
Chapter 1
Inverse Problems in Statistics

Laurent Cavalier

Abstract There exist many fields where inverse problems appear. Some examples
are: astronomy (blurred images of the Hubble satellite), econometrics (instrumen-
tal variables), financial mathematics (model calibration of the volatility), medical
image processing (X-ray tomography), and quantum physics (quantum homodyne
tomography).

These are problems where we have indirect observations of an object (a function)
that we want to reconstruct, through a linear operator A. Due to its indirect nature,
solving an inverse problem is usually rather difficult.

For this reason, one needs regularization methods in order to get a stable and
accurate reconstruction.

We present the framework of statistical inverse problems where the data are cor-
rupted by some stochastic error. This white noise model may be discretized in the
spectral domain using Singular Value Decomposition (SVD), when the operator A
is compact. Several examples of inverse problems where the SVD is known are
presented (circular deconvolution, heat equation, tomography).

We explain some basic issues regarding nonparametric statistics applied to in-
verse problems. Standard regularization methods and their counterpart as estima-
tion procedures by use of SVD are discussed (projection, Landweber, Tikhonov,
. . . ). Several classical statistical approaches like minimax risk and optimal rates of
convergence, are presented. This notion of optimality leads to some optimal choice
of the tuning parameter.

However these optimal parameters are unachievable since they depend on the
unknown smoothness of the function. This leads to more recent concepts like adap-
tive estimation and oracle inequalities. Several data-driven selection procedures of
the regularization parameter are discussed in details, among these: model selection
methods, Stein’s unbiased risk estimation and the recent risk hull method.
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1.1 Inverse Problems

1.1.1 Introduction

There exist many fields of sciences where inverse problems appear. Some examples
are: astronomy (blurred images of the Hubble satellite), econometrics (instrumen-
tal variables), financial mathematics (model calibration of the volatility), medical
image processing (X-ray tomography), and quantum physics (quantum homodyne
tomography)

These are problems where we have indirect observations of an object (a function)
that we want to reconstruct. The common structure of all these problems, coming
from very different fields, is that we only have access to indirect observations. Due
to its indirect nature, solving an inverse problem is usually rather difficult. In fact,
there is a need for accurate methods, called regularization methods, in order to solve
such an inverse problem.

One example is the problem of X-ray tomography (see Section 1.1.6.5). In this
framework, the goal is to reconstruct the internal structure of a human body, by use
of external observations. Thus, the internal image cannot be observed directly, but
only indirectly.
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This notion of indirect observations of some function is usually modeled by use
of an operator A. From a mathematical point of view, inverse problems usually cor-
respond to the inversion of this operator.

Let A be a bounded operator from H into G, where H and G are two separable
Hilbert spaces. The classical problem is the following.

Given g ∈ G, find f ∈H such that A f = g. (1.1)

The terminology of inverse problem comes from the fact that one has to invert the
operator A. A case of major interest is the case of ill-posed problems where the
operator is not invertible. The issue is then to handle this inversion in order to obtain
a precise reconstruction.

A classical definition is the following (see [65]).

Definition 1.1. A problem is called well-posed if

1. there exists a solution to the problem (existence);
2. there is at most one solution to the problem (uniqueness);
3. the solution depends continuously on the data (stability);

A problem which is not well-posed is called ill-posed.

One is usually not too much concerned with the existence. If the data space is de-
fined as the set of solutions, existence is clear. Otherwise, the concept of solution
may be slightly changed.

If uniqueness is not verified, this is more serious. If there exist several solutions
then one has to decide which one is of interest or give additional information. How-
ever, the problem of uniqueness is usually relevant in inverse problems.

A standard way of solving the existence and uniqueness problems is by resorting
to generalized inverses (see Section 1.1.4).

These two problems (existence and uniqueness) are similar to the standard prob-
lem of identifiability in statistics.

Nevertheless, the main issue is usually stability. Indeed, suppose A−1 exists but
is not bounded. Given a noisy version of g called g ε , the reconstruction fε = A−1gε
may be far from the true f . Thus, one needs to invert the operator A in a more
stable way. Therefore, one has to develop regularization methods, in order to get
fine reconstructions even in ill-posed problems.

A century ago it was generally believed that for natural problems the solution
would always depend continuously on the data. Otherwise the mathematical model
was believed to be inadequate. These problems therefore were called ill-posed. The
idea was that the problem was genuiely not well-posed and that there was no chance
to solve such a problem. Ill-posed problems were usually considered, more or less,
as unsolvable problems.

Only sixty years ago, scientists realized that a large number of problems which
appeared in sciences were ill-posed in any reasonable framework. The idea was
developed that there was natural ill-posed problems, in the sense that these were
ill-posed in any setting, but they could be however solved by use of regularization
methods.
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This initiated a lot of research in order to get accurate regularization methods,
see for example [127, 123, 128, 108, 10, 49, 110, 117, 116, 126, 51, 72, 112].

1.1.2 Statistical Inverse Problems

Loosely speaking solving an inverse problem means recovering an object f from
indirect noisy observations Y . The object f is usually modeled as a function (or a
vector) that has been modified by an operator A; thus one observes a noisy version
of A f . From a mathematical point of view, solving the inverse problem boils down
to inverting the operator A. The problem is that A may not be invertible or nearly so.
This is the case of ill-posed problems and it is of great practical interest as it arises
naturally in many fields such as geophysics, finance, astronomy, biology, . . .

Ill-posed problems are further compounded by the presence of errors (noise) in
the data. Statistics enters inverse problems when at least one of the components of
the inverse problem (usually the noise) is modeled as stochastic. The question is then
to study statistical regularization methods that lead to a meaningful reconstruction
despite the noise and ill-posedness.

In Section 1.1 we will present the standard framework of inverse problems fo-
cusing on linear operator and stochastic noise. Basic notions on operator theory will
be recalled, especially the case of compact operators and singular value decompo-
sition. However, the spectral theory and functional calculus will be defined even
for non-compact operators. Several examples of standard inverse problems will be
given.

In our opinion the inverse problem framework is better known among statisti-
cians than its statistical approach is among the inverse problem community. For
instance, the latter is well acquainted with the concepts of mean, variance and bias
but is less familiar with classical concepts such as white noise model, risk estima-
tion, minimax risk, model selection and optimal rates of convergence, which we
will discuss in Section 1.2. In addition to these classical notions we will present in
Section 1.3 some more recent concepts that have been developed since the 90s like
adaptive estimation, oracle inequalities, model selection methods, Stein’s unbiased
risk estimation and the recent risk hull method. Section 1.4 is a conclusion. We will
discuss on the topics which we think are important in the statistical study of inverse
problems. Moreover, several open problems will be presented in order to go beyond
the framework of these lectures.

All the statistical concepts will be defined and discussed in the framework of
inverse problems. Although some of the techniques are specific to this field, some
may also be used in more general situations. Other statistical methods not discussed
in these notes may also have applications to inverse problems but one should be
careful with their application given the intrinsic difficulty and instability of ill-posed
problems.

In our mind this is one of the most appealing points of statistical inverse prob-
lems. Indeed, most of the standard problems in nonparametric statistics are present
in this framework. One may study estimation methods, minimax estimation, rates
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of convergence for different functional classes (Besov balls, Hölder balls, Sobolev
balls), various risk assessments (L2, Lp, pointwise risk). One may also study more
recent notions like adaptive estimation, model selection, data-driven selection meth-
ods, oracle inequalities, and so on.

On the other hand, there exist also many problems which are specific to the
framework of inverse problems. One can consider, noise in the operator, or the
problem of choosing the best basis for a given operator. Moreover, due to the ill-
posedness and the difficulty of inverse problems, building accurate estimators is
usually much more involved here than in the direct problem.

The aim of these notes is to explain some standard theoretical issues regarding
the statistical framework of inverse problems. These lectures provide a glimpse of
modern nonparametric statistics in the context of inverse problems. Other topics and
reviews may be found in [108, 110, 116, 126, 51, 81, 23].

1.1.3 Linear Inverse Problems with Random Noise

The classical framework for inverse problem is given by linear inverse problems
between two Hilbert spaces.

Let H and G two separable Hilbert spaces. Let A be a known linear bounded
operator from the space H to G.

Suppose that we have the following observation model

Y = A f + εξ , (1.2)

where Y is the observation, f is an unknown element in H, ξ is an error, ε corre-
sponds to the noise level. Our aim here is to estimate (or reconstruct) the unknown
f by use of the observation Y . The idea is that, at least when ε is small, rather sharp
reconstruction should be obtained.

The standard framework first considered by [127] and further studied by [128]
corresponds to the case of inverse problems with deterministic noise. In this case,
the noise ξ is considered as some element in G, with ‖ξ‖ � 1. Since the noise
is some unknown element of a ball in G, the results have to be obtained for any
possible noise, i.e. for the worst noise. The study of deterministic noise is not the
aim of these notes and may be found in Section 1.2.5.

Our framework is a statistical inverse problem, which was considered in [123].
Indeed we observe a noisy version (with random error) of A f and we want to recon-
struct f . Thus, three main difficulties appear:

• dealing with the noise in the observation (statistics);
• inverting the operator A (inverse problems theory);
• deriving numerical implementations (computational mathematics);

Our aim is now to propose reasonable assumptions on the stochastic noise. The
stochastic error is a Hilbert-space process, i.e. a bounded linear operator ξ : G →
L2(Ω ,A ,P) where (Ω ,A ,P) is the underlying probability space and L 2(·) is the
space of all square integrable measurable functions.
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Thus, for all functions g1,g2 ∈ G, the random variables 〈ξ ,g j〉 j = 1,2 are de-
fined, by definition E〈ξ ,g j〉 = 0 and define its covariance Covξ as the bounded
linear operator (‖Covξ‖ � 1) from G in G such that 〈Covξg1,g2〉 = Cov(〈ξ ,g1〉,
〈ξ ,g2〉).

A Hilbert-space random variable κ is a measurable function: Ω → G. Any
Hilbert-space random variable with a finite second moment may be identified with
an Hilbert-space process by defining ϕ → 〈κ,ϕ〉. However, not all Hilbert-space
processes are Hilbert-space random variables.

The action of an operator A ∈ L(G,H) on some Hilbert-space process ξ is given
in Definition 1.3.

The standard hypothesis, which will be mainly considered in these notes, corre-
sponds to the following assumption.

Definition 1.2. We say that ξ is a white noise process in G, if Covξ = I and the
induced random variables are Gaussian:

for all functions g1,g2 ∈ G, the random variables 〈ξ ,g j〉 have distributions
N (0,‖g j‖2) and Cov(〈ξ ,g1〉,〈ξ ,g2〉) = 〈g1,g2〉.
See for example [69].

The white noise is one of the more standard stochastic noise considered in statis-
tics, see for example the Gaussian white noise model in Section 1.1.6.1.

One of the main property of a white noise process is the following.

Lemma 1.1. Let ξ be a white noise in G and {ψk} be an orthonormal basis in G.
Define ξk by ξk = 〈ξ ,ψk〉. Then {ξk} are i.i.d. standard Gaussian random variables.

Proof. By definition ξk ∼N (0,‖ψk‖2) = N (0,1). Moreover, we have
E(〈ξ ,ψk〉,〈ξ ,ψ�〉) = 〈ψk,ψ�〉= δk�. Note also that {ξk} is Gaussian.

Remark 1.1. This lemma is very important and almost characterizes a white noise.
Indeed, by projection on some orthonormal basis {ψ k}, one obtains a sequence of
i.i.d. standard Gaussian random variables {ξk}. This is a way to understand the
notion of white noise in applications. In a model with white noise, one obtains a
standard Gaussian i.i.d. noise in each observed coefficient (see Section 1.1.5).

Remark 1.2. Another remark is that a white noise, as a Hilbert-space process, is not
in general a Hilbert-space random variable; note also that ‖ξ‖G = ∞, thus ξ is not
an element of G. One main difference between the deterministic and the stochastic
approaches of inverse problems is that the random noise is large compared to the
deterministic one. This discussion is postponed to Section 1.2.5.

Note that when ξ is a white noise, Y does not belong to G, but acts on G, with the
following definition, which follows from (1.2),

∀ψ ∈ G, 〈Y,ψ〉= 〈A f ,ψ〉+ ε〈ξ ,ψ〉,

where 〈ξ ,ψ〉 ∼N (0,‖ψ‖2).
Remark 1.3. White noise may also be identified with a generalized random variable.
Indeed, it does not take its values in G but acts on G, see [69].
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1.1.4 Basic Notions on Operator Theory

Operator theory contains the basic mathematical tools that are needed in inverse
problems. In this section we recall rather quickly some standard notions on operator
theory which will be used through these lectures. We concentrate on linear bounded
operators between Hilbert spaces.

Let H and G be two separable Hilbert spaces.

Definition 1.3. 1. A is a bounded (or continuous) linear operator from H to G if
it is a linear application from D(A) = H to G which is continuous on H.

2. Denote by D(A) the definition domain of A, by R(A) = A(H) its range, by N(A) =
{ϕ ∈ H : Aϕ = 0} its null-space, by L(H,G) the space of linear bounded opera-
tors from H to G and by ‖A‖ the operator norm ‖A‖= sup{‖Aϕ‖ : ‖ϕ‖= 1}.

3. The operator A ∈ L(H,G) is said to be invertible if there exists A−1 in L(G,H)
such that AA−1 = IG and A−1A = IH .

4. There exists A∗ such that

〈Aϕ ,ψ〉= 〈ϕ ,A∗ψ〉, ∀ϕ ∈ H,ψ ∈ G.

The operator A∗ is called the adjoint of A ∈ L(H,G).
5. An operator A ∈ L(H,H) = L(H) is said to be self-adjoint if A∗ = A. It is called

(strictly) positive if
〈Aϕ ,ϕ〉� (>)0, ∀ϕ ∈ H.

6. An operator U ∈ L(H,G) is said unitary if U ∗U = UU∗ = I.
7. One call eigenvalues λ ∈ C and eigenfunctions ϕ ∈ H,ϕ 	= 0, elements such

that Aϕ = λϕ .
8. Define Aξ , the action of any operator A∈ L(G,H) on some Hilbert-space process
ξ : G → L2(Ω ,A ,P) by

〈Aξ ,ϕ〉= 〈ξ ,A∗ϕ〉, ∀ϕ ∈H.

Here are some standard results.

Lemma 1.2. 1. If A ∈ L(H,G) and is bijective then A is invertible (i.e. A−1 is a
linear bounded operator, A−1 ∈ L(G,H)).

2. If A ∈ L(H,G) then N(A) = R(A∗)⊥ and R(A) = N(A∗)⊥, where (·) and (·)⊥
denote the closure and the orthogonal subspaces.

3. If A ∈ L(H,G) then A∗ ∈ L(G,H).
4. If A is injective so is A∗A.
5. If A ∈ L(H,G) then A∗A ∈ L(H) is self-adjoint and positive.
6. A self-adjoint operator is injective if and only if its range is dense in H.
7. A self-adjoint operator is invertible if and only if R(A) = H.
8. A self-adjoint operator then

‖A‖= sup
‖ϕ‖=1

|〈Aϕ ,ϕ〉|.
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9. If U ∈ L(H,G) is unitary, then

〈Uϕ ,Uψ〉= 〈ϕ ,ψ〉, ∀ϕ ,ψ ∈ H.

Proof. (1) A proof may be found in [73].

(2) We have 〈ϕ ,A∗ψ〉 = 〈Aϕ ,ψ〉 = 0 for all ϕ ∈ N(A),ψ ∈ G. Hence, N(A) =
R(A∗)⊥. Interchanging the roles of A and A∗ gives N(A∗) = R(A)⊥. Thus, N(A∗)⊥ =
(R(A)⊥)⊥ = R(A).
(3) Straightforward.

(4) We have 〈A∗Aϕ ,ϕ〉= 〈Aϕ ,Aϕ〉= ‖Aϕ‖2. If ϕ0 ∈ N(A∗A) then ϕ0 ∈ N(A).
(5) We have 〈A∗Aϕ ,ψ〉 = 〈Aϕ ,Aψ〉 = 〈ϕ ,A∗Aψ〉. Note also that 〈A∗Aϕ ,ϕ〉 =
‖Aϕ‖2 � 0.

(6) A injective if and only if N(A) = {0} if and only if N(A)⊥ = H. We then use that
R(A) = N(A∗)⊥ = N(A)⊥ by (2) and the fact that A is self-adjoint.

(7) By (6), A invertible is thus equivalent to R(A) = H.

(8) A proof may be found in [73].

(9) We have, since U is unitary,

〈Uϕ ,Uψ〉= 〈U∗Uϕ ,ψ〉= 〈ϕ ,ψ〉, ∀ϕ ,ψ ∈ H.

Some new definitions and properties concerning mostly compact operators are pre-
sented here. Compact operators are very important in inverse problems for several
reasons.

First, a compact operator is not invertible, i.e. has no bounded inverse (see
Lemma 1.3). Thus if A is a compact operator the problem is naturally ill-posed in
the sense of Definition 1.1. From a mathematical point of view, ill-posed problems
are the more challenging.

Compact operators have simple spectra only composed of eigenvalues, see The-
orem 1.1. This is a nice property of compact operators which gives rise to natural
basis of functions to use, the singular value decomposition. By projection on this
natural basis, we will obtain a sequence space model in Section 1.1.5. This model
in the space of coefficients, is usually more easy to deal with from a statistical point
of view.

Definition 1.4. 1. An operator A from H to G is called compact if each bounded
set in H has an image by A which is relatively compact in G, i.e. with a compact
closure.

2. Denote by K(H,G) the space of compact linear bounded operator.
3. The strong convergence, denoted →s, is the convergence with respect to the

norm in H or G.
4. The weak convergence, denoted →w, is the convergence with respect to 〈ϕ , ·〉

for all ϕ ∈ H or G.
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Lemma 1.3. 1. Let A ∈ K(H,G), then there exist An ∈ K(H,G), such that dim
R(An) < ∞ and ‖An−A‖→ 0, as n→ ∞.

2. A ∈ K(H,G) is equivalent to A∗ ∈ K(G,H)
3. A ∈ K(H,G) is equivalent to ∀ϕk ∈ H : ϕk →w ϕ implies Aϕk →s Aϕ .
4. If A ∈ K(H,G) and dim(H) =∞ then A−1 is not bounded.
5. A ∈ K(H) is equivalent to the fact that for any orthonormal sequence {ϕk}, one

has limk→∞〈Aϕk,ϕk〉= 0.

Proof. A proof may be found in [73].

Theorem 1.1. Let A ∈ K(H) be self-adjoint. Then there exists a complete orthonor-
mal system E = {ϕ j : j ∈ I} of H consisting of eigenfunctions of A. Here I is some
index set and Aϕ j = λ jϕ j , for j ∈ I. The set J = { j ∈ I : λ j 	= 0} is countable and

Aϕ =∑
j∈I

λ j〈ϕ ,ϕ j〉ϕ j, (1.3)

for all ϕ ∈H. Moreover, for any δ > 0 the set Jδ = { j ∈ I : |λ j|� δ} is finite.

Proof. This proof may be found in [72]. First, we prove the existence of an eigen-
value for a self-adjoint compact operator (if H 	= {0}). Due to Lemma 1.2, there
exists a sequence {ϕk} with ‖ϕk‖ = 1 such that, for λ = ±‖A‖, 〈Aϕk,ϕk〉 → λ as
k → ∞. Remark that

0 � ‖Aϕk−λϕk‖2 = ‖Aϕk‖2−2λ 〈Aϕk,ϕk〉+λ 2‖ϕk‖2

� ‖A‖2−2λ 〈Aϕk,ϕk〉+λ 2 → 0, as k → ∞.

Thus, Aϕk → λϕk as k → ∞. Since A is compact, there exists a subsequence such
that Aϕk(n) → ψ as n→ ∞. It follows that λϕk(n) → ψ as n→ ∞. Denote ϕ = ψ/λ ,
therefore ϕk(n) → ψ as n→ ∞ and Aϕ = λϕ , since A is bounded.

We then prove that the system is orthogonal. Suppose λ j 	= λk. We have

〈Aϕ j,ϕk〉= λ j〈ϕ j,ϕk〉.

Moreover, since A is self-adjoint, we have

〈Aϕ j,ϕk〉= 〈ϕ j,Aϕk〉= λk〈ϕ j,ϕk〉.

Thus ϕ j and ϕk are orthogonal.
We now study the case where ϕ j and ϕk are eigenfunctions with the same eigen-

value λ , suppose 〈ϕ j,ϕk〉= c 	= 0. Thus, ϕ j −ϕk/c is still an eigenfunction related
to λ and orthogonal to ϕ j. One may easily orthonormalize the system.

The last part consists in proving the completness. By Zorn’s Lemma, choose
E the maximal set of eigenfunctions of A. Let S be the closed linear span of E .
Obviously, A(S) ⊂ S. Moreover, A(S⊥) ⊂ S⊥, since 〈As,ϕ〉 = 〈s,Aϕ〉 = 0 for all
s ∈ S⊥ and all ϕ ∈ S. Remark that A|S⊥ is compact and self-adjoint. Hence, if S⊥ 	=
{0} there exists an eigenfunction ψ ∈ S⊥ (by the first part of this proof). Since
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this contradicts the maximality of E , we conclude that S⊥ = {0}. Therefore the
orthonormal system is complete. To show (1.3) we apply A to the representation

ϕ =∑
j∈I
〈ϕ ,ϕ j〉ϕ j. (1.4)

Remark that only countable number of terms in (1.4) can be non-zero. Indeed, by
Bessel’s inequality we have

∑
ϕ j∈E

|〈ϕ ,ϕ j〉|2 = sup

{
∑
ϕ j∈F

|〈ϕ ,ϕ j〉|2 : F ⊂ E,card(F) < ∞

}
� ‖ϕ‖2 < ∞.

Therefore, for any k ∈ N, the set Sk = {ϕ j ∈ E : |〈ϕ ,ϕ j〉| ∈ [‖ϕ‖/(k + 1),‖ϕ‖/k]}
is finite, and the union for all k ∈ N is then countable.

Assume that Jδ is infinite for some δ > 0. Since A is compact, there exists a sub-
sequence {ϕk(n)} of {ϕk} such that {Aϕk(n)} = {λk(n)ϕk(n)} is a Cauchy sequence.
This is in contradiction since ‖λkϕk−λ jϕ j‖2 = λ 2

k +λ 2
j � 2δ 2 for j 	= k due to the

orthonormality of {ϕk}.

Remark 1.4. A linear bounded self-adjoint compact operator between two Hilbert
spaces may thus be seen as an infinite matrix. In applications, a large matrix could
be modelized by a compact operator. However, due to Theorem 1.1, the eigenvalues
λ j are going to 0. This is fundamental and characterizes the notion of ill-posed
problems (see Definition 1.7). One observes a function through an operator A which,
in some sense, concentrates to 0. Thus, the inversion of such an operator has to be
made carefully, otherwise, the reconstruction will explose.

In general inverse problems, we neither assume that A is injective nor that g∈ R(A).
Thus, we usually need some standard definitions of a generalized notion of inverse
for the equation A f = g (see [64]).

Definition 1.5. Let A ∈ L(H,G).

1. We call f a least-squares solution of the problem (1.1) if

‖A f −g‖= inf{‖Aϕ−g‖ : ϕ ∈ H}.

2. We call f a best approximate solution of the problem (1.1) if it is a least-squares
solution and if

‖ f‖= inf{‖ϕ‖ : ϕ is a least-squares solution}.

3. The Moore-Penrose (generalized) inverse A† : D(A†) → H of A defined on
D(A†) = R(A)

⊕
R(A)⊥ maps g ∈ D(A†) to the best approximate solution of

(1.1). The existence of a best approximate solution is guaranted by
g ∈ R(A)

⊕
R(A)⊥.

We have
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Lemma 1.4. Let Q : G → R(A) be the orthogonal projection onto R(A). Then the
three statements are equivalent:

1. f ∈ H is a least-squares solution of (1.1).
2. A f = Qg.
3. The normal equation A∗A f = A∗g holds.

We have in addition the following properties for g ∈ R(A)
⊕

R(A)⊥.
4. Any least-squares solution belongs to A†g + N(A).
5. We also have that a best approximate solution exists, is unique and equals to A†g.

Proof. Since Q is an orthogonal projection on R(A), remark that 〈A f −Qg,(I −
Q)g〉= 0. We then have

‖A f −g‖2 = ‖A f −Qg‖2 +‖(I−Q)g‖2.

This shows that (2) implies (1). Vice versa, if f is a least-squares solution the last
equation shows that f is a minimum of ‖A f −Qg‖. Again by property of the pro-
jection we obtain (2).

Moreover, f is a least-squares solution if and only if A f is the closest element in
R(A) to g, which is equivalent to A f −g ∈ R(A)⊥ = N(A∗), i.e. A∗(A f −g) = 0.

(4) Suppose that g∈ R(A)
⊕

R(A)⊥. Then Qg∈ R(A) and (2) is true and there exists
at least one least-squares solution f0. Moreover, due to (2), any element of f 0 +N(A)
is also a least-squares solution.

(5) Remark that for any u ∈ N(A):

‖ f0 + u‖2 = ‖(I−P)( f0 + u)‖2 +‖P( f0 + u)‖2 = ‖(I−P) f0‖2 +‖P f0 + u‖2,

where f0 is a least-squares solution, P is the orthogonal projection on N(A). This
yields the uniqueness of the best approximate solution, which is equal to (I−P) f 0.

Obviously, if A−1 ∈ L(G,H) exists then A−1 = A†.
Under assumptions of Lemma 1.4, the best approximate solution is in fact the

least-squares solution with a null term in the null-space of A. Indeed, any f ∈N(A) is
such that A f = 0, and cannot be observed through A. Thus, there is no real meaning
in trying to reconstruct it.

The normal equation is a different way to express an inverse problem. Indeed one
may multiply the first problem by A∗ and then get the equivalent normal equation.

Remark 1.5. In a statistical inverse problem, we observe a (random) noisy version
of A f . Thus, if A is injective then the unique best approximate solution is f (by
Lemma 1.4).

1.1.5 Singular Value Decomposition and Sequence Space Model

Let A ∈ L(H,G) be an injective and compact operator. We have, by applying Theo-
rem 1.1 to A∗A, which is self-adjoint and strictly positive,



14 Laurent Cavalier

A∗A f =
∞

∑
k=1

ρk〈 f ,ϕk〉ϕk,

where ρk > 0. Define the normalized image {ψk} ∈ G of {ϕk} ∈H by

ψk = b−1
k Aϕk,

where bk =
√ρk > 0. Remark that {ψk} are orthogonal,

〈ψk,ψ�〉= b−1
k b−1

� 〈Aϕk,Aϕ�〉= b−1
k b−1

� 〈A∗Aϕk,ϕ�〉= bkb−1
� 〈ϕk,ϕ�〉= δk�,

where δk� denotes the Kronecker symbol (0 if k 	= �, 1 if k = �). Note that this implies
‖ψk‖2 = 1. Thus, {ψk} is an orthonormal system. Moreover

A∗ψk = b−1
k A∗Aϕk = b−1

k b2
kϕk = bkϕk.

Thus, we have
Aϕk = bkψk, A∗ψk = bkϕk.

The bk > 0 are called singular values of the operator A. Note also that, since A∗A
is compact and self-adjoint then bk → 0 as k → ∞ by Theorem 1.1.

Definition 1.6. We say that A admits a singular value decomposition (SVD) if,
∀ f ∈ H,

A∗A f =
∞

∑
k=1

b2
kθk ϕk,

where θk are the coefficients of f in the orthonormal basis {ϕk} ∈ H, {bk} are the
singular values.

The SVD is the natural basis for A since it diagonalizes A∗A.
Now consider the projection of Y on {ψk}

〈Y,ψk〉= 〈A f ,ψk〉+ ε〈ξ ,ψk〉= 〈A f ,b−1
k Aϕk〉+ εξk

= b−1
k 〈A∗A f ,ϕk〉+ εξk = bkθk + ξk,

where ξk = 〈ξ ,ψk〉.
Since ξ is a white noise {ξk} is a sequence of i.i.d. standard Gaussian random

variables N (0,1) by Lemma 1.1.
Thus, under these assumptions, one has the equivalent discrete sequence obser-

vation model derived from (1.2):

yk = bkθk + εξk, k = 1,2, . . . , (1.5)

where yk stands for 〈Y,ψk〉. This model is called the sequence space model. The
aim here is to estimate the sequence θ = {θk} from the observations y = {yk}.

One can see the influence of the ill-posedness of the inverse problem when A is
compact. Indeed, since bk are the singular values of a compact operator, then b k → 0
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as k → ∞. Thus, when k increases the ’signal’ bkθk is weaker and it is clearly more
difficult to estimate θk.

Another comment concerns the fact that the aim is to estimate {θ k} and not
{bkθk}. Thus, one really has to consider the inverses of the b k, i.e., to invert the
operator A.

For this reason, the following equivalent model to (1.5) is more natural

Xk = θk + εσkξk, k = 1,2, . . . , (1.6)

where Xk = yk/bk, and σk = b−1
k > 0. Note that σk → ∞. In this model the aim is to

estimate {θk} from {Xk}. When k is large the noise in Xk may then be very large,
making the estimation difficult.

The sequence space model (1.5) or (1.6) for statistical inverse problems was stud-
ied in many papers, see [39, 95, 78, 32], among others.

Remark 1.6. For ill-posed inverse problems we have bk → 0 and σk → ∞, as k →
∞. We can see that ill-posed problems are more difficult than the direct problem.
Indeed, when k is large, the noise εσkξk will dominate. Thus, the estimation of {θk}
from {Xk} is more involved.

One can characterize linear inverse problems by the difficulty of the operator, i.e.
with our notations, by the behaviour of the σ k. If σk → ∞, as k → ∞, the problem is
ill-posed.

Definition 1.7. An inverse problem is called mildly ill-posed if the sequence σk has
a polynomial behaviour when k is large

σk  kβ , k → ∞,

and severely ill-posed if σk tends to infinity at an exponential rate

σk  exp(βk), k → ∞,

where β > 0 is called the degree of ill-posedness of the inverse problem.
A special case of inverse problems is the direct problem where

σk  1, k → ∞,

which corresponds to β = 0.

Here and later, an  bn means that there exist 0 < c1 � c2 < ∞ such that, c1 �
an/bn � c2, as n→ ∞.

Remark 1.7. One may also consider inverse problems which are more difficult than
severely ill-posed, in the case where σk  exp(βkr), where β > 0 and r � 1.

Remark 1.8. There exist more general definitions of the degree of ill-posedness re-
lated to the noise structure, smoothness assumptions on f , smoothing properties of
A (see [131, 103]). However, for the sake of simplicity, we prefer to deal with the
simple notion defined above.
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Remark 1.9. An important special case is the case where A = I. This corresponds
to the direct problem where f is directly observed (with noise) with no inverse
problem, i.e. without the need of inverting some operator A. In this case σ k ≡ 1 and
the model in (1.6) corresponds to the classical sequence space model in statistics.
The model is then related to the Gaussian white noise model and is very close to
nonparametric regression with ε = n−1/2 (see Section 1.1.6.1).

1.1.6 Examples

Here are some examples of ill-posed problems where the SVD may be applied. In
each case, the SVD can be explicitly computed.

Moreover, from a practical point of view, methods based on SVD are usually
rather expensive in term of computations. For these reasons, many populars methods
nowadays do not use explicitely the SVD.

On the other hand, even for these methods, the spectral domain is often used in
order to deal with the theoretical accuracy of the methods.

1.1.6.1 Standard Gaussian White Noise

One of most classical model in nonparametric statistics is the Gaussian white noise

dY (t) = f (t)dt + εdW(t), t ∈ [0,1], (1.7)

where one observes {Y (t),t ∈ [0,1]}, f is an unknown function in L 2[0,1], W is a
Wiener process, ε > 0 is the noise level. One may check easily that dW corresponds
to a white noise. Indeed, we obtain directly from the definition of integral against a
Wiener process that for all ϕ ∈ L2[0,1],

∫ 1

0
ϕ(t)dW (t)∼N

(
0,

∫ 1

0
|ϕ(t)|2dt

)
.

We also obtain the property for the scalar product by the definition of the Wiener
process

Cov

(∫ 1

0
ϕ1(t)dW (t),

∫ 1

0
ϕ2(t)dW (t)

)
=

∫ 1

0
ϕ1(t)ϕ2(t)dt = 〈ϕ1,ϕ2〉,

for all ϕ1,ϕ2 ∈ L2[0,1].
This model is a very specific inverse problem since, in this case, the operator is

A = I and H = G = L2[0,1]. However, most of the results on inverse problems will
apply in this framework. This model is often called a direct problem, since from
our definition we have at our disposal direct observations and not indirect ones.
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In this case, the sequence space model may be obtained by projecting on any
orthonormal basis {ψk} ∈ L2[0,1]. Doing so, one obtains

∫ 1

0
ψk(t)dY (t) =

∫ 1

0
ψk(t) f (t)dt + ε

∫ 1

0
ψk(t)dW (t),

which is equivalent to
yk = θk + εξk, k = 1, . . . ,

where the θk are the coefficients of f in {ψk} and

ξk =
∫ 1

0
ψk(t)dW (t)∼N (0,1)

with {ξk} i.i.d. We then obtain a sequence space model where b k ≡ 1.
It is well-known that the Gaussian white noise model defined in (1.7) is an ideal-

ized version of the more standard nonparametric regression

Yi = f (Xi)+ ξi, i = 1, . . . ,n, (1.8)

where (X1,Y1), ..,(Xn,Yn) are observed (we may assume Xi ∈ [0,1]), f is an unknown
function in L2[0,1], and {ξi} are i.i.d. zero-mean Gaussian random variables with
variance σ 2.

The Gaussian white noise model may be understood as a large sample limit of
nonparametric regression in (1.8). Indeed, by projecting (1.7) on the intervals I i =
[(i−1)/n, i/n], i = 1, . . . ,n, one obtains

n
∫

Ii
dY (t) = n

∫ i/n

(i−1)/n
f (t)dt + nε

∫ i/n

(i−1)/n
dW (t).

Thus, if f is smooth enough, and ε 2 = σ2/n, one has an informal writting

Yi  f (i/n)+ ξi, i = 1, . . . ,n,

where {ξi} are i.i.d. zero-mean Gaussian random variables with variance σ 2.
This equivalence is proved in different frameworks and models (nonparametric

regression, density, non-Gaussian noise . . . ) in [13, 107, 63, 113, 129].
Thus, under proper calibration, i.e. ε 2  σ2/n, the asymptotics of model (1.8)

as n→ ∞ and (1.7) as ε → 0 are equivalent with the asymptotics of the latter being
easier to derive.

In the inverse problem context, model (1.2) may be seen as an idealized version
of the discrete sample model

Yi = A f (Xi)+ ξi, i = 1, . . . ,n, (1.9)

where (X1,Y1), ..,(Xn,Yn) are observed (we may assume Xi ∈ [0,1]), f is an unknown
function in L2[0,1], A is an operator from L2[0,1] into L2[0,1], and ξi are i.i.d. zero-
mean Gaussian random variables with variance σ 2.
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1.1.6.2 Derivation

Another related example, which does not exactly correspond to our framework, but
is very important, is the estimation of a derivative. Suppose that we observe

Y = f + εξ , (1.10)

where H = L2[0,1], f is a 1−periodic Cβ function in L2[0,1], i.e. β continuously
differentiable, β ∈ N and ξ is a white noise. A standard problem in statistics is the
estimation of the derivative Dβ f = f (β ) of f , or the function f itself when β = 0
(which corresponds to the previous section). This problem is studied for example
in [47].

One may use here the Fourier basis ϕk(x) = e2πikx, k ∈ Z. Denote by θk the
Fourier coefficients of f ,

θk =
∫ 1

0
f (x)e2πikxdx

and note that
Dβ (e2πik·)(x) = (2π ik)β e2πikx.

It is well-known that we then have

f (β ) =
∞

∑
k=−∞

(2π ik)βθkϕk.

We have the following equivalent model in the Fourier domain

yk = θk + εξk, k ∈ Z\ {0},

and we want to estimate νk = θk(2π ik)β . This is equivalent to, observing

yk = (2π ik)−βνk + εξk, k ∈ Z\ {0},

and estimating θk.
Thus, derivation is a mildly ill-posed inverse problem of degree β .

1.1.6.3 Circular Deconvolution

The framework of (circular) deconvolution is perhaps one of the most well-known
inverse problem. It is used in many applications as econometrics, physics, astron-
omy, medical image processing. For example, it corresponds to the problem of a
blurred signal that one wants to recover from indirect data.

Example 1.1. One famous example of an inverse problem of deconvolution is the
blurred images of the Hubble space telescope. In the early 1990, the Hubble satel-
lite was launched into low-earth orbit outside of the disturbing atmosphere in order
to provide images with a spatial resolution never achieved before. Unfortunately,
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quickly after launch, a manufacturing error in the main mirror was detected, caus-
ing severe spherical aberrations in the images. Therefore, before the space shuttle
Endeavour visited the telescope in 1993 to fix the error, astronomers employed in-
verse problem techniques to improve the blurred images (see [1]).

Consider the following convolution operator:

A f (t) = r ∗ f (t) =
∫ 1

0
r(t− x) f (x)dx, t ∈ [0,1],

where r is a known 1-periodic symmetric around 0 real-valued convolution kernel
in L2[0,1]. In this model, A is a linear bounded operator from L 2[0,1] to L2[0,1].

This operator is a Hilbert-Schmidt integral operator and it is an Hilbert-Schmidt
operator, i.e., it is such that for some (and then any) orthonormal basis {e k}we have
∑‖Aek‖2 < ∞. It is then a compact operator.

Remark that, if {ϕk} and {ψk} are the SVD bases defined in Section 1.1.5 then

∑‖Aϕk‖2 =∑〈A∗Aϕk,ϕk〉=∑b2
k < ∞.

This shows that the singular values are decreasing rather fastly in this situation.
By simple computations one may see that the adjoint A∗ is also a Hilbert-Schmidt

integral operator, with kernel r(x− t), where (·) denotes the complex conjugate.
Since r is real-valued and symmetric around 0, the operator A is also self-adjoint.

Define then the following model

Y (t) = r ∗ f (t)+ ε ξ (t), t ∈ [0,1], (1.11)

where Y is observed, f is an unknown periodic function in L 2[0,1] and ξ (t) is a
white noise.

This model is quite popular and has been studied in a large number of statistical
papers, see [50, 39, 45, 32, 29].

Define here {ϕk(t)} the real trigonometric basis on [0,1]:

ϕ1(t)≡ 1, ϕ2k(t) =
√

2cos(2πkt), ϕ2k+1(t) =
√

2sin(2πkt), k = 1,2, . . . .

A function in L2[0,1] may be decomposed on {ϕk(t)}.
Remark now that by a simple change of variables

∫ 1

0
r(t− x)e2πikxdx = e2πikt

∫ 1−t

−t
r(−y)e2πikydy = e2πikt

∫ 1

0
r(x)e2πikxdx,

by periodicity.
The SVD basis is then clearly here the Fourier basis, i.e. e2πik·.
We make the projection of (1.11) on {ϕk(t)}, in the Fourier domain, and obtain

yk = bkθk + εξk,
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where bk =
√

2
∫ 1

0 r(x)cos(2πkx)dx for even k, bk =
√

2
∫ 1

0 r(x)sin(2πkx)dx for odd
k, θk are the Fourier coefficients of f , and ξk are i.i.d. standard Gaussian random
variables.

1.1.6.4 Heat Equation

Consider the following heat equation which describes the heat at time t and position
x based on some initial conditions:

∂
∂ t

u(x,t) =
∂ 2

∂x2 u(x,t), u(x,0) = f (x), u(0,t) = u(1,t) = 0,

where u(x,t) is defined for x ∈ [0,1],t ∈ [0,T ], and the initial condition f is a
1-periodic function. The problem is the following: given the temperature g(x) =
u(x,T ) at time T find the initial temperature f ∈ L2[0,1] at time t = 0.

Due to the boundary conditions, one uses here the sine basis ({
√

2sin(kπ ·)}).
Let θk(t) =

√
2
∫ 1

0 sin(kπx) f (x)dx denote the Fourier coefficients of f with respect
to the complete orthonormal system {ϕk} of L2[0,1].

In this case, one obtains an ordinary differential equation in the Fourier domain,
which provides the following expression for u:

u(x,t) =
√

2
∞

∑
k=1

θke−π
2k2t sin(kπx).

The problem is then: given the final temperature u(x,T ) = A f (x) to find the initial
temperature f . Thus, we may write this problem as an inverse problem with the
operator

A f (x) =
∫ 1

0

∞

∑
k=1

e−π
2k2T 2sin(kπx)sin(kπy) f (y)dy.

Thus, A is a linear bounded injective compact operator, whose SVD is given by the
sine basis. The singular values bk are equal to e−π

2k2T/2 and the problem is therefore
severely ill-posed.

The model is then the following:

Y (x) = u(x,T )+ ε ξ (x), x ∈ [0,1],

where ξ is a white noise in L2[0,1]. We want here to recover f ∈ L2[0,1].
From a statistical point of view, the problem is the following: given a noisy ver-

sion of the final temperature (at time T ) find the unknown initial condition f (at
time 0).

This framework has been studied in [61] and [24].
By projection on the sine basis, one obtains the following sequence space model:

yk = bkθk + εξk,
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where bk = e−π
2k2T/2, θk are the Fourier (sine) coefficients of f , and ξk are i.i.d.

standard Gaussian random variables.
Remark that here the problem is very difficult. Indeed, it is even worse than

a severely ill-posed problem since the singular values are decreasing faster than
exponentially.

From a practical point of view, one can see that an error of order 10−8 in the fifth
Fourier coefficient of u(x,T ) may lead to an error of 1000C in the initial temperature
f (x) = u(x,0).

One has to be very careful when solving this kind of inverse problem.

1.1.6.5 Computerized Tomography

Computerized tomography is used in medical image processing and has been stud-
ied for a long time, see [104]. In medical X-ray tomography one tries to have an
image of the internal structure of an object. This image is characterized by a func-
tion f . However, there is no direct observations of f . Suppose that one observes the
attenuation of the X-rays. Denote by I0 and I1 the initial and final intensities, by x
the position on a given line L and by ∆ I(x) the attenuation for a small ∆x. One then
has

∆ I(x) =− f (x)I(x)∆x,

which corresponds from a mathematical point of view to

I′(x)
I(x)

=− f (x),

and then by integration

log(I1)− log(I0) = log

(
I1

I0

)
=−

∫
L

f (x)dx.

Thus observing I1/I0 is equivalent to the observation of exp(−
∫

L f (x)dx). By mea-
suring attenuation of X-rays, one observes cross section of the body.

From a mathematical point of view this problem corresponds to the reconstruc-
tion of an unknown function f in R

2 (or in general Rd) based on observations of its
Radon transform R f , i.e., of integrals over hyperplanes.

Let B = {x ∈ R : ‖x‖ � 1} be the unit ball in R
2. Consider the integrals of a

function f : B → R over all the lines that intersect B. We parametrize the lines by
the length u ∈ [0,1] of the perpendicular from the origin to the line and by the
orientation s ∈ [0,2π) of this perpendicular with respect to the x-axis.

Suppose that the function f belongs to L1(B)∩L2(B). Define the Radon trans-
form R f of the function f by

R f (u,s) =
π

2(1−u2)
1
2

∫ √1−u2

−
√

1−u2
f (ucoss− t sins,usin s+ t coss)dt, (1.12)
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where (u,s) ∈ S = {(u,s) : 0 � u � 1, 0 � s < 2π}. With this definition, the Radon
transform R f (u,s) is π times the average of f over the line segment (parametrized
by (u,s)) that intersects B. It is natural to consider R f as an element of L2(S,dµ)
where µ is the measure defined by dµ(u,s) = 2π−1(1−u2)

1
2 du ds. This measure µ

is here in order to renormalize over lines.
In this case, the Radon operator R is a linear, bounded and compact operator from

L2(B) into L2(S,dµ).
The SVD of the Radon transform was well-studied, e.g. by [37, 104]. To in-

troduce it, define the set of double indices L = {� = ( j,k) : j � 0,k � 0}. An
orthonormal complex-valued basis for L2(B) is given by

ϕ̃�(r,t) = π−
1
2 ( j + k + 1)

1
2 Z| j−k|

j+k (r)ei( j−k)t , � = ( j,k) ∈L , (r,t) ∈ B, (1.13)

where Zb
a denotes the Zernike polynomial of degree a and order b. The correspond-

ing orthonormal functions in L2(S,dµ) are

ψ̃�(u,s) = π−
1
2 Uj+k(u)ei( j−k)s, � = ( j,k) ∈L , (u,s) ∈ S, (1.14)

where Um(coss) = sin((m+1)s)/sin s are the Chebyshev polynomials of the second
kind. We have Rϕ̃� = b�ψ̃�, with the singular values

b� = π−1( j + k + 1)−
1
2 , � = ( j,k) ∈L . (1.15)

Since we work with real functions, we identify the complex bases (1.13) and (1.14)
with the equivalent real orthonormal bases {ϕ�}, {ψ�} in a standard way,

ϕ� =

⎧⎨
⎩
√

2 Re(ϕ̃�) if j > k,
ϕ̃� if j = k,√

2 Im(ϕ̃�) if j < k.
(1.16)

The problem of tomography in statistics is studied, for example, in [80, 83, 39, 21].
The model is the following

Y (u,s) = Rf (u,s)+ εξ (u,s), (u,s) ∈ S,

where ξ is a white noise in G = L2(S,dµ).
The SVD basis is known for the Radon transform. However, this basis is very

difficult to compute. By projection on {ψ�}, one obtains the equivalent sequence
space model,

y� = b�θ� + ε ξ�, � = ( j,k), j � 0, k � 0,

where θ� = 〈 f ,ϕ�〉, and ξ� are i.i.d. standard Gaussian random variables.

Remark 1.10. In tomography, the problem is mildly ill-posed, since the singular val-
ues have a polynomial behaviour. The exact degree of ill-posedness is a bit different,
since the problem is ill-posed, but is also a problem of estimation of a function in two
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dimensions, which is known to be more difficult. One often considers that β = 1/2,
due to (1.15).

There exist several models of tomography (X-rays tomography, positron emission
tomography, discrete tomography, tomography in quantum physics and so on). The
models each have their own specificities but are however all linked to the Radon
operator.

1.1.7 Spectral Theory

In this section, we generalize the statistical study of inverse problems to the case of
not only compact but also linear bounded operators. This extension is needed since
there exist a lot of natural inverse problems where the operator is not compact, see
for example the deconvolution on R in Section 1.1.7.2. In this situation, one needs
other tools than the SVD. Moreover, the spectral Theorem and functional calculus
may also be used in the case of compact operators.

1.1.7.1 The Spectral Theorem

The Halmos version of the spectral Theorem is convenient for the study of inverse
problems (see [68]).

Theorem 1.2. Let A ∈ L(H) be a self-adjoint operator defined on a separable
Hilbert space H. There exist a locally compact space S, a positive Borel measure Σ
on S, a unitary operator U : H → L2(Σ), and a continuous function ρ : S→ R such
that

A = U−1MρU, (1.17)

where Mρ is the multiplication operator Mρ : L2(Σ)→ L2(Σ) defined Mρϕ = ρ ·ϕ .

Proof. A proof may be found in [125].

Remark 1.11. This fundamental result means that any self-adjoint linear bounded
operator is similar to a multiplication in some L2-space.

Remark 1.12. In the special case where A is a compact operator, a well-known ver-
sion of the spectral theorem (see Theorem 1.1) states that A has a complete or-
thogonal system of eigenvectors {ϕk} with corresponding eigenvalues ρk. This is a
special case of (1.17) where S = N, Σ is the counting measure, L 2(Σ) = �2(N), and
ρ(k) = ρk.

Remark 1.13. If A is not self-adjoint then we use A∗A, where A∗ is the adjoint of A.

Using the spectral theorem one obtains the equivalent model to (1.2)

UY = U(A f + εξ ) = UA f + εUξ = UU−1MρU f + εUξ ,
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which gives in the spectral domain

Z = ρ ·θ + εη , (1.18)

where Z = UY , θ = U f and η = Uξ is a white noise in L2(Σ) since U is a unitary
operator. Indeed, we have the following lemma.

Lemma 1.5. Let ξ be a white noise in G and η = Uξ where U is a unitary operator.
We have for all θ = U f and ν = Uh, where f ,h ∈ H,

〈η ,θ 〉 ∼N (0,‖θ‖2),

and
E(〈η ,θ 〉〈η ,ν〉) = 〈θ ,ν〉.

Thus η is a white noise in L2(Σ).

Proof. For all θ = U f with f ∈H, we have

〈η ,θ 〉= 〈Uξ ,U f 〉= 〈ξ ,U∗U f 〉= 〈ξ , f 〉 ∼N (0,‖ f‖2) = N (0,‖θ‖2). (1.19)

In the same way if θ = U f and ν = Uh, where f ,h ∈H, we have

E(〈η ,θ 〉〈η ,ν〉) = E(〈ξ , f 〉〈ξ ,h〉) = 〈 f ,h〉= 〈θ ,ν〉, (1.20)

since U is unitary. Using (1.19) and (1.20), we obtain the lemma.

Remark 1.14. The model (1.18) really helps to understand the utility of spectral The-
orem in inverse problems. Indeed, by use of the unitary transform U , one replaces
the model (1.2), not always easy to handle with a general linear operator, by a mul-
tiplication by a function ρ . Moreover, since U is unitary the noise is still a white
noise.

1.1.7.2 Deconvolution on R

In this section, we present an example of application, see for example [49, 116]
when the operator is not compact. The operator considered here is

A f (t) = r ∗ f (t) =
∫ ∞

−∞
r(t−u) f (u)du,

where r ∗ f denotes the convolution through a known filter r ∈ L 1(R). The aim is to
reconstruct the unknown function f .

Deconvolution is one of the most standard inverse problems. The problem of cir-
cular convolution, i.e. with a periodic kernel r on [a,b], appears for example in [32]
and in Section 1.1.6.3. The main difference is that for periodic convolution the op-
erator is compact and the basis of eigenfunctions is the Fourier basis. It seems clear,
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from a heuristic point of view, that the results could be extended to the case of con-
volution on R by using the Fourier transform on L 2(R) instead of the Fourier series.
This heuristic extension can be made formal by resorting to the spectral Theorem
(Theorem 1.2).

Suppose that r is a real-valued function symmetric around 0, then

r̃(ω) =
∫ ∞

−∞
eitω r(t)dt =

∫ ∞

−∞
cos(tω)r(t)dt, ∀ω ∈ R.

Suppose also that r̃(ω)> 0 for all ω ∈R. It is straightforward to see that the operator
A is self-adjoint and strictly positive, since r is real-valued and symmetric around 0
and r̃ > 0.

Define the Fourier transform as a unitary operator from L 2(R) into L2(R) by

(F f )(ω) =
1√
2π

∫ ∞

−∞
eitω f (t)dt, ω ∈ R, f ∈ L1(R)∩L2(R), (1.21)

and its continuous extension on L2(R).
We have that

F(r ∗ f )(ω) = r̃(ω).(F f )(ω);

hence A = F−1Mr̃F .
The model is then the following

Y (t) = r ∗ f (t)+ εξ (t), ∀t ∈ R

where f ∈ L2(R) is unknown, ξ is a white noise in L2(R).
By applying the Fourier transform we obtain

FY (ω) = F(r ∗ f )(ω)+ ε Fξ (ω) = r̃(ω).(F f )(ω)+ εη(ω), (1.22)

where, by Lemma 1.5, η is a white noise in L2(R).

1.1.7.3 Functional Calculus

In this section, the aim is to provide some important tools from operator theory
linked to the spectral Theorem. Functional calculus is the main tool in order to
modify the operator A, by applying functions to the operator. This result is crucial
in the study of regularization methods. This section is based on [72].

Definition 1.8. Let A ∈ L(H). The resolvent ρ(A) of A is the set of all λ ∈ C for
which (λ I−A) is invertible. The spectrum of A is defined as σ(A) = C\ρ(A).

Note that an eigenvalue is in the spectrum, but that not all points in the spectrum are
eigenvalues. However, compact operators have spectra composed of eigenvalues.

It follows immediately that the spectrum is invariant by unitary transformations.
Thus, σ(A) = σ(Mρ) with the notation of Theorem 1.2. One may also prove that
σ(A) is a closed and bounded set, hence is compact.
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Lemma 1.6. Let A ∈ L(H) be self-adjoint.

1. For any f ∈C(S), i.e. a continuous function on S, we have

‖Mf ‖= ‖ f‖∞,suppΣ ,

where the norm is the restricted sup-norm on suppΣ ,

suppΣ = S\
⋃

Vopen,Σ(V )=0

V.

2. We have σ(A) = ρ(suppΣ).
3. We have σ(A)⊂ R and ∀λ ∈ C

‖(λ I−A)−1‖� |Imλ |−1.

4. Let
m− = inf

‖ϕ‖=1
〈Aϕ ,ϕ〉, and m+ = sup

‖ϕ‖=1
〈Aϕ ,ϕ〉,

then σ(A)⊂ [m−;m+].
5. We have σ(A∗A)⊂ [0,‖A∗A‖].

Proof. See [73].

If p(ρ) is a polynomial in ρ then it is natural to define

p(A) =
k

∑
j=0

p jA
j. (1.23)

The next theorem generalizes the idea of applying continuous functions to the oper-
ator A by just applying continuous functions to the spectrum, i.e. in C(σ(A)).

Theorem 1.3. With the notation of Theorem 1.2, define

Φ(A) = U−1MΦ◦ρU, (1.24)

for a continuous real-valued Φ ∈ C(σ(A)), where Φ ◦ ρ(ω) = Φ(ρ(ω)). Then
Φ(A) ∈ L(H) is self-adjoint and satisfies (1.23) if Φ is polynomial. The mapping
Φ → Φ(A) is called functional calculus at A and is an isometric algebra homo-
morphism from C(σ(A)) to L(H), i.e., for all Φ ,Ψ ∈ C(σ(A)) and α ,β ∈ R we
have

(αΦ +βΨ)(A) = αΦ(A)+βΨ(A), (1.25)

(ΦΨ )(A) = Φ(A)Ψ (A), (1.26)

‖Φ(A)‖= ‖Φ‖∞. (1.27)

The functional calculus is uniquely determined by (1.23) and (1.25)-(1.27).
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Proof. This proof may be found in [72]. By Lemma 1.6, Φ(A) is bounded. It is
self-adjoint because Φ is real-valued and

(Φ(A))∗ = U−1(MΦ◦ρ)∗U = Φ(A).

For a polynomial p we have p(A) = U−1 p(Mρ)U with (1.23). Since by definition
of the multiplication operator p(Mρ) = Mp◦ρ , this corresponds to definition (1.24).
The proof of (1.25) is clear. Moreover, we have

Φ(A)Ψ(A) = U−1MΦ◦ρUU−1MΨ◦ρU = U−1MΦΨ◦ρU = (ΦΨ )(A).

Finally, by Lemma 1.6 and continuity of Φ we obtain

‖Φ(A)‖= ‖MΦ◦ρ‖= ‖Φ ◦ρ‖∞ = ‖Φ‖∞,σ(A).

Let ΦA : C(σ(A)) → L(H) be any isometric algebra homomorphism satisfying
ΦA(p) = p(A) for all polynomials. By the Weierstrass approximation Theorem,
for any Φ ∈ C(σ(A)) there exists a sequence of polynomials pk such that ‖Φ −
pk‖∞,σ(A) → 0 as k → ∞. Using the property for the norm we obtain the desired
unicity

ΦA(Φ) = lim
k→∞

ΦA(pk) = lim
k→∞

pk(A) = Φ(A).

Remark 1.15. The functional calculus may be extended to the case of bounded func-
tions on σ(A). The isometry is then replaced by an upper bound in (1.27).

Remark 1.16. This theorem is a fundamental tool in analysis of inverse problems.
It allows to apply functions to the operator and then to its spectrum. The aim is to
study the behaviour of A−1 or of more stable inverses (e.g. the regularized inverse).

Example 1.2. Regularization methods. Suppose that A ∈ L(H) is self-adjoint and
positive. In ill-posed problems, if A is not invertible, then 0 is in the spectrum. An-
other way to understand this is by Theorem 1.3. Indeed, when 0 is in the spectrum
then the function Φ(x) = 1/x is not even bounded on σ(A) ⊂ [0,‖A‖], it exploses
at point 0. Thus Φ(A) = A−1 is not a bounded operator by (1.27). There is a need
to invert A in a more stable way. This is exactly the role of regularization methods.
One way to invert A, is by a small modification of the function Φ . For example, one
may use Φγ(x) = 1/(x+γ) where γ > 0, which is continuous and bounded on σ(A).
This is exactly the idea of the Tikhonov regularization method, see Section 1.2.2.

1.2 Nonparametric Estimation

The aim of nonparametric estimation is to estimate (reconstruct) a function f
(density or regression funtion) based on some observations. The main difference
with parametric statistics is that the function f is not in some parametric fam-
ily of functions, for example, the family of Gaussian probability density functions
{N (µ ,1), µ ∈R}.
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Instead of a general framework, the problem of nonparametric estimation will be
described here in the setting of the sequence space model (1.5) which is related to
the inverse problem with random noise (1.2).

1.2.1 Minimax Approach

Let θ̂ = (θ̂1, θ̂2, . . .) be an estimator of θ = (θ1,θ2, . . .) based on the data X = {Xk}.
An estimator of θ may be any measurable function of the observation X = {X k}.

Then f is estimated by f̂ = ∑k θ̂kϕk, where {ϕk} is a basis.
The first point is to define the accuracy of some given estimator θ̂ . Since an

estimator is by definition random, we will measure the squared difference between
θ̂ and the true θ , and then take the mathematical expectation.

Define the mean integrated squared risk (MISE) of f̂ by

R( f̂ , f ) = E f ‖ f̂ − f‖2 = Eθ

∞

∑
k=1

(θ̂k −θk)2 = Eθ‖θ̂ −θ‖2,

where the second equality follows from Parseval’s Theorem (and relies on the fact
that {ϕk} is a basis), where the notation ‖ · ‖ stands for �2-norm of θ -vectors in the
sequence space. Here and in the sequel E f and Eθ denote the expectations w.r.t. Y or
X = (X1,X2, . . .) for models (1.2) and (1.5) respectively. Analyzing the risk R( f̂ , f )
of the estimator f̂ is equivalent to analyze the corresponding sequence space risk

R(θ̂ ,θ ) = Eθ‖θ̂ −θ‖2.

The aim would be to find the estimator with the minimum risk. However, the risk of
an estimator depends, by definition, on the unknown f or θ .

To that end, we assume that f belongs to some class of function F .

Definition 1.9. Define the maximal risk of the estimator f̂ on F as

sup
f∈F

R( f̂ , f ),

and the minimax risk as

rε(F ) = inf
f̂

sup
f∈F

R( f̂ , f ),

where the inf f̂ is taken over all possible estimators of f .

It is usually not possible in nonparametric statistics to find estimators which attain
the minimax risk. A more natural approach is to consider the asymptotic properties,
i.e. when the noise level tends to 0 (ε → 0).

Definition 1.10. Suppose that some estimator f̃ is such that there exist constants
0 < C2 �C1 < ∞ with, as ε → 0
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sup
f∈F

R( f̃ , f ) �C1v2
ε ,

where the positive sequence vε is such that vε → 0 and

inf
f̂

sup
f∈F

R( f̂ , f ) �C2v2
ε .

In this case the estimator f̃ is said to be optimal or to attain the optimal rate of
convergence v2

ε .
In the special case where C1 = C2 the estimator f̃ is said to be minimax or to

attain the exact constant.

An optimal estimator is then an estimator whose risk is of the order of the best
possible estimator.

Minimax estimation in nonparametric statistics is nowadays a classical approach.
It goes back to [11, 122] and also [74]. Since the 80’s, it has been obtained in
many different models (nonparametric regression, Gaussian white noise, density
estimation, spectral density estimation), with a varied form of estimators (kernels,
projections, splines, wavelets), and for most classes of functions (Besov, Hölder,
Sobolev, . . . ).

These kind of results are often considered as a first step in order to prove that
a given method has good theoretical properties. Indeed, one has a criterion, which
garantees that on some class of functions a given method is optimal.

Minimax estimation for statistical inverse problems (1.2) (or for its sequence
space analogue (1.5)) was discussed in a number of papers. Optimal rates of con-
vergence in this problem are obtained in [80, 84, 39, 83, 95, 47, 78, 9] and in related
frameworks in [52, 19].

Exact asymptotics of the minimax L2-risks are known in the deconvolution prob-
lem with somewhat different setups [50], in inverse problems for partial differential
equations [61] and in tomography, for minimax L 2-risks among linear estimators
[80]. Exact asymptotics for pointwise risks on the classes of analytic functions in
tomography are due to [20].

A recent discussion of the different rates may be found in the review [93].

Remark 1.17. We only use the standard L2−risk along these notes. However, many
results may be obtained with different risks and loss functions, for example, the L p,
L∞ or the pointwise risk, see [43, 85, 20, 79].

1.2.2 Regularization Methods

1.2.2.1 Continuous Regularization Methods

The main part of ill-posed inverse problems is to find regularization methods which
will help to get a fine reconstruction of f .
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Recall that the normal equation, defined in Lemma 1.4, is

A∗Y = A∗A f + ε A∗ξ .

Formally, one has to estimate the solution (A∗A)−1A∗Y . The problem in ill-posed
situation is that the operator A∗A is not (boundedly) invertible.

The idea is to get some continuous inversion by use of regularization methods.
This allows to obtain much more stable reconstruction.

Definition 1.11. We call a regularization method an estimator defined by

f̂γ = Φγ(A∗A)A∗Y,

where Φγ ∈ C(σ(A∗A)), i.e a continuous function on σ(A∗A) (or even bounded)
depending on some regularization parameter γ > 0.

We are going to give some examples of regularization methods or estimators which
are commonly used. All these methods are defined in the spectral domain even if
some of them may be computed without using the whole spectrum.

Spectral Cut-Off

This regularization method is very simple. The idea is to get rid of the high frequen-
cies. In the spectral domain, by using the spectral cut-off, one just cut the frequencies
over some threshold.

The definition of a spectral cut-off with parameter γ > 0 is the following

Φγ (x) =
{

x−1, x � γ ,
0, x < γ .

This notion may be well-defined by use of the functional calculus for bounded func-
tions (instead of continuous ones).

The spectral cut-off is a very simple estimator. It is usually used as a benchmark
since it attains the optimal rate of convergence. However, it is not a very precise
estimator. Moreover, from a numerical point of view, it is usually time consuming
since one has to compute the whole spectrum.

Tikhonov Regularization

The Tikhonov method is one of the first and the most well-known regularization
method in inverse problems.

The direct inversion of the operator A∗A is not satisfying since it is not a (bound-
edly) invertible operator. The idea is to control the norm of the solution by using a
penalty term.

Define now, the well-known Tikhonov regularization method (see [127]). In
this method one wants to minimize the following functional L γ(ϕ):
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inf
ϕ∈H

{
‖Aϕ−Y‖2 + γ‖ϕ‖2} , (1.28)

where γ > 0 is some tuning parameter.
The Tikhonov method is very natural. Indeed, the idea is to choose an estimator

which, due to the first term will fit the data, and which will be “stable”, due to the
second term, which is called the energy. As we will see in Section 1.3.3 the choice
of γ is very sensitive since it characterizes the balance between the fitting and the
stability.

The functional Lγ is strictly convex for any γ > 0. Its minimum is attained when
its differential in h ∈ H

(Lγ )′ϕh = 2〈Aϕ−Y,Ah〉+ 2γ〈ϕ ,h〉, (1.29)

is zero, i.e.
〈A∗(Y −Aϕ),h〉= γ〈ϕ ,h〉, ∀h ∈ H.

The minimum is then attained by

f̂γ = (A∗A + γI)−1A∗Y. (1.30)

In the spectral domain this method is defined by

Φγ (x) =
1

x + γ
.

Remark 1.18. There exist some troubles with this simple Tikhonov regularization.
For these reasons, several modifications of the Tikhonov have been defined.

Variants of Tikhonov Regularization

There exist several modified versions of the Tikhonov regularization.
The first variant is the Tikhonov method with starting point ϕ0. It consists in

giving a different starting point than 0. We haveϕ 0 ∈H and we penalize by ‖ϕ−ϕ0‖
instead of ‖ϕ‖. By use of (1.29) one then obtains

f̂γ = (A∗A + γI)−1(A∗Y + γϕ0). (1.31)

The second modified version, which already appears in [127], is the Tikhonov
method with a different prior. It is is based on the idea that the function could
be smoother. Thus, a penalty term of the form ‖Q aϕ‖, where Qa,a > 0, is some dif-
ferential operator, would be more suited. A classical example is then Q a = (A∗A)−a.
The estimator is then defined by

f̂γ = (A∗A + γ(Qa)∗Qa)−1A∗Y.
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With this method one is able to better estimate smoother functions. Indeed, the stan-
dard Tikhonov method, penalize only by ‖ϕ‖ 2. If the function is smoother, then it is
natural to take this into account in the second term, by a smoothness constraint. This
effect may be seen in the better qualification of the method (see Section 1.2.3.1).

A last variant is called iterative Tikhonov method. It consists in starting a first
Tikhonov regularization with ϕ0 = 0 and then obtain an estimator f̂ 1

γ . In the second

iteration, one applies the Tikhonov method with a starting point f̂ 1
γ . We iterate this

method several times. The estimate is then by (1.31)

f̂m+1 = (A∗A + γI)−1(A∗Y + γ f̂m).

It may be shown by induction that

f̂m = (A∗A + γI)−m(A∗A)−1((A∗A + γI)m− γmI)A∗Y.

For m = 1 this corresponds exactly to the standard Tikhonov regularization. With
this method one is able to better estimate smoother functions, the qualification of
the method is increased (see Section 1.2.3.1). From a numerical point of view, this
method is not really much longer than the Tikhonov one, since the only operator to
invert is (A∗A + γI).

In the spectral domain this method is defined by

Φγ (x) =
(x + γ)m− γm

x(x + γ)m .

Landweber Iteration

Another very standard method is based on the idea to minimize the functional ‖Aϕ−
Y‖ by the steepest descent method (i.e. Gradient descent algorithm). The idea then is
to choose the direction h equals to minus the gradient (in fact here the approximate
gradient). Thus, we obtain h = −A∗(Aϕ−Y ) by (1.29). This leads to the recursion
formula ϕ0 = f̂0 = 0 and

f̂m = f̂m−1− µA∗(A f̂m−1−Y),

for some µ > 0. This method is called Landweber iteration, see for example in
[86].

It may be shown by induction that

f̂m =
m−1

∑
j=0

(I− µA∗A) jµA∗Y.

Indeed, it is clearly true for m = 0 and if true for m then
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f̂m+1 = (I− µA∗A) f̂m + µA∗Y =
m

∑
j=0

(I− µA∗A) jµA∗Y.

The parameter µ has to be chosen such that µ‖A∗A‖ � 1 which has a strong influ-
ence on the speed of convergence. The regularization parameter is then linked to the
number of iterations m. Formally, the number of iterations may be written as γ −1.

In the spectral domain this method is defined, for µ = 1 and ‖A ∗A‖= 1, by

Φm(x) =
m−1

∑
j=0

(1− x) j.

There exist another version of this formula which will be used later. We have

Φm(x) =
1− (1− x)m

x
, (Φm(0) = m).

Remark 1.19. From a numerical point of view, this method is faster than Tikhonov
method, since one does not need here the inversion of an operator (as in (1.30)).

However, Landweber iteration has some drawbacks as we will see in Section
1.2.3.1. Indeed, the number of iterations may be very large. For this reason, new
methods, based on Landweber have been defined, as the semi-iterative procedures
and ν-methods.

Semi-iterative Procedures and ν-Methods

As we will see the Landweber iteration is not so efficient. One of the reason is, that
this method uses only the previous iteration in order to compute the next one. A
more general idea is to use all the previous iterations f̂ j, j = 1, . . . ,m−1, to define
f̂m.

This is the starting point of the so-called semi-iterative procedures. Let f̂ j, j =
1, . . . ,m−1, and f̂0 = 0 then define

f̂m = µ1,m f̂m−1 + · · ·+ µm,m f̂0 +ωmA∗(Y −A f̂m−1),

where ∑ j µ j,m = 1.
The semi-iterative methods are then defined by

f̂m = Φm(A∗A)A∗Y,

where Φm is a polynomial of degree exactly m−1, which is called iteration polyno-
mial.

Clearly, such a method is computationaly rather efficient but we use all the itera-
tions and not only one.

A special case of such iterative method are the ν-methods which only use two
iterations. These methods were introduced in [10] and in the statistical literature
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by [106]. It is defined as a semi-iterative procedure with a parameter ν > 0,

µ1 = 1, ω1 =
4ν+ 2
4ν+ 1

,

µm = 1+
(m−1)(2m−3)(2m+ 2ν−1)

(m+ 2ν−1)(2m+ 4ν−1)(2m+ 2ν−3)
,

ωm = 4
(2m+ 2ν−1)(m+ν−1)
(m+ 2ν−1)(2m+ 4ν−1)

,

and
f̂m = µm f̂m−1 +(1− µm) f̂m−2 +ωmA∗(Y −A f̂m−1).

Remark 1.20. We will see in Section 1.2.3.1 that ν-methods, and many semi-
iterative methods, are much faster than the Landweber method. We will explain,
what is the idea behind these ν-methods.

Risk of Regularization Methods

A regularization method defined by Φγ may be decomposed as

f̂γ = Φγ(A∗A)A∗A f + εΦγ(A∗A)A∗ξ , (1.32)

since (1.2). Its risk may then be written as

E f ‖ f̂γ − f‖2 = ‖E f ( f̂γ )− f‖2 + E f ‖ f̂γ −E f ( f̂γ )‖2,

since EΦγ (A∗A)A∗ξ = 0. The first term is called the approximation error and the
second is called propagated noise error.

Remark that by Theorem 1.3 we have

Φγ (A∗A)A∗A f = U−1MΦγ (ρ)ρU f .

Thus, Φγ (A∗A) should be an approximate inverse of A∗A. The study of the function
Φγ (x)x in the spectral domain is then of major importance.

Remark 1.21. As for the estimation method, a key-point in regularization methods
is to choose the parameter γ in a proper way.

1.2.2.2 Estimation Procedures

Equivalence in the Sequence Space Model

In order to get a framework more standard in statistics, suppose now that the operator
A is compact. Then, by using the SVD, one obtains the sequence space model (1.5).
Usually statisticians prefer to work with the sequence space model (1.6).
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In this context, many regularization methods may be expressed in a statistical
framework, and usually correspond to some known estimation method in statistics.
The notion of regularization is not really used in statistics. However, there exists a
more standard definition which is related.

Let λ = (λ1,λ2, . . .) be a sequence of nonrandom weights. Every sequence λ
defines a linear estimator θ̂ (λ ) = (θ̂1, θ̂2, . . .) where

θ̂k = λkXk and f̂ (λ ) =
∞

∑
k=1

θ̂k ϕk.

Remark also by use of the SVD in Theorem 1.1 or Theorem 1.3 one obtains for a
general regularization method

f̂ (λ ) = Φγ (A∗A)A∗Y =
∞

∑
k=1

Φγ (b2
k)bkykϕk =

∞

∑
k=1

Φγ (b2
k)b

2
k Xkϕk,

which exactly corresponds to the special case of linear estimator with

λk = Φγ(b2
k)b

2
k . (1.33)

Truncated SVD

Examples of commonly used weights λk are the projection weights λk = I(k � N)
where I(·) denotes the indicator function. These weights correspond to the projec-
tion estimator (also called truncated SVD).

θ̂ (N) =
{

Xk, k � N,
0, k > N.

The value N is called the bandwidth.
The projection estimator is then defined by

f̂N =
N

∑
k=1

Xkϕk.

The truncated SVD is a very simple estimator. With this natural estimator, one esti-
mates the first N coefficients θk by their empirical counter-part Xk and then estimate
the remainder terms by 0 for k > N.

This is an estimator equivalent to the spectral cut-off, but expressed in a different
way and in a different setting. From a numerical point of view, it is still usually time
consuming since, one has to compute all the coefficients Xk.

One may easily check by using (1.33) that, for the case σ k = kβ , the spectral
cut-off is equivalent to the projection estimator with N = [γ −1/2β ].
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Kernel Estimator

One of the most well-known method in statistics is the kernel estimator (see [115,
129]). In our context, kernel estimator could be defined in the special case of the
direct problem; i.e. A = I. A kernel estimator is defined by its kernel function K ∈ L 2

(usually also K ∈ L1) and
f̂γ = Kγ ∗Y,

where ∗ denotes the convolution product, Kγ (·) = γ−1K(·/γ) and γ > 0 is known as
the bandwidth.

The idea of kernel estimators is to estimate the function f by using a local (by
the bandwidth) weighted mean of the data, i.e. a convolution.

Kernel estimators may also be defined in inverse problem framework in order to
invert the operator, see for example the so-called deconvolution kernel in [52].

This method is also linked to the mollifier methods in inverse problems, see [94].

The Tikhonov Estimator

The Tikhonov estimator is defined by the same minimization in (1.28) as for
the Tikhonov regularization. In a more statistical framework, one may define the
Tikhonov estimator by its equivalent form in the SVD domain:

λk =
1

1+ γσ 2
k

,

which is easy to verify by use of (1.33).
In the special case where A = I this estimator is defined and computed as a mod-

ified version of the Tikhonov regularization and is called spline (see [131]).
In the parametric context of the standard linear regression, this method is called

ridge regression, see [70]. It is known to improve on the standard least-squares esti-
mator when the singular values of the design matrix are close to 0.

The Landweber Method

The Landwber iteration is not really known under this name in statistics. However,
there exists a well-known approach in the community of learning which is strongly
related.

Boosting algorithms include a family of iterative procedures which improve the
performance at each step. The L2-boosting has been introduced in the context of
regression and classification in [15].

The idea is to start from a weak learner, i.e. a rather rough estimator f̂0. The
algorithm consists then in boosting this learner in a recursive iteration, which may
be showed to correspond to Landweber iteration (see [9]).
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The Pinsker Estimator

The Pinsker estimator has been defined in [109]. This special class of linear estima-
tors is defined in the sequence space model by the following weights coefficients

λk = (1− cεak)+,

where cε is the solution of the equation

ε2
∞

∑
k=1

σ2
k ak(1− cεak)+ = cεL,

with x+ = max(0,x) and ak > 0.
As we will see in Section 1.2.4, this class of estimators is defined in the context

of estimation in ellipsoids where they attain the optimal rates of convergence, but
also the minimax constants.

Risk of a Linear Estimator

Define now the L2−risk of linear estimators :

R(θ̂(λ ), f ) =R(θ ,λ )=Eθ

∞

∑
k=1

(θ̂k(λ )−θk)2 =
∞

∑
k=1

(1−λk)2θ 2
k + ε2

∞

∑
k=1

σ2
k λ

2
k .

(1.34)
The first term in the RHS is called bias term and the second term is called the
stochastic term or variance term. The bias term is linked to the approximation
error and measure if the chosen estimation procedure is a good approximation of
the unknown f . On the other hand, the stochastic term measure the influence of the
random noise and of the inverse problem in the accuracy of the method.

In these lectures, we are going to study in details the projection estimators. This
method is the most simple one and can be studied in a very easy way. The risk of a
projection estimator with bandwidth N is

R(θ ,N) =
∞

∑
k=N+1

θ 2
k + ε2

N

∑
k=1

σ2
k .

In this case the decomposition is very simple. Indeed, we estimate the first N coef-
ficients by their empirical version Xk and the other coefficients by 0. Thus, the bias
term measure the influence of the remainder coefficients θ k, k > N, and the stochas-
tic term is due to the random noise in the N first coefficients. We can see now that
one simple question is how to choose the bandwidth N?

Remark 1.22. Thus, we get to the key-point in nonparametric statistics. We have to
choose N (or γ or m) in order to balance the bias term and the variance term. As we
will see this choice will be difficult since the bias term depends on the unknown f .
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1.2.3 Classes of Functions

An important problem now is to define “natural” classes of functions on F .

1.2.3.1 Source Conditions

A standard way to measure the smoothness of the function f is relative to the
smoothing properties of the operator A, more precisely in terms of A ∗A. Let � :
[0,∞) → [0,∞) be a continuous, strictly increasing function with �(0) = 0 and as-
sume that there exists a source w ∈H such that

f = �(A∗A)w, w ∈ H, ‖w‖2 � L. (1.35)

This is called a source condition. The most standard choice for � is the Hölder type
source condition where �(x) = xµ , µ � 0, i.e.

f = (A∗A)µw, w ∈H, ‖w‖2 � L. (1.36)

Denote by F�(L) the class of functions

F�(L) =
{

f = �(A∗A)w : w ∈ H, ‖w‖2 � L
}

. (1.37)

In order to take advantage of the source condition we assume that, for any regu-
larization methods, there exists a constant ν0 called qualification and a constant ν̄
such that

sup
x∈σ(A∗A)

|xν(1− xΦγ(x))|� ν̄ γν , ∀ γ > 0, ∀0 � ν � ν0. (1.38)

We then get the following theorem in order to control the bias term, i.e. the approx-
imation error.

Theorem 1.4. Suppose that one has a regularization method f̂γ checking condition
(1.38). Define F�(L) with �(x) = xµ . Then we have

sup
f∈F�(L)

‖E f ( f̂γ )− f‖2 � ν̄2L γ2µ ,

for all 0 � µ � ν0.

Proof. We have

B( f̂γ ) = ‖E f ( f̂γ )− f‖2 = ‖Φγ(A∗A)A∗A f − f‖2.

Using (1.35), (1.38) and the isometry of the functional calculus we obtain

B( f̂γ ) = ‖(Φγ(A∗A)A∗A− I)(A∗A)µw‖2
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� L sup
x∈σ(A∗A)

|xµ(1− xΦγ(x))|2 � ν̄2L γ2µ .

The qualification of a method is the largest source condition for which the bias of
the method converges with the optimal rate.

For the Landweber iteration, suppose here that ‖A∗A‖= 1. Note that σ(A∗A)⊂
[0,1]. The approximation error is

sup
x∈σ(A∗A)

|xµ(1− xΦm(x))|� sup
x∈[0,1]

|xµ(1− x)m|.

If we solve this problem, we then obtain that the supremum is attained at point
x0 = µ/(µ+m)∈ [0,1]. Thus, the approximation error is bounded by, for any µ > 0,

sup
x∈[0,1]

|xµ(1− x)m|�
(

µ
µ+ m

)µ
�Cm−µ .

The qualification of the Landweber method is then ∞, since this result is valid for
any µ > 0. Note that γ = 1/m here.

The semi-iterative methods are defined via an iteration polynomial Φm. The
ν−methods have, in fact, been defined such that they minimize

sup
x∈σ(A∗A)

|xν (1− xΦm(x)) |,

for all polynomials of degree m−1.
One may prove then (see [49])

|1− xΦm(x)|� cν (1+ m2x)−ν .

Thus, we have

sup
x∈σ(A∗A)

|xµ(1− xΦm(x))|� cν sup
x∈[0,1]

|xµ(1+ m2x)−ν |.

The maximum is attained at point

x0 =
{
µ/(m2(ν− µ)) if µ < ν ,

1 if µ � ν .

We finally obtain

sup
x∈σ(A∗A)

|xµ(1− xΦm(x))| �
{

Cm−2µ if µ < ν ,
Cm−2ν if µ � ν .

There is a saturation effect. The qualification of the ν−method is then ν .

Remark 1.23. One very important point here, is that, for the same number of itera-
tions, the approximation error is much better for the ν−method than for the Landwe-
ber one. In other terms, one needs m2 iterations with Landweber and m iterations
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with ν−method for the same accuracy. The Landweber method attains the optimal
rates of convergence but with much more iterations than ν−method. This is one
drawback of the Landweber method in applications.

Some direct computations show that the qualification of the different methods are
(see following table).

Table 1.1 Qualification of regularization methods

Method Qualification
Spectral cut-off ∞

Tikhonov 1
Tikhonov with prior a 1+2a
m-iterated Tikhonov m

Landweber ∞
ν-method ν

The main aim now is to understand the precise meaning of source condition on some
well-known examples.

1.2.3.2 Ellipsoid of Coefficients

Suppose here that the operator A is compact.
Assuming Hölder type source condition f = (A∗A)µw is then equivalent in the

SVD domain to, by functional calculus,

f = (A∗A)µw =
∞

∑
k=1

b2µ
k wkϕk,

since w ∈H, where wk = 〈w,ϕk〉 is in �2. Denote by 〈 f ,ϕk〉= θk = b2µ
k wk and since

‖w‖2 � L, we then obtain

‖w‖2 =
∞

∑
k=1

w2
k =

∞

∑
k=1

b−4µ
k θ 2

k � L. (1.39)

Thus, in the inverse problem framework with compact operator, the source condi-
tions will correspond to the assumption that the coefficients of f belong to some
ellipsoid in �2.

Assume that f belongs to the functional class corresponding to ellipsoids Θ in
the space of coefficients {θk}:

Θ =Θ(a,L) =

{
θ :

∞

∑
k=1

a2
kθ

2
k � L

}
, (1.40)
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where a = {ak} is a non-negative sequence that tends to infinity with k, and L >
0. This means that for large values of k the coefficients θ k will have (a negative)
polynomial behaviour in k and will be small.

Remark 1.24. Assumptions on the coefficients θk will be usually related to some
properties (smoothness) on f . One difficulty in using SVD in inverse problems is
that the basis {ϕk} is defined by the operator A. One then has to hope good properties
for the coefficients θk of f in this specific basis.

1.2.3.3 Classes of Functions

Suppose that we are exactly in the setting of the periodic convolution of Section
1.1.6.3. Then the operator is compact and the SVD basis is exactly the Fourier basis.

In the special cases where the SVD basis is the Fourier basis, hypothesis on {θk}
may be precisely written in terms of smoothness for f .

Such classes arise naturally in various inverse problems, they include as special
cases the Sobolev classes and classes of analytic functions. In fact, we consider balls
of size L > 0 in functions spaces.

Let {ϕk(t)} be the real trigonometric basis on [0,1]:

ϕ1(t)≡ 1, ϕ2k(t) =
√

2cos(2πkt), ϕ2k+1(t) =
√

2sin(2πkt), k = 1,2, . . . .

Introduce the Sobolev classes of functions (see [12])

W (α ,L) =

{
f =

∞

∑
k=1

θkϕk : θ ∈Θ(α ,L)

}

whereΘ(α ,L) with the sequence a = {ak} such that a1 = 0 and

ak =
{

(k−1)α for k odd,
kα for k even,

k = 2,3, . . . ,

where α > 0, L > 0.
If α is an integer, this corresponds to the equivalent definition, see Proposition

1.14 in [129],

W (α ,L)=
{

f ∈L2[0,1] :
∫ 1

0
( f (α)(t))2dt�L, f ( j)(0)= f ( j)(1)=0, j=0, . . . ,α−1

}

where f is 1-periodic and f (α) denotes the weak derivative of f of order α .
In the case where the problem is mildly ill-posed with bk = k−β , by (1.39), Hölder

type source conditions correspond to

∞

∑
k=1

b−4µ
k θ 2

k =
∞

∑
k=1

k4µβθ 2
k � L,
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and then θ ∈Θ(α ,L) with α = 2µβ .
One may also consider more restrictive conditions and the classes of functions

A (α ,L) =

{
f =

∞

∑
k=1

θkϕk : θ ∈ΘA (α ,L)

}

where ak = exp(αk), α > 0, and L > 0. This corresponds to the usual classes of
analytical functions. These functions admit an analytical continuation into a band
of the complex plane, see [75]. These functions are thus very smooth (C ∞).

In the case where the problem is severely ill-posed with bk = exp(−βk), by
(1.39), Hölder type source conditions correspond to

∞

∑
k=1

b−4µ
k θ 2

k =
∞

∑
k=1

e4µβkθ 2
k � L,

and then θ ∈ΘA (α ,L) with α = 2µβ .

1.2.4 Rates of Convergence

1.2.4.1 SVD Setting

In this setting of ill-posed inverse problems with compact operator and functions
with coefficients in some ellipsoid, several results have been obtained.

As in Definition 1.9, denote by

rε(Θ) = inf
θ̂

sup
θ∈Θ

R(θ̂ ,θ ), (1.41)

where the infθ̂ is taken for all estimators of f , the minimax risk on the class of
coefficientsΘ and the linear minimax risk

r�
ε(Θ) = inf

θ̂ �
sup
θ∈Θ

R(θ̂ ,θ ),

where the infθ̂ � is among all linear estimators.
There exists a famous result by [109] which exhibits an estimator which is even

minimax, i.e. which attains not only the optimal rate, but also the exact constant.
This estimator is called the Pinsker estimator.

The following theorem is due to [109].

Theorem 1.5. Let {ak} be a sequence of non-negative numbers and let σk > 0, k =
1,2, . . . Then the linear minimax estimator λ = {λk} onΘ(a,L) is given by

λk = (1− cεak)+, (1.42)

where cε is the solution of the equation
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ε2
∞

∑
k=1

σ2
k ak(1− cεak)+ = cεL

and the linear minimax risk is

r�
ε(Θ) = ε2

∞

∑
k=1

σ2
k (1− cεak)+. (1.43)

Furthermore, if
maxk:ak<T σ2

k

∑k:ak<T σ2
k

= o(1), T → ∞, (1.44)

then
rε (Θ) = r�

ε(Θ)(1+ o(1)), (1.45)

as ε → 0.

Proof. A proof may be found in [109, 7].

Thus, under the condition (1.44), the linear minimax estimator given by (1.42) is
asymptotically minimax among all estimators.

This result has been also generalized to the very specific case of severely ill-posed
problems with analytic functions, i.e. when (1.44) is not verified, in [61, 62].

The optimal rates of convergence may also be found, for example in [7] and [32].
The function f is supposed to have Fourier coefficients in some ellipsoid, and the
problem is mildly, severely ill-posed or even direct. The rates appear in Table 2.

Example 1.3. All the rates are given for the estimation of a function in one dimen-
sion (d = 1). Otherwise, in a multidimensional framework, it is well-known that the
minimax rates depend on the dimension d.

There exist also many optimal rates results in inverse problems see for example the
deconvolution problem in [50, 52], the tomography problem studied in the papers
[80, 85, 83, 20], general inverse problems [84, 39, 95, 47, 78, 9] and in related
frameworks [19].

A recent review of the different rates in rather general inverse problems may be
found in [93].

Table 1.2 Optimal rates of convergence

Inverse Problem/Functions Sobolev Analytic

Direct problem ε
4α

2α+1 ε2 log
1
ε

Mildly ill-posed ε
4α

2α+2β+1 ε2
(

log
1
ε

)2β+1

Severely ill-posed

(
log

1
ε

)−2α
ε

4α
2α+2β
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Comments

Ill-posedness. We may remark that the rates usually depend strongly on the
smoothness α of the function f and on the degree of ill-posedness β . When β
increases the rates are slower. This is a very important point, which characterizes
the influence of the ill-posedness in the results. In ill-posed problems the rates
are slower, making estimation in these models more difficult.

Direct model/Sobolev. We get the standard rates for nonparametric estimation.

Indeed, with the relation ε 2  1/n, one really obtains the usual n−
2α

2α+1 rate for
estimating a α smooth function in a nonparametric context, see [74, 122].
The more standard cases for inverse problems are, mildly ill-posed/Sobolev, or
severely ill-posed/Analytic. Indeed, they correspond to the natural setting of
Hölder source conditions (see Section 1.2.3.2).

Mildly ill-posed/Sobolev. This is, in a way, the more standard framework. One
has a not so difficult inverse problem with smooth functions. The rate is then

ε
4α

2α+2β+1 . One may see the loss in the rate due to ill-posedness β , compared to

the rate in the direct problem ε
4α

2α+1 . The rate is polynomial in ε and slower than
ε2, as usual in nonparametric statistics.

Severely ill-posed/Analytic. In this context, the problem is very difficult, but the

functions are then very smooth. The rate is then still polynomial ε
4α

2α+2β . This rate
is slightly different from the previous case, but related.
The three other cases are very specific problems. The rates are then not polyno-
mial.

Direct model/Analytic. This framework is rather easy. Indeed, the problem is
direct, and the functions are very smooth. The rate is then almost parametric,
i.e. ε2. One just looses a logarithmic term compared to the parametric context.
From a statistical point of view, the situation is very specific. Indeed, there is no
trade-off between bias and variance, the variance term is dominating.

Severely ill-posed/Sobolev. This case corresponds to a very difficult inverse prob-
lem with not smooth enough functions. The rate is logarithmic, and thus very
slow. From a theoretical point of view, this context might be considered as too
difficult. Here, the bias is dominating.

Mildly ill-posed/Analytic. In this case, a mildly ill-posed problem with very
smooth functions, the rate is almost the parametric rate ε 2. The variance term
is dominating. The functions are so smooth that the inverse problem has almost
no influence. Indeed, the degree of ill-posedness appears only in the logarithmic
term.

Remark 1.25. One may also consider inverse problems where σk  exp(βkr), where
β > 0 and r � 1, for example Heat equation or convolution by a Gaussian kernel.
Here the rates will be worse. For example, in the case of Sobolev functions, the rate
will be (log 1

ε )
−2α/r.
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Remark 1.26. In the problem of tomography presented in Section 1.1.6.5, the situa-
tion is slightly different. Indeed, this is a two dimensional problem. The optimal rate
of convergence is given, in [80], and corresponds to 2α/(2α + 3). This rate has to
be compared to the optimal rate of estimating a function in d dimensions, which is
2α/(2α+ d). Thus, in dimension d = 2, one really sees the ill-posedness β = 1/2,
in obtaining the rate 2α/(2α+ 3).

In the sequel, we will use quite often the two very standard results,

n

∑
k=1

kp ≈ np+1

p + 1
, p >−1, as n→ ∞ (1.46)

and
n

∑
k=1

epk ≈ ep(n+1)

ep−1
, p > 0, as n→ ∞, (1.47)

where an ≈ bn means that an/bn → 1 as n→ ∞.
In this framework we obtain the following theorem.

Theorem 1.6. Consider now the case where σk  kβ ,β � 0 and θ belongs to the
ellipsoid Θ(α ,L), where ak = kα ,α > 0. Then the projection estimator with N 
ε−2/(2α+2β+1) verifies as ε → 0

sup
θ∈Θ(α,L)

R(θ ,N) �Cε4α/(2α+2β+1).

This rate is optimal (see Theorem 1.5).

Proof. We have,

sup
θ∈Θ(α,L)

R(θ ,N) = sup
θ∈Θ(α,L)

∞

∑
k=N+1

θ 2
k + ε2

N

∑
k=1

σ2
k .

We bound the first term as follows,

sup
θ∈Θ(α,L)

∞

∑
k=N+1

θ 2
k � sup

θ∈Θ(α,L)

∞

∑
k=N+1

k2αθ 2
k k−2α

� N−2α sup
θ∈Θ(α,L)

∞

∑
k=1

k2αθ 2
k � L N−2α .

The variance term is controlled by

ε2
N

∑
k=1

σ2
k  ε2

N

∑
k=1

k2β  ε2N2β+1

2β + 1
,

when N is large, by use of (1.46). Thus,
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sup
θ∈Θ(α,L)

R(θ ,N) � L N−2α +
ε2N2β+1

2β + 1
.

If we want to attain the optimal rate of convergence we have to choose N of order
ε−2/(2α+2β+1) as ε → 0. This choice corresponds to the trade-off between the bias
term and the variance term.

Remark 1.27. This proof is very simple and only concerns the rate of convergence
for a given estimator, the so-called upper bound. The proof of an upper bound for
some estimator is usually rather easy. There is no proof here of the lower bound, i.e.
showing that no estimator has a risk converging faster. The lower bound is proved
by Theorem 1.5. Nevertheless, lower bounds are very important in nonparametric
statistics. Indeed, it is the lower bound which proves that the estimator is optimal,
i.e. one of the best estimator in a given model. For a discussion in details of the
standard methods, see [129].

Remark 1.28. Considering the minimax point of view, we may remark that there
exists an optimal choice for N which corresponds to the balance between the bias
and the variance. However, this choice depends very precisely on the smoothness α
and on the degree of ill-posedness of the inverse problem β .

Even in the case where the operator A (and then its degree β ) is known, it has no
real meaning to consider that we know the smoothness of the unknown function f .

These remarks lead to the notion of adaptation and also oracle inequalities, i.e. how
to choose the bandwidth N without strong a priori assumptions on f (see Section
1.3).

1.2.4.2 Deconvolution on R

Assume that we are in the special inverse problem of deconvolution on R (see Sec-
tion 1.1.7.2). Consider only the case of spectral cut-off regularization. We estimate
in the Fourier domain F f by

FY (ω)
r̃(ω)

I(ω : r̃2(ω) > γ),

and then the spectral cut-off regularization is

f̂ SC
γ = F−1

(
FY (ω)
r̃(ω)

I(ω : r̃2(ω) > γ)
)

.

As in the SVD case, the bias term (approximation error) is usually controlled by the
source conditions. In this framework, the Hölder source condition (1.36) is equiva-
lent to, in the Fourier domain,

F f = r̃2µFw, w ∈ L2(R), ‖w‖2 � L.
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R

|Fw(ω)|2dω =
∫
R

|F f (ω)|2 r̃−4µ(ω)dω � L. (1.48)

Similarly to the previous section, if r̃(ω) = |ω |−β , the problem is then mildly ill-
posed. In this case, the source conditions correspond to some Sobolev class of func-
tions on R (see [10])

W (α ,L) =
{

f ∈ L2(R) :
∫
R

|ω |2|F f (ω)|2 � L

}
,

which is equivalent to, for α ∈N,

W (α ,L) =
{

f ∈ L2(R) :
∫
R

( f (α)(t))2dt�L

}
.

We then obtain

(E f f̂ SC
γ (x)− f (x)) =

1√
2π

∫
R

e−iωx (F f (ω)I(ω : r̃2(ω) > γ))−F f (ω)
)

dω ,

and then for the bias∫
R

(E f f̂ SC
γ (x)− f (x))2dx � 1

2π

∫
|ω|>γ−1/2β

|F f (ω)|2dω

� γ4µβ/2β
∫
R

|F f (ω)|2|ω |4µβdω � Lγ2µ .

We need now to bound the stochastic term. Using (1.32), we have

E f ‖ f̂ SC
γ −E f ( f̂ SC

γ )‖2 � E‖εΦγ (A∗A)A∗ξ‖2.

Using (1.22) and Lemma 1.5, we may bound the variance term

E f ‖ f̂ SC
γ −E f ( f̂ SC

γ )‖2 � ε2

2π
E
∫
|ω|<γ−1/2β

∣∣∣∣η(ω)
r̃(ω)

∣∣∣∣
2

dω

� ε2

2π

∫
|ω|<γ−1/2β

|ω |2β dω  ε2 (γ−1/2β )2β+1 = ε2 γ−
2β+1

2β .

The risk of the spectral cut-off is then bounded by

E f ‖ f̂ SC
γ − f‖2 � Lγ2µ +Cγ−

2β+1
2β ,

the optimal choice is then γ ∗  (ε2)2β/(4µβ+1) which corresponds to the rate

E f ‖ f̂ SC
γ∗ − f‖2 �C(ε2)

4µβ
4µβ+2β+1 .

This rate may be shown to be optimal.
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Remark 1.29. Recall that here N = [γ−1/2β ]. The rates are in fact the same than in
the compact case of Section 1.2.4.1.

In the case of severely ill-posed problems, i.e. r̃(ω) = exp(−β |ω |), the class coming
from Hölder source condition is then different. By using (1.48), we have∫

R

|Fw(ω)|2dω =
∫
R

|F f (ω)|2 r̃−4µ(ω)dω � L.

Thus, ∫
R

|F f (ω)|2 exp(4µβ |ω |)dω � L.

which corresponds to the the class of analytic functions, i.e. which admits an ana-
lytic continuation into a band of the complex plane, see for example [75].

Remark 1.30. In the context of general inverse problems, with general regulariza-
tion methods, it is also possible to obtain results concerning rates of convergence
(see [9]).

1.2.5 Comparison Between Deterministic and Stochastic Noise

In this section, consider the model of inverse problems with deterministic noise.
This model is, in some sense, the historical model of inverse problems. It appears
for example in [127] and [128]. The analog of the stochastic model (1.2), in the
deterministic framework is the following. We have

Y = A f + εh, (1.49)

where the noise h is considered as some deterministic element h ∈G, with ‖h‖� 1.
Since the noise is some unknown element of a ball in G, then the results have to be
obtained for any possible noise, i.e. for the worst noise.

Compare the deterministic model in (1.49) and the stochastic model in (1.2)
where ξ is a white noise. At first glance, it may seem, that the main difference
between the two models concerns the nature of the noise, deterministic against
stochastic.

In fact, it is more the level of the two noises which are not the same.
The first main difference, since ξ is a white noise, is that Y in (1.2) is not really

“observed”. Indeed, ξ does not take its values in G. We only observe its projection
on some basis. Indeed, ξ as a white noise, is not a Hilbert-space random variable in
G but a Hilbert-space process acting on G. Formally, we have ‖ξ‖G = ∞, thus ξ is
not an element of G. On the other hand, the deterministic noise h belongs to G, and
‖h‖� 1. The deterministic noise is then “small” compared to the stochastic one.

This fact, has been already noted in [38].
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In order to have a more comprehensive study, consider the class of linear injec-
tive and compact operators which admit a singular value decomposition (SVD) (see
Section 1.1.5).

The analog of the sequence space model in (1.6) may be written as

Xk = θk + εσk hk, k = 1,2, . . . , (1.50)

where {hk} are the coefficients of h in the basis {ψk}.
A natural way of studying the two frameworks is to compare the accuracy of

estimation (reconstruction). Define two standard criteria, in order to measure the
error or risk, for any estimator f̂ (or regularization method). For the stochastic noise
model, use the maximal risk defined in Definition 1.9. For the deterministic noise
model, define the worst noise risk

sup
f∈F

sup
‖h‖�1

‖ f̂ − f‖2,

where f belongs to some class of functions F .
The goal is to compare the optimal rates of convergence in each model, i.e. the

order of the risk of the best possible estimator as ε → 0. Indeed, this rate defines a
notion of difficulty of estimation in a given model. Two models with the same opti-
mal rates of convergence are usually thought to be close, at least from the estimation
point of view.

One difference between deterministic and stochastic cases, is that since ‖h‖� 1
(i.e. ∑h2

k � 1), the noise hk decreases in (1.50) as k increases. In the stochastic case,
the level of the noise ξk is the same in each coefficient Xk. Thus, the stochastic noise
seems to be larger.

It is well-known, that the rates of convergence depend on difficulty of the inverse
problem and smoothness conditions on the function f (see Section 1.2.4). For the
inverse problems, the two standard cases are σk  kβ or σk  eβk, β > 0 which
correspond to mildly or severely ill-posed respectively. The parameter β denotes
the degree of ill-posedness.

Concerning smoothness properties of f , associated with the behaviour of its coef-
ficients θk, consider the ellipsoid of coefficients in �2 as in Section 1.2.3.2. Consider
the two standard cases, Sobolev (ak = kα ) and Analytic (ak = eαk), where α > 0 is
the smoothness of f .

For the stochastic noise, the optimal rates of convergence may be found in Table
2. Concerning the deterministic noise, rates of convergence may be obtained, for
example in [49].

Consider here the two more natural cases, polynomial (σ k  kβ and ak = kα ) and
exponential (σk  eβk and ak = eαk).

Consider also a third case: the direct problem, where σ k ≡ 1 (i.e. A = I) and f
belongs to a Sobolev ball (ak = kα ).

All these rates are given in the following table:
Remark that in the exponential case, rates of convergence are the same for the

two models.
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Table 1.3 Rates for deterministic and stochastic model
Deterministic Stochastic

Direct ε2 ε
4α

2α+1

Polynomial ε
4α

2α+2β ε
4α

2α+2β+1

Exponential ε
4α

2α+2β ε
4α

2α+2β

On the other hand, rates are different in the polynomial case, which is more standard.
There is a small difference between 2α/(2α + 2β ) and 2α/(2α + 2β + 1) which
could be thought as not very important. However, this is fundamental.

In order to understand well this phenomenon, consider what happens when β →
0. The problem is less and less ill-posed and becomes close to the case β = 0, i.e. to
the direct case where σk ≡ 1 and A = I is the identity. In the deterministic problem,
the rate will attain ε2 (a = 1) in the direct case. In the stochastic framework, the rate
will be ε4α/(2α+1).

The fundamental difference now appears. In the stochastic direct problem, the
rate depends on the smoothness α of the estimated function f . This is not true for
the deterministic framework.

In the stochastic case, in order to estimate the function f , one needs to balance
the approximation error and the stochastic error. This is the usual trade-off in non-
parametric statistics between the bias and the variance.

Everything is different in the deterministic case. The function f will be directly
estimated by Y , which attains the rate ε 2. There is no trade-off, the whole series {Xk}
is used to estimate {θk}. The rate ε2 is usually obtained in statistics in the parametric
case, i.e. when estimating a vector θ of finite dimension. In the stochastic case, one
cannot use directly Y which has infinite risk.

In the direct case, the two models are thus totally different. Indeed, the deter-
ministic noise is smaller than the stochastic one, because it is bounded. In (1.50)
the errors hk become small with k, whereas the stochastic errors ξk are of the same
order in (1.6).

From a statistical point of view such a small error would not really make sense.
Indeed, statistics study the effect of stochastic errors and these errors should be
important enough. However, from a numerical point of view, it could make sense to
neglect the noise, or at least to consider it as small. Thus, the difference is more in
the level of the noise than its nature (deterministic or stochastic).

In order to explain more clearly the influence of noise, consider the simple pro-
jection estimator,

θ̂k = I(k � N)
yk

bk
,

where I(·) is the indicator function and N is some integer. It is known that this family
of estimators attains, for a correct choice of N, the optimal rate of convergence on
Θ (see Theorem 1.6).

The �2−risk of this estimator is, in the stochastic model,
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Eθ‖θ̂ −θ‖2 = Eθ

∞

∑
k=1

(θ̂k−θk)2 =
∞

∑
k=N+1

θ 2
k + ε2

N

∑
k=1

σ2
k , (1.51)

and the �2−error of the reconstruction method, in the deterministic model, is

sup
‖h‖�1

‖θ̂ −θ‖2 = sup
‖h‖�1

(
∞

∑
k=N+1

θ 2
k + ε2

N

∑
k=1

h2
kσ

2
k

)
=

∞

∑
k=N+1

θ 2
k + ε2σ2

N , (1.52)

in the case of increasing σk.
The influence of the inverse problem is only on the variance term, i.e. the second

term in the right-hand side of (1.51) and (1.52). The approximation error ∑k>N θ 2
k

is not modified by the ill-posedness of the inverse problem.
The following table gives the order, as ε → 0, of the variance term ε 2∑N

k=1σ2
k or

ε2σ2
N , in the various settings.

Table 1.4 Variances for deterministic and stochastic model
Deterministic Stochastic

Direct ε2 ε2N

Mildly ε2N2β ε2N2β+1

Severely ε2eβN ε2eβN

The direct case corresponds to bk ≡ 1. In the deterministic model, since h ∈ �2, the
variance term is ε2, and does not depend on N. Thus, there is no trade-off, N can be
chosen as ∞, or any choice such that ∑k>N θ 2

k = O(ε2).
In the stochastic case, the variance term is ε 2N. Thus, we have to balance the bias

and the variance, as usually in nonparametric statistics, and find the optimal choice
of N.

The variance terms stay different in the mildly ill-posed (polynomial) case. The
ratio between the two variance terms is again N. However, this difference is less
important as β increases. Indeed, when β is large N 2β+1 is close to N2β .

The main point is that the variance term is larger in the case of ill-posed problems.
The degree of ill-posedness β appears directly in the variance term. The variance
increases with β .

Thus, in the case of ill-posed inverse problems, the deterministic error has more
influence than for the direct case. The presence of β increases the variance term.

For large β , the two models give almost the same rates. Finally, for severely
ill-posed problems (exponential case), these rates are the same.

The ill-posedness of the inverse problem hides, in some sense, the difference
between the two kinds of noise, by increasing the small deterministic noise. When
β is large, the main part of the variance term ε 2N2β (+1) is due to the inverse problem
and not to the nature of the noise. The inverse problem makes these two models more
close, when for the direct problem they are completely different.
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The difference between deterministic and stochastic noise is in its level and not
really in its nature. Thus, a stochastic model with a small noise could be considered.
The model is the following,

Xk = θk + ε σkekξk, k = 1,2, . . . , (1.53)

where {ξk} are independent standard Gaussian random variables, and {e k} ∈ �2,
‖e‖= 1. The risk of a projection estimator is then

Eθ‖θ̂ −θ‖2 =
∞

∑
k=N+1

θ 2
k + ε2

N

∑
k=1

e2
kσ

2
k . (1.54)

In the direct case, the variance term is then ε 2∑N
k=1 e2

k , bounded by ε 2. The optimal
rate is so ε2, as for the deterministic case.

In the case of ill-posed problem, hypothesis should be more precise in order to
obtain explicit rate of convergence. Indeed, in the deterministic case we study the
worst noise, i.e. sup‖h‖�1. Thus, we have to consider a noise in �2 but rather large,

almost on the “edge”. Some example is ek = (
√

k log(k + 1))−1, which is in �2. It is
clear that dividing Xk by ek , one obtains a model equivalent to (1.53), with a new
σ ′k = σkek.

With this choice of {ek}, in the mildly ill-posed case, the variance term is then
ε2∑N

k=1 k2β−1 log−1(k + 1), which is equivalent (up to a log term) to ε 2N2β . Thus,
the risk in (1.54) is of the same order than in the deterministic case. Looking at the
rate for the stochastic case with β −1/2, we obtain the rate with β for deterministic
case.

In the exponential case, {ek} has no real influence.
Thus, using a model of inverse problem with stochastic noise with a “small”

noise, we obtain the same rate of convergence than for the deterministic case (up
sometimes to some log term). A “small” stochastic noise is in fact a Hilbert-space
random variable, and not only a Hilbert-space process. It is random, but really takes
its values in G.

In conclusion, the main difference between the two approaches comes more from
the level of the noise and not so much from its nature.

However, this short study is not at all exhaustive. A more precise approach, based
not only on the comparison between the optimal rates, but also the exact constants in
the risk, would highlight more differences. For all that, such a technical comparison
would not really make sense, since at this precision level, any models are different.

A more sensible framework, in order to compare deterministic and stochastic
noise, concerns the construction of adaptive estimators, i.e. which do not depend on
the smoothness α of the function to reconstruct (see the following Section 1.3).

In this case the nature of the noise would have more influence. Indeed, the meth-
ods could then be very different, for example the discrepancy principle [49] for de-
terministic noise, or cross-validation, unbiased risk estimator (see Section 1.3.3.1)
or the Lepski method [87, 101] for stochastic noise. In the deterministic case, one
crucial point is that the error in the data (ε) is precisely known, and then, one can
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reject reconstruction f̂ such that ‖A f̂ −Y‖> ε . In the stochastic case, the main idea
of adaptation is to use large deviations for the noise. Usually, one find values such
that the noise will have a very small probability to fall beyond, as in Lemma 1.7 (see
also for some examples of adaptivity results [78] and [25]).

In conclusion, this study is not claiming that the two approaches present no dif-
ference. The two frameworks are similar in some ways. The differences coming
more from the level of the noise than from its nature.

1.3 Adaptation and Oracle Inequalities

One of the most important point in nonparametric statistics is then typically linked
to the problem of calibrating by the data the tuning parameter (N,γ or m) in any
class of estimators. For example, we have seen that this choice is very sensitive if
we want to attain the optimal rate of convergence.

This problem leads to the notion of adaptation and oracle inequalities, i.e. how
to construct truly data-driven estimators which have good theoretical properties.

This framework is very important, in theory, but also in applications. Indeed,
the notion of, rates of convergence, smoothness α of the function to reconstruct,
degree of ill-posedness β of the inverse problem, are very interesting. They help to
understand, the difficulty of an ill-posed problem, the influence of smoothness on the
rates and so on... The (minimax) optimality of an estimator is also very important.
Indeed it shows that no estimator may do better in a given class of functions.

However, they are just mathematical and asymptotical tools. The degree β of a
given inverse problem is usually not known. It is even worse concerning the smooth-
ness α of the target function f . One has no chance to have any idea of it.

Definitely, one cannot rely on some unknown smoothness, and asymptotic re-
lationship, in order to make the choice of the tuning parameter (N or γ). One has
to really construct data-driven methods in order to calibrate the tuning parameter.
Then, the main goal is to prove that this data-driven method has a good behaviour,
from a mathematical point of view.

This problem of adaptation is presented in the framework of the sequence space
model defined in (1.6) and directly linked, by use of the SVD, to some inverse
problem with a compact operator A.

1.3.1 Minimax Adaptive Procedures

The starting point of the approach of minimax adaptation is a collection G = {Θα}
of classesΘα ⊂ �2. The statistician knows that θ belongs to some memberΘα of the
collection G , but he does not know exactly which one. If Θα is a smoothness class,
this assumption can be interpreted as follows: the statistician knows that the underly-
ing function has some smoothness, but he does not know the degree of smoothness.
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Definition 1.12. An estimator θ � is called minimax adaptive on the scale of classes
G if for everyΘα ∈ G the estimator θ � attains the optimal rate of convergence.

An estimator θ � is called sharp minimax adaptive on the scale of classes G if
it also attains the exact minimax constant.

The idea of choosing the tuning parameter (bandwidth) of an estimator in a data-
driven way is a very standard idea in nonparametric statistics. However, the main
difficulty then concerns the mathematical behaviour of such an estimator. Only quite
recently, this idea has been formalized in a rigorous way by [87].

Lepski, in [88], has developped a method in order to construct adaptive estima-
tors, i.e. an estimator which attains the optimal rate for any class Θα .

In some cases, no estimator attains (exactly) the optimal rate on the whole scale.
One has often to pay a price for adaptation [89]. This cost in the accuracy for con-
struction of adaptive estimator is usually the loss of a logarithmic term in the rate of
convergence.

Since the beginning of the 90’s, adaptive estimation is really one of the leading
topics in nonparametric statistics. Many adaptive (or almost adaptive) estimators
have been constructed, in very different frameworks, and various classes of func-
tions.

One may use very different procedures in order to construct adaptive estimators,
for example, Lepski’s algorithm in [88], model selection in [4], unbiased risk esti-
mation in [82], or wavelets thresholding in [40].

Adaptive minimax estimation in statistical inverse problems as (1.2) has been
studied quite recently. This has been done for many inverse problems (deconvolu-
tion, heat equation, tomography...).

There exist also a very vast literature on adaptation in inverse problems by
Wavelet-Vaguelette Decomposition (WVD) on the Besov scale of classes, see
[39, 83, 78, 28, 34, 79, 29, 71].

Lepski’s procedure has been also used in inverse problems in several papers [55,
56, 21, 5, 101].

The unbiased risk estimation is also quite popular in inverse problems, see
[25, 97].

The model selection is considered in inverse problems [35, 91].
Other adaptive results may be found in [46, 47, 48, 58, 24, 57].

Remark 1.31. Minimax adaptive estimators are really important in statistics from a
theoretical and from a practical point of view. Indeed, it implies that these estimators
are optimal for any possible parameter in the collection G . From a more practical
point of view it garantees a good accuracy of the estimator for a very large choice
of functions.

Thus, we have an estimator which automatically adapts to the unknown smooth-
ness of the underlying function. The estimator is then completely data-driven and
automatic. However, it behaves as if it knew the true smoothness. This notion is very
important since this smoothness is almost never known.
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1.3.2 Oracle Inequalities

Consider now a linked, but different point of view. Assume that a class of estimators
is fixed, i.e. that the class of possible weights Λ is given. Define the oracle λ 0 as

R(θ ,λ 0) = inf
λ∈Λ

R(θ ,λ ). (1.55)

The oracle corresponds to the best possible choice in Λ , i.e. the one which mini-
mizes the risk. However, this is not an estimator since the risk depends on θ , the
oracle will also depend on this unknown θ . For this reason, it is called oracle since
it is the best one in the family, but it knows the true θ . Another important point is
to note that the oracle λ 0 usually depends really on the family Λ . As an infimum,
the oracle is not necessarily unique or may not be exactly attained. However, this
has no influence on the results. Indeed, one only considers the risk of the oracle
infλ∈Λ R(θ ,λ ).

The goal is then to find a data-driven sequence of weights λ � with values in Λ
such that the estimator θ � = θ̂ (λ �) satisfies an oracle inequality, for any ε > 0 and
any θ ∈ �2, there exits τε > 0,

Eθ‖θ �−θ‖2 � (1+ τε) inf
λ∈Λ

R(θ ,λ )+ Ωε , (1.56)

where Ωε is some positive remainder term and τε > 0 (close to 0 if possible). If
the remainder term is small, i.e. smaller than the main term R(θ ,λ 0) then an oracle
inequality proves that the estimator has a risk of the order of the oracle.

A standard remainder term is Ωε = cε2, where c is uniform positive constant. In
this case, the remainder term is really considered as “small”. Indeed, in most of the
nonparametric frameworks, the rates of convergence are worse than ε 2, which is the
parametric rate (see Table 2). In an asymptotic point of view, the risk of the oracle,
will then be larger than the remainder term. Thus, the leading term of the inequality
will be the risk of the oracle.

A more precise result is the following. The estimator θ � = θ̂ (λ �) satisfies an
exact oracle inequality, for any ε > 0, any θ ∈ �2, and for all τε > 0,

Eθ‖θ �−θ‖2 � (1+ τε) inf
λ∈Λ

R(θ ,λ )+ Ωε , (1.57)

where Ωε � 0 and usually Ωε depends on τε .

Remark 1.32. We are interested in data-driven methods, and thus automatic, which
more or less mimic the oracle.

One may obtain some asymptotic results when ε → 0. We call an asymptotic exact
oracle inequality on the class Λ , as ε → 0,

Eθ‖θ �−θ‖2 � (1+ o(1)) inf
λ∈Λ

R(θ ,λ ), (1.58)

for every θ within some large subsetΘ0 ⊆ �2.
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In other words, the estimator θ � asymptotically precisely mimics the oracle on
Λ for any sequence θ ∈Θ0.

An important question is how large is the class Θ0 for which (1.58) can be guar-
anteed. Ideally, we would like to have (1.58) for all θ ∈ � 2 and with o(1) that is
uniform over θ ∈ �2 (i.e. Θ0 = �2). This property can be obtained for some classes
Λ (see, for example, [25]), but with restrictions on Λ that do not allow correct rates
of the oracle risk R(θ ,λ 0) for “very smooth” θ , i.e. analytic functions. If we choose
Λ large enough to allow all the spectrum of rates for the oracle risk, up to the para-
metric rate ε2, we cannot have (1.58) for all θ ∈ �2 and with o(1) that is uniform over
θ ∈ �2. Although, slightly restricted versions of (1.58) are possible. In particular,Θ 0

can be either the set of all θ 	= 0, or the set �2
−, i.e. the subspace of �2 containing

all the sequences with infinitely many non-zero coefficients (i.e. “nonparametric”
sequences), or the set {θ : ‖θ‖� r0} for some small r0 > 0. Also, the uniformity of
o(1) in θ is not always granted if both classes Λ andΘ0 are large.

One of first to really see the importance of oracle inequalities are Donoho and
Johnstone in [40] where they introduced also the name oracle.

During the end of 90’s, the oracle was still mainly seen as just a tool in order
to prove adaptation. However, nowadays, this point of view has really changed.
Oracle inequalities are often considered as the main results for a given estimator.
The oracle approach has also modified the statisticians behaviour. For example, non-
asymptotical point of view is much more common now.

To our knowledge, one of the first exact oracle inequalities were obtained for the
classes of “ordered linear smoothers” in [82]. In particular, Kneip’s result applies to
projection estimators and to spline smoothing.

The work of Birgé and Massart on model selection is also strongly related to the
notion of oracle inequalities, usually in a slightly different form with a penalized
version of an oracle inequality, see [4, 8, 100].

Oracle inequalities are nowadays popular, in the nonparametric statistics litera-
ture, see [41, 17, 105, 31, 114].

The earlier papers of [119, 90, 59, 111] also contain, although implicitly, oracle
inequalities for some classes Λ . All these papers use the unbiased risk estimation
method (see Section 1.3.3.1).

A very interesting review on the topic is [18].
The oracle approach is quite recent in inverse problems. However, the oracle

point of view, was growing at the same times than the statistical study of inverse
problems. Thus, there is now a rather large interest on oracle inequalities in the
statistical inverse problem community, see [78, 25, 60, 35, 91, 98].

Comments

Oracle/minimax. The oracle approach is in some sense the opposite of the mini-
max approach. Here, we fix a family of estimators and choose the best one among
them. In the minimax approach, on the other hand, one tries to get the best ac-
curacy for functions which belong to some function class. The oracle approach
is really based on classes of estimators, when the minimax approach is built on
classes of functions.
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Non-asymptotic oracle. The oracle inequalities, are true for any θ , and are non
asymptotic. This fact has really changed the point of view concerning nonpara-
metric statistics. Nowadays, non-asymptotic results are really popular.

Oracle: tool for adaptation. The oracle approach is often used as a tool in order
to obtain adaptive estimators. Indeed, the oracle in a given class often attains
the optimal rate of convergence. Moreover, the estimator does not depend on
any smoothness assumptions on f . Thus, by proving an oracle inequality, one
often obtains, a minimax adaptive estimator, see for example, Theorems 1.8 and
1.10. During a quite long time, oracle inequalities were mainly considered as
just a tool in order to get minimax adaptive results. Already, [40] pointed out that
minimax adaptation can be proved as a consequence of oracle inequalities. They
also showed that the method of Stein’s unbiased risk estimator is minimax sharp
adaptive (or almost minimax sharp adaptive) on some Besov classes.

Minimax: justification for oracle. On the other hand, nowadays, the minimax
theory may be viewed as a justification for oracle inequality. Indeed, one may
ask if the given family of estimators is satisfying. One possible mathematical an-
swer comes from minimax results, which prove that a given family gives optimal
estimators. However, in applications, scientists are usually convinced that their
favourite method (Tikhonov, projection, ν−method,. . . ) is satisfying.

1.3.3 Model Selection

Usually, one key assumption in this approach of oracle inequality, is that λ � is re-
stricted to take its values in the same class Λ that appears in the RHS of (1.56). A
model selection interpretation of (1.56) is the following: in a given class of models
Λ we pick the model λ � that is the closest to the true parameter θ in terms of the
risk R(θ ,λ ).

The framework of model selection is very popular in statistics, and may have
several meaning depending on the topics. We consider the model selection approach
to the problem of choosing, among a given family of modelsΛ (estimators), the best
possible one. This choice should be made based on the data and not due to some a
priori information on the unknown function f .

1.3.3.1 Unbiased Risk Estimation

The definition of the oracle in (1.55) is that it minimizes the risk. Since θ is un-
known, the risk is also, and so is the oracle.

A very natural idea in statistics is to estimate this unknown risk by a function
of the observations, and then to minimize this estimator of the risk. A classical
approach to this minimization problem is based on the principle of Unbiased Risk
Estimation (URE).

The idea of unbiased risk estimation was developped in [2] and also in [96, 121].
This problem was originally studied in the framework of parametric estimation
where the dimension of the model had to choosen.
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Mallows, in [96], introduced the C p in the specific context of regression and the
problem of selecting the number of variables that one wants to use in the model.

Akaike, in [2], proposed the Akaike Information Criteria (AIC) in a rather general
setting. The idea is to choose the number of parameters N in order to minimize
−2LN + 2N where LN is the maximal value of the log-likelihood, see [3]. In our
framework of Gaussian white noise and sequence space model, i.e. a Gaussian noise
with a known variance, then AIC and C p are equivalent. There exist now a very large
number of criteria many of them related to AIC, see [119, 90, 111] or the Bayesian
Information Criteria (BIC) in [118].

Stein, in [121], proposed his well-known version of URE as the Stein Unbiased
Risk Estimation (SURE). The results are specific to the Gaussian framework.

Nowadays, Cp, AIC, BIC are all used as basic data-driven choices for many sta-
tistical models and in several standard softwares.

This idea appears also in all the cross-validation techniques, see the Generalized
Cross-Validation (GCV) in [36].

In inverse problems, the URE method is studied in [25], where exact oracle in-
equalities for the mean square risk were obtained.

In this setting, the functional

U (X ,λ ) =
∞

∑
k=1

(1−λk)2(X2
k − ε2σ2

k )+ ε2
∞

∑
k=1

σ2
k λ

2
k (1.59)

is an unbiased estimator of R(θ ,λ ) defined in (1.34).

R(θ ,λ ) = EθU (X ,λ ), ∀λ . (1.60)

The principle of unbiased risk estimation suggests to minimize over λ ∈Λ the func-
tional U (X ,λ ) in place of R(θ ,λ ). This leads to the following data-driven choice
of λ :

λ �
ure = argmin

λ∈Λ
U (X ,λ ) (1.61)

and the estimator θ �
ure defined by

θ �
k = λ �

k Xk. (1.62)

Let the following assumptions hold. For any λ ∈Λ

(A1) 0 <
∞

∑
k=1

σ2
k λ

2
k < ∞, max

λ∈Λ
sup

k
|λk|� 1,

and, there exists a constant C > 0 such that,

(A2)
∞

∑
k=1

σ4
k λ

2
k �C

∞

∑
k=1

σ4
k λ

4
k .
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Assumptions (A1) and (A2) are rather mild, and they are satisfied in most of the
interesting examples. For example, they are trivialy true for projection estimators.
Since |λk|� 1, we also have

∞

∑
k=1

σ4
k λ

4
k �

∞

∑
k=1

σ4
k λ

2
k ,

and Assumption (A2) means that both sums are of the same order. The sums
ε4∑∞

k=1σ4
k λ

4
k and ε4∑∞

k=1σ4
k λ

2
k are the main terms of the variance of U (X ,λ ).

The Assumption (A1) is quite natural. The first part of (A1) is just to claim that
any estimator in Λ has a finite variance. The second point follows from (1.34) the
remark that the estimator θ̂ (λ ) with at least one λk 	∈ [0,1] is inadmissible. However,
we included the case of negative bounded λ k since it corresponds to a number of
well-known estimators, such as some kernel ones.

Denote

ρ(λ ) = sup
k
σ2

k |λk|
{ ∞

∑
k=1

σ4
k λ

4
k

}−1/2

and
ρ = max

λ∈Λ
ρ(λ ).

Although the main results of this section hold for general ρ , usually think of ρ as
being small (for small ε).

Denote also

S =
(

maxλ∈Λ ∑∞
k=1σ4

k λ
2
k

minλ∈Λ ∑∞
k=1σ4

k λ
2
k

)1/2

,

M = ∑
λ∈Λ

exp{−1/ρ(λ )},

and
LΛ = log(DS)+ρ2 log2(MS).

Note that LΛ is a term that measure the complexity of the family Λ and not only its
cardinality D.

We obtain the following oracle inequality.

Theorem 1.7. Suppose σk  kβ , β � 0. Assume that Λ is finite with cardinality D
and checking Assumptions (A1)-(A2). There exist constants γ1,γ2 > 0 such that for
every θ ∈ �2 and for the estimator θ �

ure defined in (1.62), we have for B large enough,

Eθ‖θ �
ure−θ‖2 � (1+ γ1B−1)min

λ∈Λ
R(θ ,λ )+ γ2Bε2LΛ ω(B2LΛ ), (1.63)

where

ω(x) = max
λ∈Λ

sup
k

(
σ2

k λ
2
k I

{ ∞

∑
i=1

σ2
i λ

2
i � xsup

k
σ2

k λ
2
k

})
, x > 0.



60 Laurent Cavalier

Proof. The proof of this theorem may be found in [25].

This result has been extended to the non-compact case in [22].
Functionω(x) may appear a bit unclear. It depends on the degree of ill-posedness

β of the inverse problem and the family of estimators. However, in many examples,
it is bounded (up to a constant) by x2β (see Examples in [25]). Thus the remainder
term in the oracle inequality is usually of order ε 2L2β+1

Λ .
By assuming hypothesis on the behaviour of D and S when ε is large, one may

obtain an asymptotic exact oracle inequality.
Consider the following family of projection estimators.

Example 1.4. Projection estimators. Let 1 � N1 < .. . < ND be integers. Consider
the projection filters λ s = (λ s

1 ,λ
s
2 , . . .) defined by

λ 1
k = I(k � N1), λ 2

k = I(k � N2), . . . , λD
k = I(k � ND), k = 1,2, . . . (1.64)

Suppose also, a polynomial behaviour for S = O(ε −t), for some t > 0 and D =
O(ε−ν ), for some ν > 0. We have log(DS) = O(log(1/ε)). As noted Assumptions
(A1) and (A2) are always true for projection estimators. Note also that here ω(x) �
Cx2β and

LΛ �C
(
log(DND/N1)+ N−1

1 log2(ND/N1)
)
.

We have the following corollary.

Corollary 1.1. Assume thatΛ =(λ 1, . . . ,λD) is the set of projection weights defined
in (1.64). If D = D(ε) and N1 = N1(ε), ND = ND(ε) are such that

lim
ε→0

log(DND/N1)
N1

= 0 (1.65)

then for every θ ∈ �2 and for the estimator θ �
ure defined in (1.62), we have

Eθ‖θ �
ure−θ‖2 � (1+ o(1)) inf

λ∈Λ
R(θ ,λ ),

where o(1)→ 0 uniformly in θ ∈ �2.

Proof. The proof of this theorem may be found in [25].

In other words, Corollary 1.1 states that the data-driven selection method λ �
ure be-

haves itself asymptotically at least as good as the best projection estimator in Λ .
As noted, a major contribution of oracle inequalities is that they usually allow

to construct rather easily minimax adaptive estimators. One just has to construct
carefully a family of projection estimators which allows to attain the optimal rate of
convergence.

Theorem 1.8. Suppose σk  kβ , β � 0. Assume that Λ = (λ 1, . . . ,λD) is the set of
projection weights defined in (1.64). Choose Nj = j, j = 1, . . . ,ε−2. Assume that θ
belongs to the ellipsoid Θ(α ,L), where ak = kα , α > 0, L > 0, defined in (1.40).
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Then the URE estimator θ �
ure defined in (1.62) verifies, for any α > 0 and L > 0, as

ε → 0,
sup

θ∈Θ(α,L)
Eθ‖θ �

ure−θ‖2 �Cε4α/(2α+2β+1).

This rate is optimal (see Theorem 1.5).
Thus, the URE estimator is then minimax adaptive on the class of ellipsoid.

Proof. The first part of the proof is based on Theorem 1.7. As noted Assump-
tions (A1) and (A2) are always true for projection estimators. Moreover, here
S = O(ε−2β−1), D = O(ε−2) and ω(x)�Cx2β . The remainder term is then of order
ε2 log2β+1(1/ε).

The second part is just checking that the best projection estimator in Λ attains
the optimal rate of convergence. This is true by Theorem 1.6 which gives the opti-
mal choice N  ε−2/(2α+2β+1). Remark also that the remainder term is then much
smaller than the optimal rate of convergence.

Remark 1.33. Theorem 1.8 may very easily be modified in order a sharp adaptive
estimator, i.e. minimax adaptive which also the exact constant. One just has to re-
place the projection family by the Pinsker family, which is minimax on ellipsoids
(see Theorem 1.5).

Remark 1.34. One may note that even if we have obtained a very precise oracle in-
equality in Theorem 1.7, the URE method is in fact not so satisfying in simulations.
In the case where the problem is really ill-posed, the URE method is in fact not
stable enough (see Section 1.3.3.3).

This behaviour, may also be understood, by looking at the results and the proof
of Theorem 1.7. These remarks lead to the idea of choosing the bandwidth N by a
more stable approach (see Section 1.3.3.2).

Comments

Data-driven choices. One of main difficulties in adaptation or oracle results is
that we deal with data-driven choices of N. Thus, the risk of the estimator is
very difficult to control since it depends on the observations through X k and also
through the data-driven choice of λ �(X). This really changes the structure of the
estimator. For example, a linear estimator θ̂ (λ ) with a data-driven choice of λ �

is no more linear. The same remark is true for the unbiased risk estimator, which
is no more unbiased for a data-driven choice λ �.

More difficult proofs. This remark is clearly one of the main difficulty when deal-
ing with data-driven choices of N. Thus, adaptive estimator or oracle inequality
are usually more difficult to obtain than rates of convergence results for a given
estimator.

Proof of an oracle. We will see this influence in the proof of Theorem 1.9. In-
deed, one has to deal carefully with remainder terms depending on a data-driven
choice λ �.
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The very important following lemma is used in the proofs of Theorems 1.7 and 1.9.
It may be found in [25]. It allows to control the deviation of the centered stochastic
term. This version is not sharp enough to obtain very precise results (see proof of
Theorem 1.9). However, it allows to understand the behaviour of the main stochastic
term.

This kind of lemma linked to large deviations and exponential inequalities is
usually very important in adaptation or oracle inequality results. One needs to study
more carefully the behaviour of the stochastic term, and not only control its variance,
which is usually enough in rates of convergences results. These inequalities are also
linked to the concentration inequalities, see [124].

Let

η̄v = (
√

2‖v‖)−1
∞

∑
i=1

vk(ξ 2
i −1)

where the sums ‖v‖2 and ∑∞
k=1 vi(ξ 2

i − 1) are understood in the sense of mean
squared convergence. Define

m(v) = sup |vi|/‖v‖.

Lemma 1.7. We have, for κ > 0

P(η̄v > x) �

⎧⎨
⎩

exp
(
− x2

2(1+κ)

)
for 0 �

√
2m(v)x � κ ,

exp
(
− x

2
√

2(1+κ−1)m(v)

)
for

√
2m(v)x > κ .

(1.66)

Proof. Using the Markov inequality and the formula

− log(1− x) =
∞

∑
k=1

xk

k

one obtains, for any 0 < t < [
√

2m(v)]−1, since {ξi} are i.i.d. standard Gaussian,

P{η̄v > x} � exp(−tx)Eexp(t η̄v)

= exp(−tx)
∞

∏
i=1

exp

{
− tvi√

2‖v‖
− 1

2
log

(
1−

√
2tvi

‖v‖

)}

= exp(−tx)exp

{ ∞

∑
k=2

∞

∑
i=1

1
2k

(√
2tvi

‖v‖

)k}

= exp(−tx)exp

{ ∞

∑
k=2

(
√

2t)k

2k

∞

∑
i=1

(
vi

‖v‖

)2( vi

‖v‖

)k−2}

� exp(−tx)exp

{
1

m2(v)

∞

∑
k=2

1
2k

[
√

2tm(v)]k
}

� exp(−tx)exp

{
− 1

2m2(v)
log[1−

√
2tm(v)]− t√

2m(v)

}
.
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Minimization of the last expression with respect to t yields

P{η̄v > x}� exp [ϕv(x)] , ϕv(x) =
1

2m2(v)
log[1+

√
2xm(v)]− x√

2m(v)
.

Note that for u � 0 we have

log(1+ u)−u = u
∫ 1

0

(
− τu

1+ τu

)
dτ �−

∫ 1

0

τu2

1+ u
dτ =− u2

2(1+ u)
.

Thus

ϕv(x) �− x2

2(1+
√

2xm(v))
,

and we obtain

P{η̄v > x}� exp

{
− x2

2(1+
√

2xm(v))

}
, ∀x > 0. (1.67)

It is easy to see that

− x2

2(1+
√

2xm(v))
�

{
−x2/2(1+κ),

√
2m(v)x � κ ,

−x/[2
√

2(1+κ−1)m(v)],
√

2m(v)x > κ .

Remark 1.35. There exist two different behaviours for ηv.
The first one is a Gaussian behaviour η̄v ∼ N (0,1), when x is small, i.e. for

moderate deviations.
If η̄v was really N (0,1), the exponential term should be with a constant 1/2 and

not 1/2(1+κ).
The second behaviour, for large x, i.e. for large deviations, is a Chi-square, cen-

tered and dilated by influence of vi (exponential).

1.3.3.2 Risk Hull Method

In order to present the risk hull minimization, which is an improvement of the URE
method, we restrict ourselves to the class of projection estimators. In this case, the
URE criterion may be written

U (X ,N) =
∞

∑
k=N+1

(X2
k − ε2σ2

k )+ ε2
N

∑
k=1

σ2
k .

This corresponds in fact to the minimization in N of

R̄(X ,N) =
∞

∑
k=N+1

(X2
k − ε2σ2

k )+ ε2
N

∑
k=1

σ2
k −

∞

∑
k=1

(X2
k − ε2σ2

k )
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and then

R̄(X ,N) =−
N

∑
k=1

X2
k + 2ε2

N

∑
k=1

σ2
k .

There exists a more general approach which is very close to the URE. This method
is called method of penalized empirical risk, and in the context of our problem it
provides us with the following bandwidth choice

N =argmin
N�1

R̄pen(X ,N), R̄pen(X ,N)=
{
−

N

∑
k=1

X2
k + ε2

N

∑
k=1

σ2
k + pen(N)

}
, (1.68)

where pen(N) is a penalty function. The modern literature on this method is very
vast and we refer interested reader to [8]. The main idea at the heart of this approach
is that severe penalties permit to improve substantially the performance of URE.
However, it should be mentioned that the principal difficulty of this method is related
to the choice of the penalty function pen(N). In this context, the URE criterion
corresponds to a specific penalty called the URE penalty

penure(N) = ε2
N

∑
k=1

σ2
k .

The idea is usually to choose a heavier penalty, but the choice of such a penalty is a
very sensitive problem, and as we will see later, especially in the inverse problems
context.

In [26], a more general approach is proposed, called Risk Hull Minimization
(RHM) which gives a relatively good strategy for the choice of the penalty. The
goal is to present heuristic and mathematical justifications of this method.

The heuristic motivation of the RHM approach is based on the oracle approach.
Consider here only the family of projection estimators θ̂ (N),N � 1. Suppose

there is an oracle which provides us with θk. In this case the oracle bandwidth is
evidently given by

Nor = argmin
N

r(X ,N), where r(X ,N) = ‖θ̂(N)−θ‖2.

This oracle mimimizes the loss and is even better than the oracle of the risk. Let us
try to mimic this bandwidth choice. At the first glance this problem seems hopeless
since in the decomposition

r(X ,N) =
∞

∑
k=N+1

θ 2
k + ε2

N

∑
k=1

σ2
k ξ

2
k , (1.69)

neither θ 2
k nor ξ 2

k are really known. However, suppose for a moment, that we know
all θ 2

k , and try to minimize r(X ,N). Since ξ 2
k are assumed to be unknown, we want

to find an upper bound. It means that we minimize the following non-random func-
tional
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l(θ ,N) =
∞

∑
k=N+1

θ 2
k +V(N), (1.70)

where V (N) bounds from above the stochastic term ε 2∑N
k=1σ2

k ξ
2
k . It seems natural

to choose this function such that

Esup
N

[
ε2

N

∑
k=1

σ2
k ξ

2
k −V(N)

]
� 0, (1.71)

since then we can easily control the risk of any projection estimator with any data-
driven bandwidth N�

Eθ‖θ̂ (N�)−θ‖2 � Eθ l(θ ,N�). (1.72)

This motivation leads to the following definition:

Definition 1.13. A non random function �(θ ,N) is called risk hull if

Eθ sup
N

[r(X ,N)− �(θ ,N)] � 0.

Thus, we can say that l(θ ,N) defined by (1.70) and (1.71) is a risk hull. Evidently,
we want to have the upper bound (1.72) as small as possible. So, we are looking for
a rather small hull. Note that this hull strongly depends on σ 2

k .
Once V (N) satisfying (1.71) has been chosen, the minimization of l(θ ,N) can

be completed by the standard way using the unbiased estimation. Note that our
problem is reduced to minimization of −∑N

k=1 θ 2
k +V(N). Replacing the unknown

θ 2
k by their unbiased estimates X 2

k − ε2σ2
k , we arrive at the following method of

adaptive bandwidth choice

N̄ = argmin
N

[
−

N

∑
k=1

X2
k + ε2

N

∑
k=1

σ2
k +V(N)

]
.

In the framework of the empirical risk minimization in inverse problems, the RHM
can be defined as follows. Let the penalty in (1.68) be for any α > 0

V (N) = penrhm(N) = ε2
N

∑
k=1

σ2
k +(1+α)U0(N), (1.73)

where
U0(N) = inf

{
t > 0 : E(ηNI(ηN � t)) � ε2σ2

1

}
, (1.74)

with

ηN = ε2
N

∑
k=1

σ2
k (ξ 2

k −1). (1.75)

This RHM penalty corresponds in fact to the URE penalty plus some term (1 +
α)U0(N). One may prove that (see [26]) when N → ∞
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U0(N)≈
(

2ε4
N

∑
k=1

σ4
k log

(
∑N

k=1σ4
k

2πσ 4
1

))1/2

. (1.76)

The RHM chooses the bandwidth Nrhm according to (1.68) with the penalty function
defined by (1.73) and (1.74). The estimator θ �

rhm is then defined by

θ �
k = I(k � Nrhm)Xk. (1.77)

The following oracle inequality provides an upper bound for the mean square risk
of this approach.

Theorem 1.9. Suppose that σk  kβ . Let RHM bandwidth choice Nrhm according to
(1.68) with the penalty function defined by (1.73) and θ �

rhm the associated projection
estimator defined in (1.77).

There exist constants C∗ > 0 and δ0 > 0 such that for all δ ∈ (0,δ0] and α > 1

Eθ‖θ �
rhm−θ‖2 � (1+ δ ) inf

N�1
Rα(θ ,N)+C∗ε2

(
1

δ 4β+1
+

1
α−1

)
, (1.78)

where

Rα(θ ,N) =
∞

∑
k=N+1

θ 2
k + ε2

N

∑
k=1

σ2
k +(1+α)U0(N).

Proof. Many of the details are deleted, in order to keep only the idea behind the risk
hull. The proof in its full length can be found in [26].

The proof is now in two parts:
The first part is to prove the following lemma.

Lemma 1.8. We have, for any α > 0,

lα(θ ,N) =
∞

∑
k=N+1

θ 2
k + ε2

N

∑
k=1

σ2
k +(1+α)U0(N)+

Cε2

α
.

is a risk hull, where C > 0 is a positive constant.

Proof. Using (1.69) and (1.70), remark that

Esup
N

(ηN − (1+α)U0(N))+ � Cε2

α

implies
Eθ sup

N
(r(X ,N)− lα(θ ,N))+ � 0.

We have

Esup
N

(ηN − (1+α)U0(N))+ �
∞

∑
N=1

E(ηN − (1+α)U0(N))+ . (1.79)
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The definition of U0(N) in (1.74) implies

E(ηN −U0(N))+ � E(ηNI(ηN �U0(N))) � ε2σ2
1 .

Moreover, by integrating by parts we obtain

E(ηN − (1+α)U0(N))+ =
∫ ∞

(1+α)U0(N)
P(ηN > x)dx. (1.80)

Denote by
MN = ε2 max

k=1,...,N
σ2

k

and

ΣN = ε4
N

∑
k=1

σ4
k .

Since the inverse problem is mildly ill-posed, one obtains, by use of (1.46), as
N → ∞,

MN  ε2N2β , (1.81)

ΣN  ε2
N

∑
k=1

k4β  ε4N4β+1 (1.82)

and, using (1.76),
U0(N) ε2N2β+1/2

√
logN. (1.83)

Considering only the family of projection estimators, we get another version of
Lemma 1.7 with κ = 1/4.

Lemma 1.9. We have

P(ηN > x) �

⎧⎨
⎩

exp
(
− x2

5ΣN

)
0 � x � ΣN

4MN
,

exp
(
− x

20MN

)
x > ΣN

4MN
.

(1.84)

Remark that, due to (1.81)-(1.83), U0(N) � ΣN/4MN , when N is large.
We can then divide in two parts the integral in (1.80),∫ ∞

(1+α)U0(N)
P(ηN > x)dx =

=
∫ ΣN

4MN

(1+α)U0(N)
P(ηN > x)dx +

∫ ∞

ΣN
4MN

P(ηN > x)dx. (1.85)

When x > ΣN/4MN , we have, when N → ∞,

∫ ∞

ΣN/4MN

exp

(
− x

20MN

)
dx�CMNexp

(
−C

ΣN

M2
N

)
Cε2N2β exp(−CN) . (1.86)
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Moreover

∫ ∞

(1+α)U0(N)
exp

(
− x2

5ΣN

)
dx �

∫ ∞

(1+α)U0(N)

x
(1+α)U0(N)

exp

(
− x2

5ΣN

)
dx

� 5ΣN

2(1+α)U0(N)
exp

(
− (1+α)2U0(N)2

5ΣN

)
.

Thus, using (1.76), we obtain

∫ ∞

(1+α)U0(N)
exp

(
− x2

5ΣN

)
dx

�C
√
ΣN exp

(
−2

5
(1+α)2 log

(
∑N

k=1σ4
k

2πσ 4
1

))
. (1.87)

Using (1.82), remark that the term in (1.86) is smaller than the one in (1.87), as
N → ∞. Using (1.79), (1.80) and (1.85), we then obtain

Esup
N

(ηN − (1+α)U0(N))+ �
∞

∑
N=1

Cε2 exp

(
−
(

2
5
(1+α)2− 1

2

)
log(N)

)
.

Thus, for α large enough (α > 2), the term is then summable in N and we obtain

Esup
N

(ηN − (1+α)U0(N))+ � Cε2

α
.

The proof for α > 0 small is much more technical and based on chaining arguments
(see [26]).

In the second part of the proof of Theorem 1.9, we need to prove that we are able to
minimize this risk hull based on the data. Since lµ(θ ,N) is a risk hull for any µ > 0
we have

lµ(θ ,N) =
∞

∑
k=N+1

θ 2
k + ε2

N

∑
k=1

σ2
k +(1+ µ)U0(N)+

Cε2

µ
, (1.88)

and therefore
Eθ‖θ̂(Nrhm)−θ‖2 � Eθ lµ(θ ,Nrhm). (1.89)

On the other hand, since Nrhm minimizes R̄pen(X ,N), we have for any integer N

Eθ R̄pen(X ,Nrhm) � Eθ R̄pen(X ,N) = Rα(θ ,N)−‖θ‖2. (1.90)

In order to combine the inequalities (1.89) and (1.90), we rewrite l µ(θ ,Nrhm) in
terms of R̄pen(X ,Nrhm),

lµ(θ ,Nrhm) = R̄pen(X ,Nrhm)+‖θ‖2 +
Cε2

µ
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+2ε
Nrhm

∑
k=1

σkθkξk + ε2
Nrhm

∑
k=1

σ2
k (ξ 2

k −1)− (α− µ)U0(Nrhm).

Therefore, using this equation, (1.89) and (1.90), we obtain that for any integer N

Eθ‖θ̂(Nrhm)−θ‖2 � Rα(θ ,N)+
Cε2

µ
+ Eθ2ε

Nrhm

∑
k=1

σkθkξk

+Eθ

[
ε2

Nrhm

∑
k=1

σ2
k (ξ 2

k −1)− (α− µ)U0(Nrhm)
]
.

The next step is to control the last two terms in the above equation. This part of
proof is not done here (see [26]).

This control should be done for any data-driven choice N � (or Nrhm), this is why
these terms are difficult to control. Moreover, to get a sharp oracle inequality, one
has to be rather precise.

The first term, of the last two terms, may be included in the left term (the risk
of the RHM estimator) and in the remainder term. However, this part of the proof
is one of the more delicate. One really has to control this stochastic term for any
data-driven N� (see [26]).

The second term, of the last two terms, is very close to Lemma 1.8 and its proof.
Thus, we may use again the risk hull in order to control it.

As noted, a major contribution of oracle inequalities is that they usually allow to
construct rather easily minimax adaptive estimators. Here the proof is very simple
because the family of estimators corresponds to all possible choices of N.

Theorem 1.10. Suppose σk  kβ , β � 0. Let RHM bandwidth choice Nrhm accord-
ing to (1.68) with the penalty function defined by (1.73) and θ �

rhm the associated
projection estimator defined in (1.77).

Assume that θ belongs to the ellipsoid Θ(α ,L), where ak  kα , α > 0, L > 0,
defined in (1.40). Then the RHM estimator θ �

rhm verifies, for any α > 0 and L > 0,
as ε → 0,

sup
θ∈Θ(α,L)

Eθ‖θ �
rhm−θ‖2 �Cε4α/(2α+2β+1).

This rate is optimal (see Theorem 1.5).
Thus, the RHM estimator is then minimax adaptive on the class of ellipsoid.

Proof. The proof is a direct consequence of Theorem 1.6 and 1.9. One has to note
that, due to (1.83), U0(N) = o(ε2∑N

k=1σ2
k ) as N → ∞. Asymptotically, the RHM

penalty is negligible as compared to the URE penalty. Thus, the penalized oracle
Rα(θ ,N) on the right hand side of Theorem 1.9 still attains the optimal rate of
convergence.

Remark 1.36. In order to construct a sharp adaptive estimator on ellipsoids, one has
to obtain results for the Pinsker family. The RHM method has been extended to the
Pinsker family in [99].
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Comments

Penalized oracle. We have an oracle inequality but with a penalty term on the
RHS. This is usually called a (penalized) oracle inequality. This is standard in the
penalized empirical risk approach. At the first sight, the result may look weaker
than in Theorem 1.7. Indeed, the main term is a penalized oracle here when it
was the true oracle in Theorem 1.7. However, here the remainder term is bet-
ter. In Theorem 1.7, the remainder term depends on the cardinality and on the
complexity of the family of estimators. In Theorem 1.9, there is no such price,
and moreover the family may be infinite. However, as will be explained by sim-
ulations in Section 1.3.3.3, the even more important point is that the constant is
much more under control than in Theorem 1.7.

Natural penalty. By (1.76) the penalty U0(N) is almost of the order of the stan-
dard deviation of the empirical risk. This seems rather natural, since it really
controls the behaviour of the empirical risk, i.e. not only its expectation but also
its standard deviation.

Second order penalty. We have U0(N) = o(ε2∑N
k=1σ2

k ) as N → ∞, since (1.83).
We add a penalty (see (1.73)) which is small compared to the URE penalty. In
fact, the RHM penalty may be thought as the URE penalty plus a second or-
der penalty. From an asymptotical point of view, there is no real difference be-
tween the URE and the RHM. Thus, the two methods should be very close. A
consequence of the previous remark, is that the (penalized) oracle inequality is
then (asymptotically) as sharp as the one in Theorem 1.7. Asymptotically, one
may obtain exactly the same results, since the penalty is smaller. Thus, minimax
adaptive estimators may be constructed directly (see Theorem 1.10).

Direct problem. In the direct problem (A = I), i.e. in Gaussian white noise model,
due to (1.76), the penalty is then:

Penrhm(N) = ε2N +(1+α)U0(N),

where

U0(N) ≈
(

2ε4N log
N
2π

)1/2

.

One may see that we really add a second order penalty.

Difference between RHM and URE. On the one hand, the previous remarks show
that the RHM penalty is equal to the URE penalty plus a small term (compared
to the URE penalty). On the other hand, there exist main differences between the
two estimators, especially in the case of inverse problems. RHM is much more
stable than URE (see Section 1.3.3.3). Moreover, in the simulations, it is always
more accurate, even in the direct problem. However, the difference is much more
important in ill-posed framework.

Asymptotics in inverse problems. One of the reason for its instability is that
URE is based on some asymptotical ideas. In inverse problems, usually N is
not very large, due to the increasing noise. Indeed, in the ill-posed context, the
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term σk → ∞. It means that the noise is really increasing with k. One has to be
very careful with high frequencies. More or less, it is very difficult to choose a
large number of coefficients N. On the one hand, the minimax theory, claims that
the optimal choice of N is going to infinity in nonparametric statistics (see for
example Theorem 1.6). On the other hand, the choice of N cannot be too large,
otherwise, in real inverse problems the noise will explose.
Thus, one has to be very careful with asymptotics in inverse problems.

Penalty computed by Monte Carlo. The penalty U0(N) may be computed by
Monte Carlo simulations. Indeed, the definition of U0(N) in (1.74) has no ex-
plicit solution. There exists an approximation of U0(N) in (1.76), but it is true for
N large enough. As noted, N is not so large in inverse problems. Thus, a more
careful and accurate way to compute U0(N) is by use of Monte Carlo. It is a bit
time consuming, but it is done only once for one given inverse problem.

Explicit penalty. By use of RHM we obtain, an explicit penalty which comes
from the proof of Theorem 1.9. It is really by looking inside the proof of Lemma
1.8 that one may understand the penalty form. The constraint, that one wants to
have a risk hull really help in choosing such a penalty.
Another very important point, is that after, this penalty may be used directly
in simulations. The method, really gives, an explicit penalty. There is no gap
between the penalty needed in Theorem 1.9 and the one used in the simulation
study.

1.3.3.3 Simulations

In order to illustrate the difference between direct and inverse estimation, we will
carry out a very simple numerical experiment. Obviously, we cannot compute it for
all θ ∈ �2. Therefore, let us take θk ≡ 0 and compute the ratio between the risk
and the risk of the oracle for two cases σk ≡ 1 and σk = k. The first case corre-
sponds to classical function estimation (direct estimation), whereas the second is
related to the estimation of the first order derivative of a function (inverse estima-
tion). Notice that in both cases the risk of the oracle is clearly infN R(0,N) = ε2

since argminN R(0,N) = 1.
In order to study the performance of the URE, we generate 2000 independent

random vectors of y j, j = 1, ...,2000 with the components defined by (1.5). For each
vector we compute Nure(y j) and the normalized error ‖θ̂ [Nure(y j)]− θ‖2/ε2 and
plot these values as a stem diagram. We also compute the mean empirical bandwidth
Nemp and the normalized mean empirical risk Remp by

Nemp =
1

2000

2000

∑
j=1

Nure(y j), Remp =
1

2000ε2

2000

∑
j=1

‖θ̂ [Nure(y j)]−θ‖2.

Let us discuss briefly the numerical results of this experiment shown on Figure
1.1. The first display (direct estimation) shows that the URE method works reason-
ably well. Almost all bandwidths Nure(y j) are relatively small (their mean is 1.98)
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Fig. 1.1 The method of unbiased risk estimation

and the normalized error is 3.72. The second display shows that the distribution of
Nure(y j) changed essentially. Now the mean bandwidth is 5.95 and there are suf-
ficiently many bandwidths Nure(y j) greater than 20. This results in a catastrophic
normalized error around 2000.

In this section, we present some numerical properties of the RHM approach. We
will study in a more general context than the previous no-signal one, i.e. θ k ≡ 0.
Numerical testing of nonparametric statistical methods is a very difficult and deli-
cate problem. The goal of this section is to illustrate graphically Theorem 1.7 and
Theorem 1.9. To do that, we propose to measure statistical performance of a method
N� by its oracle efficiency defined by

eor(θ ,N�) =
infN Eθ‖θ̂(N)−θ‖2

Eθ‖θ̂(N�)−θ‖2
.

If the oracle efficiency of a method is close to 1 then the risk is very close to the risk
of the oracle.

It should be mentioned that we use the inverse of the previous ratio since we want
to get a good graphical representation of the performance. We have just seen in the
previous part that the ratio can vary from 1 to 2000 for the URE method. This results
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in a degenerate plot. Therefore, in order to avoid this effect, we use this definition
of the oracle efficiency eor(θ ,N�).

Since it is evidently impossible to compute the oracle efficiency for all θ ∈ � 2,
we choose a sufficiently representative family of vectors θ . In what follows we will
use the following family, with polynomial decreasing,

θ a
k =

aε
1+(k/W)m ,

where ε is the noise level, a is called amplitude, W bandwidth, and m smoothness.
We shall vary a in a large range and plot eor(θ a,N�) as a function of a which is

directly related with the signal-to-noise ratio in the model considered. In a statistical
framework a2 would be n the number of observations. The parameters m = 6 and
W = 6 are fixed. Many other examples of (W,m) were looked at, simulations showed
that the oracle efficiency exhibits similar behaviour.

Two methods of data-driven bandwidth choice will be compared: the URE and
the RHM with α = 1.1. One may note that for these methods eor(θ a,N�) does not
depend on ε . This function was computed by the Monte Carlo method with 40000
replications.

We start with the direct estimation where σk ≡ 1. Figure 1.2 shows the oracle
efficiency of the URE (left panel) and the oracle efficiency of the RHM (right panel).
Comparing these plots, one can say that both methods work reasonably well. Both
efficiencies are very close to 1. The risk of URE method is around 1/0.75 = 1.33
times the risk of oracle, when RHM method is around 1/0.82 = 1.22 times the
oracle. Thus RHM is always better than URE, but the ratio is something like 5% to
10%.

However, if we deal with an inverse problem (σk = k), we can already see a
significant difference between these methods. The corresponding oracle efficiencies
are plotted on the left and on the right panels of Figure 1.3. For small values a
the performance of the URE is very poor, whereas the RHM demonstrates a very
stable behaviour. For very large a = 500 the oracle efficiency of the URE is of order
0.16, which means that its risk is around 6 times the one of the oracle. For smaller
a = 100, it is around 10 times the oracle. In the meantime, the RHM has always an
efficiency greater than 0.4 and usually around 0.5, i.e. 2 times the risk of the oracle.

The last Figure 1.4 deals with the case when the inverse problem is more ill-posed
(σk = k2) . In this situation the URE fails completely. Its maximal oracle efficiency
is of order 3∗ 10−4, i.e. 10000 times the oracle. Nevertheless, the RHM has a good
efficiency (greater than 0.3). Its risk is then around 3 times those of the oracle.

Another remark is that the RHM is really stable compared to the increasing de-
gree of ill-posedness β of the problem. The efficiency is worse when the inverse
problem is more difficult, but it is always reasonable. The behaviour of URE is
completely different, it really exploses with β .

One may also see that URE is really based on asymptotic ideas. Indeed, its oracle
efficiency is highly increasing with the amplitude a. On the other hand, RHM is
stable, and does not rely on large values of a.
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Fig. 1.2 Oracle efficiency of URE (left) and RHM (right) for direct estimation.
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Fig. 1.3 Oracle efficiency of URE and of RHM for inverse problem (β = 1).
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This simulation study, shows that there is a huge difference between the two
methods, at least in inverse problems. This may be surprising, since the RHM
penalty, was supposed to be of second order. Then, the two methods should be
closely related. However, this point of view, mainly relies on asymptotic ideas. As
noted before, in inverse problems, one has to be really careful with asymptotics. This
may really be seen here, where these two methods have a very different behaviour.

In the context of Theorem 1.7 and Theorem 1.9, this example shows also that
the constants which appear in the remainder terms are quite different. The one in
Theorem 1.9, seems to be small and really under control. While the one in Theo-
rem 1.7, C∗ is in fact really large. Unfortunately, it means that the terms which are
asymptotically small in Theorem 1.7 may dominate the risk of oracle.

1.3.4 Universal Optimality

1.3.4.1 Blockwise Estimators

In this section, we present a more general approach to optimality. Namely, we con-
struct a sequence of weights λ �

pbs such that the penalized blockwise Stein estimator

θ �
pbs = θ̂ (λ �

pbs) satisfies both some exact oracle inequalities (for typical examples of
classes Λ ) and the (sharp) minimax adaptivity property (Definition 1.12) (for a large
scale of classes Θα ).

An important fact is that the estimator does not belong to either of the typical
classes Λ but it outperforms the oracles λ0 corresponding to these classes. This
property can be called universal optimality over a large scale of classes Λ . This
point of view is different from the model selection ideas in Section 1.3.3, where the
data-driven choice take its values in the family Λ .

An important point here, is to find a large family Λ in order to obtain oracle in-
equalities valid for many different estimators. The first step is close to the approach
of unbiased risk estimation. Indeed, one would like to minimize the criteria U (X ,λ )
on such a family.

What is the reasonable set of λ where the minimization of U (X ,λ ) should be
done? Minimizing U (X ,λ ) with respect to all possible λ yields λ k = (1− ε2/X2

k )
or λk = (1− ε2/X2

k )+ if we restrict the minimization to λk ∈ [0,1]. It is easy to see
that the risk of the estimator {λkXk} is diverging if the sum is taken over all k and
is at least as great as ε2N if one considers the sum over k � N for some integer N in
the definition of U (X ,λ ). Since N should be chosen in advance, such an estimator
has poor adaptation properties, and minimizing over all λ makes no sense.

A more fruitful idea is to minimize U (X ,λ ) in a restricted class of sequences,
for example over one of the classes Λ discussed in Section 1.2.2.

Choose λ � as a minimizer of U (X ,λ ) over λ ∈ Λ in order to mimic the linear
oracle on Λ . However, this principle is difficult to apply for huge classes, such as
Λmon, the class of monotone weights. [59] suggests the minimization of U (X ,λ ) on
a truncated version of the class Λmon.
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The search for more economic but yet huge enough subclasses of weight se-
quences λ leads in particular to the family of blockwise constant weights which can
interpreted as sieves over various sets of λ . Blockwise constant weights have been
discussed in statistical literature starting from [44], and more recently by [47, 105];
for wavelets, see [40, 78, 67].

The key feature of our estimator is that it “mimics” the monotone oracle λ mon
0

defined as a solution of

R(θ ,λmon
0 ) = min

λ∈Λmon
R(θ ,λ ), (1.91)

where Λmon is the class of monotone sequences. Consider the class of monotone
weights sequences

Λmon = {λ = {λk} ∈ �2 : 1 � λ1 � . . . � λk . . . � 0},

and the class of monotone estimators

θ̂k = λk Xk,

where {λk} ∈Λmon and Xk is defined in (1.6).
If the coefficients θk are monotone non-increasing, remark that the monotone

oracle is equal to the linear oracle.
Restrict the attention to the class Λmon since it contains the most interesting ex-

amples of weight sequences {λk}. The projection weights and the Tikhonov weights
belong to Λmon (see Section 1.2.2). Next, typically σk are monotone non-decreasing
and ak in the definition of the ellipsoid in (1.40) are monotone non-decreasing. The
Pinsker weights also belong to Λmon. It can be shown that some minimax solutions
on other bodies in �2 than ellipsoids (e.g. parallelepipeds) are also in Λmon, see [31].

We are looking for an adaptive estimator θ � = (θ �
1 ,θ �

2 , . . .) of the form

θ �
k = λ �

k Xk,

where λ �
k are some data-driven weights.

A well-known idea of choosing λ � is based on the unbiased estimation of the risk
by minimizing criteria U (X ,λ ) defined in (1.59) among the family Λ (see Section
1.3.3.1). The difference here is that the class Λ is not some given class of estimators
(projection, Tikhonov,...) but the very large class Λmon of monotone estimators.

However, as noted before, this class Λmon is maybe too large. Consider instead,
the class Λb of coefficients with piecewise constant λk over suitably chosen blocks.

Define the class of blockwise estimators

θ̂k = λk Xk,

where λ ∈Λb is the set of piecewise constant sequences,

Λb = {λ ∈ �2 : 0 � λk � 1,λk = λκ j ,∀k ∈ I j,λk = 0,k > Nmax},
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where I j denote the block I j = {k ∈ [κ j−1,κ j − 1]}, j = 0, . . . ,J − 1 and J, Nmax,
κ j, j = 0, . . . ,J, are integers such that κ0 = 1, κJ = Nmax + 1, κ j > κ j−1.

Denote also by Tj = κ j−κ j−1 the size of the blocks I j, for j = 1, . . . ,J.

1.3.4.2 Stein’s Estimator

In this section, we change to a slightly different model in order to present and discuss
the so-called Stein phenomenon. This problem goes back to the work of [120], and
has been extended since. However, it is still one of the most surprising result in
statistics. This section is based on [18, 129].

Consider the following model, which is a finite version of the sequence space
model in the direct case (i.e. bk ≡ 1),

yk = θk + εξk, k = 1, . . . ,d, (1.92)

where d is some integer, {ξk} are i.i.d. N (0,1). The statistical problem is to esti-
mate θ based on the data y.

In this simple situation, the Maximum Likelihood Estimator is then θ̂mle = y.
This estimator was believed, to be the best possible estimator in this context. Its risk
is

R(θ , θ̂mle) = ε2d, ∀θ ∈R
d .

However, [120] discovered a very strange phenomenon. Indeed, he constructed an
estimator, the Stein estimator

θ̂S =
(

1− ε2d
‖y‖2

)
y, (1.93)

for which we have, see proof of Lemma 3.10 in [129],

Eθ‖θ̂S−θ‖2 = ε2d− ε4d(d−4)Eθ

(
1

‖y‖2

)
,

and

Eθ‖θ̂S−θ‖2 � ε2d− ε4d(d−4)
‖θ‖2 + ε2d

. (1.94)

Thus, the main result in [120] is that if d � 5,

Eθ‖θ̂S−θ‖2 < Eθ‖y−θ‖2, ∀θ ∈ R
d .

This very surprising result proves that the MLE estimator y is not even admissible
(for d � 5).

Written in a slightly different framework, [120] discovered that the Stein estima-
tor is better at each point θ ∈ R

d than the mean X̄ (for d � 5).
Looking carefully at (1.94), note that the improvement on y is by a constant at

point θk ≡ 0, but also if ‖θ‖  ε . However, when θ is larger, the improvement is
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of second order. Nevertheless, this is an asymptotical point of view, and the gain is
valid for any θ ∈ R

d .
Several versions of the Stein estimator have been defined since then, many of

them which improved on the basic estimator. One example is the positive Stein
estimator

θ̂s =
(

1− ε2d
‖y‖2

)
+

y. (1.95)

The following result may be found in Lemma 3.9 in [129], for all d � 1,

Eθ‖θ̂s−θ‖2 < Eθ‖θ̂S−θ‖2, ∀θ ∈R
d .

Another famous version is the James-Stein estimator (and its positive version),

θ̂JS =
(

1− ε2(d−2)
‖y‖2

)
y,

see [76], which is better than the MLE estimator y even for d � 3.

Remark 1.37. The (positive) Stein estimator has an effect, even if still very surpris-
ing, which may be understood. On the one hand, when the whole signal ‖y‖ 2 is large
(compared to ε 2d), then one may rely on the data, and estimate θ by something very
close to y. On the other hand, if ‖y‖2 is small, then one estimates θ by something
close to 0, or even equal to 0 if ‖y‖2 � ε2d. The information on the whole sequence
{yk} helps in estimating a single coefficient θk in a better way than just by using yk.

Moreover, the Stein estimator has a role of moving the data y to 0 by some factor.
This effect is known nowadays as the Stein shrinkage. The idea is that one shrinks
the observations, more or less, towards 0 in order to improve on y.

The ideas of Stein have been very successful and popular among statisticians. More-
over, since Stein’s result is valid in large dimensions d, his ideas are still the topic of
a vast literature in nonparametric statistics, where d is very large, even infinite, see
[41, 14, 77, 17, 31, 18, 97, 114, 129]. The main common point among these papers,
is to try to estimate the infinite sequence {θk} by using block estimators, as sieves,
see Section 1.3.4.1. Then on each of these blocks, the idea is to estimate the coeffi-
cients θk by use of the Stein estimator. As already noted, the nonparametric context
is well suited, since then the blocks will be large, and Stein’s estimator successful.
One of the main difficulties is then related to the choice of the size of the blocks.

1.3.4.3 Blockwise Stein’s Rules

The construction of the estimator θ �
pbs is the following.

Divide the set of coefficients θk into blocks in a proper way, and apply a penalized
version of Stein’s estimator on each block. The penalty should be rather small but
non-zero. The same construction with non-penalized Stein’s estimators can be also
implemented, but leads to more limited results (see [31]).
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Note that the solution λ �
bs of the minimization problem

U (X ,λ �
bs) = min

λ∈Λb

U (X ,λ )

is given by λ �
bs = (λ �

1 ,λ �
2 , . . . ), where

λ �
k =

⎧⎨
⎩

(
1−

Γ 2
( j)

‖X‖2
( j)

)
+

, k ∈ I j, j = 1, . . . ,J,

0 , k > Nmax,
, (1.96)

with x+ = max(0,x),

Γ 2
( j) = ε2 ∑

k∈Ij

σ2
k , ‖X‖2

( j) = ∑
k∈Ij

X2
k ,

and

∆( j) =
maxk∈Ij σ

2
k

∑k∈Ij
σ2

k

.

The weights (1.96) define a blockwise Stein rule. The blockwise Stein estimator is

θ �
k = λ �

k Xk,

where λ �
bs = {λ �

k } is defined in (1.96).
However, for mildly ill-posed inverse problems, the estimator θ �

bs can be modified
to have better properties.

We now modify the weights λ �
bs and define λ �

pbs by

λ �
k =

⎧⎨
⎩

(
1−

Γ 2
( j)(1+p j)

‖X‖2
( j)

)
+

, k ∈ I j, j = 1, . . . ,J,

0 , k > Nmax,

where 0 � p j � 1 is some penalty term.
Finally, the estimator has the form θ �

pbs = (θ �
1 ,θ �

2 , . . .) where

θ �
k =

⎧⎨
⎩

(
1−

Γ 2
( j)(1+p j)

‖X‖2
( j)

)
+

Xk , k ∈ I j, j = 1, . . . ,J,

0 , k > Nmax.
(1.97)

This estimator is called the penalized blockwise Stein estimator.

Remark 1.38. The penalizing factor (1 + p j) forces the estimator to contain fewer
nonzero coefficients θ �

k than for the usual blockwise Stein’s rule (1.96): our estima-
tor is more “sparse”. The general choice of the penalty p j will be p j = ∆ a

j , where
0 < a < 1/2. The assumption a < 1/2 is important. Intuitively, this effect is easy to
explain. If bk decreases as a power of k we have:
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standard deviation(Z j)/expectation(Z j) ∆ 1/2
( j)

where Z j is the stochastic error term corresponding to jth block. Hence, to control
the variability of stochastic terms, one needs a penalty that is slightly larger than

∆ 1/2
( j) .

More general penalties are presented in [31].

1.3.4.4 Construction of Blocks

Introduce now a special construction of blocks I j which may be called weakly ge-
ometrically increasing blocks. In Theorem 1.11 we will show that with this con-
struction the penalized blockwise Stein estimator verifies an oracle inequality. This
construction (or some versions of it) is used by [105] but also in [58, 32, 114].

Let νε be an integer valued function of ε such that νε � 5 and νε → ∞ as ε → 0.
A typical choice would be νε  log(1/ε) or νε  loglog(1/ε). Let

ρε =
1

logνε
.

Clearly, ρε → 0 as ε → 0. Define the sequence {κ j} by

κ j =

⎧⎨
⎩

1 j = 0,
νε j = 1,
κ j−1 + �νερε(1+ρε) j−1� j = 2, . . . ,

(1.98)

where �x� is the maximal integer that is strictly less than x. Let N̄ be any integer
satisfying

N̄ � max{N : ε2
N

∑
k=1

σ2
k � ρ−3

ε }. (1.99)

Then, for ε small enough, N̄ � max{N : ε2∑N
k=1σ2

k � r2ρ−2
ε }, ∀r > 0.

Remark 1.39. The term N̄ is the final value of k. After that, the estimator is always
fixed at 0. This N̄ is fixed with the idea that the variance of a projection estimator
θ̂ (N), i.e. ε2∑N

k=1σ2
k , cannot be too large. Otherwise it is not even useful to consider

larger values of N. Indeed, a good projection estimator should have a variance going
to zero.

In this special construction assume the following:

(B1) The blocks are I j = [κ j−1,κ j − 1] such that the values κ j satisfy (1.98), and
J = min{ j : κ j > N̄} where N̄ satisfies (1.99).
Clearly, Nmax = kJ −1 � N̄ if (B1) holds.

(B2) The penalty is p j = ∆ a
( j), where 0 < a < 1/2.

We also assume that the singular values bk decrease precisely as a power of k:
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(B3) The coefficients bk are positive and there exist β � 0,b∗ > 0 such that

bk = b∗k
−β (1+ o(1)), k → ∞.

Theorem 1.11. Let θ �
pbs be the penalized blockwise Stein estimator defined in (1.97).

Assume (B1),(B2) and (B3), and let r > 0 be fixed. Then:

(i) For any θ ∈ �2 such that ‖θ‖� r and any 0 < ε < 1 such that ∆( j) � (1− p j)/4
for all j, we have

Eθ‖θ �
pbs−θ‖2 � (1+ τε) inf

h∈Λmon
R(θ ,λ )+ cε2ν2β+1

ε ,

where c > 0 does not depend on θ ,ε , and τε = o(1), ε → 0, τε does not depend
on θ .

(ii) For any λ ∈ Λmon and θ ∈ �2 such that R(θ ,λ ) � r2 and any 0 < ε < 1 such
that ∆( j) � (1− p j)/4 for all j, we have

Eθ‖θ �
pbs−θ‖2 � (1+ τε)R(θ ,λ )+ cε2ν2β+1

ε .

Proof. A proof may be found in [32].

[44] consider their own block estimator, and show its sharp minimax adaptivity on
the classes of ellipsoids.

A very long discussion, concerning, size of blocks, different penalties, several
classes of functions where the estimator is minimax adaptive, may be found in [31].
The family of weakly geometrically increasing blocks is not in fact, the more precise
choice in order to get very sharp results.

Other interesting results about the penalized Stein rule may be found in [14, 17]
in the wavelet case and with heavy penalties p j that do not tend to 0 as Tj → ∞. In
particular, [14] propose to take p j = 1/2− 3/Tj and Tj = 2 j, while [17] considers
small blocks with constant length Tj ∼ log(1/ε) and p j > 4. These penalties are
too large to get exact oracle inequalities or sharp minimax adaptation, but they are
sufficient for oracle inequality and then minimax adaptivity.

Remark 1.40. Since τε = o(1), the oracle inequality of Theorem 1.11 may lead to

some asymptotic exact oracle inequality. One needs to prove then that ε 2ν2β+1
ε is

small.

In this part, we apply Theorem 1.11 to show that the penalized blockwise Stein
estimator with the given special construction of blocks I j is sharp minimax adaptive
on the classes of ellipsoids.

Theorem 1.12. Let Θ = Θ(a,L) be an ellipsoid defined in (1.40) with monotone
non-decreasing a = {ak}, ak → ∞ and L > 0. Let the blocks I j satisfy (B1), the
penalties p j satisfy (B2), and the singular values bk satisfy (B3). Assume also that
νε is chosen so that
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ε2ν2β+1
ε

rε (Θ)
= o(1), ε → 0. (1.100)

Then the penalized blockwise Stein estimator θ �
pbs = {θ �

k } defined in (1.97) is
asymptotically minimax onΘ among all estimators, i.e.

sup
θ∈Θ

Eθ‖θ �
pbs−θ‖2 = rε (Θ)(1+ o(1)), (1.101)

as ε → 0.

Proof. This is a simple consequence of Theorem 1.5 and Theorem 1.11. Note that
under the assumptions of Theorem 1.12, the minimax sequence of Pinsker weights
λ defined in (1.42) belongs to Λmon. Next, since ak is monotone non-decreasing,
ak → ∞, and bk satisfies (B3), we have rε(Θ) → 0, as ε → 0, by Theorem 1.5.
Hence,

sup
θ∈Θ

R(θ ,λ ) = r�
ε (Θ) = rε (Θ)(1+ o(1)) = o(1),

as ε → 0 where we used (1.45). Thus, the assumptions of Theorem 1.11 (ii) are
satisfied for λ = λ p the Pinsker weights, θ ∈Θ and r = 1 if ε is small enough, and
we may write

sup
θ∈Θ

Eθ‖θ �
pbs−θ‖2 � (1+ o(1)) sup

θ∈Θ
R(θ ,λ p)+ cε2ν2β+1

ε . (1.102)

This, together with (1.100), yields

sup
θ∈Θ

Eθ‖θ �
pbs−θ‖2 � r�

ε (Θ)(1+ o(1)),

which is equivalent to (1.101), in view of (1.45) and of the definition of r ε(Θ).

Remark that Theorem 1.12 states the sharp adaptivity property of θ �
pbs: this estimator

is sharp asymptotically minimax on every ellipsoidΘ =Θ(a,L) satisfying (1.100),
while no prior knowledge about a and L is required to define θ �

pbs.
Note also that the condition (1.100) is quite weak. It suffices to choose ν ε smaller

than some iterated logarithm of 1/ε , in order to satisfy these conditions for most of
usual examples of ellipsoidsΘ .

Corollary 1.2. LetΘ =Θ(a,L) be any ellipsoid with monotone non-decreasing a =
{ak} such that kα1 � ak � exp(α2k), ∀k, for some α1 > 0,α2 > 0,L > 0. Assume
(B1), (B2) and (B3) with νε = max(�loglog1/ε�,5). Then the estimator θ �

pbs defined
in (1.97) satisfies (1.101).

Remark 1.41. The penalized blockwise Stein estimator is thus minimax adaptive on
a very large scale of ellipsoids.
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1.3.4.5 Model Selection Versus Universal Optimality

Comments

The approach of universal optimality, and the penalized blockwise Stein estimator,
presented in Section 1.3.4 has very general and sharp properties.

Universal optimality. Theorem 1.11 shows that penalized blockwise Stein’s esti-
mator defined in (1.97) satisfies an oracle inequality on the class of all monotone
sequences Λmon. In other words, it mimics the monotone oracle in (asymptot-
ically) exact way. This immediately entails oracle inequalities on all the sub-
classes Λ ′ ⊂ Λmon. In particular, the estimator θ �

pbs is asymptotically at least as
good as the optimal projection estimator, the optimal Tikhonov estimator or the
optimal Pinsker estimator (see Section 1.2.2).
In a sense, this is a stronger property than oracle inequalities for the “model
selection” estimators in Section 1.3.3 or [111, 82, 8, 25]. In those papers it was
possible to treat in each occasion only one class Λ ′.
This point is really crucial for the model selection approach. Among a family of
estimators, one select the best possible one, by a data-driven selection method λ �

which takes its values in Λ .
The penalized blockwise Stein estimator at least mimics (and in fact outperforms)
simultaneously the oracles on all these classes Λ ′. This behaviour may be called
universal optimality. One has then a universal estimator which is as good as most
of the standard families of linear estimators.

Universal adaptivity. Another point is that, no “ellipsoidal” structure appears in
the definition of θ �

pbs. In fact, minimax results similar to Theorem 1.12 can be
formulated for other classes than ellipsoids (for example, for parallelepipeds),
provided the minimax solution λ is a monotone non-increasing sequence, see
[31]. The penalized blockwise Stein estimator is thus minimax adaptive on a
very large scale of classes of functions.
In a way, it is universally adaptive.

Non-linearity property. A last remark, is that the penalized blockwise Stein esti-
mator is in fact, a non-linear estimator. Moreover, θ �

pbs does not even belong to
the class Λmon.
It is well-known that on some classes of Besov classes with rather unsmooth
functions, one needs non-linear estimators, for example wavelet thresholding,
since linear ones are suboptimal, see [41]. [31] showed that θ �

pbs is (almost) op-
timal on these classes of unsmooth functions. The penalized blockwise Stein
estimator, due to the shrinkage and the blocks, has, in some sense, the behaviour
of a non-linear estimator.
Nevertheless, the penalized blockwise Stein estimator has some drawbacks.

Instability in inverse problems. The first one is almost the same than the URE
estimator of Section 1.3.3.1. Due to the increase in the penalty the penalized
version of blockwise Stein’s estimator is less unstable than the URE estimator.
However, one really needs a condition as a fixed Nmax defined in (1.99) in order
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to avoid too large choices of blocks. Without this condition, the method is rather
unstable in simulations.

Universal method: a constraint? A second drawback, of this universal approach
is in fact its nature. Indeed, quite often in applications, scientists want to use their
favourite method (Tikhonov, projection, ν−method,...). They know, or believe,
that this method works well in their field. In a way, the model selection approach
answers to their problem. It allows to calibrate in a data-driven way (by choosing
γ , N or m) their favourite method.
On the other hand, the universal approach, by its universal definition, does not
really answer to their question. The universal optimality just proves that one very
specific universal method, the penalized blockwise Stein estimator, is as good as
their favourite method. However, this could be disappointing since they cannot
use their own method.

Penalization in inverse problems. In a way, the penalized blockwise Stein es-
timator already contained the idea that in inverse problems, penalizing slightly
more than the URE penalty was needed. Such a choice improves the accuracy of
the method. The paper [31] was in fact written after [32]. In the inverse problems
framework presented in [32] already appeared the need of stronger penalties than
URE. This point is true in theory, but also in simulations where one has to be very
careful with too large choices of number of coefficients N.
Nevertheless, after some times, the idea of penalizing slightly more than URE
was found to be successful even in the context of the direct problem, i.e. Gaus-
sian white noise. Thus, non-penalized blockwise Stein’s rule leads to an oracle
inequality which is similar, but less accurate than that of Theorem 1.11, see [31].
The study in [31] was also, in a way, deeper than in the inverse problems context.
Indeed, there is a rather long discussion concerning, the different penalties, block
sizes, and functional classes that may be studied.
The main idea was that one needed to penalize more than the URE penalty, espe-
cially in inverse problems. However, in order to get sharp theoretical results, but
also a method accurate in simulations, this penalty did not need to be too large.
Thus, this was, in a way, the first step from unbiased risk estimation to risk hull
method.

1.4 Conclusion

1.4.1 Summary

A very promising approach to inverse problems is the statistical framework. It is
based on a model where observations contain a random noise. This does not corre-
spond to the historical framework of [127] where the error is deterministic.

The optimal rates of convergence are different in the statistical and deterministic
frameworks (see Section 1.2.5).
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We have studied, in Section 1.1, the white noise model discretized in the spectral
domain by use of the SVD, when the operator A is compact. This allows to define
a measure of ill-posedness of an inverse problem, with influence on the rates of
convergence.

Several examples of inverse problems where the SVD is known were presented
(circular deconvolution, heat equation, tomography,...).

The spectral theory for non-compact operators was also developped with the ex-
ample of deconvolution on R.

In Section 1.2, the nonparametric approach and minimax point of view were
presented. This notion corresponds to the asymptotic minimax optimality as the
noise level goes to zero.

Several examples of standard regularization methods, and their counterpart as
estimation procedures by use of SVD, were discussed (projection, Landweber,
Tikhonov,...).

The notion of source condition was introduced, with its link with ellipsoid in � 2

and standard classes of functions (Sobolev and analytic functions). The optimal rates
of convergence were given. These rates depend on the smoothness of the function
to reconstruct and on the degree of ill-posedness of the inverse problem.

In ill-posed inverse problems the rates are slower than in the direct problem,
corresponding to the standard nonparametric statistics framework.

This notion of optimality leads to some optimal choice of the tuning parameter
(N, γ , or m).

However these optimal parameters are unachievable since they depend on the
unknown smoothness of the function.

This remark leads to the main point of Section 1.3. The goal is to find data-driven
choices of the tuning parameter (adaptive methods). In applications, this choice is
just done by simulations in a very empirical way. For example, one uses known
phantom images in order to calibrate, the estimator. Usually, there is no theoretical
results in order to validate this approach. Moreover, this could be very unstable
when the observed functions are different from the phantom.

The minimax adaptive approach is concerned with the construction of estimators
which attain the optimal rates of convergence for any smoothness α of the func-
tion f .

The oracle approach is a second step in the problem of data-driven selection
method. The oracle is the best possible choice, in a given family of estimators,
provided we knew the unknown function. However, such a procedure cannot be
constructed, since it is not an estimator. The aim of oracle inequalities is to prove
that the estimator accuracy is close from the oracle behaviour.

There exist many different methods in order to construct data-driven choice of
the tuning parameter. One of the more natural is the idea of minimizing an estimate
of the risk (URE). The theoretical results concerning this method are satisfying.

Nevertheless, in simulations, the URE method is usually not stable enough in
inverse problems. The approach of penalized empirical risk, may be better than URE
provided the penalty function is chosen appropriately. The risk hull method (RHM)
provides one way to find a good and explicit penalty function.
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Another, adaptive method is considered, based on the blockwise Stein estimator.
Again, with a slightly stronger penalty, this method is rather satisfying.

1.4.2 Discussion

The statistical approach to inverse problems is nowadays quite popular and success-
ful.

There exist some differences between the two frameworks, stochastic and de-
terministic. For example, the optimal rates of convergence are not the same (see
Section 1.2.5). Nevertheless, this difference in the optimal rates is not so important.
In a way, the two frameworks are rather related.

However, one of the major advantages of the statistical approach is that it allows
to obtain oracle inequalities and to construct adaptive estimators.

The oracle approach is thus very interesting in inverse problems. Indeed, one can
construct procedures in order to choose the best estimator among a given family of
regularization methods. This really gives some answer to a very natural problem, the
data-driven choice of the tuning parameter (N or γ). From a practical point of view,
this choice is usually just done by simulations in a very empirical way. Usually, by
calibrating the method on some known phantom image. This approach may give a
rather unstable procedure.

From a mathematical point of view, the oracle approach is very interesting. In-
deed, the statistical theory is here able to give some answer to the very sensitive
problem of data-driven choice of the tuning parameter.

Another important remark is that inverse problems are difficult problems. Indeed,
we have to invert an operator in order to get the reconstruction. A main issue is then
to get very precise oracle inequalities, i.e. with a good control on the constants
of the main term, but also of the remainder term. The degree of ill-posedness of
the problem appears in the rates of convergence, but at some point, in the oracle
inequalities as well, which are thus sensitive to the difficulty of the problem.

Thus, in statistical inverse problems one has to define very precise model se-
lection methods, or choice of the regularization parameter, otherwise, due to the
difficulty of the problem, the estimator will not be accurate.

This remark is rather satisfying concerning the interest of the inverse problem
framework in statistics. Indeed, due to the natural difficulty of the ill-posed prob-
lems, the statistical study is thus very challenging. In some sense, many estimators,
or adaptive procedures, may be satisfying in the direct problem. Nevertheless, in the
ill-posed context, one has to be much more careful, and the statistical study could
really be more difficult.
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1.4.3 Open Problems

In these lectures, the results have been obtained for a very specific and restrictive
model. The model is a white noise model, with an additive and Gaussian noise.
Moreover, a strong assumption is related to the use of SVD.

There exist many different approaches in order to extend the results or to deal
with other kind of problems.

The goal of the present section is to discuss problems which are not presented in
these notes. Several of these topics have been already well-studied in the literature,
others remain more open.

Noisy Operators

One very restrictive assumption is that the operator A is perfectly known. Indeed,
in many applications, the operator is not known, or at least not completely known.
For example, in astronomical observations, point spread function may be changing
due to unknown physical conditions. This problem is also related to the well-known
problem of blind deconvolution, where one has to estimate also the convolution
kernel.

From a theoretical point of view this problem is also quite challenging. Indeed,
the operator, by its spectral behaviour, characterizes the optimal rates of conver-
gence. Thus, it is not clear, if any modification on the operator would change the
rates or not.

The case of fully unknown operator A is usually difficult. Indeed, one would need
to estimate both the operator A and the function f by using the same data.

A more natural framework is the case of noisy operator, where the operator is
not completely known and estimated using other data. This very important topic has
been the subject of several recent statistical works, see for example in [48, 97, 66,
71]. In this framework, there exist two noises, one on the operator A and one on the
inverse problem data. The main conclusion here is that, usually, the rate is the worse
possible between these two noises.

A more specific model may also be considered, where the SVD basis is known,
but the singular values are noisy. This setting appears for example in circular convo-
lution model where the SVD is always the Fourier basis, but where the convolution
kernel has to be estimated. In this situation, sharp oracle inequalities may be ob-
tained, see [27, 29, 98].

Nondiagonal Case

One of the main drawbacks is that all these methods are linked to the spectral ap-
proach. We have intensively used the SVD to diagonalize the operators. The differ-
ent regularization methods were presented for the spectral domain, even if, many of
them can be computed without the explicit use of their SVD.
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However, there is a more general situation where the operator A cannot be rep-
resented by a diagonal matrix. For example, one uses a basis, but which does not
diagonalize the operator.

In this case, several results have been obtained, such that, optimal rates of con-
vergence, adaptive estimation, oracle inequalities, see for example in [102, 97, 91].

Wavelets and Sparsity

As noted above, most of the methods are linked to the spectral approach. In many
problems, this leads to the Fourier domain. Thus, due for example to the source con-
ditions, the function to be reconstructed should have good properties in the Fourier
domain.

Another very popular approach is based on wavelets, see for example in [42]. By
using wavelets, one may usually deal with functions which are not very smooth, by
replacing Sobolev classes by Besov classes. Indeed, there exist Besov classes which
contain functions which are really unsmooth. Moreover, wavelets bases have the
nice property that rather few coefficients are large, i.e. they give sparse representa-
tions. Thus, the standard estimator is constructed by using a threshold estimator of
wavelets coefficients. This method allows to obtain adaptive estimators.

In inverse problems, wavelets have usually very good properties related to the
operator A. Wavelets bases are not the exact SVD of a given operator. However,
wavelets bases almost diagonalize many operators. Moreover by using thresholding
they have good adaptability properties, see the Wavelet Vaguelette Decomposition
(WVD) approach in [39]. This framework is thus strongly related to the previous
nondiagonal case.

There exist a very large literature in inverse problems with wavelets, see for ex-
ample in [39, 83, 78, 19, 28, 34, 79] and, with the framework of noisy operator,
[71, 29].

RHM for Other Methods

The RHM is presented here for the family of projection estimators. There exist many
other regularization methods (Landweber, Tikhonov, ν−methods). These methods
usually attain the optimal rates of convergence, see for example [9]. The RHM ap-
proach has been very recently extended to these families of estimators (see [99]).

The RHM is also valid in the framework of noisy singular values, see [98].

Nonlinear Operators

All the results given here are valid for linear inverse problems. In the case of non-
linear operator, the problem is much more difficult. This framework has been inten-
sively studied in the deterministic context, see [49].
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However, this problem is not yet well understood in statistics. Due to the stochas-
tic nature of the noise the nonlinear operator is more difficult to handle. Moreover,
adaptive estimation and oracle inequalities are even more involved in this frame-
work.

Some recent papers concerning the statistical study of nonlinear inverse problems
may be found in [6, 92].

Error in Variables

There exist a rather popular topic in statistics which is very closely related to our
framework, the error in variables problem. In this context, one observes

Yi = Xi + ξi, i = 1, . . . ,n,

where {Xi} and {ξi} are i.i.d. random variables, independent, and usually defined
on R. The goal is to estimate the probability density f of the random variable X .
Since X and ξ are independent, the probability density of Y is well-known to be a
convolution of the two densities of X and ξ .

The exist two main differences here. The first one is that the model is a density
type model, and not any more a white noise model. The second point is that the
operator is usually not compact. Indeed, the convolution is on the whole R due
to the random variables which take their values on R. However, it is well-known
that a white noise model may be considered as an idealized version of a density
model, there even exists a formal equivalence, see [107]. Thus, usually the rates
of convergence are the same in these two models, even if the mathematical proofs
could be quite different.

Formally, this model could be considered as a special case of the model (1.2).
However, the noise ξ should have a very specific behaviour, which is not true in the
standard white noise case, see [9].

This model of error in variables is then really an inverse problem, and is often
called the deconvolution problem in the statistical literature, see for example [52,
35, 16, 30].

Econometrics

Nowadays, the topic of inverse problems has also a growing interest in economet-
rics. The problem of intrumental variables is closely related to the framework of
inverse problems.

An economic relationship between a response variable Y and a vector X of ex-
planatory variables is often represented by the following equation

Yi = f (Xi)+Ui, i = 1, . . . ,n,
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where the function f has to be estimated and Ui are the errors. This model does
not characterize the function f if U is not constrained. The problem is solved if
E(U |X) = 0.

However, in many structural econometrics models, the parameter of interest is
a relation between Y and X , where some components of X are endogeneous. This
situation arises frequently in economics. For example, suppose that Y denotes the
wages and the X includes, level of education, among other variables. The error U
includes, ability, which is not observed, but influences the wages. If a high ability
tends to choose high level of education, then education and ability are correlated,
and thus X and U also.

Nevertheless, suppose that we observe another set of data, Wi where W is called
an instrumental variable for which

E(U |W ) = E(Y − f (X)|W ) = 0.

This equation characterizes f by a Fredholm equation of the first kind. Estimation
of the function f is in fact an ill-posed inverse problems.

Since the years 2000, the framework of inverse problems has been the topic of
many articles in the econometrics literature, see [54, 66, 33, 53], see also Chapter 2
by Jean-Pierre Florens in the present book.

Inverse Problems in Applications

These lectures mainly consider inverse problems from a theoretical point of view.
This is satisfying from a mathematical perspective. Indeed, one can define this kind
of problems with a rather general description. The difficulty of an inverse problem,
i.e. its degree of ill-posedness β , is characterized by the spectral behaviour of the
operator A when k → ∞. Moreover, the smoothness α of the function f is also
important. These parameters give the optimal rates of convergence.

This general description is rather important. Indeed, it allows to understand the
difference between inverse problems, and the influence of the smoothness on the
accuracy of the reconstruction.

However, all these concepts are mainly just mathematical tools. They are based
on asymptotics, when k is large.

In a more applied point of view, there is mainly no difference between an in-
verse problem of degree β = 2 and a severely ill-posed problem. Moreover, many
problems which are almost unsolvable are, in applications, rather easy to deal with.
For example, a deconvolution by a Gaussian kernel (N (0,σ 2)) is even worse that
severely ill-posed. However, if this convolution kernel, has a small variance σ 2, then
the problem is very easy to solve.

On the other hand, many of the problems which appear in applications are much
more difficult than our framework with an idealized model. Even in the simple cir-
cular deconvolution, but with boundary effect, the SVD basis is not the Fourier basis
anymore. The number of data in applications is finite n and does not go to infinity.
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There is a lot of frameworks where identifiability of the model, i.e. existence and
unicity, is the main problem, before any stability results. In more realistic models,
most of the operators are not completely known and not even observed with some
additive noise.

Tomography, even based on the same operator, the Radon transform, is a world by
itself. There exist conferences and articles, on computerized tomography, positron
emission tomography, discrete tomography, quantum homodyne tomography, see
[104].

It is rather common to say, that each inverse problem is in fact a specific case,
see [117].

Numerical Aspects

The numerical aspect of the different regularization methods was not so much dis-
cussed. However, this point is of importance, especially in inverse problems. As
noted before, many of the regularization methods are expressed in the spectral do-
main (SVD) but many of them are in fact computed in a different way, without
using the whole spectrum. For example, the Tikhonov regularization is computed
by minimizing the functional (1.28). In deconvolution problems, the SVD will be
the Fourier basis, which may really be computed quite fast by use of Fast Fourier
Transform (FFT). In more difficult problems, for example Radon transform in to-
mography, the SVD could be much slower to compute, see [104, 49, 81, 130].

Moreover, iterative methods are rather popular because they also avoid the inver-
sion of a large matrix as in (1.30). This is one the reason of the interest in all these
iterative procedures, see [10].

Well-Posed Questions

One of the drawbacks of the study of inverse problems is its intrinsic difficulty.
Indeed, the optimal rates of convergence may be rather slow (see Section 1.2.4).
Even in the case of mildly ill-posed problems when the degree of ill-posedness β
is large (even β = 2), the optimal rates will be quite slow. In the severely ill-posed
context it is even worse and the rates could be logarithmic. Moreover, these rates
are optimal, they cannot be improved on a given class of functions.

In a way some inverse problems are really too difficult (for example the heat
equation). One may think that in a given model there is no hope to get better results.

A rather natural idea when a model is too difficult, is to change the goal of the
problem. One tries to answer to problems that could be solved in a more satisfying
way. The main point is thus to solve more easy problems than estimating the whole
function f . For example, estimating linear functionals, level sets or change points, or
solving testing or classification problems. It is well-known, that all these problems
are more easy, i.e. have a better rate of convergence, than estimating the whole
function f , see [56].
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This point of view makes sense in problems where estimation of the whole func-
tion f seems almost beyond the scope. Thus, the idea is to find more simple tasks to
deal with. In fact, one is looking to well-posed questions in ill-posed problems, see
[117]. These are questions that may be answered in a satisfying way.
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