


Lecture Notes in Computer Science 6576
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Ricardo H.C. Takahashi Kalyanmoy Deb
Elizabeth F. Wanner Salvatore Greco (Eds.)

Evolutionary
Multi-Criterion
Optimization

6th International Conference, EMO 2011
Ouro Preto, Brazil, April 5-8, 2011
Proceedings

13



Volume Editors

Ricardo H.C. Takahashi
Federal University of Minas Gerais, Department of Mathematics
Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
E-mail: taka@mat.ufmg.br

Kalyanmoy Deb
Indian Institute of Technology Kanpur, Department of Mechanical Engineering
Kanpur 208 016, India
E-mail: deb@iitk.ac.in

Elizabeth F. Wanner
Centro Federal de Educação Tecnológica de Minas Gerais
Department of Computer Engineering
Av. Amazonas 5253, 30421-169 Belo Horizonte, MG, Brazil
E-mail: efwanner@dppg.cefetmg.br

Salvatore Greco
University of Catania, Faculty of Economics
Corso Italia 55, 95129 Catania, Italy
E-mail: salgreco@unict.it

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-19892-2 e-ISBN 978-3-642-19893-9
DOI 10.1007/978-3-642-19893-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011922746

CR Subject Classification (1998): F.2, G.1.6, G.1.2, I.2.8

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

EMO is a bi-annual international conference series devoted to evolutionary multi-
criterion optimization. The first EMO conference was organized in Zurich
(Switzerland) in 2001, and the other editions took place in Faro (Portugal) in
2003, Guanajuato (Mexico) in 2005, Matsushima-Sendai (Japan) in 2007 and
Nantes (France) in 2009. Ouro Preto (Minas Gerais, Brazil) hosted the 6th Inter-
national Conference on Evolutionary Multi-Criterion Optimization (EMO 2011).

EMO 2011 received 83 paper submissions in total, with 251 authors (on
average 3.02 authors per paper) from 26 countries. After a rigorous peer-review
process involving 287 reviews in total (averaging 3.45 reviews per paper), 42
papers (50.6%) were accepted for presentation at the conference, including 11
papers accepted for the MCDM track. The authors of accepted papers were from
19 countries. EMO 2011 also featured four distinguished keynote speakers: Jyrki
Wallenius (Aalto University), Singiresu S. Rao (University of Miami), Roman
S�lowiński (Poznań University of Technology) and Eckart Zitzler (PHBern).

The field of evolutionary multi-criterion optimization emerged, in the 1990s,
as a confluence of the traditional field of multi-objective mathematical program-
ming with the area of evolutionary computation that was emerging at that
moment. Dealing with the simultaneous optimization of several criteria, multi-
criterion optimization aimed to work with the concept of a set of efficient solu-
tions (also called Pareto-optimal solutions), which represent different trade-off
solutions for a given problem, considering the different objectives. Evolutionary
computation, which developed powerful heuristic methods with inspiration from
the natural phenomena of organization of living organisms, brought much flex-
ibility and insight to the new field, making the EMO algorithms be recognized
today as some of the most valuable and promising methods for tackling complex
and diverse multi-criterion optimization problems.

The research on EMO focused, along the last two decades, on issues such
as the design of efficient algorithmic methods for the approximation of efficient
solutions, the problem of measuring the quality of the approximations generated
by the algorithms, the hybridization with other currents of optimization, and so
forth. A representative sample of this history is registered in the proceedings of
the EMO conferences, which have been the forum for the first presentation of
several breakthroughs, for the raising of new questions, and for the early indica-
tion of new trends within the research community of the area. For instance, the
intriguing behavior of EMO algorithms in many-objective problems (problems
with a large number of objective functions) was reported in the first EMO con-
ference, in 2001, as has become a major issue in the related technical literature in
this last decade. At EMO 2011, a whole section was devoted to this theme, now
sketching some definitive answers to this question. This volume of EMO 2011
proceedings also has papers dealing with other fundamental questions of EMO
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theory, such as the development of algorithmically efficient tools for the evalu-
ation of solution-set quality, theoretical questions related to solution archiving,
and others. In addition, there are reports on the continuing effort in the devel-
opment of algorithms, either for dealing with particular classes of problems or
for new forms of processing the problem information. It is also noticeable that,
as the field of EMO reaches maturity, the spectrum of applications grows: in
this volume, almost one-third of the papers are related to EMO applications in
a diversity of fields.

Finally, it should be mentioned that a continued effort of EMO conferences
has been devoted to promoting the interaction with the related field of multi-
criteria decision making (MCDM). This reflects the growing awareness of the
necessity of decision-making tools for dealing appropriately with the diversity of
solutions that are typically delivered by EMO algorithms. At EMO 2011, from
the 11 papers accepted for the MCDM track, 6 papers were presented in mixed
sessions with related EMO papers – which indicates that the two communities
are already finding common directions.

April 2011 R. Takahashi
K. Deb

E. Wanner
S. Greco
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On Sequential Online Archiving of Objective Vectors . . . . . . . . . . . . . . . . . 46
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Abstract. The trade-off solutions of a multi-objective optimization
problem, as a whole, often hold crucial information in the form of rules.
These rules, if predominantly present in most trade-off solutions, can
be considered as the characteristic features of the Pareto-optimal front.
Knowledge of such features, in addition to providing better insights to
the problem, enables the designer to handcraft solutions for other opti-
mization tasks which are structurally similar to it; thus eliminating the
need to actually optimize. Innovization is the process of extracting these
so called design rules. This paper proposes to move a step closer towards
the complete automation of the innovization process through a niched
clustering based optimization technique. The focus is on obtaining mul-
tiple design rules in a single knowledge discovery step using the niching
strategy.

Keywords: automated innovization, multiple-rule discovery, niching,
row-echelon forms.

1 Introduction: A Motivating Example

One of the goals in multi-objective problem solving is to find solutions which
are as close to the true Pareto-optimal front as possible with as much diversity
in decision space as possible [9]. Numerous algorithms proposed over the years
have been successful in achieving this with varying degrees. Considering the
amount of time, resources and research effort that has gone into developing
these algorithms, it is ironic that practically only a single (or utmost a few)
desirable solution(s) actually get implemented in most problems. The accuracy
and diversity attained with respect to other solutions can be put to good use if
they can somehow be used to gain interesting knowledge about the problem.

Consider the bi-objective design problem of a two-bar truss. The configuration
is shown in Fig. 1. The problem requires that the total volume V of the truss
structure be minimized along with the minimization of the maximum stress S
induced in either of the bars. Geometrical constraints restrict the cross-sectional
areas x1 and x2 of the bars the dimension y. The induced stress should remain

R.H.C. Takahashi et al. (Eds.): EMO 2011, LNCS 6576, pp. 1–15, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.iitk.ac.in/kangal
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Fig. 1. Two-bar truss configuration
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Fig. 2. Pareto-optimal front for the two-
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below the elastic strength Sy of the material used, which gives rise to a third
constraint. The optimization formulation thus becomes,

Minimize f1(x) = V = x1
√

16 + y2 + x2
√

1 + y2,
Minimize f2(x) = S = max(σAC , σBC),
Subject to max(σAC , σBC) ≤ Sy kPa,

0 ≤ x1, x2 ≤ 0.01 m2,
1 ≤ y ≤ 3 m.

(1)

It is possible to analytically derive solutions for some special multi-objective
problems. Methods usually involve the use of Fritz-John conditions or Karush-
Kuhn-Tucker optimality criteria and are generally used for convex multi-objective
problems. For solving (1) however, the identical resource allocation strategy can
be used. Increasing the cross-sectional area of one bar element reduces the stress
induced in it and so the second objective takes the other bar element into ac-
count at some point. But since both the objectives are equally important, this
cannot be allowed. A balance can be obtained only when the stresses in both
the bars are equal. Thus,

σAC = σBC ⇒ F

4

√
16 + y2

yx1
=

5F

4

√
1 + y2

yx2
. (2)

Following a similar argument for the volumes we get,

x1

√
16 + y2 = x2

√
1 + y2. (3)

Solving (2) and (3) gives the following relationships, where the ‘∗’ emphasizes
the fact that they represent Pareto optimality,

y∗ = 2, x∗
2 = 2x∗

1, V ∗ = 4
√

5x∗
1 = 2

√
5x∗

2. (4)

Note that these relationships will hold irrespective of the material and loading.
They are thus the generic “design rules” of the truss problem in (1). Design-
ers can remember them as guidelines when optimizing any such structure and
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easily handcraft a near Pareto-optimal solution. Of course the solution has to
be checked for feasibility before actual implementation because the derivation
of (4) did not involve the use of constraints. The gray points in Fig. 2 indicate
the solutions to which these rules do not apply.

2 Related Work

The simple example discussed above shows that interesting knowledge in the
form of design rules exist in multi-objective scenarios and that they are the
distinguishing features of the Pareto-optimal solutions of a problem. Analyti-
cal solutions to optimization problems, especially multi-objective problems, are
however rarely easy to obtain. Some alternatives exist to avoid actually solving
the problems to decipher design rules. For example, monotonicity analysis [1] is
capable of obtaining them directly from the problem [2] provided that the latter
satisfies certain conditions of monotonicity.

In general however, there seem to be three major obstacles in deriving design
rules such as those in (4): (i) most problems are not analytically solvable, (ii)
methods require the problems to have a certain form or satisfy certain criteria,
and (iii) other methods can only produce implicit or semantic rules. The first
two of these obstacles can be overcome by employing data-mining and machine
learning techniques on the solutions obtained by solving the problem through a
numerical optimization algorithm. Obayashi and Sasaki [3] used self-organizing
maps (SOMs) to generate clusters of design variables that indicate their role
in making design improvements. A multi-objective design exploration (MODE)
methodology was proposed [4] to reveal the structure of optimal design space.
The study concluded that such design knowledge can be used to produce better
designs. Hierarchical grouping of solutions in the form of a dendogram to identify
strongly related variables is described in [5]. Recently, a data-mining technique
called proper orthogonal decomposition has been used [6] to extract implicit
design knowledge from the Pareto-optimal solutions.

While the above mentioned studies truly depict the importance of analyzing
trade-off solutions, they fall short of providing a generic framework which can
also overcome the third obstacle in discovering design rules; the ability to extract
rules that are meaningful to the human designer. In other words, rules that have
an explicit mathematical form are more useful and intuitive to a human for
remembrance and future application to similar design problems. Innovization
[7] addresses this, though at a simple level, through a manual graph plotting
and regression analysis procedure. In the remaining sections we describe and
extend the innovization procedure for complete automated discovery of multiple
design rules from the Pareto-optimal solutions.

3 Discovering Design Rules through Innovization

The term innovization comes from innovation through optimization. As de-
scribed above, it is a manual plotting-and-analysis process which can help reveal
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design rules hidden in Pareto-optimal datasets. Deb and Srinivasan [8] define
it as “a new design methodology in the context of finding new and innovative
design principles by means of optimization techniques”. The basic procedure is
simple and can be accomplished through the following steps:

1. Obtain the Pareto-optimal front for the multi-objective problem using any
of the available population-based evolutionary algorithms [9]. Local search
methods may be used to improve the obtained front [8].

2. Form the data-set containing the Pareto-optimal variable values (x∗), objec-
tive function values (f∗) and corresponding values of any other function(s)
φj(x∗) (see below) for all the obtained trade-off solutions.

3. Consider various entity combinations: variable-variable, objective-objective,
objective-variable, etc. and plot the corresponding values for all the trade-off
solutions. This will visually reveal the existence of design rules when any of
these combinations show a high correlation between the entities considered.
Other functions (φj ’s) which the designer feels are significant to the design
task may also be considered.

4. In case a non-linear correlation is observed, techniques like logarithmic trans-
formation and curve-fitting are employed to come up with the closest rule.

While steps (1) and (2) can be easily integrated into a computer code, it is
the human judgement required in step (3) that makes innovization a tedious
and time consuming approach to rule-finding. Nevertheless the process has been
applied as such to various multi-objective problems [7,8,10] and even researchers
in fields as diverse as architecture [11], virtual reality [12], robotics [13], etc. are
realizing the need to identify the commonalities between solutions in the form
of usable rules. Although in most innovization studies, solutions from the entire
range of the Pareto-optimal front are considered, innovization from a partial set
or multiple fronts from different values of problem parameters is also possible.

The truss design problem introduced previously can be used to illustrate the
innovization approach. The required trade-off data is generated by solving (1)
using NSGA-II [14]. A population size of 1000 is used for the purpose so as to
generate a well-represented trade-off front. F is taken to be 100 kN and Sy as
105 kPa. Figures 3 and 4 clearly show that V -x1, x2-x1 and V -x2 have a high
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correlation. The slopes of regression lines fitted to each of these combinations
(by ignoring points which apparently show a change in relationship) gives the
constant of proportionality. Note that,

V ≈ 8.971x1 ≈ 4
√

5x1, x2 ≈ 2.005x1 ≈ 2x1 and V = 4.474x2 ≈ 2
√

5x2. (5)

As it can be seen, a post-optimality procedure like innovization is capable of re-
vealing design rules from the trade-off solutions. However, there are some obvious
difficulties which prompt an automation of this approach. Firstly, as discussed
above, manually choosing different combinations and checking for correlations
is a time consuming process. Secondly, all solutions need not follow a particular
design rule. Unlike in Figs. 3 and 4, if the change in relationship is subtle, a
blind regression analysis may lead to erroneous conclusions. Each design rule
can thus be associated with a prominence level or significance depending on the
percentage of the Pareto-optimal front that it applies to. It is crucial that rules
with a low significance be filtered out by the automated algorithm. Lastly, there
can be design rules which have different proportionality constants in different
regions of the Pareto-optimal front [15,16]. The design rule is then said to be
parametrically varying across these regions. The automated algorithm should be
able to tell apart solutions which parametrically satisfy the rule from the ones
that do not satisfy it at all.

4 Proposed Automated Innovization Approach

Let φj(x) be the set of “basis functions” whose combinations are to be analyzed
for the presence of design rules. The designer can specify N such functions. They
also include the variables, objectives and constraints of the problem. Previous
manual innovization studies [7,8,10] and recent proof-of-principle studies towards
a possible automated innovization [15,16] sufficiently show that most design rules
take the generic form,

ΠN
j=1φj(x)aij Bij = Ci (6)

where Ci is the proportionality constant for the i-th design rule and Bij ’s are
corresponding powers of the basis functions in that design rule. The Boolean
variables aij ’s, in a way, reflect the presence (aij = 1) or absence (aij = 0) of
the j-th basis function in the i-th rule. In addition to being relatively easier for
an automated algorithm to detect, the mathematical form of these relationships
makes them more intuitive to the user. Note that Bij ’s in (6) can take any
real value depending on the problem. In order to restrict the search space, the
maximum absolute power (among participating basis functions) is set to one by
making the following transformation which keeps the design rule unaltered:

(
ΠN

j=1φj(x)aijBij
) 1
{Bip|p : (maxp |aipBip|)} = C

1
{Bip|p : (maxp |aipBip|)}
i

= ci (say), (7)
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which can be simply written as,

ΠN
j=1φj(x)aijbij = ci, where bij =

Bij

{Bip|p : (maxp |aipBip|)}
∈ [−1, 1]. (8)

Supposing that aij ’s and bij ’s are known for the i-th rule, the parameter ci

can easily be calculated for all trade-off solutions in the Pareto-optimal data-
set. Solutions that parametrically satisfy the i-th rule will have the same (or
nearly equal) values for ci. The present algorithm uses a grid-based clustering
technique to identify clusters of such solutions. If a solution yields a ci value
which is significantly different from that of others, then it remains unclustered.

4.1 Finding Optimal aij’s and bij’s

Each cluster mentioned above corresponds to one region of the Pareto-optimal
front to which the i-th design rule applies parametrically. The ci-values in each of
these clusters should therefore be nearly equal. In other words, the spread of ci-
values in each cluster should be minimum. This condition can be used to obtain
aij ’s and bij ’s. To ensure that a narrow distribution of ci-values is obtained in
the clusters, the coefficient of variation (cv= standard deviation/mean) of the ci-
values is simultaneously minimized in all of them. The weighted sum approach is
used to have a computationally tractable approach. Since all clusters are equally
important for the design rule to be valid, the cv’s are assigned equal weights.
Note that cv being a normalized measure of spread will have the same order of
magnitude in all the clusters and therefore the weighted sum approach should
suffice [16]. Thus, to find optimal aij ’s and bij ’s for the i-th rule the following
optimization problem can be solved,

Minimize
∑

clusters

c(k)
v , c(k)

v =
σci

μci

∀ ci ∈ k-th cluster

Subject to −1.0 ≤ bij ≤ 1.0 ∀ j : aij = 1,
|bij | ≥ 0.1 ∀ j : aij = 1,∑

j aij ≥ 1,

aij ’s are Boolean and bij ’s are real.

(9)

Here ci is obtained from (8). Any basis function φj with a low magnitude power
bij will hardly contribute to the design rule. Moreover, inclusion of zeroes in the
search space will lead to a trivial solution where ci = 1 for all trade-off solutions
and so cv = 0 for all clusters. The second set of constraints checks this by putting
a lower bound on the magnitude of bij (see Sect. 5.3). The last constraint ensures
that at least one basis function is used to form the design rule.

4.2 One-Dimensional Grid-Based Clustering

Grid-based clustering technique involves partitioning the data into a number of
grids (or divisions) and merging them to form clusters. The number of clusters
need not be predefined. The following steps describe the procedure:



Automated Innovization for Simultaneous Discovery of Multiple Rules 7

Step 1: Sort all {c(1)
i , c

(2)
i , . . . , c

(m)
i } obtained by evaluating (8) for all m trade-

off solutions in the data-set.
Step 2: Divide the space [ci,min, ci,max] into, say di divisions.
Step 3: Count the number of points in each division.
Step 4: Merge adjacent divisions which have more than or same as 
m

di
� points

(the average number of points per division) to form clusters.
Step 5: Count the number of clusters Ci and the total number of unclustered

points Ui in all divisions with less than 
m
di
� points.

There are two conflicting arguments for deciding the number of divisions di. It
is desirable that the design rule be applicable to as many points as possible, so
ideally Ui = 0. This translates to a high value of di since each unclustered point
can then form a one-element cluster. But this, in turn will increase the number
of clusters. A good clustering algorithm should be able to find the simplest
representation of the data (which points to a low di) while ensuring that points
within a cluster are similar in some respect. In the present case, cv’s within the
clusters define this similarity. Thus, finding the optimum number of divisions
can be framed as an optimization problem,

Minimize Ci +
Ci∑

k=1

c(k)
v × 100%, c(k)

v =
σci

μci

∀ ci ∈ k-th cluster,

Subject to Ui = 0,
1 ≤ di ≤ m,
di is an integer.

(10)

The limits on di are due to the clustering criterion of 
m
di
� points. It is easy to see

that any value of di > m would yield the same result as di = m. The percentage
coefficient of variation is used to approximately scale the cv-values to the order
of number of clusters (Ci) which in turn allows the use of the weighted sum [16].

The clustering algorithm discussed above uses the aij and bij values obtained
from the methodology described in Sect. 4.1 to calculate di. The latter in turn
uses the clusters identified by the former to calculate the cv’s. The two op-
timization problems (9) and (10) therefore have to be solved simultaneously.
The algorithm calculations involved in both of these and the non-availability of
mathematical functions prevents the use of a classical optimization approach.
The present paper uses a simple genetic algorithm (GA) instead. It has the
added advantage that aij ’s can simply be coded as the bits of a binary string
whereas bij ’s can be regarded as real variables. Each population member then
acts as a design rule and only the best among these survive.

4.3 Significance of Design Rules

As discussed towards the end of Sect. 3, the discovered design rules should be
significant for them to be useful for a designer. A direct measure of significance
is the percentage of trade-off data-set that the rule applies to. To calculate the
significance of each GA population member, the fourth step of the clustering
algorithm in Sect. 4.2 is modified as,
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Modified Step 4: Merge adjacent divisions which have more than or same as

m

di
� + ε points to form clusters.

With a small integer value for ε, divisions which barely form part of the clusters
can be identified. Let Ci,MS and Ui,MS respectively be the number of clusters and
unclustered points calculated with the modified step. Note that the clustering
itself need not be redone for this purpose. The significance Si of the i-th design
rule can now be given as,

Si =
m − Ui,MS

m
× 100%. (11)

By placing a lower bound on Si (say Sreqd = 80%), designers can choose the
minimum level of prominence for the design rules.

4.4 Niching for Multiple Design Rules

The discussion so far has been carried out with respect to the i-th design rule.
However, solving a simple superposition of problems (9) and (10) with an ad-
ditional constraint on significance (11) will only yield a single design rule be-
cause only the best population member will survive through the generations.
The co-existence of multiple design rules can be promoted by introducing a
niched-tournament selection operator [17] in the GA which allows a tournament
to be played only between population members which use the same set of basis
functions. The niching is implemented on top of the penalty-parameter-less ap-
proach to constraint handling [18]. The following criteria are used to determine
the winner among two solutions u and v participating in a tournament:

1. If auj = avj ∀ j = 1, 2, . . . , N , then u and v can be compared.
(a) If one is feasible and the other is not then the feasible solution is

preferred.
(b) If both are feasible then the one with better objective value is preferred.
(c) If both are infeasible then the one with lower constraint violation is

preferred.
2. Else both u and v are competent.

With a GA that uses (i) this new niched-tournament selection operator for han-
dling the constraints, (ii) one-point crossover and bit-wise mutation for the bi-
nary string of aij bits, (iii) simulated binary crossover (SBX) and polynomial
mutation for bij ’s and, (iv) a discrete version of SBX and polynomial mutation
for the variable di, the combined optimization problem to be solved for extracting
multiple design rules simultaneously is proposed as,

Minimize Ci +
Ci∑

k=1

c(k)
v × 100%, c(k)

v =
σci

μci

∀ ci ∈ k-th cluster

Subject to −1.0 ≤ bij ≤ 1.0 ∀ j : aij = 1,
|bij | ≥ 0.1 ∀ j : aij = 1,∑

j aij ≥ 1,

Ui = 0, 1 ≤ di ≤ m, Si ≥ Sreqd,
aij ’s are Boolean, bij ’s are real and di is an integer.

(12)
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5 Results

Algorithm 1 summarizes the proposed automated innovization approach for dis-
covering multiple design rules in a single knowledge discovery step. It is now
applied in this form to two well-studied engineering design problems.

Algorithm 1. Automated innovization for simultaneous multiple rule discovery.
1: Obtain a good set of m diverse and near Pareto-optimal solutions for the multi-

objective problem.
2: Choose the terminal set of N basis functions φj ’s.
3: Form the m×N data-set of φj ’s evaluated at all m trade-off solutions.
4: Initialize variables aij , bij and di ∀ i = popsize GA members.
5: gen← 1
6: while gen ≤ maxgen do
7: for i := 1 to popsize do

8: Transform bij ← bij

{bip|p : (max
p
|aipbip|)} to maintain max |aijbij | = 1

9: Evaluate ci = ΠN
j=1φj(x)aijbij ∀ m trade-off solutions.

10: Sort and cluster {c(1)
i , c

(2)
i , . . . , c

(m)
i } using the grid-based clustering.

11: Evaluate the objective and constraints in (12).
12: end for
13: Perform niched-tournament selection on the GA population members.
14: Perform appropriate crossover operations.
15: Perform appropriate mutation operations.
16: Update GA population members.
17: gen← gen + 1
18: end while
19: Report unique members of final GA population as the obtained design rules (D).

5.1 Truss Design Revisited

The trade-off solutions obtained in Sect. 3 for m = 1, 000 points using NSGA-II
are utilized here. All objectives and variables are chosen as the basis functions.
Hence,

φ1 = V, φ2 = S, φ3 = x1, φ4 = x2, φ5 = y.

The following parameters are used for solving (12):

Population Size (popsize) = 400
Maximum number of generation (maxgen) = 500
One-point crossover probability (pc,binary) = 0.85
Bit-wise mutation probability (pm,binary) = 0.15
Continuous and discrete SBX probability (pc,real) = 0.95
Continuous and discrete polynomial mutation probability (pm,real) = 0.05
Continuous and discrete SBX distribution index (ηc) = 10
Continuous and discrete polynomial mutation distribution index (ηm) = 50
Parameter for calculating Ui,MS (ε) = 3
Threshold significance for design rules (Sreqd) = 80%
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Table 1 shows the unique solutions present in the GA population after 500
generations of the proposed algorithm. Notice how the use of niched-tournament
selection and the constraint on significance together helped maintain diverse (in
terms of basis functions) and yet significant design rules. For example, the i = 20-
th design rule is as follows:

V 1.0000000S0.7911332x−0.2102126
1 = c20. (13)

The essence of this design rule is not in the parametric constant c20 but in the
fact that the left-hand side of this expression remains almost constant for at
least Sreqd = 80% of the NSGA-II obtained data-set.

Table 1. Design rules (D) obtained for the truss design problem

i a∗
ij ∀ j a∗

i1b∗i1 a∗
i2b∗i2 a∗

i3b∗i3 a∗
i4b∗i4 a∗

i5b∗i5 d∗
i

1 10010 -0.9979552 0.0000000 0.0000000 1.0000000 0.0000000 869
2 01111 0.0000000 -0.9668656 -0.7030048 -0.2639445 1.0000000 869
3 01011 0.0000000 -0.7727935 0.0000000 -0.7749417 1.0000000 869
4 01101 0.0000000 -0.7048297 -0.7049160 0.0000000 1.0000000 870
5 00110 0.0000000 0.0000000 -0.9990348 1.0000000 0.0000000 869
6 00111 0.0000000 0.0000000 -0.9952743 0.9999844 1.0000000 869
7 00001 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 869
8 11111 0.7817370 -0.7754779 -0.7850468 -0.7734357 1.0000000 869
9 10011 0.8268434 0.0000000 0.0000000 -0.8259557 1.0000000 869
10 10101 0.8388214 0.0000000 -0.8391667 0.0000000 1.0000000 869
11 10111 0.8813441 0.0000000 -0.5827007 -0.3013669 1.0000000 869
12 11101 0.9486451 0.1086554 -0.8411865 0.0000000 1.0000000 856
13 11011 0.9962421 0.6705470 0.0000000 -0.3253438 1.0000000 908
14 11001 0.9989458 0.9984587 0.0000000 0.0000000 1.0000000 869
15 11000 0.9999623 1.0000000 0.0000000 0.0000000 0.0000000 869
16 11110 1.0000000 -0.5590224 -0.7850468 -0.7741561 0.0000000 869
17 10100 1.0000000 0.0000000 -0.9971116 0.0000000 0.0000000 869
18 10110 1.0000000 0.0000000 -0.7353538 -0.2647701 0.0000000 869
19 11010 1.0000000 0.6702390 0.0000000 -0.3300355 0.0000000 869
20 11100 1.0000000 0.7911332 -0.2102126 0.0000000 0.0000000 860

There is, however, a downside to discovering and presenting design rules in
the form as in Table 1. A human designer would prefer having all the design
rules in a compact form which can be intuitive to him/her. It is not difficult
to see that there are some redundant rules in Table 1. The next logical step is
therefore to condense and present them in a more compact form.

5.2 Reduced Row-Echelon Form

In linear algebra, reduced row-echelon forms (RREF) are used to identify linearly
dependent rows of a matrix. By eliminating redundant variables using RREF,
a system of linear equations can be solved easily. Here, the same technique is
used to condense the design rules. However, since the original trade-off data-set
is only near Pareto-optimal, the obtained design rules can only be approximate.
Therefore, a tolerance tol should be allowed during row operations. Algorithm 2
is used for this purpose.
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Algorithm 2. Determination of tol and condensed design rules.
1: l ← maximum number of significant digits in any element of D.
2: repeat
3: tol← 10−l

4: Dreduced = rref(D, tol) {The MATLABR© function rref() is used here.}
5: l ← l − 1
6: until rankDreduced < N
7: Identify insignificant relationships in Dreduced by performing grid-based clustering.
8: Report other relationships as the condensed design rules.

Table 2. Reduced design rules (Dreduced) for the truss design problem, tol = 0.01

i a∗
i1b

∗
i1 a∗

i2b
∗
i2 a∗

i3b
∗
i3 a∗

i4b
∗
i4 a∗

i5b
∗
i5 d∗

i Si

DR1 1.0000000 0.0000000 0.0000000 -1.0006158 0.0000000 520 88.2%
DR2 0.0000000 1.0000000 0.0000000 1.0005781 0.0000000 508 80.8%
DR3 0.0000000 0.0000000 1.0000000 -1.0009661 0.0000000 507 86.8%
DR4 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 511 87.2%

Table 2 shows the result of applying Algorithm 2 on the values in Table 1. It
can be seen that all the original rules in (4) are realizable from these condensed
rules whose approximate forms are summarized below:

DR1:
V

x1
= cDR1, DR2: Sx2 = cDR2, DR3:

x1

x2
= cDR3, DR4: y = cDR4.

Further insight can be obtained by again performing grid-based clustering on
the ci-values of these four rules to determine the number of clusters (Ci,MS)
and unclustered points (Ui,MS). The corresponding d∗i ’s and significance Si are
also shown in the table. Figures 5, 6, 7 and 8 show the distribution of ci’s,
the horizontal broken lines being their cluster averages. Unclustered points are
shown in gray.
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The figures and the corresponding relationships show how the proposed au-
tomated algorithm is capable of successfully deciphering important rules for a
design problem directly from the trade-off data-set. Specifically, for this problem
it can be seen that indeed the obtained rules and the associated ci’s are approx-
imately similar to those derived theoretically (and manually) earlier in (4). In a
complex design scenario, such rules generated automatically will be extremely
useful for the designer.

5.3 Welded Beam Design

This problem involves the minimization of cost (C) and end deflection (D) of a
welded cantilever beam carrying a given maximum load. The design variables are
the thickness of the beam b, width of the beam t, length of the weld l and weld
thickness h. Constraints are used to limit the allowable bending stress (σ), shear
stress (τ) and buckling force (Pc). The multi-objective formulation can be found
in [18]. The trade-off front is obtained for m = 300 population size using NSGA-
II. Next, the proposed algorithm is used on this data-set with popsize = 600 and
maxgen = 800. All other parameters are same as in the truss design problem.
The following basis functions are considered:

φ1 = C, φ2 = D, φ3 = b, φ4 = t, φ5 = l, φ6 = h φ7 = σ φ8 = Pc.

The D matrix contains 213 unique design rules which reduce to just the seven
relationships shown in Table 3. The following relations which were shown in a

Table 3. Reduced design rules (Dreduced) for the welded beam problem, tol = 0.01

i a∗
i1b∗i1 a∗

i2b∗i2 a∗
i3b∗i3 a∗

i4b∗i4 a∗
i5b∗i5 a∗

i6b∗i6 a∗
i7b∗i7 a∗

i8b∗i8 d∗
i Si

DR1 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.2983906 152 34.7%
DR2 0.00000 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.3334565 154 86.0%
DR3 0.00000 0.00000 1.00000 0.00000 0.00000 0.00000 0.00000 -0.3328624 157 88.0%
DR4 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000 0.00000 -0.0000215 155 83.3%
DR5 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000 0.2031956 158 34.0%
DR6 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000 -0.1844011 151 49.3%
DR7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.3334762 167 84.0%
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previous innovization study [8] to be the design rules of this problem are the
approximate forms of these automatically obtained condensed rules:

DR2: DP 0.333
c = cDR2, DR3:

b

P 0.333
c

= cDR3, DR4: t = cDR4, DR7: σP 0.333
c = cDR7.

The original study also shows other design rules which can be derived from the
above four rules. For example, DR2 and DR3 give Db = constant. Similarly,
DR2 and DR7 together suggest that D ∝ σ and so on.

These rules can be very handy for a designer. As an example, consider DR2
which indicates that the beam deflection D ∝ 1

P 0.333
c

, the proportionality con-
stant being c̄i = 0.1704 as shown in Fig. 9. A designer can convert a similar
bi-objective problem into a single objective problem and still be able to create
most of the trade-off solutions simply by using this rule. Similarly, the constraint
on the σ can be safely eliminated by noting that σ = 391208.7

P 0.333
c

applies to 252 out
of the 300 trade-off solutions as shown in Fig. 10. To check whether the two de-
sign rules are applicable to the same region of the trade-off front, the clustered
and unclustered points from both can be mapped to the front as shown in the
insets of the two figures.
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Table 3 also shows three relations that do not satisfy the criterion of being ap-
plicable to at least 80% of the data-set, namely, DR1, DR5 and DR6. They occur
despite the constraint on significance because of two reasons: (i) the constraint
on the magnitudes of bij ’s in (12) sometimes causes spurious (yet significant)
relationships to creep into the D matrix which carry on into Dreduced but lose
their significance during the row-echelon transformation. Fortunately, they can
be identified by again performing grid-based clustering as done here. In fact,
the above problem was solved with 0.01 instead of 0.1 as the lower bound on
magnitude since the latter resulted in DR3 having a significance of only 46% with
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a∗
i8b

∗
i8 = −0.3314016. This difficulty can be alleviated, if a different lower bound

can be set adaptively for each |bij |. (ii) the reduction to echelon form causes
accumulation of the errors in bij ’s which in turn are due to the near Pareto-
optimal nature of the data-set. While the latter can be controlled by ensuring
proximity to the Pareto-optimal front using local search methods, work is in
progress at Kanpur Genetic Algorithms Laboratory (KanGAL) to take care of
the former.

6 Conclusions and Future Work

The authors’ earlier work [16] on automatically deciphering design principles
or rules requires that the user choose various combinations of basis functions;
thus discovering each relationship one at a time. The proposed algorithm ad-
dresses the problem of finding multiple such rules simultaneously in a single
optimization run by automatically eliminating unwanted basis functions from
the provided set. It integrates a clustering based optimization approach with a
niched-tournament selection operator to allow multiple design rules to co-exist
in a GA population. Additional constraints are used to discourage insignificant
rules. The algorithm is demonstrated on the truss and welded beam design prob-
lems successfully and reveals interesting information about the Pareto-optimal
solutions in both cases. Intuitive and easy-to-use design rules are obtained by
condensing the original rules using the reduced row-echelon form. A systematic
procedure for determining the tolerance required during row operations is also
developed. Using a well-optimized Pareto-optimal data-set, the algorithm, as a
whole, provides compact design rules which can be easily stored and retrieved
for future design tasks of similar nature.

This study can be extended in a number of ways towards achieving a complete
automation of the innovization process. Firstly, as seen in the welded beam prob-
lem, constraining the magnitude of bij values to a lower bound caused certain
unwanted relationships to appear as rules. Though they could be identified after
a row-echelon reduction and subsequent grid-based clustering, the original algo-
rithm itself can be modified to adaptively change this lower bound. One likely
approach is to set it to a value below which the corresponding φj is incapable of
amounting to a threshold variation in ci-values.

Another extension of the algorithm can be made for discrete variable prob-
lems. The limited values which a variable can take in such problems may drive
the present algorithm towards trivial design rules (such as, xi = constant), each
satisfying a significant fraction of available data. If all the variables are discrete,
the row-echelon form may never have a rank less than N with a reasonable
tolerance. Further studies are needed to modify the current algorithm.

Rules in combinatorial optimization problems may be different than the ones
obtained here. It will be an interesting study to modify the current algorithm
for such problems as well. It would also be an interesting task to extend the
proposed approach in more than two-objective problems.
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Abstract. The use of multi-objective evolutionary algorithms for solv-
ing black-box problems with multiple conflicting objectives has become
an important research area. However, when no gradient information is
available, the examination of formal convergence or optimality criteria
is often impossible. Thus, sophisticated heuristic online stopping criteria
(OSC) have recently become subject of intensive research. In order to
establish formal guidelines for a systematic research, we present a taxon-
omy of OSC in this paper. We integrate the known approaches within the
taxonomy and discuss them by extracting their building blocks. The for-
mal structure of the taxonomy is used as a basis for the implementation
of a comprehensive MATLAB toolbox. Both contributions, the formal
taxonomy and the MATLAB implementation, provide a framework for
the analysis and evaluation of existing and new OSC approaches.

Keywords: Convergence Detection, Multi-Objective Optimization, Per-
formance Indicators, Performance Assessment, Termination Criterion.

1 Introduction

In recent years, the use of evolutionary algorithms (EAs) for solving multi-
objective optimization problems has become established. The search for a set of
solutions which approximates the Pareto-optimal front of a problem corresponds
well to the population maintained within an EA. In particular for black-box prob-
lems where no gradient information is available, the use of biologically-inspired
stochastic variation and selection operators provides a successful alternative.

However, without gradient information, the examination of formal conver-
gence or optimality criteria, e. g., the Karush-Kuhn-Tucker conditions, is impos-
sible. Therefore, the termination of multi-objective EA (MOEA) is often decided
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based on heuristic stopping criteria, such as the maximum number of evaluations
or a desired value of a performance indicator. Whereas the criteria are suitable
for analytically defined benchmark problems, where the optimal indicator value
is known, their applicability to real-world black-box problems is questionable.
In cases where the evaluation budget or the desired indicator level is inappro-
priately specified, the MOEA can either waste computational resources or can
be stopped although the approximation still shows a significant improvement.
Consequently, heuristic stopping criteria for the online detection of the gener-
ation, where the expected improvement in the approximation quality does not
justify the costs of additional evaluations, provide an important contribution to
the efficiency of MOEA.

In line with these findings, research on sophisticated heuristic online stopping
criteria (OSC) has obtained increasing popularity (e.g. [8,12,16,19,20]). OSC an-
alyze the progression of single or multiple progress indicators (PI) online during
the run of the MOEA. When the considered indicators seem to be converged,
i. e., the expected improvement seems to be lower than a predefined threshold,
the MOEA is terminated in order to avoid wasting computational resources.

Despite being proposed by different authors with different methodological
background, all these criteria show structural similarities. Thus, a taxonomy of
OSC is presented which is the formal contribution of this paper and makes up the
basis for the implementation of the MATLAB toolbox. Based on the foundations
of set-based multi-objective optimization (section 2), the special requirements for
multi-objective OSC are identified. In the main section 3, a formal framework
is defined (3.1), known OSC approaches are integrated within the taxonomy by
structuring them into their building blocks (3.2), and a discussion of the state
of the art is provided (3.3). All building blocks identified in the taxonomy are
made available in a MATLAB toolbox [18] which is briefly described in section 4.
By means of this toolbox, all existing and many new OSC can be designed and
analyzed. The paper is summarized and conclusions are given in section 5.

2 Foundations

Without loss of generality1, a MOP can be formally expressed as

min
x∈D

f(x) = 〈f1(x), . . . , fm(x)〉 , (1)

i. e., a vector of objective functions f1(x), . . . , fm(x) is jointly optimized. The
feasible region D ⊆ X of the search space X is denoted as decision space while
the image set O ⊆ Rm of the projection f : D → O is denoted as the feasible
set of the objective space Rm.

The solution to problem (1) is the set of trade-off points jointly minimizing
the objective functions. The formalism behind the joint optimization is expressed
in terms of the Pareto dominance relation. A decision vector x dominates an-
other vector x′, iff ∀i ∈ {1, . . . , m} : fi(x) ≤ fi(x′) and ∃i ∈ {1, . . . , m} :
1 Maximization problems max f (x) can be written as min −f (x).
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fi(x) �= fi(x′). The subset of D which contains the elements that are not dom-
inated by any other element of D is denoted as the Pareto-optimal set D∗. Its
image in the objective space O is called the Pareto-optimal front O∗. For con-
tinuous problems, D∗ and O∗ usually contain an infinite number of solutions.

MOEAs are population-based stochastic optimization algorithms. Each indi-
vidual in the population P of the MOEA represents a candidate solution. During
the optimization, the individuals are improved by means of evolutionary opera-
tors, such as mutation and crossover. The image of the non-dominated individ-
uals in objective space is denoted as non-dominated front PF∗. The objective
vectors obtained by the individuals in PF∗ provide a finite-size approximation
of O∗. In order to evaluate the quality of the approximation set PF∗

t of gener-
ation t, set performance indicators have become established [21]. The target of
an OSC is to detect the generation t which provides the best possible trade-off
between the approximation quality of PF∗

t and the required generations t.

3 Taxonomy

A brief summary of theoretical single- and multi-objective convergence detection
approaches based on formal conditions has already been published [16]. In this
summary, also the differences between multi- and single-objective problems is
discussed. If the application of formal convergence conditions is not possible,
heuristic OSC are used to detect that further improvements are unlikely, or
are expected to be too small – even if no formal convergence is obtained. In
this paper, we are focusing on these heuristic OSC. Thus, a formal notation of
convergence of a set of points in the multi-objective context is not required. The
procedure of these OSC can be separated in at least two steps:

1. The expected improvement of the MOEA is evaluated.
2. Based on this improvement and a predefined threshold, a decision about

stopping the MOEA is made.

For the first step, several PIs have been proposed. A straightforward approach
is the use of unary performance indicators, such as convergence metric (CM)
and diversity metric (DVM) [4], maximum crowding distance (maxCD) [15], or
the hypervolume (HV)[20,19,9] dominated by the current PF∗

t with respect to
a reference point which is dominated by all individuals in PF∗

t [6]. Moreover,
binary performance indicators, such as the ε- (Epsilon) [21], and the R2-indicator
(R) [10], can be used to evaluate the improvement between different MOEA
generations [20,9]. In these cases, but also for some of the unary indicators (CM
and DVM), a reference set is required. Since the best set available is usually the
one of the current generation PF∗

t , a recomputation of previous PI values based
on this reference set can become necessary. A clear advantage of using established
performance metrics consists in the availability of formal results from the theory
of performance assessment [21] which can be transferred to the PI.

Nevertheless, also specialized PIs for convergence detection have been pre-
sented. Mart́ı et al. [11,12] proposed the mutual domination rate (MDR). MDR
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contrasts how many individuals of PF∗
t dominate individuals of PF∗

t−1 and vice
versa. It is capable of measuring the progress of the optimization with almost no
additional computational cost as it can be embedded in Pareto-based MOEAs
and reuses their computations. Therefore it is suitable for solving large-scale or
many-objective problems with large population sizes. If MDR equals 1 then the
entire population of the iteration is better than its predecessor. For MDR = 0,
no substantial progress has been achieved. MDR < 0 indicates a deterioration
of the population. Bui et al. [3] introduced the dominance-based quality (DQP)
of a set PF∗

t . For each solution in PF∗
t , the ratio of dominating individuals in

the neighborhood of this solution are computed. The DQP is then defined as the
average ratio over all solutions in PF∗

t . DQP = 0 indicates that no improving
solutions can be found in the neighborhood of the current solutions in PF∗

t . For
the estimation of the ratios, Monte Carlo sampling is performed around each
solution in PF∗

t . Thus, the DQP is only suitable if many additional evalua-
tions of the objective function can be performed. Goel and Stander [8] proposed
the consolidation ratio (CR). The CR is a dominance-based convergence metric
based on an external archive of all non-dominated solutions found during the
run of the MOEA. It is defined as the relative amount of the archive members
in generation t − tmem which are still contained in the archive of the current
generation t. In improving phases CR should be low whereas it asymptotically
approaches one when convergence is achieved. This PI can be inefficient because
the archive can become very large, in particular for many-objective problems.

Because of the non-deterministic nature of EAs, it can be of avail to have an
evidence gathering process (EGP) that combines different PI values. This EGP
can take into account the measurements of previous generations or more than
one PI in order to increase the robustness of the approach. Different EGP ap-
proaches are discussed in the following while the descriptive notation in brackets
is later on used in the formal framework in section 3.1. Many approaches [3,8]
directly use the value of the PI computed in the current generation t for deciding
if the MOEA is stopped (Direct). However, a single PI evaluation usually cannot
provide enough information for a robust conclusion. A straightforward idea of
aggregating different PI values is the use of descriptive statistics. In particular,
the second moment, i. e., the standard deviation (STD) of the values, is used
in order to evaluate the variability within the PI [15,20,19]. Mart́ı et al. [11,12]
propose the use of a simplified Kalman filter (Kalman). Due to the recursive
formulation, the estimation at iteration t is based on all PI values gathered until
then. Moreover, it considers the associated covariance error, i. e., the minimum
possible error under linear conditions. A similar, but simpler, idea is proposed
by Goel and Stander [8] which use a moving average as EGP (Moving). In other
approaches, a linear regression analysis on the PI values of the last tmem gener-
ations is performed [20,9] (Reg) in order to estimate the expected improvement
and to filter out the stochastic noise in the PI evaluations.

Based on the outcome of the EGP, it can be decided whether the MOEA is
stopped. Most known approaches [15,3,8] use a threshold with which the outcome
is compared (Threshold). The MOEA is stopped in case the current value of the
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EGP exceeds or falls below this threshold. The approaches of Mart́ı et al. [11,12]
also use confidence information (CI) based on the assumption of a normally dis-
tributed error (CInormal). The MOEA is only stopped when the estimated EGP
value is below the threshold with a given probability limit. Guerrero et al. [9] do
not use CIs, but ensure the quality of the regression analysis by comparing the
mean squared error of the fit to a precomputed threshold (validThreshold). As
an extension of this approach, Trautmann and Wagner [20,19] perform statistical
tests on the outcome of the EGP. These tests are adapted to the corresponding
EGP, i. e., the χ2-test especially suited for variances (squared STD) is used with
STD while a t-test is used in cases where an estimated EGP value with a normal
distributed error is provided by the EGP, such as for Reg or Kalman (adaptTest).
In these approaches, the p-values obtained in the tests are compared to a fixed
significance level α = 0.05. In order to further increase the robustness of the
stopping decision, Wagner et al. [20] propose to wait for a repeated occurrence
of the stopping condition, denoted as hits h. Moreover, the use of multiple EGPs
can assist in analyzing different aspects of the PI, such as the variation (STD)
and the significance of the linear trend (Reg) [20].

3.1 Formal Framework

An online stopping criterion can be formally defined as a 4-tuple,

OSC := {S, Π(·), Υ (·), Φ(·)} with (2)
S : data structure, (state of the OSC)
Π : PF∗

t × S → S, (progress indicator (PI) computation)
Υ : S → S, (evidence gathering process, EGP)
Φ : S → {true, false} . (stopping decision)

In the state S, all information required for the computations of the EGP are
stored. It necessarily includes the input data M for the EGP. In the following,
we use S.M in order to address the current version of M stored in the state
S. The state S can additionally contain previous Pareto front approximations
or PI values, an external archive, or flags indicating whether the threshold has
been reached in the last generations. These information can be changed or used
in different functions of the taxonomy and are therefore exchanged via S. The
data stored in the state ensures that the OSC can make the stopping decision
just based on the Pareto front approximation PF∗

t of the current generation.
The function Π : PF∗

t × S → S uses the PIs to update the input data
S.M for the EGP. This general type of function is introduced since the update
can differ depending on the considered PIs, e. g., some approaches update the
PI of all preceding generations based on the current generation PF∗

t , whereas
others only update the values of the last generation. Consequently, the size of
S.M can be up to P × tmem, where P is the number of PIs and tmem is the
number of preceding generations considered in the EGP. In Π also all state
updates required for the PI computation, such as the update of the archive and
the storage of previously computed PI values, are performed. Consequently, the
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input data S.M is a necessary part of the updated state, as it would restrict the
generality of the framework as sole output of Π .

The function Υ : S → S encodes the EGP. It updates the state of the cri-
terion based on the input data S.M included in the current state. Usually, the
EGP returns one aggregated value per PI, but also a combined analysis like in
OCD [20] can be performed. In this case, the EGP value of the combined analysis
is assigned to all considered PI.

The decision function Φ : S → {true, false} finally determines whether the
current state of the criterion indicates that the expected improvement of the
MOEA is below the predefined threshold ε, i. e., the MOEA should be stopped.
For this decision, the EGP value, but also additional information, such as the
estimation error and the degrees of freedom in the estimation of the EGP value,
are usually utilized. The decision function can only return a single Boolean. If
multiple EGPs are considered in parallel, also the aggregation of the correspond-
ing decisions has to be performed in Φ.

Using these formalisms, the procedure of a generic OSC can be implemented
as shown in Algorithm 1. The user has to specify the MOEA, the problem of
interest and the maximum affordable number of generations tmax, as well as PI-
related data of the problem, such as a reference set and the ideal and nadir points
[6]. The actual OSC is specified by the combination of the PIs, the EGPs, and
the stopping decisions. For each step, also multiple functions can be provided.

After the initialization of the state in which the archive is initialized and
information about the chosen PI and EGP are stored, the control parameters
of the OSC are initialized. After each generation of the MOEA, S.M and the
required data structures are updated using the chosen Πi. If there are tmem
measurements, the functions Υj(·) are applied in order to attach the EGP value
for each PI to S. Finally, Φk(·) can be applied to determine whether the algorithm
should be stopped.

3.2 Integration of the State of the Art

In this subsection, we will present a survey of the state-of-the-art OSC in chrono-
logical publication date order. These approaches are described using the pro-
posed formalization. A summary is provided in Table 1.

Deb and Jain: Running Metrics. Deb and Jain [4] were the first authors who
proposed the investigation of performance metrics over the run of the MOEA.
They used two metrics, one for evaluating the convergence and one for measur-
ing the diversity of PF∗

t . The convergence metric (CM) calculates the average
of the smallest normalized euclidean distance from each individual in PF∗

t to a
precomputed reference set. For the computation of the diversity metric (DVM),
all objective vectors of PF∗

t are projected onto a hyperplane of dimension m−1
which is then uniformly divided into discrete grid cells. The DVM tracks the
number of attained grid cells and also evaluates the distribution by assigning
different scores for predefined neighborhood patterns. In order to avoid bad
DVM values based on unattainable grid cells, again a reference set is used. The
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Algorithm 1. Implementation of an OSC using the taxonomy definition (eq. 2)
General parameters:
• Multi-objective evolutionary algorithm of interest.
• Multi-objective problem of interest.
• tmax, maximum number of iterations.
• PI, set of PI functions Πi.
• EGP, set of EGP functions Υj .
• SDF , set of stopping decision functions Φk, k = {1, . . . , K}.
• Problem-based parameters (reference set, ideal and nadir points).
• Manually defined settings of control parameters (optional).

Initialize state S.
Initialize control parameters of Πi, Υj , and Φk.
t = 0.
while t < tmax do

t = t + 1.
Perform one generation of the MOEA and obtain PF∗

t .
for each indicator Πi in PI do

Update input data S .M and PI-dependent information, S = Πi(PF∗
t ,S).

end for
if |S.M| = tmem then

for each EGP Υj in EGP do
Update EGP value based on S.M, S = Υj(S).

end for
for each stopping decision function Φk in SDF do

Compute stop decision, stop(k) = Φk(S)
end for
if ∀k : stop(k) = true then

Stop MOEA!
return t and S.

end if
end if

end while

EGP and the final decision then rely on a visual inspection of the progression
of the CM and DVM by the user. Consequently, the state S of this criterion
contains the reference set and all values of the CM and DVM computed until
the current generation.

Rudenko and Schoenauer: Stability Measure. Rudenko and Schoenauer [15] de-
fined a stability measure for the PF∗

t of NSGA-II [5]. Their experimental studies
showed that the stagnation of the maximum crowding distance (maxCD) within
PF∗

t is a suitable indicator for NSGA-II convergence. Thus, the standard devi-
ation of the last tmem values of the maximum crowding distance is used as EGP
(STD). For the computation, the last tmem−1 values of maxCD are contained in
the state S. In each generation, S is updated using the current maxCD value and
STD is computed. The decision step requires a user defined threshold ε leading
to an NSGA-II termination once the STD falls below this value (Threshold).
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Mart́ı et al.: MGBM Criterion. Mart́ı, Garćıa, Berlanga, and Molina [11,12]
proposed the MGBM criterion (according to the authors’ last names), which
combines the mutual domination rate (MDR) with a simplified Kalman filter
that is used as EGP. The function Π considers PF∗

t−1 and PF∗
t and applies

the MDR indicator to update S.M. Thus, the Pareto front of the previous
generation has to be stored in the state S. The EGP function Υ applies the
Kalman filter and updates the Kalman state and the corresponding estimated
error in S. The decision function Φ is realized by stopping the MOEA when
the confidence interval of the a-posteriori estimation completely falls below the
prespecified threshold ε.

Wagner et al.: Online Convergence Detection (OCD). In the Online Conver-
gence Detection [20] approach, the established performance measures HV, R2-
and additive ε-indicator are used as PIs. The function Π updates all tmem PI
values stored in S.M using the current generation PF∗

t as reference set. Con-
sequently, the sets PF∗

t−tmem
to PF∗

t−1 have to be additionally stored in the
state S. In Υ , the variance of the values in S.M is computed for each PI. More-
over, a least-squares fit of a linear model with slope parameter β is performed
based on the individually standardized values in S.M. In Φ, the variance is then
compared to a threshold variance ε by means of the one-sided χ2-variance test
with H0: VAR(S.M) ≥ ε and a p-value is looked up. By testing the hypothesis
H0: β = 0 by means of a t-test, a second p-value is obtained. For these tests, the
variance obtained by STD, β, and its standard error have to be stored in the
state. The same holds for the resulting p-values. The MOEA is stopped when the
p-values of two consecutive generations are below the critical level α = 0.05 for
one of the variance tests (the null hypothesis H0 is rejected) or above α = 0.05 for
the regression test (H0 is accepted). Consequently, the p-values of the preceding
generations have to be stored in S.

In [19] a reduced variant of the OCD approach for indicator-based MOEA was
introduced. This approach was illustrated for the HV indicator and the SMS-
EMOA [1] (OCD-HV). Since the HV is a unary indicator, only the absolute
HV values have to be stored. The previous PF∗

t can be neglected. For better
compliance with the other PI, the differences to the value of the current set
PF∗

t are stored in S.M in order to minimize the PI. In case the internally
optimized performance indicator monotonically increases, as for the SMS-EMOA
and the HV, OCD should only consider this PI. The regression test can be
neglected. Consequently, the complexity of OCD is reduced by concentrating on
the variance test for one specific PI.

Bui et al.: Dominance-Based Quality of P (DQP). Bui et al. [3] introduce a
dominance-based stability measure which approximately evaluates the local op-
timality of a solution (DQP). The DQP is the only PI that requires many addi-
tional evaluations of the objective function for estimating the ratio of dominating
solutions in the neighborhood of a solution. A Monte Carlo simulation with 500
evaluations per solution in PF∗

t was used. Consequently, the DQP is a very ex-
pensive, but powerful measure. No additional state informations or EGPs are
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required. No clear guidelines for stopping the MOEA are provided. Instead, a
visual analysis of the convergence behavior and possible stagnation phases is per-
formed. However, a clear stopping criterion would be DQP = 0, as this would be
the case when no local improvements are possible. In fact DQP is closely related
to the gradient of a solution in single-objective optimization. In line with this
observation, the authors also use DQP as measure for guiding a local search [3].

Guerrero et al.: Least Squares Stopping Criterion (LSSC). LSSC [9] can be seen
as an approach to integrate both EGP of OCD into a single EGP and to also
simplify the PI computation and the stopping decision. Therefore, only one PI is
considered and the variance-based EGP and the statistical tests for the stopping
decision are omitted. Still, a regression analysis of the PI is performed as EGP
and the PI values of the last tmem generations are updated using the current
generation as reference set. Thus, the last tmem Pareto front approximations
have to be stored in the state S in order to update S.M. In contrast, the PIs
are not standardized allowing the estimation of the expected improvement by
means of the slope β. If β falls below the predefined threshold ε, the MOEA
is stopped. In order to prevent a loss of robustness by omitting the statistical
tests, a threshold for a goodness-of-fit test based on the regression residuals is
computed via the Chebyshev inequality. Only if the model is valid, the estimated
slope is compared to ε. Consequently, the analyses performed in OCD and LSSC
differ. Whereas LSSC directly tries to detect whether the expected improvement
falls below the allowed threshold ε, OCD tests the significance of the linear
trend whereas the magnitude of the expected improvement is evaluated via the
variance of S.M.

Goel and Stander: Non-dominance based convergence metric. Goel and Stander
[8] use a dominance-based PI based on an external archive of non-dominated
solutions which is updated in each generation. The current archive is stored in S
and is used to determine the CR. The authors provide empirical evidence for the
robustness of the CR, so that no EGP is applied (Direct). The stopping decision
is made by comparing the CR with a predefined threshold ε (Threshold).

In addition, an utility-based approach is proposed. The utility is defined as the
difference in the CR between the generations t and t− tmem. In order to increase
the robustness of the approach, a moving average U∗

t = (Ut +Ut−tmem)/2 is used
as EGP (Moving). The MOEA is stopped when the utility falls below an adap-
tively computed threshold εadaptive. Moreover, a minimum CR of CRmin = 0.5
has to be reached in order to avoid a premature stopping due to perturbances
in early generations. The adaptive threshold εadaptive is defined as the fraction
CRinit/(F · tinit) of the initial utility Uinit, which corresponds to the first CR
value CRinit exceeding 0.5 and the corresponding generation tinit. F is a user
parameter that specifies which ratio of the averaged initial utility CRinit/tinit
is at least acceptable. For this version, also εadaptive and U*t−tmem have to be
stored in S.
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3.3 Discussion

Basically, the existing PIs can be classified with respect to their optimization
goal. One class is formed by the PIs based on analyzing the dominance relation
between the current population (or archive) and a previous one, e. g., MDR
and CR. Other approaches provide information about the distribution (maxCD,
DVM) or local optimality of the solutions (DQP). Only a few of the PI try to
combine some of these goals, e. g., HV, R, Epsilon, and CM, each with different
trade-offs.

The dominance-based PI the convergence of the population to be formally
assessed. The probability of improving the diversity and distribution and there-
with the quality of the discrete approximation of O∗ is not specifically addressed.
The improvements in these PI will therefore reduce much faster. Moreover, the
magnitude of the improvement generated by a new non-dominated solution is
not considered. This information would be important in order to evaluate an
expected improvement. As shown in the last years [17], the dominance relation
has only a weak explanatory power for many-objective problems.

The dominance-based PI usually reuse the information provided by the se-
lection method of the MOEA. Thus, they do not require expensive additional
calculations. PIs like CM, R, and HV have to be additionally computed in each
MOEA generation, where especially the dominated hypervolume has a complex-
ity which increases exponentially with the objective space dimension. Bui et
al. [3] even perform additional evaluations for convergence detection. In general,
the use of additional computational time or evaluations should be kept below
the effort of the alternative option of just allowing the MOEA to precede for an
affordable number of additional generations.

In addition, reference and nadir points, as well as reference sets, can be re-
quired for some PIs, e. g., the reference set for the CM and DVM, the ideal
and nadir point for R2, and the reference point for HV. In contrast to math-
ematical test cases, this information is usually not existing for practical appli-
cations. Strategies to obtain this data have to be derived which could comprise
preliminary algorithm runs, random sampling, or evaluations on a grid cover-
ing the whole search space. Based on approximations of the objective bound-
aries, the normalization of the PI to unit intervals is possible – an approach
that is often recommended [4,21]. However, even the normalization can lead
to scalarization effects which make the specification of thresholds difficult [19].
For the dominance-based indicators, usually relative amounts are calculated,
e.g., −1 ≤ MDR ≤ 1 or 0 ≤ CR ≤ 1, which facilitate the definition of ad-
equate threshold values. Nevertheless, the only reasonable threshold for these
approaches is ε = 0 based on the above considerations.

Some methods do not use a distinct EGP. They rely on a single evaluation
of the considered PI. Due to the stochastic nature of MOEAs, it is obvious that
those approaches will not be as robust as alternative ones using an EGP gath-
ering PIs over a time window. Moreover, the EGP-based approaches are usually
flexible with respect to the kind of integrated PI. By means of a suitable PI,
the performance aspects (e. g., convergence, distribution, spread) which are the
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most important for the optimization task at hand can be considered in the OSC.
In this context, also the considered MOEA has an important role. Mathemati-
cal convergence can only be expected if the corresponding MOEA is based on
this PI, e. g., the SMS-EMOA in combination with the HV [2]. Furthermore,
most OSC are designed for separately using a single PI. As performance of a
MOEA has different aspects [4,21], it should be analyzed if the usage of PIs
covering these aspects of the approximation quality could support an efficient
OSC decision.

Another important OSC design issue is concerned with the choice of the stop-
ping decision. Statistical tests or confidence intervals lend themselves to draw
robust decisions from random variables monitored over time. However, in order
to choose an adequate test or distribution, some assumptions on the behavior
of the considered PI are necessary. As a first approach, Mersmann et al. [13]
analyze the distribution of the final HV value of different MOEAs. Among other
characteristics it is shown to be unimodal in most cases. Consequently, the use
of classical tests is possible, maybe based on additional transformations.

The parametrization of the OSC requires special attention as well. Parameters
have to be carefully chosen in order to obtain the desired results with respect to
the trade-off between runtime and approximation quality. For most approaches,
no clear guidelines for setting up the required parameters are given or a visual
analysis is suggested [4,3]. In contrast, Wagner and Trautmann [19] empirically
derive guidelines for reasonably setting the OCD parameters tmem and ε based on
statistical design-of-experiment methods. The resulting parameter recommenda-
tions can be found in Table 1. For reasonable comparisons between the OSC,
such kind of studies should also be performed for the other OSC. Furthermore,
the problems and possibilities resulting from a combination of the methods with
respect to the proposed PI, EGP, and stopping decisions should be a matter of
future research. In this context, an analysis of the compatibility of the PI, EGP,
and decision criteria would be of special interest.

4 MATLAB Toolbox for Online Stopping Criteria

In the previous subsection, many open questions in the field of OSC are dis-
cussed. However, all choices of test problems and MOEAs for the analysis of
OSC put a subjective bias to the results. In order to assist researchers in an-
alyzing these questions, a MATLAB toolbox based on the OSC taxonomy was
implemented [18]. Thus, the framework allows the application of the OSC to
the test problems and favorite MOEAs of the user. Based on the framework, an
interested user can analyze and tune the OSC on his specific setup.

The framework follows the pseudocode provided in Algorithm 1. It allows the
arbitrary combination of building blocks which can be used to design an adapted
OSC for the specific task at hand. Consequently, the analysis of the compatibility
of different subfunctions can directly be performed. Within the framework, the
abbreviations of section 3 are used to address the corresponding subfunctions.
Accordingly, each subfunction is documented in this paper.
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The control parameters of the OSC are initialized automatically using default
values. This procedure prevents the user from searching for default values of
the parameters before using the framework and also encourages researchers to
perform parameter studies before proposing an OSC. Nevertheless, experienced
users have the opportunity to specify some of the parameters on their own using
a options structure.

In order to allow arbitrary combinations of Π , Υ , and Φ, as proposed in Algo-
rithm 1, some additional features are integrated within the MATLAB framework:

– The use of different stopping decisions in parallel is possible.
– It is possible to combine the stopping decisions for different PI and EGP

by more than the already proposed rule: all PI for at least one EGP [20].
Further possibilities are: all, any, all EGP for at least one PI, and a majority
voting.

– The standard deviation of STD-EGP is calculated using bootstrapping [7].

The choice of allowing multiple stopping decisions in parallel is motivated by the
different amounts of information provided by the different EGP. The CI- and
t-test-based approaches require EGP that also provide error estimates. By com-
bining these methods with the threshold decision, which will always stop when
the CI- or test-based approaches would, also these EGP can be handled. Thus,
if some information is missing, e. g., the standard deviation after applying the
Direct EGP, the adaptTest- or CInormal-EGP are ignored and only Threshold
decision is used. This enhancement makes the framework more flexible for new
conceptually different stopping decisions.

By means of the formalization through the taxonomy, the interfaces for the
framework are clearly defined. Researchers in the field of OSC can easily integrate
their methods by structuring their OSC following the taxonomy. Then each
subfunction is implemented within the framework, and a benchmark with all
state-of-the-art OSC can directly be performed. As a side effect, a systematic
integration of new OSC into the state of the art is promoted.

5 Conclusion and Outlook

In this paper, a comprehensive overview of sophisticated heuristic online stop-
ping criteria (OSC) for EA-based multi-objective optimization is provided. The
approaches are integrated into a taxonomy by splitting them into their building
blocks which cover the different steps to be performed when applying an OSC.
The presented taxonomy allows comparisons of OSC approaches to be system-
atically performed. The analysis of the strengths and weaknesses of a specific
OSC can be broken down to the responsible subfunctions, e. g., the methods can
be classified by the kind of PI used, the complexity of the EGP, and the integra-
tion of statistical techniques in the decision making. Concluding, OSC methods
relying on an EGP with respect to PIs gathered from preceding generations are
likely to be more robust, but computationally expensive. The additional use of
statistical techniques can further increase robustness, but needs to be adapted
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to the data of the EGP. In contrast, complex and expensive PI like DQP may
not require a sophisticated EGP or stopping decision.

The parametrization of an individual OSC is not an easy task and strongly
influences its performance. Unfortunately, sufficient and comprehensive guide-
lines for the required parameter settings are only presented for a small subset of
the OSC strategies. Moreover, the recommended thresholds for the specific PI
are different, making a fair comparison almost impossible. In order to simplify a
systematic comparison, a MATLAB toolbox [18] was implemented. This toolbox
is structured according to the building blocks of the presented taxonomy and all
approaches discussed in this paper were integrated. By means of this toolbox,
the expert can evaluate the approaches – and also combinations of them – on
his problem and can then choose the OSC which provides the best performance
with regard to his objectives.

A systematic evaluation and comparison of all presented approaches will be
the main focus of our future research. This includes a parameter tuning, as well
as the combination of algorithmic concepts. To accomplish this, a systematic
performance assessment of OSC has to be proposed and discussed.
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12. Mart́ı, L., Garćıa, J., Berlanga, A., Molina, J.M.: An approach to stopping criteria
for multi-objective optimization evolutionary algorithms: The MGBM criterion. In:
Tyrrell, A., et al. (eds.) Proc. Int’l. Congress on Evolutionary Computation (CEC
2009), pp. 1263–1270. IEEE Press, Piscataway (2009)

13. Mersmann, O., Trautmann, H., Naujoks, B., Weihs, C.: On the distribution of
EMOA hypervolumes. In: Blum, C., Battiti, R. (eds.) LION 4. LNCS, vol. 6073,
pp. 333–337. Springer, Heidelberg (2010)

14. Naujoks, B., Trautmann, H.: Online convergence detection for multiobjective aero-
dynamic applications. In: Tyrrell, A., et al. (eds.) Proc. Int’l. Congress on Evolu-
tionary Computation (CEC 2009), pp. 332–339. IEEE press, Piscataway (2009)

15. Rudenko, O., Schoenauer, M.: A steady performance stopping criterion for pareto-
based evolutionary algorithms. In: The 6th International Multi-Objective Program-
ming and Goal Programming Conference, Hammamet, Tunisia (2004)

16. Trautmann, H., Wagner, T., Preuss, M., Mehnen, J.: Statistical methods for con-
vergence detection of multiobjective evolutionary algorithms. Evolutionary Com-
putation Journal, Special Issue: Twelve Years of EC Research in Dortmund 17(4),
493–509 (2009)

17. Wagner, T., Beume, N., Naujoks, B.: Pareto-, aggregation-, and indicator-based
methods in many-objective optimization. In: Obayashi, S., et al. (eds.) EMO 2007.
LNCS, vol. 4403, pp. 742–756. Springer, Heidelberg (2007)

18. Wagner, T., Mart́ı, L.: Taxonomy-based matlab framework for online stopping
criteria (2010), http://www.giaa.inf.uc3m.es/miembros/lmarti/stopping

19. Wagner, T., Trautmann, H.: Online convergence detection for evolutionary multi-
objective algorithms revisited. In: Fogel, G., Ishibuchi, H. (eds.) Proc. Int’l.
Congress on Evolutionary Computation (CEC 2010), pp. 3554–3561. IEEE press,
Piscataway (2010)

20. Wagner, T., Trautmann, H., Naujoks, B.: OCD: Online convergence detec-
tion for evolutionary multi-objective algorithms based on statistical testing. In:
Ehrgott, M., et al. (eds.) EMO 2009. LNCS, vol. 5467, pp. 198–215. Springer,
Heidelberg (2009)

21. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., Fonseca, V.: Performance as-
sessment of multiobjective optimizers: An analysis and review. IEEE Transactions
on Evolutionary Computation 8(2), 117–132 (2003)

http://www.giaa.inf.uc3m.es/miembros/lmarti/stopping


Not All Parents Are Equal for MO-CMA-ES�

Ilya Loshchilov1,2, Marc Schoenauer1,2, and Michèle Sebag2,1
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Abstract. The Steady State variants of the Multi-Objective Covariance
Matrix Adaptation Evolution Strategy (SS-MO-CMA-ES) generate one
offspring from a uniformly selected parent. Some other parental selection
operators for SS-MO-CMA-ES are investigated in this paper. These op-
erators involve the definition of multi-objective rewards, estimating the
expectation of the offspring survival and its Hypervolume contribution.
Two selection modes, respectively using tournament, and inspired from
the Multi-Armed Bandit framework, are used on top of these rewards.
Extensive experimental validation comparatively demonstrates the mer-
its of these new selection operators on unimodal MO problems.

1 Introduction

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [9,8] is con-
sidered today as the state-of-the art method for continuous optimization at large,
at least for small to medium-sized search space (up to dimension 100) [7]. Its
efficiency mostly derives from its invariance properties; not only is it invari-
ant with respect to monotonous transformations of the objective function, like
all comparison-based optimization algorithms; it is also invariant with respect to
orthogonal transformations of the coordinate system, thanks to the on-line adap-
tation of the covariance matrix of the Gaussian mutation. The multi-objective
version of CMA-ES proposed by Igel et al. [10], called MO-CMA-ES, benefits
from these invariance properties (though the hypervolume indicator is not in-
variant) and performs very well on non-separable problems like the IHR family.
MO-CMA-ES proceeds as a (μ + μ) algorithm, where μ parents give birth to
μ offspring, and the best μ individuals in the sense of Pareto dominance (out
of parents plus offspring) become the parents of the next generation. As shown
by [4] however, Evolutionary Multi-Objective Optimization can benefit from
steady-state strategies. Accordingly, two steady state variants, hereafter called
SS-MO-CMA-ES, have been proposed by Igel et al. [12], implementing some
(μ + 1) selection strategy: a parent is selected uniformly (either from the whole
parent population, or among the non-dominated parents), and is used to gen-
erate a single offspring, which is inserted back into the population at each time
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step. Significant improvements over the generational version were reported on
unimodal benchmark problems.

The present paper investigates some alternative choices of the fertile parent in
SS-MO-CMA-ES, based on the conjecture that not all (non-dominated) parents
are equal. Several indicators, estimating the expectation of offspring survival
or its hypervolume contribution, are considered. These indicators are exploited
within a simple tournament selection, or borrowing Multi-Armed Bandits prin-
ciples [2] to deal with the Exploration vs Exploitation dilemma.

This paper is organized as follows. Section 2 recalls the basics of MO-CMA-
ES; the generational and the steady state variants are described within a generic
scheme. Section 3 details the proposed parent selection operators and how they
fit in the generic scheme. These operators involve a rewarding procedure estimat-
ing the goodness of parents, and a selection procedure. In Section 4 the resulting
algorithms are experimentally assessed on some well-known benchmark func-
tions, comparatively to the previous versions of MO-CMA-ES, and the paper
concludes with some perspectives for further research in Section 5.

2 State of the Art

This section briefly recalls the formal background of multi-objective optimiza-
tion, and the basics of MO-CMA-ES and SS-MO-CMA-ES, referring the reader
to [10] and [12] for a more comprehensive description.

Let D ⊆ IRd be the decision space, and let f1, . . . , fm denote m objectives
defined on the decision space (fi : D �→ IR). The objective space is given by IRm

and the image of x in the objective space is defined as ox = (f1(x), . . . fm(x)).
Given a pair of points (x, y) ∈ D, it is said that x dominates y (denoted x ≺ y)
iff x is not worse than y over all objectives, and x is strictly better than y on at
least one objective. It is said that ox ≺ oy iff x ≺ y.

2.1 MO-CMA-ES

Originally, MO-CMA-ES involves a set of μ (1 + 1)-CMA-ES, each of which
performs step-size and covariance matrix updates based on its own evolution
path, and a Pareto-based survival selection mechanism that selects μ individuals
from the population of size 2μ built from all parents and offspring.

Regarding the (1 + 1)-ES, the general rules used for the adaptation of the
step-size and the covariance matrix in CMA-ES [9,8] cannot be used within the
(1+1) setting. Specific rules have hence been proposed [11], based on the success
rate of the previous evolution steps, à la 1/5th rule [16]. The detailed description
of those rules fall outside the scope of this paper, though their formal description
is given in lines 8-16 in Algorithm 1 for the sake of reproducibility.

Regarding the survival selection mechanism, it is inspired by the Non-
dominated Sorting procedure first proposed within the NSGA-II algorithm
[6]. Two hierarchical criteria are used in turn: the Pareto rank, and the hy-
pervolume contribution [4], that replaces the original crowding distance. Let
A = {a1, . . . , ap} denote a set of p points of the objective space.
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Pareto Ranking. The Pareto ranks w.r.t. A of the points in A are itera-
tively determined. All non-dominated points in A (denoted ndom1(A) or simply
ndom(A)), are given rank 1. The set ndom(A) is then removed from A; from
this reduced set, the non-dominated points (denoted ndom2(A)) are given rank
2; the process continues until all points of A have received a Pareto rank. The
Pareto rank of point a ∈ A is denoted PR(a, A).

Hypervolume contribution. The Hypervolume of a set of points A is some-
times also called “S-Metric” [18]. Let aref denote a reference point, dominated
by all points in A. The hypervolume of A is then the volume of the union of the
hypercubes defined by one point of the set and aref . Formally,

H(A) = V olume(
i=p⋃
i=1

Rect(ai, aref ))

where Rect(a, b) is the hyper-rectangle whose diagonal is the segment [ab]. It is
clear that only the non-dominated points in A (i.e. the points in ndom(A))
contribute to the hypervolume. The Hypervolume contribution of some non-
dominated point a is defined as the difference between the hypervolume of the
whole set A and that of the set from which a has been removed.

ΔH(a, A) = H(A) − H(A\{a})

For dominated points, the hypervolume contribution can also be defined by
considering only the points that have the same rank. More precisely, if PR(a) =
k, i.e. a ∈ ndomk(A), then

ΔH(a, A) = H(ndomk(A)) − H(ndomk(A)\{a})

Survival Selection in MO-CMA-ES. All above definitions are extended to
points in the decision space as follows. Given a set X = {x1, . . .xp} in the
decision space, given the set A = {ox1, . . . , oxp} of their image in the objective
space, the Pareto rank (resp. hypervolume contribution) of any point x in X is
set to the Pareto rank (resp. hypervolume contribution) of ox in A.

Using Pareto ranking as first criterion, and the hypervolume contribution as
secondary criterion (rather than the crowding distance proposed with the original
NSGA-II, as advocated in [4]), a total preorder relation ≺X is defined on any
finite subset X of the decision space, as follows:

x ≺X y ⇔ PR(x, X) < PR(y, X) // lower Pareto rank
or // same Pareto rank and higher HC
PR(x, X) = PR(y, X) and ΔH(x, X) > ΔH(y, X)

(1)

Ties on hypervolume contributions are broken at random.
Specific care must be taken with the extreme points of the set, i.e. the points

for which the hypervolume contribution depends on the choice of the reference
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Algorithm 1. (μ+λ)-MO-CMA-ES Generic MO-CMA-ES scheme
1: g ← 0, initialize parent population Q(0);
2: repeat
3: for k = 1, . . . , λ do
4: ik ← ParentSelection(Q(g), k);

5: a
′(g+1)
k ← a

(g)
ik

;

6: x
′(g+1)
k ∼ x

(g)
ik

+ σ
(g)
ik
N

(
0,C

(g)
ik

)
;

7: Q(g) ← Q(g) ∪
{

a
′(g+1)
k

}
;

8: for k = 1, . . . , λ do

9: p̄′(g+1)
succ,k, p̄

(g)
succ,ik

← (1− cp)p̄′(g+1)
succ,k + cpsuccQ(g)

(
a
(g)
ik

, a
′(g+1)
k

)
;

10: σ
′(g+1)
k , σ

(g)
ik
← σ

′(g+1)
k exp

(
1
d

p̄′(g+1)
succ,k

−ptarget
succ

1−p
target
succ

)
;

11: if p̄′(g+1)
succ,k < pthresh then

12: p
′(g+1)
c,k ← (1− cc)p

′(g+1)
c,k +

√
cc(2− cc)

x
′(g+1)
k

−x
(g)
ik

σ
(g)
ik

;

13: C
′(g+1)
k ← (1− ccov)C

′(g+1)
k + ccovp

′(g+1)
c,k p

′(g+1)T

c,k ;
14: else
15: p

′(g+1)
c,k ← (1− cc)p

′(g+1)
c,k ;

16: C
′(g+1)
k ← (1− ccov)C

′(g+1)
k + ccov

(
p
′(g+1)
c,k p

′(g+1)T

c,k + cc(2− cc)C
′(g+1)
k

)
;

17: Q(g+1) ←
{

Q
(g)
≺:i|1 ≤ i ≤ μ

}
; // Deterministic Selection according to ≺Q(g)

18: ComputeRewards(Q(g), Q(g+1));
19: g ← g + 1;
20: until stopping criterion is met.

point. By convention, they are associated an infinite hypervolume contribution,
and they thus dominate in the sense of Eq. (1) all points with same Pareto rank.

The survival selection in MO-CMA-ES finally proceeds as the standard deter-
ministic selection of the (μ + μ)-ES algorithm: at generation g, after each of the
μ parents has generated one offspring, let Q(g) denote the union of the μ parents
and the μ offspring. Then the best μ individuals according to ≺Q(g) become the
parents of generation g + 1.

2.2 Generational and Steady State MO-CMA-ES Algorithms

Algorithm 1 is a generic description of all MO-CMA-ES algorithms, where μ

parents generate λ offspring. Borrowing Igel et al’s notations [12], a
(g)
i denotes

some structure containing the ith point xi of the population at generation g to-
gether with its parameters related to the mutation (step-size, covariance matrix,
average success rate, . . . ).

Lines 3-7 is the loop of offspring generation: at line 5 the parent is copied onto
the offspring together with its parameters. It is mutated at line 6 (and evaluated).
Then, depending on the success of the offspring (its performance compared to its
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parents’), the parameters of both individuals are updated between lines 8 and 16
(update of the covariance matrix in the case of successful offspring1, and update
of success rate and mutation step in any case).

The original MO-CMA-ES thus instantiates the generic Alg. 1 by taking λ = μ
and having the parent selection on line 4 simply return its second argument
(ik = k, i.e., all parents generate exactly one offspring in turn).

In SS-MO-CMA-ES, λ = 1: only one offspring is generated at each generation.
The parent selection (line 4 of Algorithm 1) proceeds by uniformly selecting
either one from the μ parents (variant (μ+1)-MO-CMA in the following); or one
from the non-dominated parents (variant (μ≺ + 1)-MO-CMA in the following).

The survival selection (line 17) then amounts to replacing the worst parent xw

with the offspring if the latter improves on xw according to ≺Q(g) , or discarding
the offspring otherwise.

3 New Parent Selections for Steady-State MO-CMA-ES

After [12], the more greedy variant (μ≺ + 1)-MO-CMA outperforms all other
variants on all unimodal problems. In contrast, on multi-modal problems such
as ZDT4 and IHR4, (μ+1)-MO-CMA performs better than (μ≺ +1)-MO-CMA
[12], but it does not perform too well, and neither does the generational version
of MO-CMA-ES, comparatively to other MOEAs.

These remarks naturally lead to propose more greedy parent selection oper-
ators within SS-MO-CMA-ES (line 4 of Alg. 1), in order to further improve its
performances on unimodal problems, leaving aside at the moment the multi-
modality issue. A parent selection operator is based on i) a selection mechanism;
and ii) a rewarding procedure (line 18). A family of such operators is presented
in this section; the selection procedure either is based on a standard tourna-
ment selection (section 3.1), or inspired from the Multi-Armed Bandit paradigm
(section 3.2). The rewarding procedures are described in section 3.3.

3.1 Tournament Selection

Standard tournament selection is parameterized from a tournament size t ∈
IN. Given a set X , t-tournament selection proceeds by uniformly selecting t
individuals (with or without replacement) from X and returning the best one
according to criterion at hand (here, the ≺Q(g) criterion, see Eq. (1)). The parent
selection procedure (line 4 of Alg. 1) thus becomes TournamentSelection(Q(g)).

The rewarding procedure (line 18 of Alg. 1) only computes for each parent its
Pareto rank and Hypervolume contribution2.

The Steady-State MO-CMA-ES using t-size Tournament Selection is denoted
(μ +t 1)-MO-CMA in the following, or (μ +t 1) for short. Parameter t thus
1 The formulation of Algorithm 1 was chosen for its genericity. In practice however,

only the surviving offspring will actually adapt their parameters; the update phase
thus takes place after the survival selection (line 17).

2 It is thus redundant with the Survival Selection (line 17), and can be omitted.
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controls the selection greediness; the larger t, the more often points with high
Hypervolume contribution will be selected on average.

3.2 Multi-Armed Bandit-Inspired Selection

Another parent selection procedure (line 4 of Alg. 1) inspired from the Multi-
Armed Bandit (MAB) paradigm is described here. How to define the underlying
rewards (line 18) will be detailed in next subsection.

The standard MAB setting considers several options, also called arms, each
one with an (unknown but fixed) reward distribution [2]. The MAB problem is
to find a selection strategy, selecting an arm i(t) in each time step t and getting
an instance of the corresponding reward distribution, such that this strategy
optimizes the cumulative reward.

An algorithm yielding an optimal result has been proposed by Auer et al. [2];
this algorithm proceeds by selecting the arm which maximizes the sum of an
exploitation term (the empirical quality, or average of rewards the arm has ever
actually received) and an exploration term (enforcing that non-optimal arms be
selected sufficiently often to enforce the identification of the truly optimal arm).

Considering that our setting is a dynamic one (as evolution proceeds toward
the Pareto front), no algorithm with theoretical guarantees is available, and some
heuristic adaptation of the above MAB algorithm is used:
1. The average reward of an arm (a parent) is replaced by its average reward

along a time window of size w;
2. The exploration is enforced by selecting once every arm which i) occurs only

once in the time window and ii) is about to disappear from the time window
(it was selected w time steps ago);

3. In all other cases, the selection is on the exploitation side, and the arm with
best average reward along the last w time steps is selected.

In summary, the MAB-like selection (line 4 of Alg. 1) always selects the parent
with best average reward in the last w time steps, except for case 2 (a current
parent is about to disappear from the time window). Parameter w thus controls
the exploration strength of the selection. Experimentally however, the sensitivity
of the algorithm w.r.t. w seems to be rather low, and w was set to 500 in all
experiments (section 4).

3.3 Defining Rewards

This subsection describes the rewards underlying the MAB-like selection mech-
anism (line 18 of Alg. 1). A key related issue is how to share the reward between
parents and offspring. On the one hand, if an offspring survives, it is better that
some old parents and might thus be a good starting point for further advances
toward the Pareto front. The offspring must thus inherit a sufficient fraction of
its parent reward, to enable its exploitation. On the other hand, the reward of
a parent should be high when it yields good-performing offspring, and in partic-
ular no reward should be awarded to the parent if the newborn offspring does
not survive. Several reward indicators have been considered.
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(μ + 1succ). A first possibility is to consider boolean rewards. If an offspring
makes it to the next generation, both the offspring and the parent receives reward
1. Formally:

r(g) = 1 if a
′(g+1)
1 ∈ Q(g+1)

Such boolean rewards entail a very greedy behavior. The newborn offspring,
receiving 1 as instant reward, gets 1 as average reward over the time window; it
will thus very rapidly (if not immediately) be selected at next parent. Likewise,
its parent which already had a top average reward (it was selected), will improve
its average reward and tend to be selected again.

(μ + 1rank). A smoother reward is defined by taking into account the rank of
the newly inserted offspring:

r(g) = 1 − rank(a′(g+1)
1 )

μ
if a

′(g+1)
1 ∈ Q(g+1)

where rank(a′(g+1)
1 ) is the rank of the newly inserted offspring in population

Q(g+1) (using comparison operator ≺Q(g) defined by Eq. (1); the top individual
gets rank 0). Along this line, the reward ranges linearly from 1 (for a non-
dominated individual with best hypervolume contribution) to 0. A newborn
offspring will here be selected rapidly only if it makes it into the top-ranked
individuals of the current population. The average reward of the parent can
decrease if its offspring gets a poor rank, even if the offspring survives.

(μ + 1ΔH1). Another way of getting smooth rewards is based on the hyper-
volume contribution of the offspring. Let us set the reward to 0 for dominated
offspring (noting that most individuals are non-dominated in the end of evolu-
tion); for non-dominated offspring, one sets the reward to the increase of the
total Hypervolume contribution from generation g to g + 1:

r(g) =
∑

a∈Q(g+1)

ΔH(a, Q(g+1)) −
∑

a∈Q(g)

ΔH(a, Q(g))

(μ + 1ΔHi). In the early stages of evolution, many offspring are dominated
and the above Hypervolume-based reward thus gives little information. A relax-
ation of the above reward, involving a rank-based penalization is thus defined.
Formally, if k denote the Pareto rank of the current offspring, the reward is:

r(g) =
1

2k−1

⎛⎝ ∑
ndomk(Q(g+1))

ΔH(a, ndomk(Q(g+1))) −
∑

ndomk(Q(g))

ΔH(a, ndomk(Q(g)))

⎞⎠
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#9:+0.5

#10:+1

Fig. 1. Reward-based multi-objective optimization with bounded population.
”#6:+0.4” means reward 0.4 on 6th iteration.

3.4 Discussion

The difficulty of associating a reward to a pair (parent, offspring) in Multi-
Objective optimization is twofold. On the one hand, defining absolute indicators
(e.g. reflecting some aggregation of the objective values) goes against the very
spirit of MO. On the other hand, relative indicators such as above-defined must
be taken with care: they give a snapshot of the current situation, which evolves
along the population progress toward the Pareto front. The well-founded Multi-
Armed Bandit setting, and its trade-off between Exploration and Exploitation,
must thus be modified to account for non-stationarity.

Another difficulty is related to the finiteness of the population: while new arms
appear, some old arms must disappear. The parent selection, e.g. based on the
standard deterministic selection (Eq. (1)) is biased toward exploitation as it does
not offer any way of “cooling down” the process. Such a bias is illustrated in Fig.
1. Let the population size of steady-state EMOA be 5, and consider a sequence
of 10 evolution steps, generating 10 new points (oldest, resp. newest points are
black resp. white). At each iteration the parent with best reward generates an
offspring, then 6 points are compared using Eq. (1), and the worst point (crossed
out) is eliminated. The instant parent reward reflects the quality of the offspring.
Along evolution, some prospective points/arms are thus eliminated because they
progress more slowly than others, although they do progress, due to the fixed
population size. Expectedly, this bias toward exploitation adversely affects the
discovery of multi-modal and/or disconnected Pareto front. We shall return to
this issue in section 5.

4 Experimental Validation

This section reports on the validation of the proposed schemes, comparatively
to the baseline MO-CMA-ES algorithms, detailing the experimental setting in
section 4.1 before discussing the experimental evidence in section 4.2.
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4.1 Experimental Setting

Algorithms. The experimentation involves:

– The steady-state MO-CMA-ES with tournament-based parent selection,
where the tournament size t is set to 2 and 10 (respectively noted (μ +2 1)
and (μ +10 1));

– The steady-state MO-CMA-ES with MAB-based parent selection, consider-
ing the four rewards described in section 3.2 (respectively noted (μ + 1succ),
(μ + 1rank), (μ + 1ΔH1) and (μ + 1ΔHi));

– The baseline algorithms include the generational (μ + μ)-MO-CMA [10],
and its steady-state variants (μ + 1)-MO-CMA and (μ≺ + 1)-MO-CMA [12]
(section 2.2).

All parameters of MO-CMA-ES are set to their default values [10] (in partic-
ular, μ = 100); all algorithms only differ by their parent selection procedure.
All reported results are based on 31 independent runs with at most 200,000 fit-
ness evaluations, and median results are reported when the target precision was
reached.

Problems. The well-known bi-criteria ZDT1:3-6 problems [17] and their rotated
variants IHR1:3-6 [10] have been considered. Note however that the true Pareto
front of all ZDT problems lies on the boundary of the decision space, which
might make it easier to discover it. For the sake of an unbiased assessment, the
true Pareto front is thus shifted in decision space: x′

i ← |xi − 0.5| for 2 ≤ i ≤ n,
where n is the problem dimension. The shifted ZDT problems are denoted sZDT.
The set of recently proposed benchmark problems LZ09-1:5 [14] have also been
used for their complicated Pareto front in decision space (Fig. 4).

Performance Measures. Following [13], the algorithmic EMO performance is
measured from the hypervolume indicator IH . Let P be a μ-size approximation
of Pareto front and let P ∗ be the approximate μ-optimal distribution of optimal
Pareto points [3]. The approximation error of the Pareto front is defined by
ΔH(P ∗, P ) = IH(P ∗) − IH(P ).

Furthermore, to support an easy comparison of different algorithms across
different problems, all results will be presented ’the horizontal way’, i.e., report-
ing the number of function evaluations needed to reach a given precision. This
procedure rigorously supports claims3 such as algorithm A is 2 times faster than
algorithm B.

4.2 Result Analysis

All empirical results are displayed in Table 1. These results show that the pro-
posed algorithms generally outperform the baseline MO-CMA-ES approaches,
with the exception of problems sZDT3, IHR6 and LZ09-5. A first general remark
3 In opposition, a claim such as Algorithm A can reach a precision 10 times smaller

than algorithm B is hard to assess when considering different problems.
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Fig. 2. On-line performances of baseline and proposed variants of steady-state MO-
CMA-ES on sZDT1, IHR1, LZ09-3 and LZ09-4 problems (median out of 31 runs)

is that the steady-state variants of MO-CMA-ES outperform the generational
one on unimodal benchmark problems; as already noted in [12], the greedier
(μ≺ +1)-MO-CMA is usually faster than the original steady-state on sZDT and
IHR problems; in counterpart, it is too greedy on LZ09 problems (see below).
Another general remark is that (μ+1ΔHi)-MO-CMA is usually more robust and
faster than (μ + 1ΔH1)-MO-CMA; this fact is explained as the former exploit
a better informed hypervolume contribution based reward, considering also the
contribution of dominated points.

The on-line performance of most considered algorithms on sZDT1, IHR1,
LZ09-3 and LZ09-4 shows the general robustness of (μ+1rank)-MO-CMA (Fig.2,
displaying ΔH(P ∗, P ) versus the number of function evaluations). The compar-
atively disappointing results of (μ + 1)-MO-CMA on IHR1 are explained from
the structure of the Pareto front, which includes an easy-to-find segment. This
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Fig. 3. Typical behavior of (μ + 1succ)-MO-CMA on sZDT2 (left) and IHR3 (right)
problems: premature convergence after 5,000 fitness function evaluations

segment can be discovered by selecting the extreme parent (in objective space),
thus with probability 1/μ within a uniform selection scheme. Quite the contrary,
reward-based selection schemes quickly catch the fruitful directions of search.

The price to pay for this is depicted on Fig. 3, showing (μ + 1succ)-MO-CMA
on sZDT2 and IHR3 problems. On these problems, a premature convergence
toward a small segment of the Pareto front is observed after circa 5,000 function
evaluations. The interpretation provided for this premature convergence goes
as follows. As one part of the Pareto front is easier to find than others, points
aiming at this part quickly reach their goal; due to non-dominated sorting (and
to the fixed population size), these eliminate other points, resulting in a very
poor diversity (in objective space) of the population. This remark suggests that
some additional diversity preserving technique should be used together with MO-
CMA-ES; note that, even in the original MO-CMA-ES, a premature convergence
is observed on IHR3.

LZ09 problems have also been considered because of their non-linear Pareto
front in decision space (Fig. 4), contrasting with the linear Pareto front of all
sZDT and IHR problems. The results depicted in Fig. 4 show that (μ + 1rank)-
MO-CMA better approximates the Pareto front than (μ + 1) and (μ +10 1)-
MO-CMA, for all problems except LZ09-5. It is interesting to note that the
results of (μ + 1rank)-MO-CMA after 100,000 fitness evaluations match those of
MOEA/D-DE after 150,000 fitness evaluations [14].

Overall (see also Table 1), (μ + 1rank)-MO-CMA and (μ +10 1)-MO-CMA
perform best on most problems, while (μ + 1ΔHi)-MO-CMA is slightly more
robust. Most generally, all greedy versions of MO-CMA-ES get better results
on problems with a convex Pareto front; on problems with a concave or discon-
nected Pareto front, they suffer from premature convergence, entailed by a loss
of diversity, due to non-dominated sorting and bounded population size.
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Fig. 4. Plots of all 10 populations found by (μ + 1)-MO-CMA (left), (μ +10 1)-MO-
CMA (center) and (μ+1rank)-MO-CMA (right) in the x1−x2−x3 space on LZ09-1:5
after 100,000 function evaluations
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Table 1. Comparative results of two baseline EMOAs, namely generational and steady-
state MO-CMA-ES and several versions of steady-state MO-CMA-ES with different
parent selection schemes. Median number of function evaluations (out of 31 indepen-
dent runs) to reach ΔHtarget values, normalized by Best: a value of 1 indicates the
best result, a value X > 1 indicates that the corresponding algorithm needed X times
more evaluations than the best to reach the same precision.

ΔHtarget 1 0.1 0.01 1 0.1 0.01 1 0.1 0.01 1 0.1 0.01

sZDT1 sZDT2 sZDT3 sZDT6
Best 2500 12000 47000 2500 15000 59000 3000 18500 70000 4500 141200 .

(μ+ μ) 7.3 4.3 2.2 8.6 4.3 2.1 5.5 3 1.5 8.2 1 .
(μ+ 1) 6.5 3.9 2.1 7.6 3.9 2 5.1 2.8 1.4 7.2 1.1 .
(μ≺ + 1) 1.5 2.2 1.7 1 2 1.5 1.3 1.8 1.2 1 . .
(μ+2 1) 3.7 2.4 1.5 4.4 2.4 1.4 3.1 1.7 1 4.3 . .
(μ+10 1) 1.2 1 1.1 1.4 1 1.3 1 1 . 1.3 . .
(μ+ 1ΔH1) 3.5 1.5 1 3.4 1.6 1 2.5 . . 1.7 . .
(μ+ 1ΔHi

) 1.7 1.3 1 1.8 1.3 1 1.1 . . 1.5 . .
(μ+ 1succ) 1.2 1.7 1.1 1.6 . . 1 . . 2.1 . .
(μ+ 1rank) 1 1.4 1 1.4 . . 1 . . 1.7 . .

IHR1 IHR2 IHR3 IHR6
Best 500 1500 6000 1500 4000 8500 1000 . . 6000 . .

(μ+ μ) 8.4 8.8 6.9 6.4 4.8 3.3 8.2 . . 5.6 . .
(μ+ 1) 7 7.3 6.7 5.6 4.1 2.9 7 . . 5 . .
(μ≺ + 1) 1 1 3 1 1.6 1.7 1 . . 1 . .
(μ+2 1) 4 4.3 4 3.3 2.5 1.9 4 . . 3 . .
(μ+10 1) 2 1.6 1.1 1 1 1 1 . . 1 . .
(μ+ 1ΔH1) 2 1.6 1 2 1.5 1.2 2.5 . . 1.4 . .
(μ+ 1ΔHi

) 2 2.3 1 1.3 1.3 1.1 1.5 . . 1.2 . .
(μ+ 1succ) 2 2.3 2 5.3 2.7 1.7 1.5 . . 1.9 . .
(μ+ 1rank) 2 2 1.5 1.6 1.7 1.3 1.5 . . 1.6 . .

LZ09-1 LZ09-2 LZ09-3 LZ09-4
Best 500 6000 17000 3500 144000 . 1500 35000 120500 1000 10000 40500

(μ+ μ) 11.4 5.1 3.2 3.6 . . 4.1 1.2 . 5.7 3.2 2.4
(μ+ 1) 9 4.7 3 3.2 . . 3.6 1 . 5 3.9 2.5
(μ≺ + 1) 2 2.5 2.2 1 . . 1 . . 1 4.3 2.3
(μ+2 1) 6 2.8 1.9 2.2 . . 2.3 1.7 . 3.5 2.7 1.9
(μ+10 1) 2 1 1 1 . . 1 1.4 1.4 1.5 1 2
(μ+ 1ΔH1) 9 2.1 1.5 2 . . 1.6 5.6 . 2 1.8 1
(μ+ 1ΔHi

) 2 1.5 1.3 2.1 1 . 2 4.2 . 2.5 1.5 1
(μ+ 1succ) 1 2.1 1.4 3.5 . . 1.3 3.6 . 2 3.5 1.3
(μ+ 1rank) 1 1.9 1.3 5.8 1.1 . 1.3 1.6 1 1.5 2.4 1

LZ09-5
Best 1500 19000 .

(μ+ μ) 3.4 1.6 .
(μ+ 1) 3.3 1.4 .
(μ≺ + 1) 1 . .
(μ+2 1) 2 1 .
(μ+10 1) 1 1.7 .
(μ+ 1ΔH1) 1.3 . .
(μ+ 1ΔHi

) 1.6 1.9 .
(μ+ 1succ) 1.3 . .
(μ+ 1rank) 1 . . 15



44 I. Loshchilov, M. Schoenauer, and M. Sebag

5 Conclusion and Perspectives

The goal and main contribution of the paper is to speed up MO-CMA-ES us-
ing new parent selection schemes, based on tournament and reward-based ap-
proaches inspired from the Multi-Armed Bandit framework, in order to quickly
identify the most fruitful directions of search. Experiments on several bi-objective
problems have shown a significantly speed-up of MO-CMA-ES on unimodal prob-
lems (for both generational and previous steady-state variants). However, the
proposed approach results in a poor convergence on multi-modal multi-objective
problems, or problems where some parts of the Pareto front are much easier to
reach than others, such as IHR3 (Fig. 3, and discussion in sections 3.4 and 4.2).

These remarks open some perspectives for further research, aimed at pre-
serving the benefits of parent selection schemes while addressing the premature
convergence on multi-modal landscapes. A first perspective is to maintain the
points located at the border of the already visited region, and to give them some
chance to produce offspring as well although they are dominated. The question
thus becomes to handle yet another exploitation vs exploration dilemma, and
distribute the fitness evaluations between the current population and the bor-
derline points; it also remains to extend the reward definition for the borderline
points. Such an approach is similar in spirit to the so-called BIPOP-CMA-ES de-
signed to overcome premature convergence within single-objective evolutionary
optimization [7]; BIPOP-CMA-ES proceeds by maintaining one large population
for exploration purposes, and a small one for fast and accurate convergence.

A second perspective is to design a more integrated multi-objective CMA-ES
based algorithm, by linking the reward mechanism used in the parent selection
and the internal update rules of CMA-ES. Indeed, the success rate used to control
the (1 + 1)-ES evolution and the empirical success expectation used in (μ +
1succ)-MO-CMA are strongly related. Further work will consider how to use the
success rate in lieu of reward for parental selection, expectedly resulting in a more
consistent evolution progress. Meanwhile, the CMA update rules might want to
consider the discarded offspring (possibly weighting their contribution depending
on their hypervolume contribution), since they might contain useful information
even though they are discarded. Again, similar ideas have been investigated
in the single objective case: the Active Covariance Matrix Adaptation [1] does
use unsuccessful trials to update the distribution of mutation parameters. Some
other recent proposals [5] might also help accelerating even further the MO-
CMA-ES on separable functions: mirrored sampling systematically evaluates two
symmetric points w.r.t. the mean of the Gaussian distribution, and sequential
selection stops generating offspring after the first improvement over the parent.

Last but not least, the MO-CMA-ES and the proposed parent selection
schemes must be analysed and compared with other state-of-the art MOEAs,
specifically SMS-EMOA [4], the first algorithm to advocate the use of steady
state within EMO to our best knowledge; it also proposed separable variation
operators, resulting in excellent results comparatively to MO-CMA-ES on sep-
arable problems. How to extend these variation operators in the non-separable
case, borrowing approximation ideas from [15] will be investigated.
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algorithms from the black-box optimization benchmarking BBOB-2009. In: Branke,
J., et al. (eds.) GECCO (Companion), pp. 1689–1696. ACM, New York (2010)

8. Hansen, N., Müller, S., Koumoutsakos, P.: Reducing the Time Complexity of the
Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES).
Evolution Computation 11(1) (2003)

9. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9(2), 159–195 (2001)

10. Igel, C., Hansen, N., Roth, S.: Covariance Matrix Adaptation for Multi-objective
Optimization. Evolutionary Computation 15(1), 1–28 (2007)

11. Igel, C., Suttorp, T., Hansen, N.: A computational efficient covariance matrix
update and a (1+1)-CMA for evolution strategies. In: Keijzer, M., et al. (eds.)
GECCO 2006, pp. 453–460. ACM Press, New York (2006)

12. Igel, C., Suttorp, T., Hansen, N.: Steady-state selection and efficient covariance
matrix update in the multi-objective CMA-ES. In: Obayashi, S., Deb, K., Poloni,
C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 171–185.
Springer, Heidelberg (2007)

13. Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment
of stochastic multiobjective optimizers. Technical Report TIK 214, ETH Zürich
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Abstract. In this paper, we examine the problem of maintaining an
approximation of the set of nondominated points visited during a multi-
objective optimization, a problem commonly known as archiving. Most
of the currently available archiving algorithms are reviewed, and what
is known about their convergence and approximation properties is sum-
marized. The main scenario considered is the restricted case where the
archive must be updated online as points are generated one by one,
and at most a fixed number of points are to be stored in the archive
at any one time. In this scenario, the �-monotonicity of an archiving
algorithm is proposed as a weaker, but more practical, property than
negative efficiency preservation. This paper shows that hypervolume-
based archivers and a recently proposed multi-level grid archiver have
this property. On the other hand, the archiving methods used by SPEA2
and NSGA-II do not, and they may �-deteriorate with time. The �-
monotonicity property has meaning on any input sequence of points. We
also classify archivers according to limit properties, i.e. convergence and
approximation properties of the archiver in the limit of infinite (input)
samples from a finite space with strictly positive generation probabilities
for all points. This paper establishes a number of research questions, and
provides the initial framework and analysis for answering them.

Keywords: approximation set, archive, convergence, efficiency preserv-
ing, epsilon-dominance, hypervolume, online algorithms.

1 Introduction

The convergence properties of large classes of multiobjective evolutionary algo-
rithms were seriously considered for the first time in the late 1990s [18,9,17].
These papers laid the foundations for much of the analysis that has gone on to
date, and showed that certain types of elitism combined with a certain type of
generation process lead to convergence (in the limit) to a subset of the Pareto
front (PF). Moreover, they indicated that, to a large extent, properties of a
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multiobjective stochastic search algorithm as a whole can be derived from sep-
arately considering properties of the generation process and properties of the
elite-preserving mechanism.

Today, most multiobjective stochastic search algorithms are elitist in the sense
of keeping an external archive (or memory) in order to capture the output of the
search process. Because the set of minima visited may be very large in a mul-
tiobjective optimization process, it is common to bound the size of the archive.
Thus, properties of the elite-preservation, or archiving, rules used to maintain
bounded archives are of high interest to the community. Our aim in this paper
is to elucidate, in one place, some of the properties of existing archiving algo-
rithms that keep at most a fixed maximum number of points to approximate
the PF. We restrict our attention to sequential archiving of points that arrive
one-by-one, but consider a number of differently motivated algorithms for this
setting. We consider archiving algorithms aimed only at convergence (similar to
AR1 [17]), algorithms aimed mostly at ‘diversity’1 (derived from the elite pop-
ulation update rules of SPEA2 [19] and NSGA-II [7]), algorithms that consider
overall approximation quality (epsilon dominance-based [16], grid-based [13], and
based on maximizing hypervolume [11,1]), including a relatively new proposal
called multi-level grid archiving [15]. We review the properties of these archiving
algorithms and illustrate them empirically.

2 Preliminaries

We are concerned with vectors (points) in finite, multidimensional objective
spaces. Let Y ⊂ Rd be a finite objective space of dimension d > 1. An order
relation on Y may be defined as follows: y ≺ y′ iff ∀i ∈ 1, . . . , d, yi ≤ y′

i and
y �= y′. Thus ≺ is a strict partial order on Y . Instead of y ≺ y′ we may also
write y dominates y′. The set of minimal elements of Y may be defined as

Y ∗ := min(Y,≺) = {y ∈ Y, �y′ ∈ Y, y′ ≺ y}.

The set Y ∗ is called the Pareto front (PF). Any other set P ⊆ Y with the
property P = min(P,≺) will be called a nondominated set.

We are interested in finding approximations of the set Y ∗ of cardinality at
most N . Such approximation sets are also partially ordered when we extend the
definitions of dominance to pairs of sets as follows. Let P be a nondominated
set. A point y �∈ P is nondominated w.r.t. P iff �y′ ∈ P, y′ ≺ y. Let P and Q be
two nondominated sets. Then P � Q iff min(P ∪ Q,≺) = P �= Q.

2.1 Optimal Approximation Sets of Bounded Size

The partial order on sets defined by � gives the primary solution concept for
determining an optimal approximation set of size at most N , as follows:
1 The term “diversity” has no fixed definition in the literature, but it can refer to the

evenness of the spacing between points and/or the extent of the nondominated set.
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Definition 1 (Optimal Approximation Set of Bounded Size). If A ⊆ Y
is a nondominated set, |A| ≤ N , and �B ⊆ Y, |B| ≤ N, B � A, then A is an
optimal approximation set of bounded size N of Y ∗.

This solution concept derives from the dominance partial order only, but is in
general not sufficient to guide a search or archiving process alone. We are now
used to the notion of evaluating approximation sets with performance indica-
tors, and using performance indicators to define other solution concepts that are
compatible with dominance (see below), i.e. they are refinements [21] of it, that
may be more suitable for guiding an archiving algorithm.

2.2 Compatibility of Performance Indicators

Let J be the set of all nondominated subsets of Y . A unary performance indicator
I : J → R is a mapping from the set J to the real numbers. Assuming that the
indicator’s value is to be minimised, we can define compatibility of I with respect
to (J, �). If �A, B ∈ J , such that A � B and I(A) ≥ I(B) then I is a compatible
indicator [10,22]. Analogously, a weakly compatible indicator can be defined by
replacing I(A) ≥ I(B) with I(A) > I(B) in the statement above.

Hypervolume indicator. The hypervolume indicator HYP(A) [20] of an ap-
proximation set A (originally called the S metric in the literature) is the Lebesgue
integral of the union of (hyperectangular, axis-parallel) regions dominated by
the set A and bounded by a single d dimensional reference point that must be
dominated by all members of the true PF. The indicator’s value should be max-
imized. The compatibility of the indicator [12,22] is behind its importance as a
performance assessment method and as a means of guiding search and archiving
algorithms.

Additive ε indicator. A point y is said to be weakly ε-dominated by a point
y′ iff ∀i ∈ 1, . . . , d, y′

i ≤ yi + εi. The unary epsilon indicator εadd(A) of an
approximation set A is defined as the minimum value of ε such that every point
in Y ∗ is weakly ε-dominated by an element of A. This indicator has been shown
to be weakly compatible with the �-relation on sets [22] following the proposal
of ε-dominance as a means of evaluating and obtaining approximation sets [16].

3 Archivers, Convergence and Approximation

Similarly to earlier papers [16,13,6], the setting we consider is that some genera-
tion process is producing a sequence of points (objective vectors) 〈y(1), y(2), . . . 〉,
and we wish to maintain a subset of these minima in an archive A of fixed
maximum size, |A| ≤ N . We denote by At the contents of the archive after the
presentation of the t-th objective vector. An archiver, i.e., an archiving algorithm
for updating A with y, is an online algorithm [2] as it has to deal with a stream
of data with no knowledge of future inputs. Knowles and Corne [13] previously
showed that this online nature of the task means that no archiver can guarantee
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to have in its archive min(N, |Y ∗
t |) where Y ∗

t is the set of minimal elements of the
input sequence up to a time t. A corollary of this, not previously stated explicitly,
is that no online archiver of bounded size can deliver an ‘optimal approximation
set of bounded size’ even in the weak sense of Definition 1.

3.1 Convergence and Approximation Definitions

When analysing an archiver’s behaviour, we may be interested in how it performs
in general input sequences of finite length, where points do not necessarily appear
more than once in the sequence. This scenario models a one-pass finite sample
of the search space. Or we may be interested in sequences where every point is
seen an infinite number of times [17]. When considering the one-pass setting,
we wish to know whether the archive is always a good approximation of the
input sequence (at every time step). When considering the behaviour on points
drawn indefinitely from a finite space, we wish to know whether convergence
ever occurs (does the archive stop changing eventually?), and if so, what kind
of approximation set is obtained, i.e. what is the archiver’s limit behaviour. The
following definitions expand on these ideas. The first four are properties that
apply to one-pass settings (which also imply they are limit properties, too). Two
limit-behaviour definitions follow.

Definition 2 (⊆ Y ∗). No point in the archive is dominated by a point in the
input sequence: ∀t, ∀y ∈ At, y ∈ Y ∗

t .

Definition 3 (diversifies). An archiver is efficiency preserving [9] when full,
if ∀t, |At| = N , y ∈ At+1 iff ∃y′ ∈ At, y ≺ y′. That is, it cannot accept points
outside of the region dominating the current archive, thus limiting the diversity
of points in the archive. We say that an archiver without this property diversifies
by discarding a nondominated point from the archive to accept the new one.

Definition 4 (negative efficiency-preserving [9]). There does not exist a
pair of points y ∈ At and y′ ∈ Av, t < v such that y dominates y′. Let an
archiver that does not have this property be said to deteriorate.

Definition 5 (�-monotone). There does not exist a pair of sets At and Av,
t < v such that At � Av. Let an archiver that does not have this property be said
to �-deteriorate.

Definition 6 (limit-stable). For any sequence consisting of points drawn in-
definitely with a strictly positive probability from a finite set, there exists a t such
that ∀v > t, At = Av. That is, the archive set converges to a stable set in finite
time.

Definition 7 (limit-optimal). For any sequence consisting of points drawn
indefinitely with a strictly positive probability from a finite set, the archive will
converge to an optimal bounded archive (see Definition 1).

Table 1 summarises the properties of the eight archivers in terms of Definitions
2–7. An illustration of some of these concepts is given in Fig. 1.
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Fig. 1. Illustrations of some convergence concepts. (Left) Consider that {a, b} is an
archive; then an efficiency-preserving archiver may only accept a point in the (dom-
inating) shaded region. If it accepts a′ (removing a) this is also negatively efficiency
preserving because the total region dominated is a superset of the region dominated by
a, as indicated by the dashed lines. (Middle) Consider a different archive represented
by c and d. In this case, a negatively efficiency preserving archiver can cause points
to be unreachable, since only points within either of the shaded regions can now be
accepted (adapted from Hanne [9]). (Right) Points e and f illustrate how the ε-Pareto
archiver manages to guarantee that only Pareto optimal points are in its final archive.
Two points in the same box cannot co-exist so one will be rejected from the archive.
Let us say it is f . Only points which dominate e are allowed to populate the box in the
future. Since the intersection of the region dominating e and the region dominated by f
is empty, this ensures that, although f is no longer in the archive, no point dominated
by f ever enters the archive.

3.2 Basic Archiver Pattern

Six of the eight archivers we study (all except for the two ε-based ones [16]) follow
the scheme of Algorithm 1. These archivers describe a class called “precise” [6].
It is helpful for the later analysis of each individual archiver to observe the
properties of Rules 1 and 2 (see Algorithm 1). Rule 1 is efficiency-preserving [9],
which means that the region that contains points that dominate the archive after
application of the rule is a subset of this region before the rule was applied. The
rule is also negative efficiency preserving (Ibid.), which means that the region
dominated by the archive after application of the rule is a superset of this region
before. Rule 2 on the other hand is just negative efficiency preserving. For other
properties of the algorithms described below, see Table 1.

3.3 Unbounded Archive

Trivially, the archiver yields the Pareto front of the input sequence. Although
it is negative efficiency preserving [9] (Def. 4), it does not suffer from the curse
of unreachable points (Ibid.) because these only occur when the set of points is
also size limited.
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Table 1. Types of convergence behaviour displayed by the archivers, and broad indi-
cation of time complexity for archive update. P denotes polynomial in N and d, and
E(d) expresses exponential in d.

Archiver ⊆ Y ∗ diversifies negative
efficiency-
preserving

�-
monotone

limit-
stable

limit-
optimal

Complexity

Unbounded + + + + + + P
Dominating - - + + + + P

ε-approx - + - + + - P
ε-Pareto + + + + + - P
NSGA-II - + - - - - P

SPEA2 - + - - - - P
AGA - + - - - - P
AAS - + - + + + E(d)

MGA - + - + + + P

Algorithm 1. Basic Archiver Pattern
Input: At−1, y
if ∃y′ ∈ At−1, y

′ ≺ y then
At ← min(At−1 ∪ {y}) // Rule 1

else if |min(At−1 ∪ {y})| ≤ N then
At ← min(At−1 ∪ {y}) // Rule 2

else
At ← filter(At−1 ∪ {y}) // filter(·) returns a set of size N

end if
Output: At

3.4 Dominating Archive

The simplest way to achieve an archive of fixed maximum size is to implement the
Basic Archiver with the filter(·) function that just returns At−1. In other words,
this archiver admits only dominating points whenever it is at full capacity. This
archiver, when connected to a suitable sequence-generating process, is similar to
the AR1 algorithm [17]. Due to the use of Rules 1 and 2 in combination (only),
the archiver is negative efficiency preserving. Two corollaries of this are that the
archive cannot deteriorate [9] (Def. 4), and it will always contain a subset of the
Pareto front of the input sequence. However, the archiver gives no guarantee of
approximation quality, and, in practice, especially for small N , it will tend to an
almost efficiency preserving behaviour where it shrinks into a small region of the
Pareto front. The archive may also contain points that are not Pareto optimal in
the input sequence (even though deterioration does not occur), because |A| may
fall below N (due to Rule 1) and points dominated in Y may be accepted because
the dominating point in Y ∗ was previously rejected entry into the archive due
to rule filter(·), at an earlier timestep when the archive was full.
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3.5 Adaptive ε-Approx Archiving

The ε-approx archiver [16] does not follow our previous pattern. In this algo-
rithm, a point is accepted only if it is not ε-dominated by an archived point. If
it is accepted, then At ← min(At−1 ∪ {y}), as usual. For fixed ε, it was shown
that the archive is always an ε-approximate set of the input sequence of finite
size (but not limited to any fixed value).

Laumanns et al. [16] also describe an adaptive scheme in order to allow a
user to specify a maximum archive size N , rather than an ε value. However,
this scheme often results in too large values of ε with the result that too few
points are archived (e.g. compared to AGA) [14]. Hence, although the archiver is
�-monotone, it is not limit-optimal. Other properties are summarised in Table 1.

3.6 Adaptive ε-Pareto Archiving

The second archiver in [16] uses the idea that objective space can be discretized,
via ε, into equivalence classes called ‘boxes’, so that every objective vector be-
longs to precisely one box. Within a box, only one point is allowed to exist in
the archive, and the update rule within a box allows only a dominating point to
replace the incumbent (see Fig. 1). This scheme guarantees that every point in
the archive is Pareto optimal wrt the input sequence. This is the only archiver
here that has this property and maintains a size-bounded archive.

Similarly to the ε-approximate archiver, a scheme to adapt ε on the fly was
also proposed in [16] so that an archive limited to N points could be obtained.
But this adaptation scheme does not facilitate reducing ε if it starts or becomes
too large, with the result that the archiver keeps too few solutions, preventing
it from being limit-optimal.

3.7 NSGA-II Archiver

The NSGA-II algorithm [7] assigns different selective fitness to nondominated
points on the basis of their crowding distance, a coarse estimate of the empty
space that surrounds a point. Our NSGA-II archiver follows the scheme of the
Basic Archiver (Algorithm 1), and implements the filter(·) function by removing
the point with minimum crowding distance [7].

Since crowding distance is independent of dominance, no convergence guar-
antees can be made. It does not yield a subset of the nondominated points from
the input sequence, in general. More importantly, the archive may �-deteriorate
(Definition 5), and we later show this empirically in Section 4.4. Moreover, even
on a sequence constructed from an indefinite random sampling of a finite space,
the archive may never settle to a stable set.

3.8 SPEA2 Archiver

The external population update of SPEA2 [19] was designed to prevent some
of the regression and oscillation observed in the original SPEA. Our SPEA2
archiver follows the scheme of the Basic Archiver (Algorithm 1), but uses the
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distance to the k-nearest neighbour as the density measure in the filter(·) func-
tion, as is used in SPEA2 for update of the external population.

The SPEA2 archiver has similar properties to NSGA-II archiver in terms of
convergence and approximation: The archive can �-deteriorate, and the archiver
is not limit-stable. Moreover, we show in Section 4.3 that even for a sequence
of all Pareto-optimal points, the diversity measure of SPEA2 may lead to very
poor approximation quality.

3.9 Adaptive Grid Archiving (AGA)

Adaptive grid archiving uses a grid over the points in objective space in order
to estimate local density. Its filter(·) rule in the instantiation of Algorithm 1 is

At ← At−1 ∪ {y} \ {yc ∈ C}

where yc is a point drawn uniformly at random from C, the set of all the vectors
in the “most crowded” grid cells, excluding any points that are a minimum or
maximum on any objective within the current archive.

The archive rule is neither negatively efficiency preserving nor efficiency pre-
serving, so AGA can deteriorate. Neither is it �-monotone, a more serious prob-
lem. Only under special conditions (the grid cells are correctly sized and the grid
stops moving) does a form of approximation guarantee become possible [11].

3.10 Hypervolume Archiver AAS

This archiver was first proposed by Knowles [11] and follows the pattern of
Algorithm 1, with the filter(·) rule:

At ← arg max
A∈AN

{HYP(A)},

where AN is the set of all subsets of At−1∪{y} of size N . In the one pass scenario,
greedily removing the least-contributor does not ensure that the hypervolume is
maximized over the whole sequence [4]. In Section 4.3, we provide an example
where AAS clearly does not maximize the hypervolume. This also means that
it is neither negative efficiency preserving nor efficiency preserving: A point in
the archive may be dominated by one that was previously in the archive, i.e., it
may deteriorate. However, since the hypervolume never decreases, the archiver
is �-monotone (Definition 5).

The behaviour in the limit fulfills the solution concept (Definition 1), i.e. it
is limit-optimal. The archive will be a set of min(N, |Y ∗|) Pareto-optimal points
after sufficiently long time, since if a set of size N has its maximum hypervolume
value (out of all sets of such size) then all the points are Pareto optimal [8,
Theorem 1].

Bringmann and Friedrich [5] have proved that hypervolume approximates the
additive ε indicator, converging quickly as N increases. That is, sets that maxi-
mize hypervolume are near optimal on additive ε too, with the ‘gap’ diminishing
as quickly as O(1/N).
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Updating the archive may be computationally expensive for large d and N .
But despite the intractability of finding the point contributing least to the hy-
pervolume in a set, approximation schemes may be good enough in practice [3].

3.11 Multi-level Grid Archiving (MGA)

The multi-level grid archiving (MGA) algorithm [15] can be thought of as com-
bining principles from AGA and the ε-Pareto archiver. It was designed from the
outset to maintain at most N points, achieving this by using a hierarchical fam-
ily of boxes (equivalence classes) of different coarseness over the objective space.
Specifically, when comparing solution at coarseness level b ∈ Z, the components
yi of their objective vectors y ∈ Rd are mapped to (integral) values 
yi · 2−b� to
define its box index vector at level b.

The archiver follows the pattern of Algorithm 1. Its filter(·) rule works by
first determining the smallest level b where at least one of the N + 1 candidates’
box index vector is weakly dominated. The new candidate y is rejected if it
belongs to the points that are weakly dominated at this level b; otherwise an
arbitrary solution from this set is deleted. Through this adaptive determination
of the right coarseness level for comparison, the behaviour observed in the ε-
archivers of ending up with too large an ε value can be avoided, as we later show
experimentally in Section 4.1.

The archiver is neither negatively efficiency preserving nor efficiency preserv-
ing, which means that it does not guarantee that its archive contains only Pareto
points of the input sequence. We provide an example of this in Section 4.5. Nev-
ertheless, it is shown in [15] that any archive update strictly increases a unary
performance indicator compatible with dominance (i.e., it is �-monotone, see
Def. 5), like the hypervolume archiver AAS . However, unlike the AAS , MGA
does not calculate this unary indicator explicitly, which makes it computation-
ally more tractable than AAS . In particular, its time complexity is O(d ·N2 ·L),
where L is the length of the binary encoded input, therefore polynomial.

4 Empirical Study

Despite their crucial importance in the quality of MOEAs, there is surprisingly
little experimental work on the behaviour of different archivers [16,13,6]. We
provide in this section experiments that confirm the observations in the previous
sections, and illustrate some properties of popular archivers that have not been
described in the literature.

We have implemented the various archiving algorithms in C++ within a com-
mon framework. We make available the initial version of this framework at
http://iridia.ulb.ac.be/~manuel/archivers in order to help future anal-
ysis. We plan to extend this framework in the future with other archivers found
in the literature.

In this section, we empirically analyse the reviewed archiving algorithms. In
order to focus on the properties of the algorithms, we study the performance

http://iridia.ulb.ac.be/~manuel/archivers
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Fig. 2. Small PF (2D) N = 10

of the algorithms when presented with particular sequences of points. The se-
quences studied have been generated in order to highlight some characteristics
of the algorithms.

We evaluate the quality of the algorithms with respect to the hypervolume and
unary ε-indicator. In all sequences, we run the unbounded algorithm and keep
the Pareto front at each iteration of the sequence. In the case of the additive ε
measure (εadd), the reference set is the optimal PF (which is the final unbounded
archive). Then, for each archiver and at each iteration, we calculate εadd(At) −
εadd(Unboundedt). Similarly, for the hypervolume we calculate the reference point
over the final unbounded Pareto front as

ri = max fi + ((1 + (1/(N − 1))) · (max fi − min fi)).

Then, we calculate the ratio HYP(At)/HYP(Unboundedt), for each iteration t
of the input sequence.

In all sequences, the objective functions are to be minimized, without loss of
generality since the sequences are finite, we could always transform them into
an all-positive maximization problem and the results will stand.

4.1 MGA Addresses Key Weakness of ε-Archivers

In both ε-approximate and ε-Pareto algorithms, the ε may become arbitrarily
large with respect to the extent of the Pareto front. Knowles and Corne [14]
showed that this occurs, for example, when the initial range of objective values
is much larger than the actual range of the Pareto front. In that case, the initial
estimate of ε is much larger than actually needed, but since ε cannot decrease,
the algorithms end up accepting fewer points than N . This situation occurs even
with a small initial estimate of ε = 0.0001, as we use in the experiments here.
We ran experiments on two sequences proposed by Knowles and Corne [14], of
length 10 000 and dimensions 2 and 3, respectively. Fig. 2 and Fig. 3 show that
these sequences are not a problem for MGA. Moreover, while MGA is able to
maintain an archive size of |A| = 20, ε-approximate and ε-Pareto only keep 2
and 1 solutions respectively just after 4 000 iterations until the end.



56 M. López-Ibáñez, J. Knowles, and M. Laumanns

0 2000 4000 6000 8000 10000

0.
85

0.
90

0.
95

1.
00

Iteration t

H
Y

P
(A

t)
H

Y
P

(U
nb

t)
Hypervolume

MGA
e−Pareto
e−approx

0 2000 4000 6000 8000 10000

0.
00

0.
10

0.
20

0.
30

Iteration t

ε(
A

t)−
ε(

U
nb

t)

Additive Epsilon

MGA
e−Pareto
e−approx

Fig. 3. Small PF (3D) N = 10

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y1

y 2

●
●

●
●●●●

●
●●

●●● ● ●

●● ●●●

● MGA
AAs

HYP εadd

AAs 0.9993076 0.009689
MGA 0.9929917 0.013613

Fig. 4. MGA vs. AAs for clustered points, N = 20

4.2 MGA vs. AAs for Clustered Points

We use a clustered sequence of 900 points in two dimensions to show the different
final sets archived by AAs and MGA. Fig. 4 shows that AAs keeps the extremes
of each cluster, whereas MGA points are not sparsely distributed within each
cluster. The result is that AAs obtains better value in all performance indicators.

4.3 Fast Degradation of the SPEA2 Archiver

We illustrate how the quality of SPEA2 archiver can degrade very fast if points
are added in the extreme of the Pareto front. We generate a sequence of 2 000
nondominated points in a straight line, sorted in increasing order of their first
dimension. The top plots in Fig. 5 show that the quality of the archive stored
by SPEA2 archiver degrades very rapidly as the sequence progresses. What is
happening is that SPEA2 keeps the N −1 initial solutions plus the new extreme,
which replaces the old extreme. Therefore, at every step, the gap between the
new extreme and the N − 1 initial solutions increases further. The final archives
are shown in the bottom plot of Fig. 5. All but one solutions archived by SPEA2
are clustered in the left-most extreme of the PF.

The plot also shows that neither MGA nor AAs obtain a perfect approxi-
mation, which for this particular sequence would mean a uniformly distributed
archive. Since they do not have knowledge about the real range of the PF, they
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Fig. 5. Increasing extremes (2D) affects SPEA2 performance, N = 20

cannot accurately decide when to keep a solution close to the moving extreme.
Nonetheless, MGA and AAs do not suffer the fast degradation in approximation
quality shown by the SPEA2 archiver.

4.4 The NSGA-II Archiver �-Deteriorates

It is possible to construct a sequence of points such that the NSGA-II archiver
removes points from its archive that are Pareto-optimal and includes points
that are dominated in such a way that the archived set may be dominated by
a previously archived set, and therefore, we say that the quality of the archive
has �-deteriorated over time (Definition 5). Fig. 6 shows the final archive stored
by Unbound, AAs, MGA and NSGA-II. Except for the extremes, the rest of
the final archive stored by NSGA-II archiver is dominated by solutions stored
in previous archives. In fact, for this sequence, the archive at step t = 58 is
dominated by the archive at step t = 56. It is possible to construct different
sequences that show the same behaviour for the SPEA2 archiver.

4.5 MGA Is Not Negatively Efficiency Preserving

In general, MGA is not negatively efficiency preserving, since the final archive
may contain points that are dominated by points that were previously in the
archive and deleted. This is exemplified in the sequence shown in Fig. 7 for
N = 4. In this sequence, MGA deletes point d after archiving point e. Then,
a and b become dominated by f , and g is accepted into the archive, despite it
is dominated by d. A sequence showing that AAs is not negatively efficiency
preserving can be constructed by placing g such that it is dominated only by c.
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5 Conclusions

In this paper we have examined the problem of keeping a bounded size approx-
imation of the Pareto front of a set of points in a d-dimensional (objective)
space, when the elements of the set are only accessed one-by-one. This models
the archiving process of keeping an elite population or bounded size “best-so-far”
outcome in many multi-objective optimizers.

Earlier works on this problem have dealt with algorithms designed to be
stand-alone archivers, such as AGA and ε-based archivers. However, the diver-
sity mechanisms employed by popular MOEAs are also archiving algorithms.
In this paper, we have proposed a classification of both kinds of archivers, and
the recently proposed MGA, according to a number of properties not considered
before for this problem (summarised in Table 1). In particular, we differenti-
ate between negative efficiency preservation and �-monotonicity, and identify
two classes of archivers, one based on compatible indicators (hypervolume-based
AAs and the new MGA), and another based on diversity mechanisms (SPEA2,
NSGA-II and AGA). This allows us to understand more precisely why the for-
mer class of archivers have better convergence properties than the latter class,
even when points are seen just once. The former cannot �-deteriorate, even if a
single point in the archive can be dominated by one that was previously in the
archived set. This classification raises the question as to whether there may exist
an archiver of the same class as MGA and AAs that is also negative efficiency
preserving.

In addition, our experiments have shown that the recently proposed MGA
addresses the key weakness of the earlier ε-based archivers, however, at the cost
of losing the guarantee of only archiving Pareto-optimal solutions. As a final
observation, we did not find an absolute winner, but a tentative assessment is
that AAs often produces better results with respect to hypervolume, whereas
MGA often obtains the best ε-measure values.

This paper has shown that the archiving problem is far from being well-
understood, and we have left open a number of questions. First, we have only
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examined artificial sequences, designed to show the properties defined here. An
interesting extension is to assess the typical performance of the archivers on
multiple runs for various simple geometric sequences in varying dimensions, and
also from points coming from stochastic search on standard benchmark problems.
Second, we have limited ourselves to one-by-one archiving of points and (mostly)
a one-pass setting. We know that updating the archive with more than one point
simultaneously cannot be a worse approach, and for hypervolume it has already
been shown to be superior. Therefore, understanding how the properties defined
here extend to other update scenarios is an open research question. Third, we
plan to extend this work to other archivers found in the literature, and to foster
that project we also provide the archivers and artificial sequences used here to
the community.2 Fourth, we plan to use competitive analysis techniques from
the field of online algorithms to obtain worst-case bounds, in terms of a measure
of “regret” for archivers. Finally, after highlighting some weaknesses of existing
archivers, we ask whether designing a better archiver is possible, and what trade-
offs exist in its design.
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Abstract. Traditional Evolutionary Multiobjective Optimization tech-
niques, based on derivative-free dominance-based search, allowed the con-
struction of efficient algorithms that work on rather arbitrary functions,
leading to Pareto-set sample estimates obtained in a single algorithm
run, covering large portions of the Pareto-set. However, these solutions
hardly reach the exact Pareto-set, which means that Pareto-optimality
conditions do not hold on them. Also, in problems with high-dimensional
objective spaces, the dominance-based search techniques lose their effi-
ciency, up to situations in which no useful solution is found. In this
paper, it is shown that both effects have a common geometric struc-
ture. A gradient-based descent technique, which relies on the solution
of a certain stochastic differential equation, is combined with a multiob-
jective line-search descent technique, leading to an algorithm that indi-
cates a systematic solution for such problems. This algorithm is intended
to serve as a proof of concept, allowing the comparison of the proper-
ties of the gradient-search principle with the dominance-search principle.
It is shown that the gradient-based principle can be used to find solu-
tions which are truly Pareto-critical, satisfying first-order conditions for
Pareto-optimality, even for many-objective problems.

1 Introduction

Since the early days of Evolutionary Multicriterion Optimization (EMO) theory,
the main arguments in favor of the employment of EMO techniques instead of
classical mathematical programming techniques in multiobjective optimization
problems (MOPs) have been stated as:

– Evolutionary algorithms are able to perform a global search, solving MOPs
even in the case of multimodal functions, with disconnected Pareto-sets;

– Evolutionary algorithms do not rely on gradient calculations, which means
that they may be used even in the case of non-differentiable, discontinuous,
or noisy functions;
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– EMO algorithms are able to produce a set of several Pareto-set sample solu-
tions in a single algorithm run, unlike the classical techniques, which require
one algorithm run to find each non-dominated solution;

– EMO algorithms are able to generate automatically a set of well-distributed
samples of the Pareto-set, in contrast with the classical techniques, that
require the variation of the algorithm parameters in order to perform a sweep
of the Pareto-set.

Those reasons indeed provided motivation for the development of EMO tech-
niques by almost 20 years. The EMO paradigm is usually articulated, by contrast
with the classical nonlinear programming paradigm, according to the (somewhat
loose) association described as:

Paradigm Problem functions Method features
Classical unimodal, differentiable deterministic, gradient-based

EMO multimodal, non-differentiable stochastic, gradient-free

This paper revisits the foundations of such a paradigm delimitation, raising
back the possibility of building algorithms that: (i) deal with multimodal and
differentiable functions; and (ii) employ the principle of stochastic search, using
a gradient-based machinery. The motivations for this study may be stated by
the following reasoning:

– Although the derivative-free dominance-based search principle of most evo-
lutionary algorithms indeed allows to perform the optimization of rather
generic functions under the only assumption of weak locality, there is still a
large class of functions of practical relevance, for which the derivative infor-
mation is available.

– When a function belongs to a class for which some gradient-based descent
procedure may be applied, the usage of such a kind of procedure is often the
most efficient way to perform its optimization, frequently leading to search
procedures that are orders of magnitude faster than other procedures such
as cutting planes, branch-and-bound, genetic algorithms, and others.

– The search direction methods are usually associated to deterministic searches,
which are inconvenient for the purpose of finding a representative set of
samples of Pareto-sets. On the other hand, evolutionary methods employ
stochastic searches that make the algorithm to visit the “promising” por-
tions of the decision variable space, while a selection procedure provides a
dynamic equilibrium which leads the Pareto-set to become a kind of invari-
ant set that contains the algorithm stable fixed-points. As a result, some
neighborhood of all solutions in the Pareto-set get a non-null probability of
being visited.

– A meaningful combination of stochastic motion and descent-based search
might be a basis for the construction of algorithms which are endowed
with the computational efficiency of descent algorithms, and also with the
ability of sampling the continuous sets of interest, which are to become stable
equilibrium sets of the algorithm.
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– As a by-product of the descent-based search, it allows to reintroduce gradient-
based analytical conditions for Pareto-criticality (the Kuhn-Tucker condition
for efficiency).

The discussion presented here has connections with some recent studies con-
cerning: (i) the hybridization of EMO techniques with deterministic nonlinear
programming techniques, for performing local searches [4,10,14]; and (ii) the
investigation of the nature of the loss of efficiency of dominance-based search
techniques in many-objective problems [6,1,9]. The analysis provided by [9] elu-
cidated the mechanism of loss of efficiency of dominance-based search algorithms
in many-objective problems as a matter related to the relative size of the cone
of dominated solutions, compared to its complement. That reference did not
mention the closely related fact that the same phenomenon of shrinking of the
dominated cones also causes the loss of efficiency of the dominance-based mech-
anisms nearby the Pareto-sets, even in problems with few objectives. This effect
can be understood if one realizes that the cone of dominated solutions is bounded
by the planes which are normal to the objective function gradient vectors, and
this cone exactly degenerates to zero volume when the reference point becomes
Pareto-optimal, which is equivalent to the Kuhn-Tucker condition for efficiency
being attained at that point. Therefore, instead of having two different effects
causing difficulties in many-objective problems and in reaching Pareto-optimality
in problems with few objectives, it should be recognized that these are the same
problem. The adoption of gradient-search strategies is perhaps the only struc-
tural solution for this kind of problem, in the sense that the only geometrical
entity that can be accommodated safely inside an arbitrarily shrunk cone is a
line – which suggests a gradient search.

The inspiration for the study presented here can be found in some works
which are contemporary of the first papers on the theme of EMO. In 1994, Rit-
ter and Schaffler proposed an approach for globally solving (single-objective)
optimization problems on multimodal functions, using a method that relied on
the simulation of a stochastic differential equation [7]. A stochastic dynamic sys-
tem with Itô structure, whose equilibrium points were the optimization problem
optima, was defined. The evolution of this system was simulated using a new
predictor-corrector method. The trajectories of this system essentially followed
the direction opposite to the gradient vector of the objective function. This dy-
namic system was shown to visit the several system minima, with the stochastic
part of the dynamics providing the jumps from one attraction basin to another
one. This approach combined the paradigm of “gradient descent”, which was
typical of classical approaches, with the stochastic search, that was central in
the evolutionary computation approach, in order to perform a global search of
the optima of differentiable functions with complex landscapes.

In 2002, Schaffler, Schultz and Weinzierl extended that approach to the mul-
tiobjective case [8] (the algorithm presented in that paper will be called here the
SSW algorithm, for brevity) . A descent direction, calculated using the gradients
of the objective functions, and indicating a direction in which there are points
which dominate the current one, was used in that work in order to define the
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dynamic system trajectories. In this way, the first-order Pareto-critical points be-
come the equilibrium points of the deterministic part of the stochastic dynamic
system. In that paper, it has been shown that any arbitrarily small neighborhood
of any Pareto-critical point is visited, almost surely, by the dynamical system.
Although that work has not reached yet a significant impact in the research on
multiobjective optimization, it raises the possibility of performing a meaning-
ful combination of stochastic search methods with gradient descent methods, in
order to perform the task of Pareto-set estimation.

In 2007, Shukla and Deb evaluated the performance of SSW algorithm, in
a comparison with with the classical EMO algorithm NSGA-II and other al-
gorithms, in benchmark problems with up to three objectives [11]. That study
shown that the SSW algorithm presented two main drawbacks: (i) It shown
severe difficulties for finding well-distributed Pareto-optimal solutions; and (ii)
When the search point becomes near the Pareto-set, the stochastic component
of the search becomes dominant. This is the main mechanism that makes the
search point to visit the whole Pareto-set, but this also generates a drift be-
havior, which leads the search point to become within a neighborhood of the
Pareto-set, without ever reaching exact solutions from this set.

However, the same study [11] concluded that the gradient-based search of
SSW algorithm was able to generate solution sets quickly, which indicated that
further studies concerning its hybridization with EMO techniques should be
conducted. Some numerical experiments presented here suggest that the SSW
algorithm has an interesting property that was not focused in [11]: it is able to
deal with problems with high number of objective functions. When this number
grows, the SSW algorithm becomes increasingly better than dominance-based
algorithms, up to situations in which only SSW algorithm works.

This paper presents a hybridization of the SSW algorithm, with the specific
intent to solve drawback (ii) mentioned above. A two-step search is employed,
using SSW algorithm as the first step. The non-dominated points resulting from
SSW are introduced in a local search procedure, which is based on a new mul-
tiobjective golden section line search procedure, proposed in [13]. Such a local
search machinery is particularly useful in this case, because it generates Pareto-
critical points which necessarily dominate the initial solution (this means that if
the initial solution set is well distributed, the final solution set is likely to keep
this feature), and it remains efficient even for high dimension problems. In this
way, a set of exact Pareto-critical solutions (which verify the Kuhn-Tucker con-
ditions for efficiency) is found, with a small computational overhead in relation
to the basic SSW.

The results of preliminary tests suggest that the proposed direction of research
is promising for dealing, in a unifying way, with the following challenges in
continuous-variable problems: (i) many-objective problems, and (ii) finding exact
Pareto-critical points. The problem of generation of a homogeneous sampling
of the Pareto-set is left for future research, possibly following the guidelines
presented in [12].
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1.1 Notation

The following operators, applied to vector arguments, mean:

(· ≤ ·) Each coordinate of the first argument is less than or equal to the corre-
sponding coordinate of the second argument;

(· < ·) Each coordinate of the first argument is smaller than the corresponding
coordinate of the second argument;

(· ≺ ·) Each coordinate of the first argument is less than or equal to the corre-
sponding coordinate of the second argument, and at least one coordinate of
the first argument is strictly smaller than the corresponding coordinate of
the second argument. This relation is read as: the first argument dominates
the second one.

The operators (≥), (>) and (�) are defined in the analogous way.

2 Preliminary Definitions and Problem Statement

Consider the multiobjective optimization problem (MOP) defined by the mini-
mization (w.r.t. the partial order ≤) of a vector of objective functions F (x) =
(F1(x), F2(x), ..., Fm(x)):

min F (x)

subject to x ∈ Ω
(1)

where Fi(x) : IRn �→ IR are differentiable functions, for i = 1, ..., m, and Ω ⊂ IRn

is the feasible set, defined by

Ω � {x ∈ IRn | g(x) ≤ 0} , (2)

with g(·) : IRn �→ IRp a vector of differentiable functions. Associated to the
minimization of F (·), the efficient solution set, Ω∗, is defined as:

Ω∗ � {x∗ ∈ Ω | � ∃ x ∈ Ω such that F (x) ≺ F (x∗)} (3)

The multiobjective optimization problem is defined as the problem of finding
vectors x∗ ∈ Ω∗. This set of solutions is also called the Pareto-set of the problem.

This paper is concerned with the problem of finding vectors which satisfy
certain conditions for belonging to Ω∗. The following matrices are defined:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

H(x) =
[
∇F1(x) ∇F2(x) . . . ∇Fm(x)

]
G(x) =

[
∇gJ (1)(x) ∇gJ (2)(x) . . . ∇gJ (r)(x)

]
W (x) =

[
H(x) G(x)

] (4)

in which J denotes the set of indices of the active constraints, with r elements.
Then, gi(x) = 0 ⇔ i ∈ J .
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The linearized feasible cone at a point x, denoted by G(x), is defined as:

G(x) � {ω ∈ IRn | G′(x) · ω ≤ 0} (5)

Given x ∈ Ω, a vector ω ∈ IRn is a tangent direction of Ω at x if there exists a
sequence [xk]k ⊂ Ω and a scalar η > 0 such that:

lim
k→∞

xk = x , and lim
k→∞

η
xk − x

‖xk − x‖ = ω (6)

The set of all tangent directions is called the contingent cone of Ω at x, and
is denoted by T (Ω, x). In this paper, the following constraint qualification (see
reference [5]) is assumed to hold:

T (Ω, x) = G(x) (7)

Theorem 1. Consider the multiobjective optimization problem defined by (1)
and (2), and assume that the constraint qualification (7) holds. Under such as-
sumption, a necessary condition for x∗ ∈ Ω∗ is that there exist vectors λ ∈ IRm

and μ ∈ IRr, with λ � 0 and μ ≥ 0, such that:

H(x∗) · λ + G(x∗) · μ = 0 (8)
�

This theorem is a matrix formulation of the Kuhn-Tucker necessary conditions
for efficiency (KTE), that become also sufficient in the case of convex problems
(see, for instance, [2]). The points x∗ which satisfy the conditions of Theorem
1 are said to be first-order Pareto-critical points. This paper is concerned with
the search for such points.

3 Dominating Cones

The structural difficulties that are inherent to dominance-based search algo-
rithms are discussed in this section, with the aid of two “prototypical” problems,
one for the Pareto-set proximity effect and the other one for the objective space
dimension effect.

Pareto-proximity effect
Consider a bi-objective problem in a two-variable space, with the objective
functions:

f1(x) = (x − x1)′(x − x1)

f2(x) = (x − x2)′(x − x2)

x1 =
[

1 0
]′

x2 =
[
−1 0

]′
(9)

Consider now a point at coordinates xa = [0 d]′. The cone with vertex in xa that
contains the points that dominate xa has internal angle 2α, with alpha given by:

α =
π

2
− arctan

(
1
d

)
(10)
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Fig. 1. (a) The cone of points that dominate (0, d1) makes an angle of α1 in relation
to the vertical, while the cone of points which dominate (0, d2) makes an angle α2 in
relation to the vertical. (b) Representation of pα(d), with d represented in the horizontal
axis and pα represented in the vertical axis.

This relation can be drawn by direct inspection of figure 1(a). This means that
a mutation applied on xa with uniform probability of falling in any direction
would have a probability pα(d) of generating another point inside that cone:

pα(d) = 1 − 2
π

arctan
(

1
d

)
(11)

The graphics of pα(d) is represented in figure 1(b), in logarithmic coordinates.
This graphics reveals the following pattern: (i) for large d, when the point xa

is distant from both x1 and x2, the probability of generating a mutation inside
the dominating cone remains nearby 0.5. There is a qualitative change in this
behavior when xa reaches a distance that is of the order of the distance between
the two minima of individual functions, x1 and x2. After reaching this distance,
the probability of further enhancements in xa start to decrease at the same rate
of the decreasing of distance d. This means that each time the distance d is
reduced to a half of a former value, the probability of a further enhancement
becomes divided by two too.

Clearly, there will be a distance d in which the probability of finding any point
that dominates xa becomes very small, even for a large number of independent
attempts. This phenomenon should be considered as the structural reason behind
the largely known incapacity of dominance-based algorithms to reach Pareto-
critical points. These algorithms stagnate at some distance from the Pareto-
optimal set, and the attainment of points belonging to the set is possible only
via local search procedures.

Objective space dimension effect
Another effect that is very similar in structure to the Pareto-proximity effect
is related to the growth in the dimension of objective space. Consider now an
n-objective problem, in a decision variable space also with n dimensions:
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f1(x) = (x − x1)′(x − x1)

f2(x) = (x − x2)′(x − x2)

· · ·

fn(x) = (x − xn)′(x − xn)

x1 =
[

1 0 · · · 0
]′

. . . xn =
[

0 · · · 0 1
]′

(12)

Consider now the point xa = (0, 0, . . . , 0), situated at the origin of the coordinate
system. Clearly, the orthant of positive coordinates includes all points that dom-
inate xa, while the other regions of space have points that do not dominate xa.
The probability of a mutation with random direction with uniform probability
will present the following probability pβ(n) of falling into the positive orthant:

pβ(n) =
1

2n
(13)

Equation 13 shows that the probability of a random mutation to fall into the
positive orthant is divided by 2k when the dimension of the objective space
is multiplied by k. This is the structural cause of the difficulty of dominance-
based algorithms when dealing with the so-called many-objective problems. It
should be noticed that the objective space dimension effect is very similar to the
Pareto-proximity effect, in the sense that both effects, beyond some threshold,
necessarily lead to a stagnation behavior or dominance-based search mechanisms.
It also should be noticed that both effects compose in the same problem in a
multiplicative way. Finally, it is worthy to point out that both effects can be
avoided if a search is conducted toward the dominating cone, for instance using
gradient information.

4 The SSW Algorithm

The SSW algorithm, as presented in [8], is concerned with unconstrained mul-
tiobjective optimization problems (1), in which the feasible set Ω ≡ IRn. This
section describes this algorithm, following closely the development presented in
[8]. All theorems and the resulting algorithm in this section come from that
reference.

Consider the following quadratic optimization problem for each x ∈ IRn:

min
α∈IRm

⎧⎨⎩
∥∥∥∥∥

m∑
i=1

αi∇fi(x)

∥∥∥∥∥
2

, αi ≥ 0 , i = 1, . . . , m ,

m∑
i=1

αi = 1

⎫⎬⎭ , (14)

where ∇fi(x) denotes the gradient of the i-th component of the objective func-
tion vector. Let α̂ be a global minimizer of (14), and define the following function:
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q : IRn → IRn , x �→
m∑

i=1

α̂i∇fi(x), (15)

It can be shown that either q(x) = 0 or −q(x) is a descent direction for all
functions f1, . . . , fm at x; hence, each x with q(x) = 0 is Pareto-critical. The
properties of function q(x) allow to define the following initial value problem
(IVP) for multiobjective optimization:

ẋ(t) = −q(x(t)) (16)

The following Theorem holds.

Theorem 2. Let x0 = x(0). Consider problem (1) and the corresponding IVP
(16), with q(x0) �= 0. Assume that the set of points which dominate x0 is bounded
for all x0 ∈ IRn. Then, a solution x(t) : [0,∞[→ IRn of (16) exists and is unique
for all x0 ∈ IRn, with

f(t) ≺ f(t1) , ∀ 0 ≤ t1 < t < ∞.

�
As a consequence of Theorem 2, a numerical resolution of (16) leads to a single
Pareto-critical solution. The following class of Itô stochastic differential equa-
tions is proposed, in order to generate a large set of Pareto-critical solutions:

dXt = −q(Xt)dt + εdBt, (17)

where {Bt} is an n-dimensional Brownian motion, q(·) is defined by (15), ε > 0
and x0 ∈ IRn.

Algorithm 1. - SSW Algorithm -
Input: q(·) : IRn → IRn, x0 ∈ IRn, ε > 0, σ0 > 0, jmax

Output: xt.

1: σ ← σ0

2: while j < jmax do
3: n1 ← N(0, In)
4: n2 ← N(0, In)
5: n3 ← n1 + n2

6: x1
j+1 ← xj − σq(xj)− εn3(σ/2)

1
2

7: x(σ/2) = xj(σ/2)q(xj)− εn1(σ/2)
1
2

8: x2
j+1 ← x(σ/2)− (σ/2)q(x(σ/2))− εn2(σ/2)

1
2

9: if ‖x1
j+1 − x2

j+1‖2 ≤ δ then
10: xj+1 ← x2

j+1

11: else
12: σ ← σ/2
13: end if
14: end while
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In [8] it is shown that, under some technical hypothesis for the function vector
F (·), for each Pareto-critical solution x̄, almost all paths of {Xt} hit any ball
S(x̄, ρ) centered at x̄ for any arbitrarily chosen ρ > 0, after a finite time, for all
x0 ∈ IRn. For the numerical computation of a path of {Xt}, the iterative scheme
of Algorithm 1 is used.

5 The SSW-LS Algorithm

The lack of ability of the basic SSW algorithm to find Pareto-critical points,
despite the usage of gradient information, motivates the algorithm hybridization
presented here, the SSW-LS algorithm (SSW with Local Search algorithm). The
idea is simply to take the non-dominated points, from the collection of points
generated by SSW algorithm, and run a gradient-based local search procedure
starting in each one, finishing in Pareto-critical points.

Some classical gradient-based iterative methods for multiobjective optimiza-
tion would present difficulties for being inserted in the structure of SSW-LS. For
instance, weighted-sum procedures would not search for Pareto-critical points
which are near to initial solutions [2]. Instead, this method would lead to spe-
cific Pareto-critical points in the Pareto-set, not necessarily near to the initial
point. The references [4,10] employed an adaptation of the ε-constrained search,
while [14] employed an adaptation of the goal attainment procedure, for per-
forming local searches in multiobjective evolutionary algorithms. However, those
alternatives, based on scalarizations of the multiobjective problem, do not take
advantage of the multiobjective problem structure, relying on mono-objective
algorithms. One should notice that each time a scalarized algorithm runs, it
searches for a specific Pareto-optimal point that is implicitly defined as the min-
imum of the scalarized objective function. However, the evolutionary algorithm
is searching for a set of representative points of the Pareto-set, without an spe-
cific interest for any point. This means that some computational effort is spent
in order to identify points which are not per se relevant, while a much smaller
effort could have been spent if the search were directed toward any efficient point
that could be find.

A multiobjective descent line-search procedure, based on a new multiobjective
golden section unidimensional search, has been proposed in [13]. This procedure
fits the need of SSW-LS algorithm, using the descent direction given by vector
−q(x), and an efficient multiobjective line search algorithm that contracts the
search segment faster than the traditional mono-objective golden section pro-
cedure. As the algorithm is not targeted to any specific point, it can perform
faster searches that identify Pareto-critical points. In [13], it is shown that this
procedure remains efficient even for high dimension problems, with hundreds of
variables. A brief description of the line search procedure is presented in the
next subsection.
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The Local Search procedure of algorithm SSW-LS is presented in Algorithm
2. The input set {x̄1, . . . , x̄p} comes from the SSW algorithm, and includes only
the non-dominated points of the output of SSW.

Algorithm 2. - LS Procedure -
Input: q(·) : IRn → IRn, {x̄1, . . . , x̄p} ⊂ IRn, εq > 0

Output:
{
x∗

1, . . . , x
∗
p

}
% a set of Pareto-critical points

1: for i← 1 : p do
2: x← x̄i

3: while ‖q(x)‖2 ≥ εq do
4: d← −q(x)
5: x← multiobjective golden section(x, d, F )
6: end while
7: x∗

i ← x
8: end for

5.1 The Multiobjective Golden Section Line Search

The detailed proof of the statements presented in this section can be found
in [13]. The idea is to find a point x∗ which dominates the current point x0,
such that x∗ belongs to the Pareto-set of problem (1) constrained to the search
direction. The information available to be used in a line search procedure is
the set of values of function F (·) in points α = 0 (which represents initially
the current point), α = αA and α = αB. The variable α parametrizes the
line segment in which the search is conducted. For brevity, denote: f0 = F (0),
fA = F (αA) and fB = F (αB). The vector function C(·, ·, ·) : IRm×3 �→ {0, 1}6 is
defined as:

C(f0, fA, fB) =
[
C1(f0, fA, fB) . . . C6(f0, fA, fB)

]
=

=
[

(f0 � fA) (f0 � fB) (fA � fB) (f0 ≺ fA) (f0 ≺ fB) (fA ≺ fB)
] (18)

with each Ci a binary number, 1 meaning “true” and 0 meaning “false” for
the result of each comparison. For instance f0 � fA makes C1 = 1, otherwise,
C1 = 0 (f0 �� fA). There are three possible operations for contracting the current
trust-segment (i.e., the segment in which it is known that there exists some point
that belongs to the line-constrained Pareto-set) in a line search that is based on
the function evaluation on points α = 0, α = αA and α = αB . Let a current
trust-segment be [α1, α2] ⊂ [0, 1]. These operations are named D1, D2 and D3,
as indicated in Table 1.

A decision table that “turns on” each contraction operation is shown in Table
2. This decision table maximizes the contraction of the trust-segment, without
allowing the loss of the line-constrained Pareto set [13].
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Table 1. The contraction operations on the trust segment [α1, α2] ⊂ [0, 1]

Contraction operation
D1 discard [0, αA] ∩ [α1, α2]
D2 discard [αA, αB ] ∩ [α1, α2]
D3 discard [αB , 1] ∩ [α1, α2]

Table 2. Operations performing the maximal trust region contraction

Condition Operation
C1 · C6 D1

C1 D2
C1 · C2 · C3 · C4 · C5 · C6 D3

The Golden Section Multiobjective Line Search algorithm implements the
segment contraction procedures using the golden section ratio, leading to a
line-constrained Pareto-optimal solution which necessarily dominates the initial
point.

5.2 Results of SSW-LS Algorithm

The following vector function, which can be constructed for any number n of
decision variables and for any number m of objectives (with m ≤ n), has been
used here:

Fi(x) = (x − xi)′Ai(x − xi) (19)

in which:

Ai(j, k) =

⎧⎨⎩
0 , if j �= k
1 , if j = k and j �= i
i , if j = k = i

, xi(j) =
{

0 , if j �= i
m , if j = i

The results of some experiments with SSW-LS algorithm are shown in Figure
2. These experiments were run with ε = 0.3, and each gradient evaluation is
counted as (n + 1) function evaluations.

Figure 2(a) presents a comparison of the Pareto-fronts (the results in the
objective space) obtained with the basic SSW algorithm and with the SSW-LS
algorithm, in the problem instance with 10 decision variables and 3 objective
functions, and with 10000 function evaluations assigned to each algorithm. It
becomes apparent that the SSW-LS algorithm provides a much more well-defined
estimation of the Pareto-set, with solutions that dominate the basic SSW ones,
and with a clear definition of the Pareto-front boundaries.

Figure 2(b) deals with the problem instance with 10 decision variables and 4
objectives. This figure presents the projection, in the space of the first 3 objec-
tives, of the Pareto-front obtained with SSW-LS. This entity is a solid object in
the IR3 space, bounded by 2-dimensional surfaces. It should be noticed that the
solution set delivered by SSW-LS provides a good description of the edges and
of the facets of this object.
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Fig. 2. (a) Comparison of SSW solutions and SSW-LS solutions, for n = 10 and m = 3.
The SSW solutions delineate a more regular geometric object, with well-defined edges.
(b) SSW-LS solutions, projected in the space of the first 3 objectives, for n = 10 and
m = 4.

6 Results in Many-Objective Problems

An experiment has been conducted for the same function described in (19), now
with 30 decision variables and 10 objective functions. Three algorithms have
been compared: (i) a Matlab version of the canonical NSGA-II [3]; (ii) the SSW
algorithm; and (iii) the SSW-LS algorithm. As a merit figure, for the analysis of
the solution quality, it is used here the norm of q(x). This is reasonable, since
‖q(x)‖2 decreases as x approaches the Pareto-set. It is also known that for any
Pareto-critical point, ‖q(x)‖2 = 0, which means that this figure also represents
an absolute criterion that indicates if a point features Pareto-criticality. Figure
3 shows the results of this experiment.

Figure 3 shows the histograms of the value of ‖q(x)‖2 for the solution sets
obtained by the three algorithms, for a run with 80000 function evaluations, and
for a run with 1 × 106 function evaluations. The similarity of the histograms for
such different numbers of function evaluations suggest that a kind of “terminal
set” has been reached, for all algorithms, within 80000 function evaluations.
Both the NSGA-II and SSW algorithms seem to be unable to further increase
the quality of their solution sets. It should be noticed that, as expected, the
NSGA-II has found a set of points that is very far from the Pareto-set, featuring
‖q(x)‖2 ≈ 100. Also as expected, the SSW algorithm has found points that
are located near to the Pareto-set, with ‖q(x)‖2 ≈ 1. Further enhancements in
the solution set, in this case, seem to be difficult due to the dominance of the
stochastic term in the stochastic differential equation. On the other hand, the
SSW-LS algorithm has reached the exact Pareto-set in both cases, within the
numerical precision that has been established for these experiments (‖q(x)‖2 ≈
εq = 1 × 10−2).
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Fig. 3. Comparison of SSW solutions, SSW-LS solutions and NSGA-II solutions, for
n = 30 and m = 10. The graphics represent the histogram, in logarithm scale, of
the value of ‖q(x)‖2 for the solution set of each algorithm, for the cases of: (a) 80000
function evaluations, (b) 1× 106 function evaluations.

7 Conclusions

This paper presented an algorithm for multiobjective optimization, the SSW-LS
algorithm, based on the stochastic differential equation approach of [8] and on
the multiobjective line search procedure of [13], which is intended to develop
some analysis concerning the structural causes of seemingly uncorrelated dif-
ficulties of multiobjective optimization: (i) many-objective problems; and (ii)
problems in which truly Pareto-critical solutions are required. The geometric
structure of performing searches toward descent cones seems to underly those
problems, and indicates that gradient-based (or other directional-based) searches
might constitute a solution. The proposed algorithm is an instance of a more
fundamental discussion about the roles of different mechanisms in multiobjec-
tive optimization. In synthesis, the current data acquired up to now indicates
that (i) to reach the Pareto-set, deterministic steps should be the dominant ef-
fect in the algorithm; (ii) to sample the Pareto-set, a stochastic search over an
equilibrium set should play a main role; and (iii) to reach exact Pareto-critical
solutions, deterministic procedures performing a descent search, finding solutions
that dominate the initial point, should be employed.
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Abstract. Relaxed forms of Pareto dominance have been shown to be
the most effective way in which evolutionary algorithms can progress
towards the Pareto-optimal front with a widely spread distribution of
solutions. A popular concept is the ε-dominance technique, which has
been employed as an archive update strategy in some multiobjective evo-
lutionary algorithms. In spite of the great usefulness of the ε-dominance
concept, there are still difficulties in computing an appropriate value of
ε that provides the desirable number of nondominated points. Additio-
nally, several viable solutions may be lost depending on the hypergrid
adopted, impacting the convergence and the diversity of the estimate set.
We propose the concept of cone ε-dominance, which is a variant of the ε-
dominance, to overcome these limitations. Cone ε-dominance maintains
the good convergence properties of ε-dominance, provides a better con-
trol over the resolution of the estimated Pareto front, and also performs
a better spread of solutions along the front. Experimental validation of
the proposed cone ε-dominance shows a significant improvement in the
diversity of solutions over both the regular Pareto-dominance and the
ε-dominance.

Keywords: Evolutionary multiobjective optimization, evolutionary al-
gorithms, ε-dominance, Pareto front.

1 Introduction

The assessment of the quality of estimates of Pareto-optimal fronts produced by
evolutionary multiobjective algorithms is itself a multi-criteria problem. A high-
quality approximation set should: (i) approach the true Pareto front as close as
possible, and (ii) be well-spread along its extension [1]. To fulfill these goals, a
Pareto-based fitness assignment method is usually designed in order to guide
the search toward the global Pareto-optimal front, whereas density estimation
methods as crowding [2] or clustering [3] are commonly employed to preserve
the population diversity.
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A few years ago, Laumanns et al. [4] proposed a relaxed form of dominance
for MOEAs, called ε-dominance. This mechanism acts as an archiving strategy
to ensure both properties of convergence towards the Pareto-optimal front and
properties of diversity among the solutions found. Since this technique guarantees
that no two achieved solutions are within an εi value from each other in the ith

objective, the ε value is usually provided by the designer to control the size of
the solution set. Nevertheless, as the geometrical features of the Pareto-optimal
front are commonly unknown by the designer, the ε-dominance strategy can lose
a high number of viable solutions when the ε value is badly estimated.

In spite of the great usefulness of the ε-dominance concept, the way in which
the solutions are selected within each hyperbox presents several drawbacks. The
main one refers to the difficulties in computing an appropriate value of ε to
provide the desired number of nondominated points. Moreover, this approach
tends to neglect viable solutions located on segments of the Pareto front that
are almost parallel to the axes of the objective space, as well as the extreme
points of the Pareto front, contributing negatively to the spread of solutions
along the extension of the estimated Pareto front [5].

In order to address some of these limitations, we propose a relaxation of the
strict dominance concept, based on an extension of the ε-dominance scheme
named cone ε-dominance. The cone ε-dominance relaxation aims at maintaining
the good convergence properties of ε-dominance, while providing a better control
over the resolution of the estimated Pareto front, providing a dominance criterion
that is less sensitive to the geometrical features of the Pareto front than the ε-
dominance.

This paper is organized as follows: Section 2 reviews the basic definitions
of the ε-dominance approach. Section 3 contains a detailed description of the
cone ε-dominance approach. Section 4 describes the performance metrics used
to evaluate the proposed strategy, and Section 5 presents a comparative analysis
of the proposed approach, and discusses the results obtained. Finally, conclusions
and future directions are given in Section 6.

2 Pareto ε-Dominance

Although Laumanns et al. [4] have proposed two ε-dominance methods, only
the additive scheme will be discussed hereinafter. Assume that all objectives fi,
i ∈ {1, . . . , m}, are to be minimized, and also that 1 ≤ fi ≤ K, for all i. Then,
given a vector yyy ∈ Rm and ε > 0, yyy is said to ε-dominate yyy′ ∈ Rm, denoted as
yyy

ε
≺ yyy′, if and only if,

yi − ε ≤ y′
i, for all i ∈ {1, . . . , m} . (1)

Note that the previous definition can be generalized by considering a different
ε value for each objective. Essentially, this ε-dominance mechanism generates a
hypergrid in the objective space with ((K − 1) /ε)m boxes which accommodate
a maximum of ((K − 1) /ε)m−1 non ε-dominated points. Supposing that the
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designer wants a maximum of T non ε-dominated points in the archive, the ε

value can be easily calculated as1 ε = (K − 1) /T
1

m−1 .
According to Laumanns et al. [4], a two-level selection mechanism is imple-

mented in the ε-dominance approach. First, it creates a hypergrid in the objec-
tive space where each box uniquely contains one vector. Basically, a box-level
dominance relation is used, so that the algorithm always maintains a set of
nondominated boxes, thus guaranteeing the diversity property. Second, if two
vectors share the same box, the usual Pareto dominance relation is applied, so
that the best one is selected and convergence is guaranteed. However, if none of
these two vectors dominates the other, it is usual to keep the point closest to the
origin of the box, i.e., to the corner where all objectives would have the lowest
values within that box.

3 Pareto Cone ε-Dominance

First, let us present a conceptual interpretation of the proposed cone ε-domi-
nance approach. To this end, both ε-dominance and cone ε-dominance strategies
are contrasted in Fig. 1. In order to get a nondominated solution set, the cone
ε-dominance mechanism entails both the shaded region and the standard Pareto
dominance, i.e., the hypervolume dominated by yyy using the cone ε-dominance
approach represents a relaxation of that dominated by yyy when using the usual
dominance (see Fig. 1(b)). So, this relaxation enables the approximation of non-
dominated points in some adjacent boxes that would be ε-dominated. Note also
that cone ε-dominance can be seen as a hybrid between ε-dominance and the
proper efficiency with respect to cones discussed in [6].

(a) ε-dominance. (b) cone ε-dominance.

Fig. 1. Illustration of the ε-dominance and cone ε-dominance concepts for a bi-objective
minimization problem

1 The ε-dominance strategy is only able to obtain this number T in cases where the
Pareto-front is linear. For other cases this value is merely an upper limit, with the
actual number of nondominated points found being much smaller [5].
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3.1 Basic Definitions

Before we present the formal definition of the cone ε-dominance strategy, let us
define some important concepts.

Definition 1. (Cone) A set C is a cone if λyyy ∈ C for any yyy ∈ C and ∀λ ≥ 0. �

Definition 2. (Generated cone) The cone generated by the vectors www1 and
www2 is the set C = {zzz : zzz = λ1www1 + λ2www2, ∀λ1, λ2 ≥ 0}. �

Note that the concept of a generated cone can be extended to m dimensions.
Thus, the hypercone generated by the vectors wwwi, i ∈ {1, . . . , m}, is the set
C = {zzz : zzz = λ1www1 + λ2www2 + . . . + λiwwwi + . . . + λmwwwm, ∀λi ≥ 0}.

Based on these definitions, we suggest a mechanism to control the hypervo-
lume dominated by a specific cone C. Consider the illustrations in Fig. 2. For the
2D case (Fig. 2(a)), it is easy to see that2 www1 = [ε1 κε2]T and www2 = [κε1 ε2]T .
The cone C can therefore be rewritten as:

C =

{
zzz :

zzz︷ ︸︸ ︷[
z1
z2

]
=

Ψ︷ ︸︸ ︷[
ε1 κε1
κε2 ε2

] λλλ︷ ︸︸ ︷[
λ1
λ2

]
, ∀λ1, λ2 ≥ 0

}
(2)

in which the parameter κ ∈ [0, 1) controls the opening of the cone C, and Ψ is
the cone-dominance matrix, which in fact controls the hypervolume dominated
by C. Notice that the cone ε-dominance strategy tends toward the ε-dominance
strategy when κ → 0.

(a) Control mechanism in 2D. (b) Control mechanism in 3D.

Fig. 2. Mechanism used in the cone ε-dominance approach to control the hypervolume
dominated by a specific cone

2 With respect to the origin of the box.
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For the 3D case (Fig. 2(b)), the process is the same. Though we have plotted
only the first vector, it can be seen that www1 =[ε1 κε2 κε3]T , www2 = [κε1 ε2 κε3]T ,
and www3 = [κε1 κε2 ε3]T . In this case, the cone-dominance matrix is given by:

Ψ(ε1, ε2, ε3, κ) =

⎡⎣ ε1 κε1 κε1
κε2 ε2 κε2
κε3 κε3 ε3

⎤⎦ · (3)

By induction, when i ∈ {1, . . . , m}, we get Ψ �→ Rm×m, i.e.,

Ψ(εi, κ) =

⎡⎢⎢⎢⎣
ε1 κε1 . . . κε1
κε2 ε2 . . . κε2

...
...

. . .
...

κεm κεm . . . εm

⎤⎥⎥⎥⎦ · (4)

Finally, we can formally define the cone ε-dominance strategy.

Definition 3. (Cone ε-dominance) Given two feasible vectors yyy, yyy′ ∈ Rm,
yyy is said to cone ε-dominate yyy′ if and only if, yyy Pareto-dominates yyy′ or the
solution of the linear system Ψλλλ = zzz, with zzz = yyy′ − [yyy − εεε], and εi > 0, gives
λi ≥ 0 ∀i ∈ {1, . . . , m}. Equivalently, we say yyy

coneε
≺ yyy′ if and only if,

(yyy ≺ yyy′) ∨ (Ψλλλ = zzz | λi ≥ 0 for all i = {1, . . . , m}) . (5)

�

3.2 Maintaining a Cone ε-Pareto Front

The convergence and diversity properties are satisfied by maintaining a Cone ε-
Pareto front. The convergence property is ensured by storing the nondominated
solutions in the archive H. In addition, since each box accommodates only a
single vector, the diversity property is also guaranteed.

As we have observed for the ε-dominance, the archive update function in the
cone ε-dominance strategy also uses a two level concept. On the first level, the
objective space is discretized into boxes, each box containing a single vector.
Applying the cone ε-dominance relation at these boxes, the algorithm always
maintains a set of non cone ε-dominated solutions, ensuring the diversity pro-
perty. For that, every solution in the archive is assigned a box index (bbb):

bbbi(yyy) =

{
εi 
yi/εi� , for minimizing fi

εi �yi/εi , for maximizing fi

(6)

where 
·� and �· return, respectively, the closest lower and upper integer to
their argument. On the second level, if two vectors share the same box, the
former solution is only replaced by a dominating one or by a point closest to the
origin of the box, thus guaranteeing convergence. Algorithm 1 summarizes these
concepts.
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Algorithm 1. Archive update function performed by cone ε-dominance.
Input: H, Ψ , yyy
begin1

if yyy is cone ε-dominated by any yyy′ ∈ H then2

Reject yyy;3

else if yyy shares the same box with an archive member yyy′ then4

if yyy dominates yyy′ or yyy is closer to the origin of the box than yyy′ then5

Delete all of the cone ε-dominated archive members;6

Replace yyy′ by yyy;7

else8

Reject yyy;9

else if yyy cone ε-dominates any yyy′ ∈ H then10

Delete all of the cone ε-dominated archive members;11

Insert yyy into the archive;12

else13

Insert yyy into the archive;14

end15

Output: H′

3.3 Evaluating the Archive Size

Again, assume that all objectives fi, i ∈ {1, . . . , m}, are to be minimized, and
also that 1 ≤ fi ≤ K, for all i. As observed for the ε-dominance, the cone ε-
dominance approach divides the objective space into ((K − 1) /ε)m boxes, and
at each box no more than one point can be in H at the same time. Since the usual
dominance relation ensures a monotonic front between the extreme boxes of the
hypergrid, the maximum number of boxes that can be “touched” by any front is
limited. However, the estimation of feasible solutions inside these touched boxes
depends on the connectivity of the Pareto front and also of the κ value.

In general, if any connected monotonic front exists between the extreme boxes
of the hypergrid, then the number of boxes that are touched by this front is max-
imum. Figs. 3(a) and 3(b) illustrate two possible situations in which the number
of estimated cone ε-Pareto solutions is maximum, i.e., equal to the number of
boxes that are touched by the front. For both cases, the number of estimated
solutions is five and seven, respectively. These values are calculated as:

|H| ≤ m

[(
K − 1

ε

)m−1

−
(

K − 1
ε

)m−2
]

+ 1 . (7)

Fig. 3(c) presents a possible situation in which a disconnected front has been
stated. For this case, the maximum size of H cannot be reached, however, it
is still likely to estimate one solution from each box touched by the front. The
ε-dominance approach, on the other hand, can only achieve the upper bound for
the number of points allowed by a grid when the real Pareto front is linear [5].
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Finally, note that the definition in (7) can be generalized by considering a
different ε for each objective. Observe also that specific bounds on the objective
values are not used in the Alg. 1 and are not required to ensure the convergence.
They are only employed to demonstrate the relation between ε and the size of
the archive H.

(a) Connected front. (b) Concave surface. (c) Disconnected front.

Fig. 3. Illustration of the relation between ε and the size of the archive H

4 Experiments and Validation of the Proposed Approach

In order to validate the proposed cone ε-dominance approach, three algorithms
are considered for the experimental study: the first employs the standard Pareto
dominance relation; the second uses the ε-dominance strategy; and the third is
implemented by modifying the second one, replacing the ε-dominance mechanism
by the cone ε-dominance approach. This process will enable us to show the
performance of the same algorithm with and without cone ε-dominance. The
three multiobjective evolutionary algorithms are presented next:

1. NSGA-II: This algorithm has been proposed by Deb et al. [2]. In general
terms, the parent and offspring populations are combined and evaluated
using the fast nondominated sorting approach, an elitist approach, and an
efficient crowding mechanism.

2. ε-MOEA: This approach has been proposed by Deb et al. [7,8], and consists
of a steady-state MOEA based on the ε-dominance concept introduced in [4].
In this method, two populations (evolutionary population and archive) are
evolved simultaneously, and two offspring solutions are created by using one
solution from each population. Each offspring is then used to update both
parent and archive populations. Note, however, that the archive population
is updated based on the ε-dominance concept, whereas an usual domination
concept is used to update the parent population.

3. coneε-MOEA: This is a modification of the ε-MOEA approach, in which
we include cone ε-dominance instead of the regular ε-dominance concept.
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These methods have been implemented, in Matlab, based on the source codes
available in [9]3. Further information about test problems, performance metrics,
parameter settings, and statistical design are presented in the following sections.

4.1 Analytical Benchmark Problems

We have chosen five continuous and simple, unconstrained, test problems with
different geometrical features for this experimental study. Since the goal here
is to investigate the potential advantages of the proposed cone ε-dominance
approach over the ε-dominance strategy, our choice of problems was directed by
the geometrical characteristics of the Pareto fronts rather than the difficulty of
solving each test problem. In this way, the problems selected are the following:
Deb52 [10], Poloni’s problem [11], ZDT1 and ZDT6 [12], and DTLZ2 [13]. Table 1
presents further details of these problems. For a future work, we aim at using the
proposed strategy to solve more complex multiobjective optimization problems.

Table 1. Analytical test problems adopted in the experimental study

Problem n Bounds Objective functions Pareto front
P1: Deb52 [10] 2 [0, 1] f1(x) = 1 − exp(−4x1) sin4(10πx1) Concave

f2(x) = g(x2)h(x1)
g(x2) = 1 + x2

2

h(x1) =

{
1 −

(
f1(x)
g(x2)

)10
if f1(x) ≤ g(x2)

0 otherwise.
P2: Pol [11] 2 [−π, π] f1(x) = 1 + (A1 − B1)2 + (A2 − B2)2 Nonconvex and

f2(x) = (x1 + 3)2 + (x2 + 1)2 disconnected
A1 = 0.5 sin 1 − 2 cos 1 + sin 2 − 1.5 cos 2
A2 = 1.5 sin 1 − cos 1 + 2 sin 2 − 0.5 cos 2
B1 = 0.5 sin x1 − 2 cos x1 + sin x2 − 1.5 cos x2
B2 = 1.5 sin x1 − cos x1 + 2 sin x2 − 0.5 cos x2

P3: ZDT1 [12] 30 [0, 1] f1(x) = x1 Convex
f2(x) = 1 − √

x1/g(x) (multimodal
g(x) = 1 + 9

(∑n
i=2 xi

)
/(n − 1) problem)

P4: ZDT6 [12] 10 [0, 1] f1(x) = 1 − exp(−4x1) sin6(6πx1) Nonconvex and
f2(x) = 1 − (f1/g(x))2 nonuniformly
g(x) = 1 + 9

[(∑n
i=2 xi

)
/(n − 1)

]0.25 spaced
P5: DTLZ2 [13] 12 [0, 1] f1(x) = (1 + g(xm)) cos(x1π/2) cos(x2π/2) Concave surface

f2(x) = (1 + g(xm)) cos(x1π/2) sin(x2π/2)
f3(x) = (1 + g(xm)) sin(x1π/2)
g(xm) =

∑
xi∈xm

(xi − 0.5)2

4.2 Performance Metrics

Unlike mono-objective optimization, multiobjective optimization techniques are
required to consider two different goals: (i) convergence to the Pareto-optimal
front, and (ii) maintenance of a diverse set of solutions. To consider this multi-
criterion nature in the evaluation of multi-objective algorithms, we have used
four different metrics in our analysis.
3 The implementation of the algorithms, the samples of the true Pareto fronts used,

and the raw and processed results of the experiments can be retrieved from the
address http://www.cpdee.ufmg.br/~fcampelo/EN/files.html

http://www.cpdee.ufmg.br/~fcampelo/EN/files.html
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The first one, the Convergence metric (γ) [2], measures the distance between
the obtained nondominated front H and a detailed sampling of the true Pareto-
optimal front H∗:

γ =
∑|H|

i=1 di

|H| (8)

where di is the Euclidean distance, in the objective space, between the solution
i ∈ H and the nearest member of H∗. So, the lower the γ value the better the
convergence of the solutions in H. Note that a result with γ = 0 means H ⊆ H∗,
otherwise, H deviates from H∗.

The second metric, Diversity metric (Δ) [2], measures the extent of spread
achieved among the obtained nondominated solutions in H. By definition:

Δ =
∑m

i=1 de
i +

∑H
i=1

∣∣di − d̄
∣∣∑m

i=1 de
i + |H| d̄

(9)

where de
i denotes the Euclidean distance between the extreme points in H and

H∗ along the ith coordinate, and di measures the Euclidean distance of each
point in H to its closer point in H. So the lower the Δ value, the better the
distribution of solutions. Notice that a result with Δ = 0 means the extreme
points of H∗ have been found and di equals to d̄ for all i.

The third metric, S-metric (HV ) [3], calculates the hypervolume enclosed
by the estimated front H and a reference point dominated by all solutions in
this front. The larger the dominated hypervolume, the better the front is. For
all test problems, the reference point has been stated as 10% greater than the
upper boundaries of the real Pareto-optimal front. This metric estimates both
convergence and diversity of the solutions in H.

Since the power of unary metrics is limited [14], a binary performance metric,
the Coverage of Two Sets (CS) [3], has also been considered. This metric quan-
tifies the domination of the final population of one algorithm over another. The
CS function is stated as:

CS(X ′, X ′′) =
|a′′ ∈ X ′′; ∃a′ ∈ X ′ : a′ ! a′′|

|X ′′| (10)

where X ′ and X ′′ are two sets of objective vectors, and a′ ! a′′ means that a′

covers a′′, that is, either a′ ≺ a′′ or a′ = a′′. Function CS maps the ordered
pair (Xi, Xj) to the interval [0, 1], in which Xi and Xj denote the final Pareto
fronts resulting from algorithm i and j, respectively. The value CS (Xi, Xj) = 1
implies that all points in Xj are dominated by or equal to points in Xi. The
opposite, CS (Xi, Xj) = 0, represents the situation when none of the points in
Xj are covered by the set Xi. Notice that both CS (Xi, Xj) and CS (Xj , Xi)
need to be considered independently since they have distinct meanings.

As is the case of the two first metrics, a detailed sampling of the true Pareto-
optimal front of each problem must be known. Since we are dealing with test
problems, the true Pareto-optimal front is not difficult to obtain. In this work,
we have used uniformly spaced Pareto-optimal solutions as the approximation
of the true Pareto-optimal front, which can be retrieved online3.
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4.3 Parameter Settings

To provide a comparison baseline for the performance of the proposed cone ε-
dominance strategy, some parameter settings were adopted for all the algorithms:
population size N = 100; probabilities of crossover and mutation pxover = 1 and
pmut = 1/n, respectively; simulated binary crossover (SBX) with parameter
ηxover = 15; and polynomial mutation with ηmut = 20. Furthermore, aiming at
an archive population size of 100 solutions, we have used the εεε values showed
in Table 2. The calculated εεε values have been obtained following the guidelines
provided by Laumanns et al. [4] and using (7), for ε-MOEA and coneε-MOEA,
respectively. Since ε-dominance and cone ε-dominance may lose nondominated
points, we have also estimated εεε values in order to get roughly 100 solutions in
the archive4. Both situations are considered in the experimental study. Note also
that, for the coneε-MOEA, the estimated εεε values differ from the calculated ones
only for the Pol and DTLZ2 problems, whereas in the ε-MOEA all εεε values have
changed. This phenomenon indicates that the cone ε-dominance approach may
be less susceptible to the loss of nondominated solutions than the ε-dominance.

Table 2. Calculated (calc.) and estimated (est.) εεε = {ε1, ε2, . . . , εm} values for a po-
pulation archive of 100 points

εεε Algorithm Deb52 Pol ZDT1 ZDT6 DTLZ2
calc. coneε-MOEA [0.0164, 0.0198] [0.3168, 0.4950] εi = 0.0200 [0.0143, 0.0184] εi = 0.1595

ε-MOEA [0.0083, 0.0100] [0.1600, 0.2500] εi = 0.0100 [0.0072, 0.0093] εi = 0.1000
est. coneε-MOEA [0.0164, 0.0198] [0.2068, 0.3231] εi = 0.0200 [0.0143, 0.0184] εi = 0.1568

ε-MOEA [0.0031, 0.0030] [0.0390, 0.0380] εi = 0.0080 [0.0067, 0.0067] [0.06, 0.06, 0.066]

Since the cone ε-dominance approach is influenced by the κ parameter, we
perform some preliminary testing to observe the effect of different κ values on
the performance of the coneε-MOEA. Table 3 shows the effect of this parameter
on the values of the unary metrics γ, Δ and HV for the benchmark problem
ZDT15. In this limited test, intermediate values for κ seem to yield reasonably
good performance values for all metrics, from which a value of κ = 0.5 was
chosen for all experiments conducted in this work.

4.4 Statistical Design

To evaluate the possible differences between the performance of the methods
tested, we have employed tests designed to detect statistically significant dif-
ferences and to estimate their sizes. The tests were performed independently
for each benchmark problem and each of the quality metrics described in the
previous Section, and are described in the following paragraphs.

4 This estimation was performed by testing different εεε values in order to get roughly
100 solutions in the archive after 20,000 solution evaluations.

5 Due to the space restrictions of this paper, only the ZDT1 problem was considered.
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Table 3. Influence of different κ values on the performance of the coneε-MOEA on
test problem ZDT1. Mean and standard deviation over 50 independent runs.

Metric κ
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.9999

γ Mean 0.0102 0.0039 0.0054 0.0039 0.0036 0.0036 0.0030 0.0029 0.0031 0.0030 0.0030
SDev 0.0063 0.0029 0.0045 0.0032 0.0043 0.0035 0.0022 0.0031 0.0027 0.0027 0.0026

Δ Mean 0.2997 0.6022 0.4159 0.1891 0.1659 0.1743 0.1828 0.1905 0.1931 0.1873 0.1911
SDev 0.0150 0.0369 0.0393 0.0351 0.0215 0.0243 0.0199 0.0201 0.0303 0.0162 0.0260

HV Mean 0.8447 0.8612 0.8610 0.8655 0.8665 0.8665 0.8675 0.8677 0.8675 0.8675 0.8676
SDev 0.0101 0.0054 0.0078 0.0057 0.0074 0.0061 0.0038 0.0053 0.0045 0.0047 0.0044

|H| Mean 36.94 65.58 81.44 97.40 100.52 100.66 100.82 100.78 100.68 100.88 100.64
SDev 0.3136 3.9646 4.6077 2.6030 0.7351 0.5573 0.4375 0.4647 1.3915 0.3283 2.1262

The raw dataset used for this analysis was composed of the final Pareto-front
obtained on 50 independent runs of each algorithm on each problem, from which
the quality criteria described earlier were calculated.

The statistical tests were then performed using these calculated values. For
the unary metrics (γ, Δ and HV ), the null hypotheses used were those of equality
of median values, against the two-sided alternative hypotheses. In the particular
case of the HV metric, the values obtained by each algorithm were normalized
by the hypervolume of the “real” Pareto front available for each problem, in
order to analyze the differences between algorithms in terms of percentage gains
instead of absolute values.

For the binary metric CS, the hypotheses tested were defined as the difference
between the mutual coverages of pairs of algorithms. For instance, the hypotheses
for the comparison between the coneε-MOEA and the ε-MOEA on the Deb52
problem using the CS metric were defined as:{

H
P1;CS;(c,ε)
0 : μ̃p1

CS(c,ε) − μ̃p1
CS(ε,c) = 0

H
P1;CS;(c,ε)
1 : μ̃p1

CS(c,ε) − μ̃p1
CS(ε,c) �= 0

(11)

where μ̃p1
CS(c,ε), μ̃p1

CS(ε,c) represent the median values of the coverage of the coneε-
MOEA over the ε-MOEA (and vice versa) for problem P1.

In this work we have employed Wilcoxon’s Rank-sum method [15] to test the
working hypotheses. Estimations of the effect size were also calculated by means
of the Hodges-Lehmann (HL) estimator of the median of differences between two
independent samples [16], which represents the median of the set of all possible
pairwise differences between two sets of data.

From the definition of the cone ε-dominance, it is expected that the per-
formance of the coneε-MOEA should be superior to that of the ε-MOEA and
NSGA-II in those criteria that measure the diversity of solutions over the Pareto
front. Metrics where only the convergence to the “true” Pareto front is considered
(e.g., the γ metric) should present non-significant or very small differences be-
tween the ε-MOEA and coneε-MOEA, while those measuring only the diversity
of points obtained (e.g., the Δ metric) should indicate more significant effects
in favor of the coneε-MOEA. Hybrid metrics, such as HV and CS, should present
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mixed results with a tendency to indicate better values for the coneε-MOEA
over the other two.

5 Results and Discussion

The results obtained for the four performance metrics considered using the cal-
culated and estimated values of ε are summarized in Table 4.

First, it is clear that the predicted performance gains for the diversity metric
Δ were verified for both the calculated and estimated ε. In both situations, the
coneε-MOEA was able to significantly outperform the NSGA-II in all tested
cases, and the ε-MOEA in most of the tests (no difference on the DTLZ2 for
calculated ε, small negative effect on DTLZ2 for estimated ε and on ZDT6 in
both cases). The size of the positive gains observed for the coneε-MOEA were
also reasonable, which is in accordance with the predicted behavior.

The expected behavior was also observed for the convergence metric γ. For
both the estimated and calculated ε, non-significant differences were observed for
the algorithm comparisons, and even the statistically significant ones represented
very small effects where no tendency could be observed. These results are quite
compatible with the idea that the cone ε-dominance approach is a diversity-
enhancing one, with little or no effect over the ability of the underlying algorithm
to converge to the vicinity of the true Pareto-optimal front.

For the hypervolume metric HV , the results were again positive for the coneε-
MOEA. For the calculated ε runs, the cone ε-dominance approach outperformed
the ε-MOEA in all five problems, and the NSGA-II in four. The effect sizes
for this metric, which translate as percentual gains, were relatively small, with
the largest one being around 8.5%. The same tendency was observed for runs
using estimated ε values, which indicates that the use of cone ε-dominance was
able to provide a statistically significant, although small, advantage over the
ε-dominance in the problems tested, as measured by the HV metric.

The results for the coverage of two sets metric (CS) also indicate an advantage
in the use of cone ε-dominance. For both the calculated and estimated ε, the
coneε-MOEA was not inferior to the other two algorithms in all cases tested,
and presented significant positive effects in most of the cases examined. The
effect sizes observed for this metric were also reasonably large, with values up
to 0.65.

The results obtained for the tests performed indicate that the use of a cone
ε-dominance criterion can significantly improve the diversity of solutions in the
objective space, while leaving other characteristics of the algorithm - such as
the computational cost measured by the number of function evaluations, or the
ability to converge to the vicinity of the global Pareto front - mostly unchanged.
Also, it is important to notice that the calculation of the ε value needed to
obtain a given size for the Pareto front seems to be much more reliable for the
coneε-MOEA than the ε-MOEA (see Table 2), which also supports the use of the
approach based on the cone ε-dominance criterion over the pure ε-dominance.
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Figure 4 presents typical Pareto fronts reached for each test problem.
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(c) ZDT1 problem.
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Fig. 4. Efficient solutions generated by coneε-MOEA and ε-MOEA for the set of esti-
mated εεε values. The presented fronts are the outcome of a typical run.

6 Conclusions

We have proposed a relaxed form of Pareto dominance, named cone ε-dominance.
This approach has been used to ensure both properties of convergence towards
the Pareto-optimal front and properties of diversity among the solutions found.
Basically, the cone ε-dominance strategy takes advantage of the positive aspects
of ε-dominance, while addressing some of its limitations. As shown, it provides a
better control over the resolution of the Pareto found, and also a better spread
of solutions along the front.

We have used three evolutionary multiobjective algorithms to evaluate the
relative effectiveness of the proposed scheme: NSGA-II, ε-MOEA, and coneε-
MOEA, in which we have included cone ε-dominance instead of the regular
ε-dominance concept. Regarding the performance measures, the experimental
results show that the cone ε-dominance approach produces statistically compe-
titive results, improving the diversity performance while maintaining the cha-
racteristics of convergence toward the Pareto front.
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Abstract. Decision making in the presence of multiple and conflict-
ing objectives requires preference from the decision maker. The decision
maker’s preferences give rise to a domination structure. Till now, most
of the research has been focussed on the standard domination structure
based on the Pareto-domination principle. However, various real world
applications like medical image registration, financial applications, multi-
criteria n-person games, among others, or even the preference model of
decision makers frequently give rise to a so-called variable domination
structure, in which the domination itself changes from point to point. Al-
though variable domination is studied in the classical community since
the early seventies, we could not find a single study in the evolutionary
domain, even though, as the results of this paper show, multi-objective
evolutionary algorithms can deal with the vagaries of a variable domina-
tion structure. The contributions of this paper are multiple-folds. Firstly,
the algorithms are shown to be able to find a well-diverse set of the op-
timal solutions satisfying a variable domination structure. This is shown
by simulation results on a number of test-problems. Secondly, it answers
a hitherto open question in the classical community to develop a nu-
merical method for finding a well-diverse set of such solutions. Thirdly,
theoretical results are derived which facilitate the use of an evolution-
ary multi-objective algorithm. The theoretical results are of importance
on their own. The results of this paper adequately show the niche of
multi-objective evolutionary algorithms in variable preference modeling.

1 Introduction

A variety of complex decision making problems in engineering and mathematical
applications are usually multi-objective in nature. The objective can be time,
cost, safety, performance among others. A multi-objective optimization prob-
lem is characterized by multiple and conflicting objective functions F1, . . . , Fm :
Rn → R. Decision making with these kind of problems requires the elicitation
of preferences from the decision maker. The decision maker’s preferences give
rise to a domination structure. For example, the decision maker can provide a
preference model which characterizes the set of bad/ dominated directions in the
space of the objectives. This preference model could consist of domination and/
or preference cones. Till now, most of the research has been on the standard
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domination structure based on the Pareto-domination principle or using a poly-
hedral cone which can include some desirable trade-off among the objectives [1].

Yu in his seminal work [2] was the first to propose to use variable cones in
preference modeling. In a practical context, this says that preference depend
upon the current point in the objective space (so called decisional wealth in [3]).
Variable domination cones are found to be useful in various applications. For
example, they have found a recent place in medical engineering where the aim is
to merge different medical images obtained by different methods (say computer
tomography, ultrasound, positron emission tomography among others). In the
problem of medical image registration, one searches for a best transformation
map. The variable domination cone used in [4, 5] depends upon the point w ∈ Rm

and is defined by

C(w) := {d ∈ Rm :
m∑

i=1

sgn(di)wi ≥ 0},

where

sgn(di) :=

⎧⎨⎩
1 if di > 0;
−1 if di < 0;
0 if di = 0.

This cone is in general non-convex and obviously an example of variable dom-
ination structure. These concepts are applied, for example, in multi-objective
n-person cooperative as well as noncooperative games [6], in general resource
allocation models and location theory [7, 8]. We do not go in further application
details here and refer the reader to the original studies.

Problems with variable domination structure give rise to two different types
of optimal solutions: minimal points and nondominated points. Both these types
are defined in the next section. Here, we only mention that these points lie in the
objective space and they are not to be confused with the standard terminology
of Pareto-optimal/ nondominated/ efficient points [9].

In classical literature [4, 10], we do find some scalarization techniques to find
one minimal/ nondominated point. However, there have been few attempts to
develop algorithms for finding a representative subset of the minimal/ nondom-
inated set. This problem has also been highlighted in a recent study [4]. Finding
multiple solutions in a single run has been a niche of multi-objective evolutionary
algorithms [1, 11]. In this paper, we develop algorithms for finding a well-diverse
subset of the minimal/ nondominated set. To the best of our knowledge, this is
the first study which proposes a multi-objective evolutionary (NSGA-II based)
approach for this. In addition, we discuss a theoretical justification for our evo-
lutionary approach.

This paper is divided into four sections of which this is the first. The next
section presents the variable domination structure and some theoretical results.
The third section presents extensive simulation results using NSGA-II based
algorithms. Conclusions as well as extensions which emanated from this study
are presented at the end of this contribution.
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2 Preliminaries and Theoretical Results

A multi-objective optimization problem (MOP, in short) can be mathematically
stated as follows:

minimize F (x) := (F1(x), F2(x), . . . , Fm(x))
subject to x ∈ X ⊆ Rn

where X is the set of feasible alternatives and F1(x), F2(x), . . . , Fm(x) are m
(at least two) objective functions that need to be minimized. The spaces X and
F (X) := {F (x) : x ∈ X} are also called the decision space and the objective
space, respectively.

Let the non-negative orthant of Rm be denoted by Rm
+ , i.e.,

Rm
+ := {y ∈ Rm : yi ≥ 0, for all i = 1, 2, . . . , m}.

A nonempty set C ⊆ Rm is called a cone if c ∈ C ⇒ λc ∈ C for all λ ≥ 0. A cone C
is convex if C+C ⊂ C. A cone C is called pointed if it satisfies that C∩(−C) = {0},
where 0 is the zero vector in Rm. Hence, Rm

+ is a closed, convex and pointed
cone and in multi-objective community it is commonly known as the Pareto-
cone. Using the Pareto-cone, we can define a Pareto-domination structure on
the objective space. This structure allows us to compare vectors in the objective
space as follows. We say that a vector u := (u1, u2, . . . , um) Pareto-dominates
a vector v := (v1, v2, . . . , vm) if ui ≤ vi for all i = 1, 2, . . . , m and u �= v.
If neither u Pareto-dominates v nor v Pareto-dominates u, we call u and v
Pareto-nondominated to each other. Moreover, we call the Pareto-domination
structure as the standard domination structure as it is the most-widely used in
multi-objective optimization problems (see [1, 9]).

Definition 1 (Pareto-optimal point). A point x̂ ∈ X is called Pareto-
optimal if no other point in X Pareto-dominates it. Equivalently, a point x̂ ∈ X
is Pareto-optimal if and only if(

{F (x̂)} − Rm
+
)
∩ F (X) = {F (x̂)}.

Let Xp and E := F (Xp) denote the set of Pareto-optimal points and the set of
Pareto-efficient points, respectively. The set E is the image of the set of Pareto-
optimal points in the objective space (i.e., E ⊂ Rm).

Yu [12] proposed to use a constant convex cone to model decision makers’
preferences. Using a cone C ⊆ Rm, he defined a different domination structure
as follows: the vector u C-dominates the vector v, if v − u ∈ C \ {0}. Unless
stated otherwise, we assume throughout this paper that all the cones are closed,
convex, and pointed. Moreover, we also assume that the Pareto-cone is always
contained in (i.e., is a subset of) all the cones and that the set F (X) is compact.

Definition 2 (C-optimal point). A point x̂ ∈ X is called C-optimal if no
other point in X C-dominates it. Equivalently, a point x̂ ∈ X is C-optimal if and
only if

({F (x̂)} − C) ∩ F (X) = {F (x̂)}.
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Obviously, we get the standard domination structure if C := Rm
+ . The cone C

can be non-convex as well. MOPs with a cone which might be non-convex are
discussed in [13, 14, 15].

In [3], it is noticed that the importance of objective functions may change
during the decision making process depending upon the current objective func-
tion value. Some examples of this are also given in [16]. A constant cone is not
useful to compare objective function values in such cases. Due to this limitation
of a constant cone, several attempts have been made in the classical literature
to extend dominance ideas using variable cones. Basically, a variable cone is a
cone that is a function of a point in the objective space. Hence, there is a cone
C(y) associated with each point y in the objective space. Using a variable cone,
we can define two different domination relations (≤1 and ≤2) by

u ≤1 v if v ∈ {u} + C(v) (1)

and
u ≤2 v if v ∈ {u} + C(u), (2)

where u and v are vectors in the objective space. The domination structures
given by (1) and (2) are termed variable domination structures. Note that (1)
and (2) are the same if the cones are not variable (in this case it is equivalent to
C-domination).

The domination relation (1) and (2) lead to two optimality notions.

Definition 3. A point û ∈ F (X) is called a minimal point of F (X) if

({û} − C(û)) ∩ F (X) = {û}. (3)

Equivalently, if there is no v ∈ F (X) such that

v ∈ {û} − C(û) \ {0}, (4)

then û ∈ F (X) is a minimal point of F (X). The set of all minimal elements is
called the minimal-set and is denoted by EM.

Definition 4. A point û ∈ F (X) is called a nondominated point of F (X) if
there is no v ∈ F (X) such that

û ∈ {v} + C(v) \ {0}. (5)

The set of all nondominated elements is called the nondominated-set and is
denoted by EN .

Let XM and XN denote the pre-images (the points in the decision space) of
the minimal and the nondominated sets respectively. This means that EM =
F (XM) and EN = F (XN ). The concept of minimal elements is also described
in [17, 18, 19, 10, 20, 4]. The concept of nondominated elements is based on
[20, 12, 15, 21, 4]. The nondominated-set and the minimal-set are in general
different. It is easy to verify that both of these sets are equal if a constant cone
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is used, i.e. if C(y) := C. It is not only that Definitions 3 and 4 (and the above
concepts of variable domination structure) exist in a mathematical realm, these
concepts have (mathematical and) real-world applications (see Section 1).

The next lemma shows that under the assumptions of this paper, both non-
dominated and minimal points belong to the usual Pareto-efficient front.

Lemma 1. XM ⊆ Xp, XN ⊆ Xp, EM ⊆ E and EN ⊆ E.

Proof: As we assumed throughout that all the cones contain the Pareto-cone,
the result follows easily from [4, Lemma 2.13 (a)]. #$

Lemmas 2 and 3 are motivated by practical considerations, to reduce the
computation effort of a population based multi-objective algorithm for finding
minimal/ nondominated points.

Lemma 2. û ∈ F (X) is a minimal point of F (X) if and only if û ∈ E and û is
a minimal point of E.

Proof: (⇒) Let û ∈ F (X) be a minimal point of F (X). Hence, (û − C(û)) ∩
F (X) = {û}. E ⊆ F (X) together with Lemma 1 gives that û ∈ E and moreover,

({û} − C(û)) ∩ E = {û}.

This obviously means that there is no v ∈ E such that v ∈ {û} − C(û) \ {0}
and hence, from Definition 3 (replacing F (X) by E) we obtain that û ∈ E is a
minimal point of E .

(⇐) Let û ∈ F (X) be a minimal point of E . Thus, there is no v ∈ E such that
v ∈ {û} − C(û) \ {0}.

In order to show that û is also a minimal point of F (X), we take an arbitrary
but fixed element w ∈ F (X) \ E and assume that

w ∈ {û} − C(û) \ {0}. (6)

Now, as w /∈ E and as F (X) is assumed to be compact (throughout this paper),
we get the existence of a ŵ ∈ E which Pareto-dominates it, i.e., ŵ ∈ {w}−Rm

+ \
{0}. This together with (6) and the convexity of C(û), gives that

ŵ ∈ {û} − C(û) \ {0} − Rm
+ \ {0} ⊆ {û} − C(û) \ {0}.

Using the last inclusion and that ŵ ∈ E , we arrive at a contradiction to the
minimality of û in E . Hence the statement of the lemma follows. #$

Assumption 1. The domination structure is such that if u Pareto-dominates
v, then C(v) ⊆ C(u).

Lemma 3. Let Assumption 1 hold. Then, û ∈ F (X) is a nondominated point
of F (X) if and only if û ∈ E and û is a nondominated point of E.

Proof: (⇒) Let û ∈ F (X) be a nondominated point of F (X). Definition 4 gives
that there is no v ∈ F (X) such that

û ∈ {v} + C(v) \ {0}. (7)
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This obviously means that there is no v ∈ E such that û ∈ {v} + C(v) \ {0}
and hence, from Definition 4 (replacing F (X) by E) we obtain that û ∈ E is a
nondominated point of E .

(⇐) Let û ∈ F (X) be a nondominated point of E . Thus, there is no v ∈ E
such that û ∈ {v} + C(v) \ {0}. This happens if and only if

û /∈ {v} + C(v) \ {0} for all v ∈ E . (8)

We will show that the set E in (8) can be replaced by F (X). Taking an arbitrary
but fixed element w ∈ F (X)\E and assuming that w ≤2 û we get the following:

û ∈ {w} + C(w) \ {0}. (9)

Now, as w /∈ E and as F (X) is assumed to be compact we get the existence of a
ŵ ∈ E which Pareto-dominates w, i.e., w ∈ {ŵ}+ Rm

+ \ {0}. This together with
(9), the convexity of C(w), and Assumption 1 gives

û ∈ {w} + C(w) \ {0} ⊆ {ŵ} + Rm
+ \ {0} + C(w) \ {0}

⊆ {ŵ} + C(w) \ {0}
⊆ {ŵ} + C(ŵ) \ {0}.

Therefore, we obtain that û ∈ {ŵ} + C(ŵ) \ {0} for ŵ ∈ E , and we arrive at a
contradiction. Hence the statement of the lemma follows. #$

Remark 1. Note that while Lemma 2 (corresponding to minimal points), does
not require Assumption 1, this assumption is crucial for Lemma 3 (corresponding
to nondominated points) to hold. However, Assumption 1 seems reasonable. A
larger cone dominates a larger region and if u Pareto-dominates v, then the
dominated region by the point u should intuitively be larger (C(v) ⊆ C(u)).
This assumption is in line with the Pareto dominance compliant mechanism (see
the discussion in [22]).

Remark 2. It is important to highlight the importance of Lemmas 2 and 3. They
show that in order to check if a point is minimal or nondominated, it is sufficient
to check the variable cone conditions w.r.t. Pareto-optimal points only. For any
algorithm, this would drastically reduce the computational effort.

Usually, ranking based on finding the fronts in NSGA-II (or finding the set E)
is the most time consuming step. If one uses the Pareto-domination structure,
there are some efficient divide and conquer based approaches for reducing the
complexity of rankings (see [23, 24]). These fast approaches employ sorting of
the first objective. However, for non-standard domination structures like variable
domination, or C-domination, there is no fast algorithm available and we think
that the complexity of doing a variable domination sorting might not be possible
to reduce (sorting of the objectives gives no relevant information here). Hence,
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the additional computational burden of finding minimal/ nondominated points
should be reduced as far as possible. Here, the theoretical results of Lemmas 2
and 3 come to our rescue. Finding a fast algorithm for sorting based on C (or on
variable) domination structures is a relevant open question.

3 Experimental Study

In this section, we propose two NSGA-II based algorithms for solving multi-
objective problems having a variable domination structure. Moreover, we present
simulation results on a number of test-problems.

3.1 Algorithms and Experimental Setup

The first algorithm for such problems is called vNSGA-II. It is the usual NSGA-II
using a variable domination instead of the usual Pareto-domination. For finding
minimal elements and nondominated points, vNSGA-II uses the two different
domination relations (≤1 and ≤2) defined by (1) and (2), respectively. These
domination relations are used throughout in vNSGA-II instead of the usual
Pareto-domination. The naive method for ranking (comparing every point with
every other using variable domination) is used here (see Remark 2). In the past,
NSGA-II has been tested with Pareto and polyhedral-cone domination structures
(the so called guided domination approach [25]) but this is the first time that a
variable and nonlinear cone domination is used to guide the search.

The second algorithm (for problems with variable domination) is called
vPNSGA-II. It uses the general framework that was introduced in [26] and works
as follows. In standard NSGA-II, the parent population and the offspring pop-
ulation are combined and a sorting based on Pareto-domination is done. This
sorting gives fronts F1, . . . ,Fr. We do the same in vPNSGA-II, however from
F1 (best front), we additionally create a set F0 whose members satisfy the ap-
propriate domination relations (≤1 or ≤2 whatever is used). The domination
relations are checked among the front F1 members only. This is theoretically
justified by Lemmas 2 and 3 which state that the question whether a point is
minimal (nondominated) or not can be answered by checking the variable dom-
ination requirement from the nondominated front only. Whenever the set F0 is
non-empty, we have this additional front. Members of F0 are assigned a rank of
0 (better than 1, the rank of F1, as we consider minimization in the tournament
selection). This modified ranking guides the search in an appropriate direction.

The variable domination cone that we use in this study is taken from Engau[10].
He proposed a family of so-called Bishop-Phelps cones (that have many appli-
cations in nonlinear analysis and multi-objective applications). These cones are
described by two parameters: a scalar γ which controls the angle of the cone (in
Rm) and a vector p ∈ Rm. Based on these parameters, the variable domination
cone C(u) is defined by
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C(u) := {d|〈d,u − p〉 ≥ γ · ‖d‖ · [u − p]min} , (10)

where [u − p]min denotes the minimal component of the vector u − p. The
reference point p is usually taken as the ideal vector, i.e., the vector having the
ith component as inf{vi|v ∈ F (X)}. The parameter γ ∈ (0, 1] ensures that the
Pareto cone Rm

+ ⊆ C(u). Although C(u) is defined for arbitrary γ ∈ R and any
point p ∈ Rm instead of the ideal point, the above conditions guarantee that
C(u) is closed, convex and pointed.

We test vNSGA-II and vPNSGA-II on 34 test problem instances. The optimal
fronts corresponding to the variable domination cone C(u) is shown in Figures 1–
14. As can be seen from the figures, the optimal fronts are a subset of the efficient
front. The test problems chosen are of varying complexity and are from different
test suites that we find in literature. These include two problems from the CTP
suite (CTP1, CTP7) [27], two from the DTLZ suite (DTLZ7, DTLZ8, 3 objectives)
[28], two from the CEC-2007 competition (SZDT1, SZDT2), four from the WFG
suite (WFG1, WFG2, with both 2 and 3 objectives) [29] and six from the ZDT
suite (ZDT1, ZDT2, ZDT3, ZDT4, ZDT5, ZDT6) [1]. We note that this paper is
among the very few studies that consider CTP problems and additionally ZDT5,
a difficult discrete problem. For all the problems, we use the zero vector as the
ideal point, and use the two values 0.5 and 1.0 for γ. Additionally, we took the
ideal point (−1,−1) for ZDT3. Including five existing test suites, this study is
among the most comprehensive experimentations that we find in literature.

Note that the use of variable domination cones restricts the set E of all these
problems (see Lemma 1). For all problems, we compute a well-distributed ap-
proximation of the preferred (minimal and nondominated) set as follows. Corre-
sponding to a problem, we first generate 5,000 well-diverse points on the efficient
front. From these points we calculate the minimal and nondominated points,
i.e., the points that satisfy the ≤1 and ≤2 domination relations (note that from
Lemma 2, we only need to consider Xp for this).

In order to evaluate the results, we use the Inverted generational distance
(IGD) and Generational distance (GD) metrics (w.r.t. the obtained reference
set). For statistical evaluation, we run each algorithm for 51 times and present
various summary statistics. Moreover, we also use the attainment surface based
statistical metric described in [30] and the median (50%) attainment surface
(26st) is plotted.

For all problems solved, we use a population of size 100 and set the maximum
number of function evaluations as 20,000 (200 generations). We use a standard
real-parameter SBX and polynomial mutation operator with ηc = 15 and ηm =
20, respectively [1]. For ZDT5, we use a bit-flip mutation operator and a single
point crossover. The source code of both vNSGA-II and vPNSGA-II (in C++)
is made available1. The data files for all the 51 runs of all the problems are
available on request. This would benefit any other classical or evolutionary study
on multi-objective problems with a variable non-domination structure.

1 http://www.aifb.kit.edu/web/vNSGA-II/en
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3.2 Simulation Results

In Tables 1, 2, 3 and 4, the entries of the algorithms yielding the best results are
highlighted in a light gray. Tables 1 and 2 present, for all problems, the median
and the interquartile range (in subscript) for the GD metric, using γ = 0.5 and
γ = 1.0, respectively. The first row entry denotes the algorithm working on
to find EM and EN sets. For example, vNSGA-II (EN ) denotes the vNSGA-II
working with the ≤2 domination relation to find EN . The problem ZDT3-1 is
ZDZ3 with p=(−1,−1). For the other problems we use p=(0, 0).

From Tables 1 and 2 we see that vNSGA-II outperforms vPNSGA-II, when
γ = 0.5. A small value of γ in (10) leads to a larger dominated area which in
turn implies that the corresponding solution set is reduced. The variable domi-
nation structure is used throughout in vNSGA-II and this gives a more accurate
guidance towards the smaller set. On the other hand, vPNSGA-II changes the
ranking by creating a preferred front out of the best front (in the sense of Pareto-
domination), and hence might not work on problems where the Pareto-optimal
front is much bigger than the set of minimal or nondominated elements (which
happens if a small value of γ is chosen). Both the algorithms work equally well
for a large γ. Tables 3 and 4, present the corresponding results for the IGD met-
ric. The interpretation of the results is similar to Tables 1 and 2. The boxplots in
Figures 15 and 16 show a great variability in the observations. It is worthwhile
to notice that finding EN and EM for ZDT5 is the most difficult (worst GD and
IGD values).

Figure 1 shows the plot of EN and sample runs of vNSGA-II and vPNSGA-II
on the convex problem SZDT1. We see that both the algorithms have no difficulty
in finding the entire set EN . However, the attainment surface plot in Figure 2
shows that vPNSGA-II performs slightly better. Next, we consider the non-
convex test problems ZDT2 and the shifted version SZDT2. Here, the variable
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Table 1. GD. Median and interquartile range, for problems with γ = 0.5

vNSGA-II (EM) vPNSGA-II (EM) vNSGA-II (EN ) vPNSGA-II (EN )
ZDT1 0.0000410.000003 0.0000470.000003 0.0000430.000005 0.0000490.000020
ZDT2 0.0074370.000383 0.0071120.000655 0.0010330.001423 0.0015120.001652
ZDT3 0.0000560.000024 0.0004240.000178 0.0002770.000011 0.0003360.000081
ZDT3-1 0.0000660.000009 0.0002110.000091 0.0001000.000005 0.0001440.000036
ZDT4 0.0003280.000404 0.0004910.000426 0.0004510.000407 0.0005270.000644
ZDT5 0.4163400.016336 0.4571260.017216 0.4120980.012548 0.4496680.019501
ZDT6 0.0020370.000190 0.0009940.000212 0.0010370.002056 0.0007750.000559
SZDT1 0.0005910.000117 0.0007880.000170 0.0006150.000145 0.0008030.000185
SZDT2 0.0059700.000390 0.0057070.002231 0.0010590.000238 0.0014320.000322
CTP1 0.0000710.000021 0.0000710.000017 0.0000620.000084 0.0000850.000112
CTP7 0.0000100.000001 0.0000100.000001 0.0000070.000001 0.0000070.000000
WFG1-2D 0.0897410.005875 0.3458610.175960 0.0890300.007313 0.1653910.033064
WFG3-2D 0.0020290.001921 0.0020260.001432 0.0018120.001945 0.0018990.001260
WFG1-3D 0.1045180.008108 0.3591400.159606 0.1040990.007463 0.2856010.097340
WFG3-3D 0.0044970.002696 0.0040080.001769 0.0037930.002746 0.0035310.001307
DTLZ7 0.0007580.000010 0.0065790.807318 0.0007580.000012 0.0054070.003795
DTLZ8 0.0002600.000009 0.0002600.000006 0.0003630.000113 0.0003820.000129

Table 2. GD. Median and interquartile range, for problems with γ = 1.0

vNSGA-II (EM) vPNSGA-II (EM) vNSGA-II (EN ) vPNSGA-II (EN )
ZDT1 0.0000700.000009 0.0000590.000008 0.0000760.000021 0.0000700.000025
ZDT2 0.0023690.000198 0.0021400.000406 0.0001720.000183 0.0001240.000055
ZDT3 0.0000970.000004 0.0000990.000004 0.0003980.003700 0.0003670.000022
ZDT3-1 0.0002800.000015 0.0002650.000022 0.0003060.000034 0.0002890.000026
ZDT4 0.0004070.000160 0.0005620.000365 0.0004100.000291 0.0005160.000389
ZDT5 0.4125100.010395 0.4498730.018389 0.4146690.012608 0.4487770.014805
ZDT6 0.0009390.000155 0.0009160.000171 0.0009370.000840 0.0009020.000269
SZDT1 0.0011100.000231 0.0009860.000216 0.0011440.000218 0.0010440.000229
SZDT2 0.0017550.000468 0.0016930.000459 0.0018520.000318 0.0017710.000579
CTP1 0.0000780.000011 0.0000770.000009 0.0000890.000110 0.0000590.000066
CTP7 0.0000100.000001 0.0000100.000001 0.0000070.000001 0.0000080.000001
WFG1-2D 0.1003500.005793 0.1220910.027067 0.0879430.003449 0.0964700.011034
WFG3-2D 0.0021240.001417 0.0019020.000896 0.0020810.001147 0.0017940.001215
WFG1-3D 0.1210730.003408 0.1220350.004282 0.1255580.005809 0.1257780.004371
WFG3-3D 0.0296970.001638 0.0296030.001387 0.0308700.001141 0.0312530.001602
DTLZ7 0.0009390.000020 0.0026130.608852 0.0009430.000019 0.0018910.002317
DTLZ8 0.0003270.000016 0.0003230.000017 0.0005160.000223 0.0005230.000193

Table 3. IGD. Median and interquartile range, for problems with γ = 0.5

vNSGA-II (EM) vPNSGA-II (EM) vNSGA-II (EN ) vPNSGA-II (EN )
ZDT1 0.0000700.000007 0.0000750.000009 0.0000680.000003 0.0000700.000005
ZDT2 0.0001530.000011 0.0001490.000015 0.0012870.000464 0.0011310.001280
ZDT3 0.0002410.000192 0.0005630.000218 0.0004880.000156 0.0004440.000219
ZDT3-1 0.0001220.001940 0.0003050.000119 0.0001360.000046 0.0002300.000081
ZDT4 0.0003630.000316 0.0004240.000377 0.0003050.000287 0.0003940.000339
ZDT5 1.5366160.296067 1.5366160.377491 0.7523880.189020 0.8544780.217997
ZDT6 0.0002240.000054 0.0004040.000076 0.0001890.000032 0.0003030.000061
SZDT1 0.0004860.000119 0.0006390.000183 0.0004330.000098 0.0005740.000135
SZDT2 0.0007050.000140 0.0009110.007692 0.0005840.000117 0.0008890.004394
CTP1 0.0002200.000173 0.0002330.000240 0.0001680.000080 0.0001900.000069
CTP7 0.0000190.000001 0.0000190.000001 0.0000090.000000 0.0000090.000000
WFG1-2D 0.2197190.013864 0.2286370.013330 0.1696090.010101 0.1729150.008610
WFG3-2D 0.0017420.001718 0.0017420.001330 0.0014830.001562 0.0015930.001153
WFG1-3D 0.4296550.031484 0.5532280.009443 0.3089030.022632 0.3869090.006128
WFG3-3D 0.0128010.009288 0.0108350.006396 0.0095250.008510 0.0085290.004455
DTLZ7 0.0044700.000088 0.0076121.400776 0.0044500.000143 0.0067340.003129
DTLZ8 0.0004850.000108 0.0005240.000105 0.0004010.000026 0.0004070.000040
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Fig. 3. EN and sample runs of vNSGA-II
and vPNSGA-II on SZDT2
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face plot for ZDT2
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Fig. 6. EN and sample runs of vNSGA-II
and vPNSGA-II on ZDT3-1

domination cone makes the original connected front disconnected (a connected
part and the minimizer of F1, see Figures 3 and 4). This is an additional difficulty
that comes due to variable domination cones. However, the algorithms are able
to find all these regions. Figures 5 to 12 show that the algorithms perform well
on a large class of complex multi-objective problems with a variable domination
structure.

Finally, Figures 13 and 14 nicely illustrate another characteristic of the vari-
able domination structure. Both WFG3 and DTLZ1 have linear or planar effi-
cient fronts. If we use guided-domination (or any polyhedral cone domination)
based preference structures on these problems, we can only get a linear part of
the efficient front. Any trade-off/ guided-domination based approach is polyhe-
dral and is not suitable to focus on an arbitrary nonlinear subset of polyhedral
efficient fronts. Variable domination on the other hand, with its inherent vari-
ability in the preference structure can however, focus on an arbitrary part of the
efficient front of these problems (see Figure 14).
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face plot for DTLZ8
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Table 4. IGD. Median and interquartile range, for problems with γ = 1.0

vNSGA-II (EM) vPNSGA-II (EM) vNSGA-II (EN ) vPNSGA-II (EN )
ZDT1 0.0001020.000009 0.0000940.000010 0.0001010.000008 0.0000910.000004
ZDT2 0.0001650.000011 0.0001480.000011 0.0001730.000009 0.0001650.000014
ZDT3 0.0000770.000022 0.0001100.000038 0.0002260.000033 0.0002030.000022
ZDT3-1 0.0002810.000020 0.0002520.000016 0.0003050.000023 0.0002710.000016
ZDT4 0.0002710.000171 0.0003910.000224 0.0002400.000138 0.0002820.000210
ZDT5 0.9552930.113724 1.0690170.209700 0.7521300.138028 0.7319150.153316
ZDT6 0.0003430.000060 0.0003750.000066 0.0011500.000023 0.0011510.000017
SZDT1 0.0006030.000120 0.0005400.000147 0.0005960.000101 0.0005340.000115
SZDT2 0.0008270.000199 0.0009270.010953 0.0008570.000124 0.0009210.001582
CTP1 0.0000840.000007 0.0000820.000008 0.0000520.000011 0.0000520.000014
CTP7 0.0000260.000002 0.0000260.000002 0.0000130.000001 0.0000130.000001
WFG1-2D 0.1127550.006935 0.1161980.007141 0.0657730.004208 0.0690450.004811
WFG3-2D 0.0013640.000904 0.0011950.000580 0.0012770.000758 0.0011250.000745
WFG1-3D 0.1891820.005476 0.1892680.005476 0.1530710.004616 0.1519640.003494
WFG3-3D 0.0201890.007912 0.0208720.005639 0.0185870.005397 0.0188680.005841
DTLZ7 0.0023020.000255 0.0036061.053387 0.0072180.000075 0.0076800.001558
DTLZ8 0.0006290.000094 0.0006280.000156 0.0004590.000076 0.0004370.000060
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Fig. 15. Boxplot based on the GD val-
ues. (1)- vNSGA-II (EM), (2)- vNSGA-
II (EN ), (3)- vPNSGA-II (EM), (4)-
vPNSGA-II (EN ).
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Fig. 16. Boxplot based on the IGD
values. (1)- vNSGA-II (EM), (2)-
vNSGA-II (EN ), (3)- vPNSGA-II (EM),
(4)- vPNSGA-II (EN ).
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4 Conclusions

This study considered multi-objective problems having a variable domination
structure. It analyzed nondominated and minimal points and presented new
theoretical results of an algorithmic value. Moreover, based on the theoretical
results we presented two NSGA-II based algorithms, vNSGA-II and vPNSGA-
II, to find a well-diverse set of both minimal and nondominated solutions. The
test problems have adequately demonstrated that both these algorithms per-
form very well for finding optimal solutions even when the problem size and
search space complexity is large. Although problems with a variable domina-
tion structure have many applications in mathematical, engineering and medical
domain, this is the first study towards finding a well-diverse representation of
minimal and nondominated solutions. This paper adequately shows that multi-
objective evolutionary algorithms can deal well with the vagaries of a variable
domination structure. More emphasis must be placed on developing interactive
evolutionary multi-objective optimization techniques that incorporate variable
domination structures. We hope that the study sheds adequate light in this area
and motivates others.
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Abstract. The attainment function provides a description of the
location of the distribution of a random non-dominated point set. This
function can be estimated from experimental data via its empirical coun-
terpart, the empirical attainment function (EAF). However, computation
of the EAF in more than two dimensions is a non-trivial task. In this
article, the problem of computing the empirical attainment function is
formalised, and upper and lower bounds on the corresponding number of
output points are presented. In addition, efficient algorithms for the two
and three-dimensional cases are proposed, and their time complexities
are related to lower bounds derived for each case.

Keywords: Empirical attainment function, algorithms, multiobjective
optimiser performance, estimation.

1 Introduction

The development of new stochastic optimisers, and comparison thereof, depends
on the ability to assess their performance in some way. However, assessing the
performance of stochastic multiobjective optimisers, such as multiobjective evo-
lutionary algorithms, is considered difficult for two main reasons. On the one
hand, theoretical convergence results are often unavailable for such optimisers,
or are too weak to be indicative of their performance in practice. On the other
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hand, the analysis of experimental data is more challenging than in the single-
objective case, due to the set nature of multiobjective optimisation outcomes.

Initial ideas on the performance assessment of stochastic multiobjective op-
timisers were put forward early in Evolutionary Multiobjective Optimisation
history, based on the notion of attainment surfaces [2]. Those ideas were sub-
sequently formalised in terms of the so-called attainment function, and links to
existing results in random set theory were established [5]. As a mean-like, first-
order moment measure of the statistical distribution of multiobjective optimisa-
tion outcomes, the attainment function provides a description of their location
in objective space. More importantly, the attainment function may be estimated
from experimental data using its empirical counterpart, the empirical attainment
function (EAF). Thus, the performance of a stochastic multiobjective optimiser
on a given optimisation problem, understood in terms of location of the corre-
sponding outcome distribution, may be assessed by observing the outcomes of
several independent optimisation runs and computing the corresponding EAF.
Empirical comparisons may then be performed either visually or by formulating
and testing appropriate statistical hypotheses.

Despite initial interest in the attainment function, much greater attention has
been devoted in the literature to performance indicators, especially the hyper-
volume indicator [10], for which a body of theoretical and experimental results is
currently available. In the meantime, the development of the attainment function
approach has advanced slowly, and has focused mainly on theoretical aspects [4].
Due to computational difficulties, the EAF has been used mostly for visualisation
purposes, in two dimensions [8].

In this article, the computation of the empirical attainment function is con-
sidered. The empirical attainment function and related concepts are introduced
in Section 2, and the EAF computation problem is formalised in Section 3. In
Section 4, bounds on the number of points to be computed are derived for two,
three, and more dimensions. Efficient algorithms to compute the EAF in two
and three dimensions are presented in Section 5, together with their computa-
tional complexities and some lower bounds on the complexity of the problem.
The paper concludes with a discussion of the main contributions presented and
directions for further work.

2 Background

When applied to an optimisation problem involving d ≥ 2 objectives, stochastic
multiobjective optimisers such as multiobjective evolutionary algorithms pro-
duce sets of solutions whose images in the d-dimensional objective space ap-
proximate the Pareto-optimal front of the problem in some sense. The quality
of this approximation is usually considered to depend solely on the images in
objective space, so that the outcome of an optimisation run may be seen as a
set of points in Rd. Typically, this is a subset of the non-dominated, or minimal,
objective vectors evaluated during the run, since only such points effectively
contribute to the quality of the approximation.
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Definition 1 (Minima). Given a set of points X = {x1, . . . , xm ∈ Rd}, the set
of minima of X under the component-wise order is the set

min X = {x ∈ X : ∀y ∈ X, y ≤ x ⇒ y = x} (1)

Definition 2 (Non-dominated point set). A set of points X such that min X
= X is called a set of minima, or a non-dominated point set.

In practice, the actual outcome sets produced for the same problem vary from
optimisation run to optimisation run, due to the stochastic nature of the opti-
misers, and may be seen as realisations of a random non-dominated point set,
or RNP set [3]. Optimiser performance may then be studied through the dis-
tribution of such a random set. In particular, the attainment function provides
information about this distribution with respect to location [5,4], and is defined
as the probability of an outcome set X attaining an arbitrary point z ∈ Rd, i.e.,
the probability of ∃x ∈ X : x ≤ z. The symbol � is used to denote attainment
of a point by a set, e.g., X � z.

The attainment function may be estimated from experimental data through
its empirical version:

Definition 3 (Empirical attainment function). Let I{·} : Rd �−→ {0, 1} de-
note the indicator function, and let X1, X2, . . . , Xn be non-dominated point set
realisations drawn independently from some RNP set distribution. The empirical
attainment function (EAF) is the discrete function αn : Rd �−→ [0, 1], where

αn(z) = αn(X1, . . . , Xn; z) =
1
n

n∑
i=1

I{Xi � z} (2)

This definition clearly describes how to evaluate the EAF at a given point z ∈ Rd,
but, in practice, it is also necessary to decide at which points the EAF should
be evaluated. For visualisation purposes [8], for example, the boundaries of the
regions of the objective space where the EAF takes a constant value are usu-
ally of interest. These boundaries were originally referred to as %-attainment
surfaces [2], and may be understood as the family of tightest goal vectors in-
dividually attained by a given percentage of the optimisation runs considered.
They have also been described as summary attainment surfaces [6]. Visualisation
of the EAF, and of differences between EAFs associated to different optimisers,
is often used as an exploratory data analysis tool to obtain additional insight
into optimiser performance [6,8].

To produce a graphical representation of the EAF, the desired summary
attainment surfaces must be computed in some way. The above description sug-
gests that a summary attainment surface may be represented by a set of min-
ima, and this set can be easily computed in two dimensions as discussed later in
Section 5. Yet, no formal definition of the corresponding computation problem,
or algorithm to solve it in more than two dimensions, have been presented to
date. To overcome this difficulty, Knowles [6] proposed a plotting method based
on the computation of the intersections between a number of axis-aligned sam-
pling lines and the summary attainment surface of interest. These intersections
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provide a grid-like sampling of the surface which is fast to compute, and leads
to plots that are easy to interpret, at least in three dimensions. However, this
sampling provides only an approximate description of the desired attainment
surface while potentially involving a much larger number of points than the
exact description adopted in this work.

3 The EAF Computation Problem

Summary attainment surfaces, as described in the previous section, may be
understood as the lower boundary of the corresponding EAF superlevel sets.
Formally, denote the t/n-superlevel set of αn(z), t = 1, . . . , n, by:

Vt/n = {z ∈ Rd : αn(z) ≥ t/n} (3)

and the corresponding set of minima, which Proposition 1 will show to be finite
although Vt/n is infinite, by Lt = min Vt/n. Since αn(z) is a coordinate-wise
non-decreasing function, Vt/n is equal to the upper set of Lt, i.e.:

Vt/n = {z ∈ Rd : Lt � z} (4)

Thus, the EAF computation problem may be defined as:

Problem 1 (EAF computation). Given an input sequence of non-empty non-
dominated point sets:

S = (X1, X2, . . . , Xn) (5)

containing

m =
n∑

i=1

mi, mi = |Xi| (6)

input points, find the output sequence

R = (L1, L2, . . . , Ln) (7)

where Lt, t = 1, . . . , n, denotes the set of minima of the t/n-superlevel set, Vt/n,
of αn(X1, . . . , Xn; z). The total number of output points is

� =
n∑

t=1

�t, �t = |Lt| (8)

It remains to show how the output sets L1, . . . , Ln relate to the input sequence,
S. For each t = 1, . . . , n, the auxiliary set

Jt =

{
t∨

i=1

zi : (z1, . . . , zt) ∈
t∏

i=1

Xji , ji ∈ {1, . . . , n} ∧ (a < b ⇔ ja < jb)

}
(9)

is defined, where
∨t

i=1 zi denotes the join (component-wise maximum, or least
upper bound) of points z1, . . . , zt ∈ Rd,

∏t
i=1 Xji denotes the Cartesian product

of sets Xj1 , . . . , Xjt , and (Xj1 , . . . , Xjt) is any length-t subsequence of S. Then,
the following holds true:
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Proposition 1. Lt is finite and equal to the set of minima of Jt, t = 1, . . . , n.

Proof.

1. Jt ⊆ Vt/n, since all elements of Jt are attained by at least t distinct input
sets by construction.

2. Each minimum of Vt/n must be the least upper bound (join) of t points from
distinct input sets, which is in Jt by construction. Therefore, min Vt/n ⊆ Jt.

3. Together, 1. and 2. imply that min Vt/n ⊆ min Jt.
4. min Jt ⊆ min Vt/n. Assume that a minimum of Jt is not a minimum of Vt/n.

Then, there must be a minimum of Vt/n which dominates it. Given 3., this
minimum of Vt/n must be in Jt as well, which gives rise to a contradiction.

5. Together, 3. and 4. imply that min Vt/n = min Jt. Since Jt is finite, so is Lt.

4 The Size of the Output Sets

As the complexity of any algorithm for the EAF computation problem will neces-
sarily be bounded below by the size of the output sets L1, . . . , Ln, the maximum
size of these sets is of interest.

4.1 The Two-Objective Case

When d = 2, an upper bound for the total number of output points, �, can be
easily obtained by noting that all output sets Lt, t = 1, . . . , n, are non-dominated
point sets, which implies that all points in Lt must have distinct coordinates.
Therefore, the cardinality �t = |Lt| is bounded above by the total number of
input points, m. In other words, �t ∈ O(m), which leads to � ∈ O(nm).

Furthermore, the above bound can be shown to be tight by means of an
example. Given two positive integers n and m such that m ≥ n, consider the
input sequence:

S = (X1, X2, . . . , Xn) (10)

with
Xi =

{
(j, m − j + 1) : (j − i) mod n = 0, j ∈ {1, . . . , m}

}
(11)

for all i = 1, . . . , n. Then, �t = m− t + 1 and � = n(2m−n + 1)/2. Since m ≥ n,
� ∈ Ω(nm), and the following proposition holds true:

Proposition 2. In the 2-dimensional EAF computation problem, � ∈ Θ(nm).

4.2 The Three-Objective Case

To establish an upper bound on the maximum total number of output points
when d = 3, assume, without loss of generality, that all input points have distinct
coordinates.1 Recall that output points are the join of points from different input
1 If this is not the case, add sufficiently small perturbations to the common coordinate

values in the input so that all coordinates become distinct. Note that the number of
minimal elements of Jt, t = 1, . . . , n, may increase as a result, but cannot decrease.



On the Computation of the Empirical Attainment Function 111

sets, and that all output sets Lt, t = 1, . . . , n, are non-dominated point sets by
definition. In particular, L1 is the set of minima of J1 =

⋃n
i=1 Xi, which implies

that �1 ∈ O(m).
Since the number of objectives is d = 3, points in each output set Lt must

differ from each other in at least two coordinates, or one would dominate the
other. Thus, for each input point p = (px, py, pz) ∈ J1, there may be at most two
distinct points q = (qx, qy, qz) in each output set Lt such that (qx, qz) = (px, pz)
and qy ≥ py, or (qy, qz) = (py, pz) and qx ≥ px. Note that this does not exclude
the case where q = p, nor does it imply that such a point q ∈ Lt exists.

Moreover, for each point q = (px, qy, pz) ∈ Lt considered above, there may be
at most one point r = (rx, ry, rz) in each Lj , t < j ≤ n, such that (rx, ry) =
(px, qy) and rz > pz, and similarly for each q = (qx, py, pz) ∈ Lt. Thus, each
input point p may be associated with O(n) output points of the form q above
and with O(n2) output points of the form r.

Finally, every output point must be of one of these two types, q or r. This
is clearly true for every output point that is either an input point as well, or
is dominated by some input point while differing from it only in the value of a
single, x or y, coordinate, which corresponds to type q. In all other cases, the
join of the input point(s) defining the x and y coordinates of a given output
point will differ from that output point in the z coordinate value only, which
must now be equal to that of (one of) the other input point(s) considered. This
join must be a minimum of Jj for some j < t, or the original output point would
not be a minimum of Jt, either. Therefore, type r applies.

Since there are m input points in total, the following holds true:
Proposition 3. In the 3-dimensional EAF computation problem, � ∈ O

(
n2m

)
.

4.3 More Than Three Objectives

As shown above, the maximum number of output points, �, grows at most linearly
with the total number of input points, m, when the number of objectives is two
or three, and the number of input sets, n, is constant. Unfortunately, this result
does not carry over to more than three objectives. As an example, consider, for
given positive integers m1 and m2, that:

S = (X1, X2) (12)
X1 = {(j1, m1 − j1 + 1, 0, 0) : j1 = 1, . . . , m1} (13)
X2 = {(0, 0, j2, m2 − j2 + 1) : j2 = 1, . . . , m2} (14)

Then,

J1 = X1 ∪ X2 (15)
J2 = {(j1, m1 − j1 + 1, j2, m2 − j2 + 1) : j1 = 1, . . . , m1, j2 = 1, . . . , m2} (16)

Since, in this case, both J1 and J2 are non-dominated point sets, (L1, L2) =
(J1, J2), and

|L1| = m1 + m2 = m (17)
|L2| = m1m2 (18)
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Algorithm 1. EAF computation
1: for t = 1 to n do
2: compute Jt from X1, . . . , Xn

3: Lt ← minima(Jt)

Setting m1 = m2 = m/2, the total number of output points is � = m + m2/4,
which establishes a lower bound of Ω(m2) in the four-objective case.

The above lower bound can be shown to apply also to higher numbers of
objectives (through dimension embedding), but tighter bounds for increasing
values of d can be achieved by extending the proposed construction. Assuming
that d is constant and even, consider n = d/2 input sets:

X1 = {(j1, m1 − j1 + 1, 0, 0, . . . , 0, 0) ∈ Rd : j1 = 1, . . . , m1} (19)
X2 = {(0, 0, j2, m2 − j2 + 1, 0, 0, . . . , 0, 0) ∈ Rd : j2 = 1, . . . , m2} (20)

...
Xi = {(0, 0, . . . , 0, 0, ji, mi − ji + 1, 0, 0, . . . , 0, 0) ∈ Rd : ji = 1, . . . , mi} (21)

...
Xn = {(0, 0, . . . , 0, 0, jn, mn − jn + 1) ∈ Rd : jn = 1, . . . , mn} (22)

of equal size m1 = · · · = mn = m/n, and focus on the cardinality of |Ln| =
|Jn| = (m/n)n = (m/n)d/2. Then, the following general result may be stated:

Proposition 4. In the d-dimensional EAF computation problem, the maximum
total number of output points is Ω

(
m�d/2�).

5 Time Complexity and Algorithms

The cardinality lower bounds derived in the previous section provide trivial lower
bounds on the time complexity of the EAF computation problem. Additionally,
the known lower bound of O(n log n) on the complexity of finding the minima
(or, alternatively, the maxima) of a point set [9, Theorem 4.8] applies to EAF
computation as well, since L1 = min J1. Formally:

Proposition 5. In the comparison-tree model, any algorithm that solves the
EAF computation problem in d dimensions requires time Ω

(
m log m + m�d/2�).

The time required when d = 2 is Ω (m log m + nm).

The design of algorithms for the EAF computation problem is approached here
by noting that Lt = min Jt, as stated in Proposition 1, which immediately sug-
gests dividing the problem into two main computation steps, as outlined in
Algorithm 1. The disadvantage of such a brute-force approach is that |Jt| grows
exponentially in t, leading to overall exponential runtime growth in n, even in
two or three dimensions.
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Algorithm 2. Minima of a set of points
Input: X // a set of points in Rd

Output: L1 // the set of minima of X
1: m← |X|
2: Q is a queue containing X sorted in ascending order of coordinate d
3: L1 ← ∅
4: L∗

1 ← ∅
5: while Q �= ∅ do
6: p← pop(Q)
7: p∗ is the projection of p onto the first d− 1 dimensions
8: if L∗

1 � p∗ then
9: L∗

1 ← minima(L∗
1 ∪ {p∗})

10: L1 ← L1 ∪ {p}
11: return L1

A better alternative consists of alternating between Jt computation steps and
Lt computation steps, while avoiding generating points in Jt which would be
dominated by those already in Lt. Such an approach is consistent with the well-
known dimension-sweep paradigm [9, p. 10f] of computational geometry, and the
EAF algorithms developed in this work are based on existing dimension-sweep
algorithms for minima [7].

Consider the computation of L1, which, as pointed out earlier, consists of
determining the minima of all input points, regardless of the input set to which
each point actually belongs. A general solution to this problem [9, p. 160] is
outlined in Algorithm 2, under the common assumption that all input points are
distinct, and have distinct coordinate values. The algorithm starts from an empty
output set L1, and visits input points in ascending order of their last coordinate,
i.e., it sweeps X along the last dimension. Clearly, a newly visited point cannot
dominate previously visited points, but it will be dominated by earlier points
whenever this is true with respect to the first d − 1 coordinates. Therefore, it
suffices to check the projected point p∗ against a set, L∗

1, of minimal projections in
order to decide whether or not p itself is a minimum. Due to this dimensionality
reduction, efficient dimension-sweep algorithms can be obtained for the minima
problem in two and three dimensions by specialising the dominance check and
update steps (lines 8–9) in each case.

In practice, input coordinate values may not be all distinct, and adjustments
to dimension-sweep algorithms in their basic form may be required, which can
often be made without compromising the worst-case complexity of the origi-
nal versions of the algorithms. In the following, no distinct-coordinate assump-
tions are made, and repeated coordinate values and/or non-disjoint input sets,
X1, . . . , Xn, are explicitly allowed in the input to the EAF algorithms presented.

5.1 The Two-Objective Case

The general approach of Algorithm 2 becomes particularly simple when d = 2.
In that case, p∗ is a scalar, and L∗

1 may contain at most one element. Therefore,
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Algorithm 3. EAF computation in two dimensions
Input: S = (X1, . . . , Xn) // a sequence of non-dominated point sets
Output: R = (L1, . . . , Ln) // a sequence of non-dominated point sets
1: X← ⊎n

i=1 Xi // multiset sum, duplicate points are allowed
2: m←∑n

i=1 |Xi|
3: Xx is X sorted in descending order of the x coordinate
4: Xy is X sorted in ascending order of the y coordinate
5: for t = 1 to n do
6: Lt ← ∅
7: Qx ← Xx // initialise queue
8: Qy ← Xy // initialise queue
9: A← ∅

10: level← 0
11: p← (∞,−∞)
12: while Qx �= ∅ and Qy �= ∅ do
13: repeat
14: q ← pop(Qy)
15: if qx < px then
16: if input set(q) �∈ A then
17: level← level + 1
18: A← A � {input set(q)} // multiset sum
19: until Qy = ∅ or (level ≥ t and qy �= top(Qy)y)
20: if level ≥ t then
21: repeat
22: p← pop(Qx)
23: if py ≤ qy then // (px, qy) ∈ Jt

24: A← A \ {input set(p)} // multiset difference
25: if input set(p) �∈ A then
26: level← level− 1
27: until level < t and (Qx = ∅ or px �= top(Qx)x)
28: Lt ← Lt ∪ {(px, qy)}
29: return (L1, . . . , Ln)

each iteration of the while loop can be performed in O(1) time, and the algorithm
runs in asymptotically optimal, O(m log m) time due to sorting in line 2.

Extending this approach to the full EAF computation problem in two dimen-
sions is not only possible, but a C implementation of such an algorithm was
contributed by the first author to the PISA platform [1] in 2005. A somewhat
simpler, but functionally-equivalent, algorithm to compute the EAF in two di-
mensions is presented as Algorithm 3.

Input sets are merged, pre-sorted according to each coordinate, and stored into
two queues, Qx and Qy. The following operations can be performed in constant
time: top(Q) returns the element at the top of a queue Q; pop(Q) retrieves the
element at the top and removes it from Q; input set(p) returns the index of the
input set containing p.

Each output set Lt is computed independently from the others. For each
t = 1, . . . , n, and starting from an empty Lt, input points are visited in ascending
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order of their y coordinates until points from at least t different input sets have
been visited (lines 13–19). The last point visited, q, establishes the smallest value
of the y coordinate of any point in Jt and, thus, of any of its minima. A second
sweep is then made in descending order of x-coordinate values (lines 21–27). For
each point p thus visited, if it is such that py ≤ qy, then (px, qy) must be an
element of Jt. The number of points from each input set which dominate (px, qy)
is tracked using multiset A and the variable level.

Note that, as long as the second repeat-until loop has not exited, the number
of input sets that attain (px, qy) must be at least t. Also, p and q must be either
the same point or belong to distinct input sets. Otherwise, the first repeat-until
loop would have exited before q was reached. In addition, if the current point p
is the only one from its input set to dominate (px, qy), then (px, qy) is actually
a minimum of Jt and, consequently, an element of Lt.

This process is iterated by alternating between sweeps along the y and x
dimensions until either queue is exhausted. A new minimum of Jt is obtained
after each iteration of the outer while loop (line 12–28), with the possible excep-
tion of the last one. As a result, the exponential growth associated with the full
enumeration of Jt is avoided because, once a minimum of Jt is found, no fur-
ther elements of Jt dominated by that minimum are ever generated. Repeated
coordinate values are handled by the conditions underlined in lines 19 and 27.

Regarding algorithmic complexity, sorting the input requires O(m log m) time,
and each output set Lt is generated in O(m) time. Since the number of output
sets is n, the overall time complexity of the algorithm is O(m log m+nm), which
matches the corresponding lower bound stated in Proposition 5. Algorithm 3 is,
therefore, asymptotically optimal.

5.2 The Three-Objective Case

Asymptotically optimal algorithms for minima in three dimensions can also be
obtained from Algorithm 2. Since L∗

1 is now a set of minima in two dimensions,
it admits a total order, and may be organised as a height-balanced binary search
tree on either of the first two coordinates. This allows the dominance check
in line 8 to be performed in O(log m) time and the L∗

1 update in line 9 to be
performed in amortised O(log m) time. Indeed, each update consists of a search
operation and at most one insertion, both of which have complexity O(log m)
time, plus a variable number of removals2 which, in total, cannot exceed m. Since
each removal can also be performed in O(log m) time, the overall complexity is
O(m log m), and the algorithm is asymptotically optimal [7].

Extending this approach to the EAF computation problem in three dimensions
is much less straightforward than it was in the two-dimensional case. A discussion
of the main aspects of the solution proposed as Algorithm 4 follows.

Data structures. Since all input sets X1, . . . , Xn and output sets L1, . . . , Ln are
non-dominated point sets, 2n data structures based on a height-balanced binary
search tree, as in the minima algorithm described above, are used to manage
2 Each point to be removed may be found in constant time if the tree is threaded.
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Algorithm 4. EAF computation in three dimensions
Input: S = (X1, . . . , Xn) // a sequence of non-dominated point sets
Output: R = (L1, . . . , Ln) // a sequence of non-dominated point sets
1: X =

⊎n
i=1 Xi // multiset sum, duplicate points are allowed

2: m←∑n
i=1 |Xi|

3: Q is X sorted in ascending order of the z coordinate
4: Lt ← ∅, t = 1, . . . , n
5: L∗

t ← {(−∞,∞,−∞), (∞,−∞,−∞)}, t = 1, . . . , n // Sentinels
6: X∗

i ← {(−∞,∞,−∞), (∞,−∞,−∞)}, i = 1, . . . , n // Sentinels
7: p← pop(Q)
8: j ← input set(p)
9: insert(p,X∗

j )
10: insert(p,L∗

1)
11: A← {j}
12: tmax ← 1
13: while Q �= ∅ do
14: p← pop(Q)
15: j ← input set(p)
16: q ← floorx(p, X∗

j )
17: if py < qy then // always true if Xj is indeed a non-dominated point set
18: t← tmax

19: tmin ← 1
20: while t ≥ tmin do
21: r ← floorx(p,L∗

t )
22: if ry ≤ py then
23: tmin ← t + 1
24: else if ry < qy then
25: st ← (px, ry, pz)
26: else
27: st ← lowery(q, L∗

t )
28: t← t− 1
29: repeat
30: q ← higherx(q, X∗

j )
31: b← max(py, qy)
32: for t = tmax down to tmin do
33: while sy

t ≥ b and (sy
t > b or b > py) do

34: if sx
t ≥ qx then

35: st ← lowery(q, L∗
t )

36: else
37: submit (sx

t , sy
t , pz) to L∗

t+1

38: st ← higherx(st, L∗
t )

39: until qy ≤ py

40: for t = tmax down to tmin do
41: if sx

t < qx then
42: submit (sx

t , py, pz) to L∗
t+1

43: submit p to X∗
j

44: submit p to L∗
tmin

45: if j �∈ A then
46: A← A ∪ {j}
47: tmax ← min(tmax + 1, n− 1)
48: Lt ← Lt ∪ (L∗

t \ {(−∞,∞,−∞), (∞,−∞,−∞)}), t = 1, . . . , n
49: return (L1, . . . , Ln)
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them. Points from each set are organised in the corresponding data structure
with respect to their projection onto the xy-plane, which conveniently allows
both x and y coordinates to be used as search key as long as the projections of
all points stored are non-dominated. Insertion, removal and the following search
operations can be performed in logarithmic time on such a data structure, X∗:

floorx(p, X∗) The point q ∈ X∗ with the greatest qx ≤ px

lowerx(p, X∗) The point q ∈ X∗ with the greatest qx < px

ceilingx(p, X∗) The point q ∈ X∗ with the least qx ≥ px

higherx(p, X∗) The point q ∈ X∗ with the least qx > px

The corresponding operations with respect to the y coordinate are available as
well, and have the same complexity.

Algorithm description. Output sets are computed by sweeping along the z
dimension and searching for the different types of output points identified in
Section 4. As a consequence, all output sets are computed concurrently, instead
of independently from each other.

For simplicity, begin by assuming that no repeated z-coordinate values appear
in the input, a restriction which will be lifted later. Before entering the main
loop in line 13, the input data is queued in ascending order of the z coordinate,
and individual data structures X∗

i and L∗
t , i, t = 1, . . . , n, are created and ini-

tialised with sentinels (lines 1–6), so that all search operations are guaranteed
to return a point. Then, the first point retrieved from the queue is inserted into
the corresponding X∗

j and into L∗
1 (lines 7–10), as it must be a minimal element

of J1. Set A is used to track which input sets have been visited so far.
In the main loop, each new input point dequeued is checked to ascertain that

it is not dominated by other points in its input set (lines 14–17). Then, for each
non-empty Ln−1, Ln−2, . . . , L1, new output points are generated as follows:

1. For each input point p ∈ X, element of some input set Xj , j ∈ {1, . . . , n},
an output point r = (rx, ry, rz) ∈ Lt is sought, such that Xj � r, (px, pz) ≥
(rx, rz) and py < ry. This is depicted as point 1 in Fig. 1. Then, s =
(px, ry, pz) must be an element of Jt+1, as it is attained by one more input
set than r. In addition, if sy is required to be minimal, s will be an element
of Lt+1. Such points, r, if they exist, are identified in the first inner loop of
the algorithm (lines 20–28), and the corresponding output point, s, depicted
as point A in the figure, is generated in line 25. For convenience, it is output
only later, in line 37.

2. For each input point p ∈ X, element of some input set Xj , j ∈ {1, . . . , n},
all output points s = (sx, sy, sz) ∈ Lt such that Xj � s, (px, py) < (sx, sy)
and pz ≥ sz are sought. Then, (sx, sy, pz) must also be an element of Jt+1.
Since input points are processed in ascending order of z-coordinate values,
(sx, sy, pz) will be an element of Lt+1. Such points, if they exist, are deter-
mined in the second inner-loop (lines 29–39) and, eventually, also as the last
point found in the first inner loop, in line 27. They are depicted as points 2,
3 and 6 in Fig. 1.
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Fig. 1. Example, where L∗
t = {1, ..., 7}, X∗

j = {a, b, c, d}, and p is the new point in Xj

Algorithm 5. Submit u to L∗
t

1: v ← floorx(u, L∗
t )

2: if uy < vy then
3: for all w ∈ L∗

t : (ux, uy) ≤ (wx, wy) do
4: if uz > wz then
5: Lt ← Lt ∪ {w}
6: remove(w, L∗

t )
7: insert(u, L∗

t )

3. In the third inner loop (lines 40–42), output points analogous to those de-
termined in the first loop, but with the roles of the x and y coordinates
reversed, are computed (point B in the figure).

4. Finally, each input point p will itself be a member of the output set Ltmin ,
where tmin is the lowest index t such that L∗

t does not attain p in the current
iteration of the outer loop. The value of tmin is determined in lines 22–23,
and Lt is updated in line 44.

The L∗
t data structures are updated as detailed in Algorithm 5. Provided that

the new point u is not dominated by the points currently in L∗
t (line 2), points

w in L∗
t whose projections are dominated by u are removed (lines 3–6), and the

new point u is inserted (line 7). Otherwise, u is simply discarded.
Repeated z-coordinate values in the input sets are handled by delaying the

addition of points to Lt until they are removed from L∗
t as a result of the insertion

of a new point (lines 4–5). This guarantees that output points generated in one
iteration of the outer loop which become dominated in a subsequent iteration
due to the processing of a second input point with the same z coordinate are
not actually added to the output. Lines 4–5 do not apply to the updating of the
X∗

j data structures, which is otherwise identical.

Complexity. A complete run of the algorithm involves m searches and (up to)
m insertions into the X∗

j data structures, plus up to m search-removal pairs, to
maintain the input data structures. Since the total number of input points is m,
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the cost of these operations is bounded by O(log m), and the complexity due to
them is O(m log m).

Maintaining the output data structures, L∗
t , requires O(n2m log(n2m)) =

O(n2m log m) time,3 since there are O(n2m) output points. In addition, O(m)
searches in the X∗

j data structures and O(n2m) searches in the L∗
t data structures

are performed in the body of the algorithm, including O(nm) searches in L∗
t that

may not lead to the generation of new output points. As this extra work is also
done in O(n2m log m) time, the time complexity of Algorithm 4 is O(n2m log m),
and the algorithm is asymptotically optimal as long as the number of input sets,
n, is assumed to be constant (compare with Proposition 5). When m ∈ O(n),
the time complexity of the algorithm is only a logarithmic factor worse than the
cardinality upper bound derived in Section 4, Proposition 3.

6 Concluding Remarks

In this work, the EAF computation problem has been formalised as the problem
of computing a finite description of all of its superlevel sets (or the corresponding
summary attainment surfaces) from experimental data. After proving that each
component of the solution of this problem consists of the set of minima of a
suitable auxiliary set constructed based on the input data, the size of the output
sets which describe the EAF was shown to grow linearly with the number of input
points only when d = 2, 3. Finally, efficient algorithms for the EAF in two and
three dimensions were developed based on existing dimension-sweep algorithms
for minima. The algorithm for d = 3 is asymptotically optimal when the number
of input sets is fixed, whereas the algorithm for d = 2 is asymptotically optimal
in the general case.

Extending the algorithms proposed here to more than three dimensions is
the subject of further work, although quadratic complexity with respect to the
number of input points will be unavoidable in the worst case. This is a direct con-
sequence of the lower bound stated in Proposition 5, but it may still be possible
to seek improved performance in non-worst-case scenarios, e.g., by developing
output-sensitive EAF algorithms.

A C-language implementation of Algorithms 3 and 4 is available from the au-
thors on http://eden.dei.uc.pt/~cmfonsec/software.html. As an example
of practical runtime performance, computing the EAF of a set of 50 spherical,
three-objective fronts with 240 points each took only 6 seconds on a single core
of an AMD Opteron 2216 HE 2.4GHz processor. It is expected that these results
will contribute to a more widespread use of the empirical attainment function
as a performance assessment tool in Evolutionary Multiobjective Optimisation.
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Abstract. Given a finite set Y ⊂ Rd of n mutually non-dominated vec-
tors in d ≥ 2 dimensions, the hypervolume contribution of a point y ∈ Y
is the difference between the hypervolume indicator of Y and the hyper-
volume indicator of Y \{y}. In multi-objective metaheuristics, hypervol-
ume contributions are computed in several selection and bounded-size
archiving procedures.

This paper presents new results on the (time) complexity of computing
all hypervolume contributions. It is proved that for d = 2, 3 the problem
has time complexity Θ(n log n), and, for d > 3, the time complexity is
bounded below by Ω(n log n). Moreover, complexity bounds are derived
for computing a single hypervolume contribution.

A dimension sweep algorithm with time complexity O(n log n) and
space complexity O(n) is proposed for computing all hypervolume con-
tributions in three dimensions. It improves the complexity of the best
known algorithm for d = 3 by a factor of

√
n. Theoretical results are com-

plemented by performance tests on randomly generated test-problems.

Keywords: multiobjective selection, complexity, hypervolume indicator.

1 Introduction

The hypervolume indicator (or S-metric, Lebesgue measure) was introduced by
Zitzler and Thiele [26] to measure the quality of Pareto front approximations.
Given a finite set Y of mutually non-dominated vectors in Rd, the hypervolume
indicator measures the volume (Lebesgue measure) of the subspace simulta-
neously dominated by Y and bounded below (in case of maximization) by a
reference point.

Besides being frequently used as a performance metric, the hypervolume indi-
cator is also used in guiding selection in indicator-based metaheuristics
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[10,11,13,14,19,25] and archivers [16]. In this context, the problem of computing
hypervolume contributions and/or the minimal hypervolume contributor of a
set of points often arises [10,13,14,16,20,25]. The hypervolume contribution of a
point y ∈ Y is defined as the difference between the hypervolume indicator of Y
and the hypervolume indicator of Y \ {y}. The problem of finding the minimal
hypervolume contributor is #P-hard in the number of dimensions d [8].

Many applications of multiobjective optimization involve a small number of
objectives, say 2–4. In these cases, polynomial time algorithms for computing
hypervolume contributions are known (e.g. [9,20]), but the extent to which they
are efficient is so far unknown. When objective functions can be computed fast,
hypervolume computations can limit the performance of multiobjective opti-
mization algorithms also in low dimensions.

Hence, this paper focuses on computing hypervolume contributions in low di-
mensions and analyzes complexity in the cardinality, n, of the input set, Y. One
aim is to derive sharper complexity bounds for the computation of all (or sin-
gle) hypervolume contributions. Moreover, it is shown that the dimension sweep
paradigm, that has yielded asymptotically optimal algorithms for computing the
hypervolume indicator [4] and maximal set [18] in low dimensions, can also allow
hypervolume contributions to be computed efficiently.

The paper is organized as follows: In Section 2, several problems related to
hypervolume contributions are introduced. A summary of known results and
related work on these problems is given. In Section 3, lower bounds on the com-
plexity of computing hypervolume contributions are established. In Section 4, an
algorithm that efficiently computes the hypervolume contributions given a set in
three dimensions is introduced and analyzed. In Section 5, performance tests on
randomly generated test data are conducted. Finally, in Section 6, contributions
of the paper are summarized and suggestions for future research are given.

2 Preliminaries and Related Work

The following conventions will be used throughout the paper. Complexity, un-
less stated otherwise, refers to time complexity in the worst case. The algebraic
decision tree model of computation is considered [17]. Asymptotic lower, upper,
and sharp bounds are denoted by Ω(), O(), and Θ(), respectively. Vectors are
represented in bold font. Sets are denoted by roman capitals, e.g. X or Y, and
problems and algorithm names are typeset in small capitals, e.g. allContribu-

tions. When applied to vectors, operators ≤, ≥ and = indicate componentwise
comparison. Throughout this paper, maximization is the goal.

The following concepts will be relevant in the problem definition:

Definition 1. (dominance) A vector y ∈ Rd dominates y′ ∈ Rd, iff y ≥ y′ and
y �= y′. In symbols: y � y′.

Dominance is often defined with minimization of vectors as the goal. In this case
≥ must be replaced by ≤ in the above definition.
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Definition 2. (approximation set) A d-dimensional approximation set [27] is
a finite set Y ⊂ Rd such that ∀y,y′ ∈ Y : y ≥ y′ ⇒ y = y′. The set of all
d-dimensional approximation sets is denoted by Ad.

Definition 3. (hypervolume indicator (S)) Given a set Y ⊂ Rd and a reference
point yr that satisfies ∀y ∈ Y : y ≥ yr, the hypervolume indicator of Y with
respect to reference point yr is defined as [26,24]:

S(Y) = Vol

⎛⎝ ⋃
y∈Y

[yr,y]

⎞⎠ . (1)

Here Vol() denotes the Lebesgue measure in d dimensions and [l,u] ⊂ Rd rep-
resents a closed axis-parallel box that is bounded below by l ∈ Rd and bounded
above by u ∈ Rd.

Whenever the reference point is not explicitly mentioned, by convention, yr = 0
will be assumed.

Definition 4. (hypervolume contribution of a point) Given an approximation
set Y ∈ Ad, the hypervolume contribution of a point y ∈ Y is defined as

ΔS(y, Y) = S(Y) − S(Y \ {y})

This paper is mainly concerned with the following problem:

Problem 1 (AllContributions). Given Y ∈ Ad as an input, compute the hy-
pervolume contributions of all points y ∈ Y.

In addition new results on closely related problems, that can all be reduced in
at most linear time to AllContributions, will be derived:

Problem 2 (OneContribution). Given Y ∈ Ad and y ∈ Y as an input, com-
pute the hypervolume contribution ΔS(y, Y).

Problem 3 (MinimalContribution). Given Y ∈ Ad as an input, compute the
minimal hypervolume contribution, i.e., miny∈Y ΔS(y, Y).

Problem 4 (MinimalContributor). Given Y ∈ Ad as an input, find a point
with minimal hypervolume contribution, i.e., y∗ ∈ arg miny∈Y ΔS(y, Y).

A straightforward algorithm to solve AllContributions consists of enumer-
ating all subsets of size n − 1, computing their hypervolumes, and subtracting
each of these in turn from the hypervolume of the total set. Bringmann and
Friedrichs [7] show that computing the hypervolume is #P-hard in the number
of dimensions d. To compute the hypervolume, for d = 3, the dimension sweep
algorithm by Fonseca et al.[12] is asymptotically optimal (Beume et al.[4]). For
general d, computing the hypervolume indicator can be considered a special case
of computing the measure of a union of rectangles [3]. The best known algorithm
has a complexity O(nd/2 log n) (cf. [21]) and has been simplified for the special
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case of computing hypervolume by Beume [3], though the complexity stays the
same. A dimension sweep algorithm with complexity O(nd−2 log n) is described
by Fonseca et al. [12]. It has lower complexity for d = 3 and the same complexity
for d = 4. Algorithms with a higher worst case complexity proposed in While
et al. [23] have proved to be competitive or faster on problems of moderate size
and dimensions.

A specialized algorithm for computing hypervolume contributions that guar-
antees a better worst-case performance has been proposed by Bringmann and
Friedrichs [9] based on Overmars and Yap’s algorithm, [21]. Its time complexity
is O(nd/2 log n) for d > 2. Note, that their algorithm also solves the more general
problem of finding the hypervolume contributions of a finite set Y ∈ Rd, i.e. it
is not required that points in the set are mutually non-dominated. For d = 2,
the problem reduces simply to sorting a set of n points (O(n log n)) (e.g. [16]).
Another algorithm for computing incremental hypervolumes has been proposed
by Bradstreet et al. [6], who also describe an algorithm for updating all contri-
butions in [5], the worst case complexity of which is O(nd−1). Empirical studies
show a high performance of these schemes in case of many objectives.

For high dimensions, fast heuristics and approximation algorithms have been
proposed. For instance, Bader and Zitzler [2] propose Monte Carlo algorithms
that work also for many objectives. Fast approximation algorithms with accu-
racy guarantees are proposed by Bringmann and Friedrichs [8]. Approximate
integration based on scalarization is suggested in [15].

Despite this progress, sharp complexity bounds for AllContributions,
OneContribution, MinimalContribution, and MinimalContributor ha-
ve remained unavailable to date.

3 Complexity Bounds

This section will start with a theorem on a lower bound on AllContribu-

tions and proceed with the discussion of lower bounds on computing single
contributions. To obtain a lower bound on the complexity of AllContribu-

tions a reduction to UniformGap, a well-known problem from computational
geometry, is used.

Problem 5 (UniformGap). The problem of deciding whether a set of n points
on the real line is equidistant is called UniformGap.

Lemma 1. (Preparata and Shamos [22], p. 260) The complexity of Uniform-

Gap is Ω(n log n) in the algebraic decision tree model of computation.

Now, the theorem on the complexity of AllContributions reads:

Theorem 1. Any algorithm that solves AllContributions in d > 1 dimen-
sions requires Ω(n log n) time in the algebraic decision tree model of computation.
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Fig. 1. Problem transformation. Odd cardinality (left) and even cardinality (right)

Proof of theorem 1: It will be shown that UniformGap reduces in linear time
to AllContributions. (For the general idea of a reduction proof see, e.g., [4].)
Given a set X of n values xi on the real line as input to UniformGap, each
coordinate is augmented with a second coordinate, which yields Y = {(xi, xmax−
xi) : i ∈ {1, . . . , n}, where xmax = max{xi : i = 1, . . . , n} (see Fig. 1).

Case 1 (n is odd): Compute all hypervolume contributions of points using
yr = (xmin, xmin), xmin = min(X) as reference point, see Fig. 1. Next, all
hypervolume contributions are computed and compared to ((xmax −xmin)/(n−
1))2. If they are all equal to this value the answer to UniformGap is positive,
otherwise it is negative. This algorithm is correct for odd n, since all hypervolume
contributions of inner points are equal to ((xmax − xmin)/(n − 1))2 if and only
if gaps are uniform. This will be shown next: Consider a line segment from
y1 = (xmin, xmax) to yn = (xmax, xmin). As all intermediate points in Y lie
on the line segment, the hypervolume contribution equality condition enforces
a certain alternating pattern of rectangles bounding the contributions (see Fig.
1). The rectangles are congruent, but rotate by 90◦ in each step. The side-length
of the rectangles is δ for the shorter side and κ for the longer side. Because the
number of points on the line segment is odd

xmax − xmin =
n − 1

2
(δ + κ) and thus κ =

2(xmax − xmin)
(n − 1)

− δ. (2)

The contribution of each inner point x is given by c(x) = δκ. To maximize c
over all δ and κ eliminate κ in c(x) = δκ, which leads to the problem:

maximize c(δ) = δ

(
2(xmax − xmin)

n − 1
− δ

)
(3)

The equation describes a concave parabola, the unique maximizer δ∗ of which is
the point with zero derivative. Solving 2 (xmax−xmin)

n−1 − 2δ∗ = 0 yields

δ∗ =
xmax − xmin

n − 1
(4)
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Inserting δ∗ in Equation 3 yields κ∗ = δ∗. This solution is the only solution with
(maximal) hypervolume contribution c = (δ∗)2 = ((xmax − xmin)/(n − 1))2 for
all points Y \ {y1,yn}.

Case 2 (n is even): Let X′ = X \ {max(X)}. Let x′
max = max(X′) and x′

min =
xmin. Given that the uniform gap condition is fulfilled for X′ (odd size) and
xmax − x′

max = (x′
max − x′

min)/(n − 2) the answer is positive, otherwise not.
The complexity of the extra steps in this algorithm is O(N), excepting perhaps
the time for solving AllContributions. Thus, if AllContributions could
be solved faster than O(n log n), then also UniformGap could be solved faster
than O(n log n), which would contradict lemma 1.

The result generalizes to d > 2 as otherwise the problem AllContributions

in two dimensions could be solved by a linear time reduction to AllContribu-

tions in higher dimensions. It would suffice to set all d−2 additional coordinates
of y to 1 and the reference point to 0 and solve the problem. �

A similar result can be obtained for computing single contributions:

Theorem 2. The time complexity of OneContribution is Θ(n) for d = 2,
Θ(n log n) for d = 3, and for d > 3 it is bounded below by Ω(n log n).

Proof: Case d = 2: All points need to be considered, yielding Ω(n) as lower
bound; computing a contribution requires O(n) time (nearest neighbor search).
Case d = 3: The problem of computing the hypervolume of a set in two dimen-
sions (Hypervolume2d) can be reduced in linear time to OneContribution

in three dimensions. The complexity of Hypervolume2D is bounded below by
Ω(n log n) (cf. [4]). To compute the solution of Hypervolume2D for an Y ∈ A2

using OneContribution in 3-D, represent Y in three dimensions by augment-
ing all points Y with a z-coordinate of 2, resulting in Z ∈ A3. Create a point
(xmax, ymax, 1) in O(n) time with xmax being the maximum x-coordinate and
ymax the maximum y-coordinate in Y. The solution of Hypervolume2D is
xmaxymax −ΔS((xmax, ymax, 1), (xmax, ymax, 1)∪Z). The same principle can be
used for proving a lower bound of Ω(n log n) for n > 3. The upper bound of
O(n log n) for n = 3 is due to the fact that the computation of a single contri-
bution of a point y in Y reduces to computing the difference S(Y)−S(Y \ {y}),
and the computation of each hypervolume takes O(n log n) (see [12]). �

4 Dimension Sweep Algorithm

A dimension sweep algorithm that computes the hypervolume contributions for
a set Y ∈ A3 in O(n log n) time and O(n) space is introduced and discussed. The
dimension sweep paradigm seems to be promising for constructing the algorithm,
as it has already yielded asymptotically optimal algorithms for the maximal set
problem [18] and the computation of the total hypervolume in 3-D [12].

The algorithm processes points in the order of descending z-coordinates. For
the i-th such level, the z-coordinate of the i-th point defines the height of a
sweeping plane that stretches out in x- and y-direction (see figure 2).
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Fig. 2. Sweeping plane

The construction of the algorithm is based on the observation that the region
above the sweeping plane that is exclusively dominated by a point when consid-
ering only the subset of points above the sweeping plane, will be also exclusively
dominated – by the same point – when the entire set of points is considered.
Hence hypervolume contributions can be accumulated level by level. This can
be done by partitioning the exclusively dominated hypervolume into axis-parallel
boxes. At each level, it is made sure that each exclusively dominated region above
the sweeping plane is covered by exactly one such box. As the sweeping plane
reaches lower levels new boxes may be created, existing boxes may grow (in their
z-coordinate), and boxes may be completed, i.e., they will no longer grow. Each
box is associated with the point that exclusively dominates the hypervolume it
encloses. After the sweeping plane has reached the level of the reference point,
the exclusive hypervolume contribution of a point is the sum of the volumes of
the completed boxes that have been associated with this point.

To achieve efficiency, the algorithm maintains lists of boxes in such a way
that each box that needs to be updated can be efficiently accessed. This can be
achieved by maintaining boxes in doubly linked lists associated with the points.
Only active boxes are maintained, i.e. boxes that may still grow. Boxes that are
completed are removed from these lists, and their hypervolume is added to the
point to which they belong. Moreover, efficient access to points, the box lists of
which need to be updated, is achieved by maintaining a tree that comprises a
subset of points that have already been visited [18]. Accordingly, the following
non-elementary data-structures are used in the algorithm:

– A height balanced search tree (e.g. AVL tree [1]), named T, the nodes of
which refer to the non-dominated subset of input points that have been
processed so far by the algorithm. It is sorted in ascending order of the x-
coordinate and features insertion of a point (T.insert), deletion of a point
(T.delete) (both in time O(log n)), and range selection in O(log(n) + k),
where n is the number of points and k the number of qualified items.
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– An axis-parallel box b is defined by its lower corner (b.lx, b.ly, b.lz), and
its upper corner (b.ux, b.uy, b.uz). Active boxes have an undefined lower
bound b.lz=NaN whereas all other coordinates are set to their final value
after a box has been created.

– An array of doubly linked lists of active boxes: Each point is associated
with one box list. List are sorted in ascending x-coordinate. A box list, say
L, has these methods: L.push front(b) adds a box item to the list’s head,
and L.push back(b) to its tail. Moreover, b=L.pop front() retrieves a box
from the head of a list and b=L.pop back() from the tail, removing the
corresponding box from the list.

A detailed outline of the algorithm in pseudocode is given in algorithm 1. The ar-
ray of points is sorted by the z-coordinate. Sorting can be achieved in O(n log n)
and therefore, due to theorem 1, it does not impose significant additional costs
onto the algorithm.

Algorithm 1 can be subdivided in an initialization phase and the main loop.
Initialization: The algorithm intializes an empty AVL tree (T) and inserts the
highest point p[1] into T. Also, two auxiliary points (∞, 0,∞) and (0,∞,∞)
that bound the region from the left and from the right are inserted. They have
either an x or a y coordinate of 0, respectively, such that they never dominate
points with positive hypervolume contribution. Here, the value of 0 stems from
the reference point c = 0. Their z-coordinate is infinite, such that they are never
dominated themselves by input points and remain in the tree. Throughout the
algorithm they serve to make sure that every point in the xy-plane has a well
defined neighbor in the x- and in the y-coordinate.

Additionally, an auxiliary point p[n+1]=(∞, ∞, 0) is created. It receives the
index n + 1. It will be processed in the last iteration of the main loop. Again,
the value of 0 stems from the reference point. Its projection onto the xy-plane
is (∞,∞) and dominates all projections of input points to the xy-plane. This
point will force the completion of boxes that are still open in the last iteration.
The array L of box lists is then initialized with empty lists. A point is inserted
into the box list of point p[1] with (p[1].x, p[1].y, p[1].z) and the x-and y-
coordinate of the reference point as a lower corner. The lower limit of the box
in the z-coordinate is determined later in the algorithm. This box delimits the
region that is dominated exclusively by the first point above the second level of
the sweeping plane. Finally, the array c[1], ..., c[n] that is used to accumulate
hypervolume contributions of completed boxes is initialized to zero.

The main loop of the algorithm processes in ascending order of the z-coordinate
all points p[2], ... p[n + 1]. It maintains the following invariant properties:

– At the end of each iteration, the volume of all active boxes in the box lists, if
they were completed at the current z-level, plus the accumulated volumes of
previously completed boxes, is the total exclusively dominated hypervolume
above the sweeping plane at level i. This property is essential to guarantee
the correctness of the algorithm.

– The box lists of each point contains active boxes sorted by ascending x
coordinates. This property allows efficient updates of box lists.
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Algorithm 1. Algorithm Hycon3d

Input: (p[1], ..., p[n]): mutually non-dominated R3-points sorted by z-coordinate
in descending order
(1) p[n+1]=(∞,∞, 0);
(2) Initialize AVL tree T for 3-D points

Insert p[1], (∞, 0,∞), (0,∞,∞) into T;
(3) Initialize doubly linked lists L[1]=empty(); ... L[n+1]=empty();

b= ((0,0,NaN), (p[1].x, p[1].y, p[1].z)); L[1].push front(b);
(4) Initialize hypervolume contributions c[1] = 0; ...; c[n] = 0
for i= 2 to n+1 do {Main Loop}
(a) Retrieve the following information from tree T:

r: index of the successor of p[i] in x-coordinate (right neighbor)
t: index of the successor of p[i] in y-coordinate (left neighbor)
d[1], ..., d[s]: indices of points dominated by p[i] in xy-plane,
sorted ascending in x-coordinate (region B, Figure 3).

(b) while not L[r].empty() {Process right neighbor, region R}
b= L[r].pop front()
if (b.ux ≤ p[i].x)

b.lz=p[i].z; c[r]=c[r]+Vol(b);

else if (b.lx < p[i].x)
b.lz=p[i].z; c[r]=c[r]+Vol(b);
b.lx=p[i].x; b.uz=p[i].z; b.lz=NaN; {Add box br in region R}
L[r].push front(b); break;

else L[r].push front(b); break
(c) xleft = p[t].x {Process dominated points, region M}

for j=1 to s
jdom=d[s]; d=p[jdom];
while (not L[jdom].empty())

b=L[jdom].pop front();
b.lz=p[i].z; c[jdom]=c[jdom]+Vol(b);

b=[(xleft, d.y, NaN),(d.x, p[i].y, p[i].z)];
L[i].push back(b);
xleft = b.ux;
remove p[jdom] from AVL tree

b=[(xleft, p[r].y, NaN), (p[i].x, p[i].y, p[i].z)]; {Add box b+ in region R}
L[i].push back(b);

(d) xleft=p[t].x; {Process left neighbor, region L}
while not L[t].empty()

b=L[t].pop back();
if (b.ly < p[i].y)

b.lz = p[i].z; c[t]=c[t]+Vol(b);
xleft = b.lx

else L[t].push back(b); break;
if (xleft < p[t].x)

b=[(xleft, p[i].y, NaN),(p[t].x, p[t].y, p[i].z)]; {Add box bl in region R}
L[t].push back(b);

(e) Insert p[i] in AVL tree T;
(5) output c[1], ..., c[n] {Exclusive contributions}
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– To find relevant information for the update of box lists, in the i-th itera-
tion, T stores points that are non-dominated among p[1], ..., p[i − 1] in the
xy-plane. These are the only relevant points for determining increments of
hypervolume contributions from level i onwards. T is organized as a balanced
search tree sorted by x-coordinate.

After the introduction of a new point p[i] some boxes simply grow in z-direction
and no access by the algorithm is required for them, whereas others need to be cre-
ated or completed and require access. From Figure 3, it becomes clear that for the
creation and completion of boxes only box lists of particular points are of interest.
These are p[r], the upper neighbor in T of p[i] in the x-direction, p[t], the upper
neighbor in T of p[i] in the y-direction, and the sequence of all dominated points
p[d[1]], ..., p[d[s]], being in ascending order of the x-coordinate. The algorithm
determines the indices of these points using the AVL tree and making use of the
fact that a sorting in the x-coordinate implies a reverse order in the y-coordinate
(points in the AVL tree are mutually non-dominated in the xy-plane.)

Firstly, the right hand side of p[i] is considered (region R in Figure 3). The
point p[r] may dominate regions exclusively until level i that from this level on-
wards are no longer dominated exclusively by p[r]. They can be obtained step-
by-step by traversing the box list L[r] in the direction of ascending x-coordinates
(from the head of the list). Each dominated box is completed and the yet un-
defined z-coordinate is set to p[i].z. The volume of the box is added to the
hypervolume contribution c[r] of p[r]. The algorithm stops removing boxes from
the list after the lower bound of a box retrieved from L[r] exceeds p[i].x. The
right part of the last box removed may still be exclusively dominated by p[r].
Hence, a new box, (br, in Figure 3), may be inserted and attached to the front
of the list L[r].

Fig. 3. Single level of the sweeping plain
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Region M (see Figure 2) comprises the points dominated by p[i] in the xy-
plane, namely p[d[1]], ..., p[d[s]]. They are processed in ascending order of x.
For each such point, a new box is created and pushed to the back of the list of
p[i]. Additionally, a box in region R is created and pushed to the back of the
same list with p[i] as an upper corner (b+ in Figure 3), if p[d].x < p[i].x. Its
lower y-coordinate is p[r].y. After adding these boxes, the area that is, from now
on, exclusively dominated by p[i] is partitioned into boxes. Moreover, all boxes
associated with dominated points (projections) are completed and discarded
from the box lists, as they are from now on also dominated by p[i] in the xy-
plane. The dominated points themselves are discarded from the tree T for the
same reason.

Boxes to the left of p[t] (in region L in Figure 3) are only dominated by p[t]
up to the i-th level, and from level i onwards, additionally dominated partly by
p[i]. The boxes in this region need to be updated in their lower y bound. Above
p[i].y they will still be exclusively dominated by p[t]. The update is achieved by
completing all boxes with lower y-bound smaller than p[i].y. The corresponding
regions exclusively dominated by p[t] can be merged into one single box (bl in
Figure 3). Therefore only one new box is added to p[t]. This box has p[i].y as
its lower bound in the y-direction, and p[t].y as its upper bound.

In the final iteration of the algorithm, i = n + 1 and all previously processed
points are dominated by the auxiliary point p[n+1]. Volumes are updated for all
points that still have boxes in their lists. These boxes are lower bounded in the
z-coordinate by the reference point. After this operation has finished, the array
c[1], ..., c[n] contains the exclusive contributions of the points p[1], ..., p[n].

The runtime of algorithm HyCon3D is estimated by the following theorem:

Theorem 3. Algorithm HyCon3D has a time complexity of O(n log n).

Proof: The time for the initialization phase, including sorting the input, is
bounded by O(n log n). Time critical operations within the main loop are (1)
updating and retrieving points from the AVL tree, and (2) creation and comple-
tion of boxes.
The algorithm needs to retrieve all dominated points, and the neighbor point
indices r and t from the AVL tree. To identify the neighbor to the right takes
time O(log n). As the xy-projection is mutually non-dominated the points are
sorted also by their y coordinate, and the tree can then be traversed in constant
time per additional dominated point. Each point is inserted and discarded only
once. The total cost of these operations amortizes to O(n log n). Excepting the
two boundary points p[r] and p[t], each point that is retrieved from the tree is
discarded. Hence, the total cost of tree operations also amortizes to O(n log n).

Furthermore, the total number of boxes that are created and completed can
be bounded. Each box is created and completed only once. Four different events
can cause the creation of a box. Each point p that is processed in the algorithm
causes the creation of (at most) two boxes: One box might be created when the
p is inserted, of which p is the upper corner. Moreover a box is created when p
gets discarded. It is associated with the point that at that time dominates p in
the xy-plane. In total, at most 2n boxes are created this way.
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At most two additional boxes may be created per level i, one box for p[t] and
one box for p[r]. Accumulating over all n levels, at most 2n such boundary boxes
are created. Hence, at most 4n boxes are created in total.

For all box creations and completions, any relevant point and any box in that
point’s list of boxes can be located in constant time, because boxes that need
to be inserted and deleted are always at the head or at the tail of a doubly
linked box list. This results in an overall cost for box list updates of O(n), and
as volumes are only updated when a box is deleted, this is also the complexity of
all hypervolume contribution updates. As no other time critical operations are
executed, the complexity is O(n log n). �

Theorem 3 implies sharper bounds on the complexity of related problems:

Theorem 4. The following statements hold for d = 3 and an input set Y ∈ Ad

of size n:

1. AllContributions has time complexity Θ(n log n).
2. The time complexity of MinimalContribution is bounded by O(n log n).
3. The time complexity MinimalContributor is bounded by O(n log n).

Proof: (1) Theorem 3 establishes an upper bound for AllContributions of
O(n log n). This matches the lower bound of Ω(n log n) (see theorem 1). (2)+(3):
Finding a minimal contribution and contributor can be accomplished in a single
scan (linear time) of the results of AllContributions. �

5 Numerical Experiments

Experiments are conducted in order to find out the CPU-time needed to compute
all hypervolume contributions for input sets of different size n ∈ [100, 1000]. For
each value of n, the time needed to process m = 100 randomly generated Pareto
fronts is measured. Performance is studied on three test problems:

Problem 6 (convexSpherical). Find all contributions of Y ∈ Ad, where y are
generated independently, and yi = 10|vi|/‖v‖, vi ∼ Normal(0, 1), i = 1, . . . , d.
(cf. Figure 4, upper left)

Problem 7 (concaveSpherical). Find all contributions of Y ∈ Ad, where y ∈
Y are generated independently, and yi = 10− 10|vi|/‖v‖, vi ∼ Normal(0, 1), i =
1, . . . , d. (cf. Figure 4, upper middle)

Problem 8 (cliff3D). Find all contributions for Y ⊂ Ad, where y ∈ Y are
generated independently, and yi = 10|vi|/‖v‖, vi ∼ Normal(0, 1), i = 1, 2, y3 ∼
Uniform(0, 10). (cf. Figure 4, upper right)

convexSpherical and concaveSpherical consider uniformly distributed
points on a convex and, respectively, concave spherical surface. cliff3D consid-
ers the third coordinate according to a uniform distribution. It is constructed in
a way that, during the dimension sweep, all points remain in the tree until the
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Fig. 4. Randomly generated fronts for the problems convexSpherical, concave-

Spherical, and cliff3D with n = 100 (above, left to right) and speed tests on these
fronts (below). For each type of front, 50 sets were generated. Error bars indicate mean,
maximum, andminimumtime consumption per algorithmandPareto-front type and size.

final layer is reached. Therefore the time for processing this set is supposed to be
high. The function Clock() is used to measure time in CPU seconds (measured
using clock t and time.h in MinGW/MS Windows). Compiler options are g++
-O3 on a Toshiba Satellite PRO, Genuine Intel(R) CPU 1.66 GHz, T2300, with
1 GByte RAM. The tested algorithm implementations are:

EF: The dimension sweep algorithm discussed in this paper.1

FPLI: iterated application of total hypervolume computation with dimension
sweep algorithm by Fonseca, Paquete and López-Ibáñez2, cf. [12].

WFG: IHSO Algorithm3 by Walking Fish Group (WFG) e.g. [6].

Figure 4 shows the results on the test-sets. It confirms the considerable speed
gain of the new algorithm (EF) as compared to the other algorithms. Results are
similar for different shapes of non-dominated fronts (Figure 4, concaveSpher-

ical, convexSpherical, cliff3d). Swapping the y− and z− coordinates of
the cliff3D problem (Figure 4, right, below) yields a further speed gain.

6 Conclusion and Outlook

The complexity of computing all contributions to the hypervolume given an
approximation set Y ∈ Ad has shown to be Θ(n log n) when d = 2 and d = 3,
and a lower bound of Ω(n log n) has been established for d > 3. Also, the problem

1 C++ source code is available from the authors on request.
2 http://iridia.ulb.ac.be/$\sim$manuel/hypervolume
3 http://www.wfg.csse.uwa.edu.au/toolkit/

http://iridia.ulb.ac.be/$\sim $manuel/hypervolume
http://www.wfg.csse.uwa.edu.au/toolkit/
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of computing the hypervolume contribution of a single point has been considered,
and has been shown to have complexity Θ(n) for d = 2, Θ(n log n) for d = 3, and
to be bounded by Ω(n log n) for d > 3. An interesting aspect is that computing
a single contribution has the same complexity in the 3-D case as computing
all contributions, while in 2-D computing one contribution is less complex than
computing all contributions.

A novel dimension sweep algorithm with asymptotically optimal time com-
plexity O(n log n) and space complexity O(n) for computing all hypervolume
contributions in 3-D has been introduced. It improves existing algorithms [9] for
this problem by a factor of

√
n. Empirical performance tests on randomly gener-

ated 3-D non-dominated fronts indicate that the new algorithm is considerably
faster than existing algorithm implementations.

It is promising to apply the new algorithm in hypervolume-based archivers
(e.g. [16]) and evolutionary algorithms (e.g. [20]), as it will make larger pop-
ulation/archive sizes and a higher number of iterations affordable. Interesting
directions for future research could be the extension of the approach to prob-
lems in higher dimensions or to more general hypervolume-based subset selection
problems, and the analysis of incremental update schemes.
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Abstract. The simultaneous optimisation of four or more conflicting
objectives is now recognised as a challenge for evolutionary algorithms
seeking to obtain full representations of trade-off surfaces for the pur-
poses of a posteriori decision-making. Whilst there is evidence that some
approaches can outperform both random search and standard Pareto-
based methods, best-in-class algorithms have yet to be identified. We
consider the concept of co-evolving a population of decision-maker pref-
erences as a basis for determining the fitness of competing candidate
solutions. The concept is realised using an existing co-evolutionary ap-
proach based on goal vectors. We compare this approach and a variant
to three realistic alternatives, within a common optimiser framework.
The empirical analysis follows current best practice in the field. As the
number of objectives is increased, the preference-driven co-evolutionary
approaches tend to outperform the alternatives, according to the hyper-
volume indicator, and so make a strong claim for further attention in
many-objective studies.

Keywords: many-objective optimisation, co-evolution, comparative
study.

1 Introduction

Evolutionary algorithms are a popular technique for multi-objective optimisa-
tion [6]: their population-based nature being particularly useful for approxi-
mating trade-off surfaces from which a decision-maker can then select a final
preferred solution (so-called a posteriori decision-making). However this conclu-
sion was founded broadly upon studies considering bi-objective problems (such
as the seminal work by Zitzler and colleagues [26]). More recent analyses, such
as [23,4], on problems with higher numbers of objectives have suggested that
the ability of some multi-objective evolutionary frameworks to represent the
true trade-off surface becomes increasingly poor, and in some instances may be
worse (according to some measures of approximation set quality [28]) than ran-
dom search. In particular, the sweet-spot [12] of algorithm parameter settings
that produce good results may contract markedly [23].

Research into evolutionary algorithms for approximating trade-off surfaces in
problems with four or more objectives (sometimes referred to as many-objective
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optimisation) is still in its infancy. Acknowledging the tendency for solutions to
be classed as equivalent (i.e. incomparable) when using the classical Pareto dom-
inance operator in many-objective spaces, suggested approaches are often based
on supplementing or replacing this pair-wise comparison operator with other
pair-wise operators (for example, based on aggregation functions) or operators
based on set comparisons (for example, comparisons based on hypervolumes)
[25]. Since not all objectives are necessarily in conflict across the search space
[22], other approaches have attempted to exploit such landscapes to reduce the
dimensionality of the problem by either removing partially redundant objectives
(for example, in [3]) or decomposing the problem into partially separable objec-
tive subsets (for example, in [21]). More comprehensive reviews can be found in
[16] and [17].

Preference-based approaches are known to be useful for generating trade-off
surfaces in objective sub-spaces of interest to the decision-maker, where prefer-
ences are specified by the decision-maker either a priori or progressively during
the search (see, for example, [10]). This is because Pareto-based comparisons
can be adapted to be more specific and so offer more opportunity for solutions
to be comparable. A potentially interesting concept for a posteriori approaches
is to consider a family of decision-makers representing sets of progressively in-
teresting areas to explore. Intuitively, such an approach offers the potential for
solution comparability in many-objective spaces. The family of preferences could
be co-evolved simultaneously with the population of candidate solutions, such
that the preferences maintain their usefulness as the search progresses. The only
existing example of this type of approach known to the authors is the paper
by Lohn and colleagues [19], where preferences are operationalised as target (or
goal) vectors in objective-space. Target vectors are also central to algorithms
proposed by Hughes (for example [15]), but such targets are not co-evolved.

In [19], good performance was observed on a set of bi-objective problems. We
now explore the potential for this type of approach for many-objective optimisa-
tion. We retain Lohn et al.’s target vector formulation of preferences, but other
representations may also be possible (for example, by considering both goals
and priorities [10]). For a comprehensive review of co-evolutionary approaches
for multi-objective optimisation, see [18]. Similarly, a review of the use of pref-
erences in multi-objective evolutionary algorithms can be found in [24].

The remainder of the paper is organised as follows. The algorithms under
consideration are described in Section 2, together with the empirical framework
for performance comparison. Results of the algorithm testing, as the number of
objectives to be optimised is successively increased, are presented in Section 3.
A discussion of the findings is offered in Section 4, and Section 5 concludes.

2 Method

2.1 Overview

The general framework employed is aimed at a tractable and, so far as is feasi-
ble, robust analysis of algorithm performance. The co-evolutionary approach is
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Fig. 1. Simple (μ + λ) framework used in the analysis

compared empirically to three potentially competitive methods, within a com-
mon overall algorithmic structure. The empirical testing broadly follows the
best-practice approach developed in [27].

The common algorithmic framework is shown schematically in Fig. 1. It is a
simple (μ+λ) elitist scheme. A population of candidate solutions, P , of fixed size,
N , is evolved for a fixed number of generations, tmax . N parents are randomly
selected with replacement at iteration t from P(t) and are subjected to uniform
mutation [6] to produce N children, C(t). P(t) and C(t) are then pooled and
the combined population is sorted according to one of the methods under con-
sideration. Truncation selection is then used to give the new parent population
P(t + 1). The co-evolutionary algorithms also each have a separate population
of preferences that is described in more detail in Section 2.2.

We recognise that sacrifices have been made when using the above framework;
in particular in terms of what levels of absolute performance might actually be
achievable (for example, by including a recombination operator) or understand-
ing how robust the findings are to algorithm parameter settings.

2.2 Methods for Ordering Candidate Solutions

Within the general framework described above, the different algorithms vary
according to how the candidate solutions in P(t) � C(t) are ordered prior to
truncation selection. Specific details of each ordering method (including a short
label for reference purposes) are provided below.

Co-evolutionary: coev bin and coev l2 In Lohn et al.’s co-evolutionary ap-
proach a symbiotic relationship is induced between a population of candidate
solutions and (in our terms) a population of preferences [19]. Candidate so-
lutions gain fitness by meeting a particular set of preferences, but the fitness
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contribution must be shared between other solutions that also satisfy those pref-
erences (see (1) below). Preference sets only gain fitness by being satisfied by
a candidate solution, but that fitness is reduced the more times the preferences
are met by other solutions in the population (see (2) and (3) below). The overall
aim is for the preferences to adaptively guide the solution population towards
the Pareto optimal front, where the process of adaptation is determined in an
evolutionary manner. When describing the algorithm, Kleeman et al. [18] used
the analogy of greyhound racing, where the preference vectors act like the me-
chanical rabbit – keeping a certain distance from the dogs but never getting too
far ahead or too close.

For our purposes, the algorithm presented in [19] is adapted to fit within the
simple (μ+λ) framework. Following Lohn et al.’s notation, the preference vectors
are known as target objective vectors (TOVs):

1. Set t = 1.
2. Initialise population of N candidate solutions P(t) and population of NT

TOVs T (t). Note that an objective range must be defined for the TOVs –
typically based on estimates of the ideal and anti-ideal objective vectors.

3. Evaluate P(t) against the objectives for the problem at hand.
4. Apply random selection with replacement to P(t) followed by uniform mu-

tation to produce N new candidate solutions C(t).
5. Evaluate C(t) against the objectives for the problem at hand.
6. Randomly generate a further TOV population, U(t), of size NT .
7. Check every solution in P(t) � C(t) against every TOV in T (t) � U(t) and

keep a record of which solutions satisfy which TOVs. Let nt be the number
of solutions that satisfy (ie. weakly dominate, denoted �) TOV t.

8. Score each solution, p, in P(t) � C(t) according to:

sp =
∑

t∈T (t)	U(t)|p
t

1
nt

(1)

9. Score each TOV, t, in T (t) � U(t) according to:

st =
1

1 + α
(2)

where:

α =
{

1 if nt = 0,
nt−1
2N−1 otherwise. (3)

10. Apply truncation selection to scored P(t) � C(t) to get P(t + 1) of size N .
11. Apply truncation selection to scored T (t) � U(t) to get T (t + 1) of size NT .
12. Increment t and if t < tmax then return to step 4. Otherwise terminate.

As a simple example to illustrate the workings of the algorithm, consider a
bi-objective minimisation case with two solution vectors, p1 and p2, and two
TOVs, t1 and t2 shown in Fig. 2. In the example, N = 1 (and NT = 1) since
scoring is done on the combined parent and child populations. t1 is satisfied by
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Fig. 2. Simple bi-objective minimisation example to illustrate algorithm coev bin

p2 only and therefore nt1 = 1. t2 is satisfied by both solutions and so nt2 = 2.
In terms of scoring the solutions, from step 8 sp1 = 1/nt2 = 1/2 whilst sp2 =
1/nt1 + 1/nt2 = 3/2. In terms of scoring the TOVs, from step 9 α for t1 is
(nt1 − 1)/(2N − 1) = (1 − 1)/(2 × 1 − 1) = 0 and therefore st1 = 1. Similarly α
for t2 is (2 − 1)/(2 × 1 − 1) = 1 and so st2 = 1/2.

The scoring system in the above algorithm, denoted coev bin, is based on the
weak Pareto dominance relation, producing a binary outcome for the success of a
candidate solution in meeting any TOV. Intuitively, this approach may also suffer
from incomparability problems as the number of objectives increases. Therefore
an extension of the algorithm is also proposed, in which the all-or-nothing weak
dominance relation is replaced with a Euclidean distance measure. Distances are
normalised over the length of the vector from the ideal to the anti-ideal point.
This variant is denoted coev l2. In stages 8 and 9 of the original algorithm, nt is
replaced by the inverse of the normalised Euclidean distance between the solution
and the TOV in cases where the TOV is not met, subject to a neighbourhood
constraint determined as per conventional niche size selection (see p155 of [6]).

Dominance and density: nds c The familiar non-dominated sorting and
crowding scheme from NSGA-II is used [5]. Methods of this type are known to
perform well on bi-objective problems but may experience difficulties in many-
objective spaces [26,23,17].

Average ranking and sharing: ar epa Corne & Knowles [4] found that a
simple approach based on taking the mean ranking of each candidate solu-
tion against each objective [1] performed well in relation to other suggested
many-objective approaches, according to the coverage metric, on a selection of



Preference-Driven Many-Objective Co-evolutionary Algorithm 141

multi-objective travelling salesman and single-machine job-shop problems in the
presence of many objectives and high degrees of conflict.

In this study, average ranking is combined with a sharing scheme based on
the Epanechnikov kernel according to the method given in [8].

Random: rand Evidence exists that random search can be competitive to evolu-
tionary approaches in many-objective spaces [23,4], making this a natural bench-
mark, at present, for comparison against any proposed new algorithm.

This study implements a very crude random scheme: N×tmax candidate solu-
tions are randomly generated, dominated solutions are removed and a maximum
of N solutions are then drawn at random without replacement as a representative
final population for comparison purposes.

2.3 Test Problems, Performance Indicators and Parameter Settings

The different algorithms are tested against the even-numbered problems from
the WFG test suite [14] for 2, 7 and 13-objective instances of the problems. In all
cases, the WFG parameters k and l are set to 12 and 20 respectively, providing
a constant number of decision variables for each problem instance. Problem at-
tributes covered include: separability versus non-separability; unimodality versus
multimodality; unbiased versus biased parameters; and convex versus concave
geometries.

A sequence of performance indicators has been chosen according to the ap-
proach in [27]. Firstly, comparisons are made in terms of whether one approxi-
mation set dominates another, since the only preference information this metric
relies on is a direction of preference in each objective. Where such limited prefer-
ence information is unable to distinguish between algorithms, approximation set
comparisons are then made using the hypervolume metric (which assumes equal
relative importance of normalised objectives across the search domain). The hy-
pervolume is calculated using the method and software developed by Fonseca
and colleagues [11]. Note that visualisation of approximation sets has only been
attempted for the 2-objective instances of the problems. Median attainment sur-
faces [9] are provided.

The parameter settings shown in Table 1 are held constant across all algo-
rithm runs. Ideally we would wish to consider how the parameter sweet spots
are affected by objective-space dimension (and in particular to ensure we have
avoided bias toward or against a particular algorithm) but such testing is beyond
the scope of the current study.

2.4 Statistical Treatment

Performance comparisons between algorithms are made according to a rigorous
non-parametric statistical framework, drawing on recommendations in [27]. 31
initial populations of candidate solutions are generated for each WFG problem
instance. The competing algorithms are then evolved on each of these initial
populations using fresh random number seeds. The approximation sets used in
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Table 1. Algorithm parameter settings: note that the mutation rate, pm, is applied
at the phenotypic level; the target objective vector population size, NT , is relevant to
coev bin and coev l2 only

Parameter Value

Candidate solution population size, N 100
Target objective vector population size, NT 100
Generations, tmax 250
Mutation rate, pm 1/(k + l) = 1/32

the comparisons are the non-dominated solutions in the final population of each
algorithm run.

Comparisonsbasedondominance rank. A purely pair-wise approach is used.
The chosen statistical metric is the difference between the mean dominance rank of
algorithm A against the mean dominance rank of algorithm B over the pooled
62 runs of the two algorithms on a particular problem instance. Randomisation
testing [20] is then performed where the algorithm labels for the pair of runs related
to each initial population are subject to random switching prior to recalculation
of the statistical metric. This process is repeated 999 times and the metrics are
sorted. With Bonferroni correction [27], we require an observed result at location
1, 2, 999, or 1000 in the resulting distribution to achieve a statistically significant
difference between algorithm A and algorithm B at the 5%-level.

Comparisons based on hypervolume. For each problem instance we ef-
fectively have a randomised complete block design, where for each of our five
treatments (algorithms) we have one observation (hypervolume) for each of 31
blocks (initial populations). Following the approach in [13], we first test the
hypothesis that all algorithms perform equally by computing the large-sample
approximation for the Friedman statistic, S. If this hypothesis is rejected at the
5%-level, we then consider pair-wise comparisons between the algorithms using
the large-sample approximation to the Wilcoxon-Nemenyi-McDonald-Thompson
two-sided all-treatments multiple comparison procedure at an experimentwise
error rate of 1%.

3 Results

3.1 Attainment Surface Results

Considering as a starting point the bi-objective results, plots of median attain-
ment surfaces across the 31 runs of each algorithm on each test problem are shown
in Fig. 3. These allow visual inspection of performance in terms of the dual aims
of proximity to and diversity across the global trade-off surface [2]. In general, all
methods exhibit issues with diversity across the test problems. This may in part
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(b) WFG4
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(c) WFG6
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Fig. 3. Attainment surfaces for 2-objective instances of the even-numbered WFG test
problems - the results for coev l2 are very similar to coev bin and, for the purposes
of clarity, are therefore not shown

be due to the very simple variation operator used, since existing results for NSGA-
II (an nds c algorithm with more refined recombination and mutation operators)
tend to show better diversity on the WFG problems [14]. Across the test problems,
proximity is observed to be tightest on the separable WFG4.

On the whole, in terms of visual inspection, there is little to choose between the
evolutionary methods from the perspective of median attainment surfaces. Ran-
dom search is, in general, clearly the worst performer, although it does achieve
improved coverage of the bottom-right portion of the trade-off surface for WFG2
in comparison to nds c and coev bin. Of the competing methods, the classic
dominance and density-based approach (nds c) provides the best proximity but
its diversity is sometimes relatively lacking. All methods are unable to provide
a good representation of the bottom half of the trade-off surface for WFG8.
In this problem, distance-related parameters are dependent on position-related
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parameters and — as Huband et al. previously demonstrated using NSGA-II
[14] — even the bi-objective instance represents a challenge for evolutionary
optimisers.

3.2 Dominance Rank Results

Results of the randomisation testing based on the dominance rank metric are
shown in Table 2. We follow the approach in [4] where a partial ordering of algo-
rithms is constructed based on the notion of all algorithms presented on a higher
row of the table, within the context of a test problem instance, outperforming
(according to the procedures in Section 2.4) those presented on a lower row of
the table. Order of presentation within a row is based purely on the order in
which the algorithms were introduced in Section 2.2. Any isolated cases of one
algorithm outperforming another (but where a partial ordering considering all
algorithms cannot be constructed) are described separately in the text.

The dominance rank metric, which requires the weakest assumptions about
decision-maker preferences, is unable to provide any discrimination between the
algorithms for any of the 7 or 13-objective test problems. At the 2-objective level,
random search was outperformed by the four other algorithms on WFG2 and
WFG6. Drilling into the pair-wise comparisons at the 2-objective level, ar epa
outperformed rand on WFG2 and nds c outperformed all except coev bin on
WFG8. ar epa was unable to beat rand on this problem, which prevented any
partial ordering of algorithms.

Table 2. Dominance rank results

WFG# # objectives Ranking by performance

2 1st coev bin, coev l2, nds c, ar epa, rand

2 7 1st coev bin, coev l2, nds c, ar epa, rand

13 1st coev bin, coev l2, nds c, ar epa, rand

1st coev bin, coev l2, nds c, ar epa2
2nd rand

4 7 1st coev bin, coev l2, nds c, ar epa, rand

13 1st coev bin, coev l2, nds c, ar epa, rand

1st coev bin, coev l2, nds c, ar epa2
2nd rand

6 7 1st coev bin, coev l2, nds c, ar epa, rand

13 1st coev bin, coev l2, nds c, ar epa, rand

2 1st coev bin, coev l2, nds c, ar epa, rand

8 7 1st coev bin, coev l2, nds c, ar epa, rand

13 1st coev bin, coev l2, nds c, ar epa, rand
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Table 3. Hypervolume results

WFG# # objectives Ranking by performance

1st coev bin, coev l2, nds c, ar epa2
2nd rand

1st coev bin, coev l2

2 7 2nd nds c, ar epa

3rd rand

1st coev bin, coev l2

13 2nd nds c, ar epa

3rd rand

1st coev bin, coev l2, ar epa

2 2nd nds c

3rd rand

1st coev bin, coev l2

2nd ar epa4 7
3rd nds c

4th rand

1st coev bin, coev l2, ar epa

13 2nd nds c

3rd rand

1st coev bin, coev l2, nds c, ar epa2
2nd rand

1st coev bin, coev l2

2nd ar epa6 7
3rd nds c

4th rand

1st coev bin, coev l2, ar epa

13 2nd nds c

3rd rand

1st nds c

2nd coev bin, coev l22
3rd ar epa

4th rand

1st coev bin, coev l2

8 7 2nd ar epa

3rd nds c, rand

1st coev bin, coev l2

2nd ar epa13
3rd rand

4th nds c
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3.3 Hypervolume Results

Using the stronger preference assumptions implicit in the hypervolume metric,
more interesting things can be said about the many-objective performance of the
algorithms under test. The initial Friedman test breaks the hypothesis that all
five algorithms are equivalent, for every problem instance, with S-values ranging
between 74 for 2-objective WFG6 and 115 for 2-objective WFG8. Therefore pair-
wise statistical comparisons can now be considered, the outcomes of which are
shown in Table 3.

On the 2-objective problems, all four evolutionary methods outperform ran-
dom search. The four algorithms are otherwise equivalent on WFG2 and WFG6,
with the three specifically many-objective algorithms outperforming the classical
approach on WFG4 but being outperformed themselves on WFG8.

Moving into the many-objective domain of 7-objective problem instances, the
two co-evolutionary algorithms now consistently outperform ar epa and nds c.
ar epa also outperforms nds c on three of the four problems. Also the latter clas-
sical approach is now indistinguishable from random search on WFG8, despite
its earlier high performance on the 2-objective version of this problem.

As the number of objectives is now increased to 13, ar epa reasserts its com-
petitiveness with the coevolutionary algorithms. nds c is now indistinguishable
from random search on WFG4 and is actually performing worse than random
search on WFG8.

4 Discussion

4.1 Findings

This new empirical study of the many-objective behaviour of multi-objective
evolutionary algorithms provides further confirmatory evidence of how relative
performance, attributable to particular algorithm components, changes as the
number of conflicting objectives to be optimised is increased:

– Classical components based on dominance and density measures can perform
well on bi-objective problems in a variety of domains, but performance (as
measured by various approximation set metrics) may degenerate to random
search – or worse – as the number of objectives is increased.

– A simple approach based on average ranking, possibly supplemented by a
mechanism to promote objective-space diversity, tends to outperform (sub-
ject to arguably reasonable preference assumptions) both standard methods
and random search on many-objective problems (at least within realistic con-
straints on the number of objectives that would perhaps be faced in practice
– up to 20 in the study by Corne & Knowles [4]).

Our study has also identified that the concept of co-evolving a family of pref-
erences, and using this population to evaluate candidate solutions, shows real
promise for many-objective optimisation. Within the settings considered, the
methods tend to remain competitive with standard approaches in bi-objective
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spaces and are also found to be consistently among the best choices for higher
numbers of objectives. In our implementations of the co-evolutionary concept,
the relaxation of the all-or-nothing scoring criterion appeared to offer little be-
yond the weak Pareto dominance approach originally used by Lohn and
colleagues [19].

There are some curiosities in the observed results in terms of the relative
performance of the algorithms as the number of objectives is increased. On the
non-separable biased-parameter WFG8, nds c outperforms the other methods
(in terms of hypervolume), but by 7 objectives it is no longer distinguishable
from rand and by 13 objectives it is now worse than rand — the only occasion
where random search outperforms an evolutionary algorithm in the study. There
is some existing evidence, collected on the DTLZ2 test problem [7], that active
diversity operators may lead to worse results than random search for nds c-
type algorithms due to favouring of solutions that have very poor proximity
in absolute terms but which are non-dominated with respect to their peers [23].
The size of dominated objective-space, relative to the scaling of the global trade-
off surface, is substantially smaller in the WFG problems than for the DTLZ2
problem which might to some extent mitigate the possibility of this type of
result; yet perhaps the inter-dependency between proximity and diversity on
WFG8 provides just enough difficulty to recreate these conditions.

Across all four bi-objective test problems, equivalent performance is observed
between ar epa and the two co-evolutionary algorithms. By 7 objectives ar epa
is now being consistently outperformed, but interestingly by 13 objectives the
algorithm has regained its equivalence on two of the four test problems. Since our
comparisons are made purely in relative terms, this may actually represent more
of a deterioration in the absolute performance of coev bin and coev l2 than
any improvement in the performance of the average ranking method, perhaps
suggesting that all algorithms will collapse to equivalent performance given a suf-
ficiently large number of objectives. Regardless, this finding suggests a degree of
complexity in how algorithm performance decays with objective dimensionality.

4.2 Limitations and Areas for Future Research

The study has two main limitations. The first is that the algorithm framework
studied is less complex than a typical multi-objective evolutionary algorithm,
particularly in terms of variation operator refinement and archiving strategy.
Therefore caution is advised in generalising the results, although it should be
noted that findings for nds c, ar epa and rand for the most part reflect the ex-
isting evidence for these types of operators when housed in a variety of algorithm
configurations and solving a variety of test problems [4,23,17]. The second main
limitation of the study is the absence of analysis of how performance varies with
the tuneable parameters of the algorithms (for our study these are essentially
those shown in Table 1). This type of analysis can be very computationally de-
manding to perform but is important for gaining insight into the robustness of
the algorithms and to mitigate the possibilities of producing misleading findings
due to inadvertent ‘tuning to the problem’. A final minor point to consider is
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potential confounding of the effects of objective-space dimension with other fac-
tors. In the standard form of the WFG test suite [14], when we increase the num-
ber of objectives we have the choice of either explicitly increasing the number of
decision variables or implicitly collapsing the scale of the reduction transforma-
tions. We chose the latter but a better mitigation might have been to consider
simultaneously the effects of both options.

In terms of further research, the goal vector approach examined in this paper
represents just one possible formulation of preference and further research may
be worthwhile looking at other realisations of the concept. Consideration may
also be given to scaling up the empirical test framework to include other existing
many-objective algorithms and, crucially, systematic analyses of sweet-spots.

5 Conclusion

The field of evolutionary multi-objective optimisation has developed rapidly over
the past 10–15 years, yet the design of effective algorithms for addressing prob-
lems with more than three objectives remains a key challenge. The realisation
that random search is often a competitive solution technique in these situations
makes clear the scale of the task, and a major breakthrough continues to elude
researchers. However such many-objective optimisation problems will continue to
arise in real-world problems and the need for efficient methodologies is pressing.

This study is the first of its kind to explore the concept of co-evolving a
family of preferences as a basis for discovering better quality trade-off surfaces
for many-objective problems. To establish whether this concept holds promise
and deserves further investigation, it has been compared to other potentially
competitive methods using a tractable and rigorous empirical framework.

The major outcome of this study is the revelation that the co-evolutionary
approach shows evidence of good performance, and can therefore make a strong
claim for inclusion as a comparator in future analyses of algorithms for many-
objective optimisation.
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Abstract. In a previous work we proposed a scheme for partitioning
the objective space using the conflict information of the current Pareto
front approximation found by an underlying multi-objective evolutionary
algorithm. Since that scheme introduced additional parameters that have
to be set by the user, in this paper we propose important modifications
in order to automatically set those parameters. Such parameters control
the number of solutions devoted to explore each objective subspace, and
the number of generations to create a new partition. Our experimental
results show that the new adaptive scheme performs as good as the non-
adaptive scheme, and in some cases it outperforms the original scheme.

1 Introduction

Multi-objective Evolutionary Algorithms (MOEAs) have been successfully ap-
plied to solve many real world multi-objective problems (MOPs) (e.g.,[1]). How-
ever, recent experimental [2,3,4] and analytical [5,6] studies have pointed out that
MOEAs based on Pareto optimality have some drawbacks to solve problems with
a large number of objectives (these problems are usually called many-objective
problems). Approaches to deal with such problems have mainly focused on the
use of alternative optimality relations [7,8], reduction of the number of objectives
of the problem, either during the search process [9,10] or, at the decision making
process [11,12,13], and the incorporation of preference information [4].

A general scheme for partitioning the objective space in several subspaces in
order to deal with many-objective problems was introduced in [14]. In that ap-
proach, the solution ranking and parent selection are independently performed
in each subspace to emphasize the search within smaller regions of objective
function space. Later, in [15] we proposed a new partition strategy that cre-
ates objective subspaces based on the analysis of the conflict information. By
grouping objectives in terms of the conflict among them, we aim to divide the
MOP into several subproblems in such a way that each subproblem contains the
information to preserve as much as possible the structure of the original prob-
lem. Since the conflict among objectives may change along the search space, the
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search on the subspaces should be alternated with a search on the entire objec-
tive space in order to update the conflict information. The partitioning approach
is more closely related to objective reduction approaches, specially those adopted
during the search (e.g., [11,9,10]). However, its main difference with respect to
those approaches is that the partitioning scheme incorporates all the objectives
in order to cover the entire Pareto front.

Although the partitioning strategy based on conflict information produced
good results compared with NSGA-II and another partitioning strategy, the
conflict-based strategy introduced some additional parameters whose values need
to be defined by the user. These parameters are i) the number of generations
to search on the partition’s subspaces and on the whole objective space, and
ii) the number of solutions assigned to explore each subspace. This represents a
problem since the best values for those parameters may depend on the problem
to be solved. Additionally, some subspaces have greater degree of conflict than
others. Therefore, it seems reasonable to put more emphasis on them by assigning
them more resources (in our case, a larger population).

In this paper we present important modifications in order to automate the
determination of those parameters and to take advantage of the conflict informa-
tion to focus the search on some subspaces. In particular, the conflict information
is employed to assign the number of solutions according to the contribution of
each subspace to the total conflict of the problem. To automatically define the
parameter value described in ii), we use a convergence detection method based
on two statistical hypothesis tests applied on the values of a quality indicator.

The remainder of the paper is organized as follows. Section 2 presents the main
concepts and notation used through out the paper. The basic objective space
partitioning framework is introduced in Section 3. The motivation and details
of the automation of the partitioning parameters are described in Section 4.
In Section 5 is presented the experimental evaluation of the adaptive scheme.
Finally, in Section 6 we draw some conclusions about the new proposed scheme,
as well as some future research paths.

2 Basic Concepts and Notation

Definition 1 (Objective space Φ). The objective space of a MOP is the set
Φ = {f1, f2, . . . , fM} of the M objective functions to be optimized.

Definition 2 (Subspace ψ). A subspace ψ of Φ is a lower dimensional space
that includes some of the objective functions in Φ, i.e. ψ ⊂ Φ.

Definition 3 (Space partition Ψ). A space Φ is said to be partitioned into NS

subspaces, denoted as Ψ , if Ψ = {ψ1, ψ2, . . . , ψNS | ∪NS

i=1 ψi = Φ ∧ ∩NS

i=1ψi = ∅}.

Definition 4 (Pareto dominance relation). A solution x1 is said to Pareto
dominate solution x2 in the objective space Φ, denoted by x1 ≺ x2, if and only if
(assuming minimization): ∀fi ∈ Φ : fi(x1) ≤ fi(x2) ∧ ∃fi ∈ Φ : fi(x1) < fi(x2).
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Definition 5 (Pareto optimal set). The Pareto optimal set, Popt, is defined
as: Popt = {x ∈ X | �y ∈ X : y ≺ x}, where X ⊆ Rn is the feasible set in
decision variable space.

Definition 6 (Pareto front). For a Pareto optimal set Popt, the Pareto front,
PFopt, is defined as: PFopt = {z = (f1(x), . . . , fk(x)) | x ∈ Popt}. We will
denote by PFapprox the Pareto front approximation achieved by a MOEA.

Definition 7 (Pareto front approximation). A Pareto front approximation,
denoted by PFapprox, is a finite set composed of nondominated solutions.

Of course, in practice the goal of a MOEA is finding a PFapprox with the best
quality from all the possible approximation sets that could be generated. The
quality is usually defined in terms of both convergence and spread [16].

3 The Conflict-Based Partitioning Framework

3.1 General Idea of the Partitioning Framework

The basic idea of the partitioning framework is to divide the objective space into
several subspaces so that a different portion of the population focuses the search
in a different subspace. By partitioning the objective space into subspaces, we
aim to emphasize the search within smaller regions of objective space. Instead of
dividing the population into independent subpopulations, a fraction of the pool
of parents for the next generation is selected based on a different subspace. This
way, the pool of parents will be composed with individuals having a good perfor-
mance in each subspace. In our approach, we partition the M -dimensional space
Φ = {f1, f2, . . . , fM} into NS non-overlapping subspaces Ψ = {ψ1, ψ2, . . . , ψNS}.
We selected NSGA-II to implement our proposed partitioning framework. Thus,
the nondominated sorting and truncation procedures of NSGA-II are modified
in the following way. The union of the parents and offspring, P ∪Q, is sorted NS

times using a different subspace each time. Then, from each mixed sorted popu-
lation, the best |P|/NS solutions are selected to form a new parent population of
size |P|. After this, the new population is generated by means of recombination
and mutation using binary tournaments.

3.2 Using Conflict Information to Partition the Objective Space

The number of all possible ways to partition Φ into NS subspaces is very large.
Therefore, it is not feasible to search in all the possible subspaces. Instead, we
can define a schedule of subspace sampling by using a partition strategy. In [14],
three strategies to partition Φ were investigated: random, fixed, and shift par-
tition. Later, we proposed a new strategy using the conflict information among
objectives [10]. In that strategy the first partition contains the least conflict-
ing objectives, the second one the next least conflicting objectives, and so on.
Therefore, instead of removing the least conflicting objectives, those objectives
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are integrated to form subspaces in such a way that all the objectives are op-
timized. By grouping objectives in terms of the conflict among them, we are
trying to separate the MOP into subproblems in such a way that each subspace
contains information to preserve most of the structure of the original problem.
The correlation among solutions in PFapprox is defined to estimate the conflict
among objectives in the sense defined by Carlson and Fullér [17]. A negative
correlation between a pair of objectives means that one objective increases while
the other decreases and vice versa. Thus, a negative correlation estimates the
conflict between a pair of objectives. On the other hand, if the correlation is
positive, then both objectives increase or decrease at the same time. That is, the
objectives support each other.

In order to implement the new partition strategy we should take into account
two issues: i) the conflict relation among the objectives may change during the
search, and ii) the tradeoffs between objectives in different subspaces are not
taken into account. In a sense, the vector evaluated algorithm (VEGA) [18] can
be thought of as a particular case of the partitioning framework in which each
objective is a partition. The issue ii) is related with the “speciation” phenom-
ena observed in VEGA in which some individuals excel in some objectives (some
subspaces in our case). To deal with both issues, in the final partitioning frame-
work the search is divided in several stages. Each of these stages is divided in
two phases, namely, an approximation phase followed by a partitioning phase.
In the approximation phase all the objectives are used to select the new parent
population (we can view this as a partition with a single partition formed by all
the objectives). The goal of this phase is finding a good approximation of the
current PFopt. The interested reader is referred to [15] to find the details of the
entire algorithm.

4 Automatic Setting of the Partitioning Parameters

As mentioned in the previous section, the conflict-based partitioning scheme
needs the definition of some important parameter values. That is, the number
of generations assigned to each phase of the strategy, and the number of total
stages during the search. In this section we will introduce some modifications
aimed to eliminate the need to define those values manually. In addition, as
we will see in this section, some subspaces have greater conflict contribution
than others. Therefore, it seems reasonable to put more emphasis on them by
assigning them more solutions. In a similar way, in some subspaces the search
could stagnate earlier than in others. Therefore it could be a good idea to stop
searching them and reassign those resources to other subspaces where progress
can still continue.

4.1 Proportional Assignment of the Resources

One of the findings of our previous work was the fact that the conflict among
certain objectives is considerably larger than the conflict among others. In order
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to measure the contribution of each subspace to the total conflict in the problem,
we compute for each subspace its “conflict degree”, i.e., the sum of the conflict
between each pair of objectives. The ratio of the conflict degree of each subspace
and the total conflict is called the conflict contribution. Figure 1 presents the
conflict contribution of 3 subspaces through the optimization process in the
Knapsack problem. In the figure we can clearly see that subspace 3 has a larger
conflict contribution with respect to the other subspaces. In the original strategy
proposed in [15], each subspace receives an equal number of parents regardless its
conflict contribution. However, we can take advantage of the conflict information
in order to distribute the number of parents accordingly. That is, the proportion
of parents granted for each subspace should be proportional to its contribution
to the total conflict on the problem. In order to illustrate this idea, let’s take as
an example the conflict contribution obtained for each of the 3 subspaces in the
Knapsack problem (Fig. 2).

Since subspace 3 contributes with 40% of the total conflict, then it will receive
that percentage of the total number of parents. In turn, subspaces 1 and 2 will

Fig. 1. Conflict contribution of three subspaces during the search process

Fig. 2. Proportional assignment of parents according to the conflict contribution of the
subspaces
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receive 29% and 31% of the parents, respectively. The motivation behind this
idea is the fact that the most conflicting objectives are the ones that change
the most the Pareto optimal front when they are removed [12]. Therefore, they
contribute with a larger trade-off surface to form the whole Pareto front. Thus,
the most conflicting subspace should have more solutions in order to cover larger
areas of the Pareto front. The modified procedure to carry out the non-dominated
sorting taking into account the conflict contribution is presented in Algorithm 1.

In extreme cases in which some objectives do not have conflict at all with
the other objectives, these objectives do not contribute at all to the structure of
the Pareto front, and, therefore, can be removed. Since these objectives do not
contribute to the total conflict of the problem, under the new proposed scheme,
they will receive no parents. Thus, in these extreme cases, the new scheme can
be regarded as a generalization of approaches that remove the least conflicting
objectives during the search (see e.g., [10] and [12]).

4.2 Automatic Transition between Phases

In the scheme presented in [15], the number of generations for the partitioning and
the integration phases are controlled by a parameter defined by the user. However,
the best value for that parameter might differ for different MOPs. In order to free
the user from the task of finding the optimal parameter value we designed a mech-
anism to automate the transition between the partitioning and integration phase
automatically. In our approach we employ the progress of the current PFapprox in
order to decide if the current phase should be changed. That is to say, if the search
during the current phase does not have a significant progress, then it is time to
change to the other phase. We adopt an approach similar to the convergence de-
tection method proposed in [19]. That approach applies a statistical hypothesis
test on a sample of quality indicators values to determine if a MOEA should be
stopped. In our case, the convergence detection method will not be used to stop
the search, but to switch from one phase to another.

The indicator we propose to measure the progress of the search is based on
the additive ε-indicator, Iε+(A, B) [16]. This binary indicator is defined as

Iε+(A, B) = inf
ε∈R

{∀z2 ∈ B ∃z1 ∈ A : z1 �ε+ z2}

Algorithm 1. Non-dominated sorting with proportional assignment of parents.
procedure sort&Truncation(R, |P|, Ψ)
P∗ ← ∅
for i← 1 until |Ψ | do
Fψi ← nonDominatedSort(R, ψi) � Sort using only the objectives in ψi

crowding(Fψi , ψi)
NP ← |P|× conflict contribution of subspace ψi

Pψi ← truncation(Fψi , NP ) � Select the best NP solutions wrt ψi

P∗ ← P∗ ∪ Pψi

return P∗ � |P∗| = |P|
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for two nondominated sets A and B, where z1 �ε+ z2 iff ∀i : z1
i ≤ ε + z2

i , for
a given ε. The proposed indicator is intended to measure the improvement of
the current approximation set PFt with respect to the previous one, PFt−1. We
define this improvement as

Dε(PFt, PFt−1) = |Iε(PFt, PFt−1) − Iε(PFt−1, PFt)|.

If Dε(PFt, PFt−1) is close to zero, that implies that there is no significant im-
provement from iteration t− 1 to t. In order to apply a hypothesis test we need
to record the values of this indicator through the optimization process to get
a sample of Dε values. The detailed process is described next. First, we adopt
a hypothesis test to detect if the improvement of the search in terms of Dε is
below a certain threshold. This test is formulated as follows:

H0 : μDε = μ0 vs. H1 : μDε < μ0

where μ0 is the degree of improvement required. If H0 is rejected in support of
H1, we can consider that the search has no significant progress, and, therefore,
the phase should be changed. Since the type of distribution of the random vari-
able Dε is not known, we employ a non-parametric test, namely, the Wilcoxon
signed-rank test [20] to check that hypothesis.

In some preliminary experiments we realized that in some cases, the MOEA
diverged (specially for more than 5 objectives) making difficult to reach the
desired threshold. Therefore, we also employ a hypothesis test on the slope of
the regression line obtained from a sample of Dε values. The test for the analysis
regression is formulated in the following manner:

H0 : βDε = 0 vs. H1 : βDε �= 0

The slope βDε represents the linear trend of the Dε indicator. A value of βDε = 0
means that search is not progressing towards PFopt anymore.

In contrast to the test on H0 : μDε = μ0, in order to determine if there is a
significant descending linear trend of Dε, we need to check the point in which
the hypothesis H0 : βDε = 0 can no longer be rejected. For this test we use a
two-tailed t-test [21].

Since the integration phase is only intended to obtain a new approximation
of the Pareto front, and the goal of the partitioning phase is to improve the
search ability when the MOEA is stuck in a local optima, we use both hypothe-
sis tests during the partitioning phase. In contrast, during the integration phase
we only test the linear trend. One advantage of this is that the value of μ0 can
be automatically set for the test H0 : μDε = μ0. That is to say, we will set
μ0 = μ̂Dε , where μ̂Dε is the mean of the sample of Dε taken in the previous
integration phase. During the partitioning phase we proceed in the following
manner. The test H0 : βDε = 0 is checked first, and if the null hypothesis H0
is rejected, then the partitioning phase is maintained. If that hypothesis is not
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rejected, then we test H0 : μDε = μ0. The partitioning phase is changed only if
H0 is rejected. Written as a pseudocode, we get the following:

If H0 : βDε = 0 is not rejected (i.e., search has stalled) and
H1 : μDε < μ0 is supported (i.e., no significant improvement) then

Switch to the integration phase.
Otherwise

Stay in the partitioning phase.

In a similar way to [19], a sample of Dε is taken from the last SN observations of
the indicator values. At the beginning of each phase the first test is carried out
until SN observations have been collected. After that, the test is checked during
each subsequent generation. Additionally, in the partitioning phase, we manage
the progress of each subspace independently to reallocate resources when the
search in some of the subspaces has no significant improvement. Therefore, for
each subspace in a partition, a sample of the last SN observation of the Dε

indicator is stored. When the search in a certain subspace has stalled, then that
subspace is removed from the partition, so that in the next selection of parents,
only the remaining subspaces receive parents. This way all the resources are
focused on subspaces with a significant progress towards the Pareto front. Fig. 3
shows an example of this procedure applied on a partition with 3 subspaces,
i.e., Ψ = {ψ1, ψ2, ψ3}. Initially, the subspaces receive 30%, 20% and 50% of the
parents, respectively. After subspace ψ2 has been stopped, the proportion of
parents assigned to subspaces ψ1 and ψ3 is updated as it is shown in the figure.
Thus, it is expected to have a convergence speedup in the remaining subspaces.
Then, ψ1 subspace ends, and partition ψ3 receives all the parents. Finally, ψ3
is stopped signaling the end of the partitioning phase and the beginning of the
integration phase.

Fig. 3. Dynamic reallocation of the resources granted for each subspace

The pseudocode of the procedure to check convergence is presented in
Algorithm 2. In that algorithm α is the significance level used in both hypoth-
esis tests, and pSlope and pWilcoxon are the p-values returned by the linear
regression test and the Wilcoxon test, respectively. Finally, the entire adaptive
partitioning scheme is shown in Algorithm 3.
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Algorithm 2. Convergence Checking for each partition’s subspace
procedure checkConvergence(L, μ̂Dε , α, phase)

convergencei ← false for all i ∈ {1, . . . , |L|}
if phase = integration then

pSlope← slopeTest(L1)
if pSlope > α then

convergence1 ← true

else
for each i ∈ {1, . . . , |Ψ |} do

pSlope← slopeTest(Li) � Test using the sample of subspace ψi

pWilcoxon← wilcoxonTest(Li, μ̂Dε)
if pSlope > α and pWilcoxon ≤ α then

convergencei ← true

Return convergence

Algorithm 3. Adaptive Partitioning MOEA
1: Ψ ← {{f1, .., fM}} � All the objectives in a single subspace.
2: phase← integration

3: Li ← ∅ for all i ∈ {1, . . . , |Ψ |}
4: for t← 1 until Gmax do
5: Qt ← newPop(Pt) � selection, crossover, mutation.
6: Rt ← Pt ∪Qt

7: Pt+1 ← sort&Truncation(Rt, |Pt|, Ψ) � Using current Ψ .
8: for each ψi ∈ Ψ do
9: Li ← Li ∪ Dε(Pt+1,Pt, ψi)

10: if |L1| ≥ SN then
11: CheckConvergence(L, μ̂Dε , α, phase)
12: if all the subspaces in Ψ have converged then
13: if phase = integration then
14: Compute new μ̂Dε from L1

15: Ψ ← createPartition(Pt+1, Φ, NS)
16: phase← partitioning

17: else
18: Ψ ← {{f1, .., fM}}
19: phase← integration

20: Li ← ∅ for all i ∈ {1, . . . , |Ψ |}
21: else if at least one subspace have converged then
22: Update conflict contribution in the current partition Ψ .

5 Experimental Results

5.1 Algorithms, Metrics and Parameter Settings

In order to discover the advantages and disadvantages of the new adaptive par-
titioning scheme we compare 4 versions of the NSGA-II, i.e., the original version
and three other versions using different partitioning strategies: random, conflict
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and adaptive-conflict. In all the algorithms we use a population of 200 indi-
viduals running during 200 generations. The results presented are the average
over 30 runs of each NSGA-II variant. In the conflict-based strategy, the search
is divided into 10 stages, and the values for GΦ (num. of generations for the
integration phase) and GΨ (num. of generations for the partitioning phase) rep-
resent the 30% and 70% of the generations of each stage, respectively. For the
adaptive-conflict strategy we use a significance level α = 0.05. The sample size,
SN , for Dε was experimentally defined as 10.

In order to show how both conflict-based strategies work, we will use a test
problem in which the conflicting objectives can be defined a priori by the user.
Namely, the problem DTLZ5(I, M) [11], where M is the total number of ob-
jectives, and I is the number of objectives in conflict. Additionally, we employ
the 0/1 Knapsack with 300 items since the conflict relation among its objec-
tives is not known a priori. Unless specified otherwise, in our experiments we
use from 4 to 15 objectives in each test problem. For 4-9 objectives we use
2 subspaces, and for 10-15 objectives, we use 3 subspaces. In order to assess
convergence we adopt generational distance (GD). For DTZL5(I, M) we use
the exact generational distance, namely GD = 1

m

∑
z∈PFapprox

∑M
j=1(zj)2 − 1,

where m = |PFapprox|. Additionally, to directly compare the convergence of the
MOEAs, we utilize the additive ε-indicator [16]. Finally, to assess both conver-
gence and diversity, we adopt the hypervolume indicator. For DTLZ5(I, M) the
reference point was zref = 1.5M . For the Knapsack problem, the reference point
was formed using the worst value in each objective of all the PFapprox generated
by all the algorithms.

5.2 Application of the New Adaptive Scheme

Fig. 4 shows the progress of Dε in the Knapsack problem for the partitions of
the integration and the partitioning phases. As can be seen, in the last two par-
titioning phases, the least conflicting subspace (ψ1) converges first, whereas the
most conflicting subspace (ψ3) converges at the end. This is somewhat expected
since the most conflicting subspace has a larger region of the Pareto front to
cover.

The assignment of parents for a 3-subspace partition is illustrated in
Figure 5. We can observe that the most conflicting subspace receives about
50% of the parents at the beginning of each partitioning phase. Additionally, we
can see that after the first subspace converges, the remaining subspaces converge
faster than the most conflicting subspace. This can be explained because the re-
maining subspaces receive more parents to explore their corresponding objective
subspace.

5.3 DTLZ5(I, M): Conflict Known a priori

With respect to DTLZ5(I, M), the experiments show that the adaptive-conflict
strategy only marginally outperforms to the conflict strategy in terms of both
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Fig. 4. Example of the convergence of the partitions {{f1, . . . , fM}} (integration phase)
and {ψ1, ψ2, ψ3} (partitioning phase) through the search process. Dashed lines mark
the end of the integration phase, while dotted lines that of the partitioning phase.
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generational distance and hypervolume (Figs. 6 and 7, respectively). One in-
teresting observation with respect to the hypervolume results is that for less
than 5 objectives, NSGA-II performs better than any of the partitioning strate-
gies. This implies that for those number of objectives, NSGA-II still achieves a
good performance, and therefore there is no need for partitioning the objective
space. Although, of course, the number of objectives in which NSGA-II performs
well might depend on the given MOP. Regarding the ε-indicator (Fig. 8) the
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spect to Iε using the problem DTLZ5(I, M)

adaptive-conflict strategy clearly outperforms NSGA-II. Iε+(A, B) is the subplot
located in row A and column B of the matrix. Nonetheless, the performance of
both conflict-based strategies are very similar. From this experiment we can con-
clude that the proportional assignment of parents accelerates the convergence
of the MOEA. Additionally, the automatic transition between phases does not
seem to affect the search ability of NSGA-II.
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scheme using the Knapsack problem

5.4 Knapsack Problem: Unknown Conflict a priori

One important difference between DTLZ5(I, M) and the Knapsack problem is
that none of the objectives of the Knapsack problem is totally redundant, i.e.,
there is conflict between every pair of objectives. However, as it was shown
in [15], the objectives have different conflict degrees among them. Analyzing the
boxplots of Fig. 9 we can realize that for a large number of objectives (e.g.,
12-15) the adaptive-conflict strategy outperforms the original conflict strategy
in terms of the ε-indicator 10. This could mean that as the problems get harder,
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the proportional assignment of parents is more useful. The adaptive-conflict
strategy clearly outperforms the other variants of NSGA-II with respect to the
hypervolume. This suggests that the adaptive-conflict strategy also contributes
to get a better distribution of the solutions.

6 Conclusions and Future Work

In this paper we have introduced some improvements on a previously proposed
scheme intended for partitioning the objective space. The main goal of these
improvements is to automate the setting of some parameters of the original
scheme, namely: the assignment the individuals to explore each subspace, and
the transition between each phase of the scheme.

According to the experimental comparison, the new adaptive-conflict parti-
tioning scheme performs at least as well as the two previously defined schemes.
Furthermore, in some cases, the adaptive scheme outperformed those schemes.
This means that, besides freeing the user from setting the above mentioned
parameters, the adaptive scheme improves the search ability of the MOEA.

As a future work, it would be interesting to study the correlation of the
transitions between phases and the number of objectives. Additionally, we plan to
use the conflict information to determine automatically the size of the subspaces
of the created partitions.
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Abstract. Recently MOEA/D (multi-objective evolutionary algorithm based on 
decomposition) was proposed as a high-performance EMO (evolutionary multi-
objective optimization) algorithm. MOEA/D has high search ability as well as 
high computational efficiency. Whereas other EMO algorithms usually do not 
work well on many-objective problems with four or more objectives, MOEA/D 
can properly handle them. This is because its scalarizing function-based fitness 
evaluation scheme can generate an appropriate selection pressure toward the 
Pareto front without severely increasing the computation load. MOEA/D can 
also search for well-distributed solutions along the Pareto front using a number 
of weight vectors with different directions in scalarizing functions. Currently 
MOEA/D seems to be one of the best choices for multi-objective optimization 
in various application fields. In this paper, we examine its performance on 
multi-objective problems with highly correlated objectives. Similar objectives 
to existing ones are added to two-objective test problems in computational 
experiments. Experimental results on multi-objective knapsack problems show 
that the inclusion of similar objectives severely degrades the performance of 
MOEA/D while it has almost no negative effects on NSGA-II and SPEA2. We 
also visually examine such an undesirable behavior of MOEA/D using many-
objective test problems with two decision variables. 

Keywords: Evolutionary multi-objective optimization, evolutionary many-
objective optimization, similar objectives, correlated objectives, MOEA/D. 

1   Introduction 

Since Goldberg’s suggestion in 1989 [6], Pareto dominance-based fitness evaluation 
has been the main stream in the evolutionary multi-objective optimization (EMO) 
community [3], [26]. Pareto dominance is used for fitness evaluation in almost all 
well-known and frequently-used EMO algorithms such as NSGA-II [4], SPEA [34] 
and SPEA2 [33]. Whereas Pareto dominance-based EMO algorithms usually work 
very well on multi-objective problems with two or three objectives, they often show 
difficulties in the handling of many-objective problems with four or more objectives 
as pointed out in several studies [7], [10], [16], [23], [24], [35]. This is because almost 
all individuals in the current population are non-dominated with each other when they 
are compared using many objectives. As a result, Pareto dominance-based fitness 
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evaluation cannot generate strong selection pressure toward the Pareto front. This 
means that good solutions close to the Pareto front are not likely to be obtained. 

Various approaches have been proposed to improve the search ability of Pareto 
dominance-based EMO algorithms for many-objective problems [13], [14]. The basic 
idea of those approaches is to increase the selection pressure toward the Pareto front. 
The increase in the selection pressure, however, usually leads to the decrease in the 
diversity of obtained solutions along the Pareto front. Thus simultaneous performance 
improvement in both the convergence and the diversity is not easy. 

The use of other fitness evaluation schemes has also been examined for many-
objective problems. One promising approach to many-objective optimization is the 
use of an indicator function that measures the quality of a solution set [1], [27], [28], 
[31], [32]. Hypervolume has been frequently used in such an indicator-based 
evolutionary algorithm (IBEA) where multi-objective problems are handled as single-
objective hypervolume maximization problems. One difficulty of this approach is the 
exponential increase in the computation load for hypervolume calculation with the 
increase in the number of objectives. Thus some form of approximate hypervolume 
calculation may be needed when we have six or more objectives. Another promising 
approach to many-objective problems is the use of scalarizing functions [8], [15], 
[19], [29]. A number of scalarizing functions with different weight vectors are used to 
realize various search directions in the objective space. The main advantage of this 
approach is computational efficiency of scalarizing function calculation. 

MOEA/D (multi-objective evolutionary algorithm based on decomposition) is a 
scalarizing function-based EMO algorithm proposed by Li and Zhang [19], [29]. High 
search ability of MOEA/D on various test problems including many-objective 
problems has already been demonstrated in the literature [2], [11], [12], [17], [20], 
[22], [30]. Its main feature is the decomposition of a multi-objective problem into a 
number of single-objective problems, which are defined by a scalarizing function with 
different weight vectors. MOEA/D can be viewed as a kind of cellular algorithm. 
Each cell has a different weight vector and a single elite solution with respect to its 
own weight vector. The task of each cell is to perform single-objective optimization 
of a scalarizing function with its own weight vector. To generate a new solution for 
each cell, parents are selected from its neighboring cells (i.e., local parent selection). 
If a better solution is generated by genetic operations, the current solution is replaced 
with the newly generated one. This solution replacement mechanism is applied to not 
only the current cell for which a new solution is generated but also its neighboring 
cells. That is, a good solution has a chance to survive at multiple cells. Such a local 
solution replacement mechanism together with local parent selection accelerates 
multi-objective search for better solutions (i.e., accelerates the convergence toward 
the Pareto front). At the same time, the diversity of solutions is maintained by the use 
of a number of weight vectors with various directions in MOEA/D. 

In this paper, we report some interesting observations on the behavior of NSGA-II, 
SPEA2 and MOEA/D on multi-objective problems with highly correlated objectives. 
In computational experiments, we generate similar objectives to existing ones and add 
them to test problems with two objectives. Experimental results show that the 
inclusion of similar objectives severely deteriorates the search ability of MOEA/D 
while it has almost no negative effects on NSGA-II and SPEA2. As a result, 
MOEA/D does not always outperform NSGA-II and SPEA2 on many-objective 
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problems with highly correlated objectives while it clearly shows better performance 
on many-objective problems with no strong correlations among objectives. 

This paper is organized as follows. First we briefly explain MOEA/D in Section 2. 
Next we examine its behavior on two types of multi-objective knapsack problems in 
comparison with NSGA-II and SPEA2 in Section 3. One type has randomly generated 
objectives, and the other includes highly correlated objectives. Then we visually 
examine the behavior of MOEA/D using many-objective test problems in the two-
dimensional decision space in Section 4. Finally we conclude this paper in Section 5. 

2   MOEA/D 

Let us consider the following m-objective maximization problem:  

Maximize ))(...,),(),(()( 21 xxxxf mfff= , (1) 

where f (x) is the m-dimensional objective vector, fi (x) is the i-th objective to be 
maximized, and x is the decision vector. 

In MOEA/D [19], [29], a multi-objective problem is decomposed into a number of 
single-objective problems where each problem is to optimize a scalarizing function 
with a different weight vector. In this paper, we use the weighted Tchebycheff 
function since this function works very well on a wide range of multi-objective test 
problems [9], [11], [12]. Let us denote a weight vector as λ = (λ1 , λ2 , ..., λm). The 
weighted Tchebycheff function measures the distance from the reference point z* to a 
solution x in the objective space as follows: 

|})(|{max),|( **

...,,2,1
xzλx iii

mi

TE fzg −⋅=
=

λ . (2) 

For multi-objective knapsack problems, we use the following specification of the 
reference point z* in the same manner as in Zhang and Li [29]: 

mitfz ii ...,,2,1)},(|)(max{1.1* =Ω∈⋅= xx , (3) 

where Ω(t) shows the population at the t-th generation. The reference point z* is 
updated whenever the maximum value of each objective in (3) is updated. 

For multi-objective function minimization problems, Zhang and Li [29] specified 
the reference point z* as follows: 

mitfz ii ...,,2,1)},(|)(min{* =Ω∈= xx . (4) 

We use this specification for multi-objective continuous minimization problems. 
MOEA/D uses a set of weight vectors placed on a uniform grid. More specifically, 

it uses all weight vectors satisfying the following two conditions: 

121 =+⋅⋅⋅++ mλλλ , (5) 

mi
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⎬
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⎧∈λ , (6) 
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where H is a positive integer parameter that specifies the granularity or resolution of 
weight vectors. The number of weight vectors is calculated from this parameter H and 
the number of objectives m as N = H+ m −1Cm −1 [29]. The same weight vector 
specification was used in a multi-objective cellular algorithm in Murata et al. [21]. 

Let N be the number of weight vectors. Then a multi-objective optimization 
problem is decomposed into N single-objective problems in MOEA/D. Each single-
objective problem has the same scalarizing function (i.e., the weighted Tchebycheff 
function in this paper) with a different weight vector. Each weight vector can be 
viewed as a cell in a cellular algorithm with a grid of size N in the m-dimensional unit 
cube [0, 1]m. A single individual is assigned to each cell. Thus the population size is 
the same as the number of weight vectors. In MOEA/D, genetic operations at each 
cell are locally performed within its neighboring cells as in cellular algorithms. For 
each cell, a pre-specified number of its nearest cells (e.g., ten cells including the cell 
itself in our computational experiments) are handled as its neighbors. Neighborhood 
structures in MOEA/D are defined by the Euclidean distance between weight vectors.  

First MOEA/D generates an initial solution at each cell. In our computational 
experiments, initial solutions are randomly generated. Next an offspring is generated 
by local selection, crossover and mutation at each cell in an unsynchronized manner. 
In local selection, two parents are randomly chosen for the current cell from its 
neighboring cells (including the current cell itself). Local selection leads to the 
recombination of similar parents in the objective space. The generated offspring is 
compared with the solution at each of the neighboring cells. The comparison is 
performed based on the scalarizing function with the weight vector of the compared 
neighbor. All the inferior solutions are replaced with the newly generated offspring. 
That is, solution replacement is performed not only at the current cell for which the 
new offspring is generated but also at each of its neighboring cells. Since each cell 
has a different weight vector, the diversity of solutions can be maintained whereas a 
single offspring is compared with multiple neighbors for solution replacement. Local 
selection, crossover, mutation and local replacement are performed at each cell. These 
procedures are iterated over all cells until the termination condition is satisfied. In our 
computational experiments, we do not use any secondary population in MOEA/D.  

3   Computational Experiments on Knapsack Problems 

We used the same test problem as the two-objective 500-item knapsack problem of 
Zitzler & Thiele [34] with two constraint conditions. We denote this test problem as 
the 2-500 problem. The two objectives f1(x) and f2(x) of the 2-500 problem were 
generated by randomly assigning an integer in the closed interval [10, 100] to each 
item as its profit (see [34]). In the same manner, we generated other two objectives 
f3(x) and f4(x). Since all the four objectives were randomly generated, they have no 
strong correlation with each other. Using these randomly-generated four objectives, 
we generated a four-objective 500-item knapsack problem with the same two 
constraint conditions as in the 2-500 problem in [34]. Exactly the same two constraint 
conditions as in [34] were also used in all the other test problems in this section. 
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We generated highly correlated objectives from the two objectives f1(x) and f2(x) 
of the 2-500 problem in the following manner: 

)(01.0)()( 215 xxx fff += , (7) 

)(01.0)()( 216 xxx fff −= , (8) 

)(01.0)()( 127 xxx fff += , (9) 

)(01.0)()( 128 xxx fff −= . (10) 

It is clear that f5(x) and f6(x) are similar to f1(x) while f7(x) and f8(x) are similar to 
f2(x). In computational experiments, we used the following four test problems: 

1. The 2-500 test problem with f1(x) and f2(x) of Zitzler & Thiele [34], 
2. Random four-objective problem with f1(x), f2(x), f3(x) and f4(x), 
3. Correlated four-objective problem with f1(x), f2(x), f5(x) and f6(x), 
4. Correlated six-objective problem with f1(x), f2(x), f5(x), f6 (x), f7(x) and f8(x). 

In the correlated four-objective problem, f1(x), f5(x) and f6(x) are similar to each other 
while they are not similar to f2(x). In the correlated six-objective problem, f2(x), f7(x) 
and f8(x) are also similar to each other.  

We applied MOEA/D to these four test problems using the following setting: 

Population size (which is the same as the number of weight vectors): 
 200 (two-objective problem), 220 (four-objective), 252 (six-objective), 
Parameter H for generating weight vectors: 
 199 (two-objective problem), 9 (four-objective), 5 (six-objective), 
Coding: Binary string of length 500, 
Stopping condition: 400,000 solution evaluations, 
Crossover probability: 0.8 (Uniform crossover), 
Mutation probability: 1/500 (Bit-flip mutation), 
Constraint handling: Greedy repair used in Zitzler & Thiele [34], 
Neighborhood size T (i.e., the number of neighbors): 10. 

Since all the four test problems have the same constraint conditions, the same 
greedy repair as in the 2-500 problem in [34] was used in all test problems.  

We also applied NSGA-II [4] and SPEA2 [33] to the four test problems using the 
same setting as in MOEA/D except that the population size was always specified as 
200 in NSGA-II and SPEA2. Each EMO algorithm was applied to each test problem 
100 times. In this section, we report experimental results by NSGA-II, SPEA2 and 
MOEA/D on each of the above-mentioned four test problems. 

Results on the 2-500 Knapsack Problem: Experimental results of a single run of 
each algorithm are shown in Fig. 1 (a)-(c) where all solutions at the 20th, 200th and 
2000th generations are depicted together with the true Pareto front. The 50% 
attainment surface [5] at the 2000th generation over 100 runs of each algorithm is 
depicted in Fig. 1 (d). As pointed out in the literature (e.g., see Jaszkiewicz [15]), it is 
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not easy for EMO algorithms to find non-dominated solutions along the entire Pareto 
front of the 2-500 test problem. NSGA-II and SPEA2 found non-dominated solutions 
around the center of the Pareto front. Only MOEA/D found non-dominated solutions 
over almost the entire Pareto front. That is, MOEA/D found better solution sets than 
NSGA-II and SPEA2 with respect to the diversity of solutions along the Pareto front. 
With respect to the convergence property toward the Pareto front, the three algorithms 
have almost the same performance in Fig. 1 (d). 
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Fig. 1. Experimental results on the original two-objective knapsack problem 

Results on Random Four-Objective Knapsack Problem: We calculated the 
average hypervolume and the standard deviation over 100 runs of each algorithm. The 
origin (0, 0, 0, 0) of the four-dimensional (4-D) objective space was used as the 
reference point for the hypervolume calculation. The following results were obtained: 

NSGA-II: 1.23 × 1017 (Average), 9.67 × 1014 (Standard Deviation), 
SPEA2: 1.19 × 1017 (Average), 9.47 × 1014 (Standard Deviation), 
MOEA/D: 1.43 × 1017 (Average), 6.00 × 1014 (Standard Deviation). 
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The best results were obtained by MOEA/D for the random four-objective problem 
with respect to the hypervolume measure. In Fig. 2 (a)-(c), we show all solutions at 
the final generation in a single run of each algorithm in the two-dimensional (2-D) 
objective space with f1(x) and f2(x). That is, each plot in Fig. 2 shows the projection 
of the final population of each algorithm in the 4-D objective space onto the 2-D 
objective space. The 50% attainment surface is depicted using those projections for 
100 runs in Fig. 2 (d). For comparison, the Pareto front of the 2-500 problem is also 
shown in Fig. 2. In Fig. 2 (d), the convergence performance of NSGA-II and SPEA2 
was severely degraded by the inclusion of the randomly generated objectives f3(x) 
and f4(x). The convergence performance of MOEA/D was also degraded but less 
severely than NSGA-II and SPEA2. It is interesting to observe that NSGA-II in Fig. 2 
(a) and SPEA2 in Fig. 2 (b) did not have large diversity in the objective space even in 
the case of the four-objective test problem with the randomly generated objectives.  

 
 

16000

Maximize f1

M
ax

im
iz

e 
f 2

17000 18000 19000 20000

20000

19000

18000

17000

16000

15000
15000

21000

21000

2000th

 

16000

Maximize f1

M
ax

im
iz

e 
f 2

17000 18000 19000 20000

20000

19000

18000

17000

16000

15000
15000

21000

21000

2000th

 
  (a) NSGA-II.                                                        (b) SPEA2.  

2000th

16000

Maximize f1

M
ax

im
iz

e 
f 2

17000 18000 19000 20000

20000

19000

18000

17000

16000

15000
15000

21000

21000

 Maximize f1

M
ax

im
iz

e 
f 2

Pareto Front
NSGA-II
SPEA2
MOEA/D

16000 17000 18000 19000 20000

20000

19000

18000

17000

16000

15000
15000

21000

21000

 
  (c) MOEA/D.   (d) 50% attainment surfaces.  

Fig. 2. Experimental results on the random four-objective knapsack problem (Projections of the 
final population in the 4-D objective space onto the 2-D one) 
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Results on Correlated Four-Objective Knapsack Problem: This problem has the 
three highly correlated objectives f1(x), f5(x) and f6(x). As in the previous 
computational experiments, we calculated the average hypervolume over 100 runs: 

NSGA-II: 1.42 × 1017 (Average), 1.59 × 1015 (Standard Deviation), 
SPEA2: 1.41 × 1017 (Average), 1.32 × 1015 (Standard Deviation), 
MOEA/D: 1.55 × 1017 (Average), 7.46 × 1014 (Standard Deviation). 

The best average result was obtained by MOEA/D. In the same manner as Fig. 2, we 
show experimental results on the correlated four-objective problem in Fig. 3. From 
the comparison between Fig. 1 and Fig. 3, we can see that the inclusion of f5(x) and 
f6(x) had almost no negative effects on the performance of NSGA-II and SPEA2. The 
performance of MOEA/D, however, was clearly degraded by their inclusion. We can 
also see that many solutions in Fig. 3 (c) are overlapping, which leads to the wavy 
50% attainment surface by MOEA/D in Fig. 3 (d). In spite of the performance 
deterioration, the largest average hypervolume was still obtained by MOEA/D. 
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  (c) MOEA/D.   (d) 50% attainment surfaces. 

Fig. 3. Experimental results on the correlated four-objective knapsack problem (Projections 
from the 4-D objective space to the 2-D one). The number of generations of MOEA/D with 
population size 220 was converted to the equivalent one in the case of population size 200.  
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Results on Correlated Six-Objective Knapsack Problem: This problem has the two 
sets of the three highly correlated objectives: {f1(x), f5(x), f6(x)} and {f2(x), f7(x), 
f8(x)}. We calculated the average hypervolume over 100 runs: 

NSGA-II: 5.46 × 1025 (Average), 5.69 × 1023 (Standard Deviation), 
SPEA2: 5.40 × 1025 (Average), 4.59 × 1023 (Standard Deviation), 
MOEA/D: 5.87 × 1025 (Average), 4.72 × 1023 (Standard Deviation). 

As in the other three test problems, the best results were obtained by MOEA/D with 
respect to the hypervolume measure. In the same manner as Fig. 2 and Fig. 3, we 
show experimental results in the two-dimensional (2-D) objective space in Fig. 4. 
From the comparison between Fig. 1 and Fig. 4, we can see that the inclusion of the 
four correlated objectives had almost no negative effects on the performance of 
NSGA-II and SPEA2. The performance of MOEA/D, however, was clearly degraded 
by their inclusion. That is, the convergence performance was degraded and the 
number of obtained solutions was decreased (see Fig. 1 (c), Fig. 3 (c) and Fig. 4 (c)).  
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  (c) MOEA/D.   (d) 50% attainment surfaces. 

Fig. 4. Experimental results on the correlated six-objective knapsack problem (Projections from 
the 6-D objective space to the 2-D one). The number of generations of MOEA/D with 
population size 252 was converted to the equivalent one in the case of population size 200. 
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As in Figs. 2-4, we projected the solution set obtained by each run onto the 2-D 
objective space with f1(x) and f2(x). Then we calculated its hypervolume in the 2-D 
objective space using the origin (0, 0) as the reference point. Table 1 summarizes the 
average result over 100 runs of each algorithm on each test problem. When we 
included the two randomly generated objectives into the 2-500 knapsack problem, the 
performance of NSGA-II and SPEA2 was severely degraded (see the row labeled as 
“Random 4-Obj.” in Table 1). However, the inclusion of the two and four correlated 
objectives did not degrade their performance at all. MOEA/D shows a totally different 
behavior from the others. The performance of MOEA/D was clearly degraded by the 
inclusion of the correlated objectives as well as the randomly generated objectives. In 
spite of the performance deterioration, the best results were obtained by MOEA/D for 
all the four problems in Table 1. 

 
 
Table 1. Average hypervolume and standard deviation in the original two-objective space 

NSGA-II SPEA2 MOEA/D 
Problem 

Average Stand. Dev. Average Stand. Dev. Average Stand. Dev. 
Original 2-Obj. 3.800E+08 1.764E+06 3.790E+08 1.390E+06 4.005E+08 9.291E+05 
Random 4-Obj. 3.577E+08 2.184E+06 3.537E+08 1.862E+06 3.902E+08 1.435E+06 

Correlated 4-Obj. 3.800E+08 1.618E+06 3.790E+08 1.255E+06 3.949E+08 1.491E+06 
Correlated 6-Obj. 3.804E+08 1.483E+06 3.782E+08 5.481E+06 3.947E+08 1.194E+06 

4   Computational Experiments on Two-Dimensional Problems  

In this section, we visually examine the behavior of EMO algorithms using test 
problems with only two decision variables. In our test problems, the distance to each 
of the given points in the two-dimensional decision space [0, 100] × [0, 100] is 
minimized. In Fig. 5, we show our three test problems used in this section. 
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       (a) Two-objective problem.      (b) Four-objective problem.      (c) Six-objective problem. 

Fig. 5. Three test problems used in Section 4 

For example, let us assume that four points A, B, C and D are given as in Fig. 5 
(b). In this case, our four-objective test problem is written as follows: 
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Minimize distance(A, x), distance(B, x), distance(C, x) and distance(D, x), (11) 

where distance(A, x) shows the Euclidean distance between the point A and a two-
dimensional decision vector x in the decision space [0, 100] × [0, 100]. 

As shown in this formulation, the number of objectives is the same as the number 
of the given points. Thus we can generate various test problems with an arbitrary 
number of objectives. As in Fig. 5, we can also generate highly correlated objectives 
using closely located points. Regular polygons were used to generate this type of test 
problems in [18], [25]. Multiple polygons were used to generate test problems with 
multiple equivalent Pareto regions and/or disjoint Pareto regions in [9].  

We applied NSGA-II, SPEA2 and MOEA/D to our three test problems in Fig. 5 
using the following setting: 

Population size in NSGA-II and SPEA2: 200 
Population size in MOEA/D: 200 (2-objective), 220 (4-objective), 252 (6-objective), 
Parameter H for generating weight vectors in MOEA/D: 
      199 (2-objective), 9 (4-objective), 5 (6-objective), 
Coding: Real number string of length 2, 
Stopping condition: 400,000 solution evaluations, 
Crossover probability: 1.0 (SBX with ηc = 15),  
Mutation probability: 0.5 (Polynomial mutation with ηm = 20),  
Neighborhood size T (i.e., the number of neighbors): 10. 

Experimental results of a single run of each algorithm on the two-objective test 
problem in Fig. 5 (a) are shown in Fig. 6. All solutions at the final generation are 
shown in each plot in Fig. 6 where Pareto optimal solutions are points on the line 
between the points A and B. In Fig. 6 (a) and Fig. 6 (b), the final populations included 
many sub-optimal solutions that are not on the line between the points A and B. Much 
better results with respect to the convergence to the Pareto front were obtained by 
MOEA/D in Fig. 6 (c) where all solutions are on the line between the points A and B. 
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                 (a) NSGA-II.                              (b) SPEA2.                            (c) MOEA/D. 

Fig. 6. Experimental results on the two-objective test problem in Fig. 5 (a) 

Fig. 7 shows experimental results on the four-objective test problem in Fig. 5 (b) 
where Pareto optimal solutions are points inside the four points A, B, C and D. As in 
Fig. 6, the best results with respect to the convergence were obtained by MOEA/D in 
Fig. 7. However, we can observe some regions with no solutions in Fig. 7 (c). That is, 
obtained solutions in Fig. 7 (c) are not uniformly distributed. 
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Fig. 7. Experimental results on the four-objective test problem in Fig. 5 (b) 
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                  (a) NSGA-II.                             (b) SPEA2.                              (c) MOEA/D. 

Fig. 8. Experimental results on the six-objective test problem in Fig. 5 (c) 

Fig. 8 shows experimental results on the six-objective test problem in Fig. 5 (c) 
where Pareto optimal solutions are points inside the six points A, B, C, D, E and F. 

As in Fig. 6 and Fig. 7, the best results with respect to the convergence were 
obtained by MOEA/D in Fig. 8. However, we can observe that obtained solutions in 
Fig. 8 (c) by MOEA/D are not uniformly distributed. 

We calculated the average hypervolume over 100 runs. The reference point for 
hypervolume calculation was specified as 1.1 × (the maximum objective value for 
each objective among Pareto optimal solutions of each problem), which is 1.1 × (the 
distance from each point to its farthest point). Experimental results are summarized in 
Table 2. For the two-objective problem, the best results were obtained by MOEA/D in 
Table 2, which is consistent with Fig. 6. The performance of MOEA/D, however, was 
the worst in Table 2 for the four-objective and six-objective problems. This is due to 
the existence of regions with no solutions as shown in Fig. 7 (c) and Fig. 8 (c).  

 

Table 2. Average hypervolume and standard deviation for each test problem 

NSGA-II SPEA2 MOEA/D 
Problem 

Average Stand. Dev. Average Stand. Dev. Average Stand. Dev. 
Two-Objective 4.521E+03 7.409E-01 4.518E+03 1.616E+00 4.528E+03 3.801E-03 
Four-Objective 1.992E+07 1.720E+04 1.987E+07 2.694E+04 1.912E+07 6.626E+02 
Six-Objective 3.761E+10 4.322E+07 3.736E+10 6.520E+07 3.227E+10 6.724E+06 
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We also calculated the average hypervolume in the 2-D objective space with the 
two objectives defined by the two points A and B. That is, solution sets obtained for 
the four-objective and six-objective problems were projected onto the two-
dimensional (2-D) objective space as in Table 1 in the previous section. Then the 
average hypervolume were calculated. Experimental results are summarized in 
Table 3. When the three algorithms were applied to the two-objective problem, the 
best average value 4.528 × 103 was obtained by MOEA/D. However, this average 
value was decreased to 4.216 × 103 by 6.89% when MOEA/D was applied to the six-
objective problem. In the case of NSGA-II, the decrease in the average hypervolume 
value was only 0.35% from 4.521 × 103 to 4.505 × 103. The decrease in the case of 
SPEA2 was also small (i.e., 0.58%). That is, the inclusion of the highly correlated 
objectives severely degraded the performance of MOEA/D whereas it had almost no 
negative effects on the other two algorithms. 

In Fig. 7 (c) and Fig. 8 (c), solution sets with strange distributions were obtained by 
MOEA/D for the four-objective and six-objective problems. Such an undesirable 
behavior disappeared when we decreased the correlation among the similar objectives 
(i.e., when we increased the distance among the closely located points as shown in 
Fig. 9). From Fig. 9, we can see that the decrease in the correlation among the 
objectives leads to better distributions along the line between the two points A and B. 

 
Table 3. Average hypervolume and standard deviation in the 2-D objective space 

NSGA-II SPEA2 MOEA/D 
Problem 

Average Stand. Dev. Average Stand. Dev. Average Stand. Dev. 
Two-Objective 4.521E+03 7.409E-01 4.518E+03 1.616E+00 4.528E+03 3.801E-03 
Four-Objective 4.504E+03 2.894E+00 4.485E+03 4.198E+00 4.412E+03 1.380E-01 
Six-Objective 4.505E+03 2.013E+00 4.492E+03 3.283E+00 4.216E+03 1.216E-01 
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Fig. 9. Experimental results of MOEA/D on other six-objective test problems 

5   Conclusions 

We demonstrated that highly correlated objectives severely degraded the performance 
of MOEA/D whereas they had almost no negative effects on the performance of 
NSGA-II and SPEA2. The reason for the performance deterioration of MOEA/D may 
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be the use of a uniform grid of weight vectors independent of the correlation among 
objectives. When an m-objective problem has highly correlated objectives, its Pareto 
front in the objective space has a totally different shape from the uniform grid of 
weight vectors in the m-dimensional weight vector space [0, 1]m. This leads to a 
strange distribution of obtained solutions by MOEA/D. Our experimental results 
clearly suggest the necessity of the adjustment of weight vectors according to the 
correlation among objectives, which is left as a future research issue. Further 
discussions on the behavior of each algorithm are also left as a future research issue. 
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Abstract. Multi-objective random one-bit climbers (moRBCs) are one
class of stochastic local search-based algorithms that maintain a refer-
ence population of solutions to guide their search. They have been shown
to perform well in solving multi-objective optimization problems. In this
work, we analyze the performance of moRBCs when modified by intro-
ducing tabu moves. We also study their behavior when the selection to
update the reference population and archive is replaced with a proce-
dure that provides an alternative mechanism for preserving the diversity
among the solutions. We use several MNK-landscape models as test in-
stances and apply statistical testings to analyze the results. Our study
shows that the two modifications complement each other in significantly
improving moRBCs’ performance especially in many-objective problems.
Moreover, they can play specific roles in enhancing the convergence and
spread of moRBCs.

1 Introduction

Multi-objective optimization (MO) is the process of simultaneously finding so-
lutions to two or more, and often conflicting, objectives. It is referred to as
many-objective optimization (MaO) if there are at least four objectives. MaO
has attracted the interest of many researchers because of the poor performance
of multi-objective evolutionary algorithms (MOEAs) which are known to be effi-
cient in solving MO problems. Research studies reveal that the poor performance
can be attributed to the substantially large number of solutions in the Pareto
front levels when the number of objectives is high [1,2]. This makes that Pareto
dominance of MOEAs coarser as they assign equal ranks to many solutions
[3,4,5], thereby weakening their convergence property.

Many of the algorithms for solving MaO problems are based on modifying
the MOEAs by introducing strategies such as ranking improvement [6], dimen-
sionality reduction [7,8], objective space partitioning [9,10], and the use of pref-
erence information, scalarizing and indicator functions [11,12,13,14]. Aside from
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improving the conventional MOEAs, other works have focused on developing
approaches that are based on the stochastic local search (SLS) paradigm. The
principle of SLS is the idea behind many of the general-purpose methods like it-
erated local search, simulated annealing, tabu search, and variable neighborhood
search [15]. In general, SLS searches for good solutions by exploiting the local
knowledge provided by the definition of solution neighborhood [15]. There are
several studies that demonstrate their ability to solve multi-objective problems
of different domains (e.g. [16,17,18]).

Depending on the search strategy, the various SLS algorithms for multi-
objective combinatorial problems can be grouped into two classes [19]. One class
uses an acceptance criterion based on dominance relations and the other class is
based on scalarization of the objective functions. One family of dominance-based
SLS algorithms that scales up very well in MaO problems are the multi-objective
random one-bit climbers (moRBCs) [20]. These algorithms follow the principle of
1+1-Evolution Strategy since they use a single parent solution to create a child.
They also incorporate a reference population to sustain their search, maintain
an archive that stores the efficient solutions, and limit the neighborhood struc-
ture to one-bit flip moves. They have been demonstrated to perform better than
conventional multi-objective optimizers like NSGA-II [21] and SPEA2 [22] on
various MNK-landscape models [4]. In fact, moRBCs (or SLS in general) are
desirable many-objective optimizers especially for problem instances where the
non-dominated solutions are not highly correlated in decision (genotype) space,
objective (phenotype) space and between spaces since mutation operators alone
have been shown to perform better than optimizers with crossover in such prob-
lem instances [4].

In this work, we propose enhancing the implementation of moRBCs by intro-
ducing a strategy that allows the search to explore for more promising solutions.
We also propose improving the mechanism for updating the reference popula-
tion and archive by using a sampling distribution that applies a wider domi-
nance region. In addition, this work discusses how these methods can enhance
the performance of moRBCs and demonstrates that these strategies comple-
ment each other. To evaluate the performance of moRBCs, we apply the same
MNK-landscape models used in [20] as test instances.

2 Multi-objective Optimization and MNK-Landscapes

Multi-objective optimization (MO) involves simultaneously optimizing a set of
two or more objective functions. Formally, it can be stated as follows:

max
x∈X

f(x) = (f1(x), f2(x), . . . , fM (x)) (1)

where X ⊂ IRN is the feasible space, f : IRN → IRM is a vector-valued objective
function, fi (i = 1, 2, . . . , M) denote the individual objective functions and M
is the number of objectives.

In general, there are several optimal solutions, also called non-dominated so-
lutions, to MO problems. A solution x is non-dominated if there exists no other
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feasible solution y such that fi(y) ≥ fi(x), for i = 1, 2, . . . , M and fi(y) > fi(x)
for some i. If such solution y exists, then we say that y dominates x (y � x).
Other dominance relations between any two feasible solutions x and y also exist.
For example, y weakly dominates x (y � x) if and only if f(y) ≥ f (x) (i.e.,
fi(y) ≥ fi(x) ∀i = 1, 2, . . . , M) and y ε-weakly dominates solution x if and
only if (1 + ε)f(y) ≥ f(x). Finally, the image of the non-dominated solutions in
the objective space is called the Pareto front or efficient frontier.

The MNK-landscape [4] is an extension of Kauffman’s NK-landscape mod-
els of epistatic interaction [23] to multi-objective combinatorial optimization
problems. Formally, the MNK-landscape is defined as a vector function mapping
binary strings of length N into M real numbers f = (f1, f2, . . . , fM ) : ZN → RM ,
where Z = {0, 1}. K = {K1, K2, . . . , KM} is a set of integers where each Ki gives
the number of bits in the string that epistatically interact with each bit in the
ith landscape. Each fi(·) is given by the average of N functions by

fi(x) =
1
N

N∑
j=1

fi,j(xj , z
(i,j)
1 , z

(i,j)
2 , . . . , z

(i,j)
Ki

) (2)

where fi,j : ZKi+1 → R gives the fitness contribution of xj to fi(·), and z
(i,j)
1 , z

(i,j)
2 ,

. . . , z
(i,j)
Ki

are the Ki bits interacting with xj in string x. Note that K defines
the degree of non-linearity of the problem. Varying Ki from 0 to N − 1 gives a
family of increasing rugged multi-peaked landscapes resulting to hard-to-solve
problems [4].

3 Multi-objective Random One-Bit Climbers

Multi-objective random one-bit climbers (moRBCs) begin by randomly cre-
ating a parent string p of length N and generating a random permutation
π = (π1, π2, . . . , πN ) of the string positions. Then, a child c is created by cloning
p and flipping the bit at position πi. Next, c is evaluated and replaces p if it sat-
isfies the replacement criterion. Child creation, evaluation, and (possibly)
parent replacement are repeated until all positions in π are used up. Once a
parent replacement is detected, the search continues by creating a new permu-
tation π. When no replacement is performed then a local optimum has been
found and moRBC restarts the search. The algorithm stops after performing
maxeval function evaluations.

A set of up to γ solutions not dominated by the parent and among them-
selves are maintained in a reference Population during the search process. The
moRBCs perform the population restart by replacing the parent with one indi-
vidual chosen from the Population. If the Population is empty, then the parent
is replaced with a randomly generated string (this is known as hard restart).
In addition, the non-dominated solutions found throughout the search are stored
in an Archive of size σ. The procedure that updates the Population and the
Archive uses diversity preserving mechanism in objective the space of NSGA-II.
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Hence, the non-dominated individuals with better crowding distance are pre-
ferred when the sizes of Population and Archive exceed their limits. Algorithm
1 provides the outline of moRBCs.

Algorithm 1. Multi-objective random one-bit climbers
1: Initialize parent p with a random string of length N , add p to Archive, and set

the number of evaluations counter to t = 1
2: While (t < T )[–generation loop–]
3: Create permutation π = (π1, π2, . . . , πN) of the N string positions, randomly set

the permutation index to i = 1, and set local optimum to yes
4: While (i < N and t < T ) [–iteration loop–]
5: - Clone the p and flip the bit at position πi to create child c.
6: - If c fulfills the replacement criterion then replace p with c and set local

optimum to no
7: - If c is not dominated by p then update Archive and Population with c
8: - Increment t and i, t = t + 1 and i = i + 1
9: If local optimum is yes then restart the search by replacing p with an

individual of the Population. If Population is empty then p is initialized
anew with a random string. Increment t, t = t + 1

10: Return Archive

In [20], different versions of moRBC were created by varying the replacement
criterion and restart policy. It was revealed that moRBCs that use dom-
inance relation as replacement criterion and apply population/hard restart
perform very well varying the number of objectives and levels of epistatic inter-
actions. Thus, in this work we focus on further improving this moRBC version.

4 Improvement Strategies for MoRBCs

4.1 Tabu Moves

One may observe that the moRBCs presented in Algorithm 1 allows the search
to visit quite a number of the same solutions. For example, if child c created by
flipping the bit position πi replaces the current parent and none of the succeeding
children created by flipping the bits at positions πj , i < j ≤ N dominates c (the
new parent), then these same children will again be visited if c is determined to be
a local optimum. Thus, we propose creating a new permutation π immediately
after a child replaces the parent. However, it is still possible that a child will
be created again in the succeeding iterations. For example, consider the series
of parent solutions c1(11111) → c2(11110) → c3(11010). Then, c3 will again
produce the same child (11011) created by c1. Also, c2 is a child of c3. To avoid
re-visiting a solution, some of the children will not be created i.e., moves leading
to these children will be considered tabu up to a certain time period (also called
tabu age). Thus, a list lc of prohibited or tabu moves is associated to every
child c that is not dominated by the parent solution. If i ∈ lc then the 1-bit flip
operator will not be applied to bit i.
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Aside from including in the tabu list the move that lead to the child, each
non-dominated child also inherits the tabu moves of its parent. For example, the
tabu list of c3 does not only include “3” to avoid re-visiting c2 but also “5” to
avoid cycling back to (11011). Hence, if solution ci is obtained by flipping the
jth (1 < j ≤ N) bit of solution ci−1 then lci = lci−1

∪ {j}. However, if the size
of lci exceeds the limit τ then the “oldest” move in lci−1

is removed. Thus, τ
can be interpreted as the maximum tabu age of the moves.

4.2 Adaptive ε-Ranking

In many-objective optimization problems, the process of restart is called more
often because the created solutions are more likely to be non-dominated by the
parent solutions. Hence, the diversity of solutions preserved in the Population
available for restart is a key factor to improve the performance of moRBCs. To
maintain the Population (Archive) , the original moRBCs apply an updating
procedure based on NSGA-II’s crowding distance. In this work, we modify the
updating procedure by using the adaptive ε-ranking [9].

The adaptive ε-ranking is a randomized sampling procedure that chooses,
from sets of equally ranked solutions, those solutions that will be given selective
advantage. By using dominance regions wider than conventional Pareto domi-
nance, it increases selection probabilities of some of the solutions while keeping a
balance effort in exploring the different regions of the objective space represented
in the actual population.

The proposed sampling procedure initially forms the set L by copying all
the extreme solutions of Population (Archive). Consequently, these extreme so-
lutions are removed from Population (Archive). The other solutions of L are
chosen as follows: Randomly draw a solution y ∈ Population(Archive) and re-
move all solutions in Population (Archive) that are ε-weakly dominated by y
including the solution y itself. We repeat this process until Population (Archive)
becomes empty. Finally, the new Population (Archive) is composed of the so-
lutions of L.

Similar to [9], the value of ε is adapted to ensure that the size of the updated
Population (Archive) is equal to or somewhere near the value of γ(σ). In con-
trast, we use a continuous approach in updating the value of ε instead of an
incremental strategy. Thus, the value of ε in generation t ≥ 1 is calculated using
the formula

εt+1 =

⎧⎪⎪⎨⎪⎪⎩
εt , if |X b

t | = σ
ε0 , if |X b

t | = |X a
t |

εt ×
|X b

t | − σ

|X b
t | − |X a

t |
, otherwise

(3)

where X b
t and X a

t are the sizes of Population (Archive) before and after applying
the adaptive ε-ranking, respectively, and ε0 is the initial value. We place a lower
limit εmin to the value of ε to guarantee that ε does not approach zero. If ε falls
below this limit, then its value is reset to εmin. At this point, it is important to
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emphasize that the updating of the Population and Archive of the moRBCs is
done only after every iteration (Lines 4-8 of Algorithm 1 ) in order to lessen the
number of calls to either the crowding distance operator of NSGA-II or adaptive
ε-ranking.

5 Experimental Design

5.1 Performance Metrics

Three metrics are used to assess the performance of the optimizers. First is
the hypervolume H which measures the volume of the objective space that is
weakly dominated by an approximation set or a set whose elements do not
weakly dominate each other [22]. It is dependent on a reference point O obtained
using the parameter α, i.e., O = α × (fm

1 , fm
2 , . . . , fm

M ) where fm
i = min

x∈A
fi(x),

i = 1, 2, . . . , M , and A is the union of all approximation sets. In this work
we use α = 0.99 instead of α = 0 as used in [20], to measure the quality of the
convergence near the Pareto-optimal front. To calculate H, we use the algorithm
presented in [24].

The second metric is the set coverage C(X, Y ), a binary quality indicator
that gives the proportion of approximation set Y that is weakly dominated by
approximation set X [25]. Thus, if A weakly dominates all members of B then
C(A, B) is equal to 1 whereas if no member of B is weakly dominated by A, then
C(A, B) is zero. Finally, we use the sum of maximum objective values (Smax)
which measures the convergence of solutions at the extremes and around the M
edges of the Pareto front [5] by providing information about their diversity or
spread. It can be expressed as Smax(X) =

∑M
i=1 max

x∈X
fi(x).

5.2 Non-parametric Statistical Tests

In this study, we compare the performance of two or more optimizers (or con-
figuration sets) by making statistical inferences about their underlying approx-
imation set distributions. Thus, we perform non-parametric statistical testings
called Friedman’s test and Wilcoxon signed rank test on the metric values ob-
tained by different optimizers. These tests are chosen since we wish to determine
if the optimizers have identical effects without making any assumptions about
the distributions of their metric values. Note that Friedman’s test is applied
when at least 3 optimizers are being compared while Wilcoxon signed rank test
is used when only two optimizers are available. Reference [26] provides a detailed
discussion about these tests.

In order for the statistical testings to give a more meaningful results, we set
the initial population and random seeds the same for all optimzers. In this case,
the inference relates to the ability of the different optimizers to improve the
initial population [27]. We take the null hypothesis to be that the distribution
of metric values are the same for all optimizers.
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5.3 Test Problems and Parameter Settings

The different optimizers are evaluated using MNK-landscape models having
2 ≤ M ≤ 10 objectives, N = 100 bits and K = Ki ∈ {0, 3, 7, 15, 25, 50}
i = 1, 2, . . . , M levels of epistatic interaction. There are 50 test instances for
every M, K landscape model combination and each optimizer is performed once
per test instance. Since the performance metrics require normalization, we use
NSGA-II to generate reference solutions for the normalization process. NSGA-II
uses a duplicate elimination strategy which boosts its performance especially for
2 and 3 objectives [4]. Following the parameter settings in [20], it uses 100 indi-
viduals, 2-pt crossover with 0.6 recombination rate, and 1/N per bit mutation
rate. The values of σ and γ are fixed to 100 and maxeval is set to 3 × 105.

6 Results and Discussions

6.1 Effects of Tabu Ages

To analyze the effects of using tabu moves, we use different tabu ages (τ =
0, 2, 4, 6, 7, 10). The zero tabu age (τ = 0) means that the only modification on
moRBC is the creation of the new random permutation π of the string positions
every time a child replaces the parent, i.e. it does not maintain a list of tabu
moves. Applying the Friedman’s test, results show that there is a strong evidence
that the distributions of H and Smax values among the different configurations
across various number of objectives and epistatic interactions are statistically
different (p-values<0.05). Thus, we perform a post-hoc analysis that determines
which pairs of configurations are significantly different from each other1.

Since there are 21 pairs to analyze on each of the 54 (9×6) landscape models,
we summarize the results by counting the number of landscape models where
configuration X has better distribution than configuration Y at significance level
of α = 0.05. Table 1 shows the results for both the H and Smax values. It can be
observed that in terms of the H metric, moRBCs with 2 ≤ τ ≤ 10 have better
distribution than the original moRBC (Config. A) on 20 (different) landscape
models on the average while A is only better in at most 4 landscape models.
Overall, moRBC with τ = 4 (Config. D) has the most number of landscape
models (22) where it is better than A. It also has the least number of landscape
models (5) where other configurations have better distributions.

In terms of Smax, one may also observe that the performance of original
moRBC (Config. A) is significantly enhanced by using tabu moves especially
when 6 ≤ τ ≤ 10. There is no landscape model where the distribution of Smax
values of A is better than those of Config. C,D,E,F,G (2 ≤ τ ≤ 10), whereas
there is a total of at least 44 landscapes (out of 54) where the C,D,E,F,G have
better distributions than A. Overall, moRBC with τ = 8 (Config. F) has the
most number of landscape models (51) where it is better than A. It also has

1 The code for this analysis is available at http://www.r-statistics.com/2010/02/

post-hoc-analysis-for-friedmans-test-r-code/
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Table 1. Number of test instances where ROW is statistically better than COL given
a significance level of α = 0.05. The last row (column) gives the sum of the column
(row) entries.

Hypervolume

A B C D E F G

A – 0 1 1 2 3 4 11
B 0 – 1 1 2 3 2 9
C 17 17 – 1 2 3 6 46
D 22 18 2 – 0 4 13 59
E 20 22 4 1 – 0 4 51
F 20 19 3 0 0 – 1 43
G 20 16 2 1 0 0 – 39

99 92 13 5 6 13 30

A : original moRBC
B : moRBC (τ = 0)
C : moRBC (τ = 2)
D : moRBC (τ = 4)

Sum of maximum objectives

A B C D E F G

A – 0 0 0 0 0 0 0
B 0 – 0 0 0 0 0 0
C 44 43 – 0 0 1 6 94
D 48 48 5 – 0 1 9 111
E 50 51 7 2 – 0 2 112
F 51 51 14 7 1 – 1 125
G 50 51 13 9 6 1 – 130

243 244 39 18 7 3 18

E : moRBC (τ = 6)
F : moRBC (τ = 8)
G : moRBC (τ = 10)

the least number of landscape models (3) where other configurations have better
distributions. Finally, applying a new permutation alone (τ = 0) does not show
significant improvement on the performance of original moRBC. This further
shows that maintaining a list of prohibited moves is effective in enhancing the
original moRBC.

6.2 Effects of Adaptive ε-Ranking

We refer to moRBCs with adaptive ε-ranking as moRBC e. We set the values
of ε0 and εmin to 0.05 and 0.0001, respectively. Figure 1 plots the values of ε
and the size of Archive before and after applying adaptive ε-ranking in one test
instance where M = 10 and K = 7. Observe that the size of Archive fluctuates
around σ = 100 thereby indicating that the adaptive selection strategy performs
its function accordingly. Table 2 summarizes the results of the Wilcoxon signed
rank test on the H and Smax values. Results show that the distribution of H
values of moRBC e are significantly better than those of original moRBC when
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Table 2. Wilcoxon signed rank test. The table contains the p-values with respect to
alternative hypothesis that the distribution of the metric values of moRBC e is better
than those of original moRBC given a significance level of α = 0.05.

Hypervolume

K = 0 K = 3 K = 7 K = 15 K = 35 K = 50

M = 2 1.0000 0.9971� 1.0000 1.0000 1.0000 1.0000
M = 3 0.0000 0.0002 0.0204 0.9980� 0.9974� 0.0000
M = 4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
M = 5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
M = 6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
M = 7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
M = 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
M = 9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
M = 10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Sum of maximum objectives

K = 0 K = 3 K = 7 K = 15 K = 35 K = 50

M = 2 1.0000 0.7669 1.0000 1.0000 1.0000 1.0000
M = 3 0.8284 1.0000� 0.9952� 0.9976� 0.2060 0.8158
M = 4 0.4511 0.9982� 0.9884� 0.9992� 0.9997� 0.1013
M = 5 0.0008 0.8304 0.9815� 0.9613� 0.9314 0.7995
M = 6 0.0000 0.1847 0.1721 0.6431 0.7220 0.0946
M = 7 0.0000 0.0823 0.1745 0.9923� 0.2878 0.0073
M = 8 0.0000 0.0008 0.1672 0.1195 0.5576 0.1004
M = 9 0.0000 0.0000 0.0686 0.0387 0.0725 0.0053
M = 10 0.0000 0.0001 0.0000 0.0001 0.2257 0.0031

� moRBC is better than moRBC e at significance level α = 0.05

4 ≤ M ≤ 10 and for all K. When M = 2, the original moRBC and moRBC e
have the same distributions except when the degree of epistasis is K = 3. When
M = 3, moRBC e again has better distributions than the original moRBC but
only when K = 0, 3, 7 and 50. These results suggest that the adaptive ε-ranking
becomes more effective when applied to many-objective problems. This can be
explained by the fact that there are fewer solutions in every Pareto front lev-
els when the number of objectives is low [4], thereby limiting the potential of
adaptive ε-ranking.

With regard to the Smax metric, the adaptive ε-ranking enhances the perfor-
mance of the original moRBC in limited number of landscapes. For example, it
improves the original moRBC when K = 0 and 5 ≤ M ≤ 10. Also, it generally
enhances the original moRBC for landscapes where M = 10. However, the orig-
inal moRBC has better Smax distributions when 3 ≤ M ≤ 4 and K = 3, 7, 15. It
is also better when M = 5 and K = 7, 15, M = 4 and K = 25, and M = 7 and
K = 15. In the other landscape models, no difference has been observed in their
distributions.

Overall, the adaptive ε-ranking is able to improve the performance of the
original moRBC. But since both the crowding distance and adaptive ε-ranking
always draw the extreme solutions when sampling the population, adaptive ε-
ranking has stronger positive impact on the convergence property than on the
diversity or spread of the solutions of the original moRBC.
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6.3 Comparison among Algorithms

We now analyze the performance of moRBCs when both tabu moves and adap-
tive ε-ranking are used. Since the adaptive ε-ranking greatly improves the con-
vergence of moRBCs, we thus use τ = 8 for the tabu moves because it generally
emphasizes more on spread. We refer to this method as moRBC te.

Friedman’s test shows that there is statistically significant difference in the
distributions of the metric values of the optimizers in all landscape models. The
results of post-hoc analysis, summarized in Table 3, also reveal that there is
no single optimizer whose distributions are better than those of the remaining
optimizers. We then use a descriptive statistic to differentiate the performance
quality of the optimizers. Thus, we consider optimizer OPT as the “best” op-
timizer in a given landscape if it fulfills the following conditions: (i) there is no
optimizer whose distribution is better than OPT (ii) OPT has the best me-
dian value compared to other optimizers that satisfy condition (i). The “best”
optimizer is enclosed in a box in Table 3.

In terms of the hypervolume, it can be observed that moRBC e and moRBC te
are the optimizers that perform well in landscapes with 4 ≤ M ≤ 10 objectives
as they generate statistically better distributions. Also, moRBC e is generally
better than moRBC te based on the two conditions discussed above. However, it
is only statistically better than moRBC te in landscapes where M = 10 and K =
15, 25. For M = 2, moRBC t and moRBC te are generally the best performing
optimizers simply because adaptive ε-ranking is rarely used due to small number
of solutions in the Pareto front levels. When M = 3, moRBC, moRBC t and
moRBC e generally perform well.

Figure 2(a) shows the ratio H(moRBCs)/H(NSGAII) or the normalized hy-
pervolume of the moRBCs varying M given K = 7. It can be observed that
moRBC e and moRBC te converge better as they posted around 100% improve-
ment (i.e. doubled) on H values generated by NSGA-II when M = 4 and 200%-
300% when 7 ≤ M ≤ 10. These improvements translate to better coverage of
the solutions of NSGA-II by moRBCs as shown in Fig. 3(a). For example, the
moRBCs weakly dominates at least 40% of the solutions of NSGA-II on aver-
age while NSGA-II only covers not more than 20% of the solutions of moRBCs
when M = 3. Also, moRBC e and moRBC te remarkably covers between 80%
and 100% of NSGA-II when 4 ≤ M ≤ 5 and around 60%-80% when 6 ≤ M ≤ 10.
Meanwhile, varying K and M = 10 yield similar results in terms of the hypervol-
ume and coverage metrics (Fig. 2(b) and 3(b)) i.e., moRBC e and moRBC te
perform very well.

As regards the Smax metric, Table 3 shows that moRBC t and moRBC te are,
in general, the optimizers that perform well in various MNK-landscapes. There
is a strong evidence that the distributions of the Smax values of at least one of
them are better than those of NSGA-II, moRBC and moRBC e for all M and
K = 7, 15, 25 and 50. Moreover, moRBC te is the only optimizer whose dis-
tribution of Smax values is not outdone by the other optimizers. Applying the
two conditions for determing the best optimizer in each landscape, one con-
cludes that moRBC te performs better than moRBC t when 7 ≤ M ≤ 10 and
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Table 3. Summary of post-hoc-analysis for different performance metrics. The symbol
X 
 Y means that the distribution of optimizer X is statistically better than that of
optimizer Y given a significance level of α = 0.05. The “best” optimizers are enclosed
in boxes.

Hypervolume

K = 0 K = 3 K = 7 K = 15 K = 25 K = 50

M = 2 A�mEN D�AEN mD�AEN mD�AEN mD�AEN mD�AEN

M = 3 Em�NAD E�mN ADEm�N ADE�mN DA�EmN Dm�AEN

M = 4 E�mNAD mE�ADN Em�ADN Em�ADN E�ADN E�ADN

M = 5 E�mNAD mE�ADN mE�ADN Em�ADN E�ADN Em�ADN

M = 6 Em�ADN mE�ADN mE�ADN Em�ADN E�ADN Em�ADN

M = 7 Em�ADN mE�ADN mE�ADN Em�ADN E�ADN Em�ADN

M = 8 Em�ADN Em�ADN Em�ADN Em�ADN E�ADN Em�ADN

M = 9 Em�ADN mE�ADN Em�ADN Em�ADN E�ADN mE�ADN

M = 10 Em�ADN mE�ADN Em�ADN E�ADmN E�ADmN Em�ADN

Sum of maximum objectives

K = 0 K = 3 K = 7 K = 15 K = 25 K = 50

M = 2 ADEm�N mDN�AE mD�AEN mD�AEN Dm�NAE Dm�NAE

M = 3 ADEmN∗ D�A Dm�AEN Dm�EN Dm�NAE mD�AEN

M = 4 NADEm∗ mD�AEN Dm�AEN D�AEN D�AEN Dm�AEN

M = 5 m�NADE mDN�AE Dm�AEN D�AEN Dm�AEN mD�AEN

M = 6 m�NAD mDN�AE mD�AEN m�EN Dm�AEN mD�AEN

M = 7 m�NAD m�ADE mD�AEN m�EN mD�AEN mD�AEN

M = 8 N�AD mDN�AE mD�AEN m�EN Dm�AEN mD�AEN

M = 9 m�NAD mN�ADE mD�AEN m�EN Dm�AEN mD�AEN

M = 10 m�NADE m�ADE mD�AEN m�EN mD�AEN mD�AEN

N: NSGA-II
A : original moRBC
D : moRBC t
E : moRBC e
m : moRBC te
∗ all optimizers are statistically the
same
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Fig. 2. Normalized H (a) varying M given K = 7 (b) varying K given M = 10
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Fig. 3. Coverage metric (a) varying M given K = 7 (b) varying K given M = 10

K = 3, 7, 15, 25 and 50 while moRBC t excels in landscapes where 3 ≤ M ≤ 6
and K = 3, 7, 15, 25 and 50. Both generates the same Smax distributions when
M = 2 and K = 7, 15, 25 and 50.

Figure 4(a) provides the boxplots of the normalized Smax values varying M
given K = 7. It is clear that moRBC t and moRBC te have better distributions
than moRBC and moRBC e. They also have higher Smax values than NSGA-
II by 2% on average. Figure 4(b) shows the normalized Smax values varying
K given M = 10. Again, moRBC t and moRBC te have better values than
moRBC and moRBC e. They also register Smax values that are 2-3% higher
than NSGA-II when K = 7, 15, 25 and 50.
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Fig. 4. Normalized Smax (a) varying M given K = 7 (b) varying K given M = 10

In summary, our results reveal that using tabu moves significantly enhances
the spread of moRBCs by generating better extreme solutions while adaptive
ε-ranking greatly improves the convergence towards the Pareto-optimal front.
The degree of improvement varies depending on the landscape model. More-
over, the two strategies complement each other since the same improvements in
convergence and spread are realized when they are simultaneously applied.

7 Conclusions and Future Directions

In this work, we study the behavior of multi-objective random one-bit climbers
(moRBCs) in MNK-landscapes when tabu moves and adaptive ε-ranking are
introduced. In tabu moves, each accepted solution maintains a list of prohibited
moves that may lead the search to re-visit previous solutions. Results show that
using tabu moves can greatly improve the performance of moRBCs especially in
terms of the quality of the spread. Also, the tabu age (τ) which determines how
long the move remains tabu has different effects on the performance of using
tabu moves under various landscape models.

The adaptive ε-ranking is a selection procedure that uses a wider dominance
region than the conventional Pareto dominance. Our study reveals that it can
also enhance the performance of moRBCs. Although in general this procedure
can improve the quality of spread, it provides a more significant and remarkable
improvement on the convergence behavior of the moRBCs.

Finally, our study also shows that tabu moves and adaptive ε-ranking comple-
ment each other since moRBCs that incorporate the two strategies (moRBC te)
enhance the convergence of the moRBCs with tabu moves alone (moRBC t) and
the spread of the moRBCs that only uses adaptive ε-ranking (moRBC e). In so
doing, moRBC te maintains the quality of spread and convergence of moRBC t
and moRBC e, respectively.
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In the future, we would like to study the run-time behavior of these mod-
ified moRBCs to understand their efficiency in reaching the desired solutions.
Lastly, we would like to analyze the performance of moRBCs when the one-bit
neighborhood structure is extended to a more complex form.
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Abstract. Test problems have played a fundamental role in understand-
ing the strengths and weaknesses of the existing Evolutionary Multi-
objective Optimization (EMO) algorithms. A range of test problems exist
which have enabled the research community to understand how the per-
formance of EMO algorithms is affected by the geometrical shape of the
Pareto front (PF), i.e., PF being convex, concave or mixed. However, the
shapes of the Pareto Set (PS) of most of these test problems are rather
simple (linear or quadratic), even though the real-world engineering prob-
lems are expected to have complicated PS shapes. The state-of-the-art
in many-objective optimization problems (those involving four or more
objectives) is rather worse. There is a dearth of test problems (even those
with simple PS shapes) and the algorithms that can handle such prob-
lems. This paper proposes a framework for continuous many-objective
test problems with arbitrarily prescribed PS shapes. The behavior of
two popular EMO algorithms namely NSGAII and MOEA/D has also
been studied for a sample of the proposed test problems. It is hoped
that this paper will promote an integrated investigation of EMO algo-
rithms for their scalability with objectives and their ability to handle
complicated PS shapes with varying nature of the PF.

Keywords: Evolutionary Many-objective Optimization and Pareto-set
shapes.

1 Introduction

A Multi-objective Optimization Problem (MOP) can be stated as follows:

minimize F (x) = (f1(x), . . . , fM (x)) (1)
subject to x ∈ Ω

where Ω = (x1, x2, . . . , xn)T ∈ Rn is the decision (variable) space; RM is the
objective space; and F : Ω → RM consists of M real-valued objective functions.
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When Ω is a closed and connected region in Rn and all the objectives are con-
tinuous in x, the problem is referred as a continuous MOP. When M ≥ 4, the
problem is typically referred as a many-objective problem.

Let u = (u1, . . . , uM ) and v = (v1, . . . , vM ) ∈ RM be two solutions. Assuming
minimization, u is said to dominate v if ui ≤ vi for all i = 1, . . . , M, and u �= v.
A point x� ∈ Ω is called (globally) Pareto-optimal if there is no x ∈ Ω such
that F (x) dominates F (x�). The set of all the Pareto-optimal points is called
the Pareto set (PS), while the set of all the corresponding objective vectors is
called the Pareto front [1], given by PF= {F (x) ∈ RM |x ∈ PS}.

Evolutionary Multi-objective Optimization (EMO) algorithms aim to find a
set of representative Pareto-optimal solutions in a single simulation run. Several
EMO algorithms exist [2] whose behaviors and performances have been exper-
imentally studied largely on continuous test problems [3–5] with varying PF
shapes. However, the issue of how the geometrical shapes of PS affect the per-
formance of EMO algorithms remains largely unknown owing to the fact that
most of the above test problems have either linear or quadratic PS shapes. Citing
two real-world instances of vehicle dynamic design [6] and power plant design [7],
the authors in [8] have argued that there is no reason to believe that real-world
problems would merely have linear or quadratic shapes of PS which most of the
existing test problems are limited to. The issue of complicated PS has been only
been rarely discussed in literature. Emphasizing the need for constructing test
instances with complicated PSs, the authors in [9] have proposed a method for
controlling PS shapes. However, their test instances were limited to two-objective
and two-variable problems. Two relatively recent studies [10] and [11] which dis-
cuss the issue of variable linkages, indirectly touch upon the issue of complicated
PSs because introducing such linkages may complicate PS shapes (but not neces-
sarily so). The issue of variable linkages/complicated shapes has also been dealt
with in [12] and [13]. In another case, the authors in [14] have examined many-
objective test problems with one- and two-dimensional PS. However, the focus
in these studies has again been limited to test instances with linear or quadratic
shapes.

Finally, [8] provides a general class of multi-objective continuous test instances
with arbitrarily prescribed PS shapes the complexity of which can be directly
controlled. While the focus in [8] is limited to two and three objectives, the
current paper extends the framework to four or more objectives, or in other
words many-objective problems. The utility of this endeavor is two fold. Firstly, it
holds the promise of partly remedying the dearth of test problems in the domain
of evolutionary many-objective optimization. Secondly, owing to the control on
the complexity of the PSs, the test instances in the proposed framework could
serve as better representatives of existing/potential real-world many-objective
problems.

In the remainder of this paper, first the framework for many-objective prob-
lems with arbitrarily prescribed PS shapes is proposed. This is followed by
the study of the performance of two well known EMO algorithms, namely
NSGAII [15] and MOEA/D [16], on a sample of the proposed test problems.
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2 Brief Background for Evolutionary Many-Objective
Optimization

Many-objective optimization problems are those which involve four or more ob-
jectives. Research in evolutionary many-objective optimization has revealed that
the existing EMO algorithms scale poorly with the number of objectives [17,18].
The poor scalability of the existing EMO algorithms has been found to relate to
dominance resistance [19]; active diversity maintenance [20] and unknown effect
of recombination parameters [19,20]. The high computational cost and difficulty
in visualization of many-objective space add to the challenge. While one set of
approach aims to counter the above difficulties by use of preference-ordering
information [21], another set of approach explores the possibility of problem
simplification. The latter, also referred as the objective reduction approach at-
tempts to eliminate objectives that are not essential to describe the PF. In other
words, given an M -objective problem, the objective reduction approach aims to
identify those m (m < M) objectives which describe the complete PF. Such m
objectives are referred as the essential or critical objectives while those which
could be discarded are referred as redundant objectives.

The only scalable test problems belong to the DTLZ [5] or the WFG [10]
test suite. However, in both these test suites, the complexity of the PS can not
be controlled. It is fair to believe that testing of existing EMO algorithms on
problems with varying complexity of the PS shapes will be instrumental in better
understanding of the causality of their failure. Only then could the remedial
approaches be proposed in future. This paper aims to propose a framework for
many-objective problems with arbitrarily prescribed PS shapes.

3 Framework for Many-Objective Problems with
Arbitrarily Prescribed PS Shapes

The framework being proposed here for many-objective problems is an extension
of that introduced in [8] for two- and three-objective problems.

In the proposed framework, M denotes the number of objectives; m denotes
the dimension of the PF (m ≤ M); and n denotes the number of decision varia-
bles. The decision space be given by:

Ω =
n∏

i=1

[ai, bi] ⊂ Rn, (2)

where −∞ < ai < bi < +∞ for all i = 1, . . . , n.
Furthermore, the M objectives (to be minimized) take the following form:

fi(x) = αi(xI) + βi(xII − g(xI)) ∀i = 1, . . . , M (3)
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where

– x = (x1, . . . , xn) ∈ Ω; and, xI and xII are two subvectors of x, such that
xI = (x1, . . . , xm) and xII = (xm+1, . . . , xn).

– αi (i = 1, . . . , M): functions from
∏m

i=1[ai, bi] to R.
– βi (i = 1, . . . , M): functions from Rn−m to R+.
– g : a function from

∏m
i=1[ai, bi] to

∏n
i=m+1[ai, bi].

The PF and PS of the above framework is governed by the following theorem1:

Theorem 1. Suppose that

[i] βi(z) = 0 for all i = 1, . . . , m iff z = 0;
[ii] The PS of the following problem:

minimize (α1(xI), . . . , αM (xI))
subject to xI ∈

∏m
i=1[ai, bi]

(4)

is E ⊂
∏m

i=1[ai, bi].

Then the PS of the framework defined by (2) and (3) is

xII = g(xI), xI ∈ E

and its PF is the same as that of (4), i.e.

{(α1(xI), . . . , αM (xI))|xI ∈ E}.

It may be noted that:

– If the dimensionality of E is m, then the PS and PF of the test problem will
also be m-D.

– While the αis determine the PF of the test problem, the PS is determined
by g functions.

– The difficulty of convergence is controlled by βi functions. If
∑m

i=1 βi has
many local minima, then the test problem may have many local Pareto
optimal solutions.

– In comparison to DTLZ [5] or the WFG [10], this framework is similar to the
extent that it uses component functions for defining the PF and introducing
multimodality. However, the framework holds the advantage in terms of its
controllability of the complexity of PS.

– For an M -objective problem with an m-dimensional PF, βis are functions
from Rn−m to R+. Hence, let xII −g(xI) be represented by ym+1:n, following
which (3) could be compacted to the following form:

fi(x) = αi(xI) + βi(ym+1:n), ∀i = 1, . . . , M (5)

1 The proof of this theorem can be found in [8].
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3.1 Modular Approach to Test Instances

This section proposes a modular approach of composing test instances with
varying complexity of the PF and PS. It involves the following steps:

1. Decide for the number of objectives (M), the desired dimension of the PF
(m) and the number of decision variables (n).

2. Define the β function that controls the degree of convergence. In this paper,
the generalized form of the β function used in [8] has been proposed. Refer-
ence to Equations 3 and 5 reveals that XII−g(xI) = (xm+1−gm+1, . . . , xn−
gn) is represented by ym+1:n, i.e., y ∈ Rn−m. Given this, the β functions are
defined as follows:

β1(ym+1:n) = 2
|J1|

∑
j∈J1

y2
j ,

where J1 = {j|m + 1 ≤ j ≤ n, and j − 1 is a multiple of m+1}
β2(ym+1:n) = 2

|J2|
∑

j∈J2
y2

j ,

where J2 = {j|m + 1 ≤ j ≤ n, and j − 2 is a multiple of m+1}
...

...
βm(ym+1:n) = 2

|Jm|
∑

j∈Jm
y2

j ,

where Jm = {j|m + 1 ≤ j ≤ n, and j −m is a multiple of m+1}
βm+1(ym+1:n) = 2

|Jm+1|
∑

j∈Jm+1
y2

j ,

where Jm+1 = {j|m + 1 ≤ j ≤ n, and j is a multiple of m+1}
βk(ym+1:n) = Ak

∑n

j=m+2
akjy

2
j ,∀k = m + 2, . . . , M,

where Ak, aij > 0 are randomly generated constants.
(6)

3. Corresponding to a defined β function (as above), create different test ins-
tances based on Equation 5 by picking different combinations of Sα and Sy,
a few of which are presented in Tables 1 and 2, respectively.

4 EMO Algorithms Used and the Parameter Settings

The EMO algorithms considered are namely NSGAII [15] and MOEA/D [16].
MOEA/D is a decomposition based algorithm that is able to use different ap-
proaches for converting the problem of approximation of the PF into a number of
scalar optimization problems. The approaches considered in the simulations are
(i) weighted sum [22], (ii) Tchebycheff [22], and (iii) Normal Boundary Intersec-
tion (NBI) [23]. The probability of crossover for NSGAII is 0.9 while probability
of mutation is 0.1. For MOEA/D the probability of selecting mating parents from
neighboring subproblems is 0.9 and the number of nearest neighboring subprob-
lems “niche” is 20. The MOEA/D weight vectors, λ1, . . . , λN , are controlled by
a parameter H , selected as 6 for all test instances. Since each individual weight
vector takes the form {0/H, 1/H, . . . , H/H}, the number of weight vectors is
determined by

N = CH+M−1
M−1 .
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Table 1. The proposed sets of α(xI) (Equation 5)

Sα Set Composition

For m = 1 implying a one-dimensional PF: Variable bounds are [0, 1]

Sα1 α1(xI) = x1

α2(xI) = 1−√x1

αk(xI) = ( k−2
M
−√x1)2 ∀k = 3, 4, . . . , M .

Sα2 α1(xI) = x1

α2(xI) = 1− sin(2πx1)
αk(x1) = [x1 − 0.25 × (k−1)

M
]2 ∀k = 3, 4, . . . , M .

Sα3 α1(xI) = x1

α2(xI) = 1− sin(2πx1)

αk(x1) =

⎧⎨⎩
ψ1(x1) = [x1 − 0.25× (k−1)

M
]2, if 0 ≤ x1 ≤ 0.75

ψ2(x1) = A + (x1 − 0.75− 0.25 × (k−1)
M

)2, otherwise
where A : ψ1(0.75) = ψ2(0.75) ∀k = 3, 4, . . . , M.

For m = 2 implying a two-dimensional PF: Variable bounds are [0, 1]2

Sα4 α1(xI) = sin(0.5x1π)
α2(xI) = cos(0.5x1π) sin(0.5x2π)
α3(xI) = cos(0.5x1π) cos(0.5x2π)
αk(xI) = c1 × {α1(xI)}p1 + c2 × {α2(xI)}p2 + c3 × {α3(xI)}p3 ∀k = 4, 5, . . . , M
where ci, pi > 0 are arbitrary constants for i = 1, 2, 3

Table 2. The proposed sets of yj (Equation 5)

Sy Set Composition Variable bounds for xj

For m = 1 implying a one-dimensional PS

Sy1 xj − x
0.5(1.0+

3(j−2)
n−2 )

1 [0, 1]n−1

Sy2 xj − sin(6πx1 + jπ
n

) [−1, 1]n−1

Sy3 xj −
{

0.8x1 cos(6πx1 + jπ
n

) j ∈ J1

0.8x1 sin(6πx1 + jπ
n

) j ∈ J2
[−1, 1]n−1

Sy4 xj −
{

0.8x1 cos( 6πx1+
jπ
n

3
) j ∈ J1

0.8x1 sin(6πx1 + jπ
n

) j ∈ J2

[−1, 1]n−1

Sy5 xj −
{

0.3x1(x1 cos(4θ) + 2) cos(θ) j ∈ J1

0.3x1(x1 cos(4θ) + 2) sin(θ) j ∈ J2

where θ = 6πx1 + jπ
n

[−1, 1]n−1

For m = 2 implying a two-dimensional PS

Sy6 xj − 2x2 sin(2πx1 + jπ
n

) [−2, 2]n−2
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The number of objectives (M) selected for all test problems is 5, therefore,
the MOEA/D population size is 2102 and for NSGAII is 2123. For statistical
purposes, all the simulations performed have been reproduced using 20 evenly
spaced seeds between 0 and 1.

Table 3. Construction of sample test problems using the proposed framework. New
problems can be created using different combinations of Sα and Sy.

Sα

One dimensional PF (1D-PF) Two dimensional PF (2D-PF)

Sy Sα1 Sα2 Sα3 Sα4
a Sα4

b PS

Sy1 Problem-1 1-D
Sy2 Problem-2 1-D
Sy3 Problem-3 1-D
Sy4 Problem-4 1-D
Sy5 Problem-5 1-D
Sy6 Problem-6 Problem-7 2-D

a Linear: p1 = p2 = p3 = 1.0.
b Non-linear: c1 = c2 = c3 = 1.0.

5 Experimental Results

This section presents the results corresponding to the 5-objective instance of
the test problems created by using the proposed framework. The construction of
these test problems is presented in Table 3. For these problems, the performance
of two EMO algorithms, namely NSGAII [15] and MOEA/D [16] has been stud-
ied. The results are reported in Table 4 where the inverted generational distance
(IGD) [24] is used as the quality indicator. To observe the effect of variable
scaling, the 1D-PF test problems (P1 to P5) have been solved with 4 and 10
variables respectively, while the 2D-PF test problems (P6 and P7) are solved
with 5 and 10 variables respectively. Furthermore, to observe the effect that the
number of generations of the EMO algorithms’ run have on their performance,
each test instances has been solved for 200 and 1000 generations respectively.
From Table 4, it can be seen that:

1. On an average, MOEA/D with Tchebycheff approach is the best performer
for the 1D-PF test problems, while the performance of MOEA/D with NBI
approach is better than other methods for the 2D-PF test instances. NSGAII
is slightly better than the MOEA/D counterparts for 4-variable instances of
a few problems (such as P3 and P4).

2 Equals to the number of uniform weight vectors generated. N = C6+5−1
5−1 = 210.

3 Governed by multiplicity by 4 and closeness to MOEA/D population size.
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2. The performance of all the methods deteriorates with an increase in the
number of variables, while it improves with an increase in the number of
generations. Notably,the fall in the performance of NSGAII is more signifi-
cant than other methods, as the number of variables increase.

Table 4. IGD results (averaged for 20 runs) for the 5-objective test problems con-
structed using the proposed framework. The best results are underlined. MOEA/D
approaches include: (a) weighted sum; (b) Tchebycheff and (c) NBI..

Problem n Gen MOEA/D(a) MOEA/D(b) MOEA/D(c) NSGAII

P1 4 200 0.0174±0.0008 0.0099±0.0003 0.0613±0.0037 0.0387±0.0102
1000 0.0192±0.0005 0.0098±0.0001 0.0610±0.0022 0.0328±0.0063

10 200 0.0167±0.0011 0.0102±0.0002 0.0851±0.0095 0.0783±0.0167
1000 0.0189±0.0007 0.0099±0.0001 0.0784±0.0074 0.0860±0.0251

P2 4 200 0.0192±0.0070 0.0068±0.0004 0.1165±0.0064 0.0064±0.0012
1000 0.0093±0.0021 0.0064±0.0002 0.1160±0.0052 0.0102±0.0033

10 200 0.0788±0.0261 0.0201±0.0090 0.1573±0.0326 0.1193±0.0321
1000 0.0461±0.0207 0.0088±0.0009 0.1539±0.0286 0.1588±0.0862

P3 4 200 0.0071±0.0003 0.0065±0.0002 0.1149±0.0050 0.0046±0.0009
1000 0.0078±0.0002 0.0062±0.0002 0.1142±0.0027 0.0045±0.0016

10 200 0.0103±0.0017 0.0085±0.0009 0.1322±0.0071 0.0384±0.0066
1000 0.0072±0.0005 0.0071±0.0004 0.1239±0.0029 0.0387±0.0089

P4 4 200 0.0069±0.0004 0.0064±0.0002 0.1142±0.0038 0.0042±0.0005
1000 0.0078±0.0002 0.0062±0.0002 0.1131±0.0022 0.0039±0.0007

10 200 0.0092±0.0012 0.0078±0.0006 0.1228±0.0057 0.0278±0.0045
1000 0.0069±0.0004 0.0069±0.0003 0.1197±0.0026 0.0274±0.0087

P5 4 200 0.0450±0.0109 0.0182±0.0048 0.1094±0.0331 0.0196±0.0034
1000 0.0384±0.0104 0.0140±0.0026 0.0863±0.0191 0.0195±0.0020

10 200 0.0666±0.0060 0.0441±0.0110 0.1945±0.0282 0.0610±0.0077
1000 0.0623±0.0063 0.0275±0.0043 0.1771±0.0284 0.0509±0.0078

P6 5 200 0.5923±0.0321 0.3372±0.0164 0.3280±0.0085 0.3403±0.0399
1000 0.6111±0.0454 0.3315±0.0193 0.3356±0.0059 0.2807±0.0163

10 200 0.6200±0.0685 0.3580±0.0226 0.3595±0.0457 0.7581±0.2329
1000 0.6244±0.0740 0.3514±0.0139 0.3461±0.0043 0.4735±0.1374

P7 5 200 0.7554±0.0332 0.7395±0.0088 0.6117±0.0046 0.7537±0.0340
1000 0.7571±0.0330 0.7400±0.0043 0.5976±0.0020 0.7321±0.0207

10 200 0.8088±0.0672 0.7558±0.0470 0.7072±0.0818 1.2089±0.2628
1000 0.7874±0.0650 0.7475±0.0172 0.6651±0.0870 0.8411±0.0832

To facilitate a better understanding, the results presented in Table 4 are also
graphically presented below for a few problems. The latter correspond to (i) 10-
variable instances (more difficult than 4-variable instances) for 1D-PF problems,
and 5-variable instance for a 2D-PF problem, (ii) 1000 generations (the results
being better than those with 200 generations), and (iii) NSGAII along with the
MOEA/D corresponding to the approach that offers the best results (implying
MOEA/D with Tchebycheff approach for 1D-PF problems and MOEA/D with
NBI approach for 2D-PF problems).
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(a) P1: MOEA/D with Tchebycheff approach
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(b) P1: NSGAII

Fig. 1. Problem P1: Best approximations obtained after 1000 generations for 5-
objective and 10-variable version. P1 is composed of β (Equation 6); αis as in Sα1

(Table 1) and yj as in Sy1 (Table 2).
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(a) P3: MOEA/D with Tchebycheff approach
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(b) P3: NSGAII

Fig. 2. Problem P3: Best approximations obtained after 1000 generations for 5-
objective and 10-variable version. P3 is composed of β (Equation 6); αis as in Sα3

(Table 1) and yj as in Sy3 (Table 2).
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(a) P5: MOEA/D with Tchebycheff approach
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(b) P5: NSGAII

Fig. 3. Problem P5: Best approximations obtained after 1000 generations for 5-
objective and 10-variable version. P5 is composed of β (Equation 6); αis as in Sα1

(Table 1) and yj as in Sy5 (Table 2).
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Fig. 4. Problem P7: Parallel coordinate plots after 1000 generations for 5-objective
and 5-variable version from a single run
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Fig. 5. Problem P7: Best approximations obtained after 1000 generations for 5-
objective and 5-variable version. P7 is composed of β (Equation 6); αis as in Sα4

(Table 1) and yj as in Sy6 (Table 2).

Based on the graphical results presented in Figures 1 2 3, 4 and 5, the following
observations can be made:

1. For P1 and P3, the Table 4 suggests significant superiority of MOEA/D
(with Tchebycheff approach) over NSGAII. This is validated by the Figures 1
and 2, where both the PF and PS can be seen to be better approximated by
MOEA/D than NSGAII.

2. For P5, it can be noted that the superioirty of MOEA/D (with Tchebycheff
approach) over NSGAII is only marginal. This is again validated by Figure 3,
where the NSGAII approximations seem to be closer to those of MOEA/D.
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3. The PS shape complexity interferes with the performance of the algorithms.
For instance, MOEA/D could better approximate the quadratic PS as in P1
(Figure 1a) as compared to a PS with non-linear shape, as in P5 (Figure 3a).

4. For a 2D-PF problem such as P7, it can be seen that the approximation of
both the PF and the PS is poor for both MOEA/D and NSGAII. It can be
seen in Figure 4 that both these methods failed to capture the non-conflicting
relationship between the last two objectives.

5. It may be noted that the test problems constructed in this paper are such
that for an M objective problem with m-dimensional front, only the first
m+1 objectives are in total conflict with each other while the rest are either
partly conflicting or non-conflicting with others. This feature is evident in
Figures 1 2 and 3 corresponding to 1D-PF problems where only the first two
objectives are in total conflcit. For a 2D-PF problem like P7, it implies that
the first three objectives are in total conflict and these are plotted in Figure 5
to further help compare the MOEA/D and NSGAII approximations.

6 Conclusions

This paper presented a framework for constructing continuous many-objective
test problems with arbitrarily prescribed PS shapes. Hopefully, this will facilitate
the performance analysis of EMO algorithms in dealing with both complicated
PS shapes and scaled number of objectives, simultaneously. Sample test problems
constructed using the proposed framework have been used to study the perfor-
mance of NSGAII and MOEA/D. These two algorithms were chosen as they
are based on different techniques, in that while the former is a Pareto-ranking
based method, the latter is a decomposition-based method. As a first step, the
analysis has been focussed on many-objective problems with lower-dimensional
Pareto front. In future work, the authors will endeavour to extend this study
for problems with high-dimensional Pareto front, including real-world problems
with such characteristics. The authors also intend to analyse the performance of
EMO algorithms with different underlying techniques, such as in AMOSA [25].
Lastly, it may be noted that the problems proposed in this paper are such that
the dimension of the Pareto front coincides with the dimension of the Pareto set.
In future, the authors will also endeavour to extend the proposed framework to
accomodate problems in which the dimension of the Pareto set is higher than
the dimension of the Pareto front.
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karthik.sindhya@jyu.fi

kaisa.miettinen@jyu.fi
2 Department of Applied Economics (Mathematics)

University of Malaga
C/ Ejido 6, 29071, Malaga, Spain

abruiz@uma.es

Abstract. This paper describes a new Preference-based Interactive
Evolutionary (PIE) algorithm for multi-objective optimization which ex-
ploits the advantages of both evolutionary algorithms and multiple criteria
decision making approaches. Our algorithm uses achievement scalarizing
functions and the potential of population based evolutionary algorithms
to help the decision maker to direct the search towards the desired Pareto
optimal solution. Starting from an approximated nadir point, the PIE al-
gorithm improves progressively the objective function values of a solution
by finding a better solution at each iteration that improves the previous
one. The decision maker decides from which solution, in which direction,
and at what distance from the Pareto front to find the next solution. Thus,
the PIE algorithm is guided interactively by the decision maker. A flexible
approach is obtained with the use of archive sets to store all the solutions
generated during an evolutionary algorithm’s run, as it allows the decision
maker to freely navigate and inspect previous solutions if needed. The PIE
algorithm is demonstrated using a pollution monitoring station problem
and shown to be effective in helping the decision maker to find a solution
that satisfies her/his preferences.

1 Introduction

Optimization problems arising in all areas of science, engineering, and economics
often involve multiple conflicting objectives. Such problems are multi-objective
optimization problems. A solution to a multi-objective optimization problem de-
sirably belongs to a set of mathematically equally good compromise solutions
with different trade-offs, called Pareto optimal solutions. In addition, it should
satisfy the preferences of a decision maker (DM). The set of Pareto optimal solu-
tions in the objective space is called Pareto front. Different solution approaches
to solve multi-objective optimization problems exist in the literature, among
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them approaches of Evolutionary Multi-objective Optimization (EMO) [3,4] and
Multiple Criteria Decision Making (MCDM) [2,16] are commonly used.

Evolutionary multi-objective optimization algorithms deal with a population
of solutions and try to find a set of well-distributed non-dominated solutions that
approximate the entire Pareto front. For the past two decades, several EMO al-
gorithms have been proposed [3,4] and they have been shown to be very versatile
in handling different types of variables and objectives. Compared to EMO, the
main goal in MCDM is to aid the DM in finding a satisfying solution according to
her/his preference information. Commonly, a multi-objective problem is scalar-
ized into a single-objective problem taking into account the DM’s preference
information, which can be expressed e.g. with trade-offs, pairwise comparisons,
aspiration levels, reference points and/or classification of the objective functions.
The MCDM approaches can be broadly classified in to a priori, a posteriori and
interactive methods, depending on when the preference information is asked
from the DM [15]. For a detailed description of different MCDM approaches
see [16]. Although only the most interesting Pareto optimal solutions are found
by MCDM approaches, which saves computational time, their success in solv-
ing real world problems depends on the method used to solve scalarized single
objective optimization problems (e.g. whether the solution is globally or locally
optimal).

Advantages of both EMO and MCDM approaches can be utilized by hybridiz-
ing them. At least two possible ways can be identified: “evolutionary algorithm
in MCDM” and “MCDM in EMO” approaches. Utilizing (single objective) pop-
ulation based approaches such as evolutionary algorithms to solve the scalarized
functions formulated in MCDM approaches (we call this approach as “evolu-
tionary algorithms in MCDM”) has received some attention (see e.g. [12,17]).
In this way, nonconvexity or discontinuity in the problem or possible binary or
integer variables can be handled in a straightforward way. On the other hand,
in “MCDM in EMO” approach based algorithms (see e.g. [1,8,9,21]), instead of
approximating the entire Pareto front, the main goal is to find a solution or a set
of solutions which approximates a region of the Pareto front that is interesting
to the DM. Thus the DM gets a preferred set of solutions and (s)he can choose
the most satisfactory solution among them.

On one hand, showing solutions only in the preferred region of the Pareto
front allows the DM to inspect only a handful of solutions and can gain insights
about the trade-offs between the objectives in the desired region and the final
solution can be selected from a knowledgeable position. On the other hand, such
an approach limits the interactions of the DM with the algorithm. In such meth-
ods, the effort is concentrated in looking just for the solutions in the preferred
region(s) of the Pareto front, so a faster algorithm is obtained as irrelevant so-
lutions are discarded, but the full potential of a population based approach to
help the DM to freely navigate, inspect, and restate preferences during the so-
lution process is yet to be fully explored. For us, any approach that adapts to
the DM’s desires as much as possible and that allows her/him to modify the
preferences during an algorithm’s run time is the best choice enabling learning
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of the problem and one’s preferences. This is the basic idea of the Preference
based Interactive Evolutionary algorithm for multi-objective optimization (PIE)
that we propose in this paper.

In the PIE algorithm, the search for the most preferred solution satisfying
the preference information of the DM follows nearly the same philosophy as the
interactive NAUTILUS method [18]. The NAUTILUS method is based on the
assumptions that past experiences affect DM’s hopes and that people’s reactions
to gains and losses are asymmetric and, thus, a need for trading off between
Pareto optimal solutions during the solution process may hinder the DM from
finding desirable solutions. This method starts from a nadir point, a vector
whose components are the worst objective function values of solutions and aids
the DM to obtain improvement in each objective in the direction specified by
her/him progressively without a need of trading off. In every step taken by the
DM, information about the part of the Pareto front dominating the current
solution (i.e., part which still can be reached without trade-off) is provided.
With this information (s)he can re-specify her/his preference information and
new solutions are generated in this direction. Although only the last solution will
be Pareto optimal (guaranteed by MCDM tools used), a solution is obtained
at each step which dominates the previous one and each new Pareto optimal
solution is obtained by minimizing an achievement scalarizing function including
preferences about desired improvements in objective function values.

In the NAUTILUS method, the starting solution is intentionally bad and the
algorithm progressively improves the initial solution to obtain a Pareto opti-
mal solution satisfying the DM, trying to avoid a possible anchoring effect [22]
developed by expectations from previous (Pareto optimal) solutions. A typical
evolutionary algorithm also has similar traits as that of the NAUTILUS method.
In an evolutionary algorithm we start with a random initial population which
is usually far from the optimal solutions, similar to the nadir point used in the
NAUTILUS method. Additionally, an evolutionary algorithm drives the initial
population to the optimal solutions progressively by generating better solutions
than the initial population, as NAUTILUS does.

Our PIE algorithm is an “evolutionary algorithm in MCDM” approach. A
starting solution is chosen from the initial population based on the preference
information of the DM. Subsequently (s)he directs the search deciding from
which solution and in which direction the algorithm has to look for solutions
dominating the current one. Furthermore, (s)he sets the speed of approaching
the Pareto front. The method enables the DM to consider solutions where all
objectives can be improved without a need to sacrifice in anything. This should
enable a free search towards a desirable part of Pareto optimal solutions. The
idea is not to get into a situation where tradeoffs are needed “too early” in the
solution process because the need to give up in some objective may hinder the
DM from looking for new solutions. As in the NAUTILUS method, although we
ensure Pareto optimality only for the final solution (once we have reached the
Pareto front), we present solutions that improve the previous ones step by step,
what is likely to be attractive for the DM, as people prefer to get better results.
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When the DM chooses to select a new solution and direction to orient the search,
(s)he is not forced to select it from the presented solutions but can decide to
move backwards or present a new point describing her/his aspirations. The PIE
algorithm stores all the solutions of the evolutionary algorithm in an archive set
to be able to recover previous solutions if the DM desires to go backwards.

The rest of the paper is organized as follows. In Section 2, we introduce some
concepts needed for our algorithm. Then, the PIE algorithm is presented in
Section 3, where a detailed description of the step-by-step scheme is explained,
with some technical issues. Section 4 describes a numerical example demonstrat-
ing the method. Finally, conclusions are drawn in Section 5.

2 Concepts

We consider multi-objective optimization problems of the form:

minimize {f1(x), f2(x), . . . , fk(x)}
subject to x ∈ S,

(1)

where we want to optimize k (k ≥ 2) conflicting objective functions fi : S → R
simultaneously. Here S is the feasible set in the decision space Rn and decision
vectors are x = (x1, x2, . . . , xn) ∈ S. Vectors in the image set of S are objective
vectors in the objective space Rk. A decision vector x ∈ S is Pareto optimal
if no objective function can achieve an improvement without a loss in other
objective(s), in other words, if there is no other x ∈ S such that fi(x) ≤ fi(x) for
all i = 1, ..., k and fj(x) < fj(x) for at least one j ∈ 1, ..., k. The corresponding
objective vector is called a Pareto optimal objective vector. We say that a vector
z1 ∈ Rk dominates another vector z2 ∈ Rk, denoted by z1 ≤ z2, if z1

i ≤ z2
i for

all i = 1, ..., k and z1
j < z2

j for at least one j ∈ 1, ..., k.
When we want to solve a multi-objective optimization problem, we are inter-

ested in finding the Pareto optimal solution that best satisfies the desires of a
decision maker, a person who is interested in solving the problem and can express
preferences in some way. Two important objective vectors are defined as they fix
the ranges of the Pareto front, the ideal objective vector and the nadir objective
vector. The components z∗i of an ideal objective vector z∗ ∈ Rk are obtained by
minimizing each objective function individually, that is, z∗i = min

x∈S
fi(x) for all

i = 1, ..., k. The components znad
i of a nadir objective vector znad ∈ Rk are ob-

tained by considering the maximum objective function value for each objective
function across all solutions in the Pareto front. The nadir objective vector is
generally more difficult to obtain and typically we approximate it [6,16].

The proposed PIE algorithm is based on reference points, introduced in [23]. A
reference point is an objective vector q ∈ Rk typically provided by the DM. Using
a reference point, an achievement scalarizing function (ASF) [23] can be formed
and optimized to find a solution that best satisfies the aspirations of the DM. By
minimizing ASF, we project the reference point q in the direction specified by
a weight vector μ = (μ1, μ2, . . . , μk) to find the closest Pareto optimal solution.
For details of ASFs, see [16].
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Given a reference point q ∈ Rk, an example of an ASF [23] is given by:

minimize max
i=1,...,k

{μi(fi(x) − qi) } + ρ

k∑
i=1

(fi(x) − qi)

subject to x ∈ S,

(2)

where ρ > 0 is a so-called augmentation coefficient. Different values for the
weights have been proposed in [15]. Among the main advantages of the use of
ASFs, we can highlight that the optimal solution of (2) is always a Pareto opti-
mal solution of (1) and that any (properly) Pareto optimal solution of (1) can be
obtained by just solving problem (2) with different reference points [16]. Refer-
ence points can be of two types: aspiration points (objective function values that
are desirable to the DM) and reservation points (objective function values that
should be attained, if possible). Additionally, a reference point can be referred
to as attainable, if the solution obtained by projecting the reference point on
to the Pareto front dominates the reference point and otherwise referred to as
unattainable. In our study, we consider a reference point (q) to be a reservation
point.

In [20,24], a different ASF is proposed if both aspiration values qa
i and reser-

vation values qi for each objective function are available:

minimize max
i=1,...,k

⎧⎪⎪⎨⎪⎪⎩
−1 + α

fi(x)−qa
i

qa
i −z∗

i
if z∗i ≤ fi(x) ≤ qa

i
fi(x)−qi

qi−qa
i

if qa
i ≤ fi(x) ≤ qi

β fi(x)−qi

znad
i −qi

if qi ≤ fi(x) ≤ znad
i

subject to x ∈ S,

(3)

where α and β are strictly positive numbers. The three cases of expression (3)
are defined for three different cases: for attainable reference points in the first
case, for unattainable reference points in the third case and the second case is
suitable when q is attainable, but qa is not. For more details, see [20]. In our PIE
algorithm we can use (2) or (3) depending on the type of preference information
available from the DM.

3 The Proposed PIE Algorithm

The PIE algorithm is an interactive preference based evolutionary algorithm,
to aid the DM to find a solution satisfying her/his preference information. An
evolutionary algorithm is used here because an evolutionary algorithm starts
from an initial random population, which is usually far from the Pareto front.
Subsequently, the population is driven progressively towards the Pareto front.
The population at every generation can be saved in an archive, which not only
helps the DM to examine previous solutions, but also to generate a new initial
population for an evolutionary algorithm used to solve a new scalarized problem
formulated with the new preference information from the DM.
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Both the PIE algorithm and an evolutionary algorithm involve seperately a
sequence of steps, which are repeated until a termination criterion is satisfied. To
make a distinction, we refer to a step of the PIE algorithm as an iteration and a
step of an evolutionary algorithm as a generation. Next, we describe the essential
components of the PIE algorithm and then present the PIE algorithm.

3.1 Components of the PIE Algorithm

1. Approximation of nadir point. To start the PIE algorithm, we need an
approximation of the nadir point, which will be the first reference point. We
can generate an initial random population and the DM can either decide
to select an approximation of the nadir point from a sample of solutions
of this population or start from an approximated nadir point constructed
by using the worst objective value in every objective function of this initial
population. Alternatively, we can apply the approach of [6] or ask the DM
to specify worst thinkable objective function values. During the algorithm,
the DM is free to choose any other solution as a reference point according
to her/his preferences.

2. Preference information as weights. Once the DM has chosen a reference
point zh at iteration h, (s)he has to specify some preference information. As
in [15,18], the DM is asked to express her/his preference information and the
search for more preferred solutions is oriented accordingly. This preference
information can be provided e.g. either by ranking objectives into index sets
or by sharing 100 credits among all the objectives.
(a) LPF1: The DM can rank the objectives according to the relative impor-

tance of improving each current objective value. (S)he assigns objective
functions to classes in an increasing order of importance for improving
the corresponding current objective value zh

i . This importance evalua-
tion allows us to allocate the k objective functions into index sets Jr

which represent the importance levels r = 1, ..., s, where 1 ≤ s ≤ k. If
r < t, then improving the current objective function values in the index
set Jr is less important than improving the current objective function
values in Jt. Each objective function can only belong to one index set,
but several objectives can be assigned to the same index set Jr.
The weights for objectives fi in Jr are defined in [15,18] as follows:

μh
i =

1
r(znad

i − z∗∗i )
, i = 1, ..., k.

(b) LPF2: Alternatively, in order to find solutions that reflect the prefer-
ences of the DM, the DM can specify percentages expressing how much
(s)he would like to improve the current objective values. Then, we ask
the following question: Assuming you have one hundred credits available,
how would you distribute them among the current objective values so that
the more credits you allocate, the more improvement of the corresponding
current objective value is desired?.
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Let us assume that the DM has given ph
i credits to the objective function

fi. We set Δqi
h = ph

i

100 and then, the weights are formulated in [15]:

μh
i =

1
Δqi

h(znad
i − z∗∗i )

, i = 1, ..., k.

We assume that 1 ≤ ph
i ≤ 100, for all i = 1, ..., k.

However, the mode of providing preference information may not be limited
to the above two ways. Once this preference information is obtained from the
DM, we formulate an ASF, which is solved using an evolutionary algorithm.

3. Aspiration and reservation levels. Instead of choosing the reference
point, the DM can specify bounds on the objective functions as aspiration
and reservation levels, qa and q respectively. Here, we replace an ASF with
an aspiration-reservation scalarizing function (3). It must be noted that the
DM may provide unattainable aspiration levels, in which case, the Pareto
optimal solution obtained by solving problem (3) will not satisfy her/his ex-
pectations completely. In order to make him/her conscious of that situation,
we make the following remark: The aspiration levels are too optimistic and
cannot be achieved.

4. Termination criterion for evolutionary algorithm. As mentioned ear-
lier, we use an evolutionary algorithm to solve the ASF problem and define
a termination criterion based on the ASF using the fact that the optimal
ASF value is zero for Pareto optimal reference points [16,23]. At each η gen-
erations, we initialize the reference point used in the ASF with the objective
function values of the solution having the smallest ASF value at this gen-
eration. Then, the ASF formulated with this reference point is tracked for
every η + 10 generations. If the running average of the ASF values for η + 10
generations is close to zero i.e., 10−05, then the evolutionary algorithm is
terminated. This termination criterion ensures that no further improvement
in the ASF value is possible or in other words, an individual, z(h), with the
lowest ASF value is in the proximity of the Pareto front.

Next, we describe the step-by-step procedure involved in the PIE algorithm.

3.2 PIE Algorithm

Step 1: Calculate the ideal point z∗ and generate an initial random population
P0 of feasible solutions.

Step 2: The nadir point znad is found among the solutions of P0 depending on
the information the DM wishes to give:
(a) If the DM desires to choose znad from P0, we ask: How many solutions

would you like to see to identify an approximation of the nadir point? and
we refer to the number of solutions specified by the DM as N . Next, P0
is divided into N clusters and one solution from each cluster is presented
to the DM. If a cluster has more than one solution, we select the solu-
tion closest to the centroid of that cluster. We present these N solutions
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to the DM, from which (s)he selects one as znad (or use ideas of
Subsection 3.1).

(b) If the DM is not able to give any information, znad is constructed of the
worst objective values present in the initial population P0.

Step 3: Let A and AP be the archive sets of solutions and populations, respec-
tively, defined in Subsection 3.3. Set A = ∅ and AP = ∅. Let z1 be the first
reference point and h the iteration number. Set z1 = znad and h = 1.

Step 4: The DM has to provide information about the local improvement of
each objective at the current reference point, zh, in one of the two proposed
ways (LPF1 and LPF2) and the weights, μh

i are defined accordingly for all
i = 1, . . . , k.

Step 5: Set q = zh and μi = μh
i for all i = 1, . . . , k. An achievement scalarizing

problem is formulated as in (2). Go to step 7.
Step 6: Formulate the aspiration-reservation scalarizing function (3) with

qa =zh and q = zph−1 .
Step 7: A single-objective evolutionary algorithm is used to solve the scalariz-

ing function with the termination criterion of Subsection 3.1. Set the initial
population needed to start the evolutionary algorithm as explained in Sub-
section 3.3. At each generation of the evolutionary algorithm, the solution
with the lowest ASF value is stored in A and the current population is saved
in AP .

Step 8: When the evolutionary algorithm has terminated, select the solution
in the final population with the smallest ASF value, z(h), to be an approxi-
mation of the projection of zh in the Pareto front. If the solved problem is
of the type (3) and z(h) is dominated by q, the DM is told: The aspiration
levels are too optimistic and cannot be achieved.

Step 9: Calculate the Euclidean distance dP between zh and z(h) as

dP =
k∑

i=1

|z(h)
i − zh

i |
k|znad

i − z∗i |
, where | · | is the absolute value. Ask the DM: The

distance is dP between the current reference point zh and the corresponding
projected Pareto optimal solution z(h). At what percentage of that distance
from z(h) do you like to investigate the next solution?. The percentage is
referred to as ph. Next, calculate the point zph in the objective space at ph

of the distance dP from z(h).
Step 10: Show current iteration solution. Show zph to the DM. If the DM

is satisfied with zph , set zh = zph and go to step 12, else go to step 11.
Step 11: New reference point. Set h = h+1. The DM has to select the next

reference point zh in one of the following ways:
(a) Otherwise ask the DM: Would you like to continue the search from

zph−1? If yes, set zh = zph−1 . Next, ask the DM: Would you like to
specify new local improvement information at the new reference point,
zh? If yes, go to step 4. Else, go to step 9.

(b) Otherwise ask the DM: Would you like to examine some solutions in
the previous generations? If yes, we ask: How many solutions would you
like to examine? and we refer to this number as N . Find N solutions
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in A as described in Subsection 3.3 and show them to the DM. If the
DM finds an interesting solution (set it as zh) and wishes to examine
more solutions around zh, we ask: How many solutions would you like to
examine around zh? and we refer to this number as N . Find N solutions
in AP as described in Subsection 3.3 and show them to the DM. Finally,
when the DM has found a new reference point zh, ask: Would you like to
specify a new local improvement information at the new reference point,
zh? If yes, go to step 4. Else, set μh

i = μh−1
i for all i = 1, . . . , k and go

to step 5.
(c) Otherwise ask the DM: Would you like to provide an aspiration point?

If yes, set it as zh and go to step 6. If no, go to Step 12.
Step 12: Using zh as the reference point, solve problem (2) with any suitable

mathematical programming technique. The resulting solution is declared as
the solution preferred by the DM satisfying her/his preference information.

Step 12 is applied to guarantee at least the local Pareto optimality of the final
solution. Furthermore, the solution zh is shown to the DM only if the DM sets
a 0% distance.

3.3 The Archive Sets A and AP

Archive sets of solutions A and populations AP are maintained during the evolu-
tionary algorithm. At each generation of the evolutionary algorithm, the solution
with the ASF value closest to zero is stored in A and the corresponding popula-
tion is saved in AP . The archive sets allow an easy access to previous solutions
when the DM decides to move backwards or examine some solutions around the
current solution. Additionally, they enable to find an initial population for a new
run of the evolutionary algorithm when a new reference point is specified by the
DM. Storing many solutions should not be considered as a disadvantage. The
high performance and large memory of current computers enable us to store a
large number of solutions and to look for some solutions among them. In addi-
tion, use of a structured query language to handle large number of solutions can
be explored.

To show some solutions of previous generations or around zph−1 in Step 11
(b), N solutions in the archive set A with the smallest Euclidean distances to
zph−1 are found, where N is the number of solutions the DM wants to examine.
Additionally, if the DM wants to examine N solutions around any solution si,
we recover the population Psi corresponding si from AP . Next, we find the
non-dominated solutions in Psi and cluster them into N clusters showing one
solution from each cluster to the DM. If a cluster has more than one solution,
we select the solution closest to the centroid of that cluster. Here, we present
only the non-dominated solutions.

To set the initial population P needed to run the evolutionary algorithm for
solving problem (2) or (3), the archive set AP may decrease the computational
effort. If h = 1, P is set as the initial random population P0 generated to find
the approximation of the nadir point. If h > 1, let s be the point in A with the
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smallest Euclidean distance to zh and let Ph be the population in AP it belongs
to. Then, we set P = Ph. In this way, we can save on the number of function
evaluations, as instead of starting from a random initial population during each
evolutionary algorithm’s run, we load a population of solutions that have already
been evaluated around the current reference point.

Fig. 1. Graphical idea of
the PIE algorithm

A graphical illustration of the solution process
in a bi-objective optimization problem is shown in
Figure 1, where we start from a reference point zh

(approximate nadir point). In Figure 1, black cir-
cles represent the individuals in the population of
an evolutionary algorithm. In every generation, the
population in an evolutionary algorithm and the so-
lution with the ASF value close to zero is saved
in the archives AP and A respectively as shown in
Figure 1. As it can be seen, the DM has specified a
projection direction from the current reference point
towards the Pareto front and the projection z(h) of
zh is obtained after running the evolutionary algo-
rithm. Once the DM has examined solutions at dif-
ferent percentages of the distance between z(h) and
zh, which are shown with black vertical bars on the line joining zh and z(h), the
DM has chosen the solution at 50% of the distance from z(h) as the next reference
point zh+1. Next, a new projection direction for zh+1 towards the Pareto front is
specified and a new iteration is started to obtain a new solution z(h+1). Instead
of selecting the solution at 50% of the distance from z(h) as the next reference
point, the DM could have examined some solutions in the archives around the
solution or provided an aspiration point.

4 Numerical Example

In this section, we illustrate how the PIE algorithm can be used to find the DM’s
preferred Pareto optimal solution. The selected problem is related to finding the
location of a pollution monitoring station [19] and has five conflicting objective
functions. The objectives pertain to the expected information loss as estimated
by five different experts. The problem is formulated as follows:

minimize f1(x1, x2) = f(x1, x2)
f2(x1, x2) = f(x1 − 1.2, x2 − 1.5)
f3(x1, x2) = f(x1 + 0.3, x2 − 3.0)
f4(x1, x2) = f(x1 − 1.0, x2 + 0.5)
f5(x1, x2) = f(x1 − 0.5, x2 − 1.7)

subject to −4.9 ≤ x1 ≤ 3.2
−3.5 ≤ x2 ≤ 6,

(4)
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where
f(x1, x2) = −3(1 − x1)2e−x2

1−(x2+1)2 + 10(
1
4
x1 − x3

1 − x5
2)e−x2

1−x2
2

−1
3
e−(x1+1)2−x2

2 + 10.

Since the main emphasis of the PIE algorithm is to help the DM in finding
a solution satisfying her/his preferences, we have chosen a practical problem
with five objectives. It is very common in evolutionary computing literature
to demonstrate the efficacy of an algorithm by using test problems. But, the
objective functions of these problems have no physical meaning and hence it is
very difficult to provide preference information by the DM and to illustrate the
working of an interactive algorithm, which is our main goal. The example is used
to demonstrate the working steps of the PIE algorithm.

A DM used the PIE algorithm to find an optimal location for a pollution mon-
itoring station. Here, the DM was looking for a location that balances between
the five possible losses. For simplicity, we used the preference information to be
specified using LPF2 to formulate problem (2). The ideal and nadir vectors as
specified in steps 1 and 2 of the PIE algorithm remained unaltered throughout
the solution process. A real coded genetic algorithm (RGA) [4] was used as an
evolutionary algorithm in the PIE algorithm. However, other evolutionary algo-
rithms can also be used. The parameter used were, a) crossover probability =
0.9, b) mutation probability = 0.5, c) SBX distribution index [4] = 15, and d)
mutation distribution index [4] = 20.

To start with the algorithm, we generate an initial random population P0
and calculate the ideal point z∗ = (1.87, 1.87, 1.87, 1.87, 1.87)T by individually
minimizing each of the objectives subject to constraints. Next we summarize the
steps taken by the DM with PIE.

Step 1: Iteration 1: To set the first reference point (an approximation of znad),
the DM decided to investigate three solutions of P0. The solutions provided
by the algorithm were (10.00, 10.00, 10.00, 10.00, 10.00)T,
(10.00, 9.88, 4.51, 10.00, 9.51)T and (9.88, 3.45, 7.37, 9.92, 7.14)T and the DM
chose to set the first reference point as
z1 = (10.00, 10.00, 10.00, 10.00, 10.00)T .

Step 2: The DM specified equal credits to all the objective functions i.e. Δq1 =
(0.2, 0.2, 0.2, 0.2, 0.2)T . Using this preference information and z1, problem
(2) was formulated and solved using RGA to get z(1).

Step 3: The DM was asked to specify the percentage distance, p1. One at a
time, the DM investigated solutions at 80%, 50%, 30% and 20% of the total
distance from z(1).

Step 4: At the solution, z(201) = (9.17, 9.16, 8.87, 9.14, 9.17)T corresponding to
the 20% of the total distance from z(1), the DM wished to specify the aspi-
ration level, qa = (8, 8, 8, 8, 8)T and we set q = z(201).

Step 5: Iteration 2: Using the preference information from Step 4, problem
(3) was formulated (with α = 0.1 and β = 10.0) and solved using RGA to
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get z(2). The algorithm found the aspiration levels in qa = (8, 8, 8, 8, 8)T to
be unattainable and subsequently, the DM was told: The aspiration levels
are too optimistic and cannot be achieved.

Step 6: The DM was asked to specify the percentage distance, p2. Next, the
DM investigated individually solutions at 0%, 50% and 10% of the total
distance from z(2) one after another. Finally, the DM chose the solution at
10% of the distance, z(102) = (8.98, 8.97, 8.61, 8.95, 8.97)T.

Step 7: Iteration 3: Next, the DM decided to examine 10 solutions from A,
which were selected as described in Subsection 3.3. After investigating these
solutions, the DM found a solution, (8.95, 8.98, 8.61, 8.90, 8.92)T, to be set
as the next reference point z3. Next the DM specified equal credits to all the
objective functions i.e. Δq3 = (0.2, 0.2, 0.2, 0.2, 0.2)T .

Step 8: Using this preference information problem (2) was formulated and
solved using RGA to get z(3).

Step 9: The DM was asked to specify the percentage distance, p3 and the DM
investigated individually solutions at 10% and 0% of the total distance from
z(3) one after another.

Step 10: The DM was satisfied with z(03) = z(3) = (8.95, 8.98, 8.61, 8.90, 8.94)T .
Using z(3) as the reference point, problem (2) was solved using SQP. The
resulting Pareto optimal solution (8.95, 8.98, 8.61, 8.90, 8.94)T was declared
as the solution preferred by the DM.

In the above demonstration, the DM learnt during the solution process of what
solutions were attainable and did not have to trade off between objectives. He ini-
tially chose to give equal credits to all the objective functions as balancing between
all five possible cases was equally important. At the end of the first iteration, the
DM found a solution z(201) = (9.17, 9.16, 8.87, 9.14, 9.17)T and then looked for a
solution satisfying the aspiration level qa = (8, 8, 8, 8, 8)T . After solving problem
(3), the algorithm found z(2) = (8.96, 8.95, 8.59, 8.93, 8.96)T being dominated by
qa. The DM found a new solution by choosing to look for better solutions in the
archive. It can be seen that the new solution z3 was similar to the previous solution
z(102), as there were no better solutions in the archive AP . The solution z3 was a
satisfactory solution to the DM, as the objective function values are all between
8.0 and 9.0 and the DM has struck a balance among the five losses. Note that the
solution z(3) was not improved by SQP, as it was already (locally) Pareto optimal
but we cannot know that without solving one more problem. For simplicity, we
have carried out a small number of iterations. However, in large scale problems
the number of iterations can be higher.

5 Conclusions

In this paper, a new preference based interactive evolutionary algorithm has been
proposed. In the proposed algorithm, we start from an approximated nadir point
and move progressively towards a desired Pareto optimal solution according
to the preferences specified by the DM improving the values of all objectives
simultaneously. In this, the DM does not need to compare too many solutions
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at a time. The ASF defined by the preference information is not only used to
obtain better solutions, but also to define an effective termination criterion. At
each iteration, we present to the DM just one solution at her/his desired distance
from the Pareto front, and move progressively towards the Pareto front, allowing
the DM to improve all objectives keeping the cognitive load set to the DM low.
Thus, as better solutions are presented gradually, the DM is focussed in the
solution process. An evolutionary algorithm has been used to find a near Pareto
optimal solution and a mathematical programming technique has been used to
guarantee convergence to (locally) Pareto optimal solution. All the populations
in the evolutionary algorithm are stored in archive sets and used to show the
DM some previous solutions if so desired. Also, we can save in computational
cost in the PIE algorithm, if a new run of an evolutionary algorithm is needed.
Then, we start from an initial population formed by already evaluated solutions
that are located around the new reference point.

We have demonstrated the applicability of the PIE algorithm with a five
objective optimization problem. The fact that the objective functions have real
meanings enables a realistic interaction with the DM and permits to demonstrate
how the PIE algorithm can be used in finding the most interesting solution in
few iterations. Next we plan to apply the PIE algorithm with different DMs and
problems. Additionally, we are conscious of the importance of a good graphical
user-friendly interface in decision making, so a future research direction is to
develop a user interface that supports the understandability and easiness of use
of the PIE algorithm.
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Abstract. In recent years, multi-objective evolutionary algorithms have
diversified their goal from finding an approximation of the complete ef-
ficient front of a multi-objective optimization problem, to integration of
user preferences. These user preferences can be used to focus on a pre-
ferred region of the efficient front. Many such user preferences come from
so called proper Pareto-optimality notions. Although, starting with the
seminal work of Kuhn and Tucker in 1951, proper Pareto-optimal solu-
tions have been around in the multi-criteria decision making literature,
there are (surprisingly) very few studies in the evolutionary domain on
this. In this paper, we introduce new ranking schemes of various state-of-
the-art multi-objective evolutionary algorithms to focus on a preferred
region corresponding to proper Pareto-optimal solutions. The algorithms
based on these new ranking schemes are successfully tested on extensive
benchmark test problems of varying complexity, with the aim to find
the preferred region of the efficient front. This comprehensive study ad-
equately demonstrates the efficiency of the developed multi-objective
evolutionary algorithms in finding the complete preferred region for a
large class of complex problems.

1 Introduction

Over the past two decades, multi-objective evolutionary algorithms (MOEAs)
have been used in finding a well-diverse approximation of the efficient front of
a multi-objective optimization problem. In addition to providing the complete
front, this approach can also be used to extract innovative design principles [1].
However, information about the complete front burdens the decision-maker and
is not especially suitable, if the number of objectives is large. In real-world ap-
plications, there is usually one preferred solution which is finally implemented,
and it makes sense to use some available information to steer the search towards
preferred regions. Hence, we see that various preference based multi-objective
evolutionary algorithms have been proposed in the last years [2].

Although the notion of Pareto-optimality has been a central concept in multi-
objective optimization, the seminal paper by Kuhn and Tucker in 1951 [3] and
later by Geoffrion and others [4, 5], noticed that the use of this notion alone,
can give rise to several undesirable properties, like unbounded trade-off’s among
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the objective functions. In order to alleviate these undesirable properties, the
notion of proper Pareto-optimality came into existence. Various kinds of proper
Pareto-optimal solutions were introduced by researchers and classical methods
were devised [6] to find one such solution. Proper Pareto-optimal solutions used
additional information (in the form of trade-offs, preference cones, or stability
properties of the efficient set [5]) to remove the undesirable Pareto-optimal so-
lutions. Though proper Pareto-optimal solutions have been extensively studied
in the classical domain, there is a dearth of studies in the evolutionary domain.

In this paper, we introduce new ranking schemes of existing multi-objective
evolutionary algorithms for incorporating preference information. This is done
by considering trade-off based preferences that come from various proper Pareto-
optimal solutions [4]. We take five state-of-the-art algorithms and propose mod-
ifications of their usual ranking schemes. This is used to focus on a preferred
region of the efficient front. An extensive computational study on a number of
test problems of varying complexity demonstrates the efficiency of new ranking
based multi-objective evolutionary algorithms in finding the complete preferred
region for a large class of complex problems. Although we only consider prefer-
ences coming from the notion of proper Pareto-optimality, the framework that
we present is able to handle many kinds of preference structure. This paper ad-
equately demonstrates the niche of population based algorithms in finding the
preferred region corresponding to various proper Pareto-optimal solutions.

The paper is structured as follows. The next section presents various notions
of proper Pareto-optimality and discusses existing studies. The new ranking
schemes of the algorithms are described in Section 3. The fourth section presents
extensive simulation results while conclusions as well as extensions which em-
anated from this study are presented at the end of this contribution.

2 Preliminaries and Existing Studies

Let f1, . . . , fm : Rn → R and X ⊆ Rn be given and consider the following multi-
objective optimization problem (MOP ) and the definition of Pareto-optimality:

min f(x) := (f1(x), f2(x), . . . , fm(x)) s.t. x ∈ X.

Definition 1 (Pareto-optimality). A point x∗ ∈ X is called Pareto-optimal
if no x ∈ X exists so that fi(x) ≤ fi(x∗) for all i = 1, . . . , m with strict inequality
for at least one index i.

Let Xp and E := F (Xp) denote the set of Pareto-optimal solutions and effi-
cient solutions, respectively. A criticism of Pareto-optimality is that it allows
unbounded trade-offs. To avoid this, starting with the classical work of Geof-
frion [4], various stronger optimality notions have been defined.

Definition 2 (Geoffrion proper Pareto-optimality [4]). A point x∗ ∈ X is
Geoffrion proper Pareto-optimal if x∗ ∈ Xp and if there exists a number M > 0
such that for all i and x ∈ X satisfying fi(x) < fi(x∗), there exists an index j
such that fj(x∗) < fj(x) and moreover (fi(x∗) − fi(x))/(fj(x) − fj(x∗)) ≤ M.



228 M.A. Braun, P.K. Shukla, and H. Schmeck

Definition 3 (M-proper Pareto-optimality [7]). Let a function M : Rn →
(0,∞) be given. Then, a point x∗ ∈ X is called M-proper Pareto-optimal if
x∗ ∈ Xp and if for all i and x ∈ X satisfying fi(x) < fi(x∗), there exists an
index j such that fj(x∗) < fj(x) and moreover (fi(x∗)−fi(x))/(fj(x)−fj(x∗)) ≤
M(x∗).

Although in Definition 3 M is a function, in this study we use M := M , a
constant positive value. This is only for simplicity/ better-illustration and the
approach/ ranking-schemes presented in this paper are general enough to handle
any function M. Let XM and EM (:= F (XM )) denote the set of M -proper Pareto-
optimal solutions and the set of M -proper efficient solutions respectively. It was
shown in [7, Lemma 2] that in order to check if a point is (Geoffrion, M -)proper
Pareto-optimal or not, it is sufficient to check the boundedness of the trade-offs
with the Pareto-optimal points only. This is not evident from Definitions 2 and
3. Based on this, [7] proposed a new ranking scheme in NSGA-II. The algorithm
[7] gave a well-diverse representation of EM on various test problems. Another
work [8] used a constrained approach and it failed for multi-modal problems. In
this paper we go on further with the study started in [7] and investigate ranking
schemes in various multi-objective evolutionary algorithms.

To the best of our knowledge, we have not found any other work that proposes
a method for finding M -proper Pareto-optimal solutions. Note that just the
existence of an index j ∈ {1, 2, . . . , m} in Definitions 2 and 3 is not the same as
using a trade-off on fixed objectives (like in [9]) and M -proper Pareto-optimal
solutions cannot be found by changing the domination. More understanding in
this direction is currently under way.

3 Preference Based Ranking Schemes

In this section we take five state-of-the-art algorithms and propose a ranking
scheme for these. The first of these is NSGA-II [10], a non-dominated sorting
based algorithm (for which we use the same ranking as described in [7]). The
other ones are: a steady state version of NSGA-II ssNSGA-II [11], a strength
Pareto based algorithm SPEA2 [12], a particle swarm algorithm SMPSO [13],
and an algorithm IBEA [14] using indicator based selection. Note that although
SMPSO does not use an explicit ranking in the usual sense, it still maintains an
archive of non-dominated solutions which are used to guide the search. In this
loose way we will call the (new) ranking in SMPSO as the (new) archive update
scheme of SMPSO.

Apart from the fact that all of these algorithms are well known and state-
of-the-art, they provide an example of the different categories in the gamut
of ranking schemes and the way non-dominated solutions are stored/ handled.
SPEA2, for example, uses an external archive that stores the non-dominated
solutions in a fixed-size archive, while SMPSO uses a variable-size archive (an
upper limit on the archive size always exists) to store the non-dominated solu-
tions. NSGA-II uses explicitly the non-dominated sorting to rank the solutions
and has no additional archive. IBEA uses a totally different ranking mechanism
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that is indicator based. ssNSGA-II, in contrast to all the other generational al-
gorithms, is a steady-state algorithm. The no-free-lunch theorem holds and the
aim of this paper is to show how to change the (existing) ranking schemes of
various algorithms to guide the search towards proper Pareto-optimal solutions.
Hence, we choose the algorithms that have diverse ranking mechanisms and the
way non-dominated solutions are used/ stored.

In order to promote those solutions that fulfill the M-proper Pareto optimal-
ity condition, we changed the way each algorithm chooses the best solutions.
Since every algorithm uses an individual scheme of determining the fitness of a
solution, we needed to tailor unique solutions for each algorithm. The general
ranking scheme is find the (best) non-dominated set and extract from this the
subset of M-proper Pareto solutions. Then, we give this subset a better rank
or store them instead of the usual non-dominated set. This is not simple as it
seems, although the size of the non-dominated set cannot be zero, the set of M-
proper Pareto solutions could be empty. This could cause an (undesirable) empty
archive in variable-size archive mechanisms in SMPSO, if we only add the M-
proper Pareto solutions instead of the non-dominated ones. Moreover, for other
algorithms (NSGA-II, ssNSGA-II, SPEA2, and IBEA) we have to guarantee that
the worst solution of the M-proper Pareto set (if this is non-empty) has a better
fitness than the best solution of the the non-M-proper Pareto solutions of the
non-dominated set. This requirement preserves the Pareto dominance compliant
mechanism (see the discussion in [14]).

Next, we detail the new ranking schemes (or fitness assignment in NSGA-II,
ssNSGA-II, SPEA2, IBEA and archive update scheme in SMPSO, as we said
earlier) of the five algorithms. The name of the new algorithms working using
the new ranking schemes are prefixed with ’p’, so pIBEA is the IBEA algorithm
with the new ranking scheme and so on.

3.1 Ranking in pNSGA-II and pssNSGA-II

NSGA-II and ssNSGA-II use a non-dominated sorting to rank the current pop-
ulation. After this sorting, the new parent population is filled by solutions of
different non-dominated fronts, one at a time starting with the first (i.e., the
best), second, third fronts and so on. The only difference between NSGA-II and
its steady state version ssNSGA-II is the size of the offspring population that is
created (in NSGA-II it equals the parent population size while in ssNSGA-II its
always one). The new ranking in pNSGA-II (see [7]) and in pssNSGA-II is as
follows (where Original ranking denotes the usual ranking in NSGA-II):

1. Do the (usual) non-dominated sorting
2. Take the first front and extract the M-proper Pareto optimal solutions into

a new set of solutions called MPPO
3. If MPPO and the remaining first front is not empty

(a) Increase the rank of every front by one
(b) Assign MPPO the rank 1 and Return.

4. Return: Original ranking.
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Note that in pNSGA-II and pssNSGA-II, and in the following p-algorithms,
everything else remains unchanged (e.g., in pNSGA-II and pssNSGA-II, we still
do the crowding distance sorting, tournament selection and so on).

3.2 Ranking in pSPEA2

SPEA2 is an evolutionary algorithm having a fixed archive size. It assigns fitness
values to the archive and the current population. The new archive is then filled
with the solutions having the best (lowest) fitness values. The new ranking in
pSPEA2 is as follows:

1. Calculate fitness values according to SPEA2
2. Denote the set of all solutions having a fitness < 1 with P-set (this is the

Pareto optimal set)
3. Extract from the P-set the M-proper Pareto optimal solutions into a new

set of solutions called MPPO
4. If MPPO and the remaining P-set is not empty

(a) Increase the fitness of all solutions which are not in MPPO by one
(b) Return: Population with changed fitness values.

5. Return: Population with original fitness values.

The environment selection mechanism works by first copying all the MPPO
solutions, i.e., those which have a fitness less than one, from the archive and
the population to, the archive of the next generation and this ensures that the
MPPO solutions are promoted.

3.3 Ranking in pSMPSO

SMPSO is also an archive based evolutionary algorithm, but it uses a particle
swarm optimization inspired mechanism for searching for Pareto-optimal so-
lutions. In each iteration the algorithm checks which particles of the current
generation are to be added to the archive. This is done (here) particle by parti-
cle. We changed the adding process by including a M-proper Pareto optimality
aggregation of the archive during the adding step. The new ranking (archive
update) in pSMPSO is as follows:

1. Denote the solution which is to be added by Solution 1
2. Iterate through the archive and

(a) Delete all solutions in the archive which are dominated by Solution 1
(b) If Solution 1 is dominated or there is a duplicate of Solution 1, discard

it and Return.
3. Add Solution 1 to the archive
4. Extract from the archive all solutions which are M-proper Pareto optimal

and denote this set as MPPO
5. If MPPO is not empty, overwrite the current archive with MPPO
6. If the archive size has exceeded its maximum limit, do a crowding distance

assignment and delete the solution that has the worst value
7. Return.
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3.4 Ranking in pIBEA

IBEA combines the offsprings with the current generation and then computes the
fitness of the union. It then deletes the solution having the lowest fitness value
(in this algorithm better individuals have higher fitness values) and updates the
fitness value of the union. This is repeated until the union has the maximum
archive size. The union is then the archive for the next iteration. Since M-proper
Pareto optimal solutions should always be favored before all other solution, we
needed to change the fitness assignment in a way that the worst fitness value of
a M-proper Pareto optimal solution is lower (better) than the lowest non-M-
proper Pareto optimal solution. The new ranking in pIBEA is as follows:

1. Assign / Update fitness according to IBEA
2. Determine all M-proper Pareto optimal solution of the union
3. Denote the worst fitness value of all M-proper Pareto optimal solutions with

Mw and the best fitness value of all non-M-proper Pareto optimal solution
with Pb

4. If Mw < Pb: Increase the fitness of every M-proper Pareto optimal solutions
by Pb −Mw + 1

5. Return: Union.

Table 1. HV. Mean and standard deviation, for continuous problems with M = 5.0

pNSGA-II pssNSGA-II pSPEA2 pSMPSO pIBEA
CTP1 6.08e − 013.0e−04 6.10e − 011.2e−04 6.09e − 013.7e−04 6.10e − 011.2e−04 6.07e − 014.0e−04
CTP7 6.34e − 011.2e−04 6.34e − 012.0e−05 6.34e − 011.7e−04 6.34e − 015.0e−05 6.33e − 012.6e−04
DEB2DK k2 5.65e − 013.0e−04 5.67e − 011.3e−05 5.67e − 012.6e−05 5.67e − 011.3e−04 5.65e − 011.2e−04
DEB2DK k4 5.40e − 013.1e−04 5.42e − 012.7e−05 5.42e − 013.2e−05 5.42e − 018.0e−05 5.35e − 013.5e−04
DEB3DK k1 7.43e − 013.8e−03 7.47e − 012.4e−03 7.51e − 012.1e−03 7.50e − 011.6e−03 7.50e − 011.4e−03
DEB3DK k2 7.23e − 014.1e−03 7.26e − 012.9e−03 7.36e − 011.1e−03 7.30e − 012.7e−03 7.32e − 014.5e−04
DO2DK k1 7.72e − 012.8e−04 7.73e − 012.1e−05 7.73e − 013.5e−05 7.73e − 013.3e−05 7.72e − 015.9e−04
DO2DK k4 6.32e − 012.2e−04 6.34e − 019.9e−06 6.34e − 012.3e−05 6.34e − 014.0e−04 6.33e − 011.2e−04
DTLZ2 3.88e − 014.1e−03 3.90e − 013.5e−03 3.98e − 011.1e−03 3.83e − 014.1e−03 3.97e − 018.8e−04
DTLZ3 0.00e + 000.0e+00 0.00e + 000.0e+00 0.00e + 000.0e+00 3.26e − 018.9e−02 1.21e − 038.5e−03
DTLZ4 3.83e − 015.4e−02 3.78e − 017.6e−02 3.26e − 011.1e−01 3.38e − 013.0e−02 2.19e − 011.4e−01
DTLZ5 8.71e − 025.2e−05 8.75e − 024.0e−05 8.73e − 029.6e−05 8.75e − 026.3e−04 8.67e − 026.2e−05
DTLZ6 0.00e + 000.0e+00 2.44e − 061.7e−05 0.00e + 000.0e+00 8.09e − 022.4e−02 6.24e − 021.4e−02
DTLZ7 2.62e − 012.8e−03 2.62e − 012.7e−03 2.62e − 017.1e−03 2.66e − 014.3e−03 2.31e − 013.9e−02
DTLZ8 5.70e − 011.7e−02 5.68e − 011.9e−02 5.51e − 011.4e−02 6.14e − 011.3e−02 5.42e − 011.5e−02
DTLZ9 5.98e − 023.5e−03 5.66e − 023.2e−03 5.22e − 022.8e−03 7.66e − 023.8e−03 5.78e − 023.6e−03
LZ09 F1 5.73e − 011.5e−02 5.64e − 011.4e−02 5.40e − 011.9e−02 5.98e − 012.4e−02 5.41e − 011.6e−02
LZ09 F4 5.50e − 018.4e−03 5.46e − 012.5e−02 5.39e − 019.5e−03 5.03e − 014.2e−02 5.14e − 016.4e−02
SZDT1 6.12e − 012.8e−03 6.15e − 012.5e−03 6.05e − 013.5e−03 6.76e − 025.6e−02 6.15e − 016.1e−03
SZDT2 2.89e − 014.6e−02 2.79e − 017.6e−02 1.28e − 011.3e−01 0.00e + 000.0e+00 2.49e − 017.0e−02
UF2 5.51e − 013.3e−03 5.50e − 012.8e−03 5.47e − 013.2e−03 5.36e − 014.0e−03 5.48e − 013.0e−03
UF4 1.87e − 014.3e−03 1.87e − 014.3e−03 1.83e − 013.3e−03 1.27e − 014.4e−03 1.90e − 015.8e−03
WFG1 2D 3.87e − 019.9e−02 3.24e − 011.2e−01 3.04e − 019.4e−02 4.31e − 024.1e−03 3.02e − 011.1e−01
WFG1 3D 5.75e − 011.3e−01 5.82e − 011.2e−01 4.80e − 011.2e−01 5.14e − 032.6e−03 3.82e − 011.7e−01
WFG2 2D 4.67e − 014.5e−04 4.67e − 014.8e−04 4.67e − 015.0e−04 4.66e − 011.5e−03 4.67e − 014.6e−04
WFG2 3D 6.75e − 016.9e−04 6.76e − 015.7e−04 6.75e − 018.0e−04 6.76e − 014.7e−04 6.74e − 019.2e−04
ZDT3 4.69e − 013.7e−04 4.70e − 012.6e−04 4.68e − 019.0e−04 4.65e − 012.3e−02 4.68e − 016.7e−03
ZDT4 6.18e − 017.9e−03 6.16e − 013.1e−02 5.84e − 013.3e−02 6.31e − 012.6e−04 2.70e − 019.1e−02
ZDT6 3.78e − 013.0e−03 3.93e − 011.2e−03 3.54e − 017.3e−03 4.01e − 019.6e−05 3.86e − 012.1e−03
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Table 2. EPSILON. Median and IQR, for continuous problems with M = 5.0

pNSGA-II pssNSGA-II pSPEA2 pSMPSO pIBEA
CTP1 6.89e − 031.6e−03 4.02e − 036.9e−04 6.28e − 032.2e−03 4.35e − 037.5e−04 8.96e − 031.6e−03
CTP7 4.37e − 031.1e−03 2.16e − 033.3e−04 2.22e − 032.6e−03 1.75e − 039.8e−05 9.57e − 033.0e−03
DEB2DK k2 1.10e − 012.7e−02 4.14e − 022.2e−03 5.27e − 027.3e−03 4.31e − 027.2e−03 1.25e − 011.9e−02
DEB2DK k4 1.06e − 013.3e−02 4.12e − 022.6e−03 5.40e − 026.9e−03 4.74e − 021.0e−02 2.69e − 011.3e−02
DEB3DK k1 6.93e − 011.6e−01 6.59e − 018.5e−02 4.05e − 019.6e−02 5.94e − 011.2e−01 4.91e − 013.7e−02
DEB3DK k2 7.00e − 011.3e−01 6.86e − 011.2e−01 4.08e − 014.6e−02 5.94e − 019.3e−02 5.81e − 012.7e−02
DO2DK k1 2.87e − 027.1e−03 1.19e − 027.3e−04 1.56e − 021.6e−03 1.23e − 021.9e−03 2.48e − 026.1e−03
DO2DK k4 2.51e − 025.2e−03 9.61e − 033.9e−04 1.26e − 021.4e−03 9.93e − 037.8e−04 1.95e − 023.2e−03
DTLZ2 7.96e − 022.9e−02 8.11e − 023.7e−02 3.63e − 021.1e−02 1.08e − 011.6e−02 6.94e − 021.4e−02
DTLZ3 6.62e + 005.1e+00 6.06e + 003.6e+00 8.36e + 006.5e+00 1.07e − 014.9e−01 1.49e + 001.5e+00
DTLZ4 6.93e − 022.0e−02 6.31e − 021.9e−02 4.04e − 026.7e−01 1.66e − 019.6e−02 7.02e − 016.2e−01
DTLZ5 5.29e − 031.4e−03 2.62e − 034.8e−04 3.11e − 036.3e−04 2.80e − 033.6e−04 5.81e − 038.2e−04
DTLZ6 6.17e − 018.4e−02 4.47e − 019.3e−02 5.92e − 014.9e−02 2.69e − 036.1e−04 6.79e − 024.0e−02
DTLZ7 5.88e − 027.7e−03 5.40e − 021.4e−02 4.13e − 025.4e−03 6.25e − 029.4e−03 1.64e − 011.4e+00
DTLZ8 1.34e − 012.1e−02 1.33e − 011.9e−02 1.60e − 011.4e−02 1.00e − 013.8e−03 1.51e − 011.8e−02
DTLZ9 5.84e − 013.4e−02 6.14e − 013.0e−02 6.15e − 011.7e−02 3.59e − 015.6e−02 6.48e − 013.0e−02
LZ09 F1 2.06e − 016.8e−02 2.41e − 014.7e−02 2.80e − 015.9e−02 2.47e − 021.2e−02 2.96e − 013.6e−02
LZ09 F4 2.23e − 013.3e−02 2.34e − 013.4e−02 2.43e − 013.4e−02 2.82e − 011.2e−01 2.63e − 015.7e−02
SZDT1 1.88e − 022.3e−03 1.44e − 022.1e−03 2.08e − 024.6e−03 6.38e − 011.8e−01 1.96e − 024.0e−03
SZDT2 4.01e − 021.4e−02 3.43e − 021.3e−02 7.73e − 016.1e−01 2.11e + 004.0e−01 2.92e − 016.1e−01
UF2 1.36e − 011.2e−02 1.38e − 011.3e−02 1.41e − 011.6e−02 1.98e − 013.1e−02 1.34e − 011.1e−02
UF4 1.68e − 016.2e−03 1.70e − 019.3e−03 1.51e − 012.6e−02 1.70e − 017.7e−03 1.69e − 018.6e−03
WFG1 2D 7.33e − 014.8e−01 8.02e − 014.2e−01 1.07e + 002.4e−01 1.22e + 004.8e−02 8.01e − 012.9e−01
WFG1 3D 3.81e − 011.6e−01 3.66e − 011.3e−01 6.25e − 011.3e−01 1.51e + 008.6e−02 5.76e − 012.5e−01
WFG2 2D 7.11e − 017.1e−01 7.11e − 017.1e−01 7.11e − 017.1e−01 1.04e − 024.2e−03 7.11e − 017.1e−01
WFG2 3D 2.34e − 012.2e−02 2.36e − 011.9e−02 2.11e − 011.5e−02 2.59e − 012.7e−03 1.86e − 013.3e−02
ZDT3 2.21e − 033.3e−04 1.38e − 032.3e−04 3.79e − 031.7e−03 2.64e − 033.8e−03 5.30e − 032.0e−03
ZDT4 1.79e − 029.1e−03 1.06e − 026.4e−03 1.45e − 011.4e−01 7.61e − 031.5e−03 6.50e − 011.4e−01
ZDT6 2.50e − 026.9e−03 9.22e − 031.4e−03 5.34e − 021.6e−02 4.80e − 033.9e−04 2.01e − 023.1e−03

4 Experimental Study

In this section, we present an extensive experimental study involving the five
algorithms discussed in the previous section (pNSGA-II, pssNSGA-II, pSPEA2,
pIBEA, and pSMPSO) and thirty benchmark test problems.

4.1 Experimental Setup

We have written the above p-algorithms in the jMetal framework [15]. The con-
cept of M-proper Pareto optimality is written as a new class MProperPareto
Optimality.java and is located in the utilities package of the jMetal frame-
work. In its current state, this class may only be used with fixed values for M,
however it could easily be modified to use different values or complete functions
which may depend on the values of the variables of the corresponding solution
and/ or objectives (like M in Definition 3). The implementation can easily be
used in any other multi-objective evolutionary algorithm. During our work with
jMetal, we encountered and corrected several errors (e.g., SMPSO.java could not
work on problems with nonlinear constraints e.g., CTP7). We also implemented
new problems into the framework like the CTP and the SZDT suite and the knee
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problems. The addition of more test suites and the inclusion of proper Pareto-
optimal notions builds upon the rich features of jMetal and provides a support
for decision making. The source code is made publicly available1.

The test problems chosen are of varying complexity and are from different
test suites that we find in literature. These include two problems from the CTP
suite (CTP1, CTP7) [16], six from the Knee suite (DEB2DK with k = 2 and k = 4,
DEB3DK with k = 1 and k = 2, DO2DK with k = 1, s = 0 and k = 4, s = 1,)
[17, 18], eight from the DTLZ suite (DTLZ2-9, 3 objectives) [19], two from the
LZ09 suite (LZ09-F1 and LZ09-F4) [20], two from the CEC-2007 competition
(SZDT1, SZDT2), two from the CEC-2009 competition (UF2, UF4), four from
the WFG suite (WFG1, WFG2, with both 2 and 3 objectives) [21] and four from
the ZDT suite (ZDT3, ZDT4, ZDT5, ZDT6) [18]. We note that this paper is
among the very few studies that consider ZDT5, a difficult discrete problem.
The knee and CTP problems included here are also only rarely used in other
studies. The inclusion of eight existing test suites makes this study among the
most comprehensive experimentation that we find in literature.

For all problems solved, we use a population of size 100 and set the maximum
number of function evaluations as 20,000 (200 generations). The archive size (in
archive based algorithms) is set to be 100. For continuous problems, we use a
standard real-parameter SBX and polynomial mutation operator with ηc = 15
and ηm = 20, respectively [18]. Moreover, we use the binary tournament selection
in appropriate algorithms. For ZDT5 we use a bit-flip mutation and a single point
crossover as recommended in literature.

In this paper, we use M = 1.5 and 5.0. Note that these M values restrict
the efficient front and this is the preferred efficient front that needs to be found.
For all problems we started with a well-distributed approximation of the efficient
front (reference set). These fronts were either publicly available (WFGs), analyt-
ically constructed (ZDTs) or computed by running NSGA-II with a population
size of 5,000 till 2,000 generations, i.e., for 10 million function evaluations (Knee
problems). Then, we calculate the preferred points, i.e., the points that satisfy
the M -proper Pareto-optimality criteria (from [7, Lemma 2], we only need to
consider Xp).

In order to access the quality of our algorithms we used several quality indica-
tors. These indicators describe how well the approximation of the true M-Pareto
front is compared to the final M -front returned by each algorithm. Convergence
and diversity are two distinct goals of any population based algorithm. We use
the additive unary Epsilon indicator and Generational Distance (GD) for mea-
suring the the convergence goal while Spread (for bi-objective problems) and
Generalized Spread (for more than two objectives) are used for measuring the
diversity goal. Hypervolume (HV) and Inverted Generational Distance (IGD) can
measure both convergence and diversity. Except for hypervolume, all the other
indicators need to be minimized. For statistical evaluation we run each algorithm
for 51 times and present various statistical estimates. This is used together with
box-plots for statistical visualization. Moreover, we also use Wilcoxon rank sum

1 http://www.aifb.kit.edu/web/pNSGA-II/en
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test, for making pairwise comparisons between algorithms in order to know about
the significance of the obtained results. All of these metrices are computed using
the existing jMetal framework.

The data files for all the 51 runs of all the algorithms on all the problems are
available on request. This would benefit any other classical and/ or evolutionary
comparative studies on proper Pareto-optimal solutions.

4.2 Discussion of Results

In Tables 1, 2, 3 and 4, the entries of the algorithms yielding the best results
are highlighted in a dark background, with the second-best is highlighted by a
lighter dark background. Table 1 shows the mean and the standard deviation of
the HV indicator for the 29 continuous problems. It can be seen that pSMPSO
and pssNSGA-II deliver the best results, while pIBEA is the worst. pSMPSO
performs exceptionally strongly on the DTLZ family. It also gives very good re-
sults for the knee problems, the constrained problems of the CTP and ZDT suit.
On the other hand the tables shows, that SMPSO has difficulties solving shifted
problems like SZDT, UF or WFG family (these problems were not considered
in [13]). Contrary to this pssNSGA-II delivers very good results (with statistical
confidence, see Tables 7 and 8) for these difficult problems. The pNSGA-II al-
gorithm also perform quite well here. For smaller values of M (=1.5) the results
obtained were similar.

Table 2 shows the Epsilon indicator for M = 5.0. Again, we see that pSMPSO
and pssNSSGA-II algorithms performs quite well. Although in this study we
did not consider the running time explicitly, we found that pSMPSO is the
fastest while pssNSGA-II and pIBEA to be the slowest. This is a highly desir-
able property of pSMPSO. Overalll, pssNSGA-II shows the best results for all
different kind of test problems (although the variability can be quite high, see
Figure 7). Furthermore its generational counterpart performs also well on the
the WFG, LZ and SZDT family. This shows, that the ranking based NSGA-
II algorithms keep their niche when preference based selection is introduced.
On the other hand, if we look at Tables 3 and 4 we see that slightly different
results. pNSGA-II and pSPEA2 perform quite bad in comparison to other algo-
rithms. If we consider the GD indicator, pIBEA shows exceptional results (even
for M = 5 pIBEA outperforms all other algorithms in terms of GD). An indi-
cator based search performs the best in terms of convergence. This issue opens
another interesting direction of research. Instead of using the standard indica-
tors in pIBEA (like HV), can one have a indicator which is based on M-proper
Pareto optimality notion itself? This would lead to better focus on finding these
solutions.

Looking at Figure 8, we see that the various p-algorithms (with the pos-
sible exception of pIBEA) give excellent results on the DTLZ suite. Addition-
ally, the span of pSMPOs boxplots is quite small for nearly all DTLZ
problems. This is a very desirable feature, since this means, that pSMPSO
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provides stable results independent over various runs. We did not test pSMPSO
on the discrete problem ZDT5, since its speed constraint mechanism is not de-
signed to handle binary problems. For ZDT5, although the results for IGD and
Epsilon may be considered to be quite close, SPEA2 performs slightly better for
M = 1.5 compared to other algorithms (see Tables 5 and 6). In a sample (ran-
dom) run plot shown (with M = 5.0) in Figure 1 we see that all the algorithms
approach the preferred part of ZDT5. The other plots shown in Figures 2-6 show
that many of the algorithms do give a well-diverse representation of the preferred
region. Especially, the knees in DEB3DK problem (with k = 2) are found.
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Table 3. GD. Median and IQR, for continuous problems with M = 5.0

pNSGA-II pssNSGA-II pSPEA2 pSMPSO pIBEA
CTP1 1.42e − 045.8e−05 9.09e − 055.8e−05 1.37e − 049.0e−05 1.29e − 041.3e−04 6.29e − 052.6e−05
CTP7 1.17e − 059.8e−06 1.06e − 055.8e−06 1.69e − 052.3e−05 1.21e − 053.5e−06 1.05e − 051.8e−05
DEB2DK k2 3.53e − 053.2e−06 3.66e − 053.4e−06 3.61e − 053.9e−06 4.10e − 059.3e−06 3.45e − 053.5e−06
DEB2DK k4 3.43e − 055.1e−06 3.38e − 054.0e−06 3.37e − 053.1e−06 5.33e − 052.9e−05 3.33e − 054.3e−06
DEB3DK k1 3.71e − 039.6e−04 3.37e − 036.9e−04 2.69e − 036.8e−04 2.67e − 038.2e−04 4.75e − 037.7e−04
DEB3DK k2 1.63e − 033.4e−04 1.44e − 032.6e−04 1.59e − 032.4e−04 3.49e − 031.0e−03 1.01e − 031.0e−04
DO2DK k1 1.38e − 041.0e−05 1.45e − 041.1e−05 1.38e − 041.4e−05 1.00e − 031.4e−02 1.37e − 048.2e−06
DO2DK k4 9.68e − 051.3e−05 9.78e − 059.1e−06 9.77e − 051.0e−05 1.10e − 047.6e−03 1.05e − 041.3e−05
DTLZ2 6.25e − 033.5e−03 8.22e − 032.6e−03 5.35e − 031.9e−03 1.44e − 021.4e−03 3.85e − 031.6e−03
DTLZ3 2.57e + 002.0e+00 2.21e + 001.3e+00 3.06e + 002.9e+00 1.37e − 028.3e−03 3.86e − 015.9e−01
DTLZ4 3.27e − 033.4e−03 6.31e − 033.6e−03 2.87e − 033.7e−03 1.25e − 031.2e−03 1.19e − 035.3e−04
DTLZ5 2.20e − 041.8e−05 2.15e − 041.9e−05 2.14e − 041.4e−05 2.34e − 041.1e−03 2.61e − 041.4e−05
DTLZ6 1.29e − 011.8e−02 8.46e − 021.2e−02 1.05e − 011.3e−02 2.27e − 041.4e−03 6.28e − 037.6e−03
DTLZ7 1.54e − 032.2e−04 1.44e − 031.7e−04 1.43e − 031.6e−04 2.28e − 031.2e−03 1.18e − 034.5e−04
DTLZ8 9.37e − 041.5e−04 8.06e − 041.6e−04 8.35e − 043.2e−04 2.65e − 032.0e−03 3.34e − 043.1e−05
DTLZ9 5.44e − 042.6e−04 4.13e − 041.2e−04 5.96e − 042.6e−04 5.34e − 032.0e−03 1.68e − 041.2e−04
LZ09 F1 1.20e − 033.5e−04 1.01e − 032.2e−04 1.27e − 034.0e−04 1.85e − 039.0e−04 6.74e − 042.5e−04
LZ09 F4 1.81e − 035.5e−04 1.75e − 036.3e−04 2.03e − 035.3e−04 5.43e − 033.2e−03 1.20e − 035.3e−04
SZDT1 1.28e − 032.0e−04 1.16e − 032.7e−04 1.81e − 033.4e−04 8.49e − 022.9e−02 8.29e − 042.1e−04
SZDT2 1.92e − 034.7e−04 1.62e − 034.2e−04 6.38e − 031.6e−01 6.47e − 016.0e−01 1.50e − 033.9e−04
UF2 2.64e − 037.9e−04 2.54e − 038.3e−04 2.53e − 035.3e−04 5.47e − 032.0e−03 1.84e − 034.5e−04
UF4 1.38e − 025.3e−03 1.47e − 023.8e−03 1.70e − 023.6e−03 2.40e − 022.3e−03 1.23e − 027.3e−03
WFG1 2D 7.23e − 031.4e−02 1.34e − 022.2e−02 7.32e − 031.4e−02 8.50e − 021.1e−02 1.39e − 021.6e−02
WFG1 3D 2.59e − 039.0e−03 2.76e − 039.1e−03 2.22e − 031.2e−02 1.09e − 016.3e−03 1.86e − 022.1e−02
WFG2 2D 2.28e − 047.5e−04 2.17e − 047.2e−04 2.14e − 047.3e−04 4.50e − 034.3e−03 1.96e − 047.8e−04
WFG2 3D 1.93e − 023.5e−04 1.96e − 022.8e−04 1.73e − 024.5e−04 1.78e − 024.6e−04 1.63e − 023.5e−04
ZDT3 8.64e − 051.2e−05 7.64e − 051.1e−05 1.50e − 045.0e−05 3.15e − 047.3e−04 6.87e − 055.7e−06
ZDT4 7.26e − 044.5e−04 5.04e − 044.0e−04 9.99e − 041.0e−03 1.00e − 041.0e−03 3.79e − 042.7e−04
ZDT6 1.70e − 033.8e−04 6.44e − 041.1e−04 3.36e − 037.8e−04 9.28e − 051.3e−05 7.90e − 042.1e−04

Table 4. EPSILON. Median and IQR, for continuous problems with M = 1.5

pNSGA-II pssNSGA-II pSPEA2 pSMPSO pIBEA
CTP1 4.39e − 031.2e−03 1.73e − 039.6e−05 2.35e − 032.7e−04 1.93e − 033.2e−04 2.93e − 033.4e−04
CTP7 2.11e − 034.3e−04 8.83e − 046.4e−05 9.89e − 041.2e−04 8.61e − 048.6e−05 4.37e − 038.3e−04
DEB2DK k2 7.82e − 032.3e−03 3.15e − 031.6e−04 3.75e − 036.5e−04 3.14e − 032.5e−04 8.47e − 031.1e−03
DEB2DK k4 2.11e − 025.5e−03 7.56e − 037.0e−04 8.36e − 031.3e−03 7.02e − 037.4e−04 4.95e − 021.3e−03
DEB3DK k1 4.31e − 023.2e−02 3.10e − 021.9e−02 4.10e − 023.1e−02 5.95e − 021.9e−02 2.97e − 021.0e−02
DEB3DK k2 8.87e − 026.0e−02 7.31e − 024.8e−02 1.22e − 019.4e−02 9.53e − 025.6e−02 7.49e − 024.9e−02
DO2DK k1 4.12e − 031.5e−03 1.79e − 031.0e−04 2.09e − 032.4e−04 1.76e − 031.2e−04 2.89e − 037.0e−04
DO2DK k4 1.05e − 033.9e−04 4.23e − 043.6e−05 4.57e − 048.9e−05 4.19e − 043.9e−05 9.74e − 042.9e−04
DTLZ2 4.46e − 042.5e−04 3.21e − 041.5e−04 2.63e − 031.3e−03 1.25e − 041.8e−05 1.35e − 049.7e−06
DTLZ3 8.31e + 006.9e+00 6.80e + 004.6e+00 9.65e + 004.9e+00 7.07e − 019.1e−01 1.03e + 001.1e+00
DTLZ4 3.08e − 041.5e−04 2.36e − 047.5e−05 2.90e − 039.8e−01 1.23e − 041.8e−07 9.84e − 019.8e−01
DTLZ5 2.89e − 052.2e−05 1.23e − 056.9e−06 4.29e − 042.5e−04 4.93e − 060.0e+00 5.99e − 068.1e−07
DTLZ6 1.29e + 001.9e−01 9.68e − 012.0e−01 1.34e + 001.4e−01 7.05e − 011.0e+00 2.25e − 024.3e−02
DTLZ7 2.39e − 029.3e−03 1.57e − 025.3e−03 8.24e − 023.0e−02 8.32e − 031.5e−03 1.28e + 001.3e+00
DTLZ8 2.64e − 032.7e−03 2.91e − 034.1e−03 6.01e − 037.7e−03 1.81e − 032.3e−03 9.64e − 041.5e−03
DTLZ9 5.72e − 013.2e−02 5.97e − 012.8e−02 6.33e − 013.3e−02 4.62e − 011.5e−01 6.60e − 013.8e−02
LZ09 F1 1.17e − 017.2e−02 1.29e − 015.8e−02 1.58e − 014.3e−02 6.24e − 028.7e−02 1.13e − 015.6e−02
LZ09 F4 1.26e − 014.6e−02 1.27e − 013.9e−02 1.44e − 017.8e−02 3.56e − 012.4e−01 1.03e − 012.6e−02
SZDT1 2.77e − 021.4e−02 2.50e − 029.6e−03 4.17e − 022.3e−02 5.65e − 013.0e−01 2.86e − 021.6e−02
SZDT2 4.52e − 021.7e−02 3.76e − 021.2e−02 3.26e − 019.6e−01 2.28e + 003.9e−01 3.45e − 022.2e−01
UF2 2.05e − 014.0e−02 1.97e − 015.6e−02 2.01e − 012.0e−02 2.15e − 011.7e−02 1.46e − 011.0e−02
UF4 2.02e − 021.7e−02 1.90e − 021.5e−02 5.01e − 022.8e−02 8.23e − 022.8e−02 7.72e − 031.5e−02
WFG1 2D 5.18e − 011.8e−01 6.42e − 013.7e−01 6.55e − 012.9e−01 1.90e + 004.4e−01 8.43e − 012.9e−01
WFG1 3D 1.76e − 018.9e−02 1.58e − 011.8e−01 2.74e − 011.9e−01 1.07e + 001.4e−01 3.40e − 022.1e−01
WFG2 2D 7.12e − 016.9e−01 7.12e − 016.9e−01 7.12e − 016.9e−01 2.55e − 022.6e−03 7.12e − 016.9e−01
WFG2 3D 2.52e − 021.2e−02 2.31e − 028.5e−03 3.07e − 021.5e−02 2.60e − 021.2e−02 2.40e − 021.3e−02
ZDT3 1.84e − 038.1e−04 9.31e − 045.6e−04 5.42e − 031.7e−03 2.24e − 012.5e−01 3.97e − 042.6e−04
ZDT4 1.92e − 021.5e−02 1.80e − 021.9e−02 3.36e − 022.8e−02 3.32e − 031.1e−03 1.69e − 011.8e−01
ZDT6 2.66e − 027.9e−03 1.17e − 026.8e−03 6.15e − 021.4e−02 6.18e − 046.2e−05 1.19e − 027.0e−03



Preference Ranking Schemes in MOEAs 237

0
2

4
6

8

0
2

4
6

8

0

1

2

3

4

5

6

7

8

F
2F

1

F
3

Efficient front
Preferred region, M=5
pNSGA−II, M=5
pssNSGA−II, M=5
pSPEA2, M=5
pSMPSO, M=5
pIBEA, M=5

Fig. 5. Preferred front and sample
run of the algorithms on DEB3DK k2
(M = 5.0)

0
2

4
6

8

0

2

4

6

8

0

2

4

6

8

F
2

F
1

F
3

Efficient front
Preferred region, M=1.5
pNSGA−II, M=1.5
pssNSGA−II, M=1.5
pSPEA2, M=1.5
pSMPSO, M=1.5
pIBEA, M=1.5

Fig. 6. Preferred front and sample
run of the algorithms on DEB3DK k2
(M = 1.5)

Table 5. IGD. Median and IQR, for ZDT5 with M = 5.0 and M = 1.5

pNSGA-II pssNSGAII pSPEA2 pIBEA
ZDT5, M = 5.0 6.95e − 024.6e−03 6.73e − 021.5e−03 6.95e − 025.1e−03 6.95e − 024.6e−03

ZDT5, M = 1.5 8.08e − 017.1e−02 9.15e − 012.4e−01 7.36e − 011.3e−01 7.36e − 011.3e−01

Table 6. EPSILON. Mean and standard deviation, for ZDT5 with M = 5.0 and
M = 1.5

NSGAII ssNSGAII SPEA2 IBEA
ZDT5, M = 5.0 1.01e + 003.2e−02 1.01e + 003.9e−02 1.01e + 003.2e−02 1.00e + 000.0e+00
ZDT5, M = 1.5 9.90e − 016.9e−02 1.03e + 007.7e−02 9.48e − 011.5e−01 9.74e − 011.1e−01
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Table 7. Wilcoxon test on SZDT1 and SZDT2 wrt. Spread (left) and EPSILON (right)
with M=5.0.

ssNSGAII SPEA2 SMPSO IBEA
NSGAII � � � � � � � �
ssNSGAII � � � � � �
SPEA2 � – � –
SMPSO � �

ssNSGAII SPEA2 SMPSO IBEA
NSGAII �� �� � � � �
ssNSGAII �� � � � �
SPEA2 � � � �
SMPSO � �

Table 8. Wilcoxon test on WFG1 2D WFG1 3D WFG2 2D WFG2 3D wrt. HV with
M = 5.0.

ssNSGAII SPEA2 SMPSO IBEA
NSGAII � – – � � � – – � � �� �� – �
ssNSGAII – � – � � � �� – � – �
SPEA2 � � �� – � – �
SMPSO �� � �
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5 Conclusions

This study proposes new ranking schemes in various state-of-that-art multi-
objective evolutionary algorithms to incorporate user preferences that come from
proper Pareto-optimality notions. The algorithms based on these new ranking
schemes are tested on extensive benchmark test problems of varying complexity
with the aim to find the preferred region of the efficient front. Many of these algo-
rithms give a well-diverse representation of M-proper Pareto-optimal solutions.
The extensive computational involving thirty problems and 9 test suites shows
that the ranking schemes proposed in this paper are not limited to continuous
and unconstrained/ bound-constrained problems and they also well on prob-
lems having complicated Pareto fronts (like LZ problems) as well as complicated
efficient fronts (like DEB3DK problems).

On an another note this study demonstrates the usefulness of considering
various test-problem suites. pSMPSO, for example was found not to be good on
SZDT, WFG and UF problems, while it one of the best algorithms for DTLZ,
ZDT and knee problems. This might be due to the fact that all of these (DTLZ,
ZDT and knee) problems have simple Pareto-optimal fronts, although the prob-
lems itself are quite difficult.

In this paper we have suggested how multi-objective evolutionary algorithms
can be of help to the multi-criteria decision making community. It would be
interesting to see how other notions of proper Pareto-optimality, based on cones
or on stability properties [5] can be fitted into these or similar ranking schemes.
Moreover, emphasis must be placed on developing interactive evolutionary multi-
objective optimization techniques for many objective problems, that incorporate
the numerous notions of proper Pareto-optimality [6].
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Abstract. We present a new methodology for dealing with interactive
multiobjective optimization in case of mixed-integer variables. The pref-
erence information elicited by the Decision Maker (DM) in course of the
interaction is processed using the Dominance-based Rough Set Approach
(DRSA). This permits to ask the DM simple questions and obtain in re-
turn a decision model expressed in terms of easily understandable “if...,
then...” decision rules. In each iteration, the current set of decision rules
is presented to the DM with the proposal of selecting one of them con-
sidered the most representative. The selected decision rule specifies some
minimal requirements that the DM desires to be achieved by the objec-
tive functions. This information is translated into a set of constraints
which are added to the original problem restricting the space of feasi-
ble solutions. Moreover, we introduce one simple but effective algorithm,
called bound-and-cut, that efficiently reduces the set of feasible values
of the integer variables. This process continues iteratively until the part
of the Pareto front that is interesting for the DM can be exhaustively
explored with respect to the integer variables. The bound-and-cut algo-
rithm can be embedded in an Evolutionary Multiobjective Optimization
(EMO) method, which permits to compute a reasonable approximation
of the considered part of the Pareto front. A subset of representative
solutions can be selected from this approximation and presented to the
DM in the dialogue phase of each iteration.

1 Introduction

Mixed-integer optimization is a classical problem in operational research. Several
methodologies have been proposed to deal with it, both exact and heuristic, such
as branch-and-bound [9], branch-and-cut [6], branch-and-price [2], as well as var-
ious (meta)heuristics. This problem becomes much more complex in presence of
multiple objective functions, i.e. in case of Multiobjecive Optimization (for an
updated survey see [3]). Some methods proposed for multiobjective optimization
are simple extensions of the methodologies used for single-objective optimization
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(for a survey see [5]). Very often optimization problems with multiple objective
functions involve an interactive methodology, which alternates phases of dialogue
with the Decision Maker (DM) with phases of computation (for an updated sur-
vey see [3]). When some variable are integer, we speak of Interactive Multiob-
jective Mixed-Integer Optimization (IMMIO). A certain number of methods has
been proposed to deal with IMMIO problems (for an updated survey see [1]).

In this paper we propose a new methodology for IMMIO problems. Assuming,
without loss of generality, that all objective functions are to be maximized, our
methodology is based on the idea of using some lower bounds on the objective
functions, resulting from a decision model representing the preference of the
DM. These bounds have a double role: they gradually constrain the feasible set
of solutions ensuring convergence to the most preferred solution on the Pareto
front, and they reduce the range of variation of the integer variables until the
most interesting part of the Pareto front can be exhaustively explored by the
DM with respect to feasible values of the integer variables. Of course, in case of
minimization of objective functions, we use upper bounds playing the same role.

The method is called bound-and-cut, meaning that the lower bounds on objec-
tive functions permit to cut-off some range of variation of the integer variables.
Observe that bound-and-cut is different from branch-and-cut in which a cut is
made by some hyperplanes built on the basis of a non-integer solution of the reg-
ular simplex method, such that it cuts-off the current non-integer solution, and
does not cut-off any feasible solution with integer values of variables supposed
to be integer. Instead, bound-and-cut bounds the range of integer variables by
max-min analysis.

The bound-and-cut algorithm can also be applied to single objective
optimization problems. It can also be effectively embedded into some Evolution-
ary Multiobjective Optimization (EMO) methodology [4]. In fact, bound-and-
cut algorithm benefits from EMO applied to the computation of lower bounds
on objective functions, and, reciprocally, EMO methodology benefits from the
bound-and-cut algorithm which reduces the search space permitting to improve
the performance of EMO from iteration to iteration. In this context, it is also
important to join the two methods through an interactive procedure using a
proper interface to the bound-and-cut algorithm. Based on our experience, we
advocate for the use of the Dominance-based Rough Set Approach (IMO-DRSA)
[8], which provides a convenient interface for this purpose. In fact, apart from its
many strong points in terms of transparency and comprehensibility, IMO-DRSA
makes use of a representation of the DM’s preferences in terms of decision rules
whose syntax is: “if objective function fj1 takes at least value bj1 , and ..., objec-
tive function fjp takes at least value bjp, then the considered solution is good”.
Remark that the values bj1 , . . . , bjp can be interpreted as the lower bounds on
the objective functions required by the bound-and-cut algorithm.

The paper is organized as follows. In the second section, the IMO-DRSA
methodology is presented. In the third section, the bound-and-cut algorithm is
introduced. In the fourth section, a didactic example illustrates the proposed
methodology. The last section contains conclusions.
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2 Interactive Multiobjective Optimization Guided by
Dominance-Based Rough Set Approach (IMO-DRSA)

Rough Set Theory proposed by Pawlak [10] has proved to be an excellent math-
ematical tool for the analysis of a vague description of objects, and can be
considered as a mathematical basis for structuring data before mining them.
However, rough set theory cannot deal with decision problems, because it does
not take into account the preference order on evaluations of alternatives with
respect to considered criteria. Greco, Matarazzo and Slowinski [7] proposed a
generalization of rough set theory called Dominance-based Rough Set Approach
(DRSA), which is able to take preference order into account and, therefore, con-
stitutes a very interesting methodology for multiple criteria decision analysis.
DRSA accepts as input a set of exemplary decisions (for example classification
of alternatives into “good” and “others”) and gives in return a preference model
in terms of easily understandable “if..., then...” decision rules explaining the
exemplary decisions (see [11,12] for tutorial reviews).

Representation of preferences in terms of decision rules induced through
Dominance-based Rough Set Approach (DRSA) can be fruitfully exploited in
course of an Interactive Multiobjective Optimization (IMO) procedure, as pro-
posed in [8]. An interactive procedure is composed of two alternating stages:
computation stage and dialogue stage. In the computation stage, a subset of
feasible solutions is calculated and presented to the Decision Maker (DM) (also
called user). Then, in the dialogue stage, the DM is criticizing the proposed
solutions unless one of them is completely satisfactory and Pareto efficient. In
the latter case the procedure stops. Otherwise, the critic evaluation of proposed
solutions is used as preference information to build a preference model of the
DM. This model is used to calculate a new subset of feasible solutions in the
next computation stage, with the intention to better fit the DM’s preferences.
In some procedures, the preference model appearing between the dialogue stage
and the computation stage is implicit. However, it is useful when it can be ex-
plicitly shown to the DM for her approval. For this, the preference model should
be easily understandable, and the treatment of preference information leading to
the model should be intelligible for the DM. The decision rules stemming from
DRSA fulfill both these requirements. The IMO-DRSA methodology is presented
below.

We assume that the interactive procedure is exploring the set of feasible so-
lutions of a multiobjective optimization problem. Denoting by X the considered
set of solutions and by fi : X → R, i = 1, . . . , m, the objective functions to be
maximized, the interactive procedure is composed of the following steps:

Step 1. Generate a representative sample of feasible solutions.

Step 2. Present the sample to the DM.

Step 3. If the DM is satisfied with one solution from the sample and the so-
lution is Pareto optimal, then this is the compromise solution and the
procedure stops. Otherwise continue.
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Step 4. Ask the DM to indicate a subset of relatively “good” solutions in the
sample.

Step 5. Apply DRSA to the current sample of solutions sorted into “good” and
“others”, in order to induce a set of decision rules with the following
syntax: “if fi1(x) ≥ αi1 and . . . and fip (x) ≥ αip , then the solution is
good”, {i1, . . . , ip} ⊆ {1, . . . , m}.

Step 6. Present the obtained set of rules to the DM.

Step 7. Ask the DM to select the most important decision rule for her in the
set.

Step 8. Add the constraints fi1(x) ≥ αi1 , . . . , fip (x) ≥ αip coming from the
condition part of the rule selected in Step 7 to the set of constraints of
the optimization problem at hand, in order to focus on a more interesting
region of feasible solutions from the point of view of DM’s preferences.

Step 9. Go back to Step 1.

The syntax of rules induced in Step 5 corresponds to maximization of objective
functions. In case of minimization of objective function fi, the corresponding
condition would be fi(x) ≤ αi.

Reduction of the set of feasible solutions cannot be considered as irreversible.
Indeed, the DM can retract to the set of feasible solutions considered in one
of previous iterations and continue from this point. This is in the spirit of a
learning oriented conception of multiobjective interactive optimization, i.e. it
agrees with the idea that the interactive procedure permits the DM to learn
about her preferences and about the “shape” of the set of feasible solutions,
and, in consequence, to correct previous decisions.

3 The Bound-and-Cut Algorithm

Let us consider the following problem P1:

max f1(x1, . . . , xn)
. . .

max fm(x1, . . . , xn)

subject to constraints

g1(x1, . . . , xn) ≤ 0
. . .

gp(x1, . . . , xn) ≤ 0

x1, . . . , xr ∈ Z (Z is the set of integers),
xr+1, . . . , xn ∈ R.

Our approach is based on the following simple observation. Let us suppose that
there are b1, . . . , bm ∈ R, such that there exists a solution x = (x1, . . . , xn)
satisfying, apart from the constraints of above problem P1, the following other
constraints C(b1, . . . , bm):
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f1(x1, . . . , xn) ≥ b1
. . .

fm(x1, . . . , xn) ≥ bm.

Then, for each (x1, . . . , xn) in the Pareto set of problem P1 that satisfies con-
straints C(b1, . . . , bm), we have:

x1 ∈ [xl
1, x

u
1 ] ∩ Z, ..., xr ∈ [xl

r , x
u
r ] ∩ Z

with xl
i = min xi and xu

i = max xi, subject to the constraints of P1, with the
exclusion of the integrality constraints (i.e. x1, . . . , xr ∈ R instead of x1, . . . , xr ∈
Z), and to constraints C(b1, . . . , bm).

Based on the above observation, the closer the vector (b1, . . . , bm) to the
Pareto front, the greater the reduction of the set of considered feasible solu-
tions, and the greater the chance that combinations of possible values of integer
variables x1, . . . , xr become manageable. The following example illustrates this
point.

Example 1. Let us suppose that we are dealing with the following multiobjective
mixed-integer optimization problem:

max f1(x1, x2, x3, x4, x5) = x1 + 3x2 − 2x3 + 4x4 − 3x5
max f2(x1, x2, x3, x4, x5) = 3x1 − x2 + 4x3 − 2x4 + 5x5

max f3(x1, x2, x3, x4, x5) = −4x1 + 4x2 + 3x3 + 5x4 − x5
max f4(x1, x2, x3, x4, x5) = 3x1 + 5x2 − x3 + 7x4 − 4x5

subject to the following constraints

g1(x1, x2, x3, x4, x5) = 3x1 + 5x2 + 6x3 − 2x4 − x5 − 15 ≤ 0
g2(x1, x2, x3, x4, x5) = −x1 − x42 − 3x3 + 4x4 + 8x5 − 90 ≤ 0
g3(x1, x2, x3, x4, x5) = 2x1 + 6x2 + 7x3 + 8x4 + 2x5 − 100 ≤ 0
g4(x1, x2, x3, x4, x5) = x1 − 4x2 − 7x3 + 2x4 + 5x5 − 30 ≤ 0

g5(x1, x2, x3, x4, x5) = −x1 ≤ 0
g6(x1, x2, x3, x4, x5) = −x2 ≤ 0
g7(x1, x2, x3, x4, x5) = −x3 ≤ 0
g8(x1, x2, x3, x4, x5) = x1 ≤ 1
g9(x1, x2, x3, x4, x5) = x2 ≤ 2
g10(x1, x2, x3, x4, x5) = x3 ≤ 3

with x1, x2, x3 ∈ Z and x4, x5 ∈ R. Observe that for x = [1, 2, 2, 5, 7] we have

f1(x) = 2, f2(x) = 34, f3(x) = 28, f4(x) = 22

and all the constraints of the above optimization problem are satisfied. Thus,
let us compute the maximum and the minimum values for the integer variables
x1, x2, x3, under the constraints of the original optimization problem plus the
constraints:

f1(x1, x2, x3, x4, x5) = x1 + 3x2 − 2x3 + 4x4 − 3x5 ≥ 2,
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f2(x1, x2, x3, x4, x5) = 3x1 − x2 + 4x3 − 2x4 + 5x5 ≥ 34,
f3(x1, x2, x3, x4, x5) = −4x1 + 4x2 + 3x3 + 5x4 − x5 ≥ 28,
f4(x1, x2, x3, x4, x5) = 3x1 + 5x2 − x3 + 7x4 − 4x5 ≥ 22,

while relaxing the integrality constraints. We get the following results:

xu
1 = max x1 = 1, xu

2 = max x2 = 2, xu
3 = max x3 = 3,

xl
1 = min x1 = 0, xl

2 = min x2 = 0, xl
3 = min x3 = 1.58,

such that variables x1 and x2 maintain the whole initial range of variation (i.e.
x1 can assume values 0 and 1, and x2 can assume values 0, 1 and 2), while the
variable x3 reduces the initial range of variation and can assume values 2 and 3
(instead of the initial range of possible values being 0,1,2 and 3), which amounts
to 12 possible combinations of values for the three integer variables x1, x2 and
x3. Observe that not all of these 12 combinations of values are admissible in the
sense that for some of them there are no values for x4 and x5 such that all the
constraints C(2, 34, 28, 22) are satisfied. For example, the combination of values
x1 = 0, x2 = 0, x3 = 2 is not admissible.

Let us try to reduce further the range of variation of the integer variables by
considering some tighter bounds on the objective functions f1, f2, f3, f4. Observe
that for x = [0, 2, 3, 6.5, 7.5] we have

f1(x) = 3.5, f2(x) = 34.5, f3(x) = 42, f4(x) = 28.5,

and all the constraints of the above optimization problem are satisfied. Thus,
one could decide to investigate a part of the set of feasible solutions of above
problem P1, such that

f1(x) ≥ 3, f2(x) ≥ 34, f3(x) ≥ 40, f4(x) ≥ 25.

Notice that the bounds considered for the objective functions are weaker than
the values taken by f1, f2, f3, f4 for x = [0, 2, 3, 6.5, 7.5] in order to explore a
larger part of the set of feasible solutions and not to reduce it too early. Thus,
for investigating the range of variation of the integer variables x1, x2, x3 in the
considered part of the set of feasible solutions, let us compute the maximum and
the minimum values under the constraints of the original optimization problem,
plus the constraints:

f1(x1, x2, x3, x4, x5) = x1 + 3x2 − 2x3 + 4x4 − 3x5 ≥ 3,
f2(x1, x2, x3, x4, x5) = 3x1 − x2 + 4x3 − 2x4 + 5x5 ≥ 34,

f3(x1, x2, x3, x4, x5) = −4x1 + 4x2 + 3x3 + 5x4 − x5 ≥ 40,
f4(x1, x2, x3, x4, x5) = 3x1 + 5x2 − x3 + 7x4 − 4x5 ≥ 25,

while relaxing the integrality constraints. We get the following results:

xu
1 = max x1 = 0.58, xu

2 = max x2 = 2, xu
3 = max x3 = 3,

xl
1 = min x1 = 0, xl

2 = min x2 = 0.30, xl
3 = min x3 = 2.24,
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such that the three integer variables further reduce their range of variation.
x1 can assume only value 0, x2 can assume values 1 or 2, and x3 can assume
only value 3. Thus, only 2 possible combinations of values for the three integer
variables x1, x2 and x3 remain: x1 = 0, x2 = 1 and x3 = 3, and x1 = 0, x2 = 2
and x3 = 3. Both these combinations of values of integer variables are admissible.
End of example 1.

Coming back to our first observation, we can weaken it by considering a sub-
set of objective functions. More precisely, instead of considering constraints
C(b1, . . . , bm) concerning lower bounds bj on all the objective functions fj ,
j = 1, . . . , m, we can consider constraints CJ (bj1 , . . . , bjp) for objective func-
tions fj1 , . . . , fjp , with J = {j1, . . . , jp} ⊆ {1, . . . , m}. The following example
illustrates this point.

Example 2. In example 1, we have already observed that for x = [0, 2, 3, 6.5, 7.5]
we have

f1(x) = 3.5, f2(x) = 34.5, f3(x) = 42, f4(x) = 28.5,

and all the constraints of the above optimization problem are satisfied. Now, let
us try to investigate the portion of the set of feasible solutions of above problem
P1, such that

f2(x) ≥ 34, f3(x) ≥ 40.

In this case, we are considering a subset of objective functions, more precisely
f2 and f3. To investigate the range of variation of the integer variables x1, x2, x3
in the considered part of the set of feasible solutions, let us compute the maxi-
mum and the minimum values under the constraints of the original optimization
problem, plus the constraints:

f2(x1, x2, x3, x4, x5) = 3x1 − x2 + 4x3 − 2x4 + 5x5 ≥ 34,
f3(x1, x2, x3, x4, x5) = −4x1 + 4x2 + 3x3 + 5x4 − x5 ≥ 40,

while relaxing the integrality constraints. We get the following results:

xu
1 = max x1 = 0.58, xu

2 = max x2 = 2, xu
3 = max x3 = 3,

xl
1 = min x1 = 0, xl

2 = min x2 = 0.28, xl
3 = min x3 = 2.24,

such that the three integer variables further reduce their range of variation.
x1 can assume only value 0, x2 can assume value 1 or 2, and x3 can assume
only value 3. Thus, considering objective functions f2 and f3, only 2 possible
combinations of values for the three integer variables x1, x2 and x3 remain: x1 =
0, x2 = 1 and x3 = 3, and x1 = 0, x2 = 2 and x3 = 3. End of example 2.

Let us observe that the idea considered in examples 1 and 2 can also be applied
to classical single objective optimization, as shown in the following example.

Example 3. Let us suppose that we want to maximize f1 only, subject to the
constraints of the above problem P1. Observe that for x = [0, 0, 1, 27.75,−64.5]
we have f1(x) = 302.5. For each integer variable let us compute the maximum
and the minimum values under the constraints of the original optimization prob-
lem, plus the constraint:
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f1(x1, x2, x3, x4, x5) = x1 + 3x2 − 2x3 + 4x4 − 3x5 ≥ 302.5,

while relaxing the integrality constraints. We get the following results:

xu
1 = max x1 = 1, xu

2 = max x2 = 1.30, xu
3 = max x3 = 1,

xl
1 = min x1 = 0, xl

2 = min x2 = 0, xl
3 = min x3 = 0.

Thus, we can conclude that the three integer variables reduce their range of
variation and, more precisely, all the three variables can assume values 0 or 1. Not
all possible combinations of values of the three integer variables are admissible
(for example, x1 = 1, x2 = 1 and x3 = 0 is a non admissible combination). By
investigation of the remaining part of the variable space, one can observe that
for x = [1, 0, 0, 30.50,−73] we have f1(x) = 342. If for each integer variable, we
compute again the maximum and the minimum values under the constraints of
the original optimization problem, plus the constraint:

f1(x1, x2, x3, x4, x5) = x1 + 3x2 − 2x3 + 4x4 − 3x5 ≥ 342,

while relaxing the integrality constraints, we get the following results:

xu
1 = max x1 = 1, xu

2 = max x2 = 0.54, xu
3 = max x3 = 0.41,

xl
1 = min x1 = 0, xl

2 = min x2 = 0, xl
3 = min x3 = 0.

Thus, we can conclude that the integer variables further reduced their range of
variation, such that x1 can assume value 0 or 1, and x2 and x3 can assume only
value 0. Consequently, only two combinations of values for integer variables are
possible: x1 = 0, x2 = 0 and x3 = 0, and x1 = 1, x2 = 0 and x3 = 0. Checking
these two combinations, one can see that both of them are admissible, that the
optimal solution is x = [0, 0, 0, 32.5,−80], and the optimal value of the objective
function is f1(0, 0, 0, 32.5,−80) = 370. End of example 3.

Taking into account examples 1, 2 and 3, we can propose a general algorithm to
deal with mixed-integer optimization, that we call “bound-and-cut”. The name
refers to the fact that the algorithm alternates steps in which a lower bound for
the objective function(s) is fixed, with steps in which the range of variation of
the integer variables is cut, taking into account their upper and lower bounds,
and excluding the integrality constraints. The lower bounds on the objective
function(s) permit to reduce the range of variation of the integer variables, and
the upper and lower bounds on integer variables permit to concentrate the search
for Pareto-optimal solutions in more and more promising regions.

Efficient application of the bound-and-cut algorithm is based on the answers
to the following questions:

1. How to determine one or more solutions (x1, . . . , xn) satisfying constraints
of problem P1, and located close enough to the Pareto front?

2. How to use the reduction of the range of variation of the integer variables?
3. Having determined one or more solutions (x1, . . . , xn), how to select the ob-

jective functions and how to fix the bounds bj to define the set of constraints
CJ (bj1 , . . . , bjp)?
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The answer to the first question is quite easy. One can fix the value of m− 1
objective functions, and optimize the remaining one, using any single objective
mixed-integer optimization method, like “branch-and-bound”, “branch-and-cut”
or “branch-and-price”. In this way, one can find a Pareto optimal solution of the
considered problem that can be taken as a starting point for the bound-and-
cut procedure. One can observe that methods of discrete optimization are very
often computationally expensive and perhaps their application within the bound-
and-cut algorithm would make the whole approach inefficient. Let us remark,
however, that one does not need necessarily a solution which is Pareto optimal,
because it is sufficient that the solution satisfies constraints of problem P1 and
is located “not too far” from the Pareto front. In these circumstances, it seems
appropriate to search for such a solution using an evolutionary heuristic.

The answer to the second question is also easy. In fact, the reduction of the
range of variation of integer variables simplifies a lot the application of any
exact or heuristic method used to solve problem P1. Let us observe that the
possibility of reducing the range of variation of integer variables is also useful
for single objective optimization problems known for combinatorial explosion of
the solution space.

In the context of arguments given in section 2, the answer to the third ques-
tion is quite natural: one can use the Interactive Multiobjective Optimization
driven by Dominance-based Rough Approach (IMO-DRSA). In the dialogue
stage, IMO-DRSA gives a representation of DM’s preferences in terms of de-
cision rules, whose syntax is: “if fj1(x) ≥ bj1 and . . . and fjp(x) ≥ bjp , then
solution x is good”. In fact, each one of these decision rules defines a subset of
objective functions and a corresponding set of constraints CJ(bj1 , . . . , bjp) that
can be efficiently used within the bound-and-cut algorithm.

Some further remarks related to the use of the method in nonlinear pro-
gramming problems, and about the coupling with an evolutionary optimization
method can be useful. In fact, bound-and-cut needs to solve optimization prob-
lems in two steps of the methodology:

a) when some Pareto-optimal solutions have to be found in order to be pre-
sented to the DM, and

b) when, once fixed the lower bounds on the objective function to be maxi-
mized, the maximum and the minimum of each integer variable have to be
determined.

For point a), in case of nonlinear integer (multiobjective) optimization problems,
perhaps the best is to use some EMO heuristic to find a reasonable approxima-
tion of the Pareto set. Point b), instead, requires the solution of a single objec-
tive (non-integer) optimization problem (the single objective to be maximized
or minimized is the integer variable, however, in this case it does not need to
be integer): in this step, some classical method for single objective optimiza-
tion, such as gradient descent or conjugate gradient, or even some evolutionary
optimization method, can be efficiently used.
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4 A Didactic Example

In this section, we shall present a didactic example illustrating the whole method-
ology. Let us consider the same problem as in example 1 of section 3. In the first
iteration, after the calculation stage, we propose to the DM the sample of solu-
tions presented in Table 1. The DM evaluates these solutions and indicates those
which are relatively good in her opinion. This information is shown in the last
column of Table 1.

Table 1. First sample of admissible solutions

Solutions x1 x2 x3 x4 x5 f1(x) f2(x) f3(x) f4(x) Overall evaluation
s1 0 0 0 32.5 -80 370.00 -465.00 242.50 547.50 *
s2 0 0 0 -13.13 11.25 -86.25 82.50 -76.88 -136.88 *
s3 1 2 3 7.52 2.41 23.86 10.00 48.20 59.02 good
s4 1 2 3 7.98 0.59 31.14 0.00 52.30 69.48 good
s5 0 2 3 8.068 1.23 28.59 0.00 56.11 64.57 good
s6 1 2 0 9.91 3.36 36.55 -2.00 50.18 68.91 *
s7 1 2 3 6.26 7.46 3.67 37.76 36.85 30.00 good
s8 1 2 0 12.09 -5.36 71.45 -50.00 69.82 119.09 good
s9 1 0 3 13.47 -17.47 101.31 -99.31 89.83 170.19 *

The application of DRSA to information from Table 1 gives the following min-
imal set of decision rules covering all solutions with Overall Evaluation “good”
(between parentheses the solutions from Table 1 supporting the decision rule):

rule 1.1) If f1(x) ≥ 23.86 and f2(x) ≥ 10, then the solution is good {s3},
rule 1.2) If f1(x) ≥ 28.59 and f2(x) ≥ 0, then the solution is good {s4, s5},
rule 1.3) If f2(x) ≥ 37.76 and f3(x) ≥ 36.85, then the solution is good {s7},
rule 1.3) If f2(x) ≥ −50 and f4(x) ≥ 119.09, then the solution is good {s8}.

The DM selects rule 1.3 as the most representative of her preferences.
According to this selection, the following constraints are added to the original

optimization problem:

f2(x1, x2, x3, x4, x5) = 3x1 − x2 + 4x3 − 2x4 + 5x5 ≥ 37.76,
f3(x1, x2, x3, x4, x5) = −4x1 + 4x2 + 3x3 + 5x4 − x5 ≥ 36.85.

Applying the bound-and-cut algorithm for investigating the range of variation of
the integer variables x1, x2, x3 in the considered part of the set of feasible solu-
tions, let us compute their maximum and minimum values under the constraints
of the original optimization problem, plus the new constraints, while relaxing
the integrality constraints. We get the following results:

xu
1 = max x1 = 1, xu

2 = max x2 = 2, xu
3 = max x3 = 3,

xl
1 = min x1 = 0, xl

2 = min x2 = 0.55, xl
3 = min x3 = 2.36.
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Thus the three integer variables reduce their range of variation and, more pre-
cisely, x1 can continue to assume value 0 or 1, x2 can assume value 1 or 2, and
x3 can assume only value 3, such that only four possible combinations of values
for the three integer variables x1, x2 and x3 remain: 1) x1 = 0, x2 = 1, x3 = 3;
2) x1 = 0, x2 = 2, x3 = 3; 3) x1 = 1, x2 = 1, x3 = 3; 4) x1 = 1, x2 = 2,
x3 = 3. Combination of values x1 = 1, x2 = 1, x3 = 3 is not admissible and thus
a new sample of representative solutions was generated taking into account the
remaining three combinations of values. This sample is presented in the following
Table 2. The DM evaluates the alternative solutions from Table 2 and indicates
those which are relatively good, as shown in the last column of Table 2.

Table 2. Second sample of admissible solutions

Solutions x1 x2 x3 x4 x5 f1(x) f2(x) f3(x) f4(x) Overall evaluation
s10 0 1 3 7.06 8.18 0.71 37.76 40.12 24.72 good
s11 0 1 3 6.45 8.42 -2.44 40.19 36.85 19.50 *
s12 0 2 3 6.35 8.09 1.13 37.76 40.67 25.09 good
s13 0 2 3 5.86 9.46 -4.92 45.56 36.85 16.21 *
s14 1 2 3 6.26 7.46 3.67 37.76 36.85 30.00 *
s15 0 1 3 6.92 8.23 0.00 38.31 39.38 23.54 *
s16 0 2 3 6.28 8.38 0.00 39.31 40.03 23.47 *
s17 0 2 3 6.34 8.13 1.00 37.94 40.59 24.91 good

Using DRSA to preference information from Table 2, one obtains the following
minimal decision rule covering all solutions from the second sample with Overall
Evaluation “good”:

rule 2.1) If f3(x) ≥ 40.12, then the solution is good, {s10, s12, s17}.

The DM considers rule 2.1 to be representative of her preferences and, conse-
quently, the following constraint is added to the original optimization problem:

f3(x1, x2, x3, x4, x5) = −4x1 + 4x2 + 3x3 + 5x4 − x5 ≥ 40.12.

Applying again the bound-and-cut algorithm for investigating the range of varia-
tion of the integer variables x1, x2, x3 in the considered part of the set of feasible
solutions, let us compute their maximum and minimum values under the pre-
vious constraints of the optimization problem, plus the new constraints, while
relaxing the integrality constraints. We get the following results:

xu
1 = max x1 = 0.14, xu

2 = max x2 = 2, xu
3 = max x3 = 3,

xl
1 = min x1 = 0, xl

2 = min x2 = 1, xl
3 = min x3 = 2.56.
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Thus, the three integer variables reduce their range of variation and more pre-
cisely, x1 can assume only value 0, x2 can assume value 1 or 2, and x3 can assume
only value 3, such that only 2 possible combinations of values for the three inte-
ger variables x1, x2 and x3 remain: 1) x1 = 0, x2 = 1, x3 = 3; 2) x1 = 0, x2 = 2,
x3 = 3. Both these two combinations of values of integer variables are admissi-
ble and, consequently, a new sample of representative solutions was generated
taking into account those two combinations of values. This sample is presented
in the following Table 3. The DM evaluates the alternative solutions from Table
3 and selects solution s21.

Table 3. Third sample of admissible solutions

Solutions x1 x2 x3 x4 x5 f1(x) f2(x) f3(x) f4(x) Overall evaluation
s18 0 1 3 7.06 8.18 0.71 37.76 40.12 24.71 *
s19 0 2 3 6.35 8.09 1.13 37.76 40.67 25.09 *
s20 0 2 3 6.29 8.34 0.16 39.10 40.12 23.70 *
s21 0 2 3 6.34 8.13 1.00 37.94 40.59 24.91 selected
s22 0 2 3 6.32 8.23 0.59 38.50 40.36 24.32 *
s23 0 2 3 6.30 8.32 0.23 39.00 40.16 23.80 *
s24 0 2 3 6.30 8.28 0.37 38.80 40.24 24.00 *
s25 0 2 3 6.33 8.19 0.74 38.30 40.45 24.53 *

5 Conclusions

We presented a new methodology for dealing with interactive multiobjective
optimization in case of mixed-integer optimization. Our approach is based on
a new algorithm for handling integer variables in optimization problems. This
new algorithm is called bound-and-cut. It is using some lower (upper) bounds
on the objective functions to be maximized (minimized), which are fixed taking
into account preferences of the DM. On one hand, these bounds gradually con-
strain the set of feasible solutions ensuring convergence to the most preferred
solution on the Pareto front, and on the other hand, they reduce step by step
the range of variation of the integer variables until the most interesting part of
the Pareto front is small enough to be exhaustively explored by the DM with re-
spect to feasible values of the integer variables. The bound-and-cut algorithm is
very general and can be used also in case of classical mixed-integer optimization
problems involving only one objective function. The bound-and-cut algorithm
can be efficiently conjugated with an Evolutionary Multiobjetive Optimization
(EMO) method. In the context of the interactive multiobjective optimization,
we proposed to integrate the bound-and-cut algorithm within the IMO-DRSA
methodology because, besides its characteristics of transparency and good un-
derstandability, it gives a preference model expressed in terms of decision rules
providing explicitly the lower (upper) bounds on the objective functions to be
maximized (minimized) required by the bound-and-cut algorithm.
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Abstract. Very large-scale neighborhood search (VLSNS) is a technique
intensively used in single-objective optimization. However, there is al-
most no study of VLSNS for multiobjective optimization. We show in
this paper that this technique is very efficient for the resolution of mul-
tiobjective combinatorial optimization problems. Two problems are con-
sidered: the multiobjective multidimensional knapsack problem and the
multiobjective set covering problem. VLSNS are proposed for these two
problems and are integrated into the two-phase Pareto local search. The
results obtained on biobjective instances outperform the state-of-the-art
results for various indicators.

1 Introduction

During the last 20 years, many heuristic methods for solving multiobjective
combinatorial optimization (MOCO) problems have been proposed. From the
first survey [33] in 1994 till [13] in 2002, a lot of papers have been published and
this flow is still increasing. The main reason of this phenomenon is the success
story of metaheuristics [15].

Effectively, it is quite difficult to determine exactly the whole set of Pareto
efficient solutions XE and the set of Pareto non-dominated points YN for MOCO
problems. This is a NP-Hard problem even for MOCO problems for which poly-
nomial algorithms exist for the single-objective counterpart, such as the linear
assignment problem. Therefore, there exist only few exact methods able to de-
termine the sets XE and YN and we can only expect to apply these methods for
small instances and for few number of objectives. For this reason, many methods
are heuristic methods which produce approximations X̃E and ỸN to the sets XE

and YN . Due to the success of metaheuristics for single-objective CO, multiob-
jective metaheuristics became quickly a classic tool to tackle MOCO problems
and it is presently a real challenge for the researchers to improve the results
previously obtained.

If evolutionary methods [9,12] and simple local search [13] (LS) have intensively
been applied to solve multiobjective problems (MOPs), few results are known
about the use of elaborate LS techniques, as very large-scale neighborhood search

R.H.C. Takahashi et al. (Eds.): EMO 2011, LNCS 6576, pp. 254–268, 2011.
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(VLSNS) [1] or variable neighborhood search (VNS) [16] for solving MOPs. It is
mainly because it is more natural to use a method based on a population, as we
are looking for an approximation to a set. However, by embedding these evolved
LS techniques into the two-phase Pareto local search (2PPLS) [28], which uses as
population the set of potentially efficient solutions, we show in this paper that we
can produce very effective heuristics in order to solve MOCO problems.

The paper is organized as follows. In the next section, we present VLSNS for
the multiobjective multidimensional knapsack problem (MOMKP) and for the
multiobjective set covering problem (MOSCP). We show after how VLSNS can
be embedded into 2PPLS. We finally present the results obtained for the two
MOCO problems considered, with a comparison to state-of-the-art results.

2 Very Large-Scale Neighborhood Search

With LS, the larger the neighborhood, the better the quality of the local opti-
mum obtained is. However, by increasing the size of the neighborhood, the time
to explore the neighborhood becomes higher. Therefore, using a larger neighbor-
hood does not necessary give rise to a more effective method. If we want to keep
reasonable running times while using a large neighborhood, an efficient strategy
has to be implemented in order to explore the neighborhood; this is what is done
in VLSNS.

VLSNS is very popular in single-objective optimization [1]. For example, the
Lin-Kernighan heuristic [25], one of the best heuristics for solving the single-
objective traveling salesman problem (TSP), is based on VLSNS. On the other
hand, there is almost no study of VLSNS for solving MOCO problems. The
only known result is the LS of Angel et al. [6], which integrates a dynasearch
neighborhood (the neighborhood is solved with dynamic programming) to solve
the biobjective TSP.

We present VLSNS for two problems: the MOMKP and the MOSCP. Starting
from a current solution, called xc, the aim of VLSNS is to produce a set of
neighbors of high quality, in a reasonable time. The technique that we use for
solving the MOMKP or the MOSCP is the following:
1. Identification of a set of variables candidates to be removed from xc (set O)
2. Identification of a set of variables, not in xc, candidates to be added (set I)
3. Creation of a residual multiobjective problem formed by the variables be-

longing to {O ∪ I}.
4. Resolution of the residual problem: a set of potentially efficient solutions of

this problem is produced. The potentially efficient solutions are then merged
with the unmodified variables of xc to produce the neighbors.

We present now how we have adapted this technique to the two MOCO problems
considered in this paper.

2.1 The Multiobjective Multidimensionnal Knapsack Problem

The MOMKP consists in determining a subset of items, among n items
(i = 1, . . . , n) having m characteristics wi

j (j = 1, . . . , m) and p profits ci
l
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(l = 1, . . . , p), such that the p total profits are maximized and the m knapsack
capacities Wj regarding the different characteristics are respected.

The formulation is the following:

“ max ” fl(x) =
n∑

i=1

ci
lxi l = 1, . . . , p

subject to
n∑

i=1

wi
jxi ≤ Wj j = 1, . . . , m

xi ∈ {0, 1} i = 1, . . . , n

where xi = 1 means that the item i is selected to be in the knapsack. It is
assumed that all coefficients ci

l , wi
j and Wj are nonnegative.

According to the general technique previously presented to define VLSNS, the
different steps to produce neighbors from a current solution xc of the MOMKP
are as follows:

1. The set O of items candidates to be removed will be composed of the k worst
items (present in x) for the ratio R1, defined by

R1 =

p∑
l=1

λlc
s
l

m∑
j=1

ws
j

(1)

for an item s. This ratio is simply equal to the weighted linear aggregation
of the profits on the sum of the weights of the item s.

2. The set I of items candidates to be added will be composed of the k best
items (not in x) for the ratio R2 [30], defined by

R2 =

p∑
l=1

λlc
s
l

m∑
j=1

⎛⎝ ws
j

Wj −
∑n

i=1
i/∈O

wi
jxi + 1

⎞⎠ (2)

for an item s.
This ratio is also used in MOGLS [21], and consists in selecting items

of high profit and low weight, by giving higher influence to the constraints
whose the values (measured by

∑n
i=1
i/∈O

wi
jxi) is close to the maximum

capacity Wj .
3. A residual problem is defined, of size (k ∗ 2), and composed of the items

belonging to the set {O ∪ I}. The capacities W r
j of the residual problem

are equal to Wj −
n∑

i=1
i/∈O

wi
jxi with j = 1, . . . , m.
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4. To solve the residual problem, we have employed the multiobjective meta-
heuristic MEMOTS [26], a memetic algorithm integrating tabu search, that
has already been applied to the MOMKP. MEMOTS presents some pa-
rameters that we will not tune here; we will rather take into account the
conclusions obtained in [26]. We will only study the number of iterations N
performed in MEMOTS to solve the residual problems.

Once the residual problem has been solved, we merge the potentially effi-
cient solutions of the residual problem with the unmodified variables of xc,
to obtain the neighbors.

2.2 The Multiobjective Set Covering Problem

In the MOSCP, we have a set of m items, and each item can be covered by a
subset of n sets. Each set j has p costs cj

l (l = 1, . . . , p). The MOSCP consists
in determining a subset of sets, among the n sets (j = 1, . . . , n) such that all the
items are covered by at least one set and that the p total costs are minimized.

The formulation is the following:

“ min ” fl(x) =
n∑

j=1

cj
l xj l = 1, . . . , p

subject to
n∑

j=1

tijxj ≥ 1 i = 1, . . . , m

xj ∈ {0, 1} j = 1, . . . , n

with x the decision vector, formed of the binary variables xj (xj = 1 means that
the set j is considered), and the binary data tij equal to 1 if the set j covers the
item i and 0 otherwise.

It is assumed that all coefficients cj
l are nonnegative.

The VLSNS that we have defined for the MOSCP is similar to the one defined
for the MOMKP. However, the definition is a bit more complicated. With the
MOMKP, the two sets O and I were independently defined. With the MOSCP,
that cannot be anymore the case. Indeed, when we remove some sets of the
current solution xc, some items are not anymore covered. The set I must thus
be composed of sets than can cover these items. Also, we have noticed that
removing a small number k of sets (less than 4, as we will see later in Figure 3)
from xc was enough. Indeed, when we work with a larger set O, it becomes more
difficult to define the set I since many items become uncovered.

Therefore, as we will keep k small, for each value of k, we will create more
than one residual problem. If k = 1, the number of residual problems will be
equal to the number of sets present in the current solution x. For each residual
problem, the set O will be thus composed of one of the sets present in xc.

If k > 1, we create a set L of size L (L ≥ k) that includes the interesting sets
to remove from xc. Then, all the combinations of k sets from L will be considered
to form the set O. The number of residual problems will be thus equal to the
number of combinations of k elements into a set of size L, that is CL

k . The size
of the set I will also be limited to L.
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More precisely, the VLSNS works as follows:

1. If k > 1, the set O will be composed of k sets chosen among the list L
containing the L worst sets (present in xc) for the ratio R3, defined by

R3 =

p∑
l=1

λlc
s
l

m∑
i=1

tis

(3)

for a set s. This ratio is equal to the weighted aggregation of the costs on
the number of items that the set s covers.

2. The set I of sets candidates to be added will be composed of the L best sets
(not in x) for the ratio R4, defined by

R4 =

p∑
l=1

λlc
s
l

ns
(4)

for a set s, where ns represent the number of items that the set s covers
among the items that are not anymore covered following the removals of the
k preceding sets. This ratio is only computed for the sets that cover at least
one of the items not anymore covered (ns > 0).

3. A residual problem is defined, of size k + L, and composed of the sets be-
longing to the set {O ∪ I}.

4. To solve the residual problem, we simply generate all the efficient solutions
of the problem, with an enumeration algorithm. We then merge the efficient
solutions of the residual problem with the unmodified variables of xc, to
obtain the neighbors.

3 Two-Phase Pareto Local Search

In order to be able to use VLSNS in MO, we have integrated this technique
into the two-phase Pareto local search (2PPLS) [28]. As indicated by its name,
the method is composed of two phases. In the first phase, an initial population
of potentially efficient solutions is produced. In the second phase, the Pareto
local search [6,31] (PLS) is run from this population. PLS is a straightforward
adaptation of LS to MO and only needs a neighborhood function N (x), which
is applied to every new potentially non-dominated solution generated. At the
end, a local optimum, defined in a MO context, is obtained [31] (called a Pareto
local optimum set). Therefore, to adapt 2PPLS to a MOCO problem, we have
to define an initial population and a neighborhood function. As neighborhood,
we will use a VLSNS.
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However, comparing to the initial version of 2PPLS [28], we have adapted
the method in order to be able to use different sizes of neighborhood, through a
variable neighborhood search (VNS) technique [16]. This is particularly useful in
the case of the MOSCP. Indeed, for the MOSCP, the VLSNS of size (k + 1) will
not necessary produce the neighbors obtained with the VLSNS of size k (as the
set I depends on the set O of size k). On the other hand, for the MOMKP, the
VLSNS of size (k + 1) will also produce the neighbors generated by the VLSNS
of size k. Therefore, for the MOMKP, the higher k, the better the results are,
and a VNS technique is not worthwhile.

The pseudo-code of 2PPLS with VNS is given by the Algorithm 1.
The method needs four parameters: an initial population P0, the size of the

smallest (kmin) (respectively largest (kmax)) neighborhood structure, and the
different neighborhood functions Nk(x) for each k ∈ Z : kmin ≤ k ≤ kmax.

The method starts with the population P composed of potentially efficient
solutions given by the initial population P0. The neighborhood structure initially
used is the smallest (k = kmin). Then, considering Nk(x), all the neighbors p′

of each solution p of P are generated. If a neighbor p′ is not weakly Pareto
dominated (�P ) by the current solution p, we try to add the solution p′ to
the approximation X̃E of the efficient set, which is updated with the procedure
AddSolution. This procedure is not described in this paper but simply consists
of updating an approximation X̃E of the efficient set when a new solution p′ is
added to X̃E . This procedure has four parameters: the set X̃E to actualize, the
new solution p′, its evaluation f(p′) and a boolean variable called Added that
returns True if the new solution has been added and False otherwise. If the
solution p′ has been added to X̃E , Added is true and the solution p′ is added to an
auxiliary population Pa, which is also updated with the procedure AddSolution.
Therefore, Pa is only composed of new potentially efficient solutions. Once all
the neighbors of each solution of P have been generated, the algorithm starts
again, with P equal to Pa, until P = Pa = ∅. The auxiliary population Pa is
used such that the neighborhood of each solution of P is explored, even if some
solutions of P become dominated following the addition of a new solution to Pa.
Thus, sometimes, neighbors are generated from a dominated solution.

In the case of P = Pa = ∅, the set X̃E obtained is a Pareto local optimum
set according to Nk, and cannot be thus improved with Nk. We then increase
the size of the neighborhood (k ← k + 1), and apply again PLS with this larger
neighborhood.

Please note that, in general, a solution Pareto local optimum for the neighbor-
hood k is not necessary Pareto local optimum for the neighborhood (k−1). That
is why, after considering a larger neighborhood, we always restart the search with
the smallest neighborhood structure.

After the generation of a Pareto local optimum set according to Nk, the
population P used with the neighborhood Nk+1 is X̃E , without considering the
solutions of X̃E that could already be Pareto local optimal for Nk+1.

The method stops when a Pareto local optimum set has been found, according
to all the neighborhood structures considered.



260 T. Lust, J. Teghem, and D. Tuyttens

Algorithm 1. 2PPLS with VNS

Parameters ↓: an initial population P0, neighborhood functions Nk(x), kmin, kmax.
Parameters ↑: an approximation X̃E of the efficient set XE .

- -| Initialization of X̃E and a population P with the initial population P0

X̃E ← P0

P ← P0

- -| Initialization of an auxiliary population Pa

Pa ← ∅
- -| Initialization of the neighborhood structure
k← kmin

repeat
while P �= ∅ do

- -| Generation of all neighbors p′ of each solution p ∈ P
for all p ∈ P do

for all p′ ∈ Nk(p) do
if f(p) �P f(p′) then

AddSolution(X̃E �, p′ ↓, f(p′) ↓, Added ↑)
if Added = true then

AddSolution(Pa �, p′ ↓, f(p′) ↓)
if Pa �= ∅ then

- -| P is composed of the new potentially efficient solutions
P ← Pa

- -| Reinitialization of Pa

Pa ← ∅
- -| We start again with the smallest neighborhood structure
k← kmin

else
- -| We use a larger neighborhood structure
k← k + 1
- -|We use as population the solutions of XE that are not Pareto local optimum
for Nk(x)
P ← X̃E\{x ∈ X̃E |x Pareto local optimum for Nk(x)}

until k > kmax

4 Results

We will mainly focus the presentation of the results on showing that the use of
VLSNS gives a competitive method. We will not have enough space to show all
the results of the parameters’ analysis of our methods. We will however point
out the most important conclusions obtained.

To compare the quality of the approximations generated, we use four indica-
tors: the hypervolume H (to be maximized) [35], the average distance D1 and
maximal distance D2 (to be minimized) [10] between the points of YN and the
points of ỸN , by using the Euclidean distance, and the proportion PYN (to be
maximized) of non-dominated points generated.
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The last three indicators can be used since we have mainly considered in-
stances of the MOMKP and the MOSCP for which we were able to generate
exactly YN with the ε-constraint method [24].

We will only present some results for biobjective instances. The computer used
for the experiments is a Pentium IV with 3 GHz CPUs and 512 MB of RAM.
Twenty runs of the algorithms are performed for each instance. To compute the
ratios R1, R2, R3 and R4 used in the VLSNS, random generations of weight sets
are considered.

4.1 The Multiobjective Multidimensional Knapsack Problem

The MOMKP is one of the most studied MOCO problem. This problem has
been used by many different groups of authors in order to test the performances
of new multiobjective metaheuristics. A survey of this problem can be found
in [27].

As many authors previously did, we use the instances of Zitzler and Thiele [37]
with 250, 500 or 750 items, two objectives and two constraints (the instances
are called 250-2, 500-2 and 750-2).

Adaptation of 2PPLS. To adapt 2PPLS to the resolution of the MOMKP,
we first need to define how the initial population is generated.

As we did not find any efficient published implementations of heuristics solving
the single-objective MKP, we have implemented a simple greedy heuristic. To
create a new solution, the items are added to the knapsack one by one. At each
iteration, the item s that maximizes the ratio (R2) (see section 2.1) is selected.

The greedy procedure is run with 100 weight sets uniformly generated in [0, 1].
We have studied the influence of the number of weight sets, but this number has a
low influence on the quality of the results, given the quality of the neighborhood
used in PLS.

Influence of the size of the neighborhood. We show now some results
about the influence of the size of the neighborhood k. For the MOMKP, no VNS
is used.

In Figure 1, we show the evolution of PYN and the running time according
to k for the 500-2 instance. We vary the values of k from 4 to 20. We use three
different numbers of iterations for MEMOTS (the method used to solve the
residual problems defined in the VLSNS): N = 100, N = 200 and N = 400.
We see that for small values of k, PYN is more or less equal no matter the num-
ber of iterations. From k equal to 10, it is clear that we obtain better results if
N is higher. On the other hand, the running time is bigger when N is higher,
but still evolves more or less linearly according to k. An interesting behavior is
pointed out by the figure showing the evolution of PYN according to k. From k
equal to about 16 and for a number of iterations N equal to 100 or 200, there
is a deterioration of PYN while the running time is increasing. It means that
the number of iterations performed in MEMOTS is not high enough to solve the
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Fig. 1. Influence of k for the MOMKP

residual problems, and that therefore the quality of the approximations obtained
for the residual problems is not good enough to improve PYN . Fixing good values
for k and N should be thus carefully done since these two values have to be
increased at the same time if we want to improve the quality of the results.

Comparison to state-of-the-art results. We have obtained the following re-
sults for the 250-2, 500-2, 750-2 instances: SPEA [37] (30 runs); SPEA2 [36] (30
runs, but only for the 750-2 instance); MOGLS00 [19] (20 runs); MOGLS04 [19]
(20 runs, different than MOGLS00 since obtained with the MOMHLib++ li-
brary [18]); PMA [22] (20 runs); IMMOGLS [17] (20 runs); MOGTS [7] (1 run);
GRASP [34] (1 run); MOTGA [4] (20 runs); PATH-RELINKING [8] (30 runs);
GPLS [2] (30 runs); mGPLS [3] (30 runs); iGPLS [3] (30 runs). These results
have been obtained from web sites or directly from the different authors. We see
that we have obtained quite a lot of results. It is only a pity that Gomes da Silva
et al. [11] did not send us their results.

Thanks to these results, we have generated a reference set, called ALL, formed
by merging the potentially non-dominated points obtained by all the runs of all
algorithms, which gives a very high quality set.

However, we show that is possible to obtain better results than this set, for
the indicators considered in this paper, in reasonable times, with the VLSNS
integrated into 2PPLS. We have carefully selected the parameters such that we
obtain better or equal results than the reference set ALL for all indicators. The
parameters are the following:

– 250-2: k = 9 and N = 200.
– 500-2: k = 15 and N = 100.
– 750-2: k = 9 and N = 100.

The results for 2PPLS are given in Table 1. |PE| gives the number of potentially
efficient solutions generated. We see that is possible to obtain better or equal
values for all indicators, in very reasonable running times: 7s for 250-2, 23s for
500-2 and 18s for 750-2.
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Table 1. Comparison between 2PPLS and ALL based on the indicators

Instance Algorithm H(107) D1 D2 |PE| PYN
(%) Time(s)

250-2
2PPLS 9.8690 0.029 2.680 482.10 68.05 7.27

ALL 9.8690 0.069 2.838 376.00 31.87 /

500-2
2PPLS 40.7873 0.025 1.976 1131.00 42.85 23.43

ALL 40.7850 0.081 2.045 688.00 5.51 /

750-2
2PPLS 89.3485 0.076 1.494 1558.90 4.15 17.52

ALL 89.3449 0.092 1.494 996.00 0.99 /

We compare now MEMOTS and 2PPLS, for different running times. In [26],
we have showed that MEMOTS was a performing method since this method
gives better values than MOGLS [19] and PMA [22] for different indicators.

The results are presented in Figure 2, for the 250-2 and 750-2 instances, where
the evolutions of D1 and PYN according to the running time are showed. The
running time of 2PPLS is controlled by k and N , while the running of MEMOTS
is controlled by the number of iterations performed.
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Fig. 2. Comparison of MEMOTS and 2PPLS: evolution of D1 and PYN according to
the running time

We see that except with small running times, the results obtained with 2PPLS
are better than with MEMOTS. With 2PPLS, we can generate, for the 250-2 in-
stance, about 90% of the non-dominated points, for the 500-2 instance, about 70%
and for the 750-2 instance, about 20%, in reasonable running times. The running
times are remarkable since, for example, Mavrotas et al. [29] can generate for the
250-2 instance, 81% of YN , but in about 30 minutes, while we can attain this result
in about 15s. Also, for this same instance, they need 21 hours to generate 93% of
YN , while we only need 42 seconds. We are thus 1800 times faster!

4.2 The Multiobjective Set Covering Problem

The MOSCP has not received as much attention as the MOMKP. To our knowl-
edge, only two groups of authors have tackled this problem. Jaszkiewicz was
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the first one, in 2001 [20], with the adaptation of the Pareto memetic algorithm
(PMA). In 2006, Prins et al. [32] have also tackled this problem, by using a two-
phase heuristic method (called TPM) using primal-dual Lagrangian relaxations
to solve different single-objective SCPs.

We use the same instances than those authors considered, from the size 600x60
(600 sets, 60 items) to the size 1000x200. Seven instances have been considered,
and for each size instance, four different kinds of objectives (a, b, c and d) are
defined [14]. More informations about these instances can be found in [20,32].

Adaptation of 2PPLS. As initial population, we use a good approximation
of the supported efficient solutions. These solutions can be generated by reso-
lution of weighted sum single-objective problems obtained by applying a linear
aggregation of the objectives. To generate the different weight sets, we have used
the dichotomic method of Aneja and Nair [5]. Depending on the difficulty of the
instances, we have used an exact solver (the free MILP solver lp solve) or a
heuristic (the meta-raps heuristic developed by Lan et al. [23] whose the code
has been published) to solve the single-objective SCPs.

Influence of the size of the neighborhood. We show now some results
about the influence of the size of the neighborhood k and the length L of the
lists L and I. For the MOSCP, VNS is used.

In Figure 3, we show the evolution of PYN and the running time according to
L for the 61a instance (600x60), for different values of k. We vary the values of L
from 1 to 9 and k from 1 to 4. We see that, of course, increasing the values of L
or k allows to obtain better quality results. The best improvement is when k is
moved from 1 to 2 for values of L superior to 5. On the other hand, using k = 3
or k = 4 in place of k = 2 does not give impressive improvements, whatever the
value of L.

Concerning the running time, as we use an exact enumeration algorithm to
solve the residual problems, we see that its evolution is exponential. Using k = 3
or k = 4 with L ≥ 8 becomes very time-consuming.

Therefore, for the comparison to state-of-the-art results, we will use k = 2
and L = 9.
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Comparison to state-of-the-art results. In Table 2, we compare the results
obtained with 2PPLS to the results of TPM and PMA. We only show the results
for the instance 81 of size 800x80, for the four different kinds of objectives (a, b,
c and d) . We see that we obtain better results for the indicators considered. For
these instances, we always obtain a value of PYN superior to 50%, in less than
41s.

Table 2. Comparison between 2PPLS, TPM and PMA based on the indicators

Instance Algorithm H(105) D1 D2 PYN
(%) |PE| Time(s)

81a

2PPLS 1804.7490 0.094 1.164 58.87 351.65 31.79

TPM 1787.6098 1.957 9.729 10.61 64.00 /

PMA 1777.7066 1.253 3.792 0.61 173.80 /

81b

2PPLS 2295.7315 0.141 1.176 56.20 272.25 30.97

TPM 2277.4616 1.690 6.398 11.30 55.00 /

PMA 2267.9781 1.197 6.756 3.64 138.10 /

81c

2PPLS 114.3475 0.711 3.820 71.43 11.55 19.5

TPM 114.0509 3.596 15.592 35.71 9.00 /

PMA 110.0607 21.113 61.595 0.00 1.50 /

81d

2PPLS 169.5468 0.073 0.875 91.67 11.00 40.58

TPM 169.3999 2.827 23.631 75.00 10.00 /

PMA 160.0092 10.640 42.617 0.00 6.60 /

We have obtained similar results for all the other instances, except for the
instances 62c and 62d for which TPM obtains slightly better values for some
indicators. For example, for the bigger instances 201a and 201b (1000x200), for
which we were not able to generate YN , we have obtained that, in average, more
than 80% of the points generated by 2PPLS dominate the points generated by
PMA.

The comparison of the average running times for solving the different instances
is given in Table 3. We see that the running times of 2PPLS are less or equal than
the running times of TPM and PMA (coming however from slower computers).

Table 3. Comparison of the average running times of 2PPLS, TPM and PMA (in
seconds)

Instance Dimension 2PPLS TPM PMA
61 60 x 600 20.41 20.27 132.4
62 60 x 600 9.54 20.35 98.8
81 80 x 800 30.71 30.22 165.9
82 80 x 800 16.41 30.27 148.4
101 100 x 1000 26.48 50.10 311.7
102 100 x 1000 23.75 50.41 282.1
201 200 x 1000 60.36 70.81 686.8
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5 Conclusion

We have shown through this paper the effectiveness of approaches based on
VLSNS to solve MOCO problems. The integration of VLSNS into 2PPLS allowed
to obtain new state-of-the-art results for two MOCO problems: the MOMKP
and MOSCP. However, these results are only for biobjective instances. We have
performed some tests for three-objective instances of the MOMKP. The results
obtained were of high quality too, but with a very high running time (more
than 7h). Indeed, the number of potentially non-dominated points generated
was very high (more than 60000 points for an instance with only 250 items).
Therefore, in order to make this new approach more practical, the integration of
the preferences of the decision maker into the Pareto dominance will be necessary
to tackle instances with more than two objectives.
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11. Gomes da Silva, C., Cĺımaco, J., Figueira, J.R.: Scatter search method for the
bi-criteria multi-dimensional {0,1}-knapsack problem using surrogate relaxation.
Journal of Mathematical Modelling and Algorithms 3(3), 183–208 (2004)



VLSNS for Solving MOCO Problems 267

12. Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley,
New York (2001)

13. Ehrgott, M., Gandibleux, X.: Multiobjective combinatorial optimization. In:
Ehrgott, M., Gandibleux, X. (eds.) Multiple Criteria Optimization – State of the
Art Annotated Bibliographic Surveys, vol. 52, pp. 369–444. Kluwer Academic Pub-
lishers, Boston (2002)

14. Gandibleux, X., Vancoppenolle, D., Tuyttens, D.: A first making use of GRASP
for solving MOCO problems. In: 14th International Conference in Multiple Criteria
Decision-Making, Charlottesville (1998)

15. Glover, F., Kochenberger, G.: Handbook of Metaheuristics. Kluwer, Boston (2003)
16. Hansen, P., Mladenovic, N.: Variable neighborhood search: Principles and applica-

tions. European Journal of Operational Research 130(3), 449–467 (2001)
17. Ishibuchi, H., Murada, T.: A multi-objective genetic local search algorithm and

its application to flow shop scheduling. IEEE Transactions on Systems, Man, and
Cybernetics - Part C: Applications and Reviews 28(3), 392–403 (1998)

18. Jaszkiewicz, A.: Experiments done with the MOMHLIB: Technical report,
Institute of Computing Science, Poznań University of Technology (2000),
http://www-idss.cs.put.poznan.pl/jaszkiewicz/momhlib/

19. Jaszkiewicz, A.: On the Performance of Multiple-Objective Genetic Local Search
on the 0/1 Knapsack Problem—A Comparative Experiment. Technical Report
RA-002/2000, Institute of Computing Science, Poznań University of Technology,
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Abstract. Bilevel multi-objective optimization problems are known to be highly
complex optimization tasks which require every feasible upper-level solution to
satisfy optimality of a lower-level optimization problem. Multi-objective bilevel
problems are commonly found in practice and high computation cost needed to
solve such problems motivates to use multi-criterion decision making ideas to
efficiently handle such problems. Multi-objective bilevel problems have been pre-
viously handled using an evolutionary multi-objective optimization (EMO) algo-
rithm where the entire Pareto set is produced. In order to save the computational
expense, a progressively interactive EMO for bilevel problems has been presented
where preference information from the decision maker at the upper level of the
bilevel problem is used to guide the algorithm towards the most preferred solu-
tion (a single solution point). The procedure has been evaluated on a set of five
DS test problems suggested by Deb and Sinha. A comparison for the number
of function evaluations has been done with a recently suggested Hybrid Bilevel
Evolutionary Multi-objective Optimization algorithm which produces the entire
upper level Pareto-front for a bilevel problem.

Keywords: Genetic algorithms, evolutionary algorithms, bilevel optimization,
multi-objective optimization, evolutionary programming, multi-criteria decision
making, hybrid evolutionary algorithms, sequential quadratic programming.

1 Introduction

Bilevel programming problems are often found in practice (25) where the feasibility of
an upper level solution is decided by a lower level optimization problem. The qualifi-
cation for an upper level solution to be feasible is that it should be an optimal candi-
date from a lower level optimization problem. This requirement consequentially makes
a bilevel problem very difficult to handle. Multiple objectives at both the levels of a
bilevel problem further adds to the complexity. Because of difficulty in searching and
defining optimal solutions for bilevel multi-objective optimization problems (11), not
many solution methodologies to such problems have been explored. One of the recent
advances made in this direction is by Deb and Sinha (9) where the entire Pareto set at the
upper level of the bilevel multi-objective problem is explored. The method, though suc-
cessful in handling complex bilevel multi-objective test problems, is computationally
expensive and requires high function evaluations, particularly at the lower level. High
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computational expense associated to such problems provides a motivation to explore a
different solution methodology.

Concepts from a Progressively Interactive Evolutionary Multi-objective Optimiza-
tion algorithm (PI-EMO-VF) (10) has been integrated with the Hybrid Bilevel Evo-
lutionary Multi-objective Optimization algorithm (HBLEMO) (9) in this paper. In the
suggested methodology, preference information from the decision maker at the upper
level is used to direct the search towards the most preferred solution. Incorporating
preferences from the decision maker in the optimization run makes the search pro-
cess more efficient in terms of function evaluations as well as accuracy. The integrated
methodology proposed in this paper, interacts with the decision maker after every few
generations of an evolutionary algorithm and is different from an a posteriori approach,
as it explores only the most preferred point. An a posteriori approach like the HBLEMO
and other evolutionary multi-objective optimization algorithms (5; 26) produce the en-
tire efficient frontier as the final solution and then a decision maker is asked to pick
up the most preferred point. However, an a posteriori approach is not a viable method-
ology for problems which are computationally expensive and/or involve high number
of objectives (more than three) where EMOs tend to suffer in convergence as well as
maintaining diversity.

In this paper, the bilevel multi-objective problem has been described initially and
then the integrated procedure, Progressively Interactive Hybrid Bilevel Evolutionary
Multi-objective Optimization (PI-HBLEMO) algorithm, has been discussed. The per-
formance of the PI-HBLEMO algorithm has been shown on a set of five DS test prob-
lems (9; 6) and a comparison for the savings in computational cost has been done with
a posteriori HBLEMO approach.

2 Recent Studies

In the context of bilevel single-objective optimization problems a number of studies
exist, including some useful reviews (3; 21), test problem generators (2), and some
evolutionary algorithm (EA) studies (18; 17; 24; 16; 23). Stackelberg games (13; 22),
which have been widely studied, are also in principle similar to a single-objective bilevel
problem. However, not many studies can be found in case of bilevel multi-objective op-
timization problems. The bilevel multi-objective problems have not received much at-
tention, either from the classical researchers or from the researchers in the evolutionary
community.

Eichfelder (12) worked on a classical approach on handling multi-objective bilevel
problems, but the nature of the approach made it limited to handle only problems with
few decision variables. Halter et al. (15) used a particle swarm optimization (PSO)
procedure at both the levels of the bilevel multi-objective problem but the application
problems they used had linearity in the lower level. A specialized linear multi-objective
PSO algorithm was used at the lower level, and a nested strategy was utilized at the
upper level.

Recently, Deb and Sinha have proposed a Hybrid Bilevel Evolutionary Multi-
objective Optimization algorithm (HBLEMO) (9) using NSGA-II to solve both level
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problems in a synchronous manner. Former versions of the HBLEMO algorithm can be
found in the conference publications (6; 8; 19; 7). The work in this paper extends the
HBLEMO algorithm by allowing the decision maker to interact with the algorithm.

3 Multi-objective Bilevel Optimization Problems

In a multi-objective bilevel optimization problem there are two levels of multi-objective
optimization tasks. A solution is considered feasible at the upper level only if it is a
Pareto-optimal member to a lower level optimization problem (9). A generic multi-
objective bilevel optimization problem can be described as follows. In the formulation
there are M number of objectives at the upper level and m number of objectives at the
lower level:

Minimize(xu,xl) F(x) = (F1(x), . . . , FM (x)) ,
subject to xl ∈ argmin(xl)

{
f(x)=(f1(x), . . . , fm(x))

∣∣g(x) ≥ 0,h(x) = 0
}

,

G(x) ≥ 0,H(x) = 0,

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, . . . , n.

(1)

In the above formulation, F1(x), . . . , FM (x) are upper level objective functions which
are M in number and f1(x), . . . , fm(x) are lower level objective functions which are
m in number. The constraint functions g(x) and h(x) determine the feasible space
for the lower level problem. The decision vector, x, contains the variables to be op-
timized at the upper level. It is composed of two smaller vectors xu and xl, such
that x = (xu,xl). While solving the lower level problem, it is important to note
that the lower level problem is optimized with respect to the variables xl and the
variables xu act as fixed parameters for the problem. Therefore, the Pareto-optimal
solution set to the lower level problem can be represented as x∗

l (xu). This represen-
tation means that the upper level variables xu, act as a parameter to the lower level
problem and hence the lower level optimal solutions x∗

l are a function of the up-
per level vector xu. The functions G(x) and H(x) define the feasibility of a solu-
tion at the upper level along with the Pareto-optimality condition to the lower level
problem.

4 Progressively Interactive Hybrid Bilevel Evolutionary
Multi-objective Optimization Algorithm (PI-HBLEMO)

In this section, the changes made to the Hybrid Bilevel Evolutionary Multi-objective
Optimization (HBLEMO) (9) algorithm have been stated. The major change made to
the HBLEMO algorithm is in the domination criteria. The other change which has been
made is in the termination criteria.

The Progressively Interactive EMO using Value Function (PI-EMO-VF) (10) is a
generic procedure which can be integrated with any Evolutionary Multi-objective Opti-
mization (EMO) algorithm. In this section we integrate the procedure at the upper level
execution of the HBLEMO algorithm.
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After every τ upper level generations of the HBLEMO algorithm, the decision-maker
is provided with η (≥ 2) well-sparse non-dominated solutions from the upper level set
of non-dominated points. The decision-maker is expected to provide a complete or par-
tial preference information about superiority of one solution over the other, or indiffer-
ence towards the two solutions. In an ideal situation, the DM can provide a complete
ranking (from best to worst) of these solutions, but partial preference information is also
allowed. With the given preference information, a strictly increasing polynomial value
function is constructed. The value function construction procedure involves solving an-
other single-objective optimization problem. Till the next τ upper level generations,
the constructed value function is used to direct the search towards additional preferred
solutions.

The termination condition used in the HBLEMO algorithm is based on hypervolume.
In the modified PI-HBLEMO algorithm the search is for the most preferred point and
not for a pareto optimal front, therefore, the hypervolume based termination criteria can
no longer be used. The hypervolume based termination criteria at the upper level has
been replaced with a criteria based on distance of an improved solution from the best
solutions in the previous generations.

In the following, we specify the steps required to blend the HBLEMO algorithm
within the PI-EMO-VF framework and then discuss the termination criteria.

1. Set a counter t = 0. Execute the HBLEMO algorithm with the usual definition of
dominance (14) at the upper level for τ generations. Increment the value of t by
one after each generation.

2. If t is perfectly divisible by τ , then use the k-mean clustering approach ((4; 26))
to choose η diversified points from the non-dominated solutions in the archive;
otherwise, proceed to Step 5.

3. Elicitate the preferences of the decision-maker on the chosen η points. Construct a
value function V (f), emulating the decision maker preferences, from the informa-
tion. The value function is constructed by solving an optimization problem (VFOP),
described in Section 4.1. If a feasible value function is not found which satisfies all
DM’s preferences then proceed to Step 5 and use the usual domination principle in
HBLEMO operators.

4. Check for termination. The termination check (described in Section 4.2) is based
on the distance of the current best solution from the previous best solutions and
requires a parameter εu. If the algorithm terminates, the current best point is chosen
as the final solution.

5. An offspring population at the upper level is produced from the parent population
at the upper level using a modified domination principle (discussed in Section 4.3)
and HBLEMO algorithm’s search operators.

6. The parent and the offspring populations are used to create a new parent popula-
tion for the next generation using the modified domination based on the current
value function and other HBLEMO algorithm’s operators. The iteration counter is
incremented as t ← t + 1 and the algorithm proceeds to Step 2.

The parameters used in the PI-HBLEMO algorithm are τ , η and εu.
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4.1 Step 3: Elicitation of Preference Information and Construction of a
Polynomial Value Function

Whenever a DM call is made, a set of η points are presented to the decision maker (DM).
The preference information from the decision maker is accepted in the form of pairwise
comparisons for each pair in the set of η points. A pairwise comparison of a give pair
could lead to three possibilities, the first being that one solution is preferred over the
other, the second being that the decision maker is indifferent to both the solutions and
the third being that the two solutions are incomparable. Based on such preference in-
formation from a decision maker, for a given pair (i, j), if i-th point is preferred over
j-th point, then Pi � Pj , if the decision maker is indifferent to the two solutions then
it establishes that Pi ≡ Pj . There can be situations such that the decision maker finds
a given pair of points as incomparable and in such a case the incomparable points are
dropped from the list of η points. If the decision maker is not able to provide preference
information for any of the given solution points then algorithm moves back to the pre-
vious population where the decision maker was able to take a decisive action, and uses
the usual domination instead of modified domination principle to proceed the search
process. But such a scenario where no preference is established by a decision maker is
rare, and it is likely to have at least one point which is better than another point. Once
preference information is available, the task is to construct a polynomial value function
which satisfies the preference statements of the decision maker.

Polynomial Value Function for Two Objectives

A polynomial value function is constructed based on the preference information pro-
vided by the decision maker. The parameters of the polynomial value function are op-
timally adjusted such that the preference statements of the decision maker are satisfied.
We describe the procedure for two objectives as all the test problems considered in this
paper have two objectives. The value function procedure described below is valid for
a maximization problem therefore we convert the test problems used in this paper into
a maximization problem while implementing the value function procedure. However,
while reporting the results for the test problems they are converted back to minimization
problems.

V (F1, F2) = (F1 + k1F2 + l1)(F2 + k2F1 + l2),
where F1, F2 are the objective values
and k1, k2, l1, l2 are the value function parameters

(2)

The description of the two objective value function has been taken from (10). In the
above equations it can been seen that the value function V , for two objectives, is rep-
resented as a product of two linear functions S1 : R2 → R and S2 : R2 → R. 1

The parameters in this value function which are required to be determined optimally
from the preference statements of the decision maker are k1, k2, l1 and l2. Following
is the value function optimization problem (VFOP) which should be solved with the
value function parameters (k1, k2, l1 and l2) as variables. The optimal solution to the
VFOP assigns optimal values to the value function parameters. The above problem is
a simple single objective optimization problem which can be solved using any single

1 A generalized version of the polynomial value function can be found in (20).
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objective optimizer. In this paper the problem has been solved using a sequential
quadratic programming (SQP) procedure from the KNITRO (1) software.

Maximize ε,
subject to V is non-negative at every point Pi,

V is strictly increasing at every point Pi,
V (Pi) − V (Pj) ≥ ε, for all (i, j) pairs

satisfying Pi � Pj ,
|V (Pi) − V (Pj)| ≤ δV , for all (i, j) pairs

satisfying Pi ≡ Pj .

(3)

The above optimization problem adjusts the value function parameters in such a way
that the minimum difference in the value function values for the ordered pairs of points
is maximum.

4.2 Termination Criterion

Distance of the current best point is computed from the best points in the previous
generations. In the simulations performed, the distance is computed from the current
best point to the best points in the previous 10 generations and if each of the computed
distances δu(i), i ∈ {1, 2, . . . , 10} is found to be less than εu then the algorithm is
terminated. A value of εu = 0.1 has been chosen for the simulations done in this paper.

4.3 Modified Domination Principle

In this sub-section we define the modified domination principle proposed in (10). The
value function V is used to modify the usual domination principle so that more focussed
search can be performed in the region of interest to the decision maker. Let V (F1, F2)
be the value function for a two objective case. The parameters for this value function
are optimally determined from the VFOP. For the given η points, the value function
assigns a value to each point. Let the values be V1, V2, . . . , Vη in the descending order.
Now any two feasible solutions (x(1) and x(2)) can be compared with their objective
function values by using the following modified domination criteria:

1. If both points have a value function value less than V2, then the two points are
compared based on the usual dominance principle.

2. If both points have a value function value more than V2, then the two points are
compared based on the usual dominance principle.

3. If one point has a value function value more than V2 and the other point has a value
function value less than V2, then the former dominates the latter.

The modified domination principle has been explained through Figure 1 which illus-
trates regions dominated by two points A and B. Let us consider that the second best
point from a given set of η points has a value V2. The function V (F ) = V2 represents
a contour which has been shown by a curved line 2. The first point A has a value VA

2 The reason for using the contour corresponding to the second best point can be found in (10).
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which is smaller than V2 and the region dominated by A is shaded in the figure. The
region dominated by A is identical to what can be obtained using the usual domination
principle. The second point B has a value VB which is larger than V2, and, the region
dominated by this point is once again shaded. It can be observed that this point no
longer follows the usual domination principle. In addition to usual region of dominance
this point dominates all the points having a smaller value function value than V2.

The above modified domination principle can easily be extended for handling con-
straints as in (5). When two solutions under consideration for a dominance check are
feasible, then the above modified domination principle should be used. If one solu-
tion is feasible and the other is infeasible, then the feasible solution is considered as
dominating the other. If both the solutions are found to be infeasible then the one with
smaller overall feasibility violation (sum of all constraint violations) is considered to be
dominating the other solution.

5 Parameter Setting

In the next section, results of the PI-HBLEMO and the HBLEMO procedure on the
set of DS test problems ((9)) have been presented. In all simulations, we have used the
following parameter values for PI-HBLEMO:

1. Number of points given to the DM for preference information: η = 5.
2. Number of generations between two consecutive DM calls: τ = 5.
3. Termination parameter: εu = 0.1.
4. Crossover probability and the distribution index for the SBX operator: pc = 0.9

and ηc = 15.
5. Mutation probability and the distribution index for polynomial mutation: pm = 0.1

and ηm = 20.
6. Population size: N = 40

6 Results

In this section, results have been presented on a set of 5 DS test problems. All the test
problems have two objectives at both the levels. A point, (F (b)

1 , F
(b)
2 ), on the Pareto-

front of the upper level is assumed as the most preferred point and then a DM emulated
value function is selected which assigns a maximum value to the most preferred point.
The value function selected is V (F1, F2) = 1

1+(F1−F
(b)
1 )2+(F2−F

(b)
2 )2

. It is noteworthy

that the value function selected to emulate a decision maker is a simple distance func-
tion and therefore has circles as indifference curves which is not a true representative
of a rational decision maker. A circular indifference curve may lead to assignment of
equal values to a pair of points where one dominates the other. For a pair of points it
may also lead assignment of higher value to a point dominated by the other. However,
only non-dominated set of points are presented to a decision maker, therefore, such
discrepancies are avoided and the chosen value function is able to emulate a decision
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maker by assigning higher value to the point closest to the most preferred point and
lower value to others.

The DS test problems are minimization problems and the progressively interactive
procedure using value function works only on problems to be maximized. Therefore,
the procedure has been executed by converting the test problems into a maximization
problem by putting a negative sign before each of the objectives. However, the final re-
sults have once again been converted and the solution to the minimization problem has
been presented. The upper level and lower level function evaluations have been reported
for each of the test problems. A comparison has been made between the HBLEMO al-
gorithm and PI-HBLEMO procedure in the tables 1, 2, 3, 4 and 5. The tables show the
savings in function evaluations which could be achieved moving from an a posteriori
approach to a progressively interactive approach. The total lower level function evalu-
ations (Total LL FE) and the total upper level function evaluations (Total UL FE) are
presented separately. Table 6 shows the accuracy achieved and the number of DM calls
required to get close to the most preferred point. The accuracy is the Euclidean distance
of the best point achieved by the algorithm from the most preferred point. The most
preferred point has been represented on the Pareto-optimal fronts of the test problems.

6.1 Problem DS1

Problem DS1 has been taken from (9). A point on the Pareto-optimal front of the test
problem is chosen as the most-preferred point and then the PI-HBLEMO algorithm is
executed to obtain a solution close to the most preferred point. This problem has 2K
variables with K real-valued variables each for lower and upper levels. The complete
DS1 problem is given below:

V(F)=V2

F1

F2

B

A

Fig. 1. Dominated regions of two points A
and B using the modified definition. Taken
from (10).
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Fig. 2. Pareto-optimal front for problem DS1.
Final parent population members have been
shown close to the most preferred point.
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Figure 2 shows the Pareto-optimal front for the test problem, and the most-preferred
solution is marked on the front. The final population members from a particular run
of the PI-HBLEMO algorithm are also shown. Table 1 presents the function evalua-
tions required to arrive at the best solution using PI-HBLEMO and also the function
evaluations required to achieve an approximated Pareto-frontier using the HBELMO
algorithm. The third row in the table presents the ratio of function evaluations using
HBLEMO and PI-HBLEMO.

Minimize F(x, y) =⎛⎜⎜⎜⎜⎝
(1 + r − cos(απy1)) +

∑K
j=2(yj − j−1

2 )2

+τ
∑K

i=2(xi − yi)2 − r cos
(

γ π
2

x1
y1

)
(1 + r − sin(απy1)) +

∑K
j=2(yj − j−1

2 )2

+τ
∑K

i=2(xi − yi)2 − r sin
(

γ π
2

x1
y1

)
⎞⎟⎟⎟⎟⎠ ,

subject to (x) ∈ argmin(x)f(x) =⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

x2
1 +

∑K
i=2(xi − yi)2

+
∑K

i=2 10(1 − cos( π
K (xi − yi)))∑K

i=1(xi − yi)2

+
∑K

i=2 10| sin( π
K (xi − yi)|

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ ,

−K ≤ xi ≤ K, for i = 1, . . . , K,

1 ≤ y1 ≤ 4, −K ≤ yj ≤ K, j = 2, . . . , K.

(4)

For this test problem, K = 10 (overall 20 variables), r = 0.1, α = 1, γ = 1, and τ = 1
has been used.

Table 1. Total function evaluations for the upper and lower level (21 runs) for DS1

Algo. 1, Algo. 2, Best Median Worst
Savings Total LL Total UL Total LL Total UL Total LL Total UL

FE FE FE FE FE FE
HBLEMO 2,819,770 87,582 3,423,544 91,852 3,829,812 107,659

PI-HBLEMO 329,412 12,509 383,720 12,791 430,273 10,907
HBLEMO

PI−HBLEMO
8.56 7.00 8.92 7.18 8.90 9.87

6.2 Problem DS2

Problem DS2 has been taken from (9). A point on the Pareto-optimal front of the test
problem is chosen as the most-preferred point and then the PI-HBLEMO algorithm
is executed to obtain a solution close to the most preferred point. This problem uses
discrete values of y1 to determine the upper level Pareto-optimal front. The overall
problem is given as follows:

u1(y1) =

⎧⎨⎩ cos(0.2π)y1 + sin(0.2π)
√
|0.02 sin(5πy1)|,

for 0 ≤ y1 ≤ 1,
y1 − (1 − cos(0.2π)), y1 > 1

u2(y1) =

⎧⎨⎩− sin(0.2π)y1 + cos(0.2π)
√
|0.02 sin(5πy1)|,

for 0 ≤ y1 ≤ 1,
0.1(y1 − 1) − sin(0.2π), for y1 > 1.

(5)
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Minimize F(x,y) =⎛⎜⎜⎜⎜⎜⎝
u1(y1) +

∑K
j=2

[
y2

j + 10(1 − cos( π
K

yi))
]

+τ
∑K

i=2(xi − yi)
2 − r cos

(
γ π

2
x1
y1

)
u2(y1) +

∑K
j=2

[
y2

j + 10(1 − cos( π
K

yi))
]

+τ
∑K

i=2(xi − yi)
2 − r sin

(
γ π

2
x1
y1

)

⎞⎟⎟⎟⎟⎟⎠ ,

subject to (x) ∈ f(x) =

argmin(x)

{(
x2
1 +

∑K
i=2(xi − yi)2∑K

i=1 i(xi − yi)2

)}
,

−K ≤ xi ≤ K, i = 1, . . . , K,
0.001 ≤ y1 ≤ K, −K ≤ yj ≤ K, j = 2, . . . , K,

(6)

Due to the use of periodic terms in u1 and u2 functions, the upper level Pareto-optimal
front corresponds to only six discrete values of y1 (=0.001, 0.2, 0.4, 0.6, 0.8 and 1).
r = 0.25 has been used.

In this test problem the upper level problem has multi-modalities, thereby
causing an algorithm difficulty in finding the upper level Pareto-optimal
front. A value of τ = −1 has been used, which introduces a conflict between upper
and lower level problems. The results have been produced for 20 variables test
problem.

The Pareto-optimal front for this test problem is shown in Figure 3. The most-
preferred solution is marked on the Pareto-front along with the final population mem-
bers obtained from a particular run of the PI-HBLEMO algorithm. Table 2 presents
the function evaluations required to arrive at the best solution using PI-HBLEMO.
The function evaluations required to achieve an approximated Pareto-frontier using the
HBELMO algorithm is also reported.
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Fig. 3. Pareto-optimal front for problem DS2.
Final parent population members have been
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Table 2. Total function evaluations for the upper and lower level (21 runs) for DS2

Algo. 1, Algo. 2, Best Median Worst
Savings Total LL Total UL Total LL Total UL Total LL Total UL

FE FE FE FE FE FE
HBLEMO 4,796,131 112,563 4,958,593 122,413 5,731,016 144,428

PI-HBLEMO 509,681 14,785 640,857 14,535 811,588 15,967
HBLEMO

PI−HBLEMO
9.41 7.61 7.74 8.42 7.06 9.05

6.3 Problem DS3

Problem DS3 has been taken from (9). A point on the Pareto-optimal front of the test
problem is chosen as the most-preferred point and then the PI-HBLEMO algorithm is
executed to obtain a solution close to the most preferred point. In this test problem,
the variable y1 is considered to be discrete, thereby causing only a few y1 values to
represent the upper level Pareto-optimal front. The overall problem is given below:

Minimize F(x, y) =⎛⎝ y1 +
∑K

j=3(yj − j/2)2 + τ
∑K

i=3(xi − yi)2 −R(y1) cos(4 tan−1
(

y2−x2
y1−x1

)
y2 +

∑K
j=3(yj − j/2)2 + τ

∑K
i=3(xi − yi)2 −R(y1) sin(4 tan−1

(
y2−x2
y1−x1

) ⎞⎠ ,

subject to (x) ∈ argmin(x){
f(x) =

(
x1 +

∑K
i=3(xi − yi)2

x2 +
∑K

i=3(xi − yi)2

) ∣∣∣∣g1(x) = (x1 − y1)2 + (x2 − y2)2 ≤ r2

}
,

G(y) = y2 − (1− y2
1) ≥ 0,

−K ≤ xi ≤ K, for i = 1, . . . , K, 0 ≤ yj ≤ K, for j = 1, . . . , K,
y1 is a multiple of 0.1.

(7)

Here a periodically changing radius has been used: R(y1) = 0.1 + 0.15| sin(2π(y1 −
0.1)| and use r = 0.2. For the upper level Pareto-optimal points, yi = j/2 for j ≤ 3.
The variables y1 and y2 take values satisfying constraint G(y) = 0. For each such
combination, variables x1 and x2 lie on the third quadrant of a circle of radius r and
center at (y1, y2) in the F-space. For this test problem, the Pareto-optimal fronts for both
lower and upper level lie on constraint boundaries, thereby requiring good constraint
handling strategies to solve the problem adequately. τ = 1 has been used for this test
problem with 20 number of variables.

Table 3. Total function evaluations for the upper and lower level (21 runs) for DS3

Algo. 1, Algo. 2, Best Median Worst
Savings Total LL Total UL Total LL Total UL Total LL Total UL

FE FE FE FE FE FE
HBLEMO 3,970,411 112,560 4,725,596 118,848 5,265,074 125,438

PI-HBLEMO 475,600 11,412 595,609 16,693 759,040 16,637
HBLEMO

PI−HBLEMO
8.35 9.86 7.93 7.12 6.94 7.54
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The Pareto-front, most-preferred point and the final population members from a par-
ticular run are shown in Figure 4. Table 3 presents the function evaluations required
by PI-HBLEMO to produce the final solution and the function evaluations required by
HBELMO to produce an approximate Pareto-front.

6.4 Problem DS4

Problem DS4 has been taken from (9). A point on the Pareto-optimal front of the test
problem is chosen as the most-preferred point and then the PI-HBLEMO algorithm
is executed to obtain a solution close to the most preferred point. This problem has
K + L + 1 variables, which are all real-valued:

Minimize F(x,y) =(
(1 − x1)(1 +

∑K
j=2 x2

j )y1

x1(1 +
∑K

j=2 x2
j )y1

)
,

subject to (x) ∈ argmin(x)f(x) ={(
(1 − x1)(1 +

∑K+L
j=K+1 x2

j )y1

x1(1 +
∑K+L

j=K+1 x2
j)y1

)}
,

G1(x) = (1 − x1)y1 + 1
2x1y1 − 1 ≥ 0,

−1 ≤ x1 ≤ 1, 1 ≤ y1 ≤ 2,
−(K + L) ≤ xi ≤ (K + L), i = 2, . . . , (K + L).

(8)

The upper level Pareto-optimal front is formed with xi = 0 for all i = 2, . . . , (K + L)
and x1 = 2(1− 1/y1) and y1 ∈ [1, 2]. By increasing K and L, the problem complexity
in converging to the appropriate lower and upper level fronts can be increased. Only
one Pareto-optimal point from each participating lower level problem qualifies to be on
the upper level front. For our study here, we choose K = 5 and L = 4 (an overall
10-variable problem).
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Fig. 5. Pareto-optimal front for problem DS4.
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shown close to the most preferred point.
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Fig. 6. Pareto-optimal front for problem DS5.
Final parent population members have been
shown close to the most preferred point.
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Table 4. Total function evaluations for the upper and lower level (21 runs) for DS4

Algo. 1, Algo. 2, Best Median Worst
Savings Total LL Total UL Total LL Total UL Total LL Total UL

FE FE FE FE FE FE
HBLEMO 1,356,598 38,127 1,435,344 53,548 1,675,422 59,047

PI-HBLEMO 149,214 5,038 161,463 8,123 199,880 8,712
HBLEMO

PI−HBLEMO
9.09 7.57 8.89 6.59 8.38 6.78

The Pareto-front, most-preferred point and the final population members from a par-
ticular run are shown in Figure 5. Table 4 presents the function evaluations required
by PI-HBLEMO to produce the final solution and the function evaluations required by
HBELMO to produce an approximate Pareto-front.

6.5 Problem DS5

Problem DS5 has been taken from (9). A point on the Pareto-optimal front of the test
problem is chosen as the most-preferred point and then the PI-HBLEMO algorithm is
executed to obtain a solution close to the most preferred point. This problem is similar
to problem DS4 except that the upper level Pareto-optimal front is constructed from
multiple points from a few lower level Pareto-optimal fronts. There are K + L + 1
real-valued variables in this problem as well:

Minimize F(x, y) =(
(1− x1)(1 +

∑K
j=2 x2

j)y1

x1(1 +
∑K

j=2 x2
j)y1

)
,

subject to (x) ∈ argmin(x)f(x) ={(
(1− x1)(1 +

∑K+L
j=K+1 x2

j)y1

x1(1 +
∑K+L

j=K+1 x2
j)y1

)}
,

G1(x) = (1− x1)y1 + 1
2
x1y1 − 2 + 1

5
[5(1− x1)y1 + 0.2] ≥ 0,

[·] denotes greatest integer function,
−1 ≤ x1 ≤ 1, 1 ≤ y1 ≤ 2,
−(K + L) ≤ xi ≤ (K + L), i = 2, . . . , (K + L).

(9)

For the upper level Pareto-optimal front, xi = 0 for i = 2, . . . , (K + L), x1 ∈ [2(1 −
1/y1), 2(1 − 0.9/y1)], y1 ∈ {1, 1.2, 1.4, 1.6, 1.8} (Figure 6). For this test problem we
have chosen K = 5 and L = 4 (an overall 10-variable problem). This problem has
similar difficulties as in DS4, except that only a finite number of y1 qualifies at the
upper level Pareto-optimal front and that a consecutive set of lower level Pareto-optimal
solutions now qualify to be on the upper level Pareto-optimal front.

The Pareto-front, most-preferred point and the final population members from a par-
ticular run are shown in Figure 6. Table 5 presents the function evaluations required
by PI-HBLEMO to produce the final solution and the function evaluations required by
HBELMO to produce an approximate Pareto-front.
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Table 5. Total function evaluations for the upper and lower level (21 runs) for DS5

Algo. 1, Algo. 2, Best Median Worst
Savings Total LL Total UL Total LL Total UL Total LL Total UL

FE FE FE FE FE FE
HBLEMO 1,666,953 47,127 1,791,511 56,725 2,197,470 71,246

PI-HBLEMO 168,670 5,105 279,568 6,269 304,243 9,114
HBLEMO

PI−HBLEMO
9.88 9.23 6.41 9.05 7.22 7.82

7 Accuracy and DM Calls

Table 6 represents the accuracy achieved and the number of decision maker calls re-
quired while using the PI-HBLEMO procedure. In the above test problems the most
preferred point which the algorithm is seeking is pre-decided and the value function
emulating the decision maker is constructed. When the algorithm terminates it provides
the best achieved point. The accuracy measure is the Euclidean distance between the
best point achieved and the most preferred point. It can be observed from the results of
the PI-HBLEMO procedure that preference information from the decision maker leads
to a high accuracy (Table 6) as well as huge savings (Table 1,2,3,4,5) in function eval-
uations. Producing the entire front using the HBLEMO procedure has its own merits
but it comes with a cost of huge function evaluations and there can be instances when
the entire set of close Pareto-optimal solutions will be difficult to achieve even after
high number of evaluations. The accuracy achieved using the HBLEMO procedure has
been reported in the brackets; the final choice made from a set of close Pareto-optimal
solutions will lead to a poorer accuracy than a progressively interactive approach.

Table 6. Accuracy and the number of decision maker calls for the PI-HBLEMO runs (21 runs).
The distance of the closest point to the most preferred point achieved from the HBLEMO algo-
rithm has been provided in the brackets.

Best Median Worst
DS1 Accuracy 0.0426 (0.1203) 0.0888 (0.2788) 0.1188 (0.4162)

DM Calls 12 13 29
DS2 Accuracy 0.0281 (0.0729) 0.0804 (0.4289) 0.1405 (0.7997)

DM Calls 12 15 25
DS3 Accuracy 0.0498 (0.0968) 0.0918 (0.3169) 0.1789 (0.6609)

DM Calls 7 17 22
DS4 Accuracy 0.0282 (0.0621) 0.0968 (0.0981) 0.1992 (0.5667)

DM Calls 7 15 23
DS5 Accuracy 0.0233 (0.1023) 0.0994 (0.1877) 0.1946 (0.8946)

DM Calls 7 14 22

8 Conclusions

There are not many approaches yet to handle multi-objective bilevel problems.
The complexity involved in solving a bilevel multi-objective problem has deterred
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researchers, keeping the area unexplored. The Hybrid Bilevel Evolutionary Multi-
objective Optimization Algorithm is one of the successful procedures towards han-
dling a general bilevel multi-objective problem. However, the procedure involves heavy
computation, particularly at the lower level, to produce the entire Pareto-optimal set of
solutions at the upper level.

In this paper, the Hybrid Bilevel Evolutionary Multi-objective Optimization Algo-
rithm has been blended with a progressively interactive technique. An evaluation of the
Progressively Interactive HBLEMO (PI-HBLEMO) technique against the HBLEMO
procedure shows an improvement in terms of function evaluations as well as accuracy.
The savings in function evaluations at the lower as well as upper level is in the range of
six to ten times. This is a significant improvement particularly for cases where a function
evaluation is computationally very expensive. Moreover, for problems where EMOs
tend to suffer in converging towards the front, a progressively interactive approach pro-
vides a viable solution to such problems and leads to a higher accuracy. Therefore, an
integration of the progressively interactive procedure with an EMO algorithm offers a
dual advantage of reduced function evaluations and increased accuracy. Such kind of an
integrated procedure, with EMO algorithm’s parallel search and concepts from the field
of MCDM, can be a useful tool to efficiently handle difficult multi-objective problems.
The power of such an amalgamation has been shown in this study with its successful
application on the challenging domain of multi-objective bilevel problems.
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Abstract. In general, Multi-objective Evolutionary Algorithms do not
guarantee find solutions in the Pareto-optimal set. We propose a new
approach for solving decomposable deceptive multi-objective problems
that can find all solutions of the Pareto-optimal set. Basically, the pro-
posed approach starts by decomposing the problem into subproblems
and, then, combining the found solutions. The resultant approach is a
Multi-objective Estimation of Distribution Algorithm for solving rela-
tively complex multi-objective decomposable problems, using a proba-
bilistic model based on a phylogenetic tree. The results show that, for
the tested problem, the algorithm can efficiently find all the solutions of
the Pareto-optimal set, with better scaling than the hierarchical Bayesian
Optimization Algorithm and other algorithms of the state of art.

1 Introduction

Techniques of search and optimization based in the Theory of Evolution as the
Evolutionary Algorithms (EA) are distinguished in the solution of complex prob-
lems of optimization that possess some objective functions [3,7]. In such prob-
lems, in general, the objectives are conflicting, and there is not only one optimal
solution that satisfies equally every objective, thus a set of solutions should be
chose to attend the objectives of the problem.

Another important and relatively recent research area on EAs is focused on
the developing of Estimation of Distribution Algorithms (EDAs) [17,18]. The
main idea of the EDAs is the creation of a model that represents the relations
between variables in a population (Building Blocks – BBs), through this model
the disruption of BBs can be avoided, allowing the generation of better solutions
and fast convergence.

In literature some EDAs are found to solve multi-objective problems as the
meCGA [22] and the mohBOA [19], but these has in the construction of their
models an impediment, resulting in a great number of functions evaluations. On
the other hand, faster EDAs in general construct poorer models limiting their
performance for large-scale multimodal problems. In fact, there is a trade-off
between model quality and running time to construct the model itself.

R.H.C. Takahashi et al. (Eds.): EMO 2011, LNCS 6576, pp. 285–297, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fortunately, several methods to reconstruct phylogenies (models describing
the relationship among taxa as, for example, the species features) were devel-
oped in the last century. The phylogeny literature [9,21] shows that one of these
methods, the Neighbor Joining (NJ) [20,23], is an adequate trade-off between
quality and efficiency. This paper proposes a Multi-objective Estimation of Dis-
tribution Algorithm (MOEDA) based on phylogenetic models, using the NJ as a
method to guarantee solutions in the Pareto-optimal front with reduced number
of functions evaluations. This MOEDA is the multi-objective variation of the
ΦGA (Phylo-Genetic Algorithm) [15,25,26] called moΦGA.

The remaining of the paper is organized as follows. Section 2 reviews funda-
mental concepts on Multi-objective Evolutionary Algorithms (MOEAs). Section 3
introduces the MOEDAs. Section 4 describes the Multi-objective Phylogenetic Al-
gorithm (moΦGA). Section 5 shows tests and results within moΦGA and Sect. 7
concludes the paper.

2 Multi-objective Evolutionary Algorithms

Multi-objective Evolutionary Algorithms is a well established field within Evo-
lutionary Computation that deal with problems with multiple objectives (MOP
- Multi-objective Optimization Problem). In such problems, the solutions are
defined in relation to a set of objectives, so that each objective contributes to
the solution’s quality of the MOP.

Conflicting objectives are common in a MOP. In these cases, an increase for a
particular objective is often limited by the decline in value of another objective.
As such, in accordance with [5] there is basically two ways for solving multi-
objective problems :

1. Preference-based methods;
2. Generating methods.

The Preference-based methods are normally formalized as the application of
weights to the objective in some way, yielding a single-objective function. Each
weight indicates the importance of the objective for the whole problem, thus,
we have a composite function as (1), where x represents a solution to the whole
problem and αi is the weight of every single-objective function fi(x).

g(x) =
M∑
i=1

αifi(x). (1)

In that way, the multi-objective problem can be solved as a mono-objective
problem. However, this approach requires knowledge of the weights for each
objective, which is often not available or known. Moreover, those type of methods
are not designed to find a family of solutions.

The Generating methods use a population of individuals to evolve multiple
objectives at the same time. Using various strategies such as applying a changing
selection criterion, choosing individuals based on their pareto optimality, among
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others. These type of algorithms commonly aim at finding the Pareto-optimal set,
since it allows the obtention of multiple optimal solutions concurrently without
the need to balance goals.

The Pareto-optimal front from a given problem is defined as a set of all Pareto-
optimal solutions. A solution is considered Pareto-optimal according to the con-
cept of dominance [5], where a solution xk dominates a solution xl if:

1. The solution xk is no worse (say the operator ≺ denotes worse and � de-
notes better) than xl in all objectives, or fi(xk) ⊀ fi(xl), for i = 1, . . . , k
objectives,

2. The solution xk is strictly better than xl in at least one objective, or fi(xk) �
fi(xl), for at least one i ∈ {1, . . . , k}.

So, the Pareto-optimal set consists of non-dominated solutions from the solu-
tion space, while the Pareto-optimal front is the edge, at the objective space,
composed by all non-dominated solutions.

Several MOEAs have been proposed based on the concept of dominance and
applied to real problems (for example the Non-dominated Sorting (NSGA) [6]
and the Strength Pareto EA (SPEA) [27]). However, some studies show problems
regarding the scalability and time-convergence of these algorithms [5].

In Sect. 3 an alternative for the use of MOEAs is described, although there
are also limitations on the scalability of this new approach [22][11], it presents
significant advantages as the proximity of Pareto-optimal front and the number
of evaluations.

3 Multi-objective Estimation of Distribution Algorithms

The Multi-objective Estimation of Distribution Algorithms differ from other
MOEAs for not limiting themselves to raw information from a population. They
use the selected individuals from a population as samples of an unknown prob-
abilistic distribution and generate probabilistic models from these samples. The
models should approximate the probabilistic distribution of the values of the
variables or sub-sets of variables (strong correlation among variables, Building
Blocks – BBs). In this way, a model is also a representation of the selected pop-
ulation itself (the used samples) and of other possible solutions that are related
to the model but were not among the selected individuals [17,18,22].

The common reproduction operators are not used by MOEDAs since new
individuals can be generated by directly sampling from the model. Moreover,
if such model can identify the correct BBs of a problem, the combination of
improbable values of variables can be avoided. An MOEDA that adequately
estimates BBs can solve relatively large-scale complex problems.

However, as more representative is the model (more BBs it correctly esti-
mates), more computationally complex is the algorithm to construct it. Thus,
there is a trade-off between the efficiency of the algorithm for construction of
a model and the accuracy of the model [17]. As a consequence, MOEDAs are
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directly affected by the algorithm efficiency and the accuracy of the model
they generate. Thus, an MOEDA with an adequate commitment between ef-
ficiency and accuracy would be a relevant contribution. Furthermore, several
classes of important problems involving multimodal objective functions, large-
scale instances, and solutions in real-time could be adequately solved using such
MOEDA.

This paper proposes an MOEDA based on a method that has not been used
in MOEDAs, the phylogenetic reconstruction [9]. This method enables an ad-
justable trade-off between the accuracy of the generated model (Phylogenetic
Tree) and the computational efficiency to construct it.

4 Multi-objective Phylogenetic Algorithm

The Multi-objective Phylo-Genetic Algorithm (moΦGA) is an MOEDA based
on the ΦGA, extending its features to find the Pareto-optimal set, i.e., solv-
ing multi-objective problems. It uses a phylogenetic tree reconstruction (NJ)
method to generate a phylogenetic tree for each problem separately. And from
the analysis of each tree through the uncertainty variation [15,26], the moΦGA
can exactly determine the BBs of a separable deceptive multi-objective problem.
This algorithm is synthesized in the diagram from Fig.1, where every branch is
associated to one objective (Obj1, Obj2, . . . , ObjM ).

The moΦGA starts with a population of size P with random individuals and
applies Θ tournament selections defined by (2).

Θ = ΦP (2)

Where Φ is a variable already used in previous ΦGAs. And it can adjust a
trade-off between number of avaliations and the running time of the algorithm
[15,25,26].

For a selected population (of a respective objective), a method calculates
a distance matrix (Sect. 4.2), required by the NJ. The moΦGA uses Mutual
Information (Sect. 4.1) to calculate the distance matrix. Then, NJ is applied to
create a phylogenetic tree for each objective separately. And the same procedure
is applied to all objectives.

Then the BBs are identified based on an uncertainty criteria of the NJ method.
That is, considering the difference between the average and minimum distance
in the matrix M (see Section 4.2 for details of the matrix M), if we call the
average minus the minimum distance in the M in a specific t iteration αt, the
relative rate it varies can be approximate by the following function fraction:

αt − αt−1

αt
. (3)

Disconsidering the points with αt near 0, the highest point t∗ of this fraction
represent the stopping criteria for the NJ. Therefore, every internal node created
by the NJ after the point t∗ should be discarded and the remaining subtrees will
form the BBs [26],[15].
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Fig. 1. Basic steps of the moΦGA for separable deceptive problems

Sequentially, each objective is combined as clusters (excluding equal clusters
of variables), leading to a small set of BBs. Finally, an exhaustive search is
applied at each BB from the set of BBs to find the Pareto-optimal for each BB.
The combination of the Pareto-optimal solutions at each obtained BB in the
tests was able to compose not just some or the solutions with different values
of fitness, but all the possible combinations of solutions in the Pareto-optimal
front.

This type of result was possible, because moΦGA focuses on solving the linkage
learning (the interdependence between the variables). This contrasts with the
results of other usual multi-objective Population-based Algorithms, which are
able to find most but not all solutions. This may also shed light to a different
focus on tackling these types of problems, which is to focus on decomposing them
and not on searching solely for the solutions. The solution of the decomposition,
as showed by this article, may make the searching process easier.

The complete description of the algorithm are explained in the sections as
follows, Sect. 4.1 describe how the distance matrix is built, necessary for the NJ
(reconstruction of phylogenetic trees method). Which is presented in Sect. 4.2.
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4.1 Distance Metric

In order to construct the distance matrix D, a metric capable of extracting the
correlation between variables is desirable. Mutual Information [14] is a measure
of similarity between two variables which has been successfully applied to the
development of EDAs. Equation (4) describe it, where X and Y are two random
variables, pxy(X, Y ) is the joint probability of (X = x, Y = y); and px(X) and
py(Y ) are the marginal probability of X = x and Y = y, respectivelly.

I(X, Y ) =
∑
x∈X

∑
y∈Y

pxy(X, Y ) log
pxy(X, Y )

px(X)py(Y )
. (4)

However, the Mutual Information is not a metric, since it does no satisfy strictly
the triangle inequality. Thus (5), as described in [14] has been widely used in
the literature [1,2,8,13] specially because it satisfies the triangle inequality, non-
negativity, indiscernibility and symmetric properties. In (5), H(X, Y ) is the en-
tropy of the pair (X, Y ).

D(X, Y ) = H(X, Y ) − I(X, Y ) . (5)

The metric (5) is also an universal metric, in the sense that if any non-trivial
distance measure places X and Y close, then it will also be judged close according
to D(X, Y ) [14].

Once the phylogenetic tree is constructed, the subtrees that represents the cor-
related variables (these subtrees are called clados in Biology), and consequently
the Building Blocks, need to be identified, and this identification is an empirical
procedure that depends on adhoc knowledge about the problem. This problem
was solved for the use of the NJ by the ΦGA and explained at [26,15,25].

4.2 Neighbor Joining

In this context, the Neighbor Joining can be viewed as a hierarchical cluster-
ing method [4,12,16] that uses a distance matrix D to create a phylogenetic
tree [20,23]. The distance matrix is used as information about the relationship
between variables and the tree is built in such way that more related variables
must be closer in the tree.

The algorithm starts with all variables connected to an unique internal node,
labeled “0”, composing a star tree of n + 1 nodes, where n is the number of
variables, Fig. 2 illustrates a star tree.

For every leaf node i ∈ N = {1, . . . , n} , the net divergence, Ri, is calculated
by (6), which is the sum of all distances referent to node i. From this, a new
matrix M is calculated using D and net divergences (7), where Dij is the element
at position (i, j) in D.

Ri =
∑

j∈N,j �=i

Dij . (6)
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Fig. 2. Star tree of a problem with 6 variables

Mij = Dij −
Ri + Rj

n − 2
. (7)

M is very important for the NJ success since the joining nodes will derive from
it. The two nodes, i and j, corresponding to the smallest Mij , are removed from
the star tree. Then, we insert a new node u, connected to i and j, beginning the
formation of a binary tree.

To calculate the branch length from u to i and j, (8) and (9) are used,
where Sij is the branch length between i and j.

Siu =
Dij

2
+

Ri − Rj

2(n − 2)
, (8)

Sju =
Dij

2
+

Rj − Ri

2(n − 2)
. (9)

Afterward, it is calculated the distance from the other variables to u in order
to fulfill a new D (without columns related to i and j and with a new column
for u). Such calculi is defined by (10), where k is necessarily a node different
from u in D.

Dku =
Dik + Djk − Dij

2
, ∀k �= u. (10)

D has decreased its size from n × n to (n − 1) × (n − 1). Then, this new D is
used to calculate a new M . The whole process is repeated until the size of D
reaches 2. Then, the two remaining nodes are joined together creating the last
internal node, which is set as the root of the tree. Lastly, the node “0” (that
primarily connected every node in a star tree) is removed from the tree.

5 Test Problems and Results

The moΦGA was tested with a relatively complex multi-objective function from
the literature [22], considering all the test factors: problem size, population size
and number of executions. This multi-objective function is a combination of two
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objectives and is defined by (11) and (12), both being linearly separable fully
deceptive problems with conflicting objectives, where x represents a solution to
the problem, m is the number of BBs and k = 5 is the trap size.

The trap5 and the inv-trap5 are difficult problems, because standard crossing
over operators can not solve it, unless the bits of each partition are placed close
to each other. Mutation operators are also very inefficient for solving them,
requiring O(n5 log n) evaluations [24].

max ftrap5(x), x ∈ {0, 1}mk, (11)

ftrap5(x) =
m−1∑
i=0

trap5(xki + xki+1 + ... + xki+k−1),

trap5(u) =

{
5 if u = 5,

4 − u if u < 5 .

max finv−trap5(x), x ∈ {0, 1}mk, (12)

finv−trap5(x) =
m−1∑
i=0

inv-trap5(xki + xki+1 + ... + xki+k−1),

inv-trap5(u) =

{
5 if u = 0,

u − 1 if u > 0 .

Considering a binary representation for the solutions, (11) has an optimum global
solution consisting uniquely of ones, whereas (12) has an optimum global solution
consisting uniquely of zeros. The Fig. 3 represents the relation between them in
a string of 5 bits.

The moΦGA was used to find solutions in the Pareto-optimal front. To con-
firm the solutions quality, the entire solution space was identified, enabling the
confirmation that the solutions found lies in the Pareto-optimal front.

Some parameters used for the experiments are described in Table 1, also are
used a tournament of size 16, and 30 runs for each experiment.

Figures 4 and Fig. 5 presents the space of solutions and the Pareto-optimal
set found respectively for problems of size 30 and 50.

Those tests evidence the robustness of the algorithm, because it was able
to find the entire Pareto-optimal set for all the tests presented. Even with the

Table 1. Population sizes obtained by the Bisection Method [10]

Problem size 30 50 100
Population size 3843 7704 22543
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Fig. 3. Functions trap5 and inv − trap5
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Fig. 4. Problem of size 30. The circled points are both the solutions found and the
complete Pareto-optimal front.

amount of possible solutions growing exponentially with the size of the problem
[22].

The trap5 vs. inv-trap5 problem was also tested by [19] and ours experiments
were done using the same parameters. The results obtained by them and the
results found by us (applying moΦGA to problems of size 30, 50 and 100) are
represented in the Fig. 6.

By observing Fig. 6 it is possible to perceive that the number of evaluations
used by moΦGA has a lower slope than the algorithms described in [19], where
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Fig. 5. Problem of size 50. The circled points are both the solutions found and the
complete Pareto-optimal front.

Fig. 6. A comparison of trap5 vs. inv-trap5 problem. This image was first published
in [19] and edited to include the moΦGA results.
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multi-objective hBOA had better results than the others algorithms tested, this
can be an indication of the minor complexity of the moΦGA in relation to the
other algorithms from the literature.

6 Future Work

This article sheds light on an approach of how to solve efficiently relative complex
decomposable deceptive problems. The trap-invtrap problem is an important
one, because it points out deficiencies of many discrete multi-objective EAs,
however, it is not enough, lots of another experiments need to be done before
the approach can be completely validated.

Thus, there are important points to be extended in future versions of moΦGA
to enable the algorithm to solve many-objective problems, multi-objective prob-
lems with different Building Block sizes, problems in continuous search spaces,
hierarchical problems and so on.

7 Conclusions

A great variety of problems exists in the real world, which naturally demand
efficient solutions of multi-objective problems. For such problems the MOEDAs
were proven to achieve the most prominent solutions. This paper proposes a
MOEDA, the moΦGA, which can adjust the trade-off between running time and
functions evaluations, by the variation of parameter Φ.

Moreover, in all the problems tested, the moΦGA surpassed the mohBOA
in terms of less function evaluations. Specially when the problems in question
increased in size. In fact, the moΦGA finds the entire set of solutions that com-
pose the Pareto-optimal front, not only some solutions as most of the algorithms
from the literature. This is made possible by approaching problems in two clear
stages:

1. Decomposition Stage
2. Optimization Stage

The importance of the approach is demonstrated specially well in the proposed
algorithm, because even with a simple optimization stage, the moΦGA achieved
state of art results. The same approach was validated in other difficult problems
by other ΦGA algorithms [15,26].

The promising results presented by the moΦGA motivates new variants of it,
as for example, an algorithm with a more robust optimization stage, as well as, an
extension to deal with continuous global optimization problems and hierarchical
deceptive problems.
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Abstract. The objective values information can be incorporated into
the evolutionary algorithms based on probabilistic modeling in order to
capture the relationships between objectives and variables. This paper
investigates the effects of joining the objective and variable information
on the performance of an estimation of distribution algorithm for multi-
objective optimization. A joint Gaussian Bayesian network of objectives
and variables is learnt and then sampled using the information about
currently best obtained objective values as evidence. The experimental
results obtained on a set of multi-objective functions and in comparison
to two other competitive algorithms are presented and discussed.

Keywords: Multi-objective Optimization, Estimation of Distribution
Algorithms, Joint Probabilistic Modeling.

1 Introduction

Real-world problems usually include several criteria that should be fulfilled at
the same time when trying to solve them. In many of these problems none of
the criteria can be preferred over the others by the decision maker (the person
who the optimization results are meant for) in order to apply single-function
optimization techniques to solve them. On the other hand the criteria may be
conflicting, i.e. trying to improve one of them will result in worse values for some
other. Therefore it seems more reasonable to try solving them as Multi-objective
Optimization Problems (MOPs).

Multi-Objective Evolutionary Algorithms (MOEAs) [1,6,29,34] have been suc-
cessfully applied to many MOPs and obtained competitive results. Estimation
of Distribution Algorithms (EDAs) [16,19,23,25] are proposed as a new compu-
tation paradigm based on evolutionary algorithms that replace the traditional
recombination operators by learning and sampling a probabilistic model for ad-
vancing the search in solution space. Different Multi-objective EDAs (MEDAs)
[20,26,32,33] have been proposed for solving MOPs. The main idea in these al-
gorithms is to incorporate the selection and replacement strategies of MOEAs

R.H.C. Takahashi et al. (Eds.): EMO 2011, LNCS 6576, pp. 298–312, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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in the model-building framework of EDAs which will allow to utilize the power
of EDAs for solving MOPs.

Although most of the study on MOPs has been focused on problems with a
few number of objectives, very often practical optimization problems involve a
large number of criteria. In addition, after the initial success of applying MOEAs
to problems with two or a small number of objectives, efforts have been oriented
towards investigating the scalability of these algorithms with respect to the num-
ber of objectives [8,13]. Therefore problems with many-objectives are receiving an
increasing attention in the fields of decision making and multi-objective optimiza-
tion. Another line of research related to many-objective problems is to reduce the
optimization complexity by exploiting the relationships between the objectives.
Objective reduction is one of the proposed methods that seeks the minimum objec-
tive subset by considering the conflicting and non-conflicting objectives [3,4,18].

In this paper an MEDA using a generalized Gaussian Bayesian Network
(GBN) is proposed for solving MOPs. This probabilistic model not only al-
lows capturing the dependencies between problem variables, but also permits
modeling the dependencies between objective functions and the dependencies
between objectives and variables which can be used for factorizing MOP into
simpler subproblems. Furthermore it allows the insertion of information about
good objective values to the model as evidence.

A similar idea has been used in the Evolutionary Bayesian Classifier-based Op-
timization Algorithm (EBCOA) [21,22] for single-objective optimization where
a single class variable is introduced as a node in the Bayesian classifier models.
However, there the class variable is inserted into the model with a fixed relation
structure and only having a predefined limited number of different values used to
classify the solutions to fitter and worse groups. The algorithm presented here
extends the scope to multi-objective problems using a more general Bayesian
network and includes the objective variables as the nodes in the model. The
dependency structure between the objectives is also explored in the course of
evolution, capturing the relation between the objectives of the problem.

The rest of this paper is organized as follows: in Section 2 the proposed EDA
and its probabilistic model learning process are described in detail. The con-
ducted experiments and their results are presented in Section 3. Section 4 gives
the conclusive remarks and lines of future research.

2 Joint Modeling of Objectives and Variables

In a typical Evolutionary Algorithm (EA), the objective function values of so-
lutions are used for selecting parents or replacing offspring, and beyond that the
new-solution-generating part only relies on the information provided by variables.
However if this new-solution-generator could exploit the objectives information,
then it might be able to generate better solutions. In the case of EDAs, incorpo-
rating the objectives information to the probabilistic model can help finding out
how solutions are involved in building fitter solutions and also to capture the re-
lationship between objectives and the variables in the multi-objective context.
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Fig. 1. An example of a joint model of 3 objectives and 5 variables

The deterministic functions given for a problem, link the objective values
to variables. EDAs try to represent the problem structure by probabilistically
approximating the dependencies between variables and then use them for ob-
taining new solutions with better objective values. Including the objectives in
the model will allow the algorithm exploit the probabilistic approximation of the
relationships learnt for them (e.g. based on the expected value of the objectives).
This is especially useful in multi-objective problems with different, possibly con-
flicting, objective functions. Furthermore, the model structure makes it possible
to identify redundancy, conditional independence, or other relationships between
objectives. Fig. 1 shows a sample joint model that depicts different dependencies
between variables and objectives.

The probabilistic model used in this paper is a Bayesian network. As it is usual
for many continuous EDAs and because of its special analytical properties, it is
assumed that the problem solutions follow a Gaussian distribution and therefore,
the probabilistic model will be a Gaussian Bayesian Network (GBN). To learn
the joint GBN, the strings of selected solutions are extended by appending the
objective values of each solution to its variable values. Fig. 2 shows an overview
of the algorithm. The main steps are each described next in detail.

2.1 Selection

The set of promising solutions are selected using a truncation scheme where
given a factor τ and a population of N individuals, the selection operator first
sorts the population and then selects the best τN solutions. One of the frequently
used sorting algorithms in the multi-objective optimization is the non-dominated
sorting introduced in [7]. The algorithm starts with sorting the solutions to
different non-dominated fronts according to the dominance relation.

After grouping the population into several disjoint fronts, the solutions in
each of the fronts are ranked using a crowding distance measure which favors
those solutions that are in scattered areas of the front. The crowding distance
computes how close each solution is to its neighbors with regard to different ob-
jective functions. To apply the truncation selection using non-dominated sorting,
the non-dominated fronts are added to the set of selected solutions one by one
according to their ranks and when a complete front can not be added anymore
a subset of its solutions are selected according to their crowding distances. A
slight modification to this algorithm is to select solutions one-by-one from the
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Fig. 2. An overview of the proposed algorithm

last eligible front and after removing each selected individual, recomputing the
crowding distance of all individuals still in that front. Although this modifica-
tion will cause an increase in the computational cost, it can help to improve the
diversity of the selected solutions [33].

Another sorting algorithm applied in this paper is based on Fitness Averaging
(FA). It is a very simple and fast sorting mechanism for multi-objective optimiza-
tion problems. Instead of treating different objective functions using dominance
relation, a single fitness value is assigned to each solution which is the average
of different objective values for that solution (after normalizing the objective
values). Since this kind of fitness assignment gives a complete ordering between
the solutions, selection can be performed using any desired selection scheme.

2.2 Model Learning

As a Bayesian network, the graphical structure in GBN is represented with a
directed acyclic graph (DAG) and the conditional probability density of the
continuous nodes are given by the following normal distribution [14,17]

p (xi|pa(Xi)) = N (μi +
∑

Xj∈Pa(Xi)

wj(xj − μj), σ2
i ) (1)

where μi and σi are the parameters of the joint Gaussian distribution p(x) =
N (μ, Σ), Pa(Xi) is the parent set of the ith variable according to the structure,
and wj are the weights of the conditional density function.

If the notation (X1, . . . , Xp) = (V1, . . . , Vn, O1, . . . , Om) is used to represent
the joint extended vector of problem variables and objectives, then the following
factorization shows the probability density encoded in the resulting GBN
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p (v1, . . . , vn, o1, . . . , om) =
n∏

i=1

p(vi|pa(Vi)) ·
m∏

j=1

p(oj |pa(Oj)) (2)

where pa(Vi) and pa(Oj) are the parents value setting of variable Vi and objective
Oj respectively.

To further increase the learning accuracy of the probabilistic model, a regular-
ization method is employed in estimating the parameters. The covariance matrix
(CM) shrinkage technique discussed in [30] is applied to the covariance matrix
computation of the joint Gaussian distribution before using it for learning the
GBN. In this method the unbiased empirical estimation of the covariance matrix
is combined with a diagonal matrix using a linear shrinkage. The shrinkage inten-
sity is analytically computed using the statistical analysis of empirical covariance
and correlation matrices. The regularized estimation increases the sparsity of the
inverse covariance matrix which represents the relationships between variables.

Before passing the set of selected (extended) solutions to the model learning
algorithm, they are standardized to have a mean of zero and a variance of one, in
order to facilitate the parameter estimation [31]. The learning algorithm is based
on the search and score strategy and employs a local search method for moving in
the space of all possible DAG structures. It checks all edge additions, deletions
and removals applicable to the current network structure and selects the one
that results in the best improvement of the scoring metric and terminates if no
further improvement is possible [5]. The scoring metric used here is a penalized
log-likelihood metric with a Bayesian Information Criterion (BIC) penalization.
The parameter stored for the node corresponding to the ith variable is the weight
vector w needed for computing the conditional probability distribution of (1)

w =
1
A

Σ(Pa(Xi),Xi)

AT
(3)

where Σ(K,L) denotes the sub-matrix obtained from Σ by selecting the rows in
set K and columns in set L, and the lower triangular matrix A is obtained from
a Cholesky decomposition [27] of the parent part of the covariance matrix

AAT = Σ(Pa(Xi),Pa(Xi)) . (4)

The condition for terminating the algorithm is to reach a maximum number
of iterations. Therefore if the learning algorithm gets stuck in a local optimum
point (or possibly the global optimum) before the number of iterations elapses,
it will restart the search from another point randomly chosen in the DAGs space
[31].

2.3 Model Sampling

The sampling procedure used in this study for the joint GBN is very similar
to that of a typical Bayesian network sampling method except that special care



Multi-objective Optimization with Joint Probabilistic Modeling of Objectives 303

is needed to handle objective nodes included in the model. The Probabilistic
Logic Sampling (PLS) or Forward Sampling [14] works by first computing an
ancestral or topological ordering between variables and then generating values
for the variables according to this ordering, using the conditional probability
distributions stored in the model.

Two strategies can be applied for sampling a joint probabilistic model: a) using
the current best found values for the objectives, or b) generating dummy values
for objectives in the process of sampling. A combination of these two methods
is also possible. In the former case, the objective values of the best solutions of
the population (i.e. the parents set) is passed to the sampling method to be used
whenever an objective node has appeared as the parent of a variable node and
its value is required for sampling. In the latter method, the objective nodes are
completely treated as variable nodes and values are generated for them using
the probabilities encoded in the model. Although these values are not used after
sampling, and the new generated solutions need to be evaluated using objective
functions, the dummy objective values can be used for generating new values for
variable nodes and can lead to a more consistent sampling with regard to the
learnt model. The results presented in this paper are obtained using the second
method.

Since the new solutions are generated using a bell-shaped normal distribution,
it may happen that some of the generated values fall outside of the domain of
the variables. Therefore usually a repairment step becomes necessary after the
new solutions are generated in the continuous EDAs based on Gaussian distri-
bution. The repairing technique used in this paper is to reset those values that
are out of the bound, to a random value in the acceptable domain of the vari-
able. To increase the possibility of appropriate value reseting, the variables are
both normalized and standardized before modeling takes place and the mean of
each variable in each solution is computed according to the probabilistic model.
Then the generated unacceptable value is replaced with a random value be-
tween the computed mean and the domain-bound (upper or lower) that was
breached.

2.4 Replacement

The newly generated solutions should be incorporated into the original popula-
tion for further exploitation in next generations. The Elitist replacement used
in this paper selects the best solutions, in terms of Pareto dominance, of the
current original and offspring populations for inclusion in the following gener-
ation’s population. The non-dominated sorting discussed earlier for selection is
used here to order the combined population of original and offspring solutions
and then select the best solutions. The number of solutions to be selected is
determined by population size.

The following pseudo-code summarizes the described algorithm steps pro-
posed for joint modeling of variables and objectives.
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Joint Variable-Objective Estimation of Distribution Algorithm:

P[0] = Generate an initial population

F[0] = Compute the objective values(P[0])

t = 0

While termination criteria are not satisfied do

{S, G} = Select a subset of solutions(P[t], F[t])

D = Form the extended solutions(S, G)

// D is duly normalized and standardized

C = Compute the regularized covariance matrix(D)

M = Learn the GBN model(C)

Q = Sample offspring from the model(M, G)

H = Compute the objective values(Q)

{P[t+1], F[t+1]} = Replace offspring in population(P[t], F[t], Q, H)

t = t + 1

End while

3 Experiments

The proposed algorithm is tested on a number of test functions and the results
are compared to those of other algorithms. To test the effect of including the
objectives in the model building and sampling of the algorithm two versions of
the algorithm are considered here. The first algorithm learns a joint model of
both the objectives and variables, which will be called Joint GBN-EDA (JGBN-
EDA). The other version does not consider objective information and only uses
variables for model learning, very similar to the Estimation of Gaussian Network
Algorithm (EGNA) [15], and will be called (normal) GBN-EDA in this paper.

The performance results are compared against two other algorithms: The Non-
dominated Sorting Genetic Algorithm (NSGA-II) [7], considered as a reference
algorithm in many multi-objective optimization studies, is based on traditional
GA and uses special type of crossover and mutation methods to deal with real-
valued strings; The Regularity-Model based Multi-objective Estimation of Dis-
tribution Algorithm (RM-MEDA) [33] assumes a certain type of smoothness for
Pareto set and uses the Local Principal Component Analysis (LPCA) algorithm
to build a piece-wise continuous manifold with a dimension equal to one less
than the number of objectives.

The two algorithms use the non-dominated sorting method for selecting
promising solutions. While both algorithms generate an offspring population of
the size of the original population, only NSGA-II employs a replacement mech-
anism where the best solutions in both offspring and original populations are
selected for the next generation. In RM-MEDA the newly generated offspring
solutions completely replace the original population. All of the algorithms are
implemented in Matlab R©.

The implementation of JGBN-EDA is done using the Matlab R© toolbox for
EDAs [28]. The algorithm has been tested using both the non-dominated sort-
ing and the fitness averaging for selection. However, the results obtained with the
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simpler fitness averaging were superior to those obtained with the other algo-
rithm. Such a behavior is also reported by others [10]. Therefore the results
presented here are those obtained with fitness averaging. The non-dominated
sorting is used only in the replacement step of the algorithm as was discussed
above.

To evaluate the non-dominated fronts obtained by each algorithm the Inverted
Generational Distance (IGD) measure is used that accounts both for diversity
and convergence to the true Pareto front at the same time. The measure is given
by the following relation taken from [33]

IGDF∗(F ) =

( ∑
s∈F∗

{min d(s, s′), ∀s′ ∈ F}
)

/|F ∗| (5)

where d() gives the Euclidean distance between the two points and F ∗ is a uni-
form sampling of the true Pareto front of the problem. The statistical significance
in the differences between the results is checked with the Kruskal-Wallis test.
Kruskal-Wallis performs a non-parametric one-way ANOVA to accept or reject
the null hypothesis that independent samples of two or more groups come from
distributions with equal medians, and returns the p-value for that test. The test
significance level is set to 0.05.

3.1 Test Functions

There are many test sets proposed in the literature for evaluating multi-objective
optimization algorithms [8,9,11,24]. However not all of these functions exhibit
real-world problem properties that can be used to evaluate different aspects of
an algorithm. Features like scalability and non-separability both in the variable
and objective spaces, multi-modality, biased or disconnected Pareto fronts that
can pose significant challenges to any multi-objective optimization algorithm.

In this study, the Walking Fish Group (WFG) functions proposed by Huband
et al. [11,12] are used for experiments. All of the functions, which are to be
minimized, can be represented with the following relation

fj(x) = D · xm + Sj · hj(x1, . . . , xm−1) (6)

where D and Sj are scaling factors, hj are shape functions (e.g. concave, con-
vex, mixed, disconnected or degenerated) defined on m − 1 (m is the number
of objectives) position variables, and xm is the distance variable. Position and
distance variables are obtained by applying different transformation function on
the input variables. The test set includes 9 functions that all have dissimilar
variable domains and different Pareto optimal trade-off magnitudes, have no ex-
tremal nor medial values for variables, and undergo complex transformations to
create other properties like deceptiveness and many-to-one mappings.
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3.2 Experimental Results

In the following experiments the algorithms are tested on WFG functions with
5, 10 and 20 objective functions. The number of objectives are related to the
number of position and distance variables with two factors that determine the
number of problem variables. Therefore to keep the computational costs of the
experiments in an affordable level, the number of variables is set to 28, 50 and
50 respectively. The reported results for each algorithm on each test function
are computed from 25 runs in the case of 5 and 10 objectives, and 10 runs for
20 objectives. For all algorithms the maximum number of function evaluations
is set to 1.5 · 105, 3 · 105 and 7.5 · 105, and the population size to 600, 1000 and
1500 respectively for different number of objectives. Figure 3 shows the typical
fronts obtained by the algorithms for some of the test functions (WFG2, WFG4,
WFG6 and WFG7) with 3 objectives and 20 variables to give an idea of how
the algorithms are performing for smaller number of objectives. The population
size is set to 200 in this case.
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Fig. 4. Comparison of different algorithms performance on (WFG) functions with 5
objectives

Fig. 4 shows the results obtained for each of the algorithms for WFG functions
with 5 objectives. As it can be seen in the figure, the incorporation of objectives
in the modeling of JGBN-EDA enables this algorithm to obtain a (significantly)
better performance on most of the functions. A direct comparison of GBN-
EDA and JGBN-EDA shows the effectiveness of joint modeling where except for
WFG5 and WFG9 functions, the latter algorithm can obtain significantly better
results on all other functions (p = 0.05).

WFG5 is a separable and deceptive function while WFG9 is a non-separable,
biased, multi-modal and deceptive function. According to the presented results,
for deceptive functions the information provided by objectives does not have
a great impact on the probabilistic model learnt in JGBN-EDA for generating
better solutions. Also, the algorithm is not able to properly utilize the separabil-
ity of variables in WFG5 to obtain better fronts. However, the results obtained
for WFG9 shows that non-separability and multi-modality of this problem is
completely addressed with the modeling used in GBN-EDAs which makes them
able to dominate the other two competitor algorithms on this function.

As the number of objectives grows to 10 and 20 (Figs. 5 and 6), the pro-
posed algorithm performance deteriorates in comparison to other algorithms.
The other two algorithms also show a diverse behavior on different number of



308 H. Karshenas et al.

3

4

5

6

7

NSGA−II RM−MEDA GBN−EDA JGBN−EDA

WFG1

IG
D

1.5

2

2.5

3

NSGA−II RM−MEDA GBN−EDA JGBN−EDA

WFG2

IG
D

2.5

3

3.5

NSGA−II RM−MEDA GBN−EDA JGBN−EDA

WFG3

IG
D

1.6

1.8

2

2.2

2.4

2.6

2.8

3

NSGA−II RM−MEDA GBN−EDA JGBN−EDA

WFG4

IG
D

2.6

2.8

3

3.2

3.4

3.6

NSGA−II RM−MEDA GBN−EDA JGBN−EDA

WFG5

IG
D

2.2

2.4

2.6

2.8

3

3.2

NSGA−II RM−MEDA GBN−EDA JGBN−EDA

WFG6

IG
D

2

2.5

3

NSGA−II RM−MEDA GBN−EDA JGBN−EDA

WFG7

IG
D

1.8

2

2.2

2.4

2.6

2.8

3

3.2

NSGA−II RM−MEDA GBN−EDA JGBN−EDA

WFG8

IG
D

1.8

2

2.2

2.4

2.6

2.8

NSGA−II RM−MEDA GBN−EDA JGBN−EDA

WFG9

IG
D

Fig. 5. Comparison of different algorithms performance on (WFG) functions with 10
objectives

objectives. While the fronts resulted by NSGA-II on 10 objectives functions are
not comparative to other algorithms, it is able to find significantly better results
for most of the functions with 20 objectives. RM-MEDA is showing an apposite
behavior, being the better algorithm on the 10 objective case. For these high
number of objectives the performance of the proposed JGBN-EDA seems to be
less varying when compared on both 10 and 20 objectives WFG functions.

The mixed concave-convex front of WFG1 with some flat regions in the Pareto
set is best addressed by the recombination method employed in NSGA-II. The
inclusion of objective values in the modeling of JGBN-EDA has a major influence
in improving the performance on this function when compared to GBN-EDA.
On the other hand, the disconnected front of WFG2 causes a diverse perfor-
mance of NSGA-II, while the EDAs are almost performing similar on 10 and
20 objectives functions. The significantly better performance of JGBN-EDA on
WFG9 is repeated for 10 and 20 objectives.

It seems that when the number of objectives increase to a high number (e.g. 20
objectives), the modeling present in EDAs gets saturated for small populations
and can not help the algorithm to make progress. In fact for such a large number
of objectives small population sizes may not suffice to represent the Pareto front.
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Fig. 6. Comparison of different algorithms performance on (WFG) functions with 20
objectives

This issue also poses a challenge for representing the true Pareto front to be
used for the computation of performance measure. Although in this study front
approximations with several hundred thousands of points have been used for this
purpose, some areas of the front may not yet be covered properly.

4 Conclusion and Further Research

A joint modeling of objectives and variables was proposed to be used for multi-
objective optimization in this paper. The proposed EDA, learns a Gaussian
Bayesian network to encode the relationships between the variables and objec-
tives, from a set of extended solutions formed by appending the objectives to the
variables of each solution. The learnt probabilistic model will have both variable
and objective nodes. The sampling procedure generates new values for problem
variables using the objective values when such dependencies are encountered in
the model.

The performance of the algorithm was tested on a number of multi-objective
test functions with different real-world properties. The results show that the
incorporation of objectives in the modeling can help the algorithm to obtain
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better fronts on some of the functions. The results were also compared against
two other algorithms and indicated that the idea of including objective values in
the modeling step of an EDA is promising and can help to obtain better fronts
in multi-objective optimization.

The algorithm had some problems in detecting the correct search bias for
some deceptive functions using the proposed joint modeling. Also for some of
the functions, the algorithm was not able to obtain competitive fronts when
applied to high number of objectives . The effect of proper population sizing on
the performance of the algorithm specially for many objectives problems should
be studied in more detail. Other ways of utilizing the objective values in the
sampling process can be used to reduce this shortcoming.

Nevertheless the proposed algorithm can be seen as an alternative for using
modeling in the multi-objective optimization. The information provided by de-
pendencies between the objectives can be further investigated for obtaining the
relationships in problems with many objectives. The factorization obtained by
the explicit inclusion of objectives in the model is also another possibility to
simplify the problem. A future line of research associated with this is to force
some special kind of relations in the joint probabilistic model, like those discussed
for class-bridge decomposable multi-dimensional Bayesian network classifiers [2],
that will allow to decompose the problem into smaller subproblems, thus easing
the learning and sampling tasks.
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Abstract. Equality constraints are difficult to handle by any optimiza-
tion algorithm, including evolutionary methods. Much of the existing
studies have concentrated on handling inequality constraints. Such meth-
ods may or may not work well in handling equality constraints. The pres-
ence of equality constraints in an optimization problem decreases the
feasible region significantly. In this paper, we borrow our existing hybrid
evolutionary-cum-classical approach developed for inequality constraints
and modify it to be suitable for handling equality constraints. This mod-
ified hybrid approach uses an evolutionary multi-objective optimization
(EMO) algorithm to find a trade-off frontier in terms of minimizing the
objective function and the constraint violation. A suitable penalty pa-
rameter is obtained from the frontier and then used to form a penalized
objective function. The procedure is repeated after a few generations
for the hybrid procedure to adaptively find the constrained minimum.
Unlike other equality constraint handling methods, our proposed pro-
cedure does not require the equality constraints to be transformed into
an inequality constraint. We validate the efficiency of our method on six
problems with only equality constraints and two problems with mixed
equality and inequality constraints.

Keywords: Evolutionary multi-objective optimization, Constraint han-
dling, Equality constraint, Penalty Function, Bi-Objective optimization,
Hybrid methodology.

1 Introduction

Multi-objective optimization using evolutionary algorithms (EAs) is currently one
of the fast growing research area in science and different disciplines of engineer-
ing. Most practical optimization problems usually consists a large number of non-
linear, non-convex, and discontinuous constraint as well as objective functions. A
typical single objective constrained optimization problem is given below:
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Minimize f(x),
Subject to gj(x) ≥ 0, j = 1, . . . , J,

hk(x) = 0, k = 1, . . . , K,
xl

i ≤ xi ≤ xu
i , i = 1, . . . , n,

(1)

where n is the number of variables, J inequality constraints, and K equality
constraints. The function f(x) is the objective function, gj(x) is the j-th in-
equality constraint and hk(x) is the k-th equality constraint. The i-th variable
varies in the range [xl

i, x
u
i ]. An inequality constraint with zero value at the opti-

mum is called an active constraint. However, the optimum solution must satisfy
all equality constraints, thereby making each equality constraint an active con-
straint. Equality constraints are most difficult to handle using any optimization
algorithm including an EA, since the optimum solution must lie on the inter-
section of all equality constraints. Due to this reason, the existence of equality
constraints in a problem decreases the proportion of the feasible region in the
space of all solutions remarkably and eventually the problem becomes so compli-
cated that, finding a single feasible solution (as well as optimal solution) becomes
a difficult task.

Penalty function method has proven it as one of the popular constraint-
handling technique due to its simple principle and easy implementation require-
ments. However, one of the drawbacks of this approach is that it requires a
proper value of the penalty parameter [1,2]. In the penalty function method,
the original constrained optimization problem is replaced by an equivalent un-
constrained problem with the inclusion of a penalty term which worsens the
objective function value by adding a penalty proportional to the constraint vio-
lation (CV). If the value of the penalty parameter is too small, the constraints
may be violated and the resulting solution may be infeasible. Similarly, if the
value of penalty parameter is high, the solution may ignore the contribution from
the objective function and the resulting solution may get stuck to a suboptimal
solution.

Richardson [3] proposed guidelines for setting the penalty parameter in a ge-
netic algorithm (GA). Gen et al. [4] proposed a tutorial survey of recent works on
penalty techniques used in GAs up to 1996. All these earlier studies demanded
an appropriate penalty parameter to be set adaptively or by the user for the
method to work. In 2000, the second author suggested a penalty-parameter-less
approach by simply comparing two solutions based on their feasibility and con-
straint violation values [5]. Coello [6] proposed a self-adaptive penalty function
approach by using a co-evolutionary framework to adaptively find the penalty
parameters.

Recent studies in constraint handling have focused in using a multi-objective
optimization technique. In addition to the original objective function (f(x)),
the constraint violation is included as an additional objective function thereby
making the problem a bi-objective one. The bi-objective problem is then solved
using an EMO technique. Surry et al. [7] suggested a multi-objective based
constraint handling (COMOGA), where the population was first ranked based
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on the constraint violation value and then ranked using the objective function
value. Camponogara et al. [8] proposed a similar bi-objective idea, in which a
search direction is generated based on a domination check of two solutions from
the population. Angantyr [9] proposed a constraint handling based on multi-
objective real-coded Genetic Algorithm (GA) inspired by the penalty approach.
Coello [10] suggested the violation of each constraint as a different objective.
The bi-objective idea is applied near the currently best population member in
an adaptive manner using a reference-based EMO [11]. Since the task is to find
the constrained minimum of the original problem, this modified search allowed
a quicker discovery of the optimum. Echeverri et al. [12] proposed a bi-objective
based bi-phase method in which, the objective function is not considered in the
first phase and the search is directed towards finding a single feasible solution
followed by solving the two objective problem.

Recent studies on evolutionary constraint handling methods have also concen-
trated on using a hybrid methodology in which an EA is coupled with a classical
optimization algorithm in order to develop a much better algorithm than each
method alone. Some such methods can be found elsewhere [11,13,14,15].

As mentioned above, not much emphasis has been made in handling equality
constraints explicitly. A usual way to handle equality constraints in EAs is to
transform an equality constraint into an inequality constraint in the following
way:

ε − |hk(x)| ≥ 0, (2)

where ε is the tolerance value by which the constraint can be violated during the
optimization process. This approach requires a suitable value of the parameter
ε. If a large value is taken, the optimization process would be easier but the re-
sulting solution may not be a feasible one with respect to the original problem.
On the other hand, if a small value is chosen, the optimization task to find a
feasible solution would be difficult. Hinterding [16] handled equality constraints
in which the tolerance value (ε) mentioned above was reduced in predefined man-
ner with the generation counter. They manipulated the equality constraints to
replace some variables and this process has reduced the problem size. However,
the strategy may not be applicable in general, particularly where variable elimi-
nation from the equality constraints may be a difficult task. Peconick et al. [17]
proposed CQA-MEC (Constraint Quadratic Approximation for Multiple Equal-
ity Constraints) which approximated the non-linear constraints via quadratic
functions. Some other studies can be found elsewhere [18,19].

Recently, we have suggested a constraint handling methodology based on a
bi-objective evolutionary optimization strategy [20] to estimate the penalty pa-
rameter for a problem from the obtained two-objective Pareto-optimal front.
Thereafter, an appropriate penalized function is formed and a classical local
search method is used to solve the problem. This method was developed for
solving inequality constraints. In this work, we extend this methodology for
handling equality constraints. The newly proposed methodology uses a different
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penalty parameter update strategy which seems to be not require any toler-
ance value to be set, as it is the case with most equality constraint handling
EAs.

In the remainder of this paper, we describe the modified bi-objective hybrid
methodology. Thereafter, we present simulation results on eight different test
problems taken from the existing literature. Finally, based on the obtained result,
conclusions are made.

2 Bi-objective Hybrid Equality Constraint Handling
Method

The details of the bi-objective hybrid method, combining a bi-objective EA and
the penalty function approach for inequality constraints, are described in our
earlier study [20]. Here, we discuss the difficulties of directly using the previous
procedure and suggest modifications to suit the hybrid algorithm for handling
equality constraints.

The presence of equality constraints in an optimization problem usually
shrinks the feasible space significantly and makes the problem more compli-
cated to find a feasible solution. It is clear that a feasible solution must now lie
on the boundary of each equality constraint. The penalty function approach
aggregates the constraint violation, arising from each constraint. Since it is
difficult to satisfy a non-linear equality constraint easily, most solutions will
correspond to certain constraint violation value. Since most constraints are un-
satisfied, an aggregate of constraint violation values may not compare two solu-
tions properly and emphasize the right solution. Since the aggregate CV is not
a proper metric, the bi-objective problem of minimizing the objective function
and minimizing CV is also not free from the same problem. Thus, the overall
bi-objective hybrid approach described earlier may not perform well on equality
constraints.

Here, we modify our earlier approach in two different ways. First, to emphasize
constraint satisfaction, we increase the penalty parameter as soon as the local
search method fails to find a feasible solution. For the local search algorithm, the
penalty parameter value is increased by such an amount so as to guarantee that
constraint violation term is given more emphasis than the objective function
term, at least at the current best solution. For the EMO algorithm, the obtained
R from the bi-objective frontier is also doubled to make sure constraint violation
is given more emphasis. Second, since feasible solutions are difficult to find for
equality constraints, we relax the constraint used in the bi-objective problem
formulation. Instead of declaring a solution to be feasible to the bi-objective
problem if the overall constraint violation of 0.2 times the number of constraints,
we use 0.4 times the number of constraints. These two considerations should
allow an adequate number of solutions to be considered and emphasized in both
the bi-objective algorithm and also in the local search procedure.
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2.1 Proposed Algorithm

This section describes the proposed algorithm based on the idea of principles
of bi-objective handling of a constrained optimization and then use of penalty
function method. First, the generation counter is set at t = 0 and Rnew = 0.

Step 1: An evolutionary multi-objective optimization (EMO) algorithm
(NSGA-II [21]) is applied to the following bi-objective optimization
problem to find the non-dominated trade-off frontier:

minimize f(x),
minimize CV(x),

subject to CV(x) ≤ c,

x(L) ≤ x ≤ x(U).

(3)

The function CV(x) is defined as follows:

CV(x) =
J∑

i=1

〈ĝj(x)〉 +
K∑

k=1

∣∣∣ĥk(x)
∣∣∣ . (4)

The constraints ĝj and ĥk are normalized functions of inequality and equality
constraints, respectively [1,20]. The operator 〈·〉 denotes the bracket opera-
tor. We have used c = 0.4(J + K) in all our simulations.

Step 2: If t > 0 and ((t mod τ) = 0), the penalty function approach is used,
otherwise Step 1 is re-executed by incrementing t by one (here τ is the
frequency of local search). First, we compute the penalty parameter R from
the current non-dominated front as follows. Like in our earlier approach [20],
when at least four solutions satisfying CV(x) ≤ 0.4(J + K) are present in
the population, a cubic polynomial (f = a + b(CV ) + c(CV )2 + d(CV )3) is
fitted for the obtained non-dominated points and the penalty parameter is
estimated by finding the slope at CV=0. This gives R = −b. Since this is a
lower bound on R, we use twice this value and set R ← (−2b + Rnew).

Step 3: Thereafter, the following local search problem is solved using the
current-best EMO solution (in terms of CV) as the initial point:

minimize P (x) = f(x) + R

[∑J
j=1〈ĝj(x)〉2 +

∑K
k=1

(
ĥk(x)

)2
]

,

x(L) ≤ x ≤ x(U).
(5)

Say, the solution to the above problem is xLS .
Step 4: If xLS is feasible (constraint violation ≤ δf ), we check whether the dif-

ference between f(xLS) and the objective value of the previous local searched
solution is smaller than a user-defined parameter δf . If not, the algorithm
proceeds to Step 1 by incrementing t by one. Else, the algorithm is termi-
nated, and xLS is declared as the optimized solution.
If xLS is infeasible, we proceed to Step 5.

Step 5: We change the penalty parameter value for the next local search algo-
rithm, as follows:
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Rnew = R +
f(xLS)

CV (xLS)
, (6)

We increment t by one and then proceed to Step 1.

There are two parameters to the above algorithm: τ and δf . By performing
some experimental studies on standard test problems, we have set τ = 5 and
δf = 10−4 in all our simulations.

It is also interesting to note that, the penalty parameter R is no more a user-
tunable parameter and gets learnt adaptively from the obtained non-dominated
front as well as infeasible local searched solutions. We use Matlab’s fmincon()
procedure to solve the penalized function (Equation 5). Another interesting as-
pect is that we have not used any tolerance value ε to fix the equality constraints
here.

3 Simulation Results on Standard Test Problems

We now apply our proposed methodology to eight constrained test problems,
taken from [22]. Following parameter values are used: population size = 20n (n
is the number of variables), SBX probability= 0.9, SBX index = 10, polynomial
mutation probability = 1/n, and mutation index = 100. The description of SBX
and polynomial mutation operations can be found elsewhere [21]. The termina-
tion criterion is described in Section 2.1. In each case, we run our algorithm 50
times from different initial populations.

3.1 Problem g03

The problem has 10 variables and a single equality constraint [22]. The constraint
is not normalized. Figure 1 indicates the evolution of the objective function
value of the population, eventually to the best and the corresponding constraint
violation value with the generation for a typical simulation out of 50 initial
populations. The figure shows that initially solutions are infeasible up to fourth
generation. At generation 5, the first local search is performed, as at least four
solutions satisfying the constraint in Equation 3 are found. After 10-th generation
when the second local search is done, the approach reaches near the optima. At
15-th generation, two consecutive values of local searched solution are close to
each other and the algorithm is terminated. The figure also shows the change
of CV from an positive value (infeasible) to zero (feasible). Table 1 presents
the function evaluations required by our approach to terminate according to the
termination condition described in the algorithm.

However, to compare our approach with existing studies, we rerun our al-
gorithm with a different termination condition. In Step 4, when the objec-
tive function value of the feasible xLS is close to the best-reported function
value (within 10−4), the algorithm is terminated. Table 2 tabulates and com-
pares the overall function evaluations needed by our approach with three other
methodologies taken from literature.
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Table 1. Comparison of obtained solutions found out of 50 runs with best-known
optimal solutions . NSGA-II and local search function evaluations (FEs) are shown
separately. Since the algorithm is terminated when two consecutive local searches pro-
duce similar solutions, in some cases (as in problem g17) the smallest FE solution need
not best in terms of function value.

Problem Best known optima Obtained feasible values
Best Median Worst

g03 (FE) 3,813 4,435 11,920
NSGA-II + Local 3,000 + 813 3,000 + 1,435 9,000 + 2,920

(f∗) −1.000500 −1.000350 −1.000349 −1.001999
g05 (FE) 9,943 11,994 14,539

NSGA-II + Local 8,400 + 1,543 10,000 + 1,994 12,400 + 2,139
(f∗) 5126.496714 5125.931709 5126.338978 5126.336735

g11 (FE) 1,334 1,559 1,612
NSGA-II + Local 1,200 + 134 1,400 + 159 1,400 + 212

(f∗) 0.749900 0.749534 0.749776 0.749758
g13 (FE) 1,499 2,577 3,778

NSGA-II + Local 1,000 + 499 2,000 + 577 3,000 + 778
(f∗) 0.053941 0.0539169458 0.0539899948 0.0539162638

g14 (FE) 10,498 12,720 13,692
NSGA-II + Local 9,000 + 1,498 11,000 + 1,720 12,000 + 1,692

(f∗) −47.764888 -47.762282 -47.761435 -47.761438
g15 (FE) 1,431 2,254 3,700

NSGA-II + Local 1,200 + 231 1,800 + 454 2,100 + 1,600
(f∗) 961.715022 961.715195 961.715403 961.735327

g17 (FE) 2,109 4,344 13,406
NSGA-II + Local 1,800 + 309 3,000 + 1,344 7,200 + 6,206

(f∗) 8853.539674 8927.602048 8853.537314 8853.748783
g21 (FE) 4,044 5,289 9,456

NSGA-II + Local 3,500 + 544 4,200 + 1,089 8,400 + 1,056
(f∗) 193.724510 193.775400 193.778862 193.781075
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Fig. 1. Function value reduces with generation for g03 problem
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Table 2. Comparison of function evaluations needed by the proposed approach and
the existing 3 approach [23], [24], [25]. NSGA-II and local search evaluations are shown
separately. The best ones are shown in bold. In most of the problems, the hybrid
approach outperforms the existing approach.

Problem Zavala, Aguirre & Diharce [23] Takahama & Sakai [24]
Best Median Worst Best Median Worst

g03 97,892 1,06,180 1,22,540 30,733 35,470 41,716
g05 1,49,493 1,65,915 1,88,040 15,402 16,522 17,238

g11 89,734 1,12,467 1,27,650 4,569 4,569 4,569
g13 1,49,727 1,60,964 1,68,800 2,707 4,918 11,759
g14 1,38,471 1,49,104 1,65,292 30,925 32,172 32,938
g15 1,27,670 1,35,323 1,47,268 4,053 6,805 10,880

g17 2,21,036 2,32,612 2,36,434 15,913 16,511 16,934

g21 2,06,559 2,21,373 2,33,325 31,620 35,293 35,797
Problem Brest [25] Proposed Hybrid Approach

Best Median Worst Best Median Worst
g03 1,84,568 2,15,694 2,54,105 4,687 5,984 33,336

g05 49,765 53,773 57,863 10,048 11,101 25,671
g11 52,128 83,442 1,05,093 1,334 1,559 1,612

g13 1,38,630 1,47,330 4,28,869 1,499 2,577 3,778

g14 2,23,822 2,42,265 2,56,523 7,042 9,265 11,449

g15 1,53,943 1,57,822 1,60,014 1,082 2,117 22,772
g17 1,85,888 2,05,132 2,55,333 2,728 4,638 2,33,239
g21 1,31,557 1,49,672 1,58,079 2,342 3,392 7,062

3.2 Problem g05

The problem has five variables with five constraints, of which three constraints
are of equality type and are multi-modal in nature [22]. The constraints are
normalized as follows:

ĝ1(x) = [x4 − x3 + 0.55] /0.55 ≥ 0,

ĝ2(x) = [x3 − x4 + 0.55] /0.55 ≥ 0,

ĥ3(x) = [1000 sin(−x3 − 0.25) + 1000 sin(−x4 − 0.25) + 894.8 − x1] /1000 = 0,

ĥ4(x) = [1000 sin(x3 − 0.25) + 1000 sin(x3 − x4 − 0.25) + 894.8 − x2] /1000 = 0,

ĥ5(x) = [1000 sin(x4 − 0.25) + 1000 sin(x4 − x3 − 0.25) + 1294.8]/1000 = 0.

Figure 2 shows that up to 90 generations, no feasible solution to the original prob-
lem is found. This is due to the existence of equality constraints in the problem.
We already discussed that equality constraints shrinks the feasible region and
finding feasible solution is very difficult. The figure also shows the variation in
the population-best objective value for a particular run. At generation 5, at least
four solutions satisfying Equation 3 are found and the local search is executed.
It helps reduce the objective value, however another 17 local searches are needed
to get close to the constrained minimum solution. Since the variation in function
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values between two consecutive local searches (generations 120 and 125) is within
10−4, the algorithm terminates then. The objective function value at a genera-
tion is joined with a solid line with the next generation value if the solution is
feasible at the current generation, otherwise a dashed line is used. Table 1 shows
the best, median and worst function evaluations with corresponding objective
function value obtained using the proposed approach.

The problem is also solved using a termination criterion depending on close-
ness to the best-reported solution. When two objective function value from the
local search is feasible and the difference is within 10−3, the algorithm termi-
nates. Table 2 indicates that in terms of best and median function evaluations our
approach is better than all others. If we compare in terms of worst performance,
Takahama et al. [24] found better solutions compared to other algorithms.
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3.3 Problem g11

This problem has a single equality constraint [22], hence no normalization of
the constraint is needed. Figure 3 indicates the difference in the population-best
objective value for a typical run out of 50 runs. In this problem. all solutions
are feasible right from the initial population. Here, we show the adaptation of
penalty parameter R with generations. The penalty parameter value increases
with generation, as it learns to adapt R every time the local search fails to find a
feasible solution. The local search starts at generation 5 and the algorithm took 7
local searches to converge. After the third local search operation, at generation
15, the solution comes close to the best-reported constrained minimum solution.
When the difference between two consecutive local searched solutions is in the
order of 10−4, the algorithm terminates. In this problem, the corresponding value
of R is 589.95. The best performance of our algorithm needs only 1,334 solution
evaluations, whereas the best-reported EA requires more than three times more
function evaluations to achieve a similar solution. Tables 1 and 2 indicate the
same for the problem.
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3.4 Problem g13

This problem has five variables and three equality constraints [22]. The objective
function has an exponential term. Since all constraints are of equality type, they
are not normalized.

Table 3. Adaptation of
penalty parameter values
for problem g13

Gen. R
0 0.0000
5 2.6255
10 6.8048
15 17.6183
20 45.2747

Figure 4 shows the variation in the objective func-
tion value of the population-best solution and the
adaptation of penalty parameter with the increasing
number of generations. The first local search starts at
generation 5 and the algorithm take three more local
searches to fulfill our termination criteria. Table 3 and
Figure 4 show that starting with a lower value of R,
the hybrid approach increases with generation num-
ber to a suitable value needed to find the constrained
minima. Tables 1 and 2 present the results.
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3.5 Problem g14

This problem has a non-linear objective function with 10 variables and three
equality constraints [22]. Constraints are not normalized. Table 1 shows the func-
tion evaluations and obtained best, median and worst objective function values
using the proposed approach. For a particular simulation (out of 50 different
initial populations), no feasible solution with respect to the original problem is
found up to generation 39. However, the first local search starts after 20 gen-
erations, due to the first-time availability of at least four solutions satisfying
the constraint in Equation 3. Thereafter, the proposed procedure takes a few
more local searches to converge close to the best-reported solution. The value
of the penalty parameter R at the final generation for this problem is found to
be 297, 811.12. Figure 5 shows the evolution of the objective function value of
the population from a lower value (with a constraint violation) to a higher value
and thereafter converges close to the best-known optimum.
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Table 1 compares our best, median and worst solutions with corresponding
function evaluations. Table 2 shows the FEs when the termination happens when
a solution is found close to the best-known solution. The proposed approach is
much faster than the existing methods.

3.6 Problem g15

This problem has only three variables and two non-linear equality constraints
[22]. Constraints are not normalized. Figure 6 denotes the variation in the
population-best objective value with number of generations. During the first
24 generations, the population can not find any feasible solution with respect
to the original problem. However, at least four feasible solutions with respect to
problem 3 are found at generation 20 and the first local search takes place. The
local search helps to reduce the objective value. Thereafter, at 30-th generation,
since a better solution (with a difference in objective value smaller than 10−4)
is not found, the algorithm terminates.

Table 2 shows the efficacy of the hybrid approach by using problem informa-
tion as termination criteria. Again, the best performance of our approach (with
function evaluations of 1,082) is more than 3.7 times better than that of the
best-known approach (4,053) and our approach is also better in terms of median
and worst-case performance compared to existing algorithms.

3.7 Problem g17

This problem has six variables and four equality constraints [22]. Constraints
are not not normalized. All the constraints are multi-modal in nature, thereby
making this problem difficult to solve. Table 1 shows that the best run could
not reach the optima. In terms of median and worst performances, our proposed
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Fig. 6. Function value reduces with generation for g15 problem

approach is able to match the FEs of the existing algorithms. The algorithm is
tested with 50 initial populations, of which 18 times it is not able to find the
optima correctly with our progressive termination criterion. When a termination
is checked to compare a solution’s closeness to the best-known algorithm, our
approach could not find the optima 12 times. In terms of the worst performance,
the performance of the proposed approach is slightly worse. Figure 7 shows the
evolution of the objective function value of the population-best solution and the
corresponding constraint violation value with generation for a typical simulation
out of 50 runs. The figure shows that no feasible solution is found up to 19
generations. However, at generation 10, the first local search is executed. With
successive local searches of solving penalized functions with an adaptive R, the
obtained solution get better and better with generations. At generation 25, the
value of penalty parameter R is found to be 2, 730, 778.23.
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3.8 Problem g21

The final problem has a combination of inequality and equality constraints [22].
Total number of constraints are six, out of which five are of equality type. The
constraints are normalized as follows:

ĝ1(x) =
[
x1 − 35x0.6

2 − 35x0.6
3

]
/35 ≥ 0,

ĥ1(x) = [−300x3 + 7500x5 − 7500x6 − 25x4x5 + 25x4x6 + x3x4] /7500 = 0,

ĥ2(x) = 100x2 + 155.365x4 + 2500x7 − x2x4 − 25x4x7 − 15536.5 = 0,

ĥ3(x) = −x5 + ln(−x4 + 900) = 0,

ĥ4(x) = −x6 + ln(x4 + 300) = 0,

ĥ5(x) = −x7 + ln(−2x4 + 700) = 0.

Figure 8 indicates that up to 19 generations, no feasible solution is found. This
is due to the existence of a large number of equality constraints which make the
problem complex. The first local search takes place at generation 5 and a solution
having a similar objective value to that of the optimum solution is found, but
all constraints are still not satisfied. To make the constraints satisfied with an
order of 10−4, it takes another five local searches.

Table 1 shows number of function evaluations required by our approach to
terminate according to the termination condition described in the algorithm. In
Step 4, when the objective function value of the feasible xLS is close to the best-
reported function value (within 10−3), the algorithm is terminated. Table 2 also
compares the overall function evaluations needed by our approach with three
other methodologies taken from literature with a different termination criterion.

4 Conclusions

In this paper, we have developed a multi-objective based constraint handling
methodology in which a bi-objective idea is coupled with classical penalty func-
tion approach in handling equality constraints and/or inequality constraints. The
difficulty in getting an accurate convergence by an EMO procedure is balanced
by the use of a local search method which involves a penalty-based classical opti-
mization procedure. Moreover, the difficulty of the penalty function approach is
alleviated by estimating the penalty parameter value adaptively by the trade-off
points obtained by the EMO procedure. If the solution from the local search is
infeasible, the penalty parameter is adjusted in a way to emphasize creation of
more feasible solutions. The results on six equality and two combined inequality
and equality constrained test problems are compared with three state-of-the-art
algorithms and results indicate that our proposed procedure is robust (consis-
tently better over multiple runs) and accurate (close to best-reported results).
Further, our approach is faster in terms of function evaluations than the exist-
ing ones. In some cases, our approach is an order of magnitude better than the
best-reported algorithm.
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As a part of future work, we plan to pursue an adaptive normalization of con-
straints. In this present work, constraints have been normalized by using constant
terms taken the constraint expressions, however an adaptive normalization strat-
egy would be problem-independent. A parametric study on parameters τ and δf

can be another extension to this work. The same idea can also be implemented
for multi-objective constraint handling task.
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Eduardo G. Carrano1, Ĺıvia A. Moreira2, and Ricardo H.C. Takahashi3

1 Centro Federal de Educação Tecnológica de Minas Gerais,
Department of Computer Engineering

Av. Amazonas, 7675, Belo Horizonte, MG, 30510-000, Brazil
egcarrano@dppg.cefetmg.br

2 Centro Federal de Educação Tecnológica de Minas Gerais,
Department of Electrical Engineering

Av. Amazonas, 7675, Belo Horizonte, MG, 30510-000, Brazil
livinhaam@hotmail.com

3 Universidade Federal de Minas Gerais,
Department of Mathematics

Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
taka@mat.ufmg.br

Abstract. This paper presents a new memory-based variable-length en-
coding genetic algorithm for solving multiobjective optimization prob-
lems. The proposed method is a binary implementation of the NSGA2
and it uses a Hash Table for storing all the solutions visited during
algorithm evolution. This data structure makes possible to avoid the
re-visitation of solutions and it provides recovering and storage of data
with low computational cost. The algorithm memory is used for build-
ing crossover, mutation and local search operators with a parameter-
less variable-length encoding. These operators control the neighborhood
based on the density of points already visited on the region of the new
solution to be evaluated. Two classical multiobjective problems are used
to compare two variations of the proposed algorithm and two variations
of the binary NSGA2. A statistical analysis of the results indicates that
the memory-based adaptive neighborhood operators are able to provide
significant improvement of the quality of the Pareto-set approximations.

1 Introduction

Problems in which the value of the function is obtained through numerical sim-
ulations (complex linear system, differential equation solving, finite element or
meshless models, etc) are examples of situations in which evaluating a single
point can take from some seconds up to hours. In these cases, the employment
of Evolutionary Algorithms (EA’s) becomes restricted, since these algorithms
usually demand thousands of function evaluations for reaching reasonable solu-
tions. A possible way of making EA’s well suited for handling costly function
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problems could be the use of some kind of memory, which could eliminate the
cost of evaluating solutions previously visited by the algorithm. In the case of
continuous variable problems, the memory should also be used in order to avoid
the evaluation of solutions too close to solutions evaluated previously. However,
the canonical implementations of the traditional EA’s do not include any kind
of algorithm memory and, therefore, they cannot avoid solution reevaluation.

Tabu Search [1] is an example of a meta-heuristic which employs memory. In
this method, a list stores a set of movements which should not be accomplished
by the method, since they are likely to lead to previously visited solutions. Since
the size of this list is limited, the algorithm does not ensure non-revisiting, but
it reduces its occurrence considerably. Tabu Search, however, has been studied
mainly for the case of combinatorial problems.

Taking into account the time which is usually spent for reevaluating solu-
tions, especially for costly functions of continuous variables, some recent works
have been dedicated to embed memory mechanisms inside Genetic Algorithms
(GA’s), such as [2,3,4]. These mechanisms avoid (or at least reduce) the reevalu-
ation of solutions. Besides, they can be used for removing duplicate solutions in
the population, what can be useful since duplication removal often increases the
performance of GA’s [5,6]. It is important to emphasize that the memory han-
dling aggregates additional cost to the algorithm, due to the recovering / storing
operations which are continuously performed. However, this memory handling
cost can be considered irrelevant if the time spent in function evaluations is
considerably higher than the time required for memory operations.

Another practice which is employed by some meta-heuristics for reducing the
computational cost and achieving better solutions is the use of adaptive neigh-
borhoods. The main task of a meta-heuristic in the beginning of its execution is
to find promising regions of the search space (global search) instead of providing
refinement of solutions (local search). Along the iterations, the algorithm should
gradually change its central task, increasing the priority of local search in order
to reach near-optimal solutions. Simulated Annealing [7] and Evolution Strate-
gies [8] are examples of algorithms which use adaptive neighborhoods which rely
on some explicit parameter adaptation. Although it is not usual in GA’s, some
few works have proposed operators based on adaptive neighborhoods [4,9].

This paper presents a new memory based variable-length encoding genetic
algorithm for solving multiobjective continuous optimization problems. The pro-
posed algorithm is a binary implementation of the NSGA2 [10], and it uses a
Hash Table for storing all the solutions already visited during its execution.
This data structure makes possible to avoid the re-visitation of solutions and
it provides recovering and storage of data with low computational cost. More
importantly, the data structure controls the density of function evaluations in
the variable space, performing a high density sampling in promising regions
(regions in which more individuals “survive”). This is obtained via a variable-
length encoding. This encoding scheme proportionates adaptive neighborhood
by controlling the sampling density of new solutions, based on the density of
points already visited in the region of the new solution. All the adaptation in the
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proposed algorithm is parameterless, relying only on the attempts of the Genetic
Algorithm to revisit former solutions.

This paper is structures as follows:

– Section 2 explains how memory and adaptive neighborhood can be imple-
mented inside a binary genetic algorithm.

– Section 3 introduces the algorithm operators which have been proposed based
on the memory structure included in the algorithm.

– Section 4 shows the results obtained by two variations of the proposed al-
gorithm and two variations of a canonical implementation in two classical
multiobjective problems.

2 Algorithm Memory and Adaptive Neighborhood

2.1 Algorithm Memory

The association of an EA with a memory mechanism can eliminate the reevalua-
tion of solutions and it can also reduce the redundancy in evaluations performed
on solutions which are too close. This feature can be very interesting, especially
because the function evaluation process is frequently the main responsible for
the algorithm computational time [4]. In addtion to the elimination of the re-
evaluation of solutions, the use of a solution memory can avoid the inclusion
of duplicate solutions in the population. It is well known that a GA requires
diversity for reducing the chance of reaching premature convergence. The elim-
ination of duplicate solutions may improve the algorithm performance, playing
an important role in diversity maintenance [3,4,5,6,11]. Although checking for
duplicate solutions can be computationally expensive (O(n2)), it should be no-
ticed that, when solution memory is available, this task becomes an instance of
the verification of the occurrence of such solutions in the memory list.

Some efforts have been dedicated to include memory into GA’s, such as [2,3,4].
Some characteristics of these references are:

– In [2], the author proposes a fixed size cache for storing the solutions evalu-
ated recently by the algorithm. When this cache is full, the older solutions
are discarded in order to allow the storage of new individuals. This algorithm
does not ensure that the algorithm does not perform re-visitation, since the
cache is not able to store all visited solutions. Besides, the size of the cache
cannot be arbitrarily increased, since the cost of recovering a solution in-
creases considerably with the number of points stored (linear complexity).

– In [3], the authors use a small hash table for storing the individuals evaluated
by the algorithm. If this hash table reaches its maximum size, it is replaced by
a bigger one. Although hash tables are usually efficient for storing data, the
performance of the proposed one decreases with the number of points stored.
This occurs because the hash function adopted has not been chosen taking
into account the specific nature of the data generated by GA’s. Besides, the
transportation of the points from a hash table to a bigger one always implies
a high computational cost, and it should be avoided.
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– In [4], the authors propose a binary genetic algorithm associated with a
binary tree for performing mono-objective optimization. This algorithm en-
sures non-reevaluation of solutions, and the structure of the memory adopted
makes possible to perform a binary partition of the search space. This
partition is used for implementing an adaptive mutation operator.

This paper proposes a modified version of the binary NSGA2, in which a hash ta-
ble is incorporated into the algorithm for including memory. The function which
is used for accessing the hash has been carefully designed in order to avoid degra-
dation of the memory performance along time. This memory makes possible to
generate a crossover and a mutation operator which adapt the neighborhood
according to the incidence of points in the vicinity of the solution (which is es-
timated by the occurrence of collisions, or reevaluation attempts). A refinement
is implicitly defined in the function evaluation procedure when a reevaluation
attempt occurs. The main differences between this algorithm and the one shown
in [4] are: (i) it uses a hash table instead of binary trees (the hash can be more ef-
ficient than the binary trees if the hash function is well designed); (ii) it contains
not only an adaptive mutation operator, but also an adaptive crossover and an
implicitly defined refinement operator, and; (iii) it is intended for multiobjective
optimization.

The hash table which is used inside the proposed algorithm if briefly described
bellow.

Hash Tables: Hash tables are data structures which perform data indexing
and storing using key transformations [12]. Let M be the size of the hash table
(number of slots in which it is possible to store data), N be the number of points
which will be stored, and P � N be the number of all possible points which
could be found. Suppose that each record which will be stored has an unique
key. The slot of the hash table in which a record will be stored is defined as:

posi = hash(keyi) (1)

in which posi is the slot in which the record i will be stored, hash(·) is the hash
function which was adopted, and keyi is the unique key of record i.

In hash tables, several keys are pointed to any single position, since the idea
is to store any element of a set of very high cardinality in a data structure en-
dowed with much less memory positions than such a set cardinality. This means
that collisions (i.e., attempts to store different elements in a single position) are
always possible. A good hash function should be designed in such a way that
the probability of collisions becomes small, considering the structure of the data
that should be stored. As the occurrence of some collisions is unavoidable, they
should be handled by the hash table in some way. One possible way for dealing
with collisions is to store the key jointly with the data and, in case of two or more
records pointing to the same slot, they are stored in the same position. When
the recovery of one of these records is necessary, it is recovered by a sequential
search of the keys inside this slot. The cost of recovering data inside a hash table
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can vary from O(1) (each record is stored in a different slot) to O(n) (all the
records are stored in the same slot). In this case the performance of the data
structure depends on the quality of the hash function: a good hash function can
lead to a lookup cost very close to O(1).

In this paper it has been adopted an adaptation of the Pearson hash function
[13] for storing the points visited by a multiobjective genetic algorithm during
its execution. The number of slots in which it is possible to store data is defined
by the number of bits which are used for indexing (bind), as follows:

M = 2bind (2)

Therefore, the size of the hash table can be varied by changing the parameter
bind: (i) if bind ← bind − 1 then M ← M

2 ; (ii) if bind ← bind + 1 then M ← 2 ·M .
Based on this definition, each individual is divided into binary words of length

bind and these words are used for finding the corresponding slot using the Al-
gorithm 1. In this algorithm: n is the number of decision variables; nbits is the
number of bits per variable; T is a vector which contains a random permutation
of the sequence {0, . . . , (2bind − 1)} and T [p] is the p-th term of such a permu-
tation; bin2dec(B) converts a binary word B, of length bind, to its equivalent
decimal; dec2bin(D) converts a decimal value D, in range {0, . . . , 2bind − 1},
to its equivalent bind-length binary word; ⊕ is the exclusive-or (XOR) function;
key[a, . . . , b] returns the bits which lie in positions a, . . . , b of the binary word
key.

Algorithm 1. Pseudo-code for Pearson Hashing
1: function PearsonHashing(key)
2: h[0]← 0
3: nloops ←

⌈
n·nbits

bind

⌉
4: for i = 1, . . . , nloops do
5: h[i]← T [bin2dec(dec2bin(h[i− 1])⊕ key[(i− 1) · bind + 1, . . . , i · bind])]
6: end for
7: return h[nloops]
8: end function

It is shown in the original reference [13] that this hash function inherits two
desirable characteristics from cryptographic checksum algorithms:

– A good cryptographic checksum should ensure that small changes to the data
result in large and seemingly random changes to the checksum. In Pearson
hash function, similar binary strings become well separated in the Hash table.

– In a good cryptographic checksum, the effect of changing some part of the
data should not be eliminated by a simple change on another part. In Pearson
hash function a good separation of permutations of the same series of bits
(anagrams) is ensured.

It should be noticed that GA’s very often produce new solutions as small pertur-
bations of existing ones, as a result of mutation operation, and also new solutions
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which have block similarity with existing ones, as a result of crossover operation.
This means that the Pearson hash function is well suited for storing solutions
coming from GA’s.

2.2 Adaptive Neighborhood

In traditional binary GA’s the neighborhood is usually defined by the Hamming
distance, and the mutation and crossover operators are usually built based on
such a distance. In an adaptive neighborhood, the set of points which are directly
achievable by a solution b at time t (the neighborhood of b at t or N (b, t)) can
vary depending on the condition of the algorithm at that time (the relation
N (b, t1) = N (b, t2) is not necessarily true for t1 �= t2). The basic idea of this
paper is to build an adaptive neighborhood for binary genetic algorithms by
using a variable-length encoding. Each variable i in an individual is represented
by a binary word of length nbits, and an additional parameter depi ≤ nbits is
defined, indicating the depth of such a variable. This variable defines that only
the depi most-significant bits of the variable i are changeable by the genetic
operators.

On one hand, if ∃i ∈ 1, . . . , n such that depi < nbits than the neighborhood
of the corresponding individual becomes reduced, and consequently easier to
explore. On the other hand, this limited neighborhood implies on a reduction of
precision of the operations, since it is not possible to change the less-significant
bits of the individual.

Obviously, it is necessary to increase the depth of the variables in order to
reach the desirable precision for the algorithm. This is the key of how the mem-
ory based adaptive neighborhood proposed in this paper works. Each time the
algorithm tries to visit a previously visited solution, it considers the reevaluation
attempt as an indication that the region around such a solution should be ex-
ploited with an enhanced precision. Therefore, the depth of one of the variables
is increased, in order to increase the cardinality of the neighborhood of that so-
lution. A detailed description of how this operation is performed, and how new
solutions are generated from previously visited ones can be seen in Section 3.1.

3 Algorithm Operators

3.1 Evaluation Operator

The algorithm memory has been used for building a new evaluation operator.
When this operator is called to evaluate a solution it performs one of the fol-
lowing actions: (i) the operator evaluates the solution if it was not visited yet;
or, (ii) the operator generates an unvisited solution which is close to the origi-
nal one. In any situation, only a single function evaluation is performed inside
this operator and, consequently, the number of function evaluations spent by
the algorithm in each generation is not increased. A scheme which describes
how this operator works is given in Algorithm 2. In this algorithm: recover(b)
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returns true if the individual b was already visited by the algorithm or false
elsewhere; evaluate(b) returns the function value vector corresponding to so-
lution b; store(b, fvl) stores the solution b and the function vector fvl on the
hash table; random(S) returns an element of the set S at random; RandInd

returns a random feasible individual; in dep is the initial depth of the variables.

Algorithm 2. Pseudo-code for Evaluation Operator
1: function EvaluationOperator(b,depb)
2: evl← false
3: while evl = false do
4: visited← recover(b)
5: if visited = false then
6: fvl ← evaluate(b)
7: store(b, fvl)
8: evl← true
9: else

10: Svar ← ∅
11: for i = 1, . . . , n do
12: if depb(i) < nbits then
13: Svar ← Svar

⋃
i

14: end if
15: end for
16: if Svar �= ∅ then
17: v ← random(Svar)
18: depb(v)← depb(v) + 1
19: b(depb(v))← b(depb(v))
20: else
21: b← RandInd

22: for i = 1, . . . , n do
23: depb(i)← in dep
24: end for
25: end if
26: end if
27: end while
28: return fvl, b, depb

29: end function

When the input parameter is an unvisited solution, the operator only per-
forms its evaluation. Otherwise, if the solution was already visited, the operator
increases the depth of one of the variables and it changes its least significant bit
accessible (the bit corresponding to the new depth). In the limit case in which
it is not possible to increase the depth (dep(i) = nbits, ∀i ∈ {1, . . . , n}), then
a new random solution is generated to replace b. It should be noticed that this
operator provides a kind of automatic refinement procedure, since the precision
of the solutions which are achievable is enhanced each time the algorithm tries
to reevaluate a solution.
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3.2 Crossover Operator

The crossover operator which is employed inside the algorithm is inspired on the
single-point per-variable crossover. A scheme of this operator can be found in
Algorithm 3. In this algorithm: c(v; {a, . . . , b}), with a < b, is the interval of bits
{a, . . . , b} of variable v.

Algorithm 3. Pseudo-code for Crossover Operator
1: function CrossoverOperator(a,depa,b,depb)
2: c← a
3: d← b
4: for i = 1, . . . , n do
5: depc(i)← min(depa(i), depb(i))
6: pc ← random({1, . . . , depc(i)})
7: c(i; {1, . . . , pc})← b(i; {1, . . . , pc})
8: depd(i)← max(depa(i), depb(i))
9: pd ← random({1, . . . , depd(i)})

10: d(i; {1, . . . , pd})← a(i; {1, . . . , pd})
11: end for
12: return c, depc, d, depd

13: end function

From this algorithm, it is possible to note that the crossover point for solution
c is calculated based on the minimum depth between a and b for each variable.
Symmetrically, the crossover points for d are based on the maximum values
between c and d.

This operator becomes exactly the single-point per-variable crossover if both
depths are equal to the number of bits nbits. Since the depths are usually lower
than nbits, the set of solutions which are reachable with this operator is reduced,
and therefore, it becomes easier to explore. However, it is important to realize
that this reduced set incurs in lower precision for the operator outcome.

3.3 Mutation Operator

The mutation operator which is proposed here is based on the usual flip muta-
tion, commonly employed in binary GAs. The scheme of this operator is shown
in Algorithm 4.

Algorithm 4. Pseudo-code for Mutation Operator
1: function MutationOperator(b,depb)
2: a← b
3: depa ← depb

4: va ← random({1, . . . , n})
5: pa ← random({1, . . . , depa(i)})
6: a(va; pa)← a(va; pa)
7: return a, depa

8: end function
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The only difference between this operator and the original flip mutation is
that it is not possible to reach all bits of some variable i if dep(i) < nbits. Such
as for crossover, the cardinality of the neighborhood provided by this operator
is controlled by the current depth of the variables.

3.4 The MBVL-NSGA2

The proposed algorithm, which is referred here as Memory-Based Variable-
Length Encoding Non-Dominated Sorting Genetic Algorithm 2 (or simply
MBVL-NSGA2), follows the same structure of the NSGA2 algorithm [10]. The
selection is performed inside the algorithm using fast non-dominated sorting,
crowding distance assignment and stochastic tournament. Each evaluated indi-
vidual is stored in hash table jointly with its corresponding function and con-
straint values. This memory is used to avoid re-visitation and it makes possi-
ble to implement the variable length encoding, which is essential for the adap-
tive neighborhood operators. The variation of solutions is provided by the pro-
posed crossover and mutation operators, as described in Sections 3.2 and 3.3
respectively.

The key feature of this algorithm is to perform the variation operations using
low-cardinality neighborhoods in most part of the execution time. This makes
the convergence to the vicinity of efficient solutions easier, since the cardinality
of the search space becomes reduced during most part of the evolution. Such
a neighborhood is adaptively changed based on the occurrence of reevaluation
attempts.

3.5 Local Search Operator

Additionally to the MBAN-NSGA2, it is also proposed a Local Search Operator
which inherits all the information acquired by the algorithm during function
evaluations. A basic scheme of this operator is given in Algorithm 5. In this
algorithm: A is the archive (the output of the GA); ai is the i-th individual
of set A; sample(A, depA, x%) returns the x% individuals of A with higher
crowding value associated; efficient(A) returns the solutions of A which are
efficient with regard to such a set.

In this operator a small part of the archive is sampled (x% solutions with
higher crowding) and these solutions are successively submitted to mutation (us-
ing the operator of Section 3.3) and evaluation (using the operator of
Section 3.1). This process is repeated until a maximum number of function
evaluations is reached.

The goal of this operator is to provide successive improvement of the archive,
using all the knowledge acquired by the algorithm during the evolutive
process.
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Algorithm 5. Pseudo-code for Local Search Operator
1: function MutationOperator(A)
2: for i = 1, . . . , |A| do
3: for j = 1, . . . , n do
4: depA

i (j)← in dep
5: end for
6: end for
7: nevl ← 0
8: while nevl < maxevl do
9:

[B, depB]← sample(A, depA, x%)
10: for i = 1, . . . , n do
11:

[
bi, depB

i

]← MutationOperator

(
bi, depB

i

)
12:

[
fB

i , bi, depB
i

]← EvaluationOperator

(
bi, depB

i

)
13: nevl ← nevl + 1
14: end for
15: A← efficient(A⋃B)
16: end while
17: return A
18: end function

4 Numerical Results

Two versions of the proposed algorithm have been tested:

– MBVL-NSGA2: the original MBVL-NSGA2, with the variable-length encod-
ing and the adaptive versions of the single point crossover and flip mutation.

– MBVL-NSGA2+LS: the same MBVL-NSGA2 of the previous item with the
local search operator executed a posteriori. In this case the memory provided
by the algorithm is used by the local search operator.

Besides, two implementations of the canonical NSGA2 have been included in the
comparison:

– NSGA2: canonical binary implementation of NSGA2, with original single-
point crossover and flip-mutation.

– NSGA2+LS: the same NSGA2 of the previous item with the local search
operator executed a posteriori. In this case the memory is built only inside
the local search operator, since there is no memory delivered by the canonical
NSGA2.

The main purpose of this comparison is to evaluate the effect of the memory /
variable-length based operators in the algorithm convergence (MBVL-NSGA2 vs
NSGA2 and MBVL-NSGA2+LS vs NSGA2+LS) and to test if the local search
operator has a positive effect in the convergence of the algorithm (MBVL-NSGA2
vs MBVL-NSGA2+LS and NSGA2 vs NSGA2+LS). The algorithms have been
set with the following parameters:
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– Number of runs: 30 runs (per algorithm)
– Bits for indexing hash (bind): 16 bits (216 = 65,536 slots)
– Population size: 100 individuals
– Bits per variable: 16 bits
– Maximum #function evals in GA:

• MBVL-NSGA2 and NSGA2 : 30,000
• MBVL-NSGA2+LS and NSGA2+LS : 25,000

– Maximum #function evals in LS:

• MBVL-NSGA2 and NSGA2 : 0
• MBVL-NSGA2+LS and NSGA2+LS : 5,000

– Maximum archive size: 50 individuals
– Initial depth:

• MBVL-NSGA2 and MBVL-NSGA2+LS : 8 bits
• NSGA2 and NSGA2+LS : 16 bits

– Crossover probability: 0.80 per pair
– Mutation probability: 0.03 per bit

Notice that the algorithms spend the same number of function evaluations
(30,000 evaluations), either only within the GA or divided between the GA
(25,000) and the LS (5,000). The control of the archive size is performed based
on the value of the crowding distance: if the size of the archive is greater than
50, then the 50 individuals with highest crowding distance values are chosen.

4.1 Comparison Methodology

The algorithm comparison which is performed here is inspired on the evaluation
schemes proposed in [14,15]. This procedure can be summarized as follows:

– Each algorithm is executed k times, for a fixed number of function
evaluations (stop criterion).

– For each algorithm i:

• For each run j:
∗ Evaluate the hyper-volume indicator [16], hvol(i, j), of the final

archive achieved in the run j of the algorithm i.
• Perform bootstrapping [17] with the values hvol(i, :). Each bootstrapping

iteration delivers a sample of the mean of the hyper-volume associated
with the algorithm i. The whole set provided by the bootstrapping is an
empirical approximation of the probability distribution function (PDF)
of such a mean.

– Compare the empirical PDF’s of the algorithms using One-Way ANOVA
[18], for a significance level α = 0.05.
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4.2 Test Problems

Kursawe Problem: The Kursawe Problem is stated as follows [19]:

X ∗ = arg min
X

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f1 =

n−1∑
i=1

[
−10 · exp

(
−0.2 ·

√
x2

i − +x2
i+1

)]
f2 =

n∑
i=1

[∣∣x0.8
i

∣∣ + 5 · sin
(
x3

i

)] (3)

subject to: −5 ≤ xi ≤ 5 ∀ i = 1, . . . , n (4)

in which n is the number of problem variables. In the specific case of this work
it has been considered n = 10. In this problem, it has been considered the point
yR = [110 9]T as reference in order to evaluate the hyper-volume.

Fonseca-Flemming Problem: The Fonseca-Flemming Problem is stated as
follows [20]:

X ∗ = arg min
X

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f1 = 1 − exp

[
−

n∑
i=1

(
xi −

1√
n

)2
]

f2 = 1 − exp

[
−

n∑
i=1

(
xi +

1√
n

)2
] (5)

subject to: −4 ≤ xi ≤ 4 ∀ i = 1, . . . , n (6)

in which n is the number of problem variables. In the specific case of this work
it has been considered n = 10. The reference point in this problem has been set
to yR = [5 5]T .

4.3 Results

A summary of the results observed for the algorithm outcomes in the two test
problems can be seen in Table 1. This table shows the results observed with re-
gard to hyper-volume indicator in the format mean / standard deviation (higher
values of hyper-volume mean better Pareto-set approximations).

Table 1. Summary of results

Kursawe Fonseca & Fleming
Index Algorithm mean / std mean / std

A1 NSGA2 899.16 / 2.94 21.83 / 0.10
A2 MBVL-NSGA2 901.91 / 2.17 22.83 / 0.06
A3 NSGA2+LS 909.64 / 2.62 22.52 / 0.08
A4 MBVL-NSGA2+LS 917.22 / 2.44 23.10 / 0.09
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In the case of Kursawe problem, after running ANOVA, it has been observed
pvalue = 4.86 · 10−42, what indicates that at least one algorithm is significantly
different from the other three ones. In a multiple comparison test it was noticed
that all algorithms are statistically different, and therefore it is possible to say
that A4 is better than A3, which is better than A2, that is better than A1.

In the case of Fonseca & Fleming problem, the ANOVA test indicates pvalue =
4.27 · 10−75, what means that there is a significant difference amongst the algo-
rithms. Once again, the multiple comparison test indicates that each algorithm
is statistically different from the other ones. However, in this case, the ranking
obtained was slightly different: 1st : A4, 2nd : A2, 3rd : A3 and 4th : A1.

Figure 1 shows a boxplot of these results.
It is possible to note that, in the Kursawe problem, the memory based /

adaptive neighborhood operators have a profitable effect on the quality of the
final solution, since the algorithm A2 obtained better Pareto approximations
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Fig. 1. Hyper-volume boxplot. Test problems: (a) Kursawe; (b) Fonseca & Fleming.
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Fig. 2. Hyper-volume evolution: (a) Kursawe problem; (b) Fonseca & Fleming problems
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than A1. The local search operator has also improved the convergence of the
algorithms, since A3 and A4 have outperformed A1 and A2, respectively. The
algorithm A4, which combines the new operators with local search, was the one
which has shown better performance amongst the four tested algorithms.

The difference between the ranks achieved in the two problems can be ex-
plained by the fact that the adaptive neighborhood operators introduce a more
beneficial effect in the second problem. The same analysis, which indicates that
the neighborhood operators and the local search are able to improve the conver-
gence, is also valid in the case of Fonseca & Fleming problem, since A2 is better
than A1 (adaptive operators), A3 is better than A1 and A4 is better than A2
(local search).

The Figure 2(a) shows how the hyper-volume evolves during the execution
of the algorithm in the Kursawe problem. From this figure it is possible to see
that the algorithms have very similar behavior. Some differences between the
algorithms can be noted at the end of the algorithm execution, when the local
search and the memory based operators have a beneficial effect on the quality
of the archive. Finally, the improvement provided by local search can be easily
noted in the evolution curve of the algorithms in Fonseca & Fleming problem,
shown in Figure 2(b) (between 25,000 and 30,000 function evaluations).

5 Conclusions

A binary variable-depth encoding of the solutions of a continuous-variable ge-
netic algorithm has been used here in order to provide an adaptation mechanism
that provides a more intensive exploitation of regions in which the GA performs
more trials of new solutions. The adaptation is based on the information that a
solution produced by the GA operations has already been evaluated. This infor-
mation about all the solutions that have already been visited by the algorithm
is stored in a hash table that is particularly chosen in order to efficiently store
the data coming from a GA.

The multiobjective genetic algorithms constructed on the basis of such
variable-lenght encoding and hash table memory have been tested in standard
test problems, showing a significant improvement in solution quality, when
compared with the canonical versions of the same algorithms.
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Abstract. Until recently, the main focus of researchers that develop
algorithms for evolutionary multi-objective optimization has been the
creation of mechanisms capable of obtaining sets of solutions that are
as close as possible to the true Pareto front of the problem and also as
diverse as possible in the objective space, to properly cover such front.
However, an adequate maintenance of diversity in the decision space is
also important, to efficiently solve several classes of problems and even
to facilitate the post-optimization decision making process. This aspect
has been widely studied in evolutionary single-objective optimization,
what led to the development of several diversity maintenance techniques.
Among them, the recently proposed concentration-based artificial im-
mune network (cob-aiNet), which is capable of self-regulating the pop-
ulation size, presented promising results in multimodal problems. So, it
is extended here to deal with multi-objective problems that require a
proper maintenance of diversity in the decision space.

Keywords: artificial immune systems, multi-objective optimization,
diversity in decision space, immune networks.

1 Introduction

Since the early times in the field of Evolutionary Multi-Objective Optimization
(EMO) [6], the main goals pursued by the great majority of problem-solving
techniques have been to find a set of solutions that better approximates the
Pareto front of a given problem and also presents high diversity in the objective
space, so that the front could be properly covered. These two fundamental goals
have driven most EMO researchers to basically focus their work on mechanisms
that act in the objective space of the problems. However, a proper attention to
the behavior of the nondominated solutions in the decision space, also known as
the Pareto set of a given problem, is also very important. The correct under-
standing of how these solutions are distributed in the decision space of a problem
and the proposal of mechanisms that stimulate diversity in both the objective
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and the decision spaces may be mandatory for efficiently solving several classes of
problems, mainly those with multimodal characteristics. Besides, in several real-
world applications, particularly when the preferences and constraints of the deci-
sion maker are not well-known a priori, a good approximation of both the Pareto
front and the Pareto set tends to facilitate the decision making process [23].

One of the pioneering ideas to explore decision space diversity into multi-
objective optimization problems was introduced in the early 90s with the first
NSGA proposal [19], which included fitness sharing among its mechanisms. How-
ever, after that, the EMO research focus returned to objective space diversity for
almost one decade until 2003, when the GDEA [20] proposal considered diversity
in the decision space as an extra objective for the search. Since then, besides
some studies about the diversity issue itself and the proposal of new metrics
that consider diversity [16,17,21], a few algorithms were introduced. In 2005,
two techniques were proposed: the first one was the omni-optimizer [8], which
is an algorithm that extends the idea of the NSGA-II [7] to consider diversity
in the decision space, and is capable of solving both single and multi-objective
optimization problems; and the second one was Chan & Ray’s algorithm [4],
which is an evolutionary algorithm that evaluates the quality and diversity of
each solution in the population (both in objective and decision spaces) accord-
ing to two metrics, the Lebesgue Contribution and Neighborhood Count. Two
algorithms were also proposed in 2009: in [18], Shir et al. included diversity of
the decision space into the CMA-ES niching framework; and in [23] Zhou et al.
proposed a clustering-based EDA that stimulates diversity in the decision space
by means of its reproduction operator.

On the other hand, in single-objective optimization, the behavior of candi-
date solutions in the decision space has been well explored in the literature for a
long time, and several different techniques capable of stimulating and maintain-
ing diversity have been proposed. Among them, the Artificial Immune Systems
(AIS) [3] framework is particularly interesting, given that some of the algorithms
proposed according to this framework present intrinsic mechanisms to maintain
diversity in the decision space [11].

The general idea behind Artificial Immune Systems (AIS) [3] is to try to
explore and reproduce concepts and mechanisms of the natural immune system of
vertebrates in computer science. Following this idea, two distinct lines of research
have emerged in the AIS field: one that searches for a better understanding
of the natural immune system by developing computer-aided models; and one
that tries to develop immune-inspired algorithms capable of dealing with a wide
range of practical problems, such as in data analysis and optimization processes.
Searching for a way to approximate these two lines of research, Coelho & Von
Zuben [5] recently proposed an immune-inspired algorithm intended to explore
one of the computational models of the immune system to solve single-objective
optimization problems, what led to the Concentration-based Artificial Immune
Network, or just cob-aiNet.

In [5], the diversity maintenance mechanisms of cob-aiNet were extensively
compared to the mechanisms of two other popular immune inspired algorithms,
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and its results were consistently superior. Besides, cob-aiNet was also compared
to several state-of-the-art algorithms from the literature, and the obtained re-
sults showed that it is a competitive approach. Therefore, the main goal of this
paper is to extend cob-aiNet to solve multi-objective optimization problems,
more specifically multimodal multi-objective problems, so that cob-aiNet’s di-
versity mechanisms could be properly extended to deal not only with diversity in
the objective space (as several immune-inspired algorithms for multi-objective
optimization do) but also in the decision space.

This paper is organized as follows: in Section 2 the new concentration-based
immune network for multi-objective optimization (cob-aiNet [MO]) will be de-
scribed in details; in Section 3 the benchmark problems adopted in this work
to evaluate the performance of cob-aiNet[MO] will be presented, together with
the experimental methodology employed, the obtained results and the discus-
sion of such results; and, finally, in Section 4 some final comments and future
perspectives for this research will be given.

2 The Concentration-Based Immune Network for
Multi-objective Optimization

The Concentration-based Immune Network for Multi-objective Optimization
(cob-aiNet[MO]) is an extension of the original Concentration-based Immune
Network for Continuous Optimization (cob-aiNet). As the two immune theories
taken as inspiration for cob-aiNet are also the basis of cob-aiNet[MO], both al-
gorithms have mechanisms that try to mimic the immune behavior proposed by
the Clonal Selection [2] and Immune Network [14] theories.

According to the Clonal Selection principle [2], when the organism is invaded
by a foreign pathogen, the molecular signatures of this pathogen (its antigens)
are identified and certain immune cells begin to suffer a cloning process and
proliferate. During this proliferation, these cells also suffer a controlled mutation
combined with a selective pressure, so that only those cells capable of producing
antibodies1 with the best affinity with the antigens are selected to remain in the
population. Therefore, the Clonal Selection principle states that the components
of the immune system remain in standby until foreign antigenic stimuli trigger
the immune response.

On the other hand, the Immune Network theory [14] proposes that the cells
of the immune system are not only capable of recognizing antigens but also
each other, which may cause two different behaviors: a positive response, char-
acterized by the activation of the recognizing cell followed by cloning, mutation
and secretion of antibodies; and a negative response, characterized by tolerance
and even the suppression of the recognized cell. Therefore, the Immune Network
theory states that the main aspects of the natural immune system are emer-
gent properties, consequence of regulatory mechanisms intended to maintain the
network in a given dynamic steady state [1].
1 Antibodies are molecular structures that bind to the antigens and signal that they

must be eliminated.
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Algorithm 1. Main steps of cob-aiNet[MO].
Parameters:
- nAB: initial number of antibodies;
- maxAB: maximum number of antibodies;
- nCmax: maximum number of clones per antibody;
- nCmin: minimum number of clones per antibody;
- C0: initial concentration;
- σs: suppression threshold;
- βi/βf : initial/final mutation parameter;

1- Randomly create the initial population;
while stop criterion not satisfied do

2- Clone individuals in the population;
3- Apply hypermutation to the clones;
4- Select cells for the next generation (with insertion);
5- Update concentration;
8- Eliminate cells with null concentration;

end while
9- Eliminate dominated cells from the population;

Although the Immune Network principles have been very popular in the AIS
literature, its computational implementations are generally restricted to the neg-
ative response of immune cells. Besides, such behavior is usually implemented
in the form of eventual comparisons (during runtime) among all the cells in the
population and the elimination of the worst subset of cells (those that present
lower affinity with the antigens) from those that are closer than a given threshold
to each other [11]. On the other hand, cob-aiNet introduced a distinct approach,
with the implementation of the Immune Network mechanisms partially based on
the 2D shape-space immune network model of Hart et al. [13].

In this section, the overall structure of the cob-aiNet[MO] algorithm will be
presented, with emphasis on mechanisms and operators devoted to the multi-
objective scenario. The readers are referred to [5] for a full description of cob-
aiNet, including a local search operator that has been discarded here.

The main steps of cob-aiNet[MO] are given in Alg. 1. As we can see, the
overall structure of this algorithm is similar to other immune network-inspired
algorithms from the literature [11], except for the inclusion of the concentration
update steps, the novel concentration-based suppression mechanism, and the
selection operator that also performs insertion. However, there are also some
differences in the remaining steps, that will be highlighted in what follows.

2.1 Representation and Affinity Metrics

Like the original cob-aiNet, the individuals in cob-aiNet[MO]’s population (or
cells/antibodies, using AIS terminology) correspond to candidate solutions for
the problem and are encoded as real-valued vectors.
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The basis of immune-inspired algorithms is the affinity metrics, evaluated
among each antibody and the antigens of the model (generally associated with
the problem), and also among all the antibodies in the population. As both
cob-aiNet and cob-aiNet[MO] deal with optimization problems, there are no
explicit antigens in this case, so the affinity among antibodies and antigens are
considered to be a fitness-like function [3] that evaluates the quality of each cell
in the population.

In cob-aiNet, such affinity with antigens metric (or just fitness) was simply
taken as the value of the objective function being optimized, normalized in the
interval [0, 1]. As the same approach is not possible in the multi-objective sce-
nario (there are multiple functions to be optimized simultaneously) and as this
affinity metric is very important to several mechanisms of the algorithm (e.g.
the fitness-proportional hypermutation operator [5]), we have decided to adopt
a fitness-assignment strategy in cob-aiNet[MO] instead of a direct dominance-
based ranking of the solutions. In this way, the remaining operators of the
algorithm require a minimum amount of modification.

Therefore, in this work we adopted the fitness-assignment proposed in the
SPEA2 algorithm [24], normalized in the interval [0, 1] and inverted, as the
fitness function fSPEA2 of the SPEA2 algorithm was originally proposed to be
minimized. Therefore, in cob-aiNet[MO], the affinity fAg

i (t) of each antibody i of
the population with the antigens at iteration t is given by fAg

i (t) = 1− f i

SPEA2
,

where f i

SPEA2
(t) is the normalized SPEA2 fitness of solution i.

Another reason for the adoption of the SPEA2 fitness is that it combines,
into a single metric, aspects of dominance relations among the solutions in the
population and also of the spread of individuals in the objective space. There-
fore, by using this metric in cob-aiNet[MO], the evolutionary mechanisms of the
algorithm will be directly responsible for finding a set of solutions as close as
possible to the Pareto front of the problem and also as spread as possible in
the objective space, thus allowing the diversity mechanisms of the algorithm to
focus solely on the decision space.

The second affinity metric of the cob-aiNet[MO] algorithm evaluates the de-
gree of similarity between a given cell i in the population and all the other
individuals that are closer to i than a given threshold σs. In cob-aiNet[MO], the
same metric proposed in cob-aiNet was adopted, and it is given in Eq. 1. This
affinity among antibodies is essential to define a decrease in the concentration
of a given cell, as will be seen in Sect. 2.2.

fAb
i (t) =

⎧⎪⎨⎪⎩
∑

j∈J Cj
t · [σs − d(i, j)]∑

j∈J Cj
t

if J �= ∅

0 otherwise
, (1)

where fAb
i (t) is the total affinity among antibody i and the remaining antibodies

at iteration t, J is the set of antibodies better than i and within a radius σs

(defined by the user) from i, Ck
t is the concentration of antibody k at iteration

t and d(k, l) is the Euclidean distance between antibodies k and l.
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From Eq. 1, it is possible to notice that only antibodies closer to i than a
given threshold and also better than i (fAg

j (t) > fAg
i (t)) are considered in the

calculation of the total affinity fAb
i (t), and their contribution is proportional to

how close they are from i, weighted by their concentration. As it will be seen
in next section, the affinity fAb

i (t) among antibodies may lead to a decrease in
the concentration of antibody i when i is in the vicinity of better cells, and this
decrease is proportional to the concentration of such cells.

2.2 Concentration Model and Suppression

Both in cob-aiNet and cob-aiNet[MO], the dynamics of the algorithm is con-
trolled by the concentration Ci

t of each cell i, which is directly related to the
fitness of the individual and the presence of such individual in regions crowded by
better solutions (fAb

i (t) > 0). This concentration not only influences the affinity
among antibodies, but it is also responsible for the determination of the number
of clones that will be generated for each cell and when a given antibody is going
to be eliminated from the population (when its concentration becomes null).

The concentration Ci
t of antibody i starts with value C0 (defined by the user)

and it is updated at the end of each iteration according to Eq. 2:

Ci
t+1 = αCi

t − fAb
i (t), (2)

where Ci
t+1 and Ci

t ∈ [0, 1] are, respectively, the new and old concentration
of antibody i, fAb

i (t) is the affinity of antibody i with the other cells of the
population and α is given by Eq. 3:

α =
{

1 + 0.1fAg
i (t) if fAb

i (t) = 0
0.85 otherwise

, (3)

where fAg
i (t) is the fitness of antibody i.

Therefore, in cob-aiNet[MO], the best solutions in their neighborhood (those
with fAb(t) = 0) suffer an increase of up to 10% in concentration, proportionally
to their fitness (which is normalized in [0, 1] – see Sect. 2.1), while individuals
within the region of influence of better solutions suffer a decrease of concentration
of at least 15%. These values of 10% and 15% were empirically defined.

2.3 Cloning and Hypermutation

In both cob-aiNet and cob-aiNet[MO], the evolution of candidate solutions in
the population occurs by means of a combination of two mechanisms: cloning
and hypermutation. In the cloning phase, at each iteration t a given number
of clones nCi

t is generated for each antibody i in the population, and nCi
t is

determined according to the concentration of each cell Ci
t : nCi

t varies linearly
with the concentration Ci

t , in the interval between nCmin and nCmax.
After the cloning phase, the new generated clones suffer a process of hyper-

mutation with genetic variability inversely proportional to their fitness (better
individuals suffer smaller variations and vice-versa), according to Eq. 4:
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Abi
t+1 = Abi

t + βt · e−fAg
i (t) · N (0, 1), (4)

where Abi
t+1 is the new antibody i, Abi

t is the original antibody i, fAg
i (t) is the

fitness of antibody i and N (0, 1) is a random value of Gaussian distribution with
mean 0 and variance 1. The parameter βt dynamically varies during the execution
of the algorithm, and it is responsible for a gradual modification of the behavior
of the search, from a highly exploratory stage at the initial iterations to a stage
of fine-tuning of the solutions at the final iterations. For further information
about the hypermutation mechanism of cob-aiNet[MO], the reader is referred to
cob-aiNet’s original paper [5].

2.4 Selection and Insertion of Individuals

After cloning and hypermutation, a selection mechanism is applied to each pool
of cells (original antibody and its mutated clones), to select which solutions will
remain in the population in the next iteration. As in cob-aiNet, this selection
operator is also responsible for the insertion of new individuals in the population,
differently from other artificial immune networks in the literature, which gener-
ally insert a predefined number of new randomly generated antibodies [11,12,22].

The selection and insertion mechanism basically consists of three steps. First,
the best cell in its pool (the one with the best fitness fAg

i (t)) is selected as the
representative of the pool in the next iteration of the algorithm, and inherits the
concentration of the original cell. Then, all globally non-dominated cells from all
the pools, that haven’t been selected in the previous step, are selected as candi-
date cells to be inserted into the population as new cells. And, finally, all these
candidate cells are compared to the antibodies already in the population and, if
a given cell is not in the neighborhood of any other cell (not closer than σs), it
is inserted into the population as a new antibody, with initial concentration C0.

The insertion of new individuals in cob-aiNet[MO] is intrinsically associated
with the dynamic variation of βt (see Sect. 2.3), as insertions occur especially
during the exploration phase of the algorithm when the genetic variation of the
clones is higher. After these initial iterations, the algorithm gradually starts to
shift its behavior to the fine-tuning stage, and the number of clones mutated
to regions of the decision space far from the original antibody also gradually
decreases.

One last aspect that is important to highlight is that these insertion and sup-
pression mechanisms allow cob-aiNet[MO] to dynamically adjust its population
size during runtime, which is a common aspect in artificial immune networks.

3 Experimental Results

In this section, the benchmark problems and the methodology adopted in the
experimental analysis will be presented, together with a thorough discussion of
the obtained results.
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3.1 Benchmark Problems

In this introductory paper of the cob-aiNet[MO] algorithm, the proposed tech-
nique was applied to four multimodal multi-objective benchmark problems that
present distinct characteristics, so that the algorithm’s capabilities to find and
maintain good and diverse solutions (both in objective and decision spaces) could
be evaluated.

The first problem adopted in this work was the bi-objective multi-global prob-
lem proposed by Deb & Tiwari [8] to evaluate their omni-optimizer algorithm,
which is given by Eq. 5:

Minimize

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f1(x) =

n∑
i=1

sin (π · xi)

f2(x) =
n∑

i=1

cos (π · xi)
, (5)

where n = 5 and xi ∈ [0, 6] ∀i ∈ {1, · · · , n}.
The second benchmark problem was one of the functions from the EBN class

of problems, proposed by Emmerich et al. [9]. The EBN problems are interesting
because all the solutions in the domain [0, 1]n are Pareto-optimal, what makes
these problems useful to evaluate the capabilities of a given algorithm to spread
the solutions in the decision space. In this work, we considered the EBN problem
with linear Pareto front, given by Eq. 6:

Minimize

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f1(x) =

1
n
·

n∑
i=1

|xi|

f2(x) =
1
n
·

n∑
i=1

|xi − 1|
, (6)

where n = 10 and xi ∈ [0, 1] ∀i ∈ {1, · · · , n}.
The third problem, named Two-on-One, was proposed by Preuss et al. [16]

and consists in a bidimensional bi-objective function, in which the first criterion
is a 4th-degree polynomial and the second one is the sphere function. From the
five variations of this problem presented in [16], we adopted here the fourth one
(Two-on-One 4 ), defined in Eq. 7:

Minimize
{

f1(x1, x2) = x4
1 + x4

2 − x2
1 + x2

2 − 10x1x2 + 0.25x1 + 20
f2(x1, x2) = (x1 − 1)2 + (x2)2

, (7)

where xi ∈ [−3, 3] ∀i ∈ {1, 2}.
Finally, the last benchmark problem adopted in this work (given by Eq. 8)

was one of the instances of the family of problems introduced by Emmerich &
Deutz [10], in which the Pareto fronts present spherical or super-spherical geom-
etry. In this problem (named here Lamé Supersphere), the Pareto set consists in
sets of solutions placed on equidistant parallel line segments.
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Minimize
{

f1(x) = (1 + r) · cos (x1)
f2(x) = (1 + r) · sin (x1) , (8)

where r = sin2 (π · ξ), ξ = 1
n−1

∑n
i=2 xi, n = 4, x1 ∈ [0, π

2 ], and xi ∈ [1, 5]
∀i ∈ {2, · · · , n}.

3.2 Methodology

In order to verify how cob-aiNet[MO] performs when compared to other algo-
rithms from the literature, we have chosen four distinct contenders: (i) the pop-
ular nondominated sorting genetic algorithm II (NSGA-II), proposed by Deb
et al. [7], which is one of the most popular evolutionary algorithms for multi-
objective optimization; (ii) the omni-optimizer, proposed by Deb & Tiwari [8];
(iii) the Vector Immune System (VIS) proposed by Freschi & Repetto [12], which
is, as cob-aiNet[MO], an immune network-based algorithm; and (iv) the proposal
of Chan & Ray [4] (in this section, we will refer to this algorithm as KP1 ).

Each of the five algorithms was applied to all the four benchmark prob-
lems previously presented and evaluated according to three metrics: (i) hy-
pervolume [6], which corresponds to the volume covered by the non-dominated
solutions found by each algorithm, bounded by a given reference point; (ii) spac-
ing [6], which describes the spread in the objective space of the non-dominated
solutions found by each algorithm; and (iii) the hypercube-based diversity met-
ric proposed in [7], to evaluate the spread of solutions in the decision space.
According to this diversity metric, the decision space (domain of the problem) is
divided into a predefined number of hypercubes and the number of hypercubes
occupied by solutions is counted. In this work, we divided each dimension of
each problem into 20 intervals, to obtain the hypercubes.

The average and standard deviation of these three metrics were calculated
for each algorithm for each of the benchmark problems after 30 repetitions, and
the pairwise significance among the results of cob-aiNet[MO] and all the other
four algorithms was evaluated with the Wilcoxon’s Rank Sum test [15] (with
significance threshold equal to 0.05). In each repetition, the algorithms were
allowed to evolve until 4 · 104 fitness evaluations were achieved.

The parameters of each algorithm were empirically adjusted for all the prob-
lems during a series of preliminary experiments, in order to promote competitive
performances for all of them.

3.3 Results and Discussion

For all the problems studied here, cob-aiNet[MO] was run with the following
parameters: initial population size nAB = 100; minimum and maximum num-
ber of clones nCmin = 3 and nCmax = 7, respectively; initial concentration
C0 = 0.5; maximum population size maxAB = 250 cells for problems Deb & Ti-
wari and Two-on-One 4, and maxAB = 150 cells for problems EBN and Lamé
Supersphere; βi = 2.50 and βf = 0.001 for Lamé Supersphere and βi = 1.00
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and βf = 0.001 for the other problems; and, finally, neighborhood threshold
σs = 0.060, 0.004, 0.150 and 0.070 for problems Deb & Tiwari, Two-on-One 4,
EBN and Lamé Supersphere, respectively.

The parameters of NSGA-II and omni-optimizer were the same for all the
problems: population size equal to 100; mutation probability equal to 1/n,
where n is the dimension of the problem; crossover probability equal to 1.0; and
crossover and mutation distribution index equal to 20. For the omni-optimizer,
the parameter δ for the ε-dominance concept was set to δ = 0.001.

The KP1 algorithm was evaluated with: population size equal to 100; mutation
probability equal to 1/n, where n is the dimension of the problem; crossover
probability equal to 0.80; and crossover and mutation distribution index also
equal to 20.

Finally, VIS was evaluated with the following parameters: initial population
size equal to 200; number of clones per cell equal to 5; percentage of random
cells equal to 20; 5 iterations between two suppression steps; and α equal to 2.5
for Lamé Supersphere and 1.0 for the other problems.

The average and standard deviation of the results obtained by each algorithm
for each problem are given in Tab. 1. Those results in which the null hypothesis2

can be rejected with significance 0.05 are marked with “*”. To calculate the hy-
pervolume for each solution set, the reference points for problems Deb & Tiwari,
EBN, Two-on-One 4 and Lamé Supersphere were [0, 0], [1, 1], [21, 10] and [1, 1],
respectively.

Considering the hypervolume metric, it is possible to notice from Tab. 1 that
cob-aiNet[MO] presented the best average hypervolume for problem Two-on-
One 4 (although it is not possible to reject the null hypothesis with significance
0.05 when comparing cob-aiNet[MO] and omni-optimizer), while the best results
for problems Deb & Tiwari, EBN and Lamé Supersphere were obtained by KP1.

Although cob-aiNet[MO] presented the best results w.r.t. the hypervolume
only for problem Two-on-One 4, it is possible to see from Fig. 1 (graphical rep-
resentation – in the objective space – of the final set of non-dominated solutions)
that cob-aiNet[MO] obtained good results for all the problems, in opposition
to the other techniques that presented degraded performances in some of the
problems (e.g. omni-optimizer in problem EBN and VIS in problems EBN and
Two-on-One 4 ). The results shown in Fig. 1 correspond to the repetition that
led to the best hypervolume for each algorithm.

With respect to the spacing metric, cob-aiNet[MO] obtained the best results
for the Lamé Supersphere, while NSGA-II was the best one in Deb & Tiwari ’s
problem (although its results were not significantly different from those of cob-
aiNet[MO]). For the other two problems, omni-optimizer obtained final sets of
non-dominated solutions with the best spacing. However, it is important to no-
tice that the spacing metric only indicates how well-spaced the non-dominated
solutions obtained by a given algorithm are, and not whether these solutions

2 In the Wilcoxon Rank Sum test, the null hypothesis states that the data in two
vectors x and y are independent samples from identical continuous distributions
with equal medians.
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Table 1. Average ± std. deviation of the hypervolume, spacing, hypercube-based diver-
sity and overall rank. The best results are marked in bold. In the first column, “D&T”
corresponds to the Deb & Tiwari problem, “2-on-1” to the Two-on-One 4 and “Lamé”
to the Lamé Supersphere. Those results in which the null hypothesis (when compared
to cob-aiNet[MO]) can be rejected with significance 0.05 are marked with “*”.

Hypervolume (higher is better)

cob-aiNet[MO] NSGA-II omni-optimizer VIS KP1

D&T 15.856 ± 0.816 16.497 ± 0.704* 16.279 ± 0.783 15.947 ± 0.817 18.395 ± 0.928*

EBN 0.499 ± 0.037 0.392 ± 0.080* 0.412 ± 0.024* 0.374 ± 0.090* 0.597 ± 0.021*

2-on-1 112.057 ± 7.181 89.368 ± 32.456* 99.692 ± 22.677 83.608 ± 22.703* 102.179 ± 20.869

Lamé 0.364 ± 0.043 0.399 ± 0.028* 0.400 ± 0.049* 0.357 ± 0.039 0.419 ± 0.054*

Spacing (lower is better)

cob-aiNet[MO] NSGA-II omni-optimizer VIS KP1

D&T 0.0358 ± 0.0139 0.0347 ± 0.0035 0.0470 ± 0.0069* 0.0589 ± 0.0264* 0.0592 ± 0.0068*

EBN 0.0158 ± 0.0039 0.0179 ± 0.0032* 0.0103 ± 0.0055* 0.0149 ± 0.0092* 0.0116 ± 0.0011*

2-on-1 0.1827 ± 0.0283 0.1099 ± 0.0285* 0.0763 ± 0.0084* 0.1979 ± 0.0828 0.0963 ± 0.0098*

Lamé 0.0050 ± 0.0019 0.0113 ± 0.0136* 0.0249 ± 0.0295* 0.0166 ± 0.0154* 0.0114 ± 0.0016*

Hypercube-based Diversity (higher is better)

cob-aiNet[MO] NSGA-II omni-optimizer VIS KP1

D&T 78.667 ± 3.698 40.867 ± 4.876* 63.533 ± 5.782* 32.433 ± 4.297* 43.200 ± 5.774*

EBN 134.733 ± 4.025 65.867 ± 6.642* 99.300 ± 0.915* 29.400 ± 4.553* 92.000 ± 3.006*

2-on-1 11.600 ± 0.621 11.333 ± 0.758 10.933 ± 1.596 11.400 ± 1.453 12.433 ± 1.357*

Lamé 108.700 ± 4.900 83.933 ± 4.571* 85.100 ± 3.782* 67.467 ± 7.669* 65.600 ± 3.369*

Overall Rank (from the above results – lower is better)

cob-aiNet[MO] NSGA-II omni-optimizer VIS KP1

2.33 ± 1.50 3.25 ± 1.14 2.67 ± 1.30 4.33 ± 0.78* 2.42 ± 1.44

present a maximum spread. This explains the victory of the omni-optimizer for
problems EBN and Two-on-One 4, even though it was not able to cover the
whole Pareto fronts for most of its executions for these problems, as illustrated
in Fig. 1.

Now focusing on the diversity of the final sets of solutions in the decision
space, evaluated here by the hypercube-based diversity metric, it is possible
to observe in the results shown in Tab. 1 that, as expected, cob-aiNet[MO]
was the algorithm that presented the best diversity maintenance capabilities,
obtaining significantly better results in problems Deb & Tiwari, EBN and Lamé
Supersphere. For problem Two-on-One 4, KP1 (which was proposed with the
same goals of cob-aiNet[MO] – diversity in the decision space) obtained the best
average results.

Though the omni-optimizer presents diversity stimulation mechanisms de-
voted to the decision space, this algorithm was not able to obtain the best results
w.r.t. diversity in any of the problems, although its results for Two-on-One 4
were not significantly different from those of cob-aiNet[MO]. In order to visually
illustrate the differences between cob-aiNet’s and omni-optimizer’s capability of
finding and maintaining diversity in the decision space, Fig. 2 shows the final
distribution of the solutions obtained by both algorithms in Deb & Tiwari ’s
problem. The results shown in Fig. 2 were obtained in the repetitions that led
to the highest hypercube-based diversity for both algorithms. As it is possible
to see, cob-aiNet[MO] was able to find and keep solutions in all the valleys of
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Fig. 1. Representation, in the objective space, of the final set of non-dominated solu-
tions obtained in the repetition that led to the highest hypervolume for each algorithm.
The rows correspond to problems Deb & Tiwari (first on the top), EBN, Two-on-One
4 and Lamé Supersphere, respectively.

the problem, while the omni-optimizer (which obtained the second best perfor-
mance for this problem) missed a few of these valleys. Due to space constraints,
graphical results for the other three problems will be omitted here, but situations
similar to that represented in Fig. 2 were also observed for them.

Table 1 also presents the overall average rank of each algorithm for each
problem, according to all the metrics. This rank summarizes the results and
indicates that, on average, cob-aiNet[MO] was slightly superior to the contenders.

One last result that is important to highlight is the overall computational cost
of cob-aiNet[MO], shown in Tab. 2 together with the average computational time
of NSGA-II (the fastest algorithm studied here). Immune-network-based algo-
rithms generally tend to present higher computational costs when compared
to other evolutionary approaches, as they adopt mechanisms that frequently
require pairwise comparisons among all the solutions in their populations. In
cob-aiNet[MO], this aspect is even more evident, as its concentration model and
selection/insertion operator (see Sect. 2) require that these pairwise compar-
isons are made even more frequently. However, this extra computational cost,
which can be seen as “the price to be paid” for the superior diversity mainte-
nance capabilities and self-regulation of the population size, is independent of
the function evaluation cost. So, the overall time required by both algorithms
tend to be similar in many practical problems, in which function evaluations are
generally the most computationally expensive operation.
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Fig. 2. Representation in the objective space of the final set of non-dominated solu-
tions obtained by cob-aiNet[MO] (upper right triangle) and omni-optimizer (lower left
triangle) for Deb & Tiwari ’s problem. These plots correspond to the final populations
in the repetitions that led to the highest hypercube-based diversity.

Table 2. Average ± std. deviation of the computational time (in seconds) required by
cob-aiNet[MO] and NSGA-II. Both algorithms were written in Microsoft’s Visual C#
.NET. The experiments were performed on a machine with an Intel Core2Duo T7500
(2.2Ghz) processor, 3GB of RAM, Windows 7 and .NET Framework 4.

Deb & Tiwari EBN Two-on-One 4 Lamé Supersphere

cob-aiNet[MO] 39.5223 ± 7.6719 89.6127 ± 7.9261 67.4790 ± 10.7241 54.5087 ± 5.9621

NSGA-II 3.7393 ± 0.1515 4.0877 ± 0.3094 4.0443 ± 0.1690 3.7940 ± 0.2034

4 Final Comments and Future Steps

This work presented and extension of the Concentration-based Artificial Immune
Network Algorithm – cob-aiNet [5] – for multi-objective optimization problems.
This extension, named cob-aiNet[MO], was proposed to tackle the not-so-well
explored niche of multimodal multi-objective optimization problems, in which
the maintenance of diversity in the decision space is often desirable.
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The new algorithm was applied to four benchmark problems so that its capa-
bilities to find and maintain a diverse set of non-dominated solutions could be
evaluated, and it was compared to four algorithms from the literature: NSGA-
II [7], omni-optimizer [8], VIS [12] and the proposal of Chan & Ray [4]. The
obtained results have shown that cob-aiNet[MO] is a competitive algorithm, as
it was able to obtain sets of solutions with the highest degree of diversity in
three of the four problems studied here, and it was also capable of obtaining
good results when the hypervolume and spread metrics were considered.

As future steps in this research, the cob-aiNet[MO] algorithm will be applied
to a set of benchmark problems of higher dimension and higher number of ob-
jectives, so that its performance in more demanding scenarios can be properly
evaluated. Other performance metrics will be applied to the obtained results, to
allow a deeper comprehension of characteristics of the algorithm other than just
its diversity maintenance capabilities. And finally, a sensitivity analysis will also
be made, to evaluate and identify which parameters of the algorithm have the
highest impact on its performance.
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Abstract. Bi-objective portfolio optimization for minimizing risk and
maximizing expected return has received considerable attention using
evolutionary algorithms. Although the problem is a quadratic program-
ming (QP) problem, the practicalities of investment often make the de-
cision variables discontinuous and introduce other complexities. In such
circumstances, usual QP solution methodologies can not always find ac-
ceptable solutions. In this paper, we modify a bi-objective evolutionary
algorithm (NSGA-II) to develop a customized hybrid NSGA-II proce-
dure for handling situations that are non-conventional for classical QP
approaches. By considering large-scale problems, we demonstrate how
evolutionary algorithms enable the proposed procedure to find fronts, or
portions of fronts, that can be difficult for other methods to obtain.

1 Introduction

Portfolio optimization inherently involves conflicting criteria. Among possible
objectives, minimizing risk and maximizing expected return (also known as the
mean-variance model of Markowitz [1]) are the two objectives that have received
the most attention. The decision variables in these problems are the proportions
of initial capital to be allocated to the different available securities. Such bi-
objective problems give rise to fronts of trade-off solutions which must be found
to investigate the risk-return relationships in a problem.

In addition to the two objectives, these problems possess constraints [2]. The
calculation of expected return is a linear function of the decision variables and
the calculation of portfolio risk involves a quadratic function of the decision vari-
ables. Thus, the overall problem, in its simplest form, is a bi-objective quadratic
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programming (QP) problem, and when all constraints are linear and all variables
are continuous, such problems can be solved exactly using the QP solvers [2,3].
However, in practice, there can be conditions which make QP solvers difficult
to apply. For instance, a portfolio with very small investments in one or more
securities is likely not to be of interest on managerial grounds alone. This then
creates a need for decision variables that either take on a value of zero or a non-
zero value corresponding to at least a minimum investment amount. Moreover,
users may only be interested in portfolios that involve limited numbers of securi-
ties. Also, there can be governmental restrictions contributing to the complexity
of the process, thus only adding to the difficulties of handling portfolio problems
by classical means.

Evolutionary multi-objective optimization (EMO) has, over the years, been
found to be useful in solving different optimization problems. EMO has also been
used to solve different portfolio optimization problems [2,4,5,6,7]. Chang et al.
[8] used genetic algorithms (GAs), tabu search, and simulated annealing on a
portfolio optimization problem with a given cardinality on the number of assets.
Other approaches including simulated annealing [9], differential evolution [10],
and local search based memetic algorithms [11,12] have also been attempted.
Here, we suggest and develop a customized hybrid NSGA-II procedure which is
particularly designed to handle the non-smooth conditions alluded to above. The
initialization procedure and the recombination and mutation operators are all
customized so that the proposed procedure starts with a feasible population and
always creates only feasible solutions. Conflicting objectives are handled using
the elitist non-dominated sorting GA or NSGA-II [13]. To make the obtained
solutions close to optimal solutions, the NSGA-II solutions are clustered into
small groups and then a local search procedure is commenced from each solution
until no further improvements are possible.

The remainder of the paper is organized as follows. Section 2 discusses port-
folio optimization in greater detail. Thereafter, the customized hybrid NSGA-II
procedure for solving portfolio optimization problems is described in Section 3.
The local search component of the overall approach is described next. Section 4
presents results obtained by the proposed procedure. Concluding remarks con-
stitute Section 5.

2 Practical Portfolio Optimization

In a portfolio problem with an asset universe of n securities, let xi (i = 1, 2, . . . , n)
designate the proportion of initial capital to be allocated to security i. There are
typically two goals – maximize portfolio expected return and minimize portfolio
risk [1]. To achieve the first goal, one might be tempted to pursue the securities
with the highest individual expected returns ri, but these are often the riskiest
securities. In its most basic form, this results in the following problem:
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Minimize f1(x) =
∑n

i=1
∑n

j=1 xiσijxj ,

Maximize f2(x) =
∑n

i=1 rixi,
subject to

∑n
i=1 xi = 1,

xi ≥ 0.

(1)

The first objective is portfolio risk as computed from a given n × n risk matrix
[σij ]. The second objective is portfolio expected return as computed from a
weighted sum of the individual security expected returns. The first constraint
ensures the investment of all funds. The second constraint ensures the non-
negativity of each investment.

It is clear that the objectives are conflicting. Thus, the solution to the above
is the set of all of the problem’s Pareto-optimal solutions as this is precisely the
set of all of the problem’s contenders for optimality. One of the ways to solve
for the front of (1) is to convert the problem into a number of single-objective
problems, the popular way being to convert the expected return objective to a
≥ constraint as in the e-constraint formulation:

Minimize f1(x) =
∑n

i=1
∑n

j=1 xiσijxj ,

subject to
∑n

i=1 rixi ≥ R,∑n
i=1 xi = 1,

xi ≥ 0.

(2)

With the above a QP problem, the idea is to solve it repetitively for many
different values of R.

If the number of securities n is more than about 50, it can be expected that
almost any solution of (2) will contain many securities at the zero level. That
is, it is expected that for many i, x∗

i = 0. It is also expected that for at least
some securities, x∗

i will be a very small number. However, to have a practical
portfolio, very small investments in any security may not be desired and are to
be avoided. Thus, there is the practicality that for any portfolio to be of interest,
there is to be a lower limit on any non-zero investment. That is, either x∗

i = 0
(meaning no investment in the i-th security) or x∗

i ≥ α (meaning that there is a
minimum non-zero investment amount for the i-th security). Additionally, there
may also an upper bound β, limiting the maximum proportion of investment to
any security. Unfortunately, the solution of Equation 2 for any given R does not
in general carry with it the guarantee that all such requirements will be satisfied.

In addition to the above, there a second practicality which we now discuss
and it is that any portfolio on the Pareto-optimal front of (1) may contain any
number of non-zero investments. Over this, a user may wish to exert control.
To generate practical portfolios, a user may be interested in specifying a fixed
number of investments or a range in the number of investments. This constraint
is also known as the cardinality constraint and has been addressed by other
researchers as well [3,12]. Taking both practicalities into account, we have the
following bi-objective optimization problem:
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Minimize f1(x) =
∑n

i=1
∑n

j=1 xiσijxj ,

Maximize f2(x) =
∑n

i=1 rixi,
subject to
(1st constraint)

∑n
i=1 xi = 1,

(2nd constraint) xi = 0 or α ≤ xi ≤ β,
(3rd constraint) dmin ≤ d(x) ≤ dmax,

(3)

where α > 0 and d(x) is given as follows:

d(x) =
n∑

i=1

{
1, if xi > 0,
0, if xi = 0. (4)

2.1 Difficulties with Classical Methods

Classical QP solvers face difficulties in the presence of discontinuities and other
complexities. While the 1st constraint is standard, the 2nd constraint requires
an ‘or’ operation. While xi = 0 or xi = α is allowed, values between the two are
not. This introduces discontinuities in the search space. The 3rd constraint in-
volves a parameter d which is defined by a discontinuous function of the decision
variables, given in Equation 4. It is the presence of the 2nd and 3rd constraints
that makes the application of standard methodologies difficult. In the following
section, we discuss the GA based methodology of this paper for dealing with
constraints like these.

3 Customized Hybrid NSGA-II Procedure

Generic procedures for handling constraints may not be efficient in handling
the constraints of this problem. Here, we suggest a customized hybrid NSGA-
II procedure for handling the specific constraints of the portfolio optimization
problem. The 1st constraint ensures that all variables added together become
one. Most evolutionary based portfolio optimization methodologies suggest the
use of random keys or a dummy variable (xi) and repair the variable vector as
xi ← xi/

∑n
i=1 xi to ensure satisfaction of this constraint. In the presence of the

1st constraint alone, this strategy of repairing a solution is a good approach, but
when other constraints are present, the approach may not be adequate.

The 2nd constraint introduces an ‘or’ operation between two constraints repre-
senting two disjointed feasible regions. One approach suggested in the literature
is to use an additional Boolean variable ρi ∈ [0, 1] for each decision variable xi,
as in [3]:

αρi ≤ xi ≤ βρi.

When ρi = 0, the variable xi = 0 (meaning no investment in the i-th security).
But when ρi = 1, the variable xi takes a value in the range [α, β]. This is an
excellent fix-up for the ’or’ constraint, but it introduces additional variables into
the optimization problem.
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The 3rd constraint involves a discontinuous function of decision variables. If
Boolean variables are used to take care of the 2nd constraint, the cardinality
constraint can be replaced by the following:

dmin ≤
n∑

i=1

ρi ≤ dmax.

The presence of equality and inequality constraints would make it difficult for
a generic penalty function approach to find a feasible solution and solve the
problem.

Here, we suggest a different approach which does not add any new variables,
but instead considers all constraints in its coding and evaluation procedures.
First, a customized initialization procedure is used to ensure creation of feasible
solutions. Thereafter, we suggest recombination and mutation operators which
also ensure the creation of feasible solutions.

3.1 Customized Initialization Procedure
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Fig. 1. The mapping function to sat-
isfy the first constraint

To create a feasible solution, we randomly
select an integer value for d from the in-
terval [dmin, dmax]. Then we create a port-
folio which has exactly d non-zero securi-
ties. That is, we randomly select d of the
n variables and assign zeros to the other
(n − d) variables. Since the non-zero xi

values must lie within [α, β], we randomly
create a number in the range of each of
the non-zero variables. However, the ran-
dom numbers for the non-zero variables
may not sum to one, thereby violating the
first constraint. To make the solution fea-
sible, we repair the solution as follows. We
map the non-zero variables to another set
of non-zero variables in the range [α, β] in
such a way that they sum to one. The mapping function is shown in Figure 1. If∑n

i=1 xi = 1, we have a feasible solution, else we follow the procedure described
below.

1. If
∑n

i=1 xi �= 1, the decision vector x is modified as follows:
– For each i, if xi is within [α, α + Δ1], set xi = α.
– For each i, if xi is within [β − Δ2, β], set xi = β.
– For each i, if xi is within [α + Δ1, β − Δ2], xi is kept the same.

2. Compute X =
∑n

i=1 xi. If X is still not equal to one, then stretch the
mapping line by moving its mid-point by an amount δ, as follows:

– If X < 1, move the mid-point upwards by a distance δ in a direction
perpendicular to the line (as shown in Figure 1). This process is continued
until

∑n
i=1 xi is arbitrarily close to one.
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– If X > 1, move the mid-point downwards by a distance δ in a direc-
tion perpendicular to the line. This process is continued until

∑n
i=1 xi is

arbitrarily close to one.

The parameters Δ1 and Δ2 allow us to map near-boundary values to their bound-
ary values. However, if this is unwarranted, both of these parameters can be
chosen to be zero, particularly in the cases when all xi values are either within
[α, α + Δ1] or within [β −Δ2, β]. The parameter δ may be chosen to be a small
value and it helps to iterate the variable values so that the 1st constraint is
satisfied within a small margin. A small value of δ will require a large number of
iterations to satisfy the first constraint but the difference between

∑n
i=1 xi and

one will be small and vice versa. It remains as an interesting study to establish
a relationship between δ and the corresponding error in satisfying the equality
constraint, but here, in all of our simulations, we have arbitrarily chosen the
following values: Δ1 = 0, Δ2 = 0.001 and δ = 10−6.

After this repair mechanism, the 1st constraint is expected to be satisfied
within a small tolerance. The 2nd and 3rd constraints are also satisfied in the
process. Thus, every solution created by the above process is expected to be
feasible.

3.2 Customized Recombination Operator

Once a feasible initial population is created, it is to be evaluated and then
recombination and mutation operators are to be applied. Here, we suggest a
recombination operator which always produces feasible offspring solutions by
recombining two feasible parent solutions.

Two solutions are picked at random from the population as parents. Let the
number of non-zero securities in the parents be d1 and d2, respectively. We il-
lustrate the recombination procedure through the following two parent solutions
having n = 10:

Parent1: a1 0 a3 0 a5 0 0 a8 0 a10
Parent2: b1 0 b3 b4 b5 0 b7 0 0 b10

It is clear that d1 = 5 and d2 = 6 in the above. The following steps are taken to
create a child solution.

1. An integer dc is randomly selected from the range [d1, d2], say, for the above
parents, dc = 5.

2. The child solution inherits a zero investment for a particular security if both
parents have zero investments in that security. For the above parents, this
happens for three (n0) securities: i = 2, 6 and 9. Thus, the partial child
solution is as follows:

Child1: – 0 – – – 0 – – 0 –

3. The securities which have non-zero investments in both parents will inherit
a non-zero investment value, but the exact amount will be determined by a
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real-parameter recombination operator (bounded form of SBX [14]) applied
to the parent values. This operator ensures that values are not created out-
side the range [α, β]. We discuss this procedure a little later. For the above
parents, the child solution then takes on the form:

Child1: c1 0 c3 – c5 0 – – 0 c10

Note that the number of common non-zero investments (nc) between the
two parent solutions is such that nc ∈ [0, min(d1, d2)]. In this case, nc = 4.

4. The number of slots that remain to be filled with non-zero values is w =
dc − nc. Since, dc ∈ [d1, d2], w is always greater than or equal to zero. From
the remaining (n−n0−nc) securities, we choose w securities at random and
take the non-zero value from the parent to which it belongs. For the above
example parents, w = 5−4 = 1 and there are (10−3−4) or 3 remaining places
to choose the w = 1 security from. The remaining securities are assigned a
value zero. Say, we choose the seventh security to have a non-zero value.
Since the non-zero value occurs in parent 2, the child inherits b7. Thus, the
child solution looks like the following:

Child1: c1 0 c3 0 c5 0 b7 0 0 c10

5. The above child solution is guaranteed to satisfy both 2nd and 3rd con-
straints, but needs to satisfy the 1st constraint. We use the procedure de-
scribed in Subsection 3.1 to repair the solution to a feasible one.

We also create a second child from the same pair of parents using the same
procedure. Due to the creation of the random integer dc and other operations
involving random assignments, the second child is expected to be different from
the first child. However, both child solutions are guaranteed to be feasible.

The bounded form of the SBX operator is described here for two non-zero
investment proportions for a particular security (say, a1 and b1, taken from
parents 1 and 2, respectively). The operator requires a user-defined parameter
ηc:

1. Choose a random number ui within [0, 1].
2. Calculate γqi using the equation:

γqi =

⎧⎨⎩ (κui)
1

ηc+1 , if ui ≤ 1
κ ,(

1
2−κui

) 1
ηc+1

, otherwise.
(5)

For a1 ≤ b1, κ = 2 − ζ−(ηc+1) and ζ is calculated as follows: ζ = 1 +
2 min[(a1 −α), (β − b1)]/(b1 − a1). For a1 > b1, the role of a1 and b1 can be
interchanged and the above equation can be used.

3. Then, compute the child from the following equation:

c1 = 0.5[(1 + γqi)a1 + (1 − γqi)b1]. (6)

The above procedure allows a zero probability of creating any child solutions
outside the prescribed range [α, β] for any two solutions a1 and b1 within the
same range.
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3.3 Customized Mutation Operator

Mutation operators perturb the variable values of a single population member.
We use two mutation operators.

Mutation 1. In this operation, a non-zero security value is perturbed in its
neighborhood by using the polynomial mutation operator [15]. For a particular
value a1, the following procedure is used with a user-defined parameter ηm:

1. Create a random number u within [0, 1].
2. Calculate the parameter μ̄ as follows:

μ̄ =

{
(2u)

1
ηm+1 − 1, if u ≤ 0.5,

1 − [2(1 − u)]
1

ηm+1 , otherwise.
(7)

3. Calculate the mutated value, as follows:

a′
1 = a1 + μ̄ min[(a1 − α), (β − a1)].

The above procedure ensures that a′
1 lies within [α, β] and values close to a1

are preferred more than values away from a1. The above procedure is applied to
each non-zero security with a probability pm.

Since values are changed by this mutation operator, the repair mechanism of
Subsection 3.1 is applied to the mutated solution.

Mutation 2. The above mutation procedure does not convert a zero value
to a non-zero value. But, by the second mutation operator, we change z zero
securities to non-zero securities, and to keep the number of investments d the
same, we also change z non-zero securities to zero securities. For this purpose,
a zero and a non-zero security are chosen at random from a solution and their
values are swapped. The same procedure is re-applied to another (z−1) pairs of
zero and non-zero securities. To illustrate, we set z = 2 and apply the operator
on the following solution:

a1 0 a3 0 a5 0 0 a8 0 a10

Mutation 2 operator is applied between the first and fourth securities and be-
tween the ninth and tenth securities as follows:

0 0 a3 a1 a5 0 0 a8 a10 0

Since no new non-zero values are created in this process, the 1st constraint is
always be satisfied and this mutation operator always preserves the feasibility of
a solution. In all our simulations, we have chosen z = 2, although other values
of z may also be tried.

Thus, the proposed procedure starts with a set of feasible solutions. There-
after, the creation of new solutions by recombination and mutation operators al-
ways ensures their feasibility. These procedures help NSGA-II to converge close
to the Pareto-optimal front trading off the two conflicting objectives quickly.
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3.4 Clustering

NSGA-II is expected to find a set of solutions representing the trade-off fron-
tier. The NSGA-II procedure requires a population size (N) proportional to
the size of the problem (number of securities) for a proper working of its op-
erators. However, this can cause NSGA-II to find more portfolios than a user
may desire. To reduce the number of obtained trade-off portfolios, we apply a
k-mean clustering procedure to the obtained set of solutions and pick only H
(< N) well-distributed portfolios from the obtained NSGA-II solutions. For all
our problems, we use H = 30 to get an idea of the trade-off frontier, however in
practice other numbers of solutions can be employed.

3.5 Local Search

To obtain near-Pareto-optimal solutions, we also employ a local search procedure
from all H clustered solutions. We use a single-objective GA with the above-
discussed operators for this purpose. From a seed (clustered) solution z, first an
initial population is created by mutating the seed solution Nls times (where Nls

is the population size for the local search). Both mutation operators discussed
above are used for this purpose. The mutation probability pm and parameter
ηm are kept the same as before. Since the mutated solutions are repaired, each
population member is guaranteed to be feasible. The objective function used
here is the following achievement scalarizing function [16]:

F (x) =
2

min
j=1

fj(x) − zj

fmax
j − fmin

j

+ 10−4
2∑

j=1

fj(x) − zj

fmax
j − fmin

j

. (8)

Here, f2(x) is considered to be the negative of the expected return function
(second objective) given in Equation 3. The parameters fmin

j and fmax
j are the

minimum and maximum objective values of all obtained NSGA-II solutions. In
the local search GA, the above function is minimized. The search continues until
no significant improvement in consecutive population-best solutions is obtained.

4 Results

We are now ready to present some results using our proposed customized hybrid
NSGA-II procedure. For simulation, we consider a data-set (containing an r ex-
pected return vector and a [σij ] risk matrix) for a 1,000-security problem. The
data-set was obtained from the random portfolio-selection problem generator
specified in [17]. Figure 2 shows the risk-return trade-off frontier first obtained
by solving the e-constraint problem (Equation 2) many times via QP for differ-
ent values of R. Solutions that have low risk (near A) also have low expected
returns. Solutions that have high risk (near C) also have a high expected returns.
Although this is a known fact, the discovery of the trade-off frontier provides
the actual manner in which the trade-offs take place. For example, for the risk
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Fig. 2. Obtained trade-off front of the original problem using the quadratic program-
ming (QP) technique

matrix and return vector chosen for this case study there seem to be good trade-
offs near B, and a most preferred portfolio may well be selected from the region
marked. This is because to choose a solution near A over a solution from B, one
has to sacrifice a large amount of expected return to get only small reduction
in risk. Similarly, to choose a solution C over a solution from B, one has to
take on a large amount of extra risk to get a only small increase in expected
return. However, since not all trade-off frontiers are so nicely formed and who is
to know from where along a trade-off frontier a given decision maker will make
a final selection, it is not our intention to become involved in decision making
at this point. Rather, our goal here is to develop comprehensive sets of trade-off
frontier portfolios in problems involving practicalities so that no region possibly
containing an optimal portfolio will be missed in the analysis.

For this case study, we analyzed all solutions and observed that out of the
1,000 securities, only 88 ever took on non-zero investments. We extract for these
securities their r-vector and [σij ] risk matrix information and confine our further
studies to only these n = 88 securities.

For the NSGA-II procedure, we selected a population size of N = 500, a
maximum number of 3,000 generations, a recombination probability of pc = 0.9,
a SBX index of ηc = 10, a mutation probability of pm = 0.01, and a polynomial
mutation index of ηm = 50.

For the local search procedure, we selected N = 200 and the ran until 500
generations were reached. All other GA parameters were kept the same as in
the NSGA-II simulations. It is important to mention here that since NSGA-
II considers all constraints given in Equation 3 and QP considered only the
first constraint, the NSGA-II solutions are not expected to be better than QP
solutions. But NSGA-II solutions are expected to be non-dominated to those
QP solutions that satisfy all constraints given in Equation 3.
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4.1 Portfolio Optimization with No Size Constraint

As the 1st constraint is always present, we start by imposing the 2nd constraint
with α = 0.005 and β = 0.04. Of the 483 QP obtained portfolios characterizing
the front of the problem without any discontinuities, 453 satisfy the bounds of
the 2nd constraint. Due to the use of β = 0.04, at least 25 securities, of course,
are in every portfolio. However, in our algorithm presented, we do not specify
any restriction on the number of securities.

Figure 3 shows 294 trade-off solutions obtained by the customized NSGA-II
procedure alone. The QP solutions that satisfy the α = 0.005 and β = 0.04
bounds are also shown in the figure. The figure clearly shows that the proposed
procedure is able to find a good set of distributed solutions close to the points
obtained by the QP procedure. High risk solutions are somewhat worse than
those obtained by QP. But we show shortly that the hybrid method in which a
local search is applied on the NSGA-II solutions is a better overall strategy.
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Fig. 3. Obtained trade-off front for α =
0.005 and β = 0.04 and with no restric-
tion on d by a typical NSGA-II run

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 0.024

 0  0.0005  0.001  0.0015  0.002  0.0025  0.003

R
et

ur
n

Risk

Fig. 4. Attainment curve of the 21 runs for
this problem for the case α = 0.005 and
β = 0.04 and with no restriction on d

Genetic algorithms are stochastic optimization procedures and their perfor-
mance is shown to depend somewhat on the chosen initial population. In order
to demonstrate the robustness of the proposed customized NSGA-II procedure
over variations in the initial population, we created 21 different random ini-
tial populations and ran the proposed procedure independently from each one.
The obtained solutions are collected together and 0%, 50% and 100% attain-
ment curves [18] are plotted in Figure 4. The 0% attainment curve indicates
the trade-off boundary which dominates all obtained trade-off solutions. The
100% attainment curve indicates the trade-off boundary that is dominated by
all obtained trade-off solutions collectively. The 50% attainment curve is that
trade-off boundary that dominates 50% of the obtained trade-off solutions. The
three curves obtained for the 21 non-dominated fronts are so close to each other
that they cannot be well distinguished visually. This means that all 21 indepen-
dent runs produce almost identical frontiers thereby indicating the reliability of
the proposed customized NSGA-II procedure.
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From the obtained non-dominated front of all 21 runs, we now apply the
clustering algorithm and choose only 30 well-distinguished portfolios covering
the entire front. These solutions are then local searched. The complete method
is called the customized hybrid NSGA-II procedure. The obtained solutions
are shown in Figure 5 by circles. The solutions are close to the QP solutions,
but importantly a well-distributed set of portfolios is created by our proposed
procedure.

In order to show the investment pattern of different trade-off portfolios, we
choose two extreme solutions and two intermediate solutions from the obtained
set of 30 portfolios. Based on the return values ri, all securities are ordered from
the highest return value to the lowest. They are then divided into five grades of
18 securities each, except for the fifth grade which has the lowest 16 securities.
For each of the four solutions, the number of non-zero securities in each grade is
counted and plotted in Figure 6. It can be seen that the highest return solution
allocates the maximum number of grade 1 securities in order to maximize the
overall return. The solution with the lowest return (or lowest risk) invests more
into grade 5 securities (having lowest return). The intermediate solutions invest
more into intermediate grades to make a good compromise between return and
risk.

4.2 Portfolio Optimization for a Fixed d

Now we impose the 3rd constraint. Initial population members are guaranteed
to satisfy the 3rd constraint and every recombination and mutation operation
also guarantees maintaining the 3rd constraint.

First, we consider dmin = dmax = 28, so that portfolios with only 28 securities
are desired. The variable bounds of α = 0.005 and β = 0.04 are enforced. The
QP generated frontier now has only 24 portfolios which satisfy these constraints.
They are shown in Figure 7. There are a total of 168 portfolios found by a typical
run of the proposed procedure. They are shown in the figure as well. It is clear
from the figure that the proposed procedure is able to find widely distributed
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Fig. 8. Attainment surface of the 21 runs
for the problem with d = 28 and α =
0.005 and β = 0.04

sets of solutions. In order to investigate the robustness of the customized NSGA-
II procedure alone, the three attainment curves are drawn for the 21 different
runs in Figure 8, as before. The closeness of these curves to one another signifies
that the proposed procedure is able to find almost identical trade-off frontiers
on any run.

Finally, all solutions from 21 runs are collected together and non-dominated
solutions are clustered into 30 widely separated solutions. They are local searched
and shown in Figure 9. In this case, it is clear from the figure that the proposed
procedure is able to find much wider and better distributed sets of portfolios
than classical QP alone.

We consider another case in which exactly d = 50 securities are desired in
each portfolio. The QP solution set did not have any such portfolio. When we
apply the customized hybrid NSGA-II procedure, we obtain the front with 30
portfolios shown in Figure 10. These results amply demonstrate the working of
the proposed procedure when both a discontinuous variable bound and a discrete
number of securities are desired.

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 0.024

 0  0.0005  0.001  0.0015  0.002  0.0025

R
et

ur
n

Risk

Proposed method
Baseline

Fig. 9. A set of 30 trade-off portfolios ob-
tained using clustering and local search
procedure for the case with d = 28, α =
0.005, and β = 0.04

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 0.024

 0  0.0005  0.001  0.0015  0.002  0.0025

R
et

ur
n

Risk

Proposed method

Fig. 10. 30 different portfolios found for
d = 50, α = 0.005, and β = 0.04 obtained
using the proposed procedure. Base-line
QP solution set did not have any solution
with d = 50.



Bi-objective Portfolio Optimization Using a Customized Hybrid NSGA-II 371

4.3 Portfolio Optimization for a Given Range of d

Next, we consider the case in which a user wishes the portfolios to vary within
a prescribed range [dmin, dmax]. Customized operators to handle such variables
have been described before. We consider dmin = 30 and dmax = 45 and the
variable bounds α = 0.005 and β = 0.04. The distribution of solutions obtained
after local search is shown in Figure 11. There are 261 QP obtained solutions
that satisfy these constraints. The closeness of the obtained solutions with the
QP solutions is clear from the figure.

In order to understand the investment pattern, we consider 50 clustered so-
lutions from the set of all 21 runs and plot the number of non-zero securities in
each solution with the corresponding risk value (objective f1(x)) in Figure 12.
It is interesting to note that low risk portfolios (also with low returns) can be
obtained with a wide variety of investments, almost uniformly from 30 to 44 se-
curities. However, high risk (therefore, high return) portfolios only require users
to invest in smaller numbers of securities.
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5 Conclusions

In this paper, we have suggested a customized hybrid NSGA-II procedure for
handling a bi-objective portfolio optimization problem having practicalities. First,
the proportion of investment in a security can either be zero (meaning no in-
vestment) or be between specified minimum and maximum bounds. Second, the
user may have a preference for a certain number, or a range in the number, of
non-zero securities. Such requirements make the resulting optimization problem
difficult to solve via classical techniques. The hallmark of our study is that our
procedure uses a repair mechanism to make all generated solutions feasible. By
taking a large-sized problem, we have systematically demonstrated the efficacy
of the proposed procedure over different user-defined requirements. The reliabil-
ity of the proposed customized hybrid NSGA-II procedure is demonstrated by
simulating the algorithm from 21 different initial populations. The accuracy of
the proposed procedure is enhanced by coupling the method with a clustering
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and a local search procedure. The results are compared with those obtained with
the quadratic programming method.

The proposed methodology involves a number of parameters (Δ1, Δ2, δ, z).
A parametric study is now needed to find suitable values of these parameters. A
computational complexity study of the proposed repair mechanism is also needed
to establish a relationship between δ and extent of violation of the equality (1st)
constraint. The methodology suggested here is now ready to be applied to more
complex portfolio optimization problems. The QP method, when applicable, is
generally the best approach to pursue. But practice is full of complexities which
can limit the use of standard QP methods. The flexibility of genetic algorithms
demonstrated here provides us with confidence about their applicability to real-
life portfolio optimization problems. This study should encourage further use of
QP and GA approaches together in a probably more computationally efficient
manner to make the overall portfolio optimization problem more pragmatic.
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Abstract. The use of computational methodologies for the optimiza-
tion of aesthetic parameters is not frequent mainly due to the fact that
these parameters are not quantifiable and are subjective. In this work an
interactive methodology based on the use of multi-objective optimization
algorithms is proposed. This strategy associates the results of different
optimization runs considering the existent quantifiable objectives and
different sets of boundary conditions concerning the decision variables,
as defined by an expert decision maker. The associated results will serve
as initial population of solutions for a final optimization run. The idea
is that a more global picture of potential ”good” solutions can be found.
At the end this will facilitate the work of the expert decision maker since
more solutions are available. The method was applied to a case study and
the preliminary results obtained showed the potentially of the strategy
adopted.

Keywords: aesthetic design, multi-objective evolutionary algorithms.

1 Introduction

Digital design culture and new paradigms in digital design thinking have a great
impact on the design, development and realization of components and objects.
Projects frequently embody a trade-off between multiple and interdependent
requirements such as performance-related aspects, form freedom and complexity
of the desired architectural expressions.

Current design methods, though already largely involving digital tools and
processes, are not yet fully suited to dynamically optimize the design within
its multiple boundary conditions. At the same time, conventional materials and
technologies compromise the realization of the optimized design and its underly-
ing concepts. Here, polymer and composite materials, in combination with their

R.H.C. Takahashi et al. (Eds.): EMO 2011, LNCS 6576, pp. 374–388, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Aesthetic Design Using MOEAs 375

largely automated manufacturing methods, are a powerful group of materials to
overcome this dilemma due to their inherent properties, such as aesthetically
pleasing, lightness, ability to mould complex shapes, ease of fabrication and
integration of parts.

In this research a computational method has been developed that can it-
eratively optimize a design towards its functional requirements using available
design, simulation and user-interfacing tools. The method has been applied to
the optimization of a ’generic’ roof structure towards daylight conditions while
minimizing area and thus weight and materials used. Multi-Objective Evolution-
ary Algorithms (MOEA) in combination with a decision making methodology
have been used, together with critical Decision Maker (DM) interaction. The
result indicates the usefulness of this model and the developed techniques in the
early stage of the design process, leading to better design solutions.

This text is organized as follows: in section 2 the state-of-the-art concerning
digital design methodology and the practical problem to be solved are presented;
the problem characteristics as well the optimization methodology adopted are
described in detail in section 3; in section 4 the methodology proposed is applied
to an example and in section 5 the conclusions are stated.

2 Digital Design Method

2.1 State of the Art

Computers have been used in the design process for over fifty years. Initially the
use of computers was limited to drawing, representation, basic structural analysis
or construction planning. Eventually performance analysis was executed as an
afterthought, but always as part of an essentially paper-based design process [1].
It was not until the moment when design moved away from the conventional
logic of representation and instead started interacting with the process of form
generation itself, which we can speak of a new paradigm in the field of digital
design [2]. Since then digital design has evolved into a new and unique form of
design.

The increasing integration of sophisticated and interactive digital design me-
dia throughout the complete design process, from early concept development
until iterative testing and fabrication, has already provoked the emerging of
new ways of design making and new ways of design thinking [3,4]. These con-
cepts are starting to be the subject of research in the field of architecture. The
concept of adaptation has been used to guide research towards the application
of evolution-based generative design systems to shape architectural forms [5].
Other research has evolved in the development of specific software for methods
combining structural grammars, performance metrics, structural analysis and
stochastic optimization [6].

A compound model of digital design has been proposed as a future class of
paradigmatic digital design [2]. These compound models are based on the inte-
gration of form finding, form generation, evaluation and performance processes.



376 A. Gaspar-Cunha, D. Loyens, and F. van Hattum

The development of processes or methods that aim to create new collaborative
relationships between designer and computer, based on the idea of continuous
feedback, are appointed as desired future research topics, though this research
area is largely still in its infancy [6,7].

Although eminent architectural objects are today present, that have only
been possible through the use of digital tools, the design processes used do
not completely and interactively optimise at an early design stage [8]. At the
same time, realisation has been frequently limited to the use of more traditional
construction materials.

A desired design method would go beyond this [8]. The method should adopt
processes that allow for dynamical multi-objective design optimization, inte-
grated with - but not inherently limited to a sub-set of - available, both ’off-the-
shelf’ and novel, material solutions. In construction process composite materials
can play an important role, as they are known for their ability to combine the
moulding of complex forms with varying, tailorable ranges of outstanding prop-
erties either aesthetic or structural, with a relative ease-of-processing and a large
level of functional integration [9]. Due to these characteristics, they have been
a favorite material in design prototyping and final object manufacture, offering
possibilities unable to be embodied in other materials. Furthermore, their fabri-
cation can be highly automated, thus allowing for a high level integration with
the desired digital design environment [10].

2.2 Experimental

The current research project explores new digital paradigms in a project devel-
opment process within a framework of design as information processing rather
than simple form finding. The project explores new relationships between the
designer-as-toolmaker, information, process and the object. In this way the
potential distinctive character of digital design thinking will be explored.

A new method is developed and tested, allowing integrating of complex quan-
titative and qualitative requirements at an early stage in the design process. This
is achieved by combining multiple digital performance simulation tools with al-
gorithms with generative capabilities, acting in the fuzzy front end of conceptual
development. In this way, the design process is quicker and with more iterations,
allowing complex functional and performance requirement integration and pos-
ing almost no limit to the freedom and complexity of forms and components
used. As a first step, the method is applied to the fields of design, engineering
and architecture, demonstrating that the existing design computing technologies,
available and readily used in fields of architecture and composite technology, can
open new territories for conceptual exploration.

For this purpose a generic roof structure geometry, represented by a single
surface, was taken as a starting point (see Figure 1). This roof structure is rep-
resented by a single Non-Uniform Rational Basis Spline (NURBS) surface [11].
This method allows for a precise mathematical representation of a free form
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surface and for precise control by manipulating the control points of the surface.
The control points determine the shape of the curve and a single control point
only influences those intervals where it is active. This allows for the changing
of one part of a surface while keeping other parts equal. The manipulation of
control points is used in the everyday meaning of the word ’point’, a location in
3D space defined by its coordinates.

In the present study a set of 20 control points were defined, allowing the
virtually unlimited adaptation of the surface geometry. Based on the set of spatial
coordinates of the control points, the surface is built in a general 3D design
software [12]. The area is calculated and the surface exported to a building
analysis software [13] for subsequent numerical analysis, in this case the average
daylight factor under the structure, as an indication of the light functionality of
the structure. The results (Area, Daylight) are saved for subsequent use by the
optimization routine, as described in the subsequent section.

The resulting optimized design combines both quantitative and qualitative
evaluation of the design’s performance, leading the exploration of a wider range
of design solutions at an early stage in the concept phase. The best performing
concept can then be used as the starting point for subsequent detailed design.
The proposed model thus results in the streamlining of the design and devel-
opment processes of architectural objects with a high degree of form freedom
and system complexity. Applying this approach, architects and designers can
conceive interactively, test the consequences of actions almost immediately, and
explore different ways of solution refinements that are crucial in design and
architecture.

Fig. 1. Studied roof structure were the geometry is defined by the NURBS surface
methodology (the limits for the coordinates of the control points are 5 meters)
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3 Multi-objective Optimization

3.1 Problem Characteristics

As mentioned above the problem to be solved has three objectives to be ac-
complished, the minimization of both Area and Daylight and the aesthetics
design. The minimization of the structure Area, a measure of the effective use
of material of ’lightness’ of the structure, and the minimization of the Daylight
under the structure, a measure of the effective ’functionality’ of the structure,
are two quantifiable objectives. Thus, they can be easily put up when using
any MOEA to optimize the system. A trade-off between these objectives can
be evidenced trough the generation of the Pareto front after optimization. The
difficulty here concerns only with the interfaces between the software’s used, i.e.,
the optimization routine (developed in house) and the 3D design and building
analysis software (commercial softwares) used to calculate the objective values.
Since these commercial software’s do not run in background a specific interface
approach based on Windows operating system scripts was implemented. This
script simulates the use of the programs used.

Since the third objective is not quantifiable and, additionally is very subjec-
tive, a different strategy was adopted which takes into account the preferences
of the DM involved. This can be seen as an iterative process: i) first the MOEA
generates the Pareto fronts using the Area and Daylight objectives; ii) then, the
DM selects the preferred regions taking into account aesthetics; iii) this informa-
tion is inserted on the MOEA and new optimization is carried out. The process
is repeated until a satisfactory solution is found by the DM.

Therefore, the resolution of this type of problems involves the articulation
of preferences of a DM. In the present case the selection made by the DM,
concerning one or more regions of the Pareto front, implies the definition of a
measure of the relative importance of the objectives considered (in the present
case two objectives exist, Area and Daylight). This can be better illustrated with
the example of Figure 2. In region 1 the Area has more importance, since these
solutions have better value for the Area, while in region 2 the Daylight is the
most important objective (both objectives are to be minimized).

A traditional way to deal with multi-objectives consists in using an aggre-
gation function, such as the weighted sum, were the relative importance of the
various objectives are taking into account trough the definition of weights [14].
In general terms three different classes of multi-objective preference methods can
be identified, depending on how the search and decision processes are intercon-
nected, a priori, a posteriori and iterative methods [15,16]. In a priori methods,
the DM must specify her or his preferences, expectations and/or options before
the optimization process takes place. The preferences are expressed in terms
of an aggregating function which combines individual criterion values into a
single utility value. In the case of a posteriori method, after the generation of
the Pareto optimal set, the DM selects the most preferred among the alternatives
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Fig. 2. Trade-off between Area and Daylight

taking into account his or her own preferences. Finally, in interactive methods
the Decision making and the optimization processes occur at interleaved steps.
At each step, partial preference information is supplied by the DM to the opti-
mizer, which, in turn, generates better alternatives according to the information
received.

Therefore, in the iterative methodology proposed different preferences meth-
ods are used (see Figure 3). At the beginning the MOEA runs without con-
sidering any preference and considering only the quantifiable objectives. After
the Pareto front is generated, the DM selects the preferred region based on
aesthetics parameters. The major difficulty consists in incorporating the infor-
mation concerning the regions selected on the MOEA. The idea is to use a priori
decision making methodology proposed before, which is based on the use of
stress functions [17]. In this method the incorporation of preferences is made
through the definition of a set of weights quantifying the relative importance
of the objectives. The value calculated for the stress function depend on the
objective function itself as well of the weight chosen for this objective. The ex-
tension of the Pareto front found depend on the definition by the user of an
algorithm parameter. For more details the reader is referred to [17]. Starting
from a population of solutions resulting from the previous optimization run
the algorithm searches for solutions in the region corresponding to the weights
chosen. However, care must be taken since the usability of interactive methods
depends strongly on the extent to which the parameter values set by the DM as
an expression of his or her preferences lead to solutions corresponding to those
preferences.

Another important issue concerns the huge search space, which is a charac-
teristic of this type of design problems (as will be seen on the problem tested
below). In this case some of the solutions found, which are valid when calculat-
ing the Area and Light objectives, have some risk of not being valid concerning
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Fig. 3. Combination of a posteriori and iterative methods to select solutions in multi-
objective problems involving aesthetic design variables

other questions such as possibility of fabrication. This aspect will not be deal in
this phase of the work. However, a decision must be taken about the boundary
conditions imposed to the decision variables. If the range of variation allowed is
high the Pareto front obtained will have, certainly, solutions with very different
aesthetics. If the range of variation is very restrictive, the possibility of losing
some important designs (solutions) is high.

4 Optimization Strategy

In this section the strategy proposed to deal with the problems identified above,
i.e., multiple objectives, non-quantifiable objectives and size of the search space,
will be described in detail. The resolution of this type of problems can be made
using three different situations:

Situation 1: The simplest situation consists in using the optimization algorithm
(MOEA) without interacting with the DM (i.e., only one time). The DM defines
the decision variables to be optimized and their range of variation and the ob-
jectives to be considered. Then, after running the MOEA, the DM selects the
solutions from the pool of non-dominated solutions obtained using, for example,
aesthetics criteria. In this case the DM must know very well the characteristics of
the problem to be solved, since it is necessary to define beforehand the boundary
conditions imposed to the design variables.
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Fig. 4. Global structure of the optimization strategy adopted

Situation 2: This situation is illustrated in Figure 3. In this case an iterative
process is pursued. In each interaction, new information (e.e., a set of weights)
as provided by the DM, is taken into account. However, as in previous situation,
the DM has to define the decision variables to be optimized and their range of
variation and the objectives to be considered. Thus, the results produced will be
certainly strongly dependent on the initial choice made by the DM.

Situation 3: This situation is illustrated in Figure 4. It starts by the definition
of n different cases, each one characterized by different set of restrictions (i.e.,
boundary conditions) imposed by the DM to the decision variables. Then, each
one of these cases is optimized independently. At the end of this initial opti-
mization step, the best solutions selected from all n cases will be used to form
a new population of solutions. This population will serve as initial population
for the last optimization process. The optimization step in this case can be per-
formed either using a simple MOEA optimization (as in situation 1) or using
an iterative process (as in situation 2). It is expected that the non-dominated
solutions found have characteristics taken from the different cases (i.e., different
set of restrictions imposed).
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5 Example of Application

5.1 Problem to Solve

Different geometrical boundary conditions are input by the user, in order to ex-
plore different conceptual solutions. In the present work, 3 different geometrical
boundary conditions (i.e., 3 different cases as represented in Figure 4) were used,
each one leading to a different optimized subset of solutions. The surface was
defined by 20 control points and defined by the NURBS method (see Figure 1).
The natural light levels are calculated in Ecotect [13] over a horizontal analysis
grid at ground level. The grid was formatted with a dimension of 5x5 meters
and was set to a 5x6 matrix allowing for calculation over all 30 visible nodes.
Calculations of natural light levels are neither time nor date dependant, so no
parameters were specified and the default values of the software were used.

In case 1, the less restrictive, the coordinates of the 20 control points rep-
resented in 1 (corresponding to 60 decision variables, the 3D coordinates of
the control points) are allowed to vary between 0.5 and 5 meters. In case 2
the control points corresponding to the corners of the structure are fixed, i.e.,
points P1(0,0,0), P4(5,0,0), P17(0,5,0) and P20(5,5,0). In this case 48 deci-
sion variables are to be optimized. Finally, in the most restrictive case (case
3), the coordinates of the control points corresponding to the corners points
as well to the border points are fixed, i.e., points P1(0,0,0), P2(1.6,0,0.5),
P3(0.338,0,0.5), P4(5,0,0), P8(5,0.65,0.18), P13(0,0.335,0.18), P16(5,0.335,0.18),
P17(0,5,0), P18(1.6,5.0,0.5), P19(0.338,5,0.5) and P20(5,5,0). This corresponds
to 24 decision variables. In cases 2 and 3 the coordinates of the remaining control
points are allowed to range in the interval [0.5, 5] meters (as in case 1).

After this process the user is presented with the geometrical solutions and
their performance, and allowed to bias the subsequent optimization step to-
wards his/her preference (assumed to be based on the aesthetics of the solutions
provided). The solutions selected are used as initial population for the final op-
timization. In this case no restriction to the decision variables are imposed, thus
60 decision variables are considered. They are allowed to range in the interval [0,
5] meters, the aim being to cover all possible solutions generated in the previous
optimization cases.

The MOEA adopted in this work is the Reduced Pareto Set Genetic Algo-
rithm (RPSGA) proposed before by one of the authors [18,19]. The values of
the parameters inside the RPSGA are the best values as described in [19]. The
main and elitist populations had 100 and 200 individuals, respectively; a roulette
wheel selection strategy was adopted; a crossover probability of 0.8, a mutation
probability of 0.05, a number of ranks of 30 and limits of indifference of the clus-
tering technique of 0.01 were chosen. In all cases the algorithm ran only during
10 generations due to the computation time required by the modeling software.

5.2 Optimization Results

Figures 5 to 7 shows the initial population and the non-dominated solutions of
the 10th generation, as well 3 different optimized designs of the roof structure, for



Aesthetic Design Using MOEAs 383

Fig. 5. Pareto frontier for case 1

Fig. 6. Pareto frontier for case 2
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Fig. 7. Pareto frontier for case 3

Fig. 8. Initial population for final optimization (non-dominated solutions of cases
1 to 3)

cases 1 to 3, respectively. As can be seen the algorithm is able to evolve during the
10 generations and the Pareto frontier obtained in each case is well distributed.
As expected, the roof structures obtained in case 1 are very random, while in
the other two cases the structures obtained are coherent with the boundary
conditions defined. In case 2 the corners are well defined and in case 3 this is
also true for the four sides of the structure.

From the Pareto solutions of these three cases a new Pareto front was defined
as illustrated in Figure 8. This set of solutions was the initial population of
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Fig. 9. Global optimization: initial population and non-dominated solutions after 10
generations

Fig. 10. Optimization considering a weight vector of (0.5; 0.5) and as initial population
the population resulting from previous run (Figure 9)
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the last optimization process, as identified in global strategy adopted in this
work (Figure 4). It is interesting to note that the Pareto solutions of the three
previous runs were able to define almost a continuous line. As can be observed in
the optimization results presented in Figure 9 the MOEA was able to fill some of
the gaps between the solutions of the initial population and some improvements
are obtained. As expected, the new non-dominated solutions are able to cover
all type of geometries obtained in the first three runs. Now the DM has the
starting point for selecting the preferred geometries having a very good idea of
their performance in terms of the two quantifiable objectives defined initially.
This is done in Figure 10 where a set of weights of (0.5, 0.5) was selected by
the DM, assuming that he/she ”likes” the designs present in the center of the
Pareto front (Figure 9). The decision making methodology based on the stress
function is applied using as initial population the population found before. This
method was able to obtain much better solutions than the previous ones and,
simultaneously, converge for the preferred region of the Pareto front. At this
point the DM can continues the process by selecting a new set of weights and/or
by imposing additional restriction on the size of the portion of the Pareto front
to be obtained.

Finally, it is important to note that in the generic roof structure two “sky-
lights” were designed. Those “skylights”, besides providing more light under the
structure, are a fundamental design characteristic of this object, and contribute
to the aesthetic perception of the geometry. But formal characteristics of a sur-
face can change dramatically under the manipulation of the control points. As
a result many of the intermediate solutions, although performing much better
on the quantitative evaluation criteria, will not classify as aesthetically pleasing
and will therefore be discarded or excluded by the DM from the next pool of
solutions.

6 Conclusions

Design is about decision making and requires judgment and trade-offs based
on the best available information. Therefore the role of optimization in design
is to provide the designer with quantitative and qualitative information. This
information is a way for increasing the designers understanding of the design
problem and the nature of good solutions.

Design decisions made in the early stages of the design process have a higher
effect on the final performance and outcome compared to decisions taken at
later stages of the design process. Therefore the strategies which are followed
in the beginning of a design project and the decisions made during those early
stages are most important. Generative systems are an essential part of the future
development of performative architectural systems where evolutionary principals
are applied in the initial stages of the design process with the intent to automate
explorative research. The outcome of those processes is expected to be surprising
and inspiring.
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This study has introduced the use of a MOEA in the conceptual phase of
the design process. The applied strategy for the use of a MOEA allowed for
the DM to iteratively control the outcome and steer the process to a personal
aesthetical solution. The DM can rely less on intuition to solve complicated
and conflicting design requirements and concentrate efforts on innovative and
aesthetical pleasing results.

The next step in this research is to demonstrate the applied design method and
this specific MOEA for the design of an architectural object which can be tested
and validated in the real physical world. In addition the method could be further
developed and prepared for general use by less computer literate architects and
designers for deployment in real world design processes.
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Abstract. Considering uncertainties in engineering optimum design is often a re-
quirement. Here, the use of the deterministic optimum design as the reference 
point in g-dominance is proposed. The multiobjective optimum robust design in a 
structural engineering test case where uncertainties in the external loads are taken 
into account is proposed as application, where the simultaneous minimization of 
the constrained weight average and the standard deviation of the constraints viola-
tion are the objective functions. Results include a comparison between both 
non-dominated sorting genetic algorithm II (NSGA-II) and strength Pareto evolu-
tionary algorithm (SPEA2), including S-metric (hypervolume) statistical compari-
sons with and without the g-dominance approach. The methodology is capable to 
provide robust optimum structural frame designs successfully.  

Keywords: Engineering Design, Multiobjective Optimization, Structural Opti-
mization, Frames, Steel Structures, Uncertainty, g-dominance. 

1   Introduction 

The inclusion of uncertainties in the problem variables are often required in engineer-
ing design, being these parameters not given fixed coefficients, but random variables. 
Concretely, in the field of structural design optimization, traditionally two approaches 
are considered: reliability-based design optimization (RBDO) and robust design opti-
mization (RDO), (a recent reference is e.g. Tsompanakis et al. [18]). 

Evolutionary multiobjective algorithms have been used in the RDO approach in 
computational solid, e.g. Lagaros et al. [14] or Greiner et al. [9] and computational 
fluid mechanics, e.g. Lee et al. [16], where the simultaneous minimization of the 
desired fitness function average (first objective) and its standard deviation (second 
objective) is considered. Also a multiobjective hybrid approach is used in Lagaros et 
al. [15] with a RBDO and a reliability-based robust design optimization (RRDO) in 
structural trusses. 

The articulation of decision maker preferences can be expressed before (a priori), 
progressively during (interactive), and after (a posteriori) the optimization process.  
A posteriori, MOEA separate the optimization and decision making-process. First 
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1



390 D. Greiner et al. 

algorithms pursue to reach a set of candidate solutions and to sample it by an even 
distributed set of efficient solutions; then the decision maker chooses a solution ac-
cording to its preferences. This approach is very popular in the MOEA community. In 
interactive methods, search processes and dialogs with the decision maker are alter-
nated. At the end of this reiterated guided exploration process, the decision maker has 
a deep knowledge to adopt the most representative solution. In a priori MOEA the 
idea consists of incorporating the decision maker’s preferences before the process of 
search and convergence to the preferred region of the Pareto front. In this context, a 
survey of representative work can be found in [1]. Recent advances in multicriteria 
decision making based evolutionary multiobjective algorithms have considered the 
use of a reference point in the optimization process: R-NSGA-II in Deb et al. [3] or g-
dominance in Molina et al. [17]. In this paper, considering the reference point fitness 
values based in the deterministic optimum design (where the optimization is per-
formed taken into account fixed parameters/variables without considering uncertain-
ties) is suggested. The deterministic optimum design is often determined by the prob-
lem constraint limits. In case of including uncertainties, this deterministic design 
easily violates them, but constitutes a good reference where to evaluate the non-
dominated front. Here, a multiobjective optimum robust design problem through a 
structural engineering test case where uncertainties in the external loads are taken into 
account is proposed as validation case. The simultaneous minimization of the con-
strained mass average and the standard deviation of the constraints violation are the 
objective functions, and g-dominance is used to fix the reference point.  

The paper describes in the second section the structural problem including the de-
terministic approach and the uncertainty consideration approach, following with the 
proposal of considering the deterministic optimum design as reference point in g-
dominance criterion when including uncertainties. The test case constitutes the fourth 
section, followed by results and discussion. Finally it ends with the conclusions, ac-
knowledgment and references. 

2   The Structural Problem 

2.1   Deterministic Design 

Bar structures designs have to be balanced between guaranteeing the fulfilment of its 
function (to maintain the structural loads: a) without collapsing or breaking -or even 
without surpassing some stress value frequently associated with yield stress or fatigue 
stress limits-; b) without suffering from unstable phenomena associated with the 
buckling effect; c) without surpassing certain structural displacements values which 
lead to unsafety) and doing it in an economic way. The former is roughly associated 
with increasing the bar cross-section types, while the latter is associated with dimin-
ishing them. Therefore the objective is to perform a constrained mass minimization 
where the fitness function has to consider these proper requirements of the bar struc-
ture to fulfil its function. Its value is directly related with the acquisition cost of raw 
material of the metallic frame. The information needed by the fitness function is ob-
tained through a finite element code and the applied constraints in order to guarantee 
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the appropriate functionality of the structure are defined in terms of stresses, compres-
sive slenderness and displacements: 

a) Stresses of the bars, where the limit stress (σlim) depends on the frame material 
and the comparing stress (σco) takes into account the axial and shearing stresses by the 
shear effort, and also the bending effort. For each bar, Equation (1) has to be accom-
plished:  

              0lim ≤− σσ com ,        (1) 

being σco the comparing stress of each bar, and σlim the stress limit.  
b) Compressive slenderness limit, for each bar where the buckling effect is consid-

ered (depending on the code used it could have different values) Equation (2) has to 
be satisfied: 

0lim ≤− λλcom  
,                                                      (2) 

being λco the slenderness of each bar, and λlim the compressive slenderness limit.  
c) Displacements of joints or middle points of bars are also a possible requirement, 

as observed in Equation (3), valid for each displacement constraint: 

  0lim ≤− uucom ,                                                   (3) 

being uco the comparing displacement of each required joint or point, and ulim the 
displacement limit (as in equations (1) to (3), the constraints limits –lim– are prede-
fined parameters and the comparison magnitudes –com– are variables obtained from 
the finite element analysis). 

With these constraints, the fitness function constrained mass, which integrates the 
constraints violations as mass penalties, is shown in Equation (4). 
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Where: 
Ai = area of the section type of bar i; ρi = density of bar i; li = length of bar i; k = con-

stant that regulates the equivalence between mass and restriction (suitable values around 
the unity order); violj = for each violated restriction j, is the quotient between the vio-
lated restriction value (stress, displacement or slenderness) and its reference limit. 

No uncertainties (that is, no random variables consideration) are taken into account 
in the previously exposed deterministic design problem, which is defined as a mono-
objective optimum engineering design problem (mass minimization) and has been 
solved extensively in the literature (e.g. see [13]). 

2.2   Design Including Uncertainties 

The deterministic optimum design of a bar structure is defined frequently by the im-
posed constraints in terms of stress, displacement or buckling, which are conducted to 
their limit values, without surpassing them. The variation condition in loads is in real 
structures frequent, and it is considered in the design codes. So, a deterministic  
optimized structure, due to the fact that has their constraints near the limit values is 
expected to be more sensitive to those random variations. An analysis of those  
uncertainties is required to guarantee a robust design. The principal objective of  
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robust design is to find a solution with less sensitive structural performance to the 
fluctuations of variables and/or parameters without eliminating their variation. Here, 
uncertainties in term of the variation of external parameters, the structural loads, are 
considered. The variation of the load actions which act over a structure from the view-
point of the probabilistic or semi-probabilistic safety criteria, is associated with con-
sidering the loads as stochastic variables and to the existence of some: a) limit 
ultimate states that guide to the total or partial ruin of the structure and, b) limit ser-
vice states that when achieved produce its malfunctioning. Here, in order to define the 
actions, it is assumed that their variation follows a Gaussian probability density func-
tion. The characteristic value of an action is defined as the value that belongs to the 
95% percentile, that is, a probability of 0.05 to be surpassed, which is considered as 
the deterministic value in no uncertainty consideration case. In this paper, in order to 
model the stochasticity of the actions, standard Monte Carlo simulations are per-
formed considering variable distribution of the external loads.  

The Monte Carlo methods are essentially based on the possibility of evaluating the 
integral I  (Equation (5)) using the so called Horvitz-Thompson estimator Î  [10]. To 
do so, a set of independent random samples X1,X2,…,Xn drawn according to a prob-
ability density function p(x) are used. If the domain is Ω=[0,1]s, the samples Xi are 
independent and uniformly distributed, then Î yields the correct result on average. 

       ( )
2

2

1

1 1 ( )ˆ( ) ( ) ( )
( )

N

i
i

f x
I f x d x I f X V Î d x I

N N p x
μ μ

=Ω Ω

⎡ ⎤
⎡ ⎤= = = −⎢ ⎥⎣ ⎦

⎣ ⎦
∑∫ ∫       (5) 

The error made in the approximation is, on average, Nf )(σ  being the approxima-

tion O(N-1/2).  Monte Carlo converges in spaces of any dimension, without taking into 
account the regularity or smoothness of the integrand, but the efficiency of the simula-
tion can be enhanced using some Variance Reduction [4], whose idea is to increase the 
efficiency of the simulation process using known information about the system being 
simulated. A high number of variance reduction techniques have been developed during 
the past decades, for many and very different situations, among them the so called “Im-
portance Sampling” and those based on Markov Chain Monte Carlo techniques (e.g. 
Gibbs Sampling and Metropolis-Hastings algorithms) are very efficient for many prob-
lems. Monte Carlo has been utilized, among others, to simulate the large complex sys-
tem models in which the usage of deterministic methods is very costly or impossible. 

The exposed method is also applicable in case of uncertain values of material prop-
erties (such as Young Modulus) or uncertain values of the loads directions, but it has 
not been considered here. 

3   Deterministic Optimum Design as Reference Point for Robust 
Optimization 

When no uncertainties are considered, the optimum design is called deterministic 
optimum design, and, in case that constraints are imposed, this deterministic optimum 
design should satisfy all of them; that is, no constraint violations are allowed in  
this design. Considering the same problem, but now with some of the external  
variables/parameters as random variables, we are dealing with uncertainty. As the 
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previous deterministic optimum design appears frequently as being in the border of 
the constraints violation, when considering this external random variables, is highly 
probable that the deterministic optimum design violates the constraints in this new 
uncertain environment.  

A robust design achieves designs with good performances and simultaneously, is 
minimum sensitive to external variations (random variables). In our structural frame 
optimization problem, that means to achieve designs with low constrained mass aver-
age (good performance) and low constraints violations standard deviations (minimum 
sensitive to external variations). Both objectives are minimized. Therefore, the func-
tion values of the deterministic optimum design are good estimators of a lower limit 
of the solutions when considering uncertainties in the optimization (it is expected that 
those deterministic optimum values dominate the designs of the problem when con-
sidering random variables). That is, it is a good approach to consider those values as 
the reference point in the g-dominance criterion. G-dominance was introduced in [17]. 
It produces a reduced set of non-dominated solutions adapted to the decision maker 
preferences when they are expressed in terms of a reference point (aspiration level 
containing desirable values for the objective functions). The search space is divided in 
regions according to this reference point. G-dominance enhances those solutions: a) 
that either dominate the reference point or b) which are dominated by the reference 
point, discriminating all the others. So, when we are interested in the environment of a 
certain point in the objective space, it is a very useful tool. From the perspective of 
decision making, the preference information of the decision maker is given here as the 
reference point coordinates. Two ways of implementing g-dominance are proposed in 
[17]: a) changing the dominance-checking function and, b) changing the evaluation of 
the objective functions by greatly penalizing those solutions which do not belong to 
the area of interest as described previously. Here the latter (also claimed by the g-
dominance authors as the simplest way to implement g-dominance) is used both in 
NSGA-II (Deb et al. [2]) and SPEA2 (Zitzler et al. [21]). 

So, the deterministic optimum design objective function values are taken as the ref-
erence point in g-dominance for multiobjective optimization when considering uncer-
tainties in the design. 

4   Test Case 

The considered reference test case is based on a problem taken from Hernández 
Ibáñez [11] for single objective mass minimization using continuous variables. The 
solution reported in the previous reference using classical optimization methods was 
improved using evolutionary algorithms in Greiner et al. [6]. This last deterministic 
evolutionary optimum design is taken as reference in this work and compared with the 
robust optimum design non-dominated front. 

Figure 1 shows the test case, where lengths (10 and 20) and height (6) are in meters 
and the loads in T/m. (1.5, 1.0 and 0.2). There is a constraint of maximum displace-
ment of middle point of bar 2 equal to length/300, that is 6.67 cm. It is a discrete do-
main problem, belonging the cross-section types to the IPE class (16 different types 
per bar). It has been taken into account the buckling effect, and also its own gravita-
tional load. The considered density (7.85 T/m3) and Young modulus (2100 T/cm2) are 
common steel values and the yield stress is 235.2 Mpa. 
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Fig. 1. Structural Test Case 

The Monte Carlo simulation has been performed considering 30N simulations per 
structural design in order to construct its constraint violation distribution, being N the 
number of different variables considered. Here the simulated variables correspond to 
the linear uniform loads of the frame structure which are three, belonging to each 
loaded bar (1, 2 and 4). 

The distribution of each linear uniform load is simulated through a Gaussian distri-
bution, which is calculated considering the test case load value as the characteristic 
value and its coefficient of variation being 6,1% for the vertical loads  (bars 1 and 2) 
and 30,5% for the lateral load (bar 4). Their distributions are graphically represented 
in Figure 2. 

 

Fig. 2. External Load Distributions (Gaussian); Bars 4, 2 and 1, respectively 

5   Results and Discussion 

Ten independent runs of the evolutionary optimization design were executed in  
each case: NSGA-II, and SPEA2, both with implemented g-dominance relation. A 
population size of 200 individuals and 6% mutation rate (following results obtained in 
[7]) were used with Gray coding as described in Whitley et al. [19] (it has been found 
to be advantageous compared to standard binary in discrete frame structural design in 
[8]) with uniform crossover. 
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Fig. 3. G-dominance with deterministic design fitness function values as reference point. Non-
dominated final optimum front function evaluations of the ten independent executions. NSGAII 

  

Fig. 4. G-dominance with deterministic design fitness function values as reference point. Non-
dominated final optimum front function evaluations of the ten independent executions. SPEA2 
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The reference point was set from the value of the deterministic optimum design (taken 
from [6]): a mass of 3324.3 kg. for the x-coordinate and 0.0 kg. for the y-coordinate, 
as there are no constraints violation in the deterministic optimum when no uncertain-
ties are considered. This reference point is depicted as a black point in figures 3 and 4. 
Dealing with robust design, when uncertainties are included, the optimum structural 
designs are expected to weight more due to the penalty function strategy (as described 
in section 2.1) because of the possible constraint violation; as well as the constraints 
violation standard deviation is expected to increase because of the same reason. 
Therefore, this deterministic optimum solution is expected to dominate the robust 
optimum design solutions, being also their objective function values desirable to be 
achieved. So, it is a good selection of the reference point in the g-dominance. 

In figures 3 and 4, the non-dominated solutions of the final fronts belonging to 
each of the ten independent cases of NSGA-II and SPEA2 are shown, respectively. As 
some of the cases do not achieve the best non-dominated solutions, there are some 
points dominated by others in these figures. Some detailed solutions are represented 
in tables 1 and 2: the lowest mass design has been selected from each of the non-
dominated solutions of each algorithm. Both achieve the same thirteen designs, being 
the deterministic optimum design (third line in bold in both tables) also included as 
member of the best robust structural designs set. Their representations in the func-
tional space are highlighted in figures 3 and 4.  

According to the results, there are ten structural designs with lower constraint vio-
lation, having the one with 3492.0 kg. the lowest structural mass. Even considering 
uncertainties, this last design allows a null constraint violation. So, beginning with the 
structural design that corresponds to the deterministic optimum, there are eleven 
choices from lower to higher robustness until a complete absence of constraints viola-
tion. Therefore, the suggested approach of considering the reference point of g-
dominance as the values of the objectives function corresponding to the deterministic 
design without uncertainties considerations when optimizing with uncertainties has 
succeed. Even more, its design in the robust optimization is located the nearest in the 
functional space -Figs 3 and 4- (the deterministic optimum design has two different 
materializations in terms of objective functional space in these figures: a) without 
considering uncertainties, it constitutes the g-dominance reference point, or black 
point in the figures; b) considering uncertainties, it constitutes the surrounded red 
points labeled as deterministic optimum design in the figures). 

In tables 1 and 2, some detailed designs are shown (the one with lower constrained 
mass of each design has been selected). The cross section types are identical in both 
cases for the thirteen structural designs. The differences in numerical values of the 
third first columns between NSGA-II and SPEA2 are due to the stochastic nature of 
Monte Carlo simulations; in any case these differences are minor and unimportant. 

To compare the outcome of the whole front during the optimization process of the 
g-dominance approach versus the standard approach, we will evaluate the S-metric 
(hypervolume, originally proposed by Zitzler and Thiele [20]), which is a distin-
guished unary quality measure for solution sets in Pareto optimization [12], taking 
into account both coverage and approximation to the optimum front. Concretely, we 
use the S-metric proposal of Fonseca et al. [5] (Source code available at: 
http://sbe.napier.ac.uk/~manuel/hypervolume). The reference point considered is 
(3.104, 2000), whose values are chosen in order to guarantee that they are dominated 
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by the candidate designs generated by the evolutionary multiobjective algorithms. 
Values of the S-metric in figures 5 to 10 have been normalized using as lower and 
higher values the minimum and maximum values (5.30567. 107 and 5.33488. 107, 
respectively) from the hypervolume averages and best sets among the ten independent 
cases of both evolutionary algorithms. 

Table 1. Detailed Non-dominated Structural Designs belonging to NSGA-II executions (bold 
corresponds to deterministic optimum) 

Constrained 
Mass (kg) 

Standard 
Dev. of 

Constraints 
Violation 

(kg) 

Average of 
Constraints 
Violation 

(kg) 

Bar 1 
Cross 

Section 
Type 

Bar 2 
Cross 

Section 
Type 

Bar 3 
Cross 

Section 
Type 

Bar 4 
Cross 

Section 
Type 

3324 166.182 132.351 IPE360 IPE500 IPE300 IPE500 
3324.04 100.624 47.607 IPE360 IPE500 IPE300 IPE550 
3328.37 25.144 4.055 IPE330 IPE500 IPE450 IPE500 
3370.5 24.228 3.791 IPE400 IPE550 IPE200 IPE450 

3392.18 18.689 2.394 IPE400 IPE550 IPE220 IPE450 
3394.54 13.402 1.299 IPE360 IPE550 IPE300 IPE450 
3405.89 7.967 0.564 IPE330 IPE500 IPE500 IPE500 
3408.38 4.984 0.225 IPE400 IPE550 IPE160 IPE500 
3426.17 2.703 0.114 IPE400 IPE550 IPE180 IPE500 
3447.77 1.901 0.05 IPE400 IPE550 IPE200 IPE500 
3470.81 0.55 0.007 IPE400 IPE550 IPE220 IPE500 
3482.26 0.126 0.001 IPE360 IPE550 IPE360 IPE450 
3492.94 0 0 IPE400 IPE550 IPE160 IPE550 

Table 2. Detailed Non-dominated Structural Designs belonging to SPEA2 executions (bold 
corresponds to deterministic optimum) 

Constrained 
Mass (kg) 

Standard 
Dev. of 

Constraints 
Violation 

(kg) 

Average of 
Constraints 
Violation 

(kg) 

Bar 1 
Cross 

Section 
Type 

Bar 2 
Cross 

Section 
Type 

Bar 3 
Cross 

Section 
Type 

Bar 4 
Cross 

Section 
Type 

3324 165.449 132.347 IPE360 IPE500 IPE300 IPE500 
3324.01 100.658 47.573 IPE360 IPE500 IPE300 IPE550 
3328.35 24.551 4.031 IPE330 IPE500 IPE450 IPE500 
3370.55 23.974 3.839 IPE400 IPE550 IPE200 IPE450 
3392.13 17.998 2.343 IPE400 IPE550 IPE220 IPE450 
3394.52 13.086 1.276 IPE360 IPE550 IPE300 IPE450 
3405.88 7.652 0.547 IPE330 IPE500 IPE500 IPE500 
3408.38 4.767 0.221 IPE400 IPE550 IPE160 IPE500 
3426.16 2.988 0.109 IPE400 IPE550 IPE180 IPE500 
3447.77 2.029 0.051 IPE400 IPE550 IPE200 IPE500 
3470.82 0.835 0.021 IPE400 IPE550 IPE220 IPE500 
3482.26 0.157 0.002 IPE360 IPE550 IPE360 IPE450 
3492.94 0 0 IPE400 IPE550 IPE160 IPE550 
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Fig. 5. Hypervolume average over ten independent executions comparing standard NSGA-II 
and NSGA-II with g-dominance approach 

 

 

Fig. 6. Hypervolume best over ten independent executions comparing standard NSGA-II and 
NSGA-II with g-dominance approach 
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Fig. 7. Hypervolume standard deviation over ten independent executions comparing standard 
NSGA-II and NSGA-II with g-dominance approach 

 

Fig. 8. Hypervolume average over ten independent executions comparing standard SPEA2 and 
SPEA2 with g-dominance approach 
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Fig. 9. Hypervolume best over ten independent executions comparing standard SPEA2 and 
SPEA2 with g-dominance approach 

 

Fig. 10. Hypervolume standard deviation over ten independent executions comparing standard 
SPEA2 and SPEA2 with g-dominance approach 
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Results are graphically represented in Figures 5 to 10. The x-axis belongs to the num-
ber of function evaluations and the y-axis belongs to the hypervolume (S-metric) 
normalized values: average (Figs 5 and 8), best (Figs 6 and 9) and standard deviation 
(Figs 7 and 10) over the ten independent runs of NSGA-II (Figs 5-7) and SPEA2 
(Figs 8-10) algorithms. The g-dominance approach hypervolume is compared versus 
the standard approach (conventional Pareto non-domination rule), being only the 
solutions dominated by the reference point (deterministic optimum solution values) 
considered for metric evaluation. Under this hypothesis, figures of average and best 
values over the ten independent executions show clearly the higher values achieved 
by the g-dominance approach, both in NSGA-II and SPEA2 algorithms. In the hyper-
volume average values this advantage is also present in the left part of the figure at 
the steepest section of the figure. Examining the hypervolume averages, the maximum 
average of standard NSGA-II (0.97371) achieved at 20,000 fitness evaluations is 
surpassed in case of g-dominance NSGA-II only with 1600 fitness evaluations (Fig. 
5); also the maximum average of standard SPEA2 (0.97205) is surpassed in case of g-
dominance SPEA2 only with 2600 fitness evaluations (Fig. 8). In the final stages of 
the evolution, the standard deviation of the g-dominance approach is slightly higher 
than the one of the standard approach.  

In order to compare the behaviour of both evolutionary multiobjective algorithms 
when hybridized with the g-dominance approach, it is remarkable that the NSGA-II 
shows in this structural engineering robust optimum design application case a much 
faster convergence to the optimum non-dominated front than the SPEA2 at the  
 

 

 

Fig. 11. Hypervolume average over ten independent executions comparing NSGA-II with 
g-dominance and SPEA2 with g-dominance approaches 
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earliest steps of the evolution. This is shown in Figure 11, where the average of the hyper-
volume over the ten independent executions is represented. This is also reflected in the 
hypervolume best values. Nevertheless, from the middle part of the evolution to the end, 
the obtained results of both algorithms are very similar, without significant differences. 

6   Conclusions 

A methodology using g-dominance has been proposed and implemented to use the 
deterministic optimum solution without uncertainties consideration, as reference point 
for the evolutionary multiobjective robust optimum design including uncertainties. As a 
first test case, a frame structure considering external loads as random Gaussian variables 
has been optimized here successfully with two evolutionary multiobjective algorithms 
(NSGA-II and SPEA2), showing the capabilities of the proposed methodology.  

The choice of the reference point for g-dominance is pointed out to be key to con-
tribute to the successful application of this novel methodology: the deterministic op-
timum design (whose genotype is known a priori) has been found the nearest to the 
g-dominance reference point in the objective space considering the robust optimiza-
tion, and a set of close compromised optimum designs have been obtained as candi-
dates to solve efficiently the structural engineering problem with uncertainties consid-
eration, (which includes the solution with no constraints violation). 

In the future it would be interesting to extend this optimum design methodology to 
other structural problems and other fields of engineering problems (e.g.: aeronautical, 
safety systems design), where the consideration of uncertainties in the optimization proc-
ess is undoubtedly of value, and the integration of multicriteria decision making tools such 
as the g-dominance procedure introduced here could facilitate to solve them. 

Acknowledgement 

This work has been partially funded by the research project ULPGC2008-009. Also 
computational resources are supported by the project UNLP08-3E-2010 of the Secre-
taría de Estado de Universidades e Investigación, Ministerio de Ciencia e Innovación 
(Spain) and FEDER. The authors thank the anonymous reviewers for their helpful and 
constructive comments. 

References 

1. Branke, J.: Consideration of Partial User Preferences in Evolutionary Multiobjective Op-
timization. In: Branke, J., et al. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 
157–178. Springer, Heidelberg (2008) 

2. Deb, K., Pratap, A., Agrawal, S., Meyarivan, T.: A fast and elitist multiobjective genetic al-
gorithm NSGAII. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002) 

3. Deb, K., Sundar, J., Bhaskara, U., Chaudhuri, S.: Reference Point Based Multi-Objective 
Optimization Using Evolutionary Algorithms. International Journal of Computational In-
telligence Research 2(3), 273–286 (2006) 

4. Fishman, G.S.: Monte Carlo: Concepts, Algorithms and Applications. Springer Series in 
Operations Research. Springer, New York (1996) 



 Introducing Reference Point Using g-Dominance in Optimum Design 403 

5. Fonseca, C., Paquete, L., López-Ibáñez, M.: An improved dimension-sweep algorithm for the 
hypervolume indicator. IEEE Congress on Evolutionary Computation, 1157–1163 (2006) 

6. Greiner, D., Winter, G., Emperador, J.M.: Optimising Frame Structures by different strate-
gies of genetic algorithms. Fin Elem Anal. Des. 37(5), 381–402 (2001) 

7. Greiner, D., Winter, G., Emperador, J.M.: A comparative study about the mutation rate in 
multiobjective frame structural optimization using evolutionary algorithms. In: Schilling, 
R., et al. (eds.) Proceedings of the Sixth Conference on Evolutionary and Deterministic 
Methods for Design, Optimization and Control with Applications to Industrial and Societal 
Problems –EUROGEN–, Munich, Germany (2005) 

8. Greiner, D., Winter, G., Emperador, J.M., Galván, B.: Gray Coding in Evolutionary Mul-
ticriteria Optimization: Application in Frame Structural Optimum Design. In: Coello 
Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 
576–591. Springer, Heidelberg (2005) 

9. Greiner, D., Emperador, J.M., Galván, B., Winter, G.: Robust optimum design of metallic 
frames under uncertain loads. In: Congress of Numerical Methods in Engineering, Barce-
lona, Spain (2009) 

10. Hammersley, J.M., Handscomb, D.C.: Monte Carlo Methods. Chapman and Hall, New 
York (1964) 

11. Hernández Ibáñez S.: Structural Optimal Design Methods. Seinor Collection, Col. In-
genieros Caminos, Canales y Puertos, Madrid (1990) 

12. Knowles, JD., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochas-
tic multiobjective optimizers. TIK-Report No. 214, Computer Engineering and Networks 
Laboratory, ETH Zurich (February 2006) 

13. Kicinger, R., Arciszewski, T., De Jong, K.A.: structural design: A survey of the state of the 
art. Computers and Structures 83, 1943–1978 (2005) 

14. Lagaros, N.D., Papadrakakis, M.: Robust seismic design optimization of steel structures. 
Struct. Multidisc. Optim. 37, 457–469 (2007) 

15. Lagaros, N.D., Tsompanakis, Y., Fragiadakis, M., Plevris, V., Papadrakakis, M.: Metamodel-based 
computational techniques for solving structural optimization problems considering uncertainties. 
In: Tsompanakis, Y., Lagaros, N.D., Papadrakakis, M. (eds.) Structural Design Optimization con-
sidering Uncertainties. Structures and Infrastructures Series. Taylor & Francis, Taylor (2008) 

16. Lee, D.S., Gonzalez, L.F., Periaux, J., Srinivas, K.: Robust design optimisation using mul-
tiobjective evolutionary algorithms. Comput. Fluids 37(5), 565–583 (2008) 

17. Molina, J., Santana, L., Hernández-Díaz, A., Coello, C.A., Caballero, R.: g-dominance: 
Reference point based dominance for multiobjective metaheuristics. European Journal of 
Operational Research 197, 685–692 (2009) 

18. Tsompanakis, Y., Lagaros, N.D., Papadrakakis, M.: Structural Design Optimization Con-
sidering Uncertainties. Structures & Infrastructures Series, vol. 1. Series Ed: Frangopol 
D.Taylor & Francis, USA (2008) 

19. Whitley, D., Rana, S., Heckendorn, R.: Representation Issues in Neighborhood Search and Evo-
lutionary Algorithms. In: Quagliarella, D., Périaux, J., Poloni, C., Winter, G. (eds.) Genetic Al-
gorithms and Evolution Strategies in Engineering and Computer Science, pp. 39–57. John 
Wiley & Sons, Chichester (1997) 

20. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms - A 
Comparative Case Study. In: Eiben, A.E., et al. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 
292–301. Springer, Heidelberg (1998) 

21. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary 
Algorithm for Multiobjective Optimization. In: Evolutionary Methods for Design, Optimi-
zation and Control with Applications to Industrial Problems, CIMNE, pp. 95–100 (2002) 



Multiobjective Dynamic Optimization of
Vaccination Campaigns Using Convex Quadratic

Approximation Local Search
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Abstract. The planning of vaccination campaigns has the purpose of
minimizing both the number of infected individuals in a time horizon and
the cost to implement the control policy. This planning task is stated here
as a multiobjective dynamic optimization problem of impulsive control
design, in which the number of campaigns, the time interval between
them and the number of vaccinated individuals in each campaign are
the decision variables. The SIR (Susceptible-Infected-Recovered) differ-
ential equation model is employed for representing the epidemics. Due
to the high dimension of the decision variable space, the usual evolu-
tionary computation algorithms are not suitable for finding the efficient
solutions. A hybrid optimization machinery composed by the canoni-
cal NSGA-II coupled with a local search procedure based on Convex
Quadratic Approximation (CQA) models of the objective functions is
used for performing the optimization task. The final results show that
optimal vaccination campaigns with different trade-offs can be designed
using the proposed scheme.

1 Introduction

The need to understand and to model the dynamics of disease proliferation has
originated an area of research, the mathematical epidemiology [10]. It performs
quantitative studies of the distribution of health/disease phenomena, besides
assessing the effectiveness of interventions in public health [5]. This area offers
important tools to analyze the spread and to execute control of infectious dis-
eases. Epidemiology models can contribute to the design and analysis of epidemi-
ological surveys, suggest crucial data that should be collected, identify trends,
make general forecasts, and estimate the uncertainty in forecasts [13]. The model
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formulation process clarifies assumptions, variables, and parameters; moreover,
models provide conceptual results such as thresholds, basic reproduction num-
bers, contact numbers, and replacement numbers. Mathematical models and
computer simulations are useful tools for building and testing theories, assessing
quantitative conjectures, answering specific questions, determining sensitivities
to changes in parameter values, and estimating key parameters from data. Un-
derstanding the transmission characteristics of infectious diseases in communi-
ties, regions, and countries can lead to better approaches to the control of such
diseases. Mathematical models are used in comparing, planning, implementing,
evaluating, and optimizing various detection, prevention, therapy, and control
programs [14,4].

The epidemiological model SIR, proposed by Kermack and McKendrick in
1927 [15], is one of the most used to represent infectious diseases. This model
classifies the individuals in susceptible (S), infected (I) and recovered (R), and
these states are related by a system of differential equations [1,14].

A big challenge in public health is related to the planning of vaccination cam-
paigns, which aim to eradicate a disease, or to control its spread avoiding large
epidemic peaks or significant endemic states, with the minimum possible cost.
Many works have applied control theory to develop optimal vaccination strate-
gies. Most of them used pulse vaccination, which is an impulsive control defined
by the repeated application of a fixed vaccination ratio in discrete instants with
equal time intervals [1,20,14,21,16,11,17,12,24].

In some previous works [6,7,8], the authors of this paper sketched some steps
toward a multiobjective optimization approach for the design of the vaccination
control of epidemics in a given time horizon. This approach is more flexible than
former ones, since it allows different sizes of pulse control action in different
instants, and it also allows the application of pulses at arbitrary time instants.
However, in those works, the usage of conventional evolutionary computation al-
gorithms as the optimization machinery conducted to unsatisfying results, prob-
ably due to the large dimension of the decision variable space, which is caused
by the dynamic nature of the problem.

The present work proposes the use of a hybrid optimization machinery to cope
with this problem: a canonical evolutionary multiobjective algorithm is coupled
with a local search operator based on a Convex Quadratic Approximation (CQA)
of the objective functions. The CQA is applied around some selected points of the
nondominated population, in order to provide a local description of the objective
functions that allows the accurate determination of good candidate points that
are expected to be non-dominated solutions. The CQA employed here uses a
semi-positive definite diagonal Hessian matrix [22].

The NSGA-II [9] is used as the basic multiobjective evolutionary algorithm,
and the CQA operator to be embedded in the NSGA-II is based on the model
presented in [18]. This CQA operator performs the minimization of the 1-norm
of the error, considering a model that represents a lower bound for the function
points, allowing the problem to be solved via linear programming. It must be
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pointed out that any other multiobjective evolutionary algorithm could be used.
The CQA operator used here, however, is especially suitable for high dimensional
functions. Other approximation schemes, such as the one presented in [22] would
not work in the problem here, due to this high dimension.

To show the effectiveness of the proposed engine to the planning of vaccina-
tion campaigns, a Monte Carlo simulation experiment is developed, running the
scheme with and without the CQA local search. It becomes clear the advantage
of the hybrid method.

The paper is organized in the following way: Section 2 explains the SIR epi-
demics model; Section 3 shows the optimization model for the epidemics con-
trol problem; Section 4 presents the CQAs for function approximation; Section 5
shows the proposed optimization engine; Section 6 shows the results; and Section 7
concludes the paper.

2 The SIR Model

This work uses the deterministic SIR (Susceptible-Infected-Recovered) epidemics
model to describe the dynamics of a disease in a population. This model classifies
the individuals in three compartments related to their health condition:

– Susceptible (S): an individual which may be infected by the disease from the
contact with infected individuals;

– Infected (I): an individual which has the disease and can transmit it to
susceptible individuals through contact; and

– Recovered (R): an individual which was cured or received a vaccine,
becoming immune to the disease.

The SIR model is represented by a system of three differential equations, shown
in Equation (1).

dS

dt
=μN − μS − βIS

N
, S(0) = So ≥ 0

dI

dt
=

βIS

N
− γI − μI, I(0) = Io ≥ 0

dR

dt
=γI − μR, R(0) = Ro ≥ 0 (1)

In this system, S, I and R are respectively the number of susceptibles, infected
and recovered, N is the total number of individuals (which is supposed to be
fixed: S(t)+I(t)+R(t) = N, ∀t). The parameters are: β is the transmission rate,
γ is the recovery rate of infected individuals, and μ is the rate of new susceptibles.
To keep the number of individuals in population constant, the mortality rate and
the birth rate are made equal. As N is constant along the time, the variables
can be written as ratios: s(t) = S(t)/N , i(t) = I(t)/N , r(t) = R(t)/N , and
r(t) = 1 − s(t) − i(t).

This epidemics model examines the spread of disease in a population dur-
ing a time-stage, in an average sense. It is mathematically and epidemiologically
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well-conditioned [14]. The basic reproductive number R0 is defined as R0 =
β/(μ+γ), which represents the average number of infections produced by an in-
fected individual. The article [14] shows that the system SIR has an
asymptotically stable endemic equilibrium if and only if R0 > 1.

The parameter values used for the purpose of buiding an example in this
work are shown in Table 1. The number of individuals considered is N = 1000.
The initial condition, in ratios, is A = (so, io, ro) = (0.99; 0.01; 0.00). The time
horizon adopted is T CNTRL = 360 (u.t.).

Table 1. Parameters of SIR

Parameter Value
μ 1/90
β 0.15
γ 1/50

Figure 1 shows the behavior of the system without intervention for this con-
figuration. In this case, the stable point is F = (0.21; 0.28; 0.51). Notice that the
amount of infected individuals in the stable point (the endemic equilibrium) is
very significant and, for this reason, it is necessary act to control the disease.
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Fig. 1. Behavior of the SIR model without intervention, considering the parameters
shown in Table 1
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3 Optimization Model

This paper performs the planning of vaccination campaigns using a dynamic
optimization approach, in which the SIR model is the dynamic system, and
an arbitrary number of impulsive control inputs (vaccination campaigns), with
arbitrary amplitudes, are applied in arbitrary time instants.

The main idea of impulsive control [23] is to split the continuous-time interval
in some stages, performing impulsive control actions just in some time instants.
The dynamic system keeps its autonomous dynamics in the time intervals be-
tween the consecutive impulsive control actions. The solution of the dynamic
programming impulsive control problems is sought here in open-loop – using
an evolutionary algorithm, which allows rather arbitrary objective function and
constraints, and is an alternative to the use of enumerative algorithms, which
have prohibitive computational complexity [3].

The time horizon [0, T CNTRL] has to be partitioned in a set of time instants
Γ = {τ0, . . . , τM}, such that τk < τk+1, τ0 = 0, τM = T CNTRL, and it does not
have to be equally spaced. The time instant τ+

k is defined as a time instant “just
before” the impulsive action in τk. The following discrete-time variable notation
is considered: x[k] = x(τk) and x[k+] = x(τ+

k ), for each state x = s, i or r.
The optimization variables of the problem are:

– The number of vaccination campaigns (stages): M ,
– The vector of time instants between the campaigns: Γ = {τ0, . . . , τM},
– The percentages of vaccines of the susceptible population during the

campaigns: P = {p[1], . . . , p[M ]}, such that p[k] = p(τk), for each τk in
Γ .

Notice that Γ depends on M , and P depends on Γ .
Since the vaccination acts only in the ratio of susceptible, then:⎧⎪⎪⎨⎪⎪⎩

s[k+] = s[k](1 − p[k]);
i[k+] = i[k];
r[k+] = r[k] + s[k]p[k];
k = 0, 1, . . . , M − 1.

(2)

Each initial value problem in (1) is valid during the time in which there is no
control action (vaccination) in the system – the system presents its autonomous
dynamics within such time intervals. A new initial condition for the system is
established in each stage according to the difference equation (2), linking each
stage with the next one. The set of initial conditions in t = 0 must be previously
known, if the explicit simulation of the system is to be performed.

The constraints are modeled as:

– Each time interval between stages Δτk = τk+1 − τk has to obey the relation:
0 < tmin ≤ Δτk ≤ tmax < T CNTRL;

– The sum of Δτk is not allowed to overcome the time horizon T CNTRL;
this determines the number of campaigns M ;
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– Each vaccination ratio p[k] has to follow the rule: 0 < pmin ≤ p[k] ≤ pmax ≤
1.0;

– It is desired that the number of susceptible and infected individuals, af-
ter t = T INIC respectively, satisfy S(t) ≤ s tol, I(t) ≤ i tol, for t ∈
(T INIC, T CNTRL).

The vaccination campaign planning is formulated as a multiobjective optimiza-
tion problem with two objective functions that should be minimized:

– F1 – the integral of infected population during the optimization horizon;
– F2 – the total cost with the campaign (sum of vaccines added with a fanciful

fixed cost of each campaign that represents, for instance, transportation,
advertisement, etc.).

Therefore, the bi-objective optimization model can be formulated as in
Problem (3):

min
M,Γ,P

⎧⎪⎪⎨⎪⎪⎩
F1 =

∫ T CNTRL

0 I(t)dt

F2 = c1 · M + c2 ·
∑M

k=0 S[k] · p[k]
(3)

subject to: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = μN − μS − βIS

N , S(0) = So ≥ 0;

dI
dt = βIS

N − γI − μI, I(0) = Io ≥ 0;

dR
dt = γI − μR, R(0) = Ro ≥ 0;

t ∈ (τ+
k , τk+1];

s(τ+
k ) = s[k+] = s[k](1 − p[k]);

i(τ+
k ) = i[k+] = i[k];

r(τ+
k ) = r[k+] = r[k] + s[k]p[k];

k = 0, 1, . . . , M − 1;

0 < tmin ≤ Δτk ≤ tmax < T CNTRL;
0 < pmin ≤ p[k] ≤ pmax ≤ 1.0;∑M

k=1 Δτk ≤ T CNTRL;

S(t) ≤ s tol, t ∈ (T INIC, T CNTRL);
I(t) ≤ i tol, t ∈ (T INIC, T CNTRL);

M ∈ N∗.

The solutions of a multiobjective problem constitute the non-dominated solution
set, or Pareto-optimal set. In a minimization problem with vector of objective
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functions J ∈ Rm, if y ∈ Rn denotes the vector of decision variables of the
problem and D ⊂ Rn the set of feasible solutions y, the Pareto-optimal set
Y ⊂ D is characterized by:

Y = {ȳ ∈ D;¬∃ y ∈ D : Ji(y) ≤ Ji(ȳ), ∀i = 1, . . . , m; J(y) �= J(ȳ)}. (4)

The image of the Pareto-optimal set Y by the objective function J , or J(Y ), is
the Pareto-front.

This paper deals with the problem of finding an estimate of the Pareto-optimal
set of problem (3). The parameters considered here are: T CNTRL = 360 u.t.,
tmin = 5.0 u.t., tmax = 20.0 u.t., pmin = 0.4, pmax = 0.8, T INIC = 100 u.t.,
s tol = 400, i tol = 5, c1 = 1000, c2 = 1. The other constant values are in
Table 1.

4 Convex Quadratic Approximation

Consider a real-valued function f : IRn → IR, with given distinct sample data
{(x(k), f(x(k)))}, for k = 1, 2, · · · , m, where m is the number of available points
to be used to find a convex quadratic real-valued function q : IRn → IR:

q(x) = h0 + ∇hT x + 0.5xT Hx, (5)

in which x ∈ IRn, h0 ∈ IR, ∇h ∈ IRn, H ∈ IRn×n is at least semi-definite
positive. The idea is that f(x(k)) ∼= q(x(k)) as much as possible.

The convex quadratic approximation can be described as a function q(p, x),
in which p ∈ IRs is a vector of the approximation function parameters. It is
assumed that enough data points are available so that m ≥ s. In particular, it was
adopted m = 2s in this work. In the model with diagonal Hessian, the number of
necessary parameters for the quadratic approximation is s = 1 + n + n = 2n + 1.

The convex quadratic approximation via linear programming uses the mini-
mization of the error 1-norm to fit the data. The following properties hold:

– The 1-norm approximation is robust with respect to outliers [2,19].
– The 1-norm approximation always interpolates a subset of data points [2].
– The convex quadratic approximation represents a lower bound for the sam-

ple points, providing also an indication of the global trend of the original
function.

The method generates a convex quadratic function of the form:

q(c0,∇c, D; x) = c0 + ∇cT x + 0.5xT Dx = c0 +
n∑

i=1

cixi + 0.5
n∑

i=1

dix
2
i , (6)

D is a diagonal matrix with elements d1, . . . , dn in its principal diagonal, with
di ≥ 0 for all 1 ≤ i ≤ n. This is a simple convex quadratic function. For a fixed
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x, q is linear in c0, c, and D. Consequently, the general problem is reduced to a
linear optimization problem [18]:

min
c0,c,D

m∑
k=1

(
f(x(k)) − q(c0, c, D; x(k))

)
(7)

subject to:

f(x(k)) ≥ q(c0, c, D; x(k)), ∀ 1 ≤ k ≤ m

di ≥ 0, ∀ 1 ≤ i ≤ n

The first constraint makes this approximation to become a lower bound for
the sample points. This minimization problem has 2n + 1 variables and m + n
inequality constraints. This is a linear programming (LP) problem, which can
be solved with efficient algorithms.

The approximated functions obtained in this way may be constructed within
the multiobjective optimization procedure using samples produced around some
individuals in the nondominated set, in some iterations, through the evolutionary
process. As each approximation function is convex (even when the original is
not), they can be aggregated into a weighted sum function, which is used for the
purpose of making guesses about the location of the requested nondominated
points. Preferentially, the objective function weights should be selected in order
lead to a diverse front. This CQA leads to an improvement of the performance
of evolutionary algorithms, with a slightly higher computational cost.

5 Optimization Engine

A canonical implementation of NSGA-II, denoted here by CAN, is used as the
basis algorithm for performing the optimization. The hybrid algorithm, denoted
here by QAP, is constructed taking the basis algorithm, with the following
modification, that is executed each five generations:

– A set of r points is chosen from the current nondominated solution set;
– A set of m new points is generated randomly, with Gaussian distribution,

around each point chosen in the last step;
– All objective functions are evaluated on the new points;
– A CQA is calculated for each objective function, for each one of the r sets

of m + 1 points;
– The quadratic approximation functions are used in order to generate p es-

timates of Pareto-optimal points, using the weighted-sum procedure with a
quadratic programming algorithm (the p weights are considered as equally
spaced between 0 and 1);

– The new r × p points are evaluated, and merged to the current population.

In the experiments conducted here it was used r = 2, with the deterministic
choice of the two extremes solutions of the set. It is adopted m = 2s, in which
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s is the number of parameters of the approximated convex quadratic function.
The number of points generated for each set of approximated functions is chosen
as p = N/2, in which N is the population size. This means that, each time the
local search is conducted, N points are generated, and the selection procedure
is performed over 3N points, 2N individuals coming from the usual iteration of
NSGA-II and N coming from the local search.

The problem (3) was solved using both CAN and QAP. Each algorithm was
tested in 30 independent executions. In both CAN and QAP versions, the pop-
ulation size was popsize = 40, the number of generations was ng = 100, the
probability of crossover was pc = 0.8, the probability of mutation was pm = 0.05
and the distribution for crossover and mutation were ηc = ηm = 10.

For each generation, it was computed the S-metric in order to evaluate the
convergence and quality of solutions returned by the evolutionary multiobjective
algorithms. The S-metric values were normalized in each test by the highest value
obtained. At the end of the tests, the solutions of all executions were merged
and a new non-dominated sorting was performed over the pool of all solutions.
The number of solutions remaining in the first Pareto front for each algorithm
is counted.

6 Experiments and Results

The executions of the two versions of NSGA-II (with and without the CQA
procedure) and the application of the methodology explained in Section 5 are
shown in Figure 2.

The final nondominated set is shown in Figure 2, in which the axes represent
the integral of infected individuals during the control, F1, normalized by the
total points returned by the Runge-Kutta method, and the cost of the control
during the time horizon, F2. The left side points correspond to more costly cam-
paigns, with smaller numbers of infected people, while the campaigns situated
at the right side represent less expensive alternatives. The blue cross points of
Fig. 2 represent the 98 nondominated solutions returned by NSGA-II with local
search (QAP) in all runs. The red asterisk points represent the 70 nondominated
solutions returned by the canonical NSGA-II (CAN ) in all runs.

To illustrate the actual vaccination policies that come from the proposed
procedure, the final nondominated solution picked from the left side of the final
nondominated front (Fig. 2) is shown in Fig. 3 and another one, picked from the
right side of the final front, is shown in Fig. 4. These figures show the behavior of
the controlled system, the percentage and total number of individuals vaccinated.
Note that the vaccination pulses employed in the vaccination campaigns are
allowed to vary from one campaign to the next one, and also that the intervals
between campaigns are different too. This is possibly responsible for the gaps
in the final nondominated front: each disconnected line corresponds to a set of
policies concerning about a different number of campaigns.
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Fig. 2. Results of the Monte Carlo simulations explained in Section 5 to validate the
proposed engine for cope to Problem 3. Final nondominated set for Problem 3. F1

represents the integral of infected population during the control and F2 represents the
total cost of the vaccination control. The blue crosses represent the solutions returned
by NSGA-II with local search (QAP) and the red asterisks represent the solutions
returned by the canonical NSGA-II (CAN ).
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Fig. 3. Example of a Pareto-optimal solution picked from the left side of Figure 2.
The first graphic shows the system variable time behavior, the second one shows the
percentage of susceptible vaccinated during each campaign, and the third one shows
the number of susceptibles vaccinated.
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Fig. 4. Example of a Pareto-optimal solution picked from the right side of Figure 2.
The first graphic shows the system variable time behavior, the second one shows the
percentage of susceptible vaccinated during each campaign, and the third one shows
the number of susceptibles vaccinated.
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7 Conclusion

This work presented a multiobjective design methodology for vaccination policies
which have the purpose of minimizing both the number of infected individuals in
a population and the cost of vaccination campaigns. The problem is formulated
as an impulsive open-loop dynamic optimization problem, in which the number
of impulses, the amplitudes of such impulses, and the time instants in which they
occur are the decision variables. The epidemics dynamic behavior is simulated
using a SIR model.

The set of non-dominated policies was found using a hybrid NSGA-II, and
also employs a CQA of the objective functions in order to provide a local search
mechanism. The specific CQA employed here is based on the minimization of
the 1-norm of the approximation error. The estimation of this CQA model is
formulated as an LP problem. The resulting CQA model is suitable for the
approximation of high dimensional functions – which allows the application of
this technique in the specific problem treated here.

The main conclusion of this work is that a multiobjective optimization ap-
proach for determining “optimal” vaccination policies is interesting, since it pro-
vides a variety of different solutions that can be implemented in practice. The
local search technique speeds up the convergence and the quality of the final
nondominated policies, being fundamental for the correct determination of the
Pareto-optimal solutions in this case.
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Abstract. This paper presents an innovative method to solve the re-
configuration problem in a distribution network. The main motivation
of this work is to take advantage of the power flow analysis repetition
when reconfiguration leads the network to a previous configuration due
to cyclical loading pattern. The developed methodology combines an op-
timization technique with fuzzy theory to gain efficiency without los-
ing robustness. In this methodology, the power flow is estimated by
well-trained neo-fuzzy neuron network to achieve computing time re-
duction in the evaluation of individuals during evolutionary algorithm
runs. It is noteworthy that the proposed methodology is scalable and its
benefits increase as larger feeders are dealt. The effectiveness of the pro-
posed method is demonstrated through examples. The overall perfor-
mance achieved in the experiments has proved that it is also proper to
real time context.

Keywords: multi-objective optimization, NSGA-II, fuzzy inference,
feeder reconfiguration.

1 Introduction

Efficient reconfiguration of radial distribution power systems can save consider-
able amount of energy, since losses on their distribution lines are not negligible
and equipments are faulty [1,2,3]. Energy losses can be reduced and system
preparedness can be improved if distribution systems are reconfigured in ac-
cordance with seasonal loading. As Das [2] stated, potential savings straightly
depends on network size. Through reconfiguration, gain opportunities increase
with the number of maneuverable switches in the system [4]. In this work, re-
configuration means to change the on/off status of operational switches, which
leads to distinct connection patterns among utility sources and customers.
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To perform optimization in feeder reconfiguration problem, we need to know
all the steady state voltages at all buses. Hence, power flow analysis is needed
and it is an important computing task to manage any distribution power system
properly. In this way, an efficient method for power flow analysis has a critical
role, since it takes time to find voltage values on each bus. Here, in particular,
system optimization requires a fast and precise power flow analysis.

Feeder reconfiguration is a combinatorial problem with nondeterministic poly-
nomial resolution time, since the search space has its size defined by NS switches
as being equal to 2NS possibilities [2,5]. Also, a multi-objective approach can
model this same reconfiguration problem. Therefore, evolutionary algorithms
are much appropriated to find optimal configuration solutions. In these algo-
rithms, an individual evaluation requires high computational effort, since power
flow analysis is done through iterative methods or equation system solvers. Due
to network radiality, network size and loading, numerical analysis is better per-
formed by iterative methods when conventional approach is implemented. The
power flow computation method affects the overall algorithm runtime decisively.
Real time application would demand a fast power flow resolution, mainly if we
must deal with feeder restoration cases. In this paper, a proposal to alleviate
processing and reduce overall runtime of the algorithm, capable of solving the
feeder reconfiguration problem, is made. It simply consists on estimation of the
network flow through an on-line fuzzy network, which corresponds to the indi-
vidual evaluation step in the evolutionary multi-objective algorithm. Obviously,
the fuzzy network must be previously trained through a set of samples, extracted
from a conventional power flow method such as backward/forward sweep.

In this paper, we introduce a new methodology to identify optimal or near
optimal configurations in radial distribution feeders, given some physical and
technical constraints. The implemented algorithm works as a real-time tool,
adopting combination between multi-objective optimization techniques and fuzzy
logic approach in order to obtain good convergence and robust performance. The
fitness function that guides the searching is composed by three objectives: loss
minimization, voltage flatness, and minimum switching operation.

This work is organized as follows. In Section 2, related works are listed along
with their main contributions. The feeder reconfiguration problem and the multi-
objective approach with constraints are detailed by Section 3, where mathemat-
ical model is also presented. At Section 4, the fuzzy network architecture and its
usefulness to the proposed methodology are explained. Implementation issues are
discussed in Section 5. Finally, Section 6 describes computational experiments
and concluding remarks are given in Section 7.

2 Related Works

In the literature, most of the first algorithms applied to the reconfiguration prob-
lem were heuristic-based techniques. Despite of their restriction about network
type and specificities, those algorithms were very fast indeed [5,6]. Other al-
gorithms used a blend of optimization and heuristics to efficiently determine
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switching maneuvers [7]. In recent years, evolutionary algorithms have been
successfully applied to distribution system reconfiguration and they have found
as many solutions as other previously employed techniques [8].

Fuzzy theory was already applied to reconfiguration problem on distinct ways.
Das [2] has employed fuzzy logic as predictor function, and four objectives were
modeled by means of fuzzy sets in a multi-objective approach. In that work, four
objectives were associated with membership functions indicating the degree of
satisfaction in each one. Here, fuzzy inference is applied to speed up evaluation of
individuals and therefore it does not take part of the multiobjective expression.
The multi-objective reconfiguration problem was already divided in two steps
by Lee [9]: determination of non-dominated solution and fuzzy decision making.
In that work, fuzzy reasoning was applied to multiple criteria (contingency pre-
paredness, feeder residual margin, number of switching operations, amount of
transferred living load considering relative weights among them) decision making
in order to get the most appropriate restoration plan under a specific situation.
Real power loss minimization and loading pattern improvement of the feeder
was done by Sahoo [10]. A genetic algorithm was employed with mutation step,
tuned by fuzzy reasoning, to reduce computing time and to avoid destruction of
the radial property of any network configuration which was coded by a chromo-
some. A similar work, developed in [11] by Song, incorporated fuzzy reasoning
into an evolutionary programming implementation in order to control the muta-
tion process. Through heuristic information about the network, the fuzzy part of
the algorithm adaptively adjusts parameters to generate valid candidates only.
Also using fuzzy adaption coupled to evolutionary programming, Venkatesh [3]
suggested an algorithm which found optimal reconfiguration solution to radial
distribution systems obtained from fuzzified objectives. Power loss, voltage and
current violations, and switching number were minimized through a fuzzy multi-
objective formulation and the reconfiguration was solved by an enhanced genetic
algorithm in [12]. A proper restoration plan was obtained in [13] from a fuzzy
reasoning approach and the problem was treated as a composition of fuzzy ob-
jective functions and fuzzy constraints. In that work, fuzzy approach replaced
imprecise heuristic rules normally performed by an experienced operator.

In this work, we propose a new application for fuzzy inference using it along
with NSGA-II [14] to solve a multiobjective problem. The aim of this combina-
tion is to reduce computation time required to assess bus voltages on the changes
in load demand. Here, fuzzy inference speed up the evaluation of a power system
configuration.

3 The Multi-objective Problem

The problem has a combinatorial nature, as stated before, since it deals with
on/off statuses of all maneuverable switches in the distribution system. In this
work, the configuration with the flattest voltage profile (close to 1 p.u.), the
lowest real power loss, and the maximum number of energized loads must be
found in a multi-objective problem definition. Any network configuration can
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be described through a vector x̄, which indicates all the NS switch statuses
(x̄ = [x1x2..xNS ]). Mathematically, the three mentioned objectives are described
in what follows. We can describe total real power loss minimization as:

min

(
NL∑
i=1

xk ∗ Re(Zk) ∗ |Ik|2
)

, ∀k ∈ NL , (1)

where NL is the total number of distribution lines or branches, Re(Zk) represents
the real component of series impedance of the branch k, and Ik is the current
flowing through this same branch. At the same time, minimum bus voltage
deviation from nominal or normalized (1 p.u.) value must be achieved in all NB

buses. In order to account this criterion, the index proposed by Sahoo [10], which
requires simpler computations than the one found in [3], is used:

min

(
1

NB

NB∑
k=1

|Vk − V nom
k |

)
, (2)

where NB is the total number of buses, Vk is the actual bus voltage at bus k and
V nom

k is the nominal value in this same bus. The third and last objective is the
number of switching operations which must be kept minimal in order to extend
their life expectancy [15] and avoid switching maneuver repetition:

min
NS∑
k=1

|xk − x0k| , (3)

where NS corresponds to the total number of switches in the distribution system,
x̄0 equals the initial or previous network configuration, xk equals 1 (0) if the
switch is on (off) and, finally, |xk − x0k| equals the minimal distance between
two given configurations, which means a quantity of switching operations needed
to modify the current configuration into the new one. Additionally, restrictions
must be addressed due to physical and technical limitations. The first restriction
is related to network topology. Once we are dealing with a distribution system,
the radial topology (tree) must be preserved

xf
k ≤ xf

k−1 . (4)

The switch status of a branch k (xf
k) depends on the switch status of the im-

mediate adjacent branch (xf
k−1), nearer to the common source node f , where a

substation exists. In this network type, the following condition always holds:

x̄ ∗ NAL = NB − 1 , (5)

where NAL represents the total number of active (living) distribution lines.
All NB buses must stay connected to assure that no island was created after
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reconfiguration. In this way, all loads must remain fed by one of the available
substations during reconfiguration:

NA∑
f=1

yf
k = 1, ∀k = 1, .., NL . (6)

where yf
k is a binary variable which indicates that a line k is fed by a substation

f , and NA corresponds to the number of substations. The last restriction ensures
that no current exceeds nominal value at any line of the system:

xk ∗ |Ik| ≤ Imax
k , ∀k ∈ NL . (7)

Each branch k tolerates current flow Ik, lower than an upper limit denoted by
Imax
k .

3.1 Component Modeling Issues

Unlike transmission systems, distribution systems typically have a radial topol-
ogy, where power is provided by a single source on the top of the tree struc-
ture. The radial topology and its particular features, such as higher resistance/
reactance ratio in branches, cause ill-conditioning on such power systems and
Newton-Raphson (or its variants) becomes unstable or inappropriate [13,16].

Most of the conventional power flow methods consider power demand as con-
stant values based on peak load condition [17]. This should not be the case in real
distribution systems, as power demand varies over a period, leading to a wrong
or poor approximation of bus voltages. Consequently, this will probably imply
in a non-optimal configuration provided by the evolutionary algorithm. As load
demand frequently changes in a practical feeder, the actual configuration opti-
mality is temporary. Then, loads can be better modeled as power demands with
seasonal variation. The variation on reactive and real power demand is repre-
sented by a time series which depicts an equivalent 24-hours power consumption
interval (see Figure 1). This interval could be any predefined period such as a
week, a month or a year. In order to train a Neo-Fuzzy Neuron (NFN) network
[18] (details are given in Section 4), each real power consumption series was ran-
domly obtained with values lying between 50% and 400% times the nominal load
([0.5 ∗Pnom

k , 4.0 ∗Pnom
k ]). Reactive power consumption time series was obtained

in the same way, but values were limited to the range [−2.0 ∗Qnom
k , 2.0 ∗Qnom

k ].
When actual feeders are simulated, measured data are more appropriated to
train the fuzzy network used in this work.

Load flow algorithms apply known methods, such as fast decoupled, back-
ward/forward sweep or current injection methods to determine power system
state. Nevertheless, such methods demand high computational effort. The power
flow method should be fast enough to enable the optimization process. In this
work, we used the backward/forward sweep with current summation version as
the conventional method due to its convergence behavior when radial networks
are dealt. The current summation method was preferred over another iterative
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Fig. 1. An example of a random real power demand series

one, like power summation, due to its speed, relative robustness, and easy im-
plementation. Moreover, it is faster than the power summation method, whereas
the prior uses voltage V and current I instead of real power P and reactive
power Q.

3.2 Multi-objective Discussion

The proposed methodology deal with the inherent combinatorial nature of the
feeder reconfiguration problem and it is able to perform the optimization of
the nonlinear multi-objective function. The switches statuses are the decision
variable. Since there are only two statuses (on/off) for tie and sectionalizing
switches, the solution space is discrete. Owing to this discretization, evolutionary
techniques overcome classical techniques as their codification scheme straightly
allows the treatment of ranges and set of valid values assumed by variables. The
NSGA-II algorithm [14] with binary coded GA is used to find non-dominated
solutions to the addressed multi-objective problem.

In this optimization problem, valid solutions are generally isolated one from
each other. Unfeasible configurations are predominant in the discrete search
space of the feeder reconfiguration problem. Therefore, crossover and mutation
operators were carefully designed, since invalid solutions are numerous. As we
chosen diferential codification to represent only the modified switches in relation
to the current configuration, aiming reduction of the individual size, the crossover
operator can be applied after chromossomes are rebuilt from the concise repre-
sentation (diferential codification). Thus, genes belonging to two chromossomes
are exchanged and validation is performed on the offspring to detect islanding
and loops. Moreover, the mutation operator is carried out alternating the states
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of a pair of switches: tie and sectionalizing switches. Hence, a radial configuration
preserves its topology. Still, elitism keeps one third of the best solutions.

To insert new candidate solutions in the current population, each of them is
pre-analyzed, since preprocessing is justifiable due to the enormous search space
created by the 2NS possibilities. Through this preprocessing occurring in selec-
tion, crossover and mutation steps, we assure that only valid configurations must
be evaluated and evolved. The preprocessing basically consists of applying a sim-
ple heuristic to assure radiality on the configurations. Then, all starting guesses
are valid. If each configuration evaluated by fitness function is feasible, then we
ensure that only necessary computation has been done to find the optimal solu-
tion. After convergence, multiple solutions found by the evolutionary algorithm
can be classified according to the operator’s experience and preferences. For ex-
ample, switching operations far from the root node can be prioritized in the
decision process in order to avoid major disturbances caused by transfer of large
amount of loads between large areas of the distribution system. On the other
hand, reconfiguration must be done as soon as possible in restoration cases, with
minimum number of switching operations, giving high priority to the automated
switches [19].

4 Fuzzy State Estimation

In reconfiguration problem, solution evaluation can tolerate an approximation
error generated by a power flow method. So, an accurate solution obtained from
a rigid approach power flow method can bring no noticeable gain in terms of
optimal configuration discovering.

Equivalent bus voltage estimation was implemented in [20] using artificial
neural network. In this work, simple but efficient approximator fuzzy inference
system architecture is adopted: the Neo-fuzzy neuron (NFN) network [18]. This
architecture behaves as a universal approximator with the capability of detection
and reproduction of nonlinearities between output and input variables. Every set
of rules can be distinctly assigned to each input vi. Each rule can contain only
one premise, whose firing strength μij(vi) is equal to the membership degree
of the input vi associated to the output ui. The rule set size does not depend
on the number of inputs or membership functions per input. Thus, inputs are
decoupled from each other in this architecture and each input has its own rules
which can reduce the total rule quantity. Elementary membership function, like
triangular or trapezoidal, is normally used, because they simplify calculation of
the equivalent output. In a NFN network, a rule R has the following syntax:

R1
i −→ If vi is Ai1, then ui is wi1...

Rm
i −→ If vi is Aim, then ui is wim

The consequent part of a rule is composed by an independent term (wij) simi-
lar to the zero-order TSK model [21]. This term is a weight which needs to be
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adjusted and it indicates how strong is the influence of some rule to a given
network output. The NFN network is built from parallelized and redundant
structures and thus it is fault-tolerant. Our implementation takes advantage of
this aspect to speed up processing inside a multiprocessor environment.

In the implemented methodology, Neo-fuzzy Neuron networks gradually re-
place conventional power flow techniques in order to reduce computational bur-
den without, however, deteriorate the solution obtained by conventional power
flow analysis. On distribution system, real and reactive power demands gener-
ally behave in a seasonal manner, so fuzzy networks is successfully employed to
simplify the bus voltage estimation process, achieving low deviation from the
actual values. The NFN parameters stored in database are a, b, c, vmin, delta
and q. A group of parameterized membership functions fill the interval corre-
sponding to the universe of discourse V . Each triple (a,b,c) defines a triangular
membership function (see Figure 2). Using those overlapped unit height func-
tions in a complementary manner, shown in Figure 2, few rules are activated
(corresponding to nonzero membership values) and easily detected. As a conse-
quence, output computation becomes extremely fast [20]. The parameter vmin

is the lower bound of the universe of discourse V , and delta equals the distance
between two consecutives functions. Finally, the parameter qi is a constant term
of the rule mij associated with the output ui.

Fig. 2. Overlapped triangular membership functions over the interval X and NFN
parameters significance

The input vector v̄ consists of 2∗NB+2 variables: real power (P k
C) and reactive

power (Qk
C) for each bus, total real power (PT ), and total reactive power (QT ).

The output variables are the voltage magnitude (|Vk|) and the voltage angle (θk)
for each bus of the feeder, represented as:

ū = [V1 θ1 . . . VNB θNB]

As input vector keeps its size with the same variables, it is not affected by the
network size, and fuzzy network overall performance almost remains constant.
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5 The Implemented Algorithm

The goal is the implementation of an adaptive evaluation mechanism combining
fuzzy inference with conventional calculus. During fitness evaluation, power flow
analysis is speeded up, since there is a progressive exchange of the whole iterative
processing for configuration fuzzy parameters storage in a database. Every time
the fitness function is about to be called, the database is checked. If a previous
record related to the network configuration under analysis exists, we must obtain
the voltage values (magnitude and angle) from the NFN output, adjusted to
each bus of the analyzed configuration. Otherwise, voltage values must be found
using backward/forward sweep or another conventional power flow method. Still,
if there are enough pair samples (power demand, bus voltage), a NFN network
can be trained in parallel. Then, a new record containing the fuzzy network
coefficients is added to the database.

To estimate voltage magnitude and angle at NB buses of the feeder, 2 ∗ NB

NFN networks must be employed. Indeed, we made a compensation for memory
space requirement by using simpler repetitive calculation. Despite of required
memory space be proportional to NB buses and 2NS configuration possibilities
to store NFN parameters, processing time spent to compute NFN outputs does
not considerably change from one configuration to another. Better said, NFN
output computing time does not alter, because its structure keeps the same.
Figure 2 illustrates how configurations are evaluated inside the modified fitness
function procedure. Considering the seasonal behavior of power demand in a real
distribution feeder, power samples can be collected in each bus of the feeder along
with their correspondent complex voltage, until sample size reaches a minimum
default threshold value. At this moment, the NFN training can be triggered and
the parameters found to each bus in the current configuration are stored as a
new record in a database. In this database, a record consists of all the NFN
parameters (see details in Section 4). Each record must be exclusively identified
by a binary sequence formed by the joint of the bits which indicate the switches
status. Listing 1 contains the main steps to evaluate a configuration. Figure 3
shows schematically how database is implemented.

Listing 1. Individual fitness evaluation steps.

procedure Evaluate Configuration Set
1. Take one valid configuration from the repository.
2. If there is a record in database, then load NFN parameters.

Go to step 4.
3. Perform power flow analysis. If sample size have reached

a trigger value, execute NFN training. Next, insert the NFN
parameters on database.

4. Evaluate fitness function for the chosen configuration.
5. Is there any remainder individual not yet evaluated? If

so, return to step 1.
6. Return fitness values.
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Fig. 3. A scheme of the database used to maintain NFN parameters

Sample size can be proportional to feeder size. Whenever a minimum num-
ber of samples has been attained, an update of the associated record in the
database may occur. After that, the fitness function calls the fuzzy network in-
stead of the backward/forward sweep method or another conventional method.
In a given moment, reconfiguration may be worthless in achieving considerable
improvements to the real power loss and voltage flat profile. In these cases, feeder
must maintain its configuration. Still, updates can occur in the correspondent
database record, which stores the NFN parameters of the actual configuration,
to improve future fuzzy estimations.

Transition between some current configuration and the next, obtained from the
non-dominated solution set, may be different depending on network loading. Keep-
ing a database of NFN parameters becomes a major advantage, since a past power
flow analysis could be needed again, when network went back to a given configu-
ration. Therefore, it is expected that the benefits from the proposed methodology
become more evident as more trained configurations are added to the database. To
improve this methodology, an adaptive procedure could be incorporated to remove
records stored in database which correspond to useless configuration analyzed in a
recent past during a whole load demand cycle. The most preferable configurations
should be identified and conveniently kept due to its recent fitness grade.

6 Experimental Results

Experiments were performed with three feeders already analyzed in the liter-
ature. It is assumed for all of them that every branch has a sectionalizing or
a tie switch. The 11 kV 34-bus feeder tested was first presented by Chis [1].
The original 34-bus feeder has 33 distribution lines, four laterals, and one single
source, all set as a radial network. Its initial power loss and voltage deviation
index are 222.3 kW and 0.052 p.u., respectively. Here, it was modified to admit
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reconfiguration as it can be seen in Figure 4. The initial configuration of this
feeder is identical to the original feeder analyzed by Chis. And dashed lines
represent inactive lines (their switches are off). A simulation demonstrates the
effectiveness of the suggested methodology in terms of computing time and solu-
tion. Up to 400% load variation around nominal values in PQ buses were tried in
a 34-bus test feeder, as stated in Section 3.1, in order to train the NFN networks.
First, Table 1 contains complex bus voltages yielded by the backward/forward

Fig. 4. The 34-bus test feeder modified to reconfiguration context

sweep (BFS) and fuzzy inference (FI) for the initial configuration. The Baran-
Wu Method (BWM) [22] is taken to be the reference of both methods. The BFS
method used a maximum error tolerance of 1 × 10−6 as a stop criterion. Com-
paring values found by both methods, a maximum discrepancy lower than 0.1%
was achieved by the fuzzy inference system. As we trained the NFN network
with increasing epoch number, the average error of the inference approxima-
tion diminished, but it caused no noticeable changes in the final non-dominated
solution set. Discrepancies in magnitude voltages values found by BFS and FI
methods are shown in Table 2. Although the average BFS error is 10 to 50 times
lower than FI error, it can be observed a spread tendency on error values calcu-
lated for the BFS method, from the source node towards leaves (see Figure 5). In
NFN approximation, magnitude estimation errors are not affected by adjacency
among buses, which is verified by values found in Table 2. There is an intrinsic
error related to the universal approximation provided by the fuzzy network and
its training process, but it expresses as a uniform deviation.

Optimization results using evolutionary algorithm with fuzzy inference (EA-
FI) is presented by Figure 5(a). Taking into account the six optimal solutions
found, an average total real power loss of 172.2 kW is computed (meaning a
reduction of 9.9% in relation to the initial configuration).
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Table 1. Complex bus voltages (magnitude and angle) found by backward/forward
sweep (BFS) and fuzzy inference (FI) for the initial configuration of the 34-bus test
feeder

B BWM BFS FI B BWM BFS FI
U |Vk| θk |Vk| θk |Vk| θk U |Vk| θk |Vk| θk |Vk| θk

S (p.u.) (deg.) (p.u.) (deg.) (p.u.) (deg.) S (p.u.) (deg.) (p.u.) (deg.) (p.u.) (deg.)
1 1.0000 0.00 1.0000 0.00 1.0003 0.00 18 0.9622 0.55 0.9622 0.55 0.9622 0.55
2 0.9941 0.05 0.9941 0.05 0.9942 0.05 19 0.9581 0.63 0.9581 0.63 0.9581 0.63
3 0.9890 0.10 0.9890 0.10 0.9892 0.10 20 0.9548 0.70 0.9548 0.70 0.9548 0.70
4 0.9820 0.22 0.9820 0.22 0.9821 0.22 21 0.9520 0.76 0.9520 0.76 0.9522 0.76
5 0.9760 0.32 0.9760 0.32 0.9762 0.32 22 0.9487 0.84 0.9487 0.84 0.9488 0.84
6 0.9704 0.41 0.9704 0.41 0.9706 0.41 23 0.9460 0.90 0.9460 0.90 0.9462 0.90
7 0.9666 0.50 0.9666 0.50 0.9667 0.50 24 0.9435 0.96 0.9435 0.96 0.9436 0.96
8 0.9644 0.56 0.9644 0.56 0.9648 0.56 25 0.9423 0.99 0.9423 0.99 0.9423 0.99
9 0.9620 0.62 0.9620 0.62 0.9620 0.62 26 0.9418 1.01 0.9418 1.01 0.9421 1.01
10 0.9608 0.65 0.9608 0.65 0.9613 0.65 27 0.9417 1.01 0.9417 1.01 0.9420 1.01
11 0.9603 0.66 0.9603 0.66 0.9604 0.66 28 0.9662 0.51 0.9662 0.51 0.9664 0.51
12 0.9602 0.66 0.9602 0.66 0.9605 0.66 29 0.9660 0.52 0.9660 0.52 0.9662 0.52
13 0.9887 0.11 0.9887 0.11 0.9888 0.11 30 0.9659 0.52 0.9659 0.52 0.9661 0.52
14 0.9884 0.12 0.9884 0.12 0.9889 0.12 31 0.9604 0.65 0.9604 0.65 0.9608 0.65
15 0.9883 0.12 0.9883 0.12 0.9884 0.12 32 0.9601 0.66 0.9601 0.66 0.9604 0.66
16 0.9883 0.12 0.9883 0.12 0.9884 0.12 33 0.9599 0.67 0.9599 0.67 0.9608 0.67
17 0.9659 0.49 0.9659 0.49 0.9660 0.49 34 0.9599 0.67 0.9599 0.67 0.9599 0.67

Table 2. Magnitude voltage differences found by comparing BFS and FI methods with
reference values (BWM)

BFS FI BFS FI
Bus |δVk| |δVk| Bus |δVk| |δVk|

(%) (%) (%) (%)
1 0.0000 0.0321 18 0.0011 0.0072
2 0.0001 0.0075 19 0.0011 0.0128
3 0.0002 0.0184 20 0.0010 0.0070
4 0.0004 0.0049 21 0.0009 0.0216
5 0.0005 0.0118 22 0.0010 0.0097
6 0.0008 0.0258 23 0.0012 0.0174
7 0.0011 0.0140 24 0.0011 0.0125
8 0.0009 0.0358 25 0.0010 0.0057
9 0.0009 0.0077 26 0.0013 0.0348
10 0.0010 0.0526 27 0.0014 0.0377
11 0.0010 0.0111 28 0.0010 0.0188
12 0.0009 0.0323 29 0.0012 0.0194
13 0.0002 0.0105 30 0.0012 0.0275
14 0.0004 0.0524 31 0.0009 0.0367
15 0.0007 0.0145 32 0.0010 0.0365
16 0.0007 0.0103 33 0.0010 0.0875
17 0.0009 0.0070 34 0.0011 0.0051
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(a) The non-dominated solutions provided by fuzzy inference, con-
sidering only the minimum switching number set

(b) Evaluation time for the evolutionary algorithm with iterative
power flow (EA-IPF) and fuzzy inference (EA-FI).

Fig. 5. The 34-bus test feeder

From Figure 5(b), we note an increasing difference in computing time between
evolutionary algorithm with iterative power flow (EA-IPF) and fuzzy inference
(EA-FI). Expressive results were obtained when larger populations were used in
the evolutionary algorithm in terms of runtime.

The second system is a 33-bus feeder. Load data, transmission line details
and tie lines available for switching are presented in [3]. After optimization, we
found one optimal configuration with lines 7, 9, 14, 32, and 37 switched out.
The minimum total real power loss achieved was 139.83 kW (33.8% reduction).
Table 3 contains a comparison between backward/forward sweep and fuzzy infer-
ence system concern to computing time and error estimation provided by NFN.
The third system is a 70-bus feeder, whose details and loading characteristics are
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Table 3. Average computing time (ACT)/configuration and voltage magnitude ap-
proximation error of the fuzzy inference (FI) for the analysed distribution systems.
Reference values are those obtained with backward/forward sweep (BFS).

Feeder NFN BFS
System ACT (sec.) Error (%) ACT (sec.)

34 bus [1] 0.039 0.011 0.049
33 bus [3] 0.076 0.018 0.089
74 bus [12] 0.114 0.027 0.183

given in [12]. For small feeders, the proposed method shows minor improvement
in comparison to EA-IPF. However, experiments have indicated that methodol-
ogy can be promising when dealing with larger systems. It is important to note
that fuzzy inference approximation is not itself the main concern, but mainte-
nance of relative positions among configurations in terms of their fitness grades.

7 Conclusion

In this paper, the practical problem of feeder reconfiguration was dealt. The
implemented algorithm demonstrated evident improvements in computing time,
when individual fitness evaluation was totally replaced by fuzzy estimation dur-
ing the process of multi-objective optimization. Identical optimal configuration
solution was reached by both strategies, conventional and implemented eval-
uation, in the tests performed, showing a mean speed up ratio ranging from
1.1 to 1.5. Fuzzy estimation outperforms conventional power flow analysis when
they are combined with the evolutionary algorithm. Being straightly extended to
larger systems, the proposed methodology can be applicable to real time context,
since NFN outputs can be instantaneously processed.
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Abstract. This paper proposes an algorithm to optimize multiple in-
dices of Quality of Service of Multi Protocol Label Switching (MPLS) IP
networks. The proposed algorithm, the Variable Neighborhood Multiob-
jective Genetic Algorithm (VN-MGA), is a Genetic Algorithm based on
the NSGA-II, with the particular feature that different parts of a solu-
tion are encoded differently, at Level 1 and Level 2. In order to improve
the results, both representations are needed. At Level 1, the first part of
the solution is encoded, by considering as decision variables, the arrows
that form the routes to be followed by each request (whilst the second
part of the solution is kept constant), whereas at Level 2, the second
part of the solution is encoded, by considering as decision variables, the
sequence of requests, and first part is kept constant. The preliminary
results shown here indicate that the proposed approach is promising,
since the Pareto-fronts obtained by VN-MGA dominate the fronts ob-
tained by fixed-neighborhood encoding schemes. Besides the potential
benefits of the application of the proposed approach to the optimization
of packet routing in MPLS networks, this work raises the theoretical issue
of the systematic application of variable encodings, which allow variable
neighborhood searches, as generic operators inside general evolutionary
computation algorithms.

Keywords: Routing on IP Networks, Variable Neighborhood Search,
Multi-objective Genetic Algorithm.

1 Introduction

With the emergence of new technologies, the transmission of multimedia appli-
cations has become an achievable goal. The new applications such as videocon-
ferences, Video on Demand (VoD) or Voice over IP (VoIP) brought the need
of some guarantees of network characteristics with respect to the quality of the
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data flow, such as minimum bandwidth or maximum delay [7]. However, in the
conventional internet traffic, it is not possible to predict the path of the packets
of transmission, i.e, there is no guarantee of the regularity of communication. For
this reason, there are some mechanisms for Quality of Service (QoS) that allow
differentiation of the flows transmitted and the definition of conditions in order
to reach a level of quality from the prioritization of different flows according to
their characteristics and objectives [18].

Recently, several technologies have been proposed in order to identify the
type of information on IP networks, allowing the QoS requirements. The MPLS
(Multi Protocol Label Switching) is an example of an alternative that makes
possible the explicit routing of packets, which facilitates the provisioning of QoS
according to the requirements of multimedia applications. This technology allows
the addition of labels to packets in order to identify them.

Several studies have been proposed recently in order to develop an approach
of Traffic Engineering for Routing with QoS. According to RFC-3272 (Request
for Comments 3272), the Internet Traffic Engineering is defined as that aspect
of Internet network engineering dealing with the issue of performance evaluation
and performance optimization of operational IP networks [3]. Many of these
studies deal with routing on IP networks and MPLS, using single-objective GAs
[15,2] or deterministic methods, like Lagrangian Relaxation [9]. As the model
of these studies is formulated with a single objective, the search can be biased
to a certain goal, leading to solutions that are unsuitable under other objec-
tive viewpoint. For this reason, the multi-objetive strategies have received some
attention. However, the use of multi-objective methods applied to the problem
of routing on IP networks is not so extensive. Even so, most of the works exe-
cute the optimization of two parameters [1] and some studies use deterministic
methods [11]. The current study deals with the optimization of three parameters
which, according to [22], render the problem NP-complete. Thus, the techniques
based on non-deterministic heuristics are likely to be the most suitable ones.
Santos [20] proposes a dynamic evaluation for routing in an ambient of MPLS
using multi-objective techniques. That research represents an initial reference
for the present work, presenting the same objective functions.

A possible way to deal with the various requirements of different applications
is the use of search strategies for finding optimal or suboptimal solutions. The
evolutionary computation techniques, such as Genetic Algorithms (GAs) and
Variable Neighborhood Search (VNS) are examples of heuristic search strategies
that can be used.

GAs [13] are search techniques that consider sets of candidate solutions (each
solution is an individual, and the set is the population), which are varied ac-
cording to two kinds of probabilistic rules: the mutations, which introduce per-
turbations into current solutions, producing new ones, and the crossover, which
combine the information from previous solutions, producing new ones. Finally,
the current population passes a selection procedure, that probabilistically in-
creases the frequency of the best solutions in a new population, reducing the
frequency of the worst ones. In recent years, it has been recognized that a key
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factor that determines the performance of GAs is the encoding employed for the
representation of the solutions in the population. This is attributed to the fact
that different encodings induce different neighborhoods, which lead to different
behaviors of the variation mechanisms of mutation and crossover [5].

VNS techniques [16], on the other hand, usually evolve a single solution each
time. This solution is subject to heuristic descent searches that find local min-
ima in the attraction regions that are characterized by connected paths in a
given neighborhood induced by an encoding. The heart of VNS techniques is
the alternate usage of different encodings that induce different neighborhoods,
which allows the algorithm to perform further descent steps after finding a local
minimum in an encoding, by simply changing the encoding that is being used.

This paper deals with the problem of packet routing in MPLS systems. In the
specific context of this problem, a new Multiobjective Genetic Algorithm, the
VN-MGA (Variable Neighborhood Multiobjective Genetic Algorithm) is devel-
oped. The optimized routing tries to minimize the network cost and the amount
of rejection of simultaneous requests, as well as perform a load balancing among
routes. Using the proposed algorithm makes possible to deal with these conflict-
ing QoS indicators, described as independent objective functions. Moreover, the
set of solutions provides flexibility for the decision maker to select one or other
goal according to the current state of the network.

The proposed VN-MGA is based on the classical NSGA-II [8] and has, as
a distinctive feature, its crossover and mutation operators inspired in the con-
cept of variable neighborhood of the VNS techniques. Two different encodings
are employed: a low-level encoding, which encodes explicitly the routes that are
followed by each requirement of service, and a high-level encoding, that encodes
the permutations of the several requirements of service, defining the order in
which they will be included in the solution. The crossover and mutation oper-
ators, acting in these two levels, are able to explore and to exploit the decision
variable space with enhanced efficiency, leading to solutions that dominate the
ones that appear in algorithm versions using only one level. It should be noticed
that the proposed operators are problem-specific. In problems of combinatorial
nature, it has been established that algorithms employing specific crossover and
mutation operators can be much more efficient than general-purpose GAs [4].

A group of routing problems has focused on hybrid methods, since 2006 [19].
There are hybrid methods for the vehicle routing problem using Genetic Algo-
rithms and Tabu Search [19] or combining VND (Variable Neighborhood De-
scent) and GRASP (Greedy Randomized Adaptive Search Procedure) [12] and
also problems of another characteristics, such as pipeline petroleum distribution
using GA and VNS [21]. However, those studies typically combine the differ-
ent algorithms in a literal way, performing steps from one algorithm and from
the other algorithm. The present authors have not identified any reference that
performs an organic combination like the one proposed here.

This paper is organized as follows: Section II describes the problem and its
modeling. Section III presents the VN-MGA. Section IV presents some results
obtained with this approach and the section V concludes the paper.
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2 Problem Description and Modeling

This study deals with the problem of choosing routes in a scenario of a corpora-
tive IP network with MPLS technology. The proposal is to minimize the network
cost, to respond for the various user’s requests ensuring the quality of service
and to provide a load balancing between simultaneous streams. The network
model is represented by the graph G = (V, A), where V is the set of routers in
the MPLS domain and A = (i, j) is the set of links from node i to node j, or
the links between the routers. The bandwidth of each link (i, j) is represented
by Bij . Each user request is represented by (ok, dk, bk), where ok and dk indi-
cate, respectively, routers of source and destination of traffic and bk indicates
the amount of bandwidth to be reserved for the request k. The set of requests
is represented by R.

The objective functions are described by the equation (1), based on the
work [20].

min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F1 =
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xk
ij
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i

xk
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(2)

∑
k∈R

bkxk
ij ≤ αBij , ∀(i, j) ∈ A (3)

∑
k∈R

ak ≥ C (4)

where
xk

ij ∈ {0, 1}, ∀(i, j) ∈ A, ∀k ∈ R (5)

ak ∈ {0, 1}, ∀k ∈ R (6)

α ∈ [0, 1] (7)

The objective function F1 represents the sum of links used to accept a request k.
The fewer links are used, the smaller is the delay for the data travel from origin
to destination. F2 aims to reduce the number of rejections of requests. The
amount of rejection of the requests is related to the admission control of new
connections, which determines if a connection can be admitted or not, according
to the load network condition and the amount of bandwidth requested. The
minimum number of requests that must be responded is represented by C, shown
in Equation 4. In F3, α represents (in relative terms) the load of the most used
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edge, with values varying from 0 to 1. Minimizing the amount of data traffic on
the links means that the load is evenly distributed. Consequently, the network
is balanced. The constraint 2 represents the classical flow conservation. In 3,
the requested bandwidth (bk) for a link (i, j) must be less than or equal to the
available bandwidth.

The problem stated in equation (1) has several functions to be minimized,
and therefore is a multi-objective optimization problem. A multi-objective
optimization problem is defined as:

min f(x), f(x) = (f1(x), f2(x), · · · , fl(x))
subject to: x = (x1, x2, · · · , xn) ∈ X (8)

in which x ∈ X is the decision variable vector, X is the optimization parameter
domain, f ∈ F is the objective vector, F is the objective space, in other words,
F = f(X ).

The goal of some multi-objective optimization methods is to obtain estimates
of the Pareto-optimal set [10], which contains the set of non dominated solutions
of the multi-objective problem. A point x′ is said to be dominated by another
point x if the following relation holds:

f(x) ≤ f(x′) and f(x) �= f(x′)

in which the relation operators ≤ and �= are defined as:

f(a) ≤ f(b) ⇔ fi(a) ≤ fi(b), ∀i = 1, 2, · · · , l

and
f(a) �= f(b) ⇔ ∃i ∈ {1, 2, · · · , l} : fi(a) �= fi(b)

in which a and b represent two different decision vectors.
In this way, the Pareto set P is defined as the set of non dominated solutions:

P = {x∗|�x : f(x) ≤ f(x∗) ∧ f(x) �= f(x∗)} . (9)

All solutions that are not dominated by any other decision vector of a given
set are called non dominated regarding this set. A Pareto-optimal solution is
a non dominated vector x ∈ X . The Pareto-optimal set of the multi-objective
optimization problem is the set of all Pareto-optimal solutions. The image of
this set in the objective space is called the Pareto front f(P).

3 Structure of Multiobjective Genetic Algorithm

The basic structure of the multiobjective genetic algorithm VN-MGA used here
is the classical Non-dominated Sorting GA (NSGA-II), described in [8]. The
following features of NSGA-II are used inside VN-MGA:
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1. Non-dominated sorting: consists in sorting the solutions according to the
non-dominance rank. An individual belonging to rank 1 is not dominated by
any of the solutions, while an individual belonging to rank k is dominated by
at least one individual that belongs to rank k−1. This ensures that solutions
belonging to lower dominance ranks are better than solutions situated at
higher ranks.

2. Crowding-distance: The crowding distance is used as a measure of occupa-
tion in the neighborhood of a solution in the objective space. The use of
crowding distance helps to avoid situations where the obtained Pareto-set is
too concentrated in a small portion of the Pareto set, leading the algorithm
to more uniform samplings of the Pareto-set.

3. Binary tournament: consists in choosing two individuals randomly and com-
paring them according to some fitness function. The one with best fitness
evaluation is selected.

We now depict the multiobjective optimization approach to the problem of op-
timizing routing in IP networks, capable of working with QoS parameters.

3.1 Variable Neighborhood Search

The Variable Neighborhood Search (VNS), proposed by [16], is a simple heuris-
tic method which has the purpose of performing a global optimization using
sequences of local searches. The main idea is to have a repertoire of operators
which implicitly define two or more structures of neighborhood, and to switch
between them. The search starts with a feasible solution and searches iteratively
for a new one in the immediate neighborhood defined by the current search op-
erators. By switching the operators, it is possible to change the neighborhood,
which allows to perform descent searches in a new neighborhood. This allows to
escape from points which represent local minima in some neighborhood, using
the descent paths of other neighborhoods.

In literature, there are many variants of VNS which consider different se-
quences of neighborhoods, or different solution acceptance conditions. A basic
version defines a set of neighborhoods N =

{
Nk, k = 1, ..., kmax

}
and an initial

solution x that will be used in the local search with the neighborhood N1. This
procedure is repeated for many iterations. The acceptance condition will choose
between the previous local optimum and the new one. If this is the best solu-
tion, then the neighborhood for the next iteration will be in the first position.
Otherwise, the neighborhood will follow the sequence. The algorithm proposed
by [14] is described in Algorithm 1.

Based on distinct neighborhoods, this work proposes the integration of VNS
concepts within Genetic Algorithms. During the evolution process, genetic op-
erators of crossover and mutation are developed for each such neighborhood. In
this way, the search in one neighborhood aids the search in the other one with
alternated executions, exploring different search spaces.
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Algorithm 1. Basic VNS
1: k ← 1
2: while k ≤ kmax do
3: a) Perturbation: generate randomly a point x′ in Nk(x);
4: b) Local search: Local search from x′; Denote x′′ as a local optimum obtained;
5: c) Acceptance: if f(x′′) < f(x) then x ← x′′ and continue the search on this

neighborhood;
6: else, k ← k + 1
7: end while

3.2 The Proposed Multiobjective Genetic Algorithm

The figure 1 illustrates a schema of the proposed algorithm, the VN-MGA.
Crossover and mutation operations are defined at two levels. The number of
generations is the criterion used to determine when to switch encodings. Thus,
after N generations searching new routes at Level 1, the search for new solutions
is made at Level 2.

Fig. 1. Schema of the VN-MGA

3.3 Genetic Representation

The encoding was designed in two levels of operations. The Level 1 represents
the codification of routing, i.e. the genetic operations focus on the sequences
of arcs that form routes. The Level 2 encodes the sequence of requests, i.e. the
sequence in which the requests should be included in the solution. The requests
indicate the demand of N flows, given as origins and destinations. The two levels
are considered alternately. Figure 2 illustrates the population at each level.
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Fig. 2. Codification in two levels of operations

At Level 1, the individual is represented by a group of routes on each request,
denoted by i1, i2, . . . , in. Each path is described by a source, intermediates and
destination nodes, represented by the node numbers, where the first one is the
source node and the latter one is the destination node. Each request has a specific
need for bandwidth according to its application, called Bandwidth Requested.
Each link has a total Bandwidth Capacity. Thus, in order to respond to requests,
the bandwidth requested must be less than or equal to the available one.

Considering that it is a multiobjective problem, not only the shortest path
should be cogitated. For this reason, aiming to generate a diversity of individuals,
the initial routes are generated from the Dijkstra’s algorithm with random costs
distributed on links, given the origins and the destinations.

The bandwidth is then withdrawn from the available one, representing the
allocation of routes with bandwidth reservation. If the request cannot be met,
i.e. the requested bandwidth is greater than the available one, then that request
is rejected.

At Level 2, the individuals are represented by a set of requests, indicated
by R1, R2, . . . , Rm. As the algorithm does not differentiate the priority between
simultaneous requests, the evaluation is made according to their position in the
sequence. Thus, depending on the sequence, accepting or rejecting a request can
impact the result of optimization.

3.4 Crossover Operators

In this study, two levels of crossover were proposed also. The first one consists
of the exchange of genetic material between individuals at Level 1, which repre-
sents the routes. Two individuals are selected randomly, responding for the same
request r of source Or and destination Dr. If there is dominance between them,
the dominant individual is selected. If there is no dominance, the crossover tries
to join characteristics of both parents. If there is a node Nc in common between
these individuals, the offspring is formed from node Or up to Nc of the first
parent i1 and from Nc until Dr of the second parent i2. Figure 3 illustrates the
crossover process.
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Fig. 3. Crossover with node in common [20]. (a) represents the route of an individual i1
to a request r. (b) represents the route of an individual i2 to a request r. (c) represents
the route of the offspring to a request r.

Fig. 4. Crossover without node in common [20]. (a) represents the route of an individual
i1 to a request r. (b) represents the route of an individual i2 to a request r. (c) represents
the route of the offspring to a request r.

If there is not a common node between individuals, the crossover attempts to
find edges to link the paths. Thus, the offspring inherits the nodes from Or until
the new node interconnection of the first parent i1 and from the new node until
Dr of the second parent i2. Figure 4 illustrates the crossover without a vertex
in common.

If there is no node to link the paths, the offspring inherits one of the parents’
path, randomly selected in order to compose the set of population.

In the Level 2 crossover, the individual is analyzed from the perspective of
request sequence. Two routes representing the same request are randomly se-
lected and swapped, generating a new combination of them, and therefore, a



442 R.E. Onety et al.

Fig. 5. Crossover at Level 2. (a) The request R2 is selected in individual i1. (b) The
routes R2 of i1 and R2 of i2 are interchanged, generating the offspring.

new individual. Figure 5 illustrates this operation. The request R2 is selected
from the individual i1. Then, looking for R2 in i2, the routes R2 of i1 and R2 of
i2 are interchanged.

3.5 Mutation

The mutation operator is the responsible for the insertion of new genetic char-
acteristics for individuals of the population. As for crossover, the mutation is
defined for the two encoding levels, with Level 1 concerning the sequences of
arcs that form the routes and Level 2 dealing with the sequences of requests,
given pre-defined routes that were found with Level 1 operations.

For Level 1, the chromosome to be mutated and two cutoff points on that
are chosen randomly. A new path, from the initial to the second cutoff point, is
searched in the adjacency matrix. Therefore, a new section of the route is created.
The search for a new sub-route is performed both in forward and backward
directions (from the first to the second cutoff point, and in the opposite direction,

Fig. 6. Mutation at Level 1. (a) represents the route of an individual to a request r.
(b) selection of the points 2 e 6 for a new sub-route. (c) Mutated individual.
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Fig. 7. Mutation at Level 2. (a) Represents the sequence of requests from individual.
(b) The points selected for mutation. (c) Mutated individual.

from the second to the first cutoff point), alternately, avoiding any bias in this
search. Figure 6 illustrates the process of mutation.

The mutation in Level 2 performs the permutation of requests. Similarly to
the Level 1 mutation, at this stage two cutoff points are selected randomly, but
now, considering the requests. Then, a swap between these two requests changes
the sequence of individuals. Figure 7 represents the mutation at Level 2.

4 Results

Tests for the proposed algorithm, VN-MGA, have been performed with some
network instances, commonly used for telecommunications problems, such as
Dora (Fig. 8(a)) and Carrier (Fig. 8(b)).

Although these network models are standard, there is no other reported work
that uses the same scenario assumed here. For this reason, there is not a ref-
erence value, except the approximation of the functions described by [20], but
in a different scenario. These approximated results are represented by circles in
Figures 9 and 10 and indicate the Level 1.

In the same figures, the crosses represent Level 2, i.e., the results are obtained
considering the codification of requests. The asterisks indicate the combination of
both levels 1 and 2, representing the VN-MGA. This means that, after searching

(a)
(b)

Fig. 8. (a) Dora. (b) Carrier.
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Fig. 9. Results for Dora topology

Fig. 10. Results for Carrier topology

for good routes, the interchange of requests is performed in order to reorganize
their sequence and after a reorganization, new routes are searched again, and so
on.

As shown, the variable encoding described by two levels, improves the final
quality of the routing. It can be observed that the solutions delivered by VN-
MGA dominate the solutions obtained by single-level searches.
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The parameters used for the experiment are described by Table 1.

Table 1. Parameters for the algorithm

Mutation Probability 0,4
Crossover Probability 0,9
Available Bandwidth for each link 1024Kbps
Requested Bandwidth 200Kbps e 400Kbps
Number of generations 50
Number of individuals 50
Number of requests 50

5 Conclusions and Future Work

This paper proposed an algorithm to optimize multiple objectives that represent
Quality of Service indices on IP networks. The proposed algorithm, VN-MGA,
is a Genetic Algorithm based on the NSGA-II, with the particular feature that
each solution has two different encodings, at Level 1 and Level 2. At Level 1,
the solution is encoded considering as decision variables the arcs that form the
routes to be followed by each request. At Level 2, the solution is encoded with
the routes considered as fixed, and the sequence of requests considered as the
decision variable. The results suggest that local minima can be indeed avoided
using this approach.

There are future works to be conducted in two distinct directions: the specific
problem of packet routing in MPLS, and the theoretical problem of employing
variable neighborhoods (or different solution encodings) in generic evolutionary
algorithms.

Concerning the MPLS problem, a challenging area concerns a quantitative
analysis, covering sensitivity and scalability. The sensitivity deals with fault tol-
erance in paths or routers and the capacity of re-routing of the proposed method.
Using new scenarios, it is possible to assess the scalability in order to quantify
the gain that is expected with the application of the proposed algorithm. Within
this perspective, it is also possible to suggest new models for telecommunications
networks. In any case, the proposed approach delivers a reasonable diversity of
solutions belonging to the Pareto Front. So, it offers a larger range of options
for the decision maker in different situations, such as in: (i) network conges-
tion that occur in rush moments, or (ii) using applications that require a small
delay, or (iii) responding to concurrent requests that do not present stringent
requirements of delay, but require large bandwidths, among others.

Concerning the theoretical problem of studying variable neighborhoods in
generic evolutionary algorithms, there are several open issues. The authors intend
to tackle, in the near future, some issues related to the usage of encodings that
allow metric operations [17,5]. It should also be noticed that an analogous of the
ideas presented here has been also developed in our research group for the case
of continuous variables [6].
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Abstract. Estimation of optical flow is required in many computer vision appli-
cations. These applications often have to deal with strict time constraints. There-
fore, flow algorithms with both high accuracy and computational efficiency are
desirable. Accordingly, designing such a flow algorithm involves multi-objective
optimization. In this work, we build on a popular algorithm developed for real-
time applications. It is originally based on the Census transform and benefits
from this encoding for table-based matching and tracking of interest points. We
propose to use the more universal Haar wavelet features instead of the Census
transform within the same framework. The resulting approach is more flexible,
in particular it allows for sub-pixel accuracy. For comparison with the original
method and another baseline algorithm, we considered both popular benchmark
datasets as well as a long synthetic video sequence. We employed evolutionary
multi-objective optimization to tune the algorithms. This allows to compare the
different approaches in a systematic and unbiased way. Our results show that
the overall performance of our method is significantly higher compared to the
reference implementation.

1 Introduction

Optical flow can be defined as the “the distribution of apparent velocities of movement
of brightness patterns in an image” [1], which result from the projection of a 3D scene
onto an image plane. Estimating optical flow is common to many computer vision ap-
plications since the resulting flow field is very valuable, amongst others, for detection
and tracking of objects, deriving structure from motion, estimation of ego-motion, and
collision avoidance. These problems often arise in the context of real-world applica-
tions (e.g., robotics, surveillance, automotive) where hard time constraints have to be
met. Therefore, there is a special interest in flow algorithms that offer good accuracy
while being computationally efficient.

In this study, we propose to employ evolutionary multi-objective optimization for
tuning flow algorithms with respect to these two partially conflicting objectives. This
allows analysis of different possible trade-off solutions and therefore systematic com-
parisons.

We consider a feature-based algorithm [2], which was designed for driver assistance
systems. This approach combines computational efficiency, high accuracy, robustness,

R.H.C. Takahashi et al. (Eds.): EMO 2011, LNCS 6576, pp. 448–461, 2011.
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and ease of implementation. The Census transform [3] is used for the description of
small image patches. This allows for table-based matching and tracking of interest
points over time, resulting in a sparse flow vector field. In this work, we show how
to modify the algorithm in order to make it more flexible and powerful. We suggest to
replace the Census transform by Haar wavelet features, which are state-of-the-art for
real-time computer vision.

This article is organized as follows. In the next section, we give an overview over
related work. In section 3, the reference algorithm is introduced. Section 4 presents our
approach. Multi-objective optimization is introduced in section 5. Our experiments are
described in section 6, finally the results are discussed.

2 Related Work

For a detailed overview and comparison of many different flow algorithms, we refer to
Barron et al. [4] and Baker et al. [5] and references therein. Here, we focus only on
approaches closely related to our method, namely real-time capable and feature-based
flow algorithms.

Lucas and Kanade [6] proposed an iterative method that was adapted by Bouguet [7]
for pyramid based feature tracking. His implementation is publicly available in the
OpenCV library1. We consider this algorithm as a baseline for our experiments. Tomasi
and Kanade [8] proposed tracking of features obtained based on eigenvalues of small
image patches. Optical flow algorithms based on this principle are fast and accurate [9].
Similar results can also be obtained with correlation-based approaches [10], or block-
matching algorithms [11]. Stein proposed the algorithm that serves as starting point for
our method [2]. It uses the Census transform to generate signatures for image patches
that can be used like hash values to handle interesting points. This allows for very
efficient temporal analysis. This approach is described in more detail in the next
section.

The local, feature-based approaches mentioned above calculate sparse flow vector
fields. While these algorithms are able to handle large displacements, they may produce
noisy results depending on local structure. It is essential to attach great importance to
temporal integration and evaluation of pixel neighborhoods.

Dense optical flow can be obtained based on the variational method proposed by
Horn and Schunck [1]. Implementations of this basic technique are likely to fail for large
displacements and for small moving objects because of the smoothness constraints.
Moreover, such implementations typically are not well suited for real-time applications.
However, different improvements and extensions have been proposed recently which
address these issues [12,13,14,15].

3 Original Method

The Census transform as proposed by Zabih and Woodfill [3] is based on the
3 × 3 neighborhood P of a pixel. We denote the center pixel by P0 and the eight ones

1 http://sourceforge.net/projects/opencvlibrary

http://sourceforge.net/projects/opencvlibrary
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surrounding it by P1, . . . , P8. The signature ξ(P) is calculated bitwise, where the i-th
digit ξi is set to 0 or 1 depending on the intensities of Pi:

ξi(P0, Pi) =

{
0, Pi > P0

1, Pi ≤ P0
. (1)

This is extended in [2] in order to distinguish “similar” pixels by introducing a new
parameter ε and computing the signature as

ξi(P0, Pi) =

⎧⎪⎨⎪⎩
0, P0 − Pi > ε

1, |P0 − Pi| ≤ ε

2, Pi − P0 > ε

. (2)

Additionally, Stein proposed to consider larger neighborhoods and therefore not only
pixels directly adjacent to the center. For his experiments, he used signatures with up to
20 digits.

This signature is computed for every pixel in a camera image. The positions of all
image patches with signature s in frame t are stored in a table Tt(s). Flow hypotheses
between frames t−1 and t are computed by considering all pairs of entries from Tt−1(s)
and Tt(s) for all relevant signatures s. In this step, two restrictions are considered: The
lengths of flow vectors can be limited and the relative brightness difference between
the center pixels is restricted to avoid bad flow hypothesis. All resulting hypotheses in
frame t are stored in a list Ht.

To increase speed and robustness of the approach, not all possible signatures have to
be processed. Stein proposed to use a so-called black-list to exclude signatures that code
for infeasible image patches (e.g., homogeneous image regions or regions related to the
aperture problem). Furthermore, lists table entries Tt(s) with more than mdp (maxi-
mum discriminative power) elements are ignored for the calculation of flow hypothesis
because the number of possible hypothesis increases exponentially.

The hypotheses calculated between two frames are generally not unique and there-
fore not reliable. In order to compute final flow vectors for frame t, longer-term tempo-
ral analysis is performed based on Ht−1 and Ht. For each hypotheses h in frame t, it is
checked if there was another hypothesis from frame t−1 with similar length and similar
orientation ending approximately where the new vector starts. Figure 1 illustrates this
analysis. Finally, reliable flow vectors are obtained from current hypotheses which have
more than pmin predecessors.

v0
v1

v2

v3

v4

Fig. 1. Temporal analysis in frame t. v1, . . . v4 from Ht−1 are possible predecessors for v0 from
Ht. The vector v1 is not valid because it is outside the search radius, v2 because of the angular
difference to v0, and v4 because of the relative length difference. v3 is the only valid predecessor.
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4 Proposed Algorithm

In this section, we present our new flow algorithm. It is based on the one described in
the previous section but is more flexible. In particular, we show that it can optionally
allow for sub-pixel accuracy.

4.1 Haar Features for Index-Based Matching

Haar wavelet features are state-of-the-art for real-time computer vision. Their popu-
larity is mainly based upon the efficient computation using the integral image pro-
posed by Viola and Jones [16]. Haar wavelet features were successfully applied in many
computer vision applications, especially for object detection, classification, and track-
ing [16,17,18,19]. Figure 2 shows examples of six basic types of Haar Wavelet features.
Their responses can be calculated with 6 to 9 look-ups in the integral image, indepen-
dently of their absolute sizes.

It stands to reason to consider Haar wavelet features also for the calculation of optical
flow. They could offer a corporate preprocessing for even more different applications
and therefore serve as a universal basis for real-time computer vision systems.

Fig. 2. Basic types of Haar wavelet features

In the original flow algorithm, a feature-based index is obtained for every pixel
through the Census transform. We calculate a similar value based on responses R of
a bunch of different Haar wavelet features centered on that pixel. The signature for a
pixel is calculated as

ξi(R) =

⎧⎪⎨⎪⎩
0, Ri < −εi

1, |Ri| ≤ εi

2, Ri > εi

, (3)

where εi now are individual thresholds used for discretization of the continuous feature
responses. We further extend this by allowing for more than one ε per feature. For the
example of two thresholds, ε

(0)
i and ε

(1)
i , the discretization is

ξi(R) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, |Ri| ≤ ε
(0)
i

1, ε
(1)
i > Ri > ε

(0)
i

2, Ri > ε
(1)
i

3, −ε
(1)
i < Ri < −ε

(0)
i

4, Ri < −ε
(1)
i

. (4)
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The temporal analysis (i.e., interest point matching and tracking) can be done analo-
gously to the original approach. The Census-based method is embedded in our approach
as a special case, because the definition of Haar-like wavelets allows for regions with
size of a single pixel. That is, the calculations for the Census transform can be modeled
with Haar wavelet features. Of course, in this case, calculation of the integral image
would not lead to any gain in speed.

4.2 Optional Sub-pixel Refinement

Using Haar wavelet features allows to perform flow computation with sub-pixel accu-
racy by employing an optional refinement step: The position of the end points of all flow
hypothesis in frame t are refined in a way that the feature responses are most similar to
the responses at the start point in frame t − 1.

We propose to perform bilinear interpolation in the radius of one pixel around the
original (pixel-accurate) end point in order to find the best matching position. The res-
olution between pixels can be chosen arbitrarily. For our experiments, we used steps of
one-tenth pixel. To calculate matching costs c for two feature vectors R and S with n
components each we used the sum of absolute differences c (R, S) = |R1−S1|+ |R2−
S2| + . . . + |Rn − Sn|.

The proposed sub-pixel refinement requires that the raw feature responses are either
stored for start points of all correspondence hypothesis or that they are calculated anew
only for final flow hypothesis. It depends on the problem at hand which of these two
solutions is preferable in terms of efficiency. Here, we recalculate feature responses
when needed for refinement.

5 Multi-objective Optimization

In our experiments, we evaluate the performances of various approaches on different
datasets. For a fair and meaningful comparison, all algorithms must be setup “as good
as possible”. Adapting parameters in such cases is typically done manually in a more
or less systematic way. We propose to use rely on evolutionary optimization instead. It
allows to do a more extensive search in an impartial manner.

We give a short overview over evolutionary multi-objective optimization with an em-
phasis on sorting candidate solutions in section 5.1. The variation of candidate solutions
is described in section 5.2. Of course, results obtained by automatic optimization have
to be watched as critically as results obtained by manual tuning. We discuss these issues
in section 6.3.

5.1 Evolutionary Multi-objective Optimization

Optimizing parameters of sparse optical flow algorithms is not straightforward as their
performance cannot be quantified by a single measure: maximization of the number
of flow vectors and maximization of their mean accuracy are two conflicting goals.
Therefore, we suggest to perform multi-objective optimization (MOO, vector optimiza-
tion) [20]. The goal of vector optimization is to find a diverse set of solutions that
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approximates the set of Pareto-optimal trade-offs. A solution is Pareto-optimal if it is
not dominated by another solution. In our application a solution is not dominated if on
the one hand no other solution exists with more flow vectors and at least as good accu-
racy and on the other hand each solution with better accuracy does not have more flow
vectors.

We consider evolutionary MOO. The crucial step in this process is selection. Here,
we adopt the selection procedure from the MO-CMA-ES [21] for comparing and sorting
candidate solutions to determine the parents for the next generation.

For the problem at hand, the vector valued quality of a solution g is given by Φ(g) =
(n, 1/e), where n is the mean number of flow vectors and e is the mean endpoint error as
proposed by [5]. Both objectives are to be maximized. A solution g (weakly) dominates
another solution g′ iff it is better in one of the two objectives and is not worse in the
second.

Based on this concept, each candidate solution gi in a set M = {g0, . . . , gn} can be
assigned a rank r(gi) that expresses its level of non-dominance. The set M is partitioned
into subsets M1, M2, . . . , Mnlevels . Candidate solutions in M1 are not dominated by any
other solution in M , solutions in M2 are only dominated by members of M1, solutions
in M3 are only dominated by solutions in M1 ∪ M2, and so on. The rank r(g) of a
candidate solution g is defined as the index of the set containing it.

A second criterion is needed in order to sort solutions having the same rank index r.
We do this based on their contributing hypervolume as proposed in [21,22,23]. The
dominated hypervolume V(g) of a candidate solution g is defined as the volume of all
points in the objective space (here R2

≥0) that are dominated by Φ(g). The dominated
hypervolume of a set Mi is defined as the volume of the union of the dominated hy-
pervolumes of all points in Mi. The contributing hypervolume Vcont

Mi
(g) for a candidate

solution g ∈ Mi is given by the share of the total dominated hypervolume that is lost
if the solution is removed: Vcont

Mi
(g) = |V(Mi) − V(Mi\ {g})|. Figure 3 illustrates this

concept.
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Fig. 3. The concepts of hypervolume and contributing hypervolume. Left: Dominated hyper-
volume of solution g and dominated hypervolume of set M . Right: Contributing hypervolume
of g ∈M and dominated hypervolume of set M\ {g}.
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A set M∗ only containing non-dominated solutions is called a Pareto set, the
corresponding vectors {Φ(g) | g ∈ M∗} a Pareto front. After optimization, M∗ rep-
resents different possible trade-offs. This does not only give insights into the charac-
teristics of the problem at hand, but can be useful in practice, for instance, to adapt the
behavior of an application online.

5.2 Mutating solutions

In our optimization problem, we allow the number of features, their individual parame-
ters, and the flow algorithm parameters to vary. This calls for a variable length represen-
tation. We use an encoding and variation operators resembling those proposed in [18].
In the following, we briefly outline the tailored mutation procedure using the example
of a Haar feature based algorithm.

Each time when mutating an individual, tossing a coin decides whether the parame-
ters of the flow algorithm are varied or the feature set. The flow algorithm parameters
comprise mdp, dint, lmax, r, dang, dl, and pmin (see Table 1). They are mutated using
standard operators.

If the feature set is mutated, it is decided whether the number of features is
changed or the individual features are varied. The former happens with a probability
of psize = 0.20. Features are then added or removed with equal probability. New fea-
tures are created with a random type (see Figure 2) and width and height each between
2 and 12.

Alternatively, with a probability of 1 − psize = 0.80, we mutate the features. Each
Haar feature has real-valued, integer, and nominal parameters. The mutation operators
changeSize, changeType, and mutateEpsilons are applied to each Haar feature with a
probability of pmut = 0.50 each. In changeSize, the width and height of the feature
are changed independently by +1 or −1. In changeType, a new random basic type is
assigned to the feature. In mutateEpsilons, the thresholds ε

(0)
i , ε

(1)
i , . . . are mutated. This

also includes mutating the number of thresholds used. We allowed up to three of these
thresholds per feature.

A repair mechanism ensures that only feasible solutions are generated: For each
parameter, we defined a minimal and maximal value according to their meaning. For
example, it is not reasonable to have negative values for differences (e.g., dint and r) or
Haar features smaller than 2 × 2 pixels.

6 Experiments

We compare the original Census based and our Haar wavelet based approach in two
different scenarios. As a baseline for comparison, we also evaluate the performance of
the pyramid based Lucas and Kanade algorithm [7] using good features to track [9]
from OpenCV. The setup of our experiments is described in section 6.1, the results in
section 6.2. We discuss these results as well as crucial points of our experiments in
section 6.3.
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6.1 Setup

The first comparison is performed on Middlebury benchmark datasets2. The Middle-
bury benchmark [5] was designed to evaluate only dense flow algorithms. However,
there are some additional datasets available that we can use for evaluation: Rubber-
Whale, Hydrangea, Grove2, Grove3, Urban2, and Urban3. All these sets consist of
eight frames and evaluation is performed only for the last frame in each case. We use a
common parameter set for all sequences. Figure 4 shows three example frames out of
the datasets.

Fig. 4. Frames out of the Middlebury datasets considered for experiments

The second comparison is performed on an Enpeda benchmark sequence3. Long syn-
thetic video sequences have recently been introduced by Vaudrey et al. [24]. We con-
sider the second sequence which has complex textures and hard shadows. Optimization
is performed on frames 80 to 180. The subsequent frames are used after optimization to
test how the optimized solutions generalize. Figure 5 shows three example frames out
of the sequence.

Fig. 5. Frames out of the synthetic Enpeda sequence considered for experiments

For the Middlebury as well as the Enpeda benchmark, we perform MOO for all three
approaches. For the OpenCV algorithm, there are 8 parameters to be optimized. For
the Census based as well as the Haar feature based approach, we optimize the features
used and the algorithm parameters. As the temporal analysis is the same in both meth-
ods, many parameters that are optimized are identical, see Table 1. For the Census based

2 http://vision.middlebury.edu/flow
3 http://www.mi.auckland.ac.nz/index.php?
option=com_content&view=article&id=52

http://vision.middlebury.edu/flow
http://www.mi.auckland.ac.nz/index.php?
option=com_content&view=article&id=52
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Table 1. Parameters of the flow algorithm used

Description unit

Maximum discriminative power mdp
Maximum intensity difference dint [%]

Maximum vector length lmax [pixel]
Radius for predecessors r [pixel]

Maximum angular difference dang [◦]
Maximum length difference dl [%]

Minimal number of predecessors pmin

approach, we used a setup with 12 digits and therefore additionally optimized individual
thresholds for each digit. For the new approach based on Haar features, we addition-
ally optimized the thresholds ε

(0)
i , ε

(1)
i , . . ., types, and sizes of features as described in

section 5.2.
For the Census based and the Haar feature based approach, we do not use a blacklist

as proposed in the original work. The setup of such a list would make statistical analysis
necessary, which would be performed after optimization and only improve the results.
As this is the same for both methods, no bias is introduced in our comparison.

As framework for the evolutionary multi-objective optimization, we use the Shark
open-source machine learning library [25], which is freely available4. It provides imple-
mentations of efficient algorithms for computing the (contributing) hypervolume used
for selection.

We performed 5 independent optimization runs for each experiment. In every opti-
mization run, we considered 1000 generations. We used elitist (μ+λ)-selection. In each
generation, λ = 15 new candidate solutions result from recombination and mutation
of μ = 15 parent solutions. We made sure that all parameters remain within a reason-
able domain. Solutions generated during optimization which are not feasible regarding
our application, namely solutions having less than 500 flow vectors or mean endpoint
error larger 5 pixels, are discarded. We selected the best solutions (according to the
definitions from Sec. 5.1) from all runs in order to obtain final sets for comparison.
For further details, we refer to the source code and its documentation which is made
publicly available.

6.2 Results

The resulting sets of optimized solutions for the Middlebury datasets are shown in
Figure 6. They visualize different trade-offs between Φ1, the mean number of flow
vectors, and 1/Φ2, the mean endpoint error.

Using the original Census based approach, it was possible to find up to 22, 286 flow
vectors per frame (with mean endpoint error of 4.95). Using the new Haar feature based
approach, it was possible to find up to 46, 999 flow vectors per frame (with mean end-
point error of 2.89). Sub-pixel refinement allowed to further increase the accuracy of

4 http://shark-project.sourceforge.net

http://shark-project.sourceforge.net
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Fig. 6. Results of optimization for Middlebury datasets: Pareto fronts for Census based approach
(triangles), Haar feature based approach with pixel (squares) and sub-pixel (circles) accuracy, and
OpenCV algorithm (diamonds)
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Fig. 7. Results of optimization for Enpeda sequence: Pareto fronts for Census based approach
(triangles), Haar feature based approach with pixel (squares) and sub-pixel (circles) accuracy,
and OpenCV algorithm (diamonds)

our approach. The OpenCV approaches allowed to find up to 13, 669 flow vectors per
frame (with mean endpoint error of 1.46).

Figure 7 shows the Pareto fronts after optimization for the Enpeda sequence. The
OpenCV algorithm allowed to find up to 12, 415 flow vectors. For the Census- based
approach the maximum number of flow vectors found was 13, 545 and for the Haar fea-
ture based approach 51, 434. Sub-pixel refinement improved the mean endpoint error in
our approach by 0.4 pixels on average. Optimized Haar wavelet features for two differ-
ent solutions are shown in Figure 8. Table 2 shows the optimized parameter settings for
different trade-offs for both approaches.

The generalization performances of the solutions on the rest of the sequence are
shown in Figure 9. The Census based approach and the OpenCV algorithm performed
significantly better in the test than in the training. Therefore one can conclude that
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Fig. 8. Optimized feature sets from two different solutions. The features have sizes of (a) 11×11,
5×11, 12×12, 12×10, 11×12, and 7×7. (b) 12×11, 3×11, 13×13, 12×10, 13×13, and 11×11.
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Fig. 9. Generalization results of optimized solutions on the rest of the Enpeda sequence: Cen-
sus based approach (triangles), Haar feature based approach with pixel (squares) and sub-pixel
(circles) accuracy, and OpenCV algorithm (diamonds)

Table 2. Optimized parameters from different trade-off solutions for the Enpeda sequence

Φ1 1/Φ2 mdp dint lmax r dang dl pmin

Census based
502 0.57 33 1.2 43 0.8 0.32 0.11 2
6569 2.03 70 0.5 40 5 0.05 0.1 1
13545 3.72 70 1 45 5 0.23 0.1 1

Haar feature based
521 0.53 33 0.6 80 0.6 0.23 0.1 3

12264 0.93 70 1.6 40 1.6 0.05 0.15 3
25940 1.63 70 2 40 5 0.05 0.1 2
39709 2.12 70 2 40 3.3 0.05 0.1 1
51435 4.03 69 2 46 4.6 0.15 0.74 1

this latter part of the sequence is “easier”. The Haar feature based approach performed
slightly better for solutions up to 4×104 flow vectors and slightly worse for solutions
with more flow vectors.

The optimized solutions for the Census based approach result in runtimes between
200 ms and 400 ms on a standard desktop PC with 2.2 GHz . The solutions of the Haar
wavelet based approach result in runtimes between 250 ms and 600 ms. It is not sur-
prising that these runtimes are comparable as the implementation of temporal analysis
is identical for both approaches. The optimized solutions for the OpenCV algorithm
resulted in runtimes between 200 ms and 1100 ms.

A typical result of the new Haar feature based flow algorithm is shown in
Figure 10, where an optimized solution was considered that combines very small mean
endpoint errors and an adequate number of flow vectors. This setup is suitable for
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Fig. 10. Camera image from the Enpeda sequence (left) and resulting flow field (right), final flow
vectors shown in black

real-world applications in the context of driver assistance systems, for example, for
object segmentation and tracking, collision avoidance, or ego-motion estimation.

6.3 Discussion

In our experiments, the three algorithms were optimized in the same way for the same
scenarios. The Census based and the new Haar feature based approach share most of
their parameters because the temporal analysis is the same. Therefore the significant
differences in performance shown in our experiments solely result from the different
feature basis. The Haar feature based approach is more powerful in general: The mean
endpoint errors were the smallest for every number of flow vectors in all experiments,
especially when the optional sub-pixel refinement was performed. Our method addi-
tionally allowed to have a significantly higher number of flow vectors compared to the
other approaches, in particular almost the fivefold amount in the Enpeda benchmark.

One could argue that the Haar feature based approach has the most degrees of free-
dom (as feature types and sizes can be adapted) and therefore profits most from opti-
mization. While this might be true, it is exactly this flexibility that makes the approach
particularly attractive. Despite this flexibility, most of the optimized solutions showed
good generalization, there was no over-fitting.

The execution speed was not an objective in the optimization performed here, there-
fore the solutions found lead to comparatively slow execution speed, still most of them
meet real-time constraints. All optimized solutions for the new method use 6 Haar fea-
tures which was the maximal allowed number in the optimization. Nevertheless, the
algorithm can generally be used in real-time applications requiring higher frame rates,
especially as the table-based matching and the temporal analysis are suited very well
for implementation on embedded hardware.

Evaluation of different optimized solutions also allows for statements regarding on
how the parameters for the proposed flow algorithm should be set. Most of the opti-
mized features are relatively large, 85 % in the final solutions have widths and heights
larger than 10 pixels. This shows that considering relatively large neighborhoods is
preferable in the given framework. Using Haar features, this is possible without any
drawbacks regarding computational cost. This is an advantage over other filters. Most
parameters are correlated to the trade-off between high number of flow vectors and high
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accuracy in some degree. Nevertheless, dependencies are manifold and the interplay is
complex. Therefore, manual adjustment (e.g., for a fixed desired trade-off) is challeng-
ing and evolutionary optimization has shown to be a valuable tool.

Appropriate parameters are problem class specific. They clearly have to be differ-
ent for an automotive application (with many relatively large displacements) and for
entrance hall surveillance. Therefore the parameters found here are well suited for the
scenarios considered but have to be changed for other contexts. This can easily be done
for the proposed method.

7 Conclusion

Many computer vision applications benefit from fast and accurate estimation of optical
flow. We considered a popular feature-based method which relies on the Census trans-
form and table-based matching. We proposed to employ Haar wavelet features within
this framework in order to make it more flexible and powerful.

Haar wavelet features are state-of-the art for real-time computer vision, particularly
for object detection and classification. It is highly desirable to use them in more tasks
within the same application to benefit from a shared preprocessing. We showed how
Haar wavelet features can be applied for computation of optical flow after appropriate
discretization. The resulting approach is versatile and allows for solutions that satisfy
different trade-off requirements.

The performance of the new method was systematically assessed and compared to
the original approach considering two different benchmarks. This was possible by evo-
lutionary multi-objective optimization, which provides the opportunity to handle the
two conflicting goals high number of flow vectors and high accuracy. In our experi-
ments, the new approach significantly outperformed the original one. For any bound on
the maximum mean error, the method can find a number of flow vectors several times
larger compared to the original approach.

Our experiments suggest how to set up the new flow algorithm in general. In partic-
ular, considering relatively large neighborhoods has shown to be most successful. This
favors Haar wavelets features, because the computational cost of calculating them is
independent of their sizes.
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Abstract. Feature Selection may be viewed as a search for optimal
feature subsets considering one or more importance criteria. This search
may be performed with Multi-objective Genetic Algorithms. In this work,
we present an application of these algorithms for combining different
filter approach criteria, which rely on general characteristics of the data,
as feature-class correlation, to perform the search for subsets of features.
We conducted experiments on public data sets and the results show
the potential of this proposal when compared to mono-objective genetic
algorithms and two popular filter algorithms.

Keywords: filter feature selection, feature importance measures, multi-
objective genetic algorithms.

1 Introduction

Enormous volume of data has been collected, due to the development of tech-
nology, and organized in Databases (DB). Computational processes like Data
Mining (DM) may be applied in order to analyze these DB. DM enables the
construction of logical hypothesis (models) from data, potentially extracting
useful knowledge for specialists, that can be used as a second opinion in decision
making processes [18].

The DM process is mainly composed of pre-processing, pattern extraction and
pos-processing. Pre-processing involves the proper representation of the data into
forms like attribute-value, in which lines and columns represent, respectively,
examples and features (attributes, characteristics) of the data set. Other pre-
processing tasks include cleaning the data and Feature Selection (FS), which is
the focus of this work. The pattern extraction phase involves the construction
of models from data, using, for example, Machine Learning algorithms. The
obtained models are evaluated and consolidated by the specialists at the end of
the process (pos-processing).

FS may be formulated as a search for an optimal subset of features in a DB, in
which each state of the search space represents a possible subset of features [25].
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The optimality of this subset may be estimated according to a maximization
or minimization function of one or more measures (criteria) of importance of
features. Applying FS allows mapping the original data to a projection in which
the examples are described by part of the features. This leads to a dimensional
reduction of the data set. Models constructed using these projections may have
lower complexity and potentially superior or equivalent quality when compared
to those generated using the original data. In addition, FS may help on a better
comprehension of the domain, by maintaining only the features with a good
ability, according to some importance criterion, to describe the inherent patterns
within the data and helps to reduce the effects of the curse of dimensionality [25].

Searching related to FS is usually a combinatorial process [7], precluding the
investigation of all subsets. This is one of the motivations to apply heuristic
search methods such as Genetic Algorithms (GA) [27] in this process. Further-
more, it may be interesting to find subsets of features that optimize different
importance criteria, leading to the motivation of using Multi-objective Opti-
mization strategies (MO) [6]. In the literature, there are many applications
of Multi-objective Genetic Algorithms (MOGA) in different areas and tasks,
including FS [36,5,13,44,37,3,19,42].

The objective of this work is to evaluate the application of MOGA to FS based
on different filter importance criteria. The performed experiments investigate
distinct combinations of these criteria, what is not performed in works related
to the filter approach [5,37,3,42]. This work also differentiates from previous
work [35,36,5,29,33,42,34] by including a comparative evaluation of the MOGA
with distinct mono-objective GA, where each GA optimizes one filter importance
criterion individually, and two popular filter FS algorithms. The selected subsets
are evaluated through the construction of models using two pattern extraction
algorithms in nine benchmark data sets. The predictive ability of these models
is statistically compared to the performance of models built using all features.

This study is part of the Intelligent Data Analysis project (IDA) [35,36,23],
which is developed in a partnership among the “Universidade Federal do ABC”
(UFABC), the “Laboratório de Bioinformática/Universidade Estadual do Oeste
do Paraná” (LABI/UNIOESTE), the “Laboratório de Inteligência Computa-
cional/Universidade de São Paulo” (LABIC/USP) and the “Serviço de
Coloproctologia/Universidade Estadual de Campinas” (UNICAMP).

This work is organized as follows: in Section 2 concepts related to FS and also
importance measures used in the MOGA are described. The complete proposal
is described in Section 3 and its evaluation, using nine data sets from a public
repository, is presented in Section 4. Final considerations are made in Section 5.

2 Feature Selection

Feature Selection may be viewed as a dimensional reduction process of a data set
in order to maintain only its most important features according to some crite-
rion. The importance criteria are usually based on the principles of relevance and
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non-redundancy among features [15,23,17] and may be organized into measures
of consistency, dependency, distance, information and precision [25]. In this work,
one measure of each of the mentioned categories was used with the MOGA,
excluding precision. These measures were chosen from work related to filter
Feature Selection [1,42,20,38,28].

All considered data sets are for supervised learning and related to classification
problems. In these data sets, each example (or case) has an associated label (or
class) and the objective is to construct predictive models, which are capable of
predicting the label of new cases previously unknown. The data set is composed
of n pairs (xi, yi), in which xi = (xi (1) , . . . , xi (m)) represents an example with
m features and yi corresponds to its class. The exclusion of a relevant feature
F1 results in a worse predictive performance of the correspondent classification
model. Two features F2 and F3 are said to be non-redundant when they are not
significantly correlated.

It is relevant to mention that the feature importance estimation may be con-
sidered in two ways: individually or in subsets. Nevertheless, the individual evalu-
ation methods are incapable of removing redundant features, as they may present
the same relevance [17]. For this reason, in this work we considered FS in subsets.
Individual importance evaluations are combined into a unique resultant value,
representing the subset of features as a whole.

The importance of features may be viewed according to the interaction with
the pattern extraction algorithm [25]. In the wrapper approach, a pattern ex-
traction algorithm, which will be used later for the construction of models, is
considered for selecting features. For each subset, a model using this specific al-
gorithm is constructed and evaluated. In the filter approach, feature subsets are
evaluated before the pattern extraction step, and considers general characteris-
tics of the data, such as statistical measures, to select the important features.
A third approach is the embedded, in which the process of selecting features
is performed internally by the pattern extraction algorithm, as in the case of
decision trees [31].

Importance Measures. Importance measures inspired in the concept of con-
sistency value, for example, chooses subsets of features that minimize the occur-
rence of inconsistent pairs of examples in discretized data sets, that is, which
present identical values in each feature but different labels [1]. The Inconsistent
Example Pairs (IP) measure identifies the inconsistency rate by the ration of
the number of inconsistent pairs of examples and the total number of pairs of
examples.

Correlation measures enable a redundancy analysis of the data set when es-
timating the prediction capability of a feature. The Attribute Class Correlation
(AC) [38] exemplifies this category, and is described by Equation 1, where wi

will be 1 if i is selected and 0 otherwise; φ (., .) = 1 if j1 and j2 have distinct
labels or −0.05 otherwise. |.| denotes the module function. The formulation of
C (i) demonstrates that this measure highlights feature values that show the
most distinct values for examples of different classes.
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AC =
(∑

wiC (i)
)

/
(∑

wi

)
(1)

where C (i) =

∑
j1 �=j2

|xj1 (i) − xj2 (i)|φ (xj1,xj2)
n (n − 1) /2

.

The Inter-Class Distance measure (IE) [42] estimates the existent separability
between classes when the set of examples is described only by the investigated
subset of features. The separability maximization may be useful to generate clas-
sification models, as the differentiation of diverse patterns is favored. Equation 2
presents IE, where p is the central example (centroid) of a data set with k classes,
d(., .) denotes the Euclidean distance, and pr and nr represent, respectively, the
central example and the number of examples in class r.

IE =
1
n

k∑
r=1

nrd (pr,p) . (2)

The Laplacian Score (LS) [20] is also based on distance and is inspired by the
possibility of identifying examples with affinity when they are relatively next to
each other. In classification, for example, this behavior is potentially observed
among instances of the same label, highlighting the importance of modeling
the related local structure. Herewith, LS proposes building a nearest neighbor
graph, in which each node corresponds to a distinct example and the nearest
examples are connected by arcs. The S weight matrix of this graph is considered
in Equation 3, with x (i) = [x1 (i) , x2 (i) , · · · , xn (i)]T and 1 = [1, · · · , 1]T . This
formula includes the matrices D = diag (S1), in which diag(.) extracts the
diagonal matrix, and the Laplacian Graph [8] L = D − S.

LS (i) =
x̃ (i)T Lx̃ (i)

x̃ (i)T
Dx̃ (i)

(3)

where x̃ (i) = x (i) − x (i)T D1
1T D1

1.

Information based measures may be applied to reduce the uncertainty associ-
ated to the investigated problem. Representation Entropy (RE) [28], for exam-
ple, enables the investigation of the information distribution among features
and, consequently, to estimate the involved redundancy [41]. RE is presented by
Equation 4, in which the λi eigenvalues are extracted from a covariance matrix
of features of m order.

RE = −
∑

λ̃i log λ̃i (4)

where λ̃i =
λi∑
λi

.

Precision measures consider information like the accuracy rate of the model in
the classification of examples described by a subset of features or other esti-
mate of the models’ quality. Usually these measures are related to the wrapper
approach and are not considered in this work.
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3 MOGA in Feature Selection

MOGA offers the combination of GA and MO for the solution of search and
optimization problems with multiple objectives [9]. Searching for subsets of im-
portant features in a data set can be considered a multi-objective task, since
there are multiple criteria for measuring their importance, and each one of them
considers different aspects of data [1,42,20,38,28].

With the goal of ranking risk factors related to premature births, in [42]
the Non-dominated Sorting Genetic Algorithm (NSGA-II) [12] MOGA was used
in FS relating, through the Pareto strategy, importance measures IE, AC and
Intra-Class Distance. Some results are superior to those of models built using all
features and also of other techniques for FS.

In [5] the NSGA-II algorithm is applied in supervised and semi-supervised
FS in data sets of hyperspectral images. Two measures were optimized simul-
taneously: discrimination between classes and spatial invariance of the features.
In general, the results obtained demonstrate a superior performance of MOGA
over mono-objective GA.

The same MOGA is used in [3] for FS in the classification of microarray gene
expression profiles. Because of the nature of these data, which generally have
few examples and many features, the classification task becomes more complex,
motivating FS. The importance measures of cardinality and ability to discrimi-
nate examples were jointly optimized. Experimentally, there were accuracy gains
when compared to a mono-objective GA and other techniques for FS.

The inter and intra correlation measures proposed by [37] were applied for
FS in data sets for the analysis of credit risk, using the algorithm NSGA-II.
Experimentally, the model built using the features selected by the MOGA had
a better performance than those models generated using all features and also
using features selected by mono-objective GA and the Relief technique [40].

This work differs from previous work by investigating some combinations of
filter importance measures belonging to different categories. The individuals were
encoded using a binary chromosome with m genes, each of which corresponds to
a distinct feature. A gene i with value 1 represents the selection of its respective
feature, while the value 0 indicates its exclusion. A randomly initialized popula-
tion of individuals is then evolved until a number of generations is reached. The
NSGA-II MOGA was used, as in the previous related work.

The importance measures used as objective functions to be optimized are
those discussed in Section 2, which belong to the classes: consistency, depen-
dence, distance and information. The aim is to exploit complementarities be-
tween representatives of measures from different categories. We investigated the
optimization of these measures in pairs always involving IE and some other
measure. This choice is based on previous results presented in [35,36], where the
combinations involving the IE measure were more successful experimentally.

Experiments with three objectives led to a greater computational cost and
little gains in other aspects, such as in the reduction obtained on the subsets
of selected features. Furthermore, it is known that MOGA based on the Pareto
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theory do not scale well for optimization problems with more than three objec-
tives [21]. For these reasons, only pairs of importance measures are considered
in this work.

LS is the only measure used in the study which evaluates the importance of
each feature individually. In its case, we used the average value calculated for
each selected feature (with value 1 on a chromosome s). The other measures
are calculated for each chromosome, using the subset of features represented by
genes with value 1.

We used the one-point crossover, bit-flip mutation and binary tournament [27]
in the MOGA. NSGA-II returns a set of optimal solutions, representing different
tradeoffs between the objectives considered. We used the Compromise Program-
ming (CP) technique [43] to select a single solution from this set due to its
relative simplicity.

4 Experimental Evaluation

We applied the NSGA-II for FS described in the previous section in nine data
sets from the UCI repository1 [2]: Australian (A), Dermatology (D), Ionosphere
(I), Lung cancer (L), Sonar (S), Soybean small (Y), Vehicle (V), Wine (W)
and Wisconsin breast cancer (B). All features in these data sets are numerical
and have continuous or discrete values. Table 1 presents, for each data set, the
Majority Class Error (MCE) rate, which corresponds to the error rate obtained
by classifying all data in the majority class, and the number (�) of examples,
features and classes.

Table 1. Data sets information

A D I L S Y V B W

�Examples 690 358 351 32 208 47 846 569 178
�Features 14 34 34 56 60 35 18 30 13
�Classes 2 6 2 3 2 4 4 2 3
MCE 44.49 68.99 35.9 59.37 46.63 63.83 74.23 37.26 60.11

We used the NSGA-II implementation available in the Platform and pro-
gramming language Independent interface for Search Algorithms (PISA) [4],
with the following parameters: α = 50, μ = 50, λ = 50, crossover rate = 0.8,
mutationrate = 0.01, stoppingcriterion = 50generations. The parameters α, μ
and λ correspond, respectively, to the population size and the number of parents
and children individuals after reproduction. Their values were defined based on
related work. Another tool used in the implementations was the GNU Scientific
Library (GSL)2, which enables the implementation of the covariance matrices
associated with the RE measure.
1 Supported by the Turing Institute in Glasgow (Vehicle).
2 http://www.gnu.org/software/gsl
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As previously mentioned, we have investigated multi-objective combinations
involving the IE measure and each of the other four importance measures de-
scribed in Section 2, resulting in four distinct multi-objective settings. The eval-
uation of the subsets of features selected by the MOGA in each multi-objective
setting was performed by building classification models using projections of the
data sets containing the selected features. Classification algorithms J48, an im-
plementation of C4.5 [31], and Support Vector Machines (SVM) [10], from the
Weka tool [40], were used in the induction of classifiers. Their parameter values
were kept default. These classifiers were selected due to: the relatively low num-
ber of parameters, in the case of J48; and robustness to high dimensional data,
in the case of SVM.

We also implemented five mono-objective GA for FS, each of them using one
of the importance measures discussed in this work as fitness function. The same
binary encoding and genetic operators from MOGA were used. The results of
the FS algorithms Correlation-based Feature Subset Selection (CFS) [16] and
Consistency Subset Eval (CSE) [24] from literature are also presented. CFS
chooses subsets of features highly correlated with the class and that have low
inter-correlation, while CSE analyzes the consistency of the data projections
obtained using different subsets of features.

CFS and CSE filter algorithms come from the Weka tool and were employed
with default parameter values. The mono-objective GA’s parameters number of
generations, population size and probabilities of crossover and mutation were
changed in order to be identical to those used for NSGA-II. The population size
was set to 50 and the seed of GA, as for NSGA-II, was set randomly for each
run. The classification models defined using all the features in each data set were
included as baselines (ca). In LS we used as neighborhood of each example its
five nearest neighbors in terms of distance.

In the experiments, each data set d was initially divided according to Strat-
ified Cross-Validation (SCV) into 10 folds, which leads to 10 pairs of training
and test sets. Because of MOGA stochasticity, it was executed five times for
each training partition fi, and for each multi-objective setting ms. One unique
subset of features is identified for each MOGA run, using CP. This results in
five subsets of features per multi-objective setting. This enables the generation
of five different projections of the data partition fi. After training classification
models using the five projections and evaluating them on their corresponding
test partitions, 50 accuracy rates are obtained. Similarly, we counted up the
Percent of Reduction (PR) in the amount of original features for each run. The
mean values of these evaluation measures are reported for each setting ms. The
mono-objective GA are subjected to a similar procedure, while the other FS
algorithms and the baselines are evaluated by the mean values obtained in a
unique run for each of the 10 folds of d.

4.1 Results

For each data set, we show in Figures 1 and 2 the PR and the accuracy rate
of the J48 and SVM models for each FS algorithm when related to those rates



Multi-objective Genetic Algorithm Evaluation in Feature Selection 469

Fig. 1. J48 models generated after applying: (1) IE + AC, (2) IE + IP, (3) IE + LS,
(4) IE + RE, (5) AC, (6) IE, (7) LS, (8) IP, (9) RE, (10) CFS and (11) CSE

obtained when using all features (ca). Therefore, if a classifier ci and ca accuracy
rates are, respectively, 85.36% and 83.48%, the graph displays for ci the result
of the ratio between these rates (1.02). The horizontal line corresponds to the
point where this ratio reaches the value 1 in each graph, that is, when the rates
are equal for both ci and ca. The dark bars represent PR and the light bars show
the accuracy rates of the classifiers built using the features selected by each FS
algorithm. Therefore, if the top of a light bar is above the baseline line, the
accuracy of the model represented is higher than that of the baseline. The black
bars will never exceed the baseline line, because PR is always less than 100%
of the original number of features per data set. An aggressive PR is identified
when the top of its bar is close to the baseline line.

We noticed that, in general, the magnitude of the standard deviations of the
accuracy rates for each ci had no strong discrepancy to those achieved by ca.
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Fig. 2. SVM models gerarated after applying: (1) IE + AC, (2) IE + IP, (3) IE + LS,
(4) IE + RE, (5) AC, (6) IE, (7) LS, (8) IP, (9) RE, (10) CFS and (11) CSE

Importantly, the FS embedded in J48 was not investigated in this work, therefore
all PR illustrated refer to subsets of features identified by the FS algorithms
evaluated.

Since we do not have assurance of normality, we employed the non-parametric
Kruskall-Wallis test [22] separately for each data set to identify statistical differ-
ences at 95% of significance level between each of the algorithms evaluated and
the baseline in terms of accuracy rate. Using a unique baseline implies in less
statistical comparisons, softening the multiplicity effect [32]. Models with higher
and lower statistical accuracy performance when compared to ca are highlighted
in the graphs, respectively, with a triangle pointing up and down. Models that
had accuracy not statistically lower than that of ca, while providing PR greater
than 50%, are highlighted with a circle. Table 2 summarizes these information,
presenting the total number of models significantly better (in brackets) and with
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Table 2. Models not statistically inferior to ca

IE + AC IE + IP IE + LS IE + RE AC IE
J48 8 (1) 9 (0) 7 (1) 9 (0) 2 (0) 9 (0)

SVM 8 (0) 9 (0) 7 (0) 9 (0) 1 (0) 9 (0)
PR 42.07 (20) 3.18 (6.7) 33.84 (28.5) 8.53 (11.7) 95.17 (2.1) 10.94 (10.7)

LS IP RE CFS CSE
J48 1 (0) 7 (0) 7 (0) 6 (2) 7 (1)

SVM 1 (0) 3 (0) 6 (0) 7 (1) 3 (1)
PR 95.24 (1.9) 78.22 (12.3) 33.82 (11.7) 58.11 (21) 69.41 (25.7)

no significant difference when compared to ca, for each classifier. It also shows
the mean PR and standard deviation (in parentheses) by FS algorithm for all
data sets.

4.2 Discussion

We identified 7 models (3.5% of the total) with significant superiority and 135
models (68.2%) with no significant difference of results when compared to the
baseline, of which 46 had PR higher than 50%. A reduction in the number of
features with the maintenance or improvement in accuracy when compared to
the baseline is important, because it allows reducing the computational cost of
the classification model induced and can also contribute to improve its com-
prehensibility [25,38]. However, most of these occurrences are concentrated in
experiments related to the multi-objective setting IE + AC and to the CFS and
CSE algorithms. This behavior is reinforced by the results shown in Table 2,
where these algorithms showed PR greater than 40% and are associated to all
cases of statistical superiority when compared to the baseline. We also indentified
in several experiments, mainly those related to mono-objective GA using mea-
sures AC and LS, that a too aggressive dimensional reduction led to a predictive
performance statistically inferior to that of ca.

The MOGA based on the IE + AC measures stood out in comparison to the
other settings by allowing the generation of models with lower computational
complexity and predictive performance statistically similar to the baseline in
different data sets. Additionally, in the Sonar data set it was possible to ob-
tain a J48 model with superior performance when compared to ca. These results
reinforce previous experimental evidence [35,36] of the importance of selecting
features that maximize the separability between classes for supervised classifica-
tion problems. The combined use of IE with other measures of importance can
contribute, for example, to select just one feature from two or more features that
are equivalent in terms of separability.

The mix between IE and AC explores the positive aspects of measures belong-
ing to distinct categories, which can be observed in the results of their individual
optimization in the mono-objective GA. The isolated use of the IE measure re-
sults in many models with high predictive performance, but that maintain most
of the features in the data sets. In many cases there is no dimensional reduction



472 N. Spolaôr, A.C. Lorena, and H.D. Lee

at all with the isolated use of this measure. On the other hand, the GA that uses
the AC fitness function made aggressive reductions in the number of features
and generated models that also stand out for their predictive power, although
there are cases of significant losses in terms of accuracy.

IE + LS setting explores in a smaller scale the aggressiveness of the LS mea-
sure in reducing the percentage of features, which is similar to that obtained by
the AC criterion. This behavior is emphasized, in general, by observing that this
combination presents a greater number of models with accuracies statistically
lower than those of the baseline models when compared to other multi-objective
settings. A possible justification for this fact is that both measures belong to the
distance category, what is not observed in the other combinations investigated.
Thereafter, their combination do not enjoy the benefits of MO for FS regarding
different categories of importance.

In addition, the LS measure is dependent on a parameter for the construction
of the weight matrix of the graph that models the local structure of the data. This
parameter was set in the experiments with a unique value, motivating further
studies for the investigation of other values. This study may also contribute
to prevent the occurrence of cases in which no feature is selected by the mono-
objective GA with the LS measure, which was a specific behavior of this criterion
in previous experiments which, for instance, show the problem of division by zero
in Equation 3.

It is interesting to notice that the combinations between the IE measure and
measures IP and RE tends to maintain all features in several cases. In fact, it
was found experimentally that the measures RE and IP in general are relatively
more conservative than the criteria AC and LS regarding PR, which may have
contributed to the fact that these measures reached satisfactory accuracy rates
in some mono-objective experiments. For monotonic criteria as IP, conservatism
can be explained because a larger number of selected features may allow to define
more logical hypothesis [1]. In general, it appears that the joint optimization of
conservative measures, such as IE, IP and RE tends to generate models that
keep that characteristic. Specifically in MOGA IE + IP and IE + RE, the strong
conservatism of the IE measure prevailed over the mild conservatism of IP and
RE measures.

An analysis of the results obtained by CFS and CSE shows that these al-
gorithms are competitive with the GA investigated. The MOGA optimizing IE
+ AC is that which most closely approximates the results of these algorithms
considering predictive performance. The number of models that are highlighted
with a circle or statistically better than ca after the application of these tech-
niques is higher than that observed for all mono-objective and multi-objective
GA, while the average PR for each one of them in the nine data sets is higher
than 50%. The CSE algorithm specifically exhibits the disadvantage of present-
ing a larger number of models with results statistically lower than the baseline
when compared to IE + AC MOGA and CFS. Importantly, both FS algorithms,
like all MOGA, present in most experiments a larger number of models with no
statistical difference when compared to the baseline.
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We also noticed that the use of J48 provided the occurrence of a larger total
number of models with statistical superiority to ca than the SVM. It appears that
the accuracy rate of models generated from projections of features is influenced
by the classification technique used afterwards. This influence may have led to
the fact that a FS algorithm underperforming ca for a particular classification
technique can be superior for other technique. Future work shall investigate the
predictive behavior of other classification techniques with and without FS. Some
initial experiments have been performed and have confirmed those observations.

In future we also plan to combine in a MOGA the IE and the importance
measure of CFS (original or altered as in [26,30]). Herewith, it would be possible
to perform FS considering both distance and dependency, as in IE + AC, using
measures that have been investigated in recent studies [11,14,35,36,42]. In fact,
the AC dependence measure explores only relevance, selecting features most
correlated with the data labels. Since the measure used in CFS also considers
the correlation between features, it also addresses the non-redundancy aspect.

Therefore, the method used in this work supports the implementation of dif-
ferent measures of importance of features, including those from algorithms CFS
and CSE. This flexibility already enabled the investigation of labeled data with
numerical feature values using different combinations of six criteria, taken in
pairs or triplets [35,36]. Besides, some importance measures are also flexible.
Measures such as IE can be used for FS in data sets with categorical features
by using other distance metrics [39], while the LS and RE criteria are applica-
ble to unlabeled data. Another advantage of the MOGA is its ability to return
multiple solutions (various subsets of features). Only one of them was selected
with the CP technique in our work, but others could be selected using different
techniques or they could be even combined.

All FS algorithms investigated in this work belong to the filter approach. It
was possible to build many models with similar accuracy to those of classifiers
that use all features, while using lower numbers of features. For J48, for example,
this could lead to the obtainment of decision trees with fewer nodes and can result
in more understandable decision rules. These advantages are achieved with a
computational cost potentially lower than would be obtained with algorithms
that employ wrapper measures [25].

5 Conclusion

This work presented an evaluation of a MOGA for FS in labeled data sets, in-
cluding different multi-objective configurations of features’ importance measures.
Their results were also compared to those of GA that optimize each importance
measure individually and two popular FS techniques available in a free tool. In
the experimental results and discussions we observed a prominence of the com-
bination of IE and AC measures, coming from categories based on distance and
dependency, respectively, and of the two filter algorithms from literature, which
allowed to obtain different models with reduced number of features and good
predictive performance.
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The good results of the IE + AC MOGA in this study suggest that combining
measures belonging to different categories of importance is interesting for FS
in labeled data. The multi-objective optimization of these measures enables the
identification of relevant features both in terms of separability between examples
and correlation between features and the class. It should be also worth to analyse
the degree of complementarity of these measures.

As future work we aim to combine the measures IE and that of the CFS
algorithm in NSGA-II and also compare the results of different classifiers when
using the subsets of features. It is also interesting to investigate the application
of measures such as IE and IP in data sets with categorical features and perform
experiments with the LS and RE criteria in unlabeled data sets. We can still
observe the influence of different parameter values for the LS importance measure
and to compare the investigated MOGA to other multi-objective metaheuristics,
as well as to wrapper FS approach.
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port received for this work and to the staff of the IDA project for the cooperation.
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Abstract. Cultural Algorithms (CAs) are one of the metaheuristics
which can be adapted in order to work in multi-objectives optimization
environments. On the other hand, Bi-Objective Uncapacitated Facility
Location Problem (BOUFLP) and particularly Uncapacitated Facility
Location Problem (UFLP) are well know problems in literature. How-
ever, only few articles have applied evolutionary multi-objective (EMO)
algorithms to these problems and articles presenting CAs applied
to the BOUFLP have not been found. In this article we presents a
Bi-Objective Cultural Algorithm (BOCA) which was applied to
the Bi-Objective Uncapacitated Facility Location Problem (BOUFLP)
and it obtain an important improvement in comparison with other well-
know EMO algorithms such as PAES and NSGA-II. The considered cri-
teria were cost minimization and coverage maximization. The different
solutions obtained with the CA were compared using an hypervolume S
metric.

Keywords: Bi-Objective Cultural Algorithm, Bi-Objective Uncapac-
itated Facility Location Problem, Evolutionary Multi-Objective Opti-
mization, S metric.

1 Introduction

In order to solve several complex optimization problems, the evolutionary algo-
rithms have become an efficient and effective alternative for researchers princi-
pally because this kind of techniques is capable to found good solutions for most
of these problems in acceptable computational times. By above, it is reason-
able to think that if these algorithms are used we can reach goods solution in a
multi-objective environment, in a similar way as in mono-objective optimization
problems. However, the difficulties that these algorithms present (particularly
genetic algorithms) in a mono-objective environment could also happen in multi-
objective environments. Specifically, they easily fall into premature convergence
with low evolution efficiency because implicit information embodied in the evo-
lution process and domain knowledge corresponding to optimization problems is
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not fully used [3]. In order to effectively make use of implicit evolution informa-
tion, in [4] the author proposed CAs which were inspired from human culture
evolution process.

CAs haves a dual evolution structure which consists in both spaces: popu-
lation and belief space. The population space works as any other evolutionary
algorithm. However, in the belief space, implicit knowledge is extracted from
better individuals in the population and stored in a different way. Then, they
are used to guide the evolution process in the population space so as to induce
population escaping from the local optimal solutions. It has been proved that
cultural algorithms can effectively improve the evolution performance. And the
algorithms also provide a universal model for extraction and utilization of the
evolution information [3].

In the last 20 years, several authors have centered their efforts in the develop-
ment of several EMO algorithms in order to solve a specific group of problems
which are called Multi-Objective or, generalizing, Multi-Criteria1. Among these
works we can cite [5] where the author uses a genetic algorithm in order to
solve the multi-objective dynamic optimization for automatic parking system,
[6] where the authors proposes an improvement to the well-know NSGA algo-
rithm (and that they called NSGA-II) based on an elitist approach, and [9]
where the author presents an EMO algorithm applied for a specific variation
of the well-studied CVRP, where the author includes in the EMO algorithm an
explicit collective memory method, namely the extended virtual loser (EVL). In
[14] a complete and extensive literature review related with EMO can be found.
Despite the above, we do not found in literature articles where the CAs were
applied to BOUFLP, In fact, some recent published books [26] and [27] only
mention Coello and Landa investigations [16] as an example of CA application
to solve MOPs.

In this article we present a Bi-Objective Cultural Algorithm (BOCA) which
was applied to the Bi-Objective Uncapacitated Facility Location Problem (BOU-
FLP) and it obtains an important improvement in comparison with other well-
know EMO algorithms as PAES and NSGA-II. The criterion considered in this
work included both, cost (in order to minimize it) and coverage (in order to max-
imize it). The different solutions obtained with the CA were compared using an
S metric proposed in [1] and used in several works in the literature.

1.1 Paper Organization

In section 2 we show an overview about multi-objective optimization, emphasiz-
ing in EMO algorithms, in sub-section 2.2 we presents a BOUFLP model and
some distinctive characteristics of them, and finally we describe the BOCA al-
gorithm and its principal characteristics. In section 3 we describe in detail the
properties of multi-objective optimization, particularly the non-dominated sets.
In this section, the explanation of how to construct the non-dominated sets and
how to compare different non-dominated sets is depicted. In section 4 we present

1 In this paper both terms are used indistinctly.
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the BOCA applied to well-know instances of literature, its results and a discus-
sion about them. Finally, in section 5 we present our conclusions and future
work.

2 Overview

In this section we show an overview of topics related to this paper. In sub-
section 2.1, the multi-objective optimization is reviewed, emphasizing in EMO
algorithms and its state-of-art. Particularly, we focused in the development of
EMO algorithms for Multi-Objective Combinatorial Optimization problems. In
sub-section 2.2 we review the BOUFLP and present its model formulation based
in a cost-coverage approach. Finally, in sub-section 2.3 we briefly present the
traditional CAs and we show a complete review regarding about multi-criterion
CAs in literature and the details of our CA. implementation.

2.1 (Evolutionary) Multi-Objective Optimization

In this section we briefly introduce the main principles of MOP and, particularly,
MOCO problems. The Following definitions were extracted from [22]. Given a
set of alternatives, a feasible alternative x is called dominated if there is another
feasible alternative in the set, say alternative x′, such that:

– x′ is equally or more preferred than with respect to all criteria, and
– x′ is more preferred than for at least one criterion

If the above holds, the alternative x′ is called dominating. A pair of alternatives
x and x′, where x is dominated and x′ in dominating, is said to be in pareto dom-
inance relation and is denoted by x′ ≺ x. In a set of more than two alternatives,
one alternative can be dominating and dominated at the same time. Given a set
of feasible alternatives, one which is not dominated by any other alternative of
this set is called efficient. In other words, an alternative is efficient if there is no
other alternative in the set:

– equally or more preferred with respect to all criteria, and
– more preferred for at least one criterion

Alternatives which are not efficient are called nonefficient. The pareto optimal
set (P ∗) is composed by feasible solutions which are not dominated by any other
solution. Therefore, P ∗ = {x ∈ Ω : there is no x′ ∈ Ω, x′≺x}.

The Efficient (or Pareto) Frontier (PF ∗) is the image of the pareto optimal
set in the objective space, this is, PF ∗ = {f(x) = (f1(x)...fk(x)) : x ∈ P ∗}.

As said above, many authors have worked in order to solve different MOCO
problems. Particularly, EMO is an important research area for this goal. An
evolutionary algorithm is a stochastic search procedure inspired by the evolution
process in nature. In this process, individuals evolve and the fitter ones have a
better chance of reproduction and survival. The reproduction mechanisms favor
the characteristics of the stronger parents and hopefully produce better children
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guaranteeing the presence of those characteristics in future generations [2]. A
complete review about different EMO algorithms is presented in [19], [26] and,
more recently, in [27].

2.2 Bi-Objective Uncapacitated Facility Location Problem
(BOUFLP)

Facility Location Problems (FLP) is one of the most important problems for
companies with the aim of distributing products to their customers. The problem
consists of selecting sites to install plants, warehouses, and distribution centers,
assigning customers to serving facilities, and interconnecting facilities by flow
assignment decisions. In [10], [11] and [12] detailed FLP reviews and analysis
are presented.

This paper considers a two-level supply chain, where a single plant serves a
set of warehouses, which serve a set of end customers or retailers. Figure 1 shows
this configuration.

Fig. 1. A two-level supply chain network configuration

This model focused in two main goals:

– Minimize the total cost associated with the facility installation and customer
allocation or

– Maximize the customer’s rate coverage.
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Respect to the minimization of location and allocation costs, uncapacitated FLP
(UFLP) is one of most studied models in literature. Specifically, in the UFLP
model, the main characteristic is defined for the unlimited capacity of the distri-
bution centers which permits them to serve an unlimited number of customers,
independently of its demand. On the other hand, respect to the coverage, the
Maximal Covering Location Problem (MCLP) is our reference model. Both mod-
els are well-described and formalized by Daskin in [10]. In this context, a clas-
sification developed in [8], shows how to relate a multi-criterion optimization
problem with a specific model as a BOUFLP. Figure 2 shows such classification.

Multi-Criterion
Location Problem

Multi-Objective
Location Problem

Multi-Attribute
Location Problem

Bi-Objective
Problem

k-Objective
Problem (k > 2)

Fig. 2. A classification of Multi-criterion Location Problem presented in [8]

In this paper, as mentioned above, we solved the BOUFLP. The problem has
been modeled with mini-sum and maxi-sum objectives (cost and coverage).

The following model formulation is based on [13]. Let I = {1, ..., m} be the
set of potential facilities and J = {1, ..., n} the set of customers. Let fi be the
fixed cost of operating facility i and dj the demand of customer j. Let cij be
the cost of assigning the customer j to facility i and hij the distance between
facility i and customer j. Let DMAX be the maximal covering distance, that is,
customers within this distance to an open facility are considered well served. Let
Qj � {i ∈ I : hij ≤ DMAX} be the set of facilities that could attend customer
j within the maximal covering distance DMAX . Let yi be 1 (one) if facility i is
open and 0 (zero), otherwise. Let xij be 1 (one) if the whole demand of customer
j is attended by facility j and 0 (zero), otherwise.

min z1 =
∑
i∈I

∑
j∈J

cijxij +
∑
i∈I

fiyi (1)

max z2 =
∑
j∈J

dj

∑
i∈Qj

xij (2)

subject to, ∑
i∈I

xij = 1, ∀j ∈ J (3)
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xij ≤ yi, ∀j ∈ J, ∀i ∈ I (4)

xi,j ∈ {0, 1} ∀j ∈ J, ∀i ∈ I (5)

yi ∈ {0, 1} ∀i ∈ I (6)

The objective function (1) represents total operating cost; where the first term
represents the allocation cost (cost of attending demand of the customer by the
open facilities), and the second term, the location cost (sum of the fixed costs
incurred by the open facilities). The objective function (2) measures coverage as
the sum of the demand of customers attended by open facilities within the maxi-
mal covering distance. Constraints (3) and (5), guarantees that each customer is
attended by only one facility. Constraint (4) forces the customer to be assigned
to an open facility. Finally, (5) and (6) define decision variables as binary.

2.3 Bi-Objective Cultural Algorithms (BOCA)

The experience and beliefs accepted by a community in a social system are the
main motivations for the creation of Cultural Algorithms (CAs). They were de-
veloped by Robert Reynolds, in order to model the evolution of cultural systems
based on the principles of human social evolution from the literature of social
sciences, who believe that the evolution can be seen as an optimization process
[4]. The CAs are identified to guide the evolution of the population based on the
knowledge. This applies to the knowledge provided to future generations, allow-
ing them to accelerate the convergence of the algorithm to obtain good solutions
[21]. Besides the domain knowledge is modeled separately from the population,
because there is certain independence between both, which allow to work and
to model separately each one of them, in order to enhance the overall algorithm
and thus improve the search for best solutions. Figure 3 shows this interaction.

Beliefs

Adjust

Population

InfluenceAcceptance

Selection

Variation

Performance
Function

Fig. 3. Spaces of a Cultural Algorithm
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CAs are mainly characterized by presenting two inheritance systems: at the
population level and knowledge. This key feature is designed to increase the
learning rates and convergence of the algorithm, and thus to do a more re-
sponsive system for a number of problems [23]. This feature allows to identify
two significant levels of knowledge: a micro-evolutionary level (represented by
the area of population) and macro-evolutionary level (represented by the space
of beliefs) [24]. CAs have the following components: population space (set of
individuals who have independent features) [24]; belief space (stored knowledge
individuals have acquired in previous generations) [23]; computer protocol, which
connecting the two spaces and defining the rules on the type of information to be
exchanged between the spaces, by using the acceptance and influence function;
and finally, knowledge sources which are described in terms of their ability to
coordinate the distribution of individuals on the nature of an instance of a prob-
lem [24]. These knowledge sources can be of the following types: circumstantial,
normative, domain, topographic, historical.

Algorithm 1. General Structure of BOCA
1: procedure General Structure of BOCA
2: t = 0
3: initialize Population P (t)
4: initialize belief Space B(t)
5: evaluate individual fitness of P (t)
6: while not end condition do
7: t = t + 1
8: parents = select parents from P (t− 1) and Influence from B(t)
9: child = crossover(parents, Influence(B(t))

10: Evaluate(child)
11: P (t) = child
12: Update(B(t))
13: Accept(P (t))
14: end while
15: while not end condition do
16: i = i + 1
17: Baux(i) = Mutate(B(t))
18: Evaluate(Baux(t))
19: Update(B(t))
20: Accept(Baux(t))
21: end while
22: end procedure

BOCA Implementation. In this article, a binary representation was chosen,
with an m-length vector (with m a number of possible facilities) where a position
i = 1 implies that the facility i has been selected. Besides, we used a m × n
matrix (with m a number of possible facilities and n a number of customers)
where a position (i, j) = 1 implies that the customer j is served by facility i.
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In order to compare the two different solutions (individuals) it is necessary
a evaluation criterion. As mentioned in previous sections, this criterion is diffi-
cult to define due to the multi-objective nature of the environment in which we
are working. Given the dominance concept explained in Section 2.1, many indi-
viduals are not comparable only using the objective functions of the problem.
To solve this problem, we propose a fitness function (formula (7)) which will
determine which individual is “better” than another.

fitness =
[
gap1 × 100
ub1 − lb1

+
gap2 × 100
ub2 − lb2

]
(7)

Where gap1 is the difference between the values of function z1 and lb1, which is
the lower bound of function z1. The gap2, meanwhile, is the difference between
the value of function z2 and lb2, which is the lower bound of function z1. Finally,
ub1 and ub2 are the upper bounds of z1 and z2 function respectively. Figure 4
shows the relation between these values.

Fig. 4. Main coordinates in order to obtain a fitness value for an individual

In order to initialize the population, we used a semi-random function. In first
phase, this function defines in a stochastic way the set of facilities which will be
open (selected facilities). Then, we allocate the customer into a selected facil-
ity minimizing the cost function and avoiding minimizing a coverage function.
This strategy for assigning the initial population provided better results than
using initial populations generated with a completely random function, and the
computational-time cost of this semi-random function was marginal.

The most distinctive feature of CAs is the integration of knowledge, which
through an influence function affects future generations. In this paper, the influ-
ence functions that were used are those based on circumstantial and historical
knowledge. This is used for best individuals found so far adapted (circumstan-
tial) and a list of individuals who possess the highest level of adaptation (lower
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fitness value) compared to the rest of the population (historical). In order to
obtain a next generation, two parents are used in a recombination process. To
avoid local optimal values, we do not overuse the culture. Hence, a parent is
selected from the population in order to obtain diversity and the other parent is
selected from the knowledge to influence the next generation. Historical knowl-
edge keeps a list of all individuals found close to the Pareto Frontier and that
will be used as parents of future generations. Circumstantial Knowledge provides
information from the two best individuals found so far. An individual will give
information on the best value found for z1 and z2 individual to another.

3 Non-dominated Sets: Metrics

In this section we face one of most important problems in MOCO: How can
we compare two non-Dominated Sets? Several proposals from literature and its
main characteristics are described, in order to choose one of them and applied
over the non-dominated sets obtained for the BOCA algorithm.

3.1 Metrics for Comparing NDSs

As said above, one of most important problems in MOCO is how to compare two
NDSs. Numerous quality assessment metrics have been developed by researchers
to compare the performance of different MOEA. These metrics show different
properties and address various aspects of solution set quality [17].

In this sense [17] describes several Excellence Relations. These relations estab-
lish strict partial orders in the set of all NDSs with respect to different aspects of
quality. Previously, in [18] and [19] the authors consider several Outperformance
Relations to address the closeness of NDSs to the Pareto Frontier (PF). Besides
the above, also is necessary to measure in a quantitative way the approximation
to PF. In this sense, we need to identify desirable aspects of NDSs. In [20] the
authors define those desirable aspects:

– The distance of the resulting non-dominated set to the Pareto-optimal
frontier should be minimized.

– A good (in most cases uniform) distribution of the solutions found is desir-
able. The assessment of this criterion might be based on a certain distance
metric.

– The extension of the obtained non-dominated frontier should be maximized,
i.e., for each objective, a wide range of values should be covered by the
non-dominated solutions.

The main problem of these, is that the three criteria should be combined in
different ways to establish the performance of an EMO algorithm in quantita-
tive way. However, such combinations are simply linear combinations of weights.
Ironically, the problem of metrics is also multi-objective nature. Over the last
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two decades, several authors have described techniques for measuring one or
more of these criteria and also, they have proposed new criteria that give new
insights for the evaluation of all the solutions found.

In this article, we choose the S metric. In [19] the formal definition for the
S metric can be found. This metric calculates the hyper-volume of the multi-
dimensional region2 [1] and allows the integration of aspects that are individ-
ually measured by other metrics. In this article, the total area is bounded by
the points where the maximum coverage (all centers are open) and minimum
cost (the cheaper location are open) are reached. It is easy to note that, given
the mentioned area, the ideal point (maximum coverage at minimum cost) will
have a value for the metric equivalent to S = 1 (equivalent to 100% of the area).
An advantage of the S metric is that each MOEA can be assessed indepen-
dently of the other MOEAs. However, the S values of two sets A, B cannot be
used to derive whether either set entirely dominates the other. Fortunately, this
disadvantage does not affect the metric used in this article.

4 Computational Experiments

In this section we present the instances of literature and the results obtained for
them by our CA implementation. Sub-section 4.1 shows the main characteristics
of the used instances and sub-section 4.2 presents the main results and a brief
discussion. All results are shown in appendix A.

4.1 Instances Presentation

The instances that were used in this research are the ones generated by [2].
The descriptions of instances were extracted from that article. These instances
correspond to random instances using a problem generator that follows the
methodology of UflLib [25].

Instances were generated of three different sizes ranging from 10 facilities and
25 customers, to 50 facilities and 150 customers (problem sizes m × n: 10 ×
25, 30 × 75 and 50 × 150). Instances have two different ways of choosing the
facility location (type A and B). Instances of type A choose uniformly distributed
facility locations within a square of 190 distance units of width; while instances
of type B choose facility locations from customer locations, thus facility locations
correspond to customer locations.

We generated problem instances with 6 different types of fixed-cost structures
(C1 to C6). Instances labeled C1, C2, and C3, have the same fixed cost for all
facilities; namely, 400, 700, and 1000, respectively. Instances labeled C4, C5,
and C6, have uniformly distributed fixed costs for each facility; namely, U(100,
400), U(400, 700), and U(700, 1000), respectively (where U(a, b) stands for a
uniformly distributed random variable between a and b).

After combining all the possibilities of size, facility location and cost structure,
we end up with 36 problem instances. Each problem instance was given a name
2 In this paper the metric calculates the area of the two-dimensional region.
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following the (A or B) m - n (C1 to C6). For example, instance A50-150C2 has
its 50 facilities uniformly distributed within the square of width 190 distance
units; has 150 customers; and facility fixed-cost structure of type C2.

On the other side, the cultural algorithm proposed in this research has the
following parameters to be set: population size L, number of generations T,
probability of mutation in the population Pmp and probability of mutation in
the belief space Pmb . To make the parameter setting, we used four test problems
and several values for each parameter, which are showed in Table 1:

Table 1. Test values for parameters setting

Parameter Test Values

L 30 - 60 - 90 - 120 - 150
T 50 - 100 - 150 - 200 -250 - 300
Pmp 0.1 - 0.15 - 0.2 - 0.25 - 0.3
Pmb 0.02 - 0.03 - 0.04 - 0.05

The algorithm was executed 10 times for each combination of parameters and
calculates the average for each of them. Finally the chosen parameters correspond
to those that, together, yielded the best results for the four instances. Table 2
shows the values used for the experiments.

Table 2. Parameters setting

Parameter Set Value

L 150
T 100
Pmp 0.15
Pmb 0.04

4.2 Results and Discussion

In order to resume our results, we only present the ones obtained for six instances
in which CA obtained an important improvement regarding the NSGA-II and
PAES algorithm.

Figure 5 shows the behavior of our BOCA implementation and its results
before exploitation phase and after exploitation phase. As can we see, this phase
allows to obtain a robust approximation with more non-dominated solutions
(allows a compact approximation) and more dominated area. By above, we can
say that our BOCA implementation uses the belief space in a good way, and
that the historical knowledge used is the most important, responsible of this
improvements regarding the results before exploitation phase.
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Fig. 5. Approximation to Pareto Frontier: Before Exploitation (BE) phase and After
Exploitation phase for (a) A30-75C2 and (b) B30-75C2 instances

Tables 3 and 4 presents a comparison between our BOCA implementation and
two well-know MOEAs: NSGA-II and PAES. The results of these implementa-
tions are obtained from [2], where these algorithms were applied to BOUFLP, as
said above. Table 1 shows a BOCA v/s PAES comparison. The main conclusion
of this comparison is that our BOCA implementation obtained an important
improvement when compared with the PAES algorithm. Furthermore, a slight
improvement is obtained regarding computational times. The average of the im-
provement for the S-area for all instances was a 7.9%, and for the computational
times was a 1.97%.

Table 3. Comparison between BOCA and PAES algorithms

BOCA PAES

Instance S′
BOCA Time(sec). |PF ∗| S′

PAES Time(sec). |PF ∗| Difference(%)

A10-25C1 0,7057 252 13 0,7057 372 13 0
A30-75C6 0,7245 740 37 0,5300 511 12 36,70
A50-150C3 0,7883 1165 53 0,6900 1269 26 14,25
B10-25C6 0,6517 285 18 0,6517 394 17 0
B30-75C6 0,8775 800 42 0,7602 585 32 15,43
B50-150C2 0,7634 1221 53 0,4970 1241 13 53,60

Table 4 shows a BOCA v/s NSGA-II comparison. The main conclusion of this
comparison is that our BOCA implementation obtained an important improve-
ment regarding to the NSGA-II algorithm if we compare a computational times.
However, the improvement obtained when considering the S-area is marginal.
The average of the improvement for the S-area considering all instances was a
0.4%, and for the computational times was a 60.74%. This improvement (com-
putational time) can be attributed to the exploitation phase, which is more
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“aggressive” than GA, allowing a more quick convergence. The best improve-
ments in the S-area obtained by our BOCA implementation are in the following
two instances: A30-75C6 and B30-75C6, with 8.52% and 8.49% respectively. As
can we see, both instances have similar characteristics. This can explain the good
BOCA performance.

Table 4. Comparison between BOCA and NSGA-II algorithms

BOCA NSGA-II

Instance S′
BOCA Time(sec). |PF ∗| S′

NSGA−II Time(sec). |PF ∗| Difference(%)

A10-25C1 0,7057 252 13 0,7057 1344 13 0
A30-75C6 0,7245 740 37 0,6676 1474 36 8,52
A50-150C3 0,7883 1165 53 0,7665 2298 34 2,84
B10-25C6 0,6517 285 18 0,6517 1261 17 0
B30-75C6 0,8775 800 42 0,8088 1460 47 8,49
B50-150C2 0,7634 1221 53 0,7515 2289 41 1,58

5 Conclusions and Future Work

In this work, we have confirmed the efficiency of CAs w.r.t. other evolutionary
techniques such as genetic algorithms. This better performance of CAs has been
widely reported in mono-objective problems, however the research in a multi-
objective context has not achieved that maturity level yet.

The main goal of this article was to study the behavior and performance
of an implementation of a CA in a multi-objective environment. In this sense,
our implementation has achieved the expected results. Thus, confirming that the
CAs are a real alternative and a line of development that has not been sufficiently
developed.

The results obtained by our implementation, show significant improvements
over the two dimensions measured in this paper: dominated area (S-metric) and
computational time. Our implementation was contrasted with two well known
algorithms in the literature: PAES and NSGA-II. In the first case (PAES), the
most significant improvements occurred in the dimension of dominated area,
while the second (NSGA-II) the most important improvements concerned the
computational time. As future work, we envision two lines of work that are
relevant and presented below:

– Regarding the type of knowledge used. In this investigation two types of
knowledge have been inserted in the space of belief: the circumstantial and
historical. This opens a line of work for experimenting with other kinds of
knowledge to further improve the performance of the algorithm.

– Regarding the metrics. It seems interesting to evaluate the performance of
cultural algorithm using other metrics to measure the level of consistency
and quality of the approximations obtained.
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Abstract. In this paper, we examine the p-median problem from a bi-objective 
point of view. Since this is a NP-Hard problem, an efficient algorithm based on 
the Iterated Local Search heuristic (ILS) is proposed to determine non-
dominated solutions (an approximation of the Pareto-optimal solutions). ILS is 
a simple and powerful stochastic method that has shown very good results for a 
variety of single-objective combinatorial problems. In each component of the 
ILS, we use the concept of Pareto dominance. An intensification component 
based on the Path-Relinking is used to improve the quality of the found non-
dominated solutions. To test the performance of the proposed algorithm, we de-
velop a Mathematical Programming Algorithm, called ε-Constraint, that finds a 
subset of Pareto-optimal solutions by solving iteratively the mathematical mod-
el of the problem with additional constraints. The results show that the proposed 
approach is able to generate good approximations to the non-dominated frontier 
of the bi-objective problem efficiently. 

Keywords: Heuristics, Local search, Path Relinking, Multi-objective Combina-
torial Optimization, p-Medians. 

1   Introduction 

Given n customers and m potential facilities, the single-objective p-median problem 
(SO-p-MP) is the most well-known facility location problem. It consists in finding a 
subset with p facilities (medians) such that the total sum of distances between each 
customer and its nearest facility is minimized. Facility location-allocation problems 
have several applications in telecommunications, industrial transportation and distri-
bution, clustering, etc.  

The SO-p-MP is NP-hard [7]. Exact and heuristic methods have been proposed to 
solve this problem [11][12]. 

In this paper, we address the p-MP from a bi-objective point of view. Consider m 
location points (for installing or opening facilities), n customers, a n×m matrix with 
the distances traveled dij for satisfying the demand of the customer located at i from 
the facility located at j and the fixed cost cj of operating local j (the cost of installing 
or opening a facility at the local j). The bi-objective p-MP (BO-p-MP) consists in 
finding a subset with p facilities (medians) in order to minimize, simultaneously two 
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objectives, f1: the sum of the distances from each customer to its nearest facility and 
f2: the total cost of opening the p facilities.  

A solution x to a bi-objective problem can be described in terms of decision vector 
in decision space X. For the p-MP, a solution x is interpreted as a set of p open facili-
ties (or medians). The vector-valued function f = (f1, f2): X → Z evaluates the quality 
of a specific solution by assigning it an objective vector in the objective space Z (Z ⊆ 
R2). Following the well-known concept of Pareto dominance, we can say that x1 do-
minates x2 if no component of f(x1) is larger than the corresponding component of 
f(x2) and at least one component is smaller, that is,  f1(x

1)≤ f1(x
2), f2(x

1)≤ f2(x
2) and ( 

f1(x
1)< f1(x

2) or f2(x
1)< f2(x

2)) [20]. 
Here, optimal solutions, i.e., solutions not dominated by any other solution may be 

mapped to different objective vectors. In other words, there may exist several optimal 
objective vectors representing different tradeoffs between the objectives. The set of 
optimal solutions in the decision space is in general denoted as Pareto-optimal set. 

A multi-objective optimization problem consists in determining the set of Pareto-
optimal solutions. Knowledge about this set helps the decision maker in choosing the 
best compromise solution. 

The most used methods for solving multi-objective combinatorial optimization 
problems are metaheuristics [3][6]. Metaheuristic methods were originally conceived 
for single-objective optimization and the success achieved in their application to a 
very large number of problems has stimulated researchers to extend them to multi-
objective combinatorial optimization problems. Surveys of multi-objective metaheu-
ristics research reveal that in most articles from the literature use Genetic Algorithms 
(GAs) as the primary metaheuristic, followed by Simulated Annealing and Tabu 
Search [6]. Applications of others metaheuristics, such as GRASP, Iterated Local 
Search (ILS), VNS and Ant-Colony are scarce. Recently, these metaheuristics were 
applied to solve some multi-objective combinatorial optimization problems: GRASP 
[1], ILS [4], VNS [8], Ant-Colony [15]. 

The literature on multi-objective facility location-allocation problems is too scarce. 
Recently, GAs were used to solve some of these problems [10][14][19]. 

The purpose of this paper is to present a simple and effective bi-objective method 
based on the ILS metaheuristic to determine a good approximation of the Pareto-
optimal solutions. In the proposed heuristic we use an efficient intensification proce-
dure based on the Path Relinking technique that explores a trajectory that connects 
two non-dominated solutions. 

2   A Bi-objective ILS Heuristic with Path Relinking 

Iterated Local Search (ILS) [9] is a simple and generally applicable heuristic that 
iteratively applies local search to modifications of a current solution. Four basic pro-
cedures are needed to derive an ILS algorithm: a procedure “Generate-Initial-
Solution”, which returns an initial solution x, a procedure “Perturbation” that perturbs 
the current solution x leading to some intermediate solutions x1, a procedure “Local-
Search” that takes x1 to a local optimum x2, and an acceptance criterion that decides 
from which solution the next perturbation step is applied. Usually, the solution x2 
returned by the local search is accepted if it is better than the current solution x. ILS is 
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a powerful heuristic that has shown very good results for a variety of single-objective 
combinatorial problems [9]. 

In this paper we present an adaptation of the ILS heuristic to solve the BO-p-MP. 
The proposed algorithm was inspired by the algorithm proposed in [16]. In the pro-
posed ILS heuristic, we use local search and intensification with Path Relinking. The 
Path Relinking technique connects a non-dominated solution with an ILS local 
 

BOILS+PR (Ns, k, Max_Iter) 
01. D = ∅; //set of non-dominated solutions to be  returned by BOILS+PR 
Generate-Initial-Solutions: 
02.  For i = 1 to Ns do 
03.     Define randomly λ1 and λ2, such that λ1+λ2 = 1;           
04.    x = Constructive-Algorithm(λ1, λ2); //construct x minimizing λ1f1+λ2f2 
05.     D = non-dominated solutions of (D ∪{x}); 
06. End-for 
Main loop: 
07. For iter = 1 to Max_Iter do 
08.     x = select randomly a solutions from D; 
         Perturbation: 
09.     xk = remove randomly k medians from x and stored they in r; //Destruction 
10.     D1 = {xk};  // xk is a partial solution with p-k medians 
11.     For j = 1 to k do //Construction loop 
12.          D2 = ∅; 
13.          For each partial solution xk from D1 do 
14.             For each facility a∉(xk ∪ r) do 
15.                x’ = xk ∪{a};  // x’ is a solution with p-k+j medians 
16.                Evaluate the partial solution x’; //compute f1(x’) and f2(x’) 
17.                D2 = non-dominated solutions of (D2 ∪ { x’}); 
18.             End-For 
19.             D1 = D2; 
20.          End-For 
21.     End-For 
22.     x = select randomly a solution from D1; 
23.      f = select randomly an objective function ; // f = f1 or f = f2 
         Local Search: 
24.     DLS = Local-Search(x, f ); //improve x minimizing  f 
         Intensification: 
25.     xo = select randomly a solutions from D; 
26.     xg = select randomly a solutions from DLS; 
27.     DPR = Path-Relinking(xo, xg); 
28.     D = non-dominated solutions of (D ∪ D1 ∪ DLS ∪ DPR); 
29. End-for 
30. Return D; 
End BOILS+PR 

Fig. 1. Pseudocode of the proposed BOILS+PR heuristic 
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minimum. The proposed algorithm is called Bi-Objective ILS with Path Relinking 
(denoted by BOILS+PR). The pseudocode description of the algorithm is presented in 
Figure 1. 

The BOILS+PR algorithm has three input parameters: the number of non-
dominated solutions built in the initial phase (Ns), a parameter k used in the perturba-
tion phase (k = the number of medians to be removed from a solution) and the  
maximum number of iterations (Max_Iter) used as stop condition. The algorithm 
returns a set of non-dominated solutions called D. In the next subsections, we de-
scribed each phase of the BOIL+PR heuristic. 

2.1   Initial Solutions 

For the p-median problem, a solution x is represented by an array of p numbers that 
represents the open facilities (or medians). In the first phase of the BOILS algorithm, 
Ns solutions are constructed using the sample greedy algorithm proposed by [13] for 
the single-objective p-median problem. The set D is initialized by the non-dominated 
solutions among the Ns constructed solutions (see steps 02-06). In the sample greedy 
algorithm, a solution is constructed trying to minimize the value of the weighted li-
near utility function fλ = λ1f1 + λ2f2, where λ1 and λ2 are nonnegative weights (define 
randomly) such that λ1+λ2 = 1. 

2.2   Perturbation 

A solution x from the set D is selected to be perturbed. The perturbation procedure is 
composed of two stages: destruction and construction. In the destruction stage (step 
09), k medians are removed from the current solution x and a partial solution xk (of 
size p-k) is obtained. The removed medians are stored in r. In the construction stage 
(steps 10-21), from the partial solution xk, a set D1 of non-dominated solutions (com-
plete solutions) is constructed. In the first step, m-p-k partial solutions (of size p-k+1) 
are constructed by inserting different location points in xk (m = number of location 
points). From these partial solutions, the non-dominated solutions are selected. In the 
next step, new solutions (of size p-k+2) are obtained by inserting different location 
points in each of the partial non-dominated solutions. The construction stage ends 
when the obtained non-dominated solutions are complete (of size p). 

 

 

Fig. 2. Solutions constructed by perturbation procedure (example for p=5, k=2 and m=50) 
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In Figure 2, it is shown an example of the destruction and construction stages. Note 
that the non-dominated solutions are obtained from xk by swapping k points. 

2.3   Local Search 

A solution x selected from D1 (set of the non-dominated solutions generated in the 
perturbation phase) is improved by a Local-Search (LS) procedure (steps 22-24). The 
solution x is improved by making a neighborhood search and minimizing the objec-
tive function f = f1 or f = f2 ( f is select randomly). Figure 3 shows two examples of the 
search directions explored by the local search phase. 

The neighborhood of a solution x is generated by making swap movements, that is, 
the neighbor solutions are obtained by swapping location points (or facilities). Given 
a current solution x, the LS procedure determines, for each facility a∉s, which facility 
b∈s (if any) would improve the solution the most if a and b were interchanged (i.e., if 
a were opened and b closed). If there is one such improving move, a and b are inter-
changed. The procedure continues until no improving interchange can be made. We 
adopt the best improvement strategy, i.e., all neighbors are checked and the best is 
chosen. The LS procedure returns a set DLS composed by the all the non-dominated 
solutions found in the LS process. 

 

Fig. 3. Examples of search directions explored in the Local Search 

2.4   Acceptance Criterion 

The acceptance criterion used in the BOILS+PR algorithm is based on the Pareto 
dominance approach. All the non-dominated solutions found in the LS phase are 
stored in the set D (step 28). In each iteration of the algorithm, a solution belonging to 
the set D is selected at random to be perturbed. 

A solution x is inserted in the set D if it is not dominated by any solution x’∈D, 
moreover, the solutions dominated by x are removed from the set D.  
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2.5   Intensification with Path Relinking  

In the ILS+PR algorithm we include an intensification procedure (steps 25-27) based 
on the Path Relinking (PR) technique that explores a trajectory that connect two non-
dominated solutions, xo (origin) and xg (guide) [5]. Solution xo is selected from D (the 
current set of non-dominated solutions) and xg is selected from DLS (set of non-
dominated solutions obtained in the LS phase). The PR procedure starts with xo and 
gradually transforms it into the other solution xg by inserting elements from xg – xo 
and removing elements from xo – xg. The total number of stages made (to transform xo 
into xg) is | xg – xo |, which is equal to | xo – xg | (symmetric difference between so and 
sg). In each stage, the “best” move that reduces the distance from xo to xg is executed, 
that is, the solution obtained by the best move is chosen. That is, in each stage, solu-
tions less similar than the origin solution and more similar than the guide one are 
obtained. In bi-objective case, the "best" solutions are those which are non-dominated 
by the all swap neighborhood of the current stage. From the set of non-dominated 
neighbors, we choose randomly a solution x to be analyzed. In the next stage, new 
solutions are generated from this solution x. The PR procedure ends when x and xg 
become equal. The set of the overall non-dominated solutions (set DPR) is kept as the 
result of the PR procedure. 

In Figure 4, it is shown an example in which the guide solution xg is obtained in 
three stages from the origin solution xo. 

 

Fig. 4. The Path-Relinking procedure 

2.6   Parameters of the Algorithm 

We tested the combination of parameters which yielded the best results. Ns was ad-
justed in 20 and k was selected at random in the interval [2, min(⎡p/2⎤, 10)]. The algo-
rithm was executed with Max_Iter = 400, 600, 800, 1000 and 1200 iterations. The 

4 3 12 10 8

4 5 15 10 7

xo–xg = {3, 12, 8},  sg–xo = {15, 7, 5}

4 15 12 10 8 4 7 12 10 8 4 5 12 10 8

4 3 12 10 5

4 3 15 10 8 4 3 7 10 8 4 3 5 10 8

4 3 12 10 15 4 3 12 10 7

4 15 12 10 7 4 5 12 10 7 4 3 15 10 7 4 3 5 10 7

xg

xo

xo–xg = {3}, sg–xo = {5}

xo–xg = {3, 12}, sg–xo = {15, 7}

Swap neighborhood

Non-dominated solutions

Swap neighborhood

x

x



498 J.E.C. Arroyo et al. 

value that has given certain stability to the algorithm (in terms of quality and number 
of non-dominated solutions) was Max_Iter = 800.  

3   The ε-Constraint Algorithm for the BO-p-MP 

The ε-Constraint algorithm finds Pareto-optimal solutions (Pareto-optimal frontier) 
by solving iteratively the mathematical formulation of the problem with additional 
constraints [14]. 

Consider a set J of m location points and a set I of n customers. The Integer Pro-
gramming formulation of the BO-p-MP is as follows: 

(BO-p-MP) 

Minimize  ∑∑
∈ ∈

=
Ii Jj

ijij xdf1  and ∑
∈

=
Jj

jj ycf2    (1) 

   subject to: Iix
Jj

ij ∈=∑
∈

     ,1  
 

(2) 

              jij yx ≤ ,      JjIi ∈∈ ,  (3) 

     
∑
∈

=
Jj

j py  (4) 

    xij , yj ∈{0,1},     i∈I, j∈J. (5) 

The decision variables of the problem are yi and xij.  yj = 1, if a facility is opened in 
local j∈J, and 0, otherwise; xij = 1, if customer i∈I is served from the facility located 
in j∈J, and 0, otherwise. The objective functions to be minimized are defined in (1). 
Constraints (2) guarantee that each customer is attended by one and only one facility. 
Constraints (3) prevent any customer from being supplied from a local with an un-
opened facility. The total number of open facilities is set to p by constraint (4). Final-
ly, (5) defines that the decision variables are binary. 

 

Fig. 5. ε-Constraint algorithm: Phases 1 and 2 
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1f  = Min f1  subject to: (2), (3), (4) and (5). 

2f  = Min f2  subject to: (2), (3), (4), (5) and f1 ≤ 1f . 

Then, the algorithm determines the minimum value of f2 ( 2f ), solving the model: 

2f = Min f2  subject to: (2), (3), (4) and (5). 

To find a set of Pareto-optimal points, the algorithm divides the range 2f  – 2f  in s 

equally sized intervals. The size of each interval is determined by Δ = ( 2f – 2f )/s. 

The iterative scheme starts with the upper bound ε = 2f – Δ for f2 and a new Pare-
to-optimal point q = (f*1, f*2) is determined solving the following models: 

f*1= Min f1  subject to: (2), (3), (4), (5) and f2 ≤ ε, 
f*2= Min f2  subject to: (2), (3), (4), (5) and f1 ≤ f*1. 

Other points are determined considering the upper bounds ε = 2f –KΔ, K = 2,…,s. 
The Phase 1 of the algorithm finishes when ε = 2f .  

The Phase 2 is a similar and complementary algorithm. It starts with the other ex-
treme point q2 = ( 1f , 2f ) of the Pareto-optimal frontier and new Pareto-optimal 
points q = (f*1, f*2) are determined solving the following models: 

f*2= Min f2  subject to: (2), (3), (4), (5)  and f1 ≤ ε, 
f*1= Min f1  subject to: (2), (3), (4), (5)  and f2 ≤ f*2. 

The ε-Constraint algorithm does not guarantee finding all the Pareto-optimal solu-
tions. The number of Pareto-optimal solutions depends on the number of intervals (s) 
used to divide the range of the objectives f1 and f2. In each phase of this algorithm we 
use s = 50. 

4   Computational Tests 

The proposed BOILS+PR algorithm was coded in C++. The ε-Constraint algorithm 
was coded in Mosel and solved with Xpress-MP. The algorithms were executed on an 
Intel Core 2 Quad with a 2.4 GHz processor and 3GB of RAM. 

In this work, we analyze the behavior of the Path Relinking (PR) technique used in 
the BOILS algorithm. We compare the non-dominated solutions obtained by BOILS 
without PR (BOILS) and BOILS with PR (BOILS+PR). The heuristic solutions 
also are compared with the Pareto-optimal solutions determined by the algorithm 
ε-Constraint. 

4.1   Problem Instances 

The ILS+PR algorithm was tested using a set of 150 problem instances. In this work 
we considered problems in which the number of location points (m) is equal to the 
number of customers (n). The sizes of the instances are m×p = (50, 100, 200, 300, 
402)×(5, 10, 15, 20, 25, 30). For each combination of m and p, 5 problem instances  
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were generated randomly. The distances dij from customers i to facilities j were un-
iformly generated in [0, 3 000]. The cost cj for installing a facility at the local j is 
generated uniformly from the interval [1 000, 40 000]. 

4.2   Performance Measures 

The results obtained are evaluated in terms of the number of non-dominated solutions 
generated by the algorithms (cardinal measure) and the proximity of the obtained non-
dominated front to the Pareto front or reference front (distance measures). 

We denoted by E the set of Pareto-optimal solutions obtained by ε-Constraint algo-
rithm (Phases 1 and 2). D' and D are the sets of non-dominated solutions obtained by 
BOILS and BOILS+PR algorithms, respectively. A reference set R is determined. R is 
formed by the non-dominated solutions obtained by the three algorithms: 

R = non-dominated solutions of (E ∪ D' ∪ D). 

Note that, E⊂R, because set E contains Pareto-optimal solutions. For BOILS and 
BOILS+PR we compute the number of non-dominated solutions in R: |D'∩R| and 
|D∩R| . 

We also measure the performance of the set T (T = E, D' or D) relative to the refer-
ence set R by using the following distance metric [2]: 

Dav = ∑
∈ ∈

×
R

T
zzd

R x
y

),(min 
||

1
100 21  (6) 

where, z1 = f(x) = (f1(x) f2(x)), z2= f(y) = (f1(y) f2(y)), d(z1, z2) = max{(f1(x)–f1(y))/Δ1 , 
((f2(x)–f2(y))/Δ2} and Δj is the range of  the objective fj ( j =1,2) in the reference set R. 

Note that Dav is the average distance from a point f(x)∈f(R) to its closest point in 
f(T). This Dav metric evaluates the distribution of T as well as the proximity of T to R. 
Dav indicator is widely employed measure for multi-objective problems [16][17][18]. 

4.3   Obtained Results  

Table 1 presents the comparison among ε-Constraint, BOILS and BOILS+PR on 
problem instances with p = 5 and 10 medians. For each set of instances m×p, Table 1 
shows the total number of reference solutions provided by each algorithm (on five 
instances) and the average distance values (Dav) for each algorithm. Note that BOILS 
and BOILS+PR generate their own set of non-dominated solutions (D' and D), which 
do not necessarily belong to R. For the 50 instances (with p=5 and 10), |R| = 3030 
reference solutions were obtained, from which |E| = 2061 (68%) Pareto-optimal solu-
tions were obtained by ε-Constraint algorithm. |D'∩R| = 2909 (96%) and |D'∩R| = 
2957 (98%) reference solutions were obtained by BOILS and BOILS+PR, respective-
ly. For these 50 problems, the most of the Pareto-optimal solutions (obtained by ε-
Constraint algorithm) were determined by BOILS and BOILS+PR. For example, the 
BOILS+PR algorithm found 2013 Pareto-optimal solutions (97.6%).  
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From Table 1, we can observe that the BOILS and BOILS+PR algorithms find a 
larger number of reference solutions. Also, It can be seen that the solutions generated 
by BOILS and BOILS+PR algorithm are closer to the reference solutions (see Dav). 
Considering the cardinal and distance measures, the performance of BOILS+PR was 
slightly superior to BOILS on problem instances with p = 5 and 10 medians. 

Table 1. Performance of the algorithms for instances with p = 5 and 10 medians 

 

Table 2 shows the mean computational times (in seconds) spent by the three algo-
rithms on problems with p = 5 and 10. The ε-Constraint algorithm, to solve an prob-
lem of size 402×10, spends about 15 hours in average. For problems with p≥15 and m 
= 402, the computational time of this algorithm is very expensive and it was impossi-
ble to generate a set of Pareto-optimal solutions. The BOILS+PR algorithm, to solve 
an instance of size 402×10, spends 380 seconds in average. 

Table 2. Computational for instances with p = 5 and 10 medians 

 

Instances Reference εε-Constraint BOILS BOILS+PR 
m × p |R| |E| Dav |R∩D' | Dav |R∩D| Dav 
50×5 151 136 0.037 151 0.00 151 0.00 

100×5 144 123 0.031 142 0.004 143 0.002 
200×5 163 138 0.045 163 0.00 163 0.00 
300×5 181 152 0.034 180 0.002 181 0.00 
402×5 282 203 0.075 281 0.001 282 0.00 
Total 921 752 0.222 917 0.007 920 0.002 
50×10 288 215 0.063 288 0.00 288 0.00 
100×10 313 229 0.063 312 0.0008 313 0.00 
200×10 441 290 0.072 430 0.004 432 0.001 
300×10 508 293 0.078 476 0.015 485 0.008 
402×10 559 282 0.081 486 0.018 519 0.014 
Total 2109 1309 0.357 1992 0.037 2037 0.024 

Instances εε-Constraint BOILS BOILS+PR 
m × p Time (seconds) Time (seconds) Time (seconds) 
50×5 54.5 0.8 0.9 

100×5 163.8 3.0 3.8 
200×5 1662,1 14.6 16.4 
300×5 10086.1 36.6 34.2 
402×5 41362.7 73.0 77.6 
Total 53329.2 128.0 132.9 
50×10 128.4 2.0 3.2 

100×10 299.3 13.8 15.6 
200×10 2674.9 75.6 78.2 
300×10 13314.4 190.4 198.7 
402×10 54856.3 373.8 380.5 
Total 71273.3 655.6 676.2 
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In Table 3 we present the results obtained by the algorithms BOILS and 
BOILS+PR on problem instances with p = 15, 20, 25 and 30 medians. For these  
problems, we can observe that the number of reference non-dominated solutions  
increases as p increases (except for problems with m = 50). For all problem sizes, 
except for 50×25 and 50×30,  BOILS+PR generates more reference solutions,  
when compared to BOILS. For the 100 instances (with p =15, 20, 25 and 30), |R| = 
20850 reference solutions were obtained, from which |D'∩R| = 15485 (74,2%)  
and |D∩R| = 18196 (87,2%) solutions were obtained by BOILS and BOILS+PR, 
respectively.  

Table 3 also shows that BOILS+PR performs better than the BOILS algorithm  
regarding the distance measure. The computational times spent by BOILS+PR are 
slightly greater than the times of BOILS. 

In all problems tested we observed that the objectives distance (f1) and cost (f2) are 
conflicting. A solution with minimum value for f1 has a high value for f2 and vice 
versa. Figure 6 shows this fact. 

Table 3. Performance of the algorithms for instances with p = 15, 20, 25 and 30 medians 

 
 
 

Instances Reference BOILS BOILS+PR 
m × p |R| |R∩D' | Dav Time (s) |R∩D| Dav Time (s) 
50×15 364 354 0.0018 2.2 363 0.0006 2.4 

100×15 600 574 0.01 18.6 593 0.001 20.8 
200×15 709 552 0.088 120.8 659 0.011 126.4 
300×15 753 544 0.06 373.4 679 0.023 385.5 
402×15 901 651 0.065 732.8 752 0.038 741.3 
Total 3327 2675 0.2248 1247.8 3046 0.0736 1276.4 
50×20 394 387 0.0013 2.6 394 0.00 3.4 

100×20 847 801 0.0068 32.2 835 0.0013 39.5 
200×20 978 727 0.053 213.4 883 0.0121 219.6 
300×20 1177 818 0.056 680.5 1034 0.117 691.2 
402×20 1263 839 0.068 1088.2 1067 0.029 1095.5 
Total 4659 3572 0.1851 2016.9 4213 0.1594 2049.2 
50×25 360 360 0.00 3.4 360 0.00 3.9 

100×25 1076 991 0.01 58.4 1014 0.006 64.2 
200×25 1422 1059 0.048 461.2 1201 0.022 473.8 
300×25 1505 1038 0.063 974.5 1209 0.029 986.2 
402×25 1522 970 0.068 1698 1254 0.036 1703.4 
Total 5885 4418 0.189 3195.5 5038 0.093 3231.5 
50×30 309 309 0.00 3.6 309 0.00 4.4 

100×30 1151 1014 0.012 80.3 1100 0.004 87.8 
200×30 1739 1250 0.043 601.6 1405 0.023 612.3 
300×30 1969 1270 0.057 1305.5 1591 0.031 1342.2 
402×30 1811 977 0.075 2202 1494 0.02 2235.5 
Total 6979 4820 0.187 4193 5899 0.078 4282.2 
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Fig. 6. Non-dominated points determined by BOILS and BOILS+PR for a problem 
with m = 300 and p = 30 

5   Conclusions 

In this paper we propose an ILS heuristic with Path-Relinking to solve a bi-objective p-
median problem. The goal of the proposed heuristic is to produce close to Pareto-optimal 
solutions. For instances with up to 402 location points and 10 medians, a subset of Pare-
to-optimal solutions were determined by a Mathematical Programming algorithm. 

In this work we show that, the combination of the ILS and Path-Relinking provides 
a useful tool to solve multi-objective optimization problems. The proposed approach 
is simple and proved to be very effective.  For a total of 150 bi-objective problems 
tested, 23880 reference (non-dominated) solutions were obtained, from which 18394 
solutions were obtained by BOILS and 21153 solutions were obtained by BOILS+PR 
(2759 more). 

In the literature, the ILS heuristic was little applied to multi-objective problems. It 
would be very interesting to apply the proposed algorithm to other types of combina-
torial problems. 
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Abstract. Locating logistic facilities, such as plants and distribution
centres, in an optimal way, is a crucial decision for manufacturers, par-
ticularly those that are operating in large developing countries which are
experiencing a process of fast economic change. Traditionally, such deci-
sions have been supported by optimising network models, which search
for the configuration with the minimum total cost. In practice, other in-
tangible factors, which add or reduce value to a potential configuration,
are also important in the location choice. We suggest in this paper an
alternative way to analyse such problems, which combines the value from
the topology of a network (such as total cost or resilience) with the value
of its discrete nodes (such as specific benefits of a particular location).
In this framework, the focus is on optimising the overall logistic value
of the network. We conclude the paper by discussing how evolutionary
multi-objective methods could be used for such analyses.

Keywords: multi-criteria analysis, logistics, facility location, multi-
attribute value theory, multi-objective optimisation.

1 Introduction

Designing logistic networks – involving plants, distribution centres and cross
dock terminals – are strategic decisions for industrial companies (Daskin 1995,
Ballou 2004, Klose and Drexl 2005, Melo et al. 2009). Locating such logistic
facilities in an optimal way is a crucial and frequent decision for manufacturers
(Bowersox et al. 2007), in particular for those companies operating in large
developing countries which are experiencing a process of fast economic change.

Traditionally, location decisions have been modelled as a network with discrete
location alternatives. These models can then be optimised to find the configu-
ration with the minimum total cost. In practice, other intangible factors, which
add or reduce value to a potential configuration, are also important in the lo-
cation choice (Daskin 1995, Klose and Drexl 2005). However, these factors are
many times taken into account just exogenously during the analysis.

We suggest in this paper an alternative way to analyse such problems, which
combines the value from the topology of a network (such as total cost) with the
value of its discrete nodes (such as specific benefits of a particular location). In
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this framework, the focus is on optimising the overall logistic value of the net-
work, considering the criteria that contribute to adding value to the system and
the preferences of the company involved in the decision. The framework is pre-
sented using an illustrative case, based on the authors’ experience in supporting
this type of decisions in Brazil.

The paper has the following structure. We start describing the main features
present in logistic facility location decision problems and the decision models
usually employed for analysing them. We then present the proposed framework.
The paper concludes with suggestions for further research on the topic, in par-
ticular the use of evolutionary multi-objective methods in this context.

2 The Logistic Facility Location Problem

Decisions involving logistic network design have some specific challenges, which
make it extremely difficult to make an informed decision without mathematical
modelling and decision support. These challenges are:

– Systemic properties : Multi-location decision problems have intrinsic sys-
temic properties, where each topology provides a set of different perfor-
mances. Examples of systemic properties may be total cost, geographical
covering, or resilience. This requires the use of optimisation modelling for
analysing the problem.

– Properties of Elements : Additionally, nodes in location decision problems
have properties that distinguish one from each other. For example, potential
sites for an industrial plant could have different levels of performance, such
as skilled manpower availability or transportation infrastructure. This would
lead to a discrete choice analysis of nodes, without the use of optimisation
tools.

– Multiple Objectives : When companies are considering location problems,
they have a set of objectives they want to achieve. These objectives may re-
flect concerns about systemic properties of the network (increase profitabil-
ity, improve coverage, etc.) as well as properties of its elements (availability
of skilled manpower, quality of local infra-structure, etc.).

– Preferences and value trade-offs : When more than one criterion is involved
in the decision, for instance the need to minimise costs versus the wish
to have wider coverage (and thus expensive) topology, then there is the
need of modelling the company’s preferences and trade-offs (e.g. costs versus
coverage).

– Facilitated decision modelling : The decision process needs to be carefully
crafted, as it should allow a consistent and participative decision making
process (Franco and Montibeller 2010), where managers are able to negoti-
ate their preferences and trade-offs. It thus should enable decision-makers
to “play” with the models (de Geus 1988), assessing the consequences of
different topologies and trade-offs and, therefore, an interactive decision tool
is required.
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We now contrast these problem’s features with the existing literature on sup-
porting facility location, which is the subject of the following section.

3 Decision Models for Facility Location Problems

In this section we review first the traditional mono-criterion decision models for
facility location suggested in the literature, followed by models that allow the
consideration of multiple objectives.

3.1 Traditional Decision Models

Facility location has a long history in the scientific tradition of mathematical
modelling (see reviews by Klose and Drexl 2005, and Melo et al. 2009). From
this literature, one can conclude that most classical location models in logistics
and supply chain management have a single objective function, generally focused
on the minimisation of costs (or other surrogate criterion, such as total weighted
distance or number of open nodes).

On the other hand, some of those authors caution that location problems
in logistics are definitely multi-objective decisions. For instance, Daskin (1995)
comments that non-quantifiable objectives and other issues will influence sitting
decisions to a great extent, and solutions of a single objective model are optimal
in a narrow sense. Klose and Drexl (2005) state that strategic decisions, such as
location of logistic facilities, are often multi-objective in nature, and, according
to them, the body of literature regarding multiple criteria location models is
very limited.

Evidently, in real world interventions, one can construct useful decision loca-
tion models based on a single criterion, then conduct extensive changes to the
model to try to include multiple objective issues (for example, adding a con-
straint which expresses a minimum level of achievements of a given objective).
However, this may prevent decision makers to contemplate radically different,
but high-value, topologies. This suggests the use of multiple criteria models for
location decisions, which is reviewed briefly below.

3.2 Decision Models Considering Multiple Objectives

The recognition that facility location decisions have an inherent multi-objective
nature has led to the development of several approaches for incorporating mul-
tiple criteria in the decision models (see Current et al. 1990, Malczewski and
Ogryczak 1996 and Nickel et al. 2005).

Here we confine ourselves in briefly describing such models according to a
categorisation of benefits which we are proposing. Within this perspective, there
are two main types of decision models that incorporate multiple criteria:

– Topological Benefits : The more traditional way of incorporating multi-
criteria into facility location models is with the inclusion of topological met-
rics, a subset of the network’s systemic properties. Such metrics attempt
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to reflect the decision-makers’ concerns about the topology of the network
(e.g. distance between nodes, service coverage, among others). Models in-
cluding topological benefits employ either goal programming (see Tamiz
et al. 1998) or multi-criteria optimisation (see Marler and Arora 2004). Ap-
plications using the former approach are, for example, Badri et al. (1998)
and Giannikos (1998); and using the latter approach are, for instance, Hugo
and Pistikopoulos (2005) and Yang et al. (2007).

– Nodal Benefits : Another way of analysing facility location problems is by
considering the several benefit dimensions, for each potential site of the net-
work, which the decision-makers are concerned with (e.g., level of infra-
structure, availability of labour, among others). Each of these nodes has an
intrinsic level of benefits and disadvantages that need to be taken into ac-
count in the decision, which are properties of the elements of the network.
This type of evaluation can be easily analysed by multi-criteria discrete alter-
native methods (see Wallenius et al. 2008), where each node is an alternative
in the model (e.g. Keeney 1979, Min 1994, Yurimoto and Matsui 1995).

Considering only one type of benefit may be detrimental to the analysis, in
our opinion. Methods which include topological benefits lack an evaluation of
benefits at the node level and are incapable of dealing with intangible benefits.
On the other hand, methods which evaluate nodal benefits do not consider the
network structure and, therefore, the benefits that some particular topological
layouts may provide. Given these concerns, it is rather surprising that there
are a limited number of suggested approaches which try to assess both types
of benefits, such as Badri (1999), Cheng et al. (2003), and Farahani and Asgari
(2007).

However, none of these approaches mentioned in the former paragraph recog-
nised explicitly the measurement of two distinctive types of benefits, as we are
suggesting in this paper. Also, when trying to assess topological benefits, they
assumed linear marginal value functions, but this is not always a realistic as-
sumption (Stewart 1996). Furthermore, they did not recognise the importance
of facilitated decision modelling when implementing such models in practice. In
the next section we are proposing a framework for analysing facility location
problems which addresses these issues.

4 A Framework for Using Multi-Criteria Analysis in
Facility Location Problems

4.1 The Traditional Optimisation Model

We will consider a multi-criteria, single commodity, capacitated facility location
problem (SCFL’), but the framework could be employed for other similar prob-
lems. It will be illustrated by a case study inspired on real applications in the
food and retail industry in Brazil which we supported, as consultants, in the
past. In these problems, a manufacturer has to choose the sites for a number of
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plants, each one with limited production capacity, to fulfill product demand in
different markets (client regions). Traditionally this problem could be analysed
using a mono-criterion model (see Aikens 1985, Klose and Drexl 2005):

Objective function: min CL =
∑
i∈I

∑
j∈J

cij xij +
∑
i∈I

fi zi (1)

Subject to: ∑
j∈J

xij ≤ Sizi , ∀i ∈ I (2)

∑
i∈I

xij = Dj , ∀j ∈ J (3)

xij ≥ 0 , ∀ i, j (4)

zi ∈ {0, 1} (5)

Where: xij are decision variables (flow between plant i and client j); zi are deci-
sion variable (1, if facility i is established, 0 otherwise); cij are unit production
and distribution cost associated with satisfying client j from plant i; fi is the
fixed cost of plant i; Dj is the demand of client region j; Si is the capacity of plant
i; I,J are sets of candidate sites for plants and clients, respectively. Equation (1)
is the mono-criterion objective function, which minimises the total logistic cost
(production and distribution) plus fixed costs associated with selected alterna-
tives for a plant site. The constraint set (2) prevents that open plants suffer from
violations of their capacities (upper bounds). The constraint set (3) assures that
all demand from all clients will be satisfied, while the remaining constraints are
the usual non-negativity conditions (4) and binary variable definitions (5).

In our illustration, a food company has to design its logistic network (location
of plants and capacity allocation to clients). There are ten alternatives (poten-
tial sites) to place factories, chosen from main State capital cities (see Table
1, based on the Brazilian market). Their capacity (3,820 t/year), fixed costs
(861,000 US$/year, including investment and overhead for a given production
capacity) and variable costs (55.88 US$/t) are assumed to be the same for every
alternative. The demand is split between 23 Brazilian States (first column of
Table 1) easily accessed by land transportation and concentrated in the State
capitals. The demand (last column of Table 1) is calculated as the product of
per capita consumption times the State population.

Transportation costs to hauling products from a given factory to a given
client region are calculated from actual freight rates and are also shown in
Table 1. The optimal solution cL

∗will find which sites will be opened and, there-
fore, their location and number, in order to minimise (1). In the following sections
we present how this model can be altered in order to consider both nodal and
topological benefits.
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4.2 Identifying and Measuring Nodal Benefits

A nodal benefit is here defined as a benefit inherent to a specific node and,
thus, is concerned about a property of the network’s elements. It may be either
a tangible or intangible aspect, and nodes (potential sites) may be assessed by
any number of criteria. There are several ways of identifying nodal benefits. The
analyst could use the existing location literature and select the ones suitable
for the particular problem. Or else, the analyst could relate to similar problems
and see which benefits were measured in these case studies. A third option is
to define tailor-made indices from the client company’s objectives. This latter
approach is the one that we favour, as it links clearly the company’s strategic
objectives with the fundamental objectives in locating plants (see Keeney 1992).
For example, in the illustrative case study mentioned in the previous section,
four nodal benefits could be defined, which would reflect the strategic objectives
of the company: maintenance efficiency, planning permission, logistic services
and skilled labour.

Table 1. Freight Rate from City to State and Demand of Each State

Cities - Potential Sites
State JOV CUR SAP RIO BHR GOI SAL REC FOR SOL Demand

(US$/t) (t)
01) AL 115.32 113.18 98.25 86.81 76.19 85.64 32.69 20.65 43.71 66.28 256.0
02) BA 94.29 92.11 77.22 66.31 55.14 66.59 21.24 41.70 57.37 70.60 1221.0

...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ......
22) SE 106.41 104.22 89.33 78.21 67.26 77.03 23.77 29.60 48.08 66.40 160.0
23) TO 100.51 96.18 87.22 87.83 72.66 52.41 65.45 79.08 66.66 48.14 104.00

Whatever the method employed to define the set of nodal benefits, the next
step is to define an attribute (i.e. a performance index) and assess a value func-
tion over its range. For example, in our illustration, the nodal benefit mainte-
nance efficiency of a potential city could be measured by the following
performance index: ’number of hours required from a breakdown to a full re-
pair’ with an associated value function (see Figure 1). For nodal benefits that
have a qualitative nature, discrete labels can be defined to represent a given level
of performance, as shown in Table 2 for measuring the logistic services benefit
(for details see Keeney 1992).

If there are several nodal benefits that are preferentially independent of each
other (see Keeney 1992), then they can be aggregated using a simple weighted
sum. Thus the overall nodal benefit for a given topology can be calculated by:

νN =
∑
p∈P

wNpνNp (6)
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Fig. 1. Marginal value for nodal quantitative benefits - Maintenance Efficiency

Table 2. Marginal value for nodal qualitative benefits - Logistic Services

Value Description of attribute level

100 Availability of mid-size carriers with a national coverage and high services standards.
75 Availability of mid-size carriers with a regional coverage and high services standards.
50 Few large-size carriers with a national coverage and average service standards.
25 Availability of small-size carriers with regional coverage with high services standards.
0 Few small-size carriers with regional coverage with average services standards.

Where vNp is the partial value on the p-th nodal benefit for this given topology;
wNp is the weight of the p-th nodal benefit; P is the set of nodal benefits and∑

wNp = 1. Notice that vN will depend on the number of nodes active, thus:

νN =
∑
p∈P

wNpνNp =
∑
p∈P

wNp

[∑
i∈I νipzi∑

i∈I zi

]
(7)

Equation (7) creates a non-linearity in the objective function. In this paper, we
opted for using a direct enumeration method, so a conventional mixed integer
linear programming software could be readily used.

4.3 Identifying and Measuring Topological Benefits

Topological benefits are evaluation criteria that assess systemic properties from
the network configuration as a whole. Classical mono-criterion location mod-
els optimise topological benefits, such as minimising total costs or the weighted
distances from clients (a service level surrogate). The same type of criteria is
employed in many multi-objective location models, as listed in Current et al.
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(1990). In our framework we suggest considering total costs against overall ben-
efits (which can be either topological or nodal), as the former are extremely
important in logistic network design. In addition to total cost and geographical
coverage, other topological benefits may be employed, such as: number of sites,
service area overlap, total system risk, total environmental impact, total qual-
ity of service (Badri et al. 1998, Giannikos 1998, Hugo and Pistikopoulus 2005,
Farahani and Asgari 2007).

Most methods for measuring topological benefits proposed in the literature
use direct measurement of performance (a rare exception is Mirchandani and
Reilly 1987) but, again, from a decision analytic point of view, we believe it
is important that non-linear value functions are represented in the model, in a
similar way as shown in Figure 1.

If there is more than one topological benefit and if these benefits are prefer-
entially independent, then they also can be aggregated using a simple weighted
sum. Therefore the overall topological benefit for a given topology can be calcu-
lated by:

νT =
∑

m∈M

wTmνTm (8)

Where vTm is the partial value on the m-th topological benefit for this given
topology; wTm is the weight of the m-th topological benefit; M is the set of
topological benefits and

∑
wTm = 1.

4.4 Measuring Preferences for Costs

In the same way as it was done for benefits, we suggest that a value function
should be elicited for total logistic costs. Given the large amount of resources
typically required in this type of investment, one would expect a non-linear
value function, as increases from the minimum cost should be heavily penalised.
In practice, we can find the minimum total cost cL

∗, disregarding the benefits,
and then calculate the ratio cL = cost of the layout/minimum total cost. A value
function can then normalise this attribute vL = f(cL) (the higher the ratio, the
less valuable the solution is, in terms of its overall cost, as shown in Figure 2).

In the illustrative case, component costs are fixed plant costs and variable
logistic costs, the latter involving transportation and handling (Table 1). The
total logistic costs are calculated by (1). Raw material and manufacturing costs
are assumed to be the same for every potential site and thus were not included
in the model.

4.5 Defining the Overall Logistic Value Optimisation Model

In our framework, instead of optimising the total cost, as formulated in (1), we
suggest a model that maximises the overall logistic value of the network. Thus
Eq. 1 is replaced by:

Max V = wLνL + wB [wNνN + wT νT ] (9)
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Fig. 2. A value function for total logistic cost

Where V is the overall logistic value of a given topology, wL is the weight for
the logistic cost criterion and wB is the weight for the logistic benefits (with
wL + wB = 1 and wN + wT = 1).

4.6 Determining Value Trade-Offs

The next step in our framework is to determine the trade-offs between logistic
costs, topological benefits and nodal benefits, represented in (9) by their weights.
Defining trade-offs is a crucial step in any important decision involving multiple-
objectives, but there are many common mistakes in eliciting them (Keeney 2002),
which can lead to meaningless values. For a multi-attribute value model, as the
one we are proposing here, trade-offs must be elicited taking into account the
ranges of each performance index (for example, in Figure 1, from 1 to 48 hours).
Traditionally, trade-offs in multi-attribute value functions are elicited a priori
from the client, often using the swing weighting method (see Keeney 2002).

We suggest that weights are elicited in phases, i.e., intra-weights wNp for
nodal criteria, intra-weights wTm for topological criteria, then inter-weights wN

and wT for nodal and topological benefits, followed by wL and wB for cost
and overall benefits. In this way, the analyst can reduce the cognitive burden
involved in the elicitation (see also von Winterfeld 1999) and help decision-
makers think explicitly about the nodal versus topological trade-offs, as well as
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about cost versus overall benefits trade-off. Another possibility is to elicit all the
intra-criteria weights at once and then infer the inter-weights for benefits from
the swing weights allocated to the bottom-level benefit criteria. In any case, once
the trade-offs are defined, Equation 9 can be solved to find the configuration
which provide the highest overall value.

If the analyst wants to explore different alternatives without a priori pref-
erence information, for example ranging wL against wB in (9), a diagram of
efficient solutions can be drawn. Notice, however, that this method does not find
all efficient solutions for non-convex fronts (see Marler and Arora 2004). Further-
more, this type of analysis may struggle to convey the results when more than
two criteria are considered. That is why we suggest the importance of an inter-
active visual decision support system in this type of analysis, which is described
next.

4.7 Exploring the Solution Layouts

In our experience in supporting this type of decision, location problems require
several interactions between analyst and client for exploring alternative solu-
tions. Typically, decision makers want to see an optimal (minimum cost) logistic
solution first, in order to anchor their bottom line expectations and start their
search for other solutions that provide better benefits within acceptable cost
levels. There is, however, an understandable reluctance to explore options which
are far from the optimal one, or topologies which are radically different than
the optimal one. Furthermore, any analysis that exogenously considers benefits,
relying on ad hoc what-if trials, is obviously an inefficient way to explore the
solution space. Multi-criteria analysis, on the other hand, allows a more compre-
hensive evaluation of the benefits in the solution space. It searches for high value
solutions, considering the trade-offs between benefits and costs. In this type of
approach, visual interactive modelling becomes crucial - the role of the model is
to explore different configurations and see how the trade-offs would impact on
the topology of the network.

In order to illustrate how such interaction between model and decision-maker
may be performed in practice, we have implemented the model described here
as an Excel-based decision support system. Changing the weights of cost and
benefits leads the model to present a new optimal topology, which is depicted
geographically in the map. Figure 3, for example, shows the case where all em-
phasis is placed on total logistic costs: the network topology can be easily seen
on the map, with the different weights shown in the bar graphs. Four sites
are opened, appearing as rectangles in the Brazilian map; potential but unused
sites are marked as crosses. Different priorities would lead to different layouts,
for instance, if all weight were thrown at the benefits then nine plants would
be opened. The latter solution maximises network benefits and the topology is
therefore quite different than the own shown in Figure 3.
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5 Conclusions and Directions for Further Research

This paper proposed a framework for locating logistic facilities with optimisa-
tion and multi-criteria value analysis. This was illustrated by an example, based
on real data of food companies in Brazil, where a multi-objective single com-
modity plant location model was developed and implemented as an interactive
decision support system. Such an approach may be relevant in complex busi-
ness environments, such as developing economies, where other considerations
beyond total costs are crucial in facilities location (for instance, the availability
of infrastructure, technical personnel, logistic services and industrial utilities).

One of the main potential contributions of this paper is to suggest that these
issues can be better analysed with a proper categorisation of benefits into topo-
logical (network) and nodal (site) types, measured and evaluated in a rigorous
way, using multi-attribute value theory. While there is a large literature on multi-
criteria facility location, the approach we are suggesting is the first one – as far
as we know – that recognises the distinctive role of these benefits and suggests
an integrated way of assessing the potential solutions of the network when such
benefits are considered. Another potentially relevant contribution is that our
framework stresses, within a network optimisation perspective, the relevance of
measuring the marginal value of performances and the importance of a proper
elicitation of weights in multi-criteria facility location models. Finally, the inter-
active use of a decision-support system to guide the appraisal of solution, while
not new in multi-criteria analysis, is hardly seen in this kind of logistic analysis.

As any decision method, the framework we suggested does have limitations.
First, there is a need for the analyst to specify the benefits and elicit value
functions and weights for nodal benefits. Second, it is heavy in terms of the
computational time required, which could make it less suitable for larger or more
complex models. Third, it creates a non-linear objective functions when nodal
benefits are considered (i.e. Equation 7). Fourth, it is unable to find solutions in
non-convex regions of the Pareto front. There are, therefore, several avenues of
further research, as we suggest below.

Non-linearity in the objective function and computational speed. The method we
suggested in the paper (running the model for a given number of open plants
and finding the number which maximises the overall value, i.e., enumeration)
is simple, albeit computationally time consuming. Thus research into ways of
making it faster, or solving it directly with the non-linear objective function
would be welcomed. Another issue to be investigated is how to find efficient
solutions which are not located in the convex front.

We believe that the use of evolutionary methods, as well as other multi-
objective meta-heuristics methods (Jones et al. 2002), is an interesting avenue
of research for coping with these challenges. There are several levels in which
such approaches could be employed. At the first level, one could use a suitable
mono-criterion evolutionary method to solve (9), given its non-linear nature.
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At the second, and more interesting, level one could employ Multi-Objective
(EMO) methods (Deb 2001) for this type of problem. For instance, they could
be used to find efficient solutions on the bi-dimensional space vL versus wNνN +
wT νT in Equation 9. At a third level, researchers could explore how to deal
with the multiple (topological and nodal) benefits of this problem, using EMO
methods.

Recent developments in this field, with the incorporation of preferences into
EMO methods, as suggested for example by Branke and Deb (2005) and Kok-
salan and Phelps (2007), may provide an alternative to a full specification of
preferences a priori. Researchers using EMO could then investigate what is the
best way to display the solutions, when multiple dimensions are considered (e.g.,
performances on multiple topological benefits). They also could identify what
type of preference should be provided and how such preferences could be elicited
in a decision support system, in a way that is user-friendly and also more ef-
ficiently supports decision making. Another avenue of research is using other
formulations in (9), for finding efficient solutions located in non-convex regions
of the Pareto front, such as the Tchebycheff norms (see Marler and Arora 2004).

Decision Support Systems (DSSs) with visual interaction for logistics. The use
of DSSs that have a visual interface with the user and which allow them to
“play with the model” (de Geus 1988) could be extended to other decisions in
logistics, such as procurement of logistic service operators. More crucially, there
is a need for further research into which types of visual interaction are more
helpful in these contexts. While such a visual interaction is relatively common
now for multi-criteria decision analysis software supporting the evaluation of
discrete alternatives, as well as discrete-event simulation software (see Belton
and Elder 1994), it seems an aspect under-developed in multi-criteria analysis
for logistic problems.

Decision conferencing for facility location decisions. The application of this
framework in real business cases would rely on model-based facilitation (Franco
and Montibeller 2010) and decision support tools. Research could be conducted
on the social outcomes of such interventions (for example, commitment to action,
satisfaction of users, etc.). Another issue is how the benefit criteria is structured
for a particular problem, for example how concerns about fairness of supply or
other social issues could be incorporated in the model.

Concluding, we hope that this paper may further stimulate research on the links
between optimisation of logistic problems and multi-criteria decision analysis,
particularly with a multi-attribute value perspective. In this context, there are
opportunities to use evolutionary multi-objective algorithms, and some open
avenues of research were suggested here. We believe that this is a rich area
for research and that it may support real-world logistic decisions in a more
comprehensive way.
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Abstract. Scheduling problems have been studied from many years ago.
Most of the papers which were published in this domain are different in
one or many of issues as following: objective functions, machine envi-
ronment, constraints and methodology for solving the problems. In this
paper we address the problem of single machine scheduling in which due
to some constraints like capacity, rejection of a set of jobs is accepted.
The problem is considered as bi-objective one: minimization of the sum
of weighted completion times for the accepted jobs and minimization of
the sum of penalties for the rejected jobs. We find that in this problem,
the solutions are not handled in a satisfactory way by general Pareto-
dominance rule, so we suggest the application of Lorenz-dominance to
an adapted bi-objective simulated annealing algorithm. Finally we justify
the use of Lorenz-dominance as a useful refinement of Pareto-dominance
by comparing the results.

Keywords: Scheduling, rejection, Pareto-dominance, Lorenz-dominance,
bi-objective simulated annealing.

1 Introduction

In most classical scheduling problems, it is assumed that all jobs should be
processed on the pre-defined machines and rejection of jobs is not permitted.
However, in real world situation, the case is more complicated. Due to different
reasons we may ignore some jobs in the schedule. For example, we have limited
capacity for the available machines so we cannot process all jobs on the machines.
Or due to the long processing times of some jobs, we prefer outsourcing and
asking other factories to do the processing on the jobs while paying the cost.
Even in some cases, tardiness in not permitted so if we cannot meet the due
dates of the jobs, it is better to reject those jobs from the beginning of the
scheduling process in order to avoid paying more cost. In all mentioned cases,
we can conclude that there are some situations in which we have to reject some
jobs in order to gain more profit (even we reject those jobs forever and we pay
the cost of loosing customers or we prefer to outsource the jobs and pay the
related fees).
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Here, we have a system with a single machine and n jobs J1, J2, ..., Jn in an
off-line environment. Job Jj (j = 1, ..., n) has a weight value wj , processing time
pj and rejection cost rj . At each time, the machine can process only a single job
and the preemption is not allowed, so when we start processing a job, we cannot
do any interruption. Subset S of the n jobs is the set of accepted jobs and S̄
the set of rejected jobs. We have two objective functions: (1) minimization of
total weighted completion time of accepted jobs (S), (2) minimization of total
penalty of rejected jobs (S̄). We have calculated the correlation between these
two objectives by generating many instances randomly. The average correlation
shows that these two objective functions are not correlated and we can deal
with this problem as a bi-objective one. Our goal is to choose the solutions
which balance these two criteria.

It is obvious that we cannot minimize both objective functions simultaneously
so we should find a compromise between these two criteria. In most of previous
works in which rejection of jobs was considered, the researchers have added the
rejection costs to the main criterion and considered the problem as a single
objective one and discussed the computational complexity of the problem so
given approximation or competitive algorithms.

In most of the researches in which rejection has been studied, minimization of
summation of makespan and rejection cost in different machine environment has
been considered [1,2,3,4,5,6,7,8]. For the first time, Bartal et al. [1] introduced
the notion of rejection and considered the problem of minimizing the makespan
plus the sum of penalties on m parallel identical machines in on-line and off-line
setting. Seidan [2] modified the problem of Bartal et al. In his study, the pre-
emption was allowed and the situation was on-line. By accepting preemption, he
could reach to the better performance of the system. Hoogeveen et al. [3] stud-
ied the problem with unrelated parallel machines while preemption was allowed.
Lu et al. [4] considered the unbounded parallel batch machine scheduling with
release dates in off-line setting. Zhang et al. [5] studied the same problem as Lu
et al, but when there was single machine. Cheng and Sun [6] studied single ma-
chine scheduling problems with different objective functions as makespan, total
weighted completion times and max lateness/tardiness in which the processing
time of the jobs was a linear function of its starting time. Lu et al. [7] considered
the bounded single-machine parallel-batch scheduling problem in off-line setting.
In [8], Cao and Yang studied a model of parallel batch scheduling where jobs
arrived dynamically.

There are two papers, in which another decision variable as machine pur-
chasing was presented in the model. In those problems, the machine purchasing
cost was added to the makespan and rejection cost. Dósa and He [9] and Nagy-
György and Imreh [10] considered when a job is arrived, the decision maker has
the following alternatives: reject it, non-preemptively process it on an existing
machine or purchase a new machine and assign it to this machine.

Bansal et al. [11] studied minimization of flow time and job idle time while
rejection is allowed.
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Engels et al. [12], considered the summation of the same objective functions
in this paper, therefore treated the problem as a single objective one, and they
denoted the overall optimality criterion as

∑
jεS wjCj +

∑
jεS rj . It has been

shown that adding the option of rejection makes the problem 1||
∑

jεS wjCj +∑
jεS rj weakly NP -Complete so it cannot admit polynomial-time solutions un-

less P=NP [12]. A comprehensive literature review with more details is available
on [13].

To the best of our knowledge, there are very few papers in this area, in which
this problem has been considered as a bi-objective one. Jolai et al. [14] devel-
oped two metaheuristic methods, one based on Pareto-simulated annealing and
another based on colonial competitive algorithm. They showed that both algo-
rithms are capable enough to find good estimation of the Pareto-optimal set.
Moghaddam et al. [13] proposed a bi-objective simulated annealing algorithm
to solve this problem and compare the results with the exact Pareto-optimal
solutions. In [15], they proposed a mathematical model and used this model
for implementing Two-Phase Method (TPM) [16] as an exact method to find
all Pareto-optimal solutions (supported and non-supported ones); and finally in
[17], they adapted three different bi-objective simulated annealing algorithms to
this problem and proposed the best one.

In this paper both objective functions are considered separately so we try
to find a set of solutions. Pareto-dominance rule is a classical approach for
solving multi-objective optimization problems in which a set of Pareto non-
dominated solutions are found. But in some multi-criteria decision problems,
the Pareto-optimal solution concept is not powerful enough, so another approach
called Lorenz-dominance has been introduced. As an example, Dugardin et al.
[18] showed that in reentrant scheduling problem, the L-NSGA2 which works
based on Lorenz-dominance can achieve more interesting results by comparing
to NSGA-2 (based on Pareto-dominance).

However, in all the researches cited above, the concept of Pareto-dominance
was considered. In this paper, due to the huge number of (estimated) Pareto-
optimal solutions found in [17], we apply Lorenz-dominance in order to decrease
the number of choices and facilitate the selection process for decision maker while
improving even the solutions found by the best algorithm proposed in [17].

This paper is organized as follows. Part 2 presents Pareto and Lorenz domi-
nance properties. In part 3, we describe implementation of TPM for finding exact
Pareto-optimal solutions. Bi-objective simulated annealing algorithm based on
Lorenz-dominance properties is presented in part 4. Numerical results are re-
ported and discussed in part 5, and the last part provides our conclusions.

2 Pareto and Lorenz Dominance Properties

We remind that a feasible schedule S is Pareto-optimal, or non-dominated, with
respect to the performance criteria f1 and f2 in a minimization problem, if there
is no feasible schedule S′ such that both f1(S′) ≤ f1(S) and f2(S′) ≤ f2(S),
where at least one of the inequalities is strict. Fig. 1 shows the Pareto-dominance
area of a solution S.
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Fig. 1. Pareto domination structure
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Fig. 2. Lorenz domination structure

In some multi-objective combinatorial optimization problems, the set of
Pareto-optimal solutions can be huge, so decision maker cannot evaluate all
choices easily. To deal with this problem, application of Lorenz-dominance would
be a solution. The Lorenz-optimal set is a subset of the Pareto-optimal set so
it reduces the size of the non-dominated front as it is shown in Fig. 2. On the
other hand, when we use meta-heuristics, Lorenz-dominance may help us to find
better estimation of Pareto-solution than Pareto-dominance, as the search space
in Lorenz is more restricted. This fact has been shown in Dugardin et al. [18].
Here, we define the Lorenz-dominance as below:

Definition: For two objectives f1 and f2, Lorenz vector for the solution S is:

L(S) = (f(1), f(1) + f(2))
Where f(1) ≥ f(2) which means: f(1) = max(f1, f2)

In other words, for calculating Lorenz vector, first we should sort the value of
objective functions in non-increasing order, we call it sorted set. Then the first
element of Lorenz vector with be the first entry in sorted set, the second element
will be the summation of first two entries in sorted set, ...

Solution S dominates solution S′ in Lorenz context if Lorenz vector of S,
shown by (L(S)), dominates Lorenz vector of S′, denoted by (L(S′)), in Pareto
context.

∀S, S′; S < L S′ ⇔ L(S) < P L(S′)

For review of Lorenz-dominance concept, readers may refer to [19,20,21].

3 Two-Phase Method (TPM) Implementation

TPM was proposed for the first time by Ulungu and Teghem for solving a
bi-objective assignment problem [16]. The objective of TPM is to find all Pareto-
optimal solutions. In that paper, they introduce two kinds of efficient solutions:
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supported (SS) and non-supported (NSS). In the first phase, they find all SS
by aggregating two objective functions z1 and z2 to the form of λ1z1 + λ2z2.
Information from SS identified by phase one is used to reduce the search space
for computing the NSS. In phase two, each triangle defined by two consecutive
SS is explored separately to find all NSS. The objective of TPM is to find all
Pareto-optimal solutions.

Remark: For each job we have processing time (pj), weight value (wj) and
rejection cost (rj). In the rest of this part, it is assumed that the jobs are sorted
and re-numbered in non-decreasing order of pj

wj
ratio. In other words, job 1 is

the job with smallest value of pj

wj
positioned in the first place, and so on.

3.1 Phase One Implementation

The two objective functions can be formulated as follows:

Min z1 =
∑
j∈S

wjCj . (1)

Min z2 =
∑
j∈S

rj . (2)

Where:
S : set of accepted jobs
S: set of rejected jobs
wj : weight value of job j
Cj : completion time of job j
rj : penalty of rejecting job j

In following steps, we find a complete set of SS:

Step 1: We find two initial solutions by minimizing each of the objective func-
tions separately. Suppose u is the solution from minimizing z1 and v is calculated
by minimizing z2.

Step 2: Let λ1 = z2(u) − z2(v) and λ2 = z1(v) − z1(u).

Step 3: In this step we find optimum solution for Z = λ1z1 + λ2z2. For this
purpose we formulate the model as below [22]:

Model(1):

Min Z = λ1

⎡⎣ n∑
j=2

j−1∑
i=1

(wjpixjxi) +
n∑

j=1

(wjpjxj)

⎤⎦ + λ2

n∑
j=1

(rj(1 − xj)) . (3)
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where xj =
{

0, if job j is rejected;
1, if job j is accepted.

pj : processing time of job j

We remind that job j is the job placed in position j after being sorted by pj

wj

ratio. As we re-numbered the jobs, the job no. and job position will be the same.
In order to make the model linear, we apply Mccormick’s envelope rule and

we get the new model as below. For more details regarding the linearization and
the constraints added below, readers may refer to [23]:

Model (2):

Min Z = λ1

⎡⎣ n∑
j=2

j−1∑
i=1

(wjpihij) +
n∑

j=1

(wjpjxj)

⎤⎦ + λ2

n∑
j=1

(rj(1 − xj)) . (4)

where
hij ≤ xi . (5)

hij ≤ xj . (6)

hij ≥ xi + xj − 1 . (7)

xi ∈ {0, 1} ∀i : 1, 2, ..., n − 1
xj ∈ {0, 1} ∀j : 2, 3, ..., n
hij ∈ {0, 1}
pj : processing time of job j

By solving Model (2), we find a solution named ss1.

Step 4: We search between (u, ss1) and (ss1, v) for finding new SS by repeat-
ing steps 2 and 3. We continue searching up to the time no new SS will be found.

At the end of this phase, we will have a complete set of SS.

3.2 Phase Two Implementation

After finding all supported solutions, in this phase all the triangles underlying
each pair of adjacent SS are explored in order to find all NSS. In the case of min-
imization, such solutions necessarily belong to the interior of the right hand side
triangle defined by two consecutive SS [16]. By the following steps, a complete
set of NSS between two adjacent supported solutions tn and tn+1 are found. In
model (3), we assume that z1(tn) ≤ z1(tn+1) so before working on each pair of
supported solutions, we sort them in non-decreasing order of z1.
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Step 1: In second phase we use again Model(2) but we have to limit the search
space to the defined triangles by adding two more constraints (constraints (12)
and (13)). Model (3) shows this fact.

Model (3):

Min Z = λ1

⎡⎣ n∑
j=2

j−1∑
i=1

(wjpihij) +
n∑

j=1

(wjpjxj)

⎤⎦ + λ2

n∑
j=1

(rj(1 − xj)) . (8)

where

hij ≤ xi . (9)

hij ≤ xj . (10)

xi + xj − hij ≤ 1 . (11)

n∑
j=2

j−1∑
i=1

(wjpihij) +
n∑

j=1

(wjpjxj) ≤ z1(tn+1) . (12)

n∑
j=1

(rj(1 − xj)) ≤ z2(tn) . (13)

xi ∈ {0, 1} ∀i : 1, 2, ..., n − 1
xj ∈ {0, 1} ∀j : 2, 3, ..., n
hij ∈ {0, 1}
pj : processing time of job j

Step 2: After finding a NSS from the first step (called nsi), we search the area
between the NSS and the SS with minimum z1 (here called tn) and we find
another NSS. We repeat this step until no new NSS is found. (Fig. 3)

Step 3: In this step we start finding a NSS between the first NSS found in step
1 (called nsi) and tn+1. We find another NSS. Always we search between the last
NSS found in this step and the SS which minimized second objective function.
We repeat this step until no new NSS is found. (Fig. 3)

Step 4: Here, we find all the NSS which are located between two adjacent NSS
found in previous steps. We stop searching when no new solution is found. In
this case, the final set would be the complete set of NSS between two supposed
consecutive SS. (Fig. 4)

In this method, each time that we search for a new solution, we solve a binary
integer model by using branch and bound. When the number of jobs increases,
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the computational time causes problem. Also we find that the number of ex-
act Pareto-optimal solutions increases, so in next part we adapt a bi-objective
simulated annealing algorithm to find a set of estimated solutions which are
non-dominated in Lorenz context in order to decrease both computational time
(comparing to the exact method) and number of solutions.

 
Fig. 3. Searching space for finding non-supported solutions in steps 2 and 3

4 Bi-objective Simulated Annealing Algorithm Based on
Lorenz-Dominance Properties

Simulated annealing (SA), as it is named, is coming from the simulation of an-
nealing process [24]. The temperature reduces in each step. At each temperature
the system is perturbed and the energy level in calculated. If the energy level
has decreased, the perturbed system is considered as the current state if not, the
new state is accepted with a probability calculated according to the acceptance
probability function. In this method, acceptance probability function has been
defined for the aim of accepting the worse solutions in order to have diversifica-
tion in searching process. However, the probability of accepting worse solutions
in high temperature is much more than in low temperature.

The goal of all multi-objective meta-heuristic algorithms is to find a set of
Pareto-optimal solutions which is a good estimation of exact solutions set. Over
past years, many multi-objective simulated annealing algorithms have been pro-
posed while their differences are mostly in acceptance probability functions.
Moghaddam et al. [17], [22] have adapted MOSA proposed in [25,26,27] called
MOSA(I), MOSA(II) and MOSA(III) respectively to our problem and concluded
that the set of solutions found by MOSA(III) is the best estimation of Pareto-
optimal solutions by comparing to the two other algorithms. But as it has been
shown in [17] and also table 1, by increasing the number of jobs, the number
of Pareto-optimal solutions increases significantly so evaluation and comparison
of the potential solutions become more complex for decision maker therefore we
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Fig. 4. Searching space for finding non-supported solutions in step 4 [22]

find that in our problem, refinement of Pareto-optimal solutions is inevitable, so
we apply Lorenz-dominance to the MOSA in order to overcome this drawback
and we call it here in after L-MOSA. L-MOSA works in detail as below:

Step 1: The matrix of jobs’ specifications as processing time (pj), weight value
(wj) and rejection cost (rj) is created as input data. Then the jobs are sorted
by non-decreasing ratios of pj

wj
.

Step 2: We initialize the set of Lorenz non-dominated solutions. For this pur-
pose, we create a matrix with n + 6 columns, where n is the number of jobs.
The first n columns in each row represent the accepted jobs with their order
and ”zero” represents the rejected jobs, column n + 1 and n + 2 represents the
value of each objective functions (total weighted completion time for accepted
jobs and total penalty for rejected jobs respectively) then the value of column
n + 1 and n + 2 are scaled and reflected in column n + 3 and n + 4. We scale
the value of both objective functions in order to have a better distribution of
solutions if not, based on Lorenz properties, the solutions would be converged
near to one of the objective functions. We have tested many different scaling
functions and finally we found that if we scale column n + 1 and n + 2 in a way
that both initial Pareto-optimal solutions (shown by u and v in sub-section 3.1,
step 1) would be selected after applying the Lorenz-dominance, we can reach to
the good solutions. Column n + 5 and n + 6 filled with the maximum value and
the summation of column n + 3 and n + 4 respectively (Lorenz property). So we
initialize the solution matrix by minimizing each objective functions separately.
These solutions are given as the starting points to the L-MOSA.

Step 3: We select one of the initial solutions and consider it as the current
solution. Then we start searching for another solution in neighborhood of cur-
rent solution. The neighborhood structure is as follows: we generate a random
integer number from [1,n-1] where n is the number of jobs. We call it a. Then
we choose a number of jobs randomly. If each of these a jobs is in the set of
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accepted jobs in current solution, we reject it and vice versa. In this way, we
generate a new solution in neighborhood of the current solution. More detail of
this structure has been described in Moghaddam et al. [13].

Step 4: After finding another solution, we should decide whether to accept
it as current solution or not. A wide diversified set of weights is considered.
Based on the weights, summation of weighted objective values is calculated for
the candidate solution and compared with the current solution. If the candidate
solution is better than the current one, automatically we accept it and replace
it with current solution, if not, we calculate the acceptance probability function
as defined in [27].

Step 5: By generating the new solution, this solution will be candidate to enter
into the Lorenz non-dominated solutions set. If this solution is dominated by
any of the current solutions in this set, then it will not be allowed for entering to
the set. If this solution dominates some of the solutions which are already in the
set, this solution will be entered to the set and also eliminates the dominated so-
lutions. If the candidate solution dominates none of the current solutions, it will
enter to the set of estimated Lorenz non-dominated solutions. By defining differ-
ent weight values for objective functions in each iteration, one set of Lorenz-non
dominated solutions is found and finally, those sets are integrated for achieving
final set.

5 Numerical Experiments

5.1 Parameters Setting

We generate several problems randomly within predefined intervals as follows:
Processing time, pj : random integer number within [10,80]; Weight value, wj :
random integer number within [1,30]; Rejection cost, rj : exp(5+

√
a × b), where

a is a random integer number within [1,80] and b is a random number within
[0,1].

In order to use the simulated-annealing algorithm, we need to specify the
following parameters: initial temperature, epoch length (number of iterations at
a given temperature), cooling rate, final temperature and termination criterion.

Here, for L-MOSA we use the same values for parameters presented in [17]
in order to be able to compare the results with MOSA. So we fix the initial
temperature on 300, the cooling rate as 0.9 and the epoch length as 100. The
search process is terminated when T falls below 10. For distributing uniformly
the weight values for both objective functions, we divide the interval [0,1] to 10.

5.2 Numerical Results

For evaluating the performance of L-MOSA and MOSA, we generate several
problems randomly as described above.
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For small size problems, up to 15 jobs, MOSA and TPM find the same Pareto-
optimal solutions. When we apply Lorenz-dominance to TPM, we find the same
solutions by TPM and L-MOSA. As it is shown in table 1, the number of solu-
tions after Lorenz-dominance implementation has been reduced from 30 to 12 in
average.

Table 1. Comparing TPM and L-MOSA results for small size problems (for each no.
of jobs, three random problems generated and the averages are reported)

No. of Solutions Computational
No. of Jobs Pareto-Dominance Lorenz-Dominance Time

TPM=MOSA TPM=L-MOSA TPM MOSA L-MOSA
5 11 4 0.68 6.19 5.48
7 18 9 4.74 7.51 6.29
9 25 8 42.45 8.32 6.01
11 27 18 151.56 8.28 5.52
13 37 14 2522.94 8.73 6.37
15 62 16 15718.50 9.66 6.29

Average 30 12 3073.48 8.12 5.99

In Fig. 5, we show how the number of solutions is decreased by applying
Lorenz-dominance properties for a problem with thirteen jobs.

For large size problems, where exact method is unable to find set of exact solu-
tions in reasonable time, we compare the performance of L-MOSA with MOSA.
For doing such evaluation, we use several metrics to be able to consider all
aspects i.e. convergence, diversity and running time: number of solutions, com-
putational time, ratio of solutions found by an algorithm which are dominated
by at least one solution found by another algorithm (c) introduced by Zitzler
et al. [28] and μ̄d introduced by Riise [29] and modified by Dugardin et al. [18]
in which the distance between each solution in one front to its orthogonal pro-
jection on other front is measured. In table 2 the results have been shown. The

Fig. 5. For thirteen jobs, the solutions found by a) TPM and MOSA based on Pareto-
dominance and b) L-MOSA based on Lorenz-dominance properties
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Fig. 6. For sixty jobs, the solutions found by a) MOSA based on Pareto-dominance
and b) L-MOSA based on Lorenz-dominance properties

first column is the number of jobs, the second and third, number of solutions
found by MOSA and L-MOSA, column 4 and 5, show the computational time
for each algorithm, in column 6 and 7, the ratio of solutions found by MOSA
(L-MOSA) and dominated by at least one solution found by L-MOSA (MOSA)
are presented. The last column shows the distance between two fronts generated
by MOSA and L-MOSA.

Table 2. Comparing MOSA and L-MOSA results for large size problems (for each no.
of jobs, three random problems generated and the averages are reported) * I=MOSA,
II=L-MOSA

No. of Computational
No. of jobs solutions time CI,II CII,I μdI,II

I∗ II∗ I II

20 106 23 10.24 6.74 0.0126 0.0000 0.0000
25 109 28 9.92 6.36 0.0127 0.0588 0.0001
30 115 44 10.08 8.03 0.0574 0.1042 0.0001
35 115 37 9.93 7.08 0.1106 0.0824 -0.0003
40 113 29 10.37 7.79 0.1061 0.3209 0.0003
45 105 21 10.26 7.56 0.1238 0.2301 -0.0001
50 108 24 10.71 9.53 0.1455 0.1510 -0.0011
60 93 18 10.56 10.38 0.2928 0.2242 -0.0044
70 92 13 10.85 10.60 0.1171 0.4160 -0.0003
80 83 19 11.26 11.79 0.1151 0.2669 -0.0020
90 91 14 11.42 12.04 0.1190 0.6322 0.0008
100 80 12 12.33 12.88 0.1556 0.3038 -0.0020
125 82 13 13.34 15.54 0.2096 0.2388 -0.0035
150 92 10 15.00 16.43 0.1009 0.5053 0.0003
175 80 15 16.66 20.02 0.1249 0.2735 -0.0042
200 87 12 18.33 23.63 0.1205 0.2803 -0.0037

Average 97 21 11.95 11.65 0.1203 0.2555 -0.0013
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As it is shown in the last row of table 2, the number of solutions found by
L-MOSA is about one fifth of the number of solutions found by MOSA. The
computational time for both algorithms is approximately the same. In average,
12% of the solutions found by MOSA are dominated by L-MOSA solutions while
25% of the solutions found by L-MOSA are dominated by MOSA. The average
distance between these two front is negative which means that the L-MOSA
front in below the MOSA front.

In Fig.6, the solutions found by MOSA and L-MOSA for a problem with 60
jobs have been shown. There are some solutions in MOSA that are dominated
by the solutions in L-MOSA.

Both algorithms have been coded in Matlab 7 language and the instances were
tested on a PC, CPU 2 GB RAM and processor 3 GHz.

6 Conclusion

In this paper we proposed a bi-objective simulated annealing algorithm based on
Lorenz-dominance properties (L-MOSA) for a problem of scheduling in which
rejection of jobs was allowable.

By implementing Lorenz-dominance properties we reduced the number of so-
lutions to facilitate evaluation of choices for decision maker while in some cases,
we found even better solutions comparing to the estimated solutions found by
MOSA when Pareto-dominance properties were applied.

Considering other dominance concepts, solving this problem by other meta-
heuristic algorithms like L-NSGA2, particle swarms or ants colony can be an
interesting research area for future research. Considering other objective func-
tions in different machine environment is also a potential direction for more
research.
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Abstract. The Multi-objective Shortest Path Problem (MSP) is a widely
studied NP-Hard problem. A few exact algorithms were already proposed
to solve this problem, however none is able to solve large instances with
three or more objectives. Recently, some metaheuristics have been pro-
posed for the MSP, but little can be said about their efficiency regarding
each other, since no comparisons among them are presented in the litera-
ture. In this paper an Ant Colony Optimization (ACO) algorithm, called
GRACE, is proposed for the MSP. The proposed approach is compared to
the well-known evolutionary algorithm NSGA-II. Furthermore, GRACE
is compared to another ACO algorithm proposed previously for the MSP.
Results of a computational experiment with eighteen instances, with three
objectives each, show that the proposed approach is able to produce high
quality results for the tested instances.

Keywords: Shortest Path Problem, Multi-objective, Ant Colony
Optimization.

1 Introduction

The Shortest Path Problem is a classical problem from graph theory and com-
binatorial optimization areas. Among several different real-world applications,
routing scenarios are of particular interest. On the Internet, for example, deter-
mining the best route for sending a package following path-based protocols is
an important step for ensuring routing efficiency. On navigation systems, which
have become very common even on popular vehicles, shortest paths help on both
planning and optimization of the resources. On emergency situations, retrieving
minimal routes is critical to the rescue and survival of citizens.

Among the several shortest path problems (all pairs, point-to-point, k-shortest
path, among others), in this study we refer to the Point-to-Point Shortest Path
Problem simply as the Shortest Path Problem. Although much research has been
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done on this problem [7,4], usually real-world situations are more accurately
represented via multiple criteria. Having more than one objective function to
be optimized, multi-objective problems have a set of non-dominated solutions,
instead of a single optimal solution. For a k-objective minimization problem
(without loss of generality) we denote s1 ≺ s2 (solution s1 dominates solution
s2) iff ∀i = 1, ..., k, si

1 ≤ si
2, and ∃ i, si

1 < si
2.

The non-dominated solutions are called efficient solutions, and the Pareto op-
timal set (or Pareto set) contains all such solutions. Each solution can be mapped
to the objective space through its objective vector value. The set of objective vec-
tor values from the Pareto set is called Pareto front. Retrieving Pareto sets is
the goal of multi-objective algorithms. Depending on the size of the instance,
the nature of the problem, and the amount of objectives considered, this task
might be unfeasible either by memory or time limitations. MSP, for instance, is
an NP-Hard problem [30]. Thus, its Pareto set is expected to grow exponentially.

Several exact algorithms have been proposed for the MSP, and the most ef-
ficient relies on a two-phase strategy [28]. On the first phase, the algorithm
searches for supported efficient solutions, which are solutions that can be re-
trieved by solving single objective problems obtained with weighted sums of the
objectives. These solutions narrow the search space for the second phase, on
which non-supported efficient solutions are searched (non-supported solutions
cannot be retrieved via scalarizations). As far as the authors’ knowledge con-
cerns, no two-phase exact algorithms have been proposed for the MSP with more
than two objectives.

Some metaheuristics have recently been proposed for solving the MSP us-
ing genetic algorithms and ant colony optimization. Their goal is to generate
an approximation set, either containing suboptimal solutions, or part of the ac-
tual Pareto set, or even both. Some of the proposed approaches deal with the
Bi-objective Shortest Path problem (BSP), but most focus on three or more ob-
jectives, and none uses two-phase strategies. Although several approaches have
been proposed, solid multi-objective performance assessment has not been done
to evaluate and compare them.

In this paper, a two-phase generational randomized Ant Colony Algorithm
named GRACE, is proposed for the MSP. In order to find supported efficient
solutions, a search strategy called Logos is proposed, which divides scalariza-
tion vectors in intervals, resembling divide-and-conquer techniques. The two-
and three-objective versions of this strategy are detailed. GRACE is compared
to two multi-objective algorithms: an ACO published by Häckel et al. for the
MSP [13], and NSGA-II, a well-known multi-objective evolutionary algorithm
proposed by Deb et al. [6] (an available implementation [25] was adapted for
this problem).

The paper is organized as follows. Section 2 presents the MSP formulation
and a literature review on algorithms for solving this problem. In Section 3, the
Ant Colony Optimization approach is described, and several ACOs proposed for
different multi-objective problems, including the MSP, are revised. GRACE and
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Logos are presented in Section 4. The methodology used for the experimentation
conducted in this work is described in Section 5, and results are discussed in
Section 6. Finally, conclusions and future work are presented in Section 7.

2 The Multi-objective Shortest Path Problem

The Multi-objective Shortest Path problem studied in this paper is a general-
ization of the classical point-to-point shortest path problem, and is presented by
Raith and Ehrgott using a network flow formulation for two objectives [28]. In
this paper, we expand this formulation to deal with any number of objectives
(assuming positive edge weights):

min z(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
z1(x) =

∑
(i,j)∈A

c1
ijxij

...

zk(x) =
∑

(i,j)∈A

ck
ijxij

(1)

s.t.
∑

(i,j)∈A

xij −
∑

(j,i)∈A

xji =

⎧⎨⎩
1 if i = s,
0 if i �= s, t
-1 if i = t,

(2)

xij ∈ {0, 1}, ∀(i, j) ∈ A . (3)

where s and t are, respectively, source and terminal nodes, c is a k-dimensional
cost matrix for each edge (i, j), and z is the objective vector composed by k
objective functions.

Several exact algorithms have been proposed for the MSP [11]. Skriver [32]
proposed a classification for the particular case of two objectives (BSP), and
grouped the algorithms as node labelling or path/tree algorithms. Among the
node labelling algorithms, the existing methods were subdivided into two classes:
label setting and label correcting. As for the path/tree family, the author iden-
tifies a two-phase method and a k-th shortest path algorithm. Recently, Raith
and Ehrgott [28] compared the algorithms of the first three families using three
sets of bi-criteria instances. Their experiment shows that label setting and cor-
recting algorithms present good performance on smaller instances, whereas for
large ones their times increase significantly. However, the dichotomic two-phase
algorithm (different from the original two-phase algorithm [23]) is efficient even
on large instances for the bi-objective case (k = 2).

Mooney and Winstansley [22] proposed a multi-objective evolutionary algo-
rithm that has regular and elite populations, and generates the initial individuals
through a random walking mechanism [5]. The authors use path encoding (rep-
resentation by vertices), one-point crossover, binary tournament and a path mu-
tation operator that substitutes the gene of a random locus by a random node.
Both crossover and mutation operators only succeed in case the path feasibility is
maintained. The experiments showed that the random walking strategy enabled
the algorithm to cover a set of nodes and edges considered to be satisfactory by
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the authors. It also showed that, for three and four objectives, with instances
ranging from 100 to 3500 nodes, their algorithm was able to approximate a ref-
erence set created by three algorithms: Dijkstra, a k-th shortest path and many
executions of their own algorithm. Finally, results show the EA was able to find
extreme supported solutions faster than Dijkstra on real-world networks.

He et al. [14] also proposed an elitist evolutionary algorithm with two popu-
lations, but initial individuals are generated using depth first search mechanism
and are ranked according to dominance ranking and niche count. They also use
variable length chromosomes (path encoding using vertices), and an one-point
crossover with binary tournament: a random cell is chosen from one parent,
and in case the same node is also present on the other parent, the crossover
is performed (a repair function eliminates possible loops). The mutation opera-
tor reconstructs the chromosome from a random locus through depth first search
mechanism. An illustrative example showed the efficiency of the proposed MOEA
on a 50 nodes three-objective instance.

Pangilinan and Janseens [27] tested SPEA2 [38] for the MSP using the imple-
mentation available on PISA framework [1]. They also used path encoding, but
generated the initial population randomly. The one-point crossover and the mu-
tation operator are identical to [14], but mutation reconstructs individuals ran-
domly. Using three objectives instances, the approximation set presented good
diversity on two of the objectives, but the authors were unable to determine
the optimality of the solutions, since the actual Pareto sets were unavailable.
Computational results showed that their MOEA is slower than [20].

Lin and Gen [18] presented a multi-objective evolutionary algorithm for the
BSP. Their adaptive weight algorithm uses priority-based encoding (fixed chro-
mosome sizes), roulette selection, weight-mapping crossover, a random mutation
operator and also an immigration operator [21]. No information is given on how
the initial population is generated. The authors also use two fuzzy logic con-
trollers in order to auto-tune the parameters of their algorithm. They compare
their MOEA against implementations of NSGA-II [6], SPEA [36] and rwGA
[16] that use the same encoding and operators, analyzing diversity, cardinality,
ratio of non-dominated solutions and computational time. Regarding these in-
dicators, results show that the priority-based encoding and the auto-tuning are
good strategies, and that their algorithm outperform the others.

As described above, several evolutionary algorithms have been proposed for
the MSP over the last few years. However no comparison has been presented to
evaluate whether one algorithm outperforms the others. In the next section, we
revise the Ant Colony Optimization metaheuristic, and the literature on multi-
objective ACOs, including the MSP.

3 Ant Colony Optimization

Ant Colony Optimization is a bio-inspired metaheuristic that uses the concept
of swarm intelligence and stigmergy. It was originally proposed by Dorigo [10] as
the Ant System (AS), and lately improved into Ant Colony System (ACS) [8].
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The original AS consists of agents (ants) that are able to evaluate their current
state and choose the next through a set of possible transitions. Each transition is
weighted with pheromone and heuristic information (random proportional rule).
The constructive procedure allows these agents to generate viable solutions for a
combinatorial optimization problem. The ants are also able to deposit pheromone
over the tracks they visit, which naturally evaporates with time. Two major
changes were proposed to improve AS into ACS. First, when choosing the next
state, a random value is tested against a threshold. Depending on that result,
the choice might be for the best transition or using the original random propor-
tional rule. Second, ants are allowed to update pheromone information as soon
as they finish their constructive procedure. In AS, all ants perform pheromone
update altogether when all of them finish building their solutions.

Dorigo and Socha [9] list some ACOs proposed for multi-objective problems.
Iredi et al. [15] affirm some of these ACOs either consider some objectives to be
more important than others, or deal with problems in which each objective can
be treated separatedly. In this work, we limit ourselves to detailing the ACOs
designed for problems with equally important objectives. In 2000, Iredi et al.
[15] proposed a multi-colony ant system for a scheduling problem. In their work,
multiple colonies are used to search different regions of the Pareto front. Each
ant has a scalarization vector which is used for weighting heuristic information
in the random proportional rule. Two pheromone matrices are used, one for each
objective, and are updated as in ACS. Only ants that find new non-dominated so-
lutions regarding a global archive are allowed to update the pheromone matrices.
Lopéz-Ibanéz et al. [19] published a comparative study of different strategies for
multi-objective ACO using local search strategies on the Bi-objective Quadratic
Assignment Problem. The authors reported that results differ depending on the
correlation of the objectives, but the usage of local search procedures improved
the overall algorithm performance.

For the MSP, as far as the authors are aware of, only two ACOs have been
proposed. Häckel et al. [13] proposed a version of the algorithm presented in [15]
for the MSP. The algorithm proposed by Häckel et al. [13], referred to as HACO
in this paper, do not allow two ants searching on the same region of the Pareto
front (called overlapping zones [15]). The heuristic information comes from a
Dynamic Programming algorithm called Look-Ahead Heuristic (LAH). As for
the pheromone matrices, the authors present equations as if multiple matrices
were used, but state that only one matrix is used. The experiments conducted
in their work show that the usage of LAH improves overall results, and that
their ACO obtains diverse solutions in comparison to a dynamic multi-objective
algorithm not referenced by the authors on three objective instances1.

Ghoseiri and Nadjari [12] proposed an ACO for the BSP and compared it
to a label correcting algorithm, also not referenced. A single colony and two
pheromone matrices (one for each objective) were used. As for the heuristic in-
formation, two sources were used: normalized edge weights and number of nodes

1 The authors do not explicit instances size, but state the edges plus vertices amount
range from 527 to 1408.
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to the destiny node. Scalarizations are used to compute both pheromone and
heuristic information. This algorithm resembles ACS, except for the fact that
local pheromone update is performed after each transition. The experimentation
conducted by the authors used two objective NetMaker [31] instances. Results
showed their algorithm was able to generate a diverse approximation set, but the
Pareto fronts graphically presented no efficient solutions. Their ACO was com-
putationally faster than the label correcting method. There is also no comparison
between the proposed multiobjective ACOs for MSP and other metaheuristics.

4 GRACE: A Two-Phase ACO for the MSP

In this section, we present GRACE (Generational Randomized Ant Colony En-
hancement) and the two-phase strategy (including the Logos procedures). The
initial review on exact algorithms pointed that two-phase algorithms are efficient
for the BSP, which led us to work on scenarios with three or more objectives.
Since no two-phase strategy has been proposed for the shortest path problem
with more than two objectives, we review the literature of other problems, and
finally propose our own search strategy: a two-phase ACO for the MSP.

As seen in Section 3, many strategies have been proposed for multi-objectives
ACO, but as reported by [19] the efficiency of the strategies depends much on
the problem and on the instances. Hence, we chose a particular configuration
and tested it against two algorithms from the literature. We chose one algorithm
to represent each class of metaheuristics studied for the MSP. Since none of the
MOEAs proposed had available implementations2, we decided to use NSGA-II
[6], a well-known MOEA with an available implementation for experimentation
[25]. As for the ACOs, we implemented [13] according to the authors description.

4.1 Phase I: The Quest for Supported Efficient Solutions

In our review of search strategies for supported efficient solutions, we outline
two methods found in the literature of MO problems with k > 2. Murata et
al. [26] proposed a uniform distribution of scalarization vectors over the Pareto
optimal surface. Their approach generates sequential weights separated by an
ε gap. For large values of ε the algorithm is faster, but possibly miss many
solutions, whereas for small values a larger set will be retrieved at the expense
of higher computational times. Rocha [29] proposed a stochastic version of this
algorithm, as not all of the weights are generated. Starting at the canonical
scalarization vectors, the main objective scalarization value is decremented by ε
and another random objective scalarization value is incremented by ε. The author
found good results for the Multi-objective Quadratic Assignment Problem, but
for large instances some parts of the Pareto front is not searched, resulting in
loss of solutions.

2 Each author was properly contacted through the emails listed on their papers.
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In this work, we adapted the general idea present in the geometric [33] and the
dichotomic [28] bi-criteria strategies in order to apply them to instances of three ob-
jectives. Both strategies start at the extreme supported efficient solutions s1and s2,
calculate an intermediary scalarization vector through evaluation functions, and
test the existence of a new supported efficient solution s′. If the non-dominance of
s ′ is confirmed, the search recursively proceeds for (s1, s

′) and (s ′, s2). Following
the general idea, 2-Logos (Logarithmic 2-Objective Space Search) iteratively di-
vides the region of the Pareto front, resembling a logarithmic function. Given two
different non-dominated solutions si and sf , found on (xi, yi) and (xf , yf ) of the
Pareto front respectively, the solution smid, from (xmidpoint, ymidpoint), is tested
(lines 1-2). If it is a different non-dominated solution, the procedure is recursively
called for (si, smid) and (smid, sf ) (lines 3-4). Otherwise, the recursion stops.

procedure 2-Logos
1: {Require Pareto set S, solution si, solution sf};
2: s_mid = Dijkstra(midpoint(si.weights, sf.weights));
3: if (newSolution(S, s_mid)) then
4: 2-Logos(S, si, s_mid);
5: 2-Logos(S, s_mid, sf);
6: end if
end

For three-objective instances, 3-Logos (Logarithmic 3-Objective Space Search) is
proposed, and its pseudocode is presented below. 3-Logos initially finds extreme
supported efficient solutions using Dijkstra algorithm. These three solutions are
considered vertices of a triangle where each edge is formed by the line that
connects each pair of these solutions (algorithm input). Each edge is scanned by
the 2-Logos procedure (line 1). After completion of 2-Logos executions on the
three edges (line 2), the centroid of the triangle is calculated and, in case the
obtained solution is new in the set S of non dominated solutions (Pareto front),
3-Logos is recursively called for these three new subtriangles (lines 4-6). Both 2-
and 3-Logos are illustrated in Figure 1.

procedure 3-Logos
1: {Require Pareto set S, solution sa, solution sb, solution sc};
2: S = addSolutions(S, 2-Logos(sa, sb), 2-Logos(sa, sc),

2-Logos(sb, sc));
3: s_ctr = Dijkstra(centroid(sa.weights, sb.weights, sc.weights));
4: if (newSolution(S, s_ctr)) then
5: 3-Logos(S, sa, sb, s_ctr);
6: 3-Logos(S, sa, s_ctr, sc);
7: 3-Logos(S, s_ctr, sb, sc);
8: end if
end
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Fig. 1. Example of one iteration of 3-Logos

4.2 Phase II: The Ant Colony

For the second phase of our ACO, we chose to create a single colony algorithm,
in which iterations are called generations. Every ant is going to search the same
region of the Pareto front using a scalarization vector randomly created for each
generation. The purpose of this strategy is to allow a significant amount of ants
to explore the same region. A single pheromone matrix is used in our ACO, and
is warmed up at the end of Phase I. For every edge present in the efficient sup-
ported paths, a pheromone deposit τdeposit is added, as many times as the edge
appears in the set. An ant is only allowed to update the pheromone matrix when
it finishes building its solution, and only if that solution is non-dominated regard-
ing the non-limited global archive. For the heuristic information, we improved
the idea used in [13] by using Dijkstra algorithm (we are assuming non-negative
weight inputs). The heuristic information represents the distance, under a spe-
cific scalarization vector, from each node to the destination. The stopping crite-
rion is a number R of generations with no generation of a new non-dominated
solution regarding the global archive.

The pseudocode of GRACE is presented in the following page. Initially,
extreme supported efficient solutions are found3 (lines 1-2) and 3-Logos is called
(line 3). The pheromone matrix is warmed up using the supported efficient
solutions (line 4), and the generational cycle starts (line 5). First, a common
scalarization vector is randomly created (line 6), and the heuristic information
is calculated (line 7). Then, ants build their solutions (lines 8-14) and, if a new
non-dominated solution regarding the global archive is found, a pheromone up-
date is performed (lines 10-12). In case a new non-dominated solution was found
over the last cycle, the algorithm is allowed to start a new one (line 15).

Algorithm GRACE
1: {Require graph G, vertex s, vertex t};
2: extreme_solutions = Dijkstra(canonicalVectors());
3: supported = addSolutions(supported, extreme_solutions);

3 In this work, we refer to the solutions found for scalarizations using canonical vectors
as extreme supported efficient solutions.
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4: 3-Logos(supported, extreme_solutions));
5: pheromoneM = pheromoneWarmup(supported);
6: for (i = 0; i < R; i++)
7: l = randomScalarizationVector();
8: heuristicM = heuristicInfo(Dijkstra(reverse(G), t, l));
9: for (j = 0; j < n_ants; ++j)
10: s = buildSolution(pheromoneM, heuristicM, s, t, l);
11: if (newSolution(unsupported, s)) then
12: unsupported = addSolution(unsupported, s);
13: pheromoneUpdate(s);
14: end if
15: end for
16: if ((i == R) and (newSolution(cycle))) then i = 0;
17: end for
end

5 Methodology

To compare GRACE against NSGA-II and the ACO of Häckel et al.[13], we adapted
the existing NSGA-II implementation [25] for the MSP. We decided to use path en-
coding, which is also the choice made by most MOEAs proposed for this problem
[14,22,27]. We also used crossover [14] and mutation [27] operators found in the
MSP literature. The repair function of the crossover operator was redefined: the
chromosome is scanned from the first to the last locus, and every time a duplicated
vertex is found, all vertices between them are removed. We also used a specific data
structure to store outgoing vertices and speed up the algorithm [2]. The algorithm
of Häckel et al. [13], named HACO in this paper, was implemented following the
directions given by the authors.

Since multi-objective optimizers produce approximation sets instead of single
solutions, a specific methodology must be used for their evaluation. The guide-
lines for performance assessment utilized in this work are reviewed by Knowles
et al. [17]. We use dominance ranking with the binary epsilon indicator [37] and,
if necessary, the unary quality indicators I1

H [36] and I1
ε+ [37]. Reference sets are

generated by merging all the approximation sets generated by the optimizers be-
ing compared, and removing the dominated solutions.

Tests were executed on an Intel Core 2 Duo @ 2.2GHz, with 1Gb of RAM and a
Linux Ubuntu 9.04 distribution. We used a set of 18 instances, generated by San-
tos [24], from two distinct classes: grid, which represents a square grid, and com-
plete, which contains complete graphs. For our experiment, we used fixed time
limits per instance as the stopping criterium. In most cases, these limits were set
according to instance size and class. Some details of the instances are presented in
Table 1, where column # shows the instance identification, Type shows the type
of graph (complete, grid), |N |, |A| and k are respectively the number of vertices,
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edges and objectives of each instance, and finally t(s) is the time limit in seconds
for the executions of the algorithms.

Table 1. List of instances. Only the first three objectives were used on large instances.

# Type |N | |A| k t(s) Seed # Type |N | |A| k t(s) Seed

1 CompleteN-small 25 600 3 5 45 10 GridN-small 64 224 3 7 14

2 CompleteN-small 50 2450 3 10 12 11 GridN-small 144 528 3 36 1

3 CompleteN-small 100 9900 3 12 13 12 GridN-small 256 960 3 81 26

4 CompleteN-medium 40 780 3 5 18 13 GridN-medium 484 1848 3 100 1

5 CompleteN-medium 120 14280 3 10 14 14 GridN-medium 961 3720 3 100 40

6 CompleteN-medium 200 39800 3 15 21 15 GridN-medium 1225 4760 3 100 2

7 CompleteN-large 100 9900 6 8 1 16 GridN-large 121 440 6 60 41

8 CompleteN-large 150 22350 6 40 10 17 GridN-large 484 1848 6 100 42

9 CompleteN-large 200 39800 6 40 1 18 GridN-large 900 3480 6 100 43

In order to fine-tune the NSGA-II, we tested several values for population size,
number of generations, crossover and mutation rates. Since we used fixed time
limits, we initially defined a large number of generations to find out the max-
imum population size the algorithm could stand: 200 generations for complete
instances and 100 for grid instances. Complete instances are divided into two
groups: instances 1 to 7 and instances 8 and 9, since results showed time limits
were critical to population size. A linear function pop(x) = a.t(x) + b was used
to set the values of population size for grid instances. Table 2 shows the values
used to each test configuration. Crossover rates 0.7, 0.8 and 0.9 were tested, as
well as values 0.01, 0.005 and 0.001 for mutation rates [6]. Dominance ranking
with the binary epsilon indicator [37] pointed population size of 2500 & 3000
to be statistically significantly better for complete instances. As for grid graphs,
neither the dominance ranking nor the unary quality indicators I1

H [36] and I1
ε+

[37] were conclusive4. For crossover rates, no statistical significant differences was
observed for complete instances, and for grid instances results were inconclusive.
For mutation rates, no statistical significant differences was observed.

Table 2. Parameter values tested for NSGA-II

#config Complete 1-7 Complete 8-9 Grid a Grid b

1 1000 1500 20 600

2 1500 2000 20 900

3 2500 3000 25 800

4 When a configuration proved to be better for only few instances, we considered re-
sults to be inconclusive.
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For HACO, we used the parameter setting presented by the authors in their
paper. The only parameter not informed by the authors was the penalty param-
eter ξ. We tested several values (ξ ∈ {0.2, 0.4, 0.5, 0.6, 0.8}), but no statistical
significant difference was found.

The final parameter settings were: (i) NSGA-II: pop=2500/3000, a=25, b=800,
cross=0.9, mut=0.005; (ii) Hackel: χcolonies = 3, χants = 4, α = 0.5, β = 3,
τ0 = 0.05, ρ = 0.1, q0 = 0.5, ξ = 0.8, and; (iii) GRACE: nants = 300, α = 0.6,
β = 0.6, τ0 = 1, τdeposit = 10, R = 5.

6 Results and Discussion

For comparing the results from the different algorithms, we perform a serie of
dominance ranking [17] and statistical tests [3][35] over the results. As we can
see in Table 3, the p-values of Kruskal-Wallis test on dominance ranking results
indicate that there is a statistical significant difference between the dominance
rankings of each optimizer. We then proceeded to the pairwise comparison using
Wilcoxon test.

Table 3. p-values of Kruskal-Wallis test on dominance rankings from all optimizers

#inst p-value #inst p-value

1 1.27884e-14 10 8.9668e-16

2 8.78175e-13 11 5.87126e-12

3 2.80243e-15 12 4.50099e-15

4 1.29004e-10 13 1.35497e-14

5 1.90311e-09 14 1.81209e-15

6 2.14250e-13 15 4.86612e-16

7 1.66174e-10 16 2.24666e-11

8 0.00508 17 1.22460e-14

9 3.09800e-13 18 3.97783e-16

Table 4 shows p-values from both Wilcoxon test (the two-tailed and the one-
tailed with “less” as hypothesis) for the comparison between GRACE and NSGA-
II. p-values on the “less” column lower than 0.05 indicate that the dominance
ranking of GRACE was better, whereas p-values greater than 0.95 indicate the
dominance ranking of NSGA-II was better. For all instances (both grid and com-
plete), results show GRACE generates statistically significantly better approxi-
mation sets than NSGA-II.

Next, we compare GRACE with HACO. Results on Table 5 show statistical
significant difference for 13 instances, and in all of them the dominance rank-
ings of GRACE are attested statistically better than the ones found by HACO.
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Table 4. p-values of Wilcoxon test on dominance rankings for GRACE and NSGA-II

#inst two-tailed less #inst two-tailed less

1 1.09789e-09 5.49383e-10 10 8.79965e-11 4.39982e-11

2 3.64852e-10 1.82426e-10 11 6.28895e-08 3.14447e-08

3 1.86299e-10 9.31494e-11 12 0.01044 0.00522

4 3.98723e-09 1.99361e-09 13 0.00245 0.00012

5 1.65375e-07 8.26976e-08 14 4.20083e-09 2.100411e-09

6 3.08372e-10 1.54186e-10 15 4.87374e-11 2.43687e-11

7 1.31777e-08 6.58886e-09 16 4.27032e-11 2.13516e-11

8 0.02074 0.01037 17 0.00054 0.00027

9 1.50692e-10 7.53461e-11 18 9.31587e-11 4.365794e-11

On the remaining 5 instances, unary quality indicators are necessary (Table 6).
For the I1

ε+ indicator, GRACE approximation sets are considered better, but the
I1
H considers the opposite. This result means that the sets are incomparable [17].

Using the proportions comparison test proposed by Taillard et al. [34], p-values
for the hypothesis that GRACE generates better approximation sets than HACO
are: for complete set, p-value=0.01; for grids, p-value<0.01.

Table 5. p-values of Wilcoxon test on dominance rankings for GRACE and HACO.
NaN means rankings were equal.

#inst two-tailed less #inst two-tailed less

1 1.03627e-09 5.18137e-10 10 3.31826e-11 1.65913e-11

2 0.03124 0.01562 11 1.13077e-09 5.65385e-10

3 0.16151 0.92746 12 2.77473e-12 1.38624e-12

4 0.26094 0.13047 13 2.77473e-12 1.38624e-12

5 0.18886 0.90887 14 4.43246e-12 2.21629e-12

6 0.49546 0.24773 15 1.34262e-11 6.71311e-12

7 0.01460 0.00730 16 3.42463e-08 1.71232e-08

8 NaN 1 17 2.77247e-12 1.38624e-12

9 1.51267e-05 7.56335e-06 18 4.43246e-12 2.21623e-12

Results for the last comparison, between NSGA-II and HACO, are listed in
Table 7. For complete instances, HACO generates better approximation sets for
8 out of 9 test-cases, whereas for grid instances NSGA-II generates better sets
for all 9 instances.
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Table 6. p-values of Wilcoxon test on quality indicators for GRACE and HACO

#inst I1
ε+ two-tailed I1

ε+ less I1
H two-tailed I1

H less

3 5.34323e-08 2.67162e-08 1.58215e-14 1

4 2.71058e-10 1.35530e-10 1.32748e-09 1

5 9.79730e-11 4.89965e-11 1.21274e-09 1

6 6.59836e-10 3.29913e-10 1.58215e-14 1

8 7.63654e-08 3.81827e-08 1.58215e-14 1

Table 7. p-values of Wilcoxon test on dominance rankings: NSGA-II [6], Hackel [13]

#inst two-tailed less #inst two-tailed less

1 0.03232 0.01616 10 5.72682e-10 2.86341e-10

2 4.02499e-07 0.99998 11 0.02284 0.01142

3 1.11944e-09 1 12 2.77247e-12 1.38624e-12

4 0.03177 0.98487 13 1.35016e-11 6.75080e-12

5 1.37130e-08 1 14 8.04777e-11 4.02388e-11

6 3.05784e-10 1 15 1.48317e-10 7.41586e-11

7 3.32396e-08 1 16 0.00116 0.00058

8 0.020744 0.99061 17 4.43246e-12 2.21623e-12

9 3.48046e-10 1 18 1.48645e-11 7.43227e-12

7 Conclusions

In this work we reviewed the MSP literature, including exact algorithms, evo-
lutionary algorithms, and ant colony optimization, and highlighted the lack of
comparisons among the metaheuristics. We proposed a two-phase ACO, named
GRACE, with a supported efficient solutions search called Logos. For the evalua-
tion of GRACE, we conducted a solid performance assessment against NSGA-II, a
well-known MOEA and HACO, an ACO published for the MSP. For 18 instances
from classes grid and complete, dominance ranking and statistical tests attested
that GRACE generates better approximation sets than NSGA-II. In comparison
with HACO, GRACE sets are better for 4 out of 9 complete instances, and 9 out
of 9 grid. For the remaining complete instances, GRACE produces sets which are
incomparable with HACO’s according to two quality unary indicators, I1

H and
I1
ε+). When comparing NSGA-II and HACO, the former generates statistically

better sets than the latter for 1 out of 9 complete instances, and for all 9 grid in-
stances. For the remaining complete instances, HACO was attested to generate
better sets. As future work possibilities, a comparison including a MOEA pro-
posed specifically for MSP could be used, as well as a larger instance database.
Another promising work is the comparison of different multi-objective ACO strate-
gies on the MSP, to test which configurations are more efficient.
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Abstract. In this paper, we present a method based on the multiat-
tribute utility theory to approximate the decision-maker preference func-
tion. A feature of the proposed methodology is its ability to represent
arbitrary preference functions, including functions in which there are
non-linear dependencies among different decision criteria. The preference
information extracted from the decision-maker involves ordinal descrip-
tion only, and is structured using a partial ranking procedure. An arti-
ficial neural network is constructed to approximate the decision-maker
preferences, reproducing the level sets of the underlying utility function.
The proposed procedure can be useful when recurrent decisions are to be
performed, with the same decision-maker over different sets of alterna-
tives. It is shown here that the inclusion/exclusion of information causes
only local rank reversals instead of large scale ones that may occur in
several existing methodologies. The proposed method is also robust to
relatively large levels of wrong answers of the decision maker.

Keywords: Multicriteria decision analysis, MAUT, artificial neural net-
works, utility function.

1 Introduction

The decision-aiding methodologies often assume that it is possible to sort the
existing alternatives to solve a problem through the decision-maker (DM) pref-
erences. This sorting can be used to identify the preferred alternative within the
set of possible solutions or to classify the set elements in categories. Currently,
there are two main theoretical tendencies in mathematical modeling based de-
cision making: the decision based on the multiattribute utility theory (MAUT)
and the decision based on outranking relations (OR).

The canonical multiattribute utility theory (MAUT) assumes that there ex-
ists a function U , denoted utility function, which represents the decision-maker
preferences. This function assigns a scalar value to the alternatives, which can be
sorted by the simple comparison of the values [8]. The usage of the MAUT-based
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methods is appropriate for cases in which there is a previous complete knowl-
edge of all necessary information about the problem, which allows well-structured
preferences for the DM. Amongst MAUT-based methods, we can cite: Smarts
and Smarter [6], Weighted Sum Model [7], Weighted Product Model [12], AHP
[14] and ANP [15].

In 1968, Bernard Roy proposed the concept of outranking relations (OR) [13].
The methods based on OR have been developed to deal with situations which
cannot be modeled by MAUT-based methods. In general, these methods are
characterized by two steps: construction of the outranking relation and exploita-
tion of the results obtained in the previous stage. The usage of OR methods is
relevant when the DM does not have, at the initial stage, either a total knowledge
of the preferences or a total knowledge of the available alternatives. In general,
these methods involve more complex algorithms, but they demand less previous
information, because they assume that the DM is constructing the preferences
during the application of the method. Among the methods based on outranking
relations, we can cite: Promethee [4], Electre [13] and their variations.

In both MAUT and OR current methodologies, the problem setting is stated
usually as: given a problem, with its set of possible solutions (the alternatives),
establish a rational route to find a satisfactory solution, under the viewpoint of
the DM. In both MAUT and OR methodologies, it is frequently assumed that
the several decision criteria are essentially independent: each criterion is ana-
lyzed separately, and an aggregation of the multiple criteria is performed using
some pre-defined aggregation function. It is worthy to notice that an important
existing approach for the problem of representing non-linear dependencies be-
tween different criteria in decision problems is based on Choquet integrals [1,2].
However, this approach requires that the decision-maker provides information
about the criteria, and not about the solutions directly.

In this paper, we deal with a slightly different problem setting: it is assumed
here that the DM preference function may be arbitrary, possibly presenting
non-linear dependencies among several decision criteria. The specific structure
of interaction with the decision-maker assumed here considers a kind of situation
in which the DM should evaluate a solution as a whole, instead of weighting the
criteria which should be used in order to evaluate a solution. For instance, in
the case of automatic image generation, it would be meaningless to ask a DM
what is the relative importance of features such as brightness or contrast. A more
meaningful query would be formulated as what is the preferred image, considered
some given alternatives. We devise several contexts in which such an interaction
structure would be useful, for instance in the evaluation of automatic art sys-
tems (automatic music composition, automatic picture), in consumer preference
modeling, and so forth.

The aim of this paper is to present a methodology for the obtention of such
preference structure, in the form of an explicit function that reproduces the pref-
erence relations extracted of the DM. This function performs a kind of regression
on the DM answers about the preferences, delivering new answers to alternatives
that have not been presented yet. The assignment of space coordinates to the
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alternatives provides a geometric structure to the utility function, making pos-
sible a regression process. This means that alternatives with similar coordinates
in the feature space (the space in which the available alternatives with the cor-
responding decision parameters are embedded) should have similar preference
values, i.e., the utility function should be modeled as a continuous function. As
a consequence, a regression of utility function values may be meaningful, and
may help to guide a search for the preferred alternative from a set of alternatives,
even when none of such alternatives has been considered yet – relying only on the
information about other points that belong to the same region of the space. The
method proposed here employs some aspects of this geometric structure to find
an approximation for the DM preferences. As a regression method, we employ
multi-layer perceptron artificial neural networks (ANN) trained with a multiob-
jective procedure that aims to guarantee the regularity of ANN response [16].

It should be noticed that some former works have already exploited the idea
of representing DM preferences using artificial neural networks. The reference [5]
has reported good results of application of an ANN in order to extract DM pref-
erences, in a problem setting which is similar to the one assumed here. There are,
however, three main differences between the methodologies: (i) The methodology
of [5] is oriented toward the determination of the “most preferred solution” in a
single decision-making problem. Instead, the methodology presented here is in-
tended to build a map of the DM preferences, useful in successive instances of
the same decision-making problem. As a consequence, the methodology proposed
here involves the construction of partial orderings of the alternative set in order
to support such a mapping, which is not performed in [5]. (ii) Also, in [5] a kind
of rough quantitative information concerning the preferences is assumed. At least
some approximate values of preference ratios are required. In the methodology
presented here, it would be possible to use only answers to yes/no queries – in-
deed, in the presentation of this communication, only such kind of answers are
assumed. (iii) Finally, the architectures of the artificial neural networks employed
here and in [5] are quite different. The architecture employed in [5] involves two
ANNs, which process the criterion vectors, leading to results whose ratio is cal-
culated, being delivered as the final result. This architecture is suitable for the
purpose of discriminating the “most preferred alternative”. On the other hand,
the architecture employed here involves training a single ANN, which is the most
suitable arrangement for delivering a map of the DM preferences.

1.1 Notation and Problem Statement

A multicriteria decision making problem usually involves the following basic
elements:

- set A of alternatives (possible actions or choices). This set can be discrete or
continuous and it is considered the domain of the decision making problem.
Each element a ∈ A corresponds to an available alternative and each feature
of a provides a problem dimension.
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- set B of consequences or attributes. Each alternative a in set A has attributes,
which reflect the consequences of its execution for each decision criterion:
b = f(a), b ∈ B.

- decision-maker. The value of each alternative is assigned by a decision-maker,
that formally corresponds to a preference function P . The best alternative
x∗ ∈ A is the one which has attributes f(x∗) ∈ B that maximize the function
P(f(x)) = P (x) in the set A. It is assumed here that it is not possible to
directly measure the values of P (x), for any alternative x. Only the ordinal
information, of the form P (xi) > P (xj), or P (xi) = P (xj), may be extracted
from yes/no queries to the DM.

In this paper, we are interested in a class of decision-making problems in which
the possible solutions to the problem are directly presented to the DM. The
decision-maker will provide answers to queries concerning her/his preferences,
leading to the discovery of a model for these preferences. Assuming the same
preference function P in all problem instances, this model is able to find the
best alternative in any instance, considering the available alternatives in each
case. The following elements are involved:

- set A of all possible alternatives that may appear in each decision problem
instance;

- set Ai ⊂ A of alternatives that are available in the instance i of the decision
problem class;

- set Bi of consequences or attributes associated to the alternatives in set Ai,
for each instance i;

- decision-maker; the preference function P : A �→ R, which is assumed to
be the same for all decision problem instances.

This paper presents a methodology for the construction of a function which
models the preferences of a decision-maker. This methodology is compatible with
the assumptions of multiattribute utility theory. Such a function is built from a
partial ranking process, which is based on the ordinal information provided by
the decision-maker, and is used to quantify the preferences within the domain
A. An artificial neural network is used to construct a function that should have
level sets which coincide with the ones of the decision-maker utility function.
In the specific domain A, this utility function approximation provides a model
for the decision-maker preferences. The issue of the number of alternatives to
be used for the approximation is discussed. The resulting model for the utility
function can be used in order to avoid the formulation of new queries to the
decision-maker in new instances of the same decision-making problem.

2 Utility Function Approximation

In this paper, our goal is to find a function Û that models the decision-maker
preferences (the utility function U). The role of such a function is to allow
the replacement of the decision-maker in situations in which several decision
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problems will be presented, considering at each time a different subset Ai of
available alternatives, from the set A of all possible alternatives.

The utility function U , which represents the decision-maker preferences and
assigns a scalar value to each alternative, is initially unknown. The aim is to
build a representation Û of U that preserves the ordinal relationship between
any two points – which is equivalent to the statement that the level sets of U
and Û must be the same. It should be noticed that the actual values of U and
Û become irrelevant.

The problem of finding Û can be stated as a regression problem, that should
be performed over sampled points coming from U . However, as only ordinal
information can be obtained from U , a partial ranking procedure is employed
here in order to allow such a regression.

The Kendall-tau distance (KTD) [9] is used here as a merit function to eval-
uate the approximated function Û . The KTD is a measure of proximity between
the sorting for the alternatives provided by the approximation Û and the ideal
sorting provided by utility function U . In the case of the study conducted here,
the KTD was suitable because an absolute reference (the U model) was assumed
to be available in the tests that were performed.

The proposed method consists of three main steps:

Step 1: Choose a domain A for approximation;
Step 2: Build a partial ranking, assigning a scalar value to each alternative and

finding a partial sorting for the alternatives;
Step 3: Construct an artificial neural network Û which interpolates the results

and approximates the decision-maker utility function U .

The next subsections present the details of those steps.

2.1 Step 1

The domain for Û is inferred from the domain of the instance i of the decision-
making problem, i.e., from the available alternatives Ai. The domain is defined
as the box constructed considering the minimum and maximum values for the
available alternatives Ai in each problem dimension.

In this domain, a fictitious decision-making problem is built, in which the
alternatives are located as a grid. The queries to the DM are presented over this
grid. The grid is constructed to find a representation for the utility function U
in the desired domain. The number of alternatives in the grid is related to the
quality of the approximation Û : a fine grid provides a better approximation, but,
in this case, many queries will be asked to the DM.

2.2 Step 2

The partial ranking is a technique used to find a partial sorting for the alterna-
tives, assigning a scalar value to each alternative. Considering a set A with n
alternatives, this process is performed through the following steps:
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- Choose randomly p = log n alternatives1 from set A; these alternatives are
called the pivots. This value of p is chosen by inspiration in traditional sort-
ing procedures. Moreover, this value insures enough data for the regression
technique.

- Sort the pivots in ascending order of DM preferences. A rank is assigned
to each pivot, corresponding to its position in this sorted list. This sorting
is performed using ordinal information obtained from yes/no queries. The
number of queries that the decision-maker has to answer is equal to the num-
ber of comparisons that a sorting algorithm would have to make. Therefore,
using a algorithm like quicksort, the average number of queries to obtain a
total ordering is p · log p.

- For each n − p remaining alternatives, assign a rank that is the same of the
pivot immediately better than the alternative, in the DM preference. Each
alternative is compared with the middle pivot and, based on the result,
compared with the middle pivot of the lower or higher subpartition. This
process continues until a rank is assigned. If the current alternative is better
than the rank p pivot, it receives rank p + 1, and p is increased. The number
of queries to obtain a rank for all remaining alternatives is (n − p) · p.

This procedure creates a partition of the set A in at least p disjunct subsets. As
the number of pivots is less than the number of alternatives, many alternatives
will have the same ranking, providing a partial sorting. A total sorting could
be obtained through a total ranking, but these results would be useless for the
purpose of building a regression model using ANNs. For this reason, a partial
sorting is strictly necessary.

All the comparisons between the alternatives and the pivots are obtained from
ordinal information. With n alternatives, the number k of comparisons (queries
to the DM) for performing this procedure is O(n · log n) and approximately
given by:

k ≈ log n · log (log n) + (n − log n) · log n. (1)

The ranking-based classification offers a quantitative (cardinal) way to compare
the alternatives, a kind of information which is not provided directly by the
decision-maker. In any case, an alternative which is assigned a level i + 1 is
necessarily better than an alternative with a level i, although two alternatives
with the same level i may be not equivalent under the utility function U .

2.3 Step 3

In this paper, the regression tool chosen is an artificial neural network (ANN).
A ANN is an information processing paradigm which is inspired by the way
information processing mechanisms of biological nervous systems, such as the
brain, process the information. The key element of this paradigm is the structure
of the information processing system, which is composed of a large number of

1 We use log x as the same of log2 x.
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highly interconnected processing elements (neurons) working together to solve
specific problems.

The ANN learns by examples. The objective of this learning is the attainment
of models with good generalization capacity, associated to the capacity to learn
from a reduced set of examples and to provide coherent answers to unknown
data.

The ANN architecture chosen for the application was a multilayer perceptron
(MLP), with one hidden layer with 30 neurons. We use a multi-objective op-
timization approach to balance the training data error and the weight vector
norm, to avoid underfitting and overfitting. The selection of the most appropri-
ate solution within the Pareto-optimal set is performed by minimum validation
error [3,16].

Figure 1 presents the architecture and an example of a Pareto-optimal set for
an ANN training and the validation error for each solution found by the multi-
objective algorithm. This curve has a minimum error, providing the detached
solution for the ANN approximation.
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Fig. 1. Multilayer perceptron (MLP)

We use the alternatives within the grid as input and the ranking level of
each alternative as output to train the ANN Û which approximates U . It is
not necessary to model U exactly, because the partial ranking keeps the partial
sorting of the alternatives. When the ranking is used to build the approximation,
we find a function with level sets which are similar to the ones of U and that
possesses information enough to codify the decision-maker preferences.

The algorithm 1 presents the pseudocode for the proposed method.

3 An Illustrative Example

Considering p = (a, b) an alternative, we choose a bidimensional Gaussian (see
Figure 2) to represent an analytical model for U . This simplified model, given by
e−(a2+b2), will be used to simulate the decision-maker preferences. The domain



Modeling DM Preferences through Utility Function Level Sets 557

Algorithm 1. Proposed method - Pseudocode

1: Find the domain
2: Construct the grid of alternatives
3: Select the pivots
4: Sort the pivots in ascending order
5: Assign a rank to each pivot
6: Assign a rank to each n− p remaining alternatives
7: Train the artificial neural network
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Fig. 2. Simulated underlying model for the decision-maker preferences

found by Step 1 is the [−2, 2] × [−2, 2] set. In this domain, we construct a grid
of 400 fictitious alternatives, which simulates a decision making problem for the
approximation.

This model was chosen because a simple preference function is likely to be
unimodal, the preference value for each alternative must be non-negative and
should decay to zero for bad alternatives. So, the Gaussian has the structure of
a simple preference function similar to some ones that are expected to appear
in practice.
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Figure 3 presents the partial ranking for the alternatives obtained by Step 2,
as described in Section 2.2. Considering 30 runs, the average number of queries
to find this partial ranking was 1285. For a better visualization, we present the
same ranking with 10% of the alternatives.

Figure 4 presents the normalized surface and level sets of function Û , modeled
by the ANN. Considering the grid of alternatives and creating 30 sets, each one
with 50 random alternatives, the KTD average value in 30 runs was 0.02. These
sets were created to find the KTD value in different sets, beyond the training set.
The KTD value, 0.02, means that only approximately 2% of the queries made
to the model have answers which are different from the ones of the analytical
model. The Û level sets approximate well the level sets of the utility function
U , providing a way to solve the decision making problems without new queries
to the decision-maker. Notice that the actual surface of the function Û is rather
different from the original utility function U . This difference is irrelevant under
the viewpoint of generating correct ordinal comparisons among the points – the
relevant information is in fact contained in the function level sets.
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4 The Number of Alternatives

An obvious problem when we use the grid of the alternatives is the exponential
growth of the number of queries presented to the decision-maker, when the prob-
lem dimension grows. We performed the following experiment in order to find an
indication about the number of alternatives that should be used in different prob-
lem dimensions, to discover an accurate approximation for the decision-maker
preferences.

Considering an utility function U continuous and unimodal (as the Gaussian in
the Figure 2), we create fictitious decision-making problems to find the behavior
of the approximation procedure in relation to the number of alternatives and
problem dimension. The domain of each fictitious decision-making problem is a
hypercube with edge size 2 and the alternatives, distributed uniformly in this
domain, will be considered for building the partial ranking.
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Figure 5 presents the results obtained for problem dimension equal to 3, in
which the axes are the number of alternatives in the fictitious decision prob-
lem and the KTD value. An approximation curve is constructed from the data
regression to a logistic model given by f(x) = α1.e

α2+α3x + α4. The suitable
number of alternatives, nd, is obtained considering a tolerance equal to 0.0001
in this regression. For different dimensions, the following numbers were obtained:
n2 ≈ 110, n3 ≈ 360, n4 ≈ 450, and n5 ≈ 720.

100 200 300 400 500 600 700 800 900 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of alternatives

K
en

d
a
ll
-t

a
u

d
is

ta
n
ce

Logistic regression and n3 value

Fig. 5. Suitable number of alternatives

The number of queries to the DM varies according to the expression (1). Con-
sidering the maximum number of alternatives presented, the growth is almost-
linear. Of course, the number of queries in the proposed approach is greater
than the one expected in usual decision-making problems, under the paradigms
of MAUT and OR. This is the price that should be paid for the ability to repre-
sent eventual dependencies (even non-linear ones) among the decision criteria for
all of instances of a decision-making problem. It should be also noticed that the
idea here is to get such needed information incrementally, possibly at the same
time the DM takes decisions about specific instances of the decision problem.

5 Rank Reversal

The rank reversal problem consists in an inversion in the sorting of the alterna-
tives provoked by the addition or subtraction of some alternatives. It is natural
to hope that the addition or subtraction of some significant alternative modifies
the decision-maker preferences and, consequently, the final results, but it is not
intuitive that the insertion or removal of bad alternatives should provoke inver-
sions in the sorting of the best alternatives. This problem was reported in AHP
[10], in Promethee [11], and in Electre II and III [17].

Considering the proposed method, the training procedure of the ANN can
invert the sorting of the alternatives, because the ANN is a regression method
and, therefore, may represent data with some error. However, the inversions are
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Fig. 6. Alternative a1: level 1 in model 1 and level 0 in model 2.
Alternative a2: level 0 in model 1 and level 1 in model 2.

expected to be local2, as long as the function U under approximation is expected
to be smooth.

Figure 6 presents an example of local rank reversal, in which the level sets
of two resulting models are compared. For each crossover among the level sets,
the possibility of some rank reversal arises. In this example, the decision-maker
model 1 prefers the alternative a1 in relation to a2 while the decision-maker
model 2 prefers the alternative a2 in relation to a1.

6 Noisy Decision-Maker

Consider now that the decision-maker sometimes provides wrong answers to al-
ternative comparison queries. A noisy decision-maker could perform an arbitrary
choice sometimes, which expresses the case in which the decision-maker is uncer-
tain about some answers. The proposed method is still applicable in cases like
this.

In order to simulate this situation, some runs were performed with a fixed
probability of the preference order being changed in any query. Figure 7 presents
the typical cases for solutions obtained with such probability set to 5%, 10% and
20%, respectively.

As the ANN is a regression method, it can be seen that the noise affects the
obtained results smoothly. This means that the ANN preference model suffers
only a small perturbation for each new wrong DM answer, with the accumulated
perturbation of several wrong answers causing a continuous variation of the
model. This property makes the proposed procedure fundamentally different
from other usual decision-making procedures, which would not be robust under
such kind of uncertainty.

2 In the sense that alternatives with similar preferences are expected to have rank
reversal, but alternatives with very different preferences are not expected to suffer
it.
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Fig. 7. ANN approximation with noise

7 Conclusions

This paper proposed a methodology for the the construction of a function that
approximates the decision-maker preferences using a partial ranking procedure
and an artificial neural network. This function approximates the decision-maker
preferences in a specified domain, in which the ANN is trained. This method is
suitable when the usual assumptions of multiattribute utility theory about the
decision-maker preferences are satisfied.
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The problems in which the same decision-maker is consulted many times in
repeated similar decision-making problems can be solved in the following way:

- Given a decision making problem, a partial ranking is built, leading to a
partial sorting for the alternatives;

- With a set of alternatives and the partial ranking process, the resulting
function is obtained by the ANN.

With this approximation, no more queries to the decision-maker are necessary
in further instances of the same decision problem.

A feature of the proposed methodology is the ability of the method to rep-
resent arbitrary dependencies among the decision criteria, including non-linear
dependencies, in the context of situations in which the DM should evaluate a so-
lution as a whole, instead of weighting the criteria which should be used in order
to evaluate a solution. The outcome of the proposed method has the purpose of
being a representation of the DM preference structure in a region of the decision
variable space, instead of being oriented to solve a specific decision problem.

Some favorable features of the proposed method are: (i) the inclu-
sion/exclusion of information provides only local rank reversals instead of large
scale ones that may occur in several current methodologies; and (ii) the proposed
method is also robust to relatively large levels of wrong answers of the decision
maker.

The authors are currently working in the application of the proposed method
in some real-world problems.
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à la décision: Nature, Instruments et Perspectives d’Avenir, Québec, Canada,
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Abstract. This paper proposes a MCDM model based on the
SMARTER method for the problem of urban water conservation strate-
gies. The main contribution of this decision model is the use of Simos
procedure adapted for evaluating alternatives intra-criteria, specifically
on qualitative attributes. In fact, analyses of water resources problems
are normally very complex, not only because this involves multiple al-
ternative actions and objectives, but also because many attributes are
subjective or need to be evaluated qualitatively. Nevertheless, there are
many approaches to dealing with a semantic scale so as to make eval-
uation easier. However, it is often the case that the DM does not feel
comfortable with the fixed nominal scale adopted or with the number of
evaluations since the alternatives often need to be compared pairwise.
On the other hand, a simple conversion from a nominal to an ordinal
scale normally loses information. For these reasons, this paper proposes
an adaptation of Simos procedure, associating ’playing cards’ to evaluate
alternatives on qualitative attributes, in order to facilitate the elicitation
process. To show the applicability of the model proposed, a Brazilian
case study is conducted.

Keywords: Intra-criteria evaluation, Revised Simos procedure, Water
Conservation, SMARTER.

1 Introduction

Many conflicts among water users have emerged because the increasing demands
for water, resulting in water shortages. These are also due to urban pollution
affecting the quality of water and thus its use in certain activities being prevented
[1]. In view of this situation, there is a need to look for strategic alternatives for
using water efficiently in urban areas so as to avoid exacerbating the problem.

Ahmad and Prashar [2] evaluated different water conservation policies for
their potential to reduce urban water demand. They found that indoor water
use can be reduced by using low flow appliances such as toilets, faucets, showers,
and washers. Outdoor water use can be reduced by using native plants and
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water smart landscaping (i.e., xeriscaping). Also water pricing has the potential
to reduce water demand both for outdoor and indoor use.

Another increasing awareness around urban water conservation is the high in-
dex of water losses in distribution network [3]. According to Morais and Almeida
[4], leakage represents a significant portion of the water losses index and is one of
the crucial issues to be dealt in order to improve the efficiency and effectiveness
of water supply services.

Kallis et al.[5] stated that urban water conservation might include longer-
term policies such as consumer education, retrofitting and price reform, as well
as short-term responses, such as voluntary appeals for restraints in water con-
sumption, mandatory cutbacks of certain uses or tariffs penalizing excessive con-
sumption. They also reported that the determinants of conservation behavior are
the socio-economic characteristics of the water users, such as income or types of
uses. Besides, physical factors such as temperature and rainfall have been used
to explain the levels of water consumption [6].

In this context, decisions in the field of water resources are very complex and
involve multiple actions and multiple objectives [7], often with intangible con-
sequences. These characteristics make a multi-attribute analysis of alternatives
an interesting way to deal with this kind of decision problem [8].

Nevertheless, many attributes used in analyzing alternatives for urban water
conservation are qualitative. When evaluating by means of the multi-attribute
method, it is common to make use of a nominal scale (bad - good - excellent),
and later change from a nominal to a numerical scale (0 - bad, 1 - good, and 2
- excellent) to obtain values, and thus, important information of cardinality is
lost in this process, especially if the nominal scale used is small.

Shepetukha and Olson [9] state that existing multi-attribute methods attempt
to infer human preferences based on exact statements and evaluations - regard-
less of whether the humans involved have a clear understanding of the questions
that they are asked. In fact, it is known that many decision makers have diffi-
culty in assessing alternatives on qualitative attributes. Weber [10] argued that
a decision-maker’s preferences are rarely well enough structured to allow most
decision analysis methods to be successfully applied.

In that perspective, Bana e Costa and Vansnick [11] proposed the MACBETH
approach as a simple questioning procedure to ‘drive’ the interactive quantifi-
cation of values through pairwise verbal judgments of the difference of attrac-
tiveness between valuable elements of a set of alternatives. However, sometimes
the decision maker (DM) can not feel satisfied with the semantic scale adopted,
and also, the MACBETH questioning procedure can be exhausting as it asks
the DM for an absolute verbal judgment about the difference of attractiveness
between each ordered pair of the set of alternatives.

‘The limitations in human ability to evaluate and to compare multi-attribute
options can lead to inconsistencies in human judgments or to the application of
simplified rules that do not consider essential aspects of the options under consid-
eration’ [12]. To avoid this problem, this paper proposes to use the revised Simos’
procedure [13] adapted for evaluating alternatives on qualitative attributes.
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Simos [14] proposed a technique that allows any DM - not necessarily famil-
iarized with multicriteria decision aiding - to think about and express the way
in which he wishes to rank the different criteria of a family F in a given context.
Therefore, Simos’ aim was to use the procedure as a way to facilitate the elici-
tation of criteria weights based on a ’card playing’ procedure in which different
criteria are classified in different subsets by the DM, followed by ranking and
weighting the subsets. The method is simple and practical. Figueira and Roy
[13] proposed the revised Simos’ procedure which is similar to the original one
in that it allows the DM to associate ’card playing’ with directly converting
his/her priorities into weights, but, as compared to the original version, it has
some advantages in terms of: processing information to obtain non-normalized
weights; and of minimizing the rounding of errors when normalized weights are
calculated. Our goal, however, is to use the revised Simos procedure to elicit from
the DM his/her assessment of alternatives within qualitative attributes, i.e., to
obtain the evaluation intra-criteria in terms of performance of alternatives with
a cardinal notion.

Given the evaluation of all alternatives by all relevant attributes, in order to
achieve the expected result, i.e. what strategic alternative for urban water con-
servation should be undertaken, the SMARTER (Simple Multi-attribute Rating
Technique Exploiting Ranking) method developed by Edwards and Barron [15]
is used. This method assumes that the DM’s set of weight information consists
of ranked swing weights, i.e., a ranking of the importance of the attribute ranges,
and in this context uses ’surrogate weights’ derived from this ranking. The par-
ticular surrogate weights are called rank order centroid (ROC) weights [16].

SMARTER is an additive multi-attribute method, i.e. the method finds the
sum of the utilities of the alternative under all attributes. Therefore, just as
an error in the value of the evaluation of an alternative, in an attribute, this
can cause inefficiency in the final result. It is evident that additive methods
are more sensitive in assessments. This view increases the need for using more
robust procedures to evaluate alternatives on qualitative attributes, rather than
a simple nominal scale.

The paper is structured as follows. The second section provides informa-
tion about the model proposed as a structure for the methodology, the revised
Simos procedure adapted to evaluate alternatives and the SMARTER method.
Section 3 presents the case study, including: a survey of alternatives and at-
tributes; an application of the revised Simos procedure adapted to evaluate alter-
natives; and the results and analysis by SMARTER. Finally, Section 4 presents
final considerations.

2 Proposed Model

The model proposed consists of five main steps, as presented in Fig. 1. The
first is characterizing the problem, when surveys of the potential alternatives
and the relevant attributes are conducted. In the second stage, the attributes
are divided into two classes: qualitative and quantitative. In the third stage,
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for quantitative attributes, the evaluation of the alternatives performance per
attributes is given, the entries for which should be scores or physical value-related
measures; for qualitative attributes, the revised Simos’ procedure adapted to
evaluate alternatives is applied. When the sum of the values of the evaluations
of alternatives is not 100 points, a review is made of the values, in which the set
of alternatives is divided, by calculation (defined later in this paper), into two
lists: F+ (rounded up), and F− (rounded down).

The fourth stage of the model consists of implementing the SMARTER
method, by evaluating alternatives by attributes. For this stage, all attributes
are considered (qualitative and quantitative), from which the end result is ob-
tained in the fifth stage, namely, the alternative with the best multi-attribute
utility.

Fig. 1. Structure of the model proposed

The model proposed will be applied in a case study for evaluating strategic
alternatives for conserving and using water efficiently in urban areas. This study
is presented later in this paper. Thereafter, the Revised Simos’ procedure is
summarized and adapted to evaluate alternatives on qualitative attributes, as is
the SMARTER method.
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2.1 Revised Simos Procedure - Adapted to Evaluate Alternatives

The Simos procedure uses a ’card playing’ to facilitate the intuitive understand-
ing of attributing numerical values to the weights of each criterion. The DM
handles the cards, which represent each criterion, in order to rank them, and
inserts white ones between subsets of criteria (criteria of the same importance).
Each white card that the DM places between two successive subsets means one
more scale unit of difference between their corresponding weights. The DM can
insert as many white cards as he wants to represent the distance between two
subsets of criteria. The revised Simos procedure to achieve the values of the
criteria weights is available at [13].

In this study, instead of finding the criteria weights, we propose to apply
the revised Simos procedure to obtain values for alternatives under qualitative
attributes. Thus, an illustrative example is presented of the steps used to im-
plement the methodology of the revised Simos procedure which was adapted to
evaluate alternatives under qualitative attributes.

Consider a set A with 6 alternatives: A = a, b, c, d, e, f which should be eval-
uated under the qualitative criterion C. Give the DM a set of cards with the
name of each alternative written on each card. Therefore, there are n cards, n
being the number of alternatives (6), and a set of white cards the number of
which will depend on the DM’s needs. Then, ask the DM to rank these cards (or
alternatives) from the least to the most preferable (alternatives with the worst
and the best evaluation). Some alternatives may be of the same evaluation to
the DM (i.e., same value) and the DM can put them in the same subset (in this
case, the subset is deemed to consist of ex aequo alternatives). Next, the DM
introduces white cards between two successive cards of alternatives (or subsets
of cards) to represent the distance between any two adjacent subsets (as shown
schematically in Fig. 2). Therefore:

– No white card means that the distance is equal to a scale unit, u.
– One white card means a difference of twice u, and so on

Each white card placed by the DM between two successive subsets means one
more scale unit difference between their corresponding values. Subsets of alter-
natives for further identification can be numbered from 1 to n; where n is the
number of subsets.

Fig. 2. Illustration of playing cards (ranked by DM)
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Based on Fig. 2, the procedure to obtain the evaluation of the alternatives
is undertaken. Each alternative is placed in a position in accordance with the
rank of the subset to which it belongs (the least preferable alternative receives
Position 1, the next one, Position 2, etc). The white cards are also positioned.
However this is not included in the total sum of the positions. When there is
more than one alternative in the same rank, the average of their positions needs
to be used, resulting in a Non-normalized evaluation for these alternatives. The
normalization evaluation is the ratio between the Non-normalized evaluation
and the total sum of positions. The alternatives in the same subset are given
the same evaluation. The final sum of the evaluation should result in 100 points.
This procedure is presented in Table 1.

Table 1. Simos’ procedure applied to evaluating alternatives

Subset of Number Position Non-normalized Normalized Total
alternative of cards evaluation evaluation

c 1 1 1 1
23
∗ 100 = 4.34→ 4 1 ∗ 4 = 4

a, d, e 3 2,3,4 2+3+4
3

= 3 3
23
∗ 100 = 13.05 → 13 3 ∗ 13 = 39

White Card 1 (5) - - -
b, f 2 6,7 6+7

2
= 6.5 6.5

23
∗ 100 = 28.26→ 28 2 ∗ 28 = 56

Sum 7 23* ... ... 99
*The sum does not include the position of the white cards.

As seen in the example, sometimes the sum of the evaluation cannot total
a hundred points: this may be lower or higher. Therefore, the revised Simos
procedure needs to be applied, which determines the alternative that will be
rounded up and those that will be rounded down, so that the sum total is 100
points.

The first step is to determine the ratio between the evaluations of the most
and the least preferable alternative in the ranking. The ratio is equal to the total
number of cards, T. But, if there is a subset with q most important alternatives
and a subset with p least important alternatives in the ranking, the ratio is
obtained from Eq. (1) [13].

z =
[
∑q−1

i=0 (T − i)]p

[
∑p−1

i=0 (1 + i)]q
(1)

As to the ratio z, the value u is calculated using Equation (2).

u =
z − 1

e
(2)

Where:

e =
∑n−1

r=1 er and er = e′r + 1
e′r is the number of white cards between the alternatives subsets r and r +

1, (∀r = 1, ..., n − 1).
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In this example, z = 6.5 and u = 1.8333, since e = 3. With this information, the
non-normalized evaluation (kr) can be calculated as shown in Table 2, where
kr = 1 + u(e0 + +er−1) with e0 = 0 and K ′ = kr (the number of alternatives in
the subset n).

Table 2. Non-normalized evaluation of alternatives

Subset of Number of Non-normalized Total(K’)
alternatives white cards er = e′r + 1 evaluation (kr)

n between the subsets of
alternatives r and

r+1(e′r)
1 c 0 1 1.00 1.00
2 a, d, e 1 2 2.83 8.49
3 b, f — — 6.50 13.00

sum n=6 1 3 10.33 K=22.49

The second stage is to determine the normalized evaluation of each alternative
i. Let k′

i be the evaluation of the alternative i in its non-normalized expression
(k′

i = kr). Considering k∗
i = 100

K′ ∗ k′
i; and k′′

i = k∗
i with w figure after the

decimal point (w = 1), it is necessary to create two lists L+ and L− defined as
follows [13]:

– List L+ is built by the pairs (i, di) ranked according to the increasing
evaluation of the ratio di.(di = [10−w − (ki

∗ − k′′
i )]/k∗

i )
– List L− is built by the pairs (i, d∗i ) ranked according to the increasing

evaluation of the ratio d∗i .(d
∗
i = (ki

∗ − k′′
i )/k∗

i )

With these lists, the n alternatives of set A are partitioned into two subsets
F+ and F−, where |F+| = ν and |F−| = n − ν. The alternatives of F+ will
be rounded upwards to the nearest whole number and the alternatives of F−

will likewise be rounded downwards. Since ν = (100 − k′′) ∗ 10+w and the set
M = {di > d∗i }, |M | = m, the partition of F is performed as follows:

– If m + ν ≤ n, then construct list F+ by the first ν alternatives of L− not
belonging to M ; and F− with the others.

– If m + ν > n, then construct the list F− by the n− ν last alternatives of L+

not belonging to M ; and F+ with the others.

Based on the information above, the normalized evaluation in the example pro-
posed is presented in Table 3. The numbers in brackets are used to identify all
the alternatives belonging to the list F+.

The normalized evaluation is the performance evaluation of each alternative
on the attribute C, based on the DM’s preferences. This evaluation is just in
one qualitative attribute. This procedure must be applied to all qualitative at-
tributes. After that, using all evaluations of qualitative and quantitative at-
tributes, a multi-attribute method should be applied so as to find the solution
to the problem.
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Table 3. Normalized evaluation of alternatives

Subset of Normalized
alternatives n Alternative k′

i k∗
i k

′′
i di d∗

i Evaluation
1 c 1.00 4.446421 4.4 0.012050 > 0.010440 4.4
2 a 2.83 12.583370 12.5 0.001322 < 0.006625 12.6 (3)
2 d 2.83 12.583370 12.5 0.001322 < 0.006625 12.6 (2)
2 e 2.83 12.583370 12.5 0.001322 < 0.006625 12.6 (1)
3 b 6.50 28.901734 28.9 0.003400 > 0.000060 28.9
3 f 6.50 28.901734 28.9 0.003400 > 0.000060 28.9

Sum 100 k′′ = 99.7 100

2.2 SMARTER

The Simple Multi-Attribute Rating Technique Extended to Ranking
(SMARTER) is based on SMARTS [15], but is simpler to use. Edwards and Bar-
ron [15] proposed SMARTS as a simplified version of MAUT (Multi-attribute
Utility Theory), using linear approximations for single-dimension utility func-
tions, an additive aggregation model and swing weights.

A key component while developing an additive multi-attribute value model
is to obtaining the weights of attributes. SMARTER is an improvement on
SMARTS because it makes it easier to elicit the weights of attributes. Ac-
cording to [15] SMARTER uses the same procedure as SMARTS except that
it omits the second of two elicitation steps in swing weights, by substitut-
ing it with calculations based on rank. The rank, which represents the impor-
tance of the attribute ranges, is replaced by rank order centroid (ROC) weights
[16]. The idea behind the centroid approach is to identify the weights with the
minimum-maximum error from the extreme points implied by the rank of the
attributes [17].

Edwards and Barron reported very little loss in accuracy in moving from
SMARTS to SMARTER. They assert that a decision based on weights of the
SMARTER method, on average, gains 98 to 99% of the utility obtainable by
using full elicitation of weights [15].

SMARTER uses the same overall model as SMARTS, and cardinal input
information where scores are standardized to a 0-1 scale (with 0 representing
the worst expected performance on a given attribute, and 1 representing the
best one).

Due to the fact that the weight assessment in SMARTER is simpler than
in SMARTS, the former is used in the decision model proposed for evaluating
strategic alternatives for urban water conservation. Especially when the decision
maker has no knowledge about multi-attribute decision-aid approaches, it is
very important to develop a decision making model based on a simple and easy
way of using and understanding procedures, and this should have a theoretical
foundation as well.
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3 Case Study

Due to the problem of the world-wide shortage of water, several solutions are
presented in order to combat wasting and misusing water in urban areas. Eval-
uating the alternatives for conserving water and using it efficiently in urban
areas must be conducted by paying due regard to economic and financial, en-
vironmental, and social and technical matters. Moreover, the decision maker’s
preferences, personal values, points of views and knowledge about the problem
should be taken into consideration.

To illustrate the application of the model proposed, a study was carried out
in the region bounded by District-30 which is located in the district of San
Martin in Recife, Pernambuco State, Brazil. The district has an area of 305.70
hectares, occupied by a population of 50,631 inhabitants. The urbanization is
characterized as being from medium to low income with a focus on Poverty.
Based on the characteristics of the region, the Decision-Maker, a manager of the
State Water Resources company, made a survey of potential alternatives and
relevant attributes, as presented below.

3.1 Survey of Alternatives

Given the current problem of water shortages in urban areas, it was possible to
identify, by means of a literature review and interviews with experts in the field
of water resources, some strategic alternatives that can be deployed as a way to
alleviate or even solve the problem which this article discusses. The alternatives
(strategies) are arranged in three categories:

– Actions aimed at reducing the consumption of water:
– Strategy 1 (S1) - Reusing waste water;
– Strategy 2 (S2) - Environmental education campaigns;
– Strategy 3 (S3) - Setting up water saving devices;
– Strategy 4 (S4) - Use of rainwater.

– Actions to ensure water quality:
– Strategy 5 (S5) - Improving sewage projects in urban areas;

– Actions to increase operational efficiency in the water distribution network:
– Strategy 6 (S6) - Controlling the Water pressure;
– Strategy 7 (S7) - Monitoring fraud;
– Strategy 8 (S8) - Controlling Leakages.

3.2 Survey of Attributes

Determining the list of relevant attributes was conducted along with the DM,
and took into account economic, social, environmental and operational aspects
under the current conditions of the problem of water shortages in urban centers,
it being a matter of urgency to increase the conservation and efficient use of water
and also the knowledge of agencies and organizations interested in the issue.
Determining appropriate attributes is crucial for the efficiency and effectiveness
of the method. The attributes determined are:
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– Attribute 1 (A1) (initial investment): Corresponds to the monetary value
invested in implementing actions (in R$).

– Attribute 2 (A2) (maintenance cost of the action): This refers to the mone-
tary value invested in implementing action (in R$).

– Attribute 3 (A3) (response time of action implemented): This corresponds
to the time needed to obtain the result of actions implemented (in months).

– Attribute 4 (A4) (impact of alternatives on the population involved): Cor-
responds to people’s level of acceptance or rejection of action.

– Attribute 5 (A5) (efficiency action): Corresponds to verifying the results
obtained by implementing the alternatives and that these are consistent
with the objectives expected by the decision maker on a specific alternative.

– Attribute 6 (A6) (reducing consumption): Checks whether there has been a
reduction in the volume of water consumed after implementing the action.

For the case under study, the attributes of initial investment (A1), maintenance
cost of the action (A2) and response time of action implemented (A3) are evalu-
ated according to estimates by national authorities and research in the area. The
attributes are quantitative and the lower the value, the better the alternative.
The other attributes (A4, A5 and A6) have a subjective character, i.e. these are
qualitative attributes, to which the revised Simos procedure will be applied. It
is important to notice that the attributes were chosen by the DM for the spe-
cific situation of the case under study. In other cases, other attributes can be
analyzed, however should be observed their compensatory rationality.

3.3 Application of the Revised Simos Procedure to Evaluate
Alternatives on Qualitative Attributes

The DM was asked to order the alternatives for each qualitative attribute. When
finished this gave a ranking from the worst to the best alternative. The DM can
insert white cards when the difference between the successive alternatives is more
than one unit (the DM can insert as many cards as he wants to represent his
evaluation of these alternatives.) The rank given by the DM for the alternatives
on attributes A4, A5 and A6 are presented in Table 4.

Table 4. Ranking of the alternatives on the attributes A4, A5 and A6

Rank A4 A5 A6
1 S6 S2 S2
2 S8 White card White card
3 S5, S7 S1, S3, S4 S5
4 White card White card White card
5 White card S5, S6, S7, S8 S6
6 S1, S4 — S3, S7
7 White card — White card
8 S3 — White card
9 White card — S1, S4, S8
10 S2 —
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Table 5. Normalized evaluations of attribute: A4

Rank Alternative k∗
i k

′′
i di d∗

i Normalized Evaluation
1 S6 2.17960 2.1 0.00936 < 0.03652 2.2 (6)
2 S8 4.83871 4.8 0.01267 > 0.00800 4.8
3 S5 7.49782 7.4 0.00029 < 0.01305 7.5 (3)
3 S7 7.49782 7.4 0.00029 < 0.01305 7.5 (4)
4 S1 15.49695 15.4 0.00020 < 0.00626 15.5 (1)
4 S4 15.49695 15.4 0.00020 < 0.00626 15.5 (2)
5 S3 20.83697 20.8 0.00303 > 0.00177 20.8
6 S2 26.15519 26.1 0.00171 < 0.00211 26.2 (5)

Sum 100 K′′ = 99.5 100
Where: z = 10 and u = 1.285714

Table 6. Normalized evaluations of attribute: A5

Rank Alternative k∗
i k

′′
i di d∗

i Normalized Evaluation
1 S2 2.03046 2.0 0.03425 > 0.01500 2.0
2 S1 9.64467 9.6 0.00574 > 0.00463 9.6
2 S3 9.64467 9.6 0.00574 > 0.00463 9.6
2 S4 9.64467 9.6 0.00574 > 0.00463 9.6
3 S5 17.25888 17.2 0.00238 < 0.00341 17.3 (1)
3 S6 17.25888 17.2 0.00238 < 0.00341 17.3 (2)
3 S7 17.25888 17.2 0.00238 < 0.00341 17.3 (3)
3 S8 17.25888 17.2 0.00238 < 0.00341 17.3 (4)

Sum 100 99.4 100
Where: z = 8.5 and u = 1.875

Table 7. Normalized evaluations of attribute: A6

Rank Subset of Alternative Position Non-normalized Normalized Evaluation Total
evaluation Evaluation Evaluation

1 S2 1 1 1.81 2.0
2 S5 3 3 5.45 5.0
3 S6 5 5 9.09 9.0
4 S3 6 6.5 11.81 12.0
4 S7 7 6.5 11.81 12.0
5 S1 10 11 20.00 20.0
5 S4 11 11 20.00 20.0
5 S8 12 11 20.00 20.0

Sum 55 100

After the DM has given the rank, the revised Simos procedure was applied.
The sum of the normalized evaluation of alternatives under attributes A4 and A5
was 99 and 101, respectively, it being necessary to build the F lists by rounding
them properly. The evaluation of the alternatives resulting from this procedure
can be seen in Tables 5 and 6 for attributes A4 and A5. The sum of the normal-
ized evaluation under A6 already resulted in 100 points, as shown in Table 7.
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As seen, only the attributes A4 and A5 were necessary to revise the Simos
procedure. Having found these values, it is possible to apply the SMARTER
method, as shown below, so as to search for a final decision on the problem.

3.4 Results and Analysis by SMARTER Method

The first step toward using SMARTER is to define attributes and alternatives,
and to eliminate dominated alternatives. Based on the characterization of the
problem of water shortages in urban areas, previously presented, the alternatives-
by-attributes matrix was built, as shown in Table 8. As can be noticed, there is
no dominated alternative.

Table 8. Matrix of evaluation: alternatives-by-attributes

Attributes
Alternatives A1 A2 A3 A4 A5 A6

S1 2,800,000 170,000 15 15.5 9.6 20
S2 36,000 5,000 6 26.2 2.0 2
S3 210,000 0 12 20.8 9.6 12
S4 1,500,000 100,000 24 15.5 9.6 20
S5 2,700,000 25,000 1 7.5 17.3 5
S6 55,000 11,500 2 2.2 17.3 9
S7 26,000 24,000 1 7.5 17.3 12
S8 25,000 24,000 1 4.8 17.3 20

Thereafter, to apply SMARTER, what is required is to rewrite the scores
table - the output from evaluating the alternatives - to single-dimension cardinal
utilities. To do so, the linearity was tested of single-dimension utilities for each
quantitative attribute, in which scores are available. The other attributes were
already elicited with cardinal utility. Also, conditional monotonicity was tested.
Therefore, since the DM’s preferences behave linearly on those attributes and
the conditional monotonicity was verified, the additive model can be used.

Therefore, to proceed with SMARTER , it is necessary that all evaluations
are on the same scale of measurement. For this reason, normalization is required;
converting values of the alternatives between 0 and 1, where 0 is the worst al-
ternative and 1 the best alternative on each attribute, whether its objective is
to maximize or to minimize. Thereafter, the values of the weights were elicited
from the DM: ”If there is an alternative that had the worst score for all at-
tributes examined, given the opportunity to exchange the evaluation in only
one dimension, to change from the worst to the best value among the alter-
natives, which dimension would you improve?” The DM responded that it was
attribute A6. This process was continued until all dimensions were ranked. Next,
the following ranking of the attributes was obtained for the proposed case study:
A6 > A1 > A2 > A5 > A3 > A4.
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After ordering the attributes, SMARTER uses predetermined values called
ROC weights (Rank Order Centroid weights) weights, thus simplifying the acqui-
sition of multi-attribute utilities. In this case, w6 > w1 > w2 > w5 > w3 > w4, as
follows: w6 = (1+1/2+1/3+1/4+1/5+1/6)/6 = 0.4083; w1 = (0+1/2+1/3+
1/4+1/5+1/6)/6 = 0.2417; w2 = (0+0+1/3+1/4+1/5+1/6)/6 = 0.1583;...;
w4 = (0 + 0 + 0 + 0 + 0 + 1/6)/6 = 0.0278.

Basically, SMARTER undertakes a sum of the relation between the eval-
uations of the alternative and weights of each attribute. So, for instance,
for alternative 1 (Strategy 1 (S1)), the following expression is used for the
global utility: US1 = .4083uS1(xS1A6) + .2417uS1(xS1A1) + .1583uS1(xS1A2) +
.1028uS1(xS1A5) + .0611uS1(xS1A3) + .0278uS1(xS1A4).

Table 9 shows the results by the SMARTER method.

Table 9. Results of the SMARTER method

Alternative USi

S8 0.95
S7 0.77
S3 0.72
S6 0.71
S4 0.65
S1 0.50
S2 0.47
S5 0.38

The method presents alternative S8 as the best strategy (the greatest utility),
for the case of the problem of conserving water in urban areas. This alternative
has the best evaluation under attributes A1, A3, A5 and A6, where A1 and A6
are the greatest weights. In addition, it has third best rating on attribute A2,
the third greatest weight. A4 is the attribute where the alternative has the worst
performance, but, that attribute has the lowest weight for the DM. The second
best alternative S7 has a similar performance if compared to S8. However, its
evaluation on the qualitative attribute A6 is worse than for S8, exactly in the
attribute with the greatest weight. As SMARTER is an additive method, in
which the search for the best solution requires compensation (trade-offs) among
the attributes to be evaluated, a simulation was conducted in which all attributes
have equal importance for the DM. In this case study, alternative S8 persists as
the winner. Other methods could be applied in this case, but SMARTER proved
to be effective. Applying ROC weights was found to be representative of the
DM’s preferences regarding the ranking of attributes.

4 Concluding Remarks

Simos [14] proposed to associate ’playing cards’ with eliciting criteria weights.
Figueira and Roy [13] revised Simos’ procedure to minimize the rounding off
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errors when the normalized criteria weights are calculated. In this paper, the
latter approach was adapted to evaluate alternatives on qualitative attributes.
The reason for this adaptation is due to the difficulties that some DMs have
in evaluating alternatives under subjective aspects and also because DMs often
do not feel satisfied with a simple nominal scale, a cardinality judgment being
needed, nor do DMs not feel satisfied with the exhausting elicitation process
used by existing methods.

This new approach to evaluating alternatives on qualitative attributes fits
well with SMARTER, an additive method for multi-attribute utility measure-
ment, which has the advantage of being simpler to use and elicits the weights
of attributes. Thus, this paper put forward a decision-making model based on
the SMARTER method, by applying the revised Simos procedure which was
adapted so to evaluate alternatives on qualitative attributes.

The model proposed was applied in a case study to evaluate strategies for
conserving water in urban areas. Three of the six attributes examined by the
DM were qualitative and the revised Simos procedure which was adapted to
evaluate alternatives was applied. It was verified that the adapted procedure is
effective with respect to evaluating the alternatives, and gave greater flexibility
to the DM during the process. In fact, the DM is not limited to any one kind of
scale, which may increase or decrease the difference between the alternatives as
deemed appropriate. In addition, the benefits of using the adapted procedure on
qualitative assessments becomes more relevant if the attribute associated has a
large weight which has been elicited from the DM.

The revised Simos procedure is simple and easy to use, requiring little com-
putational effort, thus increasing its applicability. Furthermore, it is shown to
be efficient when evaluating alternatives on qualitative attributes when apply-
ing an additive method, since in this kind of method, interval scale evaluation
is required. As to future studies, the extension of the model proposed in cases
of group decision making should be assessed by analyzing the characteristics of
the process and its applicability, since in group decision making, the members
usually have differing points of view.
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Abstract. This paper considers a multicriteria model for a combined
burn-in and replacement process for a simple system comprising a
single component from a heterogeneous population, consisting of two
sub-populations that possess different failure characteristics. There are
several papers that have dealt with mixed distributions. Nevertheless,
suitable procedures for dealing with the distinct failure behaviours from
these two sub-populations are limited. Furthermore, some combined poli-
cies of burn-in and replacement have not achieved consensus on their ef-
ficiency. Therefore, we consider a multicriteria model for supporting the
decision-maker in a combined burn-in-replacement policy. This model
enables the decision-maker to set up a combined burn-in-replacement
policy by taking advantage of the broader view provided by a simultane-
ous evaluation of cost and post-burn-in reliability while also providing the
possibility of inserting the decision-maker’s preferences into the model.
A case study is used to illustrate some advantages in comparison with
results from the classical model (minimum cost).

Keywords: combined policies of burn-in and replacement, multicriteria
model, mixture.

1 Introduction

According to Jiang and Jardine [1], a typical mixture consists of a heterogeneous
population, in which the failures can be divided into early failures and wear-
out failures. For this situation, where the time to failure of an item follows a
mixture distribution, the failure behaviour is not trivial because a mixture of
two distributions might produce different types of failure rate functions that
describe different failure behaviours [2], [3]. In this context, it is not obvious
how to determine a suitable procedure for reducing the early-phase failures while
simultaneously dealing with the operational failures caused by wear-out.

While dealing with early failure and operational failure due to wear-out sep-
arately is appealing in practice, it is a large problem for equipment suppliers in
charge of maintenance actions. If operational failures occur, suppliers have to
compensate for the damages by providing spare parts or giving discounts on the
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overall cost of the contract to ensure exclusivity of supply for the system. Thus,
potential early failures that might arise during operation must be eliminated.
Moreover, the replacement age should be adjusted to avoid operational failures
due to wear-out. Therefore, a combined process is required so as to approach the
two different behaviours that emerge from the heterogeneous population. Man-
agement of early or wear-out failures requires that the supplier make decisions
to achieve the best benefit from the partnership. The choices of suppliers or
contract planning are different problems that are not discussed here. For more
details about these problems, see [4].

A common process used to eliminate early failures is the burn-in test. Ac-
cording to Cha et al. [5], the burn-in technique is a method used to eliminate
initial failures in field use. This method consists of running an item or system
prior to its use in the field. This process is important in identifying weak items
or avoiding early failures in the field. However, the main problem encountered
in the burn-in process is determining how long the process should take because,
besides the cost involved, this process may damage the component or may be in-
efficient. Therefore, many models that provide optimal burn-in times have been
proposed by various researchers. The optimal burn-in time is generally obtained
from an optimisation process that involves one performance criterion. Accord-
ing to Cha et al. [5], besides cost, various criteria have been used to define the
optimal burn-in time, such as the mean residual life [6,7,8], the reliability of
performing a given mission [6]; [8], or availability [5].

Despite the fact that there are different aspects of measuring the effectiveness
of a burn-in process, these criteria are used individually, even if a simultaneous
observation of more than one criterion (a multicriteria approach) might enrich
the problem of determining the best time for burn-in. On the other hand, for
maintenance in the general sense, some interesting studies using a multicriteria
approach have recently appeared with regard to very different problems.

Besides the need to simultaneously deal with more than one criterion, other
considerations must be taken into account. In some practical situations, the man-
agement of early failures is not enough to provide effective results. According to
Jiang and Jardine [1], most papers about burn-in have emphasised applicable
conditions in which, the item initially has a high rate of decreasing failure, and
the weak sub-population represents a very small proportion of the entire het-
erogeneous population. In contrast, most practical problems do not correspond
to these conditions. Instead, the weak sub-population has a longer lifetime than
those that are usually considered, and its proportion is not very small. There-
fore, rather than focusing only on the process of burn-in, an integrated process
is more appropriate. This integrated process consists of a combined policy of
preventive replacement and the burn-in procedure [9]. Jiang and Jardine [1] pro-
posed combined preventive maintenance policies associated with the mixture
model. Their model is based on two different decision variables: the duration
of the burn-in process b and the age of replacement t (b+y). The objective of
these models is to find optimal solutions for a combined burn-in-replacement
policy to take into consideration the change in ageing behaviour of items from a
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heterogeneous population represented by a mixed distribution. The cost advan-
tage of the combined policy over separate policies of burn-in and replacement
is quite small [9]. However, the performances of other criteria indicate that pre-
ventive replacement is more effective in the combined policy. Moreover, a multi-
criteria approach could increase the advantages of this policy [1].

As a result, this article proposes a multicriteria model for a burn-in-
replacement policy to support the decision-maker in choosing the most appro-
priate times for b and y, simultaneously taking into account not only two criteria
but also the decision-maker’s preference regarding these criteria. This article has
six sections. In the first and second sections, we highlight the concept of a com-
bined burn-in and replacement policy and mixed distributions, respectively. In
the third section, we present some concepts of Multiple-Attribute Utility Theory
(MAUT). Then, we specify the multicriteria model for a combined burn-in and
replacement process. The model is illustrated using realistic data. Finally, we
draw some conclusions from the study.

2 Mixed Distributions

In the literature, mixed distributions (see Fig. 1) have been studied by a sub-
stantial number of researchers [10,11,12]. This popularity is due to the fact that
these mixtures might be used to model real situations in which some observation
characteristics arise from a non-homogeneous population.

The time to failure is assumed to arise from a mixture distribution:F (t)
= pF1(t) + (1 − p)F2(t) , where p is the mixing parameter. Thus, the heteroge-
neous nature of the components implies a mixed distribution for time to failure.

Despite the flexibility in modelling some situations, the interpretation of
failure-rate behaviour for even the simplest of mixtures is not trivial. As was

Fig. 1. Mixed distribution ( ). Underlying Weibull distributions, Weibull1(η1 =
18, β1 = 5) (...) and Weibull2(η2 = 3, β2 = 2.5) ( ), mixing parameter p = 0.7.
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stated by Barlow and Proachan [13], mixtures that result from Increased Fail-
ure Rates (IFR) are not necessarily IFRs. This aspect has produced some mis-
understandings [11]; [3], and it represents a difficult barrier when it comes to
proposing suitable maintenance policies for simultaneously reducing early-phase
failures and operational field costs [1]. Finkelstein & Esaulova [14] explained
why the mixtures of IFR distributions can decrease, at least for some intervals
of time. These authors highlighted the aspect that the operation of mixing can
change the corresponding pattern of ageing, which must be taken into account
for practical purposes, especially in maintenance planning.

Therefore, in this paper, we focus on constructing a decision aid model for the
maintenance planning of mixed items to take into consideration changes in the
ageing behaviour of these items in a heterogeneous population. In practice, the
main contribution of this paper is to help the decision-maker, who both supplies
and provides maintenance service of a component in an exclusive contract, to
determine the length of the burn-in process and the replacement age, to provide
a feasible cost and good reliability in the field.

3 MAUT

The very nature of multiple criteria problems means that there is much infor-
mation of a complex and conflicting nature, often reflecting differing viewpoints
[15]. This naturally leads to associating a specific criterion with each pertinent
point of view. Each of these criteria is used to evaluate any potential action
on an appropriate qualitative or quantitative scale. Thus, the main problem
encountered when dealing with diverse criteria lies in the aggregation of these
different measures, taking into account the decision-maker’s preferences and un-
certainties present in the criteria. To manage these main difficulties, MAUT
(Multiple-Attribute Utility Theory) is considered one of the most appropriate
approaches, especially for cases in which the criteria are related to aspects of
uncertainty.

MAUT provides axiomatic foundations for choices involving multiple criteria;
its main result consists of establishing a functional form of the utility function
based on confirmation of some of the assumptions with regard to the decision-
maker’s preferences [16]. Even that other kind of multicriteria decision aiding
methods could be considered (see, [16]), here the MAUT seems to be the most
suitable, not only due to the rationality of the decision maker, but also due
the limitation of outranking approaches whose the set of alternatives has to be
discrete.

Thus, to simplify the assessment of multiple-attribute utility functions and to
warrant a more consistent result, a process with five stages should be followed
[17]: (1) Introduction of the terminology and ideas; (2) Identification of relevant
independence assumptions; (3) Assessment of conditional utility functions; (4)
Assessment of the scaling constants; and (5) Verification of consistency and
reiteration.

The first step is the most direct. It consists of making sure that the decision-
maker has a good understanding of each element used in implementing MAUT.



Multicriteria Model for a Combined Burn-In and Replacement Policy 583

Fig. 2. Consequence Space

All subsequent steps rely mainly on the comprehension of the consequence space.
For our particular case, the alternatives are represented by vectors of ai = (bi, yi).
For each alternative, there are consequences in terms of cost Ctotal(b, y) and post-
burn-in reliability Rc(b, y). Thus, for each alternative ai, there is a corresponding
associated point in the consequence space (Ctotal(ai); Rc(ai)); the range of each
criterion is also established in the consequence space [Co

total; C
∗
total] and [Ro

c ; R∗
c ]

(see Fig. 2).
The second step is very useful and consists of identifying a fundamental con-

cept of multi-attribute utility theory, utility independence. When additive inde-
pendence is observed, the representation of the multi-attribute utility function
is reduced to a weighted sum of the single-attribute utility functions (see (1)).
According to Fishburn [18], most of the applied work in multi-attribute utility
theory deals with cases in which the multi-attribute utility function is broken
down into its additive form.

U(Ctotal(ai), Rc(ai)) =
N∑

j=1

kjuj(ai) (1)

Where:
uj() is the single-attribute utility for each criterion Ctotal and Rc, respectively
kj is the constant scale of a criterion
N is the number of criteria

The third step consists of breaking down the process of assessment. The utility
function of each criterion is assessed separately. There are different processes
for eliciting the utility function. Some are very complicated and comprise overly
long questionnaires. Raiffa [19] proposed a very simple method that consists
of determining some certainty equivalents when compared with some different
lotteries to assess the utility function.

The fourth step involves assessing the scaling constants; this process depends
on the final shape of the multi-attribute utility function. For the case of an
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additive form, there is a scaling constant for each criterion; in our particular case
of two criteria, only an assessment of one scale constant is needed, determining
the second constant by the equation k1 + k2 = 1 according to Keeney and
Raiffa [17].

Finally, the fifth step consists of checking for consistency and reiterating.
This step is very important in ensuring that the multi-attribute utility function
is in fact connected with the decision-maker’s framework. This process can be
conducted in different ways [20].

4 Multicriteria Decision Model for a Combined Burn-In
and Replacement Process

According to Cha [21], in a study of the burn-in problem, the criterion of cost
is often adopted to find the optimal burn-in time. However, there are other
circumstances in which certain system reliability characteristics such as system
availability, probability of accomplishing a mission, mean life in field operation,
etc. are more important than economic considerations; thus, in these cases, a
multicriteria vision is quite useful.

In addition, instead of considering only the burn-in or replacement procedure,
in an isolated way, we consider a multiple-attribute model of a combined burn-
in-replacement policy.

As was stated by Drapella & Kosznik [9], for a non-homogeneous population
of items, the dominant process of failure is related to wear-out. For this reason,
a procedure of preventive maintenance is very suitable for this case. In spite of
this, some items have a short life due to intrinsic defects. Therefore, according
to these authors, when only an age replacement policy is undertaken and these
weak items are used as replacement parts, they may spoil the results of planned
prevention. Thus, there is a need to bring the burn-in and preventive replace-
ment periods, respectively, b and t, into equilibrium. To do so, the multicriteria
approach can provide a substantial enrichment of combined burn-in-replacement
policies, especially because the cost advantages of this combined process are quite
small. However, significant improvements in other aspects have been observed
[9]; [1].

Based on a burn-in-replacement policy for a mixed distribution under the
multicriteria decision aid paradigm and inspired by the model proposed by Jiang
and Jardine [1], the multicriteria model presented here isolates the Rc() aspect
and transforms it into a decision criterion in addition to the Ctotal() factor
already used in classical models.

In fact, these two criteria are consistent with most problems involving burn-
in and replacement. In general, there are two natural reasons for performing
a burn-in [22,23,24]: burn-in offers a cost-effective opportunity to remove and
replace defective items, while also being an important screening method used
in predicting, achieving and enhancing field reliability. With regard to the age
replacement policy, the matching of these criteria has been appropriately used
in some papers [25,26].
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Fig. 3. Burn-in/replacement policy

As stated earlier, the population consists of two different kinds of items: weak
items and strong items. They respectively present an earlier failure and a later
failure. Therefore, a combined burn-in-replacement process is calculated with
the respective times, b and y, in order not only to increase Rc(b, y) but also to
reduce the expected total cost per operational time Ctotal(b, y).

Although the combined policy can deal with items with different failure be-
haviours, this process initially consists of a separation of the distinct processes:
burn-in and replacement. In practice, basically all components must be submit-
ted to a burn-in process, the duration b of which we want to identify. After a
burn-in process, each item begins to operate and will be replaced at failure or if
it achieves an age t = b + y (see Fig. 3).

During the burn-in phase, the item will be repaired if it fails before the time
b. Each repair consists of a renewal process, and the condition of ”as good as
new” is provided with cost Cr. There is also a cost-rate of operating the burn-in
process, C0. As is obvious, the associated cost and the time that an item should
remain in burn-in depend on how often (m) the component fails before time b,
see (2).

P (m) = R(b)Fm(b) (2)

Thus, the expected value of m(E(m)) is directly obtained:

E(m) = sum∞
n=0mP (m) = F (b)/R(b) (3)

The expected time of the burn-in process E(tb) is given by:

E(tb) =
1

R(b)

∫ b

0
R(t)dt (4)

From (3) and (4), we can derive the expected burn-in cost:

Cb(b) = E(m)Cr + C0E(tb) (5)

For a burned-in item, an age replacement policy is undertaken as soon as the
item fails or when it achieves the age t = b + y, as seen in Fig. 3. Therefore,
the main problem is to establish both times b and y, which characterise the
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maximum operational time of the item at which point it should be preventively
replaced. The failure distribution of x is also called the post-burn-in distribution.

Gb(b, x) =
F (x + b) − F (b)

R(b)
= 1 − Rc(b, x) (6)

1−Gb(b, y) or Rc(b, y) for a fixed b and x = y represents the effectiveness of
preventive maintenance [1] or the conditional reliability of a burned-in item.
This is the probability that a burned-in item will be replaced at time t without
failure, in which case this will be an attribute for the decision-maker.

Another attribute consists of the integrated cost-rate of the burn-in and re-
placement process (Ctotal(b, y)), which comprises the cost of the burn-in and the
replacement process per unit of operational time.

Ctotal(b, y)=
CrF (b)+Co

∫ b

0 R(t)dt+CpR(b)+(Cf − Cp)[F (y+b)−F (b)]∫ y

0 R(x+b)dx
(7)

Unlike other studies [1,9], the multicriteria model establishes the times b and
y by using MAUT. Thus, the main objective of this model is to determine the
vector (b, y) that maximises the multi-attribute utility function of the decision-
maker concerning the criteria Rc(b, y) and Ctotal(b, y); see (1).

Fig. 4. Behavior of the Criterion Rc(b, y) for different values of b

To understand the advantages that might be provided by a multicriteria model
of a combined burn-in-replacement policy, we can observe the behaviour of the
criteria Rc(b, y) (Fig. 4) and Ctotal(b, y) (Fig. 5). For the case in which b = 0,
which is equivalent to a simple age replacement policy without burn-in, we can
see that both the cost and reliability for most illustrative alternatives ai(b = 0, y)
are not so good in comparison with those obtained for other values of b. Even
more interesting is the fact that there is no value of ai that provides the best
values of Rc(ai) and Ctotal(ai). Thus, the decision regarding the best policy does
not consist of an optimisation process but of a multicriteria decision problem
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Fig. 5. Behavior of the Criterion Ctotal(b, y) for different values of b

where not only the conflict of criteria must be overcome but where the decision-
maker’s preference has to be taken into account to define the alternatives that
best match the decision-maker’s desires.

5 Case Study

This application of a decision model is based on the context of a packing supplier
for the juice and milk industries. The item subjected to burn-in is a component
of the system provided by the packing supplier to the juice and milk industries.

Despite the fact that the system is not a simple one, we handle this system as
a single component because the failures are almost all related to one part of this
system; additionally, the maintenance contract of the supplier is related only to
this component. The data correspond to realistic data. For this application, we
consider that the failures of this component may arise from a heterogeneous pop-
ulation. Thus, we will assume a mixture with two component sub-populations:
weak components and strong ones. In Table 1, we can see a summary of informa-
tion about these components. In addition, reasonable values for the percentage
of weak items may be around p = 0.4278.

Costs for this component were obtained subjectively from an expert. To more
simply portray the impact of the costs on the combined policy, all costs are
recorded relative to the cost of preventive replacement (Cp). Thus, the cost of
preventive replacement is taken to be the unit cost (Table 2).

Table 1. Evaluation of the nature of the tasks

Weak Strong
Item Weibull Item Weibull

β1 = 1.98 β2 = 1.98
η1 = 9.78 η2 = 9.78
p = 0.4278 1− p = 0.5722
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Table 2. Evaluation of the nature of the tasks

Cost s value
Cr 0.2
C0 0.135
Cp 1
Cf 10

A combined burn-in-replacement policy was considered suitable for these
items. However, the main problem is that there is no best alternative ai, that
is, an optimal alternative for both criteria Ctotal and Rc. Thus, as stated ear-
lier, from a multicriteria perspective, we want to find an alternative that best
matches the decision-maker’s preferences.

MAUT was the approach chosen to deal with uncertainty and conflicting
criteria, as well as to take into account the decision-maker’s preferences. In the
following, we will describe the application of all of the steps of the MAUT method
described previously.

Following the sequence for applying the MAUT (see Section 3), the range of
each criterion was established. Thus, based on the behaviour of each criterion,
we defined the consequence space as below (see Fig. 6). The set of alternatives
A comprises all of the points (b, y) of the R2 space. However, for the sake of
applicability, we will consider the range of alternatives that are compatible with
the mixed distribution function, which might be reasonable in a combined burn-
in-replacement policy in practice. This includes the set of points relative to this
space of consequences.

Fig. 6. Space of consequences

After verifying the independence assumptions regarding the criteria with the
decision-maker, we confirm the additive independence. Thus, the final form of
the function is very simple, as stated in Section 3.
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Table 3. Mono-attribute utility functions

Criterion Utility Functions Parameters
CTotal u1 = B1 exp(−G1 ∗ Ctotal(ai)) B1 = 2.24

G1 = 7.98
Rc u2 = B2 exp(−G2/Rc(ai)) B2 = 2.71

G2=1

To translate the values of the criteria to the same scale of preference, we
must assess the respective utility functions for each criterion. There are different
techniques for eliciting this kind of function from the decision-maker. Here, we
used a simple and very useful approach [19], which results, with a good fit, in an
exponential and logistic utility function for criteria Ctotal (Fig. 7) and Rc (Fig.
8), respectively (for details of these functions, see Table 3).

Fig. 7. Utility function for the criterion Ctotal(U(Ctotal))

Because the additive independence was confirmed and each single-attribute
utility uj was obtained in the final steps, to fully assess the multi-attribute utility
function, we now have only to obtain the scale constants. Following a process
explained by Keeney [20] for the assessment of scale constants, we obtained the
following results: k1 = 0.55 and k2 = 0.45.

Finally, the multi-attribute utility function was determined (see (1)), allowing
us to evaluate the set of alternatives A to rank or choose the best among them.

For this set of alternatives, we have the following values for the multi-attribute
utility function U(b, y) (see Fig. 9).

To complete the full MAUT application process, we have to confirm that the
results provided by the multi-attribute utility function are consistent with the
decision-maker’s preferences. The consistency step is very important, as it might
indicate the need to review one or more steps of the entire process.

The alternative with the highest value of U(Ctotal(), Rc()) = 0.882 was the
vector (b = 16.17, y = 55.91). This alternative corresponds to a burn-in time
of 16.197 weeks and a replacement age of (16.17 + 55.91)72.08 weeks. If we
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Fig. 8. Utility function for the criterion Rc(U(Rc))

Fig. 9. Multi-attribute Utility function U(Ctotal, Rc)

evaluate the values provided by this alternative according to both criteria, we
have: Ctotal(b = 16.17, y = 55.91) = 0.109 and Rc(b = 16.17, y = 55.91) = 0.828.

We can see that, in comparison with the best alternative obtained when only
observing the classical criterion Ctotal, which consists of an optimisation process
or a search approach seeking the vector that minimises this criterion, a significant
difference is observed, especially for the Rc criterion. The optimum point is (b =
14.314, y = 72.962). The performance of this point for both criteria corresponds
to Ctotal(b = 14.314; y = 72.962) = 0.102 and Rc(b = 14.314, y = 72.962) =
0.695. As was expected, this point, in terms of costs, is slightly better than the
alternative obtained by the multicriteria model. On the other hand, in terms
of Rc, there is a clear improvement in the efficiency of preventive maintenance
when the decision is made using a multiple-criterion approach.

We can observe that a combination of activities in maintenance procedures
has produced much better results than a pure policy (see [27,28]) for the context
of heterogeneous items. This seems to be a natural requirement for handling
the complex failure behaviour of these mixtures. On the other hand, we can
see, through the results provided by the multicriteria model, that some novel
improvements can be introduced. Using the multicriteria model, the set of a
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specific policy can be driven to give results that best match the decision-maker’s
preferences.

It is worth to notice that the multicriteria decision aiding approach is
successful used in others different applications on maintenance context (see
[29,30,31,32]).

6 Conclusion

The purpose of this paper was to develop a multicriteria model to support
decision-making in a combined burn-in-replacement policy. In comparison with
classical models, a valuable enrichment of the results can be observed in favour
of the multiple-criterion model proposed.

The multicriteria model was derived from the application of MAUT, which
reflects the characteristics of the problem well and is a consistent method for
cases in which there is uncertainty. By following the steps of MAUT, the decision-
maker’s preference structure can be obtained for both cost and reliability criteria,
in addition to determining trade-offs between these two factors. As a result, the
decision-maker can make a better choice, with the conviction that the decision
reflects his/her wishes.

The illustration of an application of a decision model in the context of a pack-
ing supplier for the juice and milk industries was presented. The item subjected
to burn-in is a component of the system provided by the supplier to the indus-
tries. This application highlighted the advantages provided by the model. Not
only does this model provide a broader view of the problem, but it also meets
the demand of the decision-maker to maintain high reliability in the field (Rc(.))
while investing the minimum cost (Ctotal(.)).
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A Notation

Notation:
fi(t) pdf of components from sub-population i=1,2
p mixing parameter
ηi scale parameter of Weibull pdf of components from sub-population i=1,2
βi shape parameter of Weibull pdf of components from sub-population i=1,2
fmixed(t) mixed probability density function (pdf)
Fmixed(t) mixed cumulative distribution function (cdf)
hmixed(t) mixed failure rate function
b burn-in time
t age at preventive replacement during the wear-out phase
m number of repairs during the burn-in procedure
E(m) expected number of repairs during the burn-in procedure
E(tb) expected burn-in time for a given item
Cr cost of repairs during the burn-in process
C0 cost-rate of the burn-in process
Cp cost of preventive replacement
Cf cost of failure (> Cp)
G(b, x) post-burn-in distributio
Rc(b, x) post-burn-in reliability (conditional reliability function)
Cb(b) expected burn-in cost
Ctotal(b, y) expected total cost per operational time
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Abstract. Competitiveness among organizations, resulting from glob-
alization, has seen to it that the introduction of or improvement in new
processes and methodologies has substantially intensified in recent years.
In this context, this paper puts forward a model application that incor-
porates a multicriteria decision approach to RCM (Reliability-centered
Maintenance) methodology. In this model, a quantitative analysis of the
consequences of failures is presented, which provides the maintenance
manager with important data so that management decisions can be taken
based on the decision maker’s preferences. Thus, the model seeks to
contribute to an approach that has become well-established within the
maintenance area, since it provides more structured decision making, by
using a quantitative multidimensional approach that takes into account
the uncertainties associated with the problem.

Keywords: RCM (Reliability-Centered maintenance), Failure conse-
quences, Multiattribute utility theory, Decision analysis.

1 Introduction

The dynamics of the global economy and its increasing complexity generate
consequences for organizations [1]. This also applies to maintenance. In seeking
performance levels that match the best world standards, most companies direct
their efforts to ensuring that goals such as quality, productivity and reduced
costs are achieved [2]. Checking on maintenance activities is a crucial part of
these efforts. Effective and efficient maintenance extends the lifetime of equip-
ment, improves availability rates and maintains facilities and components under
appropriate conditions of use. However, it is worth keeping in mind that mainte-
nance has not always been associated with reaching these goals. With respect to
maintenance management it can be verified that the evolution of maintenance
can be monitored over the past century, more specifically from the 1940s, and
divided into three generations [3,4]:

– 1st generation - Covers the period up to Second World War, when industry
was not highly mechanized. Maintenance was simple and there was no need
for highly skilled maintenance operators;
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– 2nd generation - in the 1950’s, due to increased mechanization, complex
machines were introduced. The concept of preventive maintenance was in-
troduced. Maintenance plans and control systems were developed for the
control of costs associated with maintenance;

– 3rd generation - In this generation, in the mid to late 1970s, there were
major changes associated with maintenance. These changes were related to
new expectations, new research and new techniques. With respect to the new
expectations, what stand out are the search for the increased availability
and reliability of plant, increasing the level of security, improving product
quality, environmental protection, increasing the life cycle of equipment and
greater efficiency related to cost control. As for new research, changes were
introduced in beliefs regarding the relationship between age and failure.

Despite the remarkable evolution of maintenance over the years, the classical
problems of maintenance in modern industries became basically ones of in-
sufficient proactive maintenance, repetition of frequently-occurring problems,
erroneous maintenance work, unnecessary preventive maintenance, incomplete
preventive maintenance actions and also the lack of predictive maintenance appli-
cations [3]. For these reasons, there was a need to seek appropriate methodologies
so as to develop strategies and programmatic approaches to dealing with such
problems. Added to this scenario, there was an increase in requirements regard-
ing availability, reliability and life cycle and an increasing awareness in society
of the need to preserve the environment and ensure user safety with respect to
industrial processes and products. This situation created conditions which led
to the emergence of the Reliability-Centered Maintenance (RCM) methodology.
RCM offers a better systematic and a more efficient programmatic approach to
optimising plant and equipment maintenance [3]. However, this paper will focus
on a specific point within the RCM approach: the consequences of failures as
revealed by a multicriteria approach.

2 RCM - Reliability Centered Maintenance

The first industry systematically to confront challenges associated with choices
related to maintenance was the commercial aviation industry [4]. From this con-
frontation, the first event related to the origin of this RCM is recorded namely
the need for certification of a line of aircraft. This resulted in the development of
decision-making processes known in aviation as MSG3, and, in other industries,
as RCM (Reliability-Centered Maintenance).

RCM is a systematic methodology that seeks to allocate effective predictive
and preventive maintenance, helping to prevent the dominant causes of failure of
critical equipment. Moreover it enables adequate levels of component availability
and low cost to be achieved [5].

The central goal of the RCM is to determine the actions necessary to ensure
that all physical assets continue to perform their functions within their operating
environment [6].
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RCM identifies ways in which the system can fail. RCM should be applied
by managers who wish to attain high standards of maintenance for the facilities
[7,8].

RCM focuses on maintaining the system rather than on the operation of the
equipment [9]. Four terms are significant in this approach: system, subsystem,
functional failure, and failure mode.

These terms are also called RCM functional components. In this context,
RCM requires five steps to be followed [4]:

– Define the functions of each physical asset within the operating context,
together with the associated desired standards of performance.

– Identify failures that may occur in the physical asset. In RCM this is con-
ducted at two levels: identifying the circumstances that cause a functional
failure and investigating the events that can cause a functional failure of the
physical asset.

– Check the events that probably cause each functional failure. These events
are known as failure modes. In this step, it is also important to identify the
cause of each failure in a very detailed way in order to ensure time and effort
is not wasted by addressing symptoms rather than causes.

– The fourth step involves listing the effects of failure, namely describing what
happens when each failure mode occurs.

– Finally, the last step is to identify and analyze the consequences of failure.

3 Failure Consequences

RCM classifies these consequences into four groups [4,10,11]:

– Hidden consequences of failure: They do not have a direct impact, but ex-
pose the organization to multiple failures with serious, often catastrophic,
consequences.

– Safety and environmental consequences: A failure has safety consequences
related to the possibility of death or injury. The environmental consequences
may mean that a company has violated a regional, national or even interna-
tional environmental standard.

– Operational consequences: A failure has operational consequences if these
affect production.

– Non-operational consequences: The evident failures which are in this cate-
gory did not affect either safety or production, and involve only the direct
cost of repair.

Depending on the facilities, a failure could generate insignificant or negligible
consequences or affect systems vital to the company and society or the safety of
human beings. In RCM, the consequences are analyzed by studying the impacts
of the effects of failure modes on system operations, the environment, physical
security and the economy of the process. In this context, this paper focuses
mainly on the construction of a multicriteria decision model for assessing the
consequences of failures.
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4 Multicriteria Decision Aid

Multicriteria Decision Aid, in principle, introduces and establishes a relation-
ship of (subjective) preferences among the alternatives that are being considered
under the influence of multiple criteria in decision making. It is based on the
analysis of decision problems where, for the actors, there are conflicting criteria
in decision making. In summary, multiple criteria decision aid consists of a set
of methods and techniques to assist or support individuals and organizations to
make decisions under the influence of a multiplicity of criteria [12].

From an operational point of view, the methods of multicriteria decision aid
are distinguished by their ability to consider many different points of view, char-
acterized as conflicting with each other, thus enabling an integrated assessment
of the problem [13].

In this context, the decision process has become an object of study on the
world stage due to the great importance attached to consequences.

Emergency situations, whether caused by humans or by nature, require co-
herent and effective management involving complex decisions. Many conflicting
objectives must be resolved and priorities need to be defined, while the many
perspectives of various stakeholders should converge towards a consensus [14].
Thus, Multicriteria decision analysis (MCDA) can help this process of decision
making, especially in a context that involves many uncertainties and conflicting
objectives, as can be observed in this paper.

With respect to maintenance, the determination of maintenance strategy for
each component in a plant is very complex due to the difficulties in acquir-
ing data, the number of factors that must be taken into account (investment
required, safety issues and the environmental costs of failures, reliability of poli-
cies, mean time between failures, mean time to repair, etc.), their subjectivities,
the large number of machines to be considered within a plant, and moreover,
in some cases, there is the fact that the plant may not yet have been set up
[15]. To solve this problem, some multicriteria decision approaches (MCDM -
Multi-Criteria Decision Making) help the decision maker to decide what main-
tenance strategy to adopt. In this context, the use of MAUT (multiattribute
utility theory) is singled out, and this is summarized below.

4.1 MAUT (Multiattribute Utility Theory)

MAUT, a compensatory method of decision support, can be used to aggregate
value preferences and consequences with respect to multiple dimensions, taking
into account the decision maker’s preferences and behavior, as it considers cases
with uncertainty in a clear measure of risk [12,16]. In addition, MAUT includes
utility theory axioms. The basic idea of utility theory is to quantify the decision
maker’s wishes, and lists the assets with the values that represent a rule of choice
for the decision maker.

The process of eliciting the utility function involves understanding and mod-
eling the structure of the decision maker’s preferences with respect to the con-
sequences [17].
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MAUT takes into consideration the decision-maker’s preferences in the form
of a utility function that is defined by a set of attributes [18]. MAUT provides a
logical way to deal with tradeoffs between conflicting goals [19].

In the same way, if an appropriate utility is assigned to each possible outcome
and the expected utility of each alternative is calculated, the best course of action
is held to be the alternative with the highest expected utility [19].

The utility function represents an indicator that combines the consequence
dimensions in a desirability index. In the context of MAUT, the multi-attribute
utility function must be estimated according to the domain of the consequences
This function is estimated by using a structured protocol based on the axiomatic
structure of utility theory. This theory allows the probabilistic assessment of the
consequences under uncertainty [20].

The process of assessing a multi-attribute utility function consists of five steps:
introducing the terminology and idea; identifying relevant hypotheses of indepen-
dence; assessing the conditional utility function; evaluating the scale constants;
and checking consistency [19].

5 Multicriteria Decision Model for Assessing the
Consequences of Functional Failures

The choice of a multicriteria decision support depends on several factors. Terms
that should be highlighted are: the problem analyzed, the context considered, the
availability of information and its degree of accuracy, the rationality required,
the decision makers preference structure and the problematic [12]. In this con-
text, the most appropriate definition of rationality for the decision maker in
the problem considered is an issue of great importance, since this will involve
a compensatory or non-compensatory approach. Therefore, the decision model
proposed in this paper sets out to improve the RCM approach by incorporating
contributions from MAUT [12].

The choice of MAUT is due to the fact that it presents a well-structured
protocol, supported because it has a very solid and consistent axiomatic struc-
ture, involving multiple criteria, for decision-makers. Moreover, at the stage of
probabilistic modeling, uncertainties are inserted into the axiomatic structure
allowing a more consistent approach with respect to applying MAUT to mul-
ticriteria decision problems under uncertainty [12]. This stage of probabilistic
modeling complements that of modeling decision-makers’s preferences.

MAUT is applied in order to make a quantitative analysis of the consequences
of failures, taking into account decision-makers’ preferences and value judgments.
By applying this model, the decision maker is faced with more significant results
that can be used as input in the process of maintenance management.

The new steps to be introduced in Reliability Centered Maintenance are shown
below:

– Identifying the dimensions of consequences
– Analysing consequences
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– Probabilistic modeling
– Defining the global utility index for each item considered
– Ranking the alternatives

Therefore, first there is a need to compare the classical RCM approach with the
RCM approach to incorporating the multicriteria model. Comparing Figs. 1 and
2 is a concise way of understanding the steps of both.

Fig. 1. RCM process (adapted from [4,10])

Fig. 2 depicts the inclusion of the multicriteria model proposed in the RCM
process. Some steps of the RCM are maintained such as define the functions of
assets, identify functional failures, identify failure modes and identify the effects
of failure.

Fig. 2. RCM with the inclusion of the proposed model
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5.1 Identifying the Dimensions of the Consequences

The consequences of failures are evaluated in the model proposed in five groups
defined as the dimensions of the consequences, some of the characteristics dif-
fering from those established by the RCM approach:

– Human dimension (h) - In this dimension, the damage with respect to people
affected by the consequences of failures is considered.

– Environmental dimension (e) - This takes into account the area affected as
a result of the failure.

– Financial dimension (f) - This takes into account the financial losses with
regard to the consequences of failures.

– Operational I dimension (o’) - The influence of the consequences of failures
on the behavior of the production system is considered. The consequences
of failure affect the production process without interrupting the operation.

– Operational II dimension (o”) - The influence of the consequences of fail-
ure on the behavior of the production system is considered in this dimen-
sion. But, in this case, the consequence of failure completely interrupts the
operation.

5.2 Analysing the Consequences

In order to analyze the consequences, elements of decision theory will be used
in which θ is defined as the state of nature expressing the uncertainty associ-
ated with the problem. θ represents scenarios resulting from failure modes in
equipment/ the system. The consequences are represented by c and the set of
all possible actions under consideration is represented by A.

A probabilistic approach is presented to deal with the associated uncertainties
in A using a probability distribution over consequences and by eliciting utility
functions for these consequences. The probability of each state of nature is de-
fined as π(θ) ·U(θ, ai) is the utility when scenario θ and action ai are considered
[21].

The utility is calculated by combining the probability of the consequences c
in A (deemed the consequence function, P (c|θ, ai).

The values of the utility functions are defined in an interval scale between the
extremes [0, 1]. “0” is related to the “least preferred” while the extreme “1” is
related to the “most preferred” [19].

The utility function of these consequences is shown by Eq. (1) for discrete
cases:

U(θ, ai) =
∑

c

P (c|θ, ai)U(c) . (1)

Finally, Eq. (2) shows the utility function of these consequences for continuous
cases:

U(θ, ai) =
∫

c

P (c|θ, ai)U(c)dc . (2)

when the scenario θ and the action a are considered. Utility combines the con-
sequence function and utility function of these consequences.



Applying a Multicriteria Decision Model 601

5.3 Probabilistic Modeling

The objective of this model is to obtain a utility function U of an individual
or group of individuals whose values are of interest. The choice of MAUT as a
method to be applied is equivalent to choosing a type of compensation among
criteria. The elicitation of utility functions occurs in an interval of closed con-
sequences, where a nil result (no impact) is associated with maximum utility,
while the minimum utility value is related to the largest of the consequences
estimated [22].

The approach considered consists of subdividing the assessment of U into
parts, working with these parts and then aggregating them later [23]. This re-
quires the decision-maker’s final qualitative judgment values to be affirmed and
quantified.

It is important to mention that in intracriteria evaluation, it is necessary to
define the functions of the consequences, because the utility combines the con-
sequence function and the utility function of these consequences. Thus, differ-
ent considerations are established for defining the consequence function in each
dimension.

After having obtained the values of U and k, using elicitation procedures
based on the comparison lottery [19], the multi-attribute utility function is then
calculated.

5.4 Defining the Overall Utility Index

In this model the additive utility function was established. This function was
obtained by using unidimensional utilities represented by Eq. (3):

U(h, e, f, o′, o′′) = k1U(h) + k2U(e) + k3U(f) + k4U(o′) + k5U(o′′) . (3)

Where:

– ki is a scale constant that represents the value of the tradeoff;
– The sum of k ’s needs to be equal to “1” (k1 + k2 + k3 + k4 + k5 = 1);
– These scale constants are elicited by procedures based on comparing lotteries

described in [19].

5.5 Ranking the Alternatives

Another form of information can be analyzed in utility theory: the ranking of
multi-attribute utility values. This comes about due to the axiomatic structure
of utility theory.

The interval scale of utility function allows the incremental value to be com-
pared to the failure modes [19]. Using the interval scale, it may be affirmed that
the difference U(MFx)βx −U(MFy)βx+1 is M times greater than the difference
U(MFy)βx+1 − U(MFz)βx+2. This can be seen from the increment ratio (IR)
of these differences since IR = (U(MFx)βx − U(MFy)βx+1)/(U(MFy)βx+1 −
U(MFz)βx+2).
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6 Numerical Application

In order to illustrate the model proposed for evaluating the consequences of
failures obtained from the RCM approach, a numerical application based on a
case study is presented in this section, which considers the 16 most relevant
components for the system, as well as there being a single user of the system.

Human (h), environmental (e), financial (f), operational I (o’) and operational
II (o”) dimensions were considered to estimate the consequences.

For each component x considered in the system, a failure mode FMx was
adopted with an occurrence probability π(θ)x as can be seen from Table 1.

Table 1. A prior probability of failure modes for each component

Component x Failure Mode FMx π(θ)x

1 FM1 0.0766
2 FM2 0.0256
3 FM3 0.0578
4 FM4 0.0333
5 FM5 0.0835
6 FM6 0.0259
7 FM7 0.0768
8 FM8 0.0493
9 FM9 0.0876
10 FM10 0.0087
11 FM11 0.07
12 FM12 0.0563
13 FM13 0.0367
14 FM14 0.0154
15 FM15 0.0958
16 FM16 0.0757

With the support of computational tools, the probabilities of the consequences
were estimated for the dimensions of the consequences. Similarly, the
one-dimensional utility functions were obtained using one of the equations de-
scribed in subsection 5.2.

Following the elicitation procedure based on the comparison of lotteries [19],
the scale constants are established: k1 = 0.19, k2 = 0.13, k3 = 0.27, k4 =
0.11, k5 = 0.30. Using these values, the multi-attribute utility function U(h, e,
f, o’, o”) is elicited from the decision-maker, following structured protocols that
consider the choice between the consequences of failure functions and lotteries
with specific probabilities between the best and worst cases [19].

A conversion scale is introduced into the values of the multi-attribute utility
function so as to facilitate the interpretation of these values, as can be seen in
Table 2.

The ranking of the multiattribute utility for each failure mode considered is
given in Table 3.
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Table 2. Failure modes and multiattribute utility values

Failure Mode FMx U(h,e,f,o’,o”) Conversion scale
FM01 0.95595 0.25952
FM02 0.98427 0.80575
FM03 0.95809 0.30082
FM04 0.97875 0.69934
FM05 0.96341 0.40343
FM06 0.99004 0.91700
FM07 0.96705 0.47368
FM08 0.97736 0.67248
FM09 0.94705 0.08788
FM10 0.99434 1
FM11 0.97777 0.68042
FM12 0.98636 0.84600
FM13 0.97965 0.71658
FM14 0.97131 0.55575
FM15 0.94250 0
FM16 0.98846 0.88658

Table 3. Ranking of the multiattribute utility for each failure mode

Ranking position (βx) Failure Mode FMx U(FMx)βx

β01 FM15 0
β02 FM09 0.08788
β03 FM01 0.25952
β04 FM03 0.30082
β05 FM05 0.40343
β06 FM07 0.47368
β07 FM14 0.55575
β08 FM08 0.67248
β09 FM11 0.68042
β10 FM04 0.69934
β11 FM13 0.71658
β12 FM02 0.80575
β13 FM12 0.84600
β14 FM16 0.88658
β15 FM06 0.91700
β16 FM10 1

The interval scale of the utility function allows comparison of the increments
of utility with respect to failure modes [19]. These increments are presented in
Table 4.

The values given in Table 4 provide important information for the company,
since they serve as input data for management and maintenance planning, thus
aiding the process for allocating resources. Examples of information that can
be found are: the difference between the values of the utilities associated with
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Table 4. Comparisons of utility values and ratios of the increments of utility among
prioritized failure modes

Ranking (βx) Failure U(FMx)βx Increment
position Mode FMi −U(FMy)βx+1 Ratio IR

β01 FM15 0.08788 0.51200
β02 FM09 0.17164 4.15593
β03 FM01 0.0413 0.40249
β04 FM03 0.10261 1.46064
β05 FM05 0.07025 0.85598
β06 FM07 0.08207 0.70308
β07 FM14 0.11673 14.70151
β08 FM08 0.00794 0.41966
β09 FM11 0.01892 1.09745
β10 FM04 0.01724 0.19334
β11 FM13 0.08917 2.21540
β12 FM02 0.04025 0.99187
β13 FM12 0.04058 1.33399
β14 FM16 0.03042 0.36651
β15 FM06 0.083 -
β16 FM10 - -

the failure modes FM14 and FM08 is 0.11673; and the difference between the
values of the utilities associated with the failure modes FM08 and FM11 is
0.00794. This means that an increment in the utility values from FM14 to FM8
is approximately 15 times greater than the increment in the utility values from
FM08 to FM11. This analysis is based on the interval scale provided by the
utility function [16].

A sensitivity analysis was conducted based on the data and parameters
analyzed to verify the robustness of the model. Results show that the proce-
dure was robust.

7 Results

An important point to note is that the results presented here can be correlated
or integrated with the results of other studies presented in the literature, as
demonstrated below.

A combination between decision theory and influence diagrams is proposed
[24], in order to present the relationships between decisions, random quanti-
ties and preferences. It uses performance indicators that show whether one or
several goals are achieved. These indicators are combined into a value function
or utility function, with a view to establishing a set of performance indicators
for each objective and thus obtaining an optimal maintenance model. With a
focus that is different from the model proposed in [24], this paper also targets
the construction of a multicriteria decision model to evaluate the consequences of
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failures. It proposes that the consequences should be restructured into five di-
mensions, unlike the approach proposed by the RCM. Thus, the consequences
of the failures can be evaluated quantitatively. Another important point in this
paper is the ranking of the multiattribute utility values obtained.

An evaluation system to aid decision making regarding the feasibility of devel-
oping predictive maintenance programs is presented [25], using a combination
of operational research tools such as the Analytical Hierarchy Process, deci-
sion rules and Bayesian tools. The company’s ability to implement a predictive
maintenance program as well as to assess the need to implement this program
are evaluated, taking into account decision variables such as safety, quality, plant
availability, repair costs, etc. Thus, the model proposed in this present paper can
add to the contribution in [25] helping to choose the best maintenance policy,
since it incorporates some improvements made to RCM methodology.

In [17,26] basic elements of decision theory that are used in several studies in
the literature are presented, including in this paper: a set of possible actions, the
consequences, the utility function, multiattribute utility theory (MAUT), elici-
tation and checking of consistency, optimization through the Bayesian approach
and sensitivity analysis. The decision model [17], as well as its step-by-step ap-
proach served as the basis for developing this multicriteria decision model to
evaluate the consequences of failures uncovered when using RCM methodology.

The results from the ranking of the multi-attribute utility of the consequences
for failure modes considered in the studies undertaken provide managers with
input data to support decision making associated with maintenance planning
and maintenance management, thus allowing integration with the results from
the model [27], since this proposes a multicriteria analysis linked to maintenance
planning, specifically in providing spare parts and selecting repair contracts. Sim-
ilarly, this integration can also be checked in [28], which addresses the issue of
hiring outside companies to carry out repairs and maintenance on their systems.
As to the possible integration of the results of this paper in [27] as well as the
possible integration in [28], it is observed that, by ranking the utilities of the
consequences associated with each failure mode, it is possible to prioritize possi-
ble actions to be taken, and also to define the responsibility for repairs of parts
or systems (whether or not these are to be conducted by outside companies).

8 Conclusions

Currently, the RCM approach is widely used to ensure that assets continue to
perform their functions within the operating environment. The use of a mul-
ticriteria decision model to evaluate the consequences obtained from an RCM
approach is proposed in order to ensure an improvement in this process.

The multicriteria decision model makes a quantitative evaluation of the con-
sequences of failure obtained from the RCM approach, thus allowing managers
to maintain data that support decision making and serve as input for the process
of maintenance management.
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The utility function is obtained for each of the failure modes considered,
taking into account consequence dimensions. The decision-makers’ preferences
and value judgments are considered.

In the same way, consequence groups established under the RCM approach
were restructured into new five dimensions. The consequences that affect safety
and the environment were separated into two new dimensions in order to generate
more accurate assessments, given that environmental questions and human lives
are highly valued in society today.

In conclusion, the improvements obtained by implementing a multi-criteria
decision model seeks to generate consistent results that can assist managers
when they draw up maintenance plans. Furthermore, it is worth emphasizing
the advantage of using the utility function in a context, such as maintenance,
where the criteria are related to probability distributions. This has also been
observed in previous studies [26,27,28].
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Abstract. Nowadays, supplier selection has become a strategic activ-
ity for many companies that wish to increase the competitiveness of
their supply chain. The tendency is to maintain a long-term relationship
based on trust and commitment. To achieve this aim, it is necessary to
re-structure the supplier selection process, incorporate more criteria in
the evaluation and deal in an appropriate way with the preferences of the
decision-makers (DMs) involved. Thus, this paper presents a structure
for selecting suppliers that considers the preferences of multiple DMs
involved in the process. It is considered that their preferences do not
present great variation, it therefore being possible to deal with them
adequately and to select the supplier who presents the best compro-
mise using the PROMETHEE VI method. A numerical application is
presented.

Keywords: supplier selection, group decision, multicriteria methods.

1 Introduction

Supply chain management (SCM) is a set of management processes for plan-
ning, implementing and controlling operations from the ultimate supplier to the
ultimate customer, with strategic orientation towards cooperative efforts to syn-
chronize and dovetail intra-firm and inter-firm relationships. One of the processes
of SCM is supplier relationship management (SRM). This involves the way in
which the company interacts with its suppliers. According to [1] SRM is becom-
ing more and more critical for companies to the extent that they concentrate on
core competencies and rely on suppliers to have more competitive advantage in
their processes.

Companies must know each type of product or service to be outsourced so as to
decide on the type of relationship that will be undertaken with their suppliers.
Relationships vary from arm’s length to high involvement and can be short-
term, mid-term or long-term. Therefore, supplier selection is a decisive process
for choosing the supplier who is most adequate for the needs and objectives of
the company. Increasingly, the competence of a company in meeting its client’s
needs is dependent on the quality of the products supplied and services offered by
outsourced companies. This fact shows the importance of having suppliers who
are qualified and able to meet their contractors strategic objectives. Thus, the
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selection process can no longer be based only on choosing those offer low costs but
rather on those factors that are most in line with the company’s wishes. What has
become required is a higher qualifier level and for many criteria to be considered
at selection, such as flexibility, willingness to cooperate, organizational culture,
credibility, and so forth.

The supplier selection process is of the utmost importance in effectively man-
aging current supply chain networks as it is essential to achieve customer sat-
isfaction [2]. A study identified 23 criteria considered by managers to proceed
with the selection process under different scenarios [3]. Since then, many studies
were developed using a multicriteria approach. Thus, a supplier selection deci-
sion is regarded as a multicriteria decision problem. The problem can become
more and more complex depending on the number of criteria involved, the num-
ber of decision-makers (DM’s) involved in the process and the type of criteria
(qualitative and/or quantitative) considered. Many studies were developed for
supplier selection using multicriteria decision aid methods [4,5,6,7,8,9,10].

This paper addresses the supplier selection process when there is more than
one decision-maker involved in the decision process, but their preferences show
little variation from each other. A framework for supplier selection will be pre-
sented in the context of using the PROMETHEE multicriteria method to deal
with the DM’s preferences.

The paper is organized as follows: Sect. 2 presents a brief literature review
regarding Supplier Selection; Sect. 3 presents a background in group decision
and multicriteria methods; Sect. 4 describes the framework for supplier selection
for a group of DM’s; Sect. 5 gives a numerical application of the framework;
Sect. 6 presents the concluding remarks of the study.

2 Supplier Selection

Supplier selection is a process in which suppliers are inspected, evaluated and
chosen to become part of the supply network of an organization [11].

Many approaches were proposed for supplier selection, involving Analytic Hi-
erarchy Process (AHP), Analytic Network Process (ANP), Data envelopment
analysis (DEA), Fuzzy Logic, Genetic Algorithms (GA), Simple Multi-attribute
Rating Technique (SMART), and so on [12]. Besides these, there are some hy-
brid approaches that combine different techniques to solve the problem [13,15].
Some approaches found in the literature are classified as [14]: categorical meth-
ods, method of linear weighted sum, method of distribution of costs, dimensional
analysis, and evaluation of suppliers with a multicriteria method.

Some important aspects that should be taken into account when determin-
ing the criteria are presented [16], since they are essential for measuring the
suitability of the supplier for the contractor’s needs:

– Financial: The financial strength of the supplier is a firm guarantee for the
stability of that supplier in the long term;

– Managerial Aspects: The organization and the supplier must have compatible
approaches to management, especially when seeking integrated and strategic
relationships;
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– Technical: involve the provision of products and services of high quality;
– Support resources;
– Quality systems and processes;
– Globalization and localization.

Therefore, what is evident from the above list is the multicriteria character of
the supplier selection problem in modern supply chains. In many cases, the
decision to select these suppliers is taken by more than one DM. Thus, the use
of techniques to support group decision is stressed.

The process of supplier selection involves analysis of various criteria, some
quantitative and others qualitative. These decisions are becoming increasingly
complex given the increase in outsourcing and business electronics [17]. As more
and more experts (and conflicting opinions) are involved, the decision to select
supplier becomes more complex and a problem of group decision.

There are several studies that propose methods for aggregating different opin-
ions in group decision. One of the key issues is how to choose the function and
aggregation operators to combine the different views of DM’s in a single numer-
ical value [17].

According to [18], in essence, the process of supplier selection is a problem
of group decision-making under multiple criteria. The number of DMs involved
is one factor that should be taken into account, together with the degree of
uncertainty involved and the nature of the criteria when looking for the solution
to such problems.

Some studies for supplier selection for a project taking the group decision
approach into consideration were found [19,20,21].

3 Group Decision and Multicriteria Method

Group decision making involves many aspects that are intrinsic to each decision
maker’s (DM) individuality and nature. Multiple attribute group decision analy-
sis (MAGDA) problems are defined as decision situations where a group of DMs
express their preference on multiple criteria for a problem to be solved and try to
find a common solution [22]. When a team of experts takes part in the decision
process, it is expected that their opinions will differ, since each member of the
group has different information at hand and only partially shares the goals of
other members [23].

Two approaches are normally considered with multicriteria decision aid meth-
ods to consider/aggregate the group preferences [24]. In the first one, the DM’s
must agree in relation to the alternatives, criteria, performances, weights, thresh-
olds and others parameters that are needed to reach a solution according to the
problematic chosen. In the second, the DMs might change opinions and relevant
information but each member defines his/her own criteria, their evaluations and
the parameters necessary according to the multicriteria method that was chosen.
After that, each DM is considered as a separate criterion and the information
contained in his/her individual ranking is aggregated in a collective final rank-
ing, using the same or another multicriteria method. This last approach is the
one used in this study.
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The multicriteria methodology area has a large set of tools the purpose of
which is to aid the decision maker during the development of a decision process
[25]. Among other things, this kind of decision making problem is characterised
by the existence of several criteria of different natures with different value scales,
quite often conflicting ones.

In this study, the method applied was PROMETHEE II and VI, which is a
subdivision of the PROMETHEE (Preference Ranking Organization Method for
Enrichment Evaluation) method [26]. As it is possible to incorporate in PROME-
THEE VI method the range of variation of weights [27], this method was chosen
to treat the problem of a group of DMs with little divergence among their pref-
erences regarding to the criteria weights. These divergences are incorporated in
the range of weights variation.

The advantage of this method is that it requires additional, very clear infor-
mation that can be obtained easily and managed well by both the decision maker
and the analyst [28]. Besides, the method presents greater flexibility, since the
selection of the type of preference function constitutes an important degree of
freedom offered to the decision maker. He/she can have two degrees of freedom:
the first is relative to the type of criteria generalized (six types) and the second
to the thresholds to be defined.

In order to apply the PROMÉTHÉE VI method, it is necessary to use the
PROMÉTHÉE II method and the Geometrical Analysis for Interactive Aid
(GAIA) procedure [29].

4 Framework for Supplier Selection with Multicriteria
Model

In this section the framework for supplier selection is presented using the PROME-
THEE VI method, applied to situations in which there is a group of decision makers
that will be responsible for supplier selection, but there is little divergence among
their preferences [30]. In this situation, they are able to define a variation range (an
upper level and a lower level) for the weight of each criterion.

The framework begins with identifying the decision criteria to be used in
the selection process. Two types of criteria must be identified: the qualifiers
and the bid winners’ criteria. As to the qualifiers criteria, the evaluation of the
alternatives must reach a required performance level to be, at least, considered
in the process. The bid winners’ criteria are those which exert influence on the
company’s competitive potential. The former are used in the filter stage and the
latter in the final selection stage.

Thus, for those criteria that will be used in the final selection, it is necessary
to establish the relative importance among them. As this structure is for a group
of DMs with little divergence between their preferences, it is possible that they
are not able to establish jointly a fixed value for each weight but they are able to
consider an interval, considering all DMs’ preferences. Thus, the PROMETHEE
VI method is appropriate for this situation since it was developed for those cases
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in which the DM is not able to provide precise values for criteria weights. The
intervals are fixed from a known value wj , accepting a percentage Θj of variation
of this value:

wj ± Θj .wj , j = 1, 2, ..., k . (1)

After establishing this information, the suppliers could be invited to participate
in a briefing meeting. The suppliers who attend this meeting must deliver all
the documentation needed to begin the selection process, in accordance with the
information given by the focus company. In this meeting they will be informed
about all the stages of the selection process.

The next stage is the filter. The potential suppliers will be analyzed regarding
the qualifying criteria, defined previously. The companies that reach the mini-
mum level required go forward to the next stage: the final selection, where bid
winners criteria are used. After the criteria evaluation, the multicriteria method
is applied. For the PROMETHEE VI application, the alternative net flows first
need to be calculated by PROMETHEE II. With these flows, the projections
of the alternatives such as the projections of the criteria in the GAIA plane
could be undertaken. Through PROMETHEE VI, the variation space of criteria
weights established by DMs is considered. The projection of this area in the
GAIA plane is the DMs’ freedom space. Therefore, any alternative positioned in
this direction presents a good compromise with the DMs’ preferences.

Fig. 1. Supplier selection framework
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5 Numerical Application

In this section, what is set out is an application of the framework described in the
last section for selecting consultants to carry out the designs for a construction
project of a private telecommunication company [30].

The company’s DMs are dissatisfied with the selection process that is used.
A recent situation that occurred was a factory was built, where the supplier was
selected based on lowest price, and, at the moment when he was to work on
the special facilities required, he did not have the skills to do so. Therefore, the
company that came second in the tendering was called in. Situations like this
directly affect the cost, time and quality of the project and cause disruption.

The decision makers and the criteria that were defined and will be used in
this application are shown below. The group comprises five DMs from differ-
ent departments in the company: a technical engineer (D1); a quality engineer
(D2); a security and environment engineer (D3); a budget manager (D4); and a
contract manager (D5).

After that, the qualifiers and bid winners criteria to be used in the selection
process are presented. The qualifier criteria are the following: (1) Responsibility,
which is related to the bidder holding a quality certificate and having a security
and environmental policy; (2) General experience - all companies should have
at least five years’ experience in construction projects. As bid winners’ criteria,
the following were defined:

– Cost: this is measured in an objective way by examining the average cost
deviation for which the company was responsible on projects it has carried
out in the last 5 years in relation to the planned cost;

– Culture: This is related to the willingness to incorporate new ideas and
concepts;

– Design: This is in the sense of involving the construction companies and sub-
contractors who may have the skills needed to help the project designers in
their activities;

– Quality: This aims to ensure that the quality of the project is effectively
translated into a physical quality, furnishing a structure which has low op-
erational and maintenance costs;

– Time: This corresponds to the total period of the project and construction
phase, to the skill of planning correctly and finalizingactivities in accordance
with the deadlines laid down by the client. It is measured in an objective
way by the average of the deviations to schedules for which the company
was responsible on projects it has carried out in the last 5 years in relation
to the planned schedule;

– Experience: This considers the experience of key people who will work on
the project, measured in terms of the engineers and project designers’ years
of experience.

The evaluations of culture, design and quality criteria are measured in a sub-
jective way. The potential suppliers must answer a questionnaire to provide
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information for evaluating these criteria. Evaluation is made on a 5-point scale
in which 1 is the worst evaluation and 5 is the best one.

After defining the criteria, their weights must be defined. As was presented
earlier, each DM establishes his or her own weights for each criterion. With all
the values, the variations occurring in the weight of each criterion are verified
and a mean value for the weight is determined with a variation that encompasses
the preferences of all DMs. Thereafter, these weights are normalized (Table 1).

Table 1. Table of normalized weights of criteria

wj ±Θ

Cr1 0.118 30%
Cr2 0.176 30%
Cr3 0.294 50%
Cr4 0.176 10%
Cr5 0.118 10%
Cr6 0.118 10%

Since the criteria are defined, the briefing meeting can take place. All inter-
ested consultants must participate in this meeting, and bring the documentation
regarding certifications and experience required as qualifier criteria. The whole
selection process is explained at this meeting.

Next, the documentation delivered by the companies is evaluated. This
is the filter stage. Six companies may go on and remain in the selection
process.

At this time, each of these six companies receives a questionnaire that en-
closes aspects related to the qualitative criteria defined previously. The partici-
pants must return the questionnaire within the deadline of one week and provide
information about the person(s) who answered the questions. Based on the infor-
mation collected from the questionnaires, the companies are evaluated regarding
their culture, quality and design - the evaluation is converted into a numerical
scale as shown previously.

The decision matrix with all six companies evaluated by these criteria is given
in Table 2.

Table 2. Decision matrix

Cr1 Cr2 Cr3 Cr4 Cr5 Cr6

Company 1 0.10 4 5 4 0.10 8
Company 2 0.15 2 2 4 0.05 20
Company 3 0.15 1 2 3 -0.05 15
Company 4 0.03 1 1 4 0.15 6
Company 5 -0.03 4 4 3 0.20 10
Company 6 0.05 3 5 3 0.10 5
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So as to apply the PROMETHEE II method, it is necessary to determine
the preference functions for each criterion and the respective preference and/or
indifference thresholds. Then, a joint discussion is carried out with the DMs
and the analyst and the preference functions are established, in an interactive
way. They all agree with the preferences functions and parameters that were
chosen for each criterion. The only divergence between them was among the
intercriteria information, since they are from different departments and give
different importance for each aspect evaluated. But they not diverge in the way
in which the alternatives are compared in each criterion. Then, for the criteria
of culture, design and quality, type 1 preference functions were chosen. For the
others, these functions are shown in 3.

Table 3. Preference functions

Criterion Preference function Parameter(s)
Cost Type V q = 0.02

p=0.05
Time Type III p=0.05

Experience Type III p=2

With all this information, the PROMETHEE II method is applied and the
net flows are obtained, as shown in Table 4.

Table 4. Net flows of the alternatives

Companies Netflows
Company 1 0.44
Company 2 0.05
Company 3 -0.27
Company 4 -0.44
Company 5 0.12
Company 6 0.11

Since the net flows were obtained, the PROMETHEE VI is applied through
the use of PROMCALC software. It can be seen from Fig. 2, that the alternative
of best compromise is a1, i.e., Company 1, since it is the only alternative that
is in the direction of the decision axis for the whole set of weights contained in
the zone stipulated.

PROMETHEE VI could also be considered as a tool for sensibility analysis,
since it permits the region of parameter variation in the GAIA plan to be visu-
alized and verifies whether the decision axe is still in the same direction of the
alternative selected.
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Fig. 2. PROMÉTHÉE VI - GAIA plane [30]

6 Concluding Remarks

The study conducted is related to selecting suppliers for a private sector com-
pany, involving multiple decision makers. It was found that the process used for
selecting suppliers is a decisive event for the success of the construction project.
Although there was a group of DMs, their preferences present little divergence.

A structure was presented for selecting suppliers that involved a group of DMs
and one that deals in an appropriate way with their preferences. On adopting
the structure, a considerable amount of time must be made available, since it
is necessary to define properly the criteria involved and the criteria weights to
evaluate them so as to proceed with the evaluation.

Although this study is contextualized for selecting a supplier for a construction
project, the structure is suitable for selecting suppliers in all contexts where there
is a group of DMs with the characteristics described previously.

Thus, it is expected that the supplier selected will be the one that is most
committed to the objectives of the contractor company (identified through the
criteria defined by the DMs) and will foster an integrated and cooperative rela-
tionship throughout the whole project.
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Miettinen, Kaisa 212
Moghaddam, Atefeh 520
Montibeller, Gilberto 505
Morais, Danielle Costa 564
Moreira, Gladston J.P. 433
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