂A{l∗(A1,G) + l∗(A −A1,G) +
∑

gt∈G [kA − 1]}.

This lemma suggests the dynamic programming algorithm:

– Order the subsets of X by cardinality, breaking ties arbitrarily.
– Compute kA(gt) for all A ⊆ X and gt ∈ G.
– For all singleton sets A, set l∗(A,G) = 0.
– For each subset with at least two elements, from smallest to largest, compute

l∗(A,G) = minA1⊂A{l∗(A1,G) + l∗(A −A1,G) +
∑

gt∈G [kA(gt)− 1]}.
– Return l∗(X ,G).

There are 2n − 1 subproblems to compute (one for each set A) and each takes O(2nn)
time (there are at most 2n subsets A1 of A, and each pair A, A1 involves computing
kA for each gt ∈ G, which costs O(n) time). Hence, the running time is O(n22n) time.
However, Than and Nakhleh showed that using only the clusters of the gene trees would
produce almost equally good estimates of the species tree [22,23].

3 MDC on Estimated Gene Trees

Estimating gene trees with high accuracy is a challenging task, particularly in cases
where branch lengths are very short (which are also cases under which ILS is very
likely to occur). As a result, gene tree estimates are often unrooted, unresolved, or both.
To deal with these practical cases, we formulate the problems as estimating species
trees and completely resolved, rooted versions of the input trees to optimize the MDC
criterion. We show that the clique-based and DP algorithms can still be applied.

3.1 Unrooted, Binary Gene Trees

When reconciling an unrooted, binary gene tree with a rooted, binary species tree under
parsimony, it is natural to seek the rooting of the gene tree that results in the mini-
mum number of extra lineages over all possible rootings. In this case, the MDC prob-
lem can be formulated as follows: given a set G = {gt1, gt2, . . . , gtk} of gene trees,
each of which is unrooted, binary, with leaf-set X , we seek a species tree ST and set
G′ = {gt′1, gt′2, . . . , gt′k}, where gt′i is a rooted version of gti, so that XL(ST,G′) is
minimum over all such sets G′.

Given a species tree and a set of unrooted gene trees, it is easy to compute the optimal
rootings of each gene tree with respect to the given species tree, since there are only
O(n) possible locations for the root in an n leaf tree, and for each possible rooting we
can compute the score of that solution in O(n2) time. Thus, it is possible to compute the
optimal rooting and its score in O(n3) time. Here we show how to solve this problem
more efficiently – finding the optimal rooting in O(n) time, and the score for the optimal
rooting in O(n2) time, thus saving a factor of n. We accomplish this using a small
modification to the techniques used in the case of rooted gene trees.
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We begin by extending the definition of B-maximal clusters to the case of unrooted
gene trees, for B a cluster in a species tree ST , in the obvious way. Recall that the set
Clusters(gt) depends on whether gt is rooted or not, and that kB(gt) is the number of
B-maximal clusters in gt. We continue with the following:

Lemma 3. Let gt be an unrooted binary gene tree on X and let ST be a rooted binary
species tree onX . Let C∗ be the set of ST -maximal clusters in gt. Let e be any edge of gt
such that ∀Y ∈ C∗, e /∈ E(Cladegt(Y )) (i.e., e is not inside any subtree of gt induced
by one of the clusters in C∗). Then the tree gt′ produced by rooting gt on edge e satisfies
(1) C∗ ⊆ Clusters(gt′), and (2) XL(ST, gt′) =

∑
B∈Clusters(ST )[kB(gt)−1], which

is the best possible. Furthermore, there is at least one such edge e in gt.

Proof. We begin by showing that there is at least one edge e that is outside Y for all
Y ∈ C∗. Pick a cluster A1 ∈ C∗ that is maximal (i.e., it is not a subset of any other
cluster in C∗); we will show that the parent edge of A1 is outside all clusters in C∗.
Suppose e is inside cluster A2 ∈ C∗. Since A1 is maximal, it follows that A2 ⊆ A1.
However, if the parent edge of A2 is not inside A1, then either A2 is disjoint from A1 or
A2 contains A1, neither of which is consistent with the assumptions that A1 is maximal
and the parent edge of A1 is inside A2. Therefore, the parent edge of A2 must be inside
A1. In this case, A1 ∩ A2 = ∅ and A1 ∪ A2 = X . Let Bi be the cluster in ST such
that Ai is Bi-maximal, i = 1, 2. Then B1 ∩ B2 = ∅, and so without loss of generality
B1 ⊆ B2. But then A1 ∪ A2 ⊆ B1 ∪ B2 = B2 and so B2 = X . But X is the only X -
maximal cluster, contradicting our hypotheses. Hence the parent edge of any maximal
cluster in C∗ is not inside any cluster in C∗.

We now show that rooting gt on any edge e that is not inside any cluster in C∗ satisfies
C∗ ⊆ Clusters(gt′). Let e be any such edge, and let gt′ be the result of rooting gt on
e. Under this rooting, the two children of the root of gt′ define subtrees T1, with cluster
A1, and T2, with cluster A2. Now, suppose ∃A′ ∈ C∗-Clusters(gt′). Since C∗ ⊆
Clusters(gt), it follows that A′ is the complement of a cluster B ∈ Clusters(gt′). If
B is a proper subset of either A1 or A2, then the subtree of gt induced by A′ contains
edge e (since A′ = X − B), contradicting how we selected e. Hence, it must be that
B = A1 or B = A2. However, in this case, A′ is also equal to either A1 or A2, and
hence A′ ∈ Clusters(gt′), contradicting our hypothesis about A′.

We finish the proof by showing that XL(ST, gt′) is optimal for all such rooted trees
gt′, and that all other locations for rooting gt produce a larger number of extra lineages.
By Theorem 1, XL(ST, gt′) =

∑
B[kB(gt′) − 1], as B ranges over the clusters of

ST . By construction, this is exactly
∑

B [kB(gt) − 1], as B ranges over the clusters of
ST . Also note that for any rooted version gt∗ of gt, kB(gt∗) ≥ kB(gt), so that this
is optimal. Now consider a rooted version gt∗ in which the root is on an edge that is
inside some subtree of gt induced by A ∈ C∗. Let gt∗ have subtrees T1 and T2 with
clusters A1 and A2, respectively. Without loss of generality, assume that A1 ⊂ A, and
that A2 ∩ A = ∅. Since A ∈ C∗, there is a cluster B ∈ Clusters(ST ) such that A
is B-maximal. But then A1 is B-maximal. However, since A − A1 = ∅, there is also
at least one B-maximal cluster Y ⊂ A within T2. Hence, kB(gt∗) > kB(gt). On the
other hand, for all other clusters B′ of ST , kB′(gt∗) ≥ kB′(gt′) = kB′(gt). Therefore,
XL(ST, gt∗) > XL(ST, gt′). In other words, any rooting of gt on an edge that is not
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within a subtree induced by a cluster in A is optimal, while any rooting of gt on any
other edge produces a strictly larger number of extra lineages.

This theorem allows us to compute the optimal rooting of an unrooted binary gene tree
with respect to a rooted binary species tree, and hence gives us a way of computing the
score of any candidate species tree with respect to a set of unrooted gene trees:

Corollary 2. Let ST be a species tree and G = {gt1, gt2, . . . , gtk} be a set of un-
rooted binary gene trees. Let G′ = {gt′1, gt′2, . . . , gt′k} be a set of binary gene trees
such that gt′i is a rooted version of gti for each i = 1, 2, . . . , k, and which minimizes
XL(ST,G′). Then XL(ST,G′) =

∑
i

∑
B∈Clusters(ST )[kB(gti) − 1]. Furthermore,

the optimal G′ can be computed in O(nk) time, and the score of G′ computed in O(n2k)
time.

Solving MDC given unrooted, binary gene trees. Let G = {gt1, gt2, . . . , gtk}, as
above. We define the MDC-score of a candidate (rooted, binary) species tree ST by∑

i

∑
B∈Clusters(ST )[kB(gti)−1]; by Corollary 2, the tree ST ∗ that has the minimum

score will be an optimal species tree for the MDC problem on input G. As a result, we
can use all the techniques used for solving MDC given binary rooted gene trees, since
the score function is unchanged.

3.2 Rooted, Non-binary Gene Trees

When reconciling a rooted, non-binary gene tree with a rooted, binary species tree un-
der parsimony, it is natural to seek the refinement of the gene tree that results in the
minimum number of extra lineages over all possible refinements; see the illustration
in Fig. 3. In this case, the MDC problem can be formulated as follows: given a set
G = {gt1, gt2, . . . , gtk} in which each gti may only be partially resolved, we seek a
species tree ST and binary refinements gt∗i of gti so that XL(ST,G∗) is minimized,
where G∗ = {gt∗1, gt∗2, . . . , gt∗k}. This problem is at least as hard as the MDC problem,
which is conjectured to be NP-hard.

A Quadratic Algorithm for Optimal Refinement of Gene Trees Under MDC. We begin
with the problem of finding an optimal refinement of a given gene tree gt with respect
to a given species tree ST , with both trees rooted.

A B C D E
binary gene tree gt'2

A B C D E
binary gene tree gt'1

EDCBA

02

1

optimal reconciliation

refinereconcile refine reconcile

optimal refinement non-optimal refinement

A B C D E
unresolved gene tree gt

EDCBA

00

0

optimal reconciliation

Fig. 3. Illustration of optimal and non-optimal reconciliations of a rooted, non-binary gene tree
gt with a rooted, binary species tree ST , which yield 0 and 3 extra lineages, respectively
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Definition 1. (Optimal tree refinement w.r.t. MDC (OTRMDC))

Input: Species tree ST and gene tree gt, both rooted and leaf-labelled by set X of
taxa.
Output: Binary rooted tree gt∗ refining gt that minimizes XL(ST, t) over all re-
finements t of gt. We denote gt∗ by OTRMDC(ST, gt).

We show that OTRMDC(ST, gt) can be solved in O(n2) time, where n is the number
of leaves in either tree. For B ∈ Clusters(ST ) and gene tree gt, we define FB(gt) to
be the number of nodes in gt that have at least one child whose cluster is B-maximal.
We will show that for a given rooted gene tree gt and rooted binary species tree ST , the
optimal refinement t∗ of gt will satisfy XL(ST, t∗) =

∑
B∈Clusters(ST )[FB(gt)− 1].

Therefore, to compute the score of the optimal refinement of one gene tree gt, it suffices
to compute FB(gt) for every B ∈ Clusters(ST ).

The algorithm to compute the score of the optimal refinement of gt first computes
the set of B-maximal clusters, which takes O(n) time by Lemma 1. It then computes
FB(gt), for each B; this requires an additional O(n) time per B, for a total cost of
O(n2) time.

Algorithm for OTRMDC(ST, gt): To compute the optimal refinement, we have a
slightly more complicated algorithm.

Step 1: Preprocessing. We begin by computing HST (v) for every node v ∈ V (gt),
as described above; this takes O(n) time overall.

Step 2: Refine at every high degree node. We then visit each internal node v of gt
that has more than two children, and we modify the tree gt locally at v by replacing
the rooted star tree at v by a tree defined by the topology induced in ST by the images
under the mapping HST of v and v’s children. The order in which we visit the nodes is
irrelevant.

We now make precise how this modification of gt at node v is performed. We denote
by Tree(ST, gt, v) the tree formed as follows. First, we compute the subtree of ST
induced by the images of v and its children under the HST mapping. If a child y of v
is mapped to an internal node of the induced subtree, we add a leaf ly and make it a
child of HST (y); in this way, the tree we obtain has all the nodes in Children(v) iden-
tified with distinct leaves in Tree(ST, gt, v). (Although ST is assumed to be binary,
Tree(ST, gt, v) may not be binary.) After we compute Tree(ST, gt, v), we modify gt
by replacing the subtree of gt induced by v and its children with Tree(ST, gt, v). The
subtree within the refinement that is isomorphic to Tree(ST, gt, v) is referred to as the
local subtree at v.

Step 3: Completely refine if necessary. Finally, after the refinement at every node is
complete, if the tree is not binary, we complete the refinement with an arbitrary refine-
ment at v.

Theorem 2. Algorithm OTRMDC(ST, gt) takes O(n2) time, where ST and gt each
have n leaves.

It is clear that the algorithm is well-defined, so that the order in which we visit the nodes
in V (gt) does not impact the output.
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Observation 1. Let gt be an arbitrary rooted gene tree, gt′ a refinement of gt, and ST
an arbitrary rooted binary species tree. Then kB(gt′) ≥ FB(gt) for all clusters B of
ST .

Theorem 3. Let gt be an arbitrary rooted gene tree, ST an arbitrary rooted binary
species tree, t the result of the first two steps of OTRMDC(ST, gt), and t∗ an arbitrary
refinement of t (thus t∗ = OTRMDC(ST, gt)). Then for all B ∈ Clusters(ST ),
FB(gt) = FB(t∗) and no node in t or t∗ has more than one B-maximal child.

Proof. Step 2 of OTRMDC(ST, gt) can be seen as a sequence of refinements that
begins with gt and ends with t, in which each refinement is obtained by refining around
a particular node in gt. The tree t∗ = OTRMDC(ST, gt) is then obtained by refining t
arbitrarily into a binary tree, if t is not fully resolved. Let the internal nodes of gt with
at least three children be v1, v2, . . . , vk. Thus, gt = gt0 → gt1 → gt2 → . . . → gtk =
t → t∗, where gti → gti+1 is the act of refining at node vi+1, and t → t∗ is an arbitrary
refinement.

We begin by showing that FB(gti) = FB(gti+1), for i = 0, 1, 2, . . . , k−1. When we
refine at node vi, we modify the tree gti−1 by replacing the subtree immediately below
node vi by Tree(ST, gt, vi), producing the local subtree below vi. Fix a cluster B ∈
Clusters(ST ). If the cluster for vi in gti−1 does not have any B-maximal children,
then refining at vi will not change FB , and hence FB(gti−1) = FB(gti). Otherwise, vi

has at least one B-maximal child in gti−1. Since vi is not B-maximal within gti−1, vi

also has at least one child in gti−1 that is not B-maximal. Hence, the tree gti produced
by refining gti−1 at vi (using Tree(ST, gti, vi)) contains a node y that is an ancestor of
all the B-maximal children of vi within gti−1 and not the ancestor of any other children
of vi in gti−1. Therefore, the cluster for y is B-maximal within gti, and no other node
that is introduced during this refinement is B-maximal within gti. Therefore within the
local subtree at vi in gti there is exactly one node that defines a B-maximal cluster,
and exactly one node that is the parent of at least one B-maximal cluster. As a result,
FB(gti−1) = FB(gti).

This argument also shows that any node in the local subtree at vi that is the parent of
at least one B-maximal cluster is the parent of exactly one B-maximal cluster. On the
other hand, if vi does not have any B-maximal child in gti−1, then there is no node in
vi’s local subtree that has any B-maximal children. In other words, after refining at node
vi, any node within the local subtree at vi that has one or more B-maximal children has
exactly one such child. As a result, at the end of Step 2 of OTRMDC(ST, gt), every
node has at most one B-maximal child, for all B ∈ Clusters(ST ).

The last step of the OTRMDC algorithm produces an arbitrary refinement of t =
gtk, if it is not fully resolved. But since no node in gtk can have more than one B-
maximal child, if t∗ is a refinement of t = gtk then FB(t) = FB(t∗).

Theorem 4. Let gt be a rooted gene tree, ST a rooted binary species tree, both on set
X , t the result of the first two steps of OTRMDC(ST, gt), and t∗ any refinement of t.
Then XL(ST, t∗) =

∑
B∈Clusters(ST )[FB(gt) − 1], and t∗ is a binary refinement of

gt that minimizes XL(ST, t′) over all binary refinements t′ of gt.

Proof. Let B be an arbitrary cluster in ST . By Theorem 3, FB(t∗) = FB(gt). Also
by Theorem 3, no node in t has more than one B-maximal child, and so kB(t) =
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FB(t). Since t∗ is an arbitrary refinement of t, it follows that kB(t∗) = FB(t∗), and
so kB(t∗) = FB(gt). By Observation 1, for all refinements t′ of gt, kB(t′) ≥ FB(gt).
Hence kB(t′) ≥ kB(t∗) for all refinements t′ of gt. Since this statement holds for an
arbitrary cluster B in ST , it follows that XL(ST, t′) ≥ XL(ST, t∗) for all refinements
t′ of gt, establishing the optimality of t∗.

Corollary 3. Let ST be a species tree and G = {gt1, gt2, . . . , gtk} be a set of gene
trees that may not be resolved. Let G∗ = {gt∗1, gt∗2, . . . , gt∗k} be a set of binary gene
trees such that gt∗i refines gti for each i= 1, 2, . . . , k, and which minimizes XL(ST,G∗).
Then XL(ST,G∗) =

∑
i

∑
B∈Clusters(ST )[FB(gti) − 1]. Furthermore, the optimal

resolution of each gene tree and its score can be computed in O(n2k) time.

Solving MDC given rooted, non-binary gene trees. Corollary 3 allows us to compute
the score of any species tree with respect to a set of rooted but unresolved gene trees. We
can use this to find optimal species trees from rooted, non-binary gene trees, as we now
show. Let G be a set of rooted gene trees that are not necessarily binary. By Corollary
3, we can formulate the problem as a minimum-weight clique problem. The graph has
one vertex for every subset of X , and we set the weight of the vertex corresponding to
subset B to be w(B) =

∑
gt∈G [FB(gt) − 1]. We have edges between vertices if the

two vertices are compatible (can both be contained in a tree). The solution is therefore
a minimum weight clique with n − 2 vertices. And, as before, we can describe this as
a maximum weight clique problem by having the weight be w′(B) = Q − w(B), for
some large enough Q.

However, we can also address this problem using dynamic programming, as before.
Let A ⊆ X and T ∈ TA. Let lT (A,G) =

∑
gt∈G

∑
B[FB(gt) − 1], as B ranges over

the clusters of T . Let l∗(A,G) = minT∈TA{lT (A,G)}. Then l∗(X ,G) is the solution
to the problem of inferring a species tree from rooted, non-binary gene trees.

We set base cases l∗({x},G) = 0 for all x ∈ X . We order the subproblems by the
size of A, and compute l∗(A,G) only after every l∗(A′,G) is computed for A′ ⊂ A.
The DP formulation is

l∗(A,G) = min
A1⊂A

{l∗(A1,G) + l∗(A −A1,G) +
∑
gt∈G

[FA(gt)− 1]}.[−5mm]

3.3 Unrooted, Non-binary Gene Trees

When reconciling an unrooted and incompletely resolved gene tree with a rooted, binary
species tree under parsimony, it is natural to seek the rooting and refinement of the gene
tree that results in the minimum number of extra lineages over all possible rootings
and refinements; see the illustration in Fig. 4. In this case, the MDC problem can be
formulated as follows: given a set G = {gt1, gt2, . . . , gtk}, with each gti a tree on X ,
but not necessarily rooted nor fully resolved, we seek a rooted, binary species tree ST
and set G′ = {gt′1, gt′2, . . . , gt′k} such that each gt′i is a binary rooted tree that can be
obtained by rooting and refining gti, so as to minimize XL(ST,G′) over all such G′.
As before, the computational complexity of this problem is unknown, but conjectured
to be NP-hard.
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Fig. 4. Illustration of optimal and non-optimal reconciliations of an unrooted, non-binary gene
tree gt with a rooted, binary species tree ST , which yield 0 and 3 extra lineages, respectively

Observation 2. For any gene tree gt and species tree ST , and t∗ the optimal refined
rooted version of gt that minimizes XL(ST, t∗) can be obtained by first rooting gt at
some node, and then refining the resultant rooted tree. Thus, to find t∗, it suffices to find
a node v ∈ V (gt) at which to root the tree t, thus producing a tree t′, so as to minimize∑

B∈Clusters(ST )[FB(gt′) − 1].

From this, the following theorem follows:

Theorem 5. Let gt be an unrooted, not necessarily binary gene tree on X , and let ST
be a rooted species tree on X . Let A ∈ Clusters(gt) be a largest ST -maximal cluster,
and v be the neighbor of the root of the clade for A that is in A. If we root gt at v, then
the resultant tree gt′ minimizes

∑
B∈Clusters(ST )[FB(gt′)−1] over all rooted versions

gt′ of t.

And, therefore,

Theorem 6. Let T be a set of gene trees that are unrooted and not necessarily bi-
nary. For B ⊂ X , define tB to be the rooted version of t formed by rooting t
at a node v, as given by Theorem 5. Then, the species tree ST that minimizes∑

t∈T
∑

B∈Clusters(ST )[FB(tB) − 1] is an optimal solution to the problem.

As a result, we can solve the problem using the clique and DP formulations as in the
other versions of the MDC problem.

4 Experimental Evaluation

4.1 Methods

Simulated data. We generated species trees using the “Uniform Speciation” (Yule)
module in the program Mesquite [12]. Two sets of species trees were generated: one
for 8 taxa plus an outgroup, and one for 16 taxa plus an outgroup. Each data set had
500 species trees. All of them have a total branch length of 800,000 generations ex-
cluding the outgroup. Within the branch of each species tree, 1, 2, 4, 8, 16, or 32 gene
trees were simulated using the “Coalescence Contained Within Current Tree” module
in Mesquite with the effective population size Ne equal 100,000. We sampled one al-
lele per species. We used the program Seq-gen [15] to simulate the evolution of DNA
sequences of length 2000 under the Jukes-Cantor model [6] down each of the gene trees
(these settings are similar to those used in [11]).
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Estimated gene trees. We estimated gene trees from these sequence alignments using
default PAUP* heuristic maximum parsimony (MP) methods, returning the strict con-
sensus of all optimal MP trees. We rooted each estimated tree at the outgroup in order
to produce rooted estimated trees.

Estimated species trees. The “heuristic’ version of our method uses only the clusters of
the input gene trees, and the “exact” version uses all possible clusters on the taxon set.
For some analyses using the heuristic MDC algorithms, the estimated species tree is not
fully resolved. In this case, we followed this initial analysis with a search through the
set of binary resolutions of the initial estimated species tree for a fully resolved tree that
optimized the number of extra lineages. This additional step was limited to 5 minutes
of analysis. The only cases where this additional search was not applied were when the
polytomy (unresolved node) in the species tree was present in all gene trees; in these
cases, any resolution is arbitrary and is as good (under the MDC) criterion as any other
resolution.

For the 8-taxon data sets, we used both the exact and heuristic versions of all four
algorithms. For the 16-taxon data sets, we used only the heuristic versions.

Measurements. We report the degree of resolution of each estimated gene tree, which
is the number of internal branches in t divided by n − 3, where t has n leaves. We also
report the Robinson-Foulds (RF) error [16] of estimated trees to the true trees, where the
RF error is the total number of edges in the two trees that define bipartitions that are not
shared by the other tree, divided by 2n − 6. A value 0 of the RF distance indicates the
two trees are identical, and a value of 1 indicates the two trees are completely different
(they disagree on every branch).

4.2 Results

The degree of resolution of the reconstructed gene trees was around 0.6 in the case of
8-taxon gene trees, and around 0.5 in the case of 16-taxon gene trees.

With respect to topological accuracy of the estimated gene trees, we found that for 8
taxa, the RF distance is around 0.21. However, 98% of the estimated gene trees have no
false positives; thus, all but 2% of the estimated gene trees can be resolved to match the
true gene tree. Similarly, the RF distance for the 16-taxon data sets between true gene
trees and reconstructed gene trees is around 0.27, but 96% have 0 false positive values.

We now discuss topological accuracy of the species trees estimated using our algo-
rithms for solving the MDC problem. We show results on running the exact and heuris-
tic versions of the algorithms on 8 taxon estimated gene trees in Figure 5. These results
show that increasing the number of gene trees improves the accuracy of the estimated
species tree, and that very good accuracy is obtainable from a small number of gene
trees. We also see that knowing the true root instead of estimating the root is helpful
when the number of gene trees is very small, but that otherwise our algorithm is able to
produce comparable results even on unrooted gene trees. The results also show that the
heuristic version of our algorithm is as accurate as the exact version once there are four
or more gene trees (and almost identical in accuracy for two gene trees).
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Fig. 5. Performance of MDC methods on estimated gene trees with 8 taxa. Left: MDC on esti-
mated gene trees with correct roots. Right: MDC on unrooted estimated gene trees.
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Abstract. Motivation. Current approaches to RNA structure prediction
range from physics-based methods, which rely on thousands of
experimentally-measured thermodynamic parameters, to machine-
learning (ML) techniques. While the methods for parameter estimation
are successfully shifting toward ML-based approaches, the model param-
eterizations so far remained fairly constant and all models to date have
relatively few parameters. We propose a move to much richer parame-
terizations.

Contribution. We study the potential contribution of increasing the
amount of information utilized by folding prediction models to the im-
provement of their prediction quality. This is achieved by proposing novel
models, which refine previous ones by examining more types of structural
elements, and larger sequential contexts for these elements. We argue
that with suitable learning techniques, not being tied to features whose
weights could be determined experimentally, and having a large enough
set of examples, one could define much richer feature representations
than was previously explored, while still allowing efficient inference. Our
proposed fine-grained models are made practical thanks to the avail-
ability of large training sets, advances in machine-learning, and recent
accelerations to RNA folding algorithms.

Results. In order to test our assumption, we conducted a set of exper-
iments that asses the prediction quality of the proposed models. These
experiments reproduce the settings that were applied in recent thorough
work that compared prediction qualities of several state-of-the-art RNA
folding prediction algorithms. We show that the application of more de-
tailed models indeed improves prediction quality, while the corresponding
running time of the folding algorithm remains fast. An additional impor-
tant outcome of this experiment is a new RNA folding prediction model
(coupled with a freely available implementation), which results in a sig-
nificantly higher prediction quality than that of previous models. This
final model has about 70,000 free parameters, several orders of magni-
tude more than previous models. Being trained and tested over the same
comprehensive data sets, our model achieves a score of 84% according to
the F1-measure over correctly-predicted base-pairs (i.e. 16% error rate),
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compared to the previously best reported score of 70% (i.e. 30% error
rate). That is, the new model yields an error reduction of about 50%.

Availability. Additional supporting material, trained models, and source
code are available through our website at http://www.cs.bgu.ac.il/

~negevcb/contextfold

1 Introduction

Within the last few years, non-coding RNAs have been recognized as a highly
abundant class of RNAs. These RNA molecules do not code for proteins, but
nevertheless are functional in many biological processes, including localization,
replication, translation, degradation, regulation and stabilization of biological
macromolecules [1,2,3]. It is generally known that much of RNAs functionali-
ties depend on its structural features [3,4,5,6]. Unfortunately, although massive
amounts of sequence data are continuously generated, the number of known RNA
structures is still limited, since experimental methods such as NMR and Crystal-
lography require expertise and long experimental time. Therefore, computational
methods for predicting RNA structures are of significant value [7,8,9]. This work
deals with improving the quality of computational RNA structure prediction.

RNA is typically produced as a single stranded molecule, composed as a se-
quence of bases of four types, denoted by the letters A, C, G, and U . Every base
can form a hydrogen bond with at most one other base, where bases of type C
typically pair with bases of type G, A typically pairs with U , and another weaker
pairing can occur between G and U . The set of formed base-pairs is called the
secondary structure, or the folding of the RNA sequence (see Fig. 1), as opposed
to the tertiary structure which is the actual three dimensional molecule struc-
ture. Paired bases almost always occur in a nested fashion in RNA foldings. A
folding which sustains this property is called a pseudoknot-free folding. In the
rest of this work we will consider only pseudoknot-free foldings.

RNA structure prediction (henceforth RNA folding) is usually formulated as
an optimization problem, where a score is defined for every possible folding of
the given RNA sequence, and the predicted folding is one that maximizes this
score. While finding a folding which maximizes the score under an arbitrary
scoring function is intractable due to the magnitude of the search space, specific
classes of scoring functions allow for an efficient solution using dynamic program-
ming [10]. Thus, in the standard scoring approach, the score assigned to a folding
is composed as the sum of scores of local structural elements, where the set of
local elements are chosen to allow efficient dynamic programming inference.1

Several scoring models were introduced over the past three decades, where
these models mainly differ in the types of structural elements they examine (the
feature-set), and the scores they assign to them. A simple example of such a
model is the one of Nussinov and Jacobson [10], which defines a single feature

1 Some scoring models also utilize homology information with respect to two or more
sequences. Such comparative approaches are beyond the scope of this work.

http://www.cs.bgu.ac.il/~negevcb/contextfold
http://www.cs.bgu.ac.il/~negevcb/contextfold
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corresponding to a canonical Watson-Crick base-pair in the structure (i.e. base-
pairs of the form G-C and A-U , and their respective reversed forms). The score
of each occurrence of the feature in the structure is 1, and thus the total score of a
folding is simply the number of canonical base-pairs it contains. A more complex
model, which is commonly referred to as the Turner99 model, was defined in [11]
and is widely used in many RNA structure prediction systems [7,8,9]. This model
distinguishes between several different types of structural elements corresponding
to unpaired bases, base-pairs which participate in different types of loops, loop-
length elements, etc. In addition, every structural element can be mapped to
one of several features, depending on some sequential context (e.g. the type of
nucleotides at base-pair endpoints and within their vicinity), or other values (e.g.
the specific loop length, internal-loop asymmetry value, etc.).

The parameter values (i.e. scores of each local element) are traditionally ob-
tained from wet-lab experiments [12], reflecting the thermodynamics free energy
theory [13,14]. However, the increasing availability of known RNA structures in
current RNA databases (e.g. [15]) makes it possible to conduct an improved,
fine-tuned parameter estimation based on machine-learning (ML) techniques,
resulting in higher prediction accuracies. These methods examine large training
sets, composed of RNA sequences and their known structures [16,17,18,19].

Do et al. [18] proposed to set the parameters by fitting an SCFG-based
conditional log-linear model to maximize the conditional log-likelihood of a
set of known structures. The approach was extended in [20] to include au-
tomatic tuning of regularization hyperparameters. Andronescu et al. [19] and
later in [21] used the Turner99 model, and applied Constraint-Generation (CG)
and Boltzman-likelihood (BL) methods for the parameter estimation. These

Fig. 1. RNA secondary structure. The figure exemplifies a secondary structure
of an RNA sequence. Consecutive bases in the sequence are connected with (short)
black edges, where base-pairs appear as blue (longer) edges. The labels within the
loops stand for loop types, where H denotes a hairpin, I denotes an internal-loop, M
denotes a multi-loop, and X denotes an external-loop. Drawing was made using the
VARNA tool [22].
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methods start with a set of wet-lab parameter values, and refine them using
a training set of RNA sequences and their known structures, and an additional
data set containing triplets of sequences, structures and their measured ther-
modynamic energies. The parameters derived by [21] yield the best published
results for RNA folding prediction to date, when tested on a large structural
data set.

While the methods for parameter estimation are successfully shifting toward
ML-based approaches, the model parameterizations have so far remained fairly
constant. Originating from the practice of setting the parameter values using wet-
lab measurements, MOST models to date few parameters, where each parameter
corresponds to the score of one particular local configuration.

Our Contribution. We propose a move to much richer parameterizations,
which is made possible due to the availability of large training sets [23] com-
bined with advances in machine-learning [24,25], and supported in practice by
recent accelerations to RNA folding algorithms [26,27]. The scoring models we
apply refine previous models by examining more types of structural elements,
larger sequential contexts for these elements. Based on this, similar structural el-
ements could get scored differently in different sequential contexts, and different
structural elements may get similar scores in similar sequential contexts.

We base our models on the structural elements defined by the Turner99 model
in order to facilitate efficient inference. However, in our models, the score as-
signed to each structural element is itself composed of the sum of scores of many
fine-grained local features that take into account portions of larger structural
and sequential context. While previous models usually assign a single score to
each element (e.g. the base-pair between positions 5 and 41 in Fig. 1), our models
score elements as a sum of scores of various features (e.g., the base-pair (5, 41)
has the features of being a right-bulge closing base-pair, participating in a stem,
having its left endpoint centering a CCG sequence, starting a CGA sequence,
and various other contextual factors).

Our final model has about 70,000 free parameters, several orders of magni-
tude more than previous models. We show that we are still able to effectively
set the parameter values based on several thousands of training examples. Our
resulting models yield a significant improvement in the prediction accuracy over
the previous best results reported by [21], when trained and tested over the same
data sets. Our ContextFold tool, as well as the various trained models, are freely
available on our website and allow for efficient training and inference. In addition
to reproducing the results in this work, it also provides flexible means for further
experimenting with different forms of richer parameterizations.

2 Preliminaries and Problem Definition

For an RNA sequence x, denote by Yx the domain of all possible foldings of
x. We represent foldings as sets of index-pairs of the form (i, j), i < j, where
each pair corresponds to two positions in the sequence such that the bases in
these positions are paired. We use the notation (x, y) for a sequence-folding pair,
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where x is an RNA sequence and y is the folding of x. A scoring model G is
a function that assigns real-values to sequence-folding pairs (x, y). For a given
scoring model G, the RNA folding prediction problem is defined as follows2:
given an RNA sequence x, find a folding ŷ ∈ Yx s.t. G(x, ŷ) is maximal. Such
a folding ŷ will be called an optimal folding for x with respect to G. A folding
prediction (or a decoding) algorithm fG is an algorithm that solves the folding
prediction problem, i.e.

ŷ = fG(x) = argmaxy∈Yx
{G(x, y)} (1)

Denote by ρ a cost function measuring a distance between two foldings, satisfying
ρ(y, y) = 0 for every y and ρ(y, y′) > 0 for every y = y′. This function indicates
the cost associated with predicting the structure y′ where the real structure is
y. For RNA folding, this cost is usually defined in terms of sensitivity, PPV and
F-measure (see Sec. 5). Intuitively, a good scoring model G is one such that
ρ(y, fG(x)) is small for arbitrary RNA sequences x and their corresponding true
foldings y.

In order to allow for efficient computation of fG, the score G(x, y) is usually
computed on the basis of various local features of the pair (x, y). These features
correspond to some structural elements induced by y, possibly restricted to ap-
pear in some specific sequential context in x. An example of such a feature could
be the presence of a stem where the first base-pair in the stem is C-G and it
is followed by the base-pair A-U . We denote by Φ the set of different features
which are considered by the model, where Φ defines a finite number N of such
features. The notation Φ(x, y) denotes the feature representation of (x, y), i.e.
the collection of occurrences of features from Φ in (x, y). We assume that every
occurrence of a feature is assigned a real-value, which reflects the “strength”
of the occurrence. For example, we may define a feature corresponding to the
interval of unpaired bases within a hairpin, and define that the value of an oc-
currence of this feature is the log of the interval length. For binary features such
as the stem-feature described above, occurrence values are taken to be 1.

In order to score a pair (x, y), we compute scores for feature occurrences
in the pair, and sum up these scores. Each feature in Φ is associated with a
corresponding score (or a weight), and the score of a specific occurrence of a
feature in (x, y) is defined to be the value of the occurrence multiplied by the
corresponding feature weight. Φ(x, y) can be represented as a vector of length
N , in which the ith entry φi corresponds to the ith feature in Φ. Since the same
feature may occur several times in (x, y) (e.g., two occurrences of a stem), the
value φi is taken to be the sum of values of the corresponding feature occurrences.
Formally, this defines a linear model:

G(x, y) =
∑

φi∈Φ(x,y)

φiwi = Φ(x, y)T ·w (2)

2 In models whose scores correspond to free energies, the score optimization is tra-
ditionally formulated as a minimization problem. This formulation can be easily
transformed to the maximization formulation that is used here.
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where w is a weight vector in which wi is the weight of the ith feature in Φ, and ·
is the dot-product operator. The vector w of N feature weights is called the model
parameters, and Φ is thus referred to as the model parameterization. We use the
notation GΦ,w to indicate a scoring model G with the specific parameterization
Φ and parameters w.

The predictive quality of a model of the form GΦ,w depends both on the
parameterization Φ, defining which features are examined, and on the specific
weights in w which dictate how to score these features. Having fixed a model
parameterization Φ, the model parameter values w can be set based on sci-
entific intuitions and on biological measurements (as done in thermodynamic
based models), or based on statistical estimation over observed (x, y) pairs us-
ing machine-learning techniques. Aiming to design better models of the form
GΦ,w, there is a need to balance between (a) choosing a rich and informative
parameterization Φ so that with optimal weights w the prediction quality of the
model will be as good as possible, (b) allowing for a tractable folding prediction
algorithm fGΦ,w , and (c) being able to estimate optimal (or at least “good”)
weight parameters w.

3 Feature Representations

We argue that with suitable learning techniques, not being tied to features whose
weights could be determined experimentally, and having a large enough set of
examples (x, y) such that y is the true folding of x, one could define much richer
feature representations than was previously explored, while still allowing efficient
inference. These richer representations allow the models to condition on many
more fragments of information when scoring the various foldings for a given
structure x, and consequently come up with better predictions. This section
describes the types of features incorporated in our models.

All examples in this section refer to the folding depicted in Fig. 1, and we
assume that the reader is familiar with the standard RNA folding terminology.
The considered features broadly resemble those used in the Turner99 model, with
some additions and refinements described below, and allow for an efficient Zuker-
like dynamic programming folding prediction algorithm [28]. Formal definitions
of the terms we use, as well as the exact feature representations we apply in the
various models, can be found in the online supplementary material.

We consider two kinds of features: binary features, and real-valued features.

Binary features. Binary features are features for which occurrence values are
always 1, thus the scores of such occurrences are simply the corresponding fea-
ture weights. These features occur in a sequence-folding pair whenever some
specific structural element is present in some specific sequential context. The
set of structural elements contains base-pairs and unpaired bases, which appear
in loops of specific types, for example a multi-loop closing a base-pair, or an
unpaired base within a hairpin. A sequential context describes the identities of
bases appearing in some given offsets with respect to the location of the struc-
tural element in the sequence, e.g. the presence of bases of types C and G at the
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two endpoints (i,j) of a base-pair. A complete example of such a binary feature
is hairpin base 0=G +1=C -2=U, indicating the presence of an unpaired-base of
type G inside a hairpin at a sequence position i, while positions i + 1 and i− 2
contain bases of types C and U respectively. This feature will be generated for
the unpaired-bases at positions 17 and 25 in Fig.1.

In contrast to previous models, where each structural element is considered
with respect to a single sequential context (and producing exactly one scoring
term), in our models the score of a structural element is itself a linear combi-
nation of different scores of various (possibly overlapping) pieces of information.
For example, a model may contain the features hairpin base -1=C -2=U and
hairpin base 0=G +1=C -1=C which will also be generated for the unpaired-base
in position 17 (thus differentiating it from the unpaired base at position 25). Note
that the appearance of a C-base at relative position -1 appears in both of these
features, demonstrating overlapping information regarded by the two features.
The decomposition of the sequential context into various overlapping fragments
allows us to consider broader and more refined sequential contexts compared to
previous models.

The structural information we allow is also more refined than in previous
models: we consider properties of the elements, such as loop lengths (e.g. a base-
pair which closes a hairpin of length 3 may be scored differently than a base-pair
which closes a hairpin of length 4, even if the examined sequential contexts of the
two base-pairs are identical), and examine the two orientations of each base-pair
(e.g. the base-pair (11, 33) may be considered as a C-G closing base-pair of the
multi-loop marked with an M , and it may also be considered as a G-C opening
base-pair of the stem that consists of the base-pair (10, 34) in addition to this
base-pair). We distinguish between unpaired bases at the “shorter” and “longer”
sides of an internal-loop, and distinguish between unpaired bases in external
intervals, depending on whether they are at the 5’-end, 3’-end, or neither (i.e.
the intervals 1-2, 66-68, and 44-46, respectively). Notably, our refined structural
classification allows for the generalization of the concept of “bulges”, where, for
example, it is possible to define special internal-loop types such that the left
length of the loop is exactly k (up to some predefined maximum value for k),
and the right length is at least k, and to assign specific features for unpaired
bases and base-pairs which participate in such loops.

Real-valued features. Another kind of structural information not covered by
the binary unpaired bases and base-pairs features is captured by a set of real-
valued length features. These features are generated with respect to intervals
of unpaired bases, such as the three types of external intervals (as mentioned
above), intervals of unpaired bases within hairpins (e.g. the interval 16-20), and
intervals of unpaired bases within internal-loops up to some predefined length
bound3 (e.g. the interval 49-51). The value of an occurrence of a length feature

3 In this sense, internal-loop lengths are not restricted here as done in some other
models, where arbitrary-length internal-loops are scored with respect to their un-
paired bases and terminating base-pairs, and length-depended corrections are added
to the scores of relatively “short” loops.



Rich Parameterization Improves RNA Structure Prediction 553

can be any function of the corresponding interval length. In this work, we follow
the argumentation of [11] and set the values to be the log of the interval length.
As mentioned above, the structural base-pairs and unpaired-bases information
is conjoined with various pieces of contextual information. We currently do not
consider contextual information for the real-valued length features.

Our features provide varied sources of structural and contextual informations.
We rely on a learning algorithm to come up with suitable weights for all these
bits and pieces of information.

4 Learning Algorithm

The learning algorithm we use is inspired by the discriminative structured-
prediction learning framework proposed by Collins [24] for learning in natural
language settings, coupled with a passive-aggressive online learning
algorithm [25]. This class of algorithms adapt well to large feature sets, do not
require the features to be independent, and were shown to perform well in nu-
merous natural language settings [29,30,31]. Here we demonstrate they provide
state of the art results also for RNA folding. The learning algorithm is simple to
understand and to implement, and has strong formal guarantees. In addition, it
considers one training instance (sequence-folding pair) at a time, making it scale
linearly in the number of training examples in terms of computation time, and
have a memory requirement which depends on the longest training example.

Recall the goal of the learning algorithm: given a feature representation Φ, a
folding algorithm fGΦ,w , a cost function ρ and a set of training instances Strain,
find a set of parameter values w such that the expected cost ρ(y, fGΦ,w(x)) over
unseen sequences x and their true foldings y is minimal.

The algorithm works in rounds. Denote by w0 = 0 the initial values in the
parameter vector maintained by the algorithm. At each iteration i the algorithm
is presented with a pair (x, y) ∈ Strain. It uses its current parameters wi−1 to
obtain ŷ = fGΦ,wi−1 (x), and updates the parameter vector according to:

wi =

{
wi−1, ρ(y, ŷ) = 0,

wi−1 + τiΦ(x, y) − τiΦ(x, ŷ), otherwise,
(3)

where:

τi = min

(
1,

Φ(x, ŷ)T ·wi−1 − Φ(x, y)T ·wi−1 +
√

ρ(y, ŷ)
||Φ(x, ŷ) − Φ(x, y)||2

)
.

This is the PA-I update for cost sensitive learning with structured outputs de-
scribed in [25]. Loosely, equation 3 attempts to set wi such that the correct
structure y would score higher than the predicted structure ŷ with margin of
at least the square-root of the difference between the structures, while trying to
minimize the change from wi−1 to wi. This is achieved by decreasing the weights
of features appearing only in the predicted structure, and increasing the weights
of features appearing only in the correct structure. Even though one example is
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considered at a time, the procedure is guaranteed to converge to a good set of
parameter values. For the theoretical convergence bounds and proofs see [25].
In practice, due to the finite size of the training data, the algorithm is run for
several passes over the training set.

In order to avoid over-fitting of the training data, the final w is taken to be
the average over all wi seen in training. That is, wfinal = 1

K

∑K
i=1 wi, where

K is the number of processed instances. This widely used practice introduced in
[32] improves the prediction results on unseen data.

5 Experiments

In order to test the effect of richer parametrizations on RNA prediction qual-
ity, we have conducted 5 learning experiments with increasingly richer model
parameterizations, ranging from 226 active features for the simplest model to
about 70,000 features for the most complex one.

5.1 Experiment Settings

Feature representations. As described in Section 3, our features combine struc-
tural and contextual information. We begin with a baseline model (Baseline)
which includes a trivial amount of contextual information (the identities of the
two bases in a base-pair) and a set of basic structural elements such as hair-
pin unpaired base, internal-loop unpaired base, stem closing base-pair, multi-loop
closing base-pair, hairpin length, etc. This baseline model has a potential of in-
ducing up to 1,919 different features, but in practice about 220 features are
assigned a non-zero weight after the training process, a number which is com-
parable to the number of parameters used in previously published models.

We then enrich this basic model with varying amounts of structural (St)
and contextual (Co) information. Stmed adds distinction between various kinds
of short loops, considers the two orientations of each base-pair, and considers
unpaired bases in external intervals, and Sthigh adds further length-based loop
type refinements. Similarly, Comed considers also the identities of unpaired bases
and the base types of the adjacent pair (i+1, j−1) for each base-pair (i, j), while
Cohigh considers also the neighbors of unpaired bases and more configurations
of neighbors surrounding a base-pair.

The models StmedComed, SthighComed, StmedCohigh and SthighCohigh can po-
tentially induce about 14k, 30k, 86k and 205k parameters respectively, but in
practice much fewer parameters are assigned non-zero values after training, re-
sulting in effective parameter counts of 4k, 7k, 38k and 70k. The exact definition
of the different structural elements and sequential contexts considered in each
model are provided in the online supplementary material.

Evaluation Measures. We follow the common practice and assess the quality
of our predictions based on the sensitivity, positive predictive value (PPV), and
F1-measure metrics, defined as |y∩ŷ|

|y| , |y∩ŷ|
|ŷ| , and 2|y∩ŷ|

|y|+|ŷ| respectively, for a known
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Fig. 2. Performance on S-AlgTrain as a function of the number of training iterations

structure y and a predicted structure ŷ, where |y| is the number of base-pairs in a
structure y, and |y∩ ŷ| is the number of base-pairs appearing in both structures.
Sensitivity is the proportion of correctly predicted base-pairs among all true
base-pairs, PPV is the proportion of correctly predicted base-pairs among all
predicted base-pairs, and F1 is a value which balances sensitivity and PPV. All
of the measures range in value from 0 to 1, where a value of 1 indicates that the
true and predicted structure are identical, and a value of 0 means that none of
the true base-pairs in y are predicted in ŷ. As in previous works, the reported
scores are averaged over the scores of individual predicted structures in the test
set.

Folding Prediction Algorithm. We implemented a new folding prediction
algorithm, which supports the extended feature representations in our models.
This implementation allows for a flexible model design, under which additional
models, similarly structured to those presented here, may be defined. In addi-
tion, this is the first publicly available implementation to utilize the sparsification
techniques, recently reported in [27] for accelerating the running time, over real-
istic models (weaker sparsification techniques were presented in [26] and applied
by [33,34,35]). This yields a significant speedup in folding-time, which enables
rapid learning experiments. The code is publicly available on our website.

Learning Setup. The learning algorithm iterates over the training data, halting
as soon as the performance over this data does not significantly improve for 3
iterations in a row. The order of the training examples is shuffled prior to each
iteration. As the learning algorithm allows for optimization against arbitrary cost
functions, we chose the one which is directly related to our evaluation measure,
namely ρ(y, ŷ) = 1−F1(y, ŷ). The final weight vector is taken to be the average
of all computed vectors up to the last iteration. Parameters with absolute value
smaller than 0.01 of the maximal absolute parameter value are ignored.

Datasets. Our experiments are based on a large set of known RNA secondary
structures. Specifically, we use the exact same data as used in the comprehensive
experiments of [21], including the same preprocessing steps, train/test/dev splits
and naming conventions. We list some key properties of the data below, and refer
the reader to Section 3.1 (for the data and preprocessing steps) and to Section 5.2
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Table 1. Performance of final models on the dev set S-AlgTest

Model # Params Sens(%) PPV(%) F1(%)

Baseline 226 56.9 55.3 55.8

StmedComed 4,054 69.1 66.3 67.4

SthighComed 7,075 72.3 70.3 71.0

StmedCohigh 37,846 81.4 80.0 80.5
SthighCohigh 68,606 83.8 83.0 83.2

(for the train/test/dev split) of [21] for the remaining details. The complete data
(S-Full) is based on the RNA-Strand dataset [23], and contains known RNA
secondary structures for a diverse set of RNA families across various organisms.
This data has gone through several preprocessing steps, including the removal
of pseudoknots and non-canonical base-pairs. Overall, there are 3245 distinct
structures, ranging in length from 10 to 700 nucleotides, with the average length
being 269.6. The data is randomly split into S-Train (80%) and S-Test (20%),
yielding the train and test sets respectively. S-Train is further split into S-
AlgTrain (80% of S-Train) and S-AlgTest (the remaining 20%). We use S-
AlgTrain and S-AlgTest (the dev set) during the development and for most
of the experiments, and reserve S-Train and S-Test for the final evaluation
which is presented in Table 3.

5.2 Results

Convergence. Fig. 2 shows the F1 scores of the various models on the S-
AlgTrain training set as a function of the number of iterations. All models
converge after less than 20 iterations, where models with more features take more
iterations to converge. Training is very fast: complete training of the StmedComed

model (about 4k effective features) takes less than half an hour on a single core
of one Phenom II CPU, while training the SthighCohigh model (about 70k ef-
fective features) requires about 8.5 hours (in contrast, the CG models described
in [19,21] are reported to take between 1.1 and 3.1 days of cpu-time to train,
and the BL models take up to 200 days to train). None of the models achieve
perfect scores on the training set, indicating that even our richest feature rep-
resentation does not capture all the relevant information governing the folding
process. However, the training set results clearly support our hypothesis: having
more features increases the ability of the model to explain the observed data.

Validation accuracy. Train-set performance is not a guarantee of good predic-
tive power. Therefore, the output models of the training procedure were tested
on the independent set S-AlgTest. Table 1 shows the accuracies of the various
models over this set. The results are expectedly lower than those over the training
set, but the overall trends remain: adding more features significantly improves
the performance. The contribution of the contextual feature (about 12-13 abso-
lute F1 points moving from StmedComed to StmedCohigh and from SthighComed

to SthighCohigh) is larger than that of the structural features (about 3 absolute



Rich Parameterization Improves RNA Structure Prediction 557

0 20 40 60 80 100
% of training data used

30

40

50

60

70

80

90

F
1
 (

%
) 

o
n
 d

e
v
 s

e
t

Turner99

Baseline

StmedComed

SthighComed

StmedCohigh

SthighCohigh

Fig. 3. Effect of training set size on validation-set accuracies

F1 points moving from StmedComed to SthighComed and from StmedCohigh to
SthighCohigh), but the contributions are mostly orthogonal – using richest struc-
tural and contextual information (SthighCohigh) further increases the results to
an F1 score of 83.2, an absolute F1 improvement of 27.6 points over the baseline
model.

Stability. We performed a 5-fold cross-validation experiment to verify that the
results do not depend on a particular train-test split. We randomly shuffled S-
Train and performed five test-train splits, each of them reserving a different
20% of the data for testing and training on the rest. The results on the folds are
similar to those on the development set with a maximum deviation of about ±1
F1 points from the numbers in Table 1.

Effect of training-set size. We investigated the effect of the training-set size
on the predictive quality of the model by artificially training our models on
small subsets of S-AlgTrain. Fig. 3 presents the learning curves for these
experiments.

Performance clearly increases as more examples are included in the training.
The curve for the Baseline feature-set flattens out at about 60% of the training
data, but the curves of the feature-rich models indicate that further improvement
is possible with more training data. 30% of the training data is sufficient for
StmedCohigh and SthighCohigh to achieve the performance of the Turner99 model,
and all but the Baseline feature set surpass the Turner99 performance with 60%
of the training data.

Results by RNA family. Table 2 shows the accuracies of the models on the
different RNA families appearing in the development set. Interestingly, while the
richest SthighCohigh model achieves the highest scores when averaged over the
entire dev set, some families (mostly those of shorter RNA sequences) are better
predicted by the simpler SthighComed and StmedCohigh models. Our machine-
learned models significantly outperform the energy-based Turner99 model on all
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RNA families, where the effect is especially pronounced on the 5S Ribosomal
RNA, Transfer RNA and Transfer Messenger RNA families, for which even the
relatively simple StmedComed model already outperform the energy-based model
by a very wide margin.

Final Results. Finally, we train our models on the entire training set and eval-
uate them on the test set. Results on the test set are somewhat higher than on
the dev set. In order to put the numbers in context, Table 3 presents the final
scores together with the performance of other recent structural prediction sys-
tems over the same datasets. The scores of the other systems are taken from [21]
and to the best of our knowledge represent the current state-of-the-art for RNA
secondary structure prediction.

The Baseline model with only 226 parameters achieves scores comparable
to those of the Turner-99 model without dangles, despite being very simple,
learned completely from data and not containing any physics-based measure-
ments. Our simplest feature-rich model, StmedComed, having 4,040 parameters,
is already slightly better than all but one of the previously best reported results,
where the only better model (BL-FR) being itself a feature-rich model obtained
by considering many feature-interactions between the various Truner99 param-
eters. Adding more features further improves the results, and our richest model,
SthighCohigh, achieves a score of 84.1 F1 on the test set – an absolute improve-
ment of 14.4 F1-points over the previous best results, amounting to an error
reduction of about 50%. Note that the presented numbers reflect the prediction
accurcy of the algorithms with respect to a specific dataset. While it is likely
that similar accurcy levels would be obtained for new RNAs that belong to RNA
families which are covered by the testing data, little can be said about accurcy
levels over other RNA families.

Free energy estimates. The free energies associated with RNA structures are
also of interest. Unlike the models of [11,19,21], and in particular the DIM-CG
model of [21], our models’ scores do not represent free energies. However, there
is no reason to use the same model for both structure prediction and free en-
ergy estimation, which can be considered as two independent tasks. Instead, we

Table 2. F1 scores (in %) of on the development set, grouped by RNA family.
Only families with more than 10 examples in the development set are included. The
highest score for each family appears in bold.

Familiy (#instances) StmedComed SthighComed StmedCohigh SthighCohigh Turner99 LAM-CG

Hammerhead Ribozyme(12) 57.9 58.3 69.8 78.8 43.9 45.5
Group I Intron(11) 55.2 58.7 73.5 70.5 60.4 60.6
Cis-regulatory element(11) 45.9 46.1 81.8 85.2 61.1 61.2
Transfer Messenger RNA(70) 55.2 57.6 69.7 70.8 37.5 49.5
5S Ribosomal RNA(27) 89.2 90.9 94.1 93.9 68.9 79.8
Unknown(48) 93.9 94.1 95.7 94.8 91.14 92.2
Ribonuclease P RNA(72) 62.0 70.3 84.7 87.7 58.6 61.2
16S Ribosomal RNA(112) 57.9 65.4 81.0 86.3 55.2 62.3
Signal Recognition Particle RNA(62) 61.8 62.7 72.6 76.2 66.6 64.5
Transfer RNA(80) 91.8 94.2 92.2 92.8 60.7 79.5
23S Ribosomal RNA(28) 53.6 54.0 61.2 68.6 58.5 60.0
Other RNA(11) 65.9 66.4 71.8 73.5 61.1 62.2



Rich Parameterization Improves RNA Structure Prediction 559

Table 3. Final results on the test set. All the models are evaluated on S-Test.
Turner99+Partition is obtained by running Vienna’s RNAfold [7] with the -p flag and
considering the centroid-structure. Models marked with ‡ are trained on S-Train. Mod-
els marked with � are trained on S-Processed, a larger dataset than S-Train which
contains some sequences from S-Test. In the models marked with †, training is initial-
ized with the Turner99 parameters, and uses additional thermodynamics information
regarding the free energies of 1291 known structures.

Model Desc # Params F1(%)

Turner99+Partition [11] 363 61.7
Turner99 [11] 363 60.0
Turner99 (no dangles) [11] 315 56.5

‡ † BL-FR [21] Ch6 7,726 69.7
‡ † BL* [21] Ch4.2 363 67.9
‡ † BL (no dangles) [21] Ch4.2 315 68.0
‡ † LAM-CG (CG*) [21] Ch4.1 363 67.0
‡ † DIM-CG [21] Ch4.1 363 65.8
� † CG 1.1 [19] 363 64.0

� CONTRAFold 2.0 [18,20] 714 68.8

‡ StmedComed 4040 69.2

‡ SthighComed 7150 72.8

‡ StmedCohigh 37866 80.4
‡ SthighCohigh 69,603 84.1

can use one model for structure prediction, and then estimate the free energy
of the predicted structure using a different model. We predict the structures
of the 279 single-molecules appearing in a thermodynamics dataset ([21] Ch
3.2), for which both structure and free energy lab-measurements are available,
using the Turner99, CG, DIM-CG and our SthighCohighmodels. The folding ac-
curacy F1 measures are 89, 92.9, 87 and 97.1, respectively. We then estimate
the free energies of the predicted structures using the DIM-CG derived param-
eters (this model was shown in [21] to provide the best free energy estimates).
The RMSE (Root Mean Squared Error, lower is better) for the four models are
0.86 (Turner99), 0.90 (CG), 0.87 (DIM-CG), and 0.92 (SthighCohigh). While our
model scores slightly worse in terms of RMSE, it is not clear that this difference
is significant when considering the standard error and the fact that the other
models had access to this test set during their parameter estimation.

6 Discussion

We showed that a move towards richer parameterizations is beneficial to ML-
based RNA structure prediction. Indeed, our best model yields an error reduction
of 50% over the previously best published results, under the same experimental
conditions. Our learning curves relative to the amount of training data indicate
that adding more data is likely to increase these already good results. Fur-
ther improvements are of course possible. First, we considered only four specific
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richly-parameterized models. It is likely that better parameterizations are possi-
ble, and the search for a better richly-parameterized model is a fertile ground for
exploration. Second, we considered a single, margin-based, error-driven param-
eter estimation method. Probabilistic, marginals-based (i.e. partition function
based) training and decoding is an appealing alternative.

Our method has some limitations with respect to the physics-based models. In
particular, while it is optimized to predict one single best structure, it does not
provide estimates of free energies of secondary structures, and cannot compute
the partition function, base-pair binding probabilities and centroid structures
derived from them. Another shortcoming of our models is that the learned pa-
rameter weights are currently not interpretable. We would like to explore meth-
ods of analyzing the learned parameters and trying to “make biological sense”
of them.
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Abstract. A major bottleneck in protein structure determination via nuclear
magnetic resonance (NMR) is the lengthy and laborious process of assigning res-
onances and nuclear Overhauser effect (NOE) cross peaks. Recent studies have
shown that accurate backbone folds can be determined using sparse NMR data,
such as residual dipolar couplings (RDCs) or backbone chemical shifts. This
opens a question of whether we can also determine the accurate protein side-
chain conformations using sparse or unassigned NMR data. We attack this ques-
tion by using unassigned nuclear Overhauser effect spectroscopy (NOESY) data,
which record the through-space dipolar interactions between protons nearby in
3D space. We propose a Bayesian approach with a Markov random field (MRF)
model to integrate the likelihood function derived from observed experimental
data, with prior information (i.e., empirical molecular mechanics energies) about
the protein structures. We unify the side-chain structure prediction problem with
the side-chain structure determination problem using unassigned NMR data, and
apply the deterministic dead-end elimination (DEE) and A* search algorithms to
provably find the global optimum solution that maximizes the posterior probabil-
ity. We employ a Hausdorff-based measure to derive the likelihood of a rotamer
or a pairwise rotamer interaction from unassigned NOESY data. In addition, we
apply a systematic and rigorous approach to estimate the experimental noise in
NMR data, which also determines the weighting factor of the data term in the
scoring function that is derived from the Bayesian framework. We tested our ap-
proach on real NMR data of three proteins, including the FF Domain 2 of human
transcription elongation factor CA150 (FF2), the B1 domain of Protein G (GB1),
and human ubiquitin. The promising results indicate that our approach can be ap-
plied in high-resolution protein structure determination. Since our approach does
not require any NOE assignment, it can accelerate the NMR structure determina-
tion process.
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1 Introduction

Nuclear magnetic resonance (NMR) is an important tool for determining high-resolution
protein structures in the solution state. Traditional NMR structure determination ap-
proaches [19,21,40,23,35] typically use a dense set of nuclear Overhauser effect (NOE)
distance restraints to calculate the 3D coordinates of the protein structure. This process
requires nearly complete assignment of both resonances (which serve as IDs of atoms
in NMR spectra) and NOE data. Unfortunately, assigning resonances and NOEs is a
time-consuming and laborious process, which is a major bottleneck in NMR structure
determination. To address this problem, several approaches have been proposed to de-
termine protein structures using sparse experimental data [24, 53, 54, 12, 4, 7, 51, 47] or
unassigned NMR data [43,46,61,59,62]. These new approaches have shown promising
results. In particular, it has been shown that accurate backbone folds can be determined
using sparse NMR data, such as residual dipolar couplings (RDCs) [53, 54, 12, 24] or
backbone chemical shifts [51, 47]. The question remains: After the backbone structure
has been solved, can we also determine accurate side-chain conformations using sparse
or unassigned NMR data? In this paper, we address this question by using unassigned
nuclear Overhauser effect spectroscopy (NOESY) data, which record the through-space
dipolar interactions between protons nearby in 3D space. While protein backbones
have previously been determined to low resolution [43, 44] or even moderate resolu-
tion [33, 17, 18, 46] using unassigned NOESY data, it has never been shown, prior to
our paper, that high-resolution side-chain conformations can be computed using only
unassigned NOESY data. Since our algorithm does not require any NOE assignment, it
can shorten the time required in the NMR data analysis, and hence accelerate the NMR
structure determination process.

Protein side-chains have been observed to exist in a number of energetically favored
conformations, called rotamers [42]. Based on this observation, the side-chain struc-
ture determination problem can be formulated as a discrete combinatorial optimization
problem, in which a set of side-chain conformations are searched over a given rotamer
library to optimize a scoring function that represents both empirical molecular me-
chanics and data restraints. Substantial work has been developed for predicting protein
side-chain conformations without using experimental data [52, 11, 22, 31, 16, 27, 3, 56,
49, 30, 57, 34]. These side-chain structure prediction approaches might be limited by
the approximate nature of the employed empirical molecular mechanics energy func-
tion, which might not be sufficient to accurately capture the real energetic interactions
among atoms in the protein.

Integration of NMR data with the empirical molecular mechanics energy is a chal-
lenging problem. Most frameworks for NMR protein structure determination use heuris-
tic models with ad hoc parameter settings to incorporate experimental data (which are
usually assigned NOE data in these approaches) and integrate them with the empiri-
cal molecular mechanics energy in a scoring function to compute protein structures.
These approaches suffer from the subjective choices in the data treatment, which makes
it difficult to objectively calculate high-quality structures. To overcome this drawback,
we use a Bayesian approach [48, 20, 50] and cast the protein side-chain structure deter-
mination problem using unassigned NOESY data into a Markov random field (MRF)
framework. We treat NMR data as an experimental observation on side-chain rotamer
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states, and use the MRF to encode prior information about the protein structures, such
as empirical molecular mechanics energies. The priors in our framework are in essence
parameterized by the random variables representing the side-chain rotamer conforma-
tions. The MRF modelling captures atomic interactions among residues both from em-
pirical molecular mechanics energies and geometric restraints from unassigned NOESY
data. The derived posterior probability combines prior information and the likelihood
model constructed from observed experimental data. Unlike previous ad hoc models,
our Bayesian framework provides a rational basis to incorporate both experimental data
and modelling information, which enables us to develop systematic techniques for com-
puting accurate side-chain conformations.

The side-chain structure determination problem is NP-hard [45,8]. Therefore, a num-
ber of algorithms have been developed to address the complexity. Stochastic tech-
niques [52, 22, 27, 49] randomly sample conformation space to generate a set of side-
chain rotamer conformations. In contrast, our approach applies deterministic algorithms
with provable guarantees [11, 41, 16, 15, 9, 13] to determine the optimal side-chain ro-
tamer conformations that satisfy both experimental restraints and prior information on
the protein structures. We first apply a dead-end elimination (DEE) algorithm [11, 41,
16] to prune side-chain conformations that are provably not part of the optimal solution.
After that, an A* search algorithm is employed to find the global optimum solution that
best interprets our MRF model.

The guarantee to provably find the global optimum using the DEE/A* algorithms
enables us to rigorously and objectively estimate the experimental noise in NMR data
and the weighting factor between the empirical molecular mechanics energy and exper-
imental data in the scoring function derived in our Bayesian framework. Specifically,
we employ a grid search approach to systematically search over all possible grid point
values of the noise parameter, and use the DEE/A* search algorithms to compute the
optimal solution that minimizes the scoring function for each grid point. We then com-
pare the best solutions over all grid points and find the globally optimal estimation of
the weight parameter. The following contributions are made in this paper:

1. A novel framework to unify the side-chain structure prediction problem with the
side-chain structure determination problem using unassigned NOESY data, by ap-
plying the provable dead-end elimination (DEE) and A* search algorithms to find
the global optimum solution;

2. A Bayesian approach with an MRF model to derive the posterior probability of
side-chain conformations by combining the likelihood function from observed ex-
perimental data with prior information (i.e., empirical molecular mechanics ener-
gies) about the protein structures;

3. A systematic and rigorous approach to estimate the experimental noise in NMR
data, which determines the weighting factor of the data term in the derived scoring
function, by combining grid search and DEE/A* search algorithms;

4. Introduction of a Hausdorff-based measure to derive the likelihood function from
unassigned NMR data;

5. Promising test results on real NMR data recorded at Duke University.
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1.1 Related Work

In [61, 59], we developed an algorithm, called HANA, that employs a Hausdorff-based
pattern matching technique to place the side-chain rotamer conformations on the back-
bone structures determined mainly using RDC data [53,54,12]. In [62], we proposed an
MRF based algorithm, called NASCA, to assign side-chain resonances and compute the
side-chain rotamer conformations from unassigned NOESY data without using TOCSY
experiments. Neither HANA nor NASCA completely exploits prior information or all the
available information from experimental data. For example, HANA only uses the back-
computed NOE pattern from side-chain rotamers to backbone to calculate the likelihood
of a rotamer. In addition, HANA and NASCA do not take into account the empirical
molecular mechanics energy when determining the side-chain rotamer conformations.
Thus, the side-chain conformations determined by these two approaches may embrace
some bad local geometry such as serious steric clashes. Our current Bayesian approach
improves over HANA and NASCA by eliminating all serious steric clashes (Table 3). It
is a significant extension of the HANA and NASCA modules, and can be combined with
our previously-developed backbone structure techniques [53,54,12,59,62] to determine
high-resolution structures, using a protocol similar to [59, 62].

Several approaches have been proposed to use backbone chemical shift data [4,7,51,
47] or unassigned NOESY data [33,17,18,43,44,46] in protein structure determination
at different resolutions. These frameworks use a generate-and-test strategy or stochastic
techniques such as Monte Carlo (MC), simulated annealing (SA), or highly-simplified
molecular dynamics (HSMD) to randomly sample conformation space and compute a
set of structures that satisfy the data restraints. These approaches suffer from the prob-
lem of undersampling conformation space and overfitting to the data. They cannot pro-
vide any guarantee on the convergence to the global optimum. In addition, integration
of experimental data with the empirical molecular mechanics energy and the parameter
settings in these frameworks are usually performed on an ad hoc basis.

Unlike a previous Bayesian approach in NMR structure determination [48,20], which
requires assigned NOE data, our approach works on unassigned NOESY data. More-
over, the Bayesian approach in [48, 20] mainly relies on heuristic techniques, such as
Monte Carlo or Gibbs sampling, to randomly sample both conformation space and joint
posterior distribution, while our approach employs a systematic and rigorous search
method (i.e., a combination of grid search and DEE/A* algorithms) to compute the op-
timal parameter estimation that is only subject to the resolution used in the grid search.

MRFs offer a mathematically sound framework for describing the dependencies be-
tween random variables, and have been widely applied in computer vision [14, 39] and
computational structural biology [58,29]. In [29], an MRF was used to estimate the free
energy of protein structures, while in [58], a graphical model similar to an MRF was
used to predict side-chain conformations. Although both graphical models in [58, 29]
provide a reasonable model to describe the protein side-chain rotamer interactions, they
do not use any experimental data. In addition, the belief propagation approach used
in [58, 29] to search for the low-energy conformations can be trapped into local min-
ima, while our approach computes the global optimum solution.
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2 Methods

2.1 Backbone Structure Determination from Residual Dipolar Couplings
In our high-resolution structure determination protocol, we apply our recently-developed
algorithms [53, 54, 59, 12] to compute the protein backbone structures using two RDCs
per residue (either NH RDCs measured in two media, or NH and CH RDCs measured
in a single medium). Details on backbone structure determination from RDCs are avail-
able in Supplementary Material (SM) [60] Section 1 and [53, 54, 12].

2.2 Using Markov Random Fields for Rotamer Assignment

We first use a Markov random field to formulate our side-chain structure determination
problem. A Markov random field is a set of random variables defined on an undirected
graph, which describes the conditional dependencies among random variables. In our
problem, each random variable represents the rotamer state of a residue. Formally, let
Xi be a random variable representing the rotamer state at residue i, where 1 ≤ i ≤ n,
and n is the total number of residues in the protein sequence. Let ti be the maximum
number of rotamer states at residue i. Then each random variable Xi can take a value
from set {1, · · ·, ti}. We use xi to represent a specific value taken by random variable
Xi. We also call xi the rotamer assignment or conformation of residue i. Let X =
{X1, · · ·, Xn} be the set of random variables representing the rotamer assignments for
all residues 1, · · ·, n in the protein sequence. A joint event {X1 = x1, · · ·, Xn = xn},
abbreviated as X = x, is called a rotamer assignment or conformation for all residues
in the protein sequence, where x = {x1, · · ·, xn}.

In our side-chain structure determination problem, we assume that the backbone is
rigid. Based on this assumption, it is generally safe to argue that each residue only inter-
acts with other residues within a certain distance threshold or energy cutoff, when con-
sidering the pairwise interactions between side-chains. We use a graph G = (V, E) to
represent such residue-residue interactions, where each vertex in V represents a residue,
and each edge in E represents a possible interaction between two residues (i.e., the min-
imum distance between atoms from these two residues is within a distance threshold).
Such a graph G = (V, E) is called the residue interaction graph. Given a residue inter-
action graph G = (V, E), the neighborhood of residue i, denoted by Ni, is defined as
Ni = {j | j ∈ V, i = j, (i, j) ∈ E}. The neighborhood system describes the dependen-
cies between rotamer assignments for all residues in the protein sequence. A Markov
random field (MRF), defined based on the neighborhood system of an underlying graph
G = (V, E), encodes the following conditional independencies for each variable Xi:

Pr(Xi|Xj , j = i) = Pr(Xi|Xj , j ∈ Ni). (1)

This condition states that each random variable Xi is only dependent on the random
variables in its neighborhood.

We use Pr(x) to represent the prior probability for a rotamer assignment x = {x1, · ·
·, xn} of a protein sequence, which is derived from prior information about the protein
structures, such as empirical molecular mechanics. Let D be the observation data, which
in this case are the unassigned NOESY data. Let σ be the experimental noise in the
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unassigned NOESY data. The parameter σ is unknown and needs to be estimated. We
use Pr(D|x, σ) to represent the likelihood function of a rotamer assignment x and a
parameter σ given the observation D. We use Pr(x, σ|D) to represent the a posteriori
probability. Our goal is to find a combination of rotamer assignment x and parameter
σ, denoted by (x, σ), that maximizes the a posteriori probability (MAP). By Bayes’s
theorem, the posterior probability can be computed by

Pr(x, σ|D) ∝ Pr(D|x, σ) · Pr(x) · Pr(σ). (2)

2.3 Deriving the Prior Probability

According to the Hammersley-Clifford theorem [2] on the Markov-Gibbs equivalence,
the distribution of an MRF with respect to an underlying graph G = (V, E) can be
written in the following Gibbs form:

Pr(x) ∝ exp(−U(x)/β), (3)

where β is a global control parameter, and U(x) is the prior energy that encodes prior
information about the rotamer interactions in the protein structure. The prior energy
can be defined by U(x) =

∑
C∈C VC(x), where VC(·) is a clique potential and C is the

set of cliques in the neighborhood system of the underlying graph G = (V, E). In our
problem, we only focus on one-site and two-site interactions (i.e., with cliques of size
2) in a residue interaction graph G = (V, E). Given an assignment x = {x1, · · ·, xn}
for a residue interaction graph G = (V, E), we use the following empirical molecular
mechanics energy function to define the prior energy U(x):

U(x) =
∑
i∈V

E′(xi) +
∑
i∈V

∑
j∈Ni

E′(xi, xj), (4)

where E′(xi) is the self energy term for rotamer assignment xi at residue i,
and E′(xi, xj) is the pairwise energy term for rotamer assignments xi and xj at residues
i and j respectively. We can use the Boltzmann distribution to further specify the prior
probability in Eq. (3) by setting β = kbT , where kb is the Boltzmann constant, and T
is the temperature.

2.4 Deriving the Likelihood Function and the Scoring Function

An accurate likelihood function should effectively interpret the observation data, and
incorporate experimental uncertainty into the model. In our framework, the likelihood
Pr(D|x, σ) is defined as

Pr(D|x, σ) = Z(σ) · exp (−U(D|x, σ)) , (5)

where Z(σ) is the normalizing factor, and U(D|x, σ) is called the likelihood energy,
which evaluates the likelihood of observed NOESY data given rotamer assignment x
and parameter σ.
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The likelihood energy U(D|x, σ) can be measured by matching the back-computed
NOE patterns with experimental cross peaks in unassigned NOESY data D. Given a
rotamer assignment xi at residue i, we can back-compute its NOE pattern between
backbone and intra-residue atoms. This NOE pattern is called the self back-computed
NOE pattern. Similarly, we can back-compute the NOE pattern between a pair of ro-
tamer assignments xi and xj at residues i and j respectively. This NOE pattern is called
the pairwise back-computed NOE pattern. We use a criterion derived from the Haus-
dorff distance [25, 26], called the Hausdorff fraction, to measure the matching score
between a back-computed NOE pattern and unassigned NOESY data. Details of deriv-
ing the Hausdorff fraction for a back-computed NOE pattern are in SM [60] Section 2
and [61, 59]. Let F (xi) and F (xi, xj) be the Hausdorff fractions for the self and pair-
wise back-computed NOE patterns respectively. Then the likelihood energy U(D|x, σ)
is defined as:

U(D|x, σ) =
∑
i∈V

(1 − F (xi)/F0(xi))
2

2σ2
+

∑
i∈V

∑
j∈Ni

(1 − F (xi, xj)/F0(xi, xj))
2

2σ2
,

(6)
where σ is the experimental noise in unassigned NOESY data, and F0(xi) and
F0(xi, xj) are the expected values of F (xi) and F (xi, xj) respectively. Here we assume
that the experimental noise of unassigned NOESY cross peaks follows an independent
Gaussian distribution. Thus, σ represents the standard deviation of the Gaussian noise.
Such an independent Gaussian distribution provides a good approximation [36, 39]
when the accurate noise model to describe the uncertainty in experimental data is not
available. In general, it is difficult to obtain the accurate values of the expected Haus-
dorff fractions F0(xi) and F0(xi, xj). In principle, a rotamer conformation should be
closer to the native side-chain conformation if its back-computed NOE pattern has a
higher Hausdorff fraction (i.e., with higher data satisfaction score). In practice, we use
the maximum value of the Hausdorff fraction among the back-computed NOE patterns
of all rotamers as the expected value of F (xi) and F (xi, xj).

The function U(x, σ|D) = − log Pr(x, σ|D) is called the posterior energy for a ro-
tamer assignment x and parameter σ, given the observed data D. Then maximizing the
posterior probability is equivalent to minimizing the posterior energy function. Substi-
tuting Eqs. (3), (4) and (6) into Eq. (2), and taking the negative logarithm on both sides
of the equation, we have the following form of the posterior energy function:

U(x, σ|D) ∝ 1
β

⎛⎝∑
i∈V

E′(xi) +
∑
i∈V

∑
j∈Ni

E′(xi, xj)

⎞⎠+

⎛⎝∑
i∈V

(1 − F (xi)/F0(xi))
2

2σ2
+

∑
i∈V

∑
j∈Ni

(1 − F (xi, xj)/F0(xi, xj))
2

2σ2

⎞⎠ + log
Z(σ)
Pr(σ)

.

(7)
In Sec. 2.5, we will show how to estimate parameter σ. After σ has been estimated, we
have the following form of the posterior energy function:

U(x|D) ∝ 1
β

⎛⎝∑
i∈V

E′(xi) +
∑
i∈V

∑
j∈Ni

E′(xi, xj)

⎞⎠
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+

⎛⎝∑
i∈V

(1 − F (xi)/F0(xi))
2

2σ2
+

∑
i∈V

∑
j∈Ni

(1− F (xi, xj)/F0(xi, xj))
2

2σ2

⎞⎠ . (8)

The function U(x|D) is also called the pseudo energy. We rewrite the pseudo en-
ergy function in Eq. (8). Let E(xi) = E′(xi)/β + (1 − F (xi)/F0(xi))

2 /2σ2 and
E(xi, xj) = E′(xi, xj)/β + (1 − F (xi, xj)/F0(xi, xj))

2
/2σ2. Then we have

U(x|D) =
∑
i∈V

E(xi) +
∑
i∈V

∑
j∈Ni

E(xi, xj). (9)

The pseudo energy function defined in Eq. (9) has the same form as in protein side-chain
structure prediction [31, 38, 49, 30, 57, 34] or protein design [11, 41, 16, 15, 9, 13]. Thus,
we can apply similar algorithms, including the dead-end elimination (DEE) and A*
search algorithms, to solve this problem. A brief overview of the DEE/A* algorithms
is in SM [60] Section 3 and [11, 41, 16, 15, 9]. Similar to protein side-chain prediction
and protein design, the optimal rotamer assignment x∗ that minimizes the pseudo en-
ergy function in Eq. (9) is called the global minimum energy conformation (GMEC).
The DEE/A* algorithms employed in our framework guarantee to find the GMEC with
respect to our pseudo energy function. Similar to [15,9,13], we can also extend the orig-
inal A* search algorithm to compute a gap-free ensemble of conformations such that
their energies are all within a user-specified window from the lowest pseudo energy.

2.5 Estimation of Experimental Noise in the NOESY Data

In practice, parameter σ in Eq. (6) is generally unknown, and needs to be estimated for
each set of experimental data used in structure calculation. In the likelihood function
Eq. (5), the normalizing factor Z(σ) is related to the unknown parameter σ. Based on
the independent Gaussian distribution assumption on experimental noise in unassigned
NOESY data, we have Z(σ) = (2πσ2)m/2, where m is the total number of self and
pairwise back-computed NOE patterns. In our problem, m is equal to the size of the
residue interaction graph G = (V, E), that is, m = |V |+ |E|.

Similar to [48, 20], we use the Jeffrey prior [28] to represent the prior probability of
parameter σ, that is, Pr(σ) = σ−1. Substituting Z(σ) = (2πσ2)m/2 and Pr(σ) = σ−1

into Eq. (7), we have

U(x, σ|D) ∝ (m + 1) log σ +
1
β

⎛⎝∑
i∈V

E′(xi) +
∑
i∈V

∑
j∈Ni

E′(xi, xj)

⎞⎠+

⎛⎝∑
i∈V

(1 − F (xi)/F0(xi))
2

2σ2
+

∑
i∈V

∑
j∈Ni

(1 − F (xi, xj)/F0(xi, xj))
2

2σ2

⎞⎠ . (10)

Now our goal is to find a value of (x, σ) that minimizes the posterior energy in Eq. (10).
Here we combine a grid search approach with the DEE/A* search algorithms to com-
pute the optimal estimation of w = σ−2. Once w is determined, parameter σ can be
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computed using equation σ =
√

1/w. Our parameter estimation approach first incre-
mentally searches the grid points of weighting factor w. For each grid point of w, it uses
the DEE and A* search algorithms to find the GMEC that minimizes the pseudo energy
function. Finally, it compares all GMEC solutions over all searched grid points, and
chooses the optimal value of parameter w that minimizes the posterior energy function
in Eq. (10).

In Eq. (10), as the weighting factor w increases (i.e., the data term is weighted more),
the first term (m + 1) log σ in Eq. (10) decreases, while the third term representing the
data restraints increases. Fig. 1A shows a typical plot of the posterior energy U(x, σ|D)
vs. the weighting factor w, in which a minimum is usually observed. The performance
of our parameter estimation approach is only subject to the resolution used in the grid
search. In practice, our approach is sufficient to find the optimal parameter estimation
(Fig. 1), as we will show in the Results section.

3 Results

We implemented our Bayesian approach for side-chain structure determination and
tested it on NMR data of three proteins: the FF Domain 2 of human transcription elon-
gation factor CA150 (FF2), the B1 domain of Protein G (GB1), and human ubiquitin.
The numbers of amino acid residues in these three proteins are 62, 56 and 76 for FF2,
GB1 and ubiquitin respectively. The PDB IDs of the NMR reference structures are
2KIQ, 3GB1 and 1D3Z for FF2, GB1, and ubiquitin respectively. The PDB IDs of the
X-ray reference structures are 3HFH, 1PGA and 1UBQ for FF2, GB1, and ubiquitin
respectively.

Our algorithm uses the following input data: (1) the protein primary sequence; (2)
the protein backbone; (3) the 2D or 3D NOESY peak list from both 15N- and 13C-edited
spectra; (4) the resonance assignment list, including both backbone and side-chain res-
onance assignments; (5) the rotamer library [42]. The empirical molecular mechanics
energy function that we used in Eq. (4) consists of the Amber electrostatic, van der
Waals (vdW), and dihedral terms, the EEF1 implicit solvation energy term [37], and
the rotamer energy term, which represents the frequency of a rotamer that is estimated
from high-quality protein structures [42]. All NMR data, except RDCs of GB1 and
ubiquitin, were recorded and collected using Varian 600 and 800 MHz spectrometers
at Duke University. The NOE cross peaks were picked from 3D 15N- and 13C-edited
NOESY-HSQC spectra. Details on the NMR experimental procedures are provided in
Supplementary Material [60] Section 4. Our tests were performed on a 2.20 GHz In-
tel core 2 Duo processor with 4 GB memory. The total running time of computing the
GMEC solution for a typical medium-size protein, such as GB1, is less than an hour
after parameter w = σ−2 has been estimated.

We used the same rules as in [42] to classify and identify the rotamer conformations,
that is, we used a window of±30◦ to determine most χ angles, except that a few specific
values (see Table 1 in [42]) were used in determining the terminal χ angle boundaries
for glutamate, glutamine, aspartate, asparagine, leucine, histidine, tryptophan, tyrosine
and phenylalanine. Since most rotamer conformations are short, the RMSD is not suf-
ficient to measure the structural dissimilarity between two rotamers. Thus, we did not
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use the RMSD to compare different rotamers. We used two measurements to evalu-
ate the accuracies of the determined side-chain rotamer conformations. The first one
is called the accuracy of all χ angles, measuring the percentage of side-chain rotamer
conformations in which all χ angles agree with the NMR or X-ray reference structure.
The second measurement is called the accuracy of (χ1, χ2) angles, which measures the
percentage of side-chain rotamer conformations whose first two χ angles (i.e., both χ1

and χ2) agree with the NMR or X-ray reference structure. We say a determined side-
chain conformation is correct if all its χ angles agree with the NMR or X-ray reference
structure.

3.1 Parameter Estimation

We estimated the weighting factor parameter w = σ−2 in the posterior energy function
using the approach described in Sec. 2.5. Here we used the test on GB1 (Fig. 1) as
an example to demonstrate our parameter estimation approach. The parameters for the
other two proteins were estimated similarly. For GB1, the optimal weighting factor was
32, where the posterior energy U(x, σ|D) met the minimum (Fig. 1A). This optimal
weight value corresponded to the best accuracies 77.8% and 87.0% for all χ angles and
(χ1, χ2) angles respectively (Fig. 1E and Fig. 1F).

Fig. 1C and Fig. 1D show the influence of the weight w on the empirical molecular
mechanics energy and the NOE pattern matching score of the GMEC. As expected, as
the data restraints were weighted more, the empirical molecular mechanics energy de-
clined while the data satisfaction score was improved for the GMEC solution. At the op-
timal weight value w = 32, the GMEC yielded decent scores for both empirical molec-
ular mechanics energy and NOE pattern matching score. Although the NOE pattern
matching score of the GMEC jumped to a higher plateau when w ≥ 110 (Fig. 1C), the
accuracies of all χ angles and (χ1, χ2) angles did not increase correspondingly (Fig. 1E
and Fig. 1F). Probably this high NOE satisfaction score was caused to some extent by
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Fig. 1. Estimation of the weighting factor parameter w = σ−2 for the data term in the posterior
energy function for GB1. In plots (B) and (D), the Hausdorff fraction was used to measure the
matching score between the back-computed NOE pattern of the GMEC and experimental spectra.
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overfitting the side-chain rotamer conformations to experimental data. We also demon-
strated that our approach performed better than the cross validation approach [5,6] used
in estimating the weighting factor parameter w = σ−2 (Fig. 1B). Details on the cross
validation approach and the comparison results are provided in Supplementary Mate-
rial [60] Section 5.

3.2 Accuracy of Determined Side-Chain Rotamer Conformations

We first tested our side-chain structure determination approach on the backbones from
the NMR reference structures (Table 1). To check whether our current side-chain struc-
ture determination approach can be combined with our previously-developed backbone
structure determination techniques [12,53,54,59] for high-resolution structure determi-
nation, we also tested it on the backbones computed mainly using RDC data (Table 2).
The RMSD between the input RDC-defined backbone and the NMR reference structure
is 0.96 Å, 0.87 Å and 0.97 Å for FF2, GB1 and ubiquitin respectively. In addition to the
GMEC, we also computed the top ensemble of 50 conformations with the lowest pseudo
energies (Tables 1 and 2), using an extension to the original A* algorithm [15, 9, 13].
An ensemble of computed structures is important when multiple models may agree with
the experimental data [10]. In addition, an ensemble of structures can reflect the con-
formational difference resulting from different experimental conditions, lack of data, or
protein motion in solution [10, 1].

In addition to examining the accuracies of the determined side-chain conformations
in all residues, we also checked the performance of our approach in core residues, which
are defined as those residues with solvent accessibility ≤ 10%. We used the software
MOLMOL [32] with a solvent radius of 2.0 Å to compute solvent accessibility for each
residue. Note that in the side-chain structure determination problem using experimental
data, we were particularly interested in the accuracies of side-chain conformation deter-
mination in core residues because: (1) Biologically the side-chains on the interior and
buried regions of the protein play more important roles in studying protein dynamics
and determining the accurate structures than other residues on the protein surface; (2)
In the X-ray or NMR reference structure, the data for the solvent-exposed side-chains
are often missing. Thus, modeling information is often used to compute the side-chain
conformations of the residues on the protein surface.

Table 1. Accuracies of the side-chain rotamer conformations determined by our approach on the
backbones from the NMR reference structures

All residues Core residues
Proteins Accuracy of Accuracy of Accuracy of Accuracy of

all χ angles (%) (χ1, χ2) angles (%) all χ angles (%) (χ1, χ2) angles (%)
GMEC Top 50 GMEC Top 50 GMEC Top 50 GMEC Top 50

GB1 77.8 77.8 87.0 87.0 100.0 100.0 100.0 100.0
ubiquitin 75.4 78.3 84.1 85.5 84.0 88.0 88.0 92.0
FF2 71.9 71.9 82.5 86.0 100.0 100.0 100.0 100.0
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Table 2. Accuracies of the side-chain rotamer conformations determined by our approach on the
RDC-defined backbones computed using the algorithms in [12, 53, 54, 59]

All residues Core residues
Proteins Accuracy of Accuracy of Accuracy of Accuracy of

all χ angles (%) (χ1, χ2) angles (%) all χ angles (%) (χ1, χ2) angles (%)
GMEC Top 50 GMEC Top 50 GMEC Top 50 GMEC Top 50

GB1 75.9 79.6 81.5 88.9 92.9 100.0 92.9 100.0
ubiquitin 72.5 76.8 79.7 82.6 80.0 84.0 80.0 84.0
FF2 71.9 75.4 80.7 84.2 100.0 100.0 100.0 100.0

Overall, our approach determined more than 70% correct rotamer conformations,
and achieved over 80% accuracy for (χ1, χ2) angles for all residues (Tables 1 and 2).
Our results also show that computing the ensemble of top 50 conformations with the
lowest pseudo energies can slightly improve the results (Tables 1 and 2), which indicates
that it is necessary to compute an ensemble of conformations rather than a single GMEC
solution. In core residues, our approach achieved a high percentage of accurate side-
chain conformations. Our approach computed all the correct side-chain conformations
in core residues for GB1 and FF2, and had accuracies ≥ 84% for ubiquitin, given
the backbone structures from the NMR reference structures (Table 1). The tests on the
RDC-defined backbones exhibited similar results (Table 2), which indicates that our
current Bayesian approach can be combined with our previously-developed backbone
structure determination techniques [12, 53, 54, 59] to determine high-resolution protein
structures mainly using RDC and unassigned NOESY data.

We also examined the accuracies of the determined side-chain conformations for
residues of different lengths (Fig. 2). In general, more short side-chain conformations
(i.e., 1-χ and 2-χ side-chains) were determined correctly than the long side-chain con-
formations (i.e., 3-χ and 4-χ side-chains). On the other hand, although our program
assigned a very low percentage of correct 4-χ rotamers (i.e., arginine and lysine), it
was able to compute the first two χ angles correctly for most 4-χ side-chains (Fig. 2).
In addition to their side-chain flexibility, arginine and lysine are usually exposed to
the solvent and undergo many conformational changes. Also, their NOE data are often
missing. Therefore, it is generally difficult to compute all the χ angles correctly for
these two long side-chains. We further investigated the accuracies of the determined
side-chain rotamer conformations for residues with different numbers of available data
restraints. We first define the number of matched NOE peaks for residue i, denoted by
Di, as follows:

Di =
1
ti

∑
xi

⎛⎝f(xi) +
∑
j∈Ni

max
xj

f(xi, xj)

⎞⎠ , (11)

where ti is the maximum number of rotamer states at residue i, and f(xi) and f(xi, xj)
are the numbers of experimental NOE cross peaks that are close to a back-computed
NOE peak in the self and pairwise back-computed NOE patterns respectively. Basi-
cally Di measures the degree of available data restraints for residue i averaged over all
possible rotamer conformations. We define the value of Di divided by the number of
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Fig. 3. Accuracies of the determined side-chain rotamer conformations for residue with different
numbers of matched NOE peaks per χ angle for GB1 and ubiquitin. Diagrams are shown in the
same format as in Fig. 2.

rotatable χ angles in the side-chain as the number of matched NOE peaks per χ angle
for residue i. As shown in Fig. 3, our approach performed much better on those residues
with relatively dense data restraints (i.e., with the number of matched NOE peaks per χ
angle ≥ 15) than other residues.

3.3 Improvement on Our Previous Approaches HANA and NASCA

In our previous approaches, HANA [61, 59] and NASCA [62], only experimental data
were used in determining side-chain conformations. Thus, they did not consider the
empirical molecular mechanics energy when packing side-chain conformations. Thus,
the side-chain structures computed by HANA and NASCA can contain steric clashes.
Our new approach solves this problem by taking into account a molecular mechanics
potential, which sharply penalizes physically unrealistic conformations. As shown in
Table 3, our new approach eliminated all the serious steric clash overlaps (> 0.9 Å),
which appeared previously in the side-chain conformations computed by HANA and
NASCA.

3.4 Comparisons with SCWRL4

SCWRL4 [34] is one of the most popular programs for predicting side-chain rotamer
conformations given a backbone structure. Note that our approach uses unassigned
NOESY data, while SCWRL4 does not use any experimental data. We compared the per-
formance of our approach with that of SCWRL4 on GB1 using different input backbone
structures (Table 4). The comparison showed that our approach outperformed SCWRL4
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Table 3. Comparison between our current Bayesian approach and HANA and NASCA on the
number of serious steric clash overlaps (> 0.9 Å) in the determined side-chain conformations

Proteins Current HANA NASCA

Bayesian approach
GB1 0 10 14
ubiquitin 0 16 21
FF2 0 2 14

Table 4. Comparison with the side-chain structure prediction program SCWRL4 on GB1 using
different input backbone structures. The backbone RMSD from 2GB1, 1GB1 , 1P7E, 1PGA
and 1PGB to 3GB1 is 1.01 Å, 1.00 Å, 0.44 Å, 0.54 Å and 0.56 Å respectively. The program
REDUCE [55] was used to add hydrogens to the X-ray backbone structures 1PGA and 1PGB. In
our approach, the GMEC was computed for this comparison.

All residues Core residues
Backbones Accuracy of Accuracy of Accuracy of Accuracy of

all χ angles (%) (χ1, χ2) angles (%) all χ angles (%) (χ1, χ2) angles (%)
Our approach SCWRL4 Our approach SCWRL4 Our approach SCWRL4 Our approach SCWRL4

3GB1 77.8 72.2 85.2 79.4 100.0 85.7 100.0 85.7
2GB1 72.1 68.5 81.3 74.5 92.9 78.6 92.9 78.6
1GB1 74.1 70.4 83.3 77.8 92.9 78.6 92.9 78.6
1P7E 74.1 70.4 83.3 75.9 92.9 78.6 92.9 78.6
1PGA 70.4 64.8 79.6 70.4 92.9 71.4 92.9 71.4
1PGB 75.9 74.1 83.3 77.8 100.0 85.7 100.0 85.7

for all input backbone structures, especially on the core regions (Table 4). For core
residues, our approach achieved accuracies between 92.9-100.0%, while SCWRL4 only
achieved accuracies up to 85.7%. As we discussed previously, the correctness of the
side-chain conformations on the core regions is crucial for determining the accurate
global fold of a protein. Thus, in order to meet the requirement of high-resolution struc-
ture determination, the data restraints must be incorporated for packing the side-chain
conformations in core residues.

4 Conclusions

In this paper, we unified the side-chain structure prediction problem with the side-
chain structure determination problem using unassigned NOESY data. We proposed a
Bayesian approach to integrate experimental data with modeling information, and used
the provable algorithms to find the optimal solution. Tests on real NMR data demon-
strated that our approach can determine a high percentage of accurate side-chain con-
formations. Since our approach does not require any NOE assignment, it can accelerate
NMR structure determination.

Availability
The source code of our program is available by contacting the authors, and is distributed
open-source under the GNU Lesser General Public License (Gnu, 2002). The source
code can be freely downloaded after publication of this paper.
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