
Chapter 1

Introduction

Abstract This chapter introduces an educational software oriented perspective of

the Technology Enhanced Learning field, this book’s motivations and objectives,

and a first general overview of its content and structure.

This book is about educational software, i.e., software designed as a means to

implement computer-based pedagogical settings and contribute to addressing some

pedagogical objectives.

Design of educational software consists of imagining, thinking, elaborating and

describing a computer-based system with respect to some pedagogical objectives

and to the different educational constraints to be taken into account in relation to the

setting within which the software will be used. The output is an understanding of

the software to be implemented, i.e., what is to be made operational on the

computer by programming. This programming technical phase may be conducted

from scratch or build on existing software components.

Design of educational software may correspond to very different realities such as

inventing and implementing new software or analyzing how to aggregate and/or

adapt existing components according to objectives and constraints, as when using

Information and Communication Technologies (ICT) to build ICT-based systems

(see Sect. 3). It may be conducted in relation to different rationales, such as the

implementation of a particular pedagogical setting (which consists of considering

different issues from which software) or the elaboration of software whose exis-

tence will allow implementation of some given type of settings (e.g., software

meant to support on-line collaborative problem solving). It may arise in different

contexts such as a development project and/or a research project,1 as a means for

studying some research question or exploring some innovation. It may be based on

1We will use the term development project for projects whose only goal is to produce an outcome

(a system, a software component) to be used in effective settings, by contrast to research projects
which are projects seeking to produce research advances. As we will argue in Chap. 6, develop-

ment and research projects are not mutually exclusive.

P. Tchounikine, Computer Science and Educational Software Design,
DOI 10.1007/978-3-642-20003-8_1, # Springer-Verlag Berlin Heidelberg 2011

1

different entry points such as a learning theory or the specific features of an

emergent technology.

In this book, we explore a transversal issue: providing computer scientists

and educationalists with means to address together the relationships between

pedagogical settings and software, in particular when considering the design or

adaptation of software for some targeted pedagogical settings.

As a way to provide a background for understanding this book’s rationale, content

and organization (described in Sect. 5), this introductory chapter’s structure is as

follows. First, we propose a general picture of the Technology Enhanced Learning

field or, more precisely, an educational software oriented perspective of this field. In

particular, we introduce the core notions of educational software and computer-based

pedagogical setting (Sect. 1) and illustrate them by examples (Sect. 2). We then

highlight that designing software with respect to educational concerns may corre-

spond to different realities and different education/Computer Science2 interplays

(Sect. 3). This puts to the fore a central issue, that of making explicit matters of

concerns and perspectives (Sect. 4). The different elements addressed in these

different sub-sections will be further defined and explored in the following chapters.

1 General Picture

1.1 Technology Enhanced Learning

Educational software concerns take place within a more general field that we will

call Technology Enhanced Learning (TEL). Other terms convey similar meanings

such as E-learning, Learning Technology, Computer Assisted Instruction, On-line

Learning, Computer-Based Learning or Computer-Based Teaching. Using one or

another of these terms may contextually denote a particular perspective such as

when emphasizing the on-line or the teaching dimensions.

TEL is an arena where different disciplines such as Computer Science (CS),

education, psychology, philosophy, communication or sociology intersect. We will

refer to actors as computer scientists and (when unambiguous) educationalists as
a generic term for Human and Social Sciences actors. An actor may act as both

a computer scientist and an educationalist when competent in both areas.

Considering educational software design corresponds to a specific matter of

concern in TEL, and not to a subfield. As a complex field within which different

types of issues are to be considered, TEL is to be addressed within different

2In recent years, the term Computer Science has in some places been supplanted by the term

Informatics, a term giving more importance to the human and social aspect of computer systems

design, usage and evaluation. However, we will stick to the term Computer Science, which is

widely accepted (the term Informatics is subject to different interpretations whose discussion is not

a matter of concern in this book). In this book, Computer Science refers to software design and

implementation issues, and not to mathematical foundations of computing.

2 1 Introduction

perspectives. These perspectives are not only related to disciplinary issues and

interplay of disciplines: they also lie in the adopted focus or matters of interest. For

instance, how learning mechanisms may be enhanced by technology, how basic

educational practices may be changed, or how to design educational software for

some given pedagogical setting, correspond to different issues. They require consid-

eration of different types of objects and features, but also lead to consideration of

common objects addressed within different perspectives and different matters

of concern (e.g., the notion of computer-based pedagogical setting or the analysis

of software usage).

Considering notions such as pedagogical setting or educational software requires
introducing precise definitions. However, definitions encompassing multiple

perspectives are usually rather general. As a consequence, they provide little

guidance and, more importantly, may create confusions or misunderstandings

when one skips from a general discourse to precise considerations. In order to deal

with this issue we will introduce working definitions, i.e., definitions making salient

dimensions that are of interest given the considered topics and intentions. Such

definitions introduce a conceptualization3 of the field that is adapted to the considered

matters of concern. It corresponds to just one view, to be complemented by others.

1.2 TEL and CS Technical Artifacts

With respect to computer-based technology, TEL systems may be based on soft-

ware and/or hardware. As examples of hardware applications: gestural knowledge

may be addressed with virtual reality systems embedding haptic devices; mobile

technologies may be used for implementing in-the-wild learning settings; etc.

In this book, we consider software design issues. To a large extent, software and

hardware raise similar design issues, and thus this book’s content is also of interest

when considering hardware. Hardware-specific issues, however, will not be

addressed here.

Implementing software (we will also use the terms “computer-based systems” –

systems for short – or “programs”) is the technical task of making software

operational. This is not to be confused with implementing a pedagogical setting,

which consists of considering different issues (the context, the actors, the timing,

etc.) from which software to use.

The use of software in TEL is strongly connected to both the evolution of

technology and the evolution of learning and teaching theories. Seen from the

point of view of the technology push, the advancement of CS continuously opens

up new possibilities, providing ideas and means for innovative software and

innovative pedagogical settings. The history of educational systems (and current

trends) can be correlated to the history of CS concepts and techniques: algorithmic,

hypertext and hypermedia, Artificial Intelligence, network and communication

3A conceptualization is a differential system of notions.

1 General Picture 3

means or, more recently, mobile technologies. Seen from the point of view of

learning sciences, the advancement of technology allows implementation of teach-

ing or learning theories (and raises new questions). For instance inquiry learning, as

such, has nothing to do with computers, and may be implemented in classrooms

with no technology. However, the advance of CS technologies and the way they

allow one to build simulations, to offer learners dedicated cognitive tools or to

create means for collaboration allow changes in the way inquiry learning (on-line

and in-presence) can be addressed.

1.3 Educational Software

Software used in TEL may be existing software incidentally used in a pedagogical

context or software designed for educational purposes.
We will refer to software used in a pedagogical context whilst not having been

designed according to any educational considerations as basic software. As

examples: a basic chat tool may be used to allow a group of learners to engage in

a collaborative task; a spreadsheet may allow implementation of a powerful simu-

lation if its properties (symbolic formulas, automated calculus, graphical

representations) appear pertinent for the considered pedagogical objectives; etc.

“Basic” software may of course be complex, e.g., a virtual reality environment.

In contrast with basic software, we will define educational software as software

designed for educational purposes (a more precise definition will be introduced in

Chap. 2). The “design for” dimension puts to the fore the existence of relationships

(intentions, expectations, hypotheses, etc.) between pedagogical objectives (and,

more generally, pedagogical considerations), design decisions, software properties

and ways learners use software.

Designing software for educational purposes leads to taking into account, at

design time, educational considerations. This may consist in basing software design

on specific educational conceptualizations or models. For instance, let us consider a

piece of software meant to implement some given type of calculus that learners

need to use while solving some type of problem: the way software is thought of and,

in particular, the definition of the software role, may be addressed within a more

general analysis of the setting and a model or theory of how learners develop

knowledge when solving such problems. As a result, the software specification

will be influenced by pedagogical considerations. In addition, software may also

present specific educational-related functions or properties. For instance, software

may embed knowledge related to the learning domain, implement teaching

mechanisms or support learners in a way that is supposed to contribute to the

addressing of pedagogical objectives.4

4To further examine the point that pedagogical principles may be embedded in software or only

impact software design see Baker, M. (2000). The roles of models in Artificial Intelligence and

Education research: a prospective view. International Journal of Artificial Intelligence in Educa-
tion, 11(2), 122–143.

4 1 Introduction

When considering the implementation of a given pedagogical setting or type of

setting, if some more or less adequate basic software exists, designing educational

software is just one option. When emphasis is on addressing the considered

pedagogical objectives, whether the software used has been designed according

to pedagogical considerations is not a matter of concern. Basic software may be

appropriate to a given setting, or even if not particularly appropriate, may corre-

spond to the most efficient solution for some other reasons such as its freeness, its

availability or the fact learners are used to it.

Designing educational software is a requirement when no satisfactory basic

software is available. This may be related to the fact specific functions (e.g.,

tutoring capabilities) or properties (e.g., the way a simulation may act as a cognitive

tool or the way communication tools may support learners’ collaboration) are

required to allow the implementation of the considered pedagogical setting, are

expected to increase learning outcomes and/or to allow the addressing of some

other objectives.

The dichotomy basic/educational software is based on whether design takes into

account some pedagogical dimensions, and thus puts to the fore the issues such a

design may raise. It does not implicitly suggest basic software should not be used to

implement pedagogical settings or that settings implemented with software

designed according to educational concerns necessarily lead to better learning

outcomes than if implemented with basic software (as will be discussed, software

properties are just one dimension of why and how software is used).

1.4 Computer-Based Pedagogical Settings (CBPSs)

Nothing is “pedagogical” as such: almost any artifact may present some pedagogi-

cal interest and virtues in some given context, and software that has demonstrated

virtues in some context may be completely inadequate in another one, or under

different conditions. The core issue is not that of the software properties but what

happens, i.e., the way settings unfold and, with respect to software, the way learners

use it, and how this relates to the pedagogical objectives.

Design of educational software or analysis of educational/basic software peda-

gogical interests or impacts must therefore be addressed with respect to more or less

precise settings or types of settings.

When designing educational software, the prototypical case is that of institu-

tional settings taking place within some curriculum. Designing software for infor-

mal learning, however, also requires some definition of the type of setting

considered (e.g., designing software that contextually helps users to draw

connections between an experience they face in the context of their professional

practice and some knowledge repository). Of course, the settings within which

software is effectively used, and the way software is used, may differ from what it

was defined for (and the implications of this may be part of the software

1 General Picture 5

specification, for instance targeting tailorable5 software). However, design is never

addressed without some anticipated uses and contexts of use in mind.

Considering educational software puts to the fore the notion of Computer-Based
Pedagogical Setting (CBPS), which may be defined as a pedagogical setting

involving some software that is meant to play a role in relation to the considered

pedagogical objectives. When designing educational software, the scope to be

considered is not restricted to that of the software but, more generally, the context

within which the software is supposed to be used. The CBPS is an essential

dimension of this context. In formal settings, another important dimension is the

teaching setting, i.e., the different institutional, human and material features

forming the context within which the CBPS takes place. More generally, different

types of dimension may require consideration (e.g., sociological or cultural) and, of

course, in some projects, actors’ individual characteristics.

When designing or analyzing CBPSs matters of concern and, in particular, consid-

ered pedagogical objectives, may correspond to very different realities. Accordingly,

software role may relate to very different features. As examples of the variety of

possible concerns, software design may be addressed in relation to whether:

• Learners are provided with resources (e.g., content resources or communication

means).

• Learners become familiar with an issue or a type of problem.

• Learners engage in some activity (e.g., problem solving or argumentation).

• Learners practice some domain-specific skills (e.g., addition of fractions) or

meta-level competences (e.g., synthesis or learning-to-learn).

• Learners challenge their current knowledge.

• Learners acquire some target knowledge or develop some skills.

• Teachers6 are supported (e.g., provision of automatic tutoring means that help

teachers in supervising learners’ actions).

• A setting can be organized in a way that fits with the institutional constraints.

• Etc.

This list (far from being exhaustive) illustrates that concerns may be very

different, may relate to different notions and levels of granularity, and are generally

intertwined. For instance, considering whether software provides access to content

resources is different from considering whether learners will learn from these

resources, although this is probably the rationale for providing this access. Consid-

ering whether learners practice some skills is different from considering whether

they develop their skills, etc. We will come back on the importance of disentangling

objectives in Chap. 2, Sect. 3.1, in particular for evaluation issues.

5A computer-based system is said to be tailorable if it provides its users with integrated support for
modifying it in the context of its use. For an analysis of different tailoring techniques see for

example: Morch, A. (1997). Three Levels of End-user Tailoring: Customization, Integration, and

Extension. In: Kyng, M. & Mathiassen L. (Eds.) Computers and Design in Context (pp 51–76).

Cambridge, the MIT Press.
6When unambiguous, the term teacher will be used in a generic way for teacher, tutor, facilitator,
pedagogical engineer, etc.

6 1 Introduction

1.5 Non-definitional Character of Software

Independently of whether software has been designed for a pedagogical setting,

software is not definitional of this setting.
Pedagogical settings are socio-technical systems, they involve humans and

artifacts (the setting as such, the more general institutional, human and material

features within which this setting takes place, the resources offered to learners and

teachers, etc.). Software may be meant to play (or appear to play) a more or less

structuring role according to the setting and/or the type of considered software.

However, software does not determine what will happen.

As an example, let us consider the way the role of (1) an Intelligent Tutoring

System (ITS) and (2) a chat or a forum meant to be part of a set of basic tools

offered in a network learning context may be thought of.

The basic principle of ITSs is to introduce a task to be addressed (e.g., a

mathematics problem to be solved), a set of specific tools for achieving the task

(e.g., an editor allowing learners to emphasize the different problem-solving steps

and logical connections) and individualized tutoring based on the analysis and

interpretation of learners’ actions and output (correction, help, explanations, adap-

tation of the task to be addressed, etc.).

Networked learning settings are settings in which network technology is “. . .
used to promote connections between one learner and other learners, between

learners and tutors; between a learning community and its learning resources”.7

Such settings may for example be implemented with Learning Management

Systems (LMSs), i.e., Web-based platforms offering general means such as generic

communication tools (chat, forum) or file exchange zones.

When learners solve a problem with an ITS, the system makes salient some

notions, imposes some actions, provides some hints, etc. The system plays a pro-

active role and, in some sense, orchestrates the setting. Its properties are designed to

(and are likely to) have an important impact on what happens and how.

Differently, let us consider a group of on-line learners asked to collectively write

a document via an LMS. The major definitional features are likely to be the task at

hand and the way it is introduced by the teacher, the individuals’ and the group’s

experiences of on-line collaboration or the different roles learners’ adopt. The

specific features of the LMS communication tools, if any, are not necessarily

important matters of concern.

The way these two types of systems are thought of, their expected role or the

expected impact of the software properties are thus very different. However, in both

cases, it would be misleading to think that the software used defines the setting and

defines what happens. Fundamentally, software is only a mediator (and just one

mediator) of learners’ activity, and learners’ activity is something that will

7Jones, C., Asensio, M., & Goodyear, P. (2000). Networked learning in higher education:

practitioners’ perspectives. ALT-J, The Association for Learning Technology Journal, 8(2), 18–28.

1 General Picture 7

contextually emerge and dynamically evolve in relation with many dimensions of

which software is only one factor.

As an element of the setting, software has some impact, in any case (“neutral

software” in an oxymoron). An ITS’s and an LMS’s expected roles and structuring

impact are very different. However, whether the software has features that have

been designed to structure the setting and learners’ activity in one way or another

does not guarantee this will happen. The setting may unfold very differently from

what was expected. We will come back to this “impact” notion in Chap. 3.

1.6 Summary

Within an educational software design perspective, TEL may be defined as the

scientific field addressing CBPSs and the software used for implementing these

settings. This view conveys the following ideas:

1. What is considered is the use of a specific technology (software, i.e., programs to

be run) as a means to contribute to the addressing of some pedagogical

objectives and, as an overall objective, to enhance learning.

2. The educational considerations are defined with respect to CBPSs or types of

CBPSs.

3. Within a CBPS, the software role may correspond to different realities, and may

relate to a variety of pedagogical objectives.

4. When addressing the TEL field in general, the considered software may be

educational software (i.e. software designed for educational purposes) or basic

software (i.e., software not designed for educational purposes but used in

educational settings).

5. Software may participate in the definition and structure of the setting to different

extents, and in different ways.

6. Software is not to be thought of as prescriptive of how the setting will unfold.

At the very core of the educational software notion is the consideration of how to

design software that presents functions or properties studied according to educa-

tional considerations.

2 Examples

2.1 Examples of Computer-Based Pedagogical Settings (CBPSs)

We introduce hereafter three different examples of CBPSs, based on different types

of software and different ways of considering software: the Java programming, the
biology inquiry learning and the learning theories forum CBPSs. These examples

8 1 Introduction

are only superficially sketched to introduce the concept; they will be reused later on.

An effective description would require going into details and addressing many

other issues (teaching setting, etc.).

2.1.1 The Java Programming CBPS

The Java programming CBPS is typical of a tutoring setting, i.e., a setting within

which software analyzes learners’ actions and provides tutoring feedback.

The addressed pedagogical objective is that learners should develop some

knowledge related to object-oriented design and programming, using as a means

the Java programming language.8

The setting is individual. Learners are asked to consider a task that consists of a

set of exercises, each exercise corresponding to the creation of a Java program

according to some given specification.

Within this context, software is thought of as a means to (1) allow learners to

build and edit their solution and (2) support them by providing individualized hints.

2.1.2 The Biology Inquiry Learning CBPS

The biology inquiry learning CBPS is an inquiry learning setting, i.e., a setting

based on “(. . .) an approach to learning that involves a process of exploring the

natural or material world, and that leads to asking questions, making discoveries,

and rigorously testing those discoveries in the search for new understanding”.9

The addressed pedagogical objective is that learners should develop skills

related to experimental methods and become able to engage themselves in

processes within which they identify interesting questions, define different

hypotheses, test these hypotheses and draw rational conclusions. For this purpose,

a given application domain in biology is used.

The setting is collective: learners collaborate in front of the software (i.e., two

learners use the same computer) and/or via the software (i.e., an individual or a

group of two learners sharing a computer may collaborate with another group via

communication tools and shared access to some of the software features). Learners

are asked to consider a task that consists of building and describing a model (and

underlying theoretical elements) to explain the way cells react when immerged in a

given salty liquid. It is expected that working collaboratively helps them elaborate

and discuss different hypotheses.

8Object-oriented is an approach to design and implementation of software within which focus is on

defining classes (which allow creating objects) and the relationships between these classes (e.g.,

inheritance). Java is an object-oriented language.
9de Jong, T. (2006). Computer simulations – Technological advances in inquiry learning. Science,
312, 532–533.

2 Examples 9

Within this context, software is thought of as a means to (1) offer a computer-

based simulation that simulates the cell behavior and allows testing of hypotheses,

and (2) offer collaboration tools.

2.1.3 The Learning Theories Forum CBPS

The learning theories forum CBPS is a networked learning setting promoting

connections between learners on the basis of an LMS.

The addressed pedagogical objective is that learners should develop some

general understanding of a set of learning theories from the behaviorist and

cognitivist paradigms, and practice argumentation skills.

The setting is collective. Learners are asked to consider a task that consists of

developing a scientific discussion related to the differences and similarities of

explanations these theories provide for a topic (e.g., “how learners learn” or “how

skills developed in formal teaching may transfer to real-life problem-solving”). The

task is broken down into different subtasks (e.g., gathering and structuring some

data related to one or the other theory, identifying key concepts, identifying

controversial issues or making explicit the underlying hypotheses) and learners

are given different roles (e.g., an option is that each learner addresses all the

subtasks for a given theory; another option is that each learner addresses the same

subtask for all the theories). Learners are supposed to deliver a final common

document.

Within this context, software (the LMS) is thought of as a means to (1) deliver

the instructions (what learners are supposed to do) and some material (documents

related to the theories) and (2) allow learners to upload their final document.

Implicitly, it is supposed that the general means provided by the LMS (e.g., the

communication tools) may also be of interest.

2.1.4 Discussion

These examples illustrate different issues (some of them already mentioned) that

will be addressed in more details in the following chapters:

1. Software may be more or less central in the definition of the setting. For instance,

in the case of the Java programming and biology inquiry learning settings, the

software role is different but in both cases of major importance, while this is less

the case for the learning theories forum setting.

2. Software may be introduced as a central feature of the pedagogical setting or as

only a possible means. For instance, in the learning theories forum case, it is not

imposed that the different tasks should be addressed via the LMS. The way the

CBPS is defined implicitly acknowledges the fact that learners may achieve

these tasks in a variety of ways and may use whatever means they find to be

convenient.

10 1 Introduction

3. Pedagogical objectives (and considerations) are usually multiple and mixed. For

instance, in a setting such as the biology inquiry learning CBPS it is likely that

meta-level dimensions and skills (related to inquiry processes) and domain-

related ones (related to biology) coexist.

Finally, these examples illustrate the fact that, in some cases, both basic and

educational software may be used. Learners may address the learning theories
forum CBPS with basic communication software. Similarly, the biology inquiry
learning CBPS may be implemented with a simulation dedicated to education or

not. However, the contextual and individualized hints required for the Java pro-
gramming setting requires specific software.

2.2 Examples of Educational Software

We sketch hereafter four theoretical examples, i.e. imagined systems that do not

exist, but are inspired by the field literature: JavIT the ITS, Bio-sim the simulation-

based learning environment, GeLMS-1 the generic LMS (a counter-example) and

Argue-chat the graphical argumentation chat tool. More detailed presentations (and

other examples) are presented in Chap. 4. These examples will be used throughout

this book to illustrate different ideas.10

2.2.1 JavIT, the ITS

JavIT is an ITS designed to implement the Java programming CBPS.

Consistently with the targeted setting, JavIT’s principle is to introduce program-

ming exercises and to ask learners to enter a certain number of constructions (the

different Java classes, their relationships, the way notions such as inheritance or

polymorphism are used, etc.), which constitute different steps towards the solution

they propose.

JavIT’s specificity lies in (1) the interfaces it provides for editing the solving

steps, which are defined to make learners consider some particular concepts in a

precise way, make explicit their constructions and justify their propositions and (2)

the diagnosis and feedback capabilities, i.e., the system’s ability to analyze

learners’ output and provide individualized epistemic feedback.

JavIT presents both of the characteristics of educational software we have raised

in Sect. 1: (1) its design is based on specific educational conceptualizations and

models, and (2) it presents educational-related specific functions and properties.

10The purpose of using theoretical examples is to highlight issues contrasting differences in

perspectives while avoiding describing the details of actual systems.

2 Examples 11

2.2.2 Bio-sim, the Simulation-Based Learning Environment

Bio-sim is a simulation-based learning environment designed to implement the

biology inquiry learning CBPS.

Consistently with the targeted setting, Bio-sim offers a computer-based simula-

tion of cell behavior. When using the simulation, learners can make different

variables vary and observe what happens.

Bio-sim’s main role is to provide a simulation that makes salient features

identified as pertinent for the CBPS (e.g., cell nucleus, cell membrane or liquids)

and hides or gives less importance to some others. When using the simulation to test

hypotheses (e.g., what happens if the salt concentration is changed from value v1 to
value v2), only some notions may be used as variables. Moreover, the simulation is

complemented by additional data visualized via different indicators (e.g., electric

charge) which, here again, are meant to make learners consider some particular

notions in some particular way, using different representations (e.g., numerical or

graphical). These affordances11 have been defined on the basis of a specific study of

learners’ cognitive processes and difficulties in such settings. The environment also

presents learners with specific editors that help them to model the phenomenon at

stake or to relate hypotheses to experimental data. Different communication tools

allow distant learners to collaborate. Finally, different methodological hints are

provided in order to help them to conduct the inquiry process, e.g., to properly

separate variables.

Here again, Bio-sim presents both of the characteristics of educational software:

its design is based on specific educational conceptualizations and models; it offers

functions presenting educational-related specific properties (e.g., the simulation

affordances) and specific functions (e.g., the additional cognitive tools, the hypoth-

esis management tools or the model editors).

2.2.3 GeLMS-1, the Generic LMS

GeLMS-1 is a generic LMS, i.e., a Web platform managing learners’ access to

pedagogical resources such as documents or videos and to basic communication

tools such as chat rooms, forums, whiteboards or file exchange zones.

GeLMS-1 is, in fact, an information system used (after some cosmetic customi-

zation) in the context of education: it manages how users (in this case, learners)

access resources (in this case, pedagogical material), and it offers basic communi-

cation tools.

GeLMS-1 does not meet any of the characteristics raised in Sect. 1: its design is

not based on specific educational conceptualizations or models, and it does not

present any educational-related specific functions or properties. The only aspect

related to education is the nature of the documents and resources managed by the

11Affordances: here, aspects suggesting how (in this case) artifacts may be used.

12 1 Introduction

system. However, this dimension, or the expected educational use of the communi-

cation tools, does not have any influence on the design. GeLMS-1 is basic software

(see discussion).

2.2.4 Argue-chat, the Graphical Argumentation Chat Tool

Argue-chat is a graphical argumentation chat tool designed to support learners in

conducting argumentative interactions.

Argue-chat is not dedicated to the implementation of a precise CBPS but, rather,

to CBPSs within which whether learners develop argumentation is of importance.

Its rationale is that, in mediated collaborative learning settings, it is a classical

strategy to make learners learn one from another (and/or make them develop

interactions on the basis of which teachers will build) by making them argue

about the domain or task at hand. The learning theories forum is an example of

such a setting although, given the way it is defined, the argumentation dimension is

not put to the fore.

Argue-chat’s role is to address different difficulties that have been identified

when learners use basic chat tools to argue, which often lead them not to develop

very productive interactions. For instance, learners often build sentences whose

intention is unclear, use complex sentences mixing different ideas and arguments,

or have difficulties in relating ideas and arguments to one another. For this purpose,

Argue-chat provides a set of graphical shapes (boxes and connections) denoting

specific argumentation notions such as statement, argument, counter-argument,
approval, question or answer, and allows their connection.

Argue-chat meets the first characteristic: its design is based on specific educa-

tional conceptualizations and models. Whether it meets the second one may be

argued (see next section).

2.2.5 Discussion

Bio-sim illustrates that CBPSs may be implemented with both basic and educational

software. In this case, the rationale for developing a specific simulation and

environment is to support learners by providing cognitively-studied affordances

and tools. Bio-sim also illustrates the variety of concerns that may be considered:

whether the environment may be built (i.e., the conceptual and technical issues

addressed); whether it supports learners in an effective way; the impact on learning

outcomes; whether it fits teaching settings or not or economical considerations; etc.

All these different dimensions may be regarded as such and in relation to one

another (the other examples could be used to illustrate this point in the same way).

GeLMS-1 highlights the fact that presenting software as “educational” requires

emphasizing what educational dimensions are taken into account, how this is done,

and what the results are. In this case, the system is used in education (and might be

2 Examples 13

perfectly satisfactory for some settings), but no educational considerations

impacted design.

We have introduced GeLMS-1 as an information system incidentally used in an

education context. Now, if such a system were originally constructed for education

purposes, should it be considered as educational software? It may be argued that the

first characteristic (design is based on specific educational conceptualizations or

models) is met, as designing a platform such as GeLMS-1 for educational purposes

is not free of educational perspective, but, on the contrary, denotes a particular (and

very poor) perspective of on-line teaching: e-learning is e-commerce whose product

is data (text, video, etc.) considered to be pedagogical. Moreover, it may be argued

that the second characteristic (software presents educational-related specific

functions or properties) is also met as effective systems of this kind usually present

specific functions related to the back-office dimension, e.g., managing learners’

registration or marks. Such “educational” considerations are qualitatively different

from the ones put to the fore in the JavIT or Bio-sim cases.

The educational software definition we have introduced is not meant to contrast

effective and ineffective systems, or what may be “legitimately” considered as

educational software, but design considerations. As a matter of fact, most existing

LMSs can hardly be considered as educational software as they provide very few

properties dedicated to educational issues (however, this is not intrinsic to the

notion of LMS, and counter-examples do exist, see Chap. 4). Anyway, LMSs,

because of their generic character and the fact they consider back-office dimensions

more than educational considerations, are not very good examples for exploring

educational software issues.

Argue-chat highlights the proximity that may exist between educational soft-

ware and, more generally, software specifically designed to influence users’

processes.

Finally, we have introduced Argue-chat as educational software because its

specificities have been studied and designed according to difficulties that have

been identified when learners use basic chat tools to argue. Argue-chat is explicitly
designed to help learners develop productive interactions. However, addressing

the argumentation difficulty may be useful in other contexts (e.g., coordination

in collaborative work) and for other non-pedagogical objectives (e.g., collective

problem-solving efficiency or collective-design-rationale documentation). IfArgue-
chat had been designed within such a context, this would not change its interest for

education.

This example highlights that it would be very unproductive and misleading to

separate efforts and work related to educational software from other efforts related

to, for instance, Computer-Supported Collaborative Work and interaction (if con-

sidering Argue-chat-like systems) or, as another example, problem-solving

(if considering ITS-like systems). More generally, designing software to influence

learners’ activity or knowledge is a particular case of designing software to

influence users’ processes, and shares the more general objective of understanding

what designing software to support human activity means and how it may be

addressed (see Chap. 6, Sect. 3.2). For instance, educational software greatly

14 1 Introduction

benefits from work studying how to design software to support interactions (and

how such software is used) because such work addresses the relation software/

(interaction)-objectives in an explicit way (and, of course, because interaction is

closely related to learning).

3 Design of Educational Software: Different Realities

Designing software with respect to educational concerns may correspond to very

different realities. We contrast and exemplify here two prototypical cases, which

illustrate different prototypical education/CS interplays, and discuss them in

Sect. 3.3:

1. Designing and implementing new software, i.e., defining the software

specifications from the analysis of the pedagogical setting and implementing

them. Technically, this implementationmay be addressed in various ways such as

programming from scratch or interoperating preexisting software components.

2. Articulating and/or customizing already existing software components to educa-

tional needs.

Other options are possible, e.g., instantiating generic software (e.g., an ITS

framework) or a basic high-level framework. For instance, a system such as

Argue-chat may be implemented by instantiating a generic graph-tool.

3.1 Designing and Implementing New Software

Bio-sim is a prototypical case of educational software that is likely to be designed as

new software, i.e.: specification of the software is established from the targeted

CBPSs (and, possibly, teaching setting) analysis, implemented, tested and itera-

tively refined. More generally, if one considers complex systems such as ITSs or

simulations, building new software is prototypical.

At the basis of design are a given learning theory and an identified set of issues to

be addressed. In Bio-sim’s case, the rationale12 is that inquiry learning appears to be
a promising approach to make learners learn how to regulate their own learning,

gain new knowledge and update their existing knowledge. However, the positive

impact of inquiry learning settings may be hindered by the difficulties learners often

encounter when facing inquiry processes such as choosing the right variables to

work with or implementing the experimental processes. The problem to be studied

is less to allow learners to solve the task than to lead them to do so in a knowledge-

productive way. The targeted system is meant to play an important and precise role,

providing specific affordances and cognitive support. The exact software properties

12See de Jong, T. (2006). Computer simulations – Technological advances in inquiry learning.

Science, 312, 532–533.

3 Design of Educational Software: Different Realities 15

are important issues, and the requested properties are defined from the pedagogical

needs.

It may be noticed that such software is “new” in the sense that, fundamentally,

educational specifications are identified, and software is constructed so as to match

these specifications. However, from a technical point of view, Bio-sim may be

implemented from scratch or by reusing and adapting different existing software

components (a simulation, a generic editor, etc.). Pushing forward this idea, Bio-sim
may be just one of a set of inquiry learning environments to be constructed and,

from a technical point of view, the strategy may consist of building technical

frameworks (pieces of software dedicated to a general set of related features)

from which different variations may be constructed according to the precise

specifications of one or another system.

3.2 Articulating and/or Customizing Software Components

ICT has considerably changed the TEL field and, if one considers systems used in

effective settings, educational software is often a particular selection, adaptation

and/or inter-connection of already existing ICT-based software components. Typi-

cally, within on-line learning centers, so called “learning technologists” are in

charge of understanding, with the involved teachers, what already existing technol-

ogy may be adapted to their needs, and customize it as necessary.

Let us consider the learning theories forum CBPS. A basic LMS offers little

support for learners engaged in such a setting. An option may be to build a specific

environment from scratch, but this is rather expensive. A more rational process is to

study how some of the technical possibilities of the LMS, together with additional

software components, may be locally aggregated, customized and interoperated so

as to build a kind of task-related activity framework (let us call it Colab-edit). Such
an environment may for instance be created by adapting and gluing together an

editor, a versioning system and a forum as a way to offer learners a collaborative

editor that allows them to edit text, track other learners’ modifications, submit and

comment on work-in-progress reports and launch mediated discussions associated

with particular pieces of text. Such an approach may involve both basic tools and

specific tools such as Argue-chat.
A “mash-up” such as Colab-edit is an example of educational software built

by selecting and adapting existing components and articulating them in a parti-

cular way: it is software that has been designed with respect to educational

purposes, and which is meant to influence learners’ processes. A different but

related example of this type of process is the way a basic information system

(named GeLMS-1 for commercial reasons) may be re-engineered into GeLMS-2,
technically a new version but, now, a system that takes into account educational

considerations and addresses drawbacks highlighted by the practical use of the

previous version.

16 1 Introduction

3.3 Education and CS Interplays

Let us consider in more detail the education and CS interplay in the Bio-sim and

Colab-edit cases:

• In the Bio-sim case, the educational software is imagined and created from

the pedagogic idea. Bio-sim is designed as new software. Technically, it may

be implemented upon existing software, but the existence of the software used to

build Bio-sim is not a matter of concern for educationalists.

• In the Colab-edit case, the educational software is imagined and created from (1)

the pedagogic idea and (2) the existing technology or, more precisely, the way

educationalists and computer scientists interpret the existing software

affordances with respect to the pedagogical needs. The existence of already

existing software is at the basis of the design process (and, also, of the imple-

mentation process).

Colab-edit exemplifies the fact that building educational software by articulation

and/or adaptation of components can be seen as a movement from two existing

constructions (the initial pedagogical idea and the existing software or components)

to a third (the designed system). Such a movement is submitted to multiple different

influences such as the individual educationalists’ and computer scientists’ views,

their mutual understanding, the common conceptual constructions they may build

together (or fail to build), their perception of the existing technologies, the general

teaching context, the general technological context (e.g., the technology availability

and scalability or economical constraints) or the project’s lifespan. The process is

usually not linear but iterative, ideas and software being iteratively tested and

improved.

However, in fact, such a process occurs in all cases, including when building

software from scratch. It is difficult to imagine educationalists (and computer

scientists of course) imagining and designing software without any influence

from already known systems or, at the least, a certain perception of technology

and of what can and cannot be done.

It may also be noticed that a technological framework designed to fit some given

pedagogy, once deployed, often leads one to find some of its aspects or assumptions

were not noticed, and requires reconsideration of the design.

Therefore, as a general principle, highest importance should be given to the

educational dimensions and not to the technical dimensions, and the start point of

any project involving the design of educational software should be the pedagogi-

cal setting (which is itself to be considered within the more general teaching

setting), and not the technical system. Technology should adapt to pedagogical

needs and not the contrary. However, what happens is usually a bit more

complicated and balanced. In all cases (inventing new software on the basis of

a pedagogical idea or a technical opportunity, adapting existing software, gluing

together existing components, building CBPSs upon the limited means offered by

a platform such as GeLMS-1, etc.), there is not a pedagogical idea on the one side

3 Design of Educational Software: Different Realities 17

and CS work on the other, but co-constructions, adaptations, compromises and/or

taken opportunities.

Designing software with respect to educational concerns may thus correspond to

very different realities, with significantly different education and CS interplays.

This is part of the reason why, if general methodological considerations may

be highlighted (CBPSs and teaching levels must be considered; CBPSs are socio-

technical contexts; technology is not prescriptive of what will happen; individual

characteristics of learners, but also groups’ phenomena, institutional or sociological

dimensions are of major influence; iterative or participative approaches are useful;

effective use of systems is not necessarily related to their properties and impacting

effective practices requires considering other factors; etc.), listing precise

guidelines or managing projects requires going into specifics of the setting.

4 Addressing Educational Software Design

4.1 Considering Software Properties

It has been raised in Sect. 1 that how learners use software is subject to many

influences and that the software does not define what will happen. This may lead

one to consider that whatever the software properties are, their effects may be

rendered anecdotic by other dimensions, and thus they may be considered

contingent.

We argue that addressing the level of software properties is necessary and of

interest as these properties have an influence on what is going to happen or not, and

how.

First, whatever software is, software properties do impact users’ behavior.

Software is in no way neutral. Software properties (whatever their design rationale

is) define part of the socio-technical system with which users or, in this case,

learners, are engaged. They play a role in the development of users’ perception

and representations of the task and/or of how software may be used as a means, and

of course in what actions are possible. Studying how software properties influence

or not (and how, when, why, etc.) the unfolding of pedagogical settings is necessary

to, at the minimum, avoid raising pedagogically unproductive representations or

constraints.

Second, in formal learning settings, the fact that learners are asked to use a given

system to achieve a given task in the context of a given institutional setting creates a

very specific context. This is the case for still rather open settings such as the

learning theories forum and, more importantly, for more constrained settings such

as the biology inquiry learning CBPS implemented with Bio-sim or tutoring

contexts implemented with JavIT. In such cases, as reported in the literature,

learners’ behavioral and cognitive processes are influenced by software properties.

18 1 Introduction

It makes sense to consider the objective of influencing by the software design what

is going to happen.

However, software influence is to be considered in the light of the different

points raised in Sect. 1, and with respect to precise contexts. For instance, the

objective of influencing by the software design what is going to happen corresponds

to very different realities in the learning theories forum and the Java programming
CBPS implemented with JavIT. This gives particular importance to the clarification

of the setting, the software role, and what the expectations are.

4.2 Making Explicit Matters of Concern and Perspectives

Considering educational software design requires drawing relations between peda-

gogical considerations, software properties, software usage and the outcomes of this

usage. This is the case in both development and research projects studying how to base

design on theoretical elements or attempting to capitalize knowledge. With respect

to design, a central issue is that of thinking, problematizing and making explicit

the relationships between (1) the discourse that is used to denote the considered

pedagogical objectives and settings, and the underlying assumptions, and (2) the

design and implementation decisions, and the corresponding software properties.

In the preceding sections, we have introduced the Bio-sim, JavIT, Argue-chat
and Colab-edit examples by making salient (1) the description of the considered

CBPSs and (2) the description of the systems’ features. Such a presentation allows

the general idea to be grasped, but drawing precise relations between pedagogical

considerations, software properties and usage requires both broadening the scope

and going into other details.

As examples, we highlight hereafter a few dimensions whose clarification is

required.13

4.2.1 The Way the Pedagogical Setting and Software Role Are Thought of

An important dimension underlying educational software design projects is whether

the targeted computer-based setting is expected to present additional value in terms

of learning or it is thought of as an alternative to a non-computer-based setting. For

instance, a system (and the underlying constructions) such as Bio-sim must be

considered and evaluated very differently according to whether it is designed to

produce better learning outcomes than inquiry learning not based on simulations,

as an alternative to in-classroom settings (the notion of “better learning outcomes”

is not central anymore), or as an additional means to be used with some others

13The examples of analysis axes introduced here are part of the list developed in Chap. 7.

4 Addressing Educational Software Design 19

(which raises concerns such as the coherence of these different means). Similarly,

Colab-edit will be considered very differently if it is thought of as a response to

a limitation (the fact distant learners cannot attend classrooms) or as a means for a

different pedagogy. Such considerations may impact analysis and design decisions

and, if not clarified, may be at the origin of misunderstandings and confusions

between the project actors.

As a second example, another important dimension is whether software is

thought of as something that will impact the way learners conceptualize the domain

or it is thought of as merely a resource. For instance, the importance of the fact that

learners use JavIT editors, and the importance of the way they use them, is very

different depending on whether these editors are supposed to impact the way

learners will conceptualize object-oriented notions such as inheritance or polymor-

phism (i.e., act as cognitive tools) or not.

4.2.2 The Considerations That Have Been Taken into Account

at Design Time

An important dimension underlying educational software design is whether the

project is based on a reference to a non-computer-based setting or not. If the

analysis is conducted in reference to such a setting, what is the level of granularity

of this reference? Which objects are considered? For instance, an important dimen-

sion for analyzing Bio-sim is whether it is meant to mimic authentic inquiry (and to

what extent, for what notions, etc.) or not.

As a second example, another important dimension is whether the learning

domain specificities (notions, objects, assumptions) are taken in account in the

analysis and, in this case, how. For instance, some biological knowledge is neces-

sary for designing Bio-sim simulation, but the way the system scaffolds learners’

processes may have been addressed in reference to generic inquiry principles or in a

way that mixes generic principles and domain issues. Addressing JavIT feedback

on the basis of generic principles or on the basis of a domain-specific analysis of

how learners may develop knowledge related to object-oriented design leads to

very different issues. Etc.

As a third example, design may or may not be based on, or use, theoretical bases.

For instance, JavIT feedback properties may have foundations in some given

cognitive theory; Bio-sim simulation may have foundations in theories relative to

knowledge representation, cognitive load or how skills may transfer from one

domain to another; Argue-chat may have foundations in interaction theories; etc.

As a final example, another important dimension is how the different considered

features (theoretical context, domain specificities, etc.) impact the analysis. Do they

provide a general way of thinking? Do they provide guidelines? Do they provide

concepts? For instance, JavIT design may be influenced by theories explaining how

learners learn by solving problems in different ways, from very general concerns

20 1 Introduction

(e.g., the importance of learning-by-doing) to very precise ones (e.g., the fact JavIT
should consider learners’ zone of proximal development14).

4.2.3 The Impact of Pedagogical Considerations on Design

An important dimension is to clarify which of the objects considered at the level of

the pedagogical setting are taken into account in the software design. For instance,

Colab-edit rationale is related to the fact that learners may learn from one another

by arguing and co-constructing knowledge. Considering this objective, part of the

issues related to making learners argue and co-construct knowledge may be

addressed by the structure of the CBPS (e.g., grouping learners whose background

is different as a way to increase the chances they have different views and, thus,

have to argue) and another part taken into account in the software design, for

instance offering a collaborative editor that allows versioning pieces of text. In

other words, design is only impacted by some of the pedagogical considerations,

and clarifying these is of crucial importance.

As a second example, another important dimension is whether the considered

objects impact design only and/or they also are reified in one way or another in the

system. For instance, considering JavIT, the fact that learners are expected to make

explicit their different problem-solving steps may impact the way the system

introduces the exercise (the instructions) and/or the design of the editor which is

to be used by learners to edit their solution (the editor may for instance impose the

use of constructions such as “I create class C because . . .” or “I use inheritance as a
way to . . .”). Going a step further, the notion of “explicit solution” may also be

reified in the system as a specific software component capable of evaluating the

extent to which a solution has been made explicit and is properly justified.

As a third example, another important dimension is how features or properties

thought of as dedicated to educational dimensions relate to the pedagogical

objectives and constraints. For instance, which Bio-sim properties are meant to

provide specific affordances for learning (and which others are just introduced for

the environment to be usable)? How does the use of Argue-chat and properties

such as offering sentence openers, considering balanced interactions or imposing

turn-taking rules relate to the CBPS it is used within? etc.

As a final example, another dimension is the precise processes of the system

(data acquisition, data analysis, accessibility management, etc.) and how they relate

to the pedagogical objectives. For instance, when Bio-sim provides learners with

hints, does it analyze learners’ hypotheses in terms of biological knowledge or does

it only react to general features such as the number of variables involved? If

14The zone of proximal development is “the distance between the actual developmental level as

determined by independent problem solving and the level of potential development as determined

through problem solving under adult guidance, or in collaboration with more capable peers”.

Vygotsky, L.S. (1978). Mind and society: The development of higher psychological processes.

Cambridge: Harvard University Press.

4 Addressing Educational Software Design 21

building a system enhancing Argue-chat by a component that analyzes learners’

interactions, what type of process is implemented? Are sentences’ semantics

analyzed using a Natural Language analyzer? Are they categorized according to

the sentence openers used by learners (independently from the effective text, which

may not correspond)? Does the system just sum up the number of sentences?

These different examples highlight that the description of the considered CBPSs

and of the system features is far from capturing all the different dimensions

underlying design of educational software. As a consequence, if analysis is limited

to these considerations, many misunderstandings and confusions may develop

between actors from different disciplines and/or with different matters of concern.

4.3 Importance of Explicitness

Making explicit the details of work related to the design and implementation of

educational software is important for different reasons, in particular:

1. It increases the chances of the actors engaged in design and analysis to develop a

shared understanding. This is an issue of particular importance and difficulty in

TEL due to the intrinsic complexity and multidisciplinarity of the field, and to

the variety of possible matters of concern, perspectives or approaches.

2. It increases the chances to benefit from and/or reutilize constructions (e.g.,

models, processes, software components or lessons learned) from other projects,

and the chances to get the constructions elaborated in one’s projects to be

reusable for other projects, by other persons. In a less positive wording, it

helps in avoiding wasting time due to the erroneous idea that some constructions

are innovative and avoiding replicating mistakes already made with the previous

wave of technology, which is indeed a recurrent pattern of TEL history.

3. It provides a basis for the definition, the evaluation, the criticism and the

dissemination of scientific results.

Making explicit design details is a sine qua non condition for knowledge

capitalization, which may take different forms: understanding of an issue; statement

or lesson learned; model (for thinking and analysis, for prediction, for run-time

control, etc.); process (general approach, engineering or re-engineering process,

benchmark); conceptualization (i.e., a set of concepts proposed as a substratum for

some given work); software component; etc. (see Chap. 7).

As an example, one of Bio-sim’s specific designed features is to support learners
in making connections between the simulation, the data and learners’ hypotheses.

From such a project may be capitalized lessons learned related to the impact,

influence, usage (etc.) of such support, and of how learners may develop and

manage hypotheses in such a setting; lessons learned related to the issues raised

within such a project; the first steps of an approach or an engineering process related

to inquiry learning environment design or to cognitive scaffolding, to be tested in

other projects; software components as construction bases for inquiry learning

22 1 Introduction

settings; design patterns; etc. Considering Argue-chat, which imposes the use of a

certain number of graphical constructions related to argumentation, similar knowl-

edge may be capitalized, and Argue-chat features (issues, impact, usage) may be

compared to those of other approaches to interaction structuring (e.g., using sen-

tence openers), etc.

As will be emphasized in Chap. 6, CBPS and educational software are artificial

objects, and knowledge develops via the design and analysis of systems: advances are

derived via engineering projects involving, within a larger pedagogical study, the

design and implementation of software. As a consequence, both research and devel-

opment projects may be productive of knowledge. In research-oriented projects, the

objective is usually not to build some given software to be used in some effective

setting, but to identify and understand issues to be considered, phenomena to be

understood, or possible approaches. The constructed software is both the resource and

the objective of scientific work. In development projects, whose objective is to build

systems to be used in effective settings, knowledge or lessons learned may be

elaborated from the analysis of design decisions and their impact. In fact, as discussed

in Chap. 6, research and engineering dimensions are to a large extent intertwined.

4.4 Difficulty and Limits of Explicitness

The way the examples of CBPSs and educational software have been introduced in

Sect. 2 is typical: researchers or engineers engaged in the design of educational

software usually present their projects by focusing on the way they imagine the

setting and the innovative features they attempt to introduce, which is related to

their perception of the field, the spectrum of the issues they consider, etc.

However, this conceptual context is often largely idiosyncratic, and difficult

to share.

In this book, we refer to “clarifying” or “making explicit” (design) matters of

concern as the efforts made by an actor or a set of actors to render these features

intelligible by some other actors (and, by the way, improve their own analysis and

understanding).

“Explicitation” is a goal that, however, raises fundamental problems. At

a theoretical level, the notion of explicitation leads to considering notions such

as accountability (see ethno-methodology studies) or shared understanding.

In particular, considering shared understanding, intelligibility is not only related to

language issues (i.e., sharing a common interpretation of language items), but also to

many other material, social, historical or cultural dimensions. The documentary

The raison d’être of this book is the fact that there is an intrinsic difficulty in

making explicit (in detail) work related to the design and implementation of edu-

cational software. This book introduces notions, analyzes, examples, characteriza-

tion items and methodological considerations as means to support such a process.

4 Addressing Educational Software Design 23

artifacts that may be considered by an actor (or a set of actors) as an explicitation of

his/her concerns are the result of an encoding by a sender, and will in turn be

decoded by a receiver. These encoding and decoding processes are of course

context-dependent, and related to many dimensions. In other words, what has

been considered as comprehensive and unambiguous by a given actor in a given

context may be understood differently by another actor who has a different history,

a different culture or a different view of the field and what the important notions or

matters of concern of this field are, and is presently facing some given tasks within

some given context.

When arguing for the interest of explicitation and attempting to support such

processes, these fundamental issues are not to be ignored. They do not mean efforts

for explicitation are meaningless, but that they must be considered with these

difficulties and intrinsic limitations in mind.

In particular, highlighting and analyzing issues, approaches or characteristics

only makes sense, and is only intelligible, if the considered notions are properly

defined. In other words, it is not possible to say anything more or less precise,

consistent and, above all, shareable, if there has not been proposed some prior

clarification of the conceptualization that underlies the proposed constructions.

A conceptualization is a differential system of notions. A given conceptualiza-

tion emphasizes some aspects of a field (some notions, some dimensions, some

properties, etc.) and not others. Because a conceptualization is never neutral, the

underlying perspective on the domain must be clarified: the fact that it is useful to

denote a given notion or to dissociate two notions that appear similar, or the reasons

why a given definition draws attention to particular aspects, only makes sense

within a general view of the considered domain.

When addressing complex domains, using differently-oriented conceptua-

lizations allows precision, when attempting to address different issues within a

single common view (a kind of “all-in-one conceptualization”) often leads one to be

rather abstract and general. TEL poses different types of issues and thus requires

different views, drawing attention to different dimensions and providing different

conceptual means.

In this book, the focus is on the relationships between the discourse that is used

to denote pedagogical issues (settings, considerations, objectives, etc.) on the one

side and, on the other side, the elaborated software. This is addressed within a

software-design-oriented conceptualization that has been sketched in this introduc-

tory chapter and is described in detail in Chap. 2. This conceptualization is to be

seen as a tool dedicated to conducting multidisciplinary work related to educational

software design in TEL.

As a way to emphasize that a given conceptualization draws attention to some

dimensions and not to others, let us consider notions such as learning or educa-
tional practices. When focusing on educational software design, these dimensions

are not put to the fore. This is not to say learning is not important or that design

issues are disentangled from educational practices. Of course, for any TEL project,

at a general level, the issue is to address the fact that some targeted CBPSs will

allow a better (or a different type of) learning, and will make sense with respect to

24 1 Introduction

teachers’ practices and institutions. However, if one considers these objectives as

such, different analyses on different plans are required. For instance, considering

whether a pedagogical setting allows better learning, or a different type of learning,
requires means to describe and analyze TEL settings in terms of learning and

properties of learning (e.g., to define what is meant by “a better learning”). In

other words, this requires a conceptualization of the field that allows these issues to

be addressed. Such a conceptualization may, however, make it hard to grasp some

other dimensions, for instance, the way the pedagogical intention is reified within
the system or the way the computer-based artifact properties impact learners’
activity, which are not first-class matters of concern and may be completely

contingent when addressing the project within a learning-focused view. On the

contrary, these dimensions are at the very core of an analysis considering CS-

oriented design issues, and the conceptualization underlying such an analysis must

allow these dimensions to be grasped. Viewing the domain from the point of view

of teachers’ practices is again a different view, and leads to the consideration of

other notions (and/or addressing notions in a different way).

Coming back to the need for explicitation efforts, from a long perspective,

putting into evidence the pragmatic interest of explicitation, and proposing

constructions (such as conceptualizations or lists of characteristics) as examples

of explicitation tools, may lead communities (researchers or communities of prac-

tice) to collaboratively develop and adopt shared conceptual tools.

As a pragmatic feature, efforts at explicitation may finally be related to the

following point: designers may associate some logos to the designed software or

may not (“technology” in the etymological sense) but, in any case, other actors and,

in particular, users, will do. Associating some logos to the designed artifact from the

start could be seen as a means to “impose” the designers’ view but, anyway, users

will take possession of the artifact according to their purposes and needs. Rather,

this may help in tracing and understanding the way, in some sense, “design is

continued in usage”.

5 Content and Structure of the Book

5.1 Objective

TEL projects considering the design and implementation of educational software

are intrinsically multidisciplinary and complex. As such, they present the difficulty

of conducting detailed analyses allowing the different involved actors to understand

respective matters of concern and build common constructions. Another difficulty,

related to the previous one, is to benefit from lessons learned in the literature, and to

contribute to this capitalization of knowledge.

Within this context, the general objective of this book is to highlight the

importance of making explicit the details of work related to the design and

implementation of educational software, and to propose a substratum to do so.

5 Content and Structure of the Book 25

More precisely, this book concentrates on the very core difficulty of providing a

framework to think about and make explicit the relationships between (1) the

discourse that is used to denote the considered pedagogical objectives and settings,

and the underlying assumptions, and (2) the elaborated models and software

components.

5.2 Content Synthesis

The overall content15 of this book is:

1. A highlight of the fact that what is referred to by the “design of educational

software” may be subject to very different perspectives, and the importance of

making explicit matters of concern.

2. A general conceptualization that helps in disentangling issues and clarifying

matters of concern with respect to educational software design and

implementation.

3. A set of items that may be used to characterize (1) the way the pedagogical

setting is considered and (2) the software properties and construction processes.

4. A review of some methodological dimensions.

5. A perspective on the field anchored in an engineering approach, and propositions

on how to push the field forward.

6. Different examples used to raise issues and illustrate propositions.

Although this book addresses the field in a transversal way and does not describe

a particular methodology, its content (the description of issues, concepts,

approaches, examples, methodological considerations) has heuristic value for

conducting projects.

5.3 Rationale for the Organization

This book presents two dimensions: analyzing issues and proposing means. These

dimensions are intertwined (as opposed to an analysis and then proposals), the

general structure being:

• Chapter 1. Introduction

• Chapter 2. A general conceptualization for educational software

• Chapter 3. Understanding differences in perspectives

• Chapter 4. Review of prototypical examples

15We will come back to this list of contributions and its rationale in Chap. 6, in the context of the

analysis of educational software engineering developed in that chapter.

26 1 Introduction

• Chapter 5. CS perspectives and TEL

• Chapter 6. Educational software engineering

• Chapter 7. Characterizing the design context and the software artifact

• Chapter 8. Methodological considerations

• Chapter 9. Conclusions

5.3.1 Analysis Dimension

Analyzing perspectives within which educational software notions and issues

may be considered is specifically addressed by Chap. 3, which provides different

examples of how a given project and some important notions may be thought of and

managed. In Chap. 4, several examples of systems are studied, highlighting

differences with respect to these notions in particular. Chapter 5 also contributes

by analyzing the different ways in which CS contributes to the TEL field, and the

different ways in which computer scientists may conceptualize their involvement.

This analysis dimension is also more or less indirectly addressed in all the other

chapters, as for example in the preceding sections of this introductory chapter and in

the concluding chapter, which analyzes some issues for TEL development.

5.3.2 Propositions Dimension

Contributions consist of means for thinking, problematizing and describing educa-

tional software design and implementation work and outcomes.

The first proposition is a software-design-oriented conceptualization of the TEL

field. This dimension is specifically addressed by Chap. 2, the general perspective

(and preliminary definitions) having been introduced in this introductory chapter,

and being completed by all the other chapters.

The second proposition is a list of items for characterizing, within a given

project, the way the pedagogical setting is considered, and the software properties.

This dimension is specifically addressed by Chap. 7. Listing such characteristics is

useful because it ensures that specific attention is paid to a certain number of

important dimensions. This helps to clarify projects in several ways. First, the listed

characteristics that appear pertinent given the considered project can be used as an

analysis grid: the list provides a resource for describing projects with respect to an

external reference. Second, checking whether the proposed characteristics are

pertinent and whether or not they apply leads to identification of variants or other

characteristics that best denote some dimensions of the project, which here again

helps in clarifying projects. The proposed list is based on the general conceptuali-

zation introduced in Chap. 2 and the CS and engineering dimensions analyses

developed in Chaps. 5 and 6.

The third proposition is a review of methodological dimensions, consideration of

which is of particular importance. This dimension is specifically addressed by

Chap. 8, and is present in some way or another in most of the others.

5 Content and Structure of the Book 27

The fourth proposition is an argument for addressing TEL as an engineering

field, which defines the rationale for making specific efforts in making explicit

matters of concern and elaborating multiple descriptions of projects. This dimen-

sion has been sketched in this introductory chapter, and is specifically addressed by

Chap. 7. This is completed by a perspective on how to push forward the educational

software engineering field (Chap. 9).

5.4 General Comments

5.4.1 Keeping Context in Mind

Writing a text addressing a complex multidisciplinary domain for a multidisciplinary

audience opens many opportunities for misunderstandings. This is particularly the

case when the entry point is software, the domain is education, and the text is long.

Sentences or paragraphs picked up in the text may bemisunderstood if considered out

of their context. As restating this context in every section would be difficult, it is

assumed the reader keeps this context in mind.

As an example, we use the notion of impact of software properties to denote the

fact that software properties have an influence on what happens or does not. This is to

be understood in the context of other considerations introduced before such as the

facts that software is not definitional, software is only a mediator of learners’ activity,

and learners’ activity is something that contextually emerges and evolves in relation

to many dimensions of which software is just one factor. Not keeping this in mind

may result in over-interpreting or misunderstanding the “impact” notion.

As another important dimension to be kept in mind, we have emphasized that a

conceptualization is never neutral. In a field such as TEL, a conceptualization

emphasizes notions that are of importance given an objective. The proposed

conceptualization is related to the adopted orientation, that of the design of CS

artifacts (software design; not to be confused with a technical point of view, e.g.,

addressing languages or platform architectures, or with a techno-centered

approach). This is only one of the different possible perspectives that can be

developed, and must be developed, when considering the TEL field.

5.4.2 What This Book Is Not

First, this book does not attempt to propose a unified view of notions, theories or

any other specific constructions related to TEL. For instance, it does not present a

list and a particular definition of notions frequently used in TEL such as feedback,
learner model, cognitive conflict or interaction analysis. Similarly, it does not

propose a unified process for building or evaluating educational software.

The reason for this is that TEL projects may be of very different natures,

consider very different types of objectives and/or address them at different levels

28 1 Introduction

of granularity, use different theoretical or empirical foundations, etc. It is within a

given project that notions such as feedback, learner model, cognitive conflict or
interaction analysis will find a particular precise definition, will correspond to

precise challenges, will be subject to particular attentions and treatments, and will

lead to particular processes or methodologies. Attempting to build a kind of

unification is useless and meaningless. It may be done, but at a level of granularity

and abstraction that will render it of little interest for effective use. Moreover,

this could easily fall into an attempt at normalization, which has indeed no sense,

for ethical and, if nothing else, practical reasons given the heterogeneity of

perspectives, settings and systems.

Second, this book does not attempt to explain how to build some given software

or component or how to conduct research, although its content is useful for such

tasks.

Here again, given the diversity of TEL projects, addressing such issues “in

general” would lead to listing trivial generalities or, here again, to a kind of

normalizing view. How to conduct TEL projects and build educational software

cannot be reduced to a set of recipes. Every project (which may involve design

of one or several systems) requires a detailed analysis in order to understand matters

of concern, to adapt to context and to build on lessons learned from the literature.

In this book we address a conceptual level in the sense that emphasis is on

proposing means for thinking and problematizing, which may be used for conducting

different types of work. This may be inspiring for inducing a methodology or a set of

guidelines for a given project, but this dimension is not addressed per se. Other books
address contextually defined issues such as user-centered software engineering

techniques, research methodologies, evaluation procedures or how a given type of

problem may be addressed (e.g., building a specific type of system such as ITS).

5 Content and Structure of the Book 29

	Chapter 1: Introduction
	1 General Picture
	1.1 Technology Enhanced Learning
	1.2 TEL and CS Technical Artifacts
	1.3 Educational Software
	1.4 Computer-Based Pedagogical Settings (CBPSs)
	1.5 Non-definitional Character of Software
	1.6 Summary

	2 Examples
	2.1 Examples of Computer-Based Pedagogical Settings (CBPSs)
	2.1.1 The Java Programming CBPS
	2.1.2 The Biology Inquiry Learning CBPS
	2.1.3 The Learning Theories Forum CBPS
	2.1.4 Discussion

	2.2 Examples of Educational Software
	2.2.1 JavIT, the ITS
	2.2.2 Bio-sim, the Simulation-Based Learning Environment
	2.2.3 GeLMS-1, the Generic LMS
	2.2.4 Argue-chat, the Graphical Argumentation Chat Tool
	2.2.5 Discussion

	3 Design of Educational Software: Different Realities
	3.1 Designing and Implementing New Software
	3.2 Articulating and/or Customizing Software Components
	3.3 Education and CS Interplays

	4 Addressing Educational Software Design
	4.1 Considering Software Properties
	4.2 Making Explicit Matters of Concern and Perspectives
	4.2.1 The Way the Pedagogical Setting and Software Role Are Thought of
	4.2.2 The Considerations That Have Been Taken into Account at Design Time
	4.2.3 The Impact of Pedagogical Considerations on Design

	4.3 Importance of Explicitness
	4.4 Difficulty and Limits of Explicitness

	5 Content and Structure of the Book
	5.1 Objective
	5.2 Content Synthesis
	5.3 Rationale for the Organization
	5.3.1 Analysis Dimension
	5.3.2 Propositions Dimension

	5.4 General Comments
	5.4.1 Keeping Context in Mind
	5.4.2 What This Book Is Not

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

