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Preface

EMO is a bi-annual international conference series devoted to evolutionary multi-
criterion optimization. The first EMO conference was organized in Zurich
(Switzerland) in 2001, and the other editions took place in Faro (Portugal) in
2003, Guanajuato (Mexico) in 2005, Matsushima-Sendai (Japan) in 2007 and
Nantes (France) in 2009. Ouro Preto (Minas Gerais, Brazil) hosted the 6th Inter-
national Conference on Evolutionary Multi-Criterion Optimization (EMO 2011).

EMO 2011 received 83 paper submissions in total, with 251 authors (on
average 3.02 authors per paper) from 26 countries. After a rigorous peer-review
process involving 287 reviews in total (averaging 3.45 reviews per paper), 42
papers (50.6%) were accepted for presentation at the conference, including 11
papers accepted for the MCDM track. The authors of accepted papers were from
19 countries. EMO 2011 also featured four distinguished keynote speakers: Jyrki
Wallenius (Aalto University), Singiresu S. Rao (University of Miami), Roman
Stowiriski (Poznaii University of Technology) and Eckart Zitzler (PHBern).

The field of evolutionary multi-criterion optimization emerged, in the 1990s,
as a confluence of the traditional field of multi-objective mathematical program-
ming with the area of evolutionary computation that was emerging at that
moment. Dealing with the simultaneous optimization of several criteria, multi-
criterion optimization aimed to work with the concept of a set of efficient solu-
tions (also called Pareto-optimal solutions), which represent different trade-off
solutions for a given problem, considering the different objectives. Evolutionary
computation, which developed powerful heuristic methods with inspiration from
the natural phenomena of organization of living organisms, brought much flex-
ibility and insight to the new field, making the EMO algorithms be recognized
today as some of the most valuable and promising methods for tackling complex
and diverse multi-criterion optimization problems.

The research on EMO focused, along the last two decades, on issues such
as the design of efficient algorithmic methods for the approximation of efficient
solutions, the problem of measuring the quality of the approximations generated
by the algorithms, the hybridization with other currents of optimization, and so
forth. A representative sample of this history is registered in the proceedings of
the EMO conferences, which have been the forum for the first presentation of
several breakthroughs, for the raising of new questions, and for the early indica-
tion of new trends within the research community of the area. For instance, the
intriguing behavior of EMO algorithms in many-objective problems (problems
with a large number of objective functions) was reported in the first EMO con-
ference, in 2001, as has become a major issue in the related technical literature in
this last decade. At EMO 2011, a whole section was devoted to this theme, now
sketching some definitive answers to this question. This volume of EMO 2011
proceedings also has papers dealing with other fundamental questions of EMO
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theory, such as the development of algorithmically efficient tools for the evalu-
ation of solution-set quality, theoretical questions related to solution archiving,
and others. In addition, there are reports on the continuing effort in the devel-
opment of algorithms, either for dealing with particular classes of problems or
for new forms of processing the problem information. It is also noticeable that,
as the field of EMO reaches maturity, the spectrum of applications grows: in
this volume, almost one-third of the papers are related to EMO applications in
a diversity of fields.

Finally, it should be mentioned that a continued effort of EMO conferences
has been devoted to promoting the interaction with the related field of multi-
criteria decision making (MCDM). This reflects the growing awareness of the
necessity of decision-making tools for dealing appropriately with the diversity of
solutions that are typically delivered by EMO algorithms. At EMO 2011, from
the 11 papers accepted for the MCDM track, 6 papers were presented in mixed
sessions with related EMO papers — which indicates that the two communities
are already finding common directions.

April 2011 R. Takahashi
K. Deb

E. Wanner

S. Greco
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Automated Innovization for Simultaneous
Discovery of Multiple Rules
in Bi-objective Problems

Sunith Bandaru and Kalyanmoy Deb

Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
{sunithb,deb}@iitk.ac.in
http://www.iitk.ac.in/kangal

Abstract. The trade-off solutions of a multi-objective optimization
problem, as a whole, often hold crucial information in the form of rules.
These rules, if predominantly present in most trade-off solutions, can
be considered as the characteristic features of the Pareto-optimal front.
Knowledge of such features, in addition to providing better insights to
the problem, enables the designer to handcraft solutions for other opti-
mization tasks which are structurally similar to it; thus eliminating the
need to actually optimize. Innovization is the process of extracting these
so called design rules. This paper proposes to move a step closer towards
the complete automation of the innovization process through a niched
clustering based optimization technique. The focus is on obtaining mul-
tiple design rules in a single knowledge discovery step using the niching
strategy.

Keywords: automated innovization, multiple-rule discovery, niching,
row-echelon forms.

1 Introduction: A Motivating Example

One of the goals in multi-objective problem solving is to find solutions which
are as close to the true Pareto-optimal front as possible with as much diversity
in decision space as possible [9]. Numerous algorithms proposed over the years
have been successful in achieving this with varying degrees. Considering the
amount of time, resources and research effort that has gone into developing
these algorithms, it is ironic that practically only a single (or utmost a few)
desirable solution(s) actually get implemented in most problems. The accuracy
and diversity attained with respect to other solutions can be put to good use if
they can somehow be used to gain interesting knowledge about the problem.
Consider the bi-objective design problem of a two-bar truss. The configuration
is shown in Fig. [[I The problem requires that the total volume V of the truss
structure be minimized along with the minimization of the maximum stress S
induced in either of the bars. Geometrical constraints restrict the cross-sectional
areas 1 and xs of the bars the dimension y. The induced stress should remain

R.H.C. Takahashi et al. (Eds.): EMO 2011, LNCS 6576, pp. 1115]2011.
© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Two-bar truss configuration Fig. 2. Pareto-optimal front for the two-
bar truss design problem

below the elastic strength S, of the material used, which gives rise to a third
constraint. The optimization formulation thus becomes,

Minimize f1(x) = V = 21/16 + 42 + z2/1 + 92,

Minimize f3(x) =S = max(oac,0Bc),

Subject to max(oac,opc) < Sy kPa, (1)
0 < z1,22 < 0.01 m?,
1<y<3m.

It is possible to analytically derive solutions for some special multi-objective
problems. Methods usually involve the use of Fritz-John conditions or Karush-
Kuhn-Tucker optimality criteria and are generally used for convex multi-objective
problems. For solving () however, the identical resource allocation strategy can
be used. Increasing the cross-sectional area of one bar element reduces the stress
induced in it and so the second objective takes the other bar element into ac-
count at some point. But since both the objectives are equally important, this
cannot be allowed. A balance can be obtained only when the stresses in both
the bars are equal. Thus,

F\/16+y% 5F \/1+y>
4 ym 4 yzy

(2)

OAC = 0OBC =

Following a similar argument for the volumes we get,

2116 4+ 2 = z91/1 4 ¢2. (3)

Solving ) and (@) gives the following relationships, where the ‘¢’ emphasizes
the fact that they represent Pareto optimality,

Yyt =2, a3 =2, V*=4Vbz] =25z} (4)

Note that these relationships will hold irrespective of the material and loading.
They are thus the generic “design rules” of the truss problem in (J). Design-
ers can remember them as guidelines when optimizing any such structure and
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easily handcraft a near Pareto-optimal solution. Of course the solution has to
be checked for feasibility before actual implementation because the derivation
of @) did not involve the use of constraints. The gray points in Fig. 2 indicate
the solutions to which these rules do not apply.

2 Related Work

The simple example discussed above shows that interesting knowledge in the
form of design rules exist in multi-objective scenarios and that they are the
distinguishing features of the Pareto-optimal solutions of a problem. Analyti-
cal solutions to optimization problems, especially multi-objective problems, are
however rarely easy to obtain. Some alternatives exist to avoid actually solving
the problems to decipher design rules. For example, monotonicity analysis [I] is
capable of obtaining them directly from the problem [2] provided that the latter
satisfies certain conditions of monotonicity.

In general however, there seem to be three major obstacles in deriving design
rules such as those in (@)): (i) most problems are not analytically solvable, (ii)
methods require the problems to have a certain form or satisfy certain criteria,
and (iii) other methods can only produce implicit or semantic rules. The first
two of these obstacles can be overcome by employing data-mining and machine
learning techniques on the solutions obtained by solving the problem through a
numerical optimization algorithm. Obayashi and Sasaki [3] used self-organizing
maps (SOMs) to generate clusters of design variables that indicate their role
in making design improvements. A multi-objective design exploration (MODE)
methodology was proposed [4] to reveal the structure of optimal design space.
The study concluded that such design knowledge can be used to produce better
designs. Hierarchical grouping of solutions in the form of a dendogram to identify
strongly related variables is described in [5]. Recently, a data-mining technique
called proper orthogonal decomposition has been used [6] to extract implicit
design knowledge from the Pareto-optimal solutions.

While the above mentioned studies truly depict the importance of analyzing
trade-off solutions, they fall short of providing a generic framework which can
also overcome the third obstacle in discovering design rules; the ability to extract
rules that are meaningful to the human designer. In other words, rules that have
an explicit mathematical form are more useful and intuitive to a human for
remembrance and future application to similar design problems. Innovization
[7] addresses this, though at a simple level, through a manual graph plotting
and regression analysis procedure. In the remaining sections we describe and
extend the innovization procedure for complete automated discovery of multiple
design rules from the Pareto-optimal solutions.

3 Discovering Design Rules through Innovization

The term innovization comes from innovation through optimization. As de-
scribed above, it is a manual plotting-and-analysis process which can help reveal
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design rules hidden in Pareto-optimal datasets. Deb and Srinivasan [§] define
it as “a new design methodology in the context of finding new and innovative
design principles by means of optimization techniques”. The basic procedure is
simple and can be accomplished through the following steps:

1. Obtain the Pareto-optimal front for the multi-objective problem using any
of the available population-based evolutionary algorithms [9]. Local search
methods may be used to improve the obtained front [g].

2. Form the data-set containing the Pareto-optimal variable values (x*), objec-
tive function values (f*) and corresponding values of any other function(s)
¢j(x*) (see below) for all the obtained trade-off solutions.

3. Consider various entity combinations: variable-variable, objective-objective,
objective-variable, etc. and plot the corresponding values for all the trade-off
solutions. This will visually reveal the existence of design rules when any of
these combinations show a high correlation between the entities considered.
Other functions (¢;’s) which the designer feels are significant to the design
task may also be considered.

4. In case a non-linear correlation is observed, techniques like logarithmic trans-
formation and curve-fitting are employed to come up with the closest rule.

While steps (1) and (2) can be easily integrated into a computer code, it is
the human judgement required in step (3) that makes innovization a tedious
and time consuming approach to rule-finding. Nevertheless the process has been
applied as such to various multi-objective problems [7J8/T0] and even researchers
in fields as diverse as architecture [11], virtual reality [12], robotics [13], etc. are
realizing the need to identify the commonalities between solutions in the form
of usable rules. Although in most innovization studies, solutions from the entire
range of the Pareto-optimal front are considered, innovization from a partial set
or multiple fronts from different values of problem parameters is also possible.
The truss design problem introduced previously can be used to illustrate the
innovization approach. The required trade-off data is generated by solving ()
using NSGA-II [I4]. A population size of 1000 is used for the purpose so as to
generate a well-represented trade-off front. F' is taken to be 100 kN and S, as
10° kPa. Figures [} and @ clearly show that V-x1, 29-z1 and V-2 have a high

0.06 T T T 0.06
V ~ 8971z,
0.05 - . . 005, Regression Points g
* Regression Points . .
: R 0.04 Omitted Points -
0.04 - © Omitted Points b (Fall on right of T in Fig.2)
(Fall on right of T in Fig.2)
o 0.03 b
: 0.03 - b -~

0.02

0.02 - 9 ~ 2.005x, 001

0.01 7 0

0 1 1 1 1 7001 1
9 |
1 x1073 Ty X107
Fig. 3. Innovization for V-z; and z2-z1 Fig. 4. Innovization for V-z2
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correlation. The slopes of regression lines fitted to each of these combinations
(by ignoring points which apparently show a change in relationship) gives the
constant of proportionality. Note that,

V = 8971z ~ 4Vbx1, xy~ 2.005z; ~ 2x; and V = 4.474xy ~ 2v/5z9. (5)

As it can be seen, a post-optimality procedure like innovization is capable of re-
vealing design rules from the trade-off solutions. However, there are some obvious
difficulties which prompt an automation of this approach. Firstly, as discussed
above, manually choosing different combinations and checking for correlations
is a time consuming process. Secondly, all solutions need not follow a particular
design rule. Unlike in Figs. Bl and @ if the change in relationship is subtle, a
blind regression analysis may lead to erroneous conclusions. Each design rule
can thus be associated with a prominence level or significance depending on the
percentage of the Pareto-optimal front that it applies to. It is crucial that rules
with a low significance be filtered out by the automated algorithm. Lastly, there
can be design rules which have different proportionality constants in different
regions of the Pareto-optimal front [I5I6]. The design rule is then said to be
parametrically varying across these regions. The automated algorithm should be
able to tell apart solutions which parametrically satisfy the rule from the ones
that do not satisfy it at all.

4 Proposed Automated Innovization Approach

Let ¢;(x) be the set of “basis functions” whose combinations are to be analyzed
for the presence of design rules. The designer can specify N such functions. They
also include the variables, objectives and constraints of the problem. Previous
manual innovization studies [7J8I0] and recent proof-of-principle studies towards
a possible automated innovization [I5/16] sufficiently show that most design rules
take the generic form,

L, 6(x)" P = G (6)

where C; is the proportionality constant for the i-th design rule and B;;’s are
corresponding powers of the basis functions in that design rule. The Boolean
variables a;;’s, in a way, reflect the presence (a;; = 1) or absence (a;; = 0) of
the j-th basis function in the ¢-th rule. In addition to being relatively easier for
an automated algorithm to detect, the mathematical form of these relationships
makes them more intuitive to the user. Note that B;;’s in (6l can take any
real value depending on the problem. In order to restrict the search space, the
maximum absolute power (among participating basis functions) is set to one by
making the following transformation which keeps the design rule unaltered:

1 1
(1T, 5 ()5 B4 {Bip|p : (maxy, |aypBipl)} — C/‘{Bip‘p : (maxy [aipBip|) }
= ¢ (say), (7)
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which can be simply written as,

1IN b (x)%9b5 — i h by =
j=195(x) Ci,  WHCTE Dij {Bip|p : (max, |aipBip|) }

e-1,1. (8)

Supposing that a;;’s and b;;’s are known for the i-th rule, the parameter c;
can easily be calculated for all trade-off solutions in the Pareto-optimal data-
set. Solutions that parametrically satisfy the i-th rule will have the same (or
nearly equal) values for ¢;. The present algorithm uses a grid-based clustering
technique to identify clusters of such solutions. If a solution yields a c¢; value
which is significantly different from that of others, then it remains unclustered.

4.1 Finding Optimal a;;’s and b;;’s

Each cluster mentioned above corresponds to one region of the Pareto-optimal
front to which the i-th design rule applies parametrically. The ¢;-values in each of
these clusters should therefore be nearly equal. In other words, the spread of ¢;-
values in each cluster should be minimum. This condition can be used to obtain
ai;’s and b;;’s. To ensure that a narrow distribution of ¢;-values is obtained in
the clusters, the coefficient of variation (¢, = standard deviation/mean) of the ¢;-
values is simultaneously minimized in all of them. The weighted sum approach is
used to have a computationally tractable approach. Since all clusters are equally
important for the design rule to be valid, the ¢,’s are assigned equal weights.
Note that ¢, being a normalized measure of spread will have the same order of
magnitude in all the clusters and therefore the weighted sum approach should
suffice [16]. Thus, to find optimal a,;’s and b;;’s for the i-th rule the following
optimization problem can be solved,

Minimize Z k) P = ¢ ¢; € k-th cluster
clusters Hei

Subject to —1.0<b;; <1.0 Vj:ay =1, ©)
‘bl]|201 Vj:a,*j:L
Z] aZJ 2 17

a;;’s are Boolean and b;;’s are real.

Here ¢; is obtained from (). Any basis function ¢; with a low magnitude power
b;; will hardly contribute to the design rule. Moreover, inclusion of zeroes in the
search space will lead to a trivial solution where ¢; = 1 for all trade-off solutions
and so ¢, = 0 for all clusters. The second set of constraints checks this by putting
a lower bound on the magnitude of b;; (see Sect.[1.3). The last constraint ensures
that at least one basis function is used to form the design rule.

4.2 One-Dimensional Grid-Based Clustering

Grid-based clustering technique involves partitioning the data into a number of
grids (or divisions) and merging them to form clusters. The number of clusters
need not be predefined. The following steps describe the procedure:
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Step 1: Sort all {051)7052)7 ... 7cl(-m)}
off solutions in the data-set.
Step 2: Divide the space [¢i min, Ci,maz] iNtO, say d; divisions.
Step 3: Count the number of points in each division.
Step 4: Merge adjacent divisions which have more than or same as L;”J points
(the average number of points per division) to form clusters.
Step 5: Count the number of clusters C; and the total number of unclustered

points ¢; in all divisions with less than [ 7' | points.

obtained by evaluating (8] for all m trade-

There are two conflicting arguments for deciding the number of divisions d;. It
is desirable that the design rule be applicable to as many points as possible, so
ideally U; = 0. This translates to a high value of d; since each unclustered point
can then form a one-element cluster. But this, in turn will increase the number
of clusters. A good clustering algorithm should be able to find the simplest
representation of the data (which points to a low d;) while ensuring that points
within a cluster are similar in some respect. In the present case, ¢,’s within the
clusters define this similarity. Thus, finding the optimum number of divisions
can be framed as an optimization problem,

C;
Minimize C; + chk) x 100%, P = Tei g ¢; € k-th cluster,
L

k=1 ¢
Subject to U; =0, (10)

d; is an integer.

The limits on d; are due to the clustering criterion of | } | points. It is easy to see
that any value of d; > m would yield the same result as d; = m. The percentage
coefficient of variation is used to approximately scale the c,-values to the order
of number of clusters (C;) which in turn allows the use of the weighted sum [16].

The clustering algorithm discussed above uses the a;; and b;; values obtained
from the methodology described in Sect. 1] to calculate d;. The latter in turn
uses the clusters identified by the former to calculate the c¢,’s. The two op-
timization problems (@) and (0] therefore have to be solved simultaneously.
The algorithm calculations involved in both of these and the non-availability of
mathematical functions prevents the use of a classical optimization approach.
The present paper uses a simple genetic algorithm (GA) instead. It has the
added advantage that a;;’s can simply be coded as the bits of a binary string
whereas b;;’s can be regarded as real variables. Each population member then
acts as a design rule and only the best among these survive.

4.3 Significance of Design Rules

As discussed towards the end of Sect. B the discovered design rules should be
significant for them to be useful for a designer. A direct measure of significance
is the percentage of trade-off data-set that the rule applies to. To calculate the
significance of each GA population member, the fourth step of the clustering
algorithm in Sect. is modified as,
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Modified Step 4: Merge adjacent divisions which have more than or same as
| '] + € points to form clusters.

With a small integer value for €, divisions which barely form part of the clusters
can be identified. Let C; prs and U; a5 respectively be the number of clusters and
unclustered points calculated with the modified step. Note that the clustering
itself need not be redone for this purpose. The significance S; of the i-th design
rule can now be given as,

s = MU 009 (11)

m

By placing a lower bound on S; (say Sreqa = 80%), designers can choose the
minimum level of prominence for the design rules.

4.4 Niching for Multiple Design Rules

The discussion so far has been carried out with respect to the i-th design rule.
However, solving a simple superposition of problems (@) and (I0) with an ad-
ditional constraint on significance (II]) will only yield a single design rule be-
cause only the best population member will survive through the generations.
The co-existence of multiple design rules can be promoted by introducing a
niched-tournament selection operator [I7] in the GA which allows a tournament
to be played only between population members which use the same set of basis
functions. The niching is implemented on top of the penalty-parameter-less ap-
proach to constraint handling [I8]. The following criteria are used to determine
the winner among two solutions u and v participating in a tournament:

1. If ay; = av; Vj=1,2,...,N, then v and v can be compared.
(a) If one is feasible and the other is not then the feasible solution is

preferred.
(b) If both are feasible then the one with better objective value is preferred.
(c) If both are infeasible then the one with lower constraint violation is
preferred.
2. Else both u and v are competent.

With a GA that uses (i) this new niched-tournament selection operator for han-
dling the constraints, (ii) one-point crossover and bit-wise mutation for the bi-
nary string of a;; bits, (iii) simulated binary crossover (SBX) and polynomial
mutation for b;;’s and, (iv) a discrete version of SBX and polynomial mutation
for the variable d;, the combined optimization problem to be solved for extracting
multiple design rules simultaneously is proposed as,

C;
Minimize C; + chk) x 100%, k) = 7¢ Y ¢; € k-th cluster
He;
k=1 i
Subject to —1.0<b;; <1.0 Vj:ay =1,
Zj aij 2 ]-a
U; = 07 1<d; < m, S; > Sreqda
ai;’s are Boolean, b;;’s are real and d; is an integer.
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Results

Algorithm [[lsummarizes the proposed automated innovization approach for dis-
covering multiple design rules in a single knowledge discovery step. It is now
applied in this form to two well-studied engineering design problems.

Algorithm 1. Automated innovization for simultaneous multiple rule discovery.

1:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

Obtain a good set of m diverse and near Pareto-optimal solutions for the multi-
objective problem.
Choose the terminal set of N basis functions ¢;’s.
Form the m x N data-set of ¢;’s evaluated at all m trade-off solutions.
Initialize variables aij;, bi; and d; V ¢ = popsize GA members.
gen «— 1
while gen < maxzgen do
for i := 1 to popsize do
{biplp : (m;}x |laipbip|) }
Evaluate ¢; = T}, $;(x)*% ¥ m trade-off solutions.
Sort and cluster {CED,CEZ), e ,cgm)} using the grid-based clustering.
Evaluate the objective and constraints in (I2]).
end for
Perform niched-tournament selection on the GA population members.
Perform appropriate crossover operations.
Perform appropriate mutation operations.
Update GA population members.
gen «— gen +1
end while
Report unique members of final GA population as the obtained design rules (D).

Transform b;; «— to maintain max |a;;b;;| = 1

5.1 Truss Design Revisited

The trade-off solutions obtained in Sect. Bl for m = 1,000 points using NSGA-II
are utilized here. All objectives and variables are chosen as the basis functions.
Hence,

o=V, ¢2=05, ¢s=2x1, Ps=1z2, ¢P5=1.

The following parameters are used for solving (I2)):

Population Size (popsize) = 400

Maximum number of generation (maxzgen) = 500

One-point crossover probability (pe,binary) = 0.85

Bit-wise mutation probability (pm,binary) = 0.15

Continuous and discrete SBX probability (pe req) = 0.95

Continuous and discrete polynomial mutation probability (pm rear) = 0.05
Continuous and discrete SBX distribution index (n.) = 10

Continuous and discrete polynomial mutation distribution index (7,,) = 50
Parameter for calculating U; amrs (€) = 3

Threshold significance for design rules (Syeqq) = 80%
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Table [l shows the unique solutions present in the GA population after 500
generations of the proposed algorithm. Notice how the use of niched-tournament
selection and the constraint on significance together helped maintain diverse (in
terms of basis functions) and yet significant design rules. For example, the i = 20-
th design rule is as follows:

Vl.OOOOOOOSO.79113321,1—0.2102126 = Cs9. (13)

The essence of this design rule is not in the parametric constant cgg but in the
fact that the left-hand side of this expression remains almost constant for at
least Syeqqa = 80% of the NSGA-II obtained data-set.

Table 1. Design rules (D) obtained for the truss design problem

15715
10010 -0.9979552  0.0000000 0.0000000 1.0000000 0.0000000 869
01111 0.0000000 -0.9668656 -0.7030048 -0.2639445 1.0000000 869
01011 0.0000000 -0.7727935 0.0000000 -0.7749417 1.0000000 869
01101 0.0000000 -0.7048297 -0.7049160 0.0000000 1.0000000 870
00110 0.0000000 0.0000000 -0.9990348 1.0000000 0.0000000 869
00111 0.0000000 0.0000000 -0.9952743 0.9999844 1.0000000 869
00001 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 869
11111 0.7817370 -0.7754779 -0.7850468 -0.7734357 1.0000000 869
10011 0.8268434 0.0000000 0.0000000 -0.8259557 1.0000000 869
10 10101 0.8388214 0.0000000 -0.8391667 0.0000000 1.0000000 869
11 10111 0.8813441 0.0000000 -0.5827007 -0.3013669 1.0000000 869
12 11101 0.9486451 0.1086554 -0.8411865 0.0000000 1.0000000 856
13 11011 0.9962421 0.6705470 0.0000000 -0.3253438 1.0000000 908
14 11001 0.9989458 0.9984587 0.0000000 0.0000000 1.0000000 869
15 11000 0.9999623 1.0000000 0.0000000 0.0000000 0.0000000 869
16 11110 1.0000000 -0.5590224 -0.7850468 -0.7741561 0.0000000 869
17 10100 1.0000000 0.0000000 -0.9971116 0.0000000 0.0000000 869
18 10110 1.0000000 0.0000000 -0.7353538 -0.2647701 0.0000000 869
19 11010 1.0000000 0.6702390 0.0000000 -0.3300355 0.0000000 869
20 11100 1.0000000 0.7911332 -0.2102126 0.0000000 0.0000000 860

* . - * ok - * 7k *
a;; Vj ajybiy ajybis ajgbis ajybiy ajsb; d;

© 00 ~NO Ui W .

There is, however, a downside to discovering and presenting design rules in
the form as in Table [l A human designer would prefer having all the design
rules in a compact form which can be intuitive to him/her. It is not difficult
to see that there are some redundant rules in Table [l The next logical step is
therefore to condense and present them in a more compact form.

5.2 Reduced Row-Echelon Form

In linear algebra, reduced row-echelon forms (RREF) are used to identify linearly
dependent rows of a matrix. By eliminating redundant variables using RREF,
a system of linear equations can be solved easily. Here, the same technique is
used to condense the design rules. However, since the original trade-off data-set
is only near Pareto-optimal, the obtained design rules can only be approximate.
Therefore, a tolerance tol should be allowed during row operations. Algorithm [2]
is used for this purpose.
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Algorithm 2. Determination of tol and condensed design rules.

1: [ < maximum number of significant digits in any element of D.

2: repeat

3 tol «— 107"

4:  Dyeducea = rref(D,tol) {The MATLAB® function rref() is used here.}
5 l—1-1

6: until rank D,cguced < N

7: Identify insignificant relationships in Dyegucea by performing grid-based clustering.
8: Report other relationships as the condensed design rules.

Table 2. Reduced design rules (Dyedyced) for the truss design problem, tol = 0.01

i aj b}y ajobis a;j3bys ajsbiy ajsbys d; S;
DR1 1.0000000 0.0000000 0.0000000 -1.0006158 0.0000000 520 88.2%
DR2 0.0000000 1.0000000 0.0000000 1.0005781 0.0000000 508 80.8%
DR3 0.0000000 0.0000000 1.0000000 -1.0009661 0.0000000 507 86.8%
DR4 0.0000000 0.0000000 0.0000000 0.0000000 1.0000000 511 87.2%

Table 2l shows the result of applying Algorithm Pl on the values in Table [l It
can be seen that all the original rules in () are realizable from these condensed
rules whose approximate forms are summarized below:

14 X1

DRI1: o = Cpr1, DR2: Sxo = cpr., DR3: 2 = Cprs, DR4: y = cpra.
Further insight can be obtained by again performing grid-based clustering on
the ¢;-values of these four rules to determine the number of clusters (C; ars)
and unclustered points (U; ars). The corresponding d}’s and significance S; are
also shown in the table. Figures Bl B [ and § show the distribution of ¢;’s,
the horizontal broken lines being their cluster averages. Unclustered points are
shown in gray.

= . - =0 L= 192
5o ‘ CL‘.A'\IS : 4 (m(‘I Z/{“\,‘ls 1‘18 o1 C,‘,MS : 9 dn(‘l U; )\[l‘s L‘)Z
5.1r k(€. no. of points) in C,(f‘),s I 90 [z
sE 1 (4.438,15) d |
2 (4.488,836) L e
|3 e ) sst g
L (4.522,5) 1 $877 L ) () ( 5 5)
T B < 2 (8‘] 17 703) 7 (89.79,6)
86 - 3 (89.54,32) 8 (89.82,5)
a6 1 1 (8961, 39) 9 (89.90,5)
85 5 (89.67,8)
) 84 I I I I
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Trade—off solutions Trade-off solutions

Fig. 5. Design rule i = DR1 (S; = 88.2%)  Fig. 6. Design rule ¢ = DR2 (S; = 80.8%)
is equivalent to V = 2v/5xs = 4.472x2 is equivalent to Sze = 200/+/5 = 89.44
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Civs =8 and U ys = 132 Cims =4 and U; g = 128
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Fig. 7. Design rule : = DR3 (S; = 86.8%)
is equivalent to xo = 2z1 or x1 = 0.5z2

Fig. 8. Design rule : = DRA4 (S; = 87.2%)
is equivalent to y = 2

The figures and the corresponding relationships show how the proposed au-
tomated algorithm is capable of successfully deciphering important rules for a
design problem directly from the trade-off data-set. Specifically, for this problem
it can be seen that indeed the obtained rules and the associated ¢;’s are approx-
imately similar to those derived theoretically (and manually) earlier in {@). In a
complex design scenario, such rules generated automatically will be extremely
useful for the designer.

5.3 Welded Beam Design

This problem involves the minimization of cost (C') and end deflection (D) of a
welded cantilever beam carrying a given maximum load. The design variables are
the thickness of the beam b, width of the beam t, length of the weld [ and weld
thickness h. Constraints are used to limit the allowable bending stress (o), shear
stress (7) and buckling force (P.). The multi-objective formulation can be found
in [I8]. The trade-off front is obtained for m = 300 population size using NSGA-
II. Next, the proposed algorithm is used on this data-set with popsize = 600 and
mazgen = 800. All other parameters are same as in the truss design problem.
The following basis functions are considered:
¢p1=C, ¢2=D, ¢3=0b, ¢a=1, ¢5=1, ¢6=h ¢r=0 ¢s=PFc.

The D matrix contains 213 unique design rules which reduce to just the seven
relationships shown in Table Bl The following relations which were shown in a

Table 3. Reduced design rules (Dyedyced) for the welded beam problem, tol = 0.01

DR1
DR2
DR3
DR4
DR5
DR6
DR7

a;1bjy

1.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

ajybly

0.00000
1.00000
0.00000
0.00000
0.00000
0.00000
0.00000

aj3bls

0.00000
0.00000
1.00000
0.00000
0.00000
0.00000
0.00000

aiybiy

0.00000
0.00000
0.00000
1.00000
0.00000
0.00000
0.00000

ajsbls

0.00000
0.00000
0.00000
0.00000
1.00000
0.00000
0.00000

aigbis

0.00000
0.00000
0.00000
0.00000
0.00000
1.00000
0.00000

ai7bis

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
1.00000

ajgbls
-0.2983906
0.3334565
-0.3328624
-0.0000215
0.2031956
-0.1844011
0.3334762

d;
152
154
157
155
158
151
167

S
34.7%
86.0%
88.0%
83.3%
34.0%
49.3%
84.0%
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previous innovization study [8] to be the design rules of this problem are the
approximate forms of these automatically obtained condensed rules:

b

DR2: DPCOSS‘3 = Cpra) DRa3: P(?.333

= Cpra, DR4: t = cppy, DRT: 0PY33% = ¢

The original study also shows other design rules which can be derived from the
above four rules. For example, DR2 and DR3 give Db = constant. Similarly,
DR2 and DR7 together suggest that D o« ¢ and so on.

These rules can be very handy for a designer. As an example, consider DR2
which indicates that the beam deflection D P0_1333, the proportionality con-
stant being ¢; = 0.1704 as shown in Fig. [0 A (iesigner can convert a similar
bi-objective problem into a single objective problem and still be able to create
most of the trade-off solutions simply by using this rule. Similarly, the constraint
on the o can be safely eliminated by noting that o = 3%102_833'7 applies to 252 out
of the 300 trade-off solutions as shown in Fig. [0 To check whether the two de-
sign rules are applicable to the same region of the trade-off front, the clustered
and unclustered points from both can be mapped to the front as shown in the
insets of the two figures.

Civs =1 and U s = 42 Ciavs = 1 and Ui ys = 48
T T T T T T

oot6 540000 T
0.016
026 1 oul 520000 |- gou - E
0.012 _ . . k F 0012 3 T
0241 ool k (&, no. uf_pmnts) in Cf“\J,s 1 300000 oo L k (¢,no. of points) in Cl(f\],g
p gl 1 (0.1704,258) £ 480000 [-£ 1 (391208.7,252) 1
202213 i = 2 0008
g 2 0.006 | 460000 2 006 - 1
<020 000\ i < 440000 | 0.004 il
0.002 F 0002 F
0 420000 - , - q
0.18 0 5 10 15 20 25 30 35 40 4 J + T
Cow ~ 7 S 400000 |- pwmaEwse S 1
0. 16 L L L L L 380000 Il L L L L
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Trade—off solutions

Trade—off solutions

Fig.9. Design rule ¢ = DR2 and the
corresponding mapping of points on the
Pareto-optimal front

Fig.10. Design rule ¢ = DR7 and the
corresponding mapping of points on the
Pareto-optimal front

Table[3 also shows three relations that do not satisfy the criterion of being ap-
plicable to at least 80% of the data-set, namely, DR1, DR5 and DR6. They occur
despite the constraint on significance because of two reasons: (i) the constraint
on the magnitudes of b;;’s in (I2) sometimes causes spurious (yet significant)
relationships to creep into the D matrix which carry on into D, cguceq but lose
their significance during the row-echelon transformation. Fortunately, they can
be identified by again performing grid-based clustering as done here. In fact,
the above problem was solved with 0.01 instead of 0.1 as the lower bound on
magnitude since the latter resulted in DR3 having a significance of only 46% with
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ajgbls = —0.3314016. This difficulty can be alleviated, if a different lower bound
can be set adaptively for each |b;;|. (ii) the reduction to echelon form causes
accumulation of the errors in b;;’s which in turn are due to the near Pareto-
optimal nature of the data-set. While the latter can be controlled by ensuring
proximity to the Pareto-optimal front using local search methods, work is in
progress at Kanpur Genetic Algorithms Laboratory (KanGAL) to take care of
the former.

6 Conclusions and Future Work

The authors’ earlier work [I6] on automatically deciphering design principles
or rules requires that the user choose various combinations of basis functions;
thus discovering each relationship one at a time. The proposed algorithm ad-
dresses the problem of finding multiple such rules simultaneously in a single
optimization run by automatically eliminating unwanted basis functions from
the provided set. It integrates a clustering based optimization approach with a
niched-tournament selection operator to allow multiple design rules to co-exist
in a GA population. Additional constraints are used to discourage insignificant
rules. The algorithm is demonstrated on the truss and welded beam design prob-
lems successfully and reveals interesting information about the Pareto-optimal
solutions in both cases. Intuitive and easy-to-use design rules are obtained by
condensing the original rules using the reduced row-echelon form. A systematic
procedure for determining the tolerance required during row operations is also
developed. Using a well-optimized Pareto-optimal data-set, the algorithm, as a
whole, provides compact design rules which can be easily stored and retrieved
for future design tasks of similar nature.

This study can be extended in a number of ways towards achieving a complete
automation of the innovization process. Firstly, as seen in the welded beam prob-
lem, constraining the magnitude of b;; values to a lower bound caused certain
unwanted relationships to appear as rules. Though they could be identified after
a row-echelon reduction and subsequent grid-based clustering, the original algo-
rithm itself can be modified to adaptively change this lower bound. One likely
approach is to set it to a value below which the corresponding ¢; is incapable of
amounting to a threshold variation in ¢;-values.

Another extension of the algorithm can be made for discrete variable prob-
lems. The limited values which a variable can take in such problems may drive
the present algorithm towards trivial design rules (such as, x; = constant), each
satisfying a significant fraction of available data. If all the variables are discrete,
the row-echelon form may never have a rank less than N with a reasonable
tolerance. Further studies are needed to modify the current algorithm.

Rules in combinatorial optimization problems may be different than the ones
obtained here. It will be an interesting study to modify the current algorithm
for such problems as well. It would also be an interesting task to extend the
proposed approach in more than two-objective problems.
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Abstract. The use of multi-objective evolutionary algorithms for solv-
ing black-box problems with multiple conflicting objectives has become
an important research area. However, when no gradient information is
available, the examination of formal convergence or optimality criteria
is often impossible. Thus, sophisticated heuristic online stopping criteria
(OSC) have recently become subject of intensive research. In order to
establish formal guidelines for a systematic research, we present a taxon-
omy of OSC in this paper. We integrate the known approaches within the
taxonomy and discuss them by extracting their building blocks. The for-
mal structure of the taxonomy is used as a basis for the implementation
of a comprehensive MATLAB toolbox. Both contributions, the formal
taxonomy and the MATLAB implementation, provide a framework for
the analysis and evaluation of existing and new OSC approaches.

Keywords: Convergence Detection, Multi-Objective Optimization, Per-
formance Indicators, Performance Assessment, Termination Criterion.

1 Introduction

In recent years, the use of evolutionary algorithms (EAs) for solving multi-
objective optimization problems has become established. The search for a set of
solutions which approximates the Pareto-optimal front of a problem corresponds
well to the population maintained within an EA. In particular for black-box prob-
lems where no gradient information is available, the use of biologically-inspired
stochastic variation and selection operators provides a successful alternative.
However, without gradient information, the examination of formal conver-
gence or optimality criteria, e. g., the Karush-Kuhn-Tucker conditions, is impos-
sible. Therefore, the termination of multi-objective EA (MOEA) is often decided
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© Springer-Verlag Berlin Heidelberg 2011
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based on heuristic stopping criteria, such as the maximum number of evaluations
or a desired value of a performance indicator. Whereas the criteria are suitable
for analytically defined benchmark problems, where the optimal indicator value
is known, their applicability to real-world black-box problems is questionable.
In cases where the evaluation budget or the desired indicator level is inappro-
priately specified, the MOEA can either waste computational resources or can
be stopped although the approximation still shows a significant improvement.
Consequently, heuristic stopping criteria for the online detection of the gener-
ation, where the expected improvement in the approximation quality does not
justify the costs of additional evaluations, provide an important contribution to
the efficiency of MOEA.

In line with these findings, research on sophisticated heuristic online stopping
criteria (OSC) has obtained increasing popularity (e.g. [SIT2/T6/T9J20]). OSC an-
alyze the progression of single or multiple progress indicators (PI) online during
the run of the MOEA. When the considered indicators seem to be converged,
i.e., the expected improvement seems to be lower than a predefined threshold,
the MOEA is terminated in order to avoid wasting computational resources.

Despite being proposed by different authors with different methodological
background, all these criteria show structural similarities. Thus, a taxonomy of
OSC is presented which is the formal contribution of this paper and makes up the
basis for the implementation of the MATLAB toolbox. Based on the foundations
of set-based multi-objective optimization (section[), the special requirements for
multi-objective OSC are identified. In the main section [3] a formal framework
is defined (B, known OSC approaches are integrated within the taxonomy by
structuring them into their building blocks ([B:2), and a discussion of the state
of the art is provided ([B33)). All building blocks identified in the taxonomy are
made available in a MATLAB toolbox [18] which is briefly described in section [l
By means of this toolbox, all existing and many new OSC can be designed and
analyzed. The paper is summarized and conclusions are given in section [Bl

2 Foundations

Without loss of generalityﬂ, a MOP can be formally expressed as

min f(z) = (fi(z),..., fm(z)) (1)
xzeD
i.e., a vector of objective functions fi(x),..., fm(x) is jointly optimized. The

feasible region D C X of the search space X is denoted as decision space while
the image set O C R™ of the projection f : D — O is denoted as the feasible
set of the objective space R™.

The solution to problem () is the set of trade-off points jointly minimizing
the objective functions. The formalism behind the joint optimization is expressed
in terms of the Pareto dominance relation. A decision vector & dominates an-
other vector «’, iff Vi € {1,...,m} : fi(x) < fi(x’) and Fi € {1,...,m} :

! Maximization problems max f(z) can be written as min — f(x).
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fi(x) # fi(x’). The subset of D which contains the elements that are not dom-
inated by any other element of D is denoted as the Pareto-optimal set D*. Its
image in the objective space O is called the Pareto-optimal front O*. For con-
tinuous problems, D* and O* usually contain an infinite number of solutions.
MOEAs are population-based stochastic optimization algorithms. Each indi-
vidual in the population P of the MOEA represents a candidate solution. During
the optimization, the individuals are improved by means of evolutionary opera-
tors, such as mutation and crossover. The image of the non-dominated individ-
uals in objective space is denoted as non-dominated front PF*. The objective
vectors obtained by the individuals in PF* provide a finite-size approximation
of O*. In order to evaluate the quality of the approximation set PF; of gener-
ation ¢, set performance indicators have become established [2I]. The target of
an OSC is to detect the generation ¢ which provides the best possible trade-off
between the approximation quality of PF; and the required generations ¢.

3 Taxonomy

A brief summary of theoretical single- and multi-objective convergence detection
approaches based on formal conditions has already been published [16]. In this
summary, also the differences between multi- and single-objective problems is
discussed. If the application of formal convergence conditions is not possible,
heuristic OSC are used to detect that further improvements are unlikely, or
are expected to be too small — even if no formal convergence is obtained. In
this paper, we are focusing on these heuristic OSC. Thus, a formal notation of
convergence of a set of points in the multi-objective context is not required. The
procedure of these OSC can be separated in at least two steps:

1. The expected improvement of the MOEA is evaluated.
2. Based on this improvement and a predefined threshold, a decision about
stopping the MOEA is made.

For the first step, several PIs have been proposed. A straightforward approach
is the use of unary performance indicators, such as convergence metric (CM)
and diversity metric (DVM) [4], maximum crowding distance (maxCD) [15], or
the hypervolume (HV)[20/19/9] dominated by the current PF; with respect to
a reference point which is dominated by all individuals in PF; [6]. Moreover,
binary performance indicators, such as the e- (Epsilon) [21], and the R2-indicator
(R) [10], can be used to evaluate the improvement between different MOEA
generations [20/9]. In these cases, but also for some of the unary indicators (CM
and DVM), a reference set is required. Since the best set available is usually the
one of the current generation PF}, a recomputation of previous PI values based
on this reference set can become necessary. A clear advantage of using established
performance metrics consists in the availability of formal results from the theory
of performance assessment [2I] which can be transferred to the PI.
Nevertheless, also specialized Pls for convergence detection have been pre-
sented. Mart{ et al. [ITI12] proposed the mutual domination rate (MDR). MDR
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contrasts how many individuals of PF}; dominate individuals of PF;_; and vice
versa. It is capable of measuring the progress of the optimization with almost no
additional computational cost as it can be embedded in Pareto-based MOEAs
and reuses their computations. Therefore it is suitable for solving large-scale or
many-objective problems with large population sizes. If MDR equals 1 then the
entire population of the iteration is better than its predecessor. For MDR = 0,
no substantial progress has been achieved. MDR < 0 indicates a deterioration
of the population. Bui et al. [3] introduced the dominance-based quality (DQP)
of a set PF}. For each solution in PF}, the ratio of dominating individuals in
the neighborhood of this solution are computed. The DQP is then defined as the
average ratio over all solutions in PF;. DQP = 0 indicates that no improving
solutions can be found in the neighborhood of the current solutions in PFy. For
the estimation of the ratios, Monte Carlo sampling is performed around each
solution in PFj. Thus, the DQP is only suitable if many additional evalua-
tions of the objective function can be performed. Goel and Stander [§] proposed
the consolidation ratio (CR). The CR is a dominance-based convergence metric
based on an external archive of all non-dominated solutions found during the
run of the MOEA. It is defined as the relative amount of the archive members
in generation t — tyem which are still contained in the archive of the current
generation ¢. In improving phases CR should be low whereas it asymptotically
approaches one when convergence is achieved. This PI can be inefficient because
the archive can become very large, in particular for many-objective problems.

Because of the non-deterministic nature of EAs, it can be of avail to have an
evidence gathering process (EGP) that combines different PI values. This EGP
can take into account the measurements of previous generations or more than
one PI in order to increase the robustness of the approach. Different EGP ap-
proaches are discussed in the following while the descriptive notation in brackets
is later on used in the formal framework in section Bl Many approaches [3/§]
directly use the value of the PI computed in the current generation ¢ for deciding
if the MOEA is stopped (Direct). However, a single PI evaluation usually cannot
provide enough information for a robust conclusion. A straightforward idea of
aggregating different PI values is the use of descriptive statistics. In particular,
the second moment, i.e., the standard deviation (STD) of the values, is used
in order to evaluate the variability within the PI [I5J20/19]. Marti et al. [IIIT2]
propose the use of a simplified Kalman filter (Kalman). Due to the recursive
formulation, the estimation at iteration ¢ is based on all PI values gathered until
then. Moreover, it considers the associated covariance error, i.e., the minimum
possible error under linear conditions. A similar, but simpler, idea is proposed
by Goel and Stander [§] which use a moving average as EGP (Moving). In other
approaches, a linear regression analysis on the PI values of the last ¢y gener-
ations is performed [209] (Reg) in order to estimate the expected improvement
and to filter out the stochastic noise in the PI evaluations.

Based on the outcome of the EGP, it can be decided whether the MOEA is
stopped. Most known approaches [T5I38] use a threshold with which the outcome
is compared (Threshold). The MOEA is stopped in case the current value of the
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EGP exceeds or falls below this threshold. The approaches of Mart{ et al. [ITI12]
also use confidence information (CI) based on the assumption of a normally dis-
tributed error (CInormal). The MOEA is only stopped when the estimated EGP
value is below the threshold with a given probability limit. Guerrero et al. [9] do
not use Cls, but ensure the quality of the regression analysis by comparing the
mean squared error of the fit to a precomputed threshold (validThreshold). As
an extension of this approach, Trautmann and Wagner [20/T9] perform statistical
tests on the outcome of the EGP. These tests are adapted to the corresponding
EGP, i.e., the x2-test especially suited for variances (squared STD) is used with
STD while a t-test is used in cases where an estimated EGP value with a normal
distributed error is provided by the EGP, such as for Reg or Kalman (adaptTest).
In these approaches, the p-values obtained in the tests are compared to a fixed
significance level a = 0.05. In order to further increase the robustness of the
stopping decision, Wagner et al. [20] propose to wait for a repeated occurrence
of the stopping condition, denoted as hits h. Moreover, the use of multiple EGPs
can assist in analyzing different aspects of the PI, such as the variation (STD)
and the significance of the linear trend (Reg) [20].

3.1 Formal Framework

An online stopping criterion can be formally defined as a 4-tuple,

0SC :={8,1I(-),T(-),®()}  with (2)
S : data structure, (state of the OSC)
II: PF;xS8—S, (progress indicator (PI) computation)
r . S-S, (evidence gathering process, EGP)
& : S — {true,false}. (stopping decision)

In the state S, all information required for the computations of the EGP are
stored. It necessarily includes the input data M for the EGP. In the following,
we use S.M in order to address the current version of M stored in the state
S. The state S can additionally contain previous Pareto front approximations
or PI values, an external archive, or flags indicating whether the threshold has
been reached in the last generations. These information can be changed or used
in different functions of the taxonomy and are therefore exchanged via &. The
data stored in the state ensures that the OSC can make the stopping decision
just based on the Pareto front approximation PF; of the current generation.
The function II : PFf x & — S uses the PIs to update the input data
S.M for the EGP. This general type of function is introduced since the update
can differ depending on the considered Pls, e.g., some approaches update the
PI of all preceding generations based on the current generation PF;}, whereas
others only update the values of the last generation. Consequently, the size of
S.M can be up to P X tmem, where P is the number of PIs and tyem is the
number of preceding generations considered in the EGP. In II also all state
updates required for the PI computation, such as the update of the archive and
the storage of previously computed PI values, are performed. Consequently, the
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input data S.M is a necessary part of the updated state, as it would restrict the
generality of the framework as sole output of I7.

The function 7 : § — S encodes the EGP. It updates the state of the cri-
terion based on the input data S.M included in the current state. Usually, the
EGP returns one aggregated value per PI, but also a combined analysis like in
OCD [20] can be performed. In this case, the EGP value of the combined analysis
is assigned to all considered PI.

The decision function @ : § — {true, false} finally determines whether the
current state of the criterion indicates that the expected improvement of the
MOEA is below the predefined threshold ¢, i.e., the MOEA should be stopped.
For this decision, the EGP value, but also additional information, such as the
estimation error and the degrees of freedom in the estimation of the EGP value,
are usually utilized. The decision function can only return a single Boolean. If
multiple EGPs are considered in parallel, also the aggregation of the correspond-
ing decisions has to be performed in ®.

Using these formalisms, the procedure of a generic OSC can be implemented
as shown in Algorithm [l The user has to specify the MOEA, the problem of
interest and the maximum affordable number of generations t,,x, as well as PI-
related data of the problem, such as a reference set and the ideal and nadir points
[6]. The actual OSC is specified by the combination of the PIs, the EGPs, and
the stopping decisions. For each step, also multiple functions can be provided.

After the initialization of the state in which the archive is initialized and
information about the chosen PI and EGP are stored, the control parameters
of the OSC are initialized. After each generation of the MOEA, S.M and the
required data structures are updated using the chosen II;. If there are tpmem
measurements, the functions 1 (-) are applied in order to attach the EGP value
for each PIto S. Finally, @ (-) can be applied to determine whether the algorithm
should be stopped.

3.2 Integration of the State of the Art

In this subsection, we will present a survey of the state-of-the-art OSC in chrono-
logical publication date order. These approaches are described using the pro-
posed formalization. A summary is provided in Table [l

Deb and Jain: Running Metrics. Deb and Jain [4] were the first authors who
proposed the investigation of performance metrics over the run of the MOEA.
They used two metrics, one for evaluating the convergence and one for measur-
ing the diversity of PF;. The convergence metric (CM) calculates the average
of the smallest normalized euclidean distance from each individual in PF; to a
precomputed reference set. For the computation of the diversity metric (DVM),
all objective vectors of PF;} are projected onto a hyperplane of dimension m —1
which is then uniformly divided into discrete grid cells. The DVM tracks the
number of attained grid cells and also evaluates the distribution by assigning
different scores for predefined neighborhood patterns. In order to avoid bad
DVM values based on unattainable grid cells, again a reference set is used. The
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Algorithm 1. Implementation of an OSC using the taxonomy definition (eq. [2))
General parameters:
e Multi-objective evolutionary algorithm of interest.
e Multi-objective problem of interest.
® tmax, maximum number of iterations.
e PZ, set of PI functions IT;.
e £GP, set of EGP functions 7.
e SDF, set of stopping decision functions &, k = {1,..., K}.
e Problem-based parameters (reference set, ideal and nadir points).
e Manually defined settings of control parameters (optional).
Initialize state S.
Initialize control parameters of IT;, 7;, and Py.
t=0.
while ¢ < tmax do
t=t+1.
Perform one generation of the MOEA and obtain PF7.
for each indicator I1; in PZ do
Update input data S.M and PI-dependent information, S = IT;(PF},S).
end for
if |S.M| = tmem then
for each EGP 7; in £GP do
Update EGP value based on S. M, § = 1;(S).
end for
for each stopping decision function @ in SDF do
Compute stop decision, stop(k) = @ (S)
end for
if Vk : stop(k) = true then
Stop MOEA!
return ¢ and S.
end if
end if
end while

EGP and the final decision then rely on a visual inspection of the progression
of the CM and DVM by the user. Consequently, the state S of this criterion
contains the reference set and all values of the CM and DVM computed until
the current generation.

Rudenko and Schoenauer: Stability Measure. Rudenko and Schoenauer [15] de-
fined a stability measure for the PF; of NSGA-II [5]. Their experimental studies
showed that the stagnation of the maximum crowding distance (maxCD) within
PFy is a suitable indicator for NSGA-II convergence. Thus, the standard devi-
ation of the last tem values of the maximum crowding distance is used as EGP
(STD). For the computation, the last tyem — 1 values of maxzC D are contained in
the state S. In each generation, S is updated using the current maxzC'D value and
STD is computed. The decision step requires a user defined threshold ¢ leading
to an NSGA-II termination once the STD falls below this value (Threshold).
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Marti et al.: MGBM Criterion. Marti, Garcia, Berlanga, and Molina [ITI12]
proposed the MGBM criterion (according to the authors’ last names), which
combines the mutual domination rate (MDR) with a simplified Kalman filter
that is used as EGP. The function IT considers PF;_; and PF; and applies
the MDR indicator to update S.M. Thus, the Pareto front of the previous
generation has to be stored in the state S. The EGP function 7" applies the
Kalman filter and updates the Kalman state and the corresponding estimated
error in §. The decision function @ is realized by stopping the MOEA when
the confidence interval of the a-posteriori estimation completely falls below the
prespecified threshold e.

Wagner et al.: Online Convergence Detection (OCD). In the Online Conver-
gence Detection [20] approach, the established performance measures HV, R2-
and additive e-indicator are used as PIs. The function IT updates all tyem PI
values stored in S.M using the current generation PF; as reference set. Con-
sequently, the sets PF;_, — to PF;_; have to be additionally stored in the
state S. In T, the variance of the values in §.M is computed for each PI. More-
over, a least-squares fit of a linear model with slope parameter 3 is performed
based on the individually standardized values in S.M. In @, the variance is then
compared to a threshold variance ¢ by means of the one-sided y2-variance test
with Hop: VAR(S.M) > ¢ and a p-value is looked up. By testing the hypothesis
Hy: B =0 by means of a t-test, a second p-value is obtained. For these tests, the
variance obtained by STD, (3, and its standard error have to be stored in the
state. The same holds for the resulting p-values. The MOEA is stopped when the
p-values of two consecutive generations are below the critical level o = 0.05 for
one of the variance tests (the null hypothesis Hy is rejected) or above o = 0.05 for
the regression test (Hy is accepted). Consequently, the p-values of the preceding
generations have to be stored in S.

In [I9] a reduced variant of the OCD approach for indicator-based MOEA was
introduced. This approach was illustrated for the HV indicator and the SMS-
EMOA [I] (OCD-HV). Since the HV is a unary indicator, only the absolute
HV values have to be stored. The previous PF} can be neglected. For better
compliance with the other PI, the differences to the value of the current set
PF; are stored in S.M in order to minimize the PI. In case the internally
optimized performance indicator monotonically increases, as for the SMS-EMOA
and the HV, OCD should only consider this PI. The regression test can be
neglected. Consequently, the complexity of OCD is reduced by concentrating on
the variance test for one specific PI.

Bui et al.: Dominance-Based Quality of P (DQP). Bui et al. [3] introduce a
dominance-based stability measure which approximately evaluates the local op-
timality of a solution (DQP). The DQP is the only PI that requires many addi-
tional evaluations of the objective function for estimating the ratio of dominating
solutions in the neighborhood of a solution. A Monte Carlo simulation with 500
evaluations per solution in PF; was used. Consequently, the DQP is a very ex-
pensive, but powerful measure. No additional state informations or EGPs are
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required. No clear guidelines for stopping the MOEA are provided. Instead, a
visual analysis of the convergence behavior and possible stagnation phases is per-
formed. However, a clear stopping criterion would be DQP = 0, as this would be
the case when no local improvements are possible. In fact DQP is closely related
to the gradient of a solution in single-objective optimization. In line with this
observation, the authors also use DQP as measure for guiding a local search [3].

Guerrero et al.: Least Squares Stopping Criterion (LSSC). LSSC [9] can be seen
as an approach to integrate both EGP of OCD into a single EGP and to also
simplify the PI computation and the stopping decision. Therefore, only one PI is
considered and the variance-based EGP and the statistical tests for the stopping
decision are omitted. Still, a regression analysis of the PI is performed as EGP
and the PI values of the last tyem generations are updated using the current
generation as reference set. Thus, the last tyem Pareto front approximations
have to be stored in the state S in order to update S.M. In contrast, the PIs
are not standardized allowing the estimation of the expected improvement by
means of the slope . If § falls below the predefined threshold ¢, the MOEA
is stopped. In order to prevent a loss of robustness by omitting the statistical
tests, a threshold for a goodness-of-fit test based on the regression residuals is
computed via the Chebyshev inequality. Only if the model is valid, the estimated
slope is compared to €. Consequently, the analyses performed in OCD and LSSC
differ. Whereas LSSC directly tries to detect whether the expected improvement
falls below the allowed threshold e, OCD tests the significance of the linear
trend whereas the magnitude of the expected improvement is evaluated via the
variance of S.M.

Goel and Stander: Non-dominance based convergence metric. Goel and Stander
[8] use a dominance-based PI based on an external archive of non-dominated
solutions which is updated in each generation. The current archive is stored in S
and is used to determine the CR. The authors provide empirical evidence for the
robustness of the CR, so that no EGP is applied (Direct). The stopping decision
is made by comparing the CR with a predefined threshold & (Threshold).

In addition, an utility-based approach is proposed. The utility is defined as the
difference in the CR between the generations t and ¢ — t e In order to increase
the robustness of the approach, a moving average U; = (Uy+ Uy, )/2 is used
as EGP (Moving). The MOEA is stopped when the utility falls below an adap-
tively computed threshold €aqaptive. Moreover, a minimum CR of CRyin = 0.5
has to be reached in order to avoid a premature stopping due to perturbances
in early generations. The adaptive threshold €adaptive is defined as the fraction
CRinit/(F - tinit) of the initial utility Uini, which corresponds to the first CR
value CRjpjt exceeding 0.5 and the corresponding generation ¢,it. F' is a user
parameter that specifies which ratio of the averaged initial utility CRipit/%init
is at least acceptable. For this version, also €adaptive and U* have to be
stored in S.

t—tmem
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3.3 Discussion

Basically, the existing PIs can be classified with respect to their optimization
goal. One class is formed by the PIs based on analyzing the dominance relation
between the current population (or archive) and a previous one, e.g., MDR
and CR. Other approaches provide information about the distribution (maxCD,
DVM) or local optimality of the solutions (DQP). Only a few of the PI try to
combine some of these goals, e.g., HV, R, Epsilon, and CM, each with different
trade-offs.

The dominance-based PI the convergence of the population to be formally
assessed. The probability of improving the diversity and distribution and there-
with the quality of the discrete approximation of O* is not specifically addressed.
The improvements in these PI will therefore reduce much faster. Moreover, the
magnitude of the improvement generated by a new non-dominated solution is
not considered. This information would be important in order to evaluate an
expected improvement. As shown in the last years [I7], the dominance relation
has only a weak explanatory power for many-objective problems.

The dominance-based PI usually reuse the information provided by the se-
lection method of the MOEA. Thus, they do not require expensive additional
calculations. PlIs like CM, R, and HV have to be additionally computed in each
MOEA generation, where especially the dominated hypervolume has a complex-
ity which increases exponentially with the objective space dimension. Bui et
al. [3] even perform additional evaluations for convergence detection. In general,
the use of additional computational time or evaluations should be kept below
the effort of the alternative option of just allowing the MOEA to precede for an
affordable number of additional generations.

In addition, reference and nadir points, as well as reference sets, can be re-
quired for some Pls, e.g., the reference set for the CM and DVM, the ideal
and nadir point for R2, and the reference point for HV. In contrast to math-
ematical test cases, this information is usually not existing for practical appli-
cations. Strategies to obtain this data have to be derived which could comprise
preliminary algorithm runs, random sampling, or evaluations on a grid cover-
ing the whole search space. Based on approximations of the objective bound-
aries, the normalization of the PI to unit intervals is possible — an approach
that is often recommended [42T]. However, even the normalization can lead
to scalarization effects which make the specification of thresholds difficult [19].
For the dominance-based indicators, usually relative amounts are calculated,
eg., —1 < MDR < 1or 0 < CR < 1, which facilitate the definition of ad-
equate threshold values. Nevertheless, the only reasonable threshold for these
approaches is € = 0 based on the above considerations.

Some methods do not use a distinct EGP. They rely on a single evaluation
of the considered PI. Due to the stochastic nature of MOEASs, it is obvious that
those approaches will not be as robust as alternative ones using an EGP gath-
ering PlIs over a time window. Moreover, the EGP-based approaches are usually
flexible with respect to the kind of integrated PI. By means of a suitable PI,
the performance aspects (e. g., convergence, distribution, spread) which are the
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most important for the optimization task at hand can be considered in the OSC.
In this context, also the considered MOEA has an important role. Mathemati-
cal convergence can only be expected if the corresponding MOEA is based on
this PI, e.g., the SMS-EMOA in combination with the HV [2]. Furthermore,
most OSC are designed for separately using a single PI. As performance of a
MOEA has different aspects [4I21], it should be analyzed if the usage of PIs
covering these aspects of the approximation quality could support an efficient
OSC decision.

Another important OSC design issue is concerned with the choice of the stop-
ping decision. Statistical tests or confidence intervals lend themselves to draw
robust decisions from random variables monitored over time. However, in order
to choose an adequate test or distribution, some assumptions on the behavior
of the considered PI are necessary. As a first approach, Mersmann et al. [I3]
analyze the distribution of the final HV value of different MOEAs. Among other
characteristics it is shown to be unimodal in most cases. Consequently, the use
of classical tests is possible, maybe based on additional transformations.

The parametrization of the OSC requires special attention as well. Parameters
have to be carefully chosen in order to obtain the desired results with respect to
the trade-off between runtime and approximation quality. For most approaches,
no clear guidelines for setting up the required parameters are given or a visual
analysis is suggested [43]. In contrast, Wagner and Trautmann [I9] empirically
derive guidelines for reasonably setting the OCD parameters e, and € based on
statistical design-of-experiment methods. The resulting parameter recommenda-
tions can be found in Table [[l For reasonable comparisons between the OSC,
such kind of studies should also be performed for the other OSC. Furthermore,
the problems and possibilities resulting from a combination of the methods with
respect to the proposed PI, EGP, and stopping decisions should be a matter of
future research. In this context, an analysis of the compatibility of the PI, EGP,
and decision criteria would be of special interest.

4 MATLAB Toolbox for Online Stopping Criteria

In the previous subsection, many open questions in the field of OSC are dis-
cussed. However, all choices of test problems and MOEAs for the analysis of
OSC put a subjective bias to the results. In order to assist researchers in an-
alyzing these questions, a MATLAB toolbox based on the OSC taxonomy was
implemented [I8]. Thus, the framework allows the application of the OSC to
the test problems and favorite MOEAs of the user. Based on the framework, an
interested user can analyze and tune the OSC on his specific setup.

The framework follows the pseudocode provided in Algorithm [l It allows the
arbitrary combination of building blocks which can be used to design an adapted
OSC for the specific task at hand. Consequently, the analysis of the compatibility
of different subfunctions can directly be performed. Within the framework, the
abbreviations of section Bl are used to address the corresponding subfunctions.
Accordingly, each subfunction is documented in this paper.
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The control parameters of the OSC are initialized automatically using default
values. This procedure prevents the user from searching for default values of
the parameters before using the framework and also encourages researchers to
perform parameter studies before proposing an OSC. Nevertheless, experienced
users have the opportunity to specify some of the parameters on their own using
a options structure.

In order to allow arbitrary combinations of IT, 7", and @, as proposed in Algo-
rithm [T} some additional features are integrated within the MATLAB framework:

— The use of different stopping decisions in parallel is possible.

— It is possible to combine the stopping decisions for different PI and EGP
by more than the already proposed rule: all PI for at least one EGP [20].
Further possibilities are: all, any, all EGP for at least one PI, and a majority
voting.

— The standard deviation of STD-EGP is calculated using bootstrapping [7].

The choice of allowing multiple stopping decisions in parallel is motivated by the
different amounts of information provided by the different EGP. The CI- and
t-test-based approaches require EGP that also provide error estimates. By com-
bining these methods with the threshold decision, which will always stop when
the CI- or test-based approaches would, also these EGP can be handled. Thus,
if some information is missing, e.g., the standard deviation after applying the
Direct EGP, the adaptTest- or CInormal-EGP are ignored and only Threshold
decision is used. This enhancement makes the framework more flexible for new
conceptually different stopping decisions.

By means of the formalization through the taxonomy, the interfaces for the
framework are clearly defined. Researchers in the field of OSC can easily integrate
their methods by structuring their OSC following the taxonomy. Then each
subfunction is implemented within the framework, and a benchmark with all
state-of-the-art OSC can directly be performed. As a side effect, a systematic
integration of new OSC into the state of the art is promoted.

5 Conclusion and Outlook

In this paper, a comprehensive overview of sophisticated heuristic online stop-
ping criteria (OSC) for EA-based multi-objective optimization is provided. The
approaches are integrated into a taxonomy by splitting them into their building
blocks which cover the different steps to be performed when applying an OSC.
The presented taxonomy allows comparisons of OSC approaches to be system-
atically performed. The analysis of the strengths and weaknesses of a specific
OSC can be broken down to the responsible subfunctions, e. g., the methods can
be classified by the kind of PI used, the complexity of the EGP, and the integra-
tion of statistical techniques in the decision making. Concluding, OSC methods
relying on an EGP with respect to PIs gathered from preceding generations are
likely to be more robust, but computationally expensive. The additional use of
statistical techniques can further increase robustness, but needs to be adapted
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to the data of the EGP. In contrast, complex and expensive PI like DQP may
not require a sophisticated EGP or stopping decision.

The parametrization of an individual OSC is not an easy task and strongly
influences its performance. Unfortunately, sufficient and comprehensive guide-
lines for the required parameter settings are only presented for a small subset of
the OSC strategies. Moreover, the recommended thresholds for the specific PI
are different, making a fair comparison almost impossible. In order to simplify a
systematic comparison, a MATLAB toolbox [I§] was implemented. This toolbox
is structured according to the building blocks of the presented taxonomy and all
approaches discussed in this paper were integrated. By means of this toolbox,
the expert can evaluate the approaches — and also combinations of them — on
his problem and can then choose the OSC which provides the best performance
with regard to his objectives.

A systematic evaluation and comparison of all presented approaches will be
the main focus of our future research. This includes a parameter tuning, as well
as the combination of algorithmic concepts. To accomplish this, a systematic
performance assessment of OSC has to be proposed and discussed.
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Abstract. The Steady State variants of the Multi-Objective Covariance
Matrix Adaptation Evolution Strategy (SS-MO-CMA-ES) generate one
offspring from a uniformly selected parent. Some other parental selection
operators for SS-MO-CMA-ES are investigated in this paper. These op-
erators involve the definition of multi-objective rewards, estimating the
expectation of the offspring survival and its Hypervolume contribution.
Two selection modes, respectively using tournament, and inspired from
the Multi-Armed Bandit framework, are used on top of these rewards.
Extensive experimental validation comparatively demonstrates the mer-
its of these new selection operators on unimodal MO problems.

1 Introduction

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [9/§] is con-
sidered today as the state-of-the art method for continuous optimization at large,
at least for small to medium-sized search space (up to dimension 100) [7]. Its
efficiency mostly derives from its invariance properties; not only is it invari-
ant with respect to monotonous transformations of the objective function, like
all comparison-based optimization algorithms; it is also invariant with respect to
orthogonal transformations of the coordinate system, thanks to the on-line adap-
tation of the covariance matrix of the Gaussian mutation. The multi-objective
version of CMA-ES proposed by Igel et al. [I0], called MO-CMA-ES, benefits
from these invariance properties (though the hypervolume indicator is not in-
variant) and performs very well on non-separable problems like the THR family.
MO-CMA-ES proceeds as a (u + p) algorithm, where p parents give birth to
w offspring, and the best p individuals in the sense of Pareto dominance (out
of parents plus offspring) become the parents of the next generation. As shown
by [4] however, Evolutionary Multi-Objective Optimization can benefit from
steady-state strategies. Accordingly, two steady state variants, hereafter called
SS-MO-CMA-ES, have been proposed by Igel et al. [I2], implementing some
(1 + 1) selection strategy: a parent is selected uniformly (either from the whole
parent population, or among the non-dominated parents), and is used to gen-
erate a single offspring, which is inserted back into the population at each time
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tract DGT 117 407 Complex Systems Design Lab (CSDL).
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step. Significant improvements over the generational version were reported on
unimodal benchmark problems.

The present paper investigates some alternative choices of the fertile parent in
SS-MO-CMA-ES, based on the conjecture that not all (non-dominated) parents
are equal. Several indicators, estimating the expectation of offspring survival
or its hypervolume contribution, are considered. These indicators are exploited
within a simple tournament selection, or borrowing Multi-Armed Bandits prin-
ciples [2] to deal with the Exploration vs Exploitation dilemma.

This paper is organized as follows. Section [ recalls the basics of MO-CMA-
ES; the generational and the steady state variants are described within a generic
scheme. Section [3 details the proposed parent selection operators and how they
fit in the generic scheme. These operators involve a rewarding procedure estimat-
ing the goodness of parents, and a selection procedure. In Section Ml the resulting
algorithms are experimentally assessed on some well-known benchmark func-
tions, comparatively to the previous versions of MO-CMA-ES, and the paper
concludes with some perspectives for further research in Section [l

2 State of the Art

This section briefly recalls the formal background of multi-objective optimiza-
tion, and the basics of MO-CMA-ES and SS-MO-CMA-ES, referring the reader
to [10] and [I2] for a more comprehensive description.

Let D C R? be the decision space, and let fi,..., f,, denote m objectives
defined on the decision space (f; : D — R). The objective space is given by R™
and the image of x in the objective space is defined as o, = (f1(x),... fm(2)).
Given a pair of points (z,y) € D, it is said that x dominates y (denoted = < y)
iff x is not worse than y over all objectives, and x is strictly better than y on at
least one objective. It is said that o, < o, iff z < y.

2.1 MO-CMA-ES

Originally, MO-CMA-ES involves a set of u (1 + 1)-CMA-ES, each of which
performs step-size and covariance matrix updates based on its own evolution
path, and a Pareto-based survival selection mechanism that selects p individuals
from the population of size 2u built from all parents and offspring.

Regarding the (1 + 1)-ES, the general rules used for the adaptation of the
step-size and the covariance matrix in CMA-ES [9I8] cannot be used within the
(141) setting. Specific rules have hence been proposed [I1], based on the success
rate of the previous evolution steps, a la 1/5th rule [16]. The detailed description
of those rules fall outside the scope of this paper, though their formal description
is given in lines in Algorithm [l for the sake of reproducibility.

Regarding the survival selection mechanism, it is inspired by the Non-
dominated Sorting procedure first proposed within the NSGA-II algorithm
[6]. Two hierarchical criteria are used in turn: the Pareto rank, and the hy-
pervolume contribution [4], that replaces the original crowding distance. Let
A={a1,...,ap} denote a set of p points of the objective space.
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Pareto Ranking. The Pareto ranks w.r.t. A of the points in A are itera-
tively determined. All non-dominated points in A (denoted ndom4 (A) or simply
ndom(A)), are given rank 1. The set ndom(A) is then removed from A; from
this reduced set, the non-dominated points (denoted ndomsy(A)) are given rank
2; the process continues until all points of A have received a Pareto rank. The
Pareto rank of point a € A is denoted PR(a, A).

Hypervolume contribution. The Hypervolume of a set of points A is some-
times also called “S-Metric” [I8]. Let a,.y denote a reference point, dominated
by all points in A. The hypervolume of A is then the volume of the union of the
hypercubes defined by one point of the set and a,.s. Formally,

i=p
H(A) = Volume(U Rect(a;, arey))

i=1

where Rect(a,b) is the hyper-rectangle whose diagonal is the segment [ab]. Tt is
clear that only the non-dominated points in A (i.e. the points in ndom(A))
contribute to the hypervolume. The Hypervolume contribution of some non-
dominated point a is defined as the difference between the hypervolume of the
whole set A and that of the set from which a has been removed.

AH(a, A) = H(A) — H(A\{a})

For dominated points, the hypervolume contribution can also be defined by
considering only the points that have the same rank. More precisely, if PR(a) =
k,i.e. a € ndomy(A), then

AH (a, A) = H(ndomy(A)) — H(ndomy(A)\{a})

Survival Selection in MO-CMA-ES. All above definitions are extended to
points in the decision space as follows. Given a set X = {z1,...2,} in the
decision space, given the set A = {0g1,...,0z,} of their image in the objective
space, the Pareto rank (resp. hypervolume contribution) of any point x in X is
set to the Pareto rank (resp. hypervolume contribution) of o, in A.

Using Pareto ranking as first criterion, and the hypervolume contribution as
secondary criterion (rather than the crowding distance proposed with the original
NSGA-II, as advocated in [4]), a total preorder relation <x is defined on any
finite subset X of the decision space, as follows:

x<xy< PR(z,X) < PR(y,X) // lower Pareto rank
or // same Pareto rank and higher HC (1)
PR(z,X)= PR(y,X) and AH(z,X) > AH(y, X)

Ties on hypervolume contributions are broken at random.
Specific care must be taken with the extreme points of the set, i.e. the points
for which the hypervolume contribution depends on the choice of the reference
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Algorithm 1. (4+X)-MO-CMA-ES Generic MO-CMA-ES scheme

1: g « 0, initialize parent population Q.
2: repeat
3: fork=1,...,)\ do

4: ir, «— ParentSelection(Q9, k);
5: aggﬂ) — al(g);
6: X;C(ngl) ~ XEZ) + O'Z(i)./\/’ (O,Cgi));
7. QW — QWwy {aggm};
8 fork=1,...,\ do
—(g+1) — — (g+1 1
9: /ggcc,117pgi)cc,ik — (1 - cp)p/izcc,lz: + CpsuCCQ(g) <a§‘:), a;c(g+ ));
He+D) (9) _ _s(gH+1) L P e
10: Ok 50y T Ok (8XP{ g T[T e |
11 if I;/izct,llz < pthresh then
g+1) g+1) x;ﬁ(ngl)fx(‘g)
12: Pc,i —(1- cc)pcjC + \/Cc(2 —ce) . R
ik
T
13: C;:(g+1) — (1 — Ccov)C;:(g+1) + Ccovp/c(yi;'—l)p/c(’i-‘rl) N
14: else
15: p'c(gjl) —(1- Cc)Pg?jl);
T
16: C;C(g-‘rl) — (1 — Ccov)C;C(ngl) + Ccov <p;{?€+1)p;€?€+1) + Cc(2 — CC)C;C(ngl));

17 QUtY — {Q(f:)iﬂ <i<p }; // Deterministic Selection according to <)
18: ComputeRewards(Q<g), Q(QH));

190 g«—g+1;

20: until stopping criterion is met.

point. By convention, they are associated an infinite hypervolume contribution,
and they thus dominate in the sense of Eq. ({l) all points with same Pareto rank.

The survival selection in MO-CMA-ES finally proceeds as the standard deter-
ministic selection of the (u + p)-ES algorithm: at generation g, after each of the
1 parents has generated one offspring, let Q(9) denote the union of the y parents
and the p offspring. Then the best p individuals according to <) become the
parents of generation g + 1.

2.2 Generational and Steady State MO-CMA-ES Algorithms

Algorithm [ is a generic description of all MO-CMA-ES algorithms, where pu
parents generate A offspring. Borrowing Igel et al’s notations [12], agg) denotes
some structure containing the i*"* point x; of the population at generation g to-
gether with its parameters related to the mutation (step-size, covariance matrix,
average success rate, ... ).

Lines is the loop of offspring generation: at line Bl the parent is copied onto
the offspring together with its parameters. It is mutated at line[f] (and evaluated).
Then, depending on the success of the offspring (its performance compared to its
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parents’), the parameters of both individuals are updated between lines [§ and [I8]
(update of the covariance matrix in the case of successful offsprin, and update
of success rate and mutation step in any case).

The original MO-CMA-ES thus instantiates the generic Alg.[[by taking A =
and having the parent selection on line @ simply return its second argument
(ix = k, i.e., all parents generate exactly one offspring in turn).

In SS-MO-CMA-ES, A = 1: only one offspring is generated at each generation.
The parent selection (line [ of Algorithm [Il) proceeds by uniformly selecting
either one from the p parents (variant (14 1)-MO-CMA in the following); or one
from the non-dominated parents (variant (p< + 1)-MO-CMA in the following).

The survival selection (line[I7)) then amounts to replacing the worst parent z,
with the offspring if the latter improves on z,, according to <), or discarding
the offspring otherwise.

3 New Parent Selections for Steady-State MO-CMA-ES

After [12], the more greedy variant (u< + 1)-MO-CMA outperforms all other
variants on all unimodal problems. In contrast, on multi-modal problems such
as ZDT4 and THR4, (p+ 1)-MO-CMA performs better than (pu~ + 1)-MO-CMA
[12], but it does not perform too well, and neither does the generational version
of MO-CMA-ES, comparatively to other MOEAs.

These remarks naturally lead to propose more greedy parent selection oper-
ators within SS-MO-CMA-ES (line @ of Alg. []), in order to further improve its
performances on unimodal problems, leaving aside at the moment the multi-
modality issue. A parent selection operator is based on i) a selection mechanism;
and ii) a rewarding procedure (line [I§)). A family of such operators is presented
in this section; the selection procedure either is based on a standard tourna-
ment selection (section Bl), or inspired from the Multi-Armed Bandit paradigm
(section B2). The rewarding procedures are described in section

3.1 Tournament Selection

Standard tournament selection is parameterized from a tournament size t €
IN. Given a set X, t-tournament selection proceeds by uniformly selecting ¢
individuals (with or without replacement) from X and returning the best one
according to criterion at hand (here, the <) criterion, see Eq. (). The parent
selection procedure (line@of Alg.[) thus becomes TournamentSelection(Q(¥)).

The rewarding procedure (line [I8 of Alg.[Il) only computes for each parent its
Pareto rank and Hypervolume contribution.

The Steady-State MO-CMA-ES using t-size Tournament Selection is denoted
(1t ++ 1)-MO-CMA in the following, or (u 4+ 1) for short. Parameter ¢ thus

! The formulation of Algorithm [ was chosen for its genericity. In practice however,
only the surviving offspring will actually adapt their parameters; the update phase
thus takes place after the survival selection (line [IT)).

%2 Tt is thus redundant with the Survival Selection (line [7), and can be omitted.
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controls the selection greediness; the larger ¢, the more often points with high
Hypervolume contribution will be selected on average.

3.2 Multi-Armed Bandit-Inspired Selection

Another parent selection procedure (line @l of Alg. [l) inspired from the Multi-
Armed Bandit (MAB) paradigm is described here. How to define the underlying
rewards (line [[8) will be detailed in next subsection.

The standard MAB setting considers several options, also called arms, each
one with an (unknown but fixed) reward distribution [2]. The MAB problem is
to find a selection strategy, selecting an arm 4(¢) in each time step ¢ and getting
an instance of the corresponding reward distribution, such that this strategy
optimizes the cumulative reward.

An algorithm yielding an optimal result has been proposed by Auer et al. [2];
this algorithm proceeds by selecting the arm which maximizes the sum of an
exploitation term (the empirical quality, or average of rewards the arm has ever
actually received) and an exploration term (enforcing that non-optimal arms be
selected sufficiently often to enforce the identification of the truly optimal arm).

Considering that our setting is a dynamic one (as evolution proceeds toward
the Pareto front), no algorithm with theoretical guarantees is available, and some
heuristic adaptation of the above MAB algorithm is used:

1. The average reward of an arm (a parent) is replaced by its average reward
along a time window of size w;

2. The exploration is enforced by selecting once every arm which i) occurs only
once in the time window and ii) is about to disappear from the time window
(it was selected w time steps ago);

3. In all other cases, the selection is on the exploitation side, and the arm with

best average reward along the last w time steps is selected.

In summary, the MAB-like selection (line [l of Alg. [Il) always selects the parent
with best average reward in the last w time steps, except for case 2 (a current
parent is about to disappear from the time window). Parameter w thus controls
the exploration strength of the selection. Experimentally however, the sensitivity
of the algorithm w.r.t. w seems to be rather low, and w was set to 500 in all
experiments (section [).

3.3 Defining Rewards

This subsection describes the rewards underlying the MAB-like selection mech-
anism (line I8 of Alg.[I]). A key related issue is how to share the reward between
parents and offspring. On the one hand, if an offspring survives, it is better that
some old parents and might thus be a good starting point for further advances
toward the Pareto front. The offspring must thus inherit a sufficient fraction of
its parent reward, to enable its exploitation. On the other hand, the reward of
a parent should be high when it yields good-performing offspring, and in partic-
ular no reward should be awarded to the parent if the newborn offspring does
not survive. Several reward indicators have been considered.
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(¢ 4 1suce). A first possibility is to consider boolean rewards. If an offspring
makes it to the next generation, both the offspring and the parent receives reward
1. Formally:

T(g) —1if a/l(y-‘rl) c Q(g+1)

Such boolean rewards entail a very greedy behavior. The newborn offspring,
receiving 1 as instant reward, gets 1 as average reward over the time window; it
will thus very rapidly (if not immediately) be selected at next parent. Likewise,
its parent which already had a top average reward (it was selected), will improve
its average reward and tend to be selected again.

(#t + Lrank). A smoother reward is defined by taking into account the rank of
the newly inserted offspring:

(g+1)
P9 —q_ rank(ay ) if a/l(g+1) c Q(g+1)
I
where rank(a/l(g+1)) is the rank of the newly inserted offspring in population

Qo+l (using comparison operator =< defined by Eq. ([D); the top individual
gets rank 0). Along this line, the reward ranges linearly from 1 (for a non-
dominated individual with best hypervolume contribution) to 0. A newborn
offspring will here be selected rapidly only if it makes it into the top-ranked
individuals of the current population. The average reward of the parent can
decrease if its offspring gets a poor rank, even if the offspring survives.

(v + 1am,). Another way of getting smooth rewards is based on the hyper-
volume contribution of the offspring. Let us set the reward to 0 for dominated
offspring (noting that most individuals are non-dominated in the end of evolu-
tion); for non-dominated offspring, one sets the reward to the increase of the
total Hypervolume contribution from generation g to g + 1:

) — Z AH(a,Q(g'H))— Z AH(G7Q(9))

acQo+1) acQ(9)

(v + 1am,;). In the early stages of evolution, many offspring are dominated
and the above Hypervolume-based reward thus gives little information. A relax-
ation of the above reward, involving a rank-based penalization is thus defined.
Formally, if & denote the Pareto rank of the current offspring, the reward is:

2]371 Z AH (a,ndomy, (QUHY)) — Z AH (a, ndomy, (Q9)))

ndom, (Q(9+1)) ndomy (Q(9))

r(9) —
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Objective 2

Objective 1

Fig.1. Reward-based multi-objective optimization with bounded population.
7 #6:40.4” means reward 0.4 on 6th iteration.

3.4 Discussion

The difficulty of associating a reward to a pair (parent, offspring) in Multi-
Objective optimization is twofold. On the one hand, defining absolute indicators
(e.g. reflecting some aggregation of the objective values) goes against the very
spirit of MO. On the other hand, relative indicators such as above-defined must
be taken with care: they give a snapshot of the current situation, which evolves
along the population progress toward the Pareto front. The well-founded Multi-
Armed Bandit setting, and its trade-off between Exploration and Exploitation,
must thus be modified to account for non-stationarity.

Another difficulty is related to the finiteness of the population: while new arms
appear, some old arms must disappear. The parent selection, e.g. based on the
standard deterministic selection (Eq. ({l)) is biased toward exploitation as it does
not offer any way of “cooling down” the process. Such a bias is illustrated in Fig.
[l Let the population size of steady-state EMOA be 5, and consider a sequence
of 10 evolution steps, generating 10 new points (oldest, resp. newest points are
black resp. white). At each iteration the parent with best reward generates an
offspring, then 6 points are compared using Eq. (), and the worst point (crossed
out) is eliminated. The instant parent reward reflects the quality of the offspring.
Along evolution, some prospective points/arms are thus eliminated because they
progress more slowly than others, although they do progress, due to the fixed
population size. Expectedly, this bias toward exploitation adversely affects the
discovery of multi-modal and/or disconnected Pareto front. We shall return to
this issue in section [B

4 Experimental Validation

This section reports on the validation of the proposed schemes, comparatively
to the baseline MO-CMA-ES algorithms, detailing the experimental setting in
section 1] before discussing the experimental evidence in section
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4.1 Experimental Setting
Algorithms. The experimentation involves:

— The steady-state MO-CMA-ES with tournament-based parent selection,
where the tournament size ¢ is set to 2 and 10 (respectively noted (p +2 1)
and (p+101));

— The steady-state MO-CMA-ES with MAB-based parent selection, consider-
ing the four rewards described in section B2 (respectively noted (u + 1syee),
(1 + Lrank), (0 + 1am,) and (u+1am,));

— The baseline algorithms include the generational (u + p)-MO-CMA [I0],
and its steady-state variants (u + 1)-MO-CMA and (p< + 1)-MO-CMA [12]

(section 22]).

All parameters of MO-CMA-ES are set to their default values [I0] (in partic-
ular, © = 100); all algorithms only differ by their parent selection procedure.
All reported results are based on 31 independent runs with at most 200,000 fit-
ness evaluations, and median results are reported when the target precision was
reached.

Problems. The well-known bi-criteria ZDT1:3-6 problems [17] and their rotated
variants ITHR1:3-6 [10] have been considered. Note however that the true Pareto
front of all ZDT problems lies on the boundary of the decision space, which
might make it easier to discover it. For the sake of an unbiased assessment, the
true Pareto front is thus shifted in decision space: z} «— |x; — 0.5 for 2 < i < n,
where n is the problem dimension. The shifted ZDT problems are denoted sZDT.
The set of recently proposed benchmark problems LZ09-1:5 [14] have also been
used for their complicated Pareto front in decision space (Fig. H)).

Performance Measures. Following [13], the algorithmic EMO performance is
measured from the hypervolume indicator Iz;. Let P be a p-size approximation
of Pareto front and let P* be the approximate p-optimal distribution of optimal
Pareto points [3]. The approximation error of the Pareto front is defined by
AH(P*,P) = Iy(P*)—Iy(P).

Furthermore, to support an easy comparison of different algorithms across
different problems, all results will be presented 'the horizontal way’, i.e., report-
ing the number of function evaluations needed to reach a given precision. This
procedure rigorously supports claimd3 such as algorithm A is 2 times faster than
algorithm B.

4.2 Result Analysis

All empirical results are displayed in Table [Il These results show that the pro-
posed algorithms generally outperform the baseline MO-CMA-ES approaches,
with the exception of problems sZDT3, IHR6 and L.Z09-5. A first general remark

3 In opposition, a claim such as Algorithm A can reach a precision 10 times smaller
than algorithm B is hard to assess when considering different problems.
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Fig. 2. On-line performances of baseline and proposed variants of steady-state MO-
CMA-ES on sZDT1, IHR1, LZ09-3 and LZ09-4 problems (median out of 31 runs)

is that the steady-state variants of MO-CMA-ES outperform the generational
one on unimodal benchmark problems; as already noted in [I2], the greedier
(1< 4+ 1)-MO-CMA is usually faster than the original steady-state on sZDT and
THR problems; in counterpart, it is too greedy on LZ09 problems (see below).
Another general remark is that (u+1ap,)-MO-CMA is usually more robust and
faster than (u + 1ap, )-MO-CMA; this fact is explained as the former exploit
a better informed hypervolume contribution based reward, considering also the
contribution of dominated points.

The on-line performance of most considered algorithms on sZDT1, THRI,
LZ09-3 and LZ09-4 shows the general robustness of (1+ 1,4nk)-MO-CMA (Fig[2]
displaying AH (P*, P) versus the number of function evaluations). The compar-
atively disappointing results of (u + 1)-MO-CMA on IHR1 are explained from
the structure of the Pareto front, which includes an easy-to-find segment. This
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Fig. 3. Typical behavior of (g + lsuce)-MO-CMA on sZDT2 (left) and THR3 (right)
problems: premature convergence after 5,000 fitness function evaluations

segment can be discovered by selecting the extreme parent (in objective space),
thus with probability 1/u within a uniform selection scheme. Quite the contrary,
reward-based selection schemes quickly catch the fruitful directions of search.

The price to pay for this is depicted on Fig. Bl showing (u + 1sycc)-MO-CMA
on sZDT2 and IHR3 problems. On these problems, a premature convergence
toward a small segment of the Pareto front is observed after circa 5,000 function
evaluations. The interpretation provided for this premature convergence goes
as follows. As one part of the Pareto front is easier to find than others, points
aiming at this part quickly reach their goal; due to non-dominated sorting (and
to the fixed population size), these eliminate other points, resulting in a very
poor diversity (in objective space) of the population. This remark suggests that
some additional diversity preserving technique should be used together with MO-
CMA-ES; note that, even in the original MO-CMA-ES, a premature convergence
is observed on THR3.

LZ09 problems have also been considered because of their non-linear Pareto
front in decision space (Fig. Hl), contrasting with the linear Pareto front of all
sZDT and IHR problems. The results depicted in Fig. @l show that (1 + 1rqnk)-
MO-CMA better approximates the Pareto front than (u + 1) and (u 410 1)-
MO-CMA, for all problems except LZ09-5. It is interesting to note that the
results of (¢ + 1yank)-MO-CMA after 100,000 fitness evaluations match those of
MOEA /D-DE after 150,000 fitness evaluations [14].

Overall (see also Table ), (¢ + lrgnk)-MO-CMA and (u +10 1)-MO-CMA
perform best on most problems, while (1 + 1ag,)-MO-CMA is slightly more
robust. Most generally, all greedy versions of MO-CMA-ES get better results
on problems with a convex Pareto front; on problems with a concave or discon-
nected Pareto front, they suffer from premature convergence, entailed by a loss
of diversity, due to non-dominated sorting and bounded population size.
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Fig. 4. Plots of all 10 populations found by (u 4+ 1)-MO-CMA (left), (@ 410 1)-MO-
CMA (center) and (1 + Lrank)-MO-CMA (right) in the z1 — 22 — 23 space on LZ09-1:5
after 100,000 function evaluations
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Table 1. Comparative results of two baseline EMOASs, namely generational and steady-
state MO-CMA-ES and several versions of steady-state MO-CMA-ES with different
parent selection schemes. Median number of function evaluations (out of 31 indepen-
dent runs) to reach AHtarget values, normalized by Best: a value of 1 indicates the
best result, a value X > 1 indicates that the corresponding algorithm needed X times
more evaluations than the best to reach the same precision.

AHtarget 1 0.1 001 |1 0.1 001 |1 0.1 001 [1 0.1 0.01
sZDT1 SZDT2 sZDT3 sZDT6
Best 2500 12000 47000 | 2500 15000 59000 | 3000 18500 70000 | 4500 141200
(u+p) 73 43 22 [86 43 21 |55 3 1.5 |82 1
(u+1) 6.5 39 21 |76 3.9 2 |51 28 14 |72 11
(u<+1) 15 22 1.7 |1 2 1.5 |13 1.8 1.2 |1
(b421) 37 24 1.5 |44 24 14 |31 17 1 4.3
(4101 12 1 1.1 |14 1 1.3 |1 1 1.3
(p+1am)35 15 1 |34 1.6 1 [25 1.7
(4+1amg,) 17 1.3 1 |18 1.3 1 |11 1.5
(b4 Tsuee) 1.2 1.7 1.1 |16 1 2.1
(44 Lrank) 1 14 1 |14 ) 1 . 1.7 )
IHR1 THR2 IHR3 THR6
Best 500 1500 6000 | 1500 4000 8500 | 1000 6000
(u+p) 84 88 6.9 |64 48 33 [82 5.6
(k+1) 7 73 67 |56 41 29 |7 5
(b<+1) 1 1 3 |1 1.6 1.7 |1 1
(p421) 4 43 4 |33 25 19 |4 3
(p4101) 2 1.6 1.1 |1 1 1 |1 1
(u+1am) 2 1.6 1 |2 1.5 1.2 |25 1.4
(u+1am;) 2 23 1 |13 1.3 1.1 |15 1.2
(4 Lsuce) 2 23 2 |53 27 17 |15 1.9
(1 + Lrank) 2 2 1.5 |16 1.7 13 |15 . 1.6 )
LZ09-1 LZ09-2 LZ09-3 LZ09-4
Best 500 6000 17000 | 3500 144000 1500 35000 120500 | 1000 10000 40500
(u+p) 114 51 32 [36 41 1.2 57 32 24
(k+1) 9 4.7 3 |32 36 1 5 39 25
(b<+1) 2 25 22 |1 1 . 1 43 23
(b421) 6 28 1.9 |22 23 1.7 . 35 27 19
(p4101) 2 1 1 |1 1 14 14 |15 1 2
(u+1am,) 9 21 1.5 |2 ) 1.6 5.6 2 1.8 1
(u+1am;) 2 1.5 1.3 |21 1 2 4.2 25 15 1
(14 Lsuce) 1 21 14 |35 . 1.3 3.6 . 2 35 1.3
(e + Lrank) 1 1.9 1.3 |58 1.1 1.3 16 1 1.5 24 1
LZ09-5
Best 1500 19000
(g + ) 34 1.6
(n+1) 3.3 14
(u<+1) 1 .
(h+21) 2 1
(,u +10 1) 1 1.7
(p+1am) 1.3 .
(n+1am,) 1.6 1.9
(,LL + 1Succ) 1.3
(b + Lrank) 1 15
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5 Conclusion and Perspectives

The goal and main contribution of the paper is to speed up MO-CMA-ES us-
ing new parent selection schemes, based on tournament and reward-based ap-
proaches inspired from the Multi-Armed Bandit framework, in order to quickly
identify the most fruitful directions of search. Experiments on several bi-objective
problems have shown a significantly speed-up of MO-CMA-ES on unimodal prob-
lems (for both generational and previous steady-state variants). However, the
proposed approach results in a poor convergence on multi-modal multi-objective
problems, or problems where some parts of the Pareto front are much easier to
reach than others, such as IHR3 (Fig. Bl and discussion in sections B4l and E.2]).

These remarks open some perspectives for further research, aimed at pre-
serving the benefits of parent selection schemes while addressing the premature
convergence on multi-modal landscapes. A first perspective is to maintain the
points located at the border of the already visited region, and to give them some
chance to produce offspring as well although they are dominated. The question
thus becomes to handle yet another exploitation vs exploration dilemma, and
distribute the fitness evaluations between the current population and the bor-
derline points; it also remains to extend the reward definition for the borderline
points. Such an approach is similar in spirit to the so-called BIPOP-CMA-ES de-
signed to overcome premature convergence within single-objective evolutionary
optimization [7]; BIPOP-CMA-ES proceeds by maintaining one large population
for exploration purposes, and a small one for fast and accurate convergence.

A second perspective is to design a more integrated multi-objective CMA-ES
based algorithm, by linking the reward mechanism used in the parent selection
and the internal update rules of CMA-ES. Indeed, the success rate used to control
the (1 + 1)-ES evolution and the empirical success expectation used in (u +
lsuce)-MO-CMA are strongly related. Further work will consider how to use the
success rate in lieu of reward for parental selection, expectedly resulting in a more
consistent evolution progress. Meanwhile, the CMA update rules might want to
consider the discarded offspring (possibly weighting their contribution depending
on their hypervolume contribution), since they might contain useful information
even though they are discarded. Again, similar ideas have been investigated
in the single objective case: the Active Covariance Matrix Adaptation [I] does
use unsuccessful trials to update the distribution of mutation parameters. Some
other recent proposals [5] might also help accelerating even further the MO-
CMA-ES on separable functions: mirrored sampling systematically evaluates two
symmetric points w.r.t. the mean of the Gaussian distribution, and sequential
selection stops generating offspring after the first improvement over the parent.

Last but not least, the MO-CMA-ES and the proposed parent selection
schemes must be analysed and compared with other state-of-the art MOEAs,
specifically SMS-EMOA [4], the first algorithm to advocate the use of steady
state within EMO to our best knowledge; it also proposed separable variation
operators, resulting in excellent results comparatively to MO-CMA-ES on sep-
arable problems. How to extend these variation operators in the non-separable
case, borrowing approximation ideas from [I5] will be investigated.
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Abstract. In this paper, we examine the problem of maintaining an
approximation of the set of nondominated points visited during a multi-
objective optimization, a problem commonly known as archiving. Most
of the currently available archiving algorithms are reviewed, and what
is known about their convergence and approximation properties is sum-
marized. The main scenario considered is the restricted case where the
archive must be updated online as points are generated one by one,
and at most a fixed number of points are to be stored in the archive
at any one time. In this scenario, the <-monotonicity of an archiving
algorithm is proposed as a weaker, but more practical, property than
negative efficiency preservation. This paper shows that hypervolume-
based archivers and a recently proposed multi-level grid archiver have
this property. On the other hand, the archiving methods used by SPEA2
and NSGA-II do not, and they may <-deteriorate with time. The <-
monotonicity property has meaning on any input sequence of points. We
also classify archivers according to limit properties, i.e. convergence and
approximation properties of the archiver in the limit of infinite (input)
samples from a finite space with strictly positive generation probabilities
for all points. This paper establishes a number of research questions, and
provides the initial framework and analysis for answering them.

Keywords: approximation set, archive, convergence, efficiency preserv-
ing, epsilon-dominance, hypervolume, online algorithms.

1 Introduction

The convergence properties of large classes of multiobjective evolutionary algo-
rithms were seriously considered for the first time in the late 1990s [I89UT7].
These papers laid the foundations for much of the analysis that has gone on to
date, and showed that certain types of elitism combined with a certain type of
generation process lead to convergence (in the limit) to a subset of the Pareto
front (PF). Moreover, they indicated that, to a large extent, properties of a
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multiobjective stochastic search algorithm as a whole can be derived from sep-
arately considering properties of the generation process and properties of the
elite-preserving mechanism.

Today, most multiobjective stochastic search algorithms are elitist in the sense
of keeping an external archive (or memory) in order to capture the output of the
search process. Because the set of minima visited may be very large in a mul-
tiobjective optimization process, it is common to bound the size of the archive.
Thus, properties of the elite-preservation, or archiving, rules used to maintain
bounded archives are of high interest to the community. Our aim in this paper
is to elucidate, in one place, some of the properties of existing archiving algo-
rithms that keep at most a fixed maximum number of points to approximate
the PF. We restrict our attention to sequential archiving of points that arrive
one-by-one, but consider a number of differently motivated algorithms for this
setting. We consider archiving algorithms aimed only at convergence (similar to
ARI1 [I7]), algorithms aimed mostly at ‘diversity (derived from the elite pop-
ulation update rules of SPEA2 [19] and NSGA-II [7]), algorithms that consider
overall approximation quality (epsilon dominance-based [16], grid-based [13], and
based on maximizing hypervolume [ITJI]), including a relatively new proposal
called multi-level grid archiving [I5]. We review the properties of these archiving
algorithms and illustrate them empirically.

2 Preliminaries

We are concerned with vectors (points) in finite, multidimensional objective
spaces. Let Y C R? be a finite objective space of dimension d > 1. An order
relation on Y may be defined as follows: y < ¢/ iff Vi € 1,...,d, y; < y. and
y # y'. Thus < is a strict partial order on Y. Instead of y < y' we may also
write y dominates y'. The set of minimal elements of Y may be defined as

Y i=min(Y, <) ={y e Y, 3y e Y,y < y}.

The set Y* is called the Pareto front (PF). Any other set P C Y with the
property P = min(P, <) will be called a nondominated set.

We are interested in finding approximations of the set Y* of cardinality at
most INV. Such approximation sets are also partially ordered when we extend the
definitions of dominance to pairs of sets as follows. Let P be a nondominated
set. A point y € P is nondominated w.r.t. P iff §y € P,y < y. Let P and Q be
two nondominated sets. Then P < @ iff min(PUQ, <) = P # Q.

2.1 Optimal Approximation Sets of Bounded Size

The partial order on sets defined by < gives the primary solution concept for
determining an optimal approximation set of size at most N, as follows:

! The term “diversity” has no fixed definition in the literature, but it can refer to the
evenness of the spacing between points and/or the extent of the nondominated set.
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Definition 1 (Optimal Approximation Set of Bounded Size). If ACY
is a nondominated set, |A| < N, and B C Y,|B| < N,B < A, then A is an
optimal approximation set of bounded size N of Y*.

This solution concept derives from the dominance partial order only, but is in
general not sufficient to guide a search or archiving process alone. We are now
used to the notion of evaluating approximation sets with performance indica-
tors, and using performance indicators to define other solution concepts that are
compatible with dominance (see below), i.e. they are refinements [21] of it, that
may be more suitable for guiding an archiving algorithm.

2.2 Compatibility of Performance Indicators

Let J be the set of all nondominated subsets of Y. A unary performance indicator
I:J — R is a mapping from the set J to the real numbers. Assuming that the
indicator’s value is to be minimised, we can define compatibility of I with respect
to (J,<). If A, B € J, such that A <t B and I(A) > I(B) then I is a compatible
indicator [10/22]. Analogously, a weakly compatible indicator can be defined by
replacing I(A) > I(B) with I(A) > I(B) in the statement above.

Hypervolume indicator. The hypervolume indicator HYP(A) [20] of an ap-
proximation set A (originally called the S metric in the literature) is the Lebesgue
integral of the union of (hyperectangular, axis-parallel) regions dominated by
the set A and bounded by a single d dimensional reference point that must be
dominated by all members of the true PF. The indicator’s value should be max-
imized. The compatibility of the indicator [12]22] is behind its importance as a
performance assessment method and as a means of guiding search and archiving
algorithms.

Additive € indicator. A point y is said to be weakly e-dominated by a point
y iff Vi € 1,...,d, y. < y; + €. The unary epsilon indicator €,qq(A) of an
approximation set A is defined as the minimum value of € such that every point
in Y* is weakly e-dominated by an element of A. This indicator has been shown
to be weakly compatible with the <i-relation on sets [22] following the proposal
of e-dominance as a means of evaluating and obtaining approximation sets [16].

3 Archivers, Convergence and Approximation

Similarly to earlier papers [I6JI36], the setting we consider is that some genera-
tion process is producing a sequence of points (objective vectors) (y™M, 3, .. .),
and we wish to maintain a subset of these minima in an archive A of fixed
maximum size, |[A| < N. We denote by A; the contents of the archive after the
presentation of the ¢-th objective vector. An archiver, i.e., an archiving algorithm
for updating A with y, is an online algorithm [2] as it has to deal with a stream
of data with no knowledge of future inputs. Knowles and Corne [13] previously
showed that this online nature of the task means that no archiver can guarantee
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to have in its archive min(N, |Y;*|) where Y;* is the set of minimal elements of the
input sequence up to a time ¢. A corollary of this, not previously stated explicitly,
is that no online archiver of bounded size can deliver an ‘optimal approximation
set of bounded size’ even in the weak sense of Definition [

3.1 Convergence and Approximation Definitions

When analysing an archiver’s behaviour, we may be interested in how it performs
in general input sequences of finite length, where points do not necessarily appear
more than once in the sequence. This scenario models a one-pass finite sample
of the search space. Or we may be interested in sequences where every point is
seen an infinite number of times [I7]. When considering the one-pass setting,
we wish to know whether the archive is always a good approximation of the
input sequence (at every time step). When considering the behaviour on points
drawn indefinitely from a finite space, we wish to know whether convergence
ever occurs (does the archive stop changing eventually?), and if so, what kind
of approximation set is obtained, i.e. what is the archiver’s limit behaviour. The
following definitions expand on these ideas. The first four are properties that
apply to one-pass settings (which also imply they are limit properties, too). Two
limit-behaviour definitions follow.

Definition 2 (C Y™*). No point in the archive is dominated by a point in the
input sequence: Vt, Yy € A,y € Y.

Definition 3 (diversifies). An archiver is efficiency preserving [9] when full,
if Vt, |A¢] = N,y € Apq iff FY € A,y < y'. That is, it cannot accept points
outside of the region dominating the current archive, thus limiting the diversity
of points in the archive. We say that an archiver without this property diversifies
by discarding a nondominated point from the archive to accept the new one.

Definition 4 (negative efficiency-preserving [9]). There does not exist a
pair of points y € Ay and y' € A,, t < v such that y dominates y'. Let an
archiver that does not have this property be said to deteriorate.

Definition 5 (<-monotone). There does not exist a pair of sets Ay and A,,
t < v such that Ay << A,. Let an archiver that does not have this property be said
to <-deteriorate.

Definition 6 (limit-stable). For any sequence consisting of points drawn in-
definitely with a strictly positive probability from a finite set, there exists at such
that Vv > t, Ay = A,. That is, the archive set converges to a stable set in finite
time.

Definition 7 (limit-optimal). For any sequence consisting of points drawn
indefinitely with a strictly positive probability from a finite set, the archive will
converge to an optimal bounded archive (see Definition ).

Table [[l summarises the properties of the eight archivers in terms of Definitions
2-7. An illustration of some of these concepts is given in Fig. [
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Fig. 1. Illustrations of some convergence concepts. (Left) Consider that {a,b} is an
archive; then an efficiency-preserving archiver may only accept a point in the (dom-
inating) shaded region. If it accepts a’ (removing a) this is also negatively efficiency
preserving because the total region dominated is a superset of the region dominated by
a, as indicated by the dashed lines. (Middle) Consider a different archive represented
by ¢ and d. In this case, a negatively efficiency preserving archiver can cause points
to be unreachable, since only points within either of the shaded regions can now be
accepted (adapted from Hanne [9]). (Right) Points e and f illustrate how the e-Pareto
archiver manages to guarantee that only Pareto optimal points are in its final archive.
Two points in the same box cannot co-exist so one will be rejected from the archive.
Let us say it is f. Only points which dominate e are allowed to populate the box in the
future. Since the intersection of the region dominating e and the region dominated by f
is empty, this ensures that, although f is no longer in the archive, no point dominated
by f ever enters the archive.

3.2 Basic Archiver Pattern

Six of the eight archivers we study (all except for the two e-based ones [16]) follow
the scheme of Algorithm [Il These archivers describe a class called “precise” [0].
It is helpful for the later analysis of each individual archiver to observe the
properties of Rules 1 and 2 (see Algorithm 1). Rule 1 is efficiency-preserving [9],
which means that the region that contains points that dominate the archive after
application of the rule is a subset of this region before the rule was applied. The
rule is also negative efficiency preserving (Ibid.), which means that the region
dominated by the archive after application of the rule is a superset of this region
before. Rule 2 on the other hand is just negative efficiency preserving. For other
properties of the algorithms described below, see Table [

3.3 Unbounded Archive

Trivially, the archiver yields the Pareto front of the input sequence. Although
it is negative efficiency preserving [9] (Def. ), it does not suffer from the curse
of unreachable points (Ibid.) because these only occur when the set of points is
also size limited.
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Table 1. Types of convergence behaviour displayed by the archivers, and broad indi-
cation of time complexity for archive update. P denotes polynomial in N and d, and
E(d) expresses exponential in d.

Archiver C Y™ diversifies negative <- limit- limit- Complexity
efficiency- monotone stable optimal
preserving

Unbounded + + + + + + P
Dominating - - + + + + P

€-approx - - + - + + - P

e-Pareto  + + + + + - P

NSGA-II - + - - - - P

SPEA2 - + - - - - P
AGA - + - - - - P
AAs - + - + + + E(d)
MGA - + - + P
Algorithm 1. Basic Archiver Pattern
Input: A;_1,y
if 3y’ € Ai—1,y’ <y then
Ay — min(A—1U{y}) //Rulel
else if |min(A;—1 U{y})| < N then
Ay — min(A,—1U{y}) // Rule?2
else
Ay — filter(A;—1 U {y}) // filter(-) returns a set of size N
end if
Output: A

3.4 Dominating Archive

The simplest way to achieve an archive of fixed maximum size is to implement the
Basic Archiver with the filter(-) function that just returns A;_;. In other words,
this archiver admits only dominating points whenever it is at full capacity. This
archiver, when connected to a suitable sequence-generating process, is similar to
the AR1 algorithm [I7]. Due to the use of Rules 1 and 2 in combination (only),
the archiver is negative efficiency preserving. Two corollaries of this are that the
archive cannot deteriorate [9] (Def. ), and it will always contain a subset of the
Pareto front of the input sequence. However, the archiver gives no guarantee of
approximation quality, and, in practice, especially for small IV, it will tend to an
almost efficiency preserving behaviour where it shrinks into a small region of the
Pareto front. The archive may also contain points that are not Pareto optimal in
the input sequence (even though deterioration does not occur), because |A| may
fall below N (due to Rule 1) and points dominated in Y may be accepted because
the dominating point in Y* was previously rejected entry into the archive due
to rule filter(-), at an earlier timestep when the archive was full.
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3.5 Adaptive e-Approx Archiving

The e-approx archiver [I6] does not follow our previous pattern. In this algo-
rithm, a point is accepted only if it is not e-dominated by an archived point. If
it is accepted, then A; « min(A4;_1 U {y}), as usual. For fixed ¢, it was shown
that the archive is always an e-approximate set of the input sequence of finite
size (but not limited to any fixed value).

Laumanns et al. [I6] also describe an adaptive scheme in order to allow a
user to specify a maximum archive size N, rather than an e value. However,
this scheme often results in too large values of € with the result that too few
points are archived (e.g. compared to AGA) [I4]. Hence, although the archiver is
<-monotone, it is not limit-optimal. Other properties are summarised in Table [Tl

3.6 Adaptive e-Pareto Archiving

The second archiver in [I6] uses the idea that objective space can be discretized,
via €, into equivalence classes called ‘boxes’, so that every objective vector be-
longs to precisely one box. Within a box, only one point is allowed to exist in
the archive, and the update rule within a box allows only a dominating point to
replace the incumbent (see Fig. 1). This scheme guarantees that every point in
the archive is Pareto optimal wrt the input sequence. This is the only archiver
here that has this property and maintains a size-bounded archive.

Similarly to the e-approximate archiver, a scheme to adapt € on the fly was
also proposed in [16] so that an archive limited to N points could be obtained.
But this adaptation scheme does not facilitate reducing e if it starts or becomes
too large, with the result that the archiver keeps too few solutions, preventing
it from being limit-optimal.

3.7 NSGA-II Archiver

The NSGA-II algorithm [7] assigns different selective fitness to nondominated
points on the basis of their crowding distance, a coarse estimate of the empty
space that surrounds a point. Our NSGA-II archiver follows the scheme of the
Basic Archiver (Algorithm [I]), and implements the filter(:) function by removing
the point with minimum crowding distance [7].

Since crowding distance is independent of dominance, no convergence guar-
antees can be made. It does not yield a subset of the nondominated points from
the input sequence, in general. More importantly, the archive may <i-deteriorate
(Definition []), and we later show this empirically in Section 4l Moreover, even
on a sequence constructed from an indefinite random sampling of a finite space,
the archive may never settle to a stable set.

3.8 SPEA2 Archiver

The external population update of SPEA2 [19] was designed to prevent some
of the regression and oscillation observed in the original SPEA. Our SPEA2
archiver follows the scheme of the Basic Archiver (Algorithm [II), but uses the



On Sequential Online Archiving of Objective Vectors 53

distance to the k-nearest neighbour as the density measure in the filter(-) func-
tion, as is used in SPEA2 for update of the external population.

The SPEA2 archiver has similar properties to NSGA-II archiver in terms of
convergence and approximation: The archive can <I-deteriorate, and the archiver
is not limit-stable. Moreover, we show in Section that even for a sequence
of all Pareto-optimal points, the diversity measure of SPEA2 may lead to very
poor approximation quality.

3.9 Adaptive Grid Archiving (AGA)

Adaptive grid archiving uses a grid over the points in objective space in order
to estimate local density. Its filter(-) rule in the instantiation of Algorithm 1 is

Ay — A1 Uyt \ {ye. € C}

where y. is a point drawn uniformly at random from C|, the set of all the vectors
in the “most crowded” grid cells, excluding any points that are a minimum or
maximum on any objective within the current archive.

The archive rule is neither negatively efficiency preserving nor efficiency pre-
serving, so AGA can deteriorate. Neither is it <-monotone, a more serious prob-
lem. Only under special conditions (the grid cells are correctly sized and the grid
stops moving) does a form of approximation guarantee become possible [11].

3.10 Hypervolume Archiver AAg

This archiver was first proposed by Knowles [I1] and follows the pattern of
Algorithm [Il with the filter(-) rule:

A — arg Jnax {HYP(A)},
N

where A is the set of all subsets of A;_1U{y} of size N. In the one pass scenario,
greedily removing the least-contributor does not ensure that the hypervolume is
maximized over the whole sequence [4]. In Section 3] we provide an example
where AAg clearly does not maximize the hypervolume. This also means that
it is neither negative efficiency preserving nor efficiency preserving: A point in
the archive may be dominated by one that was previously in the archive, i.e., it
may deteriorate. However, since the hypervolume never decreases, the archiver
is <-monotone (Definition [H).

The behaviour in the limit fulfills the solution concept (Definition [), i.e. it
is limit-optimal. The archive will be a set of min(N, |Y*|) Pareto-optimal points
after sufficiently long time, since if a set of size N has its maximum hypervolume
value (out of all sets of such size) then all the points are Pareto optimal [8]
Theorem 1].

Bringmann and Friedrich [5] have proved that hypervolume approximates the
additive e indicator, converging quickly as N increases. That is, sets that maxi-
mize hypervolume are near optimal on additive € too, with the ‘gap’ diminishing
as quickly as O(1/N).
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Updating the archive may be computationally expensive for large d and N.
But despite the intractability of finding the point contributing least to the hy-
pervolume in a set, approximation schemes may be good enough in practice [3].

3.11 Multi-level Grid Archiving (MGA)

The multi-level grid archiving (MGA) algorithm [I5] can be thought of as com-
bining principles from AGA and the e-Pareto archiver. It was designed from the
outset to maintain at most N points, achieving this by using a hierarchical fam-
ily of boxes (equivalence classes) of different coarseness over the objective space.
Specifically, when comparing solution at coarseness level b € Z, the components
y; of their objective vectors y € R? are mapped to (integral) values |y; - 27°] to
define its boz index vector at level b.

The archiver follows the pattern of Algorithm 1. Its filter(-) rule works by
first determining the smallest level b where at least one of the N 41 candidates’
box index vector is weakly dominated. The new candidate y is rejected if it
belongs to the points that are weakly dominated at this level b; otherwise an
arbitrary solution from this set is deleted. Through this adaptive determination
of the right coarseness level for comparison, the behaviour observed in the e-
archivers of ending up with too large an € value can be avoided, as we later show
experimentally in Section Tl

The archiver is neither negatively efficiency preserving nor efficiency preserv-
ing, which means that it does not guarantee that its archive contains only Pareto
points of the input sequence. We provide an example of this in Section €3l Nev-
ertheless, it is shown in [I5] that any archive update strictly increases a unary
performance indicator compatible with dominance (i.e., it is <t-monotone, see
Def. Bl), like the hypervolume archiver AAg. However, unlike the AAg, MGA
does not calculate this unary indicator explicitly, which makes it computation-
ally more tractable than AAg. In particular, its time complexity is O(d- N%- L),
where L is the length of the binary encoded input, therefore polynomial.

4 Empirical Study

Despite their crucial importance in the quality of MOEAs, there is surprisingly
little experimental work on the behaviour of different archivers [T6IT3/6]. We
provide in this section experiments that confirm the observations in the previous
sections, and illustrate some properties of popular archivers that have not been
described in the literature.

We have implemented the various archiving algorithms in C++ within a com-
mon framework. We make available the initial version of this framework at
http://iridia.ulb.ac.be/~manuel/archivers in order to help future anal-
ysis. We plan to extend this framework in the future with other archivers found
in the literature.

In this section, we empirically analyse the reviewed archiving algorithms. In
order to focus on the properties of the algorithms, we study the performance
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Fig. 2. Small PF (2D) N = 10

of the algorithms when presented with particular sequences of points. The se-
quences studied have been generated in order to highlight some characteristics
of the algorithms.

We evaluate the quality of the algorithms with respect to the hypervolume and
unary e-indicator. In all sequences, we run the unbounded algorithm and keep
the Pareto front at each iteration of the sequence. In the case of the additive e
measure (€,44), the reference set is the optimal PF (which is the final unbounded
archive). Then, for each archiver and at each iteration, we calculate €,q44(A4:) —
€add(Unbounded;). Similarly, for the hypervolume we calculate the reference point
over the final unbounded Pareto front as

ri =max f; + (1 + (1/(N —1))) - (max f; — min f;)).

Then, we calculate the ratio HYP(A;)/HYP(Unbounded;), for each iteration ¢
of the input sequence.

In all sequences, the objective functions are to be minimized, without loss of
generality since the sequences are finite, we could always transform them into
an all-positive maximization problem and the results will stand.

4.1 MGA Addresses Key Weakness of e-Archivers

In both e-approximate and e-Pareto algorithms, the € may become arbitrarily
large with respect to the extent of the Pareto front. Knowles and Corne [14]
showed that this occurs, for example, when the initial range of objective values
is much larger than the actual range of the Pareto front. In that case, the initial
estimate of € is much larger than actually needed, but since € cannot decrease,
the algorithms end up accepting fewer points than V. This situation occurs even
with a small initial estimate of ¢ = 0.0001, as we use in the experiments here.
We ran experiments on two sequences proposed by Knowles and Corne [14], of
length 10000 and dimensions 2 and 3, respectively. Fig. [2 and Fig. [3l show that
these sequences are not a problem for MGA. Moreover, while MGA is able to
maintain an archive size of |A| = 20, e-approximate and e-Pareto only keep 2
and 1 solutions respectively just after 4 000 iterations until the end.
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4.2 MGA vs. AA; for Clustered Points

We use a clustered sequence of 900 points in two dimensions to show the different
final sets archived by AA, and MGA. Fig. @l shows that AA, keeps the extremes
of each cluster, whereas MGA points are not sparsely distributed within each
cluster. The result is that AA g obtains better value in all performance indicators.

4.3 Fast Degradation of the SPEA2 Archiver

We illustrate how the quality of SPEA2 archiver can degrade very fast if points
are added in the extreme of the Pareto front. We generate a sequence of 2000
nondominated points in a straight line, sorted in increasing order of their first
dimension. The top plots in Fig. Bl show that the quality of the archive stored
by SPEA2 archiver degrades very rapidly as the sequence progresses. What is
happening is that SPEA2 keeps the IV — 1 initial solutions plus the new extreme,
which replaces the old extreme. Therefore, at every step, the gap between the
new extreme and the N — 1 initial solutions increases further. The final archives
are shown in the bottom plot of Fig.[El All but one solutions archived by SPEA2
are clustered in the left-most extreme of the PF.

The plot also shows that neither MGA nor AA; obtain a perfect approxi-
mation, which for this particular sequence would mean a uniformly distributed
archive. Since they do not have knowledge about the real range of the PF, they
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cannot accurately decide when to keep a solution close to the moving extreme.
Nonetheless, MGA and AA; do not suffer the fast degradation in approximation
quality shown by the SPEA2 archiver.

4.4 The NSGA-II Archiver <-Deteriorates

It is possible to construct a sequence of points such that the NSGA-IT archiver
removes points from its archive that are Pareto-optimal and includes points
that are dominated in such a way that the archived set may be dominated by
a previously archived set, and therefore, we say that the quality of the archive
has <-deteriorated over time (Definition [). Fig. [l shows the final archive stored
by Unbound, AA;, MGA and NSGA-II. Except for the extremes, the rest of
the final archive stored by NSGA-II archiver is dominated by solutions stored
in previous archives. In fact, for this sequence, the archive at step t = 58 is
dominated by the archive at step ¢ = 56. It is possible to construct different
sequences that show the same behaviour for the SPEA2 archiver.

4.5 MGA Is Not Negatively Efficiency Preserving

In general, MGA is not negatively efficiency preserving, since the final archive
may contain points that are dominated by points that were previously in the
archive and deleted. This is exemplified in the sequence shown in Fig. [ for
N = 4. In this sequence, MGA deletes point d after archiving point e. Then,
a and b become dominated by f, and g is accepted into the archive, despite it
is dominated by d. A sequence showing that AA, is not negatively efficiency
preserving can be constructed by placing g such that it is dominated only by c.
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Fig. 7. The final archive of MGA with
N = 4 is {c,€, f,g}, which is not nega-
tively efficient preserving

5 Conclusions

In this paper we have examined the problem of keeping a bounded size approx-
imation of the Pareto front of a set of points in a d-dimensional (objective)
space, when the elements of the set are only accessed one-by-one. This models
the archiving process of keeping an elite population or bounded size “best-so-far”
outcome in many multi-objective optimizers.

Earlier works on this problem have dealt with algorithms designed to be
stand-alone archivers, such as AGA and e-based archivers. However, the diver-
sity mechanisms employed by popular MOEAs are also archiving algorithms.
In this paper, we have proposed a classification of both kinds of archivers, and
the recently proposed MGA, according to a number of properties not considered
before for this problem (summarised in Table [I]). In particular, we differenti-
ate between negative efficiency preservation and <-monotonicity, and identify
two classes of archivers, one based on compatible indicators (hypervolume-based
AA; and the new MGA), and another based on diversity mechanisms (SPEA2,
NSGA-IT and AGA). This allows us to understand more precisely why the for-
mer class of archivers have better convergence properties than the latter class,
even when points are seen just once. The former cannot <I-deteriorate, even if a
single point in the archive can be dominated by one that was previously in the
archived set. This classification raises the question as to whether there may exist
an archiver of the same class as MGA and AA; that is also negative efficiency
preserving.

In addition, our experiments have shown that the recently proposed MGA
addresses the key weakness of the earlier e-based archivers, however, at the cost
of losing the guarantee of only archiving Pareto-optimal solutions. As a final
observation, we did not find an absolute winner, but a tentative assessment is
that AA; often produces better results with respect to hypervolume, whereas
MGA often obtains the best e-measure values.

This paper has shown that the archiving problem is far from being well-
understood, and we have left open a number of questions. First, we have only
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examined artificial sequences, designed to show the properties defined here. An
interesting extension is to assess the typical performance of the archivers on
multiple runs for various simple geometric sequences in varying dimensions, and
also from points coming from stochastic search on standard benchmark problems.
Second, we have limited ourselves to one-by-one archiving of points and (mostly)
a one-pass setting. We know that updating the archive with more than one point
simultaneously cannot be a worse approach, and for hypervolume it has already
been shown to be superior. Therefore, understanding how the properties defined
here extend to other update scenarios is an open research question. Third, we
plan to extend this work to other archivers found in the literature, and to foster
that project we also provide the archivers and artificial sequences used here to
the communityE Fourth, we plan to use competitive analysis techniques from
the field of online algorithms to obtain worst-case bounds, in terms of a measure
of “regret” for archivers. Finally, after highlighting some weaknesses of existing
archivers, we ask whether designing a better archiver is possible, and what trade-
offs exist in its design.

Acknowledgments. Manuel Lépez-Ibanez acknowledges support from the FRFC
project “Méthodes de recherche hybrides pour la résolution de problémes complexes”.
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Abstract. Traditional Evolutionary Multiobjective Optimization tech-
niques, based on derivative-free dominance-based search, allowed the con-
struction of efficient algorithms that work on rather arbitrary functions,
leading to Pareto-set sample estimates obtained in a single algorithm
run, covering large portions of the Pareto-set. However, these solutions
hardly reach the exact Pareto-set, which means that Pareto-optimality
conditions do not hold on them. Also, in problems with high-dimensional
objective spaces, the dominance-based search techniques lose their effi-
ciency, up to situations in which no useful solution is found. In this
paper, it is shown that both effects have a common geometric struc-
ture. A gradient-based descent technique, which relies on the solution
of a certain stochastic differential equation, is combined with a multiob-
jective line-search descent technique, leading to an algorithm that indi-
cates a systematic solution for such problems. This algorithm is intended
to serve as a proof of concept, allowing the comparison of the proper-
ties of the gradient-search principle with the dominance-search principle.
It is shown that the gradient-based principle can be used to find solu-
tions which are truly Pareto-critical, satisfying first-order conditions for
Pareto-optimality, even for many-objective problems.

1 Introduction

Since the early days of Evolutionary Multicriterion Optimization (EMO) theory,
the main arguments in favor of the employment of EMO techniques instead of
classical mathematical programming techniques in multiobjective optimization
problems (MOPs) have been stated as:

— Evolutionary algorithms are able to perform a global search, solving MOPs
even in the case of multimodal functions, with disconnected Pareto-sets;

— Evolutionary algorithms do not rely on gradient calculations, which means
that they may be used even in the case of non-differentiable, discontinuous,
or noisy functions;

R.H.C. Takahashi et al. (Eds.): EMO 2011, LNCS 6576, pp. 61[-75] 2011.
© Springer-Verlag Berlin Heidelberg 2011
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— EMO algorithms are able to produce a set of several Pareto-set sample solu-
tions in a single algorithm run, unlike the classical techniques, which require
one algorithm run to find each non-dominated solution;

— EMO algorithms are able to generate automatically a set of well-distributed
samples of the Pareto-set, in contrast with the classical techniques, that
require the variation of the algorithm parameters in order to perform a sweep
of the Pareto-set.

Those reasons indeed provided motivation for the development of EMO tech-
niques by almost 20 years. The EMO paradigm is usually articulated, by contrast
with the classical nonlinear programming paradigm, according to the (somewhat
loose) association described as:

Paradigm Problem functions Method features
Classical unimodal, differentiable deterministic, gradient-based
EMO multimodal, non-differentiable stochastic, gradient-free

This paper revisits the foundations of such a paradigm delimitation, raising
back the possibility of building algorithms that: (i) deal with multimodal and
differentiable functions; and (ii) employ the principle of stochastic search, using
a gradient-based machinery. The motivations for this study may be stated by
the following reasoning;:

— Although the derivative-free dominance-based search principle of most evo-
lutionary algorithms indeed allows to perform the optimization of rather
generic functions under the only assumption of weak locality, there is still a
large class of functions of practical relevance, for which the derivative infor-
mation is available.

— When a function belongs to a class for which some gradient-based descent
procedure may be applied, the usage of such a kind of procedure is often the
most efficient way to perform its optimization, frequently leading to search
procedures that are orders of magnitude faster than other procedures such
as cutting planes, branch-and-bound, genetic algorithms, and others.

— The search direction methods are usually associated to deterministic searches,
which are inconvenient for the purpose of finding a representative set of
samples of Pareto-sets. On the other hand, evolutionary methods employ
stochastic searches that make the algorithm to visit the “promising” por-
tions of the decision variable space, while a selection procedure provides a
dynamic equilibrium which leads the Pareto-set to become a kind of invari-
ant set that contains the algorithm stable fixed-points. As a result, some
neighborhood of all solutions in the Pareto-set get a non-null probability of
being visited.

— A meaningful combination of stochastic motion and descent-based search
might be a basis for the construction of algorithms which are endowed
with the computational efficiency of descent algorithms, and also with the
ability of sampling the continuous sets of interest, which are to become stable
equilibrium sets of the algorithm.
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— As aby-product of the descent-based search, it allows to reintroduce gradient-
based analytical conditions for Pareto-criticality (the Kuhn-Tucker condition
for efficiency).

The discussion presented here has connections with some recent studies con-
cerning: (i) the hybridization of EMO techniques with deterministic nonlinear
programming techniques, for performing local searches [4UT0/14]; and (ii) the
investigation of the nature of the loss of efficiency of dominance-based search
techniques in many-objective problems [6/TJ9]. The analysis provided by [9] elu-
cidated the mechanism of loss of efficiency of dominance-based search algorithms
in many-objective problems as a matter related to the relative size of the cone
of dominated solutions, compared to its complement. That reference did not
mention the closely related fact that the same phenomenon of shrinking of the
dominated cones also causes the loss of efficiency of the dominance-based mech-
anisms nearby the Pareto-sets, even in problems with few objectives. This effect
can be understood if one realizes that the cone of dominated solutions is bounded
by the planes which are normal to the objective function gradient vectors, and
this cone exactly degenerates to zero volume when the reference point becomes
Pareto-optimal, which is equivalent to the Kuhn-Tucker condition for efficiency
being attained at that point. Therefore, instead of having two different effects
causing difficulties in many-objective problems and in reaching Pareto-optimality
in problems with few objectives, it should be recognized that these are the same
problem. The adoption of gradient-search strategies is perhaps the only struc-
tural solution for this kind of problem, in the sense that the only geometrical
entity that can be accommodated safely inside an arbitrarily shrunk cone is a
line — which suggests a gradient search.

The inspiration for the study presented here can be found in some works
which are contemporary of the first papers on the theme of EMO. In 1994, Rit-
ter and Schaffler proposed an approach for globally solving (single-objective)
optimization problems on multimodal functions, using a method that relied on
the simulation of a stochastic differential equation [7]. A stochastic dynamic sys-
tem with Ito structure, whose equilibrium points were the optimization problem
optima, was defined. The evolution of this system was simulated using a new
predictor-corrector method. The trajectories of this system essentially followed
the direction opposite to the gradient vector of the objective function. This dy-
namic system was shown to visit the several system minima, with the stochastic
part of the dynamics providing the jumps from one attraction basin to another
one. This approach combined the paradigm of “gradient descent”, which was
typical of classical approaches, with the stochastic search, that was central in
the evolutionary computation approach, in order to perform a global search of
the optima of differentiable functions with complex landscapes.

In 2002, Schaffler, Schultz and Weinzierl extended that approach to the mul-
tiobjective case [8] (the algorithm presented in that paper will be called here the
SSW algorithm, for brevity) . A descent direction, calculated using the gradients
of the objective functions, and indicating a direction in which there are points
which dominate the current one, was used in that work in order to define the
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dynamic system trajectories. In this way, the first-order Pareto-critical points be-
come the equilibrium points of the deterministic part of the stochastic dynamic
system. In that paper, it has been shown that any arbitrarily small neighborhood
of any Pareto-critical point is visited, almost surely, by the dynamical system.
Although that work has not reached yet a significant impact in the research on
multiobjective optimization, it raises the possibility of performing a meaning-
ful combination of stochastic search methods with gradient descent methods, in
order to perform the task of Pareto-set estimation.

In 2007, Shukla and Deb evaluated the performance of SSW algorithm, in
a comparison with with the classical EMO algorithm NSGA-II and other al-
gorithms, in benchmark problems with up to three objectives [I1]. That study
shown that the SSW algorithm presented two main drawbacks: (i) It shown
severe difficulties for finding well-distributed Pareto-optimal solutions; and (ii)
When the search point becomes near the Pareto-set, the stochastic component
of the search becomes dominant. This is the main mechanism that makes the
search point to visit the whole Pareto-set, but this also generates a drift be-
havior, which leads the search point to become within a neighborhood of the
Pareto-set, without ever reaching exact solutions from this set.

However, the same study [II] concluded that the gradient-based search of
SSW algorithm was able to generate solution sets quickly, which indicated that
further studies concerning its hybridization with EMO techniques should be
conducted. Some numerical experiments presented here suggest that the SSW
algorithm has an interesting property that was not focused in [I1]: it is able to
deal with problems with high number of objective functions. When this number
grows, the SSW algorithm becomes increasingly better than dominance-based
algorithms, up to situations in which only SSW algorithm works.

This paper presents a hybridization of the SSW algorithm, with the specific
intent to solve drawback (ii) mentioned above. A two-step search is employed,
using SSW algorithm as the first step. The non-dominated points resulting from
SSW are introduced in a local search procedure, which is based on a new mul-
tiobjective golden section line search procedure, proposed in [I3]. Such a local
search machinery is particularly useful in this case, because it generates Pareto-
critical points which necessarily dominate the initial solution (this means that if
the initial solution set is well distributed, the final solution set is likely to keep
this feature), and it remains efficient even for high dimension problems. In this
way, a set of exact Pareto-critical solutions (which verify the Kuhn-Tucker con-
ditions for efficiency) is found, with a small computational overhead in relation
to the basic SSW.

The results of preliminary tests suggest that the proposed direction of research
is promising for dealing, in a unifying way, with the following challenges in
continuous-variable problems: (i) many-objective problems, and (ii) finding exact
Pareto-critical points. The problem of generation of a homogeneous sampling
of the Pareto-set is left for future research, possibly following the guidelines
presented in [12].
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1.1 Notation
The following operators, applied to vector arguments, mean:

(- <) Each coordinate of the first argument is less than or equal to the corre-
sponding coordinate of the second argument;

(- < ) Each coordinate of the first argument is smaller than the corresponding
coordinate of the second argument;

(- < -) Each coordinate of the first argument is less than or equal to the corre-
sponding coordinate of the second argument, and at least one coordinate of
the first argument is strictly smaller than the corresponding coordinate of
the second argument. This relation is read as: the first argument dominates
the second one.

The operators (>), (>) and (>) are defined in the analogous way.

2 Preliminary Definitions and Problem Statement

Consider the multiobjective optimization problem (MOP) defined by the mini-
mization (w.r.t. the partial order <) of a vector of objective functions F(z) =
(Fi(x), Fa(x), ..., Fin(2)):

min F(z)

(1)

subject to z € 2

where F;(x) : R™ — IR are differentiable functions, for ¢ = 1,...,m, and 2 C R"
is the feasible set, defined by

22 (e R" | ga) <0}, (2)

with g(-) : R"™ +— IRP a vector of differentiable functions. Associated to the
minimization of F(-), the efficient solution set, £2*, is defined as:

Q& {z* €| Axe 2 suchthat F(z) < F(z*)} (3)

The multiobjective optimization problem is defined as the problem of finding

vectors * € (2*. This set of solutions is also called the Pareto-set of the problem.
This paper is concerned with the problem of finding vectors which satisfy

certain conditions for belonging to {2*. The following matrices are defined:

H(x) = [VFi(z) VFy(x) ... VFy(z)]
G(z) = [Vggu) (@) Vage) (@) ... Vage) (@) ] (4)
W(x) = [H(x) G(x)]

in which J denotes the set of indices of the active constraints, with r elements.
Then, ¢g;(z) =0<i€ J.
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The linearized feasible cone at a point x, denoted by G(z), is defined as:
Gx)2{weR" | G'(z) -w<0} (5)

Given z € £2, a vector w € IR" is a tangent direction of {2 at x if there exists a
sequence [x]r C 2 and a scalar n > 0 such that:
T — X

lim =2, and lim

= 6
k—o0 kﬂoo’rl ||Ik — l’” @ ( )

The set of all tangent directions is called the contingent cone of {2 at x, and
is denoted by 7(§2,x). In this paper, the following constraint qualification (see
reference [0]) is assumed to hold:

T(2,z) = G(x) (7)

Theorem 1. Consider the multiobjective optimization problem defined by ()
and (@), and assume that the constraint qualification (7) holds. Under such as-
sumption, a necessary condition for x* € 2* is that there exist vectors A € R™
and p € R", with A = 0 and p > 0, such that:

H(z*) - A+ G@*)-p=0 (8)

|

This theorem is a matrix formulation of the Kuhn-Tucker necessary conditions

for efficiency (KTE), that become also sufficient in the case of convex problems

(see, for instance, [2]). The points z* which satisfy the conditions of Theorem

[ are said to be first-order Pareto-critical points. This paper is concerned with
the search for such points.

3 Dominating Cones

The structural difficulties that are inherent to dominance-based search algo-
rithms are discussed in this section, with the aid of two “prototypical” problems,
one for the Pareto-set proximity effect and the other one for the objective space
dimension effect.

Pareto-proximity effect
Consider a bi-objective problem in a two-variable space, with the objective

functions:
fi(@) = (z —21) (z — 21)
f2(z) = (x — 22)"(z — x2) 9)
a1 =1[10]" z=[-10]

Consider now a point at coordinates x, = [0 d]’. The cone with vertex in x, that
contains the points that dominate z, has internal angle 2c, with alpha given by:

T 1
a=, - arctan (d> (10)



On a Stochastic Differential Equation Approach 67

(0,dy)

@l

(9, d2)

(—1,0) 2 (1,0)

Fig.1. (a) The cone of points that dominate (0,d;) makes an angle of a; in relation
to the vertical, while the cone of points which dominate (0, d2) makes an angle oz in
relation to the vertical. (b) Representation of p.(d), with d represented in the horizontal
axis and p, represented in the vertical axis.

This relation can be drawn by direct inspection of figure [[(a). This means that
a mutation applied on x, with uniform probability of falling in any direction
would have a probability p,(d) of generating another point inside that cone:

pald) = 1— fr arctan (Cll) (11)

The graphics of p,(d) is represented in figure [[[b), in logarithmic coordinates.
This graphics reveals the following pattern: (i) for large d, when the point z,
is distant from both 7 and x2, the probability of generating a mutation inside
the dominating cone remains nearby 0.5. There is a qualitative change in this
behavior when z, reaches a distance that is of the order of the distance between
the two minima of individual functions, x; and zo. After reaching this distance,
the probability of further enhancements in z, start to decrease at the same rate
of the decreasing of distance d. This means that each time the distance d is
reduced to a half of a former value, the probability of a further enhancement
becomes divided by two too.

Clearly, there will be a distance d in which the probability of finding any point
that dominates x, becomes very small, even for a large number of independent
attempts. This phenomenon should be considered as the structural reason behind
the largely known incapacity of dominance-based algorithms to reach Pareto-
critical points. These algorithms stagnate at some distance from the Pareto-
optimal set, and the attainment of points belonging to the set is possible only
via local search procedures.

Objective space dimension effect

Another effect that is very similar in structure to the Pareto-proximity effect
is related to the growth in the dimension of objective space. Consider now an
n-objective problem, in a decision variable space also with n dimensions:
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filz) = (z —21) (z — 1)
f2(z) = (z — 22)"(z — x2)

(12)
fala) = (& —zn)'(z — 20)
w1 =[10---0] zn=1[0--01]
Consider now the point z, = (0,0, ...,0), situated at the origin of the coordinate

system. Clearly, the orthant of positive coordinates includes all points that dom-
inate x,, while the other regions of space have points that do not dominate z,.
The probability of a mutation with random direction with uniform probability
will present the following probability pg(n) of falling into the positive orthant:

1

ps(n) =, (13)
Equation shows that the probability of a random mutation to fall into the
positive orthant is divided by 2* when the dimension of the objective space
is multiplied by k. This is the structural cause of the difficulty of dominance-
based algorithms when dealing with the so-called many-objective problems. It
should be noticed that the objective space dimension effect is very similar to the
Pareto-proximity effect, in the sense that both effects, beyond some threshold,
necessarily lead to a stagnation behavior or dominance-based search mechanisms.
It also should be noticed that both effects compose in the same problem in a
multiplicative way. Finally, it is worthy to point out that both effects can be
avoided if a search is conducted toward the dominating cone, for instance using
gradient information.

4 The SSW Algorithm

The SSW algorithm, as presented in [§], is concerned with unconstrained mul-
tiobjective optimization problems (), in which the feasible set 2 = IR". This
section describes this algorithm, following closely the development presented in
[8]. All theorems and the resulting algorithm in this section come from that
reference.

Consider the following quadratic optimization problem for each z € IR™:

2 m

,a1207i:17"'7m7zai:1 ) (14)
i=1

m
|2 VA

where V f;(z) denotes the gradient of the i-th component of the objective func-
tion vector. Let & be a global minimizer of (I4]), and define the following function:
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¢:R" > R", 2 Y &Vfi(w), (15)
i=1
It can be shown that either g(z) = 0 or —¢(x) is a descent direction for all
functions f1,..., fm at x; hence, each x with ¢(x) = 0 is Pareto-critical. The
properties of function ¢(x) allow to define the following initial value problem
(IVP) for multiobjective optimization:

L(t) = —q(x(t)) (16)
The following Theorem holds.

Theorem 2. Let xy = x(0). Consider problem () and the corresponding IVP
(I8), with q(zo) # 0. Assume that the set of points which dominate o is bounded
for all xg € R". Then, a solution x(t) : [0,00[— IR"™ of {IB) exists and is unique
for all zo € R", with

f@) < f(t1),V0<t; <t< 0.

As a consequence of Theorem 2] a numerical resolution of (@) leads to a single
Pareto-critical solution. The following class of It6 stochastic differential equa-
tions is proposed, in order to generate a large set of Pareto-critical solutions:

dXt = —q(Xt)dt + EdBt7 (17)

where {B;} is an n-dimensional Brownian motion, ¢(-) is defined by ([I3]), € > 0
and o € R".

Algorithm 1. - SSW Algorithm -
Input: q(-) :IR® - R", 20 € R"™, ¢ > 0, 60 > 0, jmax

Output: x:.
1: 0 «— o9

2: while j < jmaz do
3: n1 «— N(0,I,)

4: nz «— N(0,I)

5: ns < ni + n2

6wl —a;—oqlzy) — ens(o/2)?

T a(0/2) = z5(0/2)a(x;) — ena(o/2)>

8 a2l —x(0/2) — (0/2)q(x(0/2)) — ena(0/2)?
9: if |z}, — 27,12 < then

10: Tj41 < xj+1

11: else

12: oc—a/2

13: end if

14: end while



70 R.H.C. Takahashi, E.G. Carrano, and E.F. Wanner

In [§] it is shown that, under some technical hypothesis for the function vector
F(-), for each Pareto-critical solution Z, almost all paths of {X;} hit any ball
S(Z, p) centered at T for any arbitrarily chosen p > 0, after a finite time, for all
zo € R™. For the numerical computation of a path of {X;}, the iterative scheme
of Algorithm [ is used.

5 The SSW-LS Algorithm

The lack of ability of the basic SSW algorithm to find Pareto-critical points,
despite the usage of gradient information, motivates the algorithm hybridization
presented here, the SSW-LS algorithm (SSW with Local Search algorithm). The
idea is simply to take the non-dominated points, from the collection of points
generated by SSW algorithm, and run a gradient-based local search procedure
starting in each one, finishing in Pareto-critical points.

Some classical gradient-based iterative methods for multiobjective optimiza-
tion would present difficulties for being inserted in the structure of SSW-LS. For
instance, weighted-sum procedures would not search for Pareto-critical points
which are near to initial solutions [2]. Instead, this method would lead to spe-
cific Pareto-critical points in the Pareto-set, not necessarily near to the initial
point. The references [410] employed an adaptation of the e-constrained search,
while [T4] employed an adaptation of the goal attainment procedure, for per-
forming local searches in multiobjective evolutionary algorithms. However, those
alternatives, based on scalarizations of the multiobjective problem, do not take
advantage of the multiobjective problem structure, relying on mono-objective
algorithms. One should notice that each time a scalarized algorithm runs, it
searches for a specific Pareto-optimal point that is implicitly defined as the min-
imum of the scalarized objective function. However, the evolutionary algorithm
is searching for a set of representative points of the Pareto-set, without an spe-
cific interest for any point. This means that some computational effort is spent
in order to identify points which are not per se relevant, while a much smaller
effort could have been spent if the search were directed toward any efficient point
that could be find.

A multiobjective descent line-search procedure, based on a new multiobjective
golden section unidimensional search, has been proposed in [13]. This procedure
fits the need of SSW-LS algorithm, using the descent direction given by vector
—q(x), and an efficient multiobjective line search algorithm that contracts the
search segment faster than the traditional mono-objective golden section pro-
cedure. As the algorithm is not targeted to any specific point, it can perform
faster searches that identify Pareto-critical points. In [13], it is shown that this
procedure remains efficient even for high dimension problems, with hundreds of
variables. A brief description of the line search procedure is presented in the
next subsection.
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The Local Search procedure of algorithm SSW-LS is presented in Algorithm
2 The input set {Z1,...,T,} comes from the SSW algorithm, and includes only
the non-dominated points of the output of SSW.

Algorithm 2. - LS Procedure -
Input: q(-) :R" — R", {Z1,...,Zp} CIR", ¢4 >0

Output: {x’{, ey x;} % a set of Pareto-critical points
1: fori<—1:pdo

2 T — T;

3 while ||g(z)||2 > €, do

4 d— —q(z)

5: z < multiobjective golden section(z,d, F')

6 end while

7 T —x

8: end for

5.1 The Multiobjective Golden Section Line Search

The detailed proof of the statements presented in this section can be found
n [I3]. The idea is to find a point z* which dominates the current point xg,
such that =* belongs to the Pareto-set of problem (]) constrained to the search
direction. The information available to be used in a line search procedure is
the set of values of function F(-) in points @ = 0 (which represents initially
the current point), @« = a4 and o = ap. The variable a parametrizes the
line segment in which the search is conducted. For brevity, denote: fo = F(0),
fa = F(aa) and fg = F(ap). The vector function C(-,-,-) : R™*® — {0,1}% is
defined as:

C(fo, fa, fB) = [C1(fo, fa, [B) .- Ce(fo, fa, fB)] =
= [(fo = fa) (fo = fB) (fa = fB) (fo < fa) (fo < fB) (fa < [B)]

with each C; a binary number, 1 meaning “true” and 0 meaning “false” for
the result of each comparison. For instance fy > f4 makes C'y = 1, otherwise,
C1 =0 (fo # fa). There are three possible operations for contracting the current
trust-segment (i.e., the segment in which it is known that there exists some point
that belongs to the line-constrained Pareto-set) in a line search that is based on
the function evaluation on points @« = 0, @« = a4 and o = ap. Let a current
trust-segment be [aq, as] C [0, 1]. These operations are named D1, D2 and D3,
as indicated in Table [l

A decision table that “turns on” each contraction operation is shown in Table
Bl This decision table maximizes the contraction of the trust-segment, without
allowing the loss of the line-constrained Pareto set [13].

(18)
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Table 1. The contraction operations on the trust segment [a, 2] C [0, 1]
Contraction operation
D1 discard [0, aa] N [a1, a2]

D2 discard [awa, aB] N [aa, az]
D3 discard [aB, 1] N [a1, asz]

Table 2. Operations performing the maximal trust region contraction

Condition Operation
Cy-Cs D1
4 D2

C1-Ce-C5-Cy-Cs5-Cs D3

The Golden Section Multiobjective Line Search algorithm implements the
segment contraction procedures using the golden section ratio, leading to a
line-constrained Pareto-optimal solution which necessarily dominates the initial
point.

5.2 Results of SSW-LS Algorithm

The following vector function, which can be constructed for any number n of
decision variables and for any number m of objectives (with m < n), has been
used here:

Fi(z) = (v — x;) Ai(z — x;) (19)
in which:
0, ifj#k .,
. LR . ) 0, if )
Ai(j,k)=< 1, ifj=kand j#1 , xl(j){m if]j#:i
i ifj=k=1i ;

The results of some experiments with SSW-LS algorithm are shown in Figure
Bl These experiments were run with ¢ = 0.3, and each gradient evaluation is
counted as (n + 1) function evaluations.

Figure 2Ja) presents a comparison of the Pareto-fronts (the results in the
objective space) obtained with the basic SSW algorithm and with the SSW-LS
algorithm, in the problem instance with 10 decision variables and 3 objective
functions, and with 10000 function evaluations assigned to each algorithm. It
becomes apparent that the SSW-LS algorithm provides a much more well-defined
estimation of the Pareto-set, with solutions that dominate the basic SSW ones,
and with a clear definition of the Pareto-front boundaries.

Figure 2Ib) deals with the problem instance with 10 decision variables and 4
objectives. This figure presents the projection, in the space of the first 3 objec-
tives, of the Pareto-front obtained with SSW-LS. This entity is a solid object in
the IR? space, bounded by 2-dimensional surfaces. It should be noticed that the
solution set delivered by SSW-LS provides a good description of the edges and
of the facets of this object.
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(b)

Fig. 2. (a) Comparison of SSW solutions and SSW-LS solutions, for n = 10 and m = 3.
The SSW solutions delineate a more regular geometric object, with well-defined edges.
(b) SSW-LS solutions, projected in the space of the first 3 objectives, for n = 10 and
m = 4.

6 Results in Many-Objective Problems

An experiment has been conducted for the same function described in ([I9), now
with 30 decision variables and 10 objective functions. Three algorithms have
been compared: (i) a Matlab version of the canonical NSGA-II [3]; (ii) the SSW
algorithm; and (iii) the SSW-LS algorithm. As a merit figure, for the analysis of
the solution quality, it is used here the norm of g(x). This is reasonable, since
llg(z)||2 decreases as x approaches the Pareto-set. It is also known that for any
Pareto-critical point, ||¢(x)|2 = 0, which means that this figure also represents
an absolute criterion that indicates if a point features Pareto-criticality. Figure
shows the results of this experiment.

Figure [ shows the histograms of the value of ||g(z)||2 for the solution sets
obtained by the three algorithms, for a run with 80000 function evaluations, and
for a run with 1 x 10® function evaluations. The similarity of the histograms for
such different numbers of function evaluations suggest that a kind of “terminal
set” has been reached, for all algorithms, within 80000 function evaluations.
Both the NSGA-II and SSW algorithms seem to be unable to further increase
the quality of their solution sets. It should be noticed that, as expected, the
NSGA-II has found a set of points that is very far from the Pareto-set, featuring
llg(z)|l2 = 100. Also as expected, the SSW algorithm has found points that
are located near to the Pareto-set, with ||¢(z)||2 &~ 1. Further enhancements in
the solution set, in this case, seem to be difficult due to the dominance of the
stochastic term in the stochastic differential equation. On the other hand, the
SSW-LS algorithm has reached the exact Pareto-set in both cases, within the
numerical precision that has been established for these experiments (||q(z)||2 =
€g=1x1072).
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Fig. 3. Comparison of SSW solutions, SSW-LS solutions and NSGA-II solutions, for
n = 30 and m = 10. The graphics represent the histogram, in logarithm scale, of

the value of ||g(z)||2 for the solution set of each algorithm, for the cases of: (a) 80000
function evaluations, (b) 1 x 10° function evaluations.

7 Conclusions

This paper presented an algorithm for multiobjective optimization, the SSW-LS
algorithm, based on the stochastic differential equation approach of [§] and on
the multiobjective line search procedure of [13], which is intended to develop
some analysis concerning the structural causes of seemingly uncorrelated dif-
ficulties of multiobjective optimization: (i) many-objective problems; and (ii)
problems in which truly Pareto-critical solutions are required. The geometric
structure of performing searches toward descent cones seems to underly those
problems, and indicates that gradient-based (or other directional-based) searches
might constitute a solution. The proposed algorithm is an instance of a more
fundamental discussion about the roles of different mechanisms in multiobjec-
tive optimization. In synthesis, the current data acquired up to now indicates
that (i) to reach the Pareto-set, deterministic steps should be the dominant ef-
fect in the algorithm; (ii) to sample the Pareto-set, a stochastic search over an
equilibrium set should play a main role; and (iii) to reach exact Pareto-critical
solutions, deterministic procedures performing a descent search, finding solutions
that dominate the initial point, should be employed.
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Abstract. Relaxed forms of Pareto dominance have been shown to be
the most effective way in which evolutionary algorithms can progress
towards the Pareto-optimal front with a widely spread distribution of
solutions. A popular concept is the e-dominance technique, which has
been employed as an archive update strategy in some multiobjective evo-
lutionary algorithms. In spite of the great usefulness of the e-dominance
concept, there are still difficulties in computing an appropriate value of
€ that provides the desirable number of nondominated points. Additio-
nally, several viable solutions may be lost depending on the hypergrid
adopted, impacting the convergence and the diversity of the estimate set.
We propose the concept of cone e-dominance, which is a variant of the e-
dominance, to overcome these limitations. Cone e-dominance maintains
the good convergence properties of e-dominance, provides a better con-
trol over the resolution of the estimated Pareto front, and also performs
a better spread of solutions along the front. Experimental validation of
the proposed cone e-dominance shows a significant improvement in the
diversity of solutions over both the regular Pareto-dominance and the
e-dominance.

Keywords: Evolutionary multiobjective optimization, evolutionary al-
gorithms, e-dominance, Pareto front.

1 Introduction

The assessment of the quality of estimates of Pareto-optimal fronts produced by
evolutionary multiobjective algorithms is itself a multi-criteria problem. A high-
quality approximation set should: (i) approach the true Pareto front as close as
possible, and (ii) be well-spread along its extension [I]. To fulfill these goals, a
Pareto-based fitness assignment method is usually designed in order to guide
the search toward the global Pareto-optimal front, whereas density estimation
methods as crowding [2] or clustering [3] are commonly employed to preserve
the population diversity.
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A few years ago, Laumanns et al. [4] proposed a relaxed form of dominance
for MOEASs, called e-dominance. This mechanism acts as an archiving strategy
to ensure both properties of convergence towards the Pareto-optimal front and
properties of diversity among the solutions found. Since this technique guarantees
that no two achieved solutions are within an ¢; value from each other in the it"
objective, the € value is usually provided by the designer to control the size of
the solution set. Nevertheless, as the geometrical features of the Pareto-optimal
front are commonly unknown by the designer, the e-dominance strategy can lose
a high number of viable solutions when the € value is badly estimated.

In spite of the great usefulness of the e-dominance concept, the way in which
the solutions are selected within each hyperbox presents several drawbacks. The
main one refers to the difficulties in computing an appropriate value of € to
provide the desired number of nondominated points. Moreover, this approach
tends to neglect viable solutions located on segments of the Pareto front that
are almost parallel to the axes of the objective space, as well as the extreme
points of the Pareto front, contributing negatively to the spread of solutions
along the extension of the estimated Pareto front [5].

In order to address some of these limitations, we propose a relaxation of the
strict dominance concept, based on an extension of the e-dominance scheme
named cone e-dominance. The cone e-dominance relaxation aims at maintaining
the good convergence properties of e-dominance, while providing a better control
over the resolution of the estimated Pareto front, providing a dominance criterion
that is less sensitive to the geometrical features of the Pareto front than the e-
dominance.

This paper is organized as follows: Section [2] reviews the basic definitions
of the e-dominance approach. Section [B] contains a detailed description of the
cone e-dominance approach. Section [ describes the performance metrics used
to evaluate the proposed strategy, and Section Bl presents a comparative analysis
of the proposed approach, and discusses the results obtained. Finally, conclusions
and future directions are given in Section

2 Pareto e-Dominance

Although Laumanns et al. [4] have proposed two e-dominance methods, only
the additive scheme will be discussed hereinafter. Assume that all objectives f;,
i € {1,...,m}, are to be minimized, and also that 1 < f; < K, for all i. Then,
given a vector y € R™ and € > 0, y is said to e-dominate ' € R™, denoted as

Y < y’, if and only if,
yi —e<uy. forallie{l,...,m} . (1)

Note that the previous definition can be generalized by considering a different
€ value for each objective. Essentially, this e-dominance mechanism generates a
hypergrid in the objective space with ((K — 1) /€)™ boxes which accommodate
a maximum of (K —1) /)™ ' non e-dominated points. Supposing that the
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designer wants a maximum of T non e-dominated points in the archive, the €
value can be easily calculated ad] € = (K — 1) /Tmlf1 .

According to Laumanns et al. [4], a two-level selection mechanism is imple-
mented in the e-dominance approach. First, it creates a hypergrid in the objec-
tive space where each box uniquely contains one vector. Basically, a box-level
dominance relation is used, so that the algorithm always maintains a set of
nondominated boxes, thus guaranteeing the diversity property. Second, if two
vectors share the same box, the usual Pareto dominance relation is applied, so
that the best one is selected and convergence is guaranteed. However, if none of
these two vectors dominates the other, it is usual to keep the point closest to the
origin of the box, i.e., to the corner where all objectives would have the lowest
values within that box.

3 Pareto Cone e-Dominance

First, let us present a conceptual interpretation of the proposed cone e-domi-
nance approach. To this end, both e-dominance and cone e-dominance strategies
are contrasted in Fig. [l In order to get a nondominated solution set, the cone
e-dominance mechanism entails both the shaded region and the standard Pareto
dominance, i.e., the hypervolume dominated by y using the cone e-dominance
approach represents a relaxation of that dominated by y when using the usual
dominance (see Fig. . So, this relaxation enables the approximation of non-
dominated points in some adjacent boxes that would be e-dominated. Note also
that cone e-dominance can be seen as a hybrid between e-dominance and the
proper efficiency with respect to cones discussed in [6].
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(a) e-dominance. (b) cone e-dominance.

Fig. 1. Illustration of the e-dominance and cone e-dominance concepts for a bi-objective
minimization problem

! The e-dominance strategy is only able to obtain this number T in cases where the
Pareto-front is linear. For other cases this value is merely an upper limit, with the
actual number of nondominated points found being much smaller [5].
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3.1 Basic Definitions

Before we present the formal definition of the cone e-dominance strategy, let us
define some important concepts.

Definition 1. (Cone) A set C is a cone if \y € C for any y € C and VA > 0. O

Definition 2. (Generated cone) The cone generated by the vectors w; and
wo is the set C = {Z 1 Z2 = MW + Asws, VA1, Ao > O} O

Note that the concept of a generated cone can be extended to m dimensions.
Thus, the hypercone generated by the vectors w;, ¢ € {1,...,m}, is the set
C={z:z=M w1+ Nwa+ ...+ \w; + ...+ A\pwn,, YA, >0}

Based on these definitions, we suggest a mechanism to control the hypervo-
lume dominated by a specific cone C. Consider the illustrations in Fig.[2l For the
2D case (Fig. , it is easy to see that? wi = [ ﬁeg]T and wy = [keg 62]T
The cone C can therefore be rewritten as:

z ' A
SN A S \f;\\
. | *1 €1 K€y 1
C= {z. [zz] o |:/<L€2 €2 ] {)\2} VAL Az ZO} 2)

in which the parameter £ € [0,1) controls the opening of the cone C, and ¥ is
the cone-dominance matrix, which in fact controls the hypervolume dominated
by C. Notice that the cone e-dominance strategy tends toward the e-dominance
strategy when k — 0.

S /5
= 7 -
| o, [
o,
Iw:2 i .
& z ‘ K&,
r"”-.f-2
!
5 A
(a) Control mechanism in 2D. (b) Control mechanism in 3D.

Fig. 2. Mechanism used in the cone e-dominance approach to control the hypervolume
dominated by a specific cone

2 With respect to the origin of the box.
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For the 3D case (Fig. [2(b)]), the process is the same. Though we have plotted
only the first vector, it can be seen that w1 =[e1 ke /<;e3]T, wy = [Ke €9 /<;e3]T,
T . . o
and w3 = [ke; ke €3]” . In this case, the cone-dominance matrix is given by:

€1 K€l KeEp
U(er,€2,€3,K) = | kea €2 Kea | - (3)
K€3 KE3 €3
By induction, when i € {1,...,m}, we get ¥ — R™*™ ije.,
€1 K€1 ... K€
K€y €2 ... K€y
W(Gi, K/) = . . . . : (4>
K€m K€m . €m

Finally, we can formally define the cone e-dominance strategy.

Definition 3. (Cone e-dominance) Given two feasible vectors y, y' € R™,
y is said to cone e-dominate ¥y’ if and only if, y Pareto-dominates ¢’ or the
solution of the linear system WA = z, with 2 = ¢y’ — [y — €], and ¢; > 0, gives

Ai > 0Vie{l,...,m}. Equivalently, we say y o y’ if and only if|
y=<y) vV WAx=z| )\ >0foralli={1,...,m}) . (5)
O

3.2 Maintaining a Cone e-Pareto Front

The convergence and diversity properties are satisfied by maintaining a Cone e-
Pareto front. The convergence property is ensured by storing the nondominated
solutions in the archive H. In addition, since each box accommodates only a
single vector, the diversity property is also guaranteed.

As we have observed for the e-dominance, the archive update function in the
cone e-dominance strategy also uses a two level concept. On the first level, the
objective space is discretized into boxes, each box containing a single vector.
Applying the cone e-dominance relation at these boxes, the algorithm always
maintains a set of non cone e-dominated solutions, ensuring the diversity pro-
perty. For that, every solution in the archive is assigned a box index (b):

(6)

bi(y) €; lyi/€i] , for minimizing f;

S ) € [yi/e] , for maximizing f;
where || and [-] return, respectively, the closest lower and upper integer to
their argument. On the second level, if two vectors share the same box, the
former solution is only replaced by a dominating one or by a point closest to the
origin of the box, thus guaranteeing convergence. Algorithm [[] summarizes these
concepts.
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Algorithm 1. Archive update function performed by cone e-dominance.

Input: H, ¥,y
1 begin
2 if y is cone e-dominated by any ¥y € H then
3 Reject y;
4 else if y shares the same box with an archive member 3y’ then
5 if y dominates y' ory is closer to the origin of the box than y' then
6 Delete all of the cone e-dominated archive members;
7 Replace y’ by y;
8 else
9 Reject y;
10 else if y cone e-dominates any y' € H then
11 Delete all of the cone e-dominated archive members;
12 Insert y into the archive;
13 else
14 Insert y into the archive;
15 end
Output: H’

3.3 Evaluating the Archive Size

Again, assume that all objectives f;, i € {1,...,m}, are to be minimized, and
also that 1 < f; < K, for all i. As observed for the e-dominance, the cone e-
dominance approach divides the objective space into ((K — 1) /€)™ boxes, and
at each box no more than one point can be in H at the same time. Since the usual
dominance relation ensures a monotonic front between the extreme boxes of the
hypergrid, the maximum number of boxes that can be “touched” by any front is
limited. However, the estimation of feasible solutions inside these touched boxes
depends on the connectivity of the Pareto front and also of the s value.

In general, if any connected monotonic front exists between the extreme boxes
of the hypergrid, then the number of boxes that are touched by this front is max-
imum. Figs. and illustrate two possible situations in which the number
of estimated cone e-Pareto solutions is maximum, i.e., equal to the number of
boxes that are touched by the front. For both cases, the number of estimated
solutions is five and seven, respectively. These values are calculated as:

K -1 m—1 K -1 m—2
| (M) (00)
€ €

Fig. presents a possible situation in which a disconnected front has been
stated. For this case, the maximum size of H cannot be reached, however, it
is still likely to estimate one solution from each box touched by the front. The
e-dominance approach, on the other hand, can only achieve the upper bound for
the number of points allowed by a grid when the real Pareto front is linear [5].

+1. (7)
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Finally, note that the definition in (@) can be generalized by considering a
different e for each objective. Observe also that specific bounds on the objective
values are not used in the Alg.[[land are not required to ensure the convergence.
They are only employed to demonstrate the relation between ¢ and the size of
the archive H.
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(a) Connected front. (b) Concave surface. (c) Disconnected front.

Fig. 3. Illustration of the relation between e and the size of the archive ‘H

4 Experiments and Validation of the Proposed Approach

In order to validate the proposed cone e-dominance approach, three algorithms
are considered for the experimental study: the first employs the standard Pareto
dominance relation; the second uses the e-dominance strategy; and the third is
implemented by modifying the second one, replacing the e-dominance mechanism
by the cone e-dominance approach. This process will enable us to show the
performance of the same algorithm with and without cone e-dominance. The
three multiobjective evolutionary algorithms are presented next:

1. NSGA-II: This algorithm has been proposed by Deb et al. [2]. In general
terms, the parent and offspring populations are combined and evaluated
using the fast nondominated sorting approach, an elitist approach, and an
efficient crowding mechanism.

2. eMOEA: This approach has been proposed by Deb et al. [7}[8], and consists
of a steady-state MOEA based on the e-dominance concept introduced in [4].
In this method, two populations (evolutionary population and archive) are
evolved simultaneously, and two offspring solutions are created by using one
solution from each population. Each offspring is then used to update both
parent and archive populations. Note, however, that the archive population
is updated based on the e-dominance concept, whereas an usual domination
concept is used to update the parent population.

3. conee-MOEA: This is a modification of the e MOEA approach, in which
we include cone e-dominance instead of the regular e-dominance concept.
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