

IFIP Advances in Information
and Communication Technology 351

Editor-in-Chief

A. Joe Turner, Seneca, SC, USA

Editorial Board

Foundations of Computer Science
Mike Hinchey, Lero, Limerick, Ireland

Software: Theory and Practice
Bertrand Meyer, ETH Zurich, Switzerland

Education
Arthur Tatnall, Victoria University, Melbourne, Australia

Information Technology Applications
Ronald Waxman, EDA Standards Consulting, Beachwood, OH, USA

Communication Systems
Guy Leduc, Université de Liège, Belgium

System Modeling and Optimization
Jacques Henry, Université de Bordeaux, France

Information Systems
Jan Pries-Heje, Roskilde University, Denmark

Relationship between Computers and Society
Jackie Phahlamohlaka, CSIR, Pretoria, South Africa

Computer Systems Technology
Paolo Prinetto, Politecnico di Torino, Italy

Security and Privacy Protection in Information Processing Systems
Kai Rannenberg, Goethe University Frankfurt, Germany

Artificial Intelligence
Tharam Dillon, Curtin University, Bentley, Australia

Human-Computer Interaction
Annelise Mark Pejtersen, Center of Cognitive Systems Engineering, Denmark

Entertainment Computing
Ryohei Nakatsu, National University of Singapore

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First
World Computer Congress held in Paris the previous year. An umbrella organi-
zation for societies working in information processing, IFIP’s aim is two-fold:
to support information processing within its member countries and to encourage
technology transfer to developing nations. As its mission statement clearly states,

IFIP’s mission is to be the leading, truly international, apolitical
organization which encourages and assists in the development, ex-
ploitation and application of information technology for the benefit
of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees, which organize events and
publications. IFIP’s events range from an international congress to local seminars,
but the most important are:

• The IFIP World Computer Congress, held every second year;
• Open conferences;
• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited
and contributed papers are presented. Contributed papers are rigorously refereed
and the rejection rate is high.

As with the Congress, participation in the open conferences is open to all and
papers may be invited or submitted. Again, submitted papers are stringently ref-
ereed.

The working conferences are structured differently. They are usually run by a
working group and attendance is small and by invitation only. Their purpose is
to create an atmosphere conducive to innovation and development. Refereeing is
less rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP
World Computer Congress and at open conferences are published as conference
proceedings, while the results of the working conferences are often published as
collections of selected and edited papers.

Any national society whose primary activity is in information may apply to be-
come a full member of IFIP, although full membership is restricted to one society
per country. Full members are entitled to vote at the annual General Assembly,
National societies preferring a less committed involvement may apply for asso-
ciate or corresponding membership. Associate members enjoy the same benefits
as full members, but without voting rights. Corresponding members are not rep-
resented in IFIP bodies. Affiliated membership is open to non-national societies,
and individual and honorary membership schemes are also offered.

Jolita Ralyté Isabelle Mirbel
Rébecca Deneckère (Eds.)

Engineering Methods
in the Service-Oriented
Context

4th IFIP WG 8.1 Working Conference
on Method Engineering, ME 2011
Paris, France, April 20-22, 2011
Proceedings

13

Volume Editors

Jolita Ralyté
Université de Genève, Centre Universitaire d’Informatique
Battelle, bâtiment A, 7, route de Drize, 1227 Carouge, Switzerland
E-mail: jolita.ralyte@unige.ch

Isabelle Mirbel
Université Nice-Sophia Antipolis, Département Informatique
Parc Valrose, 06108 Nice Cedex 02, France
E-mail: isabelle.mirbel@unice.fr

Rébecca Deneckère
Université Paris 1, Centre de Recherche en Informatique
90 rue de Tolbiac, 75013 Paris, France
E-mail: rebecca.deneckere@univ-paris1.fr

ISSN 1868-4238 e-ISSN 1868-422X
ISBN 978-3-642-19996-7 e-ISBN 978-3-642-19997-4
DOI 10.1007/978-3-642-19997-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011923072

CR Subject Classification (1998): D.2, H.4, H.5, K.6

© IFIP International Federation for Information Processing 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Over the last two decades the discipline of method engineering has evolved from
simple ad-hoc method construction to situational and domain-specific method
engineering approaches as a response to the increasing complexity and diversity
of software and information systems developments. Several theories, approaches
and tools have been proposed to support the construction of project-specific
information system development methods where each method would be based
on the particular project situation and requirements. To attain such a high
degree of flexibility, methods are understood to be modular, built from so-called
method fragments or method chunks, which are stored in method repositories
and can be assembled in situation-specific methods.

Despite the great advance in this domain, many issues are still open for fun-
damental research. The notion of situation, its characterization and evaluation
as well as the suitability of method fragments to the situation have been inves-
tigated but still need more theory and experimentation. How to evaluate the
quality of a newly constructed method? What is the best granularity of method
fragments and method chunks? How to guide assembly of method fragments?
All these questions still need an answer.

Furthermore, the evolution of enterprise software and information systems
and especially their shift toward service-oriented architectures demands new
ways of working, thinking and designing systems that we now call service-
oriented systems. New methods, techniques and tools based on the concept of
service and better fitting the current development situations are under devel-
opment and experimentation and are the main topic of this volume. Besides,
the notion of service is also emerging in the domain of method engineering as a
new type of method building block and therefore becomes a new fundamental
concept of the discipline.

Engineering methods, techniques and tools for the analysis, design and evo-
lution of information systems is one of the main research areas of the IFIP Work
Group 8.1. Successful Working Conferences have been organized on this topic
in Atlanta in 1996, in Kanazawa in 2002 and in Geneva in 2007. A new edition
of the IFIP WG 8.1 Working Conference on Method Engineering with a sub-
title “Engineering Methods in the Service-Oriented Context” was held at the
University of Paris 1 – Pantheon Sorbonne, in France, during April 20–22, 2011.

The 19 papers (13 full papers and 6 short papers) included in this volume
were carefully selected by an international Program Committee out of 30 submis-
sions. Each submission was evaluated by three Program Committee members,
recruited from IFIP WG 8.1 members and other researchers active in the method
engineering field. The overall quality of the papers was high and very well fitting
to the scope of the conference.

VI Preface

The conference program featured two keynote talks by renowned method en-
gineering researchers: Naveen Prakash from MRCE, Faridabad, India, presented
“An Assessment of Method Engineering,” while Marko Bajec from the University
of Ljubljana, Slovenia, discussed the “Application of Method Engineering Prin-
ciples in Practice.” Moreover, a tutorial on “Creating Self-Describing Method
Component Repositories with ISO/IEC 24744” was given by Cesar Gonzalez-
Perez from the Spanish National Research Council. The format of a working
conference provided the participants with an opportunity to have extensive and
interactive paper discussions in plenary sessions.

We wish to thank the members of the international Program Committee
and the additional reviewers for their valuable and professional work in crafting
a high-quality program for this conference. A special word of thanks goes to
the keynote speakers and the tutorial lecturer for their willingness to present the
latest views and achievements in the discipline. We finally would like to thank all
the participants and the conference organizers for their valuable contributions.

We wish you a pleasant reading and a fruitful use of these research results in
your research and applications.

April 2011 Jolita Ralyté
Isabelle Mirbel

Rébecca Deneckère

Conference Organization

General Conference Chair

Jolita Ralyté University of Geneva, Switzerland

Program Committee Chair

Isabelle Mirbel University of Nice Sophia Antipolis, France

Organizing Chair

Rébecca Deneckère University of Paris 1 – Panthéon Sorbonne,
France

Program Committee

Pär Ågerfalk Sweden
David Avison France
Marko Bajec Slovenia
Sjaak Brinkkemper The Netherlands
Albertas Čaplinskas Lithuania
Corine Cauvet France
Massimo Cossentino Italy
Xavier Franch Spain
Cesar Gonzalez-Perez Spain
John Grundy Australia
Remigijus Gustas Sweden
Frank Harmsen The Netherlands
Peter Haumer USA
Brian Henderson-Sellers Australia
Charlotte Hug France
Manfred Jeusfeld The Netherlands
Paul Johannesson Sweden
Fredrik Karlsson Sweden
Steven Kelly Finland
John Krogstie Norway
Susanne Leist Germany
Michel Léonard Switzerland
Mauri Leppanen Finland
Pericles Loucopoulos UK
Kalle Lyytinen USA

VIII Conference Organization

Haralambos Mouratidis UK
Leon J. Osterweil USA
Oscar Pastor Spain
Juan Pavón Spain
Anne Persson Sweden
Yves Pigneur Switzerland
Naveen Prakash India
Erik Proper The Netherlands
Iris Reinhartz Berger Israel
Dominique Rieu France
Colette Rolland France
Motoshi Saeki Japan
Guttorm Sindre Norway
Keng Siau USA
Juha-Pekka Tolvanen Finland
Inge van de Weerd The Netherlands
Robert Winter Switzerland
Boštjan Žvanut Slovenia

Additional Referees

Sophie Dupuy-Chessa France
Boris Fritscher Switzerland
Agnès Front France
Kevin Vlaanderen The Netherlands

Table of Contents

Keynote Talks

An Assessment of Method Engineering . 1
Naveen Prakash

Application of Method Engineering Principles in Practice: Lessons
Learned and Prospects for the Future . 2

Marko Bajec

Situated Method Engineering

Incremental Method Engineering for Process Improvement – A Case
Study . 4

Dominique Mirandolle, Inge van de Weerd, and Sjaak Brinkkemper

Design Solution Analysis for the Construction of Situational Design
Methods . 19

Robert Winter

A Method Base for Enterprise Architecture Management 34
Sabine Buckl, Florian Matthes, and Christian M. Schweda

Method Engineering Foundations

Towards the Use of Granularity Theory for Determining the
Size of Atomic Method Fragments for Use in Situational Method
Engineering . 49

Brian Henderson-Sellers and Cesar Gonzalez-Perez

A Method Assessment Framework . 64
Tom McBride and Brian Henderson-Sellers

Towards Common Ground in SME: An Ontology of Method
Descriptors . 77

Adrian Iacovelli and Carine Souveyet

Customized Methods

Towards a Method for Service Design . 91
Olga Levina, Trung Nguyen Thanh, Oliver Holschke, and
Jannis Rake-Revelant

X Table of Contents

A Case Study for Improving a Collaborative Design Process 97
Sophie Dupuy-Chessa, Nadine Mandran, Guillaume Godet-Bar, and
Dominique Rieu

Incorporating Model-Driven Techniques into Requirements Engineering
for the Service-Oriented Development Process . 102

Grzegorz Loniewski, Ausias Armesto, and Emilio Insfran

Tools for Method Engineering

The Online Method Engine: From Process Assessment to Method
Execution . 108

Kevin Vlaanderen, Inge van de Weerd, and Sjaak Brinkkemper

A Deductive View on Process-Data Diagrams . 123
Manfred A. Jeusfeld

Turning Method Engineering Support into Reality 138
Mario Cervera, Manoli Albert, Victoria Torres, and
Vicente Pelechano

New Trends to Build Methods

Towards a Method for Engineering Social Web Services 153
Zakaria Maamar, Noura Faci, Leandro Krug Wives,
Hamdi Yahyaoui, and Hakim Hacid

Developing Families of Method-Oriented Architecture 168
Mohsen Asadi, Bardia Mohabbati, Dragan Gašević, and
Ebrahim Bagheri

Agile Service Development: A Rule-Based Method Engineering
Approach . 184

Stijn Hoppenbrouwers, Martijn Zoet, Johan Versendaal, and
Inge van de Weerd

Method Engineering for Services

Bridging the Gap between Business Processes and Service Composition
through Service Choreographies . 190

Mario Cortes Cornax, Sophie Dupuy-Chessa, and Dominique Rieu

Towards Construction of Situational Methods for Service
Identification . 204

René Börner

Table of Contents XI

An MDA Method for Service Modeling by Formalizing REA and
Open-edi Business Frameworks with SBVR . 219

Jelena Zdravkovic, Iyad Zikra, and Tharaka Ilayperuma

A Scenario-Based Governance Method for Coordination of Service Life
Cycles . 225

Sietse Overbeek, Marijn Janssen, and Yao-Hua Tan

Author Index . 231

J. Ralyté, I. Mirbel, and R. Deneckère (Eds.): ME 2011, IFIP AICT 351, p. 1, 2011.
© IFIP International Federation for Information Processing 2011

An Assessment of Method Engineering

Naveen Prakash

MRCE, Sector 43, Aravali Hills, Badhkal Surajkund Road
Faridabad 121001, India

praknav@hotmail.com

The area of method engineering has been researched extensively in the last two dec-
ades. The first exclusive conference in the subject was held in 1996. In this confer-
ence a number of major strands of work and possible directions for the future were
discussed. Indeed, work in almost all these directions has progressed in the last fifteen
years. There is now some need to assess the work done and chart out future courses of
action. Accordingly, this talk is organized in two parts, where we are and where we
can go.

In the first part, starting from the initial motivations of method engineering, we
shall take stock of what was promised and what has been achieved. Indeed, method
engineering has introduced a number of key notions: the product and process aspects
of methods, meta modeling, CAME, method rationale, situational method engineering
etc. We shall bring out the progress made in developing these notions.

In the second part of this talk, we shall express our view that the future belongs to
flexible and adaptable method engineering. We take an analogy with adaptability and
configurability in software engineering and outline a framework for engineering
adapted methods.

J. Ralyté, I. Mirbel, and R. Deneckère (Eds.): ME 2011, IFIP AICT 351, pp. 2–3, 2011.
© IFIP International Federation for Information Processing 2011

Application of Method Engineering Principles in
Practice: Lessons Learned and Prospects for the Future

Marko Bajec

University of Ljubljana, Faculty of Computer and Information Science
Head of the Laboratory for Data Technologies

Trzaska 25, 1000 Ljubljana, Slovenia
marko.bajec@fri.uni-lj.si

It seems that in IT sector we are all aware that for the development of non-trivial
software the use of software methods is very important. They provides as with knowl-
edge and guidance for the development process which otherwise might become too
chaotic and out of control. It has been empirically proven that software development
companies which have successfully established their software processes are more
efficient, produce software of higher quality and have shorter time-to-market period;
specifically if they are able to adapt their ways of working to specifics of a particular
project.

In the research community Method Engineering (ME) principles have been pro-
moted as a way to make software development methods agile and adaptable to par-
ticular circumstances, i.e. specifics of a development team and project. Unfortunately,
however, ME have never been really accepted or widely used in practice. The reasons
are several, not all are equally important.

At the University of Ljubljana we have done our own research to see what we can
do to motivate software companies in employing ME principles. The research project
was carried out under the umbrella of the Centre of excellence for “Information and
Communication Technologies” with a mission to improve software development
practice in Slovenian companies. The project was co-founded by the Slovenian Minis-
try of Higher Education, Science and Technology, European Commission and five
participating Software Companies.

To reach the goal our idea was to facilitate the companies with a framework and
tool-support for reengineering their ways of working, so that the gap between their
official methods (documented methods they claim to follow) and the ways how they
actually develop software would be as small as possible. As a part of this framework
we have developed our own approach for process configuration (PCA) that suggests
how to incorporate flexibility into formalised or documented methods, so that they
could be adjusted to suite best to circumstances of a particular project. The PCA tells
how to describe the ways of working in an organisation (organisation’s base method)
so that project-specific methods could be than created automatically by using appro-
priate tool-support.

Application of ME Principles in Practice: Lessons Learned and Prospects for the Future 3

It has been now three years after the participating companies incorporated the
framework and supporting tools into their environments. In this talk I would like to
provide the audience with more information on the research project that we have
performed and share the lessons we have learned. Our findings lead us to not very
enthusiastic conclusions and force us to look for different ways to tackle the problem.

J. Ralyté, I. Mirbel, and R. Deneckère (Eds.): ME 2011, IFIP AICT 351, pp. 4–18, 2011.
© IFIP International Federation for Information Processing 2011

Incremental Method Engineering for Process
Improvement – A Case Study

Dominique Mirandolle, Inge van de Weerd, and Sjaak Brinkkemper

Utrecht University, Department of Computer Science,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
d.e.mirandolle@students.uu.nl,

{i.vandeweerd,s.brinkkemper}@cs.uu.nl

Abstract. In order for companies to improve the maturity level of their devel-
opment process, they need to design new methods or adapt the existing ones.
This research aims to deliver a proof of concept of how incremental method en-
gineering supports the maturation of methods in a product software company.
We show how the adaptation of a method can lead to a higher maturity level.
We assessed the method of a case company by means of the situational assess-
ment method, resulting into the maturity level and situational factors. We also
modeled eight different prioritization methods according to their maturity level
and situational factors to find out which of these could be implemented into the
case company's method in order to evolve to a higher maturity level. After
matching the situational factors of the available methods with the company fac-
tors we find one method that is suitable to implement into the existing method
at the case company. We explain how the implementation can take place and
how this would evolve the method to full maturity.

Keywords: Incremental method engineering, software product management,
competence model, situational factors, maturity matrix.

1 Introduction

Product software companies have to be on track with the latest changes in the field of
software development and product management. Naturally, their processes and me-
thods need to be adjusted accordingly to the changes in the environment and growth
of the company. Yet, many product software companies find it difficult to improve
the maturity level of their methods [1]. In order for companies to improve this maturi-
ty level they need to design new methods or adapt the existing ones, while there is
little education available in the software product management (SPM) area [2].

In this research, we use an incremental method engineering approach to improve
an organization's process maturity. Method engineering (ME) is the discipline to de-
sign, construct and adapt methods, techniques and tools for the development of
information systems [3]. If a method is tuned to the project at hand, this is called
situational ME. When only a method fragment, and not the entire method, is changed,
this is called incremental ME. A method increment can be defined as “a method

 Incremental Method Engineering for Process Improvement – A Case Study 5

adaptation, in order to improve the overall performance of a method” [1]. Incremental
ME can be seen as a sub type of situational ME, where incremental ME focuses more
on evolving a method in time towards a higher maturity level by changing small parts
of the method.

1.1 Aim of This Research

The aim of this study is to deliver a proof of concept of how incremental ME supports
the maturing, and thus the improvement of processes in a product software company.
The main research question in this study is formulated accordingly:

“How can incremental method engineering support process improvement in the
software industry?”

By answering this question we aim to contribute to the field of incremental ME by
showing how the adaptation of a method can lead to a higher maturity level of that
method. We elaborate on how method increments, based on Situational Factors (situa-
tional factors) of both the method and the company, can evolve the method of our
case company. This verifies the theoretical description of incremental ME.

1.2 Related Work

Several approaches have been introduced to make it easier for companies to change
their development methods [4, 5, 6]. To help companies select a proper approach to
adapt an existing method, Ralyté et al. [7] present a generic model for situational
method engineering. In their approach, the method engineer is able to combine the
approaches that fit the ME project the best by setting intentions (goals) and connect
these with strategies. Ågerfalk et al. [8] also present a method to help method engi-
neers with the configuration and adaptation of methods. They propose the use of pre-
made reusable configurations of a base method suitable for a specific characteristic of
a development situation. Rossi et al. [9] claim that method users, but especially me-
thod engineers need to be aware of the rationale of the method in order to coordinate
the development and evolution of an existing method base.

Van de Weerd et al. use the concept of incremental method engineering as a
principle in their Product Software Knowledge Infrastructure (PSKI) [1]. Incremental
method engineering is a specific type of situational method engineering, where devel-
opment methods are over time incrementally adapted to the changing conditions. The
principle is used in the PSKI, which enables organizations to acquire a custom-made
advice to improve their processes incrementally. An important part of the PSKI is
the method base, which is loaded with existing method fragments. Accordingly to the
Situational Factors (situational factors) of the company, method fragments are chosen
out of the method base in order to create a more mature method. The domain
for which the PSKI is initially proposed is Software Product Management. By devel-
oping the Software Product Management Competence Model [10] (Fig. 1), they
give an overview and structure to the software product management domain. The
model divides the internal functions of software product management into four busi-
ness functions: portfolio management, product planning, release planning and

6 D. Mirandolle, I. van de Weerd, and S. Brinkkemper

requirements management, which contain a total of 15 focus areas, such as ‘require-
ments prioritization’ and ‘product roadmapping’. Furthermore, a maturity matrix for
SPM was developed, in which for each focus area three to five capabilities were de-
fined. The maturity matrix is depicted in Table 1. If all are implemented, full maturity
is reached. The methods we analyzed in this research are all requirements prioritiza-
tion methods, in the business function release planning.

Fig. 1. SPM Competence Model

2 Research Approach

In order to deliver the proof concept and answer the main research question, we per-
form a case study [11] at a product software company called Teezir, hereafter called
‘the case company’. We focus on a small part of the release planning stage in the
SPM Competence Model: requirements prioritization. We have chosen this particular
process as it has not yet reached the highest maturity level within the case company,
according to the assessment. Additionally, we are familiar with several methods ap-
plicable in this stage and literature about this stage. In this stage, the requirements for
an information system are sorted according to importance for certain stakeholders.
The literature we use for this research mainly consists on literature about require-
ments prioritization methods and method engineering.

Our research approach consists of two main steps:

1. Select and analyze methods. In order to deliver a proof of concept we analyze eight
requirements prioritization methods. The analysis is performed by measuring their
maturity according to the Competence Model, developed by Bekkers & van de
Weerd [10]. Additionally, we describe the situational factors per method, based on
work by Bekkers et al. [12].

 Incremental Method Engineering for Process Improvement – A Case Study 7

2. Case study. We analyze the prioritization method that is used by the case company,
as well as its maturity levels and situational factors. Based on this information, we
map the method fragments found in the previous step to the case company and se-
lect the best one. Finally, we propose how to implement this method fragment.

3 Selection and Analysis of Methods

The methods that are selected for this research are from the SPM domain, in particular
focusing on requirements prioritization. Different ways exist to prioritize require-
ments. Some existing methods are very complex and involve many stakeholders,
while others are simple. In this section, first the requirements prioritization focus area
is further analyzed. Then, an overview of the selected prioritization method is pre-
sented. Finally, the situational factors of each method are listed.

3.1 Requirements Prioritization

Table 1 presents the SPM maturity matrix, consisting of the 15 focus areas, each with
its own number of specific maturity levels. The focus area specific maturity levels are
represented by the letters A-F in Table 1 and range from maturity level 1 to 10 (the
topmost row in Table 1). In this research we focus on requirements prioritization. This
focus area contains five capabilities (denoted with letters A-E) [10].

The five requirements prioritization capabilities and their goals are:

A. Internal stakeholder involvement
Goal: Improved product quality & increased involvement of internal stakeholders
in the product management process.
Action: All relevant internal stakeholders indicate the requirements that should be
incorporated in future releases by assigning priorities to the requirements.

B. Prioritization method
Goal: Structure the requirement prioritization process and therewith provide a
solid prioritization which is balanced and clear to all parties involved.
Action: A structured technique is used.

C. Customer involvement
Goal: Incorporation of customer needs and wishes in the product.
Action: Customers and prospects indicate the requirements that should be incor-
porated in future releases by assigning priorities to the requirements from their
point of view. Customers can also be represented by delegates.

D. Cost revenue consideration
Goal: Create a financial basis for the prioritization.
Action: Information about costs and revenues of each (group of) requirement(s) is
taken into account during the requirements prioritization (costs can be expressed
in other means than money).

E. Partner involvement
Goal: Improved product quality & increased involvement of external stakeholders
in the product management process.
Action: Partner companies indicate requirements that should be incorporated in
future releases by assigning priorities to the requirements.

8 D. Mirandolle, I. van de Weerd, and S. Brinkkemper

Table 1. SPM Maturity Matrix

 0 1 2 3 4 5 6 7 8 9 10
Requirements management
 Requirements gathering A B C D E F
 Requirements identification A B C D
 Requirements organizing A B C
Release planning
 Requirements prioritization A B C D E
 Release definition A B C D E
 Release definition validation A B C
 Scope change management A B C D
 Build validation A B C
 Launch preparation A B C D E F
Product planning
 Roadmap intelligence A B C D E
 Core asset roadmapping A B C D
 Product roadmapping A B C D E
Portfolio management
 Market analysis A B C D E
 Partnering & contracting A B C D E
 Product lifecycle management A B C D E

3.2 Requirements Prioritization Methods

The eight requirements prioritization methods were selected based on the availability
of literature of each method. The methods are shown in Table 2, along with the capa-
bilities that are implemented in them. When combining the information available in
Table 1 and Table 2, we can see that for example the Binary Priority List method has
a maturity level of 4. We can conclude this, since Table 2 shows that capability A and
B are implemented in this method. According to Table 1, an implementation up to
capability B has a maturity level score of 4.

Table 2. Requirements Prioritization Methods

Method Implemented capabilities
Binary Priority List [14] A B
WinWin requirements negotiation model [15] A B C
Integer linear programming approach [16] A B C D E
Requirements Triage [17] A B C E
MOSCOW [18] A B C D
Cost Value Approach [19] A B C D
Quality Function Deployment [20] A B C
Features Prioritization Matrix [21] A B C D E

 Incremental Method Engineering for Process Improvement – A Case Study 9

Fig. 2. PDD of the Requirements Triage method

When methods miss a capability, the maturity level only scores up to the capability
before the first missing capability. For the Requirements Triage method [14] this
means that we measure the maturity level only up to capability C. This results in a
maturity level of 5.

We modeled all the selected methods in Process Deliverable Diagrams (PDD). A
PDD is a diagram that integrates an activity diagram on the left-hand side and a deli-
verable view on the right-hand side [13]. To illustrate our research method, Fig. 2
shows the activities and deliverables of the Requirements Triage method [17]. For all

10 D. Mirandolle, I. van de Weerd, and S. Brinkkemper

eight requirements prioritization methods such a PDD and a corresponding concept
table and activity table were created.

3.3 Situational Factors

Bekkers [12] presents, in a case study among 14 software product companies, a list of
31 situational factors which need to be kept in mind when configuring or choosing a
development method. For each of the selected methods we have marked whether the
value of the situational factor is of any importance and if so, what value would suit
the method best. As an example, we show the results of this analysis for Require-
ments Triage in Table 3. Out of the 31 situational factors, 11 are of importance in this
method. This is because Requirements Triage focuses on cooperation between busi-
ness and development departments. The situational factors of which the value does
not affect that functionality of the method, which can contain any value, are left out in
this table.

Table 3. Situational Factors of the Requirements Triage method

Situational factor Value
Size of business unit team Large
Size of development team Small to Medium
Number of customers High
Number of end-users High
Release frequency High
Variability of feature requests Large
Product size Large
Company policy High
Customer involvement High
Legislation Strict
Partner involvement High

4 Case Study

4.1 Case Study Design

The in-depth investigation in this case study takes place a product software company
called Teezir, a ‘search solutions’ company (hereafter called ‘the case company’.
Their main product is a web based dashboard that integrates various widgets contain-
ing representations of the online reputation of a specific brand name (for example
term clouds, sentiment analysis, volume of mentions etc.). The dashboard is a stan-
dard product which can be customized by the client himself. By dragging and drop-
ping the preferred widgets on the dashboard, a suitable application for the situation or
customer at hand can be generated.

 Incremental Method Engineering for Process Improvement – A Case Study 11

By carrying out interviews at the case company, we create a complete overview of
the used prioritization method, situational factors and maturity level. This overview
enables us to select the best fitting candidate method that, once implemented, will
bring the case company to a higher maturity level.

Fig. 3 illustrates how the process of fitting methods works. The process of compar-
ing the situational factors of the candidate method to the case company’s method can
be seen as trying to fit a key on a keyhole. In a way we have created a keyhole by
defining the situational factors of the case company. The different values of the situa-
tional factors are the holes in the keyhole’s cylinder. All the candidate methods are
keys, of which the situational factors are pins that need to match into the holes of the
keyhole’s cylinder. The situational factors of the candidate methods need to be as
equal as possible to those of the case company (however, not all situational factors are
relevant in this case). All we need to do is find the key that matches the keyhole.

Fig. 3. Fitting the candidate methods to the case company’s method

4.1.1 Conduction of Case Study
In a semi-structured interview with the case company’s software engineer, we ana-
lyzed the requirements prioritization method that is used at this company. We de-
scribed their method and visualized it in a Process Deliverable Diagram (PDD): a
diagram that integrates an activity diagram on the left-hand side and a deliverable
view on the right-hand side [13]. With this information we were able to define the
maturity level of the case company nowadays. Additionally, we elaborated on the
case company’s situational factors. Once we knew at which maturity level the case
company was operating and which situational factors influence the company, we
could suggest them to adopt (one of the) method fragments we analyzed in order for
them to grow and develop their method towards a higher maturity level. Finally, the
method fragment which suited the case company best is implemented in the original
method. We elaborated on how this can take place and visualized the matured method
in a PDD.

12 D. Mirandolle, I. van de Weerd, and S. Brinkkemper

4.1.2 Analysis of Case Study Evidence
The case company uses the Dynamic Systems Development Method (DSDM) [22].
The requirements prioritization method that is used in DSDM (and by the case com-
pany) is the MOSCOW method, as depicted in Fig. 4.

Fig. 4. PDD of the MOSCOW method

The MOSCOW requirements prioritization method contains maturity levels A to
D, since it contains internal stakeholder involvement, a requirements prioritization
method, customer involvement and a cost revenue consideration (measured in time).

In addition, we have analyzed the situational factors for the case company, as is
presented in Table 4.

The requirement prioritization method used at the case company nowadays
is MOSCOW. This method contains the maturity levels A to D. If the case company’s
method would evolve, activities that contain level E should be added to the method.
Level E contains partner involvement, and its goal is to improve product quality
and to increase involvement of external stakeholders in the product management
process.

 Incremental Method Engineering for Process Improvement – A Case Study 13

Table 4. Situational factors of the case company

Situational factor Value
Development philosophy Iterative
Size of business unit team 6 FTE

Size of development team 4 FTE
Customer loyalty High
Customer satisfaction 6 (out of 10)
Customer variability 40% of customers have customized features
Number of customers 25
Number of end-users 150

Type of customers All sorts of companies
Hosting demands Central hosting services
Localization demand Low
Market growth Growing
Market size 3500+ potential customers
Release frequency Every 250 days

Sector Marketing
Standard dominance Medium request for market standards
Variability of feature requests Low
Application age 2 years
Defects per year: total 0 per year
Defects per year: serious 0 per year

Development platform maturity Fully developed
New requirement rate 3 requests per year
Number of products 1
Product lifetime 3 year
Product size 350 KLOC
Product tolerance High (not sensitive to bugs)

Software Platform .NET
Company policy High level of influence
Customer involvement Medium involvement
Legislation Loose
Partner involvement High level of influence

Of the eight methods we analyzed in this research, three contain activities that
implement maturity level E. These are Requirements Triage [17], Integer linear pro-
gramming approach [16], and Features Prioritization Matrix [21]. Based on the situa-
tional factors of these three methods and those of the case company, we can now
define which of these would suit the case company’s method best (which key fits in
the keyhole). Table 5 shows the values of the situational factors (the pins of the keys)
of the three mature methods. We already defined the situational factors of the case
company (the keyhole) in Table 4. The bottom rows of Table 5 show how many pins
of the candidate methods’ keys fit into the keyhole, and thus how many situational
factors match to the situational factors of the case company.

14 D. Mirandolle, I. van de Weerd, and S. Brinkkemper

The situational factors of which the value does not affect the functionality of the
method and can contain any value, are left blank in this table. Additionally, we printed
the situational factors that do not match the case company in italic. The cells that con-
tain plain text do match the situational factors of the case company. At the bottom of
the table we sum up how many matches and mismatches each method contains.

Table 5. Situational Factors of the three A-E methods

Situational factor Requirements
Triage

Integer linear
programming

Features
Prioritization

Development philosophy
Size of business unit team Large
Size of development team Small to medium Small to medium
Customer loyalty
Customer satisfaction
Customer variability
Number of customers High
Number of end-users High
Type of customers
Hosting demands
Localization demand
Market growth
Market size
Release frequency High
Sector
Standard dominance
Variability of feature requests Large Large
Application age
Defects per year: total
Defects per year: serious
Development platform maturity High
New requirement rate High High Low to medium
Number of products High
Product lifetime
Product size Large Large Small to medium
Product tolerance
Software Platform
Company policy High
Customer involvement High High High
Legislation Strict
Partner involvement High High High
Matches 22 25 30
Mismatches 9 6 1

 Incremental Method Engineering for Process Improvement – A Case Study 15

In Table 5 it can be seen that Wiegers’ Features Prioritization Matrix is not depen-
dent on a lot of factors. The method is known to be applicable on almost every kind of
project. Requirements Triage is on the other hand suitable for projects with eleven
specific situational factors. Requirements Triage focuses on projects in which large
amounts of requirements are involved. The method is designed specifically to deal
with a ‘chaos’ of requirements, since it originates from the medical domain, where
patients need to be ‘sorted’ or ‘triaged’ as quickly as possible. Additionally, it tries to
involve as many stakeholders as possible (e.g. customers, developers, financial and
legal representatives, etc.), which explains why company policy, customer involve-
ment, legislation and partner involvement all have a high influence on the method.
This suggests that the method deals with large projects, in which a large number of
end-users are involved.

On the other hand, the Integer Linear Programming approach and Requirements
Triage have six and nine mismatching situational factors respectively. They are both
suitable for large projects, with a large amount of products involved. Therefore, it
seems obvious to choose the Features Prioritization Matrix method to expand the case
company’s current method to maturity level E.

Fig. 5. Method increment with prioritization using Wiegers’ matrix

16 D. Mirandolle, I. van de Weerd, and S. Brinkkemper

The case company could evolve its requirements prioritization method by applying
the multiple stakeholder sheet in the MOSCOW method. This would mean that all
stakeholders, including partners, would be involved in the requirements prioritization
method. If the multiple stakeholder sheet would be used, all requirements first get a
value based on the opinion of all stakeholders. The requirements that have the highest
calculated value will be implemented. Fig. 5 illustrates how the additional activities
would be added to the PDD of the MOSCOW method and how the deliverables
change. Changes are marked in grey.

As can be seen in Fig. 5, in Wiegers' Features Prioritization Matrix, the value of a
requirement is calculated by estimating the benefits, penalties, costs and risks per
requirement on a scale from 0-9 [21]. All requirements and corresponding values are
stored in a spreadsheet. Wiegers developed the ‘multiple stakeholder sheet’, which is
very useful in case there are multiple stakeholders that have different visions when it
comes to the variables that result in the value of a requirement. In this case, those
multiple stakeholders are the product manager and the developers. After assigning the
values, the priorities are calculated and used as a basis for selecting the requirements
for the next release.

4.2 Discussion

Using the multiple stakeholder sheet and thus the Features Prioritization Matrix seems
be a useful way of integrating the opinion of all stakeholders, including partners, into
the requirements prioritization method. The main advantage of adapting the method
this way is that all involved stakeholders get an opportunity to influence the require-
ments prioritization. Additionally, the classification of requirements is turned into a
calculated result out of estimating variables instead of an estimation of the importance
of the overall requirement. This results most likely into a more accurate and realistic
requirement prioritization.

The case study carried out is a first evaluation of the idea of incremental method
engineering, through marching situational factors. Although often described in litera-
ture, not many practical examples have been presented. Therefore, we believe that
although this is just a single case study, it is an important contribution to the method
engineering field. However, in order to strengthen our argument, we should carry our
more case studies [11]. Also, the method base in this research contained eight re-
quirements prioritization methods. Further research can be done with a larger method
base, in order to fine tune a method more specifically to the situational factors of a
case company.

Furthermore, instead of using the current situational factors of the case company, it
might also be interesting to use situational factors that the company predicts or aims
to reach in the near future. For example, if a company wishes to expand its number
employees this could be registered in the list of situational factors while matching
them to a suitable method. By doing this the company might be less likely to outgrow
its method in a short time.

A last important issue for further research is the evaluation of the method fragment
implementation at the case company. Currently, we link this implementation to an
increase in maturity. However, more interesting is whether the increment also leads to

 Incremental Method Engineering for Process Improvement – A Case Study 17

an increase in performance. Indicators that could be used for this are duration of the
decision process, customer satisfaction or time-to-market.

5 Conclusion

In this research we have analyzed the requirement prioritization method of a case
company according to maturity level and situational factors. We have also analyzed
eight requirement prioritization methods on maturity level and situational factors to
find out which of these could be implemented into the case company’s method in
order to let this method evolve to a higher maturity level. We used a comparison with
keys (candidate methods) and a keyhole (case company’s method) to visualize how a
suitable method can be chosen out of all candidate methods. By doing this we have
answered our main research question and illustrated how incremental ME can support
the maturing of an information systems development method in a product software
company.

We have found that the case company implemented the MOSCOW requirement
prioritization method, which contains maturity levels A-D. In order to mature the
method, level E would need to be added. Three out of the eight methods we analyzed
contained maturity level E. By comparing the situational factors of these three me-
thods with the situational factors of the case company, we have found that one method
(Wiegers’ Features Prioritization Matrix) is suitable to add to the existing method in
order to let it mature.

For further research, we plan to carry out more case studies and extend the method
base with more method fragments. Furthermore, we aim to verify whether the pro-
posed method increments actually improve performance.

References

1. van de Weerd, I., Versendaal, J., Brinkkemper, S.: A Product Software Knowledge Infra-
structure for Situational Capability Maturation: Vision and Case Studies in Product Man-
agement. In: Proceedings of the 12th Working Conference on Requirements Engineering:
Foundation for Software Quality, pp. 97–112 (2006)

2. van de Weerd, I., Brinkkemper, S., Nieuwenhuis, R., Versendaal, J., Bijlsma, L.: Towards
a Reference Framework for Software Product Management. In: 14th International Re-
quirements Engineering Conference, Minneapolis/St. Paul, MN, USA, pp. 319–322 (2006)

3. Brinkkemper, S.: Method Engineering: Engineering of Information Systems Development
Methods and Tools. Information and Software Technology 38(4), 275–280 (1996)

4. Kumar, K., Welke, R.J.: Methodology Engineering: A Proposal for Situation-Specific Me-
thodology Construction. In: Challenges and Strategies for Research in Systems Develop-
ment, pp. 257–269. John Wiley & Sons, Inc., New York (1992)

5. Tolvanen, J.-P.: Incremental Method Engineering with Modeling Tools: Theoretical Prin-
ciples and Empirical Evidence. Jyväskylä Studies in Computer Science, Economics and
Statistics 47, University of Jyväskylä, PhD Dissertation thesis (1998)

6. Aydin, M.N., Harmsen, F.: Making a method work for a project situation in the context of
CMM. In: Oivo, M., Komi-Sirviö, S. (eds.) PROFES 2002. LNCS, vol. 2559, pp.
158–171. Springer, Heidelberg (2002)

18 D. Mirandolle, I. van de Weerd, and S. Brinkkemper

7. Ralyté, J., Deneckère, R., Rolland, C.: Towards a Generic Model for Situational Method
Engineering. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 95–110.
Springer, Heidelberg (2003)

8. Ågerfalk, P.J., Wistrand, K., Karlsson, F., Börjesson, G., Elmberg, M., Möller, K.: Flexi-
ble Processes and Method Configuration: Outline of a Joint Industry-Academia Research
Project. In: 5th International Conference on Enterprise Information Systems (2003)

9. Rossi, M., Ramesh, B., Lyytinen, K., Tolvanen, J.: Managing Evolutionary Method Engi-
neering by Method Rationale. Journal of the Association for Information Systems 5(9),
Article 12 (2004)

10. Bekkers, W., van de Weerd, I., Spruit, M., Brinkkemper, S.: A Framework for Process Im-
provement in Software Product Management. In: Riel, A., O’Connor, R., Tichkiewitch, S.,
Messnarz, R. (eds.) EuroSPI 2010. CCIS, vol. 99, pp. 1–12. Springer, Heidelberg (2010)

11. Yin, R.K.: Case Study Research: Design and Methods, 4th edn. SAGE Publications,
California (2009)

12. Bekkers, W., van de Weerd, I., Brinkkemper, S., Mahieu, A.: The Influence of Situational
Factors in Software Product Management: An Empirical Study. In: 2nd International
Workshop on Software Product Management, pp. 41–48 (2008)

13. van de Weerd, I., Brinkkemper, S.: Meta-modeling for Situational Analysis and Design
Methods. In: Syed, M.R., Syed, S.N. (eds.) Handbook of Research on Modern Systems
Analysis and Design Technologies and Applications, pp. 38–58. Idea Group Publishing,
Hershey (2008)

14. Bebensee, T., van de Weerd, I., Brinkkemper, S.: Binary Priority List for Prioritizing
Software Requirements. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010. LNCS,
vol. 6182, Springer, Heidelberg (2010)

15. Boehm, B.: A Spiral Model of Software Development and Enhancement. Computer, 61–72
(May 1988)

16. van den Akker, M., Brinkkemper, S., Diepen, G., Versendaal, J.: Software Product Release
Planning Through Optimization and What-if Analysis. Information and Software Technol-
ogy 50(1-2), 101–111 (2008)

17. Davis, A.M.: The Art of Requirements Triage. Computer 36(3), 42–49 (2003)
18. Stapleton, J.: DSDM Business Focused Development. Addison-Wesley Professional,

Reading (2002)
19. Karlsson, J., Ryan, K.: A Cost-Value Approach for Prioritizing Requirements. IEEE

Software 14(5), 67–74 (1997)
20. Mizuno, S., Akao, Y. (eds.): Quality Function Deployment: Integrating Customer Re-

quirements into Product Design. Productivity Press Inc., Portland (1990)
21. Wiegers, K.E.: First Things First: Prioritizing Requirements. Software Development

Magazine, 24–30 (September 1999)
22. Stapleton, J.: Dynamic Systems Development Method. In: Proceedings of the Technology

of Object-Oriented Languages and Systems, June 07-10, p. 406 (1999)

J. Ralyté, I. Mirbel, and R. Deneckère (Eds.): ME 2011, IFIP AICT 351, pp. 19–33, 2011.
© IFIP International Federation for Information Processing 2011

Design Solution Analysis for the Construction of
Situational Design Methods

Robert Winter

Institute of Information Management, University of St. Gallen
Müller-Friedberg-Strasse 8, 9000 St. Gallen, Switzerland

Robert.Winter@unisg.ch

Abstract. Situational design methods provide problem solving guidance that can
be configured to fit a range of different design goals and contexts. While the
formal aspects of situational method engineering are well researched, the specifi-
cation of method fragment instances and their configurations is often left open
and regarded as specific to the respective design problem class. We propose an
approach that analyzes variations of existing design solutions to explore the un-
derlying design factors and to identify design situations. This knowledge is then
used to derive method fragments and configuration rules that represent the ex-
plored variety of design solutions. The proposed approach has been applied for
several design problem classes to construct concrete situational design methods.
As an illustrative example, the construction of a situational design method for
enterprise architecture management is used in this paper. Based on the explora-
tion of eight design factors and three design situations, six method fragments are
derived that are combined into four situational method configurations.

1 Introduction: Contingencies, Design and Situational Methods

“At the most abstract level, the contingency approach says that the effect of one vari-
able on another depends upon some third variable” [1]. In an organisational context,
contingency theory argues that success or failure of different organizational structures
depends on contingency factors such as size, task uncertainty, and task interdepend-
ence [2]. Although its validity is questioned by some [e.g. 3], we agree with
Donaldson that “overall, empirical studies show that fit positively affects perform-
ance, thereby supporting the central idea of contingency theory” [1].

Design Science Research is a research paradigm that has been, among other appli-
cation domains, successfully deployed to Information Systems (IS). In the following,
we will use DSR to abbreviate Design Science Research in Information Systems. At
its core, DSR is about the rigorous construction of useful IS artefacts, i.e. “technol-
ogy-based solutions to important and relevant business problems.” [4, table 1] Tech-
nically, IS artefacts can be constructs, models, methods, or instantiations [5]. While
instantiations are usually represent a solution to a singular design problem, constructs,
models and methods can have different levels of generality and, as a consequence,
“represent [.] a general solution to a class of [design] problems.” [6]

Generality is therefore an important quality of an IS artefact [4]. The two design
goals of generality and utility are however conflicting. In their research on reference

20 R. Winter

modelling, Becker et al. discuss what they call the [process] reference modelling
dilemma: “On the one hand, customers will choose a [process] reference model that
[…] provides the best fit to their individual requirements and therefore implies the
least need for changes. On the other hand, a restriction of the generality of the model
results in higher turn-over risks because of smaller sales markets” [7]. This dilemma
is not only apparent in [process] reference modelling, but also exists for design meth-
ods. With increasing generality, the individual utility of a solution for solving a spe-
cific design problem decreases – and vice versa. The overall, cross-organization sum
of individual utilities might be increasing when design solutions have a higher gener-
ality – but individual organizations might not be interested in this “overall utility”. As
a solution to this dilemma, Becker et al. [7] propose adaptation mechanisms that in-
stantiate a generic [process] reference model according to the specific design problem
at hand.

Both design methods and [process] reference models can be understood as (more
or less) general problem solutions. As a consequence, situational methods (e.g. [8, 9,
10, 11]) can, like adaptable [process] reference models, aim at solving the trade-off
between solution generality and individual solution utility.

As situational method engineering allows to develop artefacts which are adaptable to
different design problem instances within a design problem class, a crucial decision
during the method construction phase is to delineate the range of addressed design prob-
lems (i.e. to specify the design problem class) and to understand the relevant design
situations within this class. If a design problem class is understood as a set of “similar”
design problems, a design situation can be understood as a subset of design problems
which are even more similar, i.e. which share certain contingencies. It has been argued
that, in situational method engineering, such contingencies can be represented by a
certain design goal vector and/or by a certain context [12]. Depending on the degree of
desired generality, a design problem class can be partitioned into few, very generic
design situations or a larger number of design situations of lesser generality.

The configuration or adaptation of a situational method to a certain design situation
can therefore be understood as an application of contingency theory. If relevant con-
tingencies of the respective design problem class are represented correctly by appro-
priate design situations and appropriate adaptation/configuration mechanisms, design
solutions can be generated that not only solve the [process] reference modelling di-
lemma, but also consider contingency factors. To achieve this, however, method en-
gineering must identify the contingencies of a design problem class and correctly
derive not only a set of suitable design situations, but also adaptation/configuration
mechanisms that combine method fragments into situational methods.

The aim of this paper is to show that method construction and contingency identi-
fication can be based on an analysis of a sufficient number of existing design solu-
tions for the addressed design problem class. In section 2 we summarize and extend
an existing design solution analysis approach. Section 3 outlines how design solution
analysis is used to derive method fragments and fragment configuration rules. As an
illustrative example, enterprise architecture management is used as the design prob-
lem class, and a respective situational method is derived in section 4. Section 5 sum-
marizes the paper and outlines future research in this domain.

 Design Solution Analysis for the Construction of Situational Design Methods 21

2 Analysis of Existing Design Solutions

Winter [13] extended Bucher and Klesse’s design problem analysis procedure [14] by
differentiating more components and assuming that, in general, only adaptable, situ-
ational solution artefacts are constructed. In the following, Winter’s proposal is re-
fined and illustrated:

1. A rough idea about the delineation of the design problem class is developed. Re-
sults of this step are definitions, a description of the system under analysis and
ideas about design goals for the respective class of design problems.

In section 3 we illustrate our approach for the design problem class Enterprise
Architecture Management (EAM). It is delineated by defining architecture, enter-
prise architecture and EAM, by defining the scope of relevant artefacts, and by dif-
ferentiating potential EAM goals.

2. A literature analysis is conducted in order to identify potential contingency factors
for the respective class of design problems, i.e. factors which might have influence
on how such design problems are solved in practice.

For EAM, such an analysis yields factors like ‘EAM’s main sponsor is IT or
business’, ‘EAM’s main deliverable is maps, analyses or project support’, ‘EAM’s
main goal is transparency, consistency, simplification, or flexibility’, or ‘EAM’s
role is active or passive’.

3. A field study is conducted in order to analyze how design solutions for this class of
design problems in practice are actually related to what contingencies. Using prin-
cipal component analysis on the field study data, the list of potential contingency
factor candidates from step 2 is reduced to a smaller set of relevant “design fac-
tors”. Design factors are usually aggregates of several relevant contingency factors
and therefore need to be semantically interpreted.

For EAM, principle component analysis on EAM practice solutions yielded
eight design factors (like IT operations support, integrative role, business strategy
support, or design impact) which aggregate 54 statistically relevant contingencies
(see section 4). E.g., the design factor ‘integrative role of EAM’ aggregates the
contingencies ‘EAM takes place in an interdisciplinary team’, ‘EAM team and
business departments continuously exchange information (e.g. in architecture
boards)’ and ‘EAM team and IT departments continuously exchange information
(e.g. in architecture boards)’.

4. In a multi-dimensional room where every dimension corresponds to a design fac-
tor, every observed solution can be understood as a point. The design problem
class now should be redefined by specifying value ranges for the design factors
identified in step 3. This means that “outlier” design solutions are excluded from
further analysis in order to ensure a useful degree of homogeneity of solutions.

For EAM step 4 leads to the exclusion of few observed solutions which can be
clearly recognized as outliers, i.e. which clearly cannot be associated with any
cluster in the above described multi-dimensional room.

5. For the vast majority of observations, ultrametric distances can now be computed
that represent the similarity (or dissimilarity) between design solutions. Metrics for
ultrametric distances are usually based on Euclidian distance. The observations and
their distances can be visualized using a dendrogram-like tree graph. The

22 R. Winter

(dis)similarity of two design solutions corresponds to the generality level of their
link. If two design solutions are very similar, their link is represented on a low
level of generality. If two design solutions are very different, their link is repre-
sented on a very high level of generality. The linkage can be interpreted as gener-
alization of the linked specific solutions.

Figure 1 [adapted from 13] illustrates such a tree graph that represents 33 ob-
served solutions (C1...C33, on the bottom of the tree diagram) in design problem
class C as well as their ultrametric distances. The generalization of solutions C11,
C12, C13, C14 and C15 is represented as generic solution C11...C15 on some level
of generality. The generalization of solutions C1 through C15 is represented as
even more generic solution C1...C15 on a higher level of generality. The maximum
generic solution of design problem class C is found at the top of the tree diagram.

Fig. 1. Ultrametric tree visualization of observed design solutions for design problem class C

6. In order to not only visualize, but characterize generic solutions in C, a clustering
algorithm can be applied to the observation data. By agglomerative clustering,
solutions can be specified at any generality level between “full detail” (i.e. one
cluster per original observation) and “one size fits all” (i.e. one generic solution de-
scription for the entire design problem class). Analyzing the clustering error in re-
lation to the number of clusters, an optimal level of generality (i.e. an optimal
number of clusters) can be determined.

Empirical data can be used to determine the optimal number of clusters, i.e. the
number of different ‘approaches’ that should be differentiated, e.g. for a certain
number of companies that implemented EAM. If the set of observations is large
and diverse enough, this finding might be applied to EAM in general.

7. For the level of solution description generality chosen in step 6, each cluster repre-
sents one design situation. The situations should not only be defined formally (i.e.
by specifying value ranges of the respective design factors), but also should be in-
terpreted semantically (“design problem types”).

 Design Solution Analysis for the Construction of Situational Design Methods 23

EAM clusters differ in particular with regard to their values for the design fac-
tors IT operations support, integrative role, design impact, enterprise-wide focus
and IT strategy support. These differences are used to characterize one cluster as
‘balanced, active EAM’, one as ‘business analysis’ and one as ‘IT focused, passive
EAM’. As a consequence, situational method engineering should provide three
situated methods. Since the clusters are similar with regard to some (but not all!)
design factors, these situated methods will share certain method fragments.

There is some, but not much, related work on how to identify design situations for
situational method engineering [15]: Some suggest to differentiate “project size”,
“number of stakeholder groups” or “applied technology” for every situational method
(e.g. [16] and [17] according to [18]), while others specify situations on a case-by-
case basis [e.g. 10, 12]. The procedure proposed here allows systematic and reliable
identification and specification of design situations for any given class of design prob-
lems as long as a sufficient number of problem solutions can be observed and ana-
lyzed for this problem class.

But identifying design factors and design situations is only the first part of con-
structing a situational design method. Design problems need to be identified and
linked to design situations, and a set of method fragments needs to be specified whose
combinations will constitute useful solutions for such design problems. The next
section proposes a procedure for this second part of situational design method con-
struction.

It should however be noted that even both construction procedure parts are not
necessarily sufficient to solve every design problem in C. Situated methods might
need to be adapted to provide a useful design solution to a specific design problem.
Referring to fig. 1, a combination of method fragments might solve the generic design
problem for situation C1..15 sufficiently, but still might need to be adapted to design
problem C15 in order to solve this specific problem instance effectively.

3 Derivation of Method Fragments and Configuration Rules

For typical design problem classes, between four and eight design factors can be iden-
tified which explain the variance of the observed design solutions sufficiently [19, 20,
21, 22, 23, 24]. These design factors span up a solution room where between three
and six design situations are differentiated.

The crucial step is to qualitatively interpret the n design factors and m design situa-
tions that have been quantitatively created as principal components of the data set and
clusters in the n-dimensional design factor space, respectively. For that purpose, it is
necessary for every design situation to identify the subset of p design factors (p ≤ n)
that best characterizes the respective design situation, i.e. whose factor values are
particularly high or low in a cluster and/or whose factor values have only a small
standard deviation in a cluster.

Understanding the problem-oriented relations between design factors and design
situations is essential for the construction of respective methods: Each method fragment
can then be interpreted as an “elementary movement” in the p-dimensional design fac-
tor sub-space. The situated method aggregates certain fragments and therefore consti-
tutes a complex, multi-dimensional movement in the n-dimensional design factor space.

24 R. Winter

8. For every design situation characterizing design factors need to be identified. In
EAM, only the design situation ‘IT focused, passive EAM’ is characterized by
high values of the design factor IT operations support and low values of the design
factors enterprise-wide focus, integrative role and design impact. The EAM design
situation ‘balanced, active EAM’, in contrast, exhibits much smaller values for IT
operations support, but much higher values for enterprise-wide focus, integrative
role and design impact. With regard to information supply, business support and
IT strategy and IT governance support, these two design situations are not very
different, so that these factors are not useful to characterize them.

9. Now characterizing design factors need to be linked to design problems. All
preceding procedure steps analyze existing design solutions. Since these design
solutions were created purposefully, they are qualitatively interpreted and linked
to design problems. For ‘IT focused, passive EAM’, the characterizing design fac-
tors ‘integrative role’, ‘enterprise-wide focus’ and ‘design impact’ can be associ-
ated with an EAM setup where the main EAM sponsor is the CIO, the main EAM
customer is the IT function, EAM is primarily performed within the IT function
and EAM is widely ignored by business units. ‘Business analysis’, in contrast, can
be associated with an EAM setup where business is the main stakeholder and ex-
ecutor and where implementation considerations are widely neglected. Most EAM
setups can be easily linked to major EAM challenges as often described in the lit-
erature. E.g., missing business involvement and missing business value creation of
EAM correspond to the first EAM setup, while missing ‘grounding’/‘execution’
and too much ‘locality’ of EAM correspond to the latter EAM setup.

10. Elementary problem-solving actions are now derived by comparing design solu-
tions (steps 1-8) with design problems (step 9). These elementary problem-solving
actions constitute method fragments. If e.g. the design problem is that business
stakeholders are not sufficiently involved in EAM sponsorship and/or EAM deliv-
ery, and that EAM recommendations seem not to create sufficient business value,
the as-is EAM setup is close to ‘IT focused, passive EAM’ while the to-be EAM
setup is likely to be ‘Balanced, active EAM’. Elementary problem-solving activi-
ties can be derived from the respective characterizing design factors ‘integrative
role’, ‘enterprise-wide focus’ and ‘design impact’. A suitable method fragment
should include, among others, ‘EAM alignment with business goals’, ‘architects
have an extensive network within the company’, ‘EAM team and business de-
partments continuously exchange information (e.g. in architecture boards)’, ‘EAM
takes place in an interdisciplinary team’ and ‘EAM has an impact on business ar-
chitecture design’. If, as another example, the design problem is that EAM is not
sufficiently ‘implemented’ and creates not enough impact, the as-is EAM setup is
close to ‘business analysis’ while the to-be EAM setup is likely also to be ‘Bal-
anced, active EAM’. Elementary problem-solving activities can be derived from
respective characterizing design factors ‘IT governance and IT strategy support’,
‘IT operations support’ and ‘EAM governance’. Hence a suitable method frag-
ment should include, among others, ‘Results of EAM are used for IT strategy
development’, ‘Architecture data is centralized with the EAM department’ and
‘Results of EAM are used for IT development’.

11. Based on the set of identified design problems and specified method fragments,
now method configuration rules need to be derived. Basically the (reusable)

 Design Solution Analysis for the Construction of Situational Design Methods 25

method fragments identified in step 10 need to be related to respective design
situations. The fewer characterizing design factors and the fewer design problems
have been identified, the simpler the fragment configuration will be – and vice
versa. For the EAM example, four situated methods are configured from, depend-
ing on the design situation, up to four method fragments out of a total number of
six reusable method fragments (see section 4).

4 Enterprise Architecture Management – An Illustrative Example
for Design Solution Analysis

The ANSI/IEEE Standard 1471-2000 defines architecture as ”the fundamental organi-
zation of a system, embodied in its components, their relationships to each other and
the environment, and the principles governing its design and evolution” [25]. For
enterprise architecture, relevant system views are strategic positioning, organizational
structure, process organization, information flows, and implementation by means of
software systems and data structures [26]. EAM can provide systematic support to
organizational change that affects business structures as well as IT structures by pro-
viding constructional principles for designing the enterprise [27]. The development
and evolution of EAM need to be based on appropriate design methods. EAM meth-
ods typically comprise strategic design of an architectural vision, development and
maintenance of as-is architecture models, development and maintenance of to-be
architecture models, migration planning, implementation of enterprise architecture,
and analysis of enterprise architecture on the basis of architecture models [28].

Aiming at a deeper understanding of the constituent factors that influence EAM,
there has been some scientific effort to analyze contingency factors of EAM. Aier et
al. [29] have identified models, data, and organizational penetration as potential con-
tingencies. They did however not explicitly consider management aspects of EAM.
Leppänen et al. [30] made a first step towards a complex contingency framework for
an engineering method for enterprise architecture. Ylimäki [31] conducted several
studies in order to identify potential critical success factors for EAM, yielding
commitment, governance, methodology, enterprise architecture models, project man-
agement, training and education, organizational culture, IT investment strategy, as-
sessment and evaluation, business-driven approach, communication, and scope. These
success factors give a first insight into possible design factors of EAM.

4.1 Procedure Steps 1 through 7: Design Solution Analysis

This subsection summarizes Aier et al.’s empirical analysis of EAM design solutions
[32] that applied steps 1 through 7 of the proposed procedure – although not elaborat-
ing the procedure itself. Aier et al. use Ylimäki’s set of EAM success factors as a
starting point. In order to distinguish different EAM approaches, the first part of their
questionnaire asks for a company’s general EAM understanding. Then, the EAM
positioning is analyzed using questions on EAM integration in the organization and
on the way how organizational units, teams and roles are involved in EAM processes.
Other important aspects in this context are the scope of EAM processes, the penetra-
tion of EAM processes / EAM results throughout the organization as well as the level

26 R. Winter

of continuity and controlling of EAM processes. In the third and final part of the
questionnaire, it is asked what types of EAM results are used by which organizational
units. All in all, 54 questions are used to assess current EAM design solutions in com-
panies. At four EAM practitioner events, a total of 119 data sets were collected that
did not reveal substantial extent of missing data (10% at maximum).

In order to identify design factors for EAM, Aier et al. apply an exploratory factor
analysis. The original study [32] documents two quantitative techniques that support
the suitability of the data set for Principal Component Analysis. Using Varimax rota-
tion with Kaiser normalization, eight design factors are identified that comprise a total
of 38 questionnaire items. 16 questionnaire items were deleted because they were
intentionally designed as control items or did not seem to contribute to the factor
identification [33]. Due to some incomplete questionnaires, missing values were ex-
cluded pair wise during the factor analysis. This resulted in a total number of 109
cases contributing to the factor analysis. The items selected for the factor analysis
explain 67.63% of the variance in total. The original study [32] also documents a
quantitative technique that supports the validity of the factor analysis.

With regards to the interpretation of the factors, factor loadings from 0.3 to 0.4 are
considered to be the minimal level [33], while factor loadings from at least 0.5 are
considered as sufficient for an unambiguous assignment to one factor. For some items
that showed identical factor loadings for more than one factor, the factor was chosen
that best matched the respective factor from an EAM literature perspective.

The study yields the following eight EAM design factors:

a) IT operations support: The use of results for IT operation tasks and by IT depart-
ments for their daily job characterizes this factor. Considering the items’ loadings
on this factor it becomes obvious that usage of EAM results as well as the percep-
tion of EAM within the organizational units concerned with IT operations exert a
conjoint effect on the overall assessment of EAM.

b) Support of management tasks by EAM: This is again expressed by the usage of
EAM results by management tasks as well as by the perception of EAM in the
management board. This factor constitutes the “antipole” to factor (a) and reveals
that EAM can serve both IT and management purposes, but that these purposes are
most probably not highly interrelated. It can be assumed that a high degree of re-
alization for factors (a) and (b) might distinguish different EAM approaches fun-
damentally.

c) Governance of EAM: EAM governance consists of model and process assessment
and maintenance and a central supervision of EA models and data.

d) Support of IT strategy and IT governance tasks: EAM and its results are consid-
ered to be an essential part of IT strategy development and IT governance.

e) Information supply: This design factor reflects the service function that EAM can
fulfil both for business and IT departments. Moreover the support of business/IT
alignment is an essential part of this factor.

f) Integrative role: The integrative role of EAM can be realized by interdisciplinary
teams and a continuous exchange between EAM roles. It can be assumed that the ex-
istence of an architecture board is part of such an organizational structure for EAM.

g) Design impact: EAM can impact IT or infrastructure, application or business ar-
chitecture. The degree of design impact reflects the penetration of the EAM ap-
proach throughout the organization as well as its active role.

 Design Solution Analysis for the Construction of Situational Design Methods 27

h) Business strategy support: In contrast to design factor (b), items in this design
factor describe the support of strategic tasks that are not management tasks - like
e.g. enterprise development and product planning. Most probably, high degrees of
realization of this factor correspond to a high realization of design factor (b).

Three different groups of EAM design factors were found: Design factors (a), (b), (d),
(e) and (h) characterize the concern of the EAM approach (i.e. if the approach sup-
ports IT operations, management tasks, IT strategy, Business/IT alignment or business
strategy). Design factors (f) and (g) describe the role of the EAM approach within the
company (moderator or innovator). Finally, design factor (c) describes the govern-
ance of the EAM approach itself.

1

0.5

0

0.5

1
IT Operations Support

Enterprise Focus and
Management Support

EAM Governance

IT Strategy and IT
Governance Support

Information Supply

Integrative Role

Design Impact

Business Strategy
Support

3 Cluster Solution

Cluster 1 (53) Cluster 2 (22) Cluster 3 (19)

Fig. 2. EAM design situations (and their representation in the data set) [32]

Considering results from preliminary cluster analyses on the data, one case was
eliminated as it showed significant outlier behaviour [33]. Excluding cases with miss-
ing factor loadings, 94 cases were used for the cluster analysis. Aier et al [32] applied
the Average Within-Group Linkage cluster algorithm provided by SPSS and Squared
Euclidean Distance as the distance measure. They identified three EAM design solu-
tion clusters that can be regarded as EAM design situations.

In fig. 2, the three identified EAM design situations are illustrated as a cobweb
diagram. The eight EAM design factors are used as dimensions; Each cluster’s cen-
troid value was used to represent the respective cluster’s values. The cobweb diagram
nicely visualizes the characteristics of each EAM design situations.
The EAM design situations can be described as follows: [32]

• Design situation 1: Balanced, active EAM: The first cluster (solid line in fig. 2)
presents a rather balanced approach to EAM. For most factors this cluster shows
the highest or at least average values. Especially the similar values for the factors
IT operations support and enterprise-wide focus lead to the conclusion that organi-
zations within this cluster focus neither on IT support nor on management support.
In contrast to the other clusters, the high support of IT operations, management, IT
strategy as well as the focus on design impact, the integrative role and EAM

28 R. Winter

governance argue for a high degree of integration within the organization. In par-
ticular the values for design impact, integrative role and EAM governance are by
far the highest between all three clusters. It can therefore be presumed that these
organizations have a rather high level of maturity in their EAM approach.

It should be noted that this cluster includes 53 out of 94 organizations, which
lead to the supposition that this cluster represents a “mainstream” approach.

• Design situation 2: Business analysis: The second cluster (dashed line in fig. 2)
groups 22 organizations that have an apparent focus on business support in their
EAM approach. The factors IT operations support as well as IT strategy and IT
governance support are clearly assigned with comparatively low values. Compar-
ing the mean factor values to those of cluster 1, the overall low values imply that
the organizations in this cluster do not show a high degree of EAM implementation
in any dimension. Two conclusions can be derived from this fact: Firstly, the or-
ganizations could have decided to apply a minimalist EAM approach, focusing on
management support without putting resources in EAM governance or an active
role of EAM. Second, the introduction of EAM could only recently be initiated by
management and is not very mature yet. For both cases, literature suggests that a
sustainable EAM approach can only be established by realizing an effective EAM
governance [34, 35].

• Design situation 3: IT focused, passive approach: Organizations assigned to this
cluster (dotted line in fig. 2) clearly emphasize the use of EAM for IT operations as
well as the information supply by EAM. In contrast, values for management sup-
port are by far the lowest compared to the other clusters. As the factors design
impact as well as integrative role are not focused by this approach, it can be de-
scribed as a passive approach that is most probably realized very locally within the
organization.

Obviously, this small cluster, which includes only 19 of the 94 organizations,
represents a specialized IT-centred EAM approach that primarily takes a documen-
tation role. It can be presumed that the EAM approach was initiated by IT depart-
ments and has not been disseminated throughout the organization yet.

After delineating the design problem class, collecting empirical design solution data,
identifying and interpreting design factors, and identifying and interpreting design
solution clusters, the ‘analysis’ portion of the proposed procedure is completed. The
new steps 8 through 11 address the construction of a situational design method on that
basis.

4.2 Procedure Steps 8 through 11: Design Method Construction

The description of design situation 1 shows that this situation rather constitutes a
mature, to-be state rather than a design problem. Compared to situation 1, situations 2
and 3 exhibit clear gaps and therefore can be considered as EAM design problem sub-
classes. Companies that have not systematically realized EAM at all will however not
be included in any of the clusters so that, in addition to the above two sub-classes, an
EAM design method needs to address a third problem sub-class. If we assume that no
direct transformation from “no systematic EAM at all” to the quite mature state in
situation 1 is feasible, two alternatives of this third sub-class have to be regarded:
from nothing to situation 2 vs. from nothing to situation 3.

 Design Solution Analysis for the Construction of Situational Design Methods 29

In the following, we characterize each design problem sub-class (not design situa-
tion!) by assigning characterizing design factors, and we derive design method frag-
ments from that assignment:

• Design problem sub-class I (from situation 2 to situation 1): IT operations sup-
port, IT strategy and IT governance support as well as EAM governance need to be
strengthened. Since IT topics and EAM governance constitute widely different
measures, two method fragments (designated as A and B) should be differentiated
to achieve that transformation.

• Design problem sub-class II (from situation 3 to situation 1): Design impact,
integrative role and enterprise-wide focus need to be strengthened. Since design
impact and IT/business alignment issues constitute widely different measures, two
additional method fragments (designated as C and D) should be differentiated to
achieve that transformation.

• Design problem sub-class III (from nothing to situation 3): If an IT focused ap-
proach is favoured, IT operations support, IT strategy and IT governance support,
information supply and business strategy support need to be developed foremost.
In addition to fragment A (see above: IT operations, IT strategy and IT governance
support), two additional fragments should be defined: fragment E to address busi-
ness strategy support and fragment F to address information supply.

• Design problem sub-class IV (from nothing to situation 2): If a business analysis
approach is favoured, enterprise-wide focus as well as information supply and
business strategy support need to be developed foremost. Such a transformation is
represented by the fragments D, E and F.

Based on EAM design factors (a)...(h) and EAM design situations (1)...(4), EAM
design problem sub-classes (I)...(IV) have been derived that can be addressed by dif-
ferent configurations of EAM method fragments (A)...(F). It should be noted that
(A)...(F), although designated as fragments here due to their configuration into situ-
ational methods, are quite complex and would be designated as method components
or even methods in a different context (e.g. D as a method for EAM-based
IT/business alignment). As a result from applying steps 8 through 11 of the proposed
procedure, the following situational EAM method is constructed:

• Method for problem sub-class I (from business analysis to balanced, active
EAM): combine method fragments A and B

• Method for problem sub-class II (from IT focused, passive to balanced, active
EAM): combine method fragments C and D

• Method for problem sub-class III (initial development of IT focused, passive
EAM): combine method fragments A, E and F

• Method for problem sub-class IV (initial development of business analysis):
combine method fragments D, E and F

Although not advised because a big maturity leap is necessary, it is possible to com-
bine method fragments A, D, E and F into a method for initial development of a
balanced, active EAM.

30 R. Winter

5 Conclusions and Outlook

While many method engineering approaches claim to incorporate situational factors,
they do nearly never detail what these situational factors exactly are and how they can
incorporated into method fragment design and fragment configuration rules. This
paper is based on Winter’s analysis procedure [13] that has been applied to EAM
design solution analysis in [32]. Since earlier extensions of the proposed analysis
procedure for constructing situational methods suffer from too simplistic design situa-
tions and design problems [cf. 36], we have used here the EAM data that allows a
more realistic illustration of the proposed procedure extensions. The proposed proce-
dure guides not only the identification of relevant context and project type factors,
examines their occurrences in practice, and classifies them into design solution situa-
tions. Based on an evaluation of solution maturity, design problems can be specified
and associated with matching design factors. From that association, transformation
fragments and their configuration into situational methods (one for each design prob-
lem sub-class) can be derived.

The question arises how general the proposed situational method engineering pro-
cedure is. While its construction portion has only been applied to IT/business align-
ment [36] and EAM so far, its analysis portion has been applied in many cases:

• Leist [23] uses it to identify eight enterprise modelling situations. Based on that
analysis, she investigates which meta modelling approaches are best suited in
which situation.

• Baumöl [19] uses it to identify four types of transformation projects. Based on that
analysis, she constructs project type specific recommendations which general and
type specific transformation management instruments should be used.

• Bucher and Winter [20] use it to identify four Business Process Management
(BPM) realization situations and five types of BPM transformations. Based on that
design problem analysis, they construct a situational BPM method.

• Klesse and Winter [21] use it to identify four organizational designs for data ware-
house service providers. Based on that analysis, they give recommendations for
consistent data warehousing service provisioning and identify dynamic patterns
(maturity).

• Lahrmann and Stroh [22] use it to identify three approaches to organize and im-
plement information logistics in companies. Based on that analysis, they derive
guidelines and reference models for information logistics strategy design.

• Aier, Gleichauf, Riege and Saat [24] use it to verify a hypothesis that all integra-
tion projects in companies can be assigned to one of only four fundamental types.

Although the generality of the proposal needs to be demonstrated yet, there is some
evidence that the procedure in general can be applied to a wide variety of IS related
design problems in organizations.

Four broad categories of research opportunities exist: Firstly, the demonstration
example lacks tradeoffs between design goals and design activities: Since implemen-
tation impact and business involvement should be achieved equally, the derivation of
fragments and their aggregation into situated methods therefore was straightforward.
If tradeoffs have to be observed, both the fragment specification and the fragment

 Design Solution Analysis for the Construction of Situational Design Methods 31

aggregation become much more complex. Secondly, an interesting feature of many
design solution analyses that yield a larger number of design factors is that the first
factor is often representing many and quite diverse problem aspects that are some-
times not easy to interpret qualitatively. With regard to design solution analysis and
method construction, we interpret this “technically” overloaded design factor as a
problem independent aggregation of “generalized” properties and the respective solu-
tion fragment as a basic set of domain-independent problem solution activities like
e.g. general project/transformation management. This aspect of our approach does
certainly need additional research attention. Thirdly, the proposed approach does not
explicitly cover yet the adaptation of situated methods to specific design problems.
On the one hand, we consider this extension not too problematic because there is a
plethora of adaptation knowledge on reference models which promises to be gener-
alizable. On the other hand, adaptation efforts might depend on problem properties
and influence the “optimal” level of method generality that up to now is determined
using “technical” homogeneity/heterogeneity metrics only. Finally, another and
probably the most important extension of the proposed approach would be the inclu-
sion of not only adaptation effort, but also other “economical” properties like the
absolute number of design problems in a class or even their attractiveness in terms of
economic gains. This is probably the most interesting – and challenging – avenue for
further research.

References

1. Donaldson, L.: The Contingency Theory of Organizations. Sage, Thousand Oaks (2001)
2. Graubner, M.: Task, firm size, and organizational structure in management consulting. An

empirical analysis from a contingency perspective. DUV, Wiesbaden (2006)
3. Pfeffer, J.: New Directions for Organization Theory: Problems and Prospects. Oxford Uni-

versity Press, New York (1997)
4. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information Systems Re-

search. MIS Quarterly 28(1), 75–105 (2004)
5. March, S.T., Smith, G.F.: Design and Natural Science Research on Information Technol-

ogy. Decision Support Systems 15(4), 251–266 (1995)
6. Baskerville, R.L., Pries-Heje, J., Venable, J.: Soft design science methodology. In: Pro-

ceedings of DESRIST 2009. ACM, New York (2009)
7. Becker, J., Delfmann, P., Knackstedt, R.: Adaptive Reference Modeling: Integrating Con-

figurative and Generic Adaptation Techniques for Information Models. In: Becker, J.,
Delfmann, P. (eds.) Reference Modeling, pp. 27–58. Physica, Heidelberg (2007)

8. Brinkkemper, S., Saeki, M., Harmsen, A.F.: Meta-Modelling Based Assembly Techniques
for Situational Method Engineering. Information Systems 24(3), 209–228 (1999)

9. Harmsen, A.F., Brinkkemper, S., Oei, H.: Situational Method Engineering for Information
System Project Approaches. In: Proceedings of the IFIP 8.1 Working Conference on Meth-
ods and Associated Tools for the Information Systems Life Cycle, pp. 169–194. North-
Holland, Maastricht (1994)

10. Mirbel, I., Ralyté, J.: Situational method engineering: combining assembly-based and
roadmap-driven approaches. Requirements Engineering 11(1), 58–78 (2006)

11. Ralyté, J., Rolland, C.: An approach for method reengineering. In: Kunii, H.S., Jajodia, S.,
Sølvberg, A. (eds.) ER 2001. LNCS, vol. 2224, pp. 471–484. Springer, Heidelberg (2001)

32 R. Winter

12. Bucher, T., Klesse, M., Kurpjuweit, S., Winter, R.: Situational Method Engineering – On
the Differentiation of “Context” and “Project Type”. In: IFIP WG8.1 Working Conference
on Situational Method Engineering – Fundamentals and Experiences (ME 2007), pp.
33–48. Springer, Berlin (2007)

13. Winter, R.: Problem Analysis for Situational Artefact Construction in Information Systems
(2011) (forthcoming)

14. Bucher, T., Klesse, M.: Contextual Method Engineering, Research Report BE
HSG/EIW/03, University of St. Gallen, Institute of Information Management (2006)

15. Winter, R., Gericke, A., Bucher, T.: Method versus Model – Two Sides of the Same Coin?
In: Dietz, J., Albani, A. (eds.) Advances in Enterprise Engineering II, Amsterdam (2009)

16. Kornyshova, E., Deneckère, R., Salinesi, C.: Method Chunks Selection by Multicriteria
Techniques: an Extension of the Assembly-based Approach. In: IFIP WG8.1 Working
Conference on Situational Method Engineering – Fundamentals and Experiences (ME
2007), pp. 64–78. Springer, Berlin (2007)

17. van Slooten, K., Hodes, B.: Characterizing IS Development Projects. In: Proceedings of
the IFIP TC8, WG8.1/8.2 Working Conference on Method Engineering, pp. 29–44. Chap-
man & Hall, Atlanta (1996)

18. Rolland, C.: A Primer for Method Engineering, in Proceedings of the Informatique des
Organisations d’Information et de Décision (INFORSID), Toulouse (1997)

19. Baumöl, U.: Strategic Agility through Situational Method Construction. In: Proceedings of
the European Academy of Management Annual Conference (2005)

20. Bucher, T., Winter, R.: Taxonomy of Business Process Management Approaches: An Em-
pirical Foundation for the Engineering of Situational Methods to Support BPM. In: vom
Brocke, J., Rosemann, M. (eds.) Handbook on Business Process Management, Springer,
Heidelberg (2010)

21. Klesse, M., Winter, R.: Organizational Forms of Data Warehousing: An Explorative
Analysis. In: Proceedings of the 40th Hawaii International Conference on System Sciences
(HICSS-40), IEEE Computer Society, Los Alamitos (2007)

22. Lahrmann, G., Stroh, F.: Towards a Classification of Information Logistics Scenarios - An
Exploratory Analysis. In: Proceedings of the 42nd Hawaii International Conference on
System Sciences (HICSS-42), IEEE Computer Society, Los Alamitos (2009)

23. Leist, S.: Methoden zur Unternehmensmodellierung - Vergleich, Anwendungen und
Diskussionen der Integrationspotenziale, Habilitation, Institut für Wirtschaftsinformatik
Universität St. Gallen (2004)

24. Aier, S., Gleichauf, B., Riege, C., Saat, J.: Empirische Validierung von Integrationstypen
am Beispiel unternehmensübergreifender Integration. In: Proceedings der 9. Internation-
alen Tagung Wirtschaftsinformatik, Band 1, Wien, Österreichische Computer Gesellschaft,
pp. 99–108 (2009)

25. IEEE: IEEE Recommended Practice for Architectural Description of Software Intensive
Systems (IEEE Std 1471-2000), IEEE Computer Society, New York, NY (2000)

26. Winter, R., Fischer, R.: Essential Layers, Artifacts, and Dependencies of Enterprise Archi-
tecture. Journal of Enterprise Architecture 3(2), 7–18 (2007)

27. Dietz, J.L.G.: Enterprise Ontology – Theory and Methodology. Springer, Heidelberg
(2006)

28. Aier, S., Riege, C., Winter, R.: Unternehmensarchitektur – Literaturüberblick und Stand
der Praxis. Wirtschaftsinformatik 50(4), 292–304 (2008)

29. Aier, S., Riege, C., Winter, R.: Classification of Enterprise Architecture Scenarios – An
Exploratory Analysis. Enterprise Modelling and Information Systems Architectures 3(1),
14–23 (2008)

 Design Solution Analysis for the Construction of Situational Design Methods 33

30. Leppänen, M., Valtonen, K., Pulkkinen, M.: Towards a Contingency Framework for Engi-
neering an Enterprise Architecture Planning Method. In: Proceedings of 30th Information
Systems Research Seminar in Scandinavia, IRIS 2007 (2007)

31. Ylimäki, T.: Potential Critical Success Factors for Enterprise Architecture. Journal of En-
terprise Architecture 2(4), 29–40 (2006)

32. Aier, S., Gleichauf, B., Winter, R.: Understanding Enterprise Architecture Management
Design – An Empirical Analysis. To appear in Proc. Wirtschaftsinformatik 2011. ACM,
New York (2011)

33. Hair Jr., J.F., Black, W.C., Babin, B.J., Anderson, R.E., Tatham, R.L.: Multivariate Data
Analysis, vol. 6. Pearson Prentice Hall, Upper Saddle River (2006)

34. Aziz, S., Obitz, T., Modi, R., Sarkar, S.: Enterprise Architecture: A Governance Frame-
work - Part I: Embedding Architecture into the Organization, Infosys (2005)

35. Aziz, S., Obitz, T., Modi, R., Sarkar, S.: Enterprise Architecture: A Governance Frame-
work - Part II: Making Enterprise Architecture Work within the Organization. Infosys
Technologies Ltd. (2006)

36. Winter, R.: Design of Situational Artefacts – Conceptual Foundations and their Applica-
tion to IT/Business Alignment. Will appear in Proc. ISD 2010 (2010)

A Method Base for Enterprise Architecture
Management

Sabine Buckl, Florian Matthes, and Christian M. Schweda

Technische Universität München, Institute for Informatics,
Boltzmannstr. 3, 85748 Garching, Germany

{sabine.buckl,matthes,christian.m.schweda}@mytum.de
http://wwwmatthes.in.tum.de

Abstract. Responding to the increasing complexity and diversity of in-
formation systems development, method engineering provides techniques
and tools for the analysis, design, and evolution of information systems.
Similar challenges can be found in the research area of enterprise archi-
tecture (EA) management, whose main goal is to enhance the alignment
of business and IT. While a multitude of methods and models to support
EA management have been proposed over the years, situational factors
as the goals pursued or the organizational context, in which the manage-
ment function has to be embedded, are typically neglected.

In this paper, we present a building block base for the design of sit-
uated EA management functions based on a comprehensive collection
of best practice methods and models for EA management. Therefore,
we discuss related work from the area of situational method engineering
and pattern-based development and design. Based on these foundations,
a building block base and the contained building blocks are presented
and are applied alongside a case study from industry. The discussion is
complemented by a prototypic tool implementation, which can be used
to support the configuration process for situational methods.

1 Motivation

The enterprise forms a complex structure constituted of a large number of highly
interdependent elements. The constant need to adapt this structure in response
to changing external influences, as economic factors or new regulations, calls for
an embracing approach to control and govern the necessary transformations. En-
terprise architecture (EA) management is a discipline aiming to provide guidance
for the enterprise transformation by taking a holistic perspective on the enter-
prise, covering concepts from the business to the IT infrastructure level, but also
accounting for cross-cutting aspects as strategies, projects, or standards.

The embracingness of the management subject raises different implications
relevant to EA management as a function. Most obvious, the holistic perspective
taken requires a large amount on information about the architecture elements
as well as their interdependencies. Collecting the relevant information, but also
keeping the information up-to-date, communicating it to the interested parties

J. Ralyté, I. Mirbel, and R. Deneckère (Eds.): ME 2011, IFIP AICT 351, pp. 34–48, 2011.
c© IFIP International Federation for Information Processing 2011

http://wwwmatthes.in.tum.de

A Method Base for Enterprise Architecture Management 35

(stakeholders) in the organization, or performing analyses are tasks, whose com-
plexity grows with the rising amount of information to handle. This and the
plurality of possible stakeholders as well as goals to pursue are two reasons that
have promoted the development of the plethora of EA management approaches
as found in today’s literature. These approaches, e.g. The Open Group Architec-
ture Framework (TOGAF) [29], the Archimate language [20], or Core Business
Metamodel [22], encompass general prescriptions on how to manage the EA to-
gether with conceptual meta-models, the so-called information models, for the
corresponding management body. Accounting for the fact that each organization
has its specific understanding of EA management and the associated goals, the
general prescriptions are often complemented with statements that highlight the
need to adapt to the using organization. When it nevertheless comes to concrete
artifacts describing the design of both organization-specific EA management
methods and EA description languages, literature becomes more scarce.

Recent publications of Leppänen et al. [21] and of Riege and Aier [24] em-
phasized the topic of adapting EA management prescriptions to the specifics
of the using organization, delineating potential contingency factors of EA man-
agement. Winter et al. further analyze in [30] the plurality of EA management
goals as pursued in practice. These publications indicate towards a more ma-
ture understanding of the field (see Section 2 for a detailed discussion). From
this dedicated method engineering approaches for EA management can be con-
sidered the next research step, which is nevertheless aggravated by the typical
challenges of EA management research as outline by Buckl et al. in [8]: practice-
relevant EA management research is usually carried out in close cooperation
with the industry, such that the projects follow the industry partner’s pace and
have to deliver their benefits early. On the contrary, the field itself has a broad
subject, is rooted in a multi-disciplinary background, and the effects of measures
taken usually manifest in the long run after a couple of years. In Section 3 we
describe an approach for designing situated EA management functions based
on the foundation of method engineering. For the aspect of administering the
knowledge base of the approach, we discuss how a pattern-based understanding
of EA management, as taken by Buckl et al. in [5], is called upon. Section 4
delineates the steps of applying the approach both from a theoretical perspec-
tive and along an anonymized practical example. Final Section 5 summarizes
the findings of the article and gives a brief outlook.

2 Related Work

An EA management function can be understood as a design product embedded
into the context of using organization. Riege and Aier conducted in [24] an
exploratory analysis of the contingency factors, that result from this, and derived
a contingency framework consisting of three factors:

– adoption of advanced architectural design paradigms and modeling capabili-
ties : targeting properties as the coverage of current and target states of the
EA in the architectural models as well as of transformation plans

36 S. Buckl, F. Matthes, and C.M. Schweda

– deployment and monitoring of EA data sets and services : concerning the
control and governance for the EA management processes via performance
reviews and the availability of dedicated EA management marketeers

– organizational penetration of EA: aiming at the organizational perception of
EA management in the IT departments and business units as well as the
usage of EA management-provided services in these departments.

Based on the empiric results on these factors and the constituting items, Riege
and Aier cluster the analyzed EA management functions into three different
types: engineering functions, incepting functions and extended IT architecture
functions. Former distinction supported from the empiric point of view never-
theless reveals a main limitation of the analysis. The analysis’ results fail to
support a clear distinction between the contingency factors and their effects.
This may ascribe to the special nature of the interplay between the EA manage-
ment function and its management body, but provides only minor support for
understanding the impediments and catalysts of managing the EA.

In [21] Leppänen et al. pursue a different approach in deriving the contingency
factors of EA management. Based on the findings and experiences of the Finnish
EA research program, they elicit their contingency framework (EACon) for EA
management, providing the following categories of contingency factors:

– EA method goals reflect the stakeholder’s requirements that the EA man-
agement function is meant to satisfy. These stakeholders can be located in
different organizations participating in the EA management.

– EA principles delineate constraints pertaining to the EA management func-
tion, such governance rules. These principles may be local to one organization
or be shared in the organization network.

– Roles refer to the people to be involved in both the EA management function
as well as in the corresponding governance. Possible roles are the enterprise
architect, as method user, and the EA method engineer.

– Resources reflect manpower, monetary supplies and tool support that is
available to the EA management function in the participating organizations.

– Cluster describes the organizational environment into which the EA man-
agement function is to be embedded. Such cluster can be single organization
or a network of enterprises cooperating to provide networked services.

Each of the above factors can according to Leppänen et al. [21] be further de-
tailed. For the cluster this reads as a more detailed understanding of the or-
ganizational culture and organizational structure, of which the latter is closely
related to the factor decision rights constituting a part of the roles. Making ex-
plicit these different factors as well as the intricate relationships inbetween is
the core contribution presented in [21] by Leppänen et al. This clearly mirrors
the focus of the article, that seeks to contribute to a contingency framework for
engineering an EA planning method. It is hence not surprising that the partic-
ular factors of EACon remain decoupled from concrete solutions, guidelines, or
prescriptions on how to optimally manage the EA given certain contingencies.

In [5] Buckl et al. take a different perspective on the field of EA management.
Experiencing the need for concrete and practice-proven solutions to recurring

A Method Base for Enterprise Architecture Management 37

EA management problems, the authors translate the notion of the pattern (cf.
Alexander et al [2]) to the field of EA management research. For the field of EA
management, Buckl et al. introduce three different types of pattern as follows:

– method pattern define steps to be taken in order to address a given problem.
Furthermore, as a guidance for applying the method, statements about its
intended usage context are provided.

– viewpoint pattern define the notations used by the methods, i.e. describe
ways to present information necessary for performing one or more methods
as stored according to one or more information model patterns.

– information model pattern supply models structuring the information needed
by one or more methods and visualized in one of more viewpoints.

For solving a particular EA management problem in a given organization, a
user selects an appropriate set of method, viewpoint, and information model
patterns. Based on these constituents, a user composes his specific EA man-
agement function, i.e. defines what would in line with Gutzwiller [14] be called
an organization-specific EA management method. Former term sheds a light on
the slightly uncommon understanding of method in the work of Buckl et al., e.g.
in [5]. While usually design-oriented methods are understood as constituted from
roles, tasks, techniques, design results, and a corresponding meta-model, Buckl et
al. separate the roles, tasks and technique (the method in their understanding)
from the design results with their corresponding meta-model (views according
to viewpoints and information models in their terms). This separation can be
justified against the background of the stereotypic tasks employed in EA man-
agement and manifests the so-called method-language-dichotomy as alluded to
e.g. by Schelp and Winter [26] or by Buckl et al. in [8]. This dichotomy is utilized
in Section 3 to formulate independent building-blocks for an EA management
function in refinement of the EA management patterns.

Helping the user in selecting the suitable EA management pattern, the EA
management pattern catalog [11] refines the basic idea and supplies a set of
relationships between the different patterns. In particular, every method pattern
references all viewpoint patterns that can be used in the method, whereas each
viewpoint pattern relates to the information model pattern, covering the needed
information. Pattern of all three types are described using a template resembling
the so-called canonical pattern form (cf. Ernst [12]). Each pattern states:

– its usage context in which it can be applied,
– the problem that it has proven to solve,
– the solution which it applies to the given problem,
– the contradictory forces framing the space of observed solutions, and
– the consequences observed to result from the pattern’s application.

With this standardized structure, the patterns can serve as valuable starting
point for developing an approach for designing situated EA management func-
tions. Such approach nevertheless has to deal with the inherent weaknesses of EA
management patterns, e.g. their tendency to repeat themselves especially with

38 S. Buckl, F. Matthes, and C.M. Schweda

respect to methods for documenting the EA, as well as terminological plurality
of the pattern descriptions, resulting from the fact that patterns are observed in
different practice cases without consistent overarching terminology.

3 Designing a Situated EA Management Function

In line with the understanding of Harmsen that there is no method that fits all
situations [15, page 6], we subsequently propose a situated approach to design an
EA management function based on existing best practices. A situated approach
according to Harmsen in [15] accomplishes standardization and at the same time
flexibility to match the situation. A situation thereby refers to the combination
of circumstances at a given point in time in a given organization [15]. In order
to address these requirements, for each situation a suitable solution1 – so-called
situational solution – is constructed that accounts for these circumstances. Re-
flecting the method-language dichotomy in EA management, two different types
of solution constituents, method building blocks (MBBs) and language building
blocks (LBBs), are used in the construction process and are configured as well
as adapted with the help of formally defined guidelines.

3.1 Foundations

A complex and intricate research area like designing EA management functions
represents a topic that is not easy to research. The heavy involvement of stake-
holders, the broadness of the subject, and the delayed effects (see Section 1) call
for a suitable structuring of the research subject. This structuring can be per-
formed either using a vertical or horizontal domain decomposition strategy. In
the vertical domain decomposition only a limited number of EA-related problems
is addressed in an embracing manner with a comprehensive solution. In contrast,
the horizontal domain decomposition addresses a variety of EA-related problems
with either suitable management methods or modeling languages.

While the former type of decomposition is a frequently used one for approach-
ing the area of EA management(cf. Johnson and Ekstedt in [17], which focus
on EA analysis or Spewak in [28] emphasizing on EA planning aspects), we in
line with Schelp and Winter in [26] opt for a horizontal decomposition of the
domain of EA management, which reflects the method-language dichotomy as
discussed above. Such an approach is further backed by TOGAF, which contains
the architecture development method – reflecting the methodical perspective –
and the content framework – representing the language part (cf. Open Group
in [29]). In contrast to the approach taken by TOGAF, we advocate for mak-
ing the interconnection points between the methodical and the language parts
explicit. In order to do so, we introduce the variable concept in the MBBs serv-
ing as a placeholder for language aspects. Viewpoint variables for instance are
used during method description to indicate placeholders for visual architecture
descriptions, which must be filled during the organization-specific configuration.
1 We subsequently employ the term solution instead of method in line with argumen-

tation at the end of Section 2.

A Method Base for Enterprise Architecture Management 39

The idea of interrelating best practice fragments to design an organization-
specific EA management function can only be realized against the basis of a
common understanding and terminology of the topic. Although no such com-
mon understanding has yet evolved if the definition of the term EA or EA man-
agement is considered (cf. Schönherr in [27] and Schelp and Winter in [25]),
consensus on the fundamental activities and tasks that make up an EA manage-
ment function exists (cf. [1]). In [10], Buckl et al. revisit different approaches to
EA management, e.g. Frank [13], Riege and Aier [24], and The Open Group [29]
to devise a method framework for EA management consisting of four activities
as shown in Figure 1:

Enterprise Architecture

Fig. 1. Method framework of BEAMS

Develop & describe a state of the EA, either a current state describing the
as-is architecture, a planned state representing a medium-term future state
or a target state, i.e. a vision of the EA.

Communicate & enact architecture states and principles guiding the evolu-
tion of the EA to EA-relevant projects and to related management functions,
e.g. project portfolio management.

Analyze & evaluate the current state to identify potentials for improvement,
evaluate architectural scenarios (planned states), or analyze whether a
planned state helps to achieve the target state or not.

Configure & adapt the EA management function itself, e.g. in response to an
under achievement of the desired results or a changed situation decide on
the addressed management concerns, pursued goals, and used methods.

From the perspective of architectural descriptions, the former activities are char-
acterized as creating, using, and augmenting the EA description. The latter ac-
tivity – configure & adapt – incorporates the nature of a meta-activity as it is
concerned with the design of the former three activities. In terms of the situ-
ational method engineering this activity encompasses the process of situational
method engineering [15, page 45], i.e. the steps characterization of the situation,
selection of method fragments, and assembly of method fragments.

40 S. Buckl, F. Matthes, and C.M. Schweda

Similar to the method aspect, also the language aspect can be subdivided.
An EA management-relevant problem can be described by a concern, i.e. an
area of interest, and a goal, i.e. an abstract objective. A concern represents an
organization-specific conceptualization of the management subject, while goals
complement this static perspective via a time-dependence or a notion of better
and worse. In that sense the achievement of a goal, e.g. increase homogenization,
can be operationalized via measurements, such that a goal provides an evaluation
function, which can be used to guide the EA planning process.

3.2 Structure of the Building Block

As motivated above, two different types of building blocks to design an EA
management function exits – MBBs and LBBs, of which the latter are subdivided
into building blocks concerned with the conceptualization, i.e. areas of interest –
information model building blocks (IBB) – and building blocks containing best
practice visual representations – viewpoint building blocks (VBB).

Method building blocks
An MBB describes the different tasks that are performed in order to achieve a cer-
tain goal in a given organizational context. The MBB further specifies the ordering
of the tasks and execution alternatives. For every alternative path the MBB also
describes the conditions that apply during task execution. Furthermore, a task
can devise different techniques to be utilized. To perform an expert-based analy-
sis of a planned state for example, a pattern-based technique or an-indicator based
technique can be utilized. Thus, each technique is linked to forces describing the
benefits and drawbacks of the different techniques to be selected. Reflecting the
method-language dichotomy each MBB contains a concern variable, i.e. a place-
holder for the area of interest on which the tasks operate. During the configuration,
the concern variable has to be replaced by the actual concern.

In order to be applied, the pre-conditions specified by an MBB need to be
met. An exemplary precondition of an MBB dedicated to the analyze & eval-
uate activity is that the concern specified by the concern variable is already
documented. Supplementary, each MBB also specifies post-conditions that are
fulfilled after executing the MBB. In this vein, consistency checks can be executed
ensuring a sensible configuration and ordering of MBBs. The above exemplary
pre-condition illustrates the make-up of pre- and post-conditions, representing a
combination of an area-of-interest, i.e. a concern, and a so-called meat-attribute,
e.g. documented, acknowledged, or publicized, describing a property of the con-
cern related to the MBB. In addition to the post-conditions, an MBB can specify
consequences, which result from applying the building block. The notion con-
sequence thereby does not only refer to negative side-effects but is also used to
describe positive add-ons. In contrast to the post-conditions, consequences are
described in an informal manner utilizing natural language descriptions.

Complementing each MBB contains a trigger variable, which specifies the
trigger starting the execution of the tasks. In configuring the EA management
function this variable is filled with an actual trigger. Each task is executed by
a corresponding actor represented by an actor variable in the description of the

A Method Base for Enterprise Architecture Management 41

method. The notion of actor variable similar to the notion of trigger variable
is used to denote that the description of the MBB does not specify distinct ac-
tors or roles in the using organization, but merely describes a responsibility of a
person or group. Further, the MBB can specify that the actor variable is bound
in respect to its organizational role, e.g. might express that an escalation based
enactment mechanism only works, if a superordinate actor can be called upon.
Beside to the mandatory relationship to the executing, i.e. responsible actor
variable, each task may relate to other actor variables as well, namely variables
representing actors that are consulted or informed during task execution. The
distinction between the different levels of involvement pertaining to a single task
is based on the RACI model of CobiT (see e.g. [16]), while a slightly different
perspective is taken on the involvement level informed. For the purpose of de-
scribing MBBs, we assume that any actor involved in a task is informed, such
that the responsible actor as well as consulted actors are counted as informed,
too. The participation of actors in tasks is enabled via viewpoint variables, which
designate that the actor takes a specific viewpoint on the information relevant
during performing the given task. The notion of the variable here again describes
that the MBB does not make concrete prescriptions on the viewpoint to be used,
but in turn allows to select a specific viewpoint for accomplishing the task.

Language building blocks
In designing the language for EA descriptions, both VBBs and IBBs are em-
ployed. Understanding a language in line with e.g. Kühn [18] as constituted
of abstract syntax, semantics and notation, the two types of building blocks
are used to specify notation and syntax, respectively. The semantics is speci-
fied denotationally in the glossary complementing the building block base (cf.
Section 3.3 below). Each information model building block specifies the types,
attributes and relationships that conceptualize the corresponding part of the
EA, i.e. cover a stakeholder’s concern or reflect the information necessary for
assessing the attainment of a goal. For the latter purpose, the IBBs introduce a
distinction between different kinds of types, most notably distinguishing between
classes and mixins. As Buckl et al. outline in [9], latter concepts can be used to
formulate specialized IBBs are able to describe specific EA goals as availability
regardless the actual EA concept, e.g. business application or business capability,
they are attached to. A user can hence select the IBB reflecting a specific concern
and combine it with a specific goal to his relevant EA problem, see Figure 2.

BusinessApplication
name:String

«mixin»
AvailableElement

availability:double

OrganizationalUnit
name:String 1 0..*

hosts BusinessApplication
gname:Stringg

OrganizationalUnit
gname:Stringg 1 0..*

hosts

Concern IBB

Fig. 2. Integrated information model

42 S. Buckl, F. Matthes, and C.M. Schweda

The VBBs focus on the notational aspects of the EA description language,
providing visual primitives, e.g. rectangles, and visualization rules, e.g. clustering,
for defining how the information is visualized. The VBBs further relate to the
information model or parts of it, specifying concepts of which type are mapped
to which kind of visualization element. Thereby, an executable transformation
from the syntactic concepts to their visual counterparts is defined based on the
VBBs. With the focus of this article on the method and information model
perspective, we abstain from going into the details of the mechanism behind the
transformation. More information can be found in [6].

3.3 Structure and Administration of the Building Block Base

Critical prerequisite to the design of a situated EA management function, is the
provision of standardized building blocks, which are stored and retrievable from
what is typically called a method base (cf. Brinkkemper in [3]) or component
base (cf. Kumar and Welke in [19]). Due to the method-language dichotomy
of our application domain, we abstain from reusing the misleading notions and
introduce the term building block base for the repository. The structure of this
repository is outline below and complemented by a description of the configura-
tion and administration process. Enabling the selection of appropriate building
blocks for a given situation requires the development of concepts and techniques
to analyze and compare the incorporated building blocks. Following the idea of
Pries-Heje and Baskerville in [23], we use the concepts of

problem. A problem represents the issue to be solved by applying the building
block. A problem in the area of EA management typically consists of a
goal representing an abstract objective, e.g. increase homogeneity, provide

transparency, and a
concern, i.e. area of interest in the enterprise, e.g. business support, appli-

cation systems.
organizational context. The organizational context represents the situation

in which the EA management function operates. Typical factors which are
considered in the organizational context are the organizational culture, man-
agement commitment, or involved stakeholders.

Figure 3 illustrates the components and the structure of the building block base.
To outline the administration of the building block base, we exemplify its devel-
opment along the best practices for EA management as contained in the pattern
catalog from [11]. Therefore, the problems addressed by the different patterns are
analyzed and the abstract goals as well as the concerns are identified. Thereby,
an exemplary goal reads as follows “increase homogeneity” and the respective
concern is “technology used by a business application” [4]. The concerns and
the respective information model patterns serves as input for the development
of IBBs. Thus, also establishing a concern hierarchy, i.e. an evolution path, as
introduced in [7]. Furthermore, the usage context descriptions are investigated
for descriptions of organizational contexts in which the respective pattern has
been applied, e.g. “centralized IT organization”, “upper management support”,

A Method Base for Enterprise Architecture Management 43

Building block base

Problem

E
xi

st
in

g
ap

pr
oa

ch
es

(E
A

m
an

ag
em

en
tp

at
te

rn
s)

Organizational
context

Organizational
context

Organizational
context

MBB
Goal

MBB
Goal

IBB
Concern

IBB
Concern

EA management function

Fig. 3. The components and structure of the building block base

or “own budget for the EA management initiative”. The MBBs are derived from
existing method patterns, thereby, the textual description of the steps to be
taken is used as input to derive tasks, responsible actors, and forces. Further-
more, the consequence section of the patterns serve as input for the pre- and
post-conditions of the building blocks. Consequences which can be formalized
in terms of a meta-attribute and a respective concern are reformulated as pre-
and post-conditions. The identified goals and organizational contexts are used
as input for characterizing the situation.

To relate the components of the building block base, the above identified goals
of and organizational contexts are the derived building blocks. The suitability of
a building block for any combination of the goals and organizational conditions
can then be defined utilizing a fitting matrix with the building blocks on the
y-axis, the identified organizational contexts (goals) on the x-axis, and a scoring
of the fitting function for the MBBs (IBBs) in the cell. The fitting function
can thereby take a value form the set required, excludes, or helpful and serves
as a decision-support system for the selection of building blocks. The assembly
of building blocks is performed utilizing the variable concept, i.e. the IBBs are
used to configure the concern variable, and the pre- and post-conditions of BBs,
which determine an ordering.

4 Applying the Building Block Base

The building block base is applied using three steps: characterization of the
situation, selection of building blocks, and assembly of building blocks, described
below along an example from a financial service provider BSM.

44 S. Buckl, F. Matthes, and C.M. Schweda

Characterization of the situation
In this phase the existing organizational context in the enterprise is described.
Further, the specific EA management goal to be pursued and the related EA
concern are delineated. For doing so, the using organization can call on the list
of contexts, goals and concerns as contained in the building block base.

Resulting from previous acquisitions, BSM operates a highly hetero-
geneous landscape of business applications. Especially, maintenance of
business applications developed a non-standard solutions for the formerly
independent companies has become a costly task. Therefore, BSM seeks
to increase homogeneity of the business applications hosted at the dif-
ferent locations. Due to the maintenance problems, the EA management
can rely on high-level management support and is driven by a small EA
management team located in a staff unit of the CIO’s office. This team
has to deal with the highly decentralized structure of the IT departments,
such that the EA management process should be design to promote itself.

Selection of fragments
In this phase the building block base is searched for MBBs that match the
organizational context and for IBBs that reflect the EA management problem.
Figure 4 shows the results of a query against the building block base, returning
IBBs containing the concept application. Similar searches are performed on the
IBBs that reflect the cross-cutting aspect of standardization as well as on the
MBBs starting with ones supporting the activity develop & describe.

The search for the applicable methods presents two MBBs as well-suited
for the organizational context: describe by interview and describe by
workshop, as both these MBBs are helpful to market the EA management
endeavor. For the aspect of standardization, three models for standards
reflected in different IBBs are provided by the building block base: simple
standardization, standardization via book of standards, and standardiza-
tion by individual prescriptions. Reading through the consequences of
the different building blocks BSM decides to chose an interview-based
gathering of information about business applications and their hosting

Fig. 4. Searching the building block based for suitable IBBs

A Method Base for Enterprise Architecture Management 45

organizational units. For the aspect of standardization, a book of stan-
dards is to be created, marking certain technologies as standard or non-
standard, respectively. For the phase communicate & enact the MBB
publish architectural descriptions is chosen.

Assembly of fragments
In this phase four sub-phases are conducted to compose the building blocks to
a comprehensive EA management function:

Integrate IBBs: the different IBBs reflecting the concerns and goals are in-
tegrated into composite models covering specific sub-problems of the EA
management-problem to address. Thereby, manageable information models
are created which can subsequently be linked to the MBBs.

Integrate and configure MBBs: the concern variable of each selected MBB
is linked to the integrated information model that reflects the corresponding
concern. If different concerns are to be treated by similar methods, the MBBs
can be duplicated in this case. The configured MBBs are integrated into a
process, and the consistency between the pre-conditions and post-conditions
of consecutive MBBs is checked.

Configure actors and triggers: for each sequence of MBBs the triggering
event is configured. Further, the actor variables defined by the MBBs are
bound to actual organizational roles of the using enterprise.

Add and configure VBBs: for each actor, who participates in a task, a view-
point variable exists. This variable is set to a composition of VBBs, express-
ing how certain parts of the corresponding concern (information model) are
to be visualized. If the viewpoint variable is designed read-only, nearly no
limitations on the type of viewpoint exist, whereas a read-write viewpoint
is bound to comprise VBBs in a combination that represents an updateable
view. This e.g. means that all information model elements intended to be
written are represented 1:1 in the corresponding visualization.

During each of the aforementioned sub-phases, consistency checking is applied.
During the integration of the IBBs the approach analyzes, if an incompatible
semantic mapping is created, i.e. if homonyms in terms of the glossary of the
building block base are created by unifying types with a distinct meaning. Con-
cerning the configuration of the VBBs, the approach analyzes whether the visu-
alized information is available in the method’s corresponding concern variable.
Further, it checks whether the transformation from syntactic to visual primitives
is bidirective, or not, such that the latter case is diagnosed as non-updateable
view, which cannot be used for write access.

BSM integrates the IBBs covering business applications, hosting orga-
nizational units and used technologies into a single information model.
In contrast the information, whether a certain technology is standard
according to the book of standard, is separated into a different in-
formation model. Former model, is assigned to the concern variable
of describe by interview, whereas latter model is linked to describe by

46 S. Buckl, F. Matthes, and C.M. Schweda

workshop. The post-conditions of the two configure MBBs then read
as OrgUnit-BusinessApplication-Technology.documented and as
Technology.isStandard.documented. To the concern variable of the
MBB publish architectural descriptions the information model subsum-
ing both information models is assigned.

Further concretizing the documentation-specific MBBs, BSM decides
that the interviews on the business applications and related information
are held every time, when an IT-project finishes. An enterprise archi-
tect asks the application owner of the corresponding business applica-
tion. The standardization-related information is decided upon every six
months during a workshop by a board comprised of enterprise archi-
tects, application owners and IT project managers. A re-publishing of
the architectural description is triggered every time, when new informa-
tion about business applications is available. The enterprise architects
are responsible for creating the corresponding architectural description,
which is made available to application owners, IT project managers, and
the CIO. With the viewpoint being read-only, BSM decides to use a
clustered visualization containing only organizational units and business
applications, of which the latter are colored red, if they use at least one
non-standard technology, or green otherwise.

5 Summary and Outlook

In this article we motivated the need for organization-specific EA management
functions, i.e. management functions that account for the specificities of the
using organization with both respect to the context and the management goals.
Reflecting on the related work in Section 2, we showed what current research can
already contribute to the design of such EA management functions and were able
to delineate the omissions of current approaches. In Section 3 we applied the basic
notions of method engineering onto the subject of EA management, describing
an approach building on three types of building blocks for EA management
functions, namely MBBs, VBBs, and IBBs. We further outlined how concrete
building blocks look like and how they are interrelated in the EA management
building block base, a EA management-specific implementation of the notion of
the method base. In Section 4 we described how the building block base can be
used to design an organization-specific EA management function. Thereby, we
employed an example at a financial services provider.

With its roots in the EA management patterns of Buckl et al. [5,11], the
approach can rely on a sound and practice-proven basis of best-practice meth-
ods, viewpoints and information models. The rigorous mechanism for translating
these patterns into building blocks further helps to ensure that the made pre-
scriptions are applicable in practice. Notwithstanding, more in-depth evaluations
of the usefulness of the approach remain to be conducted. Thereby, especially
a comparison to less formal methods, e.g. TOGAF, are of interest. Such analy-
ses are nevertheless subject for future research. In the context of the necessary

A Method Base for Enterprise Architecture Management 47

long-term analyses, it would further be interest to analyze, if the approach’s
prescriptions are beneficially for governing the EA management function, i.e. for
evolving the function in response to organizational changes.

References

1. Aier, S., Buckl, S., Franke, U., Gleichauf, B., Johnson, P., Närman, P., Schweda,
C.M., Ullberg, J.: A survival analysis of application life spans based on enterprise
architecture models. In: 3rd International Workshop on Enterprise Modelling and
Information Systems Architectures, Ulm, Germany, pp. 141–154 (2009)

2. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel,
S.: A Pattern Language. Oxford University Press, New York (1977)

3. Brinkkemper, S.: Method engineering: engineering of information systems devel-
opment methods and tools. Information and Software Technology 38(4), 275–280
(1996)

4. Buckl, S., Ernst, A.M., Lankes, J., Matthes, F., Schweda, C.M.: Enterprise archi-
tecture management patterns – exemplifying the approach. In: The 12th IEEE In-
ternational EDOC Conference (EDOC 2008), Munich, Germany. IEEE Computer
Society, Los Alamitos (2008)

5. Buckl, S., Ernst, A.M., Lankes, J., Schneider, K., Schweda, C.M.: A pattern based
approach for constructing enterprise architecture management information models.
In: Wirtschaftsinformatik 2007, pp. 145–162. Universitätsverlag Karlsruhe, Karl-
sruhe (2007)

6. Buckl, S., Gulden, J., Schweda, C.M.: Supporting ad hoc analyses on enterprise
models. In: 4th International Workshop on Enterprise Modelling and Information
Systems Architectures (2010)

7. Buckl, S., Matthes, F., Schweda, C.M.: Conceputal models for cross-cutting aspects
in enterprise architecture modeling. In: 5th International Workshop on Vocabular-
ies, Ontologies, and Rules for the Enterprise, VORTE 2010 (2010)

8. Buckl, S., Matthes, F., Schweda, C.M.: From ea management patterns towards
a prescriptive theory for desinging enterprise-specific ea management functions –
outline of a research stream. In: Multikonferenz Wirtschaftsinformatik (MKWI
2010), Göttingen, Germany, pp. 67–78 (2010)

9. Buckl, S., Matthes, F., Schweda, C.M.: A technique for annotating EA information
models. In: Barjis, J. (ed.) EOMAS 2010. LNBIP, vol. 63, pp. 113–127. Springer,
Heidelberg (2010)

10. Buckl, S., Matthes, F., Schweda, C.M.: Towards a method framework for enterprise
architecture management – a literature analysis from a viable system perspective.
In: 5th International Workshop on Business/IT Alignment and Interoperability,
BUSITAL 2010 (2010)

11. Chair for Informatics 19 (sebis), Technische Universität München. Eam pattern
catalog wiki (2010), http://eampc-wiki.systemcartography.info (cited 2010-
07-01)

12. Ernst, A.M.: A Pattern-Based Approach to Enterprise Architecture Management.
PhD thesis, Technische Universität München, München, Germany (2010)

13. Frank, U.: Multi-perspective enterprise modeling (memo) – conceptual framework
and modeling languages. In: Proceedings of the 35th Annual Hawaii International
Conference on System Sciences (HICSS 2002), Washington, DC, USA, pp. 1258–
1267 (2002)

http://eampc-wiki.systemcartography.info

48 S. Buckl, F. Matthes, and C.M. Schweda

14. Gutzwiller, T.A.: Das CC RIM-Referenzmodell für den Entwurf von betrieblichen,
transaktionsorientierten Informationssystemen. PhD thesis, Universität St.Gallen
(1994)

15. Harmsen, A.F.: Situational Method Engineering. PhD thesis, University of Twente,
Twente, The Netherlands (1997)

16. IT Governance Institute. Framework Control Objectives Management Guidelines
Maturity Models (2009), http://www.isaca.org/Knowledge-Center/cobit (cited
2010-06-18)

17. Johnson, P., Ekstedt, M.: Enterprise Architecture – Models and Analyses for In-
formation Systems Decision Making. Studentlitteratur, Pozkal (2007)

18. Kühn, H.: Methodenintegration im Business Engineering. PhD thesis, Universität
Wien (2004)

19. Kumar, K., Welke, R.J.: Methodology engineering: A proposal for situation-specific
methodology construction. In: Challenges and Strategies for Research in Systems
Development, West Sussex, England, pp. 257–270. John Wiley, Chichester (1992)

20. Lankhorst, M.M.: Enterprise Architecture at Work: Modelling, Communication
and Analysis, 2nd edn. Springer, Heidelberg (2009)

21. Leppänen, M., Valtonen, K., Pulkkinen, M.: Towards a contingency framework
for engineering and enterprise architecture planning method. In: 30th Information
Systems Research Seminar in Scandinavia (IRIS), pp. 1–20 (2007)

22. Österle, H., Winter, R., Hoening, F., Kurpjuweit, S., Osl, P.: Business Engineering:
Core-Business-Metamodell. Wisu – Das Wirtschaftsstudium 36(2), 191–194 (2007)

23. Pries-Heje, J., Baskerville, R.: The design theory nexus. MIS Quarterly 32(4), 731–
755 (2008)

24. Riege, C., Aier, S.: A contingency approach to enterprise architecture method en-
gineering. In: Feuerlicht, G., Lamersdorf, W. (eds.) ICSOC 2008. LNCS, vol. 5472,
pp. 388–399. Springer, Heidelberg (2009)

25. Schelp, J., Winter, R.: On the interplay of design research and behavioral research
– a language community perspective. In: Proceedings of the Third International
Conference on Design Science Research in Information Systems and Technology
(DESRIST 2008), Westin, Buckhead, Atlanta, Georgia, USA, May 7-9, pp. 79–92.
Georgia State University, Atlanta (2008)

26. Schelp, J., Winter, R.: Language communities in enterprise architecture research.
In: DESRIST 2009: Proceedings of the 4th International Conference on Design
Science Research in Information Systems and Technology, pp. 1–10. ACM, New
York (2009)

27. Schönherr, M.: Towards a common terminology in the discipline of enterprise ar-
chitecture. In: Aier, S., Johnson, P., Schelp, J. (eds.) Pre-Proceedings of the 3rd
Workshop on Trends in Enterprise Architecture Research, Sydney, Australia, pp.
107–123 (2008)

28. Spewak, S.H., Hill, S.C.: Enterprise Architecture Planning – Developing a Blueprint
for Data, Applications, and Technology. John Wiley & Sons, New York (1993)

29. The Open Group. TOGAF “Enterprise Edition” Version 9 (2009),
http://www.togaf.org (cited 2010-02-25)

30. Winter, K., Buckl, S., Matthes, F., Schweda, C.M.: Investigating the state-of-the-
art in enterprise architecture management method in literature and practice. In:
Proceedings of the 5th Mediterranean Conference on Information Systems (2010)

http://www.isaca.org/Knowledge-Center/cobit
http://www.togaf.org

J. Ralyté, I. Mirbel, and R. Deneckère (Eds.): ME 2011, IFIP AICT 351, pp. 49–63, 2011.
© IFIP International Federation for Information Processing 2011

Towards the Use of Granularity Theory for
Determining the Size of Atomic Method Fragments for

Use in Situational Method Engineering

Brian Henderson-Sellers1 and Cesar Gonzalez-Perez2

1 School of Software, Faculty of Engineering and Information Technology,
University of Technology, Sydney, P.O. Box 123, Broadway, NSW 2007, Australia

Brian.Henderson-Sellers@uts.edu.au
2 The Heritage Laboratory (LaPa), Spanish National Research Council (CSIC)

Santiago de Compostela, Spain
cesar.gonzalez-perez@iegps.csic.es

Abstract. Situational method engineering defends the idea that methodologies
should be constructed by assembling pre-existing method fragments from a re-
pository. The structure of the repository, the kinds of fragments that it can store,
as well as the possible relationships among them, are dictated by an underlying
metamodel. One of the aspects that must be studied is that of the granularity of
the individual method fragments in the context of the metamodel to which the
fragments are conformant. This becomes especially relevant in a service-
oriented method engineering context, where interoperability and composability
of fragments from multiple repositories is a key issue. This paper applies some
theoretical works on granularity to the study of both the granularity and the size
of method fragments, recommending some best practices that should be adopted
in order that the resultant method fragments are atomic and therefore likely to
be consistent in quality thus leading to higher quality constructed methodolo-
gies and paving the way for easier composition and interoperation of fragments.

Keywords: granularity, method fragments, situational method engineering.

1 Introduction

Situational method engineering (SME) [1, 2] describes the creation and use of a soft-
ware development method(ology)1 from small, atomic methodological pieces, known
as “method fragments” or, at a larger scale (i.e. non-atomic), “method chunks” [3],
typically conformant to the conceptual definitions in an underpinning metamodel [4].

While much of the literature focusses on method construction e.g. [5-7], little has
focussed on the details of the atomic elements of a method (method fragments)
themselves. In particular, an issue, as yet little discussed, is the granularity both
of elements in the metamodel and of the atomic modelling elements (method frag-
ments) conformant to it. Firstly, the elements in the metamodel may each have fine

1 Method and methodology are taken to be synonyms for the purposes of this paper.

50 B. Henderson-Sellers and C. Gonzalez-Perez

granularity or coarse granularity [8], the latter resulting from an abstraction mapping
from a highly detailed system to a less detailed one. This, naturally, affects the granu-
larity of method fragments generated from the metamodel. However, there is a second
and orthogonal granularity issue – the granularity and the “size” of the fragment that
conforms to such a definition. If fragments are too coarse-grained, thus containing re-
stricted information and/or detail, it is likely that they will highly specific to a single
situation (organizational context) i.e. their reusability may be limited and there may
be partial overlaps between the specifications of fragment pairs [9]. In addition, it is
arguable that fragments coming from repositories constructed on top of metamodels
with very different granularities would suffer from interoperability and composability
issues, since the abstraction levels at which they have been defined are naturally dif-
ferent. These three granularity issues are highly relevant to issues of SME, e.g. in
terms of method construction, fragment storage, fragment interoperability and compo-
sability. In particular, a strategic, long-term research goal is an evaluation of the
quality of the method fragments and the consequent quality of any methodology con-
structed from the fragments within the SME approach. In this paper, we concentrate
on a precursor for a future quality evaluation by focussing on the granularity of me-
thod fragments in the context of their conformance to a metamodel.

Using conclusions from our earlier study of the granularity of metamodels [8], in
the context of SME there are two major areas needing to be addressed:

1. the impact on method fragments of the scale and granularity of the metamodel e.g.
definitions of method fragment types such as Activity, Task, Step etc. as compared
to simply ProcessElement (Figure 1) [similarly Phase, Lifecycle etc.] i.e. the gra-
nularity of the metamodel [8].

2. the size of method fragments generated (usually by instantiation) from such me-
thod element definitions (made at the meta-level). Here, we focus on fragment
generation from the Work Unit metaclass (Figure 2) but note that Work Product
and Producer fragments are equally relevant, but are not discussed in any great de-
tail here since analogous arguments apply.

Fig. 1. Granularity of a metamodel might be fine-grained (left) or more coarse-grained (right)
(after [8]) With kind permission of Springer Science+Business Media

In this paper, we summarize how to apply a theory of granularity abstraction e.g.
[10-13] to the size of method fragments (we focus on fragments as being the only
atomic element in SME, eschewing for the present the larger scale method chunk [14]
and method component [15]). Following an overview of the theory of granularity
(Section 2) and the typical structure of method fragments in Section 3, we then ana-
lyze in detail how fragment size and granularity can be optimized using these

 Towards the Use of Granularity Theory 51

Fig. 2. The triangle of Producer, Work Unit and Work Product that underpins SPEM, OPF and
ISO/IEC 24744 standards for software engineering process modelling (after [8]) With kind
permission of Springer Science+Business Media

theories. In Section 4, we apply these ideas to a case study of one particular SME me-
thodology: OPEN [16]. We conclude with some recommended guidelines for frag-
ment specification (Section 5).

2 Theory of Granularity

Granularity theory e.g. [10,12] is based on abstraction e.g. [11,17,18]. Abstraction,
roughly speaking [11], describes an approach in which one focusses on relevant cha-
racteristics of a problem (which is often called the “subject under study” (SUS)),
whilst discarding its “irrelevant details” [13,18]. These authors [11] propose three in-
formal properties:

1. the abstraction process maps a representation of the problem to a new, more “ab-
stract” representation. (This is the essence of modelling).

2. by throwing away details, the result of the abstraction process provides a simpler
problem (a.k.a. “an abstraction”) to be solved than the original.

3. by preserving relevant, desirable properties, the solution of the abstracted problem
can be transferred to the original, more complex problem, thus solving it.

Since an abstraction, α, necessarily contains less detail than the SUS on which it is
based (property 2 above), this may result in several entities in the SUS, ei, being
mapped to a single one in the abstraction i.e.

α(e1) = α(e2) ¬ ⇒ e1 = e2 (1)

[19]. This loss of detail creates a simpler system from the SUS for the purposes of un-
derstanding the original SUS e.g. [11,13], although this property is excluded from the
formal developments of [11] on account of its complexity. Rather, an abstraction can
be defined formally as a mapping, α, between two formal systems, which may be sim-
ilar or dissimilar e.g. [12]. Here, a formal system, Σ, is a set of formulae, Θ, written in
a language Λ i.e.

Σ = (Λ,Θ) (2)

The definition (which addresses property 1 above) given by [11] is:

α : Σ1 ⇒ Σ2 (3)

Work Unit Work Product

Producer

producesperforms

creates
uses

modifies
Work Unit Work Product

Producer

producesperforms

creates
uses

modifies

52 B. Henderson-Sellers and C. Gonzalez-Perez

where the mapping, α, is between a pair of formal systems (Σ1, Σ2) with languages Λ1
and Λ2 respectively and there is an effective total function, αΛ, that maps “ground
language” Λ1 to “abstract language” Λ2 i.e.

αΛ : Λ1 → Λ2 (4)

Of particular relevance to modelling are atomic abstractions, which are fragments that
comprise no other method fragments [20] and are therefore instances of the finest
granular classes in the corresponding metamodel.

Atomic abstractions can be classified [13] as symbol abstractions, arity abstrac-
tions and truth abstractions. Symbol abstractions can operate on constants, functions
and predicates and are thus the most relevant to our present discussion. For example,
for a symbol abstraction we have

x1, …… xn ∈ Λ1, x ∈ Λ2 and α(xi) = x for all i ∈ [1,n] (5)

where x is either a constant, a function or a predicate.
Based on [10], Ghidini and Giunchiglia [13] suggest that symbol abstractions are

in fact granularity abstractions (e.g. classification, generalization, aggregation). An
abstraction α is defined by [12, citing 10 and 11] as a granularity abstraction if and
only if

(i) f maps individual constants in Λ to their equivalence class under the indistingui-
shability relation ~ in Λ.
(ii) f maps everything else, including the predicates in Λ, to itself. (6)

Equation 5 maps many individual elements in a set to a single entity in a second set. A
natural consequence of this, it is noted, is that granularity abstractions tend to lose in-
formation e.g. [21]. As a measure of the degree of granularity, we previously pro-
posed [8] a simple measure: of the system granularity, GS, as being related to the
number of entities, n, in each system. Since it is reasonable to propose that the fine-
grained system should have a smaller value for GS than for a coarse-grained system,
we hypothesized that the grain size (system granularity value) is thus a reciprocal
measure of the number of granularity abstraction mappings (Equation 5 or 6) between
two entities [10]. Thus

GS=1/n (7)

This measure refers to entities represented in a single system or model. As noted
above, granularity refers to the degree of decomposition/aggregation, generalization
or classification levels often observed in terms of the number and size of extant
entities and generally regarded as orthogonal. On the one hand, with a composition
granularity abstraction, they take the role of “parts” in a whole-part (aggregation or
meronymic) relationship. Thus moving from the “parts” (fine detail) to the “whole”
(coarse detail) loses detail, reinforcing the notion that in many senses granularity is a
kind of abstraction. In the OO literature, this removal of detail in the process of mov-
ing between granularity levels can be modelled not only by a whole-part relationship
but also by a generalization relationship between two sets – the generalization granu-
larity abstraction; or by an instance-of relationship between objects and their class –
the classification granularity abstraction [21]. Consequently, making such parts or
subclasses visible/invisible changes the granularity value of the overall system/model.

 Towards the Use of Granularity Theory 53

Granularity is thus a kind of abstraction that uses aggregation, generalization or
classification relationships between entities to achieve simplification. This mechanism
produces entities that are more coarse granular than the original, fine grained entities.

Granularity abstractions as applied to metamodels are discussed in [8] where the
values of granularity for several current metamodels are given. In the next section, we
see how these ideas can be used in the assessment of the granularity and size of me-
thod fragments generated to be conformant to a given metamodel.

3 The Granularity of Method Fragments

Situational method engineering relies on the use of stored fragments that each conform
to some element in an agreed metamodel, where the metamodel is a model of models
e.g. [22] and can thus be thought of as a language [23,24]. While, in principle, a meta-
model may focus on the definition of work products, metrics, methodologies etc. (in
the software engineering context), here, we assume that the metamodel focuses on
software development methodologies, and examine the granularity of those fragments
that conform to one particular metamodel element: WorkUnit (Figures 2 and 3).

Fig. 3. The WorkUnit/WorkUnitKind metalevel classes together with the subtypes as defined in
ISO/IEC 24744

In [8], we examined a number of methodology metamodels in which the values of
GS ranged from 0.25 to 1. Clearly this has a direct impact on the granularity and size
of the conformant fragments. Assuming the overall size of the system is S, then if on-
ly one fragment were to be generated conformant with each meta-element, then for n
meta-elements, the overall size would be related to the fragment sizes by

S=Σn
i=1 fi (8)

where fi is the size of the i-th fragment. For a constant size, S, this means that the
fragment size is bigger for smaller n. Since it is likely that larger fragments are not

WorkUnitKind

TechniqueKind

ProcessKind

TaskKind

WorkUnit

Technique

Process

Task

KEY powertype classification relationship

0..10..1
0..* 0..*

WorkUnitKind

TechniqueKind

ProcessKind

TaskKind

WorkUnit

Technique

Process

Task

KEY powertype classification relationship

0..10..1
0..* 0..*

54 B. Henderson-Sellers and C. Gonzalez-Perez

atomic and therefore of less than optimal quality, this size evaluation could be contri-
butory to an overall evaluation of the quality of the method fragments in a repository
and, by inference, the quality of the constructed methodology.

In this section, we highlight those fragments that depict work unit kinds i.e. what
work needs to be done and how – but neglecting the “who”, the “when” and the
“what” for the sake of simplicity. Each work unit kind fragment is conformant to the
WorkUnit/WorkUnitKind metaclass of Figure 2 or one of its subclasses:
Process/ProcessKind, Task/TaskKind and Technique/TechniqueKind (Figure 3). We
need to note for the discussion in Section 4 that this metamodel permits a
Process/ProcessKind to consist of several Task/TaskKind fragments. In the OPEN
Process Framework e.g. [6,16], this large agglomeration was known as an “Activity”.

Fig. 4. Powertype pattern for Task/TaskKind and the class and object facets created together
with an example of the process “object” in the Endeavour Domain

In the following example, we illustrate the relationship between a fragment and its
defining metalevel class with the subclass of WorkUnit/WorkUnitKind named Task/
TaskKind. Using ISO/IEC 24744, each concept is depicted in the metamodel using a
powertype pattern [25] as shown in Figure 4. Powertype instantiation then depicts, at
the model level (i.e. in the Method Domain), an entity with both a class facet (here
ElicitRequirements) and an object facet (here t4:TaskKind). The powertype pattern is
powerful because it not only permits representations at the model level but also, by
instantiating the class facet of the method fragment (in the Model Domain), permits
the allocation of project-specific values in the Endeavour Domain [26]. The method
fragment is thus a combination of allocated values (from the object facet) and speci-
fied but unallocated attributes (from the class facet) (Figure 5).

It is clear from Figures 4 and 5 that any method fragment conformant to the
Task/TaskKind powertype pattern that is defined in the ISO/IEC 24744 metamodel
will, by definition, contain the exact same number of fields. Whilst most fields will
necessarily be brief, the Description field is unconstrained. The long-term research
question therefore devolves to an evaluation of “How long (number of words/number
of concepts etc.) should a method fragment (such as Task/TaskKind in Figure 5) be in
order for the fragment to be regarded as of “good quality”?”

+startTime
+endTime
+duration

Task

Elicit requirements

+name
+purpose
+minCapabilityLevel
+description

TaskKind

tk4:TaskKind

name=Elicit
requirements

class
facet

object
facet

«instanceOf»

t4:Elicit requirements

«instanceOf»

startTime=1 Sept
endTime=5 Sept
duration=4 days

slot
values

 Towards the Use of Granularity Theory 55

To begin to answer this question, rather than simply a length evaluation, one
should consider whether the Description really describes an atomic concept or not. In
a particular context, we can determine whether or not a concept is atomic, such that it
could be regarded as being of good quality, by “inverting” Equations 5, 7 and 8 to
seek (a) a maximum value of n and, in parallel, (b) a minimum value for each fi. In
other words, we seek the set with the largest number of elements that satisfies Equa-
tion 5 and a parallel set {f1 ……fn} such that each fi is a minimum, whilst retaining a
conformance of each of these elements to the relevant class in the metamodel.

Fig. 5. The details of a Task/TaskKind fragment called Elicit Requirements

For example, a Task/TaskKind fragment for “Draw a use case diagram” could be
considered atomic2. In contrast, one could argue that “Create a design for an atomic
reactor control system” will necessarily involve a large number of (sub)tasks. Thus, if
we are able to break down the fragment into a larger number of other fragments, we
can readily deduce that the original fragment was not atomic and hence of poor quali-
ty. Adding a quantitative value to that “quality” does not, however, seem possible at
this time. This is similar to the discussions well over a decade ago regarding “How
big is a good quality object (or rather coded class) when using an object-oriented pro-
gramming paradigm?” Indeed, our earlier research in this area [27] suggested strongly
that there can never be an absolute cutoff threshold number but rather that there is a
distribution that can be analyzed statistically such that the larger the size, the lower
the probability (but not zero) that the class (and, by extension here, the method frag-
ment) is of good quality.

In the next section, as an exemplar we investigate the current sizes of those frag-
ments stored in the OPF repository [16], specifically those conformant to the Work-
Unit/WorkUnitKind meta-element and its subtypes of Process/ProcessKind (OPEN’s
Activity) and Task/TaskKind (also called Task in OPEN). We analyze these in terms

2 Although one could argue that it could be broken down as “Draw a symbol for each use case”,

“Add actors to use case diagram” etc., nevertheless in terms of the atomicity of “Task” it is
reasonable to take as atomic since these more detailed elements such as “Add actors to use
case diagram” are either Steps within the Task or associated Techniques linked with the Task.

56 B. Henderson-Sellers and C. Gonzalez-Perez

of the granularity theory outlined in this and previous sections before making recom-
mendations to improve the overall consistency in terms of their granularity.

4 Case Study Based on the OPF Metamodel and Fragment
Definitions

4.1 The Current Situation

In the original published version of OPEN [16], modelling was seen as beginning to
subsume and replace the subactivities of object-oriented analysis and object-oriented
design. At the time, the general ideas of using models were gaining strength as a re-
sult of the publication of the Object Management Group’s Unified Modeling Lan-
guage or UML [28]. Despite the use of the word “modelling” within the subactivity
called Evolutionary Development, itself embedded within the Build Activity of the
OPEN Process Framework (as it was later renamed in [6]), in the formal description,
modelling was really captured totally in the Task: Construct the object model (de-
scribed in more detail in [16, p 160-162]) – see abbreviated version in the Appendix).
However, the description of this “task” was extensive in both detail and scope and,
indeed, in a later publication [6], the increasing size of this task was noted (page 274)
where it is stated: “In this fairly Large-scale Task, …”. Indeed, the description of this
particular task includes a suggested list of supportive techniques that can be used to
accomplish this task. The number of suggested techniques is 37. These are clearly not
37 alternatives from which one is to be chosen but rather a suite from which strictly
more than one is necessary. Thus, this task cannot be considered to be atomic – as ar-
gued above, atomicity should be the goal. Thus, for instance when the model is of a
Task implemented by a Technique (as in the OPF metamodel – now replaced by
ISO/IEC 24744 [29]) – then there should probably (or at least on most occasions) be
only one technique for each task – or at worst a choice of one technique from a possi-
ble suite of alternatives. What is not correct is that there should be a concatenation or
suite of techniques that are mandatory to accomplish the task.

The Task Construct the object model is described [16] as “the prime technical fo-
cus of any OO methodology” where a number of model-descriptive diagrams are con-
structed. Six diagrams were listed (pre-UML) and of course now the whole gamut of
13 UML 2 diagram types would require support. The fact that so many diagram types
are involved suggests strongly that the granularity of this current Task is much too
coarse and that its scope is more akin to that of an OPF Activity than a single Task.

These granularity problems were compounded when the OPF repository of method
fragments was extended to support agent-oriented method construction. During an ex-
tensive analysis of a large number of existing agent-oriented methodologies (summa-
rized in [30]), a new OPF Task: Construct the agent model was introduced in parallel
to the existing Task: Construct the object model. As more agent-oriented (AO) me-
thods were analyzed, this AO Task grew in size. Thus, for instance, in the analysis of
the PASSI methodology e.g. [31-33], which followed eight other analyses, a mapping
from several PASSI tasks to the OPF Task: Construct the agent model was made.
Specifically, Henderson-Sellers et al. [33] identified (from PASSI):

• Agent identification
• Task specification (actually suggested as a subtask)

 Towards the Use of Granularity Theory 57

• Ontology description (also OPF Task: Define ontologies)
• Role description (needing some extension)
• Agent structure definition (plus additional subtask)
• Agents behaviour description (new subtask)

That six PASSI tasks were covered by a single OPF task immediately suggests a gra-
nularity problem with the OPF Task: Construct the agent model – since, by definition,
a task is atomic, being the smallest fragment that can be project managed.

The current situation is thus that there are two OPF Tasks: Construct the object
model and Construct the agent model (Figure 6(a)). These two tasks would appear at
first glance to have the same focus and scope but to be applied to two different tech-
nologies (the object model and the agent model). It is therefore appropriate to chal-
lenge the need for two such tasks as an exemplar of some consequences of imprecise
definition of appropriate “granularity”. Consequently, we seek to evaluate the efficacy
of uniting these two originally disparate tasks. We show that, by focussing on model-
ling, we can ensure that a method fragment is created that is technology independent.
Of course adding to the existing Construct the object model will make it even larger
(Figure 6(b)), thus adding to the problems identified in the previous paragraph. In
other words, using the theoretical discussions in earlier sections of this paper, we in-
vestigate (in Section 4.2 below) whether the converged modelling task outlined above
is at the appropriate granularity.

Fig. 6. Amalgamating two existing tasks, both already too large, creates an unacceptably large
“tasks”. Part (a) reflects the left hand side of Equation 5 with n=2 whilst part (b) represents the
single element (x) with n=1.

4.2 The Proposed New Situation

In this section, we investigate two issues: (i) replacing the “bloated” Construct the ob-
ject/agent model tasks of the original OPF with a larger set of much smaller granular-
ity (n much larger or G much smaller: (Equation 7)) by ensuring that each task is an
atomic abstraction i.e. a granularity abstraction (Equations 5 and 6) and (ii) seeking a
balance between tasks and activities in this modelling area. These two issues are con-
sidered in the two following subsections.

4.2.1 New Tasks Derived from the Two Existing Modelling Tasks
We now examine the text in Appendix, which has been abstracted from the pertinent
parts of the original description in [16]) for the Task: Construct the object model. We
undertake essentially a textual analysis by identifying nouns that represent work
products that need a task to produce them and verbs that represent the actions that are
the core of a task. The list we have constructed includes:

58 B. Henderson-Sellers and C. Gonzalez-Perez

• Identify classes and objects
• Identify roles to be played by objects
• Identify responsibilities of each class
• Add stereotypes3
• Implement responsibilities as class operations/methods and attributes
• Identify class-class relationships including possible meronymic (whole-part) repre-

sentations
• Identify inheritance hierarchies
• Add constraints such as cardinalities
• Specify object behaviour, including its lifecycle
• Define state transition diagrams for each class, as necessary.

Then, from our studies of agent modelling, we can identify tasks such as

• Identify each agent in the system-to-be
• Specify the tasks associated with each agent
• Describe the roles that an agent may play in the system-to-be
• Describe the ontology associated with each agent
• Define the internals of each agent (agent structure)
• Design the behavioural aspects of each agent
• Design the interactions between agents

These two lists are of course peers but provide selection lists affiliated with the deci-
sion on which technology, objects or agents (or possibly a hybrid architecture) is to be
used in any particular situation i.e. in constructing a particular situational method. The
tasks are all atomic although space precludes formal proof of this.

4.2.2 Elevation to Activity Status and Merger with a Pre-existing Activity
Although tasks are the main focus of the work unit idea in the OPF, there is also an
element called Activity. The need for an activity is twofold: firstly, to gather together
a number of tasks with a “placeholder” that is at a higher abstraction level and, se-
condly, to be used in full lifecycle method construction on the grounds that, whilst a
full-scale method may need many tens if not hundreds of tasks (and associated tech-
niques), it will only have a handful (around a dozen or so) elements of the granularity
of an Activity.

We therefore argue for the introduction of a new concept at a higher abstraction
level than the tasks described above (i.e. an activity) called Construct the model using
the selected technology/paradigm. Such a “promotion” would be in line with the
philosophy underpinning the MDA and model transformations as well as the use of
meronymy for creating a granularity abstraction hierarchy. This new activity then
consists of a large number of tasks, these tasks being those listed above in Section
4.2.1 where each one meets the notion of abstraction atomicity defined in Section 3.

There is, however, one further technical discussion point in that there is a pre-
existing Activity in the OPF called “Design” [6] that has these modelling concerns as
one of its tasks. By elevating the model construction to an activity granularity, we in-

3 Only when necessary and appropriate (ensuring correct definitions of each stereotype are

available).

 Towards the Use of Granularity Theory 59

troduce a conflict of terminology. However, since publication, the OPF metamodel has
been replaced by that of ISO/IEC 24744 and, although we have retained the terminolo-
gy of the original OPF by using the name Activity rather than the name Process as pre-
ferred in ISO/IEC 24744, we can now take advantage of the recursive relationship in
ISO/IEC 24744 that supports both processes and sub-processes (Figure 3) and thus
consider the newly introduced Construct the model using the selected technolo-
gy/paradigm as a subactivity or subprocess of the OPF Design Activity/Process.

5 Discussion and Related Work

Abstraction has long been recognized as a keystone of software engineering model-
ling [34, 35 ch. 3]. Two fundamental abstraction mechanisms are stated in [36] as be-
ing composition and classification. Whilst both are useful in discussing granularity
[21], we have here concentrated on the former mechanism in our example of a Proc-
ess/ProcessKind fragment in terms of an aggregation of Task/TaskKind fragments.

The granularity of method fragments in SME is discussed in [37, 38] and used by
[39] – five categories are proposed qualitatively: method, stage, model, diagram and
concept. Their finest granularity level (concept) is akin to the notion of atomicity dis-
cussed here. In the (object-oriented) methodological research literature, to the best of
our knowledge, no-one has attempted to underpin discussions of granularity with the-
ory – as discussed in Section 2 here. Indeed, Bettini and Ruffini [40] note, as do we, a
history dating back to around 1985 with the publication of Hobbs [10] – although the
focus in [40] is on the introduction of temporal constraints into discussions of granu-
larity (and therefore out of scope for our discussion in this paper). In Unhelkar and
Henderson-Sellers’ [41] discussion of granularity, they focus on a qualitative evalua-
tion of object-oriented designs in the context of reuse.

The introduction of two levels of granularity as in Section 4.2.2 (which distin-
guishes between the coarse granular entity labelled Activity and the finer granularity
of the Tasks and their meronymic relationship) is a direct reflection of the basic gra-
nularity abstraction as defined in Equation 5. In practical terms it allows the use of
both Tasks (small granularity, G) and elements, called here Activities (or Processes if
using ISO/IEC 24744), of a larger granularity. However, as seen from Equations 5, 7
and 8, there is no unique mapping between these granularities. In the context of the
application of granularity theory as expressed by these equations to SME situations
such as described in Section 4.2.2, there remains an ambiguity regarding whether a
given task or collection of Tasks is or is not at a high enough granularity (large value
of G) to be called an Activity. This is seen for instance, qualitatively, in the discus-
sions in [6] in their discussion of Environment Engineering and Project Management.

6 Conclusions and Recommendations

In this paper we have analyzed the theory of granularity in the context of method frag-
ments used in situational method engineering and argued that it is important that each
method fragment has a granularity that is atomic i.e. it cannot be broken down into a
meronymically-based hierarchy i.e. the value of G (Equation 7) has been minimized.
We have also argued that consistently-sized fragments should enhance composability

60 B. Henderson-Sellers and C. Gonzalez-Perez

and interoperability of fragments across repositories in a service-oriented method engi-
neering context, although this is a topic for further, future elucidation.

We have applied these ideas to one specific set of method fragments – those found
in the repository of the OPEN Process Framework and documented in several books
and research papers. We have taken as an illustration a single example – the previous-
ly documented concern that the task called Construct the Object Model supplemented
by the task Construct the Agent Model had accreted to the extent that it can no longer
be regarded as atomic. We have therefore analyzed the documented descriptions of
these two so-called tasks and identified a larger number of smaller granularity tasks
(atomic granularity) and propose that these should replace the two earlier tasks in the
OPF repository.

Future work entails applying the same idea to all the other tasks within the OPF re-
pository to locate any other tasks that are no longer atomic. This size increase is likely
to have occurred when new software ideas, such as the introduction of web technolo-
gies and aspects, were included by the expediency of adding information to pre-
existing method fragments, rather than the introduction of brand new (atomic size) me-
thod fragments. We therefore recommend for future work the systematic review of all
method fragments in the OPF repository and, similarly, for other pre-existing method
fragment repositories from other authors. Determining size and atomicity properties
across repositories, even as aggregated values, is also suggested as a tentative way to
document the abstraction level at which the concepts that underpin each particular re-
pository have been captured. This should be explored from the perspective of tool-
assisted composition of method fragments in a service-oriented SME context.

Of more widespread applicability are questions that could form the topic for future
research that relates to the effect of changing granularity on the usability of metho-
dologies. In addition, a more detailed study of the effects of granularity on reusability
of fragments in comparison to chunks, for example building on the studies in [9],
would make a valuable contribution to the SME literature.

Acknowledgements

This is paper number 10/06 of the Centre for Object Technology Applications and
Research within the Centre for Human Centred Technology Design of the University
of Technology, Sydney.

References

1. Welke, R., Kumar, K.: Method Engineering: A Proposal for Situation-Specific Methodol-
ogy Construction. In: Cotterman, W.W., Senn, J.A. (eds.) Systems Analysis and Design: A
Research Agenda. J. Wiley & Sons, Chichester (1991)

2. Brinkkemper, S.: Method Engineering: Engineering of Information Systems Development
Methods and Tools. Inf. Software Technol. 38(4), 275–280 (1996)

3. Ågerfalk, P.J., Brinkkemper, S., Gonzalez-Perez, C., Henderson-Sellers, B., Karlsson, F.,
Kelly, S., Ralyté, J.: Modularization Constructs in Method Engineering: Towards Common
Ground? In: Ralyté, J., Brinkkemper, S., Henderson-Sellers, B. (eds.) Situational Method
Engineering: Fundamentals and Experiences. Proceedings of the IFIP WG 8.1 Working
Conference. IFIP, vol. 244, pp. 359–368. Springer, Boston (2007)

 Towards the Use of Granularity Theory 61

4. Henderson-Sellers, B.: Method Engineering for OO System Development. Comm.
ACM 46(10), 73–78 (2003)

5. Ralyté, J., Rolland, C.: An Assembly Process Model for Method Engineering. In: Dittrich,
K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 267–283.
Springer, Heidelberg (2001)

6. Firesmith, D.G., Henderson-Sellers, B.: The OPEN Process Framework. An Introduction.
Addison-Wesley, Harlow (2002)

7. Henderson-Sellers, B.: Process Metamodelling and Process Construction: Examples using
the OPEN Process Framework (OPF). Annals of Software Engineering 14, 341–362
(2002)

8. Henderson-Sellers, B., Gonzalez-Perez, C.: Granularity in Conceptual Modelling: Applica-
tion to Metamodels. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER
2010. LNCS, vol. 6412, pp. 275–288. Springer, Heidelberg (2010)

9. Henderson-Sellers, B., Gonzalez-Perez, C., Ralyté, J.: Comparison of Method Chunks and
Method Fragments for Situational Method Engineering. In: Procs. 19th Australian Soft-
ware Engineering Conference. ASWEC 2008, pp. 479–488. IEEE Computer Society, Los
Alamitos (2008)

10. Hobbs, J.: Granularity. In: Procs. Int. Joint Conf. on Artificial Intelligence, IJCAI 1985
(1985)

11. Giunchiglia, F., Walsh, T.: A Theory of Abstraction. Artificial Intelligence 57(2-3), 323–
390 (1992)

12. Mani, I.: A Theory of Granularity and its Application to Problems of Polysemy and Un-
derspecification of Meaning. In: Cohn, A.G., Schubert, L.K., Shapiro, S.C. (eds.) Prin-
ciples of Knowledge Representation and Reasoning: Proceedings of the Sixth International
Conference (KR 1998), pp. 245–257. Morgan Kaufmann, San Mateo (1998)

13. Ghidini, C., Giunchiglia, F.: A Semantics for Abstraction. In: López de Mántaras, R., Sait-
ta, L. (eds.) Procs. 16th European Conf. on Artificial Intelligence, ECAI 2004, pp. 343–
347. IOS Press, Amsterdam (2004)

14. Ralyté, J., Rolland, C.: An Approach for Method Engineering. In: Kunii, H.S., Jajodia, S.,
Sølvberg, A. (eds.) ER 2001. LNCS, vol. 2224, pp. 471–484. Springer, Heidelberg (2001)

15. Wistrand, K., Karlsson, F.: Method Components – Rationale Revealed. In: Persson, A.,
Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 189–201. Springer, Heidelberg (2004)

16. Graham, I., Henderson-Sellers, B., Younessi, H.: The OPEN Process Specification. Addi-
son-Wesley, Harlow (1997)

17. Kaschek, R.: A Lttle Teory of Astraction. In: Rumpe, B., Hesse, W. (eds.) Modellierung 2004.
Proceedings zur Tagung in Marburg/L. LNI, vol. 45, pp. 75–92. Springer, Berlin (2004)

18. Keet, M.: Enhancing Comprehension of Ontologies and Conceptual Models through Ab-
stractions. In: Basili, R., Pazienza, M.T. (eds.) AI*IA 2007. LNCS (LNAI), vol. 4733, pp.
813–821. Springer, Heidelberg (2007)

19. Kühne, T.: Matters of (Meta-)modeling. Softw. Syst. Model. 5, 369–385 (2006)
20. Cervenka, R., Trencansky, I.: AML. The Agent Modeling Language. Birkhäuser, Basel

(2007)
21. Keet, C.M.: A Taxonomy of Types of Granularity. In: Procs. IEEE International Confe-

rence on Granular Computing (GrC 2006), Atlanta, USA, May 10-12, pp. 106–111. IEEE
Computer Society, Los Alamitos (2006)

22. Favre, J.-M.: Foundations of Model (Driven) (Reverse) Engineering: Models. Episode I:
Stories of The Fidus Papyrus and of The Solarus. In: Bézivin, J., Hockel, R. (eds.) Procs.
Dagstuhl Seminar 04101 “Language Engineering for Model-Driven Software Develop-
ment” (2005)

62 B. Henderson-Sellers and C. Gonzalez-Perez

23. Gonzalez-Perez, C., Henderson-Sellers, B.: Metamodelling for Software Engineering. J.
Wiley & Sons, Chichester (2008)

24. Bertoa, M.F., Vallecillo, A.L.: Quality Attributes for Ssoftware Metamodels. In: Procs
13th TOOLS Workshop on Quantitative Approaches in Object-Oriented Software Engi-
neering (QAOOSE 2010). IEEE Computer Society Press, Los Alamitos (2010) (in Press)

25. Henderson-Sellers, B., Gonzalez-Perez, C.: Connecting Powertypes and Stereotypes. J.
Object Technol. 4(7), 83–96 (2005)

26. Gonzalez-Perez, C., Henderson-Sellers, B.: A Powertype-based Metamodelling Frame-
work. Software and Systems Modeling 5(1), 72–90 (2006)

27. Haynes, P., Henderson-Sellers, B.: Cost Estimation of OO Projects: Empirical Observa-
tions, Practical Applications. American Programmer 9(7), 35–41 (1996)

28. OMG: UML Semantics, Version 1.0, OMG document ad/97-01-03 (January 13, 1997)
29. ISO/IEC: Software Engineering – Metamodel for Software Development. ISO/IEC 24744,

Geneva, Switzerland (2007)
30. Henderson-Sellers, B.: Creating a Comprehensive Agent-oriented Methodology - Using

Method Engineering and the OPEN Metamodel. In: Henderson-Sellers, B., Giorgini, P.
(eds.) Agent-Oriented Methodologies, ch. 13, pp. 368–397. Idea Group, Hershey (2005)

31. Burrafato, P., Cossentino, M.: Designing a Multi-agentSsolution for a Bookstore with the
PASSI Methodology. In: Procs. 4th International Bi-Conference Workshop on Agent-
Oriented Information Systems (AOIS 2002), Toronto (May 2002)

32. Cossentino, M.: From Requirements to Code with the PASSI Methodology. In: Hender-
son-Sellers, B., Giorgini, P. (eds.) Agent-Oriented Methodologies, pp. 79–106. Idea
Group, Hershey (2005)

33. Henderson-Sellers, B., Debenham, J., Tran, N., Cossentino, M., Low, G.: Identification of
Reusable Method Fragments from the PASSI Agent-oriented Methodology. In: Kolp, M.,
Bresciani, P., Henderson-Sellers, B., Winikoff, M. (eds.) AOIS 2005. LNCS (LNAI),
vol. 3529, pp. 95–110. Springer, Heidelberg (2006)

34. Hazzan, O., Kramer, J.: Abstraction in Computer Science and Software Engineering: A
Pedagogical Perspective (2006), http://edu.technion.ac.il/Faculty/

 OritH/HomePage/FrontierColumns/OritHazzan_SystemDesig
Frontier_Column5.pdf (accessed 28.4.2010)

35. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Englewood
Cliffs (1997)

36. Jørgensen, K.A.: Modelling on Multiple Abstraction Levels. In: Procs. 7th Workshop on
Product Structuring – Product Platform Development, Chalmers University of Technology,
Göteborg (2004)

37. Brinkkemper, S., Saeki, M., Harmsen, F.: Assembly Techniques for Method Engineering.
In: Pernici, B., Thanos, C. (eds.) CAiSE 1998. LNCS, vol. 1413, pp. 381–400. Springer,
Heidelberg (1998)

38. Brinkkemper, S., Saeki, M., Harmsen, F.: Meta-Modelling Based Assembly Techniques
for Situational Method Engineering. Information Systems 24(3), 209–228 (1999)

39. Sunyaev, A., Hansen, M., Kremar, H.: Method Engineering: A Formal Description. In: Pa-
padopoulos, G.A., Wojtkowski, W., Wojtkowski, G., Wrycza, S., Zupanćić, J. (eds.) In-
formation Systems Development, pp. 645–654. Springer, New York (1999)

40. Bettini, C., Ruffini, S.: Deriving Abstract Views of Multi-granularity Temporal Constraint
Networks. In: Hameurlain, A., Cicchetti, R., Traunmüller, R. (eds.) DEXA 2002. LNCS,
vol. 2453, pp. 295–317. Springer, Heidelberg (2002)

41. Unhelkar, B., Henderson-Sellers, B.: ODBMS Considerations in the Granularity of a
Reusable OO Design. In: Mingins, C., Meyer, B. (eds.) TOOLS 15, pp. 229–234. Prentice
Hall, Upper Saddle River (1995)

 Towards the Use of Granularity Theory 63

Appendix: Task: Construct the Object Model

Textual description abstracted from the original source [16].

Associated Techniques
Abstract classes, association, blackboarding, BNF, collaborations, composition struc-
tures, connascance, contract specification, data-flow modelling, delegation, ER mod-
elling, event charts, event modelling, formal methods, fuzzification, generalization,
genericity specification, hypergenericity, implementation inheritance, information en-
gineering, object lifecycle histories, ownership modelling, partitions, pattern recogni-
tion, Petri nets, power types, polymorphism, responsibilities, role modelling, service
identification, state machines, stereotypes, task cards, transformations of the object
model, usage, use cases, visibility.

Description
…….

Building this single object model can use a wide range of techniques (as listed
above) dependent on whether the focus is on task modelling, business object model-
ling or system object modelling. At each stage, candidate CIRTs4 are identified and
the relationships between them expressed in terms of CIRT responsibilities leading to
the use of associations, aggregations, containments, dependencies, collaborations and,
later, inheritance structures. It is unnecessary that these relationships be fully defined
or be accurate in the cardinality. It is better to draw informal connections (unlabelled
and with deferred cardinality) than none at all between CIRTs5—mandatory con-
straints and cardinalities should not be enforced too soon as these are likely to change
as the object model is continually refined. We find that often these rough sketches
will aid in a rapid elimination of redundant or duplicate CIRTs. Once the initial rela-
tionships are identified they should be depicted in the appropriate object-oriented dia-
grams and fully documented.
…….

Whilst this is more realistically a representational issue, most methodologies, in-
cluding OPEN, offer a suite of complexity management tools within the guidelines of
the method itself. These are aimed at creating a self-consistent suite of diagrams
which, together, document the totality of the one model. In earlier methods, the way
these various model ‘views’ linked together was somewhat suspect. It is important
that these orthogonal views, often at different abstraction levels (more or less
detailed), all represent the same ‘truth’ in the model being created. For example,
changing a message send in the dynamic model should change it similarly in its ser-
vice representation within the CIRT interface; changing the name of a CIRT should
be reflected in the use cases and vice versa. This is important particularly when CASE
tool support is sought. The tool needs to have a global view despite the fact that any
one diagrammatic representation…only shows a subset of the total information avail-
able for the model.

4 In the original OPEN, CIRT was used as supertype of class, instance (object), role and type.
5 This is possible using the TBD relationship icon in COMN but not possible in UML.

J. Ralyté, I. Mirbel, and R. Deneckère (Eds.): ME 2011, IFIP AICT 351, pp. 64–76, 2011.
© IFIP International Federation for Information Processing 2011

A Method Assessment Framework

Tom McBride and Brian Henderson-Sellers

School of Software, Faculty of Engineering and Information Technology,
University of Technology, Sydney, P.O. Box 123, Broadway, NSW 2007, Australia

{Tom.McBride,Brian.Henderson-Sellers}@uts.edu.au

Abstract. Situational method engineering is used to create methods for use on
projects. It is vital that such constructed methods be of good quality and rele-
vant to the software development project in hand. Current capability assessment
approaches cannot readily be applied to such SME-constructed methods since
they do not differentiate between the three “phases” of method construction and
enactment: method design, method enactment and method performance. Here,
we clearly differentiate the kind of quality assessment activities that need to be
performed in these three different situations.

Keywords: constructed methods, method design, method enactment, method
performance, quality assessment, situational method engineering.

1 Introduction

Situational method engineering (SME) [1-3] is the software engineering discipline
that describes the creation and use of a software development method(ology)1 from
small, atomic methodological pieces, known as “method fragments” or, at a larger
scale (i.e. non-atomic), “method chunks” [4]. Each of these atomic pieces is typically
conformant to the conceptual definitions in an underpinning metamodel [5, 6] and
stored in a repository or methodbase (Figure 1). Fragments are selected from the re-
pository in order that the final, constructed method (or “process model”: Figure 2)
will meet the many project contingencies [7, 8] in a way that an off-the-shelf method
is not able to do. The constraints on fragment selection are at the heart of situational
method engineering and are discussed by many authors (see, e.g. [9-11]). However,
there has been almost no discussion of how one might assess the “quality” of the
constructed method and little on the quality of individual fragments. A growing num-
ber of methods are currently being developed by various communities of interest to
support without the aid of method engineers or method engineering2. We believe that
such initiatives can be supported by a framework that separates the concerns of differ-
ent phases in the life cycle of a method, identifying what can reasonably be achieved
at each phase. Such a framework can assist non-specialists to review their intended
method as a quality check and to draw attention to different situational method

1 Method and methodology are taken to be synonyms for the purposes of this paper.
2 Many methods are published process reference models in ISO standards. E.g. see ISO 20000-

4, ISO 12207:2008, ISO 15288:2008.

 A Method Assessment Framework 65

engineering activities that might be necessary. The overall concern of the framework
is to address the question of whether or not the method is suitable for its intended
purpose in the circumstances for which it is intended.

Method quality could be defined as (a) whether the overall method is complete e.g.
whether there are missing work products, work products but no way of creating them
and, secondly, as (b) whether the method is actually what is needed for the particular
industry application. This latter quality assessment has several aspects, one of the
topics discussed in this paper. Firstly, it is possible to assess the quality of the “de-
signed method” although many additional constraints appear when the process model
(method) is enacted for a real project (Figure 2). Enactment here is taken to mean the
instantiation of the process model for a particular situation or context. This will mean
allocating team member names, budgets, time constraints etc. to the “slot values” of
the various methodological elements. Finally, an additional quality concern relates to
how well the enacted method performs in real time (the “performed process” in Fig.
2). Each of these three “phases” (method design, method enactment and method per-
formance) are the focus of the discussion here.

Methodbase

Selection and Assembly
of Method Fragments

into Situational Method
Project

characteristics

Fig. 1. Engineering a situational method from the elements in the methodbase taking into ac-
count the prevailing situation including project characteristics, overall context and other contin-
gencies (after [2])

Process Model or Method

Metamodel

Process

Tailored
process

Performed
process

As enacted by
real people on a
specific project

As documented

As standardized

Method
Design

Method
Enactment

Process Model or Method

Metamodel

Process

Tailored
process

Performed
process

As enacted by
real people on a
specific project

As documented

As standardized

Process Model or Method

Metamodel

ProcessProcess

Tailored
process

Performed
process

As enacted by
real people on a
specific project

As documented

As standardized

Method
Design

Method
Enactment

Fig. 2. The “layers” of process and method terminology revised by adding temporality (modi-
fied from [12])

66 T. McBride and B. Henderson-Sellers

This paper will argue that the quality of a method can and should be assessed at the
three phases in the life cycle of a method identified above: when the method is de-
signed, when the method is enacted and when the method is being performed. We
focus on the creation of a framework to identify “what” needs to be assessed and
“when”; but do not attempt to answer the question regarding “how” this assessment
will be undertaken in terms of what software engineering metrics might be useful in
each phase.

Method design (Section 2) is intended to designate the time when a new method is
created, in order to achieve a specific purpose but in a limited range of circumstances.
For example, a method engineer might design a new method to develop life critical
software using medium to large teams under tight schedule and budget constraints.
Method design also includes the case of an organization adopting and possibly adapt-
ing a "standard method" for use on all of their projects. Method enactment (Section 3)
designates when a method is tailored to the specific circumstances of a project. At that
time, decisions can be made to address the project constraints and contingencies.
Method performance (Section 4) designates the period over which the method is be-
ing used (calendar time) in order to carry out the project and actual performance can
be evaluated. In Section 5, we outline the several advantages of this framework over
traditional process assessment approaches, such as ISO/IEC 15504 [13] and CMMI
[14]. We then, in Section 6, comment on other work (although limited) in this area of
method assessment and then conclude in Section 7.

2 Method Design

The focus of this part of the assessment is on the quality of the method frag-
ments/chunks as well as on how well they fit together in the designing of the method.

Software development methods are created to address a range of circumstances.
Waterfall development [15], spiral development [16], agile [17] and its related meth-
ods of extreme programming [18], adaptive [19] and Scrum [20] are some that have
been proposed to deal with particular circumstances or to achieve particular goals.
These and others are not intended to be used without modification (although often
perceived as being applicable “off-the-shelf”) but are offered as a general method
suitable as a base from which to tailor a project-specific method [21]. Even though
these methods are necessarily general, their usefulness and ability to achieve their
primary purpose of developing software in the claimed range of circumstances needs
to be assessed. To date, such assessment has been through peer review and commer-
cial acceptance. But just how well any particular software development method is
suited to a particular range of circumstances remains very much a matter of personal
judgment of the assessor. This introduces a degree of subjectivity into the assessment
(see further discussion below).

The earliest attempt to document a method is usually taken to be that of Royce [15]
who set out his conclusions from his experiences in developing large software sys-
tems. Royce did not describe a software development method in any detail, simply the
steps, their interaction, the problems arising within the steps and some ways of
overcoming them. Royce addressed concerns arising from managing large software

 A Method Assessment Framework 67

development projects in general. He did not address specific contingencies such as
uncertainty or criticality of the system. JAD and RAD were two of the early attempts
to reduce the amount of uncertainty through some initial development to test possible
solutions (see e.g. [22] p473). Boehm [16] proposed the spiral method specifically to
address project risk while retaining the general collection of software development
activities and their inter-relationships. Since Boehm, different approaches have been
proposed to address the problem of uncertainty of problem understanding and uncer-
tainty of solution construction. Several software development methods that made use
of, and depended on, experienced developers became labelled as "agile" in reference
to their claims of being able to respond quickly to the growing understanding of the
problem and its implemented solution as all stakeholders learned more about both.
Indeed, it is well known (but poorly documented or researched) that organizations
adopt and refine their chosen method in some way without making the method spe-
cific to a particular project. Assessment of these, and other, software development
methods has been largely through commercial acceptance and not through any theo-
retical or framework based assessment.

In general, some assessment of the method is indeed possible in order to determine
if it can address its known or implied range of contingencies. While there are limits to
the assessment, it is possible to determine whether or not the method has the means to
set and manage performance, to coordinate the work and to develop, deploy and pos-
sibly maintain the software, system or service.

The primary purpose of a method is to achieve some purpose, in this case to de-
velop and, possibly, deploy and maintain software, a system or a service. Thus, for
assessment purposes the method needs to contain the processes or activities that are
capable of achieving the primary purpose. The activities to achieve the primary pur-
pose seem to have been the focus of many proposed situational method engineering
methods [1, 23-25].

Processes can, of course, be examined to determine if they contain the expected ac-
tivities [26]. However, a method is not a random collection of processes nor does it
consist only of the processes that support the primary activities. The interaction be-
tween processes required to support project management or other forms of coordina-
tion can also be examined, as can the process interactions necessary for performance
management. For the purposes of this paper, performance management will include
those activities involved in setting performance expectations and constraints such as
delivery dates, budget and project scope, then managing those expectations and con-
straints throughout the life of the project.

The software development work must be coordinated, so the method must contain
the means to achieve or impose coordination. Coordination is usually achieved
through developing a work breakdown structure, a schedule for its completion and re-
integration, plans of how the work is to be completed, standards of how the work is to
be done and standards relating to what work needs to be produced [27-29]. Since
software development is inherently uncertain, there is usually a need for dynamic
coordination, achieved through meetings, reviews and other exchanges. As with per-
formance, the method needs to provide for coordination and, furthermore, it needs
should be adequate for the range of circumstances encountered.

68 T. McBride and B. Henderson-Sellers

3 Method Enactment

The enactment assessment focusses on the SME-constructed process but may identify
the need to replace or augment the method fragments. The artifact under assessment is
the enacted method.

When projects are being planned, it is with considerable knowledge of the ex-
pected project contingencies and constraints. Some constraints are fixed, like the
delivery date of software required for a specific event. Some are negotiable, like the
number of people in the development team or the actual scope of the project. While
such constraints are normally considered as part of project planning, they also con-
tribute to method tailoring during that planning. Method enactment describes the
association of parameters in the designed method to actual project-specific resources,
such as actual team members, real deadlines, available funding etc. and the subse-
quent method tailoring.

There is a considerable body of information on contingency theory relating to
software development of which some is discussed in the paragraphs that follow.
However, there is little consensus on the contingencies of importance in different
circumstances. Additionally, other fields such as product development [30] have the
potential to open discussion on method enactment to a much wider treatment than the
current concerns of software project planning. For these reasons, this paper will not
attempt a rigorous examination of specific contingency factors that may impact soft-
ware development projects.

Project contingencies such as the size of the project are generally recognized as in-
fluencing the choice of method [31, 32]. Because larger projects generally involve
more people, coordination tends to be more mechanistic [28, 33] than the more or-
ganic methods typical of smaller projects. Expressed differently, larger projects tend
to use plans, standards and formal exchanges to coordinate their work whilst smaller
projects tend to use stand-up meetings or co-location.

Many software development methods do not yet address the effect of a distributed
development team. An exception are some of the practices incorporated into the Crys-
tal family of communicating between team members. These are significant in agile
development methods [17] where the problems of communicating between team
members is acknowledged and different techniques are proposed to overcome barriers
to communication. Other less agile development methods seem to be unaffected by
team distribution implying that the projects concerned were already using techniques
that were less affected by distance [34]. It is also possible that some methods are more
susceptible to communication barriers than others and that compensation is some-
times possible.

Various authors have identified sources of uncertainty including platform and mar-
ket uncertainty [35], requirements uncertainty [28], outcome uncertainty and task
programmability [36] as significantly influencing choices of method and its tailoring.
While specific relationships between different types of uncertainty and method may
need some investigation, the general connection seems to be well accepted.

Safety critical or security critical applications may demand extra processes (in the
ISO sense i.e. a second meaning to the one depicted in Figure 2), intended to augment
an otherwise less critical method [37, 38]. In this case, the contingency is addressed
by extra processes and activities rather than a selection among equivalent activities in

 A Method Assessment Framework 69

a process already included in the method. A project with stringent quality require-
ments will need to meet those requirements through more rigorous verification activi-
ties which may, in turn, affect the selection of personnel on the verification team and
the distribution of other tasks. Method enactment involves more than mere adjustment
to parts of the method. It may require wholesale redistribution of activities within the
method.

Although the project management literature does not specifically identify such pro-
ject planning activities as method tailoring, it is achieved nonetheless. For example, a
project manager may be faced with a demand to outsource some of the development,
leading to a question of where verification of the outsourced development is to be
performed. Verification of the work could be performed by the developers, if they
were known and trusted, or by the acquirer after delivery. Such decisions will be
reflected in the method as different ways in which activities are grouped together to
form processes and the allocation of those processes to organizations.

The main contingencies of software development projects, described above, are
those that are normally considered when a project is planned. In the parlance of method
engineering, the method is configured. Method configuration through the selection of
specific activities suited to the circumstances has been discussed in [9, 10].

In contrast to assessment at method design, method assessment at enactment has
specific information about the project constraints and contingencies so can be ex-
pected to determine the utility of the method with greater certainty than previously
possible. Assessment at enactment is unlikely to be significantly different from as-
sessment at design but has greater immediacy. An assessment would be expected to
determine whether or not the proposed means of monitoring and managing perform-
ance is likely to work in the specific circumstances. For example, if the project is
large and distributed, oversight of the distributed organizations cannot rely on the
same oversight processes as would be employed if all parties belonged to the same
organization. Similarly, coordination processes at the low range of project size, where
co-location may be possible, would be different from coordination processes needed
at the high end of project size.

A method assessment at enactment would help avoid a tendency to use a familiar
but possibly inappropriate method. It would help direct attention to parts of the
method affected by the constraints and contingencies and help remove subject judge-
ment about whether or not the method "feels" right.

4 Method Performance

The whole point about tailoring a method for specific constraints and contingencies is
to achieve the best possible outcome in practice. A tailored method represents a hy-
pothesis that the best outcome possible will be achieved under the specific constraints
and contingencies. Like all hypotheses, it should be possible to gather evidence to
prove or disprove it. Yet so far there seems to have been little attempt to do so. An
assessment should be able to identify two distinct issues: the right method but the
wrong performance and the wrong method with the right performance. An assumption
that the first case is, by default, true seems to dominate existing process assessment
methods [39, 40] and also seems to underlie quality management methods [41].

70 T. McBride and B. Henderson-Sellers

However, the argument of situational method engineering is that the method may
possibly be unsuited to the circumstances leading to poor outcomes no matter how the
method is performed.

Performance is usually negotiated during project planning as the scope of the pro-
ject, the available personnel, quality and other requirements, budget and delivery mile-
stones are considered and resolved [42-44]. Performance monitoring and management
would normally be achieved through some unspecified means, e.g. project review
meetings, to inform the project of changes in the constraints and a means to collect and
report performance data. A method assessment would need to examine whether these
activities were present and adequate for the expected range of circumstances.

Available process assessment methods such as SPICE [13] and CMMI [14] are as-
sessments of process capability, not of performance. Moreover, they assess processes
and not the overall performance of the method. Process capability attempts to measure
the degree to which a given process is likely to achieve its stated purpose [45]. By
itself, that says nothing about how well suited the process is to the circumstances.
That determination relies on the knowledge and experience of the process assessor to
decide whether the process itself is flawed and needs improvement or whether the
process is being incorrectly performed for one reason or another. Other forms of as-
sessment, such as a process audit, generally rely on the judgement of the auditor. This
dependence on the well-intended judgement of an experienced auditor or assessor is
unsatisfactory for a number of reasons. The first is that the assessor may not be suffi-
ciently knowledgeable about software development or the particular circumstances,
leading to well intended but harmful findings. The second is that such assessors tend
to be expensive, out of reach for any but large software developers with project budg-
ets able to absorb the high cost of a rigorous assessment.

Informal assessments are done all the time. People learn and adjust what they do.
For example, Scrum practice includes a retrospective at the end of each sprint [20, 46]
and most methods have some sort of post-mortem or other form of audit; the need for
continual improvement is built into ISO 9001. However, these general imperatives to
improve don't provide guidance on what to look for or how to recognize the need for
improvements.

During method performance, information is available about how well the method is
achieving its intended purpose. It is necessary to compare actual performance to ex-
pected performance in order to determine where changes to the method (e.g. in the
case of the wrong process performed correctly) are required or where changes to
method performance (the right process performed incorrectly) are needed.

However, it is apparent that most of the method attributes of method performance,
the quality of both the fragments and the constructed method are evaluated in real
time. Feedback may well suggest a dynamic replacement or the addition of new
method fragments in order to ensure that the project is successfully completed. Of
especial interest are compound attributes for which there are no direct measures. Nor
do there seem to be generally agreed-upon models of effectiveness, efficiency, coor-
dination or governance. Like project success, it may be difficult to say what is re-
quired to achieve it, but relatively easy to determine if it is not being achieved. Rather
than try to show that these are present and being achieved, it should be possible to
detect their absence through errors or other symptoms of failure.

 A Method Assessment Framework 71

Method performance assessment would prompt a review of the project constraints
and contingencies. Conversely, a change in project contingencies or constraints may
prompt a method performance assessment. Additionally, a method performance as-
sessment would provide an additional means to detect and justify changes to the
method or to the manner of performing the method. It is not proposed that method
performance assessment is equivalent to or should replace other, more rigorous, proc-
ess assessments. The proposed method performance assessment is intended to directly
and objectively assess the appropriateness of the method rather than imply it through
the subjective knowledge and experience of a process assessor.

During assessment of method performance, the quality of both the fragments and
the constructed method are evaluated in real time. Feedback may well suggest a dy-
namic replacement or the addition of new method fragments in order to ensure that
the project is successfully completed.

5 Advantages of This Framework

This proposed framework identifies method design, method enactment and method
performance separating the concerns of each phase and identifying what can be rea-
sonably achieved at each phase. The proposed framework also links the typical activi-
ties of projects, particularly software development projects, to necessary changes in
methods, drawing attention to different situational method engineering activities that
might be necessary.

The framework provides guidance about what could be assessed at each phase as
well as the desirability of doing so. This may assist method engineers to assess their
methods more rigorously than through the more basic and more subjective means of
expert opinion – as is currently the case. Method assessment techniques may be de-
veloped that can assist non-specialists review their intended method or method per-
formance without needing to resort to expensive audits or formal process assessments.
Given that most of the world's software developers claim that they do not use a formal
software development method [47, 48] and certainly don't review or assess what
method they do use, a more readily usable method assessment technique would seem
to offer some advantages.

The proposed framework provides a guide to development of assessment tech-
niques and tools. Rather than try to develop a general assessment technique that at-
tempts to require certainty where none is possible (method design) or fails to require
rigor where some is possible (method enactment), tools can be developed to assess
methods appropriately and as rigorously as possible, but no more. Similarly, existing
assessment techniques can be positioned in relation to the type of method assessment
they accomplish.

6 Discussion and Related Work

There has been very little direct research on this topic, However, Perez et al. [49]
discuss congruence evaluation, arguing that this is the most important measure to be
assessed. Congruence is proposed as a measure of how well the process model fits the

72 T. McBride and B. Henderson-Sellers

intended usage/domain. They suggest the use of a contingency model as a precursor
to defining the relationships between the process model and its intended usage con-
text. They introduce three variables: a dependent variable (the effectiveness of the
process model), an independent variable (a characteristic of the process model) and a
contingency variable (either a characteristic of the context or the process model).
They recommend that attribute values should first be assigned, often subjectively by
someone familiar with the situation, and then a congruence measure calculated based
on the inter-relationships established between the process model and the attributes of
the process context, the derived congruence index being a real number in the closed
interval (-1,1). Here, 1 indicates a perfect match and -1 the worst possible match. Low
congruence values can thus be identified as suggesting that improvement is needed. A
similar, contingency approach is also advocated by [50] (based on work of [51]).
Using a banking example, these authors recommend the following list of contingency
factors:

• Management commitment,
• Importance,
• Impact,
• Resistance and conflict,
• Time pressure,
• Shortage of human resources,
• Shortage of means,
• Formality,
• Knowledge and experience,
• Skills,
• Size,
• Relationships,
• Dependency,
• Clarity,
• Stability,
• Complexity,
• Level of innovation.

Adaptation of processes is also discussed by [52] in the context of agile methodologies.
In a much broader software development context, Kherrai et al. [53] discuss the

need to use a set of quality attributes from ISO 9126 [54] stressing the need to do this
for the strategy and tactics of the software project plan. A different focus is taken by
[55] in which the concerns of governance, risk and compliance of the to-be-
constructed method are highlighted.

Although not discussing assessment per se, Niknafs and Asadi [56], in the context
of CAME (computer-aided method engineering), do split the process into four stages:
enactment, elicitation, evolution and evaluation and focus on static descriptors (that
they call aspects) rather than a time-based characterization as we discuss here. Key
notions for method adaptation are examined in [57] although, once again, there is no
discussion regarding how this might be incorporated into process assessment.

 A Method Assessment Framework 73

7 Conclusion

We have proposed here a framework to enable assessment of methods at different
times in their life cycle. The purpose of the framework is to enable method engineers
to assess the congruence of a developed, enacted or performed method according to
the claimed range of known constraints and contingencies. In describing the proposed
framework, we have shown that there is much to be gained from separating method
assessment into the different types so that the method can be assessed appropriately
and useful information provided to stakeholders. The framework and assessment
techniques and metrics that may be developed in the future to support it offers the
possibility that tailoring methods appropriately might be within the reach of more and
smaller organizations.

The framework highlights some fruitful areas for research. In particular, it under-
lines the need to better link actual software development practices and their tailoring
to situational method engineering. The need to coordinate work cuts across processes,
as does process performance monitoring and management, and their interaction with
the primary production processes could be explored. Measures of method attributes
and techniques of method assessment are also identified by the framework. Research
arising from the framework promises to be highly relevant to industry.

Acknowledgements

This is paper number 10/10 of the Centre for Object Technology Applications and
Research within the Centre for Human Centred Technology Design of the University
of Technology, Sydney.

References

1. Brinkkemper, S.: Method engineering: engineering of information systems development
methods and tools. Information and Software Technology 38(4), 275–280 (1996)

2. Henderson-Sellers, B., Ralyte, J.: Situational Method Engineering: A state of the art re-
view. Journal of Universal Computer Science 16(3) (2010)

3. Kumar, K., Welke, R.J.: Methodology Engineering: a proposal for situation-specific meth-
odology construction. In: Challenges and Strategies For Research in Systems Develop-
ment, pp. 257–269. John Wiley & Sons, Inc., Chichester (1992)

4. Ågerfalk, P., Brinkkemper, S., Gonzalez-Perez, C., Henderson-Sellers, B., Karlsson, F.,
Kelly, S., Ralyté, J.: Modularization Constructs in Method Engineering: Towards Common
Ground? In: Ralyté, J., Brinkkemper, S., Henderson-Sellers, B. (eds.) Situational Method
Engineering: Fundamentals and Experiences, vol. 244, pp. 359–368. Springer, Boston
(2007)

5. Gonzalez-Perez, C., Henderson-Sellers, B.: Metamodelling for Software Engineering.
Wiley Publishing, Chichester (2008)

6. Henderson-Sellers, B.: Method engineering for OO systems development, vol. 46, pp. 73–
78. ACM, New York (2003)

74 T. McBride and B. Henderson-Sellers

7. Karlsson, F., Ågerfalk, P.J.: Method configuration: adapting to situational characteristics
while creating reusable assets. Information and Software Technology 46(9), 619–633
(2004)

8. Kornyshova, E., Deneckère, R., Salinesi, C.: Method Chunks Selection by Multicriteria
Techniques: an Extension of the Assembly-based Approach. In: Ralyté, J., Brinkkemper,
S., Henderson-Sellers, B. (eds.) Situational Method Engineering: Fundamentals and Ex-
periences, vol. 244, pp. 64–78. Springer, Boston (2007)

9. Henderson-Sellers, B., Nguyen, V.P.: Un outil d’aide à l’ingénierie de méthodes reposant
sur l’approche OPEN. Génie Logiciel (70), 12 (2004)

10. Ralyté, J., Rolland, C.: An Approach for Method Reengineering. In: Kunii, H.S., Jajodia,
S., Sølvberg, A. (eds.) ER 2001. LNCS, vol. 2224, pp. 471–484. Springer, Heidelberg
(2001)

11. DeLoach, S., Garcia-Ojeda: O-MaSE: An Customizable Approach to Designing and Build-
ing Complex, Adaptive Multiagent Systems. International Journal of Agent-Oriented
Software Engineering 4(3) (in Press)

12. Henderson-Sellers, B.: Method Engineering: Theory and Practice. In: Information Systems
Technology and Its Applications. In: 5th International Conference ISTA, p. 84. Gesell-
schaft Für Informatik (2006)

13. ISO/IEC 15504-1:2004 - Information Technology - Process Assessment - Part 1: Concepts
and Vocabulary

14. SEI. CMMI® for Development, Version 1.2. CMU/SEI-2006-TR-008 (2006)
15. Royce, W.W.: Managing the development of large software systems: concepts and tech-

niques. In: Proceedings of IEEE WESCON. IEEE Computer Society Press, Monterey
(1970)

16. Boehm, B.W.: A spiral model of software development and enhancement. Computer 21(5),
61–72 (1988)

17. Cockburn, A.: Agile Software Development: The Cooperative Game, 2nd edn. Addison-
Wesley Professional, Reading (2006)

18. Beck, K.: Extreme Programming Explained. Addison-Wesley, Boston (2000)
19. Highsmith, J., Cockburn, A.: Agile software development: the business of innovation.

Computer 34(9), 120–127 (2001)
20. Sutherland, J.: Scrum software development process. In: OOPSLA (1995)
21. Bajec, M., Vavpotic, D., Krisper, M.: Practice-driven approach for creating project-

specific software development methods. Information and Software Technology 49(4),
345–365 (2007)

22. Graham, I.: Object-Oriented Methods: Principles and Practice, 3rd edn. Addison-Wesley
Professional, Reading (2000)

23. Rolland, C.: Method engineering: Towards Methods as Services. Software Process: Im-
provement and Practice 14, 143–164 (2009)

24. Ralyté, J., Rolland, C.: An Assembly Process Model for Method Engineering. In: Dittrich,
K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 267–283.
Springer, Heidelberg (2001)

25. Ralyté, J., Deneckère, R., Rolland, C.: Towards a Generic Model for Situational Method
Engineering. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 1029–
1029. Springer, Heidelberg (2003)

26. Goldkuhl, G., Lind, M.: Coordination and transformation in business processes: Towards
an integrated view. Business Process Management Journal (14), 761–777 (2008)

27. Kraut, R.E., Streeter, L.A.: Coordination in software development. Communications of the
ACM 38(3), 69–81 (1995)

 A Method Assessment Framework 75

28. Nidumolu, S.R.: A comparison of the structural contingency and risk-based perspectives
on coordination in software development projects. Journal of Management Information
Systems 13(2), 77–113 (1996)

29. McBride, T.: The mechanisms of project management of software development. Journal of
Systems and Software 81(12), 2386–2395 (2008)

30. Reinertsen, D.G.: The Principles of Product Development Flow: Second Generation Lean
Product Development. Celeritas Publishing, Redondo Beach (2009)

31. Cockburn, A. (2004),
 http://alistair.cockburn.us/crystal/crystal.html

32. Elssamadisy, A., Schalliol, G.: Recognizing and responding to “bad smells” in extreme
programming. In: 24rd International Conference on Software Engineering, pp. 617–622
(2002)

33. Andres, H.P., Zmud, R.W.: A Contingency Approach to Software Project Coordination.
Journal of Management Information Systems 18(3), 41–70 (2002)

34. McBride, T., Henderson-Sellers, B., Zowghi, D.: Managing outsourced software develop-
ment: Does organisational distance demand different project management? In: UKAIS
2006 (2006)

35. MacCormack, A., Verganti, R.: Managing the Sources of Uncertainty: Matching Process
and Context in Software Development. Journal of Product Innovation Management 20(3),
217–232 (2003)

36. Eisenhardt, K.M.: Agency Theory: An Assessment and Review. Academy of Management
Review 14(1), 57–74 (1989)

37. Davis, N.: Secure Software Development Life Cycle Processes: A Technology Scouting
Report. CMU/SEI-2005-TN-024 (2005)

38. ISO/IEC 15504-10:2010 - Information technology — Process assessment — Part 10:
Safety extension

39. SEI. Standard CMMI Appraisal Method for Process Improvement (SCAMPI). CMU/SEI-
2001-HB-001 (2001)

40. ISO/IEC 15504-3:2004 - Information technology - Process assessment - Part 3: Guidance
on performing an assessment

41. ISO/IEC 9001:2000 - Quality Management Systems - Requirements
42. Burke, R.: Project Management: Planning and Control Techniques. Burke Publishing, To-

kai (2003)
43. Cleland, D.I., Ireland, L.R.: Project management: Strategic Design and Implementation.

McGraw-Hill, New York (2002)
44. Hughes, B., Cotterell, M.: Software Project Management. McGraw-Hill, London (1999)
45. ISO/IEC 15504-2:2004 - Information technology - Software process assessment - A refer-

ence model for processes and process capability
46. Rising, L., Janoff, N.S.: The Scrum software development process for small teams. IEEE

Software 17(4), 26–32 (2000)
47. Fitzgerald, B.: The use of systems development methodologies in practice: a field study.

Information Systems Journal 7(3), 201–212 (1997)
48. SEI. Process Maturity Profile - CMMI 2005 Year-end Update (2005)
49. Pérez, G., El Emam, K., Madhavji, N.: Customising software process models. In: Schäfer,

W. (ed.) EWSPT 1995. LNCS, vol. 913, pp. 70–78. Springer, Heidelberg (1995)
50. van Slooten, K., Hodes, B.: Proceedings of IFIP TC8 Working Conference on Method En-

gineering: Principles of Method Construction and Tool Support, pp. 29–44. Chapman and
Hall, Boca Raton (1996)

51. van de Hoef, R., Harmsen, A.F., Wijers, G.M.: Situatie, Scenario & Succes (1995)

76 T. McBride and B. Henderson-Sellers

52. Henninger, S., Ivaturi, A., Nuli, K., Thirunavukkaras, A.: Supporting Adaptable Method-
ologies to Meet Evolving Project Needs. In: Wells, D., Williams, L. (eds.) XP 2002.
LNCS, vol. 2418, pp. 33–51. Springer, Heidelberg (2002)

53. Kherraf, S., Cheikhi, L., Abran, A., Suryn, W., Lefebvre, E.: The Need to Evaluate Strat-
egy and Tactics before the Software Development Process Begins. Journal of Software
Engineering and Applications 3(7), 644 (2010)

54. ISO/IEC 9126:2001 - Software engineering - Product quality - Part 1: Quality model
55. Gericke, A., Fill, H.-G., Karagiannis, D., Winter, R.: Situational method engineering for

governance, risk and compliance information systems. In: Proceedings of the 4th Interna-
tional Conference on Design Science Research in Information Systems and Technology.
ACM, Philadelphia (2009)

56. Niknafs, A., Asadi, M.: Towards a Process Modeling Language for Method Engineering
Support. In: WRI World Congress on Computer Science and Information Engineering, pp.
674–681 (2009)

57. Aydin, M.: Examining Key Notions for Method Adaptation. In: Ralyté, J., Brinkkemper,
S., Henderson-Sellers, B. (eds.) Situational Method Engineering: Fundamentals and Ex-
periences, vol. 244, pp. 49–63. Springer, Boston (2007)

J. Ralyté, I. Mirbel, and R. Deneckère (Eds.): ME 2011, IFIP AICT 351, pp. 77–90, 2011.
© IFIP International Federation for Information Processing 2011

Towards Common Ground in SME:
An Ontology of Method Descriptors

Adrian Iacovelli and Carine Souveyet

University Panthéon Sorbonne. 90 rue Tolbiac,
75013 Paris, France

{adrian.iacovelli,souveyet}@univ-paris1.fr

Abstract. The Method Engineering (ME) community is a prolific research do-
main where competing Situational Method Engineering (SME) approaches have
been defined and used for composing, adapting or/and configuring a method
into modular constructs according to their own modularization vision. This di-
versity shows the richness of the ME domain but implies some drawback like
unnecessary confusion for non ME expert, lack of standard & interoperability,
lack of implementation tool. However, researchers are agreed that a common
ground in SME is a hot matter of discussion. Assuming that the differences be-
tween SME approaches are purposeful, we propose to reach a semantic com-
mon ground on what types of core concepts constitute a method descriptor. To
achieve it, an ontology-based approach is applied in SME to design an ontology
of method descriptors as a domain ontology. The semantics of the six most
popular SME approaches modular constructs are defined according to this on-
tology in order to show its usage and its relevance. Finally, usage scenarios
have been sketched to show that the ontology can be the start up phase for re-
ducing the ME drawbacks mentioned above.

Keywords: Method Engineering, Method Descriptors, Ontology, Service Ori-
ented Architecture.

1 Introduction

Information systems development methods are the subject of study of Method Engi-
neering (ME) science. One of the ME interests is to decompose into modular parts
these methods for optimizing, reusing, and ensuring their flexibility and their adapta-
bility [1]. This interest is the basis of the Situational Method Engineering (SME)
community. This domain is a prolific research domain where several competing SME
approaches have been defined, published and used with their own vision of method
modularization. This diversity shows the richness of the research works but implies
some drawbacks like unnecessary confusion for non ME experts [1], lack of standard
& interoperability, lack of implementation tool [2].

Today, a common ground in ME is a hot topic of discussion between researchers
[1]. According to the authors of [1], there are two possible solutions: (1) differences
are minor and an agreement on what modular construct to promote can be reached, or
(2) the diversity is useful because they serve different purposes and there is a need for
them to co-exist.

78 A. Iacovelli and C. Souveyet

In the past, we had published a framework for the method modular constructs
comparison for underlying their semantic differences [2, 3], and pushed our vision for
a specific matter. However, today, we believe and assume that the diversity is pur-
poseful. But we also believe that a semantic common ground in SME is needed and
can be achieved. This semantic common ground can be considered as a start-up phase
to reduce directly or indirectly drawbacks such as (a) unnecessary confusion for non
ME expert, (b) lack of standard & interoperability, and (c) lack of implementation
tool.

The purpose of this paper is to propose an ontology-based approach to design the
semantic common ground in SME and sketches its benefits into exploring scenarios to
reduce the drawbacks mentioned above. An ontology was proposed in the ME field in
[4] to define the core concepts required for qualifying knowledge about method. But
it is a top lightweight ontology which not allows to define a common ground for SME
approaches. Another ME based ontology was proposed in [5] but their concepts are
too restrictive to cover the diversity of method modular constructs and levels of
granularity introduced in the various SME approaches. In addition, their objective is
to improve the SME approach proposed in [6] and not to find a common ground in
SME.

In a philosophical point of view, ontology is the study of the categories of things
that exist or may exist in a particular domain. In other words, domain ontology de-
fines the types of things in that domain. Moreover, ontology is a fundamental part of
the knowledge, and all other knowledge should rely on it or refer to it.

SME approaches [7, 8, 9, 11, 11] promote different modular constructs of a method
but they have a common understanding of what a method is [12, 13]. Here, a method
is described by five interrelated ways: a way of thinking (paradigm), a way of model-
ling (product), a way of working (process), a way of supporting (tool) and a way of
controlling (organisation). Therefore, the core of ME is represented by the common
understanding of the various things that constitute or may constitute a method de-
scription. Consequently, method descriptors ontology is designed as domain ontology
and the various modular constructs of SME approaches such as ‘method fragment’,
‘method chunk’, ‘method component’, ‘process component’ are defined semantically
by referring the concepts of the ontology.

The paper is organised as follows. The ontology of method descriptors is explained
in section 2. Section 3 illustrates how various SME modular constructs match the
ontology. Furthermore, exploring usage scenarios of the Ontology are sketched in
section 4 to illustrate the interest of the ontology and to explore future research op-
tions for reducing the ME drawbacks mentioned above. Finally, section 5 concludes
this work with our contribution and research perspectives.

2 Method Descriptors Ontology

This section explains the concepts and their relationships defined in the Ontology of
method descriptors. The SME approaches have different method modular constructs
but they agree on the understanding of what a method is [12, 13]. According to this
definition, a method is designed as a collection of method modular constructs. Figure
1 illustrates our ontology is built upon this definition.

 Towards Common Ground in SME: An Ontology of Method Descriptors 79

The reminder of this section explains the concepts defined in the Ontology of
Method descriptors and their relationships.

The following top concepts of the ontology illustrated in Figure 1 are rooted to the
“Thing“ concept : Method Puzzle, Goal, Verb, Target, Parameters, Paradigm, Con-
cept, Modelling Element, Modelling Rule, Annotation. Moreover, “is a” links of the
ontology define specialisation relationships between two concepts.

Fig. 1. Method Descriptors Ontology

The word method comes from the Greek methodos which means way of investiga-
tion [7]. According to Harmsen a method is an integrated collection of procedures,
techniques, product descriptions and tools for an effective and efficient support on the
engineering process [14]. In the situational method engineering context, the method
modular constructs (i.e. Method Puzzle) are assembled to produce a method tuned to
its application situation. This decomposition into modular Method Puzzle parts is
fundamental for the flexibility, adaptability, optimization and reuse of methods [15].
As a composition of Method Puzzle, a Method is also viewed as a Method Puzzle.

A Method Package is an autonomous reusable part of a Method capturing one of its
particular aspects. It defines an assembly of Method Puzzles responding to a specific

80 A. Iacovelli and C. Souveyet

kind of project. It is either a preconfigured part of a Method. Alternatively, it can in-
corporate a temporal dimension to organize its composing Method Puzzles [8, 16, 17].

A Method Puzzle describes an element of a method. It’s a coherent piece of an IS
development method [7]. In order to manage the complexity of a method definition,
SME approaches emphasize a modular vision of its definition. This vision is intro-
duced by the Method Puzzle concept. Method Puzzles can be defined at different level
of granularity, i.e. Method Puzzles can be composed of other Method Puzzles. In addi-
tion a Method Package is viewed as a composition of Method Puzzles and is also
considered as a Method Puzzle. Notice that the two specializations of a method puz-
zle: method and method package are exclusive with all other specializations. A Me-
thod Puzzle specialized into a Method or a Method Package can’t have any other
specialization. The other Method Puzzle specializations correspond to the Seligmann
and Rolland [12, 13] method definition: way of thinking, a way of modeling, a way of
working, a way of control and a way of supporting. The way of thinking is the philos-
ophy used in the Method Puzzle which is captured in the Paradigm concept and
supported by a Modeling Language. The way of modeling describes the various con-
structs and their models related to the method application. This way is defined into the
Product Puzzle concept and more precisely by the Conceptual Product Puzzle con-
cept. To complete the way modeling definition, the way of working expresses how to
perform a method or how a product evolves during a method. This way is identified in
our ontology by the Process Puzzle concept and more particularly by the Conceptual
Process Puzzle concept. The way of control specifies how to organize the performing
of a method process into an organization and is described by the Business and Orga-
nizational Unit concepts. The way of supporting is the tool for supporting the method.
It is related to the Technical Process Puzzle and to the Technical Product Puzzle con-
cepts. The various SME approach share the same view of a Method but have different
definitions of a Method Puzzle. To take into account this diversity, the various specia-
lization of Method Puzzle such as Product Puzzle, Process Puzzle, Modeling Lan-
guage, Business and Organizational Unit are inclusive. For example a Method Puzzle
can be specialized into both Process and Product Puzzles at the same time like in the
Chunk Approach [11].

The main purpose of a method puzzle is to be reused in different methods. In order
to increase its reusability, one has to provide a mechanism for extracting and regroup-
ing the key concepts of a method puzzle. This concise information on a method puz-
zle is called annotation. It helps searching and retrieving method puzzle. Two types of
information are required: (a) information regarding the situations where a Method
Puzzle can be reused and (b) information to characterize and summarize the content of
a Method Puzzle. The first is managed by the Situation Annotation and the second is
handled by the Puzzle Annotation.

A Method Puzzle helps to achieve a particular Goal. A Goal in this case is a state-
ment expressing what is wanted [18]. I.e. it represents the state to be reached or main-
tained. A linguistic approach proposed in [19] and its extension in [20] are based on
the case grammar. They recognize a goal statement as a combination of a verb, a
target and parameters. A goal verb is the central component of the statement. It de-
scribes the action to be performed. The target is the subject of a goal statement. It can
depict the expected result of a goal achievement or an existing entity modified by
performing a goal. In addition parameters are complementary information exposed in

 Towards Common Ground in SME: An Ontology of Method Descriptors 81

a goal statement. In fact, each parameter plays a semantic role according to the verb.
Goals can be defined at different levels of granularity. It means that the achievement
of a complex goal may require the achievement of sub-goals. We say here that a goal
can be refined by a set of (sub) goals. In the ontology it is expressed by the recursive
refined relationship of the goal concept.

Paradigm is a coherent model of a world perception grounded on a specific philos-
ophy. A Paradigm describes a set of concepts and their interactions that cannot be
mixed with another Paradigm. In our ontology, concepts used to express the para-
digm are introduced by the Concept node. This node helps to represent the constructs
and their relationships useful for the paradigm description. A Modeling Language is
used to design world according to the concepts of the paradigm. It is considered as a
tool to produce models. A Modeling Language can be itself defined as a Method Puz-
zle: a set of Modeling Elements defined according to Modeling Rules. A Modeling
Element is a textual or graphical representation of a Concept from a Paradigm whe-
reas a Modeling Rule is an axiom that must be satisfied by modeling elements or a set
of Modeling Elements.

In SME approaches, the Process Puzzle is one of the key concepts. It is an abstract
element aimed to capture a process for achieving the Method Puzzle Goal [10]. It is
the work that has to be done in order to obtain the result [17]. Or, more precisely, it is
the set of actions which transforms a product (Product Puzzle) under development
[11], from a source product to a target product [8]. As a Process Puzzle is a speciali-
zation of a Method Puzzle, it can be defined at various level of granularity. So it can
describe high-level project strategies or more detailed development procedures [7].
The modeling of this process structure is supported by the Conceptual Process Puzzle
concept. This concept includes a set of process descriptions and models. Its imple-
mentation is supported by the Technical Process Puzzle concept. This concept
represents an operational tool automation of the Process Puzzle. As shown in [10],
two other concepts are related to the Process Puzzle: a Precondition and a Postcondi-
tion. The Precondition concept defines an initial situation required for applying a
Process Puzzle. It is a restriction constraining the input Product Puzzles instances of a
Process Puzzle. A Precondition defines the expected state of Process Puzzle input
products. At the opposite, a Postcondition concept defines a final situation resulting
of the application of a Process Puzzle. It is a restriction constraining the output Prod-
uct Puzzles instances after the performing of a Process Puzzle. The Postcondition
defines the expected state of Process Puzzle output products.

Another key concept of SME approaches is the Product Puzzle. It’s an abstract
element capturing the product aspect of methodologies [17] and it conforms to the
paradigm adopted in the methodologies. A Product Puzzle models artifacts used or
produced by the performing of a Process Puzzle [7, 17, 10, 11]. These artifact models
are defined as Conceptual Product Puzzle concept whereas their instance implementa-
tions are supported by Technical Product Puzzle concept.

The way of control identified above is represented by the Business and Organiza-
tional unit concepts. An Organizational Unit is a resource, an actor role or a set of
actors (team or bigger groups) description involved into performing of a Process
Puzzle in order to produce a product described in a Product Puzzle. A Business is
used to model the collaboration of Organizational Units. It captures the interactions
between Organizational Units in order to perform a project or a business mission of

82 A. Iacovelli and C. Souveyet

an enterprise [21]. A Business is related to several Method Packages and temporally
organized into them. The business concept can be also considered as a Method puzzle.

In this section the core concepts of a SME descriptor that constitute the ontology
have been explained. The next section illustrates how these concepts are used to de-
fine the semantics of modular constructs of selected SME approaches.

3 SME Method Descriptors

 This section illustrates how our ontology defines semantics for each SME modular
construct. We have selected the five most cited component-based SME approaches
such as [7, 8, 9, 10, 11] and one approach defined in the service orientation. We show
that the ontology can constitute a common ground in SME approaches which are
component or service based approaches.

3.1 Method Fragments

In [7], Brinkkemper and colleagues propose the method fragment concept. This con-
cept is one of the earliest modularization constructs in ME [1]. According to [7]
method fragment is a standardized building block based on a coherent part of a
method [7]. It is an abstract element defined at one of the five different layers of
granularity: method, stage, model, diagram, or concept [22]. The method fragment
concept matches with the method puzzle concept as it is defined in our ontology and
its granularity is captured by the composition link. A fragment can be specialized
either into a process fragment or a product fragment (cf. Figure 2). As product
fragments models the structures of the methods products and process fragments are
models of the development process [7], they can be respectively defined as a speciali-
sation of the conceptual product and process puzzles concepts.

This specialisation is a specific case of the ontology method puzzle as it’s an ex-
clusive specialisation into product or process fragments. The retrieval and use of

Fig. 2. Method Fragment Structure and Semantic Matching

 Towards Common Ground in SME: An Ontology of Method Descriptors 83

method fragments is provided by project characteristics attached to each fragments.
These situation characteristics match with the situation annotation concept of the
ontology.

3.2 Method Chunks

The method chunk approach was proposed by Rolland and colleagues [11]. A method
chunk is organised into two levels of knowledge: a method knowledge level and a
meta-knowledge level [1, 23]. The method level of the method chunk concept is
driven by its method process part which is attached the product part. As a method
chunk is a composition of one process part and one product part, the method chunk is
characterized by an inclusive specialisation into both a conceptual process puzzle and
the conceptual product puzzle. The process and product part are defined respectively
in our ontology as a specialisation of the conceptual process puzzle and the concep-
tual product puzzle with a more specific one to one cardinality on the relationship
between their process puzzle and product puzzle parent concepts. The body concept in
the method chunk approach is an abstract concept design for the encapsulation the
process and product part. As it’s an abstract concept that doesn’t support additional
new semantic to the chunk concept, there is no need to model it in the ontology. The
interface of a method chunk captures information on the chunk and its goal. The
matching of the interface concept in our ontology is done by a double inheritance link
with the puzzle annotation and the goal concepts. In the same way, the meta-
knowledge level of method chunks captured by the descriptor concept is defined with
a double inheritance link the situation annotation and the goal concepts.

Fig. 3. Method Chunk Structure

The purpose of the descriptor concept is to capture the situational aspects of
method chunks usage to support their retrieval process. Descriptor contains the goal
definition of the chunk and a set of parameters characterising the situation of reuse of
this chunk.

84 A. Iacovelli and C. Souveyet

3.3 Method Components

The method component concept aims to capture a self-contained part of a system engi-
neering method [8]. The latest contributions to this concept were made by Karlsson
and colleagues in [8, 16]. Method component is designed to be used in a specific kind
of ME, the method configuration. Each component has to address a certain aspect of
the problem at hand and it is the smallest part of a method that is practically useful [1].
For these reasons the method component concept is mapped to the method package
concept of our ontology. A method component is build by an assembly of several
method elements that are the basic constructs constituent of a method: action, artefact,
actor role, concept and notation. This method element concept can be defined as a
specialisation of the method puzzle concept. An action is the set of tasks to be per-
formed during the method component application. As actions are the central constitu-
ents of the method process model [8] they can be defined as a specialisation of the
conceptual process puzzle concept in our ontology. The results of these actions are
represented by artefacts in the method product model [8]. The artefact concept is
matched with the conceptual product puzzle concept. Furthermore, the actions are
performed by project members who have different roles during the project [8], this
implies that the actor role concept can be mapped with the organisational unit concept
of the ontology. A set of concepts is used to describe the problem domain of the
method component and they are captured and represented using notations [8]. These
concepts respectively correspond to the concept concept and the modelling element
concept of the ontology. Both method components and method elements are linked to
goals which can be refined in sub-goals. That defines a perfect match between the goal
concept form the method component approach with the goal concept of the ontology.

Fig. 4. Method Component Structure

3.4 Open Process Framework (OPF) Method Elements

Based on the international standard ISO/IEC 24744 [24] the OPF approach was pro-
posed by Henderson-Sellers and colleagues [9], the last updates of the approach can

*

*

Is a

Is a

Modellised by

Is a

Manage

Composed of

Is a

Is a

 Towards Common Ground in SME: An Ontology of Method Descriptors 85

be found in [21]. Each OPF method component is generated from an element in a
prescribed underpinning meta-model [1] according to the ISO standard. An OPF
method component is defined as an abstract element which all other method con-
structs are derived [21]. So it can be defined as a specialisation of the method puzzle
concept in our ontology. The OPF approach is driven by the decomposition of the
method process in work units performed by producers known as people role and
teams. These two latter concepts match respectively with the conceptual process
puzzle and the organisational unit concepts of our ontology. Various products are
used or created by work units in order to deliver the final system [17]. This product
aspect of methodologies is captured in the work product concept of the OPF approach
that can be defined as a specialisation of the conceptual product puzzle of the ontol-
ogy. The work products are documented using a language consisting in a “vocabu-
lary” and a set of “grammatical rules” [21]. These latter concepts can be mapped
respectively with our modelling language, modelling element and modelling rule
concepts. All these OPF method components are used during a stage and performed
by a specific collaboration organisation of producers called a endeavour [21]. A stage
models the intended timing of the performance of a temporally-cohesive set of work
units during the enactment of a method [21] and can be defined as a specialisation of
the ontology method package concept whereas the endeavour concept can be defined
as a specialisation of the business concept.

Fig. 5. OPF Method Component Structure

3.5 SO2M Method Services

Introduced by Guzelian and colleagues [10] the SO2M approach is the first step of
applying the service oriented paradigm [25] to ME approaches.

A SO2M method service is a reusable unit that contains one or several method
fragment to solve an information system development problem [10]. It can be mapped
with the method puzzle of the ontology and exploit the inclusive property of the me-
thod puzzle specializations possibilities. A method service is constituted of three ab-
stract parts: identification part, process part and resource part. As these parts are just
abstract containers they won’t be match with the ontology.

*

*

*
Is a

Is a

Is a

Modellised by

Composed of

Is
a

86 A. Iacovelli and C. Souveyet

Fig. 6. SO2M Method Service Structure

The identification part aims to capture the contextual knowledge of the method
service reuse by defining its finality and argument. A finality is the description of the
problem solved by a method service, it’s structured with a goal, a manner and a con-
text [10]. As it contains both situational and structural information the finality concept
can be defined as a specialization of annotation concept in our ontology. The argu-
ment concept of the SO2M approach characterizes a method service reuse situation by
a list of pro arguments (i.e. advantages) and con arguments (i.e. drawbacks) and it can
be matched with the ontology situation annotation concept.

The process part is composed of the process initial situation, process final situation
and process structure description. These three concepts are respectively matched in
our ontology with the precondition, postcondition and conceptual process puzzle
concepts.

The resource part defines the implementation of a process by an execution graph
which can be mapped as a specialization of our technical process puzzle concept. This
part also defines the descriptions of all resources consumed or delivered by the
process. This latter concept can be defined as a specialization of the conceptual prod-
uct puzzle in our ontology.

This section shows that each concept of the method descriptor ontology is matched
in the set of concepts issued of the five studied SME approaches and acknowledges
the relevance of the ontology. Furthermore, the matching between the studied ap-
proaches and the ontology of method descriptors shows that each of these approaches
shares common concepts with the others and also incorporates new concepts to cha-
racterize method constructs not addressed in the others. The ontology represents a
semantic common ground useful to understand the semantic difference between the
various SME approaches. To emphasize the benefit of this ontology and in particular
in reducing the ME drawbacks mentioned earlier, three exploring usage scenarios are
sketched in the next section.

Is a

 Towards Common Ground in SME: An Ontology of Method Descriptors 87

4 Exploring Usages of the Method Descriptors Ontology

The ontology of method descriptors is an attempt to reach a semantic common ground
in SME. This section explores possible usage scenarios of such ontology. Four usage
scenarios have been envisioned and described to illustrate the relevance of the ontol-
ogy-based approach and its usefulness for future ME perspectives.

1. The ontology can be used in an educational manner by non ME experts to under-
stand (i) the basic semantic common ground of the domain and (ii) the various
competing modular constructs proposed in SME. This basic usage helps directly in
reducing the first ME drawback (confusion).

2. The ontology can be used as a basis of ME reasoning systems such as decisional
support system helping ME engineers in their tasks. This usage is complementary
to the educational usage.

3. In addition, the ontology can a first step of a process building a unified ME query
facility on top of unified Method knowledge Base. Such ME tool is helpful to ME
engineers to extract ME knowledge according to their needs expressed in a com-
mon language (ontology concepts). Then, a mapping facility must be built to trans-
late the initial query into a specific query compliant to the ME descriptor of the
method base. The ontology allows building a generic tool to query method base
storing method puzzles belonging to several SME approaches or to query various
method bases compliant to SME approaches. Finally, it is a way of reducing ME
drawback like lack of SME standard. In fact, the main interest is not in the lan-
guage used to describe the method puzzle but the fact that the method puzzle
matches the ME engineers needs. The perspective of this usage is to propose to the
ME community to build a common Method knowledge base which can become a
reference for the community and the practitioners.

4. Service orientation in Information Systems leads to re-organize a portfolio of leg-
acy applications into services. By analogy to Information System engineering, we
can assume that a service orientation in the ME, leads to re-organize CASE tool
into method services (end-user software service). To adapt services oriented tech-
nologies to method services, we should extend the service descriptor as it is
sketches in Fig. 7.

Fig. 7. Principe of service description extension

Service

domain
description

technical
description

2

1

3

SME descriptors

Standard : OWLS - WSDL

Annotations based on
a technical ontology

Extended service descriptor

88 A. Iacovelli and C. Souveyet

Figure 7 summarizes YASSA approach [26] to extend the service description to
domain description with the usage of a technical ontology. The service description is
structured in two layers: technical service description based on standards such as
OWLS or WSDL and a domain description represented in our case by any SME de-
scriptor encoded in an XML format. The technical service description refers the do-
main descriptor through annotations embedded in the technical layer and referring
domain value mentioned in the domain description. Annotations are expressed ac-
cording to the ontology concepts in order to build search algorithms according to the
ME ontology instead of the SME descriptor. It means that a Method Service registry
is built upon the semantic common ground in SME instead a specific SME approach.
This usage allows encapsulation of a tool support part to any SME descriptor with
searching algorithms ME ontology compliant but SME descriptor independent. This
usage scenario shows a way of reducing indirectly the third ME drawback (lack of
implementation tool).

Assuming that a CASE tool is re-organized as a portfolio of method services, and a
CASE tool is considered as configurable tools like ERP and product line, the perspec-
tive is to configure the method part and the case tool supporting it, at the same time.
By analogy to the Product line, this perspective introduces the concept of a Method
Line where method is compliant to Seligman definition and the purpose of the CAME
is to configure the method and the CASE tool support at the same time. In this case,
the CASE tool can be viewed as an assembly of method services which can be com-
bined into a specific configuration.

This section is illustrating how the method descriptors ontology may be used and
how it is possible to reduce directly or indirectly the ME drawbacks. These usage
scenarios show that a semantic common ground may be enough to step towards in the
ME community.

5 Conclusion

In this paper, we have assumed that the diversity in SME approaches is purposeful
and shows the richness of the ME community. It is largely agreed that a common
ground is needed to overcome some ME drawbacks such as unnecessary confusion
for non ME expert, lack of standard & interoperability and lack of implementation
tool, but is also a hot topic between researchers. In addition, SME approaches have
not been yet largely used by practitioners, or implemented in CAME environment
because of these ME drawbacks. The paper proposed an ontology-based approach in
SME to build the ontology of method descriptors as a domain ontology. SME ap-
proaches promote different method modular constructs but they have a common un-
derstanding of what a method is. We exploited the Seligman definition of a method :
way of thinking (paradigm), way of working (process), way of modelling (product),
way of controlling (organisation) and way of supporting (tool support). Therefore, the
ontology defines the core concepts of a method description and the granularity levels
built upon them. We assumed that this ontology constitutes a semantic common
ground in SME which is a start-up phase in reducing indirectly the ME drawbacks.

However, to be effective, the SME approaches must define their semantic accord-
ing to the ontology. We showed in this paper how the ontology can be used to define

 Towards Common Ground in SME: An Ontology of Method Descriptors 89

the semantic of the six most cited SME approaches : ‘Method Fragments’, ‘Method
chunks’, ‘Method components’, ‘OPF method elements’ and ‘SO2M method ser-
vices’. Then, the ontology of method descriptors obtained showed that SME ap-
proaches shared common concepts but also incorporated new concepts to characterize
methods constructs not addressed in the others. It is why we assumed that differences
between SME approaches are purposeful and we have adopted an alternative solution:
semantic common ground.

Finally, the paper explored three usage scenarios of the ontology of method de-
scriptors. The ontology can be used as an educational tool for non ME expert to re-
duce their confusion or as a basis of reasoning systems.
A step forward, the ontology can be used to build a unified ME query facility. In fact,
the ontology is used as a mapping tool between the ME engineers query and the tech-
nical query executed on a specific method base compliant to a specific SME ap-
proach. The benefit of this usage can be to develop one multi-approach method
knowledge base which can be the reference of the ME community and can be shared
with practitioners.

Moving SME approaches to service orientation, implies to move the CASE tool in
the centre of a method description. We illustrated in the paper the application of
YASSA’s approach to extend service to method service and service description to
method service description. A method service description is composed of two related
layers: technical and domain service description (ME descriptor) layers. The ontology
of method descriptors is used to integrate ME annotations inside the technical service
description conform to standards like OWLS or WSDL and it allows to provide
searching algorithms of method service built upon the Ontology of Method descrip-
tors instead of the SME descriptor itself. The method service can be described at the
domain layer by any SME descriptor.

Finally, the service orientation combines with the ERP or Product line analogy, we
can envision the CASE tool and its method description as a method line and its objec-
tive is to provide CAME to configure the method description part and the CASE tool
at the same time. The perspective is a subject of research.

References

1. Agerfalk, P., Brinkkemper, S., Gonzales-Perez, C., Henderson-Sellers, B., Karlsson, F.,
Kelly, S., Ralyté, J.: Modularization Constructs in Method Engineering: Towards Common
Ground? In: Panel of ME 2007. Springer, Geneva (2007)

2. Deneckère, R., Iacovelli, A., Kornyshova, E., Souveyet, C.: From Method Fragments to
Method Services. In: EMMSAD Workshop of CAISE 2008, Montpellier, France (2008)

3. Nehan, Y.-R., Deneckère, R.: Component-based Situational Methods: A framework for
understanding SME. In: Situational Method Engineering: Fundamentals and Experiences,
Switzerland. IFIP, vol. 244 (2007)

4. Mirbel, I.: Connecting Method Engineering Knowedge: a Community Based Approach. In:
Proceedings of ME 2007, Geneva, Switzerland (2007)

5. Niknafs, A., Asadi, M., Abolhassani, H.: Ontology-Based Method Engineering. Interna-
tional Journal of Computer Science and Network Security. IJCSNS 7(8) (2007)

90 A. Iacovelli and C. Souveyet

6. Ralyté, J., Deneckère, R., Rolland, C.: Towards a Generic Model for Situational Method
Engineering. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681. Springer,
Heidelberg (2003)

7. Brinkkemper, S.: Method Engineering: engineering of information systems development
method and tools. Information and Software Technology 38(7) (1996)

8. Wistrand, K., Karlsson, F.: Method components – rationale revealed. In: Persson, A., Stir-
na, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 189–201. Springer, Heidelberg (2004)

9. Henderson-Sellers, B.: Process meta-modelling and process construction: examples using
the OPF. Ann. Software Engineering 14, 1–4 (2002)

10. Guzélian, G., Cauvet, C.: SO2M: Towards a Service-Oriented Approach for Method Engi-
neering. In: Proceedings of the International Conference IKE 2007, USA, (2007)

11. Rolland, C., Plihon, V., Ralyté, J.: Specifying the reuse context of scenario method
chunks. In: Pernici, B., Thanos, C. (eds.) CAiSE 1998. LNCS, vol. 1413, p. 191. Springer,
Heidelberg (1998)

12. Seligmann, P.S., Wijers, G.M., Sol, H.G.: Analysing the structure of IS methodologies, an
alternative approach. In: Proceedings of the 1st Dutch Conference on Information Systems,
Amersfoort, The Netherlands (1989)

13. Plihon, V., Rolland, C.: Modelling Ways–of–Working. In: Iivari, J., Rossi, M., Lyytinen,
K. (eds.) CAiSE 1995. LNCS, vol. 932, Springer, Heidelberg (1995)

14. Harmsen, A.F.: SituationalMethod Engineering. Moret Ernst & Young (1997)
15. Rolland, C.: in French: L’ingénierie des méthodes: une visite guidée. In: e-TI (2005)
16. Karlsson, F., Agerfalk, P.J.: Method configuration: adapting to situational characteristics

while creating reusable assets. Information Software and Technology 46 (2004)
17. Gonzalez-Perez, C.: Supporting Situational Method Engineering with ISO/IEC 24744 and

the Work Product Pool Approach. In: IFIP, Situational Method Engineering: Fundamentals
and Experiences (2007)

18. Jackson, M.: Software Requirements & Specifications – a Lexicon of Practice, Principles
and Prejudices. ACM Press, Addison-Wesley (1995)

19. Fillmore, C.J.: The case of case. In: Universals in linguistic theory. Holt, Rinehart and
Winston Inc. (1968)

20. Dik, S.C.: The theory of functional grammar. Foris Publications, The Netherlands (1989)
21. Open Process Framework, http://www.opfro.org/
22. Brinkkemper, S., Saeki, M., Harmsen, F.: Meta-Modelling Based Assembly Techniques

for Situational Method Engineering. Information Systems 24(3) (1999)
23. Rolland, C., Prakash, N.: Aproposal for context-specific method engineering. In: Prin-

ciples of Method Construction and Tool Support, vol. 191-208. Chapman & Hall, Boca
Raton (1996)

24. International Organization for Standardization: ISO/IEC 24744, Software Engineering –
Metamodel for Development Methodologies

25. Papazoglou, M.P.: Service-Oriented Computing: Concepts, Characteristics and Directions.
In: Proceedings of the Fourth International Conference on Web Information Systems En-
gineering WISE 2003 (2003)

26. Chabeb, Y., Tata, S.: Yet Another Semantic Annotation For WSDL. In: Proceeding of In-
ternational Conference WWW/Internet IADIS 2008 (2008)

J. Ralyté, I. Mirbel, and R. Deneckère (Eds.): ME 2011, IFIP AICT 351, pp. 91–96, 2011.
© IFIP International Federation for Information Processing 2011

Towards a Method for Service Design

Olga Levina, Trung Nguyen Thanh, Oliver Holschke, and Jannis Rake-Revelant

Berlin Institute of Technology Franklinstr. 28/29, 10587 Berlin, Germany
{olga.levina,oliver.holschke,jannis.rake}@sysedv.tu-berlin.de

Abstract. Services are the vital part of a service-oriented architecture. Their
development and design are essential parts of the development and implementa-
tion of a service-oriented architecture. Thus, numerous approaches in research
and practice exist that refer to different aspects of service design. These are fo-
cused on specific needs or aspects in service design. According to the literature
review provided in this paper, no single service design approach covers all the
aspects that are needed for the implementation and deployment of a service-
oriented architecture. Beside the literature review this paper provides a service
design approach that combines the existing methods and approaches. The goal
is its further development towards a service design method for service design in
research and industry.

Keywords: method design, service design, literature review, service-orientation.

1 Introduction

Research activities and practice implementation attempts in the area of Service-
Oriented Architecture (SOA) have gained a lot of momentum in the resent years.
Methods for SOA development and evaluation started to emerge. Although, despite
the evident progress there is still a lack of widely spread methods that can be used in
every stage of SOA development and implementation.

SOA is defined here according to OASIS as “a software architecture of services,
policies, practices and frameworks in which components can be reused and repur-
posed rapidly in order to achieve shared and new functionality”[1]. This definition
includes one of the main characteristics of SOA: the reuse of the software compo-
nents, i.e. services. A service can be further described as an element that encapsulates
a business function and cannot be further decomposed without harming its functional-
ity. Services can be defined as autonomous, platform-independent entities that can be
described, published, discovered and assembled; they are technologically neutral,
loosely coupled and support local transparency encapsulating business functional-
ity[2]. Services can be differentiated among others by their goal, functionality, granu-
larity, scope, and interaction.

Service design specifies how the service can be described and therefore found,
which business operations underlie the service function, which SOA design principles
are supported and which technologies are needed to implement the service. Service
design principles are embedded within the general principles of service-orientation
that include: Service reuse[3,6,7], formal contract[3,8], lose coupling[2,3], abstrac-
tion[3,7,9], composability[3,7], autonomy[3,7], statelessness[3,6], discoverability[10].

92 O. Levina et al.

This paper presents a generalized approach to service design that is based on exist-
ing rules for service design and SOA design patterns. The suggested framework aims
to support service design by providing a certain procedure and detailed activities in
order to enhance the development procedure and to increase the probability for ser-
vice reuse. The paper is structured as follows: First, the existing service development
approaches and methodologies both in research and practice are reviewed. The results
of the analysis serve as basis for the development of a canonical framework for ser-
vice design. Discussion of the results and outlook finish the paper.

2 Existing Approaches to Service Design

Approaches or service design methods reviewed here were chosen using literature
research on SOA or service design topic. Their evaluation was not completely based
on the method components suggested by [11], because not only service design meth-
ods but also approaches explicitly situated in the SOA context were reviewed. Fur-
ther criteria applied were completeness [11], i.e. the necessary description of the
activities, elements and tools as well as realization of the components described in
[11], identification process [4], goal reference as well as context of the method (busi-
ness or software development) [11] and consistency referring to the temporal and
logical dependencies between the suggested process steps.

There is little consensus on general service design principles in research and prac-
tice. Though, the basic principles for service design can be considered as being: inter-
face orientation, interoperability, modularization and process orientation, e.g. [3, 7-9].
Thus, the service design method or approach needs to include specification on inter-
face design of a service. Besides the technical specification, meta-data on service
content and use need to be specified. Communication aspects such as message for-
mats, protocols and addresses need to be included as well as the effect of the service
on data, process composition, security and further run-time aspects. Deployment of
the interface design needs a service level agreement (SLA) as a realization of the
abstraction principle of SOA, as well as its contents need to be included into service
design approach. A further advantage lies in the changeability of the software ele-
ments.

Interoperability can be defined as the ability of software elements to exchange and
interpret information with each other [13, 14]. Modularization implies composition of
application systems or business processes into domains or services. Services are sup-
posed to provide flexible support for business process automation. A service design
approach or method need to provide guidelines for service granularity of data, busi-
ness logic as well as functionality.

In the following existing service design approaches or methods are evaluated refer-
ring to the above mentioned criteria. The SOA Approach (SOAA)[3] describes top-
down and bottom-up service design using examples. It considers aspects of business
engineering as well as technical aspects. Design and development of data models and
interfaces are described as well as service design pattern are suggested. The service
design takes all the basic SOA design principles such as autonomy, lose coupling,
statelessness, etc. into account. SOAA also uses industry standards such as XMPL,
SOAP, BPEL and UDDI [15, 16].

 Towards a Method for Service Design 93

The Service-Oriented Design and Development Methodology (SODDM)[5] is
based on the RUP-Method and analyzes the business requirements for service design.
SODDM is based of Web Service[17] technology and does recommend specific ven-
dor tools for service realization. Though the approach is described as a methodology
it does not offer a role specification for the design process. The aspect of service or-
chestration is not further elaborated and service design is concentrated on a fine
granular level. The SOA Method (SOAM)[4] puts the focus on the business require-
ments and business-oriented service realization. Bottom- up as well as top-down ser-
vice design patterns are conceptualized independently from their domain. SOAM
considers the main SOA construction principles, provides a domain model and service
classification. This aspect supports a better service reuse and flexible service granu-
larity. Service and interface implementation are mentioned referring to standards such
as ebXML, UN/CEFACT[18], etc. for reducing the number of data attributes.

Method For Component-Based And Service-Oriented Systems Engineering
(CBSOSE)[20] puts the focus on service identification according to business require-
ments, business engineering as well as software engineering. In software engineering
the focus lies on component-based software development. CBSOSE offers an exhaus-
tive documentation containing action description supported by examples and expected
results. Services are modeled using Unified Modeling Language (UML), service
granularity is based on business activities. Service reuse is not explicitly considered.
The Process Model for Business Service Development (PMBSD) [21] identifies busi-
ness services according to business requirements. PMBSD provides a role model and
generic description of the process activities and results. The SOA design principles
are not explicitly mentioned but SLA, reuse and discoverability of services are
considered.

Web Service Implementation Methodology (WSIM)[22] focuses on SOA devel-
opment using Web Service technology. Business engineering is not considered in the
methodology though a role model is given. There are any tools specified that can
support the methodology in service design. The design principles are not mentioned
explicitly but reuse, interoperability and service orchestration are considered. Every
phase of the method is supported by best practices. Executive's Guide to Service-
Oriented Architecture (EGSOA)[7] approach includes bottom- up and top-down strat-
egy for service identification using business services as well as legacy systems. The
focus is on the business aspects of service development. There is no role model pre-
sent in the method and no examples are provided. The analysis and design phase sup-
port the design principles such as SLA, interoperability, reuse, lose coupling and
discoverability of the services.

3 Framework for Service Design – Towards a Service Design
Method

The suggested framework for service design is based on the SOAM and SOAA ap-
proaches described above. SOAM provides a clear process for service identification
and system analysis on the business side, while SOAA provides comprehensive de-
scription of technical service design.

94 O. Levina et al.

Fig. 1. Basic steps of the service design process

The abstract design process can be divided into four main phases: requirements
analysis, identification of service operations, business design, and technical design
(see figure 1). The approach includes three actors: Process Owner, Business Process
Analyst and IT Developer. The process owner is involved into the process operation,
business analyst is a member of a (internal) consulting team or a team that is
concerned with business process management tools that are used e.g. for process
modeling, and workflow systems. IT developer transforms business requirements into
software components. The first two phases are conducted by the process owner and
business process analyst. The last two phases are completed by business process
analysis and IT developer.

The purpose of the approach is to support business process automation, and inte-
gration of technical innovations. Thus, the main sources for the requirements analysis
are the business process models and descriptions. The identified operations need to be
mapped to the service model. This model is transformed into a service description
including interface definition in a WSDL-file.

In the requirements analysis phase business requirements that need to be realized
using services are elevated. Here the purpose of the service is defined: encapsulation
of a legacy system or business process support. Whether it is possible to support a
business process in a SOA is evaluated according to the criteria proposed in [9].

Additionally to the evaluation the business processes need to be captured. As
documentation method Business Process Modeling Notation (BPMN) is suggested
here as being both easily adoptable to business requirements and providing necessary
information for technical implementation. Documentation level is defined by the
activities that are refined to the level where further division does not provide any
sensitive process information. Besides the activities necessary data object types need
to be identified and enriched with accordant attributes. For data object type documen-
tation the UML class diagram is suggested. Resulting process models can be reviewed
and examined using the ebXML or RosettaNet[23] standards. OASIS and
UN/CEFACT [18] provide context categories for relevant attributes. This information
can be used to reduce the information amount.

During the legacy systems analysis application systems supporting the business
process are identified. Operations, data objects and interfaces are identified and
documented. Legacy systems can be encapsulated using the following possibilities
[4]: APIs, Web Services, Data bases, Object oriented software classes, etc.

For business design of the services classes of service candidates need to be identi-
fied. This differentiation allows the application of service design principles to each
service. Here basic, process-oriented, public enterprise and semi-services are taken
into account [8]. During the business-oriented service design identified operations
need to be analyzed regarding their granularity and grouped to service candidates.
Operations can be grouped according to the user rights or to the data object type.
Third possibility includes operation grouping according to their task or operational

 Towards a Method for Service Design 95

domain. Documentation of the identified operations and the grouped services can be
achieved using a simple table tool.

During the technical service design a technology for service realization needs to be
chosen. Here the Web Service technology is suggested due to its popularity and a
quasi-standard status in research and practice. Basic Profile including WSDL 1.0 [24],
UDDI 2,0, SOAP 1.0, XML 1.0 [25], XML Schema 1.0 can be used for service speci-
fication. It can be supported by the use of the WS- extension frameworks. Develop-
ment patterns that can enable statelessness on the technical level are e.g.: Atomic
Service Transaction, State Messaging, etc.

4 Discussion and Outlook

The presented approach provides a standardized procedure to service design deriving
its concepts from existing methodologies and technological approaches. The method
needs to be enriched with approximate time-levels for each of the phases as well as a
detailed result description for the results of each phase. The roles concept cannot be
précised any closer as it often depends on the given circumstances in the enterprise.
The suggested role concept assumes C-level management support for the SOA im-
plementation as well as know-how in business (process) analysis and documentation
methods. Communication and information structures need to be specified in detail to
allow management and control of the implementation initiative. Another assumption
here is the cooperation of the business and IT departments that is facilitated by a me-
diation team of interdisciplinary analysts.

The presented approach can be evaluated using the criteria for method description
[11] with the result, that the approach cannot yet be referred to as a method, as the
constructs used and principles of form and function are not elaborated extensively.
Testable propositions also need to be defined and applied in a subsequent case study.

Hence, to be able to be referred to as a method the approach has to provide some
considerable aspects such as construct definition and description, the review of prin-
ciples of form and function as well as testable propositions. These aspects will be
deepened in the future work. The founding will be applied on several case studies so
that the method can be further refined and made more feasible for practitioners and
researchers.

References

1. OASIS. Reference Model for Service Oriented Architecture 1.0 2006 (2006),
 http://www.oasis-open.org/committees/download.php/19679/
 soa-rm-cs.pdf

2. Papazoglou, M.P.: Service -Oriented Computing: Concepts, Characteristics and Directions.
In: Proceedings of the Fourth International Conference on Web Information Systems En-
gineering (2003)

3. Erl, T.: Service-Oriented Architecture: Concepts Technology, and Design, 5th edn. Pren-
tice Hall PTR, New Jersey (2005)

4. Offermann, P., Bub, U.: A Method for Information Systems Development According to
SOA. In: AMCIS 2009 (2009)

96 O. Levina et al.

5. Papazoglu, M., van de Heuvel, W.-J.: Service-Oriented Design and Development Method-
ology. International Journal of Web Engineering and Technology, 412–442 (2006)

6. Josuttis, M.N.: SOA in Practice, 1st edn. O’Reilly, Sebastopol (2007)
7. Marks, E.A., Bell, M.: Service-Oriented Architecture: A Planning and Implementation

Guide for Business and Technology, 1st edn. John Wiley and Sons Inc., Hoboken (2006)
8. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA: Roads and Best Practices for Service-

Oriented Architectures, 1st edn. REDLINE GmbH, Heidelberg (2007)
9. Heutschi, R.: Serviceorientierte Architektur 2007. Springer, Berlin (2007)

10. Fringer, P., Zeppenfeld, K.: SOA and Web Services, 1st edn. Springer, Heidelberg (2009)
(in German)

11. Offermann, P., Blom, S., Levina, O., Bub, U.: Proposal for Components of Method Design
Theories. Wirtschaftsinformatik/Business & Information Systems Engineering 52/2(5/5),
287–297, 295–304 (2010)

12. Beverungen, D., Knackstedt, R., Müller, O.: Development of Service-Oriented Architec-
tures for Manufacturing and Service Integration (2008) (in German)

13. Thomas, O., Leyking, K., Scheid, M.: Service-, Prozess Models for Service-Oriented
Software Development. In: Wirtschaftsinformatik 2009, pp. 181–190 (2009) (in German)

14. OASIS. OASIS Standard 20041: Web Services Security: SOAP Message Security 1.0,
WS-Security 2004 (2004)

15. OASIS. Web Services Business Process Execution Language Version 2.0 OASIS Standard
11 (2007) (cited)

16. W3C. Web Services Architecture (2004)
17. Huemer, C. (ed.): UN/CEFACT, UN/CEFACT’s Modeling Methodology (UMM) UMM

Meta Model – Base Module Candidate for 2.0 Public Draft (2008)
18. Mayerl, C., Link, S., Racke, M., Popescu, S., Vogel, T., Mehl, O., Abeck, S.: Method for

Design of SLA-enbaled IT-Services. In: Müller, P.G., Gotzhein, R., Schmitt, J.B. (eds.)
Communication in Distributed Systems. Springer, Heidelberg (2005)

19. Stojanovic, Z.: A Method for Component-Based and Service-Oriented Systems Engineer-
ing (2005)

20. Stein, S., Ivanov, K.: Process Model for Business Service Development (2006)
21. Lee, E.W., Haines, M., Chan, L.P., Ang, C.H., Tan, S.P., Lee, H.B., Cheng, Y., Xu, X.,

Yin, Z.: Web Services Implementation Methodology (2005),
 http://www.oasis-open.org/committees/download.php/21354/
 fwsi-im-1.0-guidelines-doc-wd-PublicReviewDraft1.0.pdf

22. RosettaNet (2010), http://www.rosettanet.org/ (cited)
23. W3C. Web Services Description Language (WSDL) 1.1 (2001)
24. W3C. Extensible Markup Language, XML (2003)

J. Ralyté, I. Mirbel, and R. Deneckère (Eds.): ME 2011, IFIP AICT 351, pp. 97–101, 2011.
© IFIP International Federation for Information Processing 2011

A Case Study for Improving a Collaborative Design
Process

Sophie Dupuy-Chessa, Nadine Mandran, Guillaume Godet-Bar, and Dominique Rieu

University of Grenoble, CNRS, LIG
385 rue de la Bibliothèque

38041 Grenoble Cedex 9, France
Firstname.Lastname@imag.fr

Abstract. We propose a design method for supporting the design of rich user
interfaces. It integrates software engineering and human-computer interaction
practices through collaborations and focuses on the traceability of processes and
models. In this paper, we investigate these collaborative aspects with a case
study, which gave us some insights in order to improve the process.

Keywords: Collaboration, Process, Qualitative study.

1 Introduction

The Software Engineering (SE) methods have shown their reliability for specifying
and developing the functional core of information systems. Nowadays, such systems
can have rich user interfaces based on interaction techniques like vocal commands or
gesture recognition. To guide their design, we propose the Extended Symphony
method [1]. It has been designed for facilitating collaborations between SE and Human
Computer Interaction (HCI) specialists and for enabling designers to develop rich user
interfaces. But it was still a theoretical proposal that needed to be confronted to practi-
cal issues. Then we realized empirical studies focused on specific parts of the method
[2]. One of them is presented in this article. It gave us some insights about the collabo-
rative aspects of the method. It studied two hypotheses made while designing the ex-
tension of Symphony: 1) the process facilitates the collaboration between actors from
the SE and HCI domains and 2) it allows designers to produce consistent models.

The following section gives an overview of the collaborative process of the Ex-
tended Symphony method. Then we present the case study, before concluding with
some perspectives.

2 The Extended Symphony Method

Originally developed by the UMANIS Company, Symphony is based on a Y-shaped
development cycle whose functional (left) branch corresponds to the traditional task
of domain modelling, independently from technical aspects. This branch whose an
excerpt is given in Fig. 1, focuses on the integration of SE and HCI practices.

98 S. Dupuy-Chessa et al.

Fig. 1. Collaborations during the functional branch

The process starts with a cooperation study phase whose goal is providing a com-
mon decomposition of business processes. Then for each business process scenarii are
described to start with a common view of the application. Then each specialist works
in parallel with her own models: for HCI, task trees [3] and interaction model [4] for
rich user interfaces; use cases, sequences diagrams for SE. From these models, the SE
and HCI specialists must structure their concepts using Symphony Objects that are
reusable components. The interaction space is structured with Interactional Objects
(IO [5]), which are user interface-oriented components. The business is designed into
Business Objects (BO).

Then the SE and HCI experts identify whether they need to modify their models to
facilitate their ulterior weaving. It is a coordination activity: the experts do not need to
produce a common product; they compare their models to validate their design
choices.

The organizational and interaction-oriented requirements phase ends with a coop-
eration where the design actors must work together to produce a common product.
The “Description of weaving model between BO and IO” allows both the HCI and SE
experts identifying which IO correspond to projections of BO.

 A Case Study for Improving a Collaborative Design Process 99

Finally the functional branch terminates by an analysis phase where the models are
completed by refining the weaving model. It is not studied here, as it is only a refine-
ment of the previous phases.

3 Case Study

3.1 Setting of the Case Study

Rather than considering the process performance, we focus on "what are the right
things to do" for designing a system with a rich user interface. We choose a qualita-
tive approach to gather an in-depth understanding of the subject studied, with smaller
but focused samples. With this approach, a comparison with another method mixing
HCI and SE practices [6,7] would be useful; but it would be difficult to realize as
many variables need to be controlled to obtain a useful experiment.

The experimental design is inspired from the social probes [8], translated to the
professional context. It is based on the use of treatment groups only (no control
group) and on a qualitative collection of data.

Participants. Four groups of two designers were asked to specify the same system.
They are members of research groups specialized in HCI and SE, with more or less
the same profile. They are colleagues of the experimenters. None of them was
introduced to the Extended Symphony Method beforehand and they were volunteers
to use it.

Steps. All the groups worked on the same example (a collaborative tool for designing
public spaces). They followed mainly five steps during one week: 1) The first step is
the starting session: a questionnaire about work habits, a short introduction to the
Extended Symphony Method and the example were given to the participants. 2) Each
group had to work on the example. Participants worked along or with the specialist of
the other domain. Each time that a designer worked, he recorded his results, the time
spent, his goals, his difficulties in a form, giving us so a probe. 3) After four days,
each group had to realize the cooperative activity “Description of weaving model
between BO and IO” (Fig. 1) to link the HCI and SE models. This intermediary
session was recorded to evaluate whether the HCI and SE models were difficult to
merge. 4) The groups had other working sessions to finalize their proposal. 5) They
presented their results and during a focus group session, they gave their opinion on
the process. One of the participants was absent at this last session.

3.2 Results

The method was perceived as interesting and satisfying. Collaboration was mainly
perceived as useful (5/7). It was cited as one of the elements to reduce errors thanks to
a better understanding between people of different domains. One positive aspect for
collaboration is the separation of concerns between SE and HCI. But the participants
also appreciated the common vision, facilitated by the use of common models. Never-
theless one of HCI participants pointed out the necessity of a common approach
between the two specialists.

100 S. Dupuy-Chessa et al.

Globally the sequencing of activities was considered logical and natural. However
three participants thought that the process can be long even if for the majority of the
participants (6/7), it can make the system design more efficient. The main reasons
given by the participants were: 1) the collaborators start the design with a shared
vision (the initial scenario); 2) The designers must think at the appropriate level of
abstraction according to the design process.

Regarding the efficiency, the duration of the project and of the collaborative ex-
changes varied a lot from one group to another. Two groups spent less than 4 hours of
work while another one took four times more. One group spent less than 15% of its
total work time on collaborative activities, while another group spent 85% of its total
work time. In the second group, each specialist did not respect his role and most of
the work was realized in cooperation.

From the model viewpoint, it has been pointed out that the process gave rise to too
many models. It can become difficult to check their consistency. However in all the
groups, scenarii were a reference for model consistency. Its use was perceived as
facilitating cooperation at the beginning of the process. For the other models, amongst
the four groups, two have not realized the weaving between Symphony Objects. But
the HCI and the SE models were judged as consistent because the common concepts
of the two domains were identified and named in the same way. For the groups that
used Symphony Objects, we noted that some adjustments (addition/suppression of
objects) were made to obtain consistent models during the intermediary session. The
specialists (3/4) considered that Symphony Objects are “a bridge between SE and
HCI, a good synchronization point”.

4 Evolution of the Extended Symphony Method

As we mentioned previously, some drifts in the process were noticed: 1) the process
can be too long. 2) Some collaborative activities can occur for inappropriate goals
although they are not in the process.

The participants suggested us the following improvements: 3) the steps where the
consistency between SE and HCI models must be checked must be more explicit. 4)
The method should be adapted to the project size. 5) A glossary could be added to
provide a clear and short description of concepts. 6) A description of the role of each
specialist could help each one in understanding his role. 7) A more precise description
of Symphony Objects could be provided.

The first evolution answers to the points 1 and 4. The process was simplified.
Many activities became optional. Only the activities that produce the essential models
remain mandatory. These models are those used to communicate with the stake-
holders (e.g. scenarii), or to concretize the collaboration (e.g. Symphony Objects
model).

For points 2 and 3, we considered that our two types of collaborations were dis-
turbing. There was a misunderstanding about the coordination notion. Now we only
propose cooperative activities whose goal is clearer. The description of collaborative
activities has also been enriched: each activity is now considered from the viewpoint
of the responsibilities of each actor. This is also a partial answer to point 5.

 A Case Study for Improving a Collaborative Design Process 101

Globally we improved the documentation to respond to the three last points: a
definition of a term is given when using it (point 5); we added a description of each
role at the beginning of the method description (point 6); we tried to be more precise
about the level of abstraction expected for each model (point 7). We systematically
introduced examples of the expected products in the description of an activity.

5 Conclusion

This paper describes a case study that gave us some insights about the Extended
Symphony collaborative process. Even if this case study has no statistical value, it
was interesting in a qualitative approach to gather a variety of feedbacks. It allowed
us improving the process by simplifying it. Of course these improvements would need
to be evaluated by some experiments. More generally, we argue for a more systematic
use of the qualitative approach for method engineering. With this goal, we are cur-
rently working with evaluation specialists to describe some of their knowledge in a
reusable manner.

References

1. Dupuy-Chessa, S., Godet-Bar, G., Pérez-Medina, J.-L., Rieu, D., Juras, D.: A Software En-
gineering Method for the Design of Mixed Reality Systems. In: Engineering of Mixed Real-
ity, ch. 15. Springer, Heidelberg (2009)

2. Ceret, E., Dupuy-Chessa, S., Godet-Bar, G.: Using Software Metrics in the Evaluation of a
Conceptual Component. In: 4th Int. Conf. On Research Challenge in Information Science
RCIS 2010, Nice, France (2010)

3. Paterno, F.: ConcurTaskTrees: An Engineered Notation for Task Models. In: The Handbook
of Task Analysis for Human-Computer Interaction, pp. 483–503. Lawrence Erlbaum Asso-
ciates, Mahwah (2003)

4. Dubois, E., Gray, P., Nigay, L.: ASUR++: a Design Notation for Mobile Mixed Systems.
Interacting With Computers 15(4), 497–520 (2003)

5. Godet-Bar, G., Rieu, D., Dupuy-Chessa, S., Juras, D.: Interactional Objects: HCI concerns
in the analysis phase of the Symphony method. In: 9th International Conference on Enter-
prise Information Systems ICEIS 2007, Funchal, Madeira, pp. 37–44 (2007)

6. Fox, D., Sillito, J., Maurer, F.: Agile methods and User-Centered Design: How these two
methodologies are being successfully integrated in industry. In: Proceedings of Agile 2008,
pp. 63–72. IEEE Computer Society, Washington, DC, USA (2008)

7. Corlett, D.: Design: innovating with OVID. Interactions 7(4), 19–26 (2000)
8. Bernhaupt, R.: Usability and User Experience Evaluation in Non-Traditional Environments,

HDR de l’Université Paul Sabatier, Toulouse (2009)

Incorporating Model-Driven Techniques into
Requirements Engineering for the

Service-Oriented Development Process

Grzegorz Loniewski, Ausias Armesto, and Emilio Insfran

ISSI Research Group, Department of Computer Science and Computation
Universidad Politécnica de Valencia

Camino de Vera, s/n, 46022, Valencia, Spain
grlo@posgrado.upv.es, aarmesto@indra.es, einsfran@dsic.upv.es

Abstract. Modern information systems, which are the result of the in-
terconnection of systems of many organizations, run in variable con-
texts, and require both a lightweight approach to interoperability and
the capability to actively react to changing requirements and failures.
Model-Driven Development (MDD) and Service-Oriented Architecture
(SOA) are software development approaches that deal with this com-
plexity, reducing time and cost development and augmenting flexibility
and interoperability. Although, requirements engineering is accepted as
a critical activity in these approaches, there is a need to appropriately
integrate and automate the requirements modeling and transformation
tasks as part of MDD and SOA development approaches. Our proposal is
a Rational Unified Process (RUP) extension, in which the requirements
discipline is placed in a model-driven context in order to derive SOAs.
This paper includes the definition of a model-driven requirements process
including activities, roles, and work products.

Keywords: Model-driven development, SOA, RUP extension, Require-
ments Engineering.

1 Introduction

The domains and problems for which it would be desirable to introduce informa-
tion systems are currently very complex and the software development process
is thus of the same complexity. Several software development approaches have
been introduced in order to speed up and facilitate this process through its au-
tomation and the division of the final product into smaller building blocks.

One of these approaches is Service-Oriented Architecture (SOA). SOA is a log-
ical means of designing a software system to provide independent services that
are aligned with business processes. SOA strengthens such factors as reusability,
scalability or interoperability.

Another approach that improves the development process of complex appli-
cations is Model-Driven Development (MDD). This is a model-based approach
that promotes the separation of concerns between the business specifications and

J. Ralyté, I. Mirbel, and R. Deneckère (Eds.): ME 2011, IFIP AICT 351, pp. 102–107, 2011.
c© IFIP International Federation for Information Processing 2011

Incorporating Model-Driven Techniques into Requirements Engineering 103

their implementation. This separation is achieved through the use of models that
allow the level of abstraction to be elevated. It provides a means for development
process automation by model transformations and code generation rules.

These approaches are very often used during the design phase of software de-
velopment, less often in the analysis phase, and hardly ever in the initial phase of
a software project when requirements have to be captured, understood and spec-
ified. Moreover, even though the aforementioned approaches provide the means
to support the software development process, all such techniques, methods or
architecture styles are of little use without a well-defined process that places
them in a particular context.

In our opinion, the solution to providing a successful automatable develop-
ment of SOA-based systems is a well-defined, and flexible model-driven process,
which is requirements engineering (RE). A good basis for the development of
such a methodological approach is the Rational Unified Process. RUP is a cos-
tumizable and extensible software engineering process that provides a disciplined
approach with which to define tasks and responsibilities in an organized system
development [5]. Although various attempts to adapt RUP to MDD principles
exist, e.g. Agile Unified Process (AUP), the development process remains mainly
manual.

This paper presents a proposal for a RUP extension and adaptation with
which to develop SOA-based systems by using model-driven techniques. The
main extension in this methodology is the replacement of the Requirements dis-
cipline with the Model-Driven Requirements. This work can be considered as
an interesting contribution for those software process engineers who are faced
with the challenge of guiding software development projects that follow a model-
driven development approach from the requirements elicitation.

This work is structured as follows. Section 2 presents works related to the
aforementioned area of concern. Section 3 provides an overview of the software
process engineering standards. Section 4 presents an overview of the main goals
of the methodology, focusing on the content and process elements of the Model-
Driven Requirements discipline in the context of SOA-based systems develop-
ment. Finally, Section 5 contains some conclusions and future work.

2 Related Works

A variety of modeling techniques and methodological approaches for service-
oriented software development have been published in literature. Ramollari et
al. [9] present a state-of-the-art survey on current service-oriented development
approaches, among others, Service Oriented Unified Process (SOUP) [7] and
Service Oriented Modeling and Architecture (SOMA) [1]. However, none of these
methodologies describes a complete methodological automated process that in-
cludes RE techniques.

There exist other approaches not included in the aforementioned survey,
such as: MINERVA framework [3], or SOA-MDK [2], which apply model-based
paradigms to service-oriented development methodology. However, these

104 G. Loniewski, A. Armesto, and E. Insfran

approaches do not include any automation while producing the services spec-
ification. SOA-MDK approach proposes the application of the Model-Driven
Architecture (MDA) principles within the context of reference models. However,
the nature of the model-driven base of this approach remains unclear.

Several generic methodologies are based on the MDD principles, since these
have gained many enthusiasts over the last decade. However, to the best of
our knowledge, a complete development process for MDD that incorporates
the requirements techniques has not been defined [6]. One such approach is
OpenUP/MDD, which is a very simplified RUP version intended for small teams.
It is consistent with the MDA, but focuses solely on the transformations from the
PIM to the PSM level and does not cover transformations from requirements.
In this context, our proposal for the RUP extension and the OpenUP/MDD
approach are complementary.

3 Software Process Engineering

Different software development processes use different concepts and notations
to define the contents of the methodology. The need to unify all these concepts
and notations has therefore emerged leading to the introduction of the Soft-
ware Process Engineering Metamodel (SPEM) [8] standard by the OMG. SPEM
provides a complete metamodel based on the Meta Object Facility (MOF) to
formally express and maintain development method content and processes. The
Unified Method Architecture (UMA) is an evolution of SPEM v1.1 and defines
the schema and terminology used to represent methods consisting of method
content and processes. IBM and OMG have worked on UMA to make it part of
SPEM 2.0. The UMA engineering process is employed in this extension, defined
by the use of IBM Rational Method Composer (RMC) [4], which is a UMA-based
comprehensive process authoring tool that provides extensive method authoring
and publishing capabilities [10].

4 RUP Extension for the Model-Driven Requirements

In classic RUP, the Requirements discipline serves to establish the agreement
with customers with regard to what the system should do, and define bound-
aries of the system. In our opinion, it should also provide a means for developers
to better understand the requirements, it being like a bridge between the domain
experts, stakeholders and the IT people.

Figure 1.A illustrates the RUP hump chart in which the Requirements disci-
pline is replaced with a new Model-Driven Requirements (MDR) discipline. It
also emphasizes the Environment discipline which serves as a means to adapt
this process to SOA-based systems.

As shown in Figure 1.A, the new MDR discipline is a concern from the In-
ception phase to the Transition. Since the hump chart emphasizes the workload
within disciplines, the diagram shows that the new discipline is particularly im-
portant during the Inception and Elaboration phase, in which the product vision

Incorporating Model-Driven Techniques into Requirements Engineering 105

is created and the architecture is established. Since we concentrate on model use
in the MDD context, the workload in the Analysis & Design discipline in the
Elaboration phase decreases depending on the degree of automation of activities
from the MDR discipline.

This approach was designed to support SOA-based system development. One
of the main differences between RUP and the process proposed in our extension
is the approach used to relate requirements and the system architecture. In RUP,
the architecture is defined on the basis of previously created use cases and sce-
narios, chosen as the requirements that define strategic architectural elements.
This RUP extension is architecture-oriented. It is the architectural pattern iden-
tified for the system, in this case to SOA, that becomes a basis for the MDD
process definition.

4.1 Activities and Workflow

A set of new activities is contributed and the discipline workflow has been re-
placed. Figure 1.B demonstrates the MDR discipline workflow. New or altered
activities introduced with regard to the classic RUP Requirements discipline are
marked with a star. Owing to space constraints, we shall comment only briefly
on the newly introduced activities, with which the PIM-level model is defined
and generated.

Identify a Candidate Architecture. This activity is performed in the early
Elaboration phase and is essential activity for the software development process
in that it determine which artifacts need to be developed (type of model at the
PIM-level that the architecture implies), and the MDD process to be followed.
Define the Transformation Rules. This activity is the most essential in this
approach. Within this activity, the elements of the source and target models are
identified and well-documented. The transformation language is also chosen, and
the transformation automation level and tool support are specified. Transforma-
tion rules are described in a specially prepared Transformation Rules Catalog.

Fig. 1. A) RUP Extension disciplines, B) Model-Driven Requirements Workflow

106 G. Loniewski, A. Armesto, and E. Insfran

Generate the Analysis Model. This activity concludes the entire require-
ments modeling process by creating an architecture-oriented PIM. This is the
result of all the previously performed activities, taking advantage of the artifacts
created in the Business Modeling discipline. The output product of this activity
is the input for further process analysis, design and implementation tasks.

4.2 Work Products

Owing to space constraints, we shall comment only briefly on the most important
artifacts which have been introduced or improved in the new discipline.

Software Architecture Document (SAD). This artifact, from the Analysis
& Design discipline, is here initiated on the basis of the system architecture that
has been settled on. It is an important artifact for architects and analysts during
the entire development process.
Transformation Rules Catalog (TRC). The transformation rules are speci-
fied on the basis of the source and target model elements identified. This artifact
should consist of a precise description of rules, mappings and refinements, which
also provides the basis for the requirements traceability.
Transformation Iteration Plan (TIP). Requirements transformations are
usually quite complex and are frequently based on defining intermediate models.
A sequence of transformations rather than a single transformation is therefore
necessary. This artifact is created to plan a logical order of the transformation
to be performed.
Generated Analysis Model (GAM). This is the most important work prod-
uct in the discipline, it being a source for further transformations to generate
PSMs. Its type of content depends on the architecture identified, while the model
must suit the architectural pattern considered.

4.3 Roles

As the new discipline is based on the Requirements discipline, it maintains the
roles originally defined by RUP. The only exception is that the Requirements
Specifier has been replaced with two additional roles related to the model-driven
context activities: Model Analyst and Transformation Specifier. Only the newly
introduced roles are briefly described owing to space limitations.

Model Analyst. During the MDR discipline, the Model Analyst coordinates a
number of tasks related to: model transformations, model traceability and model
validation. The main artifact for which this role is responsible is the GAM. This
role also collaborates with the System Analyst to accomplish a number of tasks
related to requirements modeling and traceability.
Transformations Specifier. This role is responsible for specifying the details
of transformation rules to transform requirements model into analysis model. It
is a good practice to establish such rules in the meta-model level, which also
simplifies the requirements traceability.

Incorporating Model-Driven Techniques into Requirements Engineering 107

5 Conclusions

In this paper we have presented an extension of RUP by placing emphasis on the
use of models as requirements representation in the context of MDD. This ex-
tension proposes a new discipline called Model-Driven Requirements that substi-
tutes the Requirements discipline from the classic RUP. This approach through
the application of architecture-oriented model-driven techniques attempts to ex-
tend RUP to specific project needs. It improves the standard development pro-
cess defined by RUP in that it is not only model-based, but also model-driven.

This extension includes new content elements, such as: artifacts, roles, tasks,
activities and capability patterns, to guide software engineers who attempt to
follow an MDD approach in their software projects.

As further work, we plan to validate the approach by measuring the effort in-
volved in the maintainability of requirements and the number of failures caused
by errors in preparing the requirements specification in comparison to other
similar sized projects carried out with the use of classical methodologies.

References

1. Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Gariapathy, S., Holley, K.:
SOMA: a method for developing service-oriented solutions. IBM Syst. J. 47(3),
377–396 (2008)

2. Barn, B., Dexter, H., Oussena, S., Sparks, D.: Soa-mdk: Towards a method devel-
opment kit for service oriented system development. In: Magyar, G., Knapp, G.,
Wojtkowski, W., Wojtkowski, W.G., Zupancic, J. (eds.) Advances in Information
Systems Development, pp. 191–201. Springer US, Heidelberg (2008)

3. Delgado, A., Ruiz, F., de Guzmán, I.G.R., Piattin, M.: A Model-driven and Service-
oriented framework for the business process improvement. Journal of Systems In-
tegration 1(3) (2010)

4. Haumer, P.: IBM Rational Method Composer: Part 1: key concepts (December
2005),
http://www-128.ibm.com/developerworks/rational/library/jan06/haumer/

5. Kruchten, P.: The Rational Unified Process: an introduction. Addison-Wesley
Longman Publishing Co., Inc., Boston (1999)

6. Loniewski, G., Insfrán, E., Abrahão, S.: A systematic review of the use of re-
quirements engineering techniques in model-driven development. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6395, pp. 213–227.
Springer, Heidelberg (2010)

7. Mittal, K.: Service Oriented Unified Process, SOUP (2006),
http://www.kunalmittal.com/html/soup.shtml

8. OMG (Object Management Group): Software Process Engineering Metamodel
(SPEM) (April 2008)

9. Ramollari, E., Dranidis, D., Simons, A.J.H.: A survey of service oriented de-
velopment methodologies, http://staffwww.dcs.shef.ac.uk/people/A.Simons/
research/papers/soasurvey.pdf

10. Shuja, A., Krebs, J.: IBM R©Rational Unified Process R©Reference and Certification
Guide: Solution Designer. IBM Press (2007)

http://www-128.ibm.com/developerworks/rational/library/jan06/haumer/
http://www.kunalmittal.com/html/soup.shtml
http://staffwww.dcs.shef.ac.uk/people/A.Simons/research/papers/soasurvey.pdf
http://staffwww.dcs.shef.ac.uk/people/A.Simons/research/papers/soasurvey.pdf

The Online Method Engine: From Process
Assessment to Method Execution

Kevin Vlaanderen, Inge van de Weerd, and Sjaak Brinkkemper

Utrecht University,
Department of Computer Science,

P.O. Box 80.007,
3508 TA, Utrecht, The Netherlands

{k.vlaanderen,i.vandeweerd,s.brinkkemper}@cs.uu.nl

Abstract. The field of method engineering has seen an increasing
amount of interesting approaches and techniques over the last ten years.
The coverage of these techniques ranges from the modeling of processes
and systems to the situational construction of new ones. However, access
to the required domain knowledge is often not available, and the effort
required for effective method engineering is in most cases too much. To
overcome these problems, we propose an incremental approach for pro-
cess assessment, process improvement, and process execution, based on
method engineering techniques and tools. The approach is implemented
in the Online Method Engine; a holistic solution that supports these three
aspects. In this paper, we give a conceptual overview of the approach,
along with an overview of the current state of development.

Keywords: Method Engineering, Assessment, Process Improvement,
Online Method Engine, Method Fragments, Method-as-a-Service, Soft-
ware Product Management.

1 Introduction

Many researchers [17,15,10,4] describe the use of a method base in situational
method engineering. Method fragments can be stored in it, for example by using
the MEL method engineering language [6]. Once retrieved from the method base,
they can be combined following the assembly rules described by Brinkkemper
[5]. More recently, work has been performed on allowing incremental method
evolution [23]. According to this work, method fragments can be used to describe
and improve the evolution of software product management methods, by allowing
the insertion, modification and deletion of method fragment components.

Some method bases have actually been implemented, such as OPF [11] and
the CREWS method base [14]. However, for practitioners (the actual method
users), retrieving these method fragments and using those in their daily work
can be cumbersome. A prerequisite is that the method user should be aware
of the exact method fragment that he or she is searching for. In addition, the
method user must know what to do with the retrieved method fragment, how
to interpret it, and how to implement it in the organization.

J. Ralyté, I. Mirbel, and R. Deneckère (Eds.): ME 2011, IFIP AICT 351, pp. 108–122, 2011.
c© IFIP International Federation for Information Processing 2011

The Online Method Engine: From Process Assessment to Method Execution 109

To support the method engineering activity, several computer-aided method
engineering (CAME or meta-CASE) tools have been developed. Most of these
focus on the meta-modeling aspect. One well-known example of such a tool
is MetaEdit+ [19], which enables the definition and usage of domain-specific
languages. This tool was also applied in a more agile context [3]. On the other
hand, several tools that focus more on the method construction aspect have
been developed as well. One example in this field is the work of Saeki [18]. Work
on the method base management system ’Decamerone’ has been performed by
Harmsen and Brinkkemper [9].

Unfortunately, the current method bases and knowledge infrastructures are
too hard to use for many practitioners. They do not always know exactly what
they are looking for, nor how to implement a formal method description in the
processes of their organization. Therefore, in this research, we go a few steps
further. We propose an Online Method Engine (OME) that can not only be
used to store and retrieve method fragments, but also to assess an organization’s
current processes, create an advice based on this assessment, and implement this
advice in the organizations processes and tools.

This research has many similarities with research on the Method as a Ser-
vice, described by Rolland [16] and Deneckère et al. [7], and by Guzélian and
Cauvet [8]. By adopting a Service-Oriented Architecture (SOA) for method en-
gineering, the authors aim to change method fragments into method services
which are implemented as Web services [16]. Deneckère describes how the con-
cept of SOA is adopted in a MOA, a Method-Oriented Architecture. This MOA
facilitates a method services registry in which available method services are or-
ganized. The authors describe the MOA usage in two use cases. They state that
method engineers can use CAME tools to define new method with services com-
positions. On the other hand, method users (developers, practitioners) can use
their CASE-tools to invoke remote method services. Unfortunately, the Method
as a Service concept is not thoroughly understood yet.

In our vision of the OME, existing method bases are extended. The OME does
not only provide a repository in which method fragments are stored, but also of-
fers the opportunity for users to assess their own processes and investigate which
ones should be improved. Based on this assessment, an improvement roadmap is
created that is used as a basis for a number of method increments. Furthermore,
the company’s tooling infrastructure can be directly aligned with the method
improvement by automatically configuring templates and work-documents.

In the remainder of this paper, we first explain the principle of model-driven
process assessment and improvement. Then, section 3 describes the implementa-
tion of this principle in the OME. Finally, in section 4, we present our conclusions
and further research.

2 Incremental Process Assessment and Improvement

The idea of incremental process improvement that we present in this paper con-
sists of several separate steps. The starting point for each process improvement

110 K. Vlaanderen, I. van de Weerd, and S. Brinkkemper

Fig. 1. Incremental Process Improvement

is an analysis of the current process, based on which a maturity profile can be
calculated. The situational factors of the company are used to determine an
optimal maturity profile. By calculating the delta between these two, the re-
quired process improvement is determined. This process improvement is further
detailed by relating it to suitable method fragments that can be combined into
a new process that improves the company’s process. This brief summary of the
process is illustrated in Figure 1. Each of the steps in the model is explained in
more detail in the following sections.

At several points in the text, references will be made to example implemen-
tations in the domain of Software Product Management (SPM). In contrast to
most method engineering approaches, our solutions are not implemented in the
software engineering domain. SPM deals with management of requirements, the
definition of releases, and the definition of software products in a context where
many internal and external stakeholders are involved [20]. It represents a context
where the creation and application of situational methods is very relevant, but
where knowledge regarding effective method implementations is scarce.

2.1 Analysis of Current Situation

The first step in the process improvement activity is obtaining an overview of the
current situation in terms of implemented capabilities, and situational factors of
the business (unit). This approach can be generalized into a form as depicted

The Online Method Engine: From Process Assessment to Method Execution 111

Fig. 2. Analysis of current situation

by Figure 2. The figure is an instance of a PDD (the same applies to Figure 3).
Its notation is based on a combination of a UML activity diagram and a UML
class diagram. On the left-hand side, boxes indicate the activities that are to be
performed. Complex activities that are not further specified here have a black
shadow. On the right-hand side, the resulting deliverables are shown, along with
their relationships.

The current situation constitutes both the currently employed process as well
as more generic aspects of the company at hand. During the initial phase, it is
the company that needs to decide what the extent of the analysis will be, i.e. the
focus domain. We can identify two types of situations regarding the motivation
for employing method engineering:

– The need for improvement of a specific area. In many cases, method im-
provements can better be performed in an evolutionary way rather than in
a revolutionary way. By doing so, you reduce risk and increase the chance of
success. This also means that it is often not required to analyze the entire
process. Instead, only a specific part of the process is looked at, and only for
that part improvements are provided.

– The need for improvement of the entire process. For companies that do
require a major improvement of their process, this should be a possibility. In
those cases, the entire process should be analyzed. This group also contains
(new) companies that wish to obtain advice without having a process in
place yet, or with a process that is to be abandoned altogether. Although
the latter will only very rarely happen, it should be taken into account.

112 K. Vlaanderen, I. van de Weerd, and S. Brinkkemper

Based on this choice, a questionnaire is generated and performed to gather
information regarding the situational context. In the area of SPM, the situational
analysis has been performed by conducting a questionnaire with a list of all
the relevant situational factors as described by Bekkers et al. [1]. To enhance
reliability of the data, the questionnaire could be replaced by performing an
interview. Similar solutions can be developed for other areas.

Data from interviews that have been held suggest that there is a variety of
wishes regarding the amount of effort that companies are willing to put in, in
order to obtain process improvement advice. We can distinguish two manners
in which companies are willing to provide information regarding their current
process:

– Full process information. In the optimal case, companies are willing to pro-
vide complete information regarding their current process, deliverables, and
situational factors that describe their environment. This means that their
entire process needs to be captured in a way suitable for further elaboration.
Also, the situational factors need to be captured in some way, either through
a questionnaire or by means of an interview. With all data available, the pro-
cess improvement advice that can be obtained is the most effective. However,
capturing the entire process requires significant work from an expert who is
able to employ an appropriate modeling technique.

– Only situational factors and maturity information. In many cases, captur-
ing full process information requires too much effort. Therefore, it should be
possible to provide a process improvement advice based solely on the situa-
tional factors and maturity information. This option implies that the advice
does not contain any information on how to implement the advice, but only
what should be implemented.

If a company is willing to provide full information regarding (part of) their pro-
cess, the process should be modeled by an expert, either internal or external. The
resulting model should contain detailed information regarding both the process
as well as the deliverables. Therefore, process-deliverable diagrams (PDDs) are a
very suitable technique for this purpose. Vlaanderen et al. [22] show how PDD’s
can be used to model an SPM process and to capture the current maturity level
of a company’s product management process.

2.2 Analysis of Need

The next phase takes the situational factors and the list of implemented capa-
bilities from the first phase as input, after which it determines how the current
process could be improved. In the domain of Software Product Management,
this phase has already been described by Bekkers et al. [1] in the form of the
situational assessment method, but it will be summarized here for the sake of
completeness (see Figure 3). The need analysis consists of three activities; (1)
construction of the current capability profile, (2) calculation of the optimal ca-
pability profile, and (3) calculation of an ’areas of improvement’ matrix. The
first of these three consists of translating the results from the initial maturity
assessment into a form usable for further calculation.

The Online Method Engine: From Process Assessment to Method Execution 113

Fig. 3. Analysis of Need

Fig. 4. Example Areas of Improvement Matrix

The second activity is somewhat more complex. The optimal capability profile
is determined by a set of situational factor effects. Several situational indicators
have an associated effect. By applying all applicable situational factors effects, an
optimal capability profile is obtained that is customized for the current company.

The current capability profile and the optimal capability profile are then com-
bined into an Areas of Improvementmatrix. This is again a capability matrix, with
both previous matrices integrated into it. Between the two matrices, a gap can ex-
ist, which can be called the delta. This delta indicates the capabilities that need
to be implemented, in order to arrive at the optimal maturity level. An example
of such an Areas of Improvement matrix within the Software Product Manage-
ment domain is shown in Figure 4. The actual delta is the light-grey areas, as this
depicts the difference between the actual and the optimal maturity level. This set
forms the basis for the next phase in the process of method improvement.

114 K. Vlaanderen, I. van de Weerd, and S. Brinkkemper

What is important in the context of this phase is the fact that users can
vary in the rigidity that they demand from the method engineering process.
Some wish only a partial improvement for a specific area, while others wish to
improve their process to the maximum maturity level suggested for them. As
stated before, evolutionary improvement is in many cases more prone to success
than revolutionary change. This implies that it should be possible to provide
improvements in the form of a roadmap when the process is changed rigorously.

2.3 Selection of Process Alternatives

For the next phase, each missing capability has to be connected to a method frag-
ment that implements the capability. The capabilities that a method fragment
implements can be used as an attribute during the initial selection of method
fragment candidates. As will be described later on, both process fragments as
well as deliverable fragments can implement capabilities. For this reason, capa-
bility is an effective first classifier of a method fragment in the method base.

For further classification, we reuse the situational factors described by Bekkers
et al. [2]. Since many fragments will be applicable in any situation, it does not
make sense to describe each fragment by all factors. This would also pose a
problem when the list of situational factors would change. Therefore, situational
factors should only be used to indicate restrictions on the use of the fragment.
The combined set of indicators for a specific fragment forms its second classifier,
situation.

A third classifier of method fragments is their rating. Through the feedback
of users, method fragments are rated on several aspects, such as effectiveness,
complexity, etc. Method fragments with a very low rating can be ignored in most
cases, while in other cases method fragments with a high rating are selected over
similar method fragments with a low rating. A simple example of a method
fragment with its describing attributes can be found in table 1. It is based on a
prioritization technique used within the SPM domain.

Table 1. Example Method Fragment with Attributes

Wiegers’ Prioritization Matrix

Capabilities Situation Rating

– Internal Stakeholder
Involvement

– Prioritization Methodology
– Customer Involvement
– Cost Revenue Consideration
– Partner Involvement

– # of requirements < 50
– Partner involvement

>= medium

– Ease of use: 8/10
– Satisfaction: 6.5/10

Although processes, capabilities and situational factors form a very solid
ground for method fragment selection, we need to take into account that we
are dealing with processes in which humans are involved. This means that the
resulting process needs to fit with the preferences of the people involved in it.

The Online Method Engine: From Process Assessment to Method Execution 115

These people need to be able to express these preferences during the selection of
alternative method fragments. The results from interviews have indicated that
product managers are not always willing to accept suggestions made to them by
a machine [21]. Therefore, the process should allow for differences in the amount
of freedom that is provided. While it is generally a good idea to suggest one
specific method fragment per capability, users should be at liberty to select an-
other. This ’freedom-of-choice’ has serious consequences for the OME. In order
to make the freedom given to users useful, they need to be provided with a
sufficient amount of information for them to base their decision on.

The first source of information for this is the method fragment itself. Since
every method fragment can be displayed in the form of a PDD, users can use
this diagram to form an initial mental image of its implications. This is possible
since all related activities and deliverables are readily available in the method
fragment. However, in addition to this, we also identified a need for more sources
in the form of experience reports. Experience from people in similar situations
is highly valued, and would thus be a valuable addition to the process.

Based on all of the sources of information combined, users should be able to
make a valid and well-argued choice regarding the method fragments that should
be selected, and thus regarding the changes that should be made to the existing
process.

2.4 Creation of Improvement Roadmap

After the improvements have been selected, the process of embedding or im-
plementing the process advice varies depending on the amount of information
that a company has provided. The possibilities are limited when only maturity
information is known, in contrast with the field of opportunities when full pro-
cess information is given. In any case, the initial part of the process can be the
same for both situations, as this regards the elaboration of the chosen solution
into steps. Steps are needed since solutions will in many cases be too large for
implementation in one iteration. An evolutionary approach has more chance of
success as it will likely yield a higher acceptance due to smaller, incremental
changes.

The splitting of solutions into steps is subject to several conditions. Solutions
cannot be split into steps randomly. The major reason for this is that we need
to take dependencies into consideration. If a company wants to increase the
maturity level of its requirements gathering process from A to C (see Figure 4,
it does not make sense to implement automation before centralized registration.
Instead, the first step should be to implement the activity related to level B,
followed by an iteration in which level C is implemented.

In most cases, several capabilities can be implemented at the same time.
However, to make iterations or steps more successful, it is probably wise to
make sure that each step has some sort of goal, or a theme. This ensures a set of
changes that is coherent. This way, the change-process seems less chaotic to the
employee. This is important, as he or she will be the one performing the new
process.

116 K. Vlaanderen, I. van de Weerd, and S. Brinkkemper

After the roadmap has been presented to the user and has been accepted,
the implementation of it can start. In case that only maturity information is
available, this process is fairly straightforward, as little support can be given.
The changes that have been proposed need to be implemented in the company
manually. In order to guide this, process descriptions and templates related to
the advice are provided.

If full process information is available, then this process is considerably more
complex. This part encompasses the most complex asset of method engineering,
namely the assembly of method fragments. For each step, the selected method
fragments need to be integrated with the existing process. As this is a difficult
task, it is probably best to do this fragment by fragment.

A problem with this segmented approach, however, is the risk that some
parts of the process get changed multiple times. This is unwanted, as this can
lead to confusion among the people that need to perform the process. Therefore,
already during the creation of the roadmap, the system should make sure that
no such situations occur. This is also another argument for the statement that
method fragments should be kept as small as possible. By preventing the usage
of complex method fragments, the chance of overlap is made smaller, thereby
increasing the chance of success of any algorithm that is charged with creating
a coherent roadmap.

2.5 Selection and Implementation of Method Increments

After the assembly of the selected method fragments into the original process,
the changes can actually be implemented within the company. To facilitate the
change, the system can generate and/or update templates based on the original
and the new process description (expressed in the PDDs).

If the company’s original work documents are available, than they can be
updated to reflect the new deliverables within the process. During this step,
original data should be maintained while new columns, sections, formulas, etc.
are added to the documents.

In case deliverables are not available, templates can be generated based on
the generated process description. The generated templates should be directly
usable within the new process.

In addition, the system generates full process descriptions with explanations
of all steps, deliverables and roles. These descriptions aid the process owner
during the implementation of the process in the company.

3 Online Method Engine

The method engineering approach described above does not adhere to the
Method-as-a-Service philosophy unless it allows users to perform the created
method to some extent online. This means that, instead of using various local
software tools, the workflow and the deliverables are embedded in an online
platform, which we will refer to as the OME. The method modification aspect

The Online Method Engine: From Process Assessment to Method Execution 117

is essential for improving the effectiveness of processes, but the method exe-
cution aspect ultimately allows major improvements in the efficiency of these
processes by taking away a large share of the burden of maintaining a complex
IT infrastructure.

Fig. 5. Online Method Engine

We depicted our vision on the OME in Figure 5. At the bottom, the de-
velopment platform is depicted. As will be described later, this refers to Google
AppEngine in our approach. On top of the platform the OME is shown, with the
three functional layers described throughout the previous section. Each layer con-
tains several functional components, shown by the rounded boxes. On the right
hand of the figure, two databases are shown; one for the method engineering
related data such as method fragments and situational factors, and one for the
method execution related data such as requirements and planned releases. These
database are connected to the system using separate data-connectors, which al-
low connection to any suitable database, ranging from a MySQL database to the
database of a third-party requirements engineering tool.

Such an approach implies an integration of the functionality to describe a
process, assess the process, adapt the process, and then perform the process. In
order to be able to do so, method fragments need to be correctly translated into
an interface that offers the right set of tools for users to perform their tasks. The
creation and usage of templates is a core aspect of this. Such online documents
can be placed on any cloud documents solution such as Google Docs. As this

118 K. Vlaanderen, I. van de Weerd, and S. Brinkkemper

environment is accessible through an API, it can be integrated into any other
system, such as the OME.

In addition to the translation of deliverables into documents and the manage-
ment of these documents, the activities need to be correctly translated. Aspects
that need to be taken into consideration here are the correct translation of access
rights based on roles, the distinction between automated tasks and user input,
the type of interface that is required for a certain set of activities, and the order
of the activities, i.e. sequential, simultaneous, or a mix of both.

Currently, these aspects are not all derivable from the PDDs. To solve this,
either stricter rules should be applied during the creation of PDDs, or addi-
tional models should be created for defining interface, access rights and business
process. The former is not a good solution, as this would make the creation of
PDD’s too complex. The latter is similar compared to model-driven develop-
ment solutions such as OO-Method [13] and the web-based variant OOWS [12].
This would require the addition of several steps to the process for creating the
required models, undermining an important aspect of the OME, namely the fact
that it should be simple.

To forgo this problem, an alternative solution could be developed, based on
pattern recognition. The idea behind this is that certain patterns will exist in
the PDD’s of processes and deliverables that can be directly related to correct
solutions for the interface. For instance, activities that are performed simulta-
neously should be connected to a tabbed interface, with a tab for each activity.
Activities that are performed linearly can always be displayed as steps, allowing
to go back and forward. Such a solution would require no extra effort of the
user. However, the possibilities of recognizing patterns are limited and it is very
prone to modeling errors. Therefore, a user should always be able to alter the
interface for a given process. Alternative interface elements should be provided
for this by the system. The same holds for the generation of documents based
on deliverables. As it is not always possible to derive the required file-type for a
deliverable, the user should have the option to change this manually.

To capture all the requirements of the translation from method description
to interface, a meta-model should be defined describing all possible translations
for every construct and pattern.

3.1 Information Extraction Using MERL

For capturing processes in the OME, referred to as ’process modeler’ in Figure 5,
we currently use the tool MetaEdit+. MetaEdit+ is ”an environment that allows
building modeling tools and generators fitting to application domains” [19]. It
lets users define domain-specific meta-models that are used to generate a tool
that is suited specifically for creating diagrams based on that meta-model. In this
case, the meta-model for PDD has been implemented by defining all constructs
(activities, deliverables, etc.) and rules, in addition to the visual aspects of those
constructs.

Next to the modeling-capabilities of MetaEdit+, the tool also embeds a trans-
formation language called MERL, or the MetaEdit+ R* Language. This

The Online Method Engine: From Process Assessment to Method Execution 119

language allows for converting diagrams into any format required. Although
the language in itself is not very powerful, some tricks will make any conversion
to a textual format such as XML or latex possible.

The language is normally used for code generation, in the context of model-
driven development. With such approaches, the solution domain is modeled using
a domain-specific language/diagram, after which the diagram is analyzed and
converted into source code. In this case, the information stored in the diagrams
is used to describe the context / situation of an SPM process, and to assess its
maturity (model-driven assessment).

For this research, generators have been written that allow the generation
of a filled-in maturity matrix based on all PDDs of a company’s process [21].
Combined with the actual diagrams, these pieces of information form a good
overview of the maturity of a process, along with its description in terms of
activities and deliverables.

3.2 Template Generation

As described earlier, changes made to a process through the OME should be
facilitated and supported as much as possible, to ensure the success of the evo-
lution. One technique for doing so is providing automated templates based on

Fig. 6. Example of an incremental template

120 K. Vlaanderen, I. van de Weerd, and S. Brinkkemper

the deliverables of a process. In the case of minor changes, changes made to a
template can be incorporated in the original company documents, preserving any
data already existing. We developed a proof of concept, in which we show how
a Google spreadsheet can be updated dynamically by changing the meta-model
of a method fragment.

In Figure 6, the meta-model of a deliverable of a requirements prioritization
activity is presented. This deliverable is a requirement. In the old case, this
requirement had three attributes: No., Topic, and Priority. This priority was
added based on the personal preference of the one who stored the requirements.

In the new situation, another approach is used to prioritize the requirements.
The variables ’Cost’, ’Weight’ and ’Revenue’ are added and used to calculate the
priority. Furthermore, the attributes ’TeamA’ and ’TeamB’ are added to divide
the costs (in man days) to the teams.

In the two spreadsheets that are illustrated in Figure 6, the change in the
meta-model of the requirements can be viewed. Extra columns have been added
to the spreadsheet. In this case, some of the cells in the new template are already
filled in. Normally, this is a job for the method user.

To make templates useful in practice, the current information as provided by
the method fragment does not suffice. Relations within and between concepts
are not clearly defined. This means that, for example, the formula that specifies
the value of ’Cost’ based on the other attributes (in the example above) cannot
be modeled. At this point, we do not yet have a satisfactory solution for this.

4 Conclusions and Further Research

In this paper, we presented our vision on the OME, an online environment
that can be used to assess an organization’s current processes, create an advice
based on this assessment, and align the company’s tooling infrastructure with the
method improvement by automatically configuring templates and documents.

Although the concept presented in this paper is fairly detailed, the OME that
we envision is not yet operational. The complexity of such a system was already
known, and this paper only strengthens the idea that we are dealing with an
advanced concept requiring a lot of research effort. From this point onwards,
each of the areas of the OME needs to be addressed in detail, putting together
the puzzle piece by piece. Expertise in several areas will be needed, as each
part of the OME has its specific challenges, from linguistic analysis for method
assembly to data-optimization for the method base.

Up until this stage, the research effort has mainly been focused on analyzing
the current situation and the need, with a focus on the SPM domain. Further-
more, a lot of research effort has been spent on the underlying meta-modeling
techniques that are used throughout the system. This leaves the remaining areas
of process alternative selection, improvement roadmap creation, and increment
selection and implementation open for future research.

An important factor that can never be left out during the elaboration is
the fact that the purpose of the OME is the improvement of processes. As a

The Online Method Engine: From Process Assessment to Method Execution 121

consequence, we are always dealing with people that bring habits, experiences,
and opinions. This should not be overlooked. Doing so would result in a system
that is too rigid, forcing people into ways of working that they will not accept,
thereby foregoing the purpose of the system. However, if it is done right, than
the OME has great potential value. We believe that this solution can increase the
maturity of the software industry significantly by providing professionals with
the right tools to optimize their processes.

Unfortunately, the detailed OME that is presented in this paper has not been
fully validated yet. As no concrete system exists yet, doing so would have involved
asking potential users to imagine themselves using such a system. This is a
tremendous effort, especially due to the complexity of it, and would likely not
have resulted in a valid response. However, as development continues, the user
should not be forgotten. Instead, at several points in time, his opinion should
be asked and corrections should be made according to it. When done correctly,
this will result in a functional online method engineering environment.

References

1. Bekkers, W., Spruit, M., van de Weerd, I., van Vliet, R., Mahieu, A.: A Situational
Assessment Method for Software Product Management. In: Proceedings of ECIS
2010 (2010) (accepted)

2. Bekkers, W., van de Weerd, I., Brinkkemper, S., Mahieu, A.: The Influence of
Situational Factors in Software Product Management: An Empirical Study. In:
IWSPM 2008: Proceedings of the 2008 Second International Workshop on Software
Product Management, pp. 41–48. IEEE Computer Society, Washington, DC, USA
(2008)

3. Berki, E.: Formal Metamodelling and Agile Method Engineering in MetaCASE
and CAME Tool Environments. In: Proceedings of the 1st South-East European
Workshop on Formal Methods, SEEFM 2003, pp. 170–188 (November 2003)

4. Brinkkemper, S.: Method engineering: engineering of information systems devel-
opment methods and tools. Information and Software Technology 38(4), 275–280
(1996)

5. Brinkkemper, S., Saeki, M., Harmsen, F.: Meta-modelling based assembly tech-
niques for situational method engineering. Information Systems 24(3), 209–228
(1999)

6. Brinkkemper, S., Saeki, M., Harmsen, F.: A Method Engineering Language for
the Description of Systems Development Methods. In: Dittrich, K.R., Geppert, A.,
Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 473–476. Springer, Heidel-
berg (2001)

7. Deneckère, R., Iacovelli, A., Kornyshova, E., Souveyet, C.: From Method Fragments
to Method Services. In: Proceedings of EMMSAD 2008 (2008)

8. Guzélian, G., Cauvet, C.: SO2M: Towards a Service-Oriented Approach for Method
Engineering. In: Proceedings of the International Conference IKE 2007 (2007)

9. Harmsen, F., Brinkkemper, S.: Design and implementation of a method base man-
agement system for a situational CASE environment. In: Second Asia-Pacific Soft-
ware Engineering Conference (APSEC 1995), p. 430. IEEE Computer Society, Los
Alamitos (1995)

122 K. Vlaanderen, I. van de Weerd, and S. Brinkkemper

10. Harmsen, F.: Situational Method Engineering. Ph.D. thesis, Universiteit Twente
(1997)

11. Henderson-Sellers, B.: Process metamodelling and process construction: examples
using the OPEN Process Framework (OPF). Annals of Software Engineering 14(1),
341–362 (2002)

12. Pastor, O., Fons, J., Pelechano, V.: OOWS: A method to develop web applications
from web-oriented conceptual models. In: Proceedings of IWWOST 2003. Luis
Olsina, Oscar Pastor, Gustavo Rossi, Daniel Schwabe, Oviedo (2003)

13. Pastor, O., Insfrán, E., Merseguer, J., Romero, J., Pelechano, V.: OO-METHOD:
An OO Software Production Environment Combining Conventional and Formal
Methods. In: Olivé, À., Pastor, J.A. (eds.) CAiSE 1997. LNCS, vol. 1250, pp.
145–159. Springer, Heidelberg (1997)

14. Ralyté, J.: Reusing scenario based approaches in requirement engineering meth-
ods: CREWS method base. In: International Workshop on Database and Expert
Systems Applications (DEXA), pp. 305–309. IEEE, Los Alamitos (1999)

15. Ralyté, J., Jeusfeld, M., Backlund, P., Kuhn, H., Arni-Bloch, N.: A knowledge-
based approach to manage information systems interoperability. Information Sys-
tems 33(7-8), 754–784 (2008)

16. Rolland, C.: Method engineering: towards methods as services. Softw. Pro-
cess 14(3), 143–164 (2009)

17. Saeki, M.: Object-oriented meta modelling. Object-Oriented and Entity-
Relationship Modeling 1021, 250–259 (1995)

18. Saeki, M.: Came: The first step to automated method engineering. In: Workshop
on Process Engineering for Object-Oriented (2003)

19. Tolvanen, J.P., Rossi, M.: MetaEdit+: Defining and Using Domain-Specific Mod-
eling Languages and Code Generators. In: Proceedings of the Conference on Ob-
ject Oriented Programming Systems Languages and Applications, OOPSLA 2003
(2003)

20. van De Weerd, I., Brinkkemper, S., Nieuwenhuis, R., Versendaal, J., Bijlsma, L.:
On the Creation of a Reference Framework for Software Product Management:
Validation and Tool Support. In: International Workshop on Software Product
Management (IWSPM), pp. 3–12. IEEE, Los Alamitos (2006)

21. Vlaanderen, K.: Improving Software Product Management Processes: a detailed
view of the Product Software Knowledge Infrastructure. Ph.D. thesis, Utrecht Uni-
versity (2010)

22. Vlaanderen, K., van De Weerd, I., Brinkkemper, S.: Model-Driven Assessment in
Software Product Management. In: International Workshop on Software Product
Management, IWSPM (2010)

23. van de Weerd, I., Souer, J., Versendaal, J., Brinkkemper, S.: Concepts for In-
cremental Method Evolution: Empirical Exploration and Validation in Require-
ments Management. In: Advanced Information Systems Engineering, pp. 469–484.
Springer, Heidelberg (2007)

A Deductive View on Process-Data Diagrams

Manfred A. Jeusfeld

Tilburg University, Warandelaan 2, 5037AB Tilburg, The Netherlands
manfred.jeusfeld@acm.org

http://conceptbase.cc

Abstract. Process-Data Diagrams (PDDs) are a popular technique to
represent method fragments and their recombination to new adapted
method specifications. It turns out that PDDs are at odds with a strict
separation of MOF/MDA abstraction levels as advocated by MOF/MDA.
We abandon the restriction and specify PDDs by a metametamodel that
supports both process and product parts of PDDs. The instantiation of
the process side of PDDs can then the used as the type level for a sim-
ple traceability framework. The deductive formalization of PDDs allows
to augment them by a plethora of analysis tools. The recombination of
method fragments is propagated downwards to the recombination of the
process start and end points. The hierarchical structure of the product
side of PDDs can be used to detect unstructured updates from the pro-
cess side.

Keywords: method fragment, deductive rule, traceability, metamodel.

1 Introduction

Method Engineering advocates the assembly [12] of adapted information sys-
tem development methods from a pool of method fragments [3], depending on
the development context [4,13]. One technique for recording re-usable method
fragments are process-data diagrams (PDDs) [14]. They integrate the complex
development process with the development products, typically models, docu-
ments, and code. The process part is represented using an extension of UML
activity diagrams, while the product part is represented as a UML class dia-
gram, utilizing the part-of construct to represent document or model composi-
tion. Further information about the method fragment, such as motivation, goals
of the method fragment, examples and literature, is textually represented in a
Wiki style (http://www.cs.uu.nl/wiki/bin/view/MethodEngineering/).

The first goal of this paper is to investigate how PDDs can be represented in
a deductive system that axiomatizes the re-combination of method fragments to
larger fragments, and ultimately, to complete methods. The formalization yields

– rules for detecting incorrect re-combinations
– rules to detect unreachable method parts (not discussed here)
– rules to detect unstructured writes to the product side

J. Ralyté, I. Mirbel, and R. Deneckère (Eds.): ME 2011, IFIP AICT 351, pp. 123–137, 2011.
c© IFIP International Federation for Information Processing 2011

http://conceptbase.cc
http://www.cs.uu.nl/wiki/bin/view/MethodEngineering/

124 M.A. Jeusfeld

The second goal is to investigate to what extent the PDDs are capable of
supporting the traceability of executions of assembled method fragments. We
observe that the process part of PDDs itself is a model subject to instantiation
and discuss possible extensions to PDDs to allow a limited, but still useful, form
of traceability.

The paper is organized as follows. The subsequent section 2 introduces the
constructs of PDDs using an example. Section 3 then relates PDDs to the stan-
dard abstraction levels of metamodeling. In section 4, PDDs are are formalized
using the deductive ConceptBase metamodeling environment [8]. Finally, sec-
tion 5 relates the structure of the process part structure of the product part of
PDDs, and section 6 interprets the execution of a PDD (i.e. process trace) as an
instance of the PDD model.

2 Constructs of Process-Data Diagrams

A PDD provides constructs to denote processes similar to UML activity dia-
grams, constructs to denote the deliverables and data using a variant of UML
class diagrams, and a link construct to combine the two sides.

Figure 1 shows an example PDD. Activities like ”Domain modeling” can have
sub-activities like ”Identify relations”. Activities can also be associated with

Fig. 1. Example PDD of the Web Engineering Method (excerpted from [15])

A Deductive View on Process-Data Diagrams 125

agents who perform them (not shown in the figure). Activities exist at various
aggregations levels: whole projects, phases, larger activities and individual steps.
PDDs consider two types of complex activities. Open activities have explicit
sub-activities, and closed activities have sub-activities, but they are not made
explicit. Activities are routed via decision nodes (”if then else”) and parallel
splits. There are also parallel joins, all denoted with UML activity diagrams.

The product part of a PDD is a UML class diagram hierarchically organized
via composition associations. Open complex concepts are explicitly decomposed
into parts, while closed complex concepts are known to consist of parts but
the parts are not shown. The decomposition can be down to individual model
elements such as an individual actor in a use case diagram. The hierarchical
structure of the product part resembles the hierarchical decomposition of ac-
tivities into sub-activities. However, there is no strict rule that elements of the
process part are matched to elements to the product part that have the same
decomposition level, e.g. whole methods matched to the top concept in the hier-
archy of data concepts. It is assumed – though not enforced – that the process
part of a PDD has a unique start and a unique end. The process and product
parts are connected by an output link (dashed arrow in fig. 1).

Method fragments are stored in a method base, for example the Complete
Definition Phase method fragment of fig. 1 [14,15]. We shall refer to the method
fragment by its name and note that a method fragment is a certain aggregation
of an activity, typically covering a phase. The goal of section 4 shall be a logic-
based reconstruction of PDDs that allows to formalize syntactic correctness rules
for PDDs. The formalization shall also support the automatic recombination of
method fragments and a simple form of traceability of a method execution.
Specifically, we aim for the following properties:

1. If a method fragment A is defined to be followed by method fragment B
then the last activity of method fragment A is followed by the first activity
of method fragment B. Note that these two activities can themselves be
decomposed. The composition rule then applies to their sub-activities as
well.

2. Unstructured writing to data elements should be detectable, i.e. if phase A
writes to data elements that are grouped with a complex data element DA,
and phase B writes to data elements that are grouped with a complex data
element DB, then there should be no activity of A that writes to elements
of DB.

3. The origin of actual data elements, i.e. instances of the data element types
specified in a PDD should be traceable, i.e. which other data elements were
needed in order to produce this data element.

The last function is refers to the execution of a method rather than to its def-
inition in the PDD. We shall introduce the notion of execution as a simple
instantiation of a method specified in a PDD.

126 M.A. Jeusfeld

3 PDDs versus Metamodeling

PDDs combine a product part and a process part. They are in fact workflow
models that include the products of the activities inside the workflow model.
Still, there is a special clue with PDDs: the product of the activities are usually
models, such as a use case diagram. Before formalizing PDDs, we have to un-
derstand the abstraction level [6,10] of PDD elements. Subsequently, we use the
abbreviations M3 (metametaclass level), M2 (metaclass level), M1 (class level)
and M0 (data/execution level) as explained in [2]. Consider the following three
statements:

M0/M0 Bill changes the delivery address of order 453 to ”Highstreet 3”.
M0/M1 Mary defines ORDER as an entity type within ERD-12.
M0/M2 Peter proposes EntityType as modeling construct.

All three statements are about some process executions involving some products.
The first statement is a typical element of a business process trace. The products
are data elements (abstraction level M0). The trace statement itself is also at
M0 level. The second statement is from a modeling activity. The products are
model elements (abstraction level M1), but the trace statement itself cannot be
further instantiated: it is at the M0 level. Finally, the product part of the third
statement is at M2 level, while the statement itself is at M0 level, since the object
’Peter’ cannot be further instantiated. The examples show that the abstraction
level of the product part characterizes the nature of the process, i.e. whether it
is a business process, a modeling process, or a metamodeling process.

The three statements are all excerpts from an execution of a process. The
process definition is one abstraction level higher for both the process and the
product parts:

M1/M1 A customer changes the delivery address of an order to a new value.
M1/M2 A data modeler defines entity types in entity-relatiship diagrams.
M1/M3 A metamodeler proposes constructs of modeling languages.

PDDs as a notation could represent all three flavors of statements, i.e. the process
part of PDDs are always at M1 level and the product part is either M1, M2, or
M3. Since method engineers design the workflow models for modelers, a typical
PDD is at M1 level for the process part and at M2 level for the product part.
Figure 2 puts both the process part (left) and the product part (right) into this
MOF perspective. Example PDDs are at M1 level, the data element that they
produce are at M2 level.

The OMG-style use of metamodeling strictly separates abstraction levels: they
may only be connected via instantiation. The PDD case shows that this strict
separation prohibits combined process and product models targeted to method
engineering processes. We can still stick to the abstraction levels and the in-
stantiation link between them when regarding only the product part or only the
process part.

A Deductive View on Process-Data Diagrams 127

Fig. 2. Putting PDDs into a metamodeling perspective

Another concern for formalizing PDDs is the specification language. As ar-
gued, a strict use of MOF leads to a violation of the instantiation rule. The
object constraint language (OCL) builds upon the separation of class and in-
stance level. Indeed, one OCL constraint can only link two level pairs [1] and
it lacks a fixpoint semantics to follow transitive links in cyclic graphs. We shall
therefore use a deductive formalization1.

Fig. 3. M3 level for product and process parts

Figure 3 defines the new combined M3 level that can cover both the product
and process parts of PDDs. Note that Deliverable is both specialization and
an instance of ProductElem, which itself is a specialization of NodeOrLink –
the most generic construct of the M3 model used in this paper. Consequently,
Deliverable can be regarded both as a M3 and M2 object. On the left-hand

1 Gogolla et al. [5] proposed to represent all abstraction levels into a single instance
level and use a generic class level that basically supports the representation of graphs.
This representation would consequently allow a use of OCL that is not restricted to
just a level pair like M1-M0, M2-M1 etc. As the class level would not contain specific
classes, the OCL constraints would be rather complex.

128 M.A. Jeusfeld

side, Activity is an M2 object because it is an instance of the M3 object
ProcessElem.

4 Deductive Formalization

We use the capabilities of Telos [9] and its implementation in ConceptBase to
logically reconstruct the PDD notation and axiomatize its syntax and part of
its semantics. ConceptBase implements a dialect of Telos via Datalog-neg, i.e.
Horn clauses without function symbols and with stratified negation as failure.
This interpretation of a Datalog-neg theory is efficiently computable. We use the
following predicates in our formalization:

(x in c) the object x is an instance of the object c, also called the class of x;
(c isA d) the object c is a specialization of object d;
(x m/n y) the object x is associated to object y via a link labeled n; this link

has the category m.

Deductive rules are formulated on top of these three predicates, deriving further
facts of these predicates. One single base predicate P(o,x,n,y) provides the base
solutions for the three predicates [6]. We subsequently formalize PDDs in the
frame syntax that aggregates facts of the above three predicates into a textual
frame. We use the MOF/MDA abstraction levels in comments to improve read-
ability of the formalizations. They are not part of the formalization. Most of the
subsequent formalization is about the structure of PDDs and is represented by
facts of the three predicates.

4.1 The Product Part in ConceptBase

The product part of fig. 1 lists models and model elements that are at the M2
MOF level. Hence, to formalize that part, we need to specify its constructs at
the M3 level. We formulate it as a specialization of the basic M3 level used in
[6].

Constructs of the Product Part of PDDs (M3)

NodeOrLink with {* = (NodeOrLink attribute/connectedTo NodeOrLink) *}

attribute

connectedTo: NodeOrLink

end

Node isA NodeOrLink end {* = (Node isA NodeOrLink) *}

NodeOrLink!connectedTo isA NodeOrLink end

Model isA Node with

attribute

contains: NodeOrLink

end

ProcessElem isA NodeOrLink end

ProductElem isA NodeOrLink end

A Deductive View on Process-Data Diagrams 129

Deliverable in ProductElem isA ProductElem end

Concept isA Deliverable end

StandardConcept isA Concept end

OpenConcept isA Concept,Model with

attribute

contains: Deliverable

end

ClosedConcept isA Concept,Model end

DocumentDeliverable isA OpenConcept end

ModelDeliverable isA OpenConcept end

The first constructs are standard constructs for the M3 level: NodeOrLink for
model elements that are aggregated into models. The second half states that
PDD product elements are ’deliverables’. Open concepts are concepts that
have other deliverables as parts. The constructs DocumentDeliverable and
ModelDeliverable are introduced to distinguish textual deliverables (e.g. re-
ports) from model deliverables composed of diagrams.

4.2 The Process Part in ConceptBase

The process part in the example of figure 1 is at MOF/MDA M1 level because
it can only be instantiated once: its actual execution in the context of some
project. Hence, the constructs of the process part to denote such examples are
at the M2 level:

Constructs of the Process Part of PDDs (M2)

ActivityNode in Node,ProcessElem with

connectedTo

next: ActivityNode

end

ActivityDiagram in Model,Class isA Activity with

contains

activity: ActivityNode;

control: ActivityNode!next

end

Phase in Model isA ActivityDiagram end

PDD in Model isA Phase end

PDDLibrary in Model isA PDD end

Agent in connectedTo end

Activity in ProcessElem isA ActivityNode with

connectedTo

produces: Deliverable;

performer: Agent

end

ParallelBranch in ProcessElem isA Activity with

connectedTo

branch: ActivityNode

end

ParallelBranch!branch isA ActivityNode!next end

130 M.A. Jeusfeld

ParallelJoin in Node isA Activity end

DecisionPoint in ProcessElem isA Activity with

connectedTo choice: ActivityNode

end

DecisionPoint!choice isA ActivityNode!next end

DecisionJoin in Node isA Activity end

Basically, the above definitions are UML activity diagrams augmented with cer-
tain extensions for PDDs. Agents are introduced as performers of activities.
The control structure of activity diagrams is expressed by the next construct
of activity nodes (standing for an activity at any aggregation level). We refer
to such a link by an expression ActivityNode!next. The produces construct
of Activity establishes the link to the data part of PDDs, i.e. the arrows with
broken lines in fig. 1.

4.3 Definition of PDD Combination

PDDs follow syntactic rules such as that all activities in the process part must
be on the path from the start activity to the end activity (compare also workflow
models as presented in [16]). They have a certain semantics such as about the
composition of PDDs (method fragments) to larger PDDs or methods. Subse-
quently we consider our first challenge from section 1: if two PDDs are combined
then the combination is inherited downwards to the end and start activities of the
participating PDDs. To realize this property, we assume that the basic properties
of relations such as transitivity, reflexivity, symmetry etc. are already provided
by the ConceptBase system. See [7] for for details. Given these definitions, we
specify:

Deductive rules for combining PDDs

ActivityDiagram in Model,Class isA Activity with

reflexive,attribute

subactivity: ActivityNode

rule t1: $ forall ad/ActivityDiagram a/ActivityNode (ad activity a)

==> (ad subactivity a) $;

t2: $ forall ad1,ad2/ActivityDiagram a/ActivityNode (ad1 activity ad2)

and (ad2 subactivity a) ==> (ad1 subactivity a) $

end

StartNode in GenericQueryClass isA ActivityNode with

parameter,computed_attribute

diagram: ActivityNode

constraint isStart: $ ((diagram in ActivityDiagram) and

Adot(ActivityDiagram!activity,diagram,this) and

not exists a/ActivityNode

Adot(ActivityDiagram!activity,diagram,a) and

(a \= this) and :(a next this):) or

(not (diagram in ComplexActivity)) and (this=diagram) $

end

A Deductive View on Process-Data Diagrams 131

Activity in Class with

rule d1: $ forall a1/ClosedActivity a2/ComplexActivity s/ActivityNode

(a1 next a2) and (s in StartNode[a2]) ==> (a1 next s) $;

d2: $ forall a1/ComplexActivity a2/ClosedActivity e/ActivityNode

(a1 next a2) and (e in EndNode[a1]) ==> (e next a2) $;

d3: $ forall a1,a2/ComplexActivity e,s/ActivityNode

(a1 next a2) and (e in EndNode[a1]) and

(s in StartNode[a2]) ==> (e next s) $

end

Fig. 4. Combining two PDDs (ConceptBase screenshot)

The concepts StartNode and EndNode2 define the first and last activity of
a PDD. We also support single activities as (degenerated) PDDs, that are the
start and end node of themselves. The main logic is in the deductive rules d1 to
d3. The first two special cases are for PDDs that are closed activities. Rule d3 is
the general case which takes care that the next link is propagated downwards to
the start/end nodes. Figure 4 shows a screenshot of an application of the rules.
The example is taken from [15] and shows the combination of two PDDs for a
Web Engineering Method. The dotted link marked ’next’ is inherited via rule
d3.

The activity DescribeScope is the end activity of GoalSetting. The links
from left to right are denoting sub-activities. The activity DefineImportant-
Terms is the first activity of DomainModeling. We state (GoalSetting next

2 The concept EndNode is defined analogously to StartNode.

132 M.A. Jeusfeld

DomainModeling) denoted by the vertical link between the two. This leads to
the deduction of the link (DescribeScope next DefineImportantTerms). If
DescribeScope and/or DefineImportantTerms were complex activities them-
selves, then the ’next’ link would be inherited downwards to their start/end
activities. Fig. 4 also displays two complex activities GX-Method and Complex-
DefinitionPhase. Here GX-Method stands for a library of reusable PDDs and
ComplexDefinitionPhase is one phase of the target web engineering method.

5 Detecting Unstructured Data Production

The deductive formalization of PDDs allows to detect certain unstructured ac-
cesses from activities to complex data elements. Unstructured writes are char-
acterized by a pattern with two phases that both include activities which write
into parts of the same model deliverable aggregating smaller deliverables.

Definition of Unstructured Writing

CrossWrittenDeliverable in QueryClass isA ModelDeliverable with

computed_attribute

crosswriter: Activity

constraint

crossCond: $ exists phase1,phase2/Phase d1,d2/Deliverable

writer/Activity (phase1 \= phase2) and

(phase1 activity writer) and (phase2 activity crosswriter) and

(writer produces d1) and (crosswriter produces d2) and

(this contains d1) and (this contains d2) $

end

Fig. 5. Cross-written deliverables (screenshot from ConceptBase)

The above query class is returning all model deliverables that are written into
by different phases. Hence, in structured PDDs, a phase may not write into a
model deliverable that is also written into by another phase. One can argue that
this should not always forbidden. Indeed, the formulation as a query class allows
a modeler to tolerate violations but still expose them via the query.

A Deductive View on Process-Data Diagrams 133

Figure 5 shows a generic example of an unstructured writing. The broken links
between the activities A1 and A2 and the deliverables D1 and D2 are ’produces’
associations. So logically, we have (A1 produces D1) and (A2 produces D2).
The model deliverable M1 is exposed as instance of CrossWrittenDeliverable
(oval node in fig. 5).

6 Realizing Traceability

We observed in section 3 that the product part of PDDs is at M2 level, while
the process part is at M1 level. We can instantiate both to yield an actual trace
of the execution of the process part (M0) linked to data elements at the M1
level. This is a natural relation since modeling is an activity that creates models
rather than data from the reality, see also fig. 2.

In the same way the example PDDs are classified into the PDD Process Nota-
tion, we can also instantiate them to form a process trace (M0). On the product
part, the corresponding instantiation is from a model type (M2) to an example
model (M1), e.g. a specific use case diagram. The existing PDD notation only
specifies which activity has produced a certain product, e.g. a model. It does not
specify which products were required in order to create it. We extend the PDD
notation to include this ”input” link as follows:

Extending the PDD (M2)

Activity in ProcessElem isA ActivityNode with

attribute

retrieves: Deliverable;

produces: Deliverable;

performer: Agent

end

There is just one additional retrieves attribute of Activity. The augmented
definition now allows us to define coarse-grain traceability on the level of deliv-
erables:

Simple Traceability model (M3-M1)

Deliverable in Class with

rule dr1: $ forall D/Deliverable d/VAR

(d in D) ==> (d in DeliverableInstance) $

end

Activity in Class with rule

ar1: $ forall A/Activity a/VAR (a in A) ==> (d in ActivityInstance) $

end

ActivityInstance in Activity end

DeliverableInstance in Class with

attribute

depOnDirectly: DeliverableInstance;

depOn: DeliverableInstance

134 M.A. Jeusfeld

rule

depRule1: $ forall d1,d2/DeliverableInstance a/ActivityInstance

(a [retrieves] d1) and (a [produces] d2) ==> (d2 depOnDirectly d1) $;

depRule2: $ forall d1,d2,d3/DeliverableInstance

(d1 depOnDirectly d2) and (d2 depOn d3) ==> (d1 depOn d3) $

end

The construct Deliverable is at the M3 level. However, we are interested in
traceability at the level of example deliverables (M1) such as an example use
case model X. To do so, rules dr1 and ar1 ensure that any M1 deliverable is
also an instance of DeliverableInstance, and that any M0 activity instance is
an instance of M1 ActivityInstance. This axiomatization allows us to realize
traceability regardless of the specific PDDs in our library. The rules work with
all PDDs.

7 Conclusions

This paper applies a deductive metamodeling approach to the the PDD notation
used to represent method fragments. We found that the challenges mentioned in
the introduction can be addressed rather easily. The main result is a different
one: the rule that only allows instantiation links between abstraction levels is
too strict and prevents a proper formalization of PDDs and similar techniques.
The rule is neither necessary nor useful. There are some open problems and
shortcomings:

– The combination of method fragments fails if there is not a unique start
and end activity of the participating method fragments. One may want to
support multiple such activities and combine them with decision points (if-
then-else) or parallel branches/joins.

– The traceability model neglects the decomposition of deliverables. If a part
of a deliverable depends on some part of some other deliverable, then the
aggregated deliverables should also depend on each other.

– The formalization is represented by a deductive database, more precisely
Datalog with negation. The fixpoint semantics compute the unique minimal
Herbrand interpretation under closed-world assumption. This allows direct
implementation and use of the formalization but is weaker than a full first-
order logic specification.

The formalization is embedded into an existing M3 model. Analysis techniques
developed for that M3 model are directly applicable, for example the analysis
of connectivity between model elements. The integration with Graphviz allows
us to generate diagrams with a reasonable layout (see appendix) from the PDD
represesentation in ConceptBase. The re-combination of PDDs is governed by
deductive rules that automatically connected the correct ends of the participat-
ing PDDs, even if they are deeply decomposed.

A Deductive View on Process-Data Diagrams 135

Acknowledgments. This paper has been motivated by a challenge formulated
by Inge van Weerd when she gave a guest lecture on PDDs in the method
engineering course in Tilburg.

References

1. Baar, T.: The definition of transitive closure with OCL – limitations and applica-
tions. In: Broy, M., Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 358–365.
Springer, Heidelberg (2004)

2. Bézivin, J., Gerbé, O.: Towards a precise definition of the OMG/MDA framework.
In: ASE 2001, pp. 273–280. IEEE Computer Society, Los Alamitos (2001)

3. Brinkkemper, S.: Method engineering: engineering of information systems devel-
opment methods and tools. Information & Software Technology 38(4), 275–280
(1996)

4. Brinkkemper, S., Saeki, M., Harmsen, F.: Assembly techniques for method en-
gineering. In: Pernici, B., Thanos, C. (eds.) CAiSE 1998. LNCS, vol. 1413, pp.
381–400. Springer, Heidelberg (1998)

5. Gogolla, M., Favre, J.M., Büttner, F.: On squeezing M0, M1, M2, and M3 into
a single object diagram. In: Proceedings Tool-Support for OCL and Related For-
malisms - Needs and Trends (2005)

6. ISO: ISO/IEC 10027: Information technology - information resource dictionary
system (irds) - framework (1990),
http://www.iso.org/iso/catalogue_detail.htm?csnumber=17985

7. Jeusfeld, M.A.: Partial evaluation in meta modeling. In: Ralyté et al. [11], pp.
115–129

8. Jeusfeld, M.A.: Metamodeling and method engineering with ConceptBase. In:
Metamodeling for Method Engineering, pp. 89–168. The MIT Press, Cambridge
(2009)

9. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: Representing knowl-
edge about information systems. ACM Trans. Inf. Syst. 8(4), 325–362 (1990)

10. Object Management Group: Meta object facility (mof) core specification (2006),
http://www.omg.org/spec/MOF/2.0/PDF/

11. Ralyté, J., Brinkkemper, S., Henderson-Sellers, B. (eds.): Situational Method Engi-
neering: Fundamentals and Experiences, Proceedings of the IFIP WG 8.1 Working
Conference, Geneva, Switzerland, September 12-14. IFIP, vol. 244. Springer, Hei-
delberg (2007)

12. Ralyté, J., Rolland, C.: An assembly process model for method engineering. In:
Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp.
267–283. Springer, Heidelberg (2001)

13. Rolland, C.: Method engineering: Trends and challenges. In: Ralyté et al. [11],
p. 6

14. van den Weerd, I.: Advancing in Software Product Management - A Method En-
gineering Approach. Ph.D. thesis, Utrecht University (2009)

15. van den Weerd, I.: Guest lecture on meta-modeling for method engineering (2010)
16. van der Aalst, W.M.P., van Hee, K.M.: Workflow Management: Models, Methods,

and Systems. MIT Press, Cambridge (2002)

http://www.iso.org/iso/catalogue_detail.htm?csnumber=17985
http://www.omg.org/spec/MOF/2.0/PDF/

136 M.A. Jeusfeld

Appendix: Graphviz Visualization

The PDD visual notation can be approximated by converting the PDD represen-
tation of ConceptBase into a format that can be processed by Graphviz3. Figures
6 and 7 show two example PDDs excerpted from ConceptBase and layed out by
Graphviz. Figure 8 aggregates them with others to a whole phase.

The complete specification of the formalization including the Graphviz
integration is available on http://merkur.informatik.rwth-aachen.de/pub/
bscw.cgi/3045636. It contains also a couple of additional analysis queries that
were not included in this paper due to space limitations.

DomainModeling

DOMAINMODEL

CLASSDIAGRAM

TERM

RELATION DrawClassDiagram

IdentifyRelations

DefineImportantTerms

Fig. 6. Domain Modeling PDD layed out by Graphviz

ApplicationModeling

APPLICATIONMODEL

MIGRATIONISSUE

INTERFACE

APPLICATIONIMPLICATIONS

USERINTERFACE

NAVIGATION

DescribeMigrationIssues

Descr ibeInterfacesOtherSystems

DescribeApplicationImplicationsUseCases

DescribeUserInterface

DescribeNavigation

Fig. 7. Application Modeling PDD layed out by Graphviz

3 See http://graphviz.org

http://graphviz.org

A Deductive View on Process-Data Diagrams 137

ComplexDefinitionPhase

ApplicationModeling

UseCaseModeling

DomainModeling

GoalSet t ing

APPLICATIONMODEL

MIGRATIONISSUE

INTERFACE

APPLICATIONIMPLICATIONS

USERINTERFACE

NAVIGATION

DOMAINMODEL

CLASSDIAGRAM

TERM

GOALSETTING

SCOPE

GOAL

ASSUMPTION

FEATURELIST

BACKGROUND

Requi rementsDocument

ADDITIONALREQUIREMENT

USECASEMODEL

USECASEDESCRIPTION DESCRIPTION

USECASE ACTOR

RELATION

DescribeMigrationIssues

AdditionalRequirementsDescription

Descr ibeInterfacesOtherSystems

DescribeApplicationImplicationsUseCases

DescribeUserInterface

DescribeNavigation

DescribeCustomUseCases

Descr ibeStandardUseCases

DrawUseCaseModel

ExtractUseCases DescribeActors

DrawClassDiagram

IdentifyRelations

DefineImportantTerms

DescribeScope

DescribeGoals

ListAssumptions

ListFeatures

DescribeBackground

ExtensiveRequirementsElicitation

RequirementsValidation

REQUIREMENTSREVIEWREPORT

Fig. 8. Graphviz visualization CompleteDefinitionPhase

J. Ralyté, I. Mirbel, and R. Deneckère (Eds.): ME 2011, IFIP AICT 351, pp. 138–152, 2011.
© IFIP International Federation for Information Processing 2011

Turning Method Engineering Support into Reality

Mario Cervera, Manoli Albert, Victoria Torres, and Vicente Pelechano

Centro de Investigación en Métodos de Producción de Software,
Universidad Politécnica de Valencia, 46022 Valencia, Spain
{mcervera,malbert,vtorres,pele}@pros.upv.es

Abstract. The Situational Method Engineering (SME) discipline emerged two
decades ago to face up to the challenge of the in-house definition of software
production methods and the construction of the corresponding supporting tools.
However, nowadays most of the existent proposals only focus on one of the
phases of the SME lifecycle. In order to fill this gap, in this paper we present a
methodological framework that equally encompasses two of these phases,
which refer to the method design and implementation. In order to support them
in an effective manner, we advocate for the use of the Model Driven Develop-
ment (MDD) paradigm. Applying these ideas, the framework has been defined
on top of a MDD infrastructure based on meta-modeling and model transforma-
tion techniques. In addition, we provide implementation details of the frame-
work in an Eclipse-based modeling platform, namely MOSKitt.

Keywords: Method Engineering, Model Driven Development, CAME Envi-
ronment, Eclipse, MOSKitt.

1 Introduction

Software Production Methods (hereafter simply methods) are organized and system-
atic approaches for software development, which can adequately govern the disci-
plined execution of real software development projects, and are composed, inter alia,
of structured and integrated sets of activities, work products and roles. Since the defi-
nition of a universally applicable method has for long been considered unattainable, it
is necessary to find solutions that enable the in-house specification of methods
adapted to specific context needs and the construction of the corresponding support-
ing tools. Up to now, the SME discipline seems to be the most promising alternative
to supply this need.

The SME discipline constitutes a sub-area of a broader field called Method Engi-
neering (ME). Specifically, within the ME (and SME) field, method and software
engineers mainly deal with (1) the definition of methods (method design) and (2) the
construction of the supporting software tools (method implementation)1. Therefore,
proposals aimed at supporting ME should cover these two phases of the ME process.
However, most of the ME proposals existing in the literature (and their corresponding

1 Other tasks such as the analysis of the method requirements and the validation of the method

are also part of the Method Engineering discipline but are outside of the scope of this paper.
These tasks will be considered in future work.

 Turning Method Engineering Support into Reality 139

tools) only focus on one of them. As examples of this reality we find Computer Aided
Method Engineering (CAME) and metaCASE environments. On the one hand,
CAME environments generally focus on the method design phase, supporting the
specification of project-specific methods for software development. In some cases,
these specifications are used for building CASE tools, but with very limited capabili-
ties. On the other hand, the so-called metaCASE environments generally focus on the
method implementation, supporting the customization of CASE tools by means of
high level specifications. These specifications normally define the modeling lan-
guages that are to be supported by the CASE tool and, sometimes, also the process
that establishes the order in which these languages must be used. Thus, these specifi-
cations are oriented towards CASE tool definition and therefore they do not represent
complete software production methods.

In order to provide a more complete proposal, in this paper we propose a methodo-
logical framework that equally encompasses the method design and method
implementation phases. Combining these two phases brings an important benefit. It
increments the method specifications’ value in terms of how much functionality is
derived from them. That is to say, these specifications are not only used for governing
the execution of the software development projects, but also for the construction of
CASE tools that support the methods and assist the software engineers in the devel-
opment of the final systems. To achieve this goal in an effective manner, we find
crucial to define an infrastructure that (1) allows the method engineer to define meth-
ods that can be applied in real software projects and also (2) (semi)automates the
construction of tools that provide adequate support to the specified methods. To suc-
cessfully face the definition of this infrastructure, we advocate for the use of the MDD
paradigm. Thereby, we have defined a MDD infrastructure based on meta-modeling
and model transformation techniques that lays the foundations of the methodological
framework. Specifically, the meta-modeling techniques are based on the Software &
Systems Process Engineering Meta-model (SPEM) [30] and are the means that allow
the method engineer to carry out the method design. On the other hand, model trans-
formations (semi)automate the performance of the method implementation. By apply-
ing these ideas, we have defined a methodological approach that not only tackles the
definition of methods following a widely accepted standard (SPEM), but also pro-
poses to use these definitions for the (semi)automatic generation of tools that provide
rich support to the methods (textual and graphical editors, code generators, model
transformations, process enactment support, etc.).

The work reported here is an extension of our previous works [7] and [8]. On the
one hand, the theoretical part of the methodological framework is analyzed in depth,
with a contextualization of the different parts of the framework. On the other hand,
the software infrastructure of the framework has evolved by enhancing the way in
which engineering tools assist method engineers during the method construction.

Furthermore, as a proof of concept, we also provide details of the implemented
framework, which has been developed on top of MOSKitt [21], an Eclipse-based
modeling platform whose plugin-based architecture and integrated modeling tools
turn it into a suitable platform to support the proposal.

The remainder of the paper is structured as follows. First, section 2 summarizes the
state of the art. Then, section 3 provides an overview of the proposal. Section 4 and 5
thoroughly detail the MDD infrastructure and the methodological framework respec-
tively. Finally, section 6 draws some conclusions and outlines future work.

140 M. Cervera et al.

2 State of the Art

The term Method Engineering was first introduced in the mid-eighties by Bergstra et
al in [4]. Since then, many works developed both at academia and industry have con-
tributed to this field. In order to underpin its theory, a survey of the last strands in ME
is gathered in [17]. In this work, the definition proposed by Brinkkemper et al. in [5]
is used to define ME as the engineering discipline to design, construct and adapt
methods, techniques and tools for the development of information systems (IS).

Considering this definition, we have found that there are proposals in the ME lit-
erature that mainly focus on (1) the design, construction and adaptation of methods
(i.e. the method design) while others concentrate on (2) the techniques and tools for
supporting such methods (i.e. the method implementation). On the one hand, among
the proposals mostly dedicated to method design, we find proposals such as Brink-
kemper’s [5, 6], Ralyté’s [20, 24] or Henderson-Sellers’ [15], which tackle the
method construction by means of the assembly of method fragments or chunks stored
in a method base repository. Examples of tools that fall in this first category are
MERET [18], Method Editor [29] and Decamerone [14]. Some of these proposals do
support the generation of CASE environments but with limited capabilities. For in-
stance, Method Editor enables the generation of tools that include a series of diagram
editors that allow the software engineer to create/manipulate the products specified in
the method. However, Method Editor does not support the specification of automated
tasks that require the inclusion of a model transformation in the generated tool. Thus,
these CASE tools lack code generation capabilities.

On the other hand, there are proposals that mostly focus on the method implementa-
tion [10, 12, 28]. These are the so-called metaCASE environments that generally sup-
port the construction of CASE tools. Examples of tools that fall in this category are
MetaMOOSE [10], KOGGE [28] and MetaEdit+ [19]. For instance, MetaEdit+ [19]
provides a specification language (called GOPPRR) that is oriented towards the defini-
tion of the abstract syntax of the modeling languages (in [19] called “methods”) that
need to be supported by the resulting CASE tool. In contrast, in our proposal we pro-
vide a full methodology that assist in the definition of complete software production
methods by means of the SPEM standard, and also proposes the use of a meta-meta-
model (such as GOPPRR) for the definition of the modeling languages that enable the
creation of the method products (see sections 3 and 5). In particular, the meta-meta-
model that is used in the CAME environment that supports our proposal is Ecore.

After studying all the aforementioned proposals, we have found an important lack
of software tools that provide complete support to ME. In this paper, we advocate for
the use of the MDD paradigm as a way to improve this situation. In particular, we
define a methodological framework that is being implemented in the context of the
MOSKitt platform [21] and, by applying MDD techniques, equally supports the
method design and the method implementation phases.

3 Overview of the Proposal

In order to provide an overview of the proposal, in this section the methodological
framework is briefly introduced. The three phases that compose the framework are:
method design, method configuration and method implementation (see Fig. 1).

 Turning Method Engineering Support into Reality 141

Fig. 1. Methodological framework overview

• Method design: during this phase, the method engineer builds the method specifi-
cation as a model (hereafter the method model) using the SPEM standard [30].
This model can be built from scratch or reusing method fragments stored in a
Method Base repository that has been implemented following the RAS standard
[26]. The built model constitutes a first version of the method that does not include
details about the technologies and notations that will be used during the method
execution. For instance, the method engineer can specify a generic product called
“Business Process Model”, without stating in which notation this product will be
created when the method is executed.

• Method configuration: in this phase, the method model is instantiated with the
specific technologies and notations that will be used during the method enactment.
This instantiation is achieved by associating tasks and products with editors, meta-
models, transformations, etc. that are stored in a repository called Asset Base
(implemented following the RAS standard). For instance, the product “Business
Process Model” can be associated with a “BPMN editor”. Thus, the method engi-
neer is indicating that this editor must be included in the generated tool, so that it
enables the manipulation of this particular product. The main benefit of separating
method design and configuration is that we keep generic definitions of methods
(which means that we can take this generic definition and perform different method
configurations), stressing the importance of reusability.

• Method implementation: in this phase, the method model is used as input of a
model transformation that generates the tool support. This tool provides support to
the product and process parts of the method2. The product support consists of the
tools that enable the creation/manipulation of the method products (i.e. the re-
sources associated to the method elements in the previous phase). The process
support consists of a process engine that enables the method process execution.

2 The product part represents the artifacts that must be built during the method execution and

the process part consists of the procedures that must be followed to build such products.

142 M. Cervera et al.

4 The MDD Infrastructure

In this section we present the MDD infrastructure that lays the foundations of the
methodological framework. As mentioned above, this infrastructure is based on meta-
modeling and model transformation techniques.

4.1 Meta-modeling

Meta-modeling has always played a key role in the ME field as it allows the definition
at a high level of abstraction of the concepts, constraints and rules that are applicable
in the construction of methods. In general, proposals focusing on the method design
use meta-modeling as their underlying technique to define methods [6, 18, 20]. More-
over, proposals focusing on the method implementation use these techniques to spec-
ify the modeling languages supported by the generated tools [12, 19, 28].

In our proposal we use meta-modeling techniques for the creation of the method
model, in particular following the SPEM standard. A study about the applicability of
SPEM to ME is presented in [22]. In this work, the authors present some of the SPEM
advantages and disadvantages for supporting the method design. Among the SPEM
advantages we highlight: (1) wide acceptance in the field of process engineering, (2)
good ME process coverage, (3) support to both product and process parts of methods
and (4) good abstraction and modularization. Regarding its disadvantages, [22] points
out the lack of executable semantics, but proposes to overcome this limitation by
using a model transformation to transform the process models into executable repre-
sentations that can be executed by workflow engines.

In order to provide a more in-depth view on how the SPEM meta-model is used in
our proposal, below the structure of the method fragments from which SPEM models
can be assembled is presented in detail. In general, in the ME proposals that suggest
the use of method fragments, these are obtained by instantiating some class of a meta-
model. For instance, in the OPEN Process Framework [11] method fragments are
generated by instantiation from one of the top levels classes: Producer, Work Product
and Work Unit [17]. Specifically, next subsection details the SPEM classes from
which method fragments can be created and, furthermore, it presents a taxonomy that
classifies the different types of fragments that are used in the proposal.

Method Fragments. We use the term method fragment to denote the atomic element
from which methods can be assembled. Other terms to name these atomic elements,
such as method chunk, have been proposed in the ME literature [16]. A method frag-
ment can be either a product fragment (instances of meta-classes that represent prod-
ucts) or a process fragment (instances of meta-classes that represent processes). This
differentiation allows us (1) to leverage the separation between product and process
specification provided by SPEM3, (2) to relate one process fragment with many

3 In order to use the same terminology as the used in the ME field, in our proposal we consider

analogous the product-process separation of methods and the SPEM separation between
method content and method process.

 Turning Method Engineering Support into Reality 143

product fragments, and (3) to reuse one product fragment in the definition of many
process fragments.

Attending to the different phases identified in our framework (see section 3), we
use a third type of fragment, namely technical fragment, term that was first proposed
in [13]. In our proposal, these fragments contain the tools that are associated to the
products and tasks of the method during the method configuration and that make up
the infrastructure of the generated CASE tools.

Fig. 2. Relationship between method fragments and SPEM classes

In order to illustrate the hierarchical organization of the various types of fragments,
the left side of Fig. 2 graphically presents our fragment taxonomy. In this taxonomy,
the new abstract category conceptual fragment (also proposed in [13]) is introduced
for grouping product and process fragments. Moreover, additional information has
been included, e.g. the relationship Contains which represents that SPEM processes
can contain nested subprocesses, or the relationship labeled as Uses which represents
that one process fragment can reference from one to many product fragments.

On the other hand, the right side of Fig. 2 shows a simplified view of the SPEM
meta-model. In SPEM, a method is represented by a MethodPlugin. Each Method-
Plugin contains both ContentPackages and ProcessPackages. Tasks, Roles and
WorkProducts are stored in ContentPackages. Similarly, within ProcessPackages,
processes are stored as instances of the class ProcessComponent.

Note that some of these SPEM concepts have been associated with fragments of
our taxonomy. These associations illustrate a containment relationship. For instance,
process fragments are associated with one ProcessComponent. Thus we are represent-
ing that, when process fragments are stored in the repository, they contain a SPEM
model that includes one instance of the class ProcessComponent. Furthermore,
product fragments are associated with ContentElements, which represents that these
fragments can contain any instances of Task, Role, and WorkProduct.

144 M. Cervera et al.

Finally, even though it has been omitted in Fig. 2, method fragments are defined by
a series of properties that enable their later retrieval from the repository. The fragment
properties are stored in the manifest file of the RAS asset that embodies the fragment.
Specifically, we make use of some of the properties defined in [23]. According to
these properties, our method fragments are characterized by:

• Descriptor: it contains general knowledge about the fragment. For now, we con-
sider the attributes origin, objective and type. Some examples of valid types in our
proposal are task, role and work product for product fragments that contain atomic
elements, or meta-model, editor, model transformation and guide for technical
fragments (see section 5.2).

• Interface: it describes the context in which the fragment can be reused. For now,
we only consider the attribute situation.

4.2 Model Transformations

In the previous subsection we showed that the application of meta-modeling in the ME
field is not new. However, we find that the ME approaches that make use of these
techniques do not really take full advantage of the possibilities that MDD offers. As
stated in [3], “MDD improves developers’ short-term productivity by increasing the
value of primary software artifacts (i.e. the models) in terms of how much functionality
they deliver”. Following this statement and contrary to what current ME approaches
do, we want to leverage models going one step further. Defining the method as a
model and considering this model as a software artifact allows us to face the imple-
mentation of the CASE tool generation process by means of model transformations.

In particular, these transformations have been implemented in the CAME envi-
ronment that supports our proposal as a single model-to-text (M2T) transformation
using the XPand language [31], which is the language used within the context of the
MOSKitt project [21] for that purpose. Further details about this M2T transformation
are provided in section 5.3.1 and in [8].

5 The Methodological Framework

In this section, we detail the phases in which the methodological framework has
been designed. For each of these phases, we provide first a generic description and
then we detail the software infrastructure that has been implemented in MOSKitt to
support it.

5.1 Method Design

During the method design the method model is built using SPEM. The construction of
this model is performed by means of a combination of two approaches proposed in

[24]: (1) the paradigm-based and (2) the assembly-based. In order to illustrate how
these approaches are applied in our framework, we use the Map process meta-model

 Turning Method Engineering Support into Reality 145

proposed in [27]. Following this meta-model, processes are represented as labelled
directed graphs with intentions as nodes and strategies as edges between intentions.

The Paradigm-Based Approach. In Fig. 3 we show how the method model is built
in our proposal following the paradigm-based approach. The hypothesis of this
approach is that the new method is obtained either by abstracting from an existing
model or by instantiating a meta-model. This starting model is called the paradigm
model. Specifically, we build the method models by instantiating a meta-model (i.e.
the SPEM meta-model).

Fig. 3. Paradigm-based approach (adapted from [24])

As shown in the figure, the construction of the method model is performed in two
steps: first, the method engineer builds the product model (i.e. the products, roles, etc.
that compose the SPEM method content). Secondly, the method engineer builds the
process model (i.e. the process component that composes the SPEM method process).
In addition, backtracking to the construction of the product model is possible when
building the process model thanks to the refinement strategy.

The Assembly-Based Approach. Fig. 4 shows how the assembly-based approach is
carried out in our proposal. This process is followed when the method engineer wants
to reuse product or process fragments stored in the Method Base.

As shown in the figure, the method engineer starts by specifying the requirements
of the fragments to be retrieved. These requirements are specified as queries that must
be formulated by giving values to the method fragment properties (see section 4.1).

Fig. 4. Assembly-based approach (adapted from [24])

146 M. Cervera et al.

As an example, a query for retrieving a product fragment containing a task for sys-
tem specification may include parameters as follows:

Type = ‘Task’ AND Objective = ‘System Specification’

Once the fragments have been obtained4, the intention “Assemble fragments” must be
achieved by means of the “integration” strategy. This strategy consists of the integra-
tion of the selected fragments into the method model (considered here as a process
fragment of a higher level of granularity). Depending on the type of the fragment this
integration varies. For product fragments, the tasks, roles etc. are directly included in
a ContentPackage. For process fragments, the process elements are included as a
subprocess in the method under construction.

Finally, note that during the method design new fragments can be created for their
later reuse during the construction of other methods. In order to illustrate how product
and process fragments are created, Fig. 5 shows the process that must be followed.

Fig. 5. Conceptual fragment creation (adapted from [25])

Fig. 6. EPF Composer editor in MOSKitt

4 Note that if a process fragment is retrieved, then the associated product fragments are auto-

matically selected. This is due to the one-to-many cardinality of the relationship between
product and process fragments in figure 2.

 Turning Method Engineering Support into Reality 147

Fig. 7. Repository client connected to the Method Base

First, the method engineer explores the method model to identify the elements that
must be included in the conceptual fragment. These elements will be tasks, roles, etc.
(for a product fragment) or a process component (for a process fragment). Then, the
method engineer defines the fragment by giving values to the fragment properties.
Once this process is completed, a RAS asset is created and stored in the Method Base.

Method Design Software Infrastructure. In order to provide software support
within MOSKitt to the method design phase, the following tools have been integrated
as Eclipse plugins:

• A method editor: in order to enhance MOSKitt with the capability of building
method models, the EPF Composer (a SPEM 2.0 editor provided in the EPF Pro-
ject [9]) has been integrated. This editor enables the enactment of the process
described in Fig. 3, i.e. it allows method engineers to build SPEM models. In addi-
tion, it has been extended so it enables the enactment of the process shown in Fig.
5, i.e. it supports the creation of fragments. In Fig. 65, a screenshot of the EPF
Composer integrated in MOSKitt is shown.

• A repository client: In order to reuse the fragments stored in the Method Base dur-
ing the construction of the method model, it is necessary to implement a repository
client that enables the enactment of the process described in Fig. 4. To do so, the
repository client must allow the method engineer to (1) connect to the repository,
(2) search and select conceptual fragments and (3) integrate them in the method
model under construction. Fig. 7 shows the repository client that has been imple-
mented in MOSKitt as an Eclipse view.

• A guide to build the method model: A guide is provided as an Eclipse cheatsheet to
assist the method engineer in the performance of the method design phase.

5.2 Method Configuration

In this phase the method model is completed by including details about the technolo-
gies and notations that will be used during the method execution. Fig. 8 shows how
this phase is performed. In particular, the method engineer specifies the requirements
that are used to retrieve a technical fragment from the Asset Base. Once this is done,
he/she associates it with a task or product of the method model.

5 Also available at http://users.dsic.upv.es/~vtorres/moskitt4me/

148 M. Cervera et al.

Fig. 8. Process model for asset association

Note that it is possible that no suitable technical fragment is available in the reposi-
tory. In case the method engineer considers that a new technical fragment must be
created, a process similar to the one defined in Fig. 5. is followed. First, the required
tool is implemented ad-hoc for the method under construction. For instance, in the
CAME environment that supports our proposal these tools are implemented as Eclipse
plugins developed using the CAME environment itself. Once the tool is implemented,
the method engineer defines the technical fragment by giving values to the fragment
properties. Then, a RAS asset is created and stored in the Asset Base.

We detail below the various types of technical fragments that can be stored in the
Asset Base, to which elements they can be associated and for which purpose:

• Meta-model: meta-models can be associated to method products to specify the
notation that will be used in the generated tools for their manipulation (e.g. the
“BPMN meta-model” can be linked to the product “Business Process Model”).

• Editor: textual/graphical editors can be associated to method products to specify
the resource that will be used in the generated tools for their manipulation (e.g. a
“BPMN editor” can be linked to the product “Business Process Model”).

• Transformation: model transformations can be associated to tasks of the method.
Thus, these tasks will be automatically executed in the final tool by means of the
model transformations (e.g. a M2T transformation can be linked to the task “Gen-
erate report”).

• Guide: guides (i.e. text files, process models, etc.) can be optionally associated to
manual tasks of the method. These files will be included in the final tool and will
assist software engineers in the performance of the tasks. For instance, a map can
be associated to the task “Build Business Process Model” to define as a process
model the steps that must be followed to perform the task.

Method Configuration Software Infrastructure. In order to provide software
support within MOSKitt to the method configuration phase, the following tools have
been integrated as Eclipse plugins:

• A repository client: In order to associate technical fragments with elements of the
method model, it is necessary to implement a repository client that enables the en-
actment of the process described in Fig. 8. To do so, the repository client must al-
low the method engineer to (1) connect to the repository, (2) search and select
technical fragments and (3) associate them with the elements of the method. The
repository client of Fig. 7 can be reused for this purpose. Fig. 9 shows this reposi-
tory client connected to the Asset Base.

• A guide to configure the method model: A guide is provided as an Eclipse cheat-
sheet to assist in the performance of the method configuration phase.

 Turning Method Engineering Support into Reality 149

Fig. 9. Repository client connected to the Asset Base

5.3 Method Implementation

During this phase a tool supporting the method is obtained by means of model trans-
formations. This tool is mainly divided into two parts: the dynamic part and the static
part (see Fig. 10).

Fig. 10. Transformation mappings

The Dynamic Part. The dynamic part is composed of those elements that are directly
obtained from the method model and are, thus, dependent on the specified method. In
particular, these elements correspond to the tools that are in charge of providing soft-
ware support to the product part of the method and make up the infrastructure of the
tool (e.g. editors, model transformations, etc.). These tools are specified within
the method model as technical fragments, which are stored as RAS assets that contain
the implementations of the tools (e.g. the Eclipse plugins that implement a graphical
editor). Therefore, the model transformation integrates these tools in the generated
CASE environment.

150 M. Cervera et al.

The Static Part. The static part is composed of those elements that are always
included in the final tool and, thus, their implementation is independent of the
method. Even though the implementation of these components does not depend on the
method model, they need to use this model at runtime6. Specifically, two components
make up this part:

• The process engine: this component provides support to the process part of the
method. It is always included in the generated tools and is in charge of the execu-
tion of the method process part of the SPEM model7. This execution conducts the
orchestration of the different tools that allow the creation/manipulation of the
method products (i.e. the technical fragments).

• The graphical user interface (GUI): the GUI is composed of those elements that
make up the visual representation of the tool and allow software engineers to exe-
cute method instances by means of the process engine. The GUI of the generated
CASE tools does not directly depend on the method model (so, they always have
the same look & feel) but it uses the method content part of the SPEM model to
configure itself. For instance, depending on the role selected by the user, the GUI
filters its content to show only the products and tasks that the user is in charge of.

Method Implementation Software Infrastructure. In order to provide software
support within MOSKitt to the method implementation phase, the following tool has
been implemented and integrated as an Eclipse plugin:

• A M2T transformation: this transformation obtains the tool that supports the
method specified in the method model. This tool corresponds to a MOSKitt recon-
figuration that only contains the required Eclipse plugins to support the method
(i.e. the plugins contained in the technical fragments8, the process engine and the
Eclipse views that compose the GUI). In order to build this MOSKitt reconfigura-
tion we make use of the Eclipse Product Configuration files (.product files).
This type of files gathers all the required information to automatically generate an
Eclipse-based tool such as MOSKitt. So, considering that this tool is obtained from
a .product file, the model transformation has been implemented as a M2T trans-
formation. This transformation takes as input the model resulting from the method
configuration phase and generates a .product file through which the final tool is
automatically generated.

6 Conclusions and Future Work

In the ME field it is still unclear how to combine different subareas into a whole in
order to define more complete proposals. As examples of this reality we find CAME
and metaCASE environments, which either focus on the method design or the method

6 Runtime in this context refers to the method execution in the generated CASE tool.
7 SPEM does not have executable semantics. Therefore, a mapping between SPEM and an

executable language is needed here. We are planning to tackle this issue in the future.
8 The dependencies of these plugins must also be included. We are planning to tackle depend-

encies management in the future.

 Turning Method Engineering Support into Reality 151

implementation phases of the ME process. In this work, we have detailed the different
steps of a methodological framework that adequately covers these two phases. For
this purpose, the proposed framework applies an MDD approach, tackling the method
design by means of meta-modeling techniques based on the SPEM standard and the
method implementation by means of model transformations.

The presented framework is being defined and implemented within the context of
the MOSKitt project. This project constitutes a jointly work developed by the Con-
selleria de Infraestructuras y Transporte and the Centro de Investigación en Métodos
de Producción de Software to develop a CASE tool to support the gvMétrica method.
There is a big community involved in the project, ranging from analysts to end users,
which are in charge of validating each new release of the tool. This setting constitutes
an adequate environment to validate our proposal. In fact, in the near future we are
planning to integrate our prototype into a MOSKitt version in order to use it for the
definition of gvMétrica and the construction of the supporting tool.

Regarding future work, we are working on the improvement of the CAME environ-
ment that supports our proposal. For instance, we are planning the integration of a proc-
ess engine such as Activiti [1]. Furthermore, we are concerning with one of the big
challenges of ME [2], which deals with the variability of methods at modeling level and
runtime. Providing support to variability will allow stakeholders to dynamically adapt
methods and their supporting tools to changes that occur during method execution.

References

1. Activiti, http://www.activiti.org/
2. Armbrust, O., Katahira, M., Miyamoto, Y., Münch, J., Nakao, H., Ocampo, A.: Scoping

Software Process Models - Initial Concepts and Experience from Defining Space Stan-
dards. In: ICSP, pp. 160–172 (2008)

3. Atkinson, C., Kühne, T.: Model-Driven Development: A Metamodeling Foundation. IEEE
Software 20, 36–41 (2003)

4. Bergstra, J., Jonkers, H., Obbink, J.: A Software Development Model for Method Engi-
neering. In: Roukens, J., Renuart, J. (eds.) Esprit 1984: Status Report of Ongoing Work.
Elsevier Science Publishers, Amsterdam (1985)

5. Brinkkemper, S.: Method engineering: engineering of information systems development
methods and tools. Information and Software Technology 38, 275–280 (1996)

6. Brinkkemper, S., Saeki, M., Harmsen, F.: Meta-Modelling Based Assembly Techniques
for Situational Method Engineering. Inf. Syst. 24, 209–228 (1999)

7. Cervera, M., Albert, M., Torres, V., Pelechano, V.: A Methodological Framework and
Software Infrastructure for the Construction of Software Production Methods. In: Interna-
tional Conference on Software Processes (2010)

8. Cervera, M., Albert, M., Torres, V., Pelechano, V., Cano, J., Bonet, B.: A Technological
Framework to support Model Driven Method Engineering. Taller sobre Desarrollo de
Software Dirigido por Modelos, JISBD (2010)

9. Eclipse Process Framework Project (EPF), http://www.eclipse.org/epf/
10. Ferguson, R.I., Parrington, N.F., Dunne, P., Hardy, C., Archibald, J.M., Thompson, J.B.:

MetaMOOSE - an object-oriented framework for the construction of CASE tools. Informa-
tion and Software Technology 42, 115–128 (2000)

11. Firesmith, D.G., Henderson-Sellers, B.: The OPEN Process Framework. An Introduction,
p. 330. Addison-Wesley, London (2002)

152 M. Cervera et al.

12. Grundy, J.C., Venable, J.R.: Towards an Integrated Environment for Method Engineering.
In: Proceedings of the IFIP 8.1/8.2 Working Conference on Method Engineering, pp. 45–
62. Hall (1996)

13. Harmsen, A.F.: Situational Method Engineering. Moret Ernst & Young (1997)
14. Harmsen, F., Brinkkemper, S.: Design and Implementation of a Method Base Management

System for a Situational CASE Environment. In: Asia-Pacific Software Engineering Con-
ference, p. 430. IEEE Computer Society, Los Alamitos (1995)

15. Henderson-Sellers, B.: Method Engineering for OO Systems Development. Communica-
tions of the ACM 46(10), 73–78 (2003)

16. Henderson-Sellers, B., Gonzalez-Perez, C., Ralyté, J.: Comparison of Method Chunks and
Method Fragments for Situational Method Engineering. In: Proceedings of the 19th Aus-
tralian Conference on Software Engineering, pp. 479–488. IEEE Computer Society, Los
Alamitos (2008)

17. Henderson-Sellers, B., Ralyté, J.: Situational Method Engineering: State-of-the-Art Re-
view. Journal of Universal Computer Science 16, 424–478 (2010)

18. Heym, M., Osterle, H.: A Semantic Data Model for Methodology Engineering. In: Pro-
ceedings of the Fifth International Workshop on Computer-Aided Software Engineering,
pp. 142–155. IEEE Computer Society Press, Washington, D.C (1992)

19. Kelly, S., Lyytinene, K., Rossi, M.: MetaEdit+ A Fully Configurable Multi User and Mul-
tiTool CASE and CAME Environment. In: Constantopoulos, P., Vassiliou, Y., Mylopou-
los, J. (eds.) CAiSE 1996. LNCS, vol. 1080, pp. 1–21. Springer, Heidelberg (1996)

20. Mirbel, I., Ralyté, J.: Situational method engineering: combining assembly-based and
roadmap-driven approaches. Requirements Engineering 11, 58–78 (2006)

21. MOSKitt, http://www.moskitt.org/
22. Niknafs, A., Asadi, M.: Towards a Process Modeling Language for Method Engineering

Support. In: CSIE 2009: Proceedings of the 2009 WRI World Congress on Computer Science
and Information Engineering, pp. 674–681. IEEE Computer Society, Los Alamitos (2009)

23. Ralyté, J., Rolland, C.: An Approach for Method Reengineering. In: Kunii, H.S., Jajodia,
S., Sølvberg, A. (eds.) ER 2001. LNCS, vol. 2224, pp. 471–484. Springer, Heidelberg
(2001)

24. Ralyté, J., Deneckère, R., Rolland, C.: Towards a generic model for situational method en-
gineering. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 95–110.
Springer, Heidelberg (2003)

25. Ralyté, J.: Towards Situational Methods for Information Systems Development: Engineer-
ing Reusable Method Chunks. In: Proceedings of the International Conference on Informa-
tion Systems Development, Vilnius Technika, pp. 271–282 (2004)

26. Reusable Asset Specification (RAS) OMG Available Specification version 2.2. OMG
Document Number: formal/2005-11-02

27. Rolland, C., Prakash, N., Benjamen, A.: A Multi-Model View of Process Modelling. Re-
quirements Engineering Journal 4(4), 169–187 (1999)

28. Roger, J.E., Suttenbach, R., Ebert, J., Süttenbach, R., Uhe, I., Uhe, I.: Meta-CASE in Prac-
tice: a Case for KOGGE, pp. 203–216. Springer, Heidelberg (1997)

29. Saeki, M.: CAME: The first step to automated method engineering. In: OOPSLA 2003:
Workshop on Process Engineering for Object-Oriented and Component-Based Develop-
ment, pp. 7–18 (2003)

30. Software Process Engineering Meta-model (SPEM) OMG Available Specification version
2.0. OMG Document Number: formal/2008-04-01

31. Xpand, http://www.eclipse.org/modeling/m2t/?project=xpand

Towards a Method for Engineering
Social Web Services

Zakaria Maamar1, Noura Faci2, Leandro Krug Wives3,
Hamdi Yahyaoui4, and Hakim Hacid5

1Zayed University, Dubai, U.A.E.
zakaria.maamar@zu.ac.ae

2Claude Bernard Lyon 1 University, Lyon, France
noura.faci@liris.cnrs.fr

3Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
wives@inf.ufrgs.br

4Kuwait University, Safat, State of Kuwait
hamdi@sci.kuniv.edu.kw

5Alcatel-Lucent Bell Labs, Paris, France
hakim.hacid@alcatel-lucent.com

Abstract. This paper motivates the blend of social computing with
service-oriented computing, giving “birth” to social Web services. On the
one hand, social computing builds user applications upon the principles
of collective action and content sharing. On the other hand, service-
oriented computing builds enterprise applications upon the principles of
service offer and demand and loose coupling. Thanks to this blend social
Web services can operate taking into account with whom they worked
in the past and with whom they would like to work in the future. To
engineer social Web services, this paper presents a four-step method that
addresses several questions related to the engineering exercise. These
questions are what relationships exist between Web services, what social
networks correspond to these relationships, how to build social networks
of Web services, and what social behaviors can Web services exhibit.
Experiences dealing with implementing social Web services are, also,
reported in the paper.

Keywords: Engineering, Service-oriented computing, Social comput-
ing, Web service.

1 Introduction

It is largely known that those responsible for designing and developing enterprise
applications appreciate greatly the use of engineering methods while completing
their duties. Indeed these methods are road maps that indicate among other
things the steps to carry out, the notations to use, the meetings to schedule,
and the deliverables to turn in. With the increasing complexity and diversity
of today’s enterprise applications, different engineering methods (e.g., situa-
tional and domain-specific) and scientific fora (e.g., ME’11) have been set up.

J. Ralyté, I. Mirbel, and R. Deneckère (Eds.): ME 2011, IFIP AICT 351, pp. 153–167, 2011.
c© IFIP International Federation for Information Processing 2011

154 Z. Maamar et al.

The purpose of these methods and fora is to keep up the pace with the chal-
lenges that these applications pose on enterprise applications designers and
developers.

Service-Oriented Architecture (SOA) paradigm and its flagship implementa-
tion technology namely Web services are among the latest trends in enterprise
applications design and development. According to Engels et al., SOA promotes
the separation of concerns, information hiding, strong cohesion, and loose cou-
pling [7]. The compliance with SOA principles results in business processes that
are flexible and capable of crossing organization boundaries. A Web service is
“a software application identified by a URI, whose interfaces and binding are ca-
pable of being defined, described, and discovered by XML artifacts and supports
direct interactions with other software applications using XML-based messages
via Internet-based applications” (3WC). When necessary Web services are put
together to offer new added-value composite services to users. Different meth-
ods and approaches to engineer Web services based-enterprise applications are
reported in the literature [10,11,16]. For example, Foster et al. use a model-
based approach to verify Web services composition interactions for a coordi-
nated SOA [10]. The adoption of Web services means the ability to support early
verification of service implementations against design specifications and that
compositions are built with compatible interfaces. Maamar et al. adopt goals to
engineer a specific type of Web services that they referred to as capacity-driven
Web services [16]. The goals are established to define the roles that capacity-
driven Web services play when implementing business applications, frame the
requirements that will be put on capacity-driven Web services, and identify
the processes in term of business logic that capacity-driven Web services will
carry out.

Recently, we started looking into Web services from a social perspective [14].
The purpose is to address some obstacles such as discovery and high-availability
that still hinder the widespread acceptance of Web services by IT practioners.
By imposing a social perspective on how Web services need to be handled at
design- and run-times, we could make Web services (using appropriate tools) es-
tablish networks of contacts (i.e., peers) with whom these Web services “feel com-
fortable” for example to work on common compositions and to recommend for
compositions. In this paper, we present our method to engineer Social Web
Services (SWSs). Briefly this method proceeds as follows: it identifies possible
relationships between Web services, builds social networks out of these relation-
ships, and finally, labels Web services as per their roles in these social networks.
In this paper the social perspective refers to the social relationships that people
come across daily and can be mapped onto relationships linking Web services.

This paper is organized as follows. Section 1 motivates the importance of
engineering methods with focus on SWSs as a case study. Section 2 introduces
a running scenario, discusses the overlap between social and service-oriented
computing, and provides a brief literature review of SWSs. Section 3 introduces
our engineering method. Prior to concluding in Section 5, some technical details
on SWSs are presented.

Towards a Method for Engineering Social Web Services 155

2 Background

We start with a running scenario that reveals the potential relationships between
Web services. Then we introduce the disciplines of social computing and service-
oriented computing and how both overlap giving “birth” to SWSs. Finally we
review some research works on SWSs.

2.1 Running Scenario

We illustrate the use of social networks of Web services with a scenario related
to purchase orders. A customer places an order for a variety of products via Cus-
tomerWS. Based on this order, CustomerWS obtains details on the customer’s
purchase history from CRMWS (Customer Relationship Management). Then,
CustomerWS forwards these details to BillingWS to calculate the customer’s
bill and subsequently send the bill to CRMWS. This latter prepares the detailed
purchase order and sends it to InventoryWS for order completion. For the in-
stock products, InventoryWS sends a shipment request to ShipperWS to deliver
the products to the customer. For the out-of-stock products, InventoryWS sends
a supply request to the selected SupplierWS, which provides ShipperWS with
the products for subsequent shipments to the customer.

Traditionally the aforementioned Web services (e.g., CustomerWS, Ship-
perWS) are discovered and selected without considering or even acknowledg-
ing the interactions they had with other peers in previous compositions. Such
interactions would have been useful if captured properly using for instance so-
cial networks. During the preparation of an order, different relationships are
established. The first relationship is the selection that led into identifying Cus-
tomerWS instead of another Web service for example OrderSubmissionWS. Both
Web services compete against each other since they do the same job, which is
handling customers’ online orders. The second relationship is the dependencies
between Web services that can be recurrent. InventoryWS and ShipperWS have
constantly participated in several joint compositions. Finally, the third relation-
ship is the high availability of Web services. When ShipperWS fails, DeliveryWS
takes over automatically. If all these relationships had to be captured properly,
a Web service would:

– recommend the peers that it likes to collaborate with in case of composi-
tions, e.g., InventoryWS and ShipperWS ;

– recommend the peers that can substitute for it in case of failure, e.g., Ship-
perWS and DeliveryWS ;

– and, be aware of the peers that compete against it in case of selection,
e.g., CustomerWS and OrderSubmissionWS.

Collaboration, substitution, and competition are relationships commonly found
in people’s daily life.

2.2 Social Computing Meets Service-Oriented Computing

With the emergence of Web 2.0, social computing is nowadays a hot discussion
topic. Some well-known social applications like FaceBook and Twitter exemplify

156 Z. Maamar et al.

the successful embracement of Web 2.0. Plus different case studies look into
this topic ranging from social computing importance and challenges it raises like
privacy to the benefits of adopting social applications by organizations [2].

In [8] social computing is related to applications that support collaborative
work (GroupWare) and techniques for modeling, simulating, studying, and an-
alyzing the society (i.e., study the social behavior). Examples of applications in-
clude on-line communities and tools, and interactive entertainment and training.
Another definition sees social computing as an emerging paradigm that involves
a multi-disciplinary approach for analyzing and modeling social behaviors on dif-
ferent media and platforms to produce intelligent applications [12]. Main charac-
teristics of social computing are connectivity, collaboration, and community.

Service-oriented computing is, also, another discipline that attracts the at-
tention of academics and industry people. It aims at bridging the gap between
business services and IT services. As stated earlier, SOA and Web services have
enabled a new wave of business processes that are loosely-coupled and can cross
organization boundaries. The trend of offering business services through the
Internet in the form of software services [19] allows the expansion of business
services into global markets, ease of access for customers, and increased produc-
tivity for companies.

Would there be any overlap between social computing and service-oriented
computing? Our answer is affirmative. On the one hand, social computing builds
applications upon the principles of collective action and content sharing. On the
other hand, service-oriented computing builds applications upon the principle
of “I offer services that somebody else may need” and “I require services that
somebody else may offer”. Service offer and demand illustrate perfectly how
people behave in today’s society imposing a social dimension on the analysis of
Web services. SWSs can capitalize on their experiences to “identify” with whom
they worked in the past and with whom they would like to work in the future.

2.3 Social Web Services in the Literature

SWSs are at the cross road of service-oriented computing and social comput-
ing. Our literature review concluded to a lack of studies that address specific
questions related to SWSs engineering such as how to identify the interactions
(or relationships) between Web services and between users and Web services,
how to build social networks that capture these interactions, how to navigate
through these networks during Web services functioning, and how to maintain
social networks in response to changes in Web services. Some other studies adopt
SWSs to illustrate how Web services can help humans interact. For instance,
a social service network is proposed in [6]. It integrates Web 2.0 aspects to en-
rich Web services with semantics. The social aspects, here, are not based on
Web services interactions, but how users develop tags out of domain ontologies
(i.e., folksonomies) so they assign them to Web services.

Xie et al. suggest a framework for semantic service composition based on social
networks [20]. Trust between service providers, service consumers, and services
themselves is the social element that is taken into account in this composition.

Towards a Method for Engineering Social Web Services 157

The framework consists of several modules including semantic extraction and
social network construction, social network storage, and trust computing.

Maaradji et al. propose SoCo for Social Composer. SoCo advises on the next
course of actions to take in response to events such as Web services selection [17].
The advices are built upon the interactions that occur between users and Web
services as well as the previously built compositions. SoCo consists of different
components including social knowledge extraction and modeling, recommenda-
tion manager, connection manager, and service repository.

Maamar et al. develop LinkedWS as a social networks model for Web ser-
vices discovery [14]. Different social networks permit to describe the situations
in which Web services are engaged for instance collaboration and recommenda-
tion. LinkedWS stresses out that Web services should not be treated as isolated
components that respond to users’ queries, only. Contrarily, Web services com-
pete against other, similar Web services during selection, collaborate with other,
different Web services during composition, and may replace other, similar Web
services during failure despite the competition. Competition and substitution
relationships raise an interesting point, which is Web services competing to take
part in compositions and at the same time collaborating to support each other
during failure. This kind of “behavior” is referred to as coopetition standing for
cooperation and competition [3].

Although short, the list of aforementioned research works shows the growing
interest in SWSs. To sustain this growth methods for engineering SWSs are
highly deemed appropriate to help highlight the relationships between Web ser-
vices, the social networks to build with respect to these relationships, and the
mechanisms that let Web services use these networks during functioning.

3 Our Engineering Method

Our engineering method consists of four steps that each addresses one of the
following questions: what kind of relationships can put Web services in contact,
what social networks correspond to these relationships, what components consti-
tute social networks of Web services, and what social behaviors can Web services
exhibit. SWSs that result out of our engineering method are regular Web ser-
vices that are connected to each other through social networks and exhibit social
behaviors based on their role in these networks. We recall that functionality rep-
resents the “service” that a Web service offers to users and peers as well.

3.1 Overview

Like any engineering method, our method consists of steps and models that fall
into either analysis or design phase (Fig. 1). During the analysis phase a service
engineer performs two steps. First she establishes relationships between Web
services as per the nature of the case study that is under discussion (Section 2.1).
Afterwards the service engineer maps the relationships established previously
onto social networks, though the mapping is not always one-to-one. During the
design phase the service engineer performs two steps as well. First she defines

158 Z. Maamar et al.

the characteristics of each social network in terms of number of nodes, types of
edges connecting these nodes, and weight formulas for these edges. Finally the
service engineer analyzes the social behaviors that Web services exhibit by being
part of these networks.

- Step 1 -

SR identification

- Step 2 -

SR:SN mapping

- Step 3 -

SN building

- Step 4 -

SN mining

Analysis phase Design phase

(SR: Social Relationship; SN: Social Network)

Fig. 1. General representation of SWSs engineering method

3.2 Step 1: What Relationships Can Put Web Services in Contact?

As stated earlier the objective of this step is to identify the relationships that can
exist between Web services. The running scenario has shown three relationships
in response to the following cases:

1. Web services that offer semantically similar functionalities like ShipperWS
and DeliveryWS
– compete against each other during selection as only one Web service is

considered at a time [4].
– substitute for each other in case of failure so that application operation

continuity is maintained [15].
2. Web services that offer separate functionalities like CustomerWS and In-

ventoryWS collaborate in the development of new added-value composite
services [9].

3.3 Step 2: What Social Networks Correspond to Web Services’
Relationships?

As stated earlier the objective of this step is to identify potential social net-
works that can put Web services in contact. Step 1 resulted in the identification
of competition, substitution, and collaboration relationships. Each relationship
constitutes a basis upon which a specific social network is developed. As a re-
sult, Web services can sign up with three types of social networks: competition,
substitution, and collaboration.

– The objective of a competition social network is to make Web services aware
of their competitors. This awareness triggers possible enhancements of Web
services in case they regularly turn out less competitive at selection time [1].

– The objective of a substitution social network is to make Web services highly
available in case failures arise [15]. The potential substitutes are reported in
this network, which eases their identification in the future.

Towards a Method for Engineering Social Web Services 159

– The objective of a collaboration social network is to keep track of all the
peers that worked with a Web service on the completion of compositions.
The potential collaborators are reported in this network, which eases their
identification in the future, as well.

In [14], social networks of Web services are classified into either positive or
negative. This is based on the impact that Web services have on each other
when they are in the same social network. A positive social network includes Web
services that work together since their functionalities are different and hence, can
be combined. Contrarily, a negative social network includes Web services that
cannot work together since their functionalities are similar and hence, cannot be
combined1. As per this classification, a competition social network is negative
while the other two are positive.

3.4 Step 3: How to Build Social Networks of Web Services?

As stated earlier the objective of this step is to identify the components upon
which the social networks of Step 2 are built. We refer to these components as
node and edge. In our engineering method nodes and edges correspond to Web
services and relationships, respectively.

Competition social network. Fig. 2 illustrates a simple competition social
network. Since this network involves similarly functional Web services only,
they are all in competition against each other and hence, all connected to
each other through bidirectional edges.

To evaluate the weight of a competition edge, which we refer to as
Competition Level (CompL, Equation 1) between two Web services wsi

and wsj , we use the Functionality Similarity Level (FSL) to compare their
respective functionalities and the No-Functionality Similarity Level (NFSL)
to compare their respective non-functional properties (QoS, e.g., reliability
level, response time). We assume that the non-functional properties of Web
services are defined with the same taxonomy. The use of FSL is shown in
Section 4.2.

CompLwsi,wsj = FSLwsi,wsj × (1 − NFSLwsi,wsj) (1)

where:

– FSLwsi,wsj corresponds to the similarity level between the functional-
ity of wsi and the functionality of wsj . This level is determined using
existing approaches such as [5] and should be either close to or equal
to 1.

1 Not all Web services can be combined as this depends on factors such as (i) Web
services belonging to the same domain for example travel (e.g., AirBookingWS and
TaxiBookingWS) and (ii) data dependencies between Web services (e.g., OutdoorAc-
tivityWS depending on the feedback of WeatherForecastWS).

160 Z. Maamar et al.

w
eight

w
eight

 w
eight

weight

w
eight

w
eight

weight

weight

weig
ht

Web service Competition relationship

Fig. 2. Illustration of a competition social network

– NFSLwsi,wsj = ω1 × (|Pwsi,1 − Pwsj,1 |) + · · · + ωn × (|Pwsi,n − Pwsj,n |)
with Pwsi,k

is the value of the kth non-functional property of the ith Web
service (assumed to be between 0 and 1), ωk is a weighting factor repre-
senting the importance of a non-functional property, and

∑n
k=1 ωk = 1.

As per Equation 1 the more the competition level is close to one, the clos-
est wsi is to wsj . As a result wsi threatens the competitiveness capacity
of wsj . We recall that only one Web service can be selected at a time to
handle a user’s request. A competition social network is useful when a Web
service decides to reject processing a user’s request for different reasons such
as guaranteeing its non-functional properties [13]. This Web service’s com-
petition social network permits to identify its competitive Web services so
that this request is assigned to one of them upon its approval.

Substitution social network. Fig. 2, also, illustrates a substitution social
network after updating the edges’ name from competition to substitution. It
should be noted that not all edges are bidirectional. Since all Web services
in a substitution social network offer the same functionality, any peer can
be selected as a potential candidate that replaces a failing Web service.

To evaluate the weight of a competition edge, which we refer to as
Substitution Level (SubL) between wsi and wsj , we use the Functionality
Similarity Level (FSL) and the No-Functionality Similarity Level (NFSL)
like previously on top of the Reliability Level (RL) that shows how successful
wsi is when it replaces wsj (Equation 2).

SubLwsi,wsj = FSLwsi,wsj × RLwsi,wsj × (1 − NFSLwsi,wsj) (2)

where:

– FSLwsi,wsj and NFSLwsi,wsj are defined in Equation 1.

– RLwsi,wsj =
∑

SRwsi,wsj∑
TRwsi,wsj

, with
∑

SRwsi,wsj is the total number of

Successful Replacements that wsi made for wsj (i.e., no failure) and

Towards a Method for Engineering Social Web Services 161

∑
TRwsi,wsj is the Total number of Requests that wsi received to re-

place wsj . If wsi never replaced wsj then the substitution level is 0.
Collaboration social network. Fig. 3 illustrates a simple collaboration social

network. It is built when at least one composition of Web services is complete.
For navigation purposes in a collaboration social network, an entry node is
required and represented differently from the rest of nodes (Fig. 3). We refer
to this entry node as “focus” Web service. All edges coming out of this
“focus” Web service are unidirectional pointing towards other Web services.

w
eight

 w
eight

weight

w
eight�

Web service�Focus Web service� Collaboration relationship

Fig. 3. Illustration of a collaboration social network

To evaluate the weight of a collaboration edge, which we refer to as
Collaboration Level (ColL) between wsi (“focus”) and wsj , we track the
number of times that both Web services participated in joint compositions
with emphasis on the total number of compositions that wsi took part in.

ColLwsi,wsj =
∑

JCwsi,wsj∑
TPwsi

(3)

where:
–

∑
JCwsi,wsj is the total number of participations of wsi and wsj in

Joint Compositions.
∑

JCwsi,wsj and
∑

JCwsj ,wsi are equal.
–

∑
TPwsi is the Total number of Participations of wsi in compositions.

3.5 Step 4: What Social Behaviors Can Web Services Exhibit?

As stated earlier the purpose of this step is to identify the potential social behav-
iors that Web services can exhibit based on the details that each type of social
network (substitution, competition, and collaboration) carries on. Different types
of social behaviors exist in real life such as selfish, trustworthy, opportunistic,
malicious, vindictive, reliable, etc.

Selfish social behavior. Substitution reveals the selfishness of a Web service
when this latter refuses continuously to replace failing peers. However these

162 Z. Maamar et al.

peers accept continuously to replace this Web service when it failed. A Web
service can use different reasons to back its refusal decisions including “fear”
of not meeting its non-functional properties or inappropriateness for replac-
ing a failing peer as per the competition social network (CompL close to 0).
To analyze selfishness the substitution relationship between wsi and wsj is
used as follows, where wsi substitutes wsj :

– If SubLwsi,wsj = SubLwsj,wsi then the substitution relationship is bal-
anced between both.

– If SubLwsi,wsj > SubLwsj,wsi then the substitution relationship is in
favor of wsj , i.e., wsj did not replace wsi as many as wsi did for wsj ;
Otherwise the substitution relationship is in favor of wsi.

Definition 1. Selfishness. A Web service wsi exhibits a selfish behavior if
the majority of its substitution relationships with peers are in its favor, i.e.,
the number of times that SubLwsi,wsj < SubLwsj,wsi holds, is greater to a
threshold TSubL. �

A Web service that is known as selfish can be ignored by similar peers since
these ones cannot count on it when they fail. Corrective actions could be
taken by reviewing this Web service’s non-functional properties.

Malicious social behavior. Competition reveals the maliciousness of a Web
service when it accepts to handle user requests that it receives from other
peers, though this Web service is not sure to guarantee its QoS level. Ini-
tially these peers declined handling the user requests for reasons listed in
the description of the selfish social behavior, and hope that this Web ser-
vice will not disappoint them. This Web service is reported in these peers’
competition social networks.

To analyze maliciousness we introduce a function, called disappointment
Diswsi,wsj that tracks of the number of times that wsi failed in maintaining
its QoS level for the user requests it receives from wsj over the total number

of requests that wsj passed on to wsi (Diswsi,wsj =
∑

Failwsi
(reqwsj

)
∑

reqwsi,wsj
).

– If Diswsi,wsj = Diswsj,wsi then the disappointment relationship is bal-
anced between both.

– If Diswsi,wsj > Diswsj,wsi then the disappointment relationship affects
wsj more than wsi;

Definition 2. Maliciousness. A Web service wsi exhibits a maliciousness
behavior if it is involved in a large number of disappointment relationships
with peers, i.e., the number of times that Diswsi,wsj < Diswsj,wsi holds, is
greater to a threshold TDis. �

Dominant social behavior. Collaboration reveals the dominance of a Web
service over a peer when this Web service participates in the compositions
of this peer more than what this peer did in the compositions of this Web
service.

Towards a Method for Engineering Social Web Services 163

To analyze dominance the collaboration relationship between wsi and wsj

is used as follows:

– If ColLwsi,wsj = ColLwsj ,wsi then the collaboration relationship is
balanced between both.

– If ColLwsi,wsj < ColLwsj,wsi then the collaboration relationship is in
favor of wsi, i.e., wsi did participate in the compositions of wsj more
than what wsj did by participating in compositions of wsj ; Otherwise
the collaboration relationship is in favor of wsj .

Definition 3. Dominance. A Web service wsi exhibits a dominant behav-
ior if the majority of its collaboration relationships with peers are not in its
favor, i.e., the number of times that ColLwsi,wsj < ColLwsj ,wsi holds, is
greater to a threshold TColL. �

4 Implementation

We discuss first, the tools that support service engineers in developing SWSs
and managing their respective social networks and then, report on our experience
of dealing with SWSs in the context of LinkedWS project.

4.1 Support Tools

Service engineers who plan to convert Web services into SWSs use tools to per-
form this conversion along with other duties such as building SWSs’ networks,
exhibiting SWSs’ behaviors, finding substitutes for failing SWSs, etc.

The first tool called Functionality Assessment T ool (FAT) is used by ser-
vice engineers to establish relationships between SWSs based on their respective
functionalities (Steps 1 and 2). Functionality categorizes SWSs into either simi-
lar or different (Fig. 4). Multiple assessment techniques like those reported in [5]
and [18] can be integrated into the FAT . Out of the FAT , two values are ob-
tained: degree of similarity (ds) upon which competition and substitution social
networks are built and degree of complementarity (dc) upon which collaboration
social network is built.

Functionality

is either

Similar Different

result in

result in

Competition Substitution Collaboration

Fig. 4. SWSs categorization based on functionality

164 Z. Maamar et al.

The second tool called N etwork Management T ool (NMT) is used by ser-
vice engineers to build networks of SWSs and oversee changes in these net-
works (Step 3). A social network is either built from scratch or extended after
adding new nodes/edges to it. For each type of social network discussed in Step 3,
the collaboration, substitution, and competition levels (ColL, SubL, CompL) are
calculated using the NMT .

The third tool called N etwork MIning T ool (NIT) is used by service en-
gineers to analyze the details in the three social networks so that the social
behaviors of each SWS are exhibited (Step 4).

4.2 Experience with LinkedWS

The development of LinkedWS is thoroughly detailed in [14]. We briefly illustrate
the use of the FAT and NMT .

Building upon the work of Min et al. [18], the FAT associates a Web
service (s) with a profile that consists of precondition, input, output, effect,
and QoS. The FAT establishes the degree of similarity ds(si, dsj) (i.e., FSL)
(Equation 4) between si and sj using a matching score (ms) function defined in
Equation 5.

ds(si, sj) =

∑
k wk × ms(csik

, csjk
)

∑
k wk

(4)

where k is the total number of concepts being similar and wk is the weight asso-
ciated with the matching score between a pair of concepts. The resulting degree
of similarity is between 0 (completely dissimilar) and 1 (maximum similarity).

ms(csi , csj) = f1 × f2 × f3 (5)

where f1 = eαl with α as a constant, f2 = eβh−e−βh

eβh+e−βh with β as a smoothing

factor, and f3 = eλl−e−λl

eλl+e−λl with λ as another smoothing factor.

Fig. 5. WSMC interface for ShipperWS

Towards a Method for Engineering Social Web Services 165

To replace a failing Web service (e.g., ShipperWS) using a substitution social
network, we implemented the Web Services Matching Component (WSMC that
is part of the NMT). The WSMC is triggered when a Web service fails taking
as input the WSDL document of this Web service (Fig. 5). The WSMC permits
to a service engineer to navigate through the substitution social network of a
failed Web service.

To build the substitution social network of ShipperWS (Fig. 6), we identi-
fied manually (using jUDDI) some similar peers such as DeliveryWS, ShipMse,
GoodDelivery, and GoodTransport. Equation 4 assesses the initial weights of the
edges that connect ShipperWS to these Web services. Once the substitution so-
cial network becomes effective these weights are reevaluated as per Equation 2.
For instance the total number of Successful Replacements (

∑
SRwsi,ShipperWS)

that wsi made for ShipperWS is updated where wsi could for example corre-
spond to DeliveryWS.

Fig. 6. ShipperWS ’s substitution social network

5 Conclusion

In this paper we discussed a method to engineer social Web services. This en-
gineering took into account the fact that Web services compete against similar
peers during selection, collaborate with different peers during composition, and
replace similar peers during failure. These three cases constitute the basis of
developing networks of social Web services. The engineering method consists of
four steps. In the first step, the objective is to shed the light on the potential

166 Z. Maamar et al.

relationships between Web services. In the second step, the objective is to as-
sociate these relationships, once identified, with social networks. In the third
and four steps, the objectives are to build and analyze these networks so that
the social behaviors of Web services are established. Finally, a set of tools like
functionality assessment supporting the engineering method were listed. Future
work would consist of putting social Web services into action like we did in the
LinkedWS project, which should permit a further refinement of the method.

References

1. Alrifai, M., Skoutas, D., Risse, T.: Selecting Skyline Services for QoS-based Web
Service Composition. In: Proceedings of the the 19th International World Wide
Web Conference (WWW 2010), Raleigh, North Carolina, USA (2010)

2. Badr, Y., Maamar, Z.: Can Enterprises Capitalize on Their Social Networks? Cut-
ter IT Journal 22(10) (October 2009)

3. Bengtsson, M., Kock, S.: Coopetition in Business Networks to Cooperate and Com-
pete Simultaneously. Industrial Marketing Management 29(5) (2000)

4. Bui, T., Gacher, A.: Web Services for Negotiation and Bargaining in Electronic
Markets: Design Requirements and Implementation Framework. In: Proceedings
of the 38th Hawaii International Conference on System Sciences (HICSS 2005),
Big Island, Hawaii, USA (2005)

5. Di Martino, B.: Semantic Web Services Discovery based on Structural Ontology
Matching. International Journal of Web and Grid Services 5(1) (2009)

6. El-Goarany, K., Saleh, I., Kulczycki, G.: The Social Service Network - Web 2.0
Can Make Semantic Web Services Happen. In: Proceesings of the 10th IEEE Con-
ference on E-Commerce Technology (CEC 2008) and the 5th IEEE Conference on
Enterprise Computing, E-Commerce and E-Services (EEE 2008), Washington, DC,
USA (2008)

7. Engels, G., Hess, A., Humm, B., Juwig, O., Lohmann, M., Richter, J.P., Voß, M.,
Willkomm, J.: A Method for Engineering a True Service-Oriented Architecture.
In: Proceedings of the Tenth International Conference on Enterprise Information
Systems (ICEIS 2008), Barcelona, Spain (2008)

8. Fei-Yue, W., Kathleen, C., Daniel, M.Z., Wenji, M.: Social Computing: From Social
Informatics to Social Intelligence. IEEE Intelligent Systems 22(2) (March 2007)

9. Fluegge, M., Santos, I.J.G., Paiva Tizzo, N., Madeira, E.R.M.: Challenges and
Techniques on the Road to Dynamically Compose Web Services. In: Proceedings
of the 6th International Conference on Web Engineering (ICWE 2006), Palo Alto,
California, USA (2006)

10. Foster, H., Uchitel, S., Magee, J., Kramer, J., Hu, M.: Using a Rigorous Approach
for Engineering Web Service Compositions: A Case Study. In: Proceedings of the
2005 IEEE International Conference on Services Computing (SCC 2005), Orkando,
Florida, USA (2005)

11. Karakostas, B., Zorgios, Y.: Engineering Service Oriented Systems: A Model Driven
Approach. IGI Global Publishing (2008)

12. King, I., Li, J., Tong Chan, K.: A Brief Survey of Computational Approaches in
Social Computing. In: Proceedings of the International Joint Conference on Neural
Networks (IJCNN 2009), Atlanta, Georgia, USA (2009)

Towards a Method for Engineering Social Web Services 167

13. Maamar, Z., Kouadri Mostéfaoui, S., Yahyaoui, H.: Towards an Agent-based and
Context-oriented Approach for Web Services Composition. IEEE Transactions on
Knowledge and Data Engineering 17(5) (May 2005)

14. Maamar, Z., Krug Wives, L., Badr, Y., Elnaffar, S., Boukadi, K., Faci, N.:
LinkedWS: A Novel Web Services Discovery Model Based on the Metaphor of
“Social Networks”. In: Simulation Modelling Practice and Theory, vol. 19(10), El-
sevier Science Publisher, Amsterdam (2011)

15. Maamar, Z., Sheng, Q.Z., Tata, S., Benslimane, D., Sellami, M.: Towards an Ap-
proach to Sustain Web Services High-Availability Using Communities of Web Ser-
vices. International Journal of Web Information Systems 5(1) (2009)

16. Maamar, Z., Tata, S., Yétongnon, K., Benslimane, D., Thiran, P.: A Goal-based
Approach to Engineering Capacity-driven Web Services. The Knowledge Engineer-
ing Review Journal, Special issue on Web and Mobile Information Services (2010)
(forthcoming)

17. Maaradji, A., Hacid, H., Daigremont, J., Crespi, N.: Towards a Social Network
Based Approach for Services Composition. In: Proceedings of the 2010 IEEE In-
ternational Conference on Communications (ICC 2010), Cap Town, South Africa
(2010)

18. Min, L., Weiming, S., Qi, H., Junwei, Y.: A Weighted Ontology-based Semantic
Similarity Algorithm for Web Services. Expert Systems with Applications 36(10)
(December 2009)

19. Papazoglou, M.: Web Services: Principles and Technology. Prentice Hall, Engle-
wood Cliffs (2007)

20. Xie, X., Du, B., Zhang, Z.: Semantic Service Composition based on Social Network.
In: Proceedings of the 17th International World Wide Web Conference (WWW
2008), Beijing, China (2008)

J. Ralyté, I. Mirbel, and R. Deneckère (Eds.): ME 2011, IFIP AICT 351, pp. 168–183, 2011.
© IFIP International Federation for Information Processing 2011

Developing Families of Method-Oriented Architecture

Mohsen Asadi1,2, Bardia Mohabbati1,2, Dragan Gašević2, and Ebrahim Bagheri2,3

1 Simon Fraser University, Canada
2 Athabasca University, Canada

3 National Research Council, Canada
{masadi,mohabbati}@sfu.ca, dgasevic@acm.org,

ebagheri@athabasca.ca

Abstract. The method engineering paradigm is motivated by the need for soft-
ware development methods suitable for specific situations and requirements of
organizations in general and projects in particular. Assembly-based method en-
gineering, as one of the prominent approaches in method engineering, creates
project-specific methods by (re-)using method components, specified with me-
thod processes and products, and stored in method repositories. This paper tries
to address the two challenges of assembly-based method engineering related to
more effective: i) publication and sharing of method components; and ii) man-
agement of variability in software methods, which have many commonalties. In
order to address these two challenges, we propose the concept of Families of
Method-Oriented Architectures. This concept is built on top of the principles of
service-oriented architectures and software product lines.

Keywords: Method engineering, Software Product Lines, SOA.

1 Introduction

The increase in the complexity of software-intensive systems has urged for the inte-
gration of seminal approaches such as Object-modeling Technique (OMT) and Objec-
tory to form integrated (plan-driven) and unified frameworks such as the Rational
Unified Process (RUP). Integrated approaches typically target development of a vast
variety of software applications, which increase the size of methods and make them
become “cook-book” approaches. Recent critical literature reviews and comprehen-
sive case studies have shown that such cook-book approaches do not work successful-
ly for all circumstances [1]. Practitioners could potentially waste up to 35% of their
effort by following the steps of standard development methods [3]. Moreover, the
results of such studies reveal that the formal definition prescribed by a method in
forms of stages and steps widely differ from the method actually being used [4].
These issues have motivated the software engineering research community to estab-
lish the Method Engineering (ME) [3] discipline. The ME community concentrates on
the idea of providing an “adaptation framework whereby methods are developed
to match specific organization situation” [1]. The most prominent ME approach is the
assembly-based method engineering that creates a new method by assembling

 Developing Families of Method-Oriented Architecture 169

existing method components [6][16]. Despite the fact that ME has recently produced
promising research results, there are still many open research challenges [1]. In this
paper, we focus on two key challenges, namely:

1. The lack of a standard model for describing method components limits the oppor-
tunities of method engineers, teams and organizations to share, discover, and re-
trieve distributed method components. When a method engineer wants to create a
new method from scratch or by adapting (extending/constraining) an existing me-
thod, a common approach is to try to reuse existing method components from the
method repository. Therefore, method components need to be discovered and com-
posed with other method components. Due to the lack of standards, method engi-
neers are forced to reuse method components from the local proprietary repositories,
without effective capabilities for retrieving method components in repositories of
their collaborators. Moreover, with this limitation of method component sharing,
business opportunities of organizations are also limited. In fact, they cannot easily
publicize and offer the methods that they are specialized in, as (for profit) services.

2. In essence, organizations initially adopt a method for software development. Af-
terwards, components of the method may be subsequently added and gradually
extended. Such extensions may be derived due to either the evolution of software
development or various variations created for some specific method components.
Some sources of these diversities may be differences among domains of systems
under development (i.e., desktop application, web application, and real-time) or
newly emerged software development approaches such as Model Driven Devel-
opment, Component based Software Development as well as method types such as
agile or plan-driven. Thus, there is the need for a systematic approach to manage
variability of software methods and adapt software methods (families) that best suit
the needs of a specific development context.

The first challenge has been already recognized in the literature [13][1] and some
researchers have proposed to use of SOA and Web service standards and principles
for dealing with the challenge [13][1]. To this end, the concept of Method Services
was coined in analogy of the concept of services in SOA. In order to address both of
the above challenges at the same time, we propose combining principles (Sect. 4 and
5) of Software Product Line Engineering (SPLE, Sect. 3.1) and Service-oriented Ar-
chitectures (SOAs, Sect. 3.2) [12]. We use the method service notion for defining
method components. We also propose leveraging SPLE with the goal of addressing
the second challenge. Our key idea is to introduce a concept of method families,
which share a set of common method components, and yet have effective tools for
variability management (e.g., feature models). With the use of SPLE principles, we
can allow for a systematic modeling of method families and for an automated process
of specialization of method families where each family specialization satisfies re-
quirements of a specific situation.

2 Motivating Example

In order to illustrate the challenges that are tackled in this paper, let consider an
organization, which develops software systems in two distinct domains, namely,

170 M. Asadi et al.

information systems (both desktop and web-based systems) and real-time systems. We
consider that the organization has adopted a base method (e.g., RUP) for the entire
systems development process. The base method supposedly is a modular method and
its method components are stored in a method repository. Moreover, the organization
has employed different development approaches, including code centric development,
component based development, and model driven development. Based on the scale
and complexity of a project, the organization may follow different development poli-
cies such as agile or plan-driven. In addition, contingency factors such as time pres-
sure, user involvement and project familiarity cause the source of diversity in method
components. Furthermore, human factors (e.g., roles in the organization and their
experience level) could be a source of variation points in the method activities. The
organization might also intend to add more requirements for future variations of me-
thods and integrate more project management method components in order to have a
better support for project management and risk assessment tasks. As a response to the
described circumstance, the organization requires to extend the base method using
different method components. As a consequence, the complexity and variations of the
base method are gradually increased in practice. This complexity leads to a limited
sharing and management of lessons learned. Thus, there is a need to more effectively:
1) manage different variations of the base method that were observed and encountered
in the previous projects and systematize the lessons learned; 2) anticipate further
needs by considering all possible variations of the base method; and create a syste-
matic method for adaptation of the base method considering the needs and require-
ments of the new development situations. Moreover, the organization, besides its own
development projects, might also want to offer some consultancy services or partner
with some other organizations based on expertise in method engineering. In such
cases, the organization needs to have a standard method for publishing their compe-
tencies, so that other organizations can effectively discover and reuse such experience
in similar development situations.

3 Background

3.1 Software Product Line Engineering

The SPLE paradigm aims at managing variability and commonality of core software
assets of a given domain in order to facilitate the development of software-intensive
products and to achieve high reusability [2]. SPLE empowers the derivation of differ-
ent product family applications (aka, family members) by reusing the realized product
family assets such as common models, architecture, and components. In this context,
software assets are characterized by a set of features shared by each individual prod-
uct of a family. The set of all valid feature combinations defines a set of product line
members of the family. A valid composition of features is called a configuration
which in turn is a valid software product specialization. The development of a soft-
ware family is performed by conducting the domain engineering lifecycle in which
the common assets, family reference architecture and the variability models are de-
veloped. Afterwards, in the application engineering lifecycle, the common assets

 Developing Families of Method-Oriented Architecture 171

are reused and variability models are configured to produce a family. Feature model-
ing, as a popular technique for modeling variability, is employed to represent the
variability and describe the allowed configurations of a software family. This tech-
nique is typically used in domain engineering to model an entire family based on the
functional characteristics (aka features) that the family provides. Feature models for-
mally and graphically define relations, constraints, and dependencies of software
artifacts in a software product family. In essence, there are four types of relationships
related to variability concepts in the feature model. They can be classified as: Manda-
tory (Required), Optional, Alternative feature group and Or feature group. Common
features among various members of the family are modeled as mandatory features. In
other words, mandatory features must be included in the description of their parent
features and must be present in any final configuration. Optional features may or may
not be included in a final configuration. Alternative features indicate that only one of
the features from the feature groups can be opted.

Once a feature model for an entire family is in place, a process of configuration
follows. Configuration is a process of selecting features needed for specific applica-
tions. Recently, the research community has proposed effective methods for staged
configuration where each stage addresses a specific set of requirements in the applica-
tion development process [11].

3.2 Method Oriented Architecture

Service-oriented computing (SoC) is a computing paradigm that promises flexibility
and agility in the development of collaborative software systems. Service-oriented
Architecture (SOA) is the main architectural style for realizing the SoC vision. SOA
provides an underlying structure enabling for interoperability and communications
between services. Web service, reusable and loosely-coupled components, are the best
known materialization of SOAs [12]. Web services are built on well-defined stan-
dards such as Web Services Description Language (WSDL). Furthermore, the wide-
spread adoption of Web service technologies provides open standards which increase
accessibility and interoperability of distributed software services in a networked
environment.

On the other hand, ME approaches are hindered by the lack of standards for
describing the interfaces of components of methods. Moreover, reusable method
components are restrained to be adopted locally by their providers in proprietary re-
positories. Indeed, the discovery and retrieval of reusable method components can
significantly enhance rapid method construction and reuse. The ME community has
already proposed the notion of Method Oriented Architecture (MOA) [1][13], which
builds on and adopts SOA principles. Rolland proposed the MOA approach where
Method as a Service (MaaS) is considered as an analogy to Software as a Services
(SaaS)[1]. MOA aims at developing an ME approach, which elevates the accessibility
of method services and facilitates their automated composition. In MOA, method
services are described by method providers through WSDL documents. On the other
hand, clients search and retrieve the required method services and compose them in
order to create their own more complicated method service.

172 M. Asadi et al.

4 Method Services and Feature Modeling

As mentioned in the introduction section, to address the challenge of variability in
method engineering, we intend to apply SPL principles and techniques especially
feature modeling. In SPL, functionalities of a set of similar software systems and their
visibilities are presented in a feature model in terms of features and variability points,
respectively. Likewise, a set of similar methods (we call a family of methods) may
have commonalities and variabilities with respect to functionality (i.e. activities).
Therefore, a family of methods provides the means for capturing the commonalities
(core assets) of all possible methods of a given domain and also addresses variability
by covering a comprehensive set of dissimilarities between the methods. In our pro-
posal for family development, distinguishable characteristics of a method mostly
including functionalities of the method (i.e. activities) are represented using features.
For instance, in our motivating example, one feature of the family is Use-Case model-
ing. The methods commonality and variability, in terms of their features, are
represented in feature model. The development of a family of methods is performed
by conducting the domain engineering lifecycle (developing feature model and im-
plementing features), which is followed by the application engineering lifecycle (de-
veloping target method with configuring feature model). We should note that the
feature model is only the representation for family characteristics and the variability
relations and we need to link them to corresponding method implementations (i.e.
method fragment). We use method services as well as MOA techniques (i.e. Method
service discovery and composition) to implement features of a family. Therefore, we
refer to our approach as development of families of method oriented architectures.

In order to clarify the difference between feature and method service, let us consider
the process of method construction as a process of problem solving, in which the re-
quirements model and the final method are considered as the problem space and the
solution space, respectively. Since we intended to develop a range (i.e., family) of
solutions (i.e. methods) which have common and variable parts, both the problem and
solution spaces become more complex. By following SPLE principles, the family
problem space (i.e., family requirements model) is decomposed and grouped into
features which form a feature model. In other words, a feature intuitively represents
sub-problems of the family problem space, and a feature model represents a hierarchic-
al representation of the family space with variability. For instance, the problem space
(feature model) of a described family method at the highest level is decomposed
into (see Section 6) management, requirement engineering, development, and deploy-
ment sub-problems (features). On the other hand, method services form the solution
space, in which one or more method services (sub-solutions), implement (solve) one or
more features (sub-problems). From another point of view, features address what the
properties of the solution are and method services represent the realization of those
properties. Fig. 1 shows the use case modeling feature (one of the features of the fea-
ture model given in Section 6) and the corresponding use case modeling method ser-
vice. As the figure shows, the method service represents how the modeling of use cases
should be conducted. Also, a feature represents some functionality, which can be in-
cluded in a method variant. One of the key concerns in method family engineering is
the identification of method services for each feature and the binding of features onto
method services. Then, in the application engineering lifecycle, method engineers

 Developing Families of Method-Oriented Architecture 173

Fig. 1. The relation between use case modeling feature (on the left part) and its corresponding
method services which define both process and product model for use-case (adapted from [16])

select features from feature models corresponding to the requirements of the target
method (i.e. feature configuration). Next, the method services bound to features in
domain engineering are composed automatically and they form an initial method for
application engineering. The initial method is adapted and improved until a suitable
method is reached for the target problem and deployed.

5 Families of Method Oriented Architecture

Similar to developing software product lines, we propose two main lifecycles for
method family engineering process, namely the Method Domain Engineering and
Method Application Engineering lifecycles. Method Domain Engineering lifecycle is
carried out one time for the whole family and develops the architecture of the method
family, common assets, and variants. In this lifecycle, family features and their varia-
bility are modeled by a feature model and suitable method services corresponding to
features (i.e. a feature implementation) are discovered and bound to the features. The
method application engineering lifecycle develops a target method (i.e. a member of
family) for a concrete application by configuring the feature model and assembling
the method services related to the configuration. The method application engineering
lifecycle is carried out every time a new method is required. The remainder of this
section describes the main phases and activities of both lifecycles along with their
associated product artifacts.

5.1 Method Domain Engineering

Method domain engineering aims at discovering, organizing, and implementing
common assets of a method family. Moreover, determining the scope of a method
family and describing the variability of the models is achieved during this lifecycle.
The input of the lifecycle is domain knowledge relating to and describing the method
family and the reusable assets, while variability models for the methods expressed
using feature models are the output of this lifecycle. Fig. 2 illustrates the phases and
stages of the method domain engineering lifecycle.

Use-Case
Modeling

…

Start Stop

Use-case and
Actor

Identification

Write
Use-case

Model
Use-case

Functional
Strategy

Actor
Based

Case Based
Strategy

Free prose
strategy Template

Based

Tool Support

Manually

Completeness

Extend-based
Strategy

Include-based
Strategy

Exception-
based

Strategy

Extend FlowBasic Flow

1..*
Extends

-Description

Workflow

-Name
-Description

UseCase

-Name
-Description

Actor

Use Case Model
1

Uses

Initialize

Support

Includes

0..1

1

*

*

**

1

Software
Development

Methods
Feature Model

Feature Model Method Chunk/Service

Include flow

Process model Fragment
(map-driven notation) Product Model Fragment

174 M. Asadi et al.

Fig. 2. The Method Domain Engineering Lifecycle

Method domain engineering starts with the Method Family Scoping phase which is
a key phase for achieving economic benefits of a product line [2]. The Method Family
Scoping phase aims at determining a set of products (Software Development Me-
thods) which belong to the family. Scoping of the family is performed in the three
stages [2]. The Method portfolio scoping stage is a high level domain analysis process
and uses the market inputs on existing methods, and expert knowledge to derive a
standardized description of a method product line, technical domains that are relevant
to it, and the range of methods that shall be supported with the method family. It sys-
tematizes the method product information, identifies the main features of the product
line and checks the consistency. With regard to features of a method family, the de-
velopment approaches used in methods (e.g., Model Driven Development-MDD, and
SOA), final application domains (e.g., Information System, Embedded Systems, and
Ubiquities Systems), and method types (e.g., agile or plan-driven methodologies) are
determined through this phase using the project documents.

Later, the domain scoping stage uses the basis provided in the previous stage and
the expert inputs to identify and group the major functional areas in terms of technical
domains which belong to the current method family. Moreover, the benefits and risks
pertaining to the various domains are explored and documented. For instance, benefits
and risks of employing MDD are identified. Finally, in the asset analysis stage, based
on the preconditions established in the previous two stages, precise functionality of
the method components that should be supported by the method family are described.
This stage determines which assets should be developed for reuse (commonality) and
which ones as project-specific (variability). The method engineer indicates the varia-
ble features (project-specific) belonging to the family, the type of the variables (e.g.
logic, workflow), set of variants for the variable, and status of variants (open or close)
[17]. The method product-line roadmap is produced as the output of this phase.

The Method Family Requirements Analysis phase aims at capturing requirements
and developing a requirements model for the methods family. The family require-
ments model contains unique and unambiguous definitions for each requirement as
well as the variability of the requirements. The phase receives the documents, stake-
holders’ viewpoints, and the product-line roadmap, and variability ranges. Similar to
typical software engineering procedures, we define functional requirements and non-
functional requirements for methods. The functional requirements show the properties

Capture Family
Requirements

Modeling
Requirements

Refine
Requirements

Validation and
Verification

Method Family
Project Definition

Method Family
Requirements
Specification

Feature
Model

Method
Services Lists

Method Family Realization

Feature Model
Development

Feature Driven
Method Service

Discovery

Product Road-map,
Variability Table

Method Family Scoping Phase

Method Portfolio
Scoping

Asset Analysis

Domain Scoping

Method Family
Requirements

Model

Method Family Requirements Analysis

Artifact

Stage

Production/
Revision

Control Flow

Legend

 Developing Families of Method-Oriented Architecture 175

that the method should provide, such as work products and required activities; and
non-functional requirements include properties that the entire or a large part of me-
thods in the family should have such as smoothness of transition between activities,
robustness, and scalability. The method family requirements are elicited and docu-
mented. The method engineer gets an agreement of developers (i.e., stakeholders in
this case) on the method family requirements. Next, family requirements are refined
through decomposition, aggregation, and grouping. Afterwards, in the modeling
family requirements stage, techniques such as the map-driven technique [9] are ap-
plied to develop the family requirements model. The family requirements model in-
cludes the functional requirements and is represented as family requirements map.
The progression activity analyzes the family requirements model and defines the
requirements filling the gaps in the family requirements model. Finally, the method
engineer verifies the completeness and coherence of the family requirements models
as well as the level of satisfaction of the stakeholders’ needs by using Requirements
verification and Validation activities [9], respectively.

The goal of the next phase, Method Family Realization phase, is to identify com-
mon and variant features within the family and to model them with a feature model.
Afterwards, the appropriate method services are discovered for each of the features.
The feature model is developed by the Feature Model Development stage. That is, the
common and variable functionalities of methods of the family are managed by
representing them in a feature model. The method engineer starts from the require-
ments and analyzes the requirements, their granularity level and relationships, and
then groups them into appropriate features. Moreover, the variability relations are
identified between features. Additionally, nonfunctional requirements such as tracea-
bility and project management are analyzed and added to the feature model as features
and their relations are also identified. Furthermore, the method engineer annotates the
features with required information.

The requirements and feature family modeling phases produce the requirements
model, requirements documents, and feature model of the method family. Feature
family modeling, as described above, is followed by a Feature Driven Method for
service discovery and selection. The stage of the feature-driven discovery is per-
formed by considering each individual feature and their respective annotations. In
essence, a feature annotation provides functional and non-functional keywords used to
generate feature queries. The feature queries simply describe what the desired method
services should be and how they should behave. In our current implementation, we
adopted text-based approach to the discovery of method services. In evaluations of
our current implementation of the feature-driven service discovery, we observed
promising results in experimenting with the active service search engines while de-
veloping families of software services [15]. Since, MOA uses SOA standards for
defining and publishing method services, we may expect similar results for discover-
ing of method services. Given that there are no publically available repositories of
method services, we are now developing a test collection of method services. In this
process, we can easily leverage existing service repositories (e.g., Seekda already
used in our implementation) for storing method services. Other approaches can be
leveraged in feature-driven service discovery such as logic-based approaches [14].

176 M. Asadi et al.

5.2 Method Application Engineering

Once the method domain model is created, then method engineers can take the me-
thod domain model and create different instances out of it based on target method
requirements. We refer to this process as method application engineering.

Therefore, method application engineering aims to develop a method for a target
situation (e.g. a member of the method family) by utilizing the reusable assets created
in the domain engineering lifecycle. The input of the lifecycle is the project docu-
ments for the concrete method and the output is the method satisfying the require-
ments. It captures the final method requirements, selects the corresponding features
from the feature model, and finally assembles the method services bound to the se-
lected features. The application engineering process is illustrated in Fig. 3.

The Application Method Requirement Analysis phase aims to define the require-
ments of the target method. The documents related to the required method are the
inputs and its requirements model and the requirement documents are the outputs.
The documents related to the target method should include definition (specify the type
of the project at hand), domain (specify the application domain of the target method),
and deliverable (specify the artifacts that should be produced) [10]. The family re-
quirements model and documents are utilized through this phase to produce the me-
thod application requirements.

Fig. 3. Method Application Engineering Lifecycle

First, the method application requirements phase captures stakeholders’ require-
ments and documents them. Then, method requirements are refined and clarified
further and the agreement of stakeholders is achieved. Next, the method engineer
develops the requirements model in the form of a requirements map. Moreover, non-
functional requirements are utilized in the feature selection process. Finally, the
method requirements are validated and verified to check the completeness and cor-
rectness of the method requirements. In all the activities of this phase, the family
requirements model is used as a reference to facilitate the process of requirement
analysis of the members of the method family. There is a possibility of capturing
requirements which were not captured in method family requirement analysis. The

Capture Method
Requirements

Modeling Method
Requirements

Refine Method
Requirements

Validation and
Verification

Application Method
Project Definition

Application Method
Requirements
Specification

Feature
Configuration Target Method

Application Method Development

Feature Model
Configuration

Assemble Method
Services

Application Method
Requirements Model

Application Method Requirements Analysis

Method
Deployment

 Developing Families of Method-Oriented Architecture 177

activities of this phase concentrate on one method application, so they do not deal
with variability in the family.

The Application Method Development phase creates the target method by configur-
ing the method family and delivers the final method configuration to the developers.
The method feature model configuration stage aims to develop the method by select-
ing the most appropriate set of features from the feature model through a stage
configuration process. It receives the method requirements and produces the corres-
ponding feature configuration. The stage configuration process [11] starts from the
feature model and carries out successive specializations to create the final configura-
tion. That is, the staged configuration process would limit the space of the method
family to the space most relevant for the current method that is being built. Through
the staged configuration, the method engineer produces the final configuration. Since
in method domain engineering, the method engineer might want to bind a list of me-
thod services that have the same interfaces (i.e. situation and intention) but different
nonfunctional properties defined in descriptors of method services, the final method
service for each feature is selected from the list of alternative method services. The
output of the stage is the set of the features (mandatory and optional) as well as their
corresponding method services.

If the selected method services (features) do not cover all the requirements of
the target method, the new method services for the remaining requirements are dis-
covered in some other repositories or developed from scratch. After the method engi-
neer makes sure that all required method services (features) have been gathered,
he/she starts the composition of method services (features) via the Assemble Method
Services stage. The selected features are divided into functional (e.g., requirement
elicitation, use case modeling, and developing design model) and non-functional
features (e.g. quality assurance, project monitoring, and traceability checking). First,
the method services are orchestrated and the necessary adaptation and mediation are
conducted. Then, a decision about the location of method services within a large
scope (like quality assurance) is made. After creating the target method, the verifica-
tion/validation task is done by the method engineer to check whether the method is
free from defects and if the target method meets all requirements established in the
requirements phase. Moreover, the completeness of the method is verified by a com-
pleteness task. Finally, the method is deployed to the stakeholder environment by
preparing method documents, training developers, and supporting staff through the
execution of the method.

6 Case Study

In this section, we represent our motivational example from Section 2 by following
our proposed approach described in the previous section. Due to the space limitation,
we only explain the domain method engineering lifecycle, which comprises Product
Line Scoping, Family Requirement Analysis, Feature Modeling and Feature-based
Method Service Discovery and Selection.

178 M. Asadi et al.

Product Line Scoping: By completing the activities of the product line scoping
phase, we identified the criteria which specify the product line boundaries, the main
functionality area, and core assets of the method family. Table 1 shows a part of the
product line scoping results. One of the major functionality areas distinguished in the
domain scoping by all variations of the method is the support for a generic develop-
ment lifecycle. For instance, unit testing is a core asset in the method family.

Family Requirement Analysis: Functional and non-functional requirements with
their commonalities and variability are captured and documented separately. Table 1
shows a part of requirements categorized based on their types. Functional require-
ments include activities and work products that should be supported with family me-
thod. The base method of the organization is explored to discover more detail
requirements. The family requirements model is created first by using map-driven
approach [6] and then verified and validated. Due to the space limitation for this pa-
per, the requirements model is omitted from the paper.

Feature model Development – based on the family requirements model defined in
the previous phase and the existing basis method in the organization, features and
their corresponding relations are identified and modeled. The part of feature model
designed for target organization is depicted in Fig. 4. Features show the method ser-
vices required for the family and they can be considered as interfaces for representing
method services in the family.

Feature-driven Method Service Discovery and Selection: The next step after fea-
ture model development is the discovery of method services. The aim is to find and
select among available methods services, which can satisfy desired functional and
non-functional requirements of the method for specific situations. As we described
earlier, we consider each feature and their associated annotations as queries for me-
thod components stored in method repositories. In method service discovery, we as-
sume that the method components, described by WSDL, are available and accessible
through either the proprietary method repositories of the organization or public repo-
sitories provided by third-parties. Thereby, organizations can publish and share their
method chunks as services. Although there are on-line repositories such as Open
Process Framework (OPF) [20], available reusable method components are not ac-
cessible through standard interfaces. Moreover, there are no facilities to search and
discover such available methods. Accordingly, in the process of discovery and selec-
tion, the proprietary method repository of the organization is initially used to method
services. In case that some of the features are not associated with the organization’s
services, search queries are broadcasted to the public method repositories.

The Feature Model Plugin (http://gsd.uwaterloo.ca/projects/fmp-plugin/), available
for Eclipse environment, is utilized and extended as tool support for modeling
and configuring method family. It supports cardinality-based feature modelling,
specialization of feature diagrams and configuration based on feature diagrams.
Our method chunk service repository is based on the publicly-available Seekda
(http://seekda.com) service repository. Our current implementation of feature-driven
service discovery is described in [15].

 Developing Families of Method-Oriented Architecture 179

Table 1. Product line scoping and family requirements analysis outcomes after applying the
proposed method on the motivational example. It is important to notice that the table does not
give all items identified these phased, but some of the most notable examples.

Fig. 4. A sample feature model of a family of software development methods

Phase Identified work Product and domains

P
roduct L

ine Scoping

P
ortfolio

Application properties – application domain (Information systems, Real-time),
application type (intra-organization, Organization-customer, inter-organization), source
system (it can either use legacy system or does not have system code).
Development Approach – systems can be developed by following multiple approaches
such as Component based Development, Model Driven Development, or Test Driven
Development.
Human Factors such skill level includes beginner, medium, and expert (i.e., analyst,
designer, developer, and, tester).
Contingency Factors –user involvement, project familiarity, project scale and
complexity, innovation level, and project dependency.
Project Management – monitoring, risk management, configuration and change
management, postmortem reviewing, metric management, human resource
management. D

om
ain

Generic software development lifecycle (requirement engineering, analysis, design,
development, deployment), reusability, management (risk, people), maintenance, test
model, implementation models, design model, and Application Technology (Include
Data-base, and GUI, is distributed).

A
sset

Functional requirement engineering, non-functional requirement engineering,
behavioral analysis, structural structure, functional analysis, feasibility study,
architecture design, project planning, test case development, unit testing, and risk
management.

F
am

ily R
equirem

ent
A

nal ysis

F
unctional

R
equirem

ents

Common – Specification in high level abstraction, covering generic software
development lifecycle, manage and monitor the project, capture requirements, model
requirements, validate requirements, defining the infrastructure of system, and plan the
project.
Variables- Goal-based requirement extraction, consider review sessions (product and
plan review), having stand up meeting, having lightweight design process, formal
verification on each abstraction level, concurrency, configuration of software and
hardware, having platform independent models, having platform specific models,
component identification, component specification, component interaction, component
assembly, and PIM and PSM synchronization.

N
on-

F
unctional

R
equirem

en
ts

Common – iterative process, incrementally development, traceability to requirements,
clear separation of concerns, smooth transition between activities, and method
flexibility.
Variables - semi automatic refinement between abstraction level, method scalability,
lightweight process, and formal checking.

180 M. Asadi et al.

7 Related Work

ME defines techniques and approaches for constructing and/or adapting the methods.
The most prominent sub-area of ME, Situational Method Engineering (SME), pro-
posed by Welke et al [5] is concerned with the creation of methods ‘on-the-fly’ (i.e.
construct or adapt a method according to situation of the project at hand). The ME
approaches are classified by Ralyte et al [6] as: Ad-Hoc (i.e. Method created from
scratch); Extension-Based (i.e. Method is created by extending an existing method
[6]); Paradigm-based (an existing meta-model is adapted, instantiated, or abstracted
to create a new method [6]); and Assembly-based (a method is created by reusing
existing method components [7][16][25]). These approaches mostly focus on reusa-
bility and modularity principles. Besides this classification, Karlsson et al. [8] pro-
posed the Method Configuration approach (more general than extension based) in
which a target method is created by adding/removing elements and features. They
concentrate on variability management and reusability. All mentioned approaches are
based on one or more of the following principles - meta-modeling, reuse, modularity,
and flexibility. Our proposed approach is similar to the assembly-based and method
configuration by following of the modularity, reusability, and variability principles.
However, our approach enables for a higher degree of reusability by leveraging SOA
principles and for a more systematic variability management by employing SPLE
principles (As shown in software engineering SPLE increases reusability [24]).

Gonzalez-Perez [20] explained the benefits of ISO/IEC 24744 meta-model for both
method specification and enactment and proposed a product-centric approach to de-
veloping a new methodology. Aharoni et al [22] enriched the ISO/IEC 24744 for
creating and tailoring methods through an approach called Application-based Domain
Modeling (ADOM). The approach is based on the layered framework including appli-
cation, domain, and language. The domain (methodology) layer contains different
method concepts as well as the specification of their exact usage situation. The appli-
cation layer, called endeavor layer, includes specific method components and situa-
tional methods, which are created based on domain model terminology, rules, and
constraints. The language layer defines any modeling language that can be used for
describing meta-models and method components. Our approach differs from these
approaches in using variability modeling language (i.e. feature modeling) and soft-
ware product line principles. Moreover, we provide a reference architecture for a
whole family which eases configuring and developing methods. Additionally, we use
a new concept for method component (i.e., method service), which utilizes standards
in SOA to improve discovering and reusing method components.

Recently MOA [13][1] was proposed which empowered the assembly-based me-
thod engineering principles with a standard for describing method components (in
terms of method service) and with service discovery principles for finding distributed
method components. Our approach also utilizes MOA to describe and discover me-
thod services corresponding to the features of a method family.

8 Discussion

Two main issues regarding the proposed approach are validity and cost-benefit analy-
sis of the approach. For both issues, it is required to conduct an empirical study. We

 Developing Families of Method-Oriented Architecture 181

did a case-study in which we explained the steps of the method. However, it cannot
completely ensure the validity of our approach, its benefits and limitations. In order to
clarify these issues in our method, we make our argument based on analogy between
software and methods as proposed by Osterweil [23]. Therefore, our assumption is
“software processes are software too” [23]. Considering this analogy, we can adopt
similar approaches and techniques used in software engineering for solving existing
problems in method engineering. As we see, the method engineering community
proposed MOA inspired from SOA to deal with the lack of standard for defining the
method fragment interfaces [1]. But, to use analogy as a viable strategy for solving a
problem in method engineering, referred to as the target domain, we need to identify
the corresponding construct in software engineering (source domain) and define a
mapping schema. For example, in method engineering, the method fragment notion
(called method service) is mapped to service notion in SOA and method notion is
mapped to software service. Hence, we can use SOA principles and have benefits of
SOA in the MOA domain. The other problem method engineers deal with is variabili-
ty in the base method and configuring the method based on the target project for
which some approaches have been proposed [6][8]. On the other hand, software va-
riability is a well-known problem in the software engineering community and many
techniques and approaches have been proposed like feature modeling to manage the
problem and various success stories in using product families and associated tech-
niques have been reported. As an example, Clements and Northrop reported that
Nokia was able to increase its production capacity for new cellular phone models
from 5-10 to around 30 models per year, which alleviated Nokia’s main challenge
being the high pace of market demand and customer taste change [24]. These results
ensure both validity and benefits of software families. Therefore, we tried to make an
analogy between software family and method base and coined the notion of family of
methods. We mapped the features to the method fragment interfaces and handled the
variability in base method and configuration problem according to the target project
requirements. As a result, we expect similar benefits to be reaped within the method
engineering domain. We are also aware of the cost of creating family or reengineering
current methods into method family (i.e., creating a method feature model), but for
long term the benefits that will be achieved can recompensate these costs as happened
in the broader software engineering practice.

9 Conclusion and Future Work

In this paper, we have presented an approach for developing families of software
developments methods. We exploited the notion of method services to facilitate the
discovery of distributed method components. Such discovered method components
can be used as an implementation for both sets of common and variable method assets
of a family of methods. The proposed approach makes use of feature modeling to
manage variability of method families. Managing and modeling variability enables for
a more effective method construction and for a more systematic method reuse. We
believe that the described concept of families of method-oriented architectures may
not be entirely feasible now, due to the lack of a complete method sharing ecosystem,
but with the growing interest for services economy, more attention to such ecosystems

182 M. Asadi et al.

can easily be envisioned to appear soon. Thus, our approach is a small step towards
making this vision possible. The adoption of widely used SOA standards helps in
publishing and sharing method components. Furthermore, organizations will be able
to take the advantages of distributed architectures to design, implement, execute and
reuse available method components. Last but not least, the long term goal is to enable
different organizations and enterprises to publish, advertise, discover and reuse their
methods components.

While the paper proposed a methodology for the combined use of SPLE and SOA
principles in method engineering, the contribution of this paper deserves to be consi-
dered in a broader context of its implications. As already demonstrated in the previous
research [18], transforming configured feature models into workflow and service
composition languages is possible. Thus, the combined use of SOA and SPLE enables
for leveraging existing workflow engines (e.g., BPEL) in management and execution
of software projects. Moreover, with such an executable representation of methods as
workflows, one can also expect an increased compliance of projects with the steps
defined by methods. As workflow management provides also best practices (i.e.,
workflow patterns), the combined use of workflows with software methodologies
might lead to further benefits such as improved parallelization of some stages. With
representation of method components as services, tracking of the project progress
could also be improved, while the invocation of method services can explicitly be
associated with the other tools used in different method stages.

As future work, we intend to provide a more comprehensive evaluation of the pro-
posed approach by developing a collection of method service to be used for experi-
mentation. We aim to extend our approach from different perspectives to reduce the
manual intervention needed in the final method development. We plan to use ontolo-
gy-based representation for feature models to automate consistency checking of fea-
tures in method families as described in [18]. Furthermore, we intend to extend the
feature modeling language to allow method engineers to add concepts of domain
ontologies for annotation of features. This will consequently be used for advanced
ontology-based discovery and composition of method services [14]. Currently, we are
developing an environment that supports our proposed process. The environment will
include the modeling of method families, annotation of feature models, discovering of
method services, stage configuration of feature models, and deployment to standard
workflow management engines.

References

1. Rolland, C.: Method engineering: towards methods as services Software Process. Im-
provement and Practice 14(3), 143–164 (2009)

2. Schmid, K.: A comprehensive product line scoping approach and its validation. In: Proc.
of the 24th International Conference on Software Engineering, pp. 593–603 (2002)

3. Harmsen, A.F.: Situational Method Engineering. Moret Ernst & Young, Utrecht (1997)
4. Lings, B., Lundell, B.: Method-in-action and method-in-tool: some implications for case.

In: Proc. 6th Int’l Conference on Enterprise Information Systems, pp. 623–628 (2004)
5. Welke, R.J., Kumar, K.: Method Engineering: a proposal for situation-specific methodolo-

gy construction. In: Cotterman, W.W., Senn, J.A. (eds.), pp. 257–268. Wiley, Chichester
(1992)

 Developing Families of Method-Oriented Architecture 183

6. Ralyté, J., Deneckére, R., Rolland, C.: Towards a generic model for situational method en-
gineering. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 95–110.
Springer, Heidelberg (2003)

7. Ralyté, J., Rolland, C.: An assembly process model for method engineering. In: Dittrich,
K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 267–283.
Springer, Heidelberg (2001)

8. Karlsson, F., Gerfalk, P.J.A.: Method configuration: adapting to situational characteristics
while creating reusable assets. Inf. and Soft. Technology. 46(9), 619–633 (2004)

9. Ralyte, J.: Requirements definition for the situational method engineering. In: Proc. of the
IFIP WG8.1 Working Conf. on Eng. Inf. Sys. in the Internet Context, pp. 127–152 (2002)

10. Coulin, C., Zowghi, D., Sahraoui, A.E.K.: A Lightweight Workshop-Centric Situational
Approach for the Early Stages of Requirements Elicitation in Software Systems Deve-
lopme. In: Proc. of Workshop on Situational Requirements Eng. Processes (2005)

11. Czarnecki, K., et al.: Staged Configuration through Specialization and Multi-level Confi-
guration of Feature Models. Soft. Process: Improvement & Prac. 10(2), 143–169 (2005)

12. Tsai, W.: Service-oriented system engineering: a new paradigm. Service-Oriented System
Engineering. In: Proc. IEEE Int’l Workshop on Service-Oriented Sys. Eng., pp. 3–6 (2005)

13. Deneckère, R., Iacovelli, A., Kornyshova, E., Souveyet, C.: From Method Fragments to
Method Services. In: Proc. 13th Int’l Conf. on Exploring Modelling Methods for Systems
Analysis and Design, pp. 81–96 (2008)

14. Klusch, M.: Semantic Web Service Coordination. In: CASCOM: Intelligent Service Coor-
dination in the Semantic Web, pp. 59–104 (2008)

15. Mohabbati, B., Kaviani, N., Lea, R., Gašević, D., Hatala, M., Blackstock, M.: ReCoIn: A
Framework for Dynamic Integration of Remote Services in a Service-Oriented Component
Model. In: Proceedings of the 2009 IEEE Asia-Pacific Services Comp. Conf. (2009)

16. Mirbel, I., Ralyte, J.: Situational method engineering: combining assembly-based and
roadmap-driven approaches. Requirements Engineering 11(1), 58–78 (2006)

17. Kim, S., Min, H.G., Her, J.S., Chang, S.H.: DREAM: A practical product line engineering
using model driven architecture. In: Proc. Int’l Conf. on Information Technology and Ap-
plications, pp. 70–75 (2005)

18. Montero, I., Pena, J., Ruiz-Cortes, A.: From Feature Models to Business Processes. In:
Proc. of the IEEE Int’l Conf. on Services Computing, vol. 2, pp. 605–608 (2008)

19. Bošković, et al.: Automated Staged Configuration with Semantic Web Technologies. In-
ternational Journal of Software Engineering and Knowledge Engineering (in press, 2010)

20. OPEN Process Framework (OPF) Web Site, http://www.opfro.org/
21. Gonzalez-Perez, C.: Supporting Situational Method Engineering with ISO/IEC 24744 and

the Work Product Pool Approach. SME: Fundamentals and Experiences, pp. 7-18 (2007)
22. Aharoni, A., Reinhartz-Berger, I.: A Domain Engineering Approach for Situational Me-

thod Engineering. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS,
vol. 5231, pp. 455–468. Springer, Heidelberg (2008)

23. Osterweil, L.: Software processes are software too. In: Proceedings of the ICSE, pp. 2–13.
IEEE Computer Society Press, Monterey (1987)

24. Clements, P., Northrop, L.M.: Software product lines visited June 2010 (2003),
 http://www.sei.cmu.edu/programs/pls/sw-product-lines0503.pdf

25. Asadi, M., Ramsin, R.: Patterns of Situational Method Engineering. In: Lee, R., Ishii, N.
(eds.) Software Engineering Research, Management and Applications (SERA) 2009. SCI,
vol. 253, pp. 277–291. Springer, Heidelberg (2009)

J. Ralyté, I. Mirbel, and R. Deneckère (Eds.): ME 2011, IFIP AICT 351, pp. 184–189, 2011.
© IFIP International Federation for Information Processing 2011

Agile Service Development:
A Rule-Based Method Engineering Approach*

Stijn Hoppenbrouwers1, Martijn Zoet2, Johan Versendaal2,3, and Inge van de Weerd3

1 Radboud University Nijmegen, The Netherlands
s.hoppenbrouwers@cs.ru.nl

2 University of Applied Sciences, Utrecht, The Netherlands
{martijn.zoet,johan.versendaal}@hu.nl

3 Utrecht University, Utrecht, The Netherlands
{j.versendaal,i.vandeweerd}@cs.uu.nl

Abstract. Agile software development has evolved into an increasingly mature
software development approach and has been applied successfully in many
software vendors’ development departments. In this position paper, we address
the broader agile service development. Based on method engineering principles
we define a framework that conceptualizes an operational way of working for
the development of services, emphatically taking into account agility. As a first
level of agility, the framework contains situational project factors that influence
the choice of method fragments; secondly, increased agility is proposed by de-
scribing and operationalizing these method fragments not as imperative steps or
activities, but instead by means of sets of minimally specified, declarative rules
that determine the context and constraints within which goals are to be reached.
This approach borrows concepts from rules management, organizational pat-
terns, and game design theory.

Keywords: method engineering, agile service development, business rules,
business rules management, product management, game design.

1 Introduction

To remain competitive, organizations are increasingly urged to adapt to changes in
their business environment. Trends like higher demanding customers, faster changing
customers’ demands, increased regulation, and offshoring give rise to the re-thinking
of business models and processes. In the software development industry, a number of
vendors have successfully applied ‘agile software development process’ principles,

*

 This paper results from the Agile Service Development project (http://www.novay.nl/
okb/projects/agile-service-development/7628), a collaborative research initiative focused on
methods, techniques and tools for the agile development of business services. The project
consortium consists of BeInformed, BiZZdesign, CRP Henri Tudor, HU University of Ap-
plied Sciences Utrecht, IBM, Novay, O&i, PGGM, RuleManagement Group, Radboud Uni-
versity Nijmegen, Twente University, Utrecht University, and Voogd & Voogd. The project
is part of the program Service Innovation & ICT of the Dutch Ministry of Economic Affairs.

 Agile Service Development: A Rule-Based Method Engineering Approach 185

decreasing time-to-market and addressing rapidly changing customer demands.
Approaching this more generically, any business may likewise apply concepts of
agility as a strategy to take up the described challenges in the business environment.
Agility is defined as “the ability of a sensitive [organization] that exhibits flexibility
to accommodate expected or unexpected changes rapidly, following the shortest time
span, using economical, simple and quality instruments in a dynamic environment and
applying updated prior knowledge and experience to learn from the internal and ex-
ternal environment” [1]. The aforementioned definition positioned in the context of
agile service development asserts that an organization should be able to create or
adapt a (business) service efficiently and effectively when changes occur in its envi-
ronment. A business service is considered an externally visible and accessible unit of
functionality offered by an organization to its environment, delivering a meaningful
value to that environment. An example of such a service is ‘an insurance product
tailored towards singles’.

Agile development is not an alien concept in management and information systems
research. It plays some role in existing work on situational method engineering in
software product development literature [2, 3, 4, 5]. These studies acknowledge the
need for development methods tuned to the situation of the project at hand. Based on
situational factors distilled from the project, meta-methods composed of outlines or
more detailed procedures, are selected and integrated into a coherent method appro-
priate for that specific situation [4].

However, ‘situational’ is not synonymous to ‘agile’. For a method to become truly
agile, changing situational factors also have to be linked (if required) to ‘run time’,
changes in the method: quick responses to new situational information, and the instal-
lation of short feedback loops applying to the method. Existing studies mainly focus
on situational fit of the overall development process while still describing the actual
method fragments in terms of ‘non-agile’, step-by-step, instructions inherent to tradi-
tional workflow-like process descriptions.

2 Method Engineering for Agile Service Development

Situationality is the ability of a method to respond and adapt to a specific environment
based on defined characteristics [4, 6]. Although scholars approach the concept from
different viewpoints, the fundamental basis is the creation of reusable method parts
called method fragments [7] or method chunks [8]. The method fragments are stored
in a repository called the method base. In addition to the method fragments, also as-
sembly rules and situational factors are stored inside the method base [5].

Utilizing the perspective of situationality, method fragments can be used to provide
some degree of agility with respect to the project at hand. Regarding the assembly of
method fragments, our approach follows the configuration process for situational
method engineering as proposed by Brinkkemper [4]. However, our approach adds a
second dimension of agility in operational execution.

Due to changes, predictable or unpredictable, in the environment, the method must
be able to quickly adjust to the situation at hand. The method engineering process
proposed by Brinkkemper [4] incorporates this by means of a build-in feedback loop.
This feedback loop facilitates selecting new process alternatives in terms of method

186 S. Hoppenbrouwers et al.

Fig. 1. Method engineering approach for agile service development

fragments hereby inserting the underlying assumption that changes in the environ-
ment will result in replacing complete method fragments. We argue that changes in
the environment will not always lead to changes in the executed method but can still
influence the operational execution of a specific method fragment.

To realize this, we propose a particular operationalization of the method engineer-
ing approach and process in terms of the selection process of method fragments, situ-
ational factors and assembly rules. The idea is that participants are given as much
freedom as possible within necessary methodical and contextual constraints (minimal
specification), and that the ability to respond quickly to desired changes in the method
(as indicated by fast feedback) is optimized: increased agility in our approach is sup-
ported by defining method fragments in a rule-based, declarative manner. This ap-
proach is inspired by principles and practices from (business) rules management,
organizational patterns and game design theory. Rule-based specification of methods
is vaguely suggested in [9], who argue in favor of using practices instead of processes
in software engineering. Our approach is inspired by this line of thinking, but pushes
for advanced description, management and operationalization of ‘method rules’ in a
specific service development context.

In the following subsections the method engineering meta-model by Brinkkemper
[4] will be described in some more detail for 1) situational project factors and charac-
teristics, and 2) method fragment description and identification (see figure 1).

2.1 Situational Project Factors and Characterization

Situational factors can be used to characterize projects, processes, and companies.
Bekkers [10] researched the influence of situational factors on the practice of software
product management, which resulted in a list of 27 situational factors, divided over
the categories (1) business unit characteristics, (2) customer characteristics, (3) mar-
ket characteristics, (4) product characteristics, and (5) stakeholder involvement. A
situational factor influence is, for example: “the amount of requirements that are sub-
mitted by the customers has a high impact on how requirements management proc-
esses should be carried out”. If this situational factor were to change, the company
should also change its processes in order to cope with this change. We intend to apply
the 27 situational factors in the context of agile service development.

 Agile Service Development: A Rule-Based Method Engineering Approach 187

2.2 Method Fragments Description and Identification

We choose a rule-based, declarative approach to the description of method fragments.
Declarative description allows for minimal specification. In an agile environment,
‘just enough’ explicit regulation of the way of working is to be preferred over impera-
tive style, step-by-step instruction inherent to traditional flow-like process description.
The declarative approach is mainly what has led us to introduce the ‘game metaphor’
as an image of how we intend to deal with describing agile methods and method
fragments.

As suggested in Hoppenbrouwers [11, 12], methods can be fruitfully viewed as
games. They have clear objectives and rules the participants are to comply to, or at
least choose to be guided by. The driving concepts in this approach are goals. These
can cover all aspects of what one wants to achieve (deliverable or product goals, like
‘create an insurance product for singles, within 2 months’) and how one wants to do
this (process goals, like ‘use SCRUM’; ‘comply to HIPAA regulation’; ‘actively
involve representatives of prospective customers’). Many kinds of goals can be dis-
tinguished, and all of them can be represented in the form of rules. Goals are thus
covered by goal rules.

To realize goals, activities are needed. If goals are logically ordered, so are the ac-
tivities linked to them (like ‘hold SCRUM standup meeting’), which can be planned
in space and time, allocating specific people and resources. Activities can be tempo-
rally ordered, but do not need to be in principle. This is in line with the principles of
declarative workflow [13] and allows for minimal specification: formally planning
only what needs to be planned, and leaving the rest to the team’s powers of self-
organization.

Not only goals can be expressed as rules, but also the temporal ordering (proce-
dural rules: x before y) and even constraints on interaction: interaction rules that
concern who talks to who (‘tester t with stakeholder s’) and by what means (‘using
think-aloud session using prototype PT2.1’). This links high-level method engineering
to more operational method engineering involving communication situations [14].
Additional rules can cover aspects like the format or language (i.e. meta-model nota-
tion: ‘UML Use Cases, Class Diagrams, Activity Diagrams’) of any deliverables
strived for. At the operational level of communication situations, the rules have to be
specific and readable enough to effectively guide people in their activities –in as far
as such guidance is required (minimal specification).

There is a clear parallel between a declarative, rule-based approach, the game
metaphor, and the use of patterns; in particular, organizational patterns [15]. Cock-
burn has advocated game-theoretical use of the game metaphor in studying the soft-
ware engineering process [16], but not in the applied sense we now propose. Our rules
for describing method fragments will cover principles and patterns of agile practice
(including many existing ones), and operational reflections thereof.

3 Conclusions

In view of increasing demands for agility in processes for service development, we
are in the early stages of applying existing principles and practices from situational

188 S. Hoppenbrouwers et al.

method engineering to service development processes and methods, combining these
with approaches supporting agile process management and execution. On the method
engineering side, this requires some innovation concerning the description, manage-
ment, and operationalization of methods. Without claiming that the approach put
forward in this position paper will guarantee agility of processes for service develop-
ment, we believe the approach proposed will allow for considerably better agility than
existing practices in ME that are more rooted in imperative style specification of
methods and method fragments. Our rule-based approach should enable quick adapta-
tion of the method’s ‘rules of the game’ to changing situational factors. ‘Games
played’ will be short cycles or phases in development, in line with widespread agile
practices in software engineering. In addition, we pay explicit attention to operation-
alization of methods by specifying actual ‘games to be played’ in terms of concrete
‘communication situations’, and linking these to higher level goals and activities as
included in some method and drawn from the method base.

We will test and refine our approach to method engineering in agile service devel-
opment in close cooperation with a number of partners from industry. We will explore
our approach in the re-engineering of past project cases, but will also, even in the
early stages of investigation, start applying our framework in real cases of running
projects.

Our approach can be seen as complementary to another innovative direction in
Method Engineering: that of ‘Method as a Serivce’ (MaaS) [17]. Method fragments
are developed as method services which are implemented as web services. To make
the method services widely available, a Method-Oriented Architecture (MOA) is
proposed. With the concept of MaaS, the authors aim to overcome many drawbacks
that exist with existing method fragments, such as lack of interoperability, and lack of
interactivity.

References

1. Qumer, A., Henderson-Sellers, B.: An evaluation of the degree of agility in six agile meth-
ods and its applicability for method engineering. Information and Software Technol-
ogy 50(4), 280–295 (2007)

2. Olle, T.W., Hagelstein, J., MacDonald, I.G., Rolland, C., Sol, H.G., van Assche, F.J.M.,
Verrijn-Stuart, A.A.: Information Systems Methodologies: a Framework for Understand-
ing, 2nd edn. Addison-Wesley, Reading (1991)

3. Kumar, K., Welke, R.J.: Methodology engineering: a proposal for situation-specific meth-
odology construction. In: Cotterman, W.W., Senn, J.A. (eds.) Challenges and Strategies
for Research in Systems Development (1992)

4. Brinkkemper, S.: Method engineering: engineering of information systems development
methods and tools. Information and Software Technology 38(4), 275–280 (1996)

5. van de Weerd, I., Versendaal, J., Brinkkemper, S.: A product software knowledge infra-
structure for situational capability maturation: Vision and case studies in product manage-
ment. In: Proceedings of the 12th Working Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ 2006), Luxembourg, pp. 97–112 (2006)

6. Ralyté, J., Deneckère, R., Rolland, C.: Towards a generic model for situational method en-
gineering. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, p. 95.
Springer, Heidelberg (2003)

 Agile Service Development: A Rule-Based Method Engineering Approach 189

7. Harmsen, F., Brinkkemper, S., Oei, H.: Situational method engineering for information
system project approaches. In: Verrijn Stuart, A.A., Olle, T.W. (eds.) Methods and Associ-
ated Tools For the Information Systems Life Cycle, Proceedings of the IFZP WG8.1
Working Conference CRIS 1994, Maastricht, pp. 169–194. North-Holland, Amsterdam
(1994)

8. Rolland, C., Plihon, V., Ralyté, J.: Specifying the reuse context of scenario method
chunks. In: Pernici, B., Thanos, C. (eds.) CAiSE 1998. LNCS, vol. 1413, p. 191. Springer,
Heidelberg (1998)

9. Jacobson, I., Ng, P.W., Spence, I.: Enough of Processes - Lets do Practices. Journal of Ob-
ject Technology 6(6), 41–66 (2007), http://www.jot.fm

10. Bekkers, W., van de Weerd, I., Brinkkemper, S., Mahieu, A.: The influence of situational
factors in software product management: an empirical study. In: Proceedings of the 2nd In-
ternational Workshop on Software Product Management, Barcelona, Spain, pp. 41–48
(2008)

11. Hoppenbrouwers, S.J.B.A., Weigand, H., Rouwette, E.A.J.A.: Setting Rules of Play for
Collaborative Modelling. Kock, N., Rittgen, P. (eds.) International Journal of e-
Collaboration (IJeC) 5(4), 37–52 (2009)

12. Hoppenbrouwers, S.J.B.A., van Bommel, P., Järvinen, A.: Method Engineering as Game
Design: an Emerging HCI Perspective on Methods and CASE Tools. In: Proceedings of
EMMSAD 2008 (Exploring Modelling Methods for System Analysis and Design), held in
conjunction with CAiSE 2008, Montpellier, France (June 2008)

13. van der Aalst, W., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing between
flexibility and support. Computer Science-Research and Development 23(2), 99–113
(2009)

14. Hoppenbrouwers, S.J.B.A., Wilmont, I.: Focused Conceptualisation: Framing Questioning
and Answering in Model-Oriented Dialogue Games. In: van Bommel, P., Hoppenbrou-
wers, S.J.B.A., Overbeek, S., Proper, H.A., Barjis, J. (eds.) PoEM 2010. Lecture Notes in
Business Information Processing, vol. 68, pp. 190–204. Springer, Heidelberg (2010)

15. Coplien, J., Harrison, N.: Patterns of Agile Software Development. Addison-Wesley,
Reading (2004)

16. Cockburn, A. (2004). The End of Software Engineering and the Start of Economic-
Cooperative Gaming (2004), http://alistair.cockburn.us/The+end+of+

 software+engineering+and+the+start+of+economic-cooperative+
 gaming (retrieved October 23, 2010)

17. Rolland, C.: Method Engineering: Towards Methods as Services. Software Process: Im-
provement And Practice 14(3), 143–164 (2009)

Bridging the Gap between Business Processes
and Service Composition through Service

Choreographies

Mario Cortes Cornax, Sophie Dupuy-Chessa, and Dominique Rieu

University of Grenoble, CNRS, LIG
SIGMA Team, BP 72, 38402 Saint Martin d’Heres, Cedex France
{Mario.Cortes-Cornax,Sophie.Dupuy,Dominique.Rieu}@imag.fr

http://sigma.imag.fr/

Abstract. Inter-organizational business processes implementations us-
ing service composition approaches are being more and more used. We
want to reduce the semantic gap that exists between both worlds
(business processes and services) through service choreographies, a com-
position approach that we think it is semantically close to multi-party
business processes. We rely on modeling techniques as abstraction layers
and view separation to achieve our goal. Our start point is a web service
choreography meta-model presented in three abstraction layers where
each layer is divided in a structural and a behavioral view. The meta-
model can be used in a top-down or a bottom-up approach to make a
progressive transition between the business process and the service world.

Keywords: Choreography, Business Processes, Modeling Techniques.

1 Introduction

Today, organizations are moving towards inter-organizational business processes.
Therefore, they depend on other organizations. To model their business pro-
cesses, analysts and designers use graphical languages that allow an intuitive
and easy reading such as Business Process Management Notation (BPMN) [11].
Modular solutions based on service composition [16] are increasingly found to
implement business processes. Service composition languages are mainly based
on XML and they do not have a graphical standard notation. We observe a
semantic gap between the way of describing business processes and the way of
implementing them with service composition, what can create ambiguities and
unexpected results as described in [14].

A big effort has been done to bring BPMN closer to web services. In [1] Wil
M.P. van der Aalst et al. survey several papers issue of the interest to bridge
the gap between these two worlds. BPMN and BPEL [10] alignment is exposed
in the standard BPMN. However, we observe that mapping efforts are centered
in orchestrations i.e. in two by two relationships between the different external
entities of a single process. As business process complexity increases and depends

J. Ralyté, I. Mirbel, and R. Deneckère (Eds.): ME 2011, IFIP AICT 351, pp. 190–203, 2011.
c© IFIP International Federation for Information Processing 2011

http://sigma.imag.fr/

Bridging the Gap between Business Processes and Service Composition 191

on other organizations, this pair relationships remains insufficient to manage the
complexity when several organizations share common goals. This constraint can
negatively influence a global understanding of the process limiting its potential
capacity of optimization [14]. A global viewpoint besides a set of individual
viewpoints is required to better understand, build, survey and optimize the global
process.

In this context, an interesting concept is the web service choreography [6]. Web
service choreography is a service composition approach focused on message ex-
changes between different services from a global viewpoint. It can be understood
as a multi-party communication protocol where there is no central coordinator.
This composition approach seems to be close to inter-organizational business
processes. We will therefore seek to better understand service choreographies to
bridge the gap between the two worlds that are business processes and service
composition when working in multi-party scenarios.

We rely on modeling techniques to propose a meta-model that aims at defining
the semantics of choreographies. The meta-model reduces ambiguity and clarifies
the main elements of a language. Our approach is based on the concepts of views
and abstraction levels. We remark the necessity of several abstraction layers to
provide adapted viewpoints to the different actors that contribute to set up
an inter-organizational business process that relies on SOA. Providing these
abstraction levels and defining progressive transitions between them is the way
to achieve the approach between the global process design and the executable
processes. In [18] authors argue the necessity of three abstraction layers when
vertical model alignment is targeted.

The rest of paper is organized as follows. Section 2 describes the meta-
model approach and compare our proposal with related works. The meta-model
overview based on a scenario and a brief description of each layer are presented in
Section 3. Section 4 presents a discussion that summarizes our work and future
perspectives.

2 Overview of the Approach

Our meta-model construction focuses on three main axis illustrated with arrows
in Fig. 1. It starts in a deep analysis of the Web Service Choreography Descrip-
tion Language (WS-CDL) [17] that brings us the knowledge about choreography
to build a design meta-model. WS-CDL has been criticized in [3] by Barros et al.
as it does not have a clear semantic model and it presents a difficult alignment
with BPEL[10]. The Web Services Choreography Working Group [19] stopped
the development of this language in July 2009 but it is still a reference as chore-
ography language. There has been other language proposals, mostly developed
in research projects. In [8] Decker et al. introduce BPEL4Chor [7] and survey
some other choreography language proposals as Let’s Dance [20] or iBPMN [5],
an extension of BPMN adapted to choreographies. But this concept is still far
to be standardized and adopted by the industry. It seems that all proposals are
converging to the new choreography representation presented by the OMG in

192 M. Cortes Cornax, S. Dupuy-Chessa, and D. Rieu

it’s new BPMN version 2.0 [12], but the future of choreography still remains
uncertain.

Our design meta-model is based on the one presented by Barros et al. in [3]
but enriched by dividing it in different packages. The analysis meta-model is
an abstraction of the design meta-model where the syntax dependencies of the
specific language were removed. The domain meta-model is an abstraction of the
latter one where the fundamental choreography concepts are represented. One
of our next objectives is to present in the lowest abstraction layer a language
meta-model that is closer than WS-CDL to executable process like BPEL4Chor.
Choreography language proposals like BPEL4Chor or the Multi Agent Protocol
(MAP) language presented in [2] are well aligned to final executable processes
but they lack of a more abstraction viewpoint to reach the business level. We find
the necessity to present the choreography concept in three traditional abstraction
layers (domain, analysis and design) to bring closer both worlds.

Fig. 1. The construction approach of the meta-model

We observe in Fig 1 that settling the analysis meta-model has been our main
target until today. Several iterations at this level were done. An empiric eval-
uation was performed where business and technical experts examined the suit-
ability of the terms as well as relationships between them through a scenario.
We also surveyed some ideas from the choreography diagrams of BPMN’s new
version [12]. As result, we obtained a simple but representative implementation-
independent choreography meta-model. As it is defined in [6] an implementation-
independent level is where “fundamental decisions about interactions are made”,
avoiding concrete message formats or security issues. In future works we envis-
aged to validate in a more formal way our approach against the Service In-
teraction Patterns [4] which are the better known benchmark when working
in multi-party collaborative environments. We would like to introduce pattern
concepts in our meta-model.

Fig. 1 also shows a division in two different points of view of each layer: the
structural and the behavioral views. This separation makes the models easier to
read and more understandable for both designers and developers. The structural
view connects all fundamental components displaying them in a static way. The

Bridging the Gap between Business Processes and Service Composition 193

behavioral view defines the reactions of the different elements to the actions of
the others. When analyzing WS-CDL, we identified the elements corresponding
either to one view or the other. We represented this separation from the first layer
(the design meta-model) and we maintained it, in the consecutive abstractions.
In this paper we focus on the meta-model and the modeling techniques.

3 The Choreography Meta-model

This section presents the choreography meta-model layers. We use a scenario
describing a computer purchase by a customer and manufacturer’s delivery pro-
tocol. We will therefore present our meta-model following the scenario taken
from [12].

3.1 Scenario

John is a customer that orders a custom computer to an Internet’s manufacturer
called ComputerSeller.com. ComputerSeller.com is part of a computer manufac-
turer’s network which they have established a protocol to deliver a purchase
order in an efficient and speedy way:

Fig. 2. Scenario interactions represented through a BPMN’s collaboration diagram

– If the manufacturer can provide the order, it sends a confirmation and then
performs the delivery.

– If the manufacturer can not respond to this command, it rejects the order,
explaining the denial reasons.

– If a manufacturer can satisfy the order but it does not have all the pieces
available, it should contact a supplier so that it provides the missing pieces.
The supplier could then procure the missing pieces.

– After contacting the supplier, if the manufacturer has all the parts available
to provide the customer’s order, it sends a confirmation to the customer and
then it delivers the order.

– The manufacturer could not be in possession of all the parts necessary to
deliver after contacting the supplier. In this case, it must open an auction
with a bidder to obtain the missing pieces.

194 M. Cortes Cornax, S. Dupuy-Chessa, and D. Rieu

– If the manufacturer has finally obtained all the parts needed, the same ac-
tions as before are done: it sends to the customer a confirmation, and then
delivers the order.

– If still missing pieces it should reject the order.

Fig. 2 illustrates in BPMN’s collaboration diagram the scenario where the public
interactions (with no sequencing order) between the actors are presented.

3.2 The Domain Meta-model

Fig. 3 shows the domain meta-model where the fundamental elements of a chore-
ography are presented.

Fig. 3. The domain Meta-Model

From a structural point of view, let us consider the communication protocol
(Choreography) that has a set of roles (Role) linked in two by two relationships
(Relationship). The relationship represents the existence of a previous knowledge
between both roles. A role is an abstract entity (e.g. manufacturer and supplier)
played by a participant (Participant) that is the concrete entity (e.g. “John” or
“ComputerSeller.com”). A participant may play multiple roles in a choreography
and a role can be played by several participants (at design time).

From a behavioral point of view, a choreography is defined as a set of inter-
actions (Interaction) between two roles (e.g an interaction can be the request of
some missing pieces from the manufacturer to the supplier). In an interaction
there is a role transmitter (sourceRole), in this case the manufacturer, which is
the one that starts the interaction and a role receiver (targetRole), in this case
the supplier.

The modeled scenario illustrating the domain meta-model concepts is pre-
sented in Fig. 4. It represents the structural view but we add interactions. Ar-
rows indicate the “sense” of the interactions i.e the source role and the target
role within the interaction. This example is only an illustrative representation
that helps us to understand the meta-model. We could also consider the possi-
bility of separating both views in different models but due to the simplicity of the

Bridging the Gap between Business Processes and Service Composition 195

example we decided to illustrate all concepts in the same representation. Graph-
ical notation is an issue of future work and this is not discussed in this article

We retain from this layer that the first elements to be identified in a chore-
ography are the roles and optionally the participants playing that roles. Then,
a set the interactions between roles (behavioral) that implies defining their re-
lationships in a static way.

Fig. 4. Structural view representing the scenario + Interactions

3.3 The Analysis Meta-model

The analysis meta-model presented in Fig. 5 is the layer in which are represented
the elements that must appear in every choreography implementation. In par-
ticular, we introduce the control flow mechanisms and the messages exchanged
between the choreography participants via the service operations.

Analysis meta-model is explained through the same example but extended.
A participant that plays a role must provide the services (Service) defined for
that role to respect the choreography. Note that we consider a service as a
logical entity i.e the way to access the set of defined operations (Operation).
Each operation defines a request message (request) and optionally, a response
message (response) and error messages (errorMessages).

In the behavioral view, we introduce some new elements. As a choreography
is a set of ordered interactions between roles, we need mechanisms to compose
and order them. We introduce the activity class (Activity) as a generalization
of control flow activities (ControlFlowActivity), and interactions (Interaction).
A ControlFlowActivity can be choice (Choice), parallel (Parallel) and sequence
(Sequence) activities. When an operation is invoked in an interaction, it has to be
an operation defined within the targetRole’s services. For example, the customer
could invoke an operation “manageOrderRequest” provided by the manufacturer
in the service “CustomerToManufacturerService”. A request message defined
in this operation could be for example “requestOrderMessage” and a response
message “AcknowledgmentMessage”.

196 M. Cortes Cornax, S. Dupuy-Chessa, and D. Rieu

Fig. 5. The Analysis Meta-Model

The domain meta-model and the analysis meta-model respectively defined in
Fig. 3 and Fig. 5 are close. The domain meta-model is included in the analysis
meta-model (classes in white) where some domain classes are refined to go into
details in the analysis meta-model as the Role or the Interaction.

Fig. 6. Structural view of the scenario - Analysis Model

Fig. 6 and Fig. 7 partially model the scenario presented in section 3.1. Fig. 6
represents the structural view where the services provided by each role might be
defined. Operations are also defined but messages are not specified as we want
to stay simple. Our behavioral model in Fig. 7 is inspired in UML’s sequence
diagrams. Interactions (arrows) between roles (rectangles), operation calls (text
above the arrows) as well as sequencing (life line and numbers) or choice (alt)
can be represented. This example illustrates in an easy manner our analysis
meta-model concepts.

Bridging the Gap between Business Processes and Service Composition 197

Fig. 7. Behavioral view of a portion of the scenario - Analysis Model

We observe that the analysis meta-model can help users to understand the
communication between roles, the interactions sequencing, and the operations
required for each role depending on the implemented service.

3.4 The Design Meta-model

Our design meta-model is based on WS-CDL syntax. Fig. 8 shows the defined
packages and it’s dependencies. These packages are the starting point of our
bottom-up approach. In general, the main package classes have a corresponding
meta-class in the higher abstraction levels as for example Interaction, Role or
Choreography. The complete design meta-model is presented in the Appendix.

Fig. 8. Design meta-model package overview and dependencies

Code 1.1 and Code 1.2 represent simple WS-CDL’s pieces of code that cor-
respond to the scenario. Code 1.1 is what we consider the static definition of
WSC-DL’s choreographies where roles, relationships, participants and message
types are defined. Code 1.2 illustrate the behavioral definition of the choreog-
raphy where sequencing of interactions and variable declarations are depicted.

198 M. Cortes Cornax, S. Dupuy-Chessa, and D. Rieu

This behavioral section is identified by “< choreography >” label in WS-CDL
syntax. More detailed WS-CDL’s examples are found in [17].

These examples show that a WS-CDL skeleton could be generated from the
analysis model. Regarding the static section, roleTypes (lines 1-9) , participant-
Types (lines 11-16) and relationshipTypes (lines 19-22) could be completed. In
the behavioral section, interaction sequencing and role’s communication could
also be completed almost entirely. However, a very simple example is shown.
To fully complete a WS-CDL file, we might need the design meta-model. For
example, we might complete the message’s type exchanged between roles (lines
25-26) and the channelTypes (lines 28-36) to define the way of accessing roles. In
the behavioral section, we might also define variable’s declaration and treatment
(lines 2-7) or the XPath queries to reference variables within the XML file (lines
16-17).

1 <roleType name=”Costumer”>
2 <behavior name=”CostumerService ” i n t e r f a c e=”ManufacturerToCostumerService”>
3 </behavior>
4 </ roleType>
5 <roleType name=”Manufacturer ”>
6 <behavior name=”ManufacturerServ i ce” i n t e r f a c e=”CostumerToManufacturerService”>
7 </ behavior>
8 . . .
9 </ roleType>

10
11 <part i c ipantType name=”John”>
12 <roleType typeRef=”Costumer”/>
13 </ part i c ipantType>
14 <part i c ipantType name=”ComputerSel ler . com”>
15 <roleType typeRef=”Manufacturer ”/>
16 </ part i c ipantType>
17 . . .
18
19 <re la t i onsh ipType name=”CostumerToManufacturerRel”>
20 <roleType typeRef=”Costumer”/>
21 <roleType typeRef=”Manufacturer ”/>
22 </ re lat i onsh ipType>
23 . . .
24
25 <informationType name=”OrderRequestType ” type=”OrderRequestMsg ”>
26 </ informationType>
27
28 <channelType name=”CostumerToManufacturerChannel”>
29 <roleType typeRef=”Manufacturer ”/>
30 <r e f e r e n ce>
31 <token name=” tns:URI ”/>
32 </ r e f e r e n ce>
33 <i d e n t i t y type=”primary ”>
34 <token name=” t n s : i d ”/>
35 </ i d e n t i t y>
36 </channelType>

Code 1.1. Example of WS-CDL’s code (structural)

1 <choreography name=” computerPurchaseChoreography ”>
2 <v a r i a b l eDe f i n i t i o n s>
3 <va r i ab l e name=”orderRequest ” informationType=”tns:OrderRequestType”
4 roleTypes=” tns:BuyerRole t n s : S e l l e rRo l e ”>
5 </ va r i ab l e>
6 . . .
7 </ va r i a b l eD e f i n i t i o n s>
8
9 <sequence>

10 < i n t e r a c t i on name=”OrderRequest ” operat ion=”manageOrderRequest ”
11 channelVar iab l e=” tn s :Buyer2Se l l e rC ”>
12 <pa r t i c i pa t e r e lat i on sh ipType=”CostumerToManufacturerRel”
13 fromRoleTypeRef=”Costumer” toRoleTypeRef=”Manufacturer ”/>
14
15 <exchange name=”OrderRequest ” informationType=”OrderRequestType ”>
16 <send va r i ab l e=” cd l : g e tVar i a b l e () ”/>
17 <r e c e i v e va r ia b l e=” cd l : g e tVa r i ab l e () ”/>
18 </exchange>
19
20 <exchange name=”ErrorExchange ” informationType=” tns:ErrorConfi rmat ionType ”>

Bridging the Gap between Business Processes and Service Composition 199

21 <send va r i ab l e=” cd l : g e tVar i a b l e () ”/>
22 <r e c e i v e va r ia b l e=” cd l : g e tVa r i ab l e () ”/>
23 </exchange>
24 </ i n t e r a c t i o n>
25 <cho i c e>
26 <sequence>
27 < i n t e r a c t i o n name=”Re je ct ion ” ope ra t ion=”manageRejection”
28 channelVar iab l e=””>
29 . . .
30 </ i n t e r a c t i o n>
31 </ sequence>
32 <sequence>
33 < i n t e r a c t i o n name=”Confirmation ” ope ra t ion=”manageConfirmation ”
34 channelVar iab l e=””>
35 . . .
36 </ i n t e r a c t i o n>
37 < i n t e r a c t i o n name=”Shipment” ope rat ion=”manageShipment”
38 channelVar iab l e=””>
39 . . .
40 </ i n t e r a c t i o n>
41 </ sequence>
42 </ cho i c e>
43 </ sequence>
44 </ choreography>

Code 1.2. Example of WS-CDL’s code (behavioral)

We can imagine the huge quantity of code that should be managed when
defining complex choreographies by regarding this simple (and not completed)
pieces of code. Abstraction is needed to manage choreography complexity in a
progressive way. To achieve the goal of approaching business world and service
composition world, abstraction layers and different viewpoints should be a main
concern to make this concept understandable and exploitable for all the actors
participating in an inter-organizational business process set up.

4 Conclusion and Discussion

In this paper we have presented a service choreography meta-model based on
modeling techniques as abstraction layers and views separation. Fig. 9 shows a
global overview of our approach and future work. A bottom-up approach helps
to understand and validate a choreography. A top-down approach helps to im-
plement the final executable processes for each party avoiding ambiguities. We
locate the domain and analysis layers into business processes and design layer
into the service composition world. We represent the separation as a wavy area
as the separation is fuzzy.

By transformation rules, we could move from one layer to another. Therefore,
transitions between the abstraction layers manage in a gradually way the gap
between business processes and service composition implementations. Formal-
ization of this transformations are envisaged for future works so the passage
between layers could be done the more automatically as possible.

We want to extend our approach creating a graphical notation corresponding
to the meta-model. As in the Pi4SOA tool [13], we think that the two-views sepa-
ration is an important aspect to manage the complexity of a service composition
model. More generally, the formalization of the three abstraction layers and the
views split will help us in respecting the Principle of Complexity Management,
the Principle of Cognitive Integration and the Principle of Cognitive Fit defined
by Moody for the physics of graphical notation [9]. This part of our work could

200 M. Cortes Cornax, S. Dupuy-Chessa, and D. Rieu

Fig. 9. MDE correspondences and future graphical notation work

be clearly compared to the OMG’s BPMN 2 [12] work, which incorporates a new
graphical notation for choreographies. It means that choreography could be an
important concept for business process community.

We also observe in Fig. 9 an obvious correspondence with the paradigm of
Model Driven Engineering (MDE) [15]: our domain meta-model layer is equiva-
lent to Computation Independent Model (CIM), the analysis meta-model layer
correspond to a Platform Independent Model (PIM), and the design meta-model
layer based on WS-CDL is an example of Platform Specific Model (PSM) in
MDE. Between the different layers, refinement and abstraction relationships will
be implemented by MDE transformations. So this meta-model approach is our
first step to help designers and developers in bridging the gap between business
process and service composition implementations.

Acknowledgments

We would like to thank Gabriel Pedraza, German Vega, Agnes Front and Au-
relien Faravelon for their helpful comments. We also thank the international
scholarship program FARO Global for their support.

References

1. Van der Aalst, W., Benatallah, B., Casati, F., Curbera, F., Verbeek, E.: Business
process management: Where business processes and web services meet. Data and
Knowledge Engineering 61(1), 1–5 (2007)

2. Barker, A., Walton, C., Robertson, D.: Choreographing Web Services. IEEE Trans-
actions on Services Computing 2(2), 152–166 (2009)

Bridging the Gap between Business Processes and Service Composition 201

3. Barros, A., Dumas, M., Oaks, P.: A critical overview of the web services choreog-
raphy description language. BPTrends Newsletter 3 (2005)

4. Barros, A., Dumas, M., Ter Hofstede, A.: Service interaction patterns: Towards a
reference framework for service-based business process interconnection. Faculty of
IT, Queensland University of Technology FIT-TR-2005-02 (2005)

5. Decker, G., Barros, A.: Interaction modeling using BPMN. In: Alonso, G., Dadam,
P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 208–219. Springer, Hei-
delberg (2007)

6. Decker, G., Kopp, O., Barros, A.: An introduction to service choreographies. In-
formation Technology 50(2), 122–127 (2008)

7. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extending BPEL
for modeling choreographies. In: IEEE International Conference on Web Services,
ICWS 2007, pp. 296–303. IEEE, Los Alamitos (2007)

8. Decker, G., Kopp, O., Leymann, F., Weske, M.: Interacting services: from specifi-
cation to execution. Data & Knowledge Engineering 68(10), 946–972 (2009)

9. Moody, D.: The “Physics” of Notations: Toward a Scientific Basis for Constructing
Visual Notations in Software Engineering. IEEE Transactions on Software Engi-
neering, 756–779 (2009)

10. OASIS: Web services business process execution language v2.0. (2007),
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

11. OMG: Business process management notation (v1.2) (2009),
http://www.omg.org/spec/BPMN/1.2/

12. OMG: Business process management notation (beta 2) (2010),
http://www.omg.org/cgi-bin/doc?dtc/10-06-04

13. Ross-Talbot, S., Brown, G., Honda, K., Yoshida, N., Carbone, M.: Pi4soa tech-
nologies fundation, http://sourceforge.net/apps/trac/pi4soa/wiki

14. Ross-Talbot, S., Brown, G., Honda, K., Yoshida, N., Carbone, M.: Soa best prac-
tices: Building an soa using process governance (2009)

15. Soley, R., et al.: Model driven architecture. OMG white paper 308, 308 (2000)
16. Srivastava, B., Koehler, J.: Web service composition-current solutions and open

problems. In: ICAPS 2003 Workshop on Planning for Web Services, vol. 35. Citeseer
(2003)

17. W3C: Web services choreography description language version 1.0 - w3c candidate
recommendation (2005), http://www.w3.org/TR/ws-cdl-10/

18. Weidlich, M., Barros, A., Mendling, J., Weske, M.: Vertical alignment of process
models – how can we get there? In: Halpin, T., Krogstie, J., Nurcan, S., Proper,
E., Schmidt, R., Soffer, P., Ukor, R. (eds.) Enterprise, Business-Process and Infor-
mation Systems Modeling. LNBIP, vol. 29, pp. 71–84. Springer, Heidelberg (2009)

19. WSC: Web services choreography working group (2002),
http://www.w3.org/2002/ws/chor/

20. Zaha, J., Barros, A., Dumas, M., ter Hofstede, A.: Let’s dance: A language for
service behavior modeling. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS,
vol. 4275, pp. 145–162. Springer, Heidelberg (2006)

A Appendix

The UML class diagrams in Figs. 10 and 11 provide a high-level overview of WS-
CDLs meta-model. Fig 10 describes the structural view while 11 describe the
behavioral view. These meta-models are based upon the WS-CDL meta-model
in [3]. They represent our today’s design meta-model.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.omg.org/spec/BPMN/1.2/
http://www.omg.org/cgi-bin/doc?dtc/10-06-04
http://sourceforge.net/apps/trac/pi4soa/wiki
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/2002/ws/chor/

202 M. Cortes Cornax, S. Dupuy-Chessa, and D. Rieu

Fig. 10. WS-CDL design meta-model - structural view

Bridging the Gap between Business Processes and Service Composition 203

Fig. 11. WS-CDL design meta-model - behavioral view

J. Ralyté, I. Mirbel, and R. Deneckère (Eds.): ME 2011, IFIP AICT 351, pp. 204–218, 2011.
© IFIP International Federation for Information Processing 2011

Towards Construction of Situational Methods
for Service Identification

René Börner

ProcessLab, Frankfurt School of Finance & Management,
Sonnemannstraße 9-11, 60314 Frankfurt am Main, Germany

r.boerner@fs.de

Abstract. The service-oriented paradigm plays an increasingly significant role
in designing and governing IT architectures in organizations. The identification
of services belongs to the most important parts of the service management life-
cycle and is essential for the successful implementation of service-oriented
architectures (SOA). However, existing methods for service identification
mostly ignore situation-specific factors for such projects. Situational method
engineering can be used to design a meta method to support the development of
situation-specific methods for service identification. Based on a literature re-
view and two case studies, this paper elaborates on context factors and SOA
implementation goals being constituting elements of situations. These situations
are tailored to the service identification domain. Applying this meta method in
concrete project situations will help to engineer appropriate methods for service
identification.

Keywords: Situational method engineering, service-oriented architectures, ser-
vice identification, context factors, meta method, SOA implementation goals.

1 Introduction

Service orientation is currently a dominating paradigm for enterprise and IT architec-
tures. Service-oriented architectures promise a greater flexibility of IT and a faster
adoption to changing business needs. The identification of services is one of the most
important steps for successful SOA implementations and many authors have devel-
oped methods for this purpose (for an overview see [1]). Interestingly, most of these
methods are based on a one-fits-all approach and do not consider a configuration of
methods depending on different circumstances.

The field of situational method engineering (SME) offers opportunities to over-
come these shortcomings. A central aspect behind it is that a fixed method is not suit-
able for all situations that occur in reality. Thus, methods have to be adaptable to
different kinds of situations. This paper elaborates on context factors and SOA im-
plementation goals to identify situations in the field of service identification. These
are necessary to support a reasonable configuration of fragments that are developed as
part of the meta method for the configuration of methods for service identification.
Identifying situations is pivotal for this meta method and the focus of this paper.

 Towards Construction of Situational Methods for Service Identification 205

Designing suitable fragments complements the meta method and will be discussed
briefly herein.

The paper is structured as follows: Section 2 discusses related work in the fields of
SME and service identification, outlines the research design and describes the scope
of this paper. In section 3, context factors and SOA implementation goals – both
being defining parts of a situation – are elaborated in detail. The design of method
fragments for service identification is presented in section 4. Section 5 reflects on
limitations, proposes avenues for future research and provides a conclusion.

2 Foundations of a New Meta Method

This section discusses related literature in the field of SME and service identification.
The research process used to derive the context factors is outlined. Furthermore,
scope and goals of the meta method are defined.

2.1 Situational Method Engineering and Configurability in Existing
Approaches

It is commonly accepted that no universal method constructed at time (t1) can fit every
conceivable situation in which it is applied in time (t2) [2]. Actually, it is quite im-
probable that a rigid method developed from theory is applicable in a concrete setting
without modification [3] and therefore, the concept of SME emerged (see e.g. [4]).
The central aspect behind it is that a fixed method is not suitable for all situations that
occur in reality. Thus, methods have to be adaptable to different kinds of situations.
To support this adaptability, smaller parts of a method – so called method fragments –
are created and can be composed depending on the situation at hand [5]. Method
fragments consist of the four elements activity, technique, role, and result [6].

Unfortunately, the term method fragment is inconsistently used in literature [7].
Ågerfalk et al. [8] define method fragments as “standardized building blocks based on
a coherent part of a method” (p. 360). A situational method can be constructed by
combining a number of method fragments. For the purpose of this paper, any reason-
able combination of method elements representing a coherent part of a method shall
be referred to as method fragment [8].

According to Bucher et al. [9], there are two adaptation mechanisms to engineer a
situational method, namely situational method configuration and situational method
composition. Situational method configuration follows the so called adaptive princi-
ple. This means that a base method is created at design time (t1) and configured in
certain contexts at time (t2). For situational method configuration, situational changes
to a base method have to be foreseen and planned when a situational method is devel-
oped at time (t1). In contrast, situational method composition provides for a spontane-
ous combination of method fragments (orchestration) that does not have to be fore-
seen at (t1). There is no pre-defined base method that is adapted. Instead, method
fragments are combined and aggregated as required at (t2). Börner [10] suggests a
third possibility, in which pre-composed methods are assigned to situations in (t2).
Although methods are defined in (t1) already, there is no pre-configured base method
in this approach.

206 R. Börner

Many authors agree that characteristics of a project have to be defined in order to
describe a situation [11-13]. Still, according to [9] they do not explicitly say what
constitutes a situation. For the purpose of this paper, Börner’s [10] concept of a situa-
tion is used. It defines context factors and SOA implementation goals as two deter-
mining factors that constitute a situation.

The analysis and comparison of existing service identification literature is the basis
for the development of a meta method for situational methods conducted in this paper.
Additionally to the literature analyzed by [1], two currently published approaches [14,
15] were included in this paper. All approaches were examined considering their
description of activities, roles, techniques and results as well as the configurability of
the presented methods. The first four criteria were chosen because they are commonly
used elements for methods and method fragments [6, 16]. Configurability is fre-
quently regarded important in SME literature. However, in the field of SOA and espe-
cially in service identification a lack of configurability of methods can be stated.

Since activities are the focus of all compared approaches, they are described pre-
cisely in most cases. Many techniques and intermediate results are usually provided
as well. The most striking feature is the almost complete absence of roles. Although
many authors discuss the importance of business and IT alignment, all compared
service identification approaches tend to underestimate the significance of properly
assigning roles to respective activities and techniques. Roles will play an important
role when method fragments are assigned to situations.

The configurability describes the possibility to choose adequate fragments that suit
the situation at hand and arrange them in an adequate sequence. The latter means that
activities used in an approach do not have to be executed in a linear order but can be
used iteratively and hence allow for loops or iterations. Although hints on possible
configurations can be found in some places, none of the authors explicitly incorpo-
rates the former into their approach. Since the goal of this paper is to guide the engi-
neering of situational methods, configurability of service identification methods will
be considered a crucial feature.

2.2 Research Design

The development of a meta method for service identification methods presented
herein is based on a hybrid research approach combining several research methods to
gain a richer understanding of the topic [17]. Construction of the meta method sup-
ported by SME belongs to the realm of design science. The derivation of relevant
context factors builds on both desk research, i.e. literature reviews, and case study
research. Since the identification of relevant context factors is an explorative goal, a
case study approach was deliberately chosen to give the results an empirical ground-
ing. Case studies are appropriate in this respect because they “provide descriptions of
phenomena” [18]. Furthermore, case studies are particularly relevant for research in
its “early, formative stages” [19] which applies to the field of SOA [20].

The case studies were conducted in two SOA implementation projects in Austra-
lian companies providing completely different environments. One of the companies is
a small data provider; the other is one of Australia’s biggest insurance companies.
The significantly diverse settings of both cases opened up a continuum [21] of instan-
tiations for identified context factors, i.e. their parameter values. At the insurer,

 Towards Construction of Situational Methods for Service Identification 207

researchers conducted an action research study. They actively participated in the pro-
ject and helped test and apply a service analysis & design methodology developed by
them previously. In the second case study, the most important sources of evidence
have been interviews that were conducted shortly after the project had been com-
pleted. The data provider’s employees and researchers were the interview partners.
The researchers had helped the data provider to implement an SOA in order to enable
the retrieval and analysis of heterogeneous data from different sources (grid environ-
ment) spontaneously in an unforeseeable fashion (ad-hoc).

The interviews have been transcribed afterwards and analyzed along with all other
documentation and reports. In an iterative approach, relevant context factors were
determined based on this data and compared with related literature. The identification
of such factors (concepts) was conducted by employing techniques from grounded
theory, for example, open and axial coding [22], and interpretative techniques [23].
Even though these coding techniques were not used to their fullest extent, the general
approach and respective tools supported the assignment of statements from the inter-
views and documents to concepts. The goal was to detect relevant particulars within
the case data and to identify relevant concepts [24], i.e. context factors.

2.3 Goals and Scope of the Meta Method

Due to the lack of configurability in existing approaches, this paper argues that situ-
ational method engineering can support methods for service identification that suit
certain project situations and are thus situation-specific. Particularly, context factors
(including their respective parameter values) and SOA implementation goals that
jointly determine a situation are the focus. They provide the basis for the intended
meta method that is subject to ongoing research.

Focus of this paper

Identifying situations Designing method fragments

Context factor parameter values

SOA implementation goals

Decomposition

Exploration

Engineering of situational methods
Meta method

Fig. 1. Scope of the Meta Method and Focus of This Paper

This meta method encompasses the identification and description of context fac-
tors, their value parameters and SOA implementation goals. Together, combinations
of these parts constitute a situation. Every instantiation of a method will rely on the
situations that will be developed in section 3 since context factors, value parameters
and SOA implementation goals belong to the service identification domain. Thus, the
latter are design elements of this meta method. Apart from situations, the meta

208 R. Börner

method also includes descriptions of method fragments. Principles of fragment design
will be outlined and shown exemplarily in section 4.

Figure 1 illustrates that the meta method encompasses the identification of situa-
tions and the design of method fragments. Both are necessary for the configuration of
situational methods. Focus of this paper is the identification of situations in the do-
main of service identification based on relevant context factors and SOA implementa-
tion goals. Moreover, the design of method fragments as part of a meta method will
be shown exemplarily herein. Therefore, two ways of method re-engineering, namely
decomposition and exploration, are presented. A generally valid description of how to
engineer situational methods in any conceivable situation is left to further research.

3 Identifying Situations

Following [10], the combination of context parameters and SOA implementation
goals determines situations. Figure 2 illustrates the five necessary steps (a) to (e) to
identify situations. These steps are introduced briefly herein (for a more detailed ex-
planation see [10]):

SOAIG A SOAIG C

CPVC a

CPVC c

CPVC b

Situation aA

Situation bA

Situation cA Situation cB

Situation aCSituation aB

Situation bB

Situation cC

Situation bC

SOAIG B

1 Company
Size

2 Budget 3 …

(a
)

C
on

te
xt

V
ar

ia
b

le
s

(b
)

P
ar

am
et

er

V
al

u
es

(c
)

C
o

n
te

xt
P

ar
am

et
er

V

al
u

e
C

o
m

b
in

at
io

n

1.1 small or
medium

1.2 large
2.2 low
budget

2.1 generous
funding

3.2 …

3.1 …

CPVC a (1.1; 2.1; 3.1)

CPVC b (1.2; 2.1; 3.1)

CPVC c (1.1; 2.2; 3.1)

CPVC d (1.1; 2.2; 3.2)

CPVC e (1.2; 2.2; 3.1)

CPVC f (…)

A. Legacy system integration

B. Identification of outsourcing candidates

C. …

(d) SOA Implementation Goals

(e) Situation Identification Matrix3.3 …

Fig. 2. Five Steps to Identify Situations (following [10], p. 5)

(a) The context variables (contingency factors) that can influence the SOA imple-
mentation project at hand are defined.

(b) The context variables identified in (a) have certain parameter values (instantia-
tions) that are defined in this second step.

(c) All context parameter values are combined with one another. These context
parameter value combinations (CPVC) serve as one input for the situation identi-
fication matrix.

 Towards Construction of Situational Methods for Service Identification 209

(d) Possible SOA implementation goals are identified in this step. They are the sec-
ond input for the situation identification matrix.

(e) The situation identification matrix illustrates all possible combinations of CPVCs
and SOAIGs retrieved in steps (c) and (d).

Context factors, respective parameter values and SOA implementation goals that are
relevant to the service identification domain, and therefore an important part of the
meta method presented herein, will be introduced in the following subsections. A
combination of concrete parameter values (e.g. a small company with low budget, no
industry-specific legal restrictions producing only one product) and an SOA imple-
mentation goal (provision of services for third parties) constitutes a specific situation.

3.1 Context Factors

Based on related literature and two recently conducted case studies described in sec-
tion 2.2, the importance of the most influential context factors is discussed in the
following. Although these context factors might not be unique to the field of SOA,
their consideration in service identification methods will improve applicability of the
latter.

It is a generally held belief that the company size is a considerable contextual fac-
tor in many kinds of software projects [25] such as service identification in SOA
implementation projects. Whereas Sedera [26] proposes three classes of company
size, this paper follows Welsh and White [27] who suggest only two. Hence, compa-
nies are differentiated into small and medium-sized enterprises on the one hand and
large companies such as multi-national enterprises on the other hand. The former
shall comprise organizations with up to 250 employees [28].

The budget of a project plays an important role when it comes to choosing neces-
sary steps and general proceeding of a method for service identification. Generally, a
generous budget that allows for an extensive time frame provides the opportunity for
a thorough and systematic application of identification methods. One would expect
the utilization of many techniques in order to ensure a high quality of implemented
services. A detailed analysis of available strategic and technical documents would be
typical in such circumstances. Literature confirms that the budget has implications on
the number of available staff, the time pressure and the possibility to incorporate
external help from consultants [29].

Some activities have to be carried out regardless of the budget. Still, there might be
obligatory as well as optional techniques which support the activity. Consequently, an
exhaustive use of techniques would only be chosen if financial resources are easily
available. The parameter values generous funding and low budget will thus be used
for this context variable.

Depending on a company’s strategy, services can be provided for different service
consumers, for example other divisions (internally), third parties (externally) or both.
Strategically important services that lead to a competitive advantage in the market
should only be available to end-consumers but not to competitors. A clear distinction
between services offered to internal customers, other companies in a value chain or
end-consumers is indispensable. If it is known in advance that a service will be of-
fered internally only, a number of activities and results such as the creation of an
inter-organizational service map are not applicable in this situation. Moreover, there

210 R. Börner

might be legal constraints that only apply if services are offered to third parties and
thus demand an examination of these regulations. An analysis of consumer interaction
is always essential whereas the “line of visibility” is much more important if services
are exposed to external customers [30].

For the purpose of this paper, service consumers will be divided into internal and
external consumers. Additionally, the case of a service being offered to both is con-
sidered.

Skills and experience with both service-oriented architectures and business
process management significantly influence the proceeding of service identification.
Limited SOA experience on the side of employees often leads to a technical SOA
understanding. Project teams that are more familiar with the service-oriented para-
digm are more likely to succeed in combining technical aspects with a Business Proc-
ess Management perspective in mind. Hence, software services that support business
processes or at least sub-processes can be the goal of their analysis. Their identifica-
tion usually includes activities related to the analysis of process models and involves
not only IT-related, but also business-related staff roles. If the service identification is
limited to a rather technical point of view, the set of method fragments to be consid-
ered will therefore be a different one.

The configuration of situational methods and choice of fragments is affected, if for
example certain roles cannot be occupied by available employees. Limited employee
skills can necessitate external support by consultants. Although this enables the appli-
cation of certain fragments, this option might be limited by the project budget and
might therefore not be feasible. Parameter values for this context factor are SOA skills
available, BPM skills available, both skills available and none available.

Furthermore, the SOA maturity level a company has achieved is seen as a further
influential factor on the delivery strategy of SOA [31]. Thus, it plays an important
role in the configuration of methods for service identification.

SOA maturity models are used to classify the status of SOA implementations
within a company. This paper will use the Service Integration Maturity Model
(SIMM) [32] to distinguish advanced organizations with level 4 to 7 from less mature
organizations (level 1 to 3). The former are likely to use more sophisticated and strat-
egy-oriented fragments. The latter usually use more technically-oriented techniques
and thus other fragments.

On the one hand, compliance issues can arise from legal obligations and regulatory
restrictions. These differ among countries and especially companies that operate in
more than one country have to consider legal demands arising from that. In many
countries, all companies have to obey certain rules as far as the confidentiality of
customer data is concerned. Additionally, some industries such as banking or pharma-
ceuticals have to adhere to special regulations. Finally, regulations can arise from the
fact that a company is listed on a stock exchange, i.e. it also depends on its legal form.
On the other hand, internal policies may require corresponding method fragments that
address issues like service ownership. Three parameter values will be used for this
context factor, namely standard legal compliance, special regulations due to industry,
legal form or international operations and internal policies.

Another important context variable is the existence of a designated IT department
and thus the degree of centralization of the IT infrastructure. In a small company
that lacks an IT department, methods have to be adapted to accommodate for this

 Towards Construction of Situational Methods for Service Identification 211

circumstance. Larger organizations usually have such an IT division or are structured
along the lines of business. On the one hand a high degree of centralization or the
existence of a central division supervising and governing IT implementation through-
out a company usually leads to more transparency. Frequently, at least some informa-
tion on applications and data is readily available. This can be used as input for service
identification method fragments. On the other hand, some fragments demand certain
roles such IT administrators or newly composed units consisting of business and IT
employees (see also [33]). In a small company that lacks an IT department, these
method fragments are frequently not applicable.

Table 1. Context Variables and Respective Parameter Values

Context Variable Parameter Value
1 Company size 1.1 Small or medium-sized enterprise
 1.2 Large company
2 Service consumers 2.1 Internal consumer
 2.2 External consumer
 2.3 Internal and external consumers
3 Budget 3.1 Generous funding
 3.2 Low budget
4 Skills and experience 4.1 SOA skills available
 4.2 BPM skills available
 4.3 Both skills available
 4.4 None available
5 SOA maturity level 5.1 SIMM level 1-3
 5.2 SIMM level 4-7
6 Compliance 6.1 Standard legal compliance
 6.2 Special regulations
 6.3 Internal policies
7 IT department 7.1 Existent
 7.2 Not existent
8 Interaction 8.1 Customer interaction
 8.2 Employee interaction
 8.3 Customer and employee interaction
9 Organizational structure 9.1 One product company
 9.2 Multiple product company

Varying degrees and forms of interaction with both customers and employees ne-
cessitate the use of different method fragments. In some cases employees are not
directly involved in service delivery because the services are very fine-grained and
fully automated. The coarser-grained services are, the greater is the possibility that
they are only semi-automated or manual and subsequently interact with employees.
Customer interaction can be of high importance when the composition of services by
the end user is a primary goal. In general, a customer interaction can be obligatory in
some places or can happen “on demand” if required [34]. If customer interaction is a
major issue for the identification of services in a situation at hand, respective method
fragments (e.g. swim lane diagrams that show interfaces to customers) are crucial for
a successful implementation. Thus, customer interaction, employee interaction and a
combination of both are differentiated for the purpose of this paper.

212 R. Börner

In a company specialized on one product only, an analysis of a service’s reusability
is trivial in most cases. The same analysis is much more complex when looking at
companies with a wide range of products. An organization can, e.g., be structured by
products (business lines), regions, functions or customer groups [35, 36]. Even a mul-
tidimensional structure combining two or more dimensions of the above is not un-
common. Thus, the organizational structure can be an important factor when it
comes to service identification. Herein, one product companies and multi product
companies are differentiated.

Table 1 gives an overview of the context variables used and their respective pa-
rameter values. After identifying the context factors that are one part of a situation,
the next section will elaborate possible goals for the implementation of service-
oriented architectures that are the second constituting part of a situation.

3.2 SOA Implementation Goals

The second constituting element of a situation are SOA implementation goals. De-
pending on the purpose of an SOA implementation, the identification of services can
necessitate the application of different method fragments. Many such goals can be
found in related literature and the case studies also confirmed some of them. In the
following, these goals and their influence on a situational method configuration will
be discussed.

The integration of legacy systems is a frequently mentioned goal of SOA
implementations [37, 38]. Especially in medium-sized and large enterprises, IT archi-
tectures have developed over years or even decades. In the absence of a central gov-
erning body, manifold isolated applications were developed and implemented which
led to a plethora of problems. New functionalities and updates have to be made sepa-
rately for each system which causes high maintenance costs. In some cases, it is diffi-
cult to find specialists who are able to administer for instance cobol code. Due to their
restricted function-oriented view, employees do not know about IT systems of other
divisions. This redundancy causes high costs because of unnecessary licensing fees.

Hence, integrating existing applications plays a major role in enterprise IT archi-
tectures and is one of the reasons for SOA implementation projects. In this case, tech-
niques such as asset analysis and results that illustrate dependencies of the existing IT
infrastructure are crucial parts of the service identification. The knowledge of IT ex-
perts about technical interfaces is indispensable.

The identification of outsourcing candidates is another goal for SOA implementa-
tions [39]. In this case, costs, performance and strategic relevance of services must be
analyzed. On the one hand, based on a business process analyses the exact scope of
the outsourcing activity has to be defined. A strategic make-or-buy decision deter-
mines which parts of the process are performed within the organization and which
parts shall be outsourced to service providers. On the other hand, an outsourcing can-
didate needs clearly defined technical interfaces. Inputs and outputs of automated
services provided by a third party have to be explicated in service level agreements.
These outsourcing considerations demand fragments that produce for instance inter-
organizational service maps and incorporate strategic aspects as well as detailed tech-
nical descriptions.

 Towards Construction of Situational Methods for Service Identification 213

The agility and flexibility of business processes is a competitive advantage and
strongly tied to the concept of SOA [40]. An alignment of business and IT is a neces-
sary precondition to achieve this flexibility. Therefore, a company’s strategy, i.e. a
business process perspective, has to be considered. An enterprise-wide governance of
the IT infrastructure is indispensable to provide for this agility. Hence, fragment re-
sults such as service ownership models [41] have to be used.

In contrast to an enhanced flexibility on process services level, the standardization
of basic services is meant to avoid redundancies in development and maintenance of
IT and thus to reduce costs significantly [42]. The goal is to improve efficiency by
reusing a service in as many processes as possible. However, a customer should not
be limited in his choice of varieties. A faster processing through increased efficiency
should lead to a higher customer satisfaction. Therefore, services that directly interact
with customers should not be standardized. This makes fragments for the analysis of
the line of interaction and the line of visibility indispensable.

A completely different perspective is taken by companies that aim at the provision
of services for third parties. The former specialize on a small part of a value chain
concentrating on their core competencies. These companies are able to generate
economies of scale by providing services for many other companies typically – not
necessarily – belonging to the same industry sector. Hence, the focus here is again on
inter-organizational and strategic instruments. Services must be easily exposable to
third parties, i.e. interfaces have to be well-defined and performance has to be readily
measurable. Method fragments should thus concentrate on interaction, interface
analysis and the strategic value of providing a service to third parties.

4 Designing Method Fragments for Service Identification

In order to design situation-specific methods for service identification, method frag-
ments that support this identification have to be provided. There are basically two
possibilities to design these method fragments [43]. On the one hand, fragments can
be re-engineered from existing methods. On the other hand, they can be designed
from scratch in case no experience exists, i.e. no fragments or elements can be re-
trieved from existing approaches.

As shown in section 2.1, literature provides a number of methods for service iden-
tification. Although they include many effective method elements and fragments, the
lack of configurability is a major shortcoming. Thus, the following design of method
fragments will concentrate on re-engineering of existing methods rather than on ad-
hoc construction. Ralyté [44] identifies two ways to design method fragments from
existing methods, namely decomposing models from existing methods and exploring
different possibilities to apply a model (p. 5). In the following, both will be intro-
duced. Two examples of method fragments will show the applicability to the service
identification domain.

4.1 Decomposition

Identifying fragments through decomposition is supposed to be easier than creating
new ones through exploration and should thus be the first step. Most of the fragments

214 R. Börner

that can be found in existing service identification approaches concentrate strongly on
the result of activities and are thus strongly product-driven. In these cases the process
part – including roles and techniques – has to be conceptualized in order to obtain
fragments. In cases where a fragment is identified by process model decomposition,
the product part has to be elaborated since the processes are already available [44].
The following is one example of a fragment that was decomposed from an existing
method [30] and enhanced as far as the process part is concerned.

Fragment 1: Overview of Existing Process Models

Description: If there are documented business processes, these should be used for the further
analysis to save time and money if possible.

Input: Meaningful documents of existing business processes from formerly conducted
Business Process Management (BPM) projects

Preconditions: If no BPM projects had been conducted before, it is necessary to identify business
processes before using this fragment.

Taken from: Klose, Knackstedt, Beverungen (2007)
Design: In the first phase “preparation” of their approach, Klose et al. [31] include the task

“prepare existing process models” into their procedure model (p.1804). Since the
authors describe activity, techniques and results, the fragment is identified by
product decomposition. Only the role to perform the activity has to be added in order to
complete the fragment.

Activity: Preparation
Role: Employee of the business department
Technique: Prepare existing process models
Result: Consolidated and complete set of hierarchical process models, modeling conventions

Fig. 3. Method Fragment 1

4.2 Exploration

After identifying as many fragments as possible in this first step, exploration is used
to find additional fragments on the basis of the elements used in existing approaches.
Thus, concrete activities, roles, techniques and results found in different sources are
extracted and subsequently used to design new fragments. A comprehensive overview
of elements cannot be provided herein, but examples for these constituting elements
of methods will be given in the following. The most important sources are the litera-
ture on service identification and the two case studies described in section 2.

Activities: Many approaches use activities such as service analysis and service cate-
gorization. Preparation is also a common activity to be found in literature. However,
activities like goal definition or develop SOA strategy can be found in only one ap-
proach, respectively. Some authors use the word activity for very detailed descriptions
of how something has to be done. In the definition used herein this would rather be a
technique. Furthermore, one and the same activity might have different names in
different approaches. This makes consolidation a difficult task.

Roles: Despite their importance, roles only occur in four of the seven compared ap-
proaches. Sometimes they are hard to identify as such because the notion of consumer
view might be used where employee of the business department would be a better
description. Besides the employee of the IT department, roles like project manager
were important in the case studies. Related literature additionally suggest new roles
such as a service design unit for certain activities [33].

 Towards Construction of Situational Methods for Service Identification 215

Techniques: Consolidating all techniques utilized in literature is difficult since most
approaches offer plenty of techniques with sometimes overlapping components and
scopes. However, there seem to be some typical and wide-spread techniques that are
common to many approaches such as decomposition of business processes and asset
analysis. A couple of other techniques that were frequently encountered are goal
service modeling and use case modeling. It is noteworthy that the scope of the listed
techniques can differ considerably. Using a governance questionnaire is a straight
forward and unambiguous procedure with limited scope and little room for interpreta-
tion. The decomposition of business processes is much more complex and likely to
yield different outcomes depending on who actually conducts the task.

Results: Similar to the significant number of techniques, there are many results pre-
sented as part of the methods. These results are outputs of respective activities and
techniques and can be an input for the next activity. Thus, they are a crucial link be-
tween method fragments. The results themselves are quite different in nature and
reach from technical interface descriptions to comprehensive SOA strategy documents
or network models on an inter-organizational level. Use cases, reference processes
and activity diagrams are examples for other results.

Fragment 2: IT Governance Analysis

Description: An organization can have manifold demands when it comes to implementing new IT
infrastructures. Using agile methods for example could be one imperative. Technical
restrictions, programming language, interfaces or naming conventions can impose
restrictions on IT projects. Hence, these IT governance issues can be covered by a
questionnaire and are incorporated in this fragment. Employees of the business and the
IT department jointly forming a so-called service design unit (SDU) form an important
role to successfully design services based on this questionnaire.

Input: Information on IT governance, IT strategy, SOA strategy
Preconditions: Derived from an organization’s strategy, the IT strategy must be defined and

documented before an analysis for service identification can be performed. Often,
conventions and principles regarding the implementation and development of IT are not
explicated in readily available documents. Therefore, it might be necessary to interview
(IT) managers in order to retrieve necessary information.

Taken from: Klose, Knackstedt and Beverungen (2007), Kohlborn, Korthaus, Chan and Rosemann
(2009), Arsanjani, Ghosh, Allam, Abdollah, Ganapathy and Holley (2008), Kohlmann
and Alt (2007), Alter, Börner and Goeken (2009)

Design: Since the scope of this fragment quite wide, elements have been selected from different
approaches. Domain decomposition for instance could be found in three existing
methods. Special roles and techniques such as an SDU or a governance questionnaire,
respectively, have been taken from related literature that does not present a
comprehensive method for service identification but deals with governance aspects in
general.

Activity: Service design
Role: SDU, employee of the IT department, (IT) manager
Technique: Governance questionnaire, domain decomposition, naming
Result: Naming conventions, service ownership list, modeling conventions, design principles

Fig. 4. Method Fragment 2

Based on the elements identified previously, more fragments can be designed.
Elements that are used in fragments created through exploration are taken from more
than one existing approach because if they were to be found in one single approach,
the fragment could have been derived by decomposition as shown in section 4.1.
Fragment 2 is one example for a fragment designed by exploration.

216 R. Börner

5 Conclusion and Further Research

This paper outlined the necessity of designing situation-specific methods for service
identification since a literature review attested a missing configurability of existing
approaches. Hence, a meta method should guide the engineering of such situational
methods. An important part of this meta method is the definition of situations in the
domain of service identification. Thus, the identification and discussion of context
factors and SOA implementation goals was the centerpiece of this work. The idea of
how to design method fragments was explained briefly and shown at two examples.

On the way to creating a meta method for the construction of situation-specific
methods for service identification there are a number of limitations that should be
considered. The identified context factors are based on an extensive literature
research. Moreover, their significance was supported by two case studies where quali-
tative research methods were used. An investigation of relationships and inter-
dependencies of these context factors and the SOAIG is subject to ongoing research.

The number of situations has to be restricted to make the approach feasible. Fol-
lowing [10], the context factors, their parameter values and SOA implementation
goals presented herein lead to 17,280 situations. Therefore, the relevance of context
factors should be scrutinized through further research. The same is true for parameter
values und SOA implementation goals. The aforementioned analysis of interdepend-
encies is also likely to reduce the number of context factor parameter values and thus
the number of situations that have to be considered.

Decomposed method fragments extracted from existing methods usually have been
applied to real-life projects before and are thus quite reliable. Those fragments created
through exploration could be criticized for being an arbitrary combination of elements
without proper foundation. Both the exemplary fragments presented in section 4 and
further ones that are currently developed are based on literature and the experience of
two case studies. Proving quality is difficult and indeed, completeness of a method
fragment base that is proposed by many authors [45] cannot be guaranteed. Thus, it is
important to feed back information from projects that will use the meta method in
future. This will improve fragments and give them a stronger empirical grounding.

As demonstrated, ideas from SME can contribute significantly to the field of ser-
vice identification by supporting the design of situational methods. In order to build a
comprehensive meta method, experience and expert knowledge from the service-
oriented domain have to be incorporated in this meta method. Further case studies or
action research could support an empirical validation of this meta method.

References

1. Börner, R., Goeken, M.: Identification of Business Services - Literature Review and Les-
sons Learned. In: 15th AMCIS, Paper 162, San Francisco, California (2009)

2. Fitzgerald, B., Russo, N.L., O’Kane, T.: Software Development: Method Tailoring at Mo-
torola. Communications of the ACM 46, 65–70 (2003)

3. Aydin, M.N.: Examining Key Notions for Method Adaptation. In: Ralyté, J., Brinkkemper,
S., Henderson-Sellers, B. (eds.) Situational Method Engineering: Fundamentals and Ex-
periences, pp. 49–63. Springer, Boston (2007)

 Towards Construction of Situational Methods for Service Identification 217

4. Harmsen, F., Brinkkemper, S., Oei, H.: Situational Method Engineering for Information
System Project Approaches. In: Verrijn-Stuart, A.A., Olle, T.W. (eds.) Methods and Asso-
ciated Tools for the Information Systems Life Cycle, pp. 169–194. Elsevier Science B.V.,
Amsterdam (1994)

5. Ralyté, J., Rolland, C.: An Approach for Method Engineering. In: 20th International Con-
ference on Conceptual Modelling, pp. 471–484. Springer, Yokohama (2001)

6. Cossentino, M., Gaglio, S., Henderson-Sellers, B., Seidita, V.: A metamodelling-based ap-
proach for method fragment comparison. In: 11th International Workshop on Exploring
Modeling Methods in Systems Analysis and Design at CAiSE, Luxembourg (2006)

7. Sunyaev, A., Hansen, M., Krcmar, H.: Method Engineering: A Formal Approach. In: 17th
International Conference on Information Systems Development, Paphos, Cyprus (2008)

8. Agerfalk, P.J., Brinkkemper, S., Gonzalez-Perez, C., Henderson-Sellers, B., Karlsson, F.,
Kelly, S., Ralyté, J.: Modularization Constructs in Method Engineering: Towards Common
Ground? In: Ralyté, J., Brinkkemper, S., Henderson-Sellers, B. (eds.) Situational Method
Engineering: Fundamentals and Experiences, pp. 359–368. Springer, Boston (2007)

9. Bucher, T., Klesse, M., Kurpjuweit, S., Winter, R.: Situational Method Engineering - On
the Differentiation of “Context” and “Project Type”. In: Ralyté, J., Brinkkemper, S., Hen-
derson-Sellers, B. (eds.) Situational Method Engineering: Fundamentals and Experiences,
pp. 33–48. Springer, Boston (2007)

10. Börner, R.: Applying Situational Method Engineering to the Development of Service Iden-
tification Methods. In: 16th AMCIS, Paper 18, Lima, Peru (2010)

11. Brinkkemper, S.: Method engineering: engineering of information systems development
methods and tools. Information & Software Technology 38, 275–280 (1996)

12. Punter, T., Lemmen, K.: The MEMA-model: towards a new approach for Method Engi-
neering. Information & Software Technology 38, 295–305 (1996)

13. Karlsson, F., Agerfalk, P.J.: Method Configuration - Adapting to Situational Characteris-
tics while Creating Reusable Assets. Information & Software Technology 46, 619–633
(2004)

14. Kohlborn, T., Korthaus, A., Chan, T., Rosemann, M.: Identification and Analysis of Busi-
ness and Software Services - A Consolidated Approach. IEEE Transactions on Services
Computing 2, 50–64 (2009)

15. Inaganti, S., Behara, G.K.: Service Identification - BPM and SOA Handshake.
BPTrends 3, 1–12 (2007)

16. Goeken, M.: Entwicklung von Data-Warehouse-Systemen. Anforderungsmanagement,
Modellierung, Implementierung. Deutscher Universitäts-Verlag, Wiesbaden (2006)

17. Mingers, J.: Combining IS Research Methods: Towards a Pluralist Methodology. Informa-
tion Systems Research 12, 240–259 (2001)

18. Darke, P., Shanks, G., Broadbent, M.: Successfully completing case study research: com-
bining rigour, relevance and pragmatism. Information Systems J. 8, 273–289 (1998)

19. Benbasat, I., Goldstein, D.K., Mead, M.: The case research strategy in studies of informa-
tion systems. MIS Quarterly, 269–386 (1987)

20. Luthria, H., Rabhi, F.A.: Building the business case for SOA: A study of the business driv-
ers for technology infrastructure supporting financial service institutions. In: Kundisch, D.,
Veit, D.J., Weitzel, T., Weinhardt, C. (eds.) FinanceCom 2008. LNBIP, vol. 23, pp. 94–
107. Springer, Heidelberg (2009)

21. Yin, R.K.: Case Study Research - Design and Methods, 3rd edn., vol. 5. SAGE Publica-
tions, Thousand Oaks (2003)

22. Strauss, A., Corbin, J.M.: Basics of qualitative research: Grounded theory procedures and
techniques. Sage Publications, Thousand Oaks (1990)

23. Walsham, G.: Interpretive case studies in IS research. Nature and Method. European Jour-
nal of Information Systems, 74–81 (1995)

218 R. Börner

24. Eisenhardt, K.M.: Building Theory from Case Study Research. The Academy of Manage-
ment Review 14, 532–550 (1989)

25. DeLone, W.H.: Determinants Of Success For Computer Usage In Small Business. MIS
Quarterly 12, 50–61 (1988)

26. Sedera, D.: Does Size Matter? Enterprise System Performance in Small, Medium and
Large Organizations. In: 2nd Workshop on 3rd Generation Enterprise Resource Planning
Systems, Copenhagen, Denmark (2008)

27. Welsh, J.A., White, J.F.: A amall business is not a little big business. Harvard Business
Review 59, 18–32 (1981)

28. Laukkanen, S., Sarpola, S., Hallikainen, P.: Enterprise size matters: objectives and con-
straints of ERP adoption. J. of Enterprise Information Management 20, 319–334 (2007)

29. Becker, J., Knackstedt, R., Pfeiffer, D., Janiesch, C.: Configurative Method Engineering.
In: 13th AMCIS, Paper 56, Keystone, Colorado (2007)

30. Klose, K., Knackstedt, R., Beverungen, D.: Identification of Services - A Stakeholder-
Based Approach to SOA Development and Its Application in the Area of Production Plan-
ning. In: 15th ECIS, St. Gallen, Switzerland, pp. 1802–1814 (2007)

31. Terlouw, J., Terlouw, L., Jansen, S.: An Assessment Method for Selecting an SOA Deliv-
ery Strategy: Determining Influencing Factors and Their Value Weights. In: 4th Interna-
tional Workshop on BUSITAL, Amsterdam, The Netherlands (2009)

32. Arsanjani, A., Holley, K.: The Service Integration Maturity Model: Achieving Flexibility
in the Transformation to SOA. In: IEEE International Conference on Services Computing
(SCC 2006), Chicago, IL, p. 515 (2006)

33. Börner, R., Looso, S., Goeken, M.: Towards an Operationalisation of Governance and
Strategy for Service Identification and Design. In: 13th IEEE International EDOC Confer-
ence, Auckland, New Zealand, pp. 180–188 (2009)

34. Leyer, M., Moormann, J.: Facilitating operational control of business services: A method
for analysing and structuring customer integration. In: 21st ACIS, Paper 42, Brisbane,
Australia (2010)

35. Pitts, R.A., Lei, D.: Strategic Management, 4th edn. South-Western, Mason (2005)
36. Schermerhorn, J.R.: Management for Productivity. Wiley, New York (1993)
37. Erl, T.: Service-Oriented Architecture - A Field Guide to Integrating XML and Web Ser-

vices. Prentice Hall, Upper Saddle River (2004)
38. Heutschi, R.: Serviceorientierte Architektur. Springer, Heidelberg (2007)
39. Beverungen, D., Knackstedt, R., Müller, O.: Entwicklung Serviceorientierter Architekturen

zur Integration von Produktion und Dienstleistung. WI 50, 220–234 (2008)
40. Papazoglou, M.P.: Service-Oriented Computing: Concepts, Characteristics and Directions.

In: 4th International Conference on Web Information Systems Engineering, pp. 3–12.
IEEE Computer Society, Rome (2003)

41. Kohlmann, F., Alt, R.: Deducing Service Ownerships in Financial Networks. In: 15th
AMCIS, Paper 518, San Francisco, CA (2009)

42. Bieberstein, N., Bose, S., Walker, L., Lynch, A.: Impact of service-oriented architecture on
enterprise systems, organizational structures, and individuals. IBM Systems Journal 44,
691–708 (2005)

43. Henderson-Sellers, B., Ralyté, J.: Situational Method Engineering: State-of-the-Art Re-
view. Journal of Universal Computer Science 16, 424–478 (2010)

44. Ralyté, J.: Towards Situational Methods for Information Systems Development: Engineer-
ing Reusable Method Chunks. In: International Conference on Information Systems De-
velopment (ISD 2004), Vilnius Technika, Vilnius, Lithuania, pp. 271–282 (2004)

45. Deneckère, R., Iacovelli, A., Kornyshova, E., Souveyet, C.: From Method Fragments to
Method Services (2009)

J. Ralyté, I. Mirbel, and R. Deneckère (Eds.): ME 2011, IFIP AICT 351, pp. 219–224, 2011.
© IFIP International Federation for Information Processing 2011

An MDA Method for Service Modeling by Formalizing
REA and Open-edi Business Frameworks with SBVR

Jelena Zdravkovic, Iyad Zikra, and Tharaka Ilayperuma

Department of Computer and Systems Sciences
Stockholm University and Royal Institute of Technology

Forum 100, SE-164 40 Kista, Sweden
{jelenaz,iyad,si-tsi}@dsv.su.se

Abstract. Business frameworks offer great opportunities of communication be-
tween people for working on the enterprise system engineering processes, as
well as for eliciting services that the enterprise can offer in collaboration con-
texts. However, these kinds of frameworks, such as Resource-Event-Agent and
Open-edi, recently unified in Open-edi Business Ontology (OeBTO), lack for-
mal representations. This fact considerably limits their use in system develop-
ment, particularly in model-driven development methods where the efficiency
of transformations is of great importance. In this paper we suggest a formaliza-
tion of OeBTO using OMG’s standard Semantics of Business Vocabulary and
Business Rules (SBVR), as a method for creating a service-centric business
model. This makes it possible to provide the necessary formal logic foundation
to allow automatic processing of the business model and its transformation to a
system-level service model. An example from the bank loan business sector is
used to argument the application of the method.

Keywords: business model, business collaboration, service engineering, model-
driven development, REA, Open-edi, OeBTO, MDA, SBVR.

1 Introduction

Model Driven Architecture (MDA), as a formalization of Model Driven Development
(MDD) approach, promotes a method for system development relying on the model
transformation paradigm. MDA prescribes modeling of the business-level information
as a Computational Independent Model (CIM), which is further transformed to a sys-
tem-centric form called Platform Independent Model (PIM), and at the end to a
Platform Specific Model (PSM) that adds the technology details needed for imple-
mentation on a specific software platform [1].

In the service-oriented business sector, capturing the consumer needs for economic
resources plays an essential role in the elicitation of the services that will deliver these
values, therein seizing a desirable competitive distinction. In that context, business
models offer considerable advantages compared to process models - they can capture
a high-level description of a whole business in a single and easily-understandable
view. Business ontologies, such as Resource-Event-Agent, REA [2], facilitate
modeling of actors involved in a business scenario and explain their relationships,

220 J. Zdravkovic, I. Zikra, and T. Ilayperuma

formulating them in terms of economic values (i.e. resources) exchanged between the
actors. Another important aspect concerns elicitation of explorative business service
portfolios by spanning the whole business transaction lifecycle, which, according to
the International Organization for Standardization (ISO) Open-edi initiative [3] in-
volves planning, identification, negotiation, actualization, and post-actualization.

Recently, the ISO has focused on integrating REA and the Open-edi frameworks to
create Open-edi Business Transaction Ontology (OeBTO), to specify the concepts and
relationships involved in collaborative business environments. OeBTO captures the
economic commitments realized by economic and business events performed by the
partners, along the collaboration lifecycle in the Open-edi sense.

Following the previously outlined needs of service engineering, and MDA, in this
study we consider the use of OeBTO to define a service-centric business model (i.e.
CIM) and a method for its creation. To strengthen the formalism of OeBTO and
thereby create an unambiguous and processable CIM, we consider the use of the
OMG’s Semantics of Business Vocabulary and Business Rules [4]. SBVR is an ap-
proach which allows specifying business in terms of a vocabulary and rules in a busi-
ness-friendly language, while being formal enough to be readable by systems.

Being rooted in the use of MDA and two well-established business frameworks;
REA and Open-edi formalized by SBVR, we believe that the method we propose for
creating CIM forms a solid basis to be efficiently transformed to a SOA-aligned sys-
tem model and further to Web services.

The rest of the paper is organized as follows. Section 2 gives the overviews on the
used business frameworks, and SBVR. In Section 3 we present our method for identi-
fication and modeling of business services. In Section 4, we refer to the work related
to ours, and conclude the paper.

2 Background

In this section, we briefly describe REA and Open-edi business frameworks and their
integration in Open-edi Transaction Ontology (OeBTO); then we give an overview of
the Semantics of Business Vocabulary and Business Rules (SBVR) standard.

Integration of REA and Open-edi Business Frameworks in OeBTO
The core concepts in the Resource-Event-Agent (REA) framework are resource,
event, and agent [2]. It is assumed that every business activity can be described as an
event where two agents exchange economic values, i.e. resources. Economic re-
sources may be classified as goods, rights or services. To acquire a resource, an agent
(i.e. actor) has to give up some other resource (economic duality). In the study [5], the
REA framework has been extended to capture additional granularity levels of busi-
ness activities of enterprises. The resulting framework has integrated three vertical
layers: Value Chain, Business Process and Business Event:

Open-edi Business Transaction Ontology (OeBTO) extends the REA ontology
with the concepts aimed to facilitate the modeling of business collaborations defined
in the ISO Open-edi initiative [6]. According to Open-edi, business collaborations
span five phases: planning, identification, negotiation, actualization and post-
actualization. In the planning phase, the customer and the provider are engaged in

An MDA Method for Service Modeling by Formalizing REA 221

activities to identify the actions needed for selling or purchasing goods and services.
The identification phase involves the activities needed to exchange information
among providers and potential customers regarding selling or purchasing goods and
services. During the negotiation phase, contract terms are proposed and completed.
The actualization phase includes all the activities necessary for exchanging goods and
services between involved actors as agreed during negotiations. The post-
actualization phase encompasses the activities and associated exchanges between
involved actors after the major resources are provided.

SBVR
Recently, the Object Management Group (OMG) has adopted the Semantics of Busi-
ness Vocabulary and Business Rules (SBVR) as a standard for capturing business
vocabularies and rules [4]. The term “business” in SBVR is used in a general sense,
referring not only to activities that imply an exchange of goods or services for money,
but also to other types of activities where rules need to be defined and documented,
such as education, health care, or law [7].

Fig. 1. Meaning, representation, and the support of business rules in SBVR

The basic idea around which SBVR is developed is that business rules are built on
top of facts, which in turn are built on top of terms that represent concepts. Further-
more, SBVR acknowledges the difference between meaning and the representation
used to convey that meaning. Figure 1 above shows how SBVR realizes the business
rules and also emphasizes the independence of meaning and its representation.

3 Creating Service-Centric SBVR-Based Business Model

In this study we utilize the MDA method to model services. In that effort, we consider
REA and Open-edi (i.e. OeBTO) as an established conceptual basis for the business
collaboration context. To obtain a service-centric CIM, we propose the following:

− A classification of the notion of Business Transaction in OeBTO to enable CIM to
describe different value configurations.

222 J. Zdravkovic, I. Zikra, and T. Ilayperuma

− An extension to the original OeBTO to capture service-related notions, such as
structure, behavior or policies.

− A (re)formulation of OeBTO using SBVR, to increase the formalism of CIM and
thereby facilitate transformations to the PIM level.

Method for Creating a Three-layered Business Model
According to the REA framework, the method for describing the business of an enter-
prise comprises the decomposition of business activities along three granularity lay-
ers: value chain, business processes and business events (Figure 2). In the following,
we will outline a method for creating each of the layers, where the concepts on each
of the layers are defined using SBVR-based OeBTO.

Fig. 2. The three-layered REA business framework

Step 1: Value Chain Specification
In this step the business (i.e. value-adding) processes in the highest layer of the REA
framework are identified, using a service-aware value configuration, such as the clas-
sification that includes traditional value chain, value shop, and value network [8].
Step 2: Business Process Specification
Moving to the middle layer of the REA framework, each identified business process
(transaction, in OeBTO) is explored to find the partners involved in it, as well as the
economic resources being exchanged. Each economic exchange gives rise to an ag-
gregated service, which will be further expanded on the next layer of the framework,
to discover the actual business services that will realize the delivery of the economic
exchange.

An MDA Method for Service Modeling by Formalizing REA 223

Step 3: Business Event Specification
At the bottom layer of the REA framework, the economic events of the economic
exchange are expanded over the five Open-edi business transaction phases. This is
intended to discover the candidate business services and business events. According
to OeBTO, the business event is used to represent the business activities elicited for
every business transaction phase at the third layer. In order to capture the services that
compose the aggregated service and at the same time aggregate related business
events, we introduce the business service element. A business service is a standalone
service that can be reused as part of other aggregated services to provide other eco-
nomic exchanges. In Figure 3, a small excerpt of the formalization of OeBTO using
SBVR is illustrated. For the full specification, the reader is referred to [9]

Fig. 3. An excerpt of the formalization of OeBTO using SBVR

From the MDA perspective, the obtained service-aware OeBTO model is used as
the input for creating a system model, i.e. Platform Independent Model (PIM). Since
SBVR is completely grounded in formal logic, it gives the added benefit of automatic
model processing, i.e.:

− Making it possible for tools to ensure the integrity of OeBTO models.
− Ensuring the integrity of transformations that produce PIM models based on the

OeBTO model.

5 Related Work and Conclusion

In this study, we have applied the MDA method to design business-services, which
may be further transformed to system services and implemented using Web services.

Lately, research in both academic and industrial communities have implied that
when designing service-oriented software solutions, the starting point should be the
business models of enterprises [10], [11], [12] and [13]. This fact, according to the
referred studies, is shifting the focus of large scale e-service design to the context of
economic resource transfers. Our method reported in [14] differs from those studies in
the way that we set the focus on the analysis of business transactions relying on the
OeBTO standardization effort, and expanding them along a number of collaboration
phases to get a rich business service portfolio. The aim of this study has been to fur-
ther improve the use of OeBTO for service modeling in the MDA method, by formal-
izing it with SBVR, and to use SBVR to guide transformations toward PIM.

The major strength of the proposed method is the use of REA and Open-edi
frameworks formalized with SBVR for modeling CIM; in that way we have obtained
a method which facilitate creating a declarative-type CIM, unambiguous and

224 J. Zdravkovic, I. Zikra, and T. Ilayperuma

processable, i.e. with the capability to be further transformed with a high extent of
automation to system-centric service model (PIM).

References

1. Kleppe, A., Warmer, J., Bast, W.: MDA Explained. Addison-Wesley Professional,
Reading (2003)

2. McCarthy, W.E.: The REA Accounting Model: A Generalized Framework for Accounting
Systems in a Shared Data Environment. The Accounting Review (1982)

3. ISO/IEC: Operational aspects of Open-edi implementation. ISO Standard 15944-1 (2002)
4. The Object Management Group (OMG): Semantic of Business Vocabulary and Business

Rules (SBVR), v1.0. OMG standard,
 http://www.omg.org/spec/SBVR/1.0/PDF

5. Geerts, G., McCarthy, W.E.: An Ontological Analysis of the Primitives of the Extended-
REA Enterprise Information Architecture. The International Journal of Accounting Infor-
mation Systems 3, 1–16 (2002)

6. ISO/IEC: Business transaction scenarios - Accounting and economic ontology. ISO Stan-
dard 15944-4 (2007)

7. Linehan, M.H.: SBVR Use Cases. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.)
RuleML 2008. LNCS, vol. 5321, pp. 182–196. Springer, Heidelberg (2008)

8. Stabell, C.B., Fjeldstad, O.D.: Configuring value for competitive advantage: on chains,
shops, and networks. Strategic Management Journal 19, 413–437 (1998)

9. Zikra, I.: SBVR-based Service-extended OeBTO Meta Model. Technical Report,
 http://people.dsv.su.se/~iyad/public/SBVR-Based_OeBTO_Meta_
 Model.pdf

10. Baida, Z., Gordijn, J., Saele, H., Akkermans, H., Morch, A.: An Ontological Approach for
Eliciting and Understanding Needs in e-Services. In: Pastor, Ó., Falcão e Cunha, J. (eds.)
CAiSE 2005. LNCS, vol. 3520, pp. 400–414. Springer, Heidelberg (2005)

11. Cherbakov, L., Galambos, G., Harishankar, R., Kalyana, S., Rackham, G.: Impact of Ser-
vice Orientation at the Business Level. IBM Systems Journal 44(4), 653–668 (2005)

12. Anderssson, B., Johannesson, P., Zdravkovic, J.: Aligning Goals and Services through
Goal and Business Modeling. The International Journal of Information Systems and e-
Business Management (ISEB), Special Issue on Design and Management of Business
Models and Processes in Services Science 7, 143–169 (2007)

13. Gordijn, J., van Eck, P., Wieringa, R.: Requirements Engineering Techniques for e-
Services. In: Georgakopoulos, D., Papazoglou, M.P. (eds.) Service-Oriented Computing:
Cooperative Information Systems Series, pp. 331–352. The MIT Press, Cambridge (2009)

14. Zdravkovic, J., Ilayperuma, T.: A Model-driven Approach for Designing E-Services Using
Business Ontological Frameworks. In: Proceedings of 14th IEEE International EDOC
Conference, pp. 121–130. IEEE Computer Society, Los Alamitos (2010)

A Scenario-Based Governance Method for
Coordination of Service Life Cycles

Sietse Overbeek, Marijn Janssen, and Yao-Hua Tan

Faculty of Technology, Policy and Management,
Delft University of Technology,

Jaffalaan 5, 2628 BX Delft, The Netherlands, EU
{S.J.Overbeek,M.F.W.H.A.Janssen,Y.Tan}@tudelft.nl

Abstract. Most of today’s organizations are still far from profiting from
the full potential of web service technology. Organizations invoke each
other’s web services, but do hardly synchronize the life cycles of individ-
ual web services with each other. When realizing an integrated service
this might cause failures and requires a governance method for synchro-
nizing the life cycles among organizations. In this paper, we emphasize
that there is a need for such a method and the basis of the method is
explained. This consists of the identification of possible life cycle related
scenarios when trying to integrate services. The method also provides
support to coordinate and track changes in service life cycles. Based on
the different scenarios when attempting to integrate services that have
different life cycles, coordination to communicate life cycle changes and
having clear agreements about expectations are needed for successful
service integration.

1 Introduction

Web service technology is becoming the solution to make the business services
of single organizations and inter-organizational coalitions available online and to
match the supply of services and the demand for services by clients (see e.g. [5]).
A web service can be defined as a software component identified by a URI, whose
interfaces and bindings can be defined, described and discovered as XML arti-
facts [3]. However, most of today’s organizations are still far from profiting from
the full potential of web service technology consisting of the computerization,
integration and matching of services. In fact, it is common practice for most
organizations to develop their web services by adding a thin SOAP / WSDL /
UDDI layer on top of existing software applications or components [5]. While
simple services may be constructed this way, it is not sufficient for realizing and
offering a dynamically created integrated web service that matches complex and
varying client needs. The notion of a service-oriented life cycle methodology has
been introduced to design, implement, monitor, and manage web services in such
a way that organizations can benefit in full from the advantages of web services.
Such methodologies also provide sufficient principles and guidelines to specify,
construct, refine and customize highly flexible business processes taken from a

J. Ralyté, I. Mirbel, and R. Deneckère (Eds.): ME 2011, IFIP AICT 351, pp. 225–230, 2011.
c© IFIP International Federation for Information Processing 2011

226 S. Overbeek, M. Janssen, and Y.-H. Tan

set of internal and external web services [4]. This enables that the specifica-
tion and execution of business processes is aligned with those business services
that are transformed to web services. Examples of existing methodologies can be
found in [1,4]. In practice, organizations invoke each other’s services and become
dependent of those services. Despite these dependencies, organizations adopt or
create their own methodologies which are often unrelated to those of other or-
ganizations. This increases the risk that the various life cycles are out of sync
which might result in failures.

This is a complicating factor when integrating web services and the accom-
panying business processes that need to be executed to supply the integrated
service. In the context of supply chain logistics, for example, an integrated web
service can be supplied to a client who wishes to declare veterinary cargo online
and to track and trace that type of cargo. If the integrated web service is a new
web service that is going to be offered by two different organizations then their
life cycle methodologies should be applied synchronously. This will prevent, e.g.,
communication problems and delays in the joint development of the integrated
service and the accompanying cross-organizational business process. Mismatches
between life cycles can also occur if, for example, an integrated web service needs
to contain both existing and new web services. A service that already exists is in
a different phase of its life cycle than a newly created service. Moreover, organi-
zations that collaborate regularly innovate their processes, methods and business
models and in this way they are in need for substituting old services with new
ones. In [6], the need for these innovations are also linked to those organizations
that rapidly expand. Innovation causes organizations to phase out old services
and add new services. This implies again that these services are in different
phases of their life cycles. In this paper, we present a governance method for
supporting the coordination of web service life cycles. The aim of the method is
to ensure that the dependencies among web services from different organizations
are managed during the complete life cycle. This scenario-based method provides
a way of working for service providers in coordinating and keeping track of life
cycle changes. Section 2 introduces four different scenarios that can occur when
attempting to integrate web services that have different life cycles. Subsequently,
the basis for the proposed governance method is presented in section 3. Finally,
the conclusions of this paper are presented in section 4.

2 Scenarios for Comparison of Service Life Cycles

In order to understand how web services and their life cycles can be compared
and to determine to what extent they match, we formalize four possible matching
scenarios. A life cycle methodology is typically divided in various phases to depict
in which position a web service is in its life cycle. The phase equation is used
to determine which phases uniquely belong to which life cycle methodology:
Phase : PS → LC. If a phase p ∈ PS is part of a life cycle methodology l ∈ LC,
this can be expressed as Phase(p) = l. In this case, the set PS is the set of
phases and LC is the set of service-oriented life cycle methodologies. The phase

Governance Method for Service Life Cycles 227

classification equation is used to determine in which phase of its life cycle a web
service is classified: Classification : SC → PS. For example, if a service s ∈ SC is in
phase p ∈ PS of its life cycle, this can be expressed as Classification(s) = p. In this
case, the set SC is the set of services. When different life cycle methodologies are
used, it may be impossible to compare two web services that have life cycles that
are based on different methodologies. This is because different terms to describe
a phase are used and web services can be classified in a certain phase based on
different criteria. However, comparison may still be possible if some phases of
each life cycle are semantically similar. For example, a ‘planning’ phase in one life
cycle may have the same meaning as an ‘initiation’ phase in another life cycle.
Semantic similarity between phases of life cycle methodologies is modeled as
follows: Similarity : PS×PS → [0, 1]. The lack of semantic similarity between two
phases p1, p2 ∈ PS can be expressed as Similarity(p1, p2) = 0, while the opposite
result is true for full semantic similarity between two different phases. Four
scenarios are imaginable when matching life cycles: (1) Two different services
are in the same phase of their life cycles and the life cycles are also applications
of the same methodology. (2) Two different services are in different phases of their
life cycles and the life cycles are again applications of the same methodology. (3)
Two different services are in different, but semantically similar phases of their life
cycles that are based on two different methodologies. (4) Two different services
are in semantically distinct phases of life cycles that are based on two different
methodologies. These scenarios can be described more formally by using the
above equations:

∃l∈LC∃p∈PS∃s1,s2∈SC[Phase(p) = l∧
Classification(s1) = p ∧ Classification(s2) = p] (1)

∃l∈LC∃s1,s2∈SC[Phase(Classification(s1)) = l∧
Phase(Classification(s2)) = l ∧ Classification(s1) �= Classification(s2)] (2)

∃l1,l2∈LC∃s1,s2∈SC[Phase(Classification(s1)) = l1∧
Phase(Classification(s2)) = l2 ∧ Classification(s1) �= Classification(s2) ∧
Similarity(Classification(s1), Classification(s2)) = 1] (3)

∃l1,l2∈LC∃s1,s2∈SC[Phase(Classification(s1)) = l1∧
Phase(Classification(s2)) = l2 ∧ Classification(s1) �= Classification(s2) ∧
Similarity(Classification(s1), Classification(s2)) = 0] (4)

Under normal circumstances, it can be expected that in the first matching sce-
nario the least difficulties exist to integrate web services and that these difficulties
will gradually increase up until the fourth scenario. If this assumption is true,
this would mean that there is a causal relation between the life cycles of web
services and the ability to integrate and supply them as one integrated service.
Examples of causes for integration difficulties are: disabilities to comprehend ser-
vice designs, conflicting service designs, temporal differences between activities
performed in comparable phases and different service maintenance levels.

228 S. Overbeek, M. Janssen, and Y.-H. Tan

3 Scenario-Based Governance Method for Life Cycle
Coordination

The proposed governance method is based on the underlying thought that changes
in the life cycles of web services require proper coordination, just like the match-
ing of supply and demand of services should be coordinated [2]. This will also
include the final agreements on these changes by the different owners of the web
services. Changes in life cycles need to be announced and the time-line to make
actual changes to the services need to be agreed on. A governance method that
can be used by service providers as a way of working to keep track of desired
changes and to coordinate them to ensure the proper functioning of an integrated
service is then called for. The governance method consists of two parts, which
concerns the activity diagrams shown in figures 1 and 2. The first diagram shows
how to determine which of the four presented scenarios apply when attempting
to realize an integrated service. To determine which scenario can be considered,
the life cycle methodologies of the services that would be part of a new inte-
grated service are compared. If the methodologies are identical, the phases of

Compare LC methodologies

[Init]

Compare phases of identical methodologies
[Identical(l1,l2)]

[!Identical(l1,l2)]

Compare phases of different methodologies
[Identical(p1,p2)]

[!Identical(p1,p2)]

Consider scenario one

Consider scenario two

[Similarity(p1,p2) = 1]

[Similarity(p1,p2) = 0]

Consider scenario three

Consider scenario four

[Integrate(s1,s2)]

[Integrate(s1,s2)] [Integrate(s1,s2)]

[Integrate(s1,s2)]

Fig. 1. Determining life cycle scenario when realizing an integrated service

Governance Method for Service Life Cycles 229

Wait for life cycle change

[Init]

[Receive(Change)]

Evaluate change Clarify

[Unclear(Change)]

[Clarified(Change)]

Determine change time-line

[!Dependencies(SC)]

[Dependencies(SC)]
Determine impact on other related services

[Send(Impact_analysis)]

Wait for agreement

[Send(Decision)]

Log change

[Receive(Agree)]

[Exit]

[Receive(Refuse)]

Fig. 2. Coordination and tracking of changes in service life cycles

the service life cycles can be compared. If those phases are also identical, sce-
nario one can be considered. If not, the life cycles resemble scenario two. If the
methodologies are not identical, it should be determined whether the life cycle
phases are semantically similar or not. If this is the case, we arrive at scenario
three. If it is not the case, we arrive at scenario four. The integration procedure
can be started after determining with which scenario is dealt with and taking
into account the possible issues that can arise related to that scenario. When the
proper scenario is determined, service providers are more aware of which possible
issues they may face during the integration process. The second diagram shows
how to coordinate and keep track of changes in service life cycles. A change in a
life cycle of a service that is known to a service provider will be evaluated after
its reception. More clarification concerning the change can be requested if this
is needed. The clarify state represents a composite state, which is not shown
further. The impacts of the change on other services are determined if there are
dependencies between the service of which the life cycle has changed with other
services. Next, the time-line of the change is determined. After determining this,
the change can be either agreed or refused. The change is logged in a registry

230 S. Overbeek, M. Janssen, and Y.-H. Tan

of life cycle changes if it is agreed upon. Both the scenario determination part
and the part to coordinate life cycle changes can be used by service providers to
control attempts to realize integrated services.

4 Conclusions

The results of the presented research show the basis of a governance method
for the coordination of web service life cycles. The motivation to create such a
method is rooted in the observation that organizations invoke each other’s web
services when realizing an integrated service for their clients, but that the life
cycles of those services are hardly synchronized. The actual governance method
consists of two parts for supporting the coordination of life cycles. One part shows
how to determine with which life cycle scenario a service provider is confronted
when integrating services. The second part provides a way of working for service
providers in coordinating and keeping track of life cycle changes. By adopting
the governance method, coordination to communicate changes and having clear
agreements about expectations is then realized based on the different scenarios
when attempting to integrate services that have different life cycles.

References

1. Bianchini, D., Cappiello, C., De Antonellis, V., Pernici, B.: P2S: A methodology
to enable inter-organizational process design through web services. In: van Eck,
P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 334–348.
Springer, Heidelberg (2009)

2. Burstein, M., Bussler, C., Zaremba, M., Finin, T., Huhns, M., Paolucci, M., Sheth,
A., Williams, S.: A semantic web services architecture. IEEE Internet Comput-
ing 9(5), 72–81 (2005)

3. Ferris, C., Farrell, J.: What are web services? Communications of the ACM 46(6),
31–34 (2003)

4. Papazoglou, M., van den Heuvel, W.J.: Service-oriented design and development
methodology. International Journal of Web Engineering and Technology 2(4), 412–
442 (2006)

5. Papazoglou, M., van den Heuvel, W.J.: Business process development life cycle
methodology. Communications of the ACM 50(10), 79–85 (2007)

6. van de Weerd, I., Brinkkemper, S., Versendaal, J.: Incremental method evolution in
global software product management: A retrospective case study. Information and
Software Technology 52(7), 720–732 (2010)

Author Index

Albert, Manoli 138
Armesto, Ausias 102
Asadi, Mohsen 168

Bagheri, Ebrahim 168
Bajec, Marko 2
Börner, René 204
Brinkkemper, Sjaak 4, 108
Buckl, Sabine 34

Cervera, Mario 138
Cortes Cornax, Mario 190

Dupuy-Chessa, Sophie 97, 190

Faci, Noura 153

Gašević, Dragan 168
Godet-Bar, Guillaume 97
Gonzalez-Perez, Cesar 49

Hacid, Hakim 153
Henderson-Sellers, Brian 49, 64
Holschke, Oliver 91
Hoppenbrouwers, Stijn 184

Iacovelli, Adrian 77
Ilayperuma, Tharaka 219
Insfran, Emilio 102

Janssen, Marijn 225
Jeusfeld, Manfred A. 123

Krug Wives, Leandro 153

Levina, Olga 91
Loniewski, Grzegorz 102

Maamar, Zakaria 153
Mandran, Nadine 97
Matthes, Florian 34
McBride, Tom 64
Mirandolle, Dominique 4
Mohabbati, Bardia 168

Nguyen Thanh, Trung 91

Overbeek, Sietse 225

Pelechano, Vicente 138
Prakash, Naveen 1

Rake-Revelant, Jannis 91
Rieu, Dominique 97, 190

Schweda, Christian M. 34
Souveyet, Carine 77

Tan, Yao-Hua 225
Torres, Victoria 138

van de Weerd, Inge 4, 108, 184
Versendaal, Johan 184
Vlaanderen, Kevin 108

Winter, Robert 19

Yahyaoui, Hamdi 153

Zdravkovic, Jelena 219
Zikra, Iyad 219
Zoet, Martijn 184

	Title Page
	Preface
	Conference Organization
	Table of Contents
	Keynote Talks
	An Assessment of Method Engineering
	Application of Method Engineering Principles in Practice: Lessons Learned and Prospects for the Future

	Situated Method Engineering
	Incremental Method Engineering for Process Improvement – A Case Study
	Introduction
	Aim of This Research
	Related Work

	Research Approach
	Selection and Analysis of Methods
	Requirements Prioritization
	Requirements Prioritization Methods
	Situational Factors

	Case Study
	Case Study Design
	Discussion

	Conclusion
	References

	Design Solution Analysis for the Construction of Situational Design Methods
	Introduction: Contingencies, Design and Situational Methods
	Analysis of Existing Design Solutions
	Derivation of Method Fragments and Configuration Rules
	Enterprise Architecture Management – An Illustrative Example for Design Solution Analysis
	Procedure Steps 1 through 7: Design Solution Analysis
	Procedure Steps 8 through 11: Design Method Construction

	Conclusions and Outlook
	References

	A Method Base for Enterprise Architecture Management
	Motivation
	Related Work
	Designing a Situated EA Management Function
	Foundations
	Structure of the Building Block
	Structure and Administration of the Building Block Base

	Applying the Building Block Base
	Summary and Outlook
	References

	Method Engineering Foundations
	Towards the Use of Granularity Theory for Determining the Size of Atomic Method Fragments for Use in Situational Method Engineering
	Introduction
	Theory of Granularity
	The Granularity of Method Fragments
	Case Study Based on the OPF Metamodel and Fragment Definitions
	The Current Situation
	The Proposed New Situation

	Discussion and Related Work
	Conclusions and Recommendations
	References

	A Method Assessment Framework
	Introduction
	Method Design
	Method Enactment
	Method Performance
	Advantages of This Framework
	Discussion and Related Work
	Conclusion
	References

	Towards Common Ground in SME: An Ontology of Method Descriptors
	Introduction
	Method Descriptors Ontology
	SME Method Descriptors
	Method Fragments
	Method Chunks
	Method Components
	Open Process Framework (OPF) Method Elements
	SO2M Method Services

	Exploring Usages of the Method Descriptors Ontology
	Conclusion
	References

	Customized Methods
	Towards a Method for Service Design
	Introduction
	Existing Approaches to Service Design
	Framework for Service Design – Towards a Service Design Method
	Discussion and Outlook
	References

	A Case Study for Improving a Collaborative Design Process
	Introduction
	The Extended Symphony Method
	Case Study
	Setting of the Case Study
	Results

	Evolution of the Extended Symphony Method
	Conclusion
	References

	Incorporating Model-Driven Techniques into Requirements Engineering for the Service-Oriented Development Process
	Introduction
	Related Works
	Software Process Engineering
	RUP Extension for the Model-Driven Requirements
	Activities and Workflow
	Work Products
	Roles

	Conclusions
	References

	Tools for Method Engineering
	The Online Method Engine: From Process Assessment to Method Execution
	Introduction
	Incremental Process Assessment and Improvement
	Analysis of Current Situation
	Analysis of Need
	Selection of Process Alternatives
	Creation of Improvement Roadmap
	Selection and Implementation of Method Increments

	Online Method Engine
	Information Extraction Using MERL
	Template Generation

	Conclusions and Further Research
	References

	A Deductive View on Process-Data Diagrams
	Introduction
	Constructs of Process-Data Diagrams
	PDDs versus Metamodeling
	Deductive Formalization
	The Product Part in ConceptBase
	The Process Part in ConceptBase
	Definition of PDD Combination

	Detecting Unstructured Data Production
	Realizing Traceability
	Conclusions
	References

	Turning Method Engineering Support into Reality
	Introduction
	State of the Art
	Overview of the Proposal
	The MDD Infrastructure
	Meta-modeling
	Model Transformations

	The Methodological Framework
	Method Design
	Method Configuration
	Method Implementation

	Conclusions and Future Work
	References

	New Trends to Build Methods
	Towards a Method for Engineering Social Web Services
	Introduction
	Background
	Running Scenario
	Social Computing Meets Service-Oriented Computing
	Social Web Services in the Literature

	Our Engineering Method
	Overview
	Step 1: What Relationships Can Put Web Services in Contact?
	Step 2: What Social Networks Correspond to Web Services' Relationships?
	Step 3: How to Build Social Networks of Web Services?
	Step 4: What Social Behaviors Can Web Services Exhibit?

	Implementation
	Support Tools
	Experience with $LinkedWS$

	Conclusion
	References

	Developing Families of Method-Oriented Architecture
	Introduction
	Motivating Example
	Background
	Software Product Line Engineering
	Method Oriented Architecture

	Method Services and Feature Modeling
	Families of Method Oriented Architecture
	Method Domain Engineering
	Method Application Engineering

	Case Study
	Related Work
	Discussion
	Conclusion and Future Work
	References

	Agile Service Development: A Rule-Based Method Engineering Approach
	Introduction
	Method Engineering for Agile Service Development
	Situational Project Factors and Characterization
	Method Fragments Description and Identification

	Conclusions
	References

	Method Engineering for Services
	Bridging the Gap between Business Processes and Service Composition through Service Choreographies
	Introduction
	Overview of the Approach
	The Choreography Meta-model
	Scenario
	The Domain Meta-model
	The Analysis Meta-model
	The Design Meta-model

	Conclusion and Discussion
	References

	Towards Construction of Situational Methods for Service Identification
	Introduction
	Foundations of a New Meta Method
	Situational Method Engineering and Configurability in Existing Approaches
	Research Design
	Goals and Scope of the Meta Method

	Identifying Situations
	Context Factors
	SOA Implementation Goals

	Designing Method Fragments for Service Identification
	Decomposition
	Exploration

	Conclusion and Further Research
	References

	An MDA Method for Service Modeling by Formalizing REA and Open-edi Business Frameworks with SBVR
	Introduction
	Background
	Creating Service-Centric SBVR-Based Business Model
	Related Work and Conclusion
	References

	A Scenario-Based Governance Method for Coordination of Service Life Cycles
	Introduction
	Scenarios for Comparison of Service Life Cycles
	Scenario-Based Governance Method for Life Cycle Coordination
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

