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Preface

The 16th edition of the International Conference on Discrete Geometry for Com-
puter Imagery was held in Nancy, France, April 6–8, 2011, and was organized
by the ADAGIo team of the LORIA laboratory (Lorraine research center in
computer science and its applications). DGCI 2011 attracted many researchers
from all around the world. Indeed, 70 papers were submitted, from 22 different
countries, confirming the international status of the conference. The contribu-
tions focus on models for discrete geometry, discrete and combinatorial topol-
ogy, geometric transforms, discrete shape representation and analysis, discrete
tomography and discrete and combinatorial tools for image segmentation and
analysis.

Following a thorough reviewing process, remodeled for DGCI 2008, 40 papers
were accepted and published in the present LNCS volume. Altogether, 20 pa-
pers were scheduled for oral presentation in single-track sessions, and 20 papers
were presented as posters, with preliminary plenary sessions with very short oral
presentations of these posters.

In addition, the program was enriched by three invited lectures, presented
by internationally well-known speakers: Agnes Desolneux (CNRS researcher,
MAP5, Paris Descartes University, France), Jarek Rossignac (Professor, GVU
Center, Georgia Tech, USA), and Jean Serra (Professor Emeritus, ESIEE-LIGM,
Paris, France).

For the first time, the 16th edition of DGCI hosted a demonstration session.
The purpose of this session was to provide the opportunity to present and share
effective applications related to the main topics of DGCI.

DGCI 2011 was supported by the International Association of Pattern Recog-
nition (IAPR), and is the main conference associated with the Technical Com-
mittee on Discrete Geometry (TC18) of IAPR.

Hereby, we would like to thank all contributors who responded to the call for
papers of DGCI, the invited speakers, all reviewers and members of the Steering
and Program Committees, as well as all participants of DGCI. We would also
like to express our gratitude to the LORIA Laboratory and INRIA Nancy-Grand
Est (French National Institute for Research in Computer Science and Control)
for hosting this event and providing all the necessary facilities. We finally thank
our sponsoring institutions for providing the financial support essential for a
successful event.

April 2011 Isabelle Debled-Rennesson
Eric Domenjoud

Philippe Even
Bertrand Kerautret
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A Probabilistic Grouping Principle to Go from
Pixels to Visual Structures

Agnès Desolneux

MAP5 (UMR CNRS 8145), University Paris Descartes,
45 rue des Saints-Pères, 75006 Paris, France

Abstract. We will describe here how the Helmholtz principle, which is
a principle of visual perception, can be translated into a computational
tool that can be used for many problems of discrete image analysis.
The Helmholtz principle can be formulated as “we immediately perceive
whatever has a low likelihood of resulting from accidental arrangement”.
To translate this principle into a computational tool, we will introduce a
variable called NFA (Number of False Alarms) associated to any geomet-
ric event in an image. The NFA of an event is defined as the expectation
of the number of occurrences of this event in a pure noise image of same
size. Meaningful events will then be events with a very low NFA. We
will see how this notion can be efficiently used in many detection prob-
lems (alignments, smooth curves, edges, etc.). The common framework
of these detection problems is that they can all be translated into the
question of knowing whether a given group of pixels is meaningful or not.
This is a joint work with Lionel Moisan and Jean-Michel Morel.

Keywords: grouping laws, Gestalt theory, Helmholtz principle, rare
events, alignments, edge detection, segmentation.

1 Introduction

When one looks at an image, one usually can see in it many geometric structures
(straight segments, curves, homogeneous regions, etc.). But these objects are not
really present in the image, they are only the result of our visual perception that
is able to group pixels together according to some geometric criteria. Now, how
can this grouping phenomenon be translated into a mathematical and compu-
tational principle in order to make a computer “see” geometric structures in an
image? This can be achieved by formalizing and using the so-called Helmholtz
principle, that we explain now.

1.1 Helmholtz Principle

The Helmholtz principle is a principle of visual perception that can be formulated
two ways:

1. The first way is common sensical. It simply states that “we do not perceive
any structure in a uniform random image”. In this form, the principle was
first stated by Attneave in 1954 [1].

I. Debled-Rennesson et al. (Eds.): DGCI 2011, LNCS 6607, pp. 1–12, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 A. Desolneux

2. In its stronger form, the Helmholtz principle states that whenever some
large deviation from randomness occurs, a structure is perceived. In other
words: “we immediately perceive whatever has a low likelihood of resulting
from accidental arrangement”. It has been first stated under this form in
Computer Vision by S.-C. Zhu [2] and D. Lowe [3].

Fig. 1. Top left: an image of pure noise (pixels have independant identically distributed
grey levels following the uniform distribution on {0, 1, . . . , 255}). In this image, no
visual structure is perceived. Top right: an image made of 27 points, such that 7 of them
are aligned and the 20 others are randomly positioned. The alignment is immediatly
perceived and will be detected by the a contrario method we will present (result on
the bottom left figure). Bottom right: when there are 80 random points instead of 20,
the fact to have 7 points aligned is not a rare event anymore, and we don’t perceive it,
even if it is there.

Given a geometric structure, Helmholtz principle tells us that we immediately
perceive it if it has a low probability of resulting from randomness. But what
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are the “interesting” structures for our visual perception? This question (among
others) has been studied by the Gestalt School of Psychophysiology. We briefly
recall part of their work in the following section.

1.2 Gestalt Theory

Before the development of Gestalt Theory, there were many psychophysiologi-
cal experiments based on optic-geometric illusions (see for instance the left part
of Figure 2). The aim of these illusions is to ask: “what is the reliability of
our visual percpetion?” But Gestalt theory (developed by Wertheimer, Metzger,
Kanizsa - see [4] for instance) does not continue on the same line. The question
is not why we sometimes see a distorted line when it is straight; the question is
why we do see a line at all. This perceived line is the result of a construction
process. Gestalt theory starts with the assumption that there is a small list of
active grouping laws in visual perception: vicinity, same attribute (like colour,
shape, size or orientation), aligment, good continuation, symmetry, parallelism,
convexity, closure, constant width, amodal completion, T-junctions, X-junctions,
Y-junctions. Moreover, all grouping Gestalt laws are recursive: they can be ap-
plied first to atomic inputs and then in the same way to partial Gestalts already
constituted. This is illustrated by the right part of Figure 2.

Fig. 2. Left: Zoellner’s Illusion (1860). Right: the same Gestalt grouping laws namely
alignment, parallelism, constant width and proximity, are recursively applied not less
than six times.

2 A Computational Tool: The Number of False Alarms

Having now a grouping principle (Helmholtz principle) and visually relevant
structures in images (the ones that obey Gestalt grouping laws), we can com-
bine this into a general framework which is the one of the so-called a contrario
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methodology. The general description of this methodology is the following. Given
n geometric objects O1, . . . On, let Xi be a variable describing an attribute (po-
sition, colour, orientation, size, etc...) of Oi. Then define a Null Hypothesis H0
(that is a noise model also called a contrario model): X1, . . . , Xn are independant
identically distributed. Now, consider an observed geometric event E concerning
k of the objects (for instance if Xi are spatial positions we observe X1, . . . , Xk

are very close). The question is: can this observed geometric event E happen
by chance? In other words, what is its likelihood under H0? To answer this, we
define a computational tool called Number of False Alarms that is defined as the
expected number of occurrences of the event E under H0:

NFA(E) := EH0 [number of occurrences of the observed event].

If the statistical test “NFA(E) � ε” (for ε fixed and small, meaning ε � 1) is
positive then E is said to be an ε-meaningful event. When ε = 1, we simply talk
about meaningful event.

We will see in the following through many different exemples that the NFA
defined above is a universal variable adaptable to many detection problems. A
detailed presentation of the whole a contrario methodology and its applications
can be found in the book [5].

3 Examples

3.1 Alignments in an Image

The first example of the a contrario method we give here is the detection of align-
ments in a discrete image [6]. It corresponds to the grouping of pixels according
to the parallelism of their orientation. Let us detail this.

Given a discrete image of size N × N pixels, at each pixel, we can compute
an orientation (⊥ to the gradient). The noise model H0 is defined by: pixels at
distance � 2 have i.i.d. orientations, uniformly distributed on [0, 2π).

Definition 1 (Meaningful segment). Let S be a sequence of l consecutive and
aligned pixels such that k of them have their orientation aligned with the one of
the segment at a given precision p (see Figure 3). We say that the segment S is
ε-meaningful if:

NFA(S) = N4 × B(l, k, p) = N4
l∑

j=k

(
l

j

)
pj(1 − p)l−j � ε.

Let us explain the formula for the NFA. The first term is the number of tests that
we make: it is thus the total number of discrete straight segment in the image,
that is � N4. The second term is the binomial tail: it is the probability that,
under the noise model, at least k pixels among l pixels have their orientation
aligned with the orientation of the segment according to the precision p.
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Fig. 3. A discrete straight segment made of l pixels taken at distance 2. At each pixel
xi, there is an orientation θ(xi) and it is said to be aligned with the orientation θS of
the segment according to precision p when |θ(xi) − θS| � pπ.

The main property is then that the expected number of ε-meaningful segments
in a pure noise image of size N × N pixels is less than ε.

Now, when a segment is very meaningful (meaning that NFA(S) << ε), then
many segments it contains, or is contained in, are also meaningful. We thus need
a kind of “selection rule”, or “minimal representation rule” to keep only the
“best representatives”. Thanks to the NFA, we can compare segments, and we
then decide to look only at segments which are local minima of the NFA, in the
sense of the following definition.

Definition 2 (Maximal Meaningful segment). A segment S is maximal
meaningful if it is meaningful and if ∀S′ ⊂ S (resp. S′ ⊃ S), then NFA(S′) �
NFA(S) (resp. NFA(S′) > NFA(S)).

Fig. 4. From left to right: the original image, all meaningful segments, maximal mean-
ingful segments
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Fig. 5. An image (scan from a painting by Uccello), and its maximal meaningful align-
ments

3.2 Meaningful Boundaries

A second application of the a contrario method is the very general and very
studied problem of “edge detection” in an image. The aim is to divide the image
into “homogeneous” regions (this is the problem of Image Segmentation in Com-
puter Vision). And the dual approach consists in finding the boundaries of these
regions - as “highly” contrasted curves (this is the problem of edge detection).

As for the meaningful alignment, we first need to define the structures we
look for and also the noise model. At each pixel x of an image u of size N × N ,
we start by defining the contrast c(x) by c(x) = |∇u|(x). And then, the noise
model is simply given by the empirical distribution of the contrast in the image
with the additional independance hypothesis, which means that the probability
that a pixel has a contrast larger than μ is given by

H(μ) = P (c(x) � μ) =
1

N2 #{y/|∇u|(y) � μ},

and pixels at distance larger than 2 are assumed (in the noise model) to have
independant contrasts.

Finally, what are the candidate to be edge curves in the image ? It is not
possible to look at all the curves in the image, and good candidates are the level
lines of the image (defined as the boundaries of the level sets). Let thus Nll be
the number of level lines in the image. We then have the following definition.

Definition 3 (Meaningful boundaries). Let C be a level line of the image,
with length l and minimal contrast μ. We say that C is an ε-meaningful boundary
if

NFA(C) = Nll × H(μ)l � ε.

For the same reasons as the ones explained for meaningful alignments, we also
need here a notion of maximality. We can then define maximal meaningful
boundaries as local minima of the NFA for the relation of inclusion of level
sets (see details in [7]). Also the same method can be applied to pieces of level
lines (instead of whole level lines), and we then obtain meaningful edges.
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Fig. 6. Top: original image. Middle: all meaningful boundaries. Bottom: maximal
meaningful boundaries.

3.3 Meaningful Good Continuations

Instead of looking at the contrast accross a level line, one can look at its regularity
and see if it is more regular than “what we would expect in pure noise”. This
has been formalized by F. Cao in [8], and to keep the Gestalt theory term, such
curves are called “good continuations”. Thus, the aim is to look for meaningful
“smooth” curves, without any contrast information.

Let Γ = (p0, . . . , pl+1) be a discrete curve of length l, and let θ be its maximal
discrete curvature (see also Figure 7):

θ = max
1�i�l

|angle(pi+1 − pi, pi − pi−1)|.
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θi
pi pi

�
1

pi � 1

Fig. 7. A discrete curve is a sequence (p0, . . . , pl+1) of points, and its maximal discrete
curvature can be defined as θ = max1�i�l |θi|

The noise model here is that the angles are i.i.d. uniform on [0, 2π), i.e. the
curve is a “random walk”. Let Nc be the number of considered curves (usually
the number of pieces of level lines in the image).

Definition 4 (meaningful good-continuation). We say that a discrete
curve Γ is an ε-meaningful good-continuation if

θ <
π

2
and NFA(Γ ) = Nc

(
θ

π

)l

< ε.

Again, we have a definition of maximality: a meaningful good-continuation Γ is
maximal meaningful if: ∀Γ ′ ⊂ Γ , NFA(Γ ′) � NFA(Γ ) and ∀Γ ′ � Γ , NFA(Γ ′) >
NFA(Γ ). And interesting property is then that: if Γ and Γ ′ are two maximal
meaningful good-continuations on the same level line, then Γ ∩ Γ ′ = ∅.

Fig. 8. From left to right: the original Image (painting by Kandinsky), all the level lines
(with some quantization step for grey levels), maximal meaningful good-continuations

3.4 Similarity of a Scalar Attribute

Another application of the a contrario methodology is the grouping of objects ac-
cording to any scalar attibute (like grey level, or orientation, etc.) More precisely,
assume we have M “objects”, and each of them as an attribute q ∈ {1, 2, . . . , L}.
Let a � b be two attibute values and let G be the group of objects (among the
M objects) such that their scalar attribute q satisfies a � q � b. Then denote
k the cardinality of G and define its NFA under the noise model that attibute
values are i.i.d. uniform, by

NFA(G) = NFA([a, b]) =
L(L + 1)

2
· B

(
M, k,

b − a + 1
L

)
.
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Fig. 9. From left to right: image (INRIA) of the church of Valbonne, maximal mean-
ingful good-continuations, maximal meaningful boundaries

(In this formula, notice that L(L + 1)/2 corresponds to the total number of
possible groups that can made this way, and B denotes again, as in the case of
meaningful alignments, the tail of the binomial distribution). The group G (or,
in an equivalent way, the interval [a, b]) is said ε-meaningful when NFA(G) � ε.
And again, using the relation of inclusion of intervals, we can define maximal
meaningful groups (intervals).

A first application is the study of an image grey level histogram. Indeed,
looking for the maximal meaningful intervals of this histogram is a way to obtain
an automatic grey level quantization of the image. See an illustration of this on
Figure 10.

(a) (b) (c)

Fig. 10. Maximal meaningful intervals and optimal grey level quantization of a digital
image. (a) original image. (b) histogram of grey-levels of the image with its single
maximal meaningful interval [69, 175] (between the dotted lines). (c) Quantized image:
black points represent points in the original image with grey level in [0, 68], grey points
represent points with grey level in the maximal meaningful interval [69, 175] and white
points represent points with grey-level larger than 176.
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Fig. 11. Uccello’s painting: maximal meaningful alignments and histogram of orien-
tations. Two maximal meaningful intervals are found in this histogram corresponding
respectively to the horizontal and vertical segments.

Instead of using a uniform assumption for the noise model distribution of
attributes, we can more generally use any distribution or class of distributions.
For instance, we can define meaningful groups according to an attribute that
is assumed to have a decreasing distribution (like the length, the area, etc.) by
setting for the Number of False Alarm of an interval [a, b]:

NFA([a, b]) =
L(L + 1)

2
· max

p∈D
B
(

M, k,

b∑
i=a

p(i)

)

where k is the number of objects having their attribute value in [a, b] (i.e. it is
the cardinality of G) and D is the set of decreasing distributions on {1, ..., L}.

An example of application is the recursivity of grouping as formulated by the
Gestalt theory. See Figures 11 and 12 for some illustrations and comments of
this.

Fig. 12. Gestalt grouping principles at work for building an “order 3” Gestaltist de-
scription of the image (alignment of blobs of the same size). First row: original DNA
image (left) and its maximal meaningful boundaries (right). Second row: left, barycen-
ters of all meaningful regions whose area is inside the only maximal meaningful interval
of the histogram of areas; right, meaningful alignments of these points.
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4 Conclusion

Through many illustrations, we have seen that Helmholtz principle combined with
Gestalt grouping laws can become, through the definition of a Number of False
Alarms, a powerful computational tool. It can then be used in many applica-
tions in detection problems, but also in shape recognition (Musé et al. [9]); image
matching (Rabin et al. [10]); epipolar geometry (Moisan and Stival [11]), motion
detection and analysis (Veit et al. [12]); clustering (Cao et al. [13]); stereovision
(Sabater et al. [14]); image denoising (by grain filters, Coupier et al. [15]); etc.
The main advantage of the whole a contrario methodology is that, thanks to the
framework of statistical testing, it provides a validation of found structures and
also a way to set the different thesholds of a given problem in an automatic way.
An interesting research direction is then the comparison of these predicted thresh-
olds with the ones of our visual perception. Also from a mathematical point of
view, the a contrario methodology raises many difficult questions of stochastic
geometry.

Now, even if the a contrario method is very general and has many applications,
some open questions still remain. A first question is: how to deal with the “over-
determination” of images (i.e. the fact that visual objects usually have several
qualities at the same time)? This would require the definition of a generalized
computational tool like the NFA that would be able to deal with several grouping
criteria at the same time. A second open question is: how to deal with “conflicts”
of qualities? Since there is no “universal hierarchy” of qualities, we cannot hope
for any reliable explanation of a figure by summing up the results of one or
several partial gestalts detector. Only a global synthesis, treating all conflicts
of partial gestalts, can give the correct result. This would require the need of
another framework than Helmholtz principle (like for instance the Minimum
Description Length principle or Bayesian compositional approaches [16], [17]).
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Abstract. Constant radius offsetting and blending operations are important for 
digital shape and image processing. They may be formulated using Minkowski 
sums with a ball of fixed radius. We review their extensions to variable distance 
offsetting. Specifically, we compare three different formulations of variable 
distance offsetting for planar shapes: orthogonal, radial, and ball. We discuss 
compatibility conditions that specify when a shape is the offset of another. We 
also discuss the applications of these formulations for computing the average 
and morph of two shapes and the centerline of an elongated shape. Finally, we 
discuss a set theoretic formulation of a variable radius blending of a shape.  

Keywords: Variable Radius Offsetting. Rounding and filleting. Medial Axis. 
Skeleton extraction. Image Segmentation. Shape Averaging. Shape Morphing. 
Shape correspondence. Tangent Balls. Ball Map. Ball Morph. 

1   Introduction 

The offset of a shape in the plane plays a central role in shape processing. Constant 
distance offsets (also called constant radius offsets) have been used for modeling 
safety regions around a shape, for detecting interferences, for simulating growth, for 
measuring distances and discrepancies between shapes, for defining tolerances on 
parametric models, and for blending (i.e., removing) sharp corners and narrow 
passages in the shape or in its complement.  

Specializing Serra and Matheron’s [1,2] opening and closing to cases where the 
structuring element is a ball, Rossignac and Requicha have formulated these 
constant-radius blending operations [3,4] as combinations of growing (positive 
offsetting) and shrinking (negative offsetting). Depending on the order, such a 
combination can either blend all concave or all convex corners, but is not guaranteed 
to remove both types of sharp features. To address this lack of symmetry and to 
provide a solutions that blends both concave and convex corners, Williams and 
Rossignac have defined the mortar [5] of the shape as the fill (i.e., grow-shrink) of its 
boundary and the tightening [6,7] of a shape as the result of minimizing the length of 
the boundary while keeping it inside the mortar. 

Variable distance offsets are convenient for expressing one shape as a variation 
(offset) of another. We discuss here three different formulations of such offsets: 
orthogonal, radial, and ball.  

The orthogonal offset [8,9] displaces each point of the boundary of the shape by a 
prescribed distance in the normal direction.  
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The radial offset adjusts that direction based on the derivative of the distance 
function and produces a new boundary that is the subset of the envelop [10] of a 
family of disks with centers on the boundary of the shape and with radii equal to the 
offset distance value associated with the center point. 

The ball offset (also called tangent-ball offset) recently introduced by Chazal, 
Lieutier, Rossignac, and Whited [11] produces a new boundary that is the subset of 
the envelop of a family of disks that are tangent to the original boundary and have as 
radius half the offset distance associated with the tangent point. 

When the distance is constant, all three formulations yield the same result as the 
constant distance offset. However, when the offset distance varies along the boundary 
of the shape, each formulation produces a different result and has its advantages.  

For example, positive and negative orthogonal offsets of a curve are sometimes 
used to formulate a variable width stroke in terms of a central line and variable 
thickness function.  

The medial axis transform [12,13] formulates a shape as the radial offset of its 
medial axis (curve skeleton). The pearling approach to image segmentation 
[14,15,16], recently introduced by Whited, Rossignac, Slabaugh, Fang, and Unal, 
computes an approximation of the medial axis transform of a grey-level image in 
realtime by pushing a disk of variable radius along a path made of desired grey-level 
pixels. 

The ball morph, recently introduced by Whited and Rossignac [15,18], expresses 
one shape as the ball offset of another and uses this formulation to measure and 
optionally exaggerate local discrepancies between similar shapes or to animate the 
morph between them. 

We say that two shapes are offset-compatible, when each one can be expressed as 
the variable distance offset of the other. The compatibility conditions depend on 
which formulation of variable offset is used. Chazal, Lieutier, and Rossignac [8,9] 
have provided sufficient and tight compatibility conditions for the orthogonal offset in 
terms of the minimum feature size of both sets and of their Hausdorff distance [19]. 
Subsequently, Chazal, Lieutier, Rossignac, and Whited [11] have shown that the ball 
offset allows for a similar, but less constraining compatibility condition. 

Whited and Rossignac [20] have proposed a set theoretic formulation of variable 
radius relative blending where the blending radius is defined locally relative to a 
second (control) shape as the radius of the ball that is tangent to both shapes. 

In this paper, we review these recent results and explore their interactions. In 
Section 2, we start with a brief review of the terminology and key concepts that will 
be used throughout the paper. In Section 3, we discuss constant radius offsetting and 
its applications to blending and tightening. In Section 4, we present the details of the 
formulations of the three variable distance offsets and compare their results. In 
Section 5, we discuss the computation of the offset distance field and mapping 
between two curves. In Section 6, we discuss offset compatibility conditions. In 
Section 7, we discuss variable radius relative blending. In Section 8, we discuss the 
Pearling segmentation of ball-swept structures. In Section 9, we discuss shape 
morphing and averaging. 
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2   Review of Key Concepts and Terminology 

In this section, we review the basic assumptions and define a few standard, and less 
standard terms and concepts used throughout the paper.  

Topological Domain 

For simplicity, we restrict our attention to closed, bounded, manifold, and simply 
connected planar regions that are hence homeomorphic to a closed disk. We use the 
letters S and R to denote such regions and the letters P and Q to denote their 
respective (single loop) bounding curves.  

P is a Jordan curve and decomposes the plane into three regions: P, the interior iP 
of P, and the exterior eP of P. The topologically closed set S is the union of P with iP. 

Smoothness and Discrete Models 

Some of our theoretical results assume that the bounding curve P of the region of 
interest S is smooth, and thus has a unique normal outward-pointing direction NP(p) at 
each point p of P and that this direction varies continuously along the curve (i.e., it 
satisfies the Lipschitz condition, see [9,11] for details). 

Nevertheless, most of the techniques based on these theoretical results have been 
successfully applied to shapes bounded by polygonal curves or to discrete models 
composed of black&white or even grey-level pixels of a regular grid (by using a local 
estimation of P and of its normal). 

Distance and Closest Projection 

For simplicity, we will denote by pq the vector from point p to point q, which is 
sometimes written as the “difference” q–p between points.  

The distance d(p,q) between points p and q may be expressed as the norm ||pq|| of 
the vector between them. 

The distance d(q,P) between a point p and a curve P is the minimum of the 
distances d(p,q) between p and all points q of Q.  

The distance d(P,Q) between two curves, P and Q, is the minimum of ||p–q|| for all 
pairs of points p in P and q in Q. 

The closest projection c(q,P) of point q on curve P is the set of points p such that 
d(p,q) = d(q,P). 

Note that these definitions are not restricted to curves, but also apply to more general 
sets P and Q.  

However, note that when P and Q are smooth curves, if p = c(q,P) and d(p,q) ≠ 0, 
then the line segment (p,q) is orthogonal to P at p. Furthermore, if d(P,Q) ≠ 0, then 
there exists a point p in P and a point q in Q such that the line segment (p,q) is 
orthogonal to P at p and to Q at q and that d(p,q) = d(P,Q). 

Cut and Medial Axis 

Most points q have a single point closest projection c(q,P) on P. The noteworthy 
exceptions play an important role in shape analysis. 
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The cut C(P) of curve P is the set of points q for which c(q,P) is not a single point. 
Since the curve P is smooth, it has no common point with C(P). 

We differentiate between the interior and the exterior part of the cut. The portion 
Ci(P) of C(P) in S is called the interior cut and is the medial axis [12] of S. Ce(P) 
denotes the exterior cut that lies in the complement !S of S. 

Reach, Regularity, and Minimum Feature Size 

A point q in the complement of C(P) may be represented by its closest projection p = 
c(q,P) on P and of the signed orthogonal offset distance d(q) = pq  NP(p). The 
range, [ ri(p), re(p) ], of p is the set of values d(p) for all points q such that p = c(q,P). 
For example, the range for each point on a circle of radius r is [-r,∞]. The interior 
reach –ri(p) is the distance d(p,Ci(P)) from p to the medial axis of P. the exterior 
reach re(p) is the distance d(p,Ce(P)) from p to the exterior cut of P.  

The regularity [5] r(p) of p with respect to P (sometimes also called the local 
feature size or reach) is the minimum, min( –ri(p) , re(p) ), of its two reaches. It is the 
distance from p to the cut. 

Note that, to simplify notation, we assume that these measures are implicitly 
defined with respect to the curve P. Hence, instead of rP(p), we simply write r(p). 

The regularity r(P) of the whole curve P, also called the minimum feature size 
mfs(P) of P, is the minimum of the regularity of its points. Hence, we say that curve P 
is r-regular if r(P) = r. 

3   Constant Radius Offsetting, Blending, and Tightening 

In this section, we discuss operations defined in terms of balls of a fixed radius (a 
specialization of the standard Minkowski operations) and discuss their applications. 

Minkowski Sum, Closing, and Opening 

The Minkowski sum (also called Minkowski addition or dilation) S+B of two sets is 
the set of points s+ob, where point o is a chosen origin, s is a point of S, b a point of B 
and where ob denotes the vector from point o to point b. Equivalently, S+B may also 
be defined as the union of sets B+s, which are translations of B by vector os, for all 
points s is S. Hence, S+B may be called the translational sweep of the structuring 
element B along S. 

The Minkowski difference (also called Minkowski subtraction or erosion) S–B is 
defined as the intersection of the sets S–b, for all points b in B, which are translations of 
S by vector bo. Equivalently, it is the set of points x such that B translated by ox lies in S. 

Minkowski closing of set S by the structuring element B is defined as (S+B)–B and 
its Minkowski opening is defined as (S–B)+B. 

Minkowski operations are the basic components of mathematical morphology. 
They were developed by Georges Matheron and Jean Serra [1,2]. 

Constant Radius Offsets 

By choosing the structuring element B to be a ball of radius r centered at the origin, 
Rossignac and Requicha [3] have defined the positive r-offset (grow or dilation) S↑r 
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of set S by a constant distance (also called radius) r as the set of points at distance less 
or equal to r from S. Equivalently, S↑r is the union of balls with radius r and center in 
S. Similarly, they define the negative r-offset (shrinking or erosion) S↓r of S by a 
constant distance r as the set of points at a distance of more than r from the 
complement !S of S. Both are illustrated on Fig. 1.  

 

Fig. 1. The shape S is shown black (left). The material S↑r–S added by dilation is shown grey 
(left). On the right, the shrunk set S↓r is shown in black and the material S–S↓r removed by 
erosion is shown in grey. 

In their definitions, if S is topologically closed (i.e., contains its boundary), then 
S↑r and S↓r are also closed. 

Hausdorff Distance 

The Hausdorff distance, h(P,Q) between two curves (or more generally two sets), P 
and Q, is the minimum value of r such that P⊂Q↑r and Q⊂P↑r

. It measures the 
maximum distance from a point of either set to the other. It is often used to measure 
the discrepancy between two similar sets, and verifies h(P,Q) ⇔ P = Q.  

Filleting and Rounding  

Rossignac and Requicha [4] have defined two constant-radius blending operations 
for blending (i.e., rounding) all the concave or all the convex corners of a shape S. 

The filleting Fr(S) of S (also called its r-closing or r-fill) is defined as 
Fr(S)=(S↑r)↓r

 . It is the set of points of S that cannot be reached by an open ball B of 
radius r that is disjoint from S. Hence, Fr(S) has no sharp concave corners and no 
narrow cracks or holes. 

The rounding Rr(S) of S, (also called its r-opening its r-round) is defined as 
Rr(S)=(S↓r)↑r . It is the set of points of S that can be reached by a closed ball of radius 
r in S. Hence, Rr(S) has no sharp convex corners and no narrow protrusions or 
constrictions.  

Note that Rr(S) ⊂ S ⊂ Fr(S), but in general Rr(S)≠Fr(S), see Fig. 2. In fact, as r 
grows, Rr(S) shrinks and Fr(S) grows. 
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Fig. 2. On the left, we show the result Rr(S) of rounding in black and the material S–Rr(S) 
removed by the rounding operation in grey. On the right, we show S in black and the material 
Fr(S)–S added by filleting in grey. 

Williams and Rossignac [5] argue that a set S is r-regular if Rr(S)=Fr(S). In other 
words, S is r-regular if it is equal to its r-closing and to its r-opening. 

Some sets cannot be made r-regular by applying any arbitrary combination of r-
closing or r-opening, as each application of r-closing leaves sharp convex corners, 
while the application of r-opening leaves sharp concave corners. 

The r-filleting and r-rounding operations defined above are biased. Fr(S) removes 
concave sharp features and grows the object. Rr(S) removes convex sharp features and 
shrinks the object.  

Mortar and Finite-Scale Topological Operators 

Williams and Rossignac [5] define the r-mortar Mr(S) of S as the filleting Fr(P) (i.e., 
the r-closing (P↑r)↓r

 ) of its boundary P (Fig. 3). In computational geometry, Mr(S) 
would be called the alpha hull of P. Note that Mr(S)=Fr(S)–Rr(S). Note that the r-fill 
of S is the union Fr(S) = Rr(S) ∪ Mr(S) of its rounding with its mortar.  

Hence, as shown in Fig. 4, computing the r-mortar “inflates” the boundary of S and 
decomposes space into three disjoint sets: the r-interior Rr(S), the r-boundary Mr(S), 
and the r-closure Fr(S). In the limit, as r tends to zero, these operators converge to the 
standard topological interior, boundary, and closure operators. But for a finite r, they 
provide an interesting variable-scale version of these topological operators. 

 

Fig. 3. The Mortar (shaded region) of curve P is the space not reachable by an open ball disjoint 
from P 
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The r-mortar is one-dimensional (i.e. equal to P) at r-regular points p of P, where 
the regularity r(p) ≥ r. The r-mortar is a two-dimensional region around the irregular 
portions of P where r(p) < r. 

       

Fig. 4. From left: The set S. The r-rounding Rr(S) in black and the difference S – Rr(S) in grey. 
S in black and the difference Fr(S) – S in grey. Rr(S) in black and Mr(S) = Fr(S) – Rr(S) in grey.  

Stability 

Williams and Rossignac [5] define the stability of a point q with respect to set S as 
the smallest value of r for which q belongs to Mr(S). The measure of stability 
throughout space, not just on the boundary P of S, (see Fig. 5) is a powerful 
mathematical morphology tool for analyzing how S is imbedded in space. The 
information it provides cannot be extracted from a topological characterization of S 
not from a differential analysis of its boundary. 

 

Fig. 5. The stability of a point is proportional to the darkness of the color (capped outside) 

Blending Combinations and the Mason Filter 

The blending combinations Fr(Rr(S)) and Rr(Fr(S)) tend to eliminate both concave 
and convex sharp features and often produce r-regular shapes, but in general retain a 
bias: Fr(Rr(S)) is often a strict subset of S and S is often a strict subset of Rr(Fr(S)). 

One may prefer an unbiased blending operator that is symmetric (so that applying 
it to S or to the complement of S will yield the same result). 

Williams and Rossignac [5] show that Rr(S) ⊆ Rr(Fr(S)) ⊆ Fr(S) and Rr(S) ⊆ 
Fr(Rr(S)) ⊆ Fr(S) and that the application of arbitrary combinations of r-closing and r-
opening only alter S in the full dimensional portion of its r-mortar.  

Hence, they propose the Mason filter [5], which decomposes the two-dimensional 
portion of the r-mortar into connected components and in each component C of the r-
mortar of S, replaces S by either Fr(Rr(S)) or Rr(Fr(S)): they pick the combination that 
alters the smallest (in area) portion of C.  
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Note that Mason acts symmetrically on S and on its complement. Williams and 
Rossignac show that the output of Mason is guaranteed to have a smaller symmetric 
difference with the original shape than either Fr(Rr(S)) or Rr(Fr(S)). Its application to a 
binary image is shown in Fig. 6. 

  

  

Fig. 6. The original image (top left) is decomposed (top right) into its r-rounding (black), the 
complement of its r-filleting (white), and its r-mortar. We compare the result of Fr(Rr(S)), 
shown bottom left, the result of the r-Mason filter (bottom center), and the result of Rr(Fr(S)). 

As a shape simplification operator, Mason offers advantages over other smoothing 
or vertex decimation filters.  

1) It may be used to “regularize” (i.e., remove sharp corners, holes, speckles, 
thin branches or constrictions) the shape at different scales (Fig. 7).  

 

Fig. 7. The original shape (left) and the results (left-to-right) of applying Mason with increasing 
values of r 
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2) It is expressed in terms of set-theoretic morphological operators and is hence 
independent of the representation used for S or P.  

3) It is self-dual, meaning that Mason(S) = !(Mason(!S)), where !X denotes the 
complement of set X, and treats positive and negative space symmetrically. 

4) It may be viewed as a new tolerance zone that confines the effects of shape 
simplification to irregular regions, where the boundary has high curvature or 
where two distinct portions of the boundary are close to each other.  

5) It preserves the portions of the boundary of S that are regular at the desired 
scale r. 

Tightening 

Improving on Mason, Williams and Rossignac propose the r-tightening [6,7], which 
alters S by tightening its boundary in its r-mortar. The r-tightening minimizes the arc-
length of P while keeping P inside the r-mortar (Fig. 8). Topological changes may be 
necessary to produce a new boundary that is smooth (i.e., for which the radius of 
curvature is never less than r). The computation of the r-tightening is analogous to the 
computation of the shortest path in a corridor. 

 

Fig. 8. The original shape S (left). Its mortar (grey) and the tightened boundary (center). The 
tightening of S (right). 

Example of tightening in 2D and 3D are shown in Fig. 9 and a comparison with 
Mason in Fig. 10. 

4   Variable Distance Offset Formulations 

In this section, we explore offsetting formulations where the offset distance d varies 
along P. We say that d is the offset distance field. 

Without loss of generality, we assume that P is oriented (for example, clockwise). 
With each point p of P, we associate an offset distance d(p). The curve obtained by 
offsetting P by the distance field d will be denoted Pd.  

We can also compute the unit tangent vector, t(p), and unit outward normal 
vector, n(p), to P at p. For simplicity, we will omit the reference to p in these 
expression and say that each point p of P is associated with a distance value d, and a 
local ortho-normal frame {p,t,n}. We will use the notation d’ for the derivative of 
the distance function d at p with respect to and arc-length parameterization of P. 



22 J. Rossignac 

 

 

Fig. 9. Original sets (left) and their tightenings (right) 

    

 

             

Fig. 10. Top: Original shape S (left) and its mortar (right). Middle: Rr(Fr(S)) and Fr(Rr(S)). 
Bottom: r-Mason (left) and r-tightening (right) of S. 
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For simplicity, we define the offset pd of p in this local frame as pd=p+xt+yn. This 
is a convenient formulation for computing the offsets of samples p along P. 

We propose three different offsets. We provide here the local constructions of the 
offset point pd. Compatibility conditions are discussed further in the paper. 

Orthogonal Offset 

To differentiate it from other offset formulations, the orthogonal offset Pd of curve P 
by a distance field d is denoted by Od(P). The orthogonal offset point pd and the 
normal vector nd to Pd at pd may be computed as:  

pd = p + d n   and   nd = ( –d’ t + n ) / √( d’2 + 1). (1)

The value of d does not need to be positive, hence the orthogonal offset curve may be 
on the left or on the right of P and may cross P when d=0. 

The line segment (p,pd) is orthogonal to P at p, but not necessarily to Pd at pd.  

Radial Offset 

The radial offset Pd of curve P by a distance field d is denoted by Rd(P). The radial 
offset point and its normal may be computed as:  

nd = ( –d’ t + √(1 – d’2 ) n )   and   pd = p +  d nd  . (2)

In portions where d is negative, the radial offset curve will lie on the right of P. 
Note that the segment (p,pd) is orthogonal to Pd at pd, but not necessarily to P at p. 
The radial offset is a portion of the boundary of the region swept by a disk with 

center p and radius d(p) as p moves along P. As such it is the subset of the envelop 
[10] of the family of these disks (Fig. 11). 

 

Fig. 11. We show three curves: I (inner), P (central), and O (outer). O is the radial offset by 
distance field r of P. It is the envelop of a family of circles with centers on P. I is the radial 
offset of P by the negative –r of the distance field. Note that P is the orthogonal offset by r of I 
and that O is the ball offset by 2r of I. 
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Ball Offset 

The ball offset (or tangent ball offset) Pd of curve P by a distance field d is denoted by 
Bd(P). The ball offset is defined as the composition of the other two offsets: Bd(P) = 
Rr(Or(P)) with r=d/2.  

Note that a point pr of Or(P) inherits the distance d/2 from the corresponding point 
p on P. However, the derivative r’ of that distance with respect to the arc-length 
parameterization of Or(P) is in general not equal to d’/2. It may be expressed exactly 
using the curvature of P at p or approximated from a sampling of Or(P). 

The ball offset is a portion of the boundary of the region swept by a disk with 
radius d(p)/2 that is tangent to P at p, as p moves along P. As such, it is the subset of 
the envelop of the family of these disks. 

Comparison and Properties of the Three Offsets 

In the special case where d(p) is a constant, Bd(P) = Rd(P) = Od(P) and hence all three 
are equal to the constant distance offset discussed earlier. The local disparity between 
these three offsets increases with the derivative of d. 

We compare the three offset formulations in Fig. 12, illustrating their construction 
at one particular point p of P.  

Then P is smooth, the three constructions proposed above establish a homeomorphism 
between P and Pd. We may use this correspondence to transfer the distance field, as we did 
above for the construction of the ball offset, even though the derivative of the distance 
field may not be transferable directly, as offsetting is in general not length preserving. 
Hence, writing Rf(d)(Od(P)), we imply that if a point p of P is associated with an offset 
distance d, then its image pd of p by Od is associated with an offset distance of f(d), where 
f is some function of d. 

 

Fig. 12. In all three images, we show the same black curve P and indicate its distance field d by 
the thickness of the shaded region around it (computed as its radial offset). Each curve shows a 
different offset superimposed on faded versions of the other two for more precise comparison. 
We show the construction of the offset pd for a particular point p of P. The normal offset is 
shown left. The ball offset is shown center. The radial offset is shown right. Note that the radial 
offset is the furthest from P and that the normal offset is the closest. 
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We observe that Rd is the inverse of Od (Fig. 13 left) in the following sense: 

R–d(Od(P)) = P   and   O–d(Rd(P)) = P (3)

It follows that if Od(P) = Q then R–d(Q) = P. 

 

Fig. 13. Left: point q is the orthogonal offset by d of p with respect to P and p is the radial 
offset by –d of q with respect to P. Hence, Q=Od(P) and P=R–d(P). Right: q is the ball offset of 
p by d with respect to P and p is the ball offset by –d of q with respect to Q. Hence, the ball 
offset is its own inverse. 

Similarly, Bd is its own inverse (Fig. 13 right): 

B–d(Bd(P)) = P (4)

It follows that if Bd(P) = Q then B–d(Q) = P. 

5   Computation of the Offset Distance Field between Two Curves 

We are given two smooth curves, P and Q, and want to express one as the offset of 
the other. The computation of the distance field depends on which offset is desired. 

Orthogonal Map and Offset 

For an orthogonal offset [8,9], the distance field d that satisfies Q = Od(P) may be 
computed at each point p by constructing a line L that is orthogonal to P at p, and by 
computing the intersections of L with Q. We distinguish two kinds of intersections: 
kissings, where L osculates Q (i.e., is in tangential contact to Q without crossing it) 
and crossings, where L crosses Q. Note that the number of crossings is always even. 
Furthermore, the orientation of the crossings alternates along L: as L enters the region 
R bounded by Q it crosses Q from the left (with respect to the orientation of Q), as it 
leaves R, it crosses Q from the right.  

If for some point p there are no such crossings, then Q cannot be expressed as the 
orthogonal offset of P.  

If there are crossings at each point p, we find the nearest crossing from p in each 
direction along L. We select the crossing q that has the correct orientation: If L 
crosses P at p from the left, then L must also cross Q at q from the left. The distance d 
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associated with p is the dot product (p-q) n, i.e., the signed distance ||p–q||. However, 
if this segment (p,q) of L contains a kissing or if L is tangential to Q at q, we declare 
that Q cannot be expressed as the orthogonal offset of P. In these cases, we conclude 
that P and Q are not O-compatible. 

Radial (Closest-Projection) Map and Offset 

For a radial offset, we associate with each point p of P the distance d(p,Q) from p to 
the closest point q on Q. Hence, we map p to its closest projection q on Q. 

Ball Map and Offset 

For a ball offset [11], we consider the moat X, which is the symmetric difference 
(XOR), S⊗R between the region, S and R, bounded respectively by P and Q. Then, 
we compute the medial axis transform of X.  

If X has bifurcations or kinks (points where the normal is discontinuous), we 
declare that P and Q are not B-compatible.  

Otherwise, the medial axis defines a family of disks in X that are each tangent to P 
at exactly one point p and tangent to Q at exactly one point q (Fig. 14). We say that q 
is the image of p by a ball map [11], from P to Q and vise versa. We associate with p 
and with q the diameter of that tangent disk, but with opposite signs. The sign 
associated with p is positive when p lies inside R. 

The distance field d assigned to P satisfies Bd(P) = Q. We also have B–d(Q) = P. 

 

Fig. 14. When the maximal disks in the moat between the two curves P and Q touch each curve 
at a single point, they define the correspondence (ball-map) between a point p of P and a point 
q of Q. Furthermore, the diameter of the touching ball is the ball offset distance associated with 
these contact points. 

6   Compatibility 

We say that a distance field d is X-compatible with a curve P, where ‘X’ stands for 
‘O’, ‘B’, or ‘R’, when the X-offset of P by d is free from cusps and self-intersections. 
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Incompatibilities may be produced locally, when for example the orthogonal 
offset distance exceeds the local radius of curvature (this is sometimes called the 
fish-tail and illustrated in an inward offset of an ellipse) or when the derivative of 
the distance field of a radial offset exceeds 1 (the disk of radius d at p is contained 
inside the disk of radius d+εd’ centered at a nearby point p+εt, for an infinitely 
small ε). 

Incompatibilities may also be produced globally, where the images on Pd of two 
disjoint parts of P intersect. 

We say that two curves P and Q are X-compatible if each one can be expressed as 
the X-offset of the other (i.e. if a suitable X-compatible distance field may be found).  

Note that, because an orthogonal offset is the inverse of a radial offset,  
O-compatibility implies B-compatibility and vice versa. 

For example, Fig. 15 shows two curves that are B-compatible, but are not  
O-compatible, and hence not R-compatible either. 

Chazal, Lieutier, and Rossignac [8,9] prove that two smooth curves P and Q are  
O-compatible (and hence also R-compatible) if 

h(P,Q) < (2 − √2) min(r(P),r(Q)) (5)

This sufficient, although not necessary condition bounds the disparity (measured in 
terms of Hausdorff distance) as a function of the minimum feature sizes (or 
regularity) of the two curves. They also show that the constant (2 − √2) is tight by 
producing an example of two curves that are not O-compatible (because they intersect 
at right angles) and for which we have h(P,Q) = (2 − √2) min(r(P),r(Q)). 

Chazal et al. [11] prove that two smooth curves P and Q are B-compatible if 

h(P,Q) < min(r(P),r(Q)) (6)

This bound is also tight, but is less constraining, since it allows a greater disparity 
between the curves for the same feature size. Hence, we conclude that B-
compatibility is easier to achieve than O-compatibility. 

 

Fig. 15. The two curves are B-compatible (i.e., each one is the ball offset of the other). The 
correspondence (ball map) is shown on the left as line segments joining points p to 
corresponding points q. But the two curves are not O-compatible, nor R-compatible, as shown 
on the right. 
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7   Variable Radius Relative Blending 

When blending (i.e., removing sharp features of) a shape S, one may want the radius 
of the blending ball to vary along the boundary P of the shape S. This objective raises 
two challenges: 

1) How to define the radius function 
2) How to define the result of the blend 

Whited and Rossignac [20] propose their variable-radius relative blending approach 
where the radius field used to blend S is defined as half the ball offset distance from 
the boundary P of S to a control curve Q.  

Their approach removes the portions of P that are incompatible with Q and 
replaces them with smoothly connecting, circular-arc blends, as shown in Fig. 16. 
This operation corresponds to the removal of dangling branches of the medial axis. 
The result is not truly compatible with the control curve, since the maximal ball 
centered at the bifurcation of the original medial axis has more than one contact 
point with it, but is pseudo-compatible and hence, one can establish a ball map 
between the two curves and can express the new rounded curve as the ball offset of 
the control curve. 

 

Fig. 16. The outer-curve (left) has a protrusion (top) that is incompatible with the inner (mouth-
like) control curve. This incompatibility is indicated by a bifurcation of the medial-axis of the 
symmetric difference between the two curves. On the right, the protrusion has been removed 
(dotted lines) and was replaced by a circular arc.  

Furthermore, Whited and Rossignac [20] provide a set-theoretic formulation 
of the desired result in terms of S, the union C of the maximal balls in the 
symmetric difference between P and R that touch both P and Q, and the set  
M bounded by the trimmed medial axis loop (completed by adding the 
intersections and overlap between P and Q). The relative blending BR(S) of set 
S with respect to set R is  

BR(S)  = (S ∩(M ∪ C ) )  ∪ (M –  C) (7)
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They show that this approach may be used in three dimensions to simultaneously 
blend the concave and convex features of a 3D shape with variable radius fillets and 
rounds (Fig. 17). 

 

Fig. 17. The semitransparent plane (left) is used as a control surface to blend a complex corner 
of a polygonal solid. The resulting shape (right) contains variable-radius blends. 

8   Pearling Segmentation 

Whited et al. [14,15] have proposed an interactive technique (called Pearling) for 
segmenting strokes in images and also tubular structures in 3D medical data sets. For 
example, to trace a road or artery in an image (Fig. 18), they start from a user-
provided position and direction on the road and create, one at a time, a string of balls 
along the road. The position and radius of each ball are adjusted using a few iterations 
so that the ball is not far from the previous one and so that it’s center is mostly filled 
with “good” pixels that have “road-like” colors and that a small periphery on opposite  
 

 

Fig. 18. A particular street is traced by Pearling in real-time. Upon request, the tracing may 
expand to branching streets.  
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sides is filled with “bad” pixels that repel the center of the ball. To define “good” and 
“bad” pixels, the user selects sample good and bad regions by painting over a portion 
of the road and one or more portions of its surrounding.  

The construction is interactive (the road is traced as fast as a rough centerline can 
be drawn by the user) and can track bifurcation. A smooth curve that interpolates the 
centers of the balls may be viewed as an approximation of the centerline of the road. 
Treating it as the medial axis leads to the formulation of the segmented region in 
terms of its medial axis transform. Hence, away from the bifurcation points, the left 
and right borders of the road are the radial offsets of the centerline and one border is 
the ball-offset of the other. This observation is important for subsequent processing of 
the results, for example to remove the bulges associated with possible, but not traced 
bifurcations. 

In 3D, Pearling has also been used [16] to trace human vasculature (Fig. 19) from 
discrete medical scans. A similar approach was developed for tracing tubes in solids 
represented by triangle meshes [21,22]. 

 
Fig. 19. Tubular structures in human anatomies segmented by Pearling from medical scans 

9   Shape Morphing and Midarc Averaging 

In their ball morph approach to in-betweening, Whited and Rossignac [17,18] 
propose to use the ball map correspondence [11] to define a curved trajectory from 
each point of curve P to a single point of a B-compatible curve Q. The trajectory is 
a circular arc that is orthogonal to p at P and to q at Q (Fig. 20 left). 

They establish these ball map correspondences and trajectories for a coordinated 
sampling of P and Q, sample the trajectories uniformly, and finally join each set of 
corresponding samples by a closed-loop curve (Fig. 20 right). These curves may be 
used as frames of an in-betweening animation (Fig. 21). More importantly, this 
formulation also defines a continuous animation model. 
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Fig. 20. The circular trajectory from p to q is fully defined by the corresponding maximal 
disk 

The halfway frame (which joins the mid-course point on each arc) provides a new 
definition of the average of two shapes. We call it the midarc average. It differs 
from the medial axis of the gap between the two curves (Fig. 22 left).  

This formulation may be extended to produce a new type of centerline (with 
bifurcations) of a single shape. We call it the midarc axis. We contrast it (Fig. 22 
right) with prior definitions: Blum’s Medial Axis [MAT Blum], Layton’s PISA [23], 
and Asada and Brady’s Smooth Locus of Symmetry [24]. 

 

Fig. 21. Trajectories (top left) and frames of a Ball morph animation between an apple and a 
pear 
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Fig. 22. The midarc average of two curves is the mid-arc axis of the gap between them. It is 
superimposed (left) over the darker medial axis. The construction of the midarc axis is 
contrasted (right) with other definitions of centerlines. 

10   Conclusion 

We have briefly reviewed a variety of ball-based techniques for analyzing, transforming, 
comparing, and morphing shapes and have contrasted them with closest-projection 
techniques. Specifically, ball-based techniques may be used to blend shapes so that 
they are B-compatible and to create a correspondence between B-compatible shapes 
which can be used to model one shape as the ball offset of another, to compute 
weighted averages of shapes, and to produce in-betweening animations that smoothly 
morph from one shape to another. 

Several challenges remain.  
One challenge is the closure of the domain. In two dimensions, these techniques 

have been implemented for discrete models with regularly spaced samples (pixels) and 
with ordered samples spaced along the curve, for polygonal models, and for piecewise-
circular (PCC) [25] representations of the curves. The first two do work in practice 
when the sampling density is sufficient, but are theoretically incorrect. The latter is 
theoretically correct and efficient, but may produce derived offset curves (that are not 
PCC and hence must be approximated by a PCC if one wishes to offset them again. 

Another challenge is the extension of these techniques to three dimensions. Using 
efficient (hardware-assisted) algorithms for computing offsets and distance fields 
permits to implement most of the techniques discussed here on discrete (voxel) and 
point cloud representations [26] and also on triangle-meshes [11]. However, the 
formulation of the tightening of a three-dimensional shape is not as straightforward, 
because the minimization of the surface area within the 3D mortar does not in general 
yield an acceptable solution. This theoretical extension is the topic of the forthcoming 
PhD dissertation of student Jason Williams. 

A third challenge it the evaluation of the practical and perceptual benefits of using 
ball offsets rather than orthogonal or radial offsets for drawing variable thickness 
curves and of using the midarc axis rather than the medial axis as a skeletal 
abstraction of a shape. 
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A fourth challenge is the extension of these approaches to more than two curves or 
more than two surfaces. This aspect is currently explored by the author in collaboration 
with Drs. Raimund Seidel and Brian Wyvill. 

Finally, one may wish to investigate further the relation between the variable 
radius relative blending and the variable distance offsets discussed here and the 
adaptive neighborhood operations used in mathematical morphology [27]. Similarly, 
one may wish to investigate the further relation between the Mason and Tightening 
filters discussed above and the Alternating Sequential Filters used in mathematical 
morphology [28]. 
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Abstract. This paper is devoted to hierarchies of partitions, on which
all criteria are proved to be connective. Optimisations are addressed by
minimizing energies that satisfy the condition of hierarchical increasing-
ness. The optimal cuts through the hierarchies are found. It is shown
that many of the classical techniques are variants of what is proposed.

1 Introduction: Optimum Optimorum

Various segmentation algorithms base their approach on a stack of increasing
partitions depending on a positive index. The stack, which has been obtained
by a first wave of processing, serves as a framework for a second step, some-
times followed by a third one, and aims to lead to a final optimal partition of
segmentation. There are several reasons to do so. Some regions of the image un-
der study may require a finer treament than others. Then one starts from over
segmentations which are recomposed [2], [18], [19]. Sometimes, one wants to re-
duce the size of an image while keeping its major features [16]. Another reason
appears with multivariate data, when one has to merge partitions coming from
different bands [1]. Sometimes also, the hierarchy is a direct consequence of the
partitioning algorithm; a topological watershed, for example, produces a series
of edges of a constant value, their saliencies [9] [11].

Most of these algorithms yield a unique final partition, though the meaning of
the underlying optimization - if it exists- is rather unclear. A significant advance
to clarify this point comes from L. Guigues et Al.[5] who introduced a linear
decomposition of some energy over partitions. We will extend below the princi-
ple of their approach. After having decribed the structure of the hierarchies of
partitions (section 2), we develop some theory about minimum cuts (section 3),
which is illustrated by a few examples in section 4.

2 Hierarchies of Partitions

From now on we suppose that a first step of segmentation already led to a
finite hierarchy, i.e. to some finite sequence of increasing finite partitions. We
will now intend to reorganize the classes of these partitions for extracting their
quintessence, namely a more synthetic partition. Does the chain structure of
the initial partitions provide us with particular assets for the second step of
optimization?

I. Debled-Rennesson et al. (Eds.): DGCI 2011, LNCS 6607, pp. 35–46, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Left, hierarchical tree; right, the corresponding space structure. S1 and S2 are
the nodes sons of E, and H(S1) and H(S1) are the associated sub-hierarchies. π1 and
π2 are cuts of H(S1) and H(S1) respectively, and π1 � π2 is a cut of E.

2.1 Reminder

Finite hierarchies appeared initially in taxonomy for classifying objects. One can
quote in particular the works of J.P. Benzécri [3] and of E. Diday [4]. We owe
to the first author the theorem linking ultrametrics with hierarchies, which is
involved below in Theorem 5. In image processing, hierarchical structures hold
sometimes on stacks of images, but more often of operators, such as the classical
families of Gaussian convolutions of D. Marr [7], or again the granulometries
of G. Matheron [8]. The hierarchies indicated in the introduction occupy an
intermediary position, since they start from a given chain H of segmentations
of a fixed function f on set E, i.e. from a stack of scalar or vector images, and
this chain is then used as the framework for further operators. Here, for the sake
of simplicity, we consider function f and hierarchy H as two starting points,
possibly independent. This results in the following definition:

Definition 1. Let D be the set of all partitions of a finite set E, equipped with
the refinement odrering �. A hierarchy H of partitions πi is a finite chain in
D, i.e.

H = {πi, 0 ≤ i ≤ n, πi ∈ D | i ≤ j ⇒ πi � πj}, (1)

of extremities the extrema of D, namely π0 = {{x}, x ∈ E} and πn = {E}.

Denote by S the set of all classes Si(x) of all partitions πi of H , i.e. S =
{Si(x), x ∈ E, 0 ≤ i ≤ n}. The expression (1) means that at each point x ∈ E
the family of those classes Si(x) of S that contain x forms a finite chain Sx in
P(E), of nested elements from {x} to E :

Sx = {Si(x), 0 ≤ i ≤ n}.

The finiteness E is not really necessary. It mainly serves to ensure that the border
lengths between classes are finite, but in 2D the Euclidean Voronoi model grants
it as well. On the other hand, the search for minimal cuts by an induction on the
hierarchical levels (Proposition 7), requires that their number is finite. Remark
also that the parameter i of the level can be replaced by any strictly increasing
function t(i), which defines another indexing of the hierarchy.
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Fig. 2. The three hexagons a) are the three sons T1, T2, T3 of summit S (in c)). The
concatenation π(T1) � π(T2) � π(T3) of three of their cuts is a cut of S (a). Another
cut of S is obtained by taking T1 ∪ T2 ∪ T3 = S (in c). However, π′(T1) � ξ(T2, T3), in
b), is not a valid cut of S.

According to a classical result, a family {Si(x), x ∈ E, 0 ≤ i ≤ n} of indexed
sets generates the classes of a hierarchy iff

i ≤ j and x, y ∈ E ⇒ Si(x) ⊆ Sj(y) (2)
or Si(x) ⊇ Sj(y) or Si(x) ∩ Sj(y) = ∅.

Conventionally, a hierarchy is represented by a tree where each node of bifurca-
tion is a class S. The classes of πi−1 at level i − 1 which are included in Si(x)
are said to be the sons of Si(x). Clearly, the sets of the descendants of each S
forms in turn a hierarchy H(S) of summit S, which is included in the complete
hierarchy H = H(E). Figure 1 depicts two examples of such sub hierarchies, by
the two zones H(S1) and H(S2) in small dotted lines.

2.2 Cuts in a Hierarchy

Any partition π of E whose classes are taken in S defines a cut in hierarchy H .
The set of all cuts of E is denoted by Π(E) = Π . Every ”horizontal” section
πi(H) at level i is obviously a cut, but several levels can cooperate in a same cut,
such as π(S1) and π(S2), drawn with thick dotted lines in Figure 1. Similarly,
the partition π(S1)� π(S2) generates a cut of H(E). The symbol � is used here
for expressing that groups of classes are concatenated. Each class S may also be
the matter of cuts in the sub-hierarchy H(S) whose S is the summit. Let Π(S)
be the family of all cuts of H(S); put

Π̃ = ∪{Π(S), S ∈ S}. (3)

The set Π̃ does not contain all possible partial partitions with classes in S.
For example, the partial partition {a} � {f} of Figure 1 does not belong to
Π̃ , though its two terms are members of S. Moreover, all unions of classes are
not in S. If for example, S is made by union of the three hexagonal sons T1, T2, T3
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(Figure 2), then the hierarchy H(S) may accept a cut of type 2a, but surely not
of type 2b, because the union of two hexagons is not a class of S. However, Π̃
contains the family Π(E) of all cuts of H(E).

The hierarchical structure of the data induces a relation between the family
Π(S) of the cuts of node S and the families Π(T1), .., Π(Tp) of the sons T1, .., Tp

of S. Since all expressions of the form �{π(Tk); 1 ≤ k ≤ p} define cuts of S,
Π(S) contains the whole family

Π ′(S) = {π(T1) � ..π(Tk).. � π(Tp); π(T1) ∈ Π(T1)... π(Tp) ∈ Π(Tp)},
plus the cut of S into a unique class, i.e. S itself, which is not a member of
Π ′(S). And as the other unions of several Tk are not classes listed in S, there is
no other possible cut, hence

Π(S) = Π ′(S) ∪ S. (4)

2.3 Properties of the Hierarchies of Partitions

The chain structure of the partitions of hierarchy H gives rise to a few nice
properties about lattices, connections and ultrametrics.

Lattices. The lattice structure results from the following property [17]:

Proposition 2. The family Π(E) of all cuts of H is a complete lattice of par-
titions for the ordering of refinement, where the class of the infimum of J cuts
at point x is the intersection of the classes in x of the J operands, and where
the supremum is their union.

The fact that the union of the classes represents the class of the supremum
derives from Proposition 13 in [13]. The lattice Π(E) is atomic. Its atoms are
the partitions whose all classes but one are singletons, the last one being a pair
of singletons.

Each increasing sequence{π(i), 0 ≤ i ≤ n} of cuts whose classes come from S,
and whose extremities are π0 and πn, defines in turn a new hierarchy H ′, different
form H , but of the same lenght, and made from classes of S, just as H is. Let H
stands for the family of all hierarchies of this type. The refinement ordering on
the partitions induces a product ordering on the families of increasing cuts, i.e.
on the hierarchies of H , according to which H1 is smaller than H2 iff at every
level k the cut π1(k)is smaller than π2(k). We can state the following:

Corollary 3. Proposition 2 shows that the set H of all hierarchies having their
classes in S is itself a lattice. All these lattices are finite, hence complete.

Connections. Concerning connective segmentation, the family S of all classes
satisfies Proposition 4 and Theorem 5 [17]:

Proposition 4. Every binary criterion σ : (F ,S ∪ ∅) → {0, 1} is partially con-
nective, or connective when it is satisfied by the singletons.

In other words, every subset of S containing ∅ is a partial connection. A similar
result appears in the example 21 of [14].
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Ultrametrics. A distance is said to be ultrametric when the triangular inequality
is replaced by the more severe following axiom [4],[3]:

d(x, z) ≤ max{d(x, y), d(y, z)}. (5)

Two ultrametric balls can only be disjoint or concentric. Therefore equation (5)
implies that the set of all balls of radius r induces a Voronoi tesselation πr on E,
whose classes are the open balls on the one hand, and the set of the frontiers on
the other hand. The same equation (5) shows also that this Voronoi tesselation
does not depend explicitly on a set of sites in space E, but only on radius r.
When the range of variation of r is finite, then the family H = {πr, r ≥ 0} forms
an indexed hierarchy. Conversely, every hierarchy of partitions determines an
ultrametric over the set S of the classes of H [3]. Therefore, we can equivalently
give ourselves an ultrametric or a hierarchy of partitions. This aspect is studied
in detail by P. Arbelaez and L. Cohen in [2], by C. Ronse in [14], and by F.
Meyer and L. Najman in [9].

We can try and compare the disjunctive behavior of the ultrametric with the
property of the classes of a hierarchy (Equation (2)). Indeed, the three concepts
of an indexed hierarchy, an ultrametric, and a universal connective criterion turn
out to be three aspects of a same notion. More precisely, we have:

Theorem 5. The three following statements are equivalent:

1. H is an indexed hierarchy,
2. the set S of all classes of the partition πi of H forms an ultrametric space,

of distance the indexing parameter,
3. every binary criterion σ : (F ,S ∪ ∅) → {0, 1} is partially connective.

Proof. the implication (1) ⇒ (3) is proved by proposition 4, and the equivalence
(1) ⇔ (2) is a classical result [3]. We have to prove that (3) ⇒ (1). We observe
firstly that, given two sets B1 and B2 , the criterion ”σ∗(f, A) = 1 iff A ⊆ B1
or A ⊆ B2” is connective iff B2 ⊆ B1 or B1 ⊆ B2. Let then H be a family of
partitions. If it is not hierarchical then there exists at least one point x included
in two classes B1 and B2 of partitions of H such that none of the two inclusions
B2 ⊆ B1 and B1 ⊆ B2 is true, which implies that criterion σ∗ is not connective,
which achieves the proof.

This result shows that the connective approach is inefficient for hierarchies, and
orients us towards the alternative method, namely the optimization of an energy.

3 Cuts of Minimum Energy in Π(E)

We set the problem as it was formulated by L.Guigues [6] [5], and solved by him
in the framework of additive energies and binary hierarchies. Below, the first of
these two conditions is replaced by the more general relation (6) of hierarchical
increasingness of the energy, and the second condition is shown to be cumber-
some. In addition, the lack of unicity will lead us to analyze the structure of the
solutions.
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3.1 Minimization under Hierarchical Increasingness

Allocate an energy ω over he set Π̃ of partial partitions (Equation (3)), i.e. a
positive numerical function ω : Π̃ → R. We propose to characterize the cut(s) of
Π(E) ⊆ Π̃ of minimum energy. As family Π(E) is finite, there is always at least
one cut π∗(E) of smallest energy. More generally, for each node S, the family
Π(S) of all cuts of the hierarchy of summit S admits at least one minimum cut
π∗(S).

The search for minimum cuts becomes easier when we relate the energies of
the fathers, S say, to those of their sons, T say, which can be obtained by means
of hierarchical increasingness:

Definition 6. Let H be a finite hierarchy, let S be one of its nodes, and T be
one of the sons of S. An energy ω on the family Π̃ of the cuts of H satisfies the
condition of hierarchical increasingness in Π̃ when

ω(π1(T )) ≤ ω(π2(T )) ⇒ ω[(π1(T ) � π(S\T )] ≤ ω[(π2(T ) � π(S\T )], (6)

where π1(T ) and π2(T ) are two cuts of the sub-hierarchy of summit T , and where
π is an arbitrary cut of the set difference S\T .

The implication (6) extends an inequality relative to the partitions of set T to
another inequality holding on the partitions of set S, larger than T . In that, it
is a matter for partial connective segmentation, in Ch. Ronse’s sense [13].

Proposition 7. Let H be a finite hierarchy, and ω be a hierarchically increasing
energy on the cuts of H. If S is a node of H with p sons T1..Tp of minimum
cuts π∗

1 , ..π∗
p , then one of the two cuts

π∗
1 � π∗

2 .. � π∗
p, (7)

or the partition of S into a unique class, is a minimum cut of S.

Proof. The hierarchical increasingness of the energy implies that cut (7) has the
lowest energy among all the cuts of type Π ′(S) = �{π(Tk); 1 ≤ k ≤ p} (it does
not follow that it is unique). Now, from the decomposition (4), every cut of S is
either an element of Π ′(S), or S itself. Therefore, the set formed by the cut (7)
and S contains at least one minimum cut of S .

The condition of hierarchical increasingness (6) involved in Proposition 7 is not
compulsory, but it opens a broad range of energies, and is easy to check. The
analysis presented in [6] and [5] focuses on the case of the separable energies, i.e.
of those that satisfy the additivity relation

ω(T1 � T2.. � Tp) =
∑

1≤k≤p

ω(Tk) (8)

between the energy of a partition and those of its classes. It is the concern of a
particular hierarchical increasingness. But the algorithm proposed in [6] p.142,
for finding minimum cuts in case of separable energies applies indeed to any
hierarchically increasing energy ω. It can be stated as follows:
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Proposition 8. Guigues’algorithm:

- scan in one pass all nodes of H according to an ascending lexicographic
order ;

- determine at each node S a temporary minimum cut of H by comparing the
energy of S to that of the concatenation of the temporary minimum cuts of the
(already scanned) sons Tk of S.

Remark that from Proposition 7, the temporary minimum holds always on two
terms only, at each comparison, whatever the number of sons of S.

3.2 Lattice of the Minimum Cuts

The previous results never impose unicity for the minimum cuts. Each node S
involves its own series of comparisons, so that it can perfectly happen that in
the family Π(S) of Relation (4) a minimum cut of Π ′(S) has the same energy
as that of S. This event introduces two solutions which are then carried over
the whole induction. And since such a doublet can occur regarding any node S
of hierarchy H , the number of minimal cuts is a priori indefinite, and may be
large. However, one can reduce it by some additional condition, the simplest one
being the ordering of refinement itself. Indeed, at each node S, among the two
possible solutions of Proposition 7, the partition of S into a single class is always
the larger one for the refinement order. By ordering the solutions at each step,
we thus structure them in a complete lattice whose cardinal increases according
to thickness of quantification of the energy.

What advantage can we draw from this lattice structure? First of all, it solves
the unicity problem. The question ”find the cut that minimizes the energy”
is replaced by ”find the largest cut that minimizes the energy”. This largest
solution is characterized by the following proposition:

Proposition 9. Let {x} be an element of the base of a hierarchy H with n + 1
levels, and let S1(x), S2(x), ..Sn(x) be the sequence of the nodes anterior to {x}.
Let ω be hierarchically increasing energy for the hierarchy on Π(E), and π∗(E)
be a minimum cut H(E) for this energy. The class of π∗(E) that contains {x}
is then Si(x) such that

ω[π∗(Si−1(x))] ≥ ω[π∗(Si(x))] (9)
i ≤ j < p ⇒ ω[π∗(Sj(x))] < ω[π∗(Sj+1(x))] (10)

Instead of using the refinement, we can, alternatively, introduce a second op-
timization. For example, for color images, ω can hold on the luminance, and
the criterion for choosing between the optimal cuts can derive from the product
saturation×hue.

3.3 Minimization with External Partitions

It may be sometimes advantageous to complete family Π̃ of Relation (3) by ad-
ditional partitions. For example, one can wish to suppress parasite small classes
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by clustering them with their neighbor. This leads to introduce a set Ξ(S) of
partial partitions of S whose all classes are unions of more than one Tk, such
as the class ξ(T2, T3) made of the union of two hexagons in figure 2b. These
supplementary cuts of S generate the following family (up to a permutation of
the indexes)

Π ′′(S) = {π(T1) � ..π(Tk) � ξ(Tk+1..Tp) 1 ≤ k ≤ p ; ξ(Tk+1..Tp) ∈ Ξ(S)}.
(11)

Family (11) has to be added to that, Π(S), of the legitimate sons (Relation (4)).
Proposition 7 admits now the new formulation [17]

Proposition 10. Let S be a node in hierarchy H, of p sons T1..Tp associated
with p minimum cuts π∗

1 , ..π∗
p, for some increasing energy. The minimum cuts

of the set formed by
i) the cut

π∗
1 � π∗

2 .. � π∗
p, (12)

ii) the family

{π∗
1 � π∗

2 .. � π∗
k � ξ(Tk+1, ..Tp) ; ξ ∈ Ξ(S)}, (13)

contains the minimum cuts of S.

Proposition 10 reduces the number of comparisons to do for finding the minimum
cut of H(S) from those of the sons of S. To illustrate that, we can calculate how
many comparisons are necessary when S has 2, 3 or 4 sons. For two sons T1 and
T2, it suffices to compare the energies of the two terms π∗

1 �π∗
2 and S = T1 ∪T2.

When a third son T3 is added, we go to five terms π∗
1 �π∗

2 �π∗
3 , T1∪T2∪T3, plus

the three cuts of type π∗
1 � ξ(T2, T3) (see Figure 2). For the nodes with four sons

one finds, similarly, 1+C2
4 +C3

4 + 4 = 15 possibilities. Note that all these values
can only reduce when we require also that the classes of partitions ξ must be
connected. Finally, the previous algorithm in one pass remains valid, but more
comparisons must be performed at each node. But now the solutions no longer
form a lattice, which is an obvious drawback.

4 Examples of Hierarchical Minimizations

We go back over the studies quoted in introduction, and try and interpret them
in the framework that has just been developed. These studies are obviously
richer than their specifics aspects of hierarchical optimization on which we con-
centrate here.

4.1 Suprema of Energies

We firstly contemplate energies whose law of composition is similar to the addi-
tivity relation (8), but written for the supremum. If T1, ..Tk, ..Tp, stand for the
classes of partition π, we thus have

ω(T1 � T2, .. � Tp) = sup{ω(Tk), 1 ≤ k ≤ p}. (14)
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The energies involved in the law (14) increase hierarchically, hence lend them-
selves to the above optimizations. Here are two examples, where we suppose also
that the energy is an increasing function of the class, i.e.

T ⊆ S ⇒ ω(T ) ≤ ω(S) T, S ∈ S. (15)

This last condition may seem to contradict the hierarchical rise, since the parti-
tion into singletons, from which we start, becomes a solution. But it makes sense
when we quantify the energy in 0 and 1, if we look for the largest element in the
lattice of all solutions.

Lasso. This algorithm, due to F. Zanoguera et Al. [20], appears also in [9]. The
initial image is first segmented into α-flat zones, which generate a hierarchy as
the slope α increases. But the optimization itself applies to any hierarchy of
segmentations. It consists in drawing manually a closed curve around the object
to segment. If A designates the inside of this lasso, then we take the following
function

ω(S) = 0 when S ⊆ A ; S ∈ S
ω(S) = 1 when not,

for energy, and we go from classes to partitions by the law (14) of ∨-composition
of the energies. The largest cut that minimizes ω is depicted in Figure 3c. We see
that the resulting contour follows the edges of the petals. Indeed, a segmented
class can jump over this high gradient only for α large enough, and then this
class is rejected because it spreads out beyond the limit of the lasso.

Fig. 3. a) Initial image; b) manual lasso; c) contour of the union of the classes inside
the lasso

Segmentation under constraint. This method was proposed by P. Soille and J.
Grazzini in [18] and [19] with several variants; it is re-formulated by C. Ronse
in a more general framework in [15]. We now take for energy ω of the classes the
function

ω(S) = 0 when sup{f(x), x ∈ S} − inf{f(x), x ∈ S} ≤ ω0

ω(S) = 1 when not,

where ω0 is a given threshold, and we go to partitions by ∨-composition. In
the examples of [18] and [19], the hierarchy is obtained by α-flat zones, and,
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for multi-spectral images, by the intersection of the α-flat zones of the various
bands. Sometimes the criterion ”there is at least one extremum of f inside S” is
added. The class at point x of the largest partition of minimum energy is given
by the largest S ∈ S, that contains x, and such that the amplitude of variation
of f inside S be ≤ ω0.

4.2 Additive Energies

Separable models. They are energies whose archetype is given by the classical
Mumford and Shah functional. One constructs a separable energy in R2 or in
Z2 by starting from a partition of S into its sons T1, ..Tp plus the set Γ of their
frontiers. A first measure ωμ holds on the Tk, and a second one, ων , on their
frontiers ∂Tk, and we put

ω(S) =
∑

1≤k≤p

ωμ(Tk) + ων(∂Tk), (16)

(according to Integral Geometry, a third term, proportional to Euler-Poincaré
Constant could be added). This models are said to be separable [6] [5] in that
we have ω(S) = ω(T1) + ... + ω(Tp), up to external edge effects. The energy ω,
additive, is thus hierarchically increasing. Different instructive variants may be
found in [6].

Thumbnails. The creation of digital thumbnails by Ph. Salembier and L. Garrido
[16] is a matter for separable models. One aims to generate reduced versions of
a given color image f from a hierarchy of its segmentations. In each class T
function f is replaced by its mean value m(T ). The approximation is estimated
in the L2 norm, i.e.

ωμ(T ) =
∑
x∈R

‖ f(x) − m(T ) ‖2 .

If the coding cost for a frontier element is k, that of the whole class T becomes

ων(T ) = 24 +
k

2
| ∂T |

with 24 bits for m(T ). The total energy of a cut is written ω(S) = λωμ(S)+ων(S).
For a fixed λ, it yields a first minimization, followed by a second one relatively
to the Lagrange parameter λ.

4.3 Other Laws of Composition

A number of laws of composition are compatible with hierarchically increasing
energies. Instead of supremum and sum, that we just presented, one could use
infimum, product, difference sup-inf, quadratic sum, etc., and all their combina-
tions. Moreover, one can make depend ω on more than one class, on the proximity
of the edges, on several elements of the lattice H of the hierarchies, etc...
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Here is an example of another law of composition, which extends the tech-
nique developed in [1]. Start from three partition hierarchies Hl, Hs, and Hh of
luminance, saturation, and hue of a given color image. The purpose is to reduce
them to a unique significant cut, and the idea is that the higher (resp. lower)
the saturation, the more representative is the hue (resp. luminance). Therefore,
when a region has a weak (resp. strong) saturation, then its luminance (hue) is
prioritary for the segmentation. Suppose that saturation s varies between 0 and
1. Provide the classes of Hs with the energy

ω(Ts) =
1

area Ts
[1 −

∫
Ts

s(x)dx], (17)

and weight by areas for expressing the energies of the partitions from those of
the classes. It results in the minimum cut πs. Repeat the process by replacing
1−

∫
Ts

s(x)dx by
∫

Ts
s(x)dx in (17), which results in the new energy ω′(Ts) and

the new minimum cut π′
s. Intersect then the two partitions πs and π′

s. When the
class at point x of the intersection has an energy ω −ω′ > 0, it is labelled ”class
for luminance”, and when not, ”class for hue”. The process ends by taking the
partial hierarchy of the luminance (resp.the hue) in the union of the classes for
luminance (resp. for hue), and segmenting luminance and hue individually, in
their own domains.

5 Conclusion

Considering the hierarchies of partitions of an image as a segmentation tool, we
looked for the meaning of an optimum cut, for laws able to govern this opti-
mum. We showed that the assumption of hierarchical increasingness (6) allows
to regroup various segmentation techniques which seem to be far away from each
other, and we proposed new ones.
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Abstract. The aim of this paper is to discuss from an arithmetic and
combinatorial viewpoint a simple algorithmic method of generation of
discrete segments in the three-dimensional space. We consider discrete
segments that connect the origin to a given point (u1, u2, u3) with co-
prime nonnegative integer coordinates. This generation method is based
on generalized three-dimensional Euclid’s algorithms acting on the triple
(u1, u2, u3). We associate with the steps of the algorithm substitutions,
that is, rules that replace letters by words, which allow us to generate the
Freeman coding of a discrete segment. We introduce a dual viewpoint on
these objects in order to measure the quality of approximation of these
discrete segments with respect to the corresponding Euclidean segment.
This viewpoint allows us to relate our discrete segments to finite patches
that generate arithmetic discrete planes in a periodic way.
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1 Introduction

Discrete lines and segments in the plane are quite well understood and their
study has already arised a vast literature on the subject (see e.g. the references
in [14]). The Freeman codings of arithmetic standard discrete lines correspond
to the also well-studied family of Sturmian words. For more details, see e.g. [15].
Among the factors of Sturmian words, Christoffel words play a particular role and
correspond to Freeman codings of segments. The deep and fruitful connections
between Sturmian words and continued fractions, on the one hand, and between
Christoffel words and Euclid’s algorithm, on the other hand, allows a thorough
description of most of their properties (see Figure 1 for an illustration).
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Provençal for many fruitful discussions, and the referees for their valuable remarks.

I. Debled-Rennesson et al. (Eds.): DGCI 2011, LNCS 6607, pp. 47–58, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



48 V. Berthé and S. Labbé

(11, 4) (3, 4) (3, 1) (0, 1)

w = w0 w1 w2 w3 = b

(
1 1
0 1

)2 (
1 0
1 1

) (
1 1
0 1

)3

a �→ a
b �→ aab

a �→ ab
b �→ b

a �→ a
b �→ aaab

4
11 = 0 + 1

2 +
1

1 +
1
3

w = aaabaaabaaabaab

(0, 0)

(11, 4)

a

b

Fig. 1. It is well known that the reduction of a two-dimensional integer vector by using
Euclid’s algorithm allows one to construct the discrete segment (also called Christoffel
word) which is such that no integer point is in the interior of the gray region. Its
Freeman coding w = aaabaaabaaabaab can be obtained by applying on the letter b the
substitutions associated with the steps of Euclid’s algorithm performed on (11, 4).

There exist various strategies for defining and generating discrete lines in the
three-dimensional space. With no claim for being exhaustive, let us quote e.g.
[1,12,18,8,9]. The approach we follow here is motivated by the study of Sturmian
words. Several generalizations of Sturmian words over a three-letter alphabet
have been considered. For instance, infinite words coding trajectories in a cubic
billiard have been investigated in [3]. One of their drawbacks is that they produce
infinite words having a quadratic number of factors of a given length, which seems
to indicate that there is no suitable continued fraction algorithm allowing one to
describe them. This prevents in particular multiscale analysis. Another direction
of generalization of Sturmian words consists in working with balanced words over
a three-letter alphabet. However balanced words over a higher-alphabet do not
seem to be good candidates for describing discrete segments in the space, as
shown in [13]. The family of Arnoux-Rauzy words [4] provides a third fruitful
way of generalizing Sturmian words. They have a linear number of factors of a
given length (2n + 1 factors of length n), and can be described in terms of a
multi-dimensional continued fraction algorithm. Nevertheless this algorithm is
not defined everywhere, and thus, they cannot be used to approximate all the
slopes in the space. For more details, see the discussion and the references in [5].

Our strategy here works in the reverse direction: we start from Euclid’s al-
gorithms that are defined everywhere and we associate with them families of
words. More precisely, we want to construct discrete segments that connect the
origin to a given point (u1, u2, u3) with coprime nonnegative integer coordinates.
We apply a three-dimensional Euclid’s algorithm to the triple (u1, u2, u3) (see
Section 2.1). In Section 2.2 we associate with the steps of the algorithm substi-
tutions, that is, rules that replace letters by words, which allow us to generate
the Freeman coding of the discrete segment.
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We thus obtain in Section 3 a simple algorithmic way for producing discrete
segments and lines by means of substitutions and generalized Euclid’s algorithms
which can allow a multiscale approach for their study. Our description is both
analytic and arithmetic. Note that by discrete segment, we mean here broken
lines constructed by concatenating unit steps oriented along the three coordinate
axes. Based on the quality of approximation of the underlying multi-dimensional
continued fraction algorithms that are used (see Remark 2 below), we expect
these segments to be good candidates for discretizations of Euclidean segments
and lines, which is supported by the experimental studies we conducted.

Section 4 aims at getting a theoretical and dynamical understanding of the
way these segments approximate Euclidean segments by introducing a discrete
plane that is transverse to the original direction (u1, u2, u3). The present paper
relies on a formalism that has been previously introduced in a different context in
[2]. The new notions that are introduced here correspond mainly to Definition 3
and to the choice of the normal vector v of the transverse plane in Equation (1).

2 Preliminaries

Let u = (u1, u2, u3) be a vector with coprime entries in N3. We want to introduce
a discrete line approximating the vectorial line directed by the vector u in R3.

2.1 Generalized Euclid’s Algorithm

In the one-dimensional case, most of the existing continued fraction algorithms
strongly rely on Euclid’s algorithm: starting from two nonnegative numbers a
and b, one subtracts the smallest one to the largest one. If one performs only one
subtraction at each step, one obtains the so-called additive version of Euclid’s
algorithm. If one performs in one step as much subtractions as possible (i.e.,
if 0 ≤ b ≤ a, a is replaced by a − [a/b]b), one gets a multiplicative algorithm.
In the multi-dimensional case, there is no such canonical algorithm, and several
different definitions have been proposed (see [17] for a summary). Indeed starting
from more than two numbers, it is not clear to decide which operation is to be
performed on these numbers, hence the diversity of existing generalizations of
Euclid’s algorithm (see Section 2.3).

We will thus use the following framework for defining versions of three-
dimensional generalizations of Euclid’s algorithms. Let ME be the set of 3 × 3
matrices M = [mij ]1≤i,j≤3 with entries in {0, 1} having only 1’s on the diagonal
and exactly one nonzero entry mij with i �= j. Let MP be the set of 3 × 3
matrices that are permutation matrices, that is, they have entries in {0, 1}, and
only one nonzero coefficient on each line and on each column. Matrices of ME

and of MP are called elementary matrices. We set M to be the set of finite
products of matrices of ME ∪MP .

Definition 1 (Three-dimensional Euclid’s algorithm). Let

X ⊂ {(u1, u2, u3) | ∀i, ui ∈ N, and gcd(u1, u2, u3) = 1}

and let Xf ⊂ X. Elements of Xf are called terminal.
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A three-dimensional Euclid’s algorithm is a map T : X → X such that T (x) =
x for all x ∈ Xf , for any u ∈ X there is M ∈ M satisfying u = M T (u), and
for every u ∈ X there exists N such that T N(u) ∈ Xf .

2.2 Euclid’s Substitutions

Let us consider a finite set of letters A called alphabet. A (finite) word is an
element of the free monoid A∗ generated by A. A substitution σ over the alpha-
bet A is an endomorphism of the free monoid A∗. It is completely defined by its
image on the letters of the alphabet. For i ∈ {1, 2, 3} and for w ∈ {1, 2, 3}∗, let
|w|i stand for the number of occurrences of the letter i in the word w. The map

l : {1, 2, 3}∗ → Nn, w �→ t(|w|1, |w|2, |w|3)

is called the abelianization map. Notice that in the literature, this map is also
referred to as the Parikh mapping. Let σ be a substitution on {1, 2, 3}∗. Its
incidence matrix or abelianized matrix Mσ = (mi,j)1≤i,j≤3 is defined as the
square matrix with entries mi,j = |σ(j)|i for all i, j. We say that σ is unimodular
if det(Mσ) = ±1.

Definition 2 (Three-dimensional Euclid’s substitutions). LetT be a three-
dimensional Euclid’s algorithm. With each matrix M ∈ M produced by the algo-
rithm, we associate a substitution whose incidence matrix is given by M .

Remark 1. Given a matrix produced by a Euclid’s algorithm, there exist several
substitutions having this matrix as incidence matrix. The substitutions gener-
ating words that are Freeman codings of discrete segments are known to be

Sturmian. Given an incidence matrix
[
a b
c d

]
of a Sturmian substitution, only

a+b+c+d−1 substitutions having this matrix as incidence matrix are Sturmian
(i.e., preserve discrete segments). For more details, see [15] and the references
therein. Hence, the choice of a substitution associated with an incidence matrix
can play an important role. This is why we try to privilege as much as possi-
ble here additive steps. We thus usually recover elementary matrices or simple
products of them, which reduces the choices for the associated substitution.

Example 1. With the elementary matrix M =

⎡⎣1 0 0
1 1 0
0 0 1

⎤⎦ are associated

σ : 1 �→ 12, 2 �→ 2, 3 �→ 3 and σ̃ : 1 �→ 21, 2 �→ 2, 3 �→ 3.

2.3 A Zoo of Algorithms

We recall here the most classical generalizations of Euclid’s algorithms which
have lead to well-studied multi-dimensional continued fraction algorithms such
as those discussed in [17]:
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– Jacobi-Perron: let 0 ≤ u1, u2 ≤ u3

(u1, u2, u3) �→ (u2 − [
u2

u1
]u1, u3 − [

u3

u1
]u1, u1),

– Brun: we subtract the second largest entry to the largest one; for instance,
if 0 ≤ u1 ≤ u2 ≤ u3,

(u1, u2, u3) �→ (u1, u2, u3 − u2);

– Poincaré: we subtract the second largest entry to the largest one, and the
smallest entry to the second largest one; for instance, if 0 ≤ u1 ≤ u2 ≤ u3

(u1, u2, u3) �→ (u1, u2 − u1, u3 − u2),

– Selmer: we subtract the smallest positive entry to the largest one; for in-
stance, if 0 < u1 ≤ u2 ≤ u3

(u1, u2, u3) �→ (u1, u2, u3 − u1),

– Fully subtractive: we subtract the smallest positive entry to all the largest
ones; for instance, if 0 < u1 ≤ u2 ≤ u3

(u1, u2, u3) �→ (u1, u2 − u1, u3 − u1).

We have recalled here Jacobi-Perron algorithm in its multiplicative form for the
sake of clarity, but an additive version of this algorithm can be given. Further-
more, one checks that we can chose as terminal set for all these algorithms the
set

Xf = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} ⊂ X,

by possibly applying the two-dimensional Euclid’s algorithm once the first coor-
dinate has reached the value 0 in the Jacobi-Perron case.

Remark 2. The choice of these algorithms is motivated by the quality of approx-
imation they provide. Indeed, Jacobi-Perron and Brun algorithm are known to
provide almost everywhere exponential convergence (see [10]).

Example 2. Let u = (2, 2, 3). By using Brun algorithm, one has u0 = (2, 2, 3),
u1 = (2, 2, 1), u2 = (0, 2, 1), u3 = (0, 1, 1), u4 = (0, 0, 1). By using Poincaré
algorithm, one obtains u0 = (2, 2, 3), u1 = (2, 0, 1), u2 = (1, 0, 1), u3 = (1, 0, 0).

3 A Generation Method for Discrete Segments

Let us apply to u a finite sequence of steps under the action of one of the three-
dimensional Euclid’s algorithm T given in Section 2.3 with Xf defined as above
together with a choice of Euclid’s substitutions associated with the produced
matrices. One has u = M1 · · ·MNuN , where the vector uN ∈ Xf has only two
coordinates equal to 0, and one coordinate equal to 1. Let wN ∈ {1, 2, 3} be
the unique word (of length one) such that l(wN ) = uN . The associated Euclid’s
substitutions are denoted by σn, for 1 ≤ n ≤ N (see the diagram below).



52 V. Berthé and S. Labbé

u = u0 u1 u2 · · · uN ∈ Xf

w = w0 w1 w2 · · · wN ∈ {1, 2, 3}

M−1
1 M−1

2 M−1
3 M−1

N

σ1 σ2 σ3 σN

Definition 3 (Discrete segment). The discrete segment associated with the
vector u and with the three-dimensional Euclid’s algorithm T is defined as the
broken line with integer vertices that starts from the origin, whose Freeman cod-
ing is given by the coding word

w := σ1 · · ·σN (wN ).

In other words, the vertices of this broken line are given by the abelianized by l
of the prefixes of the word w.

Example 3. If u = (2, 2, 3) and by using Poincaré’s algorithm, one has wN =
w3 = 1 and w = w0 = 1231233.

(2, 2, 3) (2, 0, 1) (1, 0, 1) (1, 0, 0)

w0 w1 w2 w3

⎛⎝ 1 0 0
1 1 0
1 1 1

⎞⎠−1 ⎛⎝ 1 1 1
0 1 0
0 1 1

⎞⎠−1 ⎛⎝ 1 1 0
0 1 0
1 1 1

⎞⎠−1

1 �→ 123
2 �→ 23
3 �→ 3

1 �→ 1
2 �→ 123
3 �→ 13

1 �→ 13
2 �→ 123
3 �→ 3

The discrete segment is depicted below. Its Euclidean distance to the Euclidean
segment is 1.3720.

(0, 0, 0)

(2, 2, 3)
x

y

z

4 A Dual Viewpoint

In this section, we introduce the following notation: one sets Mi..j := Mi · · ·Mj

and σi..j := σi · · ·σj for 1 ≤ i, j ≤ N . Hence, the incidence matrix of the
substitution σi..j is Mi..j.

In order to study the quality of approximation of the vector line directed by u
provided by the discrete segment w, we introduce a transverse plane that does
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not contain vector u. Such a plane can be described by its normal vector v that
we chose with positive entries and not collinear with u. The vector having all
entries equal to 1 is denoted by 1. We chose for v

v := tM1..N · 1 = tMN · · · tM1 · 1. (1)

We furthermore write w = z1 · · · zk · · · z|w| where zk ∈ {1, 2, 3} are letters. The
vertices of the discrete segment are thus of the form pk = l(z1 · · · zk), for 1 ≤
k ≤ |w|. The choice of vector v is motivated by the following relation that we
will use below

〈pk,1〉 = 〈(M1..N)−1 · pk, tM1..N · 1〉
= 〈(M1..N)−1 · pk, v〉. (2)

The aim of this section is to relate vertices of the discrete segment to faces
of a finite pattern of the discrete plane with normal vector v via the mapping
(M1..N)−1, and to interpret the coding word w in terms of a coding of the
orbit of a point under a dynamical system acting on this discrete plane with
normal vector v. For that purpose, we introduce in Section 4.2 a dual notion of
substitution acting on faces of discrete planes.

4.1 Discrete Planes

Let n be a nonzero vector in N3. According to [16], we recall that the arithmetic
standard plane Pn of normal vector n = (n1, n2, n3) is defined as

Pn = {x ∈ Z3 | 0 < 〈x, n〉 ≤ ||n||1 = n1 + n2 + n3}.

For x ∈ Z3 and i ∈ {1, 2, 3}, let (x, i∗) stand for the pointed face defined as the
translation by x of the surfel generated by {e1, e2, e3} \ {ei} (see Figure 2). We
say that x is the vertex and i is the type of the pointed face (x, i∗).

(x, 1∗) := x + {λe2 + μe3, (λ, μ) ∈ [0, 1]2}
(x, 2∗) := x + {λe1 + μe3, (λ, μ) ∈ [0, 1]2}
(x, 3∗) := x + {λe1 + μe2, (λ, μ) ∈ [0, 1]2}.

x y

z

x y

z

x y

z

x y

z

x y

z

(0, 1∗) (0, 2∗) (0, 3∗)

Fig. 2. Left: Geometric interpretation of faces. Right: Lower unit cube and upper unit
cube. In this figure and the following, the vertex (0, 0, 0) or (1, 1, 1) is identified by a
black dot.
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We will use the following notation for translates of faces: if (x, i∗) is a face and
y is a vector, then (x, i∗) + y := (x + y, i∗) which extends in a natural way
to union of faces. The lower unit cube refers to the set {(0, 1∗), (0, 2∗), (0, 3∗)},
whereas the upper unit cube refers to {(e1, 1∗), (e2, 2∗), (e3, 3∗)} (see Figure 2).

Let Pn be the set of pointed faces satisfying

Pn = {(x, i∗) | 0 ≤ 〈x, n〉 < ni}. (3)

One checks that the points of Pn are the vertices (i.e., the corners) of the
faces of Pn. By abuse of terminology, by arithmetic discrete plane with normal
vector n, we mean in all that follows this union of pointed faces Pn. Note that
in particular, if n has positive entries, the lower unit cube is included in Pn.

Furthermore, for any vertex pk = l(z1 · · · zk) of the discrete segment, one has

0 ≤ 〈pk,1〉 ≤ 〈u,1〉 = 〈M1..N · uN ,1〉 = 〈uN , tM1..N · 1〉 = 〈uN , v〉 = vwN .

Hence by (2) and (3) the vertices pk of the discrete segment are mapped by
(M1..N)−1 onto vertices of faces of type wN of the discrete plane Pv. The aim
of the next section is to investigate this relation.

4.2 Generalized Substitutions

When σ is a unimodular substitution, it is possible to associate with it a notion
of substitution acting on faces of cubes, following the formalism of [2]:

E∗
1 (σ)(x, i∗) :=

∑
j∈{1,2,3}

∑
p,s such that σ(j)=pis

(
M−1

σ (x + l(s)) , j∗
)
. (4)

The action of E∗
1 (σ) extends in a natural way to unions of faces. A mapping

of the form E∗
1 (σ) is called a generalized substitution. It is obtained as the dual

map of some map E1(σ) that can be seen as a geometric realization of σ. In the
notation E∗

1 (σ), the subscript of E∗
1 (σ) stands for the codimension of the faces,

while the superscript of E∗
1 (σ) refers to duality. Note that the incidence matrix

of E∗
1 (σ) is the transpose of the incidence matrix of σ.

Example 4. Let σ1 :
1 �→ 123
2 �→ 23
3 �→ 3

, σ2 :
1 �→ 1
2 �→ 123
3 �→ 13

, σ3 :
1 �→ 13
2 �→ 123
3 �→ 3

be the substitutions

obtained from the reduction of the vector (2, 2, 3) by using Poincaré algorithm.

If C = is the lower unit cube, then one gets

C E∗
1 (σ1)(C) E∗

1 (σ1 ◦ σ2)(C) E∗
1 (σ1 ◦ σ2 ◦ σ3)(C)
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One key property of generalized substitutions is that they preserve discrete
planes, as proved in [2]. Indeed, one has the following result for any unimodular
substitution σ and any vector n with nonnegative entries:

E∗
1 (σ)(Pn) = PtMσn. (5)

4.3 Dual Pattern

We can now apply the notions previously introduced in order to define a pattern
of the discrete plane Pv (see (1)) that can be associated with the coding word w.

Definition 4 (Dual pattern). For i = {1, 2, 3}, let

Wi := E∗
1 (σN ) ◦ · · · ◦ E∗

1 (σ1)(0, i∗)
and

W ′
i := E∗

1 (σN ) ◦ · · · ◦ E∗
1 (σ1)(ei, i

∗).

One sets furthermore W = W1 ∪W2 ∪W3 and W ′ = W ′
1 ∪W ′

2 ∪W ′
3.

According to [2], the three patterns Wi (resp. W ′
i) for i ∈ {1, 2, 3} have disjoint

interiors. Furthermore W and W ′ coincide except on faces of the lower and upper
unit cubes, W contains the lower unit cube, and W ′ the upper one.

Remark 3. The pattern W is obtained by taking the image of the lower unit
cube under the action of E∗

1 (σ). Note that w and W do not have the same
number of elements. Indeed the number of elements of the coding word w is
equal to the sum of entries of the column with index wN of M1..N , whereas the
number of elements of the pattern Wi is equal to the sum of entries of the line
with index i of M1..N , by (4). Nevertheless, the number of faces in W is equal
to

∑3
i=1 |σ1..N (i)|.

Example 5. Let u = (2, 2, 3). By using Poincaré algorithm, both W and W ′ have
24 faces:

W1

W2

W3
W ′

2

W ′
3

W ′
1

W = E∗
1 (σ1..3)( ) W ′ = E∗

1 (σ1..3)( )

The following theorem summarizes the main properties of the dual pattern.
This theorem is an adaptation to the present context of results of [2].

Theorem 1. The following properties hold:

1. W ⊂ Pv;
2. the pattern W is a periodic pattern for Pv with period vectors being

(M1..N )−1(e1 − e2), (M1..N)−1(e1 − e3);
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3. for all i ∈ {1, 2, 3}, one has

W + (M1..N)−1ei ⊂ W ′.

Proof. 1. We first note that the faces (0, i∗) ⊂ P1 by (3) for i = 1, 2, 3. We
deduce the first assertion from v = tM1..N1 and from (5).

2. One has for i �= j 〈(M1..N)−1)(ei−ej), v〉 = 〈ei−ej ,1〉 = 0. Hence for every
m, n ∈ Z, W + m(M1..N )−1(e1 − e2) + n(M1..N)−1)(e1 − e3) ⊂ Pv.

3. Let (x, k∗) ⊂ Wi. By definition, the face (x, k∗) occurs in the image by
E∗

1 (σ1..N ) of the face (0, i∗). Hence, there exists s such that σ1..N (k) = pis.
One has x = (M1..N)−1l(s).
We assume that p is not equal to the empty word. Let j stand for its last
letter. The face (x + (M1..N)−1ei, k

∗) occurs in the image of the face (0, j∗)
by E∗

1 (σ1..N ), by considering as suffix is. Hence it occurs in W and thus also
in W ′ since both sets coincide except on the lower and upper unit cubes.
Assume now that p is equal to the empty word. One has

x = (M1..N)−1(l(σ(k)) − ei) = (M1..N)−1(M1..Nek − ei)
= ek − (M1..N)−1ei.

Hence the face (x + (M1..N)−1ei, k
∗) = (ek, k∗) occurs in W ′.

4.4 Exchange of Pieces

According to [2], Theorem 1 allows one to define a mapping from W onto W ′

defined as an exchange of pieces between both sets.

Definition 5. We define the mapping

E : W → W ′, (x, k∗) �→
(
x + (M1..N )−1 ei, k

∗) if (x, k∗) ∈ Wi.

This definition is illustrated in Example 5. We have seen in the proof of the
third assertion of Theorem 1 that Ek(0, i∗) ∈ W for 0 ≤ k < |σ1..N (i)| and that
Ek(0, i∗) = (ei, i

∗) for k = |σ1..N (i)|. We define the coding of the orbit of (0, i∗)
under the action of E as the word of length |σ1..N (i)| defined over the alphabet
{1, 2, 3}∗ as follows: for 1 ≤ k ≤ |σ1..N (i)|, its kth letter is equal to the index
j of the subpattern Wj to which Ek−1(0, i∗) belongs. This word is well defined
according to Assertion 3 of Theorem 1.

Theorem 2. The coding word w = σ1..N (wN ) is the reversal of the coding of
the orbit of the face (0,w∗

N) under the action of E. The vertices of the discrete
segment with coding word w are in a one-to-one correspondence with the faces
of type wN of W.

Proof. We write w = z1 · · · zk · · · z|w|.We consider the orbit of (0,w∗
N ) under

the action of the exchange of pieces E . The proof is done by induction on k.
The property holds for k = 1: (0,w∗

N ) belongs to E∗
1 (σ1..N )(0, z∗|w|). We as-

sume that the induction hypothesis holds for all � ≤ k with 1 ≤ k < |w|.
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Hence Ek−1(0, i∗) =
(
(M1..N )−1l(z|w|−k+1 · · · z|w|),w∗

N

)
and Ek−1(0,w∗

N ) is
contained in Wz|w|−k

. Consequently, Ek(0,w∗
N ) = Ek−1(0,w∗

N ) + M−1
1..N ez|w|−k

and Ek−1(0, i∗) =
(
M−1

1..N l(z1 · · · z|w|−k),w∗
N

)
. The one-to-one mapping comes

from 〈−M−1
1..N l(z1 · · · zk) + uN , v〉 = 〈−l(z1 · · · zk) + l(w),1〉.

Example 6. Let u = (2, 2, 3) on which Poincaré algorithm is applied, and let

C = be the lower unit cube. One has v = (7, 13, 4).

(−1, 1, 0)

(−2, 1, 1)

(−1, 0, 3)

(−2, 0, 4)

(0, 0, 1)

(−1, 0, 2)

(0, 0, 0) 6

3

5

2

4

1

0

W = E∗
1 (σ1..3)(C) Vertices of the faces of type 1 Scalar product with v

The letters of w = 1231233 correspond to the color of the faces of type 1 of W
ordered decreasingly by their scalar product with v. The vertices of the discrete
segment depicted in Example 3:

(0, 0, 0) , (1, 0, 0) , (1, 1, 0) , (1, 1, 1) , (2, 1, 1) , (2, 2, 1) , (2, 2, 2) , (2, 2, 3)

are in one-to-one correspondence with the vertices of the faces of type 1 by the
map

x �→ −(M1..3)−1 · x + uN =

⎛⎝−2 0 1
1 −1 0
0 3 −2

⎞⎠ · x +

⎛⎝1
0
0

⎞⎠ .

Remark 4. Theorem 2 does not only apply for wN but also for the other letters.
Note that it allows a labelling of faces of a given type by increasing distance
to the Euclidean plane with normal vector v. Theorem 2 can be considered as
an analogue of the description of Sturmian and Christoffel words in terms of
codings of rotations acting on the unit circle. It also provides a second simple
generation method for discrete segments.

5 Conclusion

We have described here a generation method for discrete segments connecting
the origin to a given point (u1, u2, u3) ∈ N3. We obtain two generation methods:
the first one is stated in terms of an iteration of a finite number of substitutions
governed by the choice of the underlying three-dimensional Euclid’s algorithm
(see Section 3); the second one is of a more geometric flavor and involves a dual
discrete plane (see Section 4.4). We recover here duality ideas that can be found
in [7] in the framework of Christoffel words. Our contribution mostly relies in the
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application and development of the formalism of [2] in the context of the study
of discrete lines. Note that the use of generalized substitutions (see Section 2.2)
associated with multi-dimensional continued fraction algorithms has also already
proved its efficiency in discrete geometry for the generation of discrete planes, see
[11,6]. We now aim at starting a thorough investigation and comparison of the
generation properties of the most classical three-dimensional Euclid’s algorithm.
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Abstract. We introduce a new method to compute conformal param-
eterizations using a recent definition of discrete conformity, and estab-
lish a discrete version of the Riemann mapping theorem. Our algorithm
can parameterize triangular, quadrangular and digital meshes. It can be
adapted to preserve metric properties. To demonstrate the efficiency of
our method, many examples are shown in the experiment section.

Keywords: parameterization, conformal, digital surfaces.

Introduction

Knowing a parameterization of a surface is very useful because it allows to work
with functions instead of three dimensional sets. Thus, we can easily apply real
analysis results to surfaces. Moreover, as parameterizations establish a corre-
spondence between a surface and a part of the plane, we can then extend planar
techniques to surfaces. For all these reasons, they are widely used in mesh pro-
cessing: among the many applications, we can cite texture mapping, morphing,
surface fitting, etc.

A parameterization should preserve the geometrical properties of the mesh:
angles (conformal map), areas (authalic maps), lengths (isometric map), etc.
But maps which are both conformal and authalic maps are isometric, and only
developable surfaces have an isometric flat parameterization. In practice, people
often look for conformal maps. They preserve angles, lengths ratios locally, and
more generally the local aspect of the mesh. It is often sufficient to obtain a good
parameterization.

In this paper we present a new algorithm to compute conformal parameteri-
zations using the definition of discrete conformity given in [10]. Although, it was
first used for meshes, with floating point coordinates, it has the main advantage
of being easily adaptable to digital surfaces, with integer coordinates. We show
that, in the case of triangular meshes, it is a generalization of the cotan con-
formal coordinates method [13] and establish a discrete version of the Riemann

I. Debled-Rennesson et al. (Eds.): DGCI 2011, LNCS 6607, pp. 59–70, 2011.
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Fig. 1. Triangular mesh parameterization, E = H + L′ (see p. 67)

Fig. 2. Digital torus parameterization

mapping theorem. The boundary conditions introduced are closer to the real
continuous theorem than those of classical conformal methods.

Our algorithm consists in minimizing a discrete energy to measure conformity.
It can be generalized to preserve other properties such as faces areas and/or edges
lengths allowing to obtain a more isometric parameterization. These energies
can also be used to obtain parameterizations with free-boundary conditions as
detailed in [4,8,9,14] and give better results around the boundary.

The rest of the paper is organized as follows. Section 1 introduces the definition
of discrete conformal maps for quad meshes and show how it can be generalized
to digital surfaces and triangular meshes. In Section 2, we explain how to choose
boundary conditions, i.e. fix the position of some boundary points, to ensure
uniqueness. We mainly focus on the two choices which lead to a discrete ver-
sion of the Riemann mapping theorem and to the same parameterization as the
cotan conformal coordinates. In Section 3, we describe precisely how we proceed
in practice to compute parameterizations. Numerical illustrations are given in
Section 4.

1 Discrete Conformal Parameterizations

1.1 Quad Meshes

In real continuous theory, a surface parameterization is a bijective application
from the surface S in �3 to the plane: (x, y, z) ∈ S �→

(
s(x, y, z), t(x, y, z)

)
∈

�
2. For meshes, it boils down to a point v′ = (s, t) assigned to each vertex

v = (x, y, z). In the sequel, we will identify v′ with the complex number s + it.
Locally identifying each face (v0, v1, v2, v3) of a quad mesh to points in the

plane (in one way or another) we can view the diagonals v2 − v0 and v3 − v1
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as two complex numbers and compute the ratio ρ = v3−v1
i(v2−v0)

, which is defined
up to a global similarity. Following [10], we call this data a discrete conformal
structure and we say that a parameterization is discrete conformal if it preserves
the ratios ρ. In other words, for all faces of the mesh, we require that

v′3 − v′1
v′2 − v′0

= iρ. (1)

Geometrically, such a parameterization preserves the angle between the diagonals
and the ratio of their lengths. It is a property we expect since faces are small
with respect to the whole mesh and a conformal map locally preserve angles and
lengths ratios (its derivative is a similarity), For simplicity, we can rewrite (1)
as a linear equation

v′3 − v′1 = iρ(v′2 − v′0), (2)

consequently a conformal parameterization can be seen as a solution of a (com-
plex valued) linear system.

Remark 1. Even if the four vertices of a quad are not in the same plane we can
define the ratio ρ. Indeed, the diagonals in �3, when not colinear, can be viewed
as two vectors spanning a plane, wherein the complex ratio can be computed.
This choice amounts to defining the normal to the surface as the cross-product of
these diagonals. A prior knowledge of the normal, therefore of the tangent plane,
is another way to identify the quad-face to a quadrilateral in the complex plane,
by projecting the vertices onto this tangent plane. The ratio does not depend on
the choice of the normal basis identifying the tangent plane with the complex
numbers. Together, all these identifications of the tangent plane at each quad,
considered as local charts, form an atlas of the surface.

1.2 Triangular Meshes

In general, faces of meshes are not quads but triangles and the definition extends
to this case: we add a new (combinatorial) dual point to each face and to each
boundary edge, a standard procedure in remeshing. Then for each edge of the
initial mesh we form a quad by joining the extremities of the edge and

– the two dual points inside the adjacent faces if it is not a boundary edge
– the dual points inside the adjacent face and on the edge if it is a boundary

edge.

The construction is shown in Figure 3. On the left, we display the initial trian-
gular mesh and the dual points, and on the right the new quad mesh.

By definition, quads consist of two triangles that do not necessarily belong to
the same plane. To determine the ρ coefficient, we rotate one of them until it
belongs to the plane of second, that is to say we flatten them using the intrinsic
metric of the polyhedral surface. Once we have this quad structure and a ρ for
each quad we can look for a parameterization in the same way as in Section 1.1.
Thus we parameterize not only the initial vertices but also the dual points.

The use of the extrinsic or intrinsic distances does not seem to imply big
differences as noted in another context in [2].
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Fig. 3. Introduction of dual points

Fig. 4. Definition of ρ for digital surfaces

1.3 Digital Surfaces

The definition we gave in the previous section is not interesting as such when us-
ing digital surfaces whose faces are surfels. Indeed, these faces are planar squares
and all the ρ coefficients equal 1. Therefore a more meaningful discrete confor-
mal structure has to be defined, using extrinsic or non local data such as a given
normal vector [11]: we compute a normal vector of each face using for instance
the method described in [6], or coming from the scanned data. It allows us to
determine the tangent plane of the surface in each surfel. Firstly, we project the
four edgels on this plane, obtaining a parallelogram which better approximates
the continuous surface than the initial surfel. Secondly we define the ρ coeffi-
cient of a surfel as the one of this projected parallelogram. An example of the
construction is depicted in Figure 4.

2 Boundary Conditions

2.1 Solutions of the System

The linear system (2) does not have a unique solution since there are more
unknowns than equations: If we denote by nf , ne, nb and nv the number of faces,
edges, border edges and vertices of the mesh, it consists of 2nf real equations
and has 2nv real unknowns. We have on the one hand (Euler characteristic of
the disc)

1 = nf − ne + nv, (3)

and on the other hand (mesh property)

4nf = 2ne − nb. (4)
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Adding 2 × (3) to (4) we obtain

2(nv − nf) = nb + 2.

Hence, in order to ensure uniqueness we need nb + 2 real constraints.

2.2 Connection to Real Continuous Theory

The Riemann mapping theorem states that each surface homeomorphic to the
closed disc is in fact conformally equivalent to the closed disc. Besides the holo-
morphic map is unique if one boundary is mapped to the other one and the
images of 3 boundary points are fixed [1,16,3,7].

In the same way, we can map the boundary of the mesh to the unit circle.
Thus we obtain nb additional real constraints. Then, if we fix the images of two
of the boundary vertices, we have the

(nb − 2) + (2 × 2) = nb + 2

real constraints we are looking for.
This leads to the following discrete version of Riemann mapping theorem: if

two (almost three) boundary vertices are fixed, there exists only one discrete con-
formal parameterization whose boundary points belong to the unit circle. These
boundary points are not different from other boundary points. Our boundary
conditions are much closer to the Riemann theorem than those of other classical
discrete conformal algorithms: [5,13] fix all the boundary points and [4,9] fix two
boundary points (that accumulate conformal distortion) but the other ones are
not mapped on the circle.

2.3 Connection to the cotan Conformal Coordinates

In this section, we will show that our method is a generalization of parameteri-
zations with the cotan conformal coordinates [4,13]. We remind the reader that
this method applies to triangular meshes and consists in

1. fixing the images of the boundary points, often on a convex boundary,
2. solving the following system:

for each vertex vi which is not on the boundary of the mesh∑
j : vj neighbour of vi

(
cotαij + cotαji

)
(v′j − v′i) = 0 (5)

(the angle αij and αji are defined on Figure 5, left picture).

Suppose that in the construction of dual points described in Section 1.2 we add
the circumcenter of the triangles and the middle of the boundary edges. Con-
sider two adjacent triangles faces (v0, v1, v2) and (v0, v3, v1). We denote by v3
and v4 their circumcenters and by c the middle of [v0, v1]. An example of the
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vi vj

αij

αji

c
v0 v1

v2

v3

v4

v5

α1

α2

β

Fig. 5. Definition of the angles in the cotan formula

construction is shown in Figure 5 (right picture). We want to compute the ρ
coefficient of the quad (v0, v5, v1, v4).

First, since the angle in c is right, ρ is real:

ρ =
‖v4 − c‖
‖v1 − v0‖

+
‖v5 − c‖
‖v1 − v0‖

.

Second,
‖v4 − c‖
‖v1 − v0‖

= cotβ = cotα1.

since the triangle (v0, c, v4) is right in c (first equality) and α1 =
̂v0v4v1

2
accord-

ing of the inscribed angle theorem (second equality).
Finally

ρ = cotα1 + cotα2.

Note that the coefficients are the same as in (5).
We denote by ρ(vi, vj) the ρ coefficient of the quad containing the diagonal

[vi, vj ]. Adding the equations in (2) involving a particular initial vertex vi we
obtain ∑

j : vj neighbour of vi

ρ(vi, vj)(v′j − v′i) = 0

It is in fact the sum over the dual edges which form a loop. Hence the system
(2) is equivalent to a system which has (5) as a subsystem.

Due, to the results of section 2.1 we have to add nb

2 + 1 real constraints to
ensure uniqueness. We choose to fix the initial boundary points (those of the
triangular mesh) and one of the dual boundary points. Hence the coordinates
v′i of the initial mesh satisfy the same linear system as with cotan conformal
coordinates and we obtain the same solution.

We have proved that our method is a generalisation with arbitrary dual points
and boundary constraints of the cotan conformal coordinates. It can be of in-
terest when some angles of the triangles are obtuse. Then the circumcenters are
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not necessarily inside the triangles and the coefficients in (5) can be negative.
Thus conditions of Tutte theorem [15] are not verified and the cotan conformal
coordinates method can fail.

3 Practical Computation

3.1 Energy Minimization

Many parameterizations methods, including [4,5,9,13], consist in solving sparse
linear systems. As the system of equations (2) is also sparse, we could think of
using similar techniques. But the boundary condition, i.e. remaining on a circle,
is not linear and even not quadratic. That is why we implement a non-linear
minimization technique.

We denote by ρ(vi, vj) the ρ coefficient of the face containing the diagonal
[vi, vj ]. Then we introduce the conformal energy

H =
∑∣∣(v′l − v′j) − ρ(vi, vk)

(
v′k − v′i

)∣∣2
where the sum is over all the quads (vi, vj , vk, vl) of the mesh,
and the boundary energy

C =
∑(

|v′i|2 − 1
)2

where the sum is over all the boundary vertices vi except the two ones whose
parameters are fixed. We search the parameters v′i which minimize the total
energy

E = αH + βC

for chosen positive real numbers α and β. The minimization is performed using
a conjugate gradient method (Fletcher-Reeves algorithm, [12]).

3.2 Initial Conditions

The minimization algorithms we use are guaranteed to converge to a local min-
imum but not necessarily to the global one. It is a very important issue in this
case since there is no uniqueness in the Riemann theorem if the map is not one
to one. For example, the one to one parameterization of the unit disc with three
fixed points is the identity map. However, with convenient initial conditions our
algorithm can perfectly lead to a discrete approximation of the z �→ z2 map.

In practice, it works quite well to set at the beginning the images of the bound-
ary points on a circle with the same distances between them as on the boundary
of the mesh. And we set the initial positions of the images of the interior points
at the origin. The algorithm more or less acts like the relaxation of a network of
springs. We must also mention that in order to have less distortion it is generally
better to choose the fixed points as far as possible from each other. For example
when we fix two points, we try to select points with around half of the boundary
length between them. An example is given in Figure 6 where the fixed points
are represented by big dots.
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Fig. 6. Example of initial configuration

3.3 Preservation of Lengths and Areas

Yet, we focused on computing conformal maps to preserve angles and thus shapes
locally. It is certainly a key feature in mesh parameterization but not enough
to ensure a good result. Indeed, conformal maps can lead to parameterizations
which are very tight in some regions and more sparse in others. If we map a
checkerboard with such a parameterization we obtain big squares in the first
regions and little ones in the others which is of course unsatisfactory.

To avoid these artifacts we define new energies attached to preserving metric
properties such as:

1. the area of the faces,
2. the length of the edges.

First, we introduce the authalic energy

A =
∑(

Im
(
(v′k − v′i)(v′l − v′j)

)2
−
(
‖(vl − vi) ∧ (vk − vi)‖ + ‖(vk − vi) ∧ (vj − vi)‖

)2)2

where the sum is over all the quads (vi, vj , vk, vl) of the mesh,
and we secondly define the metric energy

L =
∑(

|v′i − v′j |2 − ‖vi − vj‖2)2 (6)

where the sum is over all the edges [vi, vj ]. Then, we consider the energy

E = αH + βA + γL.

There are many more equations and we are no longer looking for a unique so-
lution of a system but rather for the minimum of an energy. However, as any
isometric transformation of a given parameterization has the same energy, we
ensure uniqueness by fixing the image of one boundary point and the direction
of the next boundary edge.

Note that such a minimal energy parameterization will not be conformal,
unless the surface is developable. Indeed a map preserving both angles and areas
is isometric and only developable surface have an isometric flat parameterization.
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But choosing the coefficient α, β and γ conveniently we can obtain more accurate
results. Moreover, as there is no longer a condition on the boundary we also
obtain a more “natural” boundary, adapted to the mesh. The choice moved
from the boundary points to the coefficients.

It can be quite slow to compute the energy L (and also A). To speed up our
algorithm, we can minimize only the distortion of the metric along the boundary.
Thus we introduce the metric energy L′ defined as (6) where the sum is over
the boundary edges only. It allows us to obtain a conformal map with a more
“natural” boundary, closer to another classical Riemann-Hilbert condition [16].
Note also that even with the initial conditions described in the previous section,
in general, for numerical reasons, the algorithm does not converge towards the
right local minimum if we do not use the energy C. It does, however, if we use
the following two steps process:

1. minimize H with a fixed boundary.
2. use this minimum as initial condition to minimize E.

Moreover, as the minimization is very fast when we fix all the boundary points,
it also speeds up the convergence.

4 Results

4.1 Comparison of the Energies

We first computed parameterizations of the mesh (s, t) �→ cos(s) + cos(t) (dis-
cretized with quad faces) to show the main advantages and drawbacks of each
of the energies C (circle), L′ (length of the boundary), L (length) and A (area).
You can see the corresponding results in Figure 7, 8, 9 and 10. Additionally, the
algorithm can be applied on triangular meshes as shown in Figure 1.

The parameterizations are displayed on the left. On the right, we mapped a
32×32 checkerboard on the surface using this parameterization. With the circle
boundary energy E = H +C (Figure 7), we obtain a conformal parameterization
(the shape of the squares is preserved) but the behavior around the boundary
is not natural (because a circle is very different from the true boundary of the
mesh). In particular there is a big distortion of the metric in this region. If we
use the boundary metric energy L′ instead of C (Figure 8), the map is still
conformal but the boundary is better preserved. We observed that the results
are visually quite close to those of other methods with free boundary (ABF,
circle patterns, etc.). The use of the energies L and A has the same effect on
the boundary. Besides, even if the parameterization is not conformal (see all the
red points in Figure 7), the texture mapping looks more accurate since all the
squares have the same size. However, close inspection shows that some squares
of the checkerboard become rectangles after the mapping.

4.2 Digital Surfaces

We also computed parameterizations of digital surfaces. We used a digital torus
consisting of around 1500 surfels. We first computed a parameterization using
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Fig. 7. E = H + C, circle boundary

Fig. 8. E = H + L′, more isometric along the boundary

Fig. 9. E = H + L, more isometric

Fig. 10. E = H + A, more area preserving
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Fig. 11. Method for quad meshes with digital normal, E = H + C

(a) (b)

Fig. 12. Digital method with smoothed normal, (a) E = H + C, (b) E = H + A

the method for quad meshes without smoothing the normal. As expected the
resulting texture mapping is not good: we do not even distinguish the checker-
board squares in some regions of Figure 11. Then we use our method for digital
surfaces and obtain better results: we clearly distinguish the checkerboard on
Figure 12. This figure also shows that the influence of additional energies is the
same as with float meshes.

5 Conclusion and Future Work

We have described a new method of conformal parameterization that can be
applied to different meshes, including triangular meshes and digital surfaces.
As a proof of concept, we have used different cost functions whose minimum
preserves more or less the shape, the size, and the boundary conditions. An
important feature of our approach is the introduction of a recent definition of
discrete conformity allowing many possibilities for more accurate results. We
have shown various experimental results to illustrate the different possibilities.
In future work, we will study the choice of coefficients α, β, etc. In particular, it
would be interesting to compute the more isometric conformal parameterization.
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Abstract. Boykov and Kolmogorov showed that it is possible to find
globally minimal contours and surfaces via graph cuts by embedding an
appropriate metric approximation into the graph edge weights and de-
rived the requisite formulas for Euclidean and Riemannian metrics [3].
In [9] we have proposed an improved Euclidean metric approximation
that is invariant under (horizontal and vertical) mirroring, applicable to
grids with anisotropic resolution and with a smaller approximation error.
In this paper, we extend our method to general Riemannian metrics that
are essential for graph cut based image segmentation or stereo matching.
It is achieved by the introduction of a transformation reducing the Rie-
mannian case to the Euclidean one and adjusting the formulas from [9]
to be able to cope with non-orthogonal grids. We demonstrate that the
proposed method yields smaller approximation errors than the previous
approaches both in theory and practice.

1 Introduction

Combinatorial optimization using graph cuts presents a powerful energy min-
imization tool that has become very popular in the recent years in computer
vision and image processing fields, mainly for its efficiency and applicability to
a wide range of problems [5]. For instance, modern approaches to image seg-
mentation often express the problem in terms of minimization of a suitable en-
ergy functional and can be solved via graph cut based algorithms if the energy
is graph representable [11,2]. The graph cut segmentation framework has sev-
eral advantages over traditional methods such as applicability to N-D problems,
straightforward integration of various types of regional or geometric constraints
or the ability to find a global minimum in polynomial time [4,2].

Many of the energy functionals used in computer vision such as the Chan-Vese
segmentation model [8] or the geodesic active contours [7] require minimization of
a length dependent term, e.g. length of the segmentation boundary under a given
metric (Euclidean in the former example and Riemannian in the latter one). In
order to minimize such energies using graph cuts the metric approximation has
to be embedded into the graph. A seminal paper in this area is due to Boykov
and Kolmogorov [3] who showed that graph cuts can be viewed as hypersurfaces
and that it is possible to compute geodesics and globally minimal surfaces via
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graph cuts for Euclidean and Riemannian metrics with arbitrarily small error
depending primarily on the size of the neighbourhood system that is used to
connect the nodes in the graph.

In [9] we have devised an improved Euclidean metric approximation that is
invariant under image mirroring, applicable to images with anisotropic resolu-
tion and with a smaller approximation error, especially for small neighbourhoods
that are used in computer vision (large neighbourhoods result in better approx-
imation but also longer computation and high memory consumption). We have
presented the practical benefits of our method on the graph cut based mini-
mization of the Chan-Vese segmentation model [16]. In this paper, we extend
our method to general Riemannian metrics, making it applicable to the graph
cut based geodesic segmentation model [3] or stereo matching [14]. To achieve
this, we set up a transformation matrix that projects a Riemannian space with
a locally constant metric tensor onto the Euclidean plane. Subsequently, due to
the linearity of the transformation, we are able to exploit the Cauchy-Crofton
based formulas from [9] to derive the edge weights approximating the Euclidean
metric in the transformed space and obtain a good approximation for the orig-
inal problem. Nevertheless, the formulas are adjusted to be able to cope with
non-orthogonal grids that may arise during the transformation. To demonstrate
that this method gives a better approximation than [3] we plot and compare the
approximation error it yields for lines under different angular orientations and
also show practical examples on the graph cut based geodesic segmentation.

To conclude the introduction, we also refer the reader to recent methods based
on continuous maximum flows [13] allowing to find globally optimal surfaces
for both isotropic and anisotropic Riemannian metrics [1,15] minimizing the
metrication artefacts, i.e. offering superior results compared to the traditional
combinatorial graph cuts (dealt with in this paper) in many situations.

This paper is organized as follows. In Section 2 we state the problem and
briefly describe the concept of cut metrics including current approaches to Eu-
clidean metric approximation via graph cuts. In Section 3 we present the state-
of-the-art approach to Riemannian metric approximation and give details about
the proposed method extending our previous work. The comparison of both
methods is available in Section 4 and in Section 5 we provide discussion on their
complexity and computational demands. We conclude the paper in Section 6.

2 Preliminaries

In this section we review the concept of cut metrics and explain the current
approaches to Euclidean metric approximation via graph cuts. For simplicity
we consider only the 2D case in the following text. However, the methods are
directly extensible to 3D and this extension is covered in Section 3.4.

2.1 Cut Metrics

Given a connected weighted graph G = (V , E) a cut C is a partitioning of the
graph nodes V into two disjoint subsets S and T such that V = S ∪ T . It is defined
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Fig. 1. (a) A grid graph with 8-neighbourhood system, Δρk denotes the distance be-
tween the closest lines generated by vector ek. (b) 16-neighbourhood system and the
computation of Δφk (c) 8-neighbourhood system and the computation of Δφv

k.

by the set of edges connecting the nodes in S with nodes in T . The cost of a cut
|C|G is the sum of the weights of its edges. Lets assume G is embedded in a regular
orthogonal grid. Example of such graph is depicted in Fig. 1. In [3] Boykov and
Kolmogorov showed that cuts in grid graphs can be viewed as hypersurfaces (in
our case as contours) and vice versa. Looking at Fig. 1a we can see that the
closed contour C naturally defines a cut in G by partitioning the graph nodes
into two groups S and T depending on whether they lie inside or outside the
contour. Alternatively, the cut induced by the contour can be defined as the
set of edges it severs1. Due to this geometric meaning of cuts we can naturally
interpret the cost of a cut as the “length” of a corresponding contour.

Now, imagine the image segmentation problem. In graph cut based image
segmentation [2] the input image is converted to a graph where every node
corresponds to an image voxel and the nodes are connected according to a chosen
neighbourhood system. A grid graph is obtained where every cut can be viewed
as a binary (or foreground/background) segmentation of the image as they both
partition the image into two parts. Moreover, if the edge weights are chosen
appropriately, the cost of every cut can resemble the energy of a chosen energy
functional (e.g. the Chan-Vese model [8,16]) of the corresponding segmentation.
Thus, minimizer of the energy can be found by finding a minimal cut in the
graph. This is a fast operation that can be performed in polynomial time [4].

However, as mentioned earlier many of the energy functionals [7,8] contain
a length dependent term. Usually, the length of the segmentation boundary is
being minimized under a chosen metric. Hence, a metric approximation has to
be embedded into the graph in order to optimize such energy functional via
graph cuts. Because we have already explained that the cost of a cut can be
interpreted as the length of a corresponding contour (in this case, the segmen-
tation boundary plays the role of the contour) all we have to do is to choose
the edge weights appropriately such that for any cut its cost approximates the
length of the corresponding contour under a chosen metric. In [3] Boykov and

1 Obviously, for a grid with a finite resolution the correspondence between a cut and a
contour is not unique and multiple contours can be found representing the same cut.
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Kolmogorov showed that this can be achieved with arbitrarily small error and
devised the requisite edge weight formulas for Euclidean and Riemannian met-
rics. The complete set of metrics that can be approximated via graph cuts has
then been described in [10].

2.2 Euclidean Metric Approximation

Lets assume the graph G is embedded in a regular orthogonal 2D grid with all
nodes having topologically identical neighbourhood system and with δ1 and δ2
determining the spacing between the nodes in horizontal and vertical direction,
respectively. An example of such a graph with 8-neighbourhood system and
δ1 = δ2 is depicted in Fig. 1a. Further, let the neighbourhood system N be
described by a set of vectors N = {e1, . . . , em}. We assume that the vectors
are listed in the increasing order of their angular orientation 0 ≤ φk < π. We
also assume that vectors ek are undirected (we do not differentiate between
ek and −ek) and shortest possible in given direction, e.g. 16-neighbourhood is
represented by a set of 8 vectors N16 = {e1, . . . , e8} as depicted in Fig. 1b.
Finally, we define the distance between the nearest lines generated by vector
ek in the grid as Δρk (for the 8-neighbourhood system these are depicted in
Fig. 1a).

Assuming to each edge ek is assigned a particular weight wE
k (this weight is

the same for all nodes), imagine we are given a regular curve C as shown in
Fig. 1a. Further, lets assume the cut induced by the contour is defined by the
set of edges it intersects. The question is how to set the edge weights so that the
capacity of the cut |C|G approximates the Euclidean length |C|E of the contour.
The method of [3,9] is based on the Cauchy-Crofton formula that links Euclidean
length |C|E of a contour C with a measure of a set of lines intersecting it:

|C|E =
1
2

∫
L
nc(l) dl , (1)

where L is the space of all lines and nc(l) is the number of intersections of line
l with the contour C. Because every line in a plane is uniquely identified by its
angular orientation φ and distance ρ from the origin the formula can be rewritten
in the form:

|C|E =
∫ π

0

∫ +∞

−∞

nc(φ, ρ)
2

dρ dφ , (2)

discretizing the formula and following the derivation steps of [3,9] we end up
with the following edge weights:

wE
k =

ΔρkΔφk

2
, (3)

where, as pointed out in [3], the distance between the closest lines generated by
vector ek in the grid can be calculated by dividing the area of the grid cell by
the length of ek:

Δρk =
δ1δ2

||ek||
. (4)
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According to [3] using these weights |C|G converges to |C|E as δ1, δ2, supk Δφk

and supk ||ek|| get to zero. Namely the value of supk Δφk is important as it can be
easily controlled by the choice of the neighbourhood. For dense neighbourhoods
a very good approximation may be obtained [9].

Unfortunately, due to the computational demands small neighbourhoods are
used in practice. For this reason, we have introduce an improved method in [9]
having a smaller approximation error. It consists in replacing Δφk in Eq. 3 with:

Δφv
k =

Δφk + Δφk−1

2
. (5)

This modification attempts to calculate a better partitioning of the space of
all angular orientations among the vectors ek. In 2D this space is represented
by a unit circle and points ek

||ek|| lying on the circle can be treated as samples
from this space. To partition the space among these points a Voronoi diagram is
computed on the unit circle and Δφv

k is chosen as the length of the Voronoi cell
(circular arc) corresponding to ek

||ek|| . Alternatively, Δφv
k is the measure of the

lines closest to ek in terms of their angular orientation. The whole construction
is depicted in Fig. 1c and reduces to the Eq. 5 in 2D. Moreover, besides having a
smaller approximation error this construction is also invariant under (horizontal
and vertical) mirroring and directly generalizable to higher dimensions which
the original approach of [3] from Fig. 1b is not.

3 Riemannian Metrics

3.1 Introduction

Giving all the theory on Riemannian geometry is beyond the scope of this paper,
therefore we confine ourselves only to the basic notation required for proper un-
derstanding of the rest of this section. In Riemannian geometry each point of the
space is associated with a metric tensor M that controls how an inner product
of two vectors is calculated. This tensor is a symmetric positive definite matrix
(a bilinear form) that varies smoothly over the space. In case M is constant the
Riemannian norm of a vector u is calculated as:

||u||R =
√

uT · M · u (6)

A standard Euclidean norm is obtained when M equals to the identity matrix.
In the non-constant case the distance between two points in a Riemannian space
does depend on their displacement from the origin, as opposed to the Euclidean
geometry. However, full understanding of this case is not necessary for the on-
coming derivations.

Geometrical interpretation of the metric tensor is intuitive and expresses local
contraction or dilation of the space. The properties follow from the spectral
decomposition of M . Because M is symmetric positive definite it has two real-
valued eigenvalues λ1 and λ2 and two orthogonal eigenvectors. The space is then
“stretched” in the directions corresponding to the eigenvectors by the value of
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√
λ1 and

√
λ2. This behaviour has interesting utilizations in the image processing

field. In [7] Caselles et al. showed that the image segmentation problem can be
solved by finding the shortest path (geodesic) in a Riemannian space with an
image derived metric tensor. In each voxel the tensor dilates the space in the
direction of image gradient making the segmentation follow edges and object
boundaries. Another interesting application is in stereo matching [14].

3.2 State of the Art

Until the seminal work of Boykov and Kolmogorov [3] the geodesic segmenta-
tion problem was solved solely using the level set framework [12]. In [3] Boykov
and Kolmogorov showed that in some sense graph cuts can be treated as a
combinatorial counterpart of the level set method, both having implicit bound-
ary representation (see also [2]). Using integral geometry they derived the edge
weight formulas for Euclidean as well as general Riemannian metrics allowing
graph cut based solution to the geodesic segmentation problem. The formulas
have the following form in 2D:

wR
k = wE

k · det M

(uT
k · M · uk)3/2 , (7)

where uk is a unit vector in the direction of ek. As can be seen, in their approach
the edge weights for a Riemannian metric are obtained by multiplying the Eu-
clidean metric weights by a coefficient depending on the metric tensor M and
the direction of ek (the second term vanishes when M is the identity matrix).
In the following subsection we propose a different method and show that it has
a smaller approximation error.

3.3 Proposed Method

Like in the Euclidean case, let us assume the graph G is embedded in a regular
orthogonal 2D grid with all nodes having topologically identical neighbourhood
system N = {e1, . . . , em}. Examples of N8 and N4 grid graphs are depicted in
Fig. 1a and Fig. 2a, respectively. In addition, we assume that the graph is placed
in a Riemannian space with the metric tensor sampled in the graph nodes, i.e.
each graph node p is associated with a metric tensor M(p) (e.g. the image derived
metric tensor [3]). Without loss of generality we also assume that the spacing
between the graph nodes is 1 in all directions. Because M(p) already defines
space stretching it is possible to embed the grid resolution right into the matrix
M (more on this topic later in this section). Finally, our aim is to set the edge
weights wR

k such that for any contour C the cost of the corresponding cut |C|G
(i.e. the sum of the weights of the edges the contour severs) approximates the
Riemannian length of the contour |C|R.

Choosing one of the graph nodes, let us assume the metric tensor M(p) (we
will omit the node specification in the following text) is locally constant around
p. Further, recall that the geometric interpretation of M is space dilation and
that the space is dilated by the amount corresponding to the square root of the



An Improved Riemannian Metric Approximation for Graph Cuts 77

Fig. 2. (a) A grid graph with 4-neighbourhood system and a circular contour and the
effect of space transformation by matrix T . Δρk is the distance between the closest lines
generated in the transformed grid by the transformed vectors ek. (b) 8-neighbourhood
system transformed by the matrix T and the computation of Δφv

k.

eigenvalues of M . To reflect this, we set up a symmetric transformation matrix
T having the same eigenvectors as M but with eigenvalues being the square root
of those of M . We have that:

M = T T · T . (8)

Subsequently, the matrix T can be used to project the Riemannian space with
a locally constant metric tensor onto the Euclidean plane. It holds that mea-
suring Euclidean distances in the transformed space is equivalent to measuring
Riemannian distances in the original space.

Lemma 1. Given two points u and v, a constant metric tensor M and the
corresponding transformation matrix T , it holds that the Euclidean distance of
T · u and T · v equals to the Riemannian distance of u and v.

Proof. dE(T · u, T · v) = ||T · (u − v)||E =
√

(T · (u − v))T · (T · (u − v)) =
=
√

(u − v)T · T T · T · (u − v) =
√

(u − v)T · M · (u − v) = ||u − v||R =
= dR(u, v) ��

The effect of the space transformation using the matrix T on the local neighbour-
hood of graph node p is illustrated in Fig. 2a. Depending on T we may obtain
a skewed non-orthogonal grid. However, note that due to the linearity of the
transformation, the number of intersections between the grid and the contour C
is preserved. This has an important corollary – if the edge weights are chosen so
that the cut cost approximates the Euclidean length in the transformed space
we would obtain also approximation of the original Riemannian length.

The last question remains, how to set up the edge weights so that the cut cost
approximates the Euclidean length in the transformed space. Because the space
is Euclidean, Eq. 3 based on the Cauchy-Crofton formula for Euclidean spaces is
sufficient to obtain the edge weights. The only difference is the core set of lines
used to compute Δρk and Δφv

k where the lines generated by the transformed
neighbourhood system have to be considered. Because the transformed grid is
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potentially non-orthogonal, Eq. 4 can no longer be used. However, the distance
between the closest lines generated in the grid by vector T · ek can still be
calculated by dividing the area of the grid cell by the length of T · ek:

Δρk =
det T

||T · ek||E
=

√
det M

||ek||R
. (9)

The calculation of Δφv
k remains the same, i.e. using a Voronoi diagram on a unit

hypersphere (circle in 2D) the measure of angular orientations closest to T · ek

is computed as illustrated in Fig. 2b. Alternatively, in 2D it can be obtained by
averaging the angles between T · ek and its two neighbours.

So far, we have considered only local behaviour of the Riemannian space.
To obtain a generalization for the general case with varying metric tensor a
different metric tensors M(p) is used to compute the edge weights according to
the derived formulas for each graph node p. Thus, wk is no longer the same across
all nodes as in the Euclidean case. Finally, notice that the derived formulas are
in accordance with our previous results. In particular, the Euclidean space with
node spacing δ1 and δ2 from Section 2.2 can be simulated using the following
constant metric tensor and the corresponding transformation matrix:

M =
(

δ2
1 0
0 δ2

2

)
T =

(
δ1 0
0 δ2

)
, (10)

where M embeds the space stretching along x and y axis of the coordinate system
by δ1 and δ2, respectively. Using this matrix Eq. 9 reduces to Eq. 4 and the same
edge weights are derived.

3.4 Extension to 3D

The Cauchy-Crofton based edge weights have the following form in 3D [3,9]:

wE
k =

ΔρkΔφv
k

π
. (11)

To compute Δρk Eq. 9 may be used as it is. The space of all angular orientations
is represented by a unit sphere surface in 3D. The sphere surface area has to be
partitioned among the points T ·ek

||T ·ek|| using a spherical Voronoi diagram [6] to
obtain Δφv

k.

4 Experimental Results

In this section, we present two experiments in which we compare our method
with the method proposed by Boykov and Kolmogorov (BK) [3]. The first ex-
periment measures the metrication error of both approximations for lines under
different angular orientations. Assuming a straight line under all possible an-
gular orientations we compare its length in the cut metric (i.e. the sum of the
weights of the edges it severs) to the ground-truth (i.e. the actual Riemannian
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Fig. 3. Multiplicative metrication error (in percents) of the approximation for various
metric tensors. Comparison of our and Boykov and Kolmogorov’s [3] method. Left
column: N8. Middle column: N16. Right column: N32. Top row: Space dilation under
10◦ by a factor of 2. Middle row: Space dilation under 60◦ by a factor of 15. Bottom
row: Space dilation under 45◦ by a factor of 40.

length of the line) for several combinations of neighbourhood and a metric ten-
sor. The multiplicative error of both approximations is depicted in Fig. 3. For
small stretch factors (first two rows) the performance of both approaches is sim-
ilar. Nevertheless, while the error of our method oscillates around zero in all
cases, the BK method behaves unexpectedly in some situations underestimating
the length under all angular orientations (first graph on the second row). With
growing stretch factor the maximal error grows for both methods, particularly
due to the growing value of supk Δφk (noticeable in Fig. 2b). However, for larger
stretch factors there is a huge difference in favor of our method. Especially for
small neighbourhoods the assumption of infinitely small Δφk required to derive
Eq. 7 is unrealistic causing a considerable error. Unfortunately, in practice even
much larger stretch factors are common in which case the performance of both
considered methods is going to be relatively poor unless a very dense neighbour-
hood is used.

In the second experiment we have conducted a comparison on a practical
image segmentation problem using the geodesic segmentation model [7,3]. We
have used a 16-neighbourhood and the same parameters for both methods. For
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Fig. 4. Graph cut based geodesic image segmentation. Left column: Input image – syn-
thetic and biomedical data. White foreground marker is placed inside the object(s) to
be segmented. Middle column: Segmentation result using the Riemannian metric ap-
proximation of [3]. Right column: Result using the proposed method. 16-neighbourhood
and the same parameters were used for both methods.

each of the images depicted in Fig. 4 a foreground marker was placed inside the
objects to be segmented with background marker being the border of the image.
Subsequently, image gradient was calculated in each pixel and a metric tensor
was constructed dilating the space in the direction of the gradient. Exact formula
for construction of the matrix M is available in [3]. Finally, a geodesic in the
Riemannian space was found separating the foreground and background markers
using the graph cut algorithm yielding the segmentation boundary. Apparently,
our approach to the Riemannian metric approximation gives significantly better
results for the particular examples. Besides these experiments, more practical
tests were performed and, generally speaking, we have not found any example
in which our method gives inferior results.

5 Discussion

In this section we would like to focus on the computational demands of the pro-
posed method. As we have already demonstrated we are able to achieve smaller
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approximation errors, however, this comes for a price. While the BK method
consisting of Eq. 7 has generally constant complexity (few basic mathematical
operations) our method is clearly more demanding requiring the computation
of circular or spherical Voronoi diagram in 2D or 3D, respectively, to obtain
Δφv

k. While this does not present a computational burden in 2D (it is equally
fast when the neighbourhood vectors are sorted according to their angular ori-
entation beforehand) it may cause a significant computational overhead in 3D.
For instance, in cases where the metric tensor differs in each pixel, the spherical
Voronoi diagram has to be recalculated repeatedly which results in our method
being approximately 20 times slower making it hardly feasible. However, it is
still useful in case of scalar (i.e., isotropic) or constant (such as those simulating
anisotropic resolution in 2D and 3D [9]) Riemannian metrics where it is enough
to compute the Voronoi diagram only once. Then again the method is equally
fast as the BK approach. Also note that the difference between the two approx-
imations can be sometimes minor in practice. Thus, a decision has to be always
made regarding the trade-off between the precision and speed.

Another complication in our method that can be encountered is the construc-
tion of the transformation matrix T . In general, the construction of T from the
matrix M requires spectral decomposition of M which can be slow. However,
this can be avoided in most situations by directly constructing the matrix T
instead of M such as in the image segmentation example where the eigenvectors
(the image gradient) and eigenvalues (computed from the length of the gradient)
are known so T can be constructed directly.

6 Conclusion

In this paper, we have presented a novel method for Riemannian metric approxi-
mation via graph cuts. It is based on the Cauchy-Crofton formula and is a general-
ization of our previously devised formulas for the Euclidean metric approximation
on anisotropic grids. Using a transformation matrix we reduce the Riemannian
case to the Euclidean one and modify our edge weight formulas to be able to cope
with non-orthogonal grids. The proposed approximationhas a smaller metrication
error than other state-of-the-art methods which was verified both in theoretical
and practical experiments. Implementation of the method described in this paper
can be downloaded from http://cbia.fi.muni.cz/projects/graph-cut-library.html.
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tion of the Czech Republic (Projects No. MSM-0021622419, No. LC535 and No.
2B06052).
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Abstract. We introduce the notion of Digital Level Layer, namely the
subsets of Zd characterized by double-inequalities h1 � f(x) � h2. The
purpose of the paper is first to investigate some theoretical properties of
this class of digital primitives according to topological and morphological
criteria. The second task is to show that even if we consider functions f
of high degree, the computations on Digital Level Layers, for instance the
computation of a DLL containing an input set of points, remain linear.
It makes this notion suitable for applications, for instance to provide
analytical characterizations of digital shapes.

Keywords: Digital Primitives, Cover, Thickness, Linear Programming,
Support Vector Machines.

1 About the Words

We propose to introduce in this paper the notion of Digital Level Layers. This
name refers to level sets, namely to subsets of a space X characterized by an
equation f(x) = h where the variable x is in X and where h is a constant value.
Most often the space X is Rd. Under assumption that the gradient of f is not
null, level sets are sub-manifolds of dimension d−1, namely hypersurfaces. In this
paper we are interested in digital sets, which means that the space X is restricted
from Rd to Zd. In order to preserve interesting properties, this restriction of
support space requires to relax the constraint f(x) = h to a double-inequality
h1 ≤ f(x) ≤ h2. It leads to the definition of Digital Level Layers: Digital because
the space X is Zd, Level because we use a height function f and Layers because
we consider the layer between the two level sets f(x) = h1 and f(x) = h2.

Definition 1. A Digital Level Layer – DLL for short – is a subset of points x
of Zd verifying a double inequality h1 � f(x) � h2 where f goes from Zd to R,
where the symbols � and � denote ≤ or < and where h1, h2 are real numbers.

2 Why This Kind of Primitives ?

One of the main challenges of digital geometry is to provide digital primitives
corresponding to algebraic curves or surfaces in the Euclidean world. There exist
several ways to define such objects. The first idea to introduce geometrical digi-
tal primitives is to consider the trace on Zd of the geometrical primitives of Rd.
It means that a digital straight line would be the trace of a real straight line, a
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digital circle the trace of a real circle, namely the set of solutions of multivariate
Diophantine equations. Although the resolution of such equations is undecidable,
the main reason why they are not used for geometrical purposes is that their vi-
sual rendering is completely different from the visual rendering of the Euclidean
objects – in fact they have bad properties in terms of digital topology: they have
not enough voxels to separate the space, which can be traduced by tunnels. Since
this first naive idea is not satisfactory, one can wonder how to define digital prim-
itives that fulfill some good topological and morphological properties. Several an-
swers to this kind of problem have been developed for the last thirty years. We
can mention two kinds of approaches: “morphological” and “topological”.

– the morphological approach is to consider an extended notion of trace. A
point x ∈ Zd belongs to the trace of the Euclidean surface S ⊂ Rd if the
hypercube [x− ε, x+ ε]d has a non-empty intersection with S. This extended
notion of trace is equivalent to the trace of the Minkowski sum S + [x −
ε, x+ ε]d. These objects are simply called “covers” [6] (Fig. 1) and with some
refinements “supercovers” [5,2] (supercover deals with the cases where, if
ε ≥ 1/2, a real point of S can provide several integer points and hence a non
minimal thickness). We can also use different “structuring elements” such as
Euclidean balls, hypercubes, segments. . . With the square [−0.5; 0.5]2, the
cover of S + [−0.5; 0.5]2 corresponds to the set of pixels centered on the
grid points that cross the circle. If we choose a segment [−0.5; 0.5]× {0} or
{0} × [−0.5; 0.5] (depending on the region) as structuring element, we have
another definition of circle which is also widely used. Generally speaking, it
can be hard to provide a general analytic characterization of these primitives
but as we will notice in the sequel, local characterizations can be found.

– a topological approach can be used if the Euclidean primitive we want to
digitize has an interior and an exterior. Hence a natural way to define the
digitization of an implicit curve or surface f(x) = h is for instance to consider
the boundary of the trace of the interior integer points (f(x) < h). The
main advantage of this topological approach is to define objects which are
topologically guaranteed (Fig. 1).

Hence is there a reason to introduce another class of primitives? In fact each one
of these two classes of digital surfaces has its own drawbacks. The main prob-
lem with morphological surfaces is their recognition. As far as we know, no ef-
ficient algorithm has been published to recognize ellipsoids for instance, defined
according to this approach. The topological surfaces do not suffer from the same
problem. Their recognition is a problem of separation. To recognize for instance
an ellipsoid, the problem is to find a Euclidean ellipsoid separating the interior
points from their complement. This problem is solved by Support Vector Ma-
chines [7,15]. There is however another reproach we can do for both approaches:
they provide no direct analytical characterization of the voxels of the surface.
The main interest of Digital Level Layers is to satisfy this requirement which
can be useful in the framework of conversions from raster to vector graphics. In
other words, DLL is the third approach, the “analytical” one, to define digital
primitives.
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Fig. 1. Digitization’s of an ellipse, on the left according to the morphological principle
– we take the pixels which cross the Euclidean ellipse – on the right according to the
topological principle –we take the difference between the pixels that center is in the
interior of the ellipse and their 4-neighborhood

Fig. 2. Digitization of an ellipse as a Digital Level Layer – we take the integer points
between two level sets on both sides of the ellipse

The main drawback of DLL as “surfaces” appears on Fig. 2: the width of DLL
is not constant all along its points. An idea could be to say: “OK, instead of using
a double inequality which can be written 0 < f(x) < h where h is a constant, we
just have to work with inequalities 0 < f(x) < h(x) where h(x) depends linearly
on the Euclidean norm of the gradient −→∇f namely h(x) = h0||

−→∇f(x)|| with a
constant h0” but the inequality 0 < f(x) < h0||

−→∇f(x)|| can be simply rewritten
0 < f(x)

||
−→∇f(x)||

< h0. It is just a change of function f and the gradient of the

new function f(x)

||
−→∇f(x)||

is not guaranteed to have a constant norm: the problem

remains!
Is it a sufficient reason to reject DLL? No because in spite of its main draw-

back, there are a lot of situations where we do not take care of the Euclidean
width of the surface. The main question is thus to determine whether Digital
Level Layers can be useful. The outline of the paper is to investigate the interest
of this notion through two main angles:

– from a theoretical point of view: which theoretical properties can we obtain,
with some assumptions on the function f , for instance if f is a polynomial
of bounded degree? We are going to consider topological and morphological
properties.
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– the second important point is to determine the algorithmic tools that can
deal with DLL. We focus our attention on the recognition of these families
of primitives –with again some assumptions on f . The recognition problem
has been deeply investigated in the framework of linear structures and we
provide here a new approach based on excluded sets of points. We are going
to see how the results obtained in a linear framework can be extended in
order to work efficiently with DLL.

3 Theory

The definition of Digital Level Layers is very general, maybe too much, as soon
as we make no assumption on the function f . We can even notice that for any
finite subset S of Zd, we can construct the analytic expression of a function
f such that S is the DLL of double-inequality −1/2 ≤ f(x) ≤ 1/2. Hence to
say that a given set is a DLL has clearly no interest by itself. The interest of
the notion is in the relation between the set S, the class of the function f that
appears in the double-inequality h1 � f(x) � h2 and the value of the difference
h2 − h1.

3.1 Functional and Algebraic DLL

We start by introducing the notion of functional DLL.

Definition 2. A Digital Level Layer L is called functional in direction i if it
contains exactly one point in each line of the lattice Zd parallel to the ith axis.

We call these DLL functional because they define clearly a function from Zd−1 to
Z and conversely any function from Zd−1 to Z can be represented by a functional
DLL. Most often, functional DLL are used to digitize real functions f sending
Zd−1 or even Rd−1 to R by taking their integer part �f� (other convention can
be chosen as �f + 0.5�, �f + 0.5� or �f�). The functional DLL associated to
�f� is simply characterized by double-inequality 0 ≤ f(xi)1≤i≤d−1 − xd < 1.
Such functional DLL are also morphological surfaces since we can obtain them
as the trace on Zd of the sum of the surface xd = f(xi)1≤i≤d−1 with the vertical
segment ] − 1; 0] as structuring element.

As we will see in the section devoted to algorithms, digital hyperplanes are
important for the recognition of DLL and they are particular cases of these
generic class of objects: A digital straight line is a DLL with f(x) = a1x1 +a2x2,
a digital plane is a DLL with f(x) = a1x1 + a2x2 + a3x3 and more generally
digital hyperplanes are simply defined with an affine form f(x) =

∑d
i=1 aixi as

height function [13]. DLL cover also the case of digital hyperspheres (R− 1
2 )2 ≤∑d

i=1(xi − ai)2 < (R + 1
2 )2 (according their definition in [4]) (Fig. 4). All these

usual primitives of digital geometry are DLL with a polynomial height function
f of low degree. It leads to the introduction of the notions of algebraic DLL
(Fig. 5).
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Fig. 3. The functional DLL of double-inequality 4680370559422800 ≤
−17758960839495486x + −2015536714762185y + 292165823537172xy +
2304539315667564x2 + −172062298114380y2 + −8936152895940xy2 +
−75980632598934x3 + 1625988388601x2y + 7065487923165y3 + 4336388981634600z <
4680370559422800 + 4336388981634600 namely z = �(4680370559422800 +
17758960839495486x + 2015536714762185y − 292165823537172xy −
2304539315667564x2 +172062298114380y2 +8936152895940xy2 +75980632598934x3 −
1625988388601x2y1 − 7065487923165y3)/4336388981634600�

Definition 3. An algebraic Digital Level Layer is a subset of points x of Zd ver-
ifying a double inequality h1 � P (x) � h2 where P is a multivariate polynomial
of R[Xi]1≤i≤d and where h1, h2 are real numbers.

It follows of course that digital lines, hyperplanes and spheres (for at least one
definition) are algebraic DLL.

3.2 Topological Properties

We consider in this section a notion of digital connectedness induced by a norm
N of Rd (two points x and x′ of Zd are neighbors if there distance N(x′−x) ≤ 1)
or equivalently by a convex neighborhood which can be translated in any point
of the lattice Zd. The ball of radius 1 is denoted B1.

We recall that the dual norm N� of N is defined by its ball of radius 1 with
B�

1 = {x ∈ Rd/∀y ∈ B1, x.y ≤ 1}. The balls B1 and B�
1 are polar from each

other [16]. We have for instance N�
∞ = N1 and conversely N�

1 = N∞. The
connectedness associated to N∞ and N1 is respectively denoted 3d − 1 and 2d-
connectedness. The duality of N∞ and N1 leads of course to the idea that the
3d − 1 and the 2d-connectedness from Zd are dual.

Connectedness. By considering a digital layer Lδ of double inequality h− δ
2 ≤

f(x) < h + δ
2 , three domains are considered:

– the two domains of the complement of Lδ in Zd denoted L−
δ and L+

δ and
verifying respectively f(x) < h − δ

2 and f(x) ≥ h + δ
2

– the layer Lδ itself.
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Fig. 4. The digital plane of double-inequality 583 ≤ 72x − 28y + 190z ≤ 845 and the
digital sphere of double-inequality 192 < (x − 20)2 + (y − 20)2 + (z − 20)2 ≤ 202

Fig. 5. The algebraic DLL of double-inequality −233050932002 ≤ 9706766352x +
34545685472y − 50669609424z − 1006860048x2 − 1419723424y2 + 1813925040z2 +
346913568xz − 191023296yz ≤ −194272584000

We notice that by increasing the value δ, points are deleted from L− and
L+ to be added in L. We introduce the set Δ = {δ ∈ R+/Lδ is connected}.
As in a Euclidean framework, the property of Δ to be an interval is related to
the existence of local minimum of |f − h| upper than the smaller value δ which
provides a connected layer Lδ.

To determine the set Δ is often difficult. Except in the case of the digital
straight lines of Z2, namely with functions f(x) = a1x1 + a2x2 (we assume
GCD(a1, a2) = 1) where it is known for a long time that Δ = [|a1| + |a2|, +∞[
according to 4-connectedness and Δ = [max{|a1| + |a2|}, +∞[ according to 8-
connectedness, the problem has been longly investigated. In dimension 3 with
digital planes of Z3 having a rational direction, Δ remains an interval of the
form Δ = [min, +∞[ that minimal connecting thickness has been expressed in
[11]. In the case of digital planes of given irrational normal (a1, a2 and a3 are
rationally independent), the lower bound of the connecting thickness has been
computed in 2009 in [8].



Introduction to Digital Level Layers 89

Separation. With the question of connectedness of Lδ arises also the question
of the connectedness between L−

δ and L+
δ , namely the existence of tunnels in Lδ.

Proposition 1. We assume that f is C1 and that at least one of the two symbols
� or � of inequality h − δ/2 � f(x) � h + δ/2 is strict (<). If for every point
x ∈ Rd we have N�(−→∇f(x)) ≤ δ, then L−

δ and L+
δ are separated according to the

connectedness associated to the norm N (Lδ is tunnel-free).

Proof. We assume that for any x in Rd we have N�(−→∇f(x)) < δ and that the two
points x and x′ are adjacent according to N namely that N(x′−x) ≤ 1. We have
f(x′)−f(x) =

∫ x′

x

−→∇f(x). (x′−x)
||x′−x||2 ds where the path of integration is the segment

[x, x′]. It follows from N�(−→∇f(x)) ≤ δ that −→∇f(x).(x′−x) ≤ δN(x′−x) or again
−→∇f(x). x′−x

||x′−x||2 ≤ δ N(x′−x)
||x′−x||2 . Thus we have f(x′) − f(x) ≤

∫ x′

x
δ N(x′−x)
||x′−x||2 ds. We

obtain f(x′)− f(x) ≤ δN(x′ −x) ≤ δ. Hence, x and x′ cannot be one in L−
δ and

the other in L+
δ .

Proposition 1 means that a sufficient condition of separation for the digital line
of double-inequality h−δ/2 ≤ a1x+a2y < h+δ/2 is N�(−→∇f(x)) ≤ δ. We have of
course −→∇f(x) = (a1, a2). It means that a sufficient condition for separability is
N∗

1 (a1; a2) ≤ δ namely N∞(a1; a2) ≤ δ i.e max(|a1|; |a2|) ≤ δ for 4-separability.
It means that N∗

∞(a1; a2) ≤ δ namely N1(a1; a2) ≤ δ i.e |a1| + |a2| ≤ δ is
sufficient to guarantee 8-separability. These two conditions are sufficient to have
a tunnel-free line and it is known that they are also necessary [3].

It is the same in the framework of digital planes. The sufficient condition of
separability given by Proposition 1 is max(|a1|; |a2|; |a3|) ≤ δ for 6-connectedness
while it is |a1|+ |a2|+ |a3| ≤ δ for 26-connectedness. In the general framework of
digital hyperplanes (double inequality h−δ/2 ≤ a.x < h+δ/2), the Proposition 1
proves the sufficient condition of separability N∞(a) ≤ δ for the 2d connectedness
and N1(a) ≤ δ for the 3d − 1 connectedness. This condition is also necessary [3].

3.3 Morphological Property

The main morphological property of surfaces is their thinness. As noticed previ-
ously, the main drawback of DLL is to provide a representation of a Euclidean
surface f(x) = h which can be thick in some points and thin elsewhere. It is
however not the case of all digital layers, as we can see with digital lines or
digital spheres and the fact that some layers are not satisfactory due to their
variation of thickness does not mean that it is the case for all DLL.

One of the tools we provide in the next section is precisely a method to
compute layers that thickness is locally controlled by forbidden points (which
can be chosen arbitrarily or automatically). Even if the layer obtained this way
has a variable thickness somewhere, we believe that its local control – with some
“control” points – in a region of interest makes DLL an interesting tool for digital
geometry applications, and a step towards an efficient vectorization of digital
shapes.
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3.4 Comparison between DLL and Morphological Surfaces

Morphological surfaces – covers– are defined as the trace on Zd of the Minkowski’s
sum S + E of a Euclidean surface S with a structuring element E which can
be a unit vertical segment 0d−1 × [−0.5; 0.5[, a unit voxel [−0.5; 0.5]d or any
convex subset of Rd. The boundary of the sum S + E is a subset of the sum
of boundaries ∂S + ∂E. Its structure is obtained by translating alternatively
some pieces of the boundary of S and some other pieces of the boundary of
E. An example is drawn in Fig. 6. We can decompose the ellipse of equation
f(x) = h in four pieces according to the quadrant of the normal vector −→∇f . A
pixel of center x crosses the ellipse if and only if it belongs to a set of equation
f(x − v) ≤ h ≤ f(x + v) where v can be (−0.5;−0.5), (−0.5; 0.5), (0.5;−0.5) or
(0.5; 0.5) or to a unit square centered on the four points of extremal coordinates.
Without providing the details, it means that the morphological ellipse can be
decomposed in four squares and four pieces of curved stripes characterized by
inequalities f(x− v) ≤ h ≤ f(x + v). We can notice that such double-inequality
is completely different from the double-inequalities characterizing the DLL. We
have here two different functions f(x− v) and f(x+ v) translated one from each
other, while in DLL we have only one function and it is the constant that differs
to define the two bounding surfaces. It follows that DLL are deeply different
from morphological surfaces.

Fig. 6. The cover of an ellipse namely the digital morphological ellipse obtained with
a unit square as structuring element. It is made of the integer points belonging to
several pieces obtained by translating the initial curve from (−0.5;−0.5), (−0.5; 0.5),
(0.5;−0.5), (0.5; 0.5) and to unit squares centered at the extremal points.

4 Algorithms

The main algorithmic challenge with digital primitives is their recognition and
the main advantage of DLL on morphological surfaces is that this problem can
be tackled efficiently. The important fact is that even with algebraic DLL of
degree greater than 1, the recognition problem remains linear. This reduction
is known as the “kernel trick”. It has been introduced in 1964 in [1]. Hence
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we decompose the section into two parts. The first one is devoted to problems
of “linear” computational geometry while the second one is devoted to their
application in the framework of general DLL.

4.1 Two Problems of Computational Geometry

Find the thinnest strip containing a given set of points The first problem
that we consider is the following:

Problem 1. Input: A finite subset In of Rd. Output: Find the thinnest affine
strip h1 ≤ n.x ≤ h2 containing In (where n.x denotes the dot product between
the normal vector n and the variable point x).

We should precise what we mean by “thin”. A natural choice is to give to the
word thin an Euclidean meaning: The Euclidean thickness of the affine strip
h1 ≤ n.x ≤ h2 is the ratio between h2 − h1 and the Euclidean norm of the
normal vector ||n||2 but we could of course define the thickness with any other
norm. It provides a definition of thickness for any subset of Rd:

Definition 4. The thickness of a subset In of Rd according to a norm ||.|| is
the lower bound of the set of thickness of the strips containing In.

We can even extend the notion of thickness from norms to functions which
are just homogeneous. Instead of considering that the thickness of the strip
h1 ≤ n.x ≤ h2 is the ratio h2−h1

||n|| , it becomes h2−h1
ϕ(n) where ϕ is a homogeneous

function i.e satisfying ϕ(λn) = λϕ(n). This extension allows us to speak about
directional thickness if we consider for instance ϕ(n) = |nd| where nd is the last
coordinate of n.

Definition 5. The ϕ-thickness of a subset In of Rd is the lower bound of the
set of values h2−h1

ϕ(n) where the strip h1 ≤ n.x ≤ h2 contains In.

In the case of a discrete set In, the minimum may be reached for some strips.
The question is: given ϕ, how do we solve Problem 1? For the Euclidean norm
(ϕ(.) = ||.||2), the solution can be computed by the rotating caliper [14] based
on the computation of the convex hull. For a directional width (ϕ(.) is the ab-
solute value of a linear form), the problem can be expressed as a linear program
(minimize δ subject to h ≤

∑d−1
i=1 nixi +xd ≤ h+ δ) and solved in linear time (if

d is fixed) by Megiddo algorithm [12]. We can also solve it efficiently with the
chord algorithm [9] or others. If ϕ(.) is a polyhedral norm, namely a norm whose
unit ball is a polyhedron, we can compute the ϕ-thickness as the minimum of all
the directional thickness in the directions normal to the faces of the unit poly-
hedron. We should however notice that in the framework of digital hyperplanes
recognition, the problem arises under a different form. Instead of computing the
minimal ϕ-thickness of In, the question is to determine whether this value is
smaller than a given maximal thickness:

Problem 2. Input: A finite subset In of Rd, a homogeneous function ϕ : Rd → R

and a maximal thickness M . Output: Find a strip h1 ≤ n.x ≤ h2 containing In
with a ϕ-thickness < M .
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The answer of Problem 1 provides clearly the answer of Problem 2, and usually
the algorithms chosen to compute the ϕ-thickness can be modified so that they
stop as soon as the ϕ-thickness of In becomes greater than M . As known in
the framework of Linear Programming, there is usually no great difference in
the algorithms computing the minimum of an objective function and the ones
determining whether the minimum is greater than a constant value.

Find a strip containing a set of points with two excluded sets of points.
Let us now consider a different problem without using any notion of thickness.
It is just based on two sets of forbidden points Up and Down. The aim is to put
the initial set In in a strip, Up on one side and Down on the other side.

Problem 3. Input: Three finite subsets In, Up, Down of Rd. Output: Find an
affine strip h1 ≤ n.x ≤ h2 containing In with the points of Up and Down
on both sides namely with h1 ≤ n.x ≤ h2 for all x in In, with n.x < h1 for
x ∈ Down and with n.x > h2 for x in Up.

Here we have a problem of multiclass separation. These problems have been
investigated in the deep SVM literature [7,15] and we can solve Problem 3 ef-
ficiently with a variant of the well-known GJK algorithm [10] used for collision
detection.

4.2 From Affine Strips to DLL Recognition: The Kernel Trick

In the case of digital straight lines, planes and hyperplanes, the problem of
recognition is to determine whether a given set of points In belongs to a digital
hyperplane with a fixed maximal thickness. In the extended framework of DLL,
the problem arises in the same way. Let us consider a DLL characterized by
h1 ≤ f(x) < h2 where the function f(.) : Zd → R belongs to the linear space
F generated by functions f1(.), f2(.), ... , fm(.). We define the thickness of the
double-inequality h1 ≤ f(x) < h2 from any homogeneous function ϕ : F → R.

Definition 6. The ϕ-thickness of double inequality h1 ≤ f(x) ≤ h2 where f is
in the linear space F with a homogeneous real function ϕ : F → R is h2−h1

ϕ(f) .

The main drawback of this notion of ϕ-thickness is to be algebraic. It can have a
geometrical meaning, mainly as a directional thickness, to compute for instance
functional DLL as in Fig. 3 but in many other cases, this notion of thickness
remains mainly algebraic without any possibility to have a direct geometrical
understanding of its value. We can however be interested in recognizing thin
DLL, at least for the cases where a geometrical meaning holds.

Problem 4. Input: A finite subset In of Rd, a linear space F of functions f :
Zd → R generated linearly by f1(.), f2(.), ... , fm(.), a homogeneous function
ϕ : F → R and a maximal thickness M . Output: Find a DLL containing In
having a double-inequality h1 ≤ f(x) ≤ h2 with a ϕ-thickness < M .

This problem consists in finding h1, h2, and coefficients a1, a2, ... am of f =∑m
i=1 aifi with h2−h1

ϕ(
∑m

i=1 aifi)
< M under constraints h1 ≤

∑m
i=1 aifi(x) ≤ h2 for
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all x in In. If we denote g(x) = (fi(x))1≤i≤m ∈ Rm and n the vector (ai)1≤i≤m,
the problem is reduced to solve Problem 2 with the set g(In) as input (in dimen-
sion m) and function ϕ(n) = ϕ(

∑m
i=1 aifi) as thickness criterion. We can solve

it with the rotating caliper if ϕ is a quadratic norm and by linear programming
or chords algorithm if ϕ is the absolute value of a linear form or a polyhedral
norm. As corollary, these tools allow to solve efficiently Problem 4. Such algo-
rithms have been implemented successfully for the directional thickness: Fig. 3
and Fig. 5 have been for instance obtained by using these tools.

As noticed previously, the computation of a DLL of minimal ϕ-thickness or
of ϕ-thickness < M does not guarantee to have a DLL with a minimal local
geometrical thickness. That is the reason why we have introduced Problem 3.
Instead of providing the set In as the only input set and to look for a DLL of
minimal algebraic thickness containing it – since the notion of ϕ-thickness has
not always the geometrical meaning that we can hope – we suggest to replace
it by outliers. The idea is to provide two control sets Up and Down whose
points should be bypassed by the DLL. With the kernel trick, we can reduce
the computation of a DLL containing In, with the outliers of Down and Up
on one and the other side, to Problem 3 with g(In), g(Up) and g(Down) as
input sets. A variant of the GJK algorithm can be used to solve it efficiently.
This alternative to the recognition of a DLL of minimal thickness allows us
to imagine many effective applications and can be particularly interesting to
go from raster graphics to vector graphics without dealing with an unsuitable
notion of algebraic thickness.

5 Conclusion

From the theoretical point of view, it is rather clear that Digital Level Layers do
not have the nice arithmetical properties of digital straight lines or planes. We
also have emphasized the main drawback of DLL compared to morphological and
topological surfaces: they have a non constant local geometrical thickness. The
lack of geometrical meaning of their algebraic thickness makes DLL recognition
under the classical approach (Problem 4) not really suitable for applications.
It is much more interesting in practice to consider the recognition of DLL by
replacing this condition of maximal algebraic thickness by two sets of outliers.
With this new approach, which can be solved very efficiently (Problem 3), Digital
Level Layers become a promising tool in the framework of vectorization of raster
graphics.
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Abstract. The aim of this short note is to describe the set of finite words
that appear in the cutting sequences of a smooth curve to arbitrary small
scale. This language strictly contains the factors of Sturmian words, and
can be decided by a linear time algorithm.

Keywords: Cutting sequence, symbolic coding, tangent estimation,
multigrid convergence, digital straight segment, Sturmian word.

1 Introduction

A smooth curve is a map γ from a compact interval I of the real line to the
plane, which is C∞ and such that ||γ′(t)|| > 0 for any t ∈ I (this last property is
called regularity). Any such curve can (and will be considered to) be arc-length
reparametrised (i.e. ∀t ∈ I, ||γ′(t)|| = 1).

We can approximate such a curve by drawing a square grid of width (mesh
or resolution) h on the plane, and look at the sequence of squares that the curve
meets. For a generic position of the grid, the curve γ does not hit any corner and
crosses the grid transversally, hence the curve passes from a square to a square
that is located either r ight, up, left or down of it. We record this sequence of
moves and define the cutting sequence of the curve γ with respect to this grid
as a word w on the alphabet {r, u, l, d} which tracks the lines of the grid crossed
by the curve γ.

The following picture shows a curve γ with cutting sequence rruuldrrrd.

h

γ

Note that since the grid can be translated, a given curve may have more than
one cutting sequence for a given mesh h. Our knowledge of the curve from
one of its cutting sequences increases when the mesh h decreases, and when
the mesh approaches 0, the local patterns of the cutting sequence allow the
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digital geometers to define infinitesimal estimators (like tangents or curvature),
for example by recognising maximal straight segments appearing in the cutting
sequence [3] [2].

Cutting sequences associated to straight segments are known to be exactly
the balanced words (see Section 3.5), which are also the finite factors of Sturmian
words. A problem is that some non-balanced words appear at arbitrary small
scale even for very regular curves. For example, the word rruu appears in the
cutting sequence of infinitely many Bresenham circles [4] but is not balanced.
This “infinitesimal noise” has the following consequence: when the mesh tends
to 0, the length of the maximal segments does not necessarily tend to infinity,
causing some convergence problems for the estimators.

A solution might be found in another definition of what digital tangents are: in
this paper, we consider all the finite words that appear in the cutting sequences
of some smooth curve for arbitrary small scale (like rruu for the circle). More
precisely, let F (γ, G) denote the set of factors of the cutting sequence of the curve
γ with respect to the square grid G (when the curve hits a corner, the cutting
sequence is not defined and we set F (γ, G) = ∅). We define the asymptotic
language of γ by

T (γ) = lim sup
mesh(G)→0

F (γ, G) =
⋂
ε>0

⋃
mesh(G)≤ε

F (γ, G).

More generally, when X is a set of curves, let us denote by T (X) the set⋃
γ∈X T (γ). When X is the set of smooth curves, we simply denote T (X) by

T , and call its elements tangent words. The aim of this note is to characterise
this language. Note that we are only interested in the language, not on the rate
of convergence to it.

2 Analytic Characterisation

Proposition 1. A word w is tangent if, and only if, for any ε > 0, w is the
cutting sequence of a curve γ which is ε-close (for the C1 norm) to a straight
segment (the grid is fixed).

Proof. The only if part is straightforward. For example, the word 00011 cannot
be tangent, since, when the mesh goes to zero, it corresponds to a point where
the slope of the curve is both at most 1/2 (because of the factor 000) and at
least 1 (because of the factor 11).

For the if part, since the space C∞ endowed with the distance defined by
d(γ, δ) =

∑
n≥0 2min(1,supt∈I ||γ(n)(t)−δ(n)(t)||) is complete, we can build a conve-

nient curve by accumulating arbitrarily small and flat copies of a curve whose
cutting sequence is w (the nth copy of the curve should be flat enough so that
its first n derivatives are very small, ensuring that we get a Cauchy sequence
whose limit has the desired property).
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��

3 Combinatorial Description

For the sake of simplicity, let us first focus on curves going right and up, i.e.
smooth curves such that both coordinates of γ′(t) are positive for any t. Let us
rename r and u by 0 and 1 respectively to stick to the usual notation.

3.1 Renormalisation (Desubstitution)

Balanced words are know to have a hierarchical structure, where the morphisms
σ0 = (0 �→ 0, 1 �→ 10) and σ1 = (0 �→ 01, 1 �→ 1) play a crucial role [7] [5]. The
same renormalisation applies to tangent words.

Proposition 2. Let w be a finite word over the alphabet {0, 1}. The following
are equivalent:

– w is tangent.
– σ0(w) is tangent.
– σ1(w) is tangent.

Proof (sketch). It suffices to notice that applying the substitution σ1 (resp. σ0)
to the word w geometrically corresponds to applying the linear bi-uniformly

continuous bijection given by the matrix M0 =
(

1 1
0 1

)
(resp. M1 =

(
1 0
1 1

)
).

Such maps preserve tangency. A clear presentation of this argument can be read
in [9]. ��

Hence, given a finite word w, we can “desubstitute” it by

– removing one 0 per run of 0 if 11 does not appear in w, or
– removing one 1 per run of 1 if 00 does not appear in w.

If we repeat this process as much as possible, we get a derivated word denoted
by d(w). The word w is balanced if, and only if, d(w) is the empty word, and the
derivation process is related to the continued fraction development of the slope
of the associated straight segment.
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3.2 Last Step

To finish the description of tangent words going up and right, it suffices to
describe the set of derivated words that are tangent words.

Let us say that a word w is diagonal if one of the following equivalent condi-
tions hold:

– w is recognised by the following automaton with three states, which are all
considered as initial and accepting:

0

1

0

1

– the word w is in the language defined by the regular expression
(ε|0|1)(01|10)∗(ε|0|1),

– there exists an integer k such that for any prefix p of w, the difference between
the number of occurrences of 0 in p and the number of occurrences of 1 in p
is between k and k + 2, i.e.

max{|p|0−|p|1 | p is a prefix of w} ≤ min{|p|0−|p|1 | p is a prefix of w}+2,

where |p|i denotes the number of occurrences of the letter i in p.

For example, the word 0110100110 (which is not balanced) is diagonal:

Proposition 3. A word w is tangent if, and only if d(w) is diagonal.

Proof (sketch). If d(w) is not the empty word, then 00 and 11 are occurrences of
d(w), hence the slope of the tangent is 1 (the diagonal). The three gray diagonals
correspond to the three states of the automaton defining the diagonal words. ��

3.3 Example

The word w = 01110110110111011101 is tangent: it can be desubstituted as
01101010110110, then 010001010, and finally d(w) = 10011, which is diagonal
since it can be written as (10)(01)1.
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3.4 Complexity

The complexity of a language L is the map that counts, for any integer n, the
number of elements of L of length n. Since T contains the language defined by the
regular expression (01|10)∗, the complexity of the language T has exponential
growth, whereas the complexity of the language of balanced words has cubical
growth (an explicit formula was given in [6]).

3.5 Balance

A binary word w is said to be k-balanced if for any two factors u and v of w
of the same length, the number of 0 in u and the number of 0 in v differ by at
most k. The 1-balanced words (also known as balanced words) correspond to the
cutting sequences of discrete line segments.

We already saw that the balanced words form a strict subset of the tangent
words, since 0011 is tangent but not balanced. Conversely, tangent words form
a strict subset of 2-balanced words, since 00011 is 2-balanced but not tangent.

3.6 Algorithm

The combinatorial description provides a linear time algorithm that decides
whether a word is tangent or not: concerning the renormalisation, we can ac-
celerate the desubstitution procedure by removing a run equal to the length of
the shortest inner run from any run of the non-isolated letter (including possible
leading and trailing runs even if they have shorter length). Each such accelerated
desubstitution reduces the size of the word by at least 2/3, hence, if c denotes
the complexity of the derivate algorithm that maps a word w to d(w), we have:

c(n) ≤ n + c((2/3)n) ≤ n + (2/3)n + c((2/3)2n) ≤ · · · ≤ n
∑
k≥0

(2/3)k ≤ 3n .

The last step consist in deciding whether the obtained derivated word matches
the regular expression (ε|0|1)(01|10)∗(ε|0|1), this can be achieved in linear time
as well. A basic implementation exists in the free open source mathematical
software Sage: the is tangent() method is being reviewed as ticket #9877 and
can be tested at http://www.sagenb.org/home/pub/2123/.

Moreover, any existing digital straight segment recognition algorithm based
on the hierarchical structure can easily be adapted to tangent words recognition,
in particular, we can construct on-line linear-time algorithms for this purpose
[1]. Also, digital straight segment recognition can easily be replaced by tangent
word recognition in existing digital geometry algorithms, in particular for those
dealing with curve segmentation.

4 Other Classes of Curves

Let us briefly study the asymptotic language of some other classes of curves.
Each class is stable by the action of invertible linear maps on the plane, hence
the associated languages turn out to be stable by the renormalisation procedure
described in subsection 3.1.

http://www.sagenb.org/home/pub/2123/
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4.1 Continuous Curves

Proposition 4. If X denotes the set of continuous curves (defined on a closed
interval), then all the words are admissible: T (X) = {0, 1}∗ (or T (X) = {r, u, l, d}∗
if we deal with curves going in all directions).

Proof. Given a word w, it suffices to construct a curve γ : [0, 1/2] → R2 whose
cutting sequence is w, then to glue a smaller copy of it from [1/2, 3/4] to R2,
then to glue another even smaller copy from [3/4, 7/8] to R2 and so on to get
a curve [0, 1] → R2 that admits w in its cutting sequence at arbitrary small
scales. ��

Note that the statistical properties of the finite words appearing in the asymp-
totic language of generic continuous functions have been studied (in a similar
framework) in [8].

4.2 Ck Curves

Proposition 5. If X denotes the set of Ck regular curves, then T (X) = T
(1 ≤ k ≤ ∞).

Proof. The only if part of the proof of Proposition 1 only uses the fact that the
curve is C1. The C∞ function built in the if part is in particular Ck for any
1 ≤ k ≤ ∞. ��

Hence, the asymptotic language shows some stability with respect to the regular-
ity of the curve. This is a hint to grasp higher order notions such as curvature: we
will probably have to look one step further, like the mutual organisation of those
words. Note that existing methods based on maximal digital straight segments
were proven to be not rigorous [10].

4.3 Analytic Curves

However, many tangent words won’t appear for the more rigid class of analytic
curves.

Proposition 6. If X denotes the set of analytic regular curves, then a finite
word w is in T (X) if, and only if, d(w) is recognised by the following automaton
with eight states, which are all considered as initial and accepting:

0 1

0
1

0

1

01

1
0

1

0
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Proof (sketch). The tangent words oscillating at least twice should be removed.
For example, the word 001100 cannot be in T (X) since, if a corresponding an-
alytic curve γ is denoted by (x, y), then the derivative of (x − y) has two close
zeroes, but since the mesh can be arbitrarily small, we get an accumulation of
such zeroes, which contradicts the analyticity of the map (x − y)′. ��

Note that those remaining words can all be found in T (C), where C denotes the
set of planar circles (winding both clockwise and counterclockwise).

4.4 Smooth Curves Defined on an Open Interval

To get a uniform control on the tangents of the curve, we assumed the com-
pactness of the interval on which the smooth curve is defined. Here is why this
assumption was necessary.

Proposition 7. If X denotes the set of regular smooth curves defined on an
open interval, then T (X) = {0, 1}∗ (or T (X) = {r, u, l, d}∗ if we deal with
curves going in all directions).

Proof. As in the proof of Proposition 4, we can accumulate any noise near a
boundary of the interval, since there is no need to ensure derivability at the
endpoint. ��

4.5 Smooth Curves with Nowhere Zero Curvature

Proposition 8. If X (resp. Y ) denotes the set of smooth curves whose curvature
is positive (resp. negative), then a finite word w is in T (X) (resp. T (Y )) if, and
only if, d(w) is recognised by the following automaton with six states, which are
all considered as initial and accepting:

0

1

0
1

0

1
0

1

and respectively for smooth curves with negative curvature:

1

0

1
0

1

0
1

0

For example, the word 1001010110 appears in the cutting sequence of a smooth
curve with positive curvature:
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We can notice that the asymptotic language of analytic regular curves is the
union of those two languages, which is the asymptotic language of smooth curves
with nowhere zero curvature, showing again some stability with respect to the
considered class of curves.

5 Curves Going in All Directions

Let us finish by the complete characterisation of tangent words without any
assumption on the direction of the curve.

The four letters {r, u, d, l} cannot all appear simultaneously in a tangent word.
If only two letters appear in a tangent word and are consecutive for the cyclic

order r < u < l < d, then, if we replace them by 0 and 1, we have the same
characterisation as above.

If two non-consecutive letters a and b appear in a tangent word w, we are in
the case where the tangent is vertical or horizontal, and this case is similar to
the last step described before (no renormalisation must be done): there exists
a letter c, different from a and b, such that w is recognised by the following
automaton with two states, both initial and accepting:

a

b

c c

That is, after removing the occurrences of c in w, the letters a and b are alternat-
ing. Equivalently the word w is in the language defined by the regular expression
c∗(ε|b)(c∗ac∗bc∗)∗(ε|a)c∗.

6 Conclusion

We introduced and described the asymptotic language of smooth curves, i.e. the
set of words that can survive in the cutting sequence of a smooth curve when
the grid mesh goes to zero, and discussed some of its properties. We saw that
those words are closely related to the tangents of the curve.



Another Definition for Digital Tangents 103

So, we can use them to change one of the most basic primitive for discrete
geometry, that of discrete tangency: instead of using digital straight segment,
we could use tangent words. One possible advantage is that the smallest length
of maximal tangent words one can find in a smooth curve goes to infinity when
the grid mesh goes to zero, whereas it may stay bounded for straight segments.

What can be done with this?

In terms of complexity, most tangent words are not balanced. However, we can
notice a kind of prevalence of balanced words among tangent words. For example,
the intersection of the asymptotic languages of all closed smooth regular curves
is the set of balanced words (those are the most “stable”). Hence, the study of
probabilistic aspects of the occurrences of tangent words should be interesting.
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Abstract. The goal of this paper is to construct an algebraic-topological
representation of a 80–adjacent doxel-based 4–dimensional digital object.
Such that representation consists on associating a cell complex homolog-
ically equivalent to the digital object. To determine the pieces of this
cell complex, algorithms based on weighted complete graphs and inte-
gral operators are shown. We work with integer coefficients, in order to
compute the integer homology of the digital object.

Keywords: digital object, integer homology, integral operator, weighted
complete graph.

1 Introduction

Several techniques as magnetic resonance (MR) images and computed tomogra-
phy (CT) images allow to represent voxel-based digital objects. The homology
can be used to obtain topological information of such these objects, but the ho-
mological study cannot be made directly over the digital objects. In this sense,
it is necessary to apply a thresholding process, in such way, the representation of
the voxel-based digital object is made using two colors black and white, which
represent (respectively) the elements of the object and the part of the space
where such object is not included. The homological study does not only con-
sist on computing Betti numbers, but on determining connected components,
“holes”, tunnels and cycles (closed curves) in the object. To be extendible pre-
vious techniques to higher dimensions is an important goal in computer vision.

Integer homology information of a subdivided 4D object (consisting on a set
of contractile “bricks” which are glued in a “coherent” manner) is given in this
paper by a boundary operator and a “homology” operator for any finite linear
combination (with integer coefficients) of bricks, such that, in particular, the
boundary of the boundary (resp. the “homology” of the “homology”) is zero.
Both of them operators can be expressed in terms of arrows acting over the cells
of each “brick”. For example, the boundary operator (with integer coefficients)
of a triangle is an alternate sum of its edges; and the “homology” operator of
this triangle is a linear map describing in an algebraic way the contractibility of
the triangle to one of its vertices (see Figure 1 for more details).

I. Debled-Rennesson et al. (Eds.): DGCI 2011, LNCS 6607, pp. 104–115, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Given a triangle of vertices A,B, C, boundary and “homology” operators can be
expressed with arrows defined over its cells: (a) representation in terms of arrows of the
boundary operator given by the formula ∂(ABC) = ∂0(ABC)−∂1(ABC)+∂2(ABC) =
BC −AC +AB; and (b) representation in terms of arrows of the “homology” operator
(which expresses the contractibility of the triangle to one point) as composition of the
integral operators φ1(B) = AB,φ2(C) = AC,φ3(BC) = ABC

In this paper, we want to extend the techniques shown in [4–7, 10, 11] to
dimension 4. In order to get our goal, we show a method to construct a cell
complex homologically equivalent to a 4–dimensional digital object. This cell
complex is built piece by piece. The bricks which compose the cell complex are
obtained (up to isometry) determining firstly their vertices, and then computing
the convex hull of such set of vertices by deforming the unit hypercube with
integral operators. In this way, the boundary and contractibility operators of
each one of the bricks are inherited of the respective boundary and contractibility
operators of the unit hypercube. In Figure 2 we can see the digital object, the
associated cell complex and the extracted homological information.

Fig. 2. (a) Digital object; (b) Cell complex associated to the digital object, 0–cells,
1–cells, 2–cells and 3–cells are shown in green, brown, yellow and blue respectively; (c)
Homological information expressed in terms of connected components (3504), tunnels
(2479) and cavities (0)

The shown method, presents some computational improvements respect to
similar methods such as the shown in [8]. Here, unnecessary data corresponding
to the simplicialization of the convex hull of the unit hypercube are not to saved,
and consequently the convex hull of each one of the bricks is obtained directly.
Moreover, the number of integral operator to compute the convex hull of each
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brick decreases, since the number of cells of the unit hypercube is smaller than
the number of simplices of the simplicialized unit hypercube.

The structure of the paper is the following: in Section 1, we introduce concepts
which appear along the paper; in Section 2, we explain our framework and we
develop algorithms to associate the cell complex to a given digital object; and
finally in Section 3, we show both as several examples of the 402 configurations of
points obtained in dimension 4 (applying the algorithms of the previous section)
as the way of transferring the boundary and “homology” operators.

2 Preliminaries

As we have commented in Introduction, we show a method to construct (piece
by piece) dimensional cell complexes associated to 4–dimensional digital objects
using as tools graphs and integral operators. So that, it is necessary to introduce
several concepts such these digital objects, cell complexes, isomorphic graphs,
integral operators...

The term digital object is used for denoting an identifiable item of structured
information in digital form within a network-based computer environment. A
digital object is a set of sequences of bits or elements, each one of these consti-
tutes structured data interpretable by a computational facility, at least one of
the sequences denoting a unique, persistent identifier for that object.

In this paper, we associated to each digital object a mathematical object very
used in topology, called cell complex.

A cell complex is a set K = {K(q)}q≥0 of cells satisfying two conditions: (1)
every face of a cell is a cell; and (2) if σ and σ′ are cells, then their intersection is a
common face of both (or empty). A cell complex is denoted by (K, ∂) where K is
the set of cells and ∂ is a map indicating how to join the cells and satisfies ∂∂ = 0.
The boundary operator shows a relation between cells of different dimensions in
order to capture the topology of the cell complex. For example, the boundary of
a 1–cell c consists of its two end-points, so using binary coefficients ∂(c) = A+B;
using integer coefficients, the direction of the edge matters (AB �= BA), so we
define ∂(c) = B − A. In dimension 2, given a cell complex K whose 0–cells are
A, B; 1–cells are a = AB, b = CB, c = AC; and the 2–cell is τ = ABC; the
boundary is defined as a linear combination of its faces ∂τ = AB + BC + CA =
a + b − c.

A graph can be seen as a cell complex of dimension 1, that is, a set of vertices
and edges and the relations between them. Graphs are used in Algorithm 1 to
obtain the 0–cells of the cell complex associated to a given digital object.

A special type of graphs is the family of complete graphs. A graph is complete
if every pair of distinct vertices is connected by an edge. Moreover, if we associate
to each edge a weight, we obtain the family of weighted complete graphs (a graph
of this family is associated to each subset of vertices of the unit hypercube in
order to determine the non-isometric configurations). See Figure 3 (a) for an
example of weighted complete graph.
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Fig. 3. (a) Two representations of the same situation in terms of graphs (using complete
graphs with multiple edges or weighted complete graphs); and its (b) Adjacency matrix

In a natural way, we say G1 and G2 are isomorphic graphs if there exists
a bijection between the set of its vertices which preserves adjacencies (if two
vertices of G1 are joined by an edge, then their images by the bijection must be
two vertices of G2 joined by an edge).

An usual tool to represent adjacency relations between vertices of a graph
is the adjacency matrix. The adjacency matrix of a graph with n vertices is an
n × n matrix A = (ai,j) in which the entry ai,j = m if there are m edges from
vertex i to vertex j, and it is 0 if there is no edge from vertex i to vertex j.
Figure 3 shows an example of a graph together to its adjacency matrix.

A stronger concept than isomorphism is isometry. An isometry is a distance-
preserving map between spaces. For example, the isometries in a 3–dimensional
space are rotations, translations and symmetries.

Information about graph theory can be founded in [1].
Other tools used for obtaining the cell complex associated to a digital object

are the integral operators (see [3]).
Given a cell complex (K, ∂) and two cells a ∈ Kq and b ∈ Kq+1 (a is q–face

of b), an integral operator φa,b : (Kq) → (Kq+1) is a linear map satisfying: (1)
φa,b(a) = b and φa,b(c) = 0 for c ∈ K different from a; and (2) φa,b∂φa,b = φa,b.

Roughly speaking, an integral operator can be seen as an elementary alge-
braic thinning operation, allowing the deformation of a cell complex to smaller
one (eliminating the cells a and b) with isomorphic homologies. The integral
operator φa,b can be represented as an arrow from the lower dimension cell
a until the higher dimension cell b. In this sense, we say that a cell com-
plex is contractible if it has the same topology of a point. For example, the
unit hypercube is contractible and its contractibility can be measured in al-
gebraic terms (specifying that the unit hypercube and a point of this one
have isomorphic homology groups) by the sequence of integral operators shown in
Figure 4.

A chain contraction (f, g, φ) : (K, ∂) => (K ′, ∂′) between two cell complexes
is a set of three morphisms f : C(Kq) → C(K ′

q) (projection), g : C(K ′
q) → C(Kq)
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Fig. 4. In order to contract the unit hypercube to the point (0, 0, 0, 0), we define a set
of integral operators which are represented by arrows whose: (a) direction coincides
with the result of intersecting the hypercube with the hyperplane x4 = 0; (b) direction
coincides with the result of intersecting x4 = 0 with x4 = x3 = 0; (c) direction coincides
with the result of intersecting the plane x4 = x3 = 0 with the line x4 = x3 = x2 = 0;
and (d) direction coincides with the result of intersecting the line x4 = x3 = x2 = 0
with the point x4 = x3 = x2 = x1 = 0. This contraction can be seen as the projection
on the coordinate axes

(inclusion) and φ : C(Kq) → C(Kq+1) (homotopy operator), where C(Kq) (resp.
C(K ′

q)) denotes the set of cell of dimension q of the cell complex (K, ∂) (resp.
(K ′, ∂′)) satisfying the following conditions: (a) π = gf = idC − ∂φ − φ∂; (b)
fg = idC′ ; (c) fφ = 0; (d) φg = 0; (e) φφ = 0.

In Figure 5 we can see an example about integral operators and chain con-
traction.

Fig. 5. Integral operators deforming a square C to a triangle T . The boundary operator
of the triangle is computed starting from the boundary operator of the square using
the maps which compose the chain contraction as follows ∂′(T ) = f∂g(T ) = f∂(C)
= f∂(ABCD) = f(AB + BC + CD + DA) = f(AB + BC −DC −AD) = (id − ∂φ−
φ∂)(AB+BC−DC−AD) = (AB+BC−DC−AD)−0−φ(B−A+C−B−C+D−D+A)
= AB + BC − DC − AD = AB + BC − (AD + DC).

As we have commented in Introduction, the boundary (resp. “homology”)
operator of the hypercube determines the boundary (resp. “homology”) operator
of the pieces of the cell complex homologically equivalent to the given digital
object. Lemma 1 shows the formula to compute the boundary of a hypercube.
See Figure 6 for more details.
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Lemma 1. Let H = L1 ×L2 × L3 × L4 be a hypercube written as the cartesian
product of four unit segments. The boundary operator of H is given by (1):

∂H = ∂L1×L2×L3×L4−L1×∂L2×L3×L4+L1×L2×∂L3×L4−L1×L2×L3×∂L4

Fig. 6. On left, the tesseract representing a hypercube. On right, the spatial develop-
ment of a hypercube; the cubes labeled by an odd (resp. even) number have positive
(resp. negative) sign in formula (1).

3 Constructing the Cell Complex Associated to a Given
4–Dimensional Digital Object

In this section, the grid and the neighborhood between the points of this one
are fixed; and the algorithms to obtain the cell complex associated to a 4–
dimensional digital object are developed.

3.1 Establishing the Grid and the Neighboring between the Points

In order to work with digital objects it is necessary to fix a grid as well as
the relations between the points of the grid. Our grid is divided into hyper-
cubes (whose intersection is a 3–dimensional cube of 8 mutually 26–adjacent
4–dimensional points) formed by 16 mutually 80–adjacent 4–dimensional points
(we work with possible maximal adjacency between points). An example of this
division is shown in Figure 7.

This grid is a natural extension to dimension 4 of the grid used in [9], where
similar techniques were developed in order to associate cell complexes to 3–
dimensional digital objects.

Once established the grid, the initial digital object is embedded in it, so a
subdivision into hypercubes of the object is obtained. Applying a thresholding
process, we have a digital object subdivided into hypercubes such way that the
vertices of each hypercube which are (resp. are not) points of the object are
black (resp. white).

Now, the idea is to work each one of these hypercubes with black and white
points separately, in order to obtain the pieces of the cell complex associated to
the initial object. After, we must join each one of the obtained pieces to compose
the cell complex homologically equivalent to the given digital object.



110 A. Pacheco and P. Real

Fig. 7. Spatial development of a sequence of hypercubes formed by 16 mutually 80–
adjacent 4–dimensional points, where the intersection between the pairs is a cube of 8
mutually 80–adjacent 4–dimensional points

3.2 Cell Complex Obtention

The main goal of this subsection is the construction of the cell complex associ-
ated to a given 4–dimensional digital object. The bricks which compose the cell
complex are obtained (up to isometry) determining firstly their vertices (Algo-
rithm 1), and then computing the hull of such set of vertices by deforming the
unit hypercube with integral operators (Algorithm 2). In this way, the bound-
ary and “homology” operators of each one of the bricks are inherited of the
respective boundary and “homology” operators of the unit hypercube.

In order to determine the vertices of the pieces which compose the complex, we
develop an algorithm based on isometric graphs (1–dimensional cell complexes)
which allows to compute the non-isometric configurations of c points of the unit
hypercube, for c = 0, ..., 16. This algorithm associates to each set of points of
the unit hypercube a weighted complete graph whose vertices are the points of
the set and whose edges are determined by the number of different coordinates
between each pair of points. For example, the graph represented in Figure 3 is
associated to the set of vertices {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0)}.

Taking into account previous association is natural to establish Definition 1.

Definition 1. Two subsets of vertices of the unit hypercube are isometric if and
only their respective associated graphs are isometric.

In order to see the consistency of Definition 1 we must prove Theorem 1.

Theorem 1. If two subsets of vertices S1 and S2 of the unit hypercube are
isometric, then there exists a lineal isometry f : R4 → R4 which sends S1 into S2.

Proof. Taking into account complements (the number of subsets of c vertices of
the unit hypercube is the same that the number of subsets of 16 − c vertices,
with 0 ≤ c ≤ 16), it is only necessary to prove the result for subsets with at less
8 vertices of the unit hypercube.

The idea of the proof is the following:
- If c > 8, then with the vertices {v0, ..., vc−1} we can construct a basis of R4

composed by the vectors {vi − v0}1≤i≤c−1, and the problem would be solved by
linearity.

- If c = 8 and we can construct a basis of R4 with the vectors {vi − v0}1≤i≤7,
then the problem would be solved by linearity.
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- If c = 8 and we cannot construct a basis of R4 with the vectors {vi−v0}1≤i≤7,
then the vertices {v0, ..., v7} are in a cubic face of the hypercube and all the cubes
are isometric.

Using previous ideas, we develop Algorithm 1 which compares the graphs built
starting from subsets of points of the unit hypercube, saving only non-isometric
graphs. So, identifying non-isometric subsets of points with their respective as-
sociated graphs, we obtain all the vertices of the non-isometric bricks which can
compose the cell complex associated to a 4–dimensional object. By complement
configurations, it is only necessary to use the algorithm for subsets with at less
8 points.

Algorithm 1
Input: set (VH) of the 16 vertices of the unit hypercube.
// Ω: empty list to save vertices of non-isometric graphs.
Output: non-isometric configurations of vertices of the unit hypercube.
begin

for c=8,...,16 do
Construct an ordered set Ωc with all the subsets of c vertices of VH .
for ω ∈ Ωc do

Gω weighted complete graph with adjacency matrix
Mω = ((mω)ij) where (mω)ij = kij ,
kij is the number of different coordinates between vi, vj ∈ VH

while ω ∈ Ωc & ω′ ∈ Ωc & ω′ < ω do
if Gω and Gω′ are isometric then

ω and ω′ are isometric
Ωc = Ωc − {ω}

end if
if Gω and Gω′ are not isometric then

Update ω′

end if
end while

end for
Ω = Ω

⋃
Ωc

end for

end

Note 1. Algorithm 1 is a way to compute marching cube configuration in 4D.

Once obtained the vertices of the non-isometric bricks which can compose the
searched cell complex, the idea is to use integral operators (in a right manner) to
deform the unit hypercube in the convex hull of each one of the configurations
of points.

Before to show the algorithmic process to define the set of integral operators
to deform the unit hypercube, we need to establish a direction over the arrows
which represent these integral operators. Indeed, the choice of the direction of
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these arrows is arbitrary. We have decided to chose the set of these integral
operators as a subset of the sequence (ordered set) of integral operators given in
Proposition 1.

Proposition 1. The sequence of integral operators φH , which computes the
combinatorial contractibility of the unit hypercube to the point (0, 0, 0, 0) is rep-
resented by arrows whose directions coincide with the result of:

– Intersecting the hypercube with the hyperplane of dimension 3, x4 = 0 (let
us note that the result of the intersection is the hyperplane x4 = 0).

– Intersecting the hyperplane x4 = 0, with the plane composed by the equations
x4 = x3 = 0.

– Intersecting the plane x4 = x3 = 0, with the line composed by the equations
x4 = x3 = x2 = 0.

– Intersecting the line x4 = x3 = x2 = 0 with the point x4 = x3 = x2 = x1 = 0.

In Figure 4 can be seen a constructive proof of the deformation of the hypercube
to the point (0, 0, 0, 0) by φH .

Once determined the direction of the arrows which represent all integral oper-
ators which we can chose to deform each hypercube associated to a configuration
of points ω; we show an algorithm which allows us to decide which of these in-
tegral operators we must chose to obtain the different pieces which can compose
the cell complex associated to the initial object (see Algorithm 2).

Algorithm 2
Input: A configuration of points ω (obtained using Algorithm 1).

Hypercube Hω associate to a ω configuration.
Sequence of integral operators φH .

Output: Hull of the points of ω.
begin

for every 0–cell σ ∈ H do
if σ /∈ ω then

φ(σ) = φH(σ)
end if

end for
for every degenerate cell δ whose 0–cells are in ω do

φ(δ) = φH(δ)
end for
return φ(ω)

end
Note: We consider degenerate d–cells as those with at most d (d − 1)–faces.

Algorithm 2 is divided into two stages: (1) to apply φH (which computed the
contractibility of the unit hypercube to the point (0, 0, 0, 0)) to the white points
of each hypercube associated to a configuration ω; (2) to eliminate degenerate
cells (if they are appeared in previous stage) applying on them φH .
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Note 2. Let us observe that Algorithm 2 determines the hull (non convex hull)
of the points. In order to obtain a convex polytope, we must attach an edge for
each non-plane face. This process can be made implementing a simple algorithm
of recognition of non-plane faces and attaching (in each one of them) an edge
whose vertices are the neighbors of the point pi ∈ ω of the non-plane face.
Consequently, each non-plane face is transformed into two plane faces.

The pieces which compose the cell complex associated to a given 4–dimensional
digital object have been determined (up to isometry). Now, we only need to
join these pieces to obtain the searched cell complex. Let us note that such that
complex is homologically equivalent to the given 4–dimensional digital object
according to Proposition 1 in [3].

4 Conclusions and Results

In this paper, we have shown the process to obtain a cell representation of a 4–
dimensional digital object where the topological information is saved. We have
obtained 402 configurations (running Algorithm 1 in the symbolic computation
package Mathematica) which are the pieces that can compose the cell complex
associated to a 4–dimensional digital object. In Figure 8 we can see several
examples of the pieces with 14 vertices.

Fig. 8. Convex hulls of the 4 non-isometric bricks of 14 vertices of the unit hypercube

Below, we show with detail each one of the stages of the described process in
previous section with one of the 19 non-isometric configurations of 4 vertices of
the unit hypercube, and we also show the transference of the boundary (resp.
“homology”) operator of the unit hypercube to the single one non-isometric
configuration of 15 vertices of the unit hypercube.

4.1 Results Obtained for Configurations of 4 Vertices of the Unit
Hypercube

Firstly, using Algorithm 1 with c = 12 (whose complementary configurations
corresponding to the subsets of 4 vertices of the unit hypercube) we obtain 19
non-isometric bricks of 4 vertices.

Now, we must determine the hull of the 19 non-isometric subsets of vertices us-
ing Algorithm 2. Particularly, applying Algorithm 2 to the configuration of points
{{0, 0, 0, 0}, {1, 0, 0, 0}, {0, 1, 0, 0}, {1, 1, 1, 0}} (see Figure 9 (a)), we obtain a se-
quence of integral operators which deforms the unit hypercube in Figure 9 (b).
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Let us observe that the obtained cell complex applying Algorithm 2, is not
a tetrahedron (convex hull of the subset of points), so we must attach the edge
< (0, 0, 0, 0), (1, 1, 1, 0) > as consequence of transforming the non-plane face
< (0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 1, 0) > in two plane faces < (0, 0, 0, 0),
(1, 0, 0, 0), (1, 1, 1, 0) > and < (0, 0, 0, 0), (0, 1, 0, 0), (1, 1, 1, 0) > (see Figure 9 (c)).

Fig. 9. (a) Vertices of one of the 19 non-isometric configurations of 4 vertices of the
unit hypercube; (b) List of integral operators which deform the unit hypercube on the
hull of the points; (c) Attaching the edge < (0, 0, 0, 0), (1, 1, 1, 0) > corresponding to
the non-plane face < (0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 1, 0) >, the convex polytope
is obtained.

Fig. 10. The boundary operator of C is given by ∂(C) = f∂g(C) = f∂(H) =
(1−∂φ−φ∂)(∂(H)) = −(v7, v5, v4, v13, v12, v7, v15, v1)+(v11, v10, v6, v14, v8, v3, v2, v0)+
(v11, v6, v5, v14, v13, v7, v15, v3) − (v10, v9, v4, v12, v8, v2, v1, v0) +
(v10, v6, v4, v14, v12, v7, v15, v2) − (v11, v9, v5, v13, v8, v3, v1, v0) −
(v6, v5, v4, v7, v3, v2, v1, v0) + (v11, v10, v9, v14, v13, v12, v15, v8), where φ opera-
tor is obtained using Algorithm 2 and ∂(H) is determined in Lemma 1. In
an analogous way, the “homology” operator of C is given by the formula
φ(C) = fφHg(C) = fφH(H) = (1 − ∂φ − φ∂)(φH(H)), where φ operator is
obtained using Algorithm 2 and φH is determined in Proposition 1

4.2 Results Obtained for Configurations of 15 Vertices of the Unit
Hypercube

In Figure 10, we show a detailed example where the boundary (resp. “homology”)
operator of the single non-isometric configuration of 15 points, denoted by C,
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is computed starting from the boundary (resp. “homology”) operator of the
unit hypercube, denoted by H , determined in Lemma 1 (resp. Proposition 1)
and the maps of the chain contraction which relates H and C. The boundary
(resp. “homology”) operator of the other configurations is computed in the same
way, using the corresponding maps of the chain contraction which relates the
configuration with the unit hypercube.
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Abstract. Let (W,d) be a metric space. A subset S ⊆ W is a resolving
set for W if d(x, p) = d(y, p) for all p ∈ S implies x = y. A metric basis
is a resolving set of minimal cardinality, named the metric dimension
(of W ). Metric bases and dimensions have been extensively studied for
graphs with the intrinsic distance, as well as in the digital plane with the
city-block and chessboard distances. We investigate these concepts for
polyhedral gauges, which generalize in the Euclidean space the chamfer
norms in the digital space.

Keywords: metric basis, metric dimension, resolving set, polyhedral
gauge, chamfer norms, discrete distance, distance geometry.

1 Introduction

Distance geometry is the characterization and study of sets of points based on
the distance values between member pairs. A general program is laid out in
[2]. We investigate in this paper the classical notions of metric dimension and
metric basis in the context of digital geometry, for the class of polyhedral distance
gauges which generalize the chamfer (or weighted) norms.

Let W be a set endowed with a metric d, and take S = (p1, p2, . . . , pk) an
ordered subset of elements in W . These elements are usually called points, ver-
tices, anchors or landmarks in the literature. The representation of q ∈ W with
respect to S is the k-tuple r(q|S) = {d(p1, q), d(p2, q), . . . , d(pk, q)}, also called
the S-coordinates of q. The set S is a resolving set (or locating set) for W if
every two elements of W have distinct representation. The metric dimension (or
simply dimension, or location number) dim(W ) is the minimum cardinality of a
resolving set for W . A resolving set having minimal cardinality is called a metric
basis (or reference set) for W .

The metric dimension has been extensively studied in graph theory. Using
the intrinsic metric, Harary and Melter gave in [9] the metric dimension of any
path, complete graph, cycle, wheel and complete bipartite graph, and proposed
an algorithm for finding a metric basis of a tree T , which gives an explicit formula
for the dimension of T .

Khuller et al. showed in [13] that the intrinsic metric dimension of trees can
be efficiently solved in linear time. All graphs having dimension 1 are paths.
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A graph having dimension 2 cannot have the complete 5-clique K5 nor the
complete bipartite graph K3,3 (see [19]) as a subgraph. However, there are non-
planar graphs having dimension 2. The dimension of an arbitrary graph with n
nodes can be approximated within a factor O(log n) in polynomial time. Finally,
finding the metric dimension of an arbitrary graph is NP-hard.

In [5], Chartrand et al. presented bounds of the dimension of a graph G in
terms of the order and the diameter of G, and determined all connected graphs of
order n having dimension n−1 or n−2. They also showed how to find the metric
dimension and a basis for a graph in terms of an integer programming problem.
A collection of bounds or exact values of metric dimensions is summarized in [11],
for several families of connected graphs as well as for the join and the Cartesian
product of graphs. The dimension of a graph with an added vertex is studied in
[3]. For results on infinite locally finite graphs, see [4].

In digital geometry, the notion of metric dimension is equally natural. Melter
and Tomescu showed in [14] the following results. The metric bases for the digital
plane with Euclidean distance d2 consist precisely of sets of three non-collinear
points, whereas with respect to the city block distance d1 and the chessboard
distance d∞, the digital plane has no finite metric bases. From the point of view
of applications, only finite sets are of interest, mainly rectangular regions. In
the case of axes-parallel rectangles, the d1 metric dimension of a rectangle is 2,
and the d∞ metric dimension of a square is 3. If non axes-parallel rectangles
are considered, the situation is less simple: for both distances, there exists a
rectangle in the digital plane such that its dimension is n, for any given n � 3.
In [13], Khuller et al. proved that the d1 metric dimension of a n-dimensional
axes-parallel rectangle is n.

Several refinements of these bases notions have been proposed. Chartrand
and Zhang defined and studied in [8] the notions of forcing subset, number
and dimension. A subset F of a basis S of W is a forcing subset of S if S is the
unique basis of W containing F . The forcing number is the minimum cardinality
of a forcing subset for S, while the forcing dimension is the minimum forcing
number among all bases of W . The forcing concepts have been studied for various
subjects, see [8] for references.

Another interesting notion is the partition dimension, proposed in [6][7]. Let
Π = (S1, . . . , Sk) be an ordered k-partition of W , and consider the distance to
a set d(p, S) = min{d(p, q) : q ∈ S} where p ∈ W and S ⊂ W . The represen-
tation of p with respect to Π is r(p|Π) = {d(p, S1), . . . , d(p, Sk)}. The partition
dimension pd(W ) and partition bases are then defined in the same manner as
the metric ones. It is shown that for any nontrivial connected graph G we have
pd(G) � dim(G) + 1 [6]. Tomescu showed in [18] that the partition dimension
may be much smaller than the metric dimension. In particular, the partition
dimension of the digital plane with respect to d1 and d∞ is 3 and 4, respectively.

These concepts have important applications. In fact, distance geometry has
immediate relevance where distance values are considered, such as in cartogra-
phy, physics, biology, chemistry, classification, combinatorial search and opti-
mization, game theory, and image analysis. For instance, locating and reference
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sets are useful when working with sonar and LORAN stations for navigation
[16]. In robot motion planing, minimizing a set of landmarks uniquely determine
a robot’s position [13]. A chemical compound is frequently viewed as a labeled
graph, for which a metric basis allows to determine functional groups [3].

We are here mainly concerned by image analysis and digital geometry. While
the metric bases and dimension concepts have been studied in [14] for d1 and
d∞, there is up to our knowledge no study available for an important class of
digital metrics, widely used in image analysis: the chamfer distances. We aim at
studying these metric concepts for these distances, and more generally for the
class of polyhedral distance gauges, coming from Euclidean geometry.

The paper is organized as follows. In section 2 we recall the classical defini-
tions of metric, norm and gauge, we state additional properties of gauges, and
describe the link between gauges and chamfer norms. In section 3, we show that
polyhedral gauges do not have finite metric bases in Rn. Then, in section 4, we
take a look at some classes of gauges having small metric dimension in a rectan-
gle. Next in section 5, we present some experimental results. We finally conclude
in section 6.

2 Norms and Gauges

2.1 Preliminaries

We first recall some classical definitions. A metric d on a nonempty set W is a
function d : W × W → R which is positive defined, symmetric and sub-additive
(the triangle inequality holds). A set W associated to a metric d is called a metric
space, denoted by (W, d).

Given a metric space (W, d), the (closed) ball of center p ∈ W and radius
r ∈ R is the set B(p, r) = { q ∈ W : d(p, q) � r }.

To define a norm, we need the notion of vector space, which we don’t have in
a graph, but is natural in Rn and can be extended in Zn. A vector space is a set
of vectors defined over a field. The generalization of the notion of a vector space
over a ring A for a set W is named a module, denoted (W, A). Each module can
be associated to an affine space, and reciprocally. Since Zn is a module over Z,
this concept allows us to properly define a norm on Zn.

A norm g on a module (W, A) with values in R is a function g : W → R which
is positive defined, homogeneous in A and sub-additive. Each norm induces a
metric. A metric d is associated to a norm g if and only if d is translation
invariant and homogeneous in A.

The Minkowski distance of order p � 1 between two points x = (x1, ..., xn)
and y = (y1, ..., yn) is defined by dp(x, y) = (

∑n
i=1 |xi−yi|p )1/p. It is well-known

that any Minkowski distance is a metric and induces a norm (denoted �p). The
d1 distance is also called Manhattan or city block distance, the d∞ distance is
known as the chessboard distance, and d2 is the Euclidean distance.

We call Σn the group of axial and diagonal symmetries in Zn about centre
O. The cardinal of the group is #Σn = 2n n! (which is 8, 48 and 384 for n = 2,
3 and 4). A set S is said to be grid-symmetric if for every σ ∈ Σn we have
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c
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O

Fig. 1. Left: A gauge γC, its unit ball C, and the convex ball C′ scaled by dC(O, x).
Right: Illustration of the proof of lemma 1.

σ(S) = S. The generator of a grid-symmetric set S ⊆ Zn (or Rn) is G(S) ={
(p1, . . . , pn) ∈ S : 0 � pn � pn−1 � . . . � p1

}
. The Minkowski distance balls

are grid-symmetric.

2.2 Gauges

Gauges are usually defined in the Euclidean space Rn and can be considered in
the digital space Zn as well.

Given a convex C containing the origin O in its interior, a gauge for C is the
function γC(x) defined by the minimum positive scale factor λ, necessary for
having x ∈ λC. Formally, γC(x) = inf

{
λ ∈ R+ : x ∈ λC

}
. By construction, this

function is positive, homogeneous in R and sub-additive.
By definition, all norms are gauges for their unit ball. Conversely, a gauge for

C is a norm, denoted nC , iff C is central-symmetric [1]. We call distance gauge,
denoted dC , the metric induced by a central-symmetric gauge γC .

Since we are concerned with norms, we will only consider central-symmetric
gauges in the remainder of the paper.

We now deal with the case where C is a central-symmetric convex polyhedron
centered in O. Pick a facet f of C and denote p1, ..., pm its vertices. Let x be a
point of the cone c = (O, f) (see Fig. 1). We can express x as a unique positive
linear combination of the vertices: ∃λ1, ..., λm∈R+ such that x =

∑m
i=1 λi pi.

Lemma 1 (Polyhedral gauge distance). dC(O, x) =
∑m

i=1 λi.

Proof. Let x ∈ C\{O}. There exists {λi}1�i�m such that x =
∑

i λipi and
∀i, λi � 0. Fix x′ = f ∩ [Ox). Then ∃λ > 0 such that x = λx′. Hence x′ =
1
λ

∑
i λipi =

∑
i

λi

λ pi. Since x′ ∈ f , we have
∑

i
λi

λ = 1. Thus λ =
∑

i λi. By
definition dC(O, x) = γC(x) = λγC(x′) and γC(x′) = 1, therefore dC(O, x) = λ. �

In the sequel, we denote by gc(x) the gauge distance dC(O, x) in the cone c.

Lemma 2 (Local additivity). ∀x, y ∈ c, gc(x + y) = gc(x) + gc(y).
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Proof. By definition of the cone c we have c =
{∑

i δipi : δi ∈ R+
}
. Let x =∑

i αipi , αi∈R+ and y =
∑

i βipi , βi∈R+. Then x+y =
∑

i(αipi)+
∑

i(βipi) =∑
i(αi + βi)pi. Since αi + βi � 0 then x + y∈ c. By application of lemma 1 we

have gc(x) =
∑

i αi, gc(y) =
∑

i βi and gc(x + y) =
∑

i αi + βi. �

2.3 Chamfer Norms

The chamfer distances have been extensively used and studied in image analysis,
see [17][12][15] for references. The d1 and d∞ distances are peculiar cases of
chamfer distances, and the class of chamfer norms can be seen as a special case
of polyhedral gauges.

Here we recall some results from [17, §4.2-4.3]. A chamfer mask M in Zn is a
central-symmetric set M = {(−→vi , wi) ∈ Zn × Z+∗ }1�i�m containing at least a
basis of Zn, where (−→vi , wi) are called weightings, −→vi vectors and wi weights. The
chamfer distance dM between two points p, q ∈ Zn is

dM(p, q) = min
{∑

λiwi :
∑

λi
−→vi = −→pq , 1 � i � m, λi ∈ Z+

}
. (1)

If we consider the infinite weighted graph GM where the vertices are the points
of Zn, and the edges and weights are given by the weightings of M translated
around each point, then dM is the intrinsic distance of GM, hence dM is a
metric.

Let M′ = {O + −→vi /wi }1�i�m ∈ Rn and let B′
M = conv (M′), then B′

M is
a central-symmetric and convex polyhedron whose facets separate Rn in cones
from O. A facet F of B′

M is generated by a subset M|F = { (−→vj , wj) } of M;
if F is simplicial and if ΔF = det {−→vj } is such that |ΔF | = 1, then F is said
unimodular.

In the Euclidean space Rn, we can define an analytic continuation dR

M of dM
by replacing λi ∈ Z+ with λi ∈ R+ in (1). It is easy to see that dR

M is the
distance gauge for B′

M, thus dR

M is always a norm; while in Zn, the following
norm condition has to be fulfilled: dM is a norm in Zn if and only there exists
a unimodular triangulation of the facets of B′

M (see [17, p. 53] and [12, §6.3], or
an equivalent condition in [15, §3.3]). This condition garanties that dM in Zn is
the Gauss discretization of dR

M in Rn.
Now let dM be a chamfer norm, F a simplicial facet of B′

M and M|F =
{ (−→vj , wj) }1�j�n; then for each point p = (p1, . . . , pn) in the cone (O,F), called
influence coneofM|F , we have dM(O, p) = p1 δ1+· · ·+pn δn, where (δ1, . . . , δn) =
−→
δF is a normal vector of F , and δk is the elementary displacement for the kth co-
ordinate:

δk =
(−1)n+k

ΔF
·
∣∣∣∣∣v1,1 · · · v1,k−1 v1,k+1 · · · v1,n w1

...
...

...
...

vn,1 · · · vn,k−1 vn,k+1 · · · vn,n wn

∣∣∣∣∣
T

. (2)

3 Metrics Bases for Polyhedral Gauges in Infinite Space

We show in this section that polyhedral gauges do not have finite bases in Rn.
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Given a convex polyhedron C in Rn, an hyperplane hi is a supporting hy-
perplane if hi contains a facet fi of C. We name supporting half-space Hi the
half-space bounded by hi and containing C. The intersection ∩iHi of the sup-
porting half-spaces is equal to C. In Rn, the decomposition of C in supporting
half-spaces is unique. Note that this is generally not the case in Zn, see [15].

Let {Hi} be the representation in half-spaces of a convex polyhedron C ∈
Rn having nonempty interior, and {hi} the corresponding supporting hyper-
planes. If the intersection ∩ihi is a single point a, then C is a polyhedral cone
and a is called its apex. For convenience, this cone is denoted by

(
a, {Hi}

)
.

By construction, a polyhedral cone is unbounded. We name Λ the set of the
polyhedral cones in Rn having non-empty interior. A ray stands for a half-line.

Lemma 3. For each cone c =
(
a, {Hi}

)
∈ Λ, it always exists a point p ∈ c and

a ray ]ap) ⊂ c that does not belong to any facet of c.

Proof. c is nonempty by definition of Λ, so an interior point p always exists. Let
us prove that p /∈ ∪ihi ⇒ ∀λ > 0, a + λp /∈ ∪ihi. Suppose that ∃λ0 > 0 such
that q = a + λ0p ∈ ∪ihi. Then there is at least one i0 such that q ∈ hi0 , hence
(aq) ∈ hi0 , but p ∈ (aq) so p ∈ hi0 , a contradiction. �

We now translate some supporting half-planes. Let us consider a cone c =(
a, {Hi}1�i�m

)
∈ Λ, and a set of translations {ti}1�i�m.

Lemma 4. The convex c′ =
⋂{

H ′
i = Hi + ti

}
1�i�m

is an unbounded nonempty
convex polyhedron.

Proof. Given an interior point p ∈ c, we consider the line L = (ap). For each
1� i�m, we have p /∈ hi so L intersects hi in the single point a. Since p ∈ Hi,
L ∩ Hi is the ray [ap). Using the same argument, we deduce that L ∩ H ′

i is a
ray. Since c′ = ∩iH

′
i we have c′ ∩ L = (∩iH

′
i) ∩ L = ∩i(H ′

i ∩ L), thus c′ ∩ L is
the intersection of rays belonging to the same line L, having same orientation
but having different apexes, so c′ ∩ L is a ray, and we can conclude that c′ is
unbounded and nonempty. �

It is easy to see that the resulting convex is not necessarily a cone.
We have just considered a single cone and we have applied a number of transla-

tions of the half-spaces defining the cone. We will now see a property concerning
several cones obtained by translations on a common starting cone. Given a cone
c =

(
a, {Hi}1�i�m

)
∈ Λ and a set {tj}1�j�k of translations in Rn, we define the

cones c1, ..., ck as cj = c + tj =
(
a + tj , {Hi + tj}1�i�m

)
.

Lemma 5. The intersection of the cones c1 to ck is an unbounded and nonempty
convex polyhedron.

Proof. The intersection ∩k
j=1(cj) is equal to ∩k

j=1
(
∩m

i=1 (Hi + tj)
)
, which is equal

to ∩m
i=1

(
∩k

j=1 (Hi + tj)
)
. Now it is self-evident that each ∩k

j=1(Hi + tj) results
in a single half-space (by intersection of parallel half-spaces). More precisely,
∩k

j=1(Hi + tj) = Hi + t′i where t′i ∈ {t1, ..., tk}. So we can rewrite ∩k
j=1cj =

∩m
i=1(Hi + t′i). The result follows by lemma 4. �
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Fig. 2. On the left, the cone c = (O, f). On the right, the two cones defined by c1 =
c +

−−→
Ob1 and c2 = c +

−−→
Ob2. In grey the intersection between c1 and c2. As a result, x

and y both lie on f ′
1 and f ′

2.

The lemma 1 provides a simple formula to calculate the distance values in
a polyhedral gauge. So as to compute the formula, we need to split the space
into cones. Given a polyhedral gauge γC and a facet f of C, consider the cone
c = (O, f). Fix b1 and b2 two distinct points. Denote c1 = c+

−−→
Ob1 and c2 = c+

−−→
Ob2

the translated cones respectively centered in b1 and b2 (see Fig. 2).

Lemma 6. ∀x, y ∈ c1 ∩ c2, gc1(x) = gc2(y) ⇐⇒ gc2(x) = gc2(y).

Proof. Given a cone c = (O, f) and two points b1 and b2, we define c1 = c+
−−→
Ob1 =

(b1, f1) and c2 = c +
−−→
Ob2 = (b2, f2). Set x a point in c1 ∩ c2. We name f ′

1 the
facet f1 scaled by λ1 = dC(b1, x) = gc1(x) and name f ′

2 the facet f2 scaled by
λ2 = dC(b2, x) = gc2(x). Since f ′

1 and f ′
2 are parallel and intersect x, f ′

1 and f ′
2

are in the same hyperplane. Hence, for any point y ∈ f ′
1, we also have y ∈ f ′

2.
Finally, by definition of gauges, we have gc2(x) = gc2(y). �

Lemma 6 also holds with several points. Indeed, considering any point b3, denote
c3 the cone defined by c3 = c +

−−→
Ob3. Then, by transitivity, ∀x, y∈∩ici, gc1(x)=

gc1(y) ⇔ gc2(x)=gc2(y) ⇔ gc3(x)=gc3(y).

Theorem 1. There are no finite metric bases for polyhedral gauges in Rn.

Proof. Let us consider a polyhedral gauge γC . Suppose that B =
{
b1, ..., bk

}
is

a metric basis for (Rn, dC). Considering a cone c = (O, f) defined by a facet f

of C and the origin O, we denote c1, ..., ck the cones defined by ci = c +
−→
Obi. By

lemma 5, we know that ∩k
i=1ci is nonempty and unbounded. Therefore, there

exist two points x, y ∈ ∩ici such that gc1(x) = gc1(y). By lemma 6, x and y have
the same representation r(x|B)=r(y|B), thus B is not a resolving set for Rn. �

This theorem can be extended to any central-symmetric gauge partially polyhe-
dral. Indeed, the existence of one hyperplanar facet is sufficient to define a cone
in which no metric basis exists.
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r

i1O

C C1

C2

Fig. 3. Illustration for the proof of lemma 7. Left: the convex C defining the gauge γC.
Right: the balls C1 and C2 centered in b1 and b2 intersect one another in i1 and i2 inside
the rectangle r.

Having at least two points which have the same distance from O in a cone is
a necessary condition for the theorem 1. This is not the case for all polyhedral
gauges in Zn; indeed, if for any radius, each facet intersects a single point of
Zn then the metric dimension may be finite. This case may be detailed in an
extended version of this paper. This condition is never met for chamfer norms;
indeed, in each simplicial cone for a sufficiently large radius, the facet will in-
tersect at least two points of Zn, because its normal has rational coordinates.
Hence the theorem 1 remains valid for chamfer norms in Zn.

4 Metric Bases for Gauges in Axes-Parallel Rectangles

We consider here either polyhedral and non-polyhedral gauges. Let γC be a
central-symmetric gauge and r be an axes-parallel rectangle in R2.

Lemma 7. If B = {b1, b2} is a metric basis for r, then b1 and b2 are points of
the frontier of r.

Proof. Consider B = {b1, b2} a metric basis for r, and suppose that b1 is an
interior point of r. Then we fix λ1 such that C1 = (λ1C +

−−→
Ob1) ∈ r and b2 /∈ C1.

Let λ2 = dC(b1, b2) and C2 = (λ2C +
−−→
Ob2). Hence the intersection ∂(C1) ∩ ∂(C2),

where ∂(A) is the border of A, results in two distinct points i1 and i2 in r.
Finally r(i1|B) = r(i2|B), so B is not a resolving set for (r, dC). �

The lemma 7 is not valid in Zn. In fact, the intersection of discrete balls in Zn

might be slightly different from its continuous counterpart, resulting in less or
more than two points. See section 5 for examples.

Lemma 8. Suppose that γC is a grid-symmetric gauge. If C does not contains
any vertical nor horizontal facet, then the metric dimension of (r, dC) is 2.
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C
C1

b1 b2

C2

Fig. 4. Illustration of lemma 8. Left: a grid-symmetric gauge and its unit ball C. Right:
a single intersection i between two balls C1 and C2 centered in b1 and b2.

Proof. The dimension is clearly > 1. Fix b1 and b2 such that b1 is the bottom-left
corner of r and b2 is the bottom-right corner (See Fig. 4). For any λ1 > 0, the
intersection (λ1C +

−−→
Ob1)∩ r is a monotonic decreasing curve, because the gauge

is convex and grid-symmetric. For the same reasons, ∀λ2 > 0, (λ2C +
−−→
Ob2) ∩ r

is monotonic increasing. If we add the fact that C does not contain any vertical
or horizontal facet, then we have both strictly monotonic curves. Intersection
between strictly monotonic increasing and decreasing curves is at most a single
point, thus {b1, b2} is a resolving set for (r, dC). �

Corollary 1. The metric dimension for all Minkowski distances except d∞ is 2
in a rectangle.

Proof. d∞ is the only Minkowski distance whose balls contain vertical or hori-
zontal facets. �

Lemma 9. Let γC be a polyhedral gauge of metric dimension 2 in a rectangle r,
fix {b1, b2} a metric basis of (r, dC) such that b1 is not a vertex of r, and denote
e1 the edge of r containing b1. Then b2 �∈ e1.

Proof. A small enough factor λ1 > 0 exists, such that C1 intersects e1 in two
points i1 and i2, and such that b2 /∈ [i1, i2]. Suppose that i1 ∈ [b2, i2] and
consider the cone c1 defined by b1 and a facet of C which contains i2. Denote
c2 the cone centered in b2 which contains the cone c1 (see Fig. 5). So we have
∀y, z ∈ c1, gc1(y) = gc1(z) ⇒ gc2(y) = gc2(z). In consequence, B cannot be a
metric basis in the rectangle. �

5 Results and Discussion

We have developed a program which gives by enumeration all metric bases for
any given chamfer norm in an axes-parallel rectangle. The figure 6 shows for d1
and the chamfer norms 〈3, 4〉 and 〈5, 7, 11〉, the union of all metric bases vertices
(in grey) in a 20× 12 rectangle. As we can see, the vertices of a metric basis for
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Fig. 5. Illustration of lemma 9. Left: A polyhedral gauge and its unit ball C. Right:
The bold line segment shows the intersection between the two balls C1 and C2 in r.

d1 are necessarily located on the corners of the rectangle, while for 〈3, 4〉 they
can be choosen in the first or second border inside the rectangle, and for the last
case 〈5, 7, 11〉, in the whole rectangle. This shows that lemma 7 does not always
hold in Zn.

We also developed an interactive program which displays, for a set S of ver-
tices in a rectangular region W , the resolved and unresolved points (resp. in
black, white and grey). Results are presented in Fig. 7; each column shows a
configuration of two or three vertices; each row corresponds to a distance. The
last distance is the chamfer norm 〈3, 4, 6〉, obtained by replacing the correspond-
ing weights in the mask 〈5, 7, 11〉. The interest of this norm is that its balls are
octogons with horizontal and vertical facets.

A point is said resolved in W if its representation for S is unique in W , while
it is unresolved if there exists at least one other point in W sharing the same
representation. A set S is then a resolving set for W if all points of W are
resolved. In our example, only two of the 18 cases are resolving sets: rows (a)
and (e) in the right column.

Now consider an axes-parallel subrectangle R in W , such that the black ver-
tices lie on the corners of R. If all the points in R are resolved, then the set S
of vertices is a resolving set for R. This is the case for (a,b,d,e)-right.

Fig. 6. Left to right: d1, 〈3, 4〉, 〈5, 7, 11〉
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(f)

(e)

(d)

(c)

(b)

(a)

Fig. 7. Configurations for two or three vertices in a 31 × 25 rectangular region, using
distances (a) d2, (b) d1, (c) d∞, (d) 〈3, 4〉, (e) 〈5, 7, 11〉, (f) 〈3, 4, 6〉. The vertices are
shown in black, resolved points in white, unresolved points in grey. The coordinates of
vertices from the origin (0, 0) at top left are (7, 9), (22, 9) and (22, 14).
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In some other cases, S is still a resolving set for R since each unresolved
point in R has its equivalent points (points sharing the same representation,
not represented here) lying outside R. We have this situation for (e)-left and
(a,b,d,e)-middle, but not for (c,f)-middle. This can be explained by lemma 8,
since the balls of d∞ and 〈3, 4, 6〉 have horizontal and vertical facets.

These different configurations are resulting from intersections of the cones in
the distance balls. A thorough geometrical and arithmetical study might be a
natural continuation of this paper for better understanding.

6 Conclusion

We have shown that the metric dimension of any polyhedral (or partially poly-
hedral) central symmetric gauge is infinite in Rn, and for Zn in the case of
chamfer norms, whereas it is finite in axes-parallel rectangles. In the latter case,
we have exhibited gauges having metric dimension 2 and we have completely
characterized their metric bases. In the future, we aim at studying how to gen-
eralize our results for continuous and discrete gauges in rectangles, in convex or
non-convex simple polyhedrons with direct or geodesic distances; showing the
conditions where discrete polyhedral gauges may have finite basis in Zn, and
finally, tackling the linked problems of forcing subsets and partitions dimension.
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Completions and Simplicial Complexes

Gilles Bertrand

Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge
Equipe A3SI, ESIEE Paris

Abstract. In this paper, we first introduce the notion of a comple-
tion. Completions are inductive properties which may be expressed in a
declarative way and which may be combined. In the sequel of the pa-
per, we show that completions may be used for describing structures or
transformations which appear in combinatorial topology. We present two
completions, 〈CUP〉 and 〈CAP〉, in order to define, in an axiomatic way,
a remarkable collection of acyclic complexes. We give few basic prop-
erties of this collection. Then, we present a theorem which shows the
equivalence between this collection and the collection made of all simply
contractible simplicial complexes.

Keywords: Completions, simplicial complexes, collapse, simple homo-
topy, combinatorial topology.

1 Introduction

Several approaches have been proposed for the study of topological properties
of digital objects in the context of computer imagery:

- The digital topology approach introduced by A. Rosenfeld [5]. Elements of
Zd are linked by some adjacency relations. It is not obvious, in this framework,
to define certain topological notions (e.g., a homotopy).

- The connected ordered topological space (COTS) approach introduced by
E. Khalimsky [3]. The smallest neighborhood of each point of Zd differs from
one point to another. This allows to recover the structure of a topology.

- The complex cellular approach. An object is seen as a structure consisting
of elements of different dimensions called cells. As noticed by V. Kovalevsky [4],
it is also possible, with this approach, to recover the structure of a topology.

The underlying topology in the last two approaches corresponds to an Alexan-
droff space [2]. An Alexandroff space is a topological space in which the intersec-
tion of any arbitrary family (not necessarily finite) of open sets is open. There
is a deep link between Alexandroff spaces and preorders, i.e., binary relations
that are reflexive and transitive. To any Alexandroff space, we may associate a
preorder ≤ such that x ≤ y if and only if y is contained in all open sets that
contain x. Conversely, a preorder determines an Alexandroff space: a set O is
open for this space if and only if x ∈ O and x ≤ y implies y ∈ O.

A map f between two preordered sets X and Y is monotone if x ≤ y in X
implies f(x) ≤ f(y) in Y . We have the following result.

I. Debled-Rennesson et al. (Eds.): DGCI 2011, LNCS 6607, pp. 129–140, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. (a): A simplicial complex X, (b): A complex Y ⊆ X, (c): A complex Z ⊆ Y .

A map between two preordered sets is monotone if and only if it is a continuous
map between the corresponding Alexandroff spaces. Conversely, a map between
two Alexandroff spaces is continuous if and only if it is a monotone map between
the corresponding preordered sets.

Thus, there is a structural equivalence between Alexandroff spaces and pre-
orders.

Let us consider the (simplicial) objects X, Y, Z depicted Fig. 1. The object X
is made of 7 vertices, 8 segments, and 1 triangle. A natural preorder between
all these elements is the partial order corresponding to the relation of inclusion
between sets. Thus we have x ≤ y and z ≤ y. Let the map f between X and
Y be such that f is the identity on all elements of Y and f(x) = z, f(y) = z.
We note that f is monotone, for example we have x ≤ y and f(x) ≤ f(y).
Thus, Y may be seen as a continuous retraction of X for the corresponding
topology. Now, let us try to build a monotone map g between Y and Z such
that g is the identity on all elements of Z. We see that this is not possible.
For example, if we take g(a) = c, g(b) = c, we have d ≤ a, but we have not
g(d) ≤ g(a). We also observe that it is possible to build such a map between
Y and Y ′ = Y \ {a}, but not between Y ′ and Z. Thus, in the context of this
construction, the classical axioms of topology fail to interpret Z as a continuous
retraction of Y .

The paper is organized as follows. First we introduce the notion of a com-
pletion. Completions are inductive properties which may be expressed in a
declarative way and which may be combined. In the sequel of the paper, we
show that completions may be used for describing structures or transformations
which appear in combinatorial topology. After some basic definitions for simpli-
cial complexes, we give two examples of completions. We recall some definitions
relative to the collapse operator which allows to make the two transforms illus-
trated Fig. 1. We present two completions, 〈CUP〉 and 〈CAP〉, in order to define
a remarkable collection of acyclic complexes. We give few basic properties of
this collection. Then, we present a theorem which shows the equivalence be-
tween this collection and the collection made of all simply contractible simplicial
complexes.

The paper is self contained. For the sake of place, only few proofs are pre-
sented. The other one’s will be given in an extended version of the paper.
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2 Completions

We introduce the notions of a constructor and a completion. See also Appendix A
for more details and for the link with finitary closure operators.

In the sequel, the symbol S will denote an arbitrary collection. The symbol
K will denote an arbitrary subcollection of S, thus we have K ⊆ S.

Definition 1. Let K be a binary relation over 2S and 2S, thus K ⊆ 2S×2S. We
say that K is a constructor (on S) if K is finitary, which means that F is finite
whenever (F,G) ∈ K. If K is a constructor on S, we denote by 〈K〉 the following
property which is the completion induced by K:
−> If F ⊆ K, then G ⊆ K whenever (F,G) ∈ K. 〈K〉

Let K be a constructor on S and let X ⊆ S. We define:
K(X) = ∪{G | there exists (F,G) ∈ K with F ⊆ X} ∪ X.

We set K1(X) = K(X) and Kk(X) = K(Kk−1(X)), k ≥ 2.
We also set 〈X, K〉 = ∪{Kk(X) | k ≥ 1}.
Let 〈K〉 be a property which depends on K. We say that a given collection X ⊆ S
satisfies 〈K〉 if the property 〈K〉 is true for K = X.

Theorem 1. Let K be a constructor on S and let X ⊆ S. There exists, under
the subset ordering, a unique minimal collection which contains X and which
satisfies 〈K〉, this collection is precisely 〈X, K〉.

Furthermore, we have 〈X, K〉 = ∩{Y ⊆ S | X ⊆ Y and Y satisfies 〈K〉}.
We say that a property 〈K〉 is a completion (property) if there exists a constructor
K such that 〈K〉 = 〈K〉 which means that, for each K ⊆ S, 〈K〉 is true if and
only if 〈K〉 is true. If 〈K〉 is a completion and if X ⊆ S, we write 〈X, K〉 for the
unique minimal collection which contains X and which satisfies 〈K〉.

Let 〈K〉 and 〈Q〉 be two completions induced, respectively, by the constructors
K and Q. We see that K ∪ Q is a constructor and that 〈K〉 ∧ 〈Q〉 is the property
induced by K ∪ Q, the symbol ∧ standing for the logical “and”. Thus, if 〈K〉 and
〈Q〉 are completions, then 〈K〉 ∧ 〈Q〉 is a completion.

In the sequel of the paper, we write 〈K, Q〉 for the completion 〈K〉 ∧ 〈Q〉.
Thus, if X ⊆ S, the notation 〈X, K, Q〉 stands for the smallest collection which
contains X and which satisfies 〈K〉 ∧ 〈Q〉.
Remark 1. We may build a counter-example which shows that, if 〈K〉 and 〈Q〉
are completions, then 〈K〉 ∨ 〈Q〉 is not necessarily a completion, the symbol ∨
standing for the logical “or”.

A constructor K is one-to-one if Card(F) = Card(G) = 1 whenever (F,G) ∈
K. If K is a one-to-one constructor, we set −K= {(G,F) | (F,G) ∈ K}, the
constructor −K is the inverse of K.

It may be seen that, if K and Q are two one-to-one constructors, we have 〈K〉
= 〈Q〉 if and only if 〈−K〉 = 〈−Q〉.

A one-to-one completion 〈K〉 is a completion induced by some one-to-one con-
structor K, we write 〈−K〉 for the constructor induced by −K. By the preceding
property, this definition is consistent since it does not depend on the choice of K.
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3 Basic Definitions for Simplicial Complexes

A complex or an hypergraph is a finite family composed of finite sets. We denote
by H the collection of all complexes.

Let X ∈ H. The simplicial closure of X is the complex X− such that X− =
{y ⊆ x | x ∈ X}. The complex X is a simplicial complex if X = X−. We denote
by S the collection of all simplicial complexes. Observe that ∅ ∈ S and {∅} ∈ S.

Let X ∈ S. An element of X is a simplex of X or a face of X . A facet of X
is a simplex of X which is maximal for inclusion.

A simplicial subcomplex of X ∈ S is any subset Y of X which is a simplicial
complex. If Y is a subcomplex of X , we write Y ! X .

A complex A ∈ S is a cell if A = ∅ or if A has precisely one non-empty facet
x, we set A◦ = A \ {x} and ∅◦ = ∅. We write C for the collection of all cells.

Let X ∈ S. The dimension of x ∈ X , written dim(x), is the number of
its elements minus one. The dimension of X , written dim(X), is the largest
dimension of its simplices, the dimension of ∅ is defined to be −1.
If X ⊆ S, we set:

X[d] = {X ∈ X | dim(X) = d} and X〈d〉 = {X ∈ X | dim(X) ≤ d}.
The ground set of X ∈ H is the set X† = ∪{x ∈ X}. Let X, Y ∈ H such

that X† ∩ Y † = ∅. The join of X and Y is the complex XY such that XY =
{x ∪ y | x ∈ X, y ∈ Y }. Thus, XY = ∅ if Y = ∅ and XY = X if Y = {∅}.

In this paper, if X, Y ∈ H, we implicitly assume that X and Y have disjoint
ground sets whenever we write XY .
If X ∈ S, we say that AX is a simple cone if A ∈ C[1], and a cone if A ∈ C.

The (reduced) Euler characteristic of X ∈ S is the number χ(X) such that
χ(X) =

∑
{(−1)dim(x) | x ∈ X} if X �= ∅, and χ(∅) = 0. Note that χ(X) is

equal to the ordinary Euler characteristic minus one.
Let A ∈ C and X ! A. The dual of X for A is the simplicial complex,

written (X ; A)∗, such that (X ; A)∗ = {A† \ x | x ∈ A \ X}. Thus, we have
(X ; A)∗ = {x ∈ A | (A† \ x) �∈ X}. For any A ∈ C, we have the following:

- If X ! A, then ((X ; A)∗; A)∗ = X .
- If X ! A and Y ! A, then (X ∪ Y ; A)∗ = (X ; A)∗ ∩ (Y ; A)∗.
- If X ! A and Y ! A, then (X ∩ Y ; A)∗ = (X ; A)∗ ∪ (Y ; A)∗.
- We have (∅; A)∗ = A and ({∅}; A)∗ = A◦.

In the sequel of this paper, we set S = S. Thus, we will have K ⊆ S.
In the next two sections, we give some basic examples of completions on S.

4 Connectedness

The family composed of all connected simplicial complexes may be defined by
means of completions. We define the one-to-one completion 〈PATH〉 as follows.

−> If S ∈ K, then S ∪ C ∈ K whenever C ∈ C, and S ∩ C �= {∅}. 〈PATH〉
We may easily verify that 〈PATH〉 is indeed a (one-to-one) completion. The

property 〈PATH〉 is the completion induced by the (one-to-one) constructor:

PATH = {({S}, {S ∪ C}) | S ∈ S, C ∈ C and S ∩ C �= {∅}}.



Completions and Simplicial Complexes 133

We set Π = 〈∅, PATH〉. We say that a complex X ∈ S is connected if X ∈ Π.
Observe that C ⊆ Π since, for any C ∈ C, we have C ∩ ∅ = ∅ �= {∅}. It may be
checked that this definition of a connected complex is equivalent to the classical
definition based on paths. Now let us define the completion 〈Υ 〉 as follows.
−> If S, T ∈ K, then S ∪ T ∈ K whenever S ∩ T �= {∅}. 〈Υ 〉
Again, we may easily verify that 〈Υ 〉 is indeed a completion. We have the fol-
lowing result which shows that Υ provides another way to generate Π.

Proposition 1. We have Π = 〈C, Υ 〉
A property similar to 〈Υ 〉 has been introduced by J. Serra and G. Matheron
who proposed, through the notion of a connection, a new set of axioms for
connectedness [15]. The main difference between a connection and 〈C, Υ 〉 is that
a connection may be seen as a “static structure” for modeling connectedness, on
the contrary Υ is used in 〈C, Υ 〉 in a “dynamic way” for generating all elements
of Π. On the other hand, Υ works only for finite objects.

5 Trees

A tree is classically defined as a graph which is path-connected and which does
not contain any cycle. We give here a definition based on the following one-to-
one completion 〈TREE〉.
−> If S ∈ K, then S ∪ A ∈ K whenever A ∈ C〈1〉 and S ∩ A ∈ C〈0〉. 〈TREE〉
We set Tree = 〈∅, TREE〉. We say that a complex X ∈ S is a tree if X ∈ Tree.

It may be checked that this definition of a tree is equivalent to the classical one.
Through this example, we observe that completions allow to define a collection

in a constructive way rather by the means of properties of this collection.
We can express, in a concise manner, a fundamental property of trees.

Proposition 2. We have Tree = 〈Tree, −TREE〉.

6 Collapse

We now present some completions related to the collapse operator introduced
by J.H.C. Whitehead [12]. Let us recall a classical definition of collapse.

Let X ∈ S. We say that a face x ∈ X is free for X if x is a proper face of
exactly one face y of X , such a pair (x, y) is said to be a free pair for X . If (x, y)
is a free pair for X , the complex Y = X \ {x, y} is an elementary collapse of X .

We define the one-to-one completion 〈COL〉:
−> If S ∈ K, then S∪AB ∈ K whenever A ∈ C[0], AB ∈ C, S∩AB = AB◦.〈COL〉

Observe that, if AB ∈ C, and if A ∈ C[0], then necessarily B ∈ C or B = {∅}.
If B = {∅}, B◦ is defined to be ∅.

It may be seen that, if S and S ∪aB, with B �= ∅, fulfill the above conditions,
then S is an elementary collapse of S∪aB. Conversely, we may formulate any el-
ementary collapse by such an expression. Thus 〈COL〉 is an alternative definition
of collapse. The following is a direct consequence of the previous definitions.
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(a) (b) (c)

Fig. 2. (a): A Bing’s house X with two rooms, (b): An object Y ⊆ X, (c): An object
Z ⊆ X. We have X = Y ∪ Z, the object Y ∩ Z is outlined in (b) and (c).

Proposition 3. Let A ∈ C, X ! A, Y ! A. The complex X is an elementary
collapse of Y if and only if (Y ; A)∗ is an elementary collapse of (X ; A)∗.

We say that an element of 〈∅, COL〉 is collapsible and that an element of 〈∅, COL,
−COL〉 is simply contractible. If X, Y ∈ S, we say that Y collapses onto X if Y ∈
〈{X}, COL〉, and that Y is simple homotopic to X if Y ∈ 〈{X}, COL,−COL〉.

Let us consider the one-to-one completion:
−> If S ∈ K, then S∪A ∈ K whenever A ∈ C, and A collapses onto S∩A. 〈SIM〉

When A satisfies 〈SIM〉, we say that the cell A is simple for S. We have
〈SIM〉 = 〈COL〉. This completion leads to a notion of simplicity introduced in
the context of computer imagery [16] (see also [17], [18]) where an object is often
seen as a set of cells (e.g., a set of voxels in 3D) rather than a set of faces.

7 The Cup/Cap Completions

We introduce the notion of a dendrite for defining a remarkable collection made
of acyclic complexes.

Definition 2. We define the two completions 〈CUP〉 and 〈CAP〉:
−> If S, T ∈ K, then S ∪ T ∈ K whenever S ∩ T ∈ K. 〈CUP〉
−> If S, T ∈ K, then S ∩ T ∈ K whenever S ∪ T ∈ K. 〈CAP〉
We set R = 〈C,CUP〉 and D = 〈C,CUP,CAP〉.

Each element of R is a ramification and each element of D is a dendrite.

The Bing’s house with two rooms [13] is a classical example of an object which is
contractible but not collapsible, this object is depicted Fig. 2 (a). Let us consider
the two complexes Y and Z of Fig. 2 (b) and (c). They are such that X = Y ∪Z.
If X is correctly triangulated, then Y , Z, and Y ∩Z are ramifications. Thus, the
Bing’s house X is a ramification.

It may be easily seen that we have 〈∅, COL〉 ⊆ 〈C,CUP〉. Since the Bing’s house
is not collapsible, this inclusion is strict.

M. Hochster [10] (see also [8] [9]) introduced the notion of a constructible
complex. This notion may be expressed using the following completion:
−> If S, T ∈ K[d], then S ∪ T ∈ K whenever S ∩ T ∈ K[d − 1], d ≥ 0. 〈CONS〉
A simplicial complex is constructible if it is an element of 〈C ∪ {{∅}},CONS〉.
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M. Hachimori [9], [11] showed that the Bing’s house with two rooms and the
dunce hat [14] are not constructible. Observe that we have 〈C,CONS〉 ⊆ 〈C,CUP〉.
Since the Bing’s house is a ramification, the previous inclusion is strict.

With the notion of a buildable complex, J. Jonsson [7] drops the condition
for dimension which appears in 〈CONS〉. The definition of a buildable complex is
a recursive definition of what we call a ramification.1 It was shown [7] that any
buildable complex is contractible, i.e., is homotopy equivalent to a single point.
As far as we know, the above definition for dendrites has never been proposed.

8 Few Basic Properties

In this section, we give few basic properties which may be derived directly from
the definitions of R and D using inductive arguments. Perhaps the simplest
property which may be proved in such a way is the following.

Proposition 4. If X ∈ D, then χ(X) = 0.

Proof. We have χ(X) = 0 for each X ∈ C. Since the Euler characteristic is such
that χ(S ∪ T ) = χ(S) + χ(T ) − χ(S ∩ T ), the result follows by induction. ��

Let us consider the two completions:
−> If S, T ∈ K, then S ∪ T ∈ K. 〈UNION〉
−> If S, T ∈ K, then S ∩ T ∈ K. 〈INTER〉

Let X ⊆ R. An element of 〈X,UNION〉 is, in general, not necessarily a ramifica-
tion (nor a dendrite), but this property is true in the following case.

Proposition 5. Let X ⊆ R and let Y = 〈X,UNION〉. If 〈Y, INTER〉 = Y, i.e., if Y

satisfies the property 〈INTER〉, then we have Y ⊆ R.

Proof. We set Yk = {X ∈ Y | Card(X) ≤ k}.
i) We have Y0 = ∅ or Y0 = {∅}. In both cases Y0 ⊆ R.
ii) Suppose Yk−1 ⊆ R, for some k ≥ 1. Let X ∈ Yk. If X ∈ X, then X ∈ R. If
X �∈ X, then there exists S, T ∈ Y such that X = S ∪ T , and S �⊆ T , T �⊆ S.
Thus Card(S) ≤ k−1, Card(T ) ≤ k−1, and Card(S∩T ) ≤ k−1. Furthermore,
we have S ∩ T ∈ Y. Therefore, by the induction hypothesis, S, T and S ∩ T are
ramifications, which means that X is a ramification. It follows that Yk ⊆ R. ��

Let A ∈ C and let X = {BA |B ∈ C}. Since XA ∪ Y A = (X ∪ Y )A, it
may be seen that we have 〈X,UNION〉 = {XA | X ∈ S}. Furthermore, since
XA ∩ Y A = (X ∩ Y )A, 〈X,UNION〉 satisfies the property 〈INTER〉. Thus, since
X ⊆ R, the following is a consequence of Prop. 5.

Proposition 6. Let X ∈ S and A ∈ C. Then XA is a ramification.

The following fact will be used for the proof of Prop. 8.

Proposition 7. Let A, B ∈ C. Then (AB)◦ = AB◦ ∪ A◦B.

1 We suggest the name “ramification” rather than “buildable complex” since these
objects may be seen as natural extensions of trees.
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Proposition 8. Let X ∈ S and A ∈ C, A �= ∅. The complex XA◦ is a dendrite
if and only if X is a dendrite.

Proof. If A ∈ C[0], we have A◦ = {∅} and XA◦ = X . Suppose the property is
true for any A ∈ C〈i − 1〉, i ≥ 1. Let Y = XA◦, with X ∈ S and A ∈ C[i].
Since i ≥ 1, there exists B, C ∈ C〈i − 1〉, such that A = BC. By Prop. 7, we
have XA◦ = XBC◦∪XB◦C. By Prop. 6, XBC◦ and XB◦C are dendrites. But
XBC◦ ∩ XB◦C = XB◦C◦. By the induction hypothesis, XB◦C◦ is a dendrite
iff XB◦ is a dendrite, and XB◦ is a dendrite iff X is a dendrite. Thus, by 〈CUP〉
and 〈CAP〉, Y is a dendrite iff X is a dendrite. ��

We now give a property for duality which will be used in the sequel through two
corollaries.

Proposition 9. Let A, B ∈ C, and let X, Y ∈ S such that X ! A, Y ! B.
We have (XY ; AB)∗ = A(Y ; B)∗ ∪ B(X ; A)∗.

The following corollary may be obtained from Prop. 9, by interchanging A and B,
and by setting Y = A. It shows that the collection of cones is closed by duality.
More precisely, if we set K = {AX | A ∈ C, X ∈ S} and K∗ = {(X ; B)∗ | X ∈
K, B ∈ C, X ! B}, then we have K = K∗. Note that the collection C is not
closed by duality (By Cor. 2, we have (A; AB)∗ = B◦A).

Corollary 1. Let A, B ∈ C, and let X ! B. We have (AX ; AB)∗ = A(X ; B)∗.

The second corollary may be obtained from Prop. 9 by setting Y = {∅}.

Corollary 2. Let A, B ∈ C, and X ! A. We have (X ; AB)∗ = B(X ; A)∗∪B◦A.

We see that this last formula allows to calculate the dual of an object in a given
space (a cell) from the dual of this object in a smaller space.

Proposition 10. Let A, B ∈ C, and X ! A. Then (X ; AB)∗ is a dendrite if
and only if (X ; A)∗ is a dendrite.

Proof. Let Y = (X ; AB)∗. By Cor. 2, we have Y = B(X ; A)∗ ∪ B◦A. By Prop.
6, B(X ; A)∗ and B◦A are dendrites. Since B(X ; A)∗ ∩ B◦A = B◦(X ; A)∗ and
by Prop. 8, it follows that Y is a dendrite if and only if (X ; A)∗ a dendrite. ��

From the very definition of a dendrite, it is clear that, if X is a dendrite, then
there exists A ∈ C such that (X ; A)∗ is a dendrite. As a consequence of Prop.
10, we have the following which extends this property for all cells containing X .

Proposition 11. If X ∈ D and if X ! A, with A ∈ C, then (X ; A)∗ ∈ D.

9 Completions and Simple Homotopy

The following Th. 2 states the equivalence between dendrites and simply con-
tractible complexes. For the sake of space, we give only one part (in fact the
easiest part) of the proof.
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Lemma 1. Let X ∈ S. If X is simply contractible, then X is a dendrite.

Proof. Let X ∈ S such that X is simply contractible. Thus, there exists a se-
quence (X0, ..., Xk) such that X0 = ∅, Xk = X , and, for each i ∈ [1, k], either
Xi is an elementary collapse of Xi−1 or Xi−1 is an elementary collapse of Xi.
Let C ∈ C such that we have Xi ! C for each i ∈ [0, k]. The complex X0 is a
dendrite, suppose Xi−1 is a dendrite for some i ≥ 1.

i) If Xi−1 is an elementary collapse of Xi, then Xi = Xi−1 ∪AB, with A ∈ C[0],
AB ∈ C, Xi−1∩AB = AB◦. By Prop. 6, AB and AB◦ are both dendrites. Thus,
by 〈CUP〉, Xi is a dendrite.
ii) If Xi is an elementary collapse of Xi−1, then, by Prop. 3, (Xi−1; C)∗ is an
elementary collapse of (Xi; C)∗. Furthermore, by Prop. 11, (Xi−1; C)∗ is a den-
drite. By using the arguments of i) in the dual, we may affirm that (Xi; C)∗ is
a dendrite. By using again Prop. 11, it follows that Xi is a dendrite. ��

Theorem 2. We have D = 〈∅, COL,−COL〉. In other words, a simplicial com-
plex is a dendrite if and only if it is simply contractible.

We define the one-to-one completion 〈DEF〉 which allows to make homotopic
deformations of arbitrary complexes:
−> If S ∈ K, then S ∪ D ∈ K whenever D ∈ D and S ∩ D ∈ D. 〈DEF〉

Theorem 3. Let X, Y ∈ S. The complex Y is simple homotopic to X if and
only if Y ∈ 〈{X}, DEF,−DEF〉.

10 Conclusion

We have seen that (one-to-one) completions allow to formulate recursive trans-
formations of objects. More remarkably, completions allow to define structures
on objects (e.g., a connection). We introduced two completions, 〈CUP〉 and 〈CAP〉,
in order to define, in an axiomatic way, a collection of acyclic complexes. We gave
a theorem which shows the equivalence between this collection and the collection
made of simply contractible simplicial complexes, i.e., complexes which may be
transformed to a single point by collapse/anti-collapse operations. Thus, these
two axioms may be used for expressing homotopic transforms such as the one
illustrated Fig. 1. As we have seen in the introduction, this transformation can-
not be interpreted as a continuous one when we consider the preorder associated
to the classical axioms of topology.
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Appendix A: Completions and Closure Operators

In the sequel, the symbol S denotes an arbitrary collection.
Let γ be a map from 2S to 2S, such a map is said to be an operator (on S).
If γ is an operator on S, we set γ1 = γ and γk = γ ◦ γk−1, k ≥ 2. We define

γ̂ to be the operator such that, for each X ⊆ S, γ̂(X) = ∪{γk(X) | k ≥ 1}.
Let γ be an operator on S. We say that:

- γ is extensive if, for all X ⊆ S, we have X ⊆ γ(X).
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- γ is increasing if, whenever X ⊆ Y ⊆ S, we have γ(X) ⊆ γ(Y).
- γ is idempotent if, for all X ⊆ S, we have γ2(X) = γ(X).

The operator γ is a closure operator (on S) if γ is extensive, increasing, and
idempotent. If γ is a closure operator, X ⊆ S is closed for γ if γ(X) = X.

Let γ be a closure operator on S. We have the following result, this is a basic
property of closure operators:

For any X ⊆ S, we have γ(X) = ∩{Y ⊆ S | X ⊆ Y and γ(Y) = Y}.
Let γ be an operator on S. We say that γ is finitary if, for all X ⊆ S, we have

γ(X) = ∪{γ(F) | F ⊆ X and F finite}.
Alfred Tarski [6] introduced finitary closure operators (also called “finite con-

sequence operators”) as an abstract theory of logical deductions. In this context,
the set S represents a set of statements in some language. Given a subset X of S,
the set γ(X) represents the set of all statements that may be deduced from X.

Observe that any finitary operator is increasing. Thus, an operator γ is a
finitary closure operator if and only if γ is extensive, finitary, and idempotent.

We say that an operator K is a Λ-operator if K is extensive and finitary.
The following fixed point theorem is essential for our purpose. See [21–24] for

more general fixed point theorems.

Theorem 4. Let K be a Λ-operator. Then, for any X ⊆ S, K̂(X) is a fixed
point for K, i.e., we have K(K̂(X)) = K̂(X).

Proposition 12. If K is a Λ-operator, then K̂ is a finitary closure operator.

Remark 2. If γ is an extensive and increasing operator (not necessarily finitary),
then K̂(X) is not necessarily a fixed point for K.
Let K be a binary relation over 2S and 2S, thus K ⊆ 2S × 2S. We say that K

is a constructor (on S) if K is finitary, which means that F is finite whenever
(F,G) ∈ K.

Let K be a constructor on S. We also denote by K the Λ-operator such that,
for each X ⊆ S, we have:

K(X) = ∪{G | there exists (F,G) ∈ K with F ⊆ X} ∪X.
We say that the operator K is the Λ-operator induced by the constructor K.

Let K be a Λ-operator on S, the constructor induced by K is the constructor
K such that K = {(F, K(F)) | F is a finite subset of S}.

The following result is a direct consequence of the above definitions. It shows
that specifying a Λ-operator is (in a certain sense) equivalent to specifying a
constructor.

Proposition 13. Let K be a Λ-operator, and let K be the constructor induced
by K. The two Λ-operators K and K are equal.

Let K be a constructor on S, and let K be the constructor induced by the
Λ-operator K. The two Λ-operators K and K are equal.

Let K be a constructor. We say that K is many-to-one if Card(G) = 1 whenever
(F,G) ∈ K.
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To each arbitrary constructor K we may associate a many-to-one constructor
K, we define K to be {(F, {x}) | there exists (F,G) ∈ K and x ∈ G}. We see
that the two Λ-operators K and K are equal. Thus, specifying a constructor is
equivalent to specifying a many-to-one constructor.

Remark 3. Let K be a binary relation over 2S and S, thus K ⊆ 2S × S. We
say that K is finitary if F is finite whenever (F,x) ∈ K. It may be seen that
specifying a many-to-one constructor is equivalent to specifying such a relation.

In the sequel, the symbol K will denote an arbitrary subcollection of S, thus we
have K ⊆ S.

If K is a constructor on S, we denote by 〈K〉 the following property which is
the completion induced by K:
−> If F ⊆ K, then G ⊆ K whenever (F,G) ∈ K. 〈K〉
Let 〈K〉 be a property which depends on K. We say that a given collection X ⊆ S
satisfies 〈K〉 if the property 〈K〉 is true for K = X.

Thus, if K is a constructor, a collection X ⊆ S satisfies 〈K〉 if and only if
K(X) = X.

The following propositions are direct consequences of Th. 4 and Prop. 12.
Prop. 14 and 15 are equivalent to Th. 1 given in section 2. The collection 〈X, K〉
of Th. 1 is equal to K̂(X).

Proposition 14. Let K be a constructor on S and let X ⊆ S. Then K̂(X) is,
under the subset ordering, the unique minimal collection which contains X and
which satisfies 〈K〉.

Let 〈K〉 be a property which depends on K.
If X ⊆ S, we set Δ(X, K) = ∩{Y ⊆ S | X ⊆ Y and Y satisfies 〈K〉}.

Proposition 15. If K is a constructor on S and if X ⊆ S, then K̂(X) =
Δ(X, K).

We say that a property 〈K〉 is a completion (property) if there exists a constructor
K such that 〈K〉 = 〈K〉 which means that, for each K ⊆ S, 〈K〉 is true if and only
if 〈K〉 is true.

Proposition 16. Let 〈K〉 be a property which depends on K. The property 〈K〉
is a completion if and only if, for each X ⊆ S:

i) Δ(X, K) satisfies 〈K〉, and
ii) Δ(X, K) = ∪{Δ(F, K) | F ⊆ X and F finite}.
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Abstract. In the 90s, several authors introduced the notion of a hier-
archic family of 2D Euclidean skeletons, evolving smoothly under the
control of a filtering parameter. We provide in this article a discrete
framework which formalizes and generalizes this notion, in particular to
higher dimensions. This framework allows us to propose a new skele-
tonization scheme and to prove several important properties, such as
topology preservation and stability w.r.t. parameter changes.

Despite the simplicity of the most common definition of a skeleton, as the set
of all centers of maximal included balls, its use in real applications often raises
difficult problems. One of the main issues is its lack of stability.

In 2005, F. Chazal and A. Lieutier introduced the λ-medial axis [4], a par-
ticular class of filtered skeletons, and studied its properties, in particular those
related to stability. A major outcome of [4] is the following property: infor-
mally, except for particular values of the filtering parameter, the λ-medial axis
remains stable under perturbations of the shape that are small with regard to
the Hausdorff distance. However, the original definition of the λ-medial axis only
holds and makes sense in the (continuous) Euclidean n-dimensional space. In [3],
J. Chaussard et al. introduced the definition of a discrete λ-medial axis in Zn,
and showed that it provides good robustness to boundary noise and invariance
by rotation in practice.

For certain applications however, the λ-medial axis cannot be used because,
when a small modification of the filtering parameter λ is done around some par-
ticular values, topological changes or abrupt appearing/disappearing of branches
typically occur in the resulting skeketon.

On the other hand, several authors have proposed a general idea that leads
to the notion of a family of skeletons, evolving smoothly under the control of
a single parameter. They called it hierarchic skeletons [10], veinerization [11]
or multiscale skeletons [8]. Such a family of skeletons can be summarized by a
function, called potential residual in [10]. The skeletons are obtained as level sets
(i.e., thresholds) of this function. The method of R.L. Ogniewicz and O. Kübler
[10] applies to 2D shapes that are (sets of) planar polygons in R2, and the
resulting skeleton is a set of straight line segments which do not necessarily
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have their extremities on a grid. The authors give a proof that the obtained
skeleton is homotopy-equivalent to the original shape, but discretizations of these
skeletons in Z2 do not generally share the same property. Veinerization [11] and
multiscale skeletons [8] are methods that operate in the 2D square grid, and
that are based on the same general idea as Ogniewicz and Kübler’s. However
[11] does not provide an algorithm to compute skeletons in practice, and the
algorithm proposed in [8] does not guarantee topology preservation. Extensions
of these works to higher-dimensional spaces (e.g., 3D) have not been considered
so far, to our knowledge.

In this article, we propose an effective and flexible method for building and
filtering discrete skeletons, in the framework of cubical complexes. We ensure
topology preservation by founding our method on the collapse operation, an
elementary deformation that preserves the homotopy type.

First, we propose a thinning procedure that combines three ideas: λ-medial
axis (Sec. 2), directional parallel thinning, and guided thinning (Sec. 3). This
procedure also produces a sequence of collapse operations from which we derive
an acyclic graph structure that we call a flow graph.

Based on this flow graph, we define the notion of topological map. We prove
that if M is a topogical map on an object X , then any level set of M has the
same homotopy type as X (Th. 5). Moreover, we prove that if the real numbers
a and b are close to each other, then the shapes Ma and Mb (the level sets of M
at levels a and b) are close to each other1 with respect to the Hausdorff distance
(Th. 6). This property will assess the stability of our final skeletonization method
w.r.t. the parameter value.

Then, we show how to build particular topological maps based on different
measures of shape characteristics, thanks to the notion of upstream (Sec. 3,
Sec. 6).

Finally, we propose a skeletonization scheme that produces families of filtered
homotopic skeletons (Sec. 7). A filtered skeleton is obtained as a level set of the
obtained topological map.

Proofs of the stated properties, experimental evaluation, and more illustra-
tions can be found in an extended version of this article [6].

1 Cubical Complexes and Collapse

In this section, we recall briefly some basic definitions on cubical complexes, see
also [1] for more details.

Let S be a set. If T is a subset of S, we write T ⊆ S. We denote by |S| the
number of elements of S.

Let Z be the set of integers. We consider the families of sets F1
0, F1

1, such that
F1

0 = {{a} | a ∈ Z}, F1
1 = {{a, a + 1} | a ∈ Z}. A subset f of Zn, n � 2, which is

the Cartesian product of exactly m elements of F1
1 and (n−m) elements of F1

0 is
called a face or an m-face in Zn, m is the dimension of f , we write dim(f) = m.

1 In the sense of Lipschitz continuity.
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x y

z t

(a) (b) (c) (d) (e) (f)

Fig. 1. (a) Four points in Z2: x = (0, 1); y = (1, 1); z = (0, 0); t = (1, 0). (b) A graphical
representation of the set of faces {f0, f1, f2}, where f0 = {z} = {0} × {0} (a 0-face),
f1 = {x, y} = {0, 1} × {1} (a 1-face), and f2 = {x, y, z, t} = {0, 1} × {0, 1} (a 2-face).
(c) A set of faces that is not a complex. (d) A set of faces that is a complex. (e,f) Two
steps of elementary collapse from (d).

We denote by Fn the set composed of all faces in Zn. An m-face is called a point
if m = 0, a (unit) edge if m = 1, a (unit) square if m = 2, a (unit) cube if m = 3.

Let f be a face in Fn. We set f̂ = {g ∈ Fn | g ⊆ f} and f̂∗ = f̂ \ {f}. Any
g ∈ f̂ is called a face of f .

A finite set X of faces in Fn is a complex (in Fn) if for each face f ∈ X , we
have f̂ ⊆ X . See in Fig. 1(d,e,f) some examples of complexes, and in Fig. 1(b,c)
examples of sets of faces that are not complexes.

The collapse operation is an elementary topology-preserving transformation
which has been introduced by J.H.C. Whitehead [14] and plays an important role
in combinatorial topology. It can be seen as a discrete analogue of a continuous
deformation (a strong deformation retract). Collapse is known to preserve the
homotopy type.

Let X be a complex in Fn and let (f, g) ∈ X2. If f is the only face of X that
strictly includes g, then g is said to be free for X and the pair (f, g) is said to
be a free pair for X . Notice that, if (f, g) is a free pair, then we have necessarily
dim(g) = dim(f) − 1.

Let X be a complex, and let (f, g) be a free pair for X . Let m = dim(f). The
complex X \ {f, g} is an elementary collapse of X , or an elementary m-collapse
of X (see Fig. 1: (e) is an elementary 1-collapse of (d), (f) is an elementary
2-collapse of (e)).

Let X , Y be two complexes. We say that X collapses onto Y , and we write
X ↘ Y , if Y = X or if there exists a collapse sequence from X to Y , i.e.,
a sequence of complexes 〈X0, ..., X	〉 such that X0 = X , X	 = Y , and Xi is
an elementary collapse of Xi−1, for each i ∈ {1, . . . , �}. Let J = 〈(fi, gi)〉	i=1
be the sequence of pairs of faces of X such that Xi = Xi−1 \ {fi, gi}, for any
i ∈ {1, . . . , �}. We also call the sequence J a collapse sequence (from X to Y ).

2 The Discrete λ-Medial Axis and the Projection Radius
Map

The original definition of the λ-medial axis (see [4]) holds and makes sense in
the (continuous) Euclidean n-dimensional space. The definition of a discrete
λ-medial axis (DLMA) in Zn is given in [3], together with an experimental
evaluation of its stability and rotation invariance.
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Fig. 2. Illustration of the λ-medial axis. Left: Points x, x′ and x′′ and their respective
closest boundary points. Top right: λ-medial axis with λ = ε, a very small positive real
number. Bottom right: λ-medial axis with λ = d(a′, b′) + ε.

Notice that the DLMA applies on a digital image (i.e., a subset of Zn), not on
a complex. However, the bijective correspondance between elements of Zn and
n-faces in Fn allows us to use the DLMA and related notions in the context of
cubical complexes.

Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, we denote by d(x, y) the Eu-
clidean distance between x and y, in other words, d(x, y) = (

∑n
k=1(yk − xk)2)

1
2 .

Let S ⊆ Rn, we set d(y, S) = minx∈S{d(y, x)}.
Let x ∈ Rn, r ∈ R+, we denote by Br(x) the ball of radius r centered on x,

defined by Br(x) = {y ∈ Rn | d(x, y) � r}.
Let S be a nonempty subset of Rn, and let x ∈ Rn. The projection of x on S,

denoted by ΠS(x), is the set of points y of S which are at minimal distance
from x ; more precisely,

ΠS(x) = {y ∈ S | ∀z ∈ S, d(y, x) � d(z, x)}.
Let X be an open bounded subset of Rn, and let λ ∈ R+. We denote by X

the complement set of X , i.e., X = Rn \ X . The λ-medial axis of X is the set
of points x in X such that the radius of the smallest ball that includes ΠX(x)
is not less than λ (see Fig. 2).

For each point x ∈ Zn, we define the direct neighborhood of x as N(x) = {y ∈
Zn | d(x, y) � 1}.

Transposing directly the definition of the λ-medial axis to the discrete grid
Zn would yield unsatisfactory results (see [3]), this is why we need the following
notion. Let S ⊆ Zn, and let x ∈ S. The extended projection of x on S (where
S = Zn \S), denoted by Πe

S
(x), is the union of the sets ΠS(y), for all y in N(x)

such that d(y, S) � d(x, S).
Let S be a finite subset of Zn, and let λ ∈ R+. We define the function PRS

which associates, to each point x of S, the value PRS(x) that is the radius of
the smallest ball enclosing all the points of the extended projection of x on S.
In other terms, PRS(x) = min{r ∈ R+ | ∃y ∈ Rn, Πe

S
(x) ⊆ Br(y)}, and we

call PRS(x) the projection radius of x (for S). The discrete λ-medial axis of S,
denoted by DLMA(S, λ), is the set of points x in S such that PRS(x) � λ.

Note that the function PRS can be computed once and stored as a grayscale
image, and that any DLMA of S is a level set of this function at a particular
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value λ. Notice also that DLMA has not, in general, the same topology as the
original shape. For more details, illustrations and performance analysis, see [3].

3 Guided Collapse and Flow Graph

In this section, we introduce a thinning scheme that produces a collapse sequence,
based on an arbitrary priority map (e.g., a distance map or a projection radius
map). The general idea of guided thinning is not new: it has been used by
several authors to produce skeletons based on the Euclidean distance [7,13,12],
and consists of using the priority function in order to specify which elements
must be considered at each step of the thinning. Here, we combine this general
idea with a parallel directional collapse algorithm introduced in [2], in order
to minimize the number of arbitrary decisions. When several elements share
the same priority, which may occur quite often, we remove in parallel all such
elements that satisfy a condition based on direction and dimension. All directions
and dimensions are successively explored.

First, we need to define the direction of a free face. Let X be a complex in
Fn, let (f, g) be a free pair for X . Since (f, g) is free, we know that dim(g) =
dim(f)−1, and it can be easily seen that f = g∪g′ where g′ is the translate of g
by one of the 2n vectors of Zn with all coordinates equal to 0 except one, which
is either +1 or −1. Let v denote this vector, and c its non-null coordinate. We
define Dir(f, g) as the index of c in v, it is the direction of the free pair (f, g).
Its orientation is defined as Orient(f, g) = 1 if c = +1, and as Orient(f, g) = 0
otherwise.

Now, we are ready to introduce algorithm GuidedCollapse (see Alg. 1). The
symbol + is used to denote the action of appending an element at the end of a
sequence.

We have the following property.

Proposition 1. Whatever the complex X and the map P from X to R, X
collapses onto GuidedCollapse(X, P ).

Algorithm GuidedCollapse may be implemented to run in O(N log N) time com-
plexity, where N denotes the cardinality of X , using a balanced binary tree data
structure (see [5]) for representing the set R.

To conclude this section, we introduce the notion of a flow graph associated
to a given collapse sequence.

A (finite directed) graph is a pair (V, E) where V is a finite set and E is a
subset of V ×V . An element of V is called a vertex , an element of E is called an
arc. A path in (V, E) is a sequence 〈vi〉	i=0 of vertices such that � � 0 and for all
i ∈ {1, . . . , �}, we have (vi−1, vi) ∈ E. The number � is the length of the path. If
� = 0 the path is said trivial . If v0 = v	 the path is a cycle. The graph is acyclic
if it does not contain any non-trivial cycle.

Definition 2. Let X be a complex and J = 〈(fi, gi)〉	i=1 be a collapse sequence
from X. For any k ∈ {1, . . . , �}, � � 0, we set Xk = X \ {fi, gi}k

i=1. We set
E1 = {(gi, fi)}	

i=1 and E2 =
⋃	

k=1{(fk, g) | g ∈ f̂k
∗
∩ Xk}.
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Algorithm 1. GuidedCollapse(X, P )
Data: A cubical complex X in Fn, and a map P from X to R (priority map)
Result: A collapse sequence J
J = 〈〉; R = {(p, f, g) | (f, g) is free for X, p = max(P (f), P (g))};1

while R = ∅ do2

m = min{p | (p, . , .) ∈ R}; Q = {(m, . , .) ∈ R}; R = R \ Q;3

L = {(f, g) | (. , f, g) ∈ Q};4

for t = 1 → n /* direction */ do5

for s = 0 → 1 /* orientation */ do6

for d = n → 1 /* decreasing dimension */ do7

T = {(f, g) ∈ L | (f, g) is free for X,8

Dir(f, g) = t, Orient(f, g) = s, dim(f) = d};
X = X \ T ;9

foreach (f, g) ∈ T do J = J + (f, g);10

foreach (i, j) ∈ X2, j ∈ f̂∗ do11

if (i, j) is free for X then12

p = max(P (i), P (j));13

if p � m then L = L ∪ {(i, j)};14

R = R ∪ {(p, i, j)};15

return J ;16

The flow graph associated to J is the (directed) graph whose vertex set is X and
whose edge set is E = E1 ∪ E2.

This definition is illustrated in Fig. 3. It can be easily seen that, whatever the
complex X and the collapse sequence J from X , the flow graph associated to J
is acyclic.

4 Upstream of a Vertex and Its Valuation

From now, we consider a collapse sequence J = 〈(fi, gi)〉	i=1 from a complex X ,
and its associated flow graph (X, E = E1 ∪ E2). Using the notations of Def. 2,
any pair (fk, gk) of J is free for Xk−1, and we have X = X0 ↘ . . . ↘ X	. We
define F = {fi}	

i=1, G = {gi}	
i=1 and XJ = F ∪ G.

Let x ∈ X , we denote by Γ (x) the set of successors of x in the acyclic graph
(X, E), that is, Γ (x) = {y ∈ X | (x, y) ∈ E}, and we denote by Γ−1(x) the set
of predecessors of x in this graph, that is, Γ−1(x) = {y ∈ X | (y, x) ∈ E}. We
denote by d+(x) the outer degree of the vertex x in the graph (X, E), that is,
the number of successors of x.

We call upstream of x the set of all vertices that are ancestors of x in the flow
graph, that is, the set U(x) = {y ∈ X | there is a path from y to x in (X, E)}.

In a collapse sequence, certain pairs can be swapped or eliminated, yielding
another collapse sequence. Intuitively, the elements of the upstream of a face x
of X are those that must indeed be collapsed before x can itself collapse.
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Fig. 3. Left: A collapse sequence J . Each pair (fi, gi) of J is depicted by an arrow
from gi to fi. The numbers indicate the indices of the pairs in J . Right: The flow graph
associated to J .

Let L be a map from X to R ∪ {+∞}. Roughly speaking, the map L̃ defined
below cumulates, for each vertex x, the values of L on all vertices of the upstream
of x.

Definition 3. Let L be a map from X to R∪{+∞}. We define the map L̃ such
that, for any x ∈ X:

L̃(x) = L(x) +
∑

y∈Γ−1(x)

L̃(y)/d+(y)

Notice that this definition is recursive, and that it makes sense since the graph
(X, E) is acyclic. Intuitively, the division by d+(y) is motivated by the fact that
a value must not be taken in account several times in the sum. The values L̃(x)
can be computed by a quite simple recursive program (given in [6]) that has a
linear time complexity.

Two particularly simple functions L yield meaningful indicators associated to
the elements of X . Let us first consider the function L1 such that L1(x) = 1 if
dim(x) = n, and L1(x) = 0 otherwise. The map L̃1 associates, to each element x
of X , the “area of U(x)” (or its volume in 3D). Now, let us consider L2 = 1B(X),
where B(X) is the set of all faces that are free for X . We call B(X) the border of
X . In other words, L2(x) = 1 if x ∈ B(X), and L2(x) = 0 otherwise. The map
L̃2 associates, to each element x of X , a measure (length in 2D, surface area in
3D) of U(x) ∩ B(X).

Fig. 4(a1, a2) show the maps L1 and L2 respectively, for the same object Y .
The maps L̃1 and L̃2 are displayed in Fig. 4(b1, b2).

5 Topological Maps

In this section, we introduce the notion of topological map. A topological map
based on a collapse sequence J is a map on the elements of X that satisfies
certain conditions relative to J and its associated flow graph. Then, we prove an
important property of such maps: if M is a topological map, then any level set
of M is homotopy-equivalent to X . In Sec. 6, we will show how to build such a
map, based on any given function on X .
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0.1 0.3 0.6 0.8 1.3 0.3 0.1

0.0 1.0 0.1 1.1 1.7 1.0 0.0

0.1 0.3 0.7 1.0 3.3 3.6 4.3 0.3 0.1

0.0 1.0 0.1 1.1 4.7 1.0 0.0

0.1 0.3 0.7 1.0 6.3 6.6 6.9

0.0 1.0 0.1 1.1 7.1

0.1 0.3 0.6 0.8 8.0

1.1 1.1 1.2 1.2 1.7 1.1 1.1

1.0 1.0 1.1 1.1 1.7 1.0 1.0

1.1 1.1 1.2 1.2 3.6 3.6 4.7 1.1 1.1

1.0 1.0 1.1 1.1 4.7 1.0 1.0

1.1 1.1 1.2 1.2 6.6 6.6 7.1

1.0 1.0 1.1 1.1 7.1

1.1 1.1 1.2 1.2 8.0

(a1) (b1) (c1)

0.0 1.0 0.0 1.0 0.0 1.0 0.0

1.0 0.0 0.0 0.0 0.0 0.0 1.0

0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

1.0 0.0 0.0 0.0 0.0 0.0 1.0

0.0 1.0 0.0 0.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0 1.0

0.0 1.0 0.0 1.0 0.0

0.1 1.3 1.4 2.5 3.9 1.3 0.1

1.0 1.0 0.1 0.1 4.1 1.0 1.0

0.1 1.3 1.6 1.8 6.2 6.3 7.9 1.3 0.1

1.0 1.0 0.1 0.1 8.1 1.0 1.0

0.1 1.3 1.6 1.8 10.2 10.3 10.5

1.0 1.0 0.1 0.1 11.5

0.1 1.3 1.4 2.5 14.0

1.3 1.3 2.5 2.5 4.1 1.3 1.3

1.0 1.0 1.1 1.1 4.1 1.0 1.0

1.3 1.3 1.8 1.8 6.3 6.3 8.1 1.3 1.3

1.0 1.0 1.1 1.1 8.1 1.0 1.0

1.3 1.3 1.8 1.8 10.3 10.3 11.5

1.0 1.0 1.1 1.1 11.5

1.3 1.3 2.5 2.5 14.0

(a2) (b2) (c2)

Fig. 4. (a1, a2) Maps L1 and L2 on the same complex Y . (b1, b2) Maps L̃1 and L̃2. For
the sake of readability, only one digit after the decimal point is displayed. (c1, c2) α-
Topological maps induced by L̃1 and L̃2, respectively, with α = 0.1 (see Sec. 5 and
Sec. 6).

Definition 4. Let M be a map from X to R ∪ {+∞}. We say that M is a
topological map on X (based on J) if:

i) for all (g, f) in E1, M(g) = M(f); and
ii) for all (f, g) in E2, M(g) > M(f); and
iii) for all g in X \ XJ , M(g) = +∞.

Let α be a positive real number. If we replace ii) with the stronger requirement:
ii’) for all (f, g) in E2, M(g) � M(f) + α,
then we say that M is an α-topological map on X (based on J).

The notion of topological map is inspired from the one of discrete Morse function
(see [9]). A topological map can be seen (apart from the infinite values) as a
particular case of discrete Morse function, and Th. 5 could also be proved using
results of [9].

Let λ ∈ R∪{+∞}, we define Mλ = {x ∈ X | M(x) � λ}, the (upper) level set
of M at level λ. The main property of a topological map M is that any level set
of M is homotopy-equivalent to X , as implied by the following theorem (Th. 5,
see Fig. 5 for an illustration).

Theorem 5. Let M be a topological map on X. Whatever the number λ ∈
R ∪ {+∞}, the complex X collapses onto Mλ.

The next theorem (Th. 6) expresses the stability of our skeletonization scheme,
with respect to the variations of the filtering parameter.
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223388 1 1

45566
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7
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(a) (b) (c) (d)

Fig. 5. (a) A 1-complex X, a flow graph on X (black arrows for arcs of E1, red arrows
for arcs of E2), and a (1-)topological map M on X (numbers). (b,c,d) Level sets of M
at levels 0, 3 and 7, respectively.
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1010101010
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(a) (b)

Fig. 6. (a) A map L on the complex X of Fig. 5. (b) The 1-topological map induced
by L.

Let S, T be two subsets of Rn. We set H(S|T ) = maxs∈S{mint∈T {d(s, t)}},
and dH(S, T ) = max{H(S|T ), H(T |S)} is the Hausdorff distance between S
and T . Let X be a complex in Fn, we denote by S(X) the union of all faces
of X , called the support of X . For comparing two complexes X and Y , we con-
sider the Hausdorff distance between their supports S(X) and S(Y ).

Theorem 6. Let α ∈ R, λ ∈ R ∪ {+∞}, α > 0, λ � 0. Let k ∈ N. Let M be an
α-topological map on X. Then, dH(S(Mλ),S(Mλ+kα)) � k.

6 Topological Map Induced by an Arbitrary Map

In this section, we show that given any map L on X , we can define and compute
a topological map that is “close to” L, more precisely it is the lowest map above
L that is a topological map.

Definition 7. Let L be any map from X to R ∪ {+∞}, and let α be a positive
real number. We consider a map M such that:

a) M is an α-topological map; and
b) for all f in XJ , M(f) � L(f); and
c) M is minimal for conditions a) and b), that is, any map M ′ verifying both a)
and b) is such that M ′ � M .

As stated by the following property, M is uniquely defined. We say that the map
M is the α-topological map induced by L.

Proposition 8. Let M and M ′ be two maps that verify conditions a), b) and
c) of Def. 7. Then, we have M = M ′.

This notion is illustrated in Fig. 6 and in Fig. 4(c1, c2).
Next, we give an algorithm (Alg. 2) that computes the α-topological map

induced by any given map on X . Before this, let us recall briefly the notions of
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Algorithm 2. AlphaTM(X, E1, E2, L, α)
Data: A complex X, the arc sets E1, E2 of a flow graph on X, a map L from X

to R, a real number α > 0
Result: A topological map M
foreach x ∈ X do1

if x does not appear in E1 ∪ E2 then M(x) = +∞;
else M(x) = L(x);

Let {Xr}r=k
r=0 be the result of the topological sort of the acyclic graph2

(X, E1 ∪ E2);
for r = 0 → k do3

foreach x ∈ Xr do4

foreach y such that (y, x) ∈ E1 do5
M(y) = M(x) = max{M(x), M(y)};

foreach y such that (y, x) ∈ E2 do6
M(x) = max{M(x), M(y) + α};

return M ;7

Algorithm 3. TopoMap(X, L, α)
Data: A complex X, a map L on X, a real number α
Result: A topological map M
Let P be the projection radius map of X (see Sec. 2);1

Let J = GuidedCollapse(X, P ) (see Sec. 3);2

Let (X, E = E1 ∪ E2) be the flow graph associated to J ;3

Let M = AlphaTM(X, E1, E2, L̃, α) (see Sec. 5);4

return M ;5

rank and topological sort (an introduction to topological sort, including defini-
tion, properties and algorithm, can be found, e.g., in [5]). Let G = (V, E) be
an acyclic graph and let x ∈ V , the rank of x in G is the length of the longest
path in G that ends in x. The topological sort of G is an operation that results
in a partition {V r}r=k

r=0 of V such that each V r is the subset of V containing all
vertices of rank r.

Proposition 9. Let L be a map from X to R, and let α be real number, α > 0.
The result of AlphaTM(X, E1, E2, L, α) is the α-topological map induced by L.

7 Computing Hierarchic Skeletons

Let us now summarize our method to produce families of filtered homotopic
skeletons (see algorithm 3). It is assumed here that X is a pure n-complex in
Fn, that is, a complex in which each face is included in an n-face.

First, we compute the projection radius map (Sec. 2) on the n-faces of X , and
extend it to the other elements of X (if y ∈ X is not an n-face, then we set P (y)
to the max of P (xi) where the xi’s are all n-faces that include y).
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Fig. 7. Left: a rendering of the result of the TopoMap operator, using the map L2.
Right: a filtered curvilinear skeleton of a 3D shape.

(a) (b) (c) (d)

Fig. 8. (a,b,c) Three level sets of TopoMap(X, L2), at values 25, 50 and 130, respec-
tively. (d) DLMA of X, with λ = 45.

Using algorithm 1 (Sec. 3) we build a collapse sequence and a flow graph on X .
By construction, the upstream of any vertex x of this flow graph is composed
by elements that, in any family of filtered skeletons, should disappear before x
does.

Integrating information given by map L allows us to associate, to each element
x of X , a value L̃(x) that represents a measure of the upstream of x. The lower
this value, the sooner the point x may disappear.

Then, thanks to algorithm 2 (Sec. 5), we produce a topological map M based
on this measure. Due to Th. 5, we know that any level set of M is homotopy-
equivalent to X . Therefore, filtered (i.e., pruned) skeletons are obtained by
thresholding the map M ; lowest levels of threshold correspond to highest levels
of detail. Some results are shown in Fig. 7 and Fig. 8.

8 Conclusion

The method that we propose is guaranteed to preserve topology and is stable
with respect to variations of the filtering parameter, as stated by Th. 5 and
Th. 6 respectively. It is designed to work in 3D as well as in 2D. Furthermore,
our method is highly flexible: many variants can be imagined, in particular by
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choosing alternative valuations of the upstream. Future work include comparison
with other methods for computing discrete filtered Euclidean skeletons.
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Abstract. Well-composed 3D digital images, which are 3D binary dig-
ital images whose boundary surface is made up by 2D manifolds, enjoy
important topological and geometric properties that turn out to be ad-
vantageous for some applications. In this paper, we present a method
to transform the cubical complex associated to a 3D binary digital im-
age (which is not generally a well-composed image) into a cell complex
that is homotopy equivalent to the first one and whose boundary sur-
face is composed by 2D manifolds. This way, the new representation of
the digital image can benefit from the application of algorithms that are
developed over surfaces embedded in R3.

Keywords: Well-composed digital images, cubical complex, cell com-
plex, homotopy equivalence.

1 Introduction

We are mainly interested in studying topological features of 3D digital images.
More concretely, our ultimate purpose is that of extracting cohomological in-
formation of a 3D model that could be used in characterization or recognition
tasks (see [5,6,4,7] as related works). For this aim, it would be useful to com-
pute first geometrically relevant representative cycles of homology generators of
dimension 1 in the surface of the model, since this could simplify cohomological
computations. Many applications such as topology repair, surface parameteriza-
tion and feature recognition benefit from computing loops on surfaces that wrap
around their ‘handles’ and ‘tunnels’ (defined by Dey et al. in [2]). In the paper
[3], there is an algorithm to compute topologically correct loops that are also
geometrically relevant in that sense. A refinement of the algorithm is given in [1].
However, all the computations are carried out over a connected closed surface in
R3. Since we are interested in applying these results to 3D binary digital images,
we focus in the so-called well-composed images. A 3D binary digital image is
said to be well-composed if and only if the square faces shared by foreground
and background voxels of the image form a 2D manifold. Well-composed images
enjoy important topological and geometric properties: there is only one type of
connected component in any well-composed image, and hence, several algorithms
used in computer vision, computer graphics and image processing are simpler;
thinning algorithms can be simplified and naturally made parallel if the input

I. Debled-Rennesson et al. (Eds.): DGCI 2011, LNCS 6607, pp. 153–162, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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image is well-composed [10,13]; some algorithms for computing surface curvature
or extracting adaptive triangulated surfaces [8], assume that the input image is
well-composed. Since 2D and 3D images are often not well-composed images,
there are several methods (repairing algorithms) for turning 3D binary digital
images that are not well-composed into well-composed ones (see [12,15]), but
these methods do not guarantee the topological equivalence between the origi-
nal object and its corresponding well-composed image. In fact, the purpose can
even be to simplify as much as possible the topology in the sense of removing
little topological artifacts from the image. However we are concerned with the
fact of preserving the topology of the input image having in mind cases in which
subtle details can be important.

2 3D Digital Images and Cubical Complexes

Consider Z3 as the set of points with integer coordinates in 3D space R3. A 3D
binary digital image I = (Z3, 26, 6, B) (or I = (Z3, B) for short), where B ⊂ Z3

is the foreground and Bc = Z3\B the background, is represented by the set of
unit cubes (voxels) centered at the points of B together with all their faces.
This identification of voxels with 3D cubes in R3 leads, in a natural way, to the
combinatorial structure of cubical complexes, whose geometric building blocks
(cells) are points, edges, squares and cubes (see [9]). More concretely, given a
voxel centered at a point of Z3 of coordinates (i, j, k), the cells associated to this
voxel considered as a 3D cube are denoted as follows (see Fig.1):

– The eight vertices (0-cells): (i ± 1
2 , j ± 1

2 , k ± 1
2 )

– The twelve edges (1-cells): (i, j ± 1
2 , k ± 1

2 ), (i± 1
2 , j, k ± 1

2 ), (i± 1
2 , j ± 1

2 , k).
– The six square faces (2-cells): (i, j, k ± 1

2 ), (i, j ± 1
2 , k), (i ± 1

2 , j, k).
– The cube (3-cell): (i, j, k).

By considering the (26, 6)-relationship we can guarantee that the topology of
the cubical complex associated to the image reflects the topology of the object.

A cubical complex is, in fact, a special case of cell complex, which is a more
general topological structure by which a space is decomposed into basic elements
(cells) of different dimensions that are glued together by their boundaries.

Given a cell complex K, a proper face of σ ∈ K is a face of σ whose dimension
is strictly less than the one of σ. A facet of σ is a proper face of σ of maximal
dimension. A maximal cell of K is a cell of K which is not a proper face of any
other cell of K. The dimension of K is the maximal dimension of the maximal
cell of K. A facet that is incident only to one cell is called a boundary facet. The
union of all the boundary facets is the boundary of the cell complex which is
denoted by ∂K.

The cubical complex Q(I) representing a 3D binary digital image I satisfies
that the maximal cells are cubes and the elements of the boundary of Q(I),
∂Q(I), are all the square faces of Q(I) which are shared by a voxel of B and a
voxel of Bc together with all their faces.
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Fig. 1. Notation of the vertices {pi}, edges {ai} and square faces {ci} associated to
the voxel (i, j, k)

Given a cell complex K, define Kq as the set of q-cells of K. Define the
morphism kq : Kq × Kq−1 → Z2 given by kq(c, c′) := 1 if c′ is a facet of c and
kq(c, c′) := 0 in other case (we do not take into account orientation). Then, we
can codify a cell complex as a pair (K, k) where K =

⋃
q Kq is the set of cells

of K and k = ⊕qkq defines the relation between each cell and its facets. The
morphism k is called the incidence number (see [14]).

For example, since any cubical complex Q is a particular case of cell complex,
it can be codified as a pair (Q, kQ): Let Q0 be the set of vertices, Q1 the set
of edges, Q2 the set of square faces and Q3 the set of cubes of Q. Define the
morphism kQ

q : Qq × Qq−1 → Z2 given by kQ
q (c, c′) := 1 if c′ is a facet of c and

kQ
q (c, c′) := 0 in other case. Taking into account the notation given for the cells

of Q as points in R3, define kQ
q (c, c′) := 1 if the Euclidean distance between c

and c′ is 1
2 and kQ

q (c, c′) := 0 in other case.

3 Well-Composed Cell Complexes

A 3D binary digital image I = (Z3, B) is well-composed [10] if the boundary
of the cubical complex associated, ∂Q(I), is a 2D manifold, i.e. if each point in
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∂Q(I) has a neighborhood homeomorphic to R2. This definition implies a simple
correspondence between a 3D binary digital image and the boundary surface of
the associated cubical complex. Thus, one can use well-known properties of con-
tinuous boundary surfaces to determine and analyze properties of these digital
images.

Since the boundary of the cubical complex associated to I = (Z3, B) coincides
with the one of Ic = (Z3, Bc), a 3D binary digital image I is well-composed iff
Ic is also well-composed.

3D binary digital images are often not well-composed images. Nevertheless,
there are several methods for turning 3D binary digital images that are not
well-composed into well-composed ones (see [12,15]). The problem is that, in
general, these techniques do not guarantee the topological equivalence between
the original object and its corresponding well-composed image, since they can
modify the original image by moving some voxels from Bc to B.

In this section, we are interested in obtaining a homotopy-equivalent cell com-
plex to the cubical complex associated to a 3D binary digital image whose geo-
metric realization could enjoy the advantages of well-composed images. Specifi-
cally, we present a method to transform the cubical complex Q associated to a
3D binary digital image which is not generally a well-composed image into a cell
complex (K, k). This cell complex (K, k) satisfies that it is homotopy equivalent
to Q and its boundary surface, ∂K, is composed by 2D manifolds.

The following proposition shows the characterization of well-composed images
in terms of simple local conditions on cubes in the cubical complex associated,
as one can observe in Fig. 2.

Proposition 1. [11] A 3D binary digital image I = (Z3, B) is well-composed
iff the configurations of cubes C1, C2 and C3 (modulo reflections and rotations)
do not occur in Q(I):

C1 Four cubes share an edge (a, b, c) and exactly two of them which do not share
a face are contained in Q(I) and the other two are not contained in Q(I).
That is, if W denotes the set of the four cubes sharing the edge (a, b, c), there
are exactly two cubes of W , denoted by w1 and w2, that are cubes of Q(I)
and whose squared Euclidean distance is 2.

C2 Eight cubes share a vertex (a, b, c) and exactly two of them which are corner-
adjacent are contained in Q(I) while the other six are not. That is, if S
denotes the set of the eight cubes sharing the vertex (a, b, c), there are exactly
two cubes of S, denoted by s1 and s2, that are cubes of Q(I) and whose
squared Euclidean distance is 3.

C3 Eight cubes share a corner point and exactly two of them which are corner-
adjacent are contained in Q(Ic) while the other six are not. That is, if T
denotes the set of the eight cubes sharing the vertex (a, b, c). Then, there are
exactly two cubes of T , denoted by t1 and t2, that are not cubes of Q(I) and
whose squared Euclidean distance is 3.

Given a cubical complex Q associated to a 3D binary digital image, we say
that an edge (a, b, c) of Q is a critical edge if (a, b, c) is an edge shared by four
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Fig. 2. Configurations C1, C2 and C3 (modulo reflections and rotations). These con-
figurations cannot occur in Q(I).

cubes that constitute the C1-configuration. We say that a vertex (a, b, c) of Q
is a critical vertex if it is either a vertex shared by eight cubes that consti-
tute the C2-configuration or a vertex shared by eight cubes that constitute the
C3-configuration or a vertex shared by eight cubes such that one or several criti-
cal edges are incident to it. Summing up, one can observe in Fig. 3 all the critical
configurations that are possible by the combination of the mentioned critical el-
ements within a set of eight cubes sharing a vertex. Notice that configurations
C(2, 0), C(2, 1), C(3, 0) and C(3, 1) are complementary to configurations C(6, 2),
C(6, 1), C(5, 1) and C(5, 2), respectively; as well as configurations C(4, 1), C(4, 2)
and C(4, 3) are self-complementary.

Now, given a cubical complex Q associated to a 3D binary digital image, we
present a method to generate a new cell complex by some basic operations on
the input cubical complex to repair all the critical edges and critical vertices
that appear in Q. The method consists of three steps: (1) all the critical edges
and critical vertices that appear in Q are labeled and put into either the set E
of critical edges or the set V of critical vertices; (2) apply Algorithm 1 to the
cubical complex Q to repair all the edges of E and (3) apply Algorithm 2 to the
cell complex output by the previous algorithm to repair all the vertices of V .

Algorithm 1. Repair the critical edges in E.

Input: The cubical complex (Q, kQ) associated to a 3D binary digital image.

Initialize K ′
i :={(a, b, c, 0):such that (a, b, c) ∈ Qi} and k′

i((a, b, c, 0), (a′, b′, c′, 0))
:= kQ

i ((a, b, c), (a′, b′, c′)), for any (a, b, c), (a′, b′, c′) ∈ Qi and for 0 ≤ i ≤ 3.

– For each critical edge (a, b, c) ∈ E, do:
• Duplicate the edge: K ′

1 := K ′
1 \ {(a, b, c, 0)} ∪ {(a, b, c, 1), (a, b, c, 2)}.

• Add a new 2-cell: K ′
2 := K ′

2 ∪ {(a, b, c, 1, 2)}.
• Denote by w11 and w12 the two square faces of w1 sharing the edge

(a, b, c). Denote by w21 the one of the square faces of w2 sharing the
edge (a, b, c) such that the squared Euclidean distance between w11 and
w21 is 1

2 . Denote by w22 the other square face of w2 sharing the edge
(a, b, c) (see Fig. 4).
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Fig. 3. All the critical configurations within a set of eight cubes sharing one vertex
(modulo reflections and rotations)

• Define k′
1((a, b, c, j), v) := k′

1((a, b, c, 0), v) for j = 1, 2 and for any vertex
v ∈ K ′

0.
• Define k′

2(f, (a, b, c, j)) := 1 if f = wij , for i = 1, 2, or f = (a, b, c, 1, 2),
for j = 1, 2.

• Define k′
2((a, b, c, 1, 2), e) := 0 if e �= (a, b, c, j) for j = 1, 2, that is,

the only facets of the new 2-cell (a, b, c, 1, 2) are the edges (a, b, c, 1) and
(a, b, c, 2).

• Define k′
3(w, (a, b, c, 1, 2)) := 1 if w = wi for i = 1, 2 and 0 in other case.

Output: The cell complex (K ′, k′).

Algorithm 2. Repair the critical vertices in V .

Input: The cell complex (K ′, k′) obtained after applying Algorithm 1.

Initialize Ki := K ′
i and ki := k′

i for 0 ≤ i ≤ 3.

– For each critical vertex (a, b, c) ∈ V with the configuration C(2, 1), do:
• Duplicate the vertex: K0 := K0 \ {(a, b, c, 0)} ∪ {(a, b, c, 1), (a, b, c, 2)}.
• Add two new edges: K1 := K1 ∪ {(a, b, c, 1, 2), (a, b, c, 2, 1))}.
• Add a new 2-cell: K2 := K2 ∪ {(a, b, c, 1, 2, 1)}.
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Fig. 4. Notations for the cells around a critical edge (a, b, c)

• Take two square faces of s1 sharing the vertex (a, b, c) and denote them
by s11 and s12. Take the square face of s2 sharing the vertex (a, b, c)
whose squared Euclidean distance to s11 is 2; denote it by s22. Denote by
s21 the other square face of s2 sharing the vertex (a, b, c) whose squared
Euclidean distance to s12 is 2 (see Fig. 5).

• Define k1(e, (a, b, c, 1)) := 1 if either e = (a, b, c, 1, 2) or e = (a, b, c, 2, 1),
or e is a face edge of s1 shared by s11 and s12 or e is any of the other
two edges of s2 such that k′

1(e, (a, b, c, 0)) = 1 and that are not shared by
s21 and s22 at the same time, and 0 otherwise.

• Define k1(e, (a, b, c, 2)) := 1 if either e = (a, b, c, 1, 2) or e = (a, b, c, 2, 1),
or e is a face edge of s2 shared by s21 and s22 or e is any of the other
two edges of s1 such that k′

1(e, (a, b, c, 0)) = 1 and that are not shared by
s11 and s12 at the same time, and 0 otherwise.

• Define k2(f, (a, b, c, 1, 2)) :=1 if f = s12 or f = s22 or f = (a, b, c, 1, 2, 1),
and 0 otherwise.

• Define k2(f, (a, b, c, 2, 1)) :=1 if f = s21 or f = s11 or f = (a, b, c, 1, 2, 1),
and 0 otherwise.

• Define k3(w, (a, b, c, 1, 2, 1)) := 1 if w = si for i = 1, 2 and 0 otherwise.
– For each critical vertex (a, b, c) ∈ V with any configuration of Fig. 3 apart

from C(2, 1), do:
• Label the background connected components of the configuration of eight

3-cells around the critical vertex with labels 1, 2, 3 and 4, respectively
(notice that the number of connected components may vary from 2 to 4).
Let L = {1, 2, . . . , l} be the set of labels assigned.

• Label all the edges incident to (a, b, c) that belong to the boundary of
K, with the corresponding label of the background component that shares
such an edge.

• Substitute the critical vertex by a set of vertices, one for each label corre-
sponding to a background connected component: K0 := K0\{(a, b, c, 0)}∪
{(a, b, c, 1), . . . , (a, b, c, l)}.
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Fig. 5. Notations for the cells around a critical vertex (a, b, c) with the configuration
C(2, 1)

• Add new edges: K1 := K1 ∪ {(a, b, c, i, j), i, j ∈ L, i < j}.
• If l ≥ 3, add new 2-cells K2 := K2 ∪ {(a, b, c, i, j, k), i, j, k ∈ L, i < j <

k}.
• If l = 4, add a new 3-cell K3 := K3 ∪ {(a, b, c, 1, 2, 3, 4)}.
• Define k1(e, (a, b, c, i)) := 1 if either k′

1(e, (a, b, c, 0)) = 1 and e is an edge
with label i or e = (a, b, c, i, j), for any j or e = (a, b, c, j, i), for any j,
and 0 otherwise.

• Define k2(f, (a, b, c, i, j)) := 1 if either f is a 2-cell with two face edges
labeled as i and j or f = (a, b, c, i, j, k) or f = (a, b, c, i, k, j) or f =
(a, b, c, k, i, j), and 0 otherwise.

• Define k3(w, (a, b, c, i, j, k)) := 1 if either w is a 3-cell with three face
edges labeled as i, j and k, or w = (a, b, c, 1, 2, 3, 4), and 0 otherwise.

Output: The cell complex (K, k).

Proposition 2. The cell complex (K, k) and the cubical complex Q are homo-
topy equivalent. Moreover, the boundary surface ∂K, of the cell complex (K, k),
is composed by 2D manifolds, that is, each point of ∂K has a neighborhood home-
omorphic to R2.

Example 1. Consider the 3D binary digital image I =(Z3, B) with B = {(1, 1, 0),
(0, 0, 1), (0, 2, 1), (0, 1, 2)}. Let Q the cubical complex associated to the image.
This cubical complex has 4 voxeles (3-cells), 24 square faces (2-cells), 45 edges
(1-cells) and 26 vertices (0-cells). The conflictive cells of K are:

– The edges a1 = (0, 1
2 , 3

2 ) and a2 = (0, 3
2 , 3

2 );
– The vertices v1 = (1

2 , 1
2 , 1

2 ) and v2 = (1
2 , 3

2 , 1
2 ).

Applying the previous method to this cubical complex, the obtained well-
composed cell complex K have four 3-cells, twenty eight 2-cells (21 square faces,
2 pentagons and 1 hexagon), 51 edges and 28 vertices (see Fig. 7).
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Fig. 6. Notations for the cells around a critical vertex (a, b, c), with the configurations
C(6, 1) (first row) and C(4, 1) (second one)

Fig. 7. Example of a cubical complex and well-composed complex

4 Conclusion and Future Work

We have presented a method for obtaining a well-composed cell complex from
the cubical complex associated to a 3D binary digital image. We are convinced
that this new representation will satisfy very nice properties: first, the new cell
complex will allow to compute the homology of the image by computing the
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homology of the boundary surface of the cell complex; we will be able to geo-
metrically control the representative cycles of homology generators in the sense
that, for example, a 1-cycle will never belong to two different cavities (in fact, this
could simplify the computation of the cup product in cohomology); moreover,
algorithms developed for surfaces embedded in R3 ([1,2,3]) could be applied to
the well-composed cell complex. Another future plan is to improve the notation
used here to define the incidence index k for the new cells.
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Abstract. In this article, a tractable modus operandi is proposed to model a (bi-
nary) digital image (i.e., an image defined on Zn and equipped with a standard
pair of adjacencies) as an image defined in the space of cubical complexes (Fn).
In particular, it is shown that all the standard pairs of adjacencies in Zn can then
be correctly modelled in Fn. Moreover, it is established that the digital funda-
mental group of a digital image in Zn is isomorphic to the fundamental group
of its corresponding image in Fn, thus proving the topological correctness of the
proposed approach. From these results, it becomes possible to establish links be-
tween topology-oriented methods developed either in classical digital spaces (Zn)
or cubical complexes (Fn).

Keywords: digital imaging, digital topology, cubical complexes, homotopy,
fundamental group.

1 Introduction

The rise of digital imaging, and the associated need of efficient image analysis tools,
have provided a strong motivation to research related to the definition of sound digital
topological models. Indeed, in order to process digital images, it is often fundamental
to be able to preserve, get back or integrate topological information.

Basically, an n-dimensional (digital) binary image can be considered as a subset of
Z

n. However, the actual structures visualised in such images are generally continuous
ones, corresponding to objects of the real world, i.e., objects of Rn, and not of Zn.
In order to deal with this continuous/discrete issue, research efforts have essentially
focused on specific and pragmatic questions related to topology, namely the definition
of a notion of adjacency relation, and the induced notions of connectivity and arcs.
These notions lead, in particular, to high-level concepts of topology, such as homotopy,
with natural applications to “homotopy type-preserving” image processing.

The first solution proposed to model the topology of a digital image in Zn was to
consider that two points (also called xels) are adjacent if they are neighbours in the n-D
cubic grid naturally induced by Zn. In this framework, partial solutions have been found
to model as well as possible the above topological properties, for instance by defining
dual adjacencies for the object and the background (composed of the xels of value
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1 and 0, respectively), enabling to define, from these adjacency relations, the notions
of connectivity [19] and of digital fundamental group [10], which permits to compare
objects from a topological point of view. This approach is known as digital topology
[13].

Other discrete spaces, enabling to model the continuous topological properties of
digital images, have also been proposed. These alternative approaches of topology mod-
elling are connected ordered topological spaces [9], abstract cell complexes [14] and
orders [4]. Broadly speaking, they propose to put some “topological glue” between the
xels of digital images to define the topological links with their continuous analogues.

By comparison to these (more sophisticated) approaches, digital topology may ap-
pear as the less satisfactory solution to deal with topological properties of binary images.
Nevertheless, it remains the most commonly used framework for developing image pro-
cessing tools dealing with topological issues. Indeed, since digital topology is directly
defined in Zn, methods relying on it will also provide final results in Zn, which is a
desired property in most applications. Moreover, a large literature has been devoted to
homotopy-type preservation in digital topology, especially thanks to the concept of sim-
ple point [6]. In this context, very few methods have been based on alternative models
while digital topology has led to the design of quite numerous ones (see, e.g., [1,7]).

Because of this intensive use of digital topology, it may be important to guarantee
that there exists an actual compatibility between digital topology and the other proposed
topological approaches (and more generally with the “continuous” topology). This re-
quires to be able to embed a binary image defined in Zn into a richer space (while
respecting the chosen adjacencies in Zn) while preserving certain topological character-
istics of objects (see e.g. [11,16,2,15,8]).

The “richer space” that is used here is Fn, namely the space of cubical complexes,
which is together a connected ordered topological space, a cellular space and an order
(i.e., a poset). Though it is commonly admitted that there exists a strong link between
digital topology and cubical complexes [12], since complexes are closed objects, the
images handled in Fn correspond generally to images defined in Zn with a (3n − 1, 2n)-
adjacency pair. In [5], a method has been proposed to retrieve and improve digital topol-
ogy in the framework of posets, but the case of the (6, 18)- and (18, 6)-adjacency pairs
was not considered. In [3], a way is described to embed digital pictures in a space of
complexes according to the kind of connectivity chosen in Zn. However, there is no use
of an intrinsic topology on complexes which are just a step between Zn and Rn, leading
to define specific notions of connectedness and digital homotopy in Fn. Thereby, in this
paper, we propose a complete framework to correctly embed a binary digital image in
the topological space Fn, according to the choice of adjacencies which has been made
in Zn.

The article is organised as follows. Sec. 2 recalls background notions. Sec. 3 de-
scribes the mapping enabling to associate a binary image defined on Zn to an equivalent
image defined in Fn. Sec. 4 presents the main contribution of this work. It states that the
connected components and the digital fundamental group of the digital images in Zn

are preserved in Fn when using the mapping described in Sec. 3. Sec. 5 concludes this
article. By lack of space, no proofs are given in this article, they can be found in [17].
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2 Background Notions

This section provides the minimal set of background notions required to make this
article globally self-contained, and then more comprehensible for the reader.

2.1 Posets

A partially ordered set (or poset) is a ordered pair (X,�) where X is a set and the relation
� is a partial order on X. We write x < y when x � y and x � y. The relation � defined
on X by x � y if y � x is a partial order on X called the dual order. The covering
relation ≺, associated to �, is defined by: x ≺ y (say “y covers x”) if x < y and there
is no z such that x < z < y. We set: x↑ = {y ∈ X | x � y}; x↑+ = {y ∈ x↑ | y↑ = {y}};
x↓ = {y ∈ X | y � x}; x↓� = x↓ \ {x} = {y ∈ X | y < x}; x≺ = {y ∈ X | x ≺ y}. An
element x ∈ X is minimal if x↓ = {x} and maximal if x↑ = {x}. An element x ∈ X is the
minimum of X if x↑ = X and is the maximum of X if x↓ = X. If the minimum (resp., the
maximum) exists, then it is unique.

2.2 Topological Spaces

Let (X,�) be a poset. The set U defined by U = {U ⊆ X | ∀x ∈ U, x↑ ⊆ U} is a
topology on X which is called the Alexandroff topology. In this topology, the set x↑ is
the smallest open set containing x (or the smallest neighbourhood of x, called the star
of x) and the set x↓ is the smallest closed set containing x (the closure of x). Two points
x, y ∈ X are adjacent if x � y or y � x. A sequence (zi)r

i=0 (r ≥ 0) of elements of X
is an arc in X (from z0 to zr) if for all i ∈ [[1, r]]1 , zi−1 and zi are distinct and adjacent.
A subset Y of X is connected if for all x, y ∈ Y, there exists an arc in Y from x to y. A
connected component of a subset Y of X is a maximal (for inclusion) connected subset
of Y.

The closure Y↓ of a subset Y ⊆ X is the smallest closed set including Y. The interior
Y◦ of a subset Y ⊆ X is the largest open set included in Y . Closure and interior are dual
notions since ¬(Y◦) = (¬Y)↓ and ¬(Y↓) = (¬Y)◦ where ¬Y = X \ Y. An open set Y is a
regular open set if Y = (Y↓)◦ and a closed set is a regular closed set if Y = (Y◦)↓. The
complement of a regular open set is a regular closed set.

2.3 Cubical Complexes

Let Z be the set of integers. Let F1
0 = {{a} | a ∈ Z} and F1

1 = {{a, a + 1} | a ∈ Z}. Let
n ≥ 1.

Let f ⊂ Zn. If f is the Cartesian product of m elements of F1
1 and n − m elements

of F1
0, we say that f is a face or an m-face (of Zn), m is the dimension of f , and we

write dim( f ) = m (some faces of Z2 are depicted in Fig. 1). We denote by Fn the set
composed of all faces of Zn; this set is the (n-D) space of cubical complexes. We denote
by Fn

k (0 ≤ k ≤ n) the set composed of all k-faces of Zn. The couple (Fn,⊆) is a poset.
Let F ⊆ Fn be a set of faces. Let f ∈ F be a face. The face f is a facet of F if f is
maximal in F. In particular, if x = (xi)n

i=1 ∈ Zn, the set ẋ =
∏n

i=1{xi, xi + 1} is a facet of
F

n.
1 We write [[p, q]] for an integer interval and [p, q] for a real interval.



166 L. Mazo et al.

� �

� �

f

h

g

(a)

g h

f
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Fig. 1. Two representations of a set of faces F = { f , g, h} in Z2 with, for instance, f = {0} × {1},
g = {0, 1} × {0, 1} and h = {1} × {0, 1}. The face g is a facet of F (and also of F2).

2.4 Digital Topology

Let x = (xi)n
i=1 and y = (yi)n

i=1 be two points in Zn (also called n-xels, or simply xels).
The points x and y are 2n-adjacent if

∑n
i=1 |xi − yi| = 1. They are (3n − 1)-adjacent if

maxn
i=1{|xi − yi|} = 1. When n = 3, the points x and y are 18-adjacent if they are 26-

adjacent and
∑n

i=1 |xi − yi| ≤ 2. Let α ∈ {2n, 3n − 1} (or possibly α = 18 if n = 3). Any
point in Zn is α-adjacent to α other points. A sequence γ = (zi)r

i=0 (r ≥ 0) of points in
X ⊆ Zn is a (digital) α-path (from z0 to zr) if for all i ∈ [[1, r]], zi−1 and zi are α-adjacent.
The integer r is the length of γ. A subset X ⊆ Zn is α-connected, if for all x, y ∈ X, there
exists a digital α-path from x to y in X. In order to retrieve some topological features
in binary digital images (such as the notion of hole), it is necessary to use pairs of
adjacencies, one for the object X and one for the background Zn \ X. The suitable pairs
are (2n, 3n − 1) and (3n − 1, 2n) (plus, when n = 3, (6, 18) and (18, 6)).

3 Connectivity: From Zn to Fn

A (digital) image λ on Zn is a function from Zn to {0, 1}. A (complex) image μ on Fn is
a function from Fn to {0, 1}. The object (resp. the background) associated to the image
θ : X → {0, 1} (with X = Zn or Fn) is the set θ−1({1}) (resp. θ−1({0})).

If μ is a complex image, we write
∨

x∈X μ(x) (resp.
∧

x∈X μ(x)) for the maximum (resp.
minimum) of the set {μ(x) | x ∈ X} and we also write μ(a) ∨ μ(b) (resp. μ(a) ∧ μ(b)) for
∨

x∈{a,b} μ(x) (resp.
∧

x∈{a,b} μ(x)).
The poset (Fn,⊆) is equipped with its Alexandroff topology.

3.1 One-to-One Correspondence between Images on Zn and Fn

When two faces g, h ∈ Fn cover a face f ∈ Fn and their smallest neighbourhoods do not
intersect (i.e., g↑ ∩ h↑ = ∅), we say that they are opposite with respect to the face f . We
denote opp( f ) the set of all {g, h} for g opposite to h w.r.t. f . Intuitively, the face f is
required to “locally connect” the faces g and h. When f is a facet, we have opp( f ) = ∅.
Definition 1. (regular image) Let ε : [[1, n]] → {−1, 1} be a function called connec-
tivity function 2. A function μ : Fn → {0, 1} is an ε-regular image (or simply a regular
image) if for all m ∈ [[1, n]] and f ∈ Fn

m−1, we have, recursively

2 We write ε = (a1, . . . , an) for the function ε such that ε(i) = ai for all i ∈ [[1, n]], as done for
instance in Fig. 2. We also write ε = 1 (or ε = −1) when ε is a constant function.
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μ( f ) =

{∧
{a,b}∈opp( f ) μ(a) ∨ μ(b) if ε(m) = 1
∨
{a,b}∈opp( f ) μ(a) ∧ μ(b) if ε(m) = −1

For each connectivity function ε : [[1, n]] → {−1, 1}, we define the function ζε :
{0, 1}Zn → {0, 1}Fn

which maps any digital image λ to the unique ε-regular image ζε(λ)
such that, for each a ∈ Zn, we have ζε(λ)(ȧ) = λ(a). It is obvious that, for each ε, the
function ζε is a bijection between the set of digital images {0, 1}Zn

and the subset of
ε-regular images of {0, 1}Fn

. Moreover, thanks to the choice of the connectivity func-
tion ε, we can accurately “carve” an image in Fn to model the desired connectivity in
Z

n (see Fig. 2). In particular, we can get the usual pairs of adjacencies (see Figs. 2–4
and Table 1). In Section 4, the correspondences given in Table 1 will be justified by
two theorems establishing that, by following these links, we preserve the connected
components and fundamental groups.

When the function ε is constant, Definition 1 can be simplified. Note that the case
ε = −1 corresponds to the 2n-adjacency in Zn while the case ε = 1 corresponds to the
(3n − 1)-adjacency in Zn.

Proposition 1. Let μ : Fn → {0, 1} be an ε-regular image. Let f be a face of Fn.

(i) If ∀m > dim( f ), ε(m) = −1, then we have μ( f ) =
∧

f≺a μ(a) =
∧

a∈ f ↑+ μ(a)
(ii) If ∀m > dim( f ), ε(m) = 1, then we have μ( f ) =

∨
f≺a μ(a) =

∨
a∈ f ↑+ μ(a)

In particular, if ε = −1 then μ( f ) =
∧

a∈ f ↑+ μ(a) for all f ∈ Fn, and if ε = 1 then
μ( f ) =

∨
a∈ f ↑+ μ(a) for all f ∈ Fn.

3.2 Duality

Let θ : X → {0, 1} with (X = Zn or Fn) be an image. We define the negative image
¬θ : X → {0, 1} of θ by ¬θ(x) = 1 − θ(x), for all x ∈ X.

Proposition 2. If μ : �n → {0, 1} is an ε-regular image, then ¬μ is (−ε)-regular.

Let μ : Fn → {0, 1} be an ε-regular image. We define the image −μ : Fn → {0, 1} by
(−μ)( f ) = μ( f ) for all f ∈ Fn

n and μ is (−ε)-regular.

Proposition 3. If μ : �n → {0, 1} is an ε-regular image, then we have ¬(−μ) = −(¬μ).
From the above definitions and propositions, we straightforwardly derive the following
result.

Proposition 4. Let λ : �n → {0, 1} be a digital image. Let ε : [[1, n]] → {−1, 1} be a
connectivity function. Then, we have ¬(ζε(λ)) = ζ−ε(¬λ).

λ
¬−−−−−−→ ¬λ

ζε

⏐⏐⏐⏐⏐�

⏐⏐⏐⏐⏐�ζ−ε

ζε(λ)
¬−−−−−−→ ζ−ε(¬λ)
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(a) ε = (−1,−1) (b) ε = (1,−1) (c) ε = (−1, 1) (d) ε = (1, 1)

Fig. 2. Images ζε(λ) : F2 → {0, 1} for some given λ : Z2 → {0, 1}

(a) (b) (c) (d)

Fig. 3. Images ζε(λ) : �3 → {0, 1} for some given λ : �3 → {0, 1}. In Figs. 3–4, the different
colours are only used to distinguish the faces of the object (ζε(λ))−1({1}) (blue: 3-faces; green:
2-faces; yellow: 1-faces; red: 0-faces). (a) With ε(3) = −1 (whatever values for ε(1) and ε(2)),
we obtain the 6-adjacency (for the object) in Z3. (b) With ε(3) = 1 and ε(2) = −1, we obtain the
18-adjacency in Z3. (c, d) With ε(3) = ε(2) = 1, we obtain the 26-adjacency in Z3.

(a) (b) (c) (d)

Fig. 4. A torus built with six 3-faces illustrates how the two 6-adjacencies can be obtained. (a)
With ε = (±1, 1,−1), the foreground is a horn-torus so we obtain the 6-adjacency associated
to the 18-adjacency. (b) With ε = (±1,−1,−1), the foreground is a ring-torus, so we obtain
the 6-adjacency associated to the 26-adjacency. (c,d) An object built from three facets with two
connectivity functions which could a priori be used to model the 18-adjacency (see Fig. 3(b)). In
(c), with ε = (1,−1, 1), we can see a red 0-face between the three cubes. This is what is expected
for the background must have a 6-adjacency. In (d), with ε = (−1,−1, 1), there is a hole instead
of the red 0-face, which is not correct in 18-adjacency.

Table 1. Correspondence between pairs of adjacencies in Zn and connectivity functions

Space dimension n = 2 n = 3 n ≥ 4 (actually, n ∈ N∗)
Adjacencies in Zn (4, 8) (8, 4) (6, 26) (6, 18) (18, 6) (26, 6) (2n, 3n − 1) (3n − 1, 2n)

ε −1 1 −1 (−1, 1,−1) (1,−1, 1) 1 −1 1
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(a) (b) ε = (−1,−1, 1) (c) ε = (1, 1,−1) (d) ε = (−1, 1,−1)

Fig. 5. (a) Symbolic representation of a trihedron related to a face f ∈ Fn such that dim( f ) = n−3.
Black dots: f ↑+1 ; white dots f ↑+\ f ↑+1 . The dash lines represent the existence of a face of dimension
n − 1 forming the intersection between two facets of f ↑+. (b–d) Examples of trihedra, with three
connectivity functions ε (one of the blue facets is hidden).

Remark 1. This proposition establishes that, for a given connectivity function ε (and the
associated pair of adjacencies (α, β)), all the properties valid for λ−1({1}) and μ−1({1})
are also valid for λ−1({0}) and μ−1({0}) for the opposite connectivity function −ε (and
the associated pair of adjacencies (β, α)). Broadly speaking, this means that the notions
of object and background can be switched without loss of generality, provided that the
pair of adjacencies (β, α) is also switched accordingly.

3.3 Computing Values Directly from Facets

The aim of this section is to find the number of facets which must have the value 1 in
the star of a face to ensure that this face also has value 1. In F2, the answer is straightfor-
ward. In F3, it requires to carefully study a particular configuration (depicted in Fig. 5),
however, it can be answered, as stated hereafter. In higher dimensional spaces, the par-
ticular configurations to study are too numerous to get a useful result.

Let f ∈ Fn, with n ≥ 3. If dim( f ) = n − 3, the poset ( f ↑,⊆) has a unique minimum,
namely f , and 8 maximal elements, namely the facets forming f ↑+. From an adjacency
point of view, these facets are geometrically organised as the 8 vertices of a cubical
structure. When f ↑+1 (i.e., the facets of f ↑+ whose values are equal to 1) is organised as
in the configuration depicted in Fig. 5(a) (up to rotations and symmetries), we say that
f ↑+1 is a trihedron. We define Card−(E) = 3 and Card+(E) = 5, if E is a trihedron, and
Card−(E) = Card+(E) = Card(E) otherwise.

For each connectivity function ε, we define recursively the function δε : [[0, n]] →
[[1, 2n]] by δε(0) = 1, and for all i > 0, δε(i + 1) = 2δε(i) − 1 if ε(n − i) = 1, and
δε(i + 1) = 2δε(i) if ε(n − i) = −1. It is easy to check that, for all m ∈ [[0, n]], we have
δε(m) = 1 +

∑m
k=1(1 − ε(n − k + 1))2m−k−1.

In the sequel, we write f ↑+1 for the set of facets in the star of f which have value

1: f ↑+1 = {g ∈ Fn
n | f � g and μ(g) = 1}.

Proposition 5. Let μ : Fn → {0, 1} be an ε-regular image. Let f be a k-face of Fn (with
n − 3 ≤ k ≤ n − 1).

(i) If Card−( f ↑+1 ) ≥ δε(n − k), then μ( f ) = 1.
(ii) If μ( f ) = 1, then Card+( f ↑+1 ) ≥ δε(n − k).
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Table 2. Necessary and sufficient conditions to obtain μ( f ) = 1 (see Corollary 1)

dim( f ) = n − 2
ε (. . . , 1, 1) (. . . ,−1, 1) (. . . , 1,−1) (. . . ,−1,−1)

Cε Card( f ↑+1 ) ≥ 1 Card( f ↑+1 ) ≥ 2 Card( f ↑+1 ) ≥ 3 Card( f ↑+1 ) ≥ 4

dim( f ) = n − 3
ε (. . . , 1, 1, 1) (. . . ,−1, 1, 1) (. . . , 1,−1, 1) (. . . ,−1,−1, 1)

Cε Card( f ↑+1 ) ≥ 1 Card( f ↑+1 ) ≥ 2 Card( f ↑+1 ) ≥ 3 Card( f ↑+1 ) ≥ 4
f ↑+1 not a trihedron

ε (. . . , 1, 1,−1) (. . . ,−1, 1,−1) (. . . , 1,−1,−1) (. . . ,−1,−1,−1)
Cε Card( f ↑+1 ) ≥ 5 Card( f ↑+1 ) ≥ 6 Card( f ↑+1 ) ≥ 7 Card( f ↑+1 ) = 8

or f ↑+1 a trihedron

From Proposition 5 and Definition 1 (needed when f ↑+1 is a trihedron), we derive the
following corollary.

Corollary 1. Let μ : Fn → {0, 1} be an ε-regular image. Let f be a k-face of Fn (with
n − 3 ≤ k ≤ n − 1). Then μ( f ) = 1 iff the set f ↑+1 satisfies the condition Cε given in
Table 2.

3.4 Regular Images and Regular Open/Closed Sets

The object (resp. the background) of a regular image μ : Fn → {0, 1}, i.e., the set
μ−1({1}) (resp. μ−1({0})) is topologically regular, i.e., it does not have thin parts nor thin
holes (by “thin”, we mean of lower dimension than the surrounding space).

Proposition 6. Let μ : Fn → {0, 1} be an ε-regular image. Let x ∈ {0, 1}. Then
(μ−1({x}))◦ is a regular open set and (μ−1({x}))↓ is a regular closed set.

Corollary 2. Let μ : Fn → {0, 1} be an ε-regular image. If ε = −1, then μ−1({1}) (resp.
μ−1({0})) is a regular open (resp. closed) set. If ε = 1, then μ−1({1}) (resp. μ−1({0})) is a
regular closed (resp. open) set.

4 Paths and (Digital) Fundamental Groups

In this section, we study how the functions ζε behave relatively to the classical notions
of path in Zn and Fn. Theorem 2 states that ζε induces a bijection between the set of
the connected components of the object (resp. background) associated to an image λ :
Z

n → {0, 1}, and the set of the connected components of the object (resp. background)
associated to the regular image μ = ζε(λ), the function ε being chosen with respect
to a given pair of adjacencies in Zn. Theorem 3 states that ζε induces an isomorphism
between the digital fundamental group of λ−1({1}) (resp. λ−1({0})) and the fundamental
group of μ−1({1}) (resp. μ−1({0})).
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4.1 Background Notions on Paths and Arcs

The fundamental group of topological spaces. Let X be a topological space. A path p
in X is a continuous function p : [0, 1]→ X. Two paths p, q in X are equivalent if they
have the same extremities (i.e., p(0) = q(0) and p(1) = q(1)) and p can be continuously
deformed to fit q, that is if there exists a continuous map h : [0, 1] × [0, 1] → X such
that, for all t ∈ [0, 1], h(t, 0) = p(t) and h(t, 1) = q(t), and, for all u ∈ [0, 1], h(0, u) =
p(0) = q(0) and h(1, u) = p(1) = q(1) (the map h is called a path-homotopy). This
relation on paths is actually an equivalence relation. We write [p] for the equivalence
class of p. If p, q are two paths in X such that p(1) = q(0) we can define the product
p · q by

(p · q)(t) =

{
p(2t) if t ∈ [0, 1

2 ]
q(2t − 1) if t ∈ [ 1

2 , 1]

This product is well defined on equivalence classes by [p] · [q] = [p ·q]. Let x be a point
of X. A loop at x is a path in X which starts and ends at x. The product of two loops at
x is a loop at x and the set π(X, x) of equivalence classes of loops at x is a group for this
product. It is called the fundamental group of X (with basepoint x).

Finite paths in posets. In a poset X, a function f : [0, 1]→ X is a step function if there
exist finitely many intervals (Ii)r

i=0 (r ≥ 0) such that f is constant on each interval Ii and
[0, 1] =

⋃r
i=0 Ii. A finite path in X is a path in X which is a step function. The sequence

(Ii)r
i=0 is called the intervals sequence of p and the sequence (xi)r

i=0 of the values of f
the track of p. A finite path is regular if there is no singleton in its intervals sequence.

The product of two arcs (xi)r
i=0 and (yi)s

i=0 is defined by (xi)r
i=0.(yi)s

i=0 = (x0, . . . , xr,
y1, . . . , ys) provided that xr = y0.

An arc χ = (xi)r
i=0 (r ≥ 2) is an elementary stretching (in X) of an arc χ′ if for some

j ∈ [[1, r − 1]], χ′ = (xi)r
i=0,i� j or (x j−1 = x j+1 and χ′ = (xi)r

i=0,i� j−1,i� j). An arc χ is a
deformation (in X) of an arc χ′ if there exists a sequence (χi)s

i=0 of arcs in X such that
χ0 = χ, χs = χ

′ and for any i ∈ [[1, s]], either χi is an elementary stretching of χi−1 or
χi−1 is an elementary stretching in X of χi.

Let x be a point in X. “Being a deformation or equal” is an equivalence relation in
the set of arcs in X from x to x. The set of equivalence classes, denoted by ρ(X, x), is a
group for the arc product.

Theorem 1 ([18]). Let x ∈ X. The fundamental group π(X, x) of X with basepoint x is
isomorphic to the group ρ(X, x).

The digital fundamental group of Zn. A discrete analogue of the concept of funda-
mental group has been proposed in digital topology [10]. Let n ∈ {2, 3} and X ⊆ Zn.
The definition of the product for digital paths is straightforward but not so is the notion
of equivalence between digital paths or loops. Two paths in X with same extremities
are directly equivalent (in X) if they differ only in a unit lattice cube of Zn provided
that, if n = 3 and the pair of adjacencies is (6, 26), the cube must not contain two di-
ametrically opposite points not in X. Finally, two paths in X, p0, pt (t ≥ 0), with same
extremities are equivalent (in X) if there is a sequence (pi)t

i=0 of paths in X such that,
for all i ∈ [[1, t]], pi is directly equivalent in X to pi−1.
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4.2 Mapping Paths in Zn onto Arcs in Fn

Let χ and χ′ be two arcs in Fn. We write χ � χ′ if there exist two paths p � p′ in Fn

whose tracks are χ and χ′ (all paths in Fn considered in the sequel are regular finite
paths).

Definition 2. Let ω be an adjacency relation on Zn and γ = (pi)r
i=0 (r ≥ 0) be an ω-

path in Zn, given in its reduced form (pi � pi−1 for all i ∈ [[1, r]]). We define the arc ζ(γ)
in Fn by ζ(γ) = (q j)2r

j=0 with q j = ṗ j
2

if j is even and q j = q j−1 ∩ q j+1 if j is odd, for all
j ∈ [[0, 2r]].

It is obvious that the sequence of faces ζ(γ) defined above is actually an arc in Fn which
is itself the track of a regular finite path in Fn [18].

The following proposition states that ζ associates to a path in the object (resp. in the
background), of a digital image λ, an arc in the object (resp. in the background) of the
complex image ζε(λ) under the condition that the connectivity function ε has been well
chosen. The main consequence of this proposition is that the images of the connected
components of the digital object (resp. background) are included in the connected com-
ponents of the image of the object (resp. background).

Proposition 7. Let (α, β) be a pair of adjacencies on Zn. Let ε be the connectivity
function associated to (α, β). Let x ∈ {0, 1}. Let ω = α if x = 1 and ω = β if x = 0. Let
λ : Zn → {0, 1} be an image in Zn and μ = ζε(λ) be the corresponding image in Fn. Let
γ = (pi)r

i=0 (r ≥ 0) be an ω-path in λ−1({x}). Then, ζ(γ) is an arc in μ−1({x}).
The following proposition is straightforward.

Proposition 8. Let ω be an adjacency relation on Zn. The corresponding function ζ is
a homomorphism for the paths product and the arc product: for all ω-paths γ, γ′ ∈ Zn,
ζ(γ.γ′) = ζ(γ).ζ(γ′).

The injectivity of ζ is obvious since two distinct n-xels a, b ∈ Zn are associated to
distinct facets ȧ, ḃ ∈ Fn. Proposition 9 establishes the surjectivity up to deformations:
any arc χ from ȧ to ḃ in an object (resp. in the background) of the complex image is the
deformation of an arc ζ(γ) for some path γ from a to b of the object (resp. background)
of its associated digital image (if the complex image is associated to such a digital
image). Proposition 9 is illustrated by Figure 6.

Proposition 9. Let (α, β) be a pair of adjacencies on Zn. Let ε be the connectivity
function associated to (α, β). Let x ∈ {0, 1}. Let ω = α if x = 1 and ω = β if x = 0. Let
λ : Zn → {0, 1} be an image in Zn and μ = ζε(λ) be the corresponding image in Fn. Let
a, b ∈ Zn. Let χ be an arc from the facet ȧ to the facet ḃ in μ−1({x}). Then, there exists
an ω-path γ from a to b in λ−1({x}) such that ζ(γ) is a deformation in μ−1({x}) of χ.

Theorem 2. Let (α, β) be a pair of adjacencies in Zn. Let ε be the connectivity function
associated to (α, β). Let λ : Zn → {0, 1} be a digital image and ζε(λ) = μ : Fn →
{0, 1} be the corresponding complex image. Let x ∈ {0, 1}. Then the function ζε induces
a one-to-one correspondence between the connected components of λ−1({x}) and the
connected components of μ−1({x}).
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Fig. 6. From an arc μ to an arc ζ(γ) in a (−1)-regular image (the 9 points are in μ−1(x))

4.3 Fundamental Groups

The aim of this section is to compare the digital fundamental group defined by Kong
[10] for subsets of Zn, n ∈ {2, 3}, with the fundamental group of subspaces of Fn. Thanks
to Theorem 1, we can use arcs as well as paths in Fn in order to perform this comparison.

Proposition 10. Let (α, β) be a pair of adjacencies on Zn. Let ε be the connectivity
function associated to (α, β). Let λ : Zn → {0, 1} be a digital image and ζε(λ) = μ :
F

n → {0, 1} be the corresponding complex image. Let x ∈ {0, 1}. Let ω = α if x = 1 and
ω = β if x = 0. Two ω-paths in λ−1({x}), γ and γ′, are equivalent in λ−1({x}) iff the arc
ζ(γ) is equal to or is a deformation in μ−1({x}) of the arc ζ(γ′).

Let a ∈ λ−1({x}). Let πD(λ−1({x}), a) be the digital fundamental group of λ−1({x}) with
basepoint a and ρ(μ−1({x}), ȧ) be the group of arcs in μ−1(x) from ȧ to ȧ, up to deforma-
tions.

From Propositions 7 and 10, we know that the function ζ̇ defined by
∣∣∣∣∣∣

ζ̇ : πD(λ−1(x), a)→ ρ(μ−1(x), ȧ)
[γ] �→ [ζ(γ)]

where [y] denotes the equivalence class of y (for the equivalence relation on digital
paths of Zn on the left side and for the deformation on arcs of Fn on the right side), is
well-defined. Proposition 8 then states that ζ̇ is a morphism. Propositions 9 and 10
give the surjectivity and the the injectivity of ζ̇, respectively. We conclude that the
groups πD(λ−1({x}), a) and ρ(μ−1({x}), ȧ) are isomorphic and, since ρ(μ−1({x}), ȧ) and
π(μ−1({x}), ȧ) are isomorphic (Theorem 1), the following theorem holds.

Theorem 3. Let (α, β) be a pair of adjacencies on Zn. Let ε be the connectivity function
associated to (α, β). Let λ : Zn → {0, 1} be an image in Zn and μ = ζε(λ) be the corre-
sponding image in Fn. For any a ∈ λ−1({x}), the digital fundamental group of λ−1({x})
with basepoint a is isomorphic to the fundamental group of the poset (μ−1({x}),⊆) with
base point ȧ.

5 Conclusion

In this article, a modus operandi has been proposed to embed digital binary images,
equipped with a pair of standard adjacencies, in the space of cubical complexes. In
particular, it has been proved that it preserves the connected components of both object
and background and, more generally, preserves also the (digital) fundamental groups.

These results, associated to those of [18], justify the soundness of all the contribu-
tions previously devoted to design homotopy type-preserving binary image processing
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methods, especially concerning the correctness of their behaviour with respect to the
“continuous” topology of the handled digital objects. They also permit to establish links
between image processing methods developed either in classical digital spaces (Zn) or
cubical complexes (Fn), and to potentially unify some of them. An extended version of
this work (with proofs of the propositions and theorems) will be proposed soon [17].

References

1. Aktouf, Z., Bertrand, G., Perroton, L.: A three-dimensional holes closing algorithm. Pattern
Recognition Letters 23(5), 523–531 (2002)

2. Ayala, R., Domínguez, E., Francés, A.R., Quintero, A.: Digital lighting functions. In:
Ahronovitz, E. (ed.) DGCI 1997. LNCS, vol. 1347, pp. 139–150. Springer, Heidelberg (1997)

3. Ayala, R., Domínguez, E., Francés, A.R., Quintero, A.: Digital homotopy with obstacles.
Discrete Applied Mathematics 139(1-3), 5–30 (2004)

4. Bertrand, G.: New notions for discrete topology. In: Bertrand, G., Couprie, M., Perroton, L.
(eds.) DGCI 1999. LNCS, vol. 1568, pp. 218–228. Springer, Heidelberg (1999)

5. Bertrand, G., Couprie, M.: A model for digital topology. In: Bertrand, G., Couprie, M., Per-
roton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 229–241. Springer, Heidelberg (1999)

6. Bertrand, G., Malandain, G.: A new characterization of three-dimensional simple points.
Pattern Recognition Letters 15(2), 169–175 (1994)

7. Faisan, S., Passat, N., Noblet, V., Chabrier, R., Meyer, C.: Topology-preserving warping of
binary images according to one-to-one mappings. IEEE Transactions on Image Processing
(to appear)

8. Gonzalez-Diaz, R., Jimenez, M.J., Medrano, B.: Well-composed cell complexes (November
2010), http://personal.us.es/majiro/ctic19.pdf , communication at CTIC 2010

9. Khalimsky, E., Kopperman, R., Meyer, P.R.: Computer graphics and connected topologies
on finite ordered sets. Topology and its Applications 36(1), 1–17 (1990)

10. Kong, T.Y.: A digital fundamental group. Computers and Graphics 13(2), 159–166 (1989)
11. Kong, T.Y., Roscoe, A.W.: A theory of binary digital pictures. Computer Vision, Graphics

and Image Processing 32(2), 221–243 (1985)
12. Kong, T.Y.: Topology-preserving deletion of 1’s from 2-, 3- and 4-dimensional binary im-

ages. In: Ahronovitz, E. (ed.) DGCI 1997. LNCS, vol. 1347, pp. 3–18. Springer, Heidelberg
(1997)

13. Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Computer Vision,
Graphics and Image Processing 48(3), 357–393 (1989)

14. Kovalevsky, V.A.: Finite topology as applied to image analysis. Computer Vision, Graphics,
and Image Processing 46(2), 141–161 (1989)

15. Lachaud, J.O., Montanvert, A.: Continuous analogs of digital boundaries: A topological ap-
proach to iso-surfaces. Graphical Models and Image Processing 62, 129–164 (2000)

16. Latecki, L.J.: 3d well-composed pictures. Graph. Models Image Process. 59(3), 164–172
(1997)

17. Mazo, L., Passat, N., Couprie, M., Ronse, C.: Digital imaging: A unified topological frame-
work. Tech. Rep. hal-00512270, Université Paris-Est (2010),
http://hal.archives-ouvertes.fr/hal-00512270/fr/

18. Mazo, L., Passat, N., Couprie, M., Ronse, C.: Paths, homotopy and reduction in digital im-
ages. Acta Applicandae Mathematicae 113(2), 167–193 (2011)

19. Rosenfeld, A.: Connectivity in digital pictures. Journal of the Association for Computer Ma-
chinery 17(1), 146–160 (1970)

http://personal.us.es/majiro/ctic19.pdf
http://hal.archives-ouvertes.fr/hal-00512270/fr/


Isthmus-Based 6-Directional Parallel Thinning
Algorithms

Benjamin Raynal and Michel Couprie
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Abstract. Skeletons are widely used in pattern recognition and image
analysis. A way to obtain skeletons is the thinning approach, consisting in
iteratively removing points from the object without changing the topol-
ogy. In order to preserve geometric information, it is usual to preserve
curve end points (for curve skeletons) or surface end points (for sur-
face skeletons). In this paper we propose a new fast directional parallel
thinning scheme, preserving isthmuses (a generalization of curve/surface
interior points), and providing skeletons with low amount of noise. We
also prove the topology preservation of our approach.

Keywords: Thinning Algorithm, Surface Skeleton, Curvilinear Skele-
ton, Topology Preservation, Directional Thinning, Isthmus.

1 Introduction

Skeletons were originally defined by Blum [1] based on a “grass fire” analogy.
Imagine a shape as a field covered by dry grass; if you set on fire the contour
of the field, then the meeting points of the flame fronts would constitute the
skeleton of the shape.

Various methods can be used to obtain skeletons: Voronoi-based transforma-
tions [2,3], distance-based transformations [4,5], general-field methods [6,7] and
thinning.

Thinning consists of iteratively removing points of the object (called simple
points) without changing its topology, until stability. Without constraints, a
thinning process results in a ultimate skeleton, which has the same topology as
the original object, and no simple point. However, ultimate skeletons are not
efficient as shape descriptors, due to the fact that they may fail to preserve
important geometric information. In 3D, two other kinds of skeletons can be
obtained, which are closer to the original Blum’s analogy: curvilinear skeletons
(1D) and surface skeletons (2D). Figure 1 shows examples of different skeletons.
In the literature, in order to obtain such skeletons, it is usual to constrain the
thinning to preserve the skeleton extremity points (i.e. curve end points or surface
end points).

A common problem encountered in applications is linked to the sensibility of
the skeletonization process to small irregularities of the contour: the skeleton
may contain “spurious branches” that would make it difficult to exploit.

I. Debled-Rennesson et al. (Eds.): DGCI 2011, LNCS 6607, pp. 175–186, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. From the left to the right (in red):ultimate, curve and surface skeletons

Thinning algorithms have usually either low computational cost, or good qual-
ity results (i.e. few spurious branches), but rarely both. In this paper, we propose
a new fast parallel directional thinning algorithm constrained by 1D-isthmuses
(a generalization of curve interior points) instead of curve end points, resulting
in curve skeletons with very few spurious branches. We also propose variations
to provide surface skeletons and ultimate skeletons.

This paper is organized as follows: In the sequel of this section, we recall
basic notions of digital topology necessary to understand thinning theory, then
we present the different strategies of thinning. In Sect. 2, we present the works
on which our method is based. In Sect. 3, we introduce our new curve-thinning
algorithm, and prove the preservation of topology. We also introduce variations
for surface skeletons and ultimate skeletons. Finally, in Sect. 4, we show some
results of our algorithms and compare them to those of classical algorithms of
the same kind.

1.1 Basic Notions of Digital Topology

In 3D digital topology, the framework is the discrete grid Z3. The object is
represented by X ⊂ Z3, and its complementary Z3 \X is denoted by X̄. A point
p ∈ Z3 is defined by a triplet of integers (p1, p2, p3).

The notion of neighborhood is central for digital topology. In 3D, several
neighborhoods are considered: the 6-neighborhood of p is the set N6(p) = {q ∈
Z3; |q1 − p1| + |q2 − p2| + |q3 − p3| ≤ 1}; the 26-neighborhood of p is the set
N26(p) = {q ∈ Z3; max(|q1 − p1|, |q2 − p2|, |q3 − p3|) ≤ 1}. For a k-neighborhood,
we define N∗

k (p) = Nk(p) \ {p}.
Based on the notion of neighborhood we can define the notion of connectivity.

Let p be an element of X , we define the k-connected component of X containing
p, denoted by Ck(p, X), as the maximal subset of X containing p, such that for
all points a ∈ Ck(p, X), there exists a sequence of points of X 〈p0, ..., pn〉 such
that:

– p0 = p and pn = a,
– ∀i ∈ {1, ..., n}, pi−1 is in the k-neighborhood of pi.

The set of all k-connected components of X is denoted by Ck(X). A subset Y of
Z3 is k-adjacent to a point p ∈ Z3 if Y ∩ N∗

k (p) �= ∅. The set of all k-connected
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components of X which are k-adjacent to a point p is denoted by Cp
k (X). When

we consider the k-connectivity of X , it is mandatory to consider a different k̄-
connectivity for X̄ [8]. In 3D, if k = 6, then k̄ = 26 and inversely. This rule is
necessary in order to retrieve some important topological properties such as the
Jordan theorem.

Connectivity Numbers. In order to provide a local description of simple
points and other characteristic points, Bertrand and Malandain[9] introduced
the notion of connectivity numbers. In 3D, the definition of connectivity numbers
lies on the notion of geodesic neighborhood. Let X ⊆ Z3 and p ∈ Z3. The t-order
k-geodesic neighborhood of p in X is the set N t

k(p, X) recursively defined by:

– N1
k (p, X) = N∗

k (p) ∩ X
– N t

k(p, X) =
⋃
{Nk(q) ∩ N∗

26(p) ∩ X, q ∈ N t−1
k (p, X)}

The geodesic neighborhoods Gk(p, X) are defined by: G6(p, X) = N2
6 (p, X) and

G26(p, X) = N1
26(p, X). We can now define the connectivity numbers in 3D, for

k ∈ {6, 26} as: Tk(p, X) = |Ck(Gk(p, X))|, where |S| denotes the number of
elements of the set S.

Simple points. Intuitively, a point is simple for X if it can be removed from X
without changing its topology. In the digital topology framework, the topology of
an object depends on the chosen connectivity; for this reason, when considering
a k-connected object, we will talk about k-simple points. The notion of simple
point is central for homotopic thinning in the digital framework: a skeleton
is obtained by removing iteratively simple points from an object. In 3D, the
removal of a point may not only change the number of connected components of
the object or its complementary, but may also change the tunnels of the object.
Bertrand and Malandain propose a local characterization of simple points using
connectivity numbers T6 and T26:

Proposition 1. [9] Let X ⊆ Z3 and x ∈ X. The point x is k-simple for X iff
Tk(x, X) = 1 and Tk̄(x, X̄) = 1.

1.2 Thinning Algorithms

Thinning in the digital framework consists of removing simple points from an
object, until either no more simple point can be found (resulting in a ultimate
skeleton), or a satisfactory subset of voxels has been reached (resulting in a
curvilinear of surface skeleton). Two main strategies are possible for removing
simple points: sequential removal and parallel removal.

Sequential algorithms. Sequential removal of simple points can be achieved
by detecting simple points in an object, and removing them one after the other,
until no more simple point can be found. After removing a simple point, the new
set of simple points of the object must be computed. Such basic strategy does not
guarantee the result, which is an ultimate skeleton, to be centered in the original
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object. It is important, when designing a sequential thinning algorithm, to decide
of a removal order of simple points, and of a strategy for preserving interesting
visual features of the object. A widely used strategy to obtain a centered skeleton
with a sequential thinning process consists of computing a priority function (e.g.
distance to the background) on the object and removing the simple points of X
according to the value of this function [10] : at each step, the simple point that
is removed is one with the lowest possible value.

Parallel algorithms. Whereas iterative algorithms remove only one simple
point at a time, parallel algorithms consists in removing a set of simple points
simultaneously. The main problem of parallel thinning is that removing sim-
ple points simultaneously from an object usually ”breaks” the topology. Thus,
additional conditions must be introduced in order to solve this problem.

For a given algorithm, the deletion conditions are the conditions that a point
has to satisfy to be removable. The support is the minimal set of points whose
values must be examined to verify the deletion conditions for a point p ∈ X .
According to Hall [11], parallel thinning algorithms can be divided into three
categories:

– In directional algorithms, the main loop is divided into sub-iterations, and
the deletion conditions are changed from one sub-iteration to another. The
most usual kind of directional algorithm use 6 sub-iterations [12,13,15,14].
Directional algorithms with 3 sub-iterations [16], 8 sub-iterations [17] and
12 sub-iterations [18] have also been proposed.

– In subfield-based algorithms, the points of the object are decomposed into
subfields, and at at a given iteration of the algorithm, only points in a given
subfield are studied. Algorithms using 2 subfields [19], 4 subfields [20] and 8
subfields [20] have been proposed.

– In fully parallel algorithms, no sub-iteration takes place : the same thinning
operator is used at each iteration of the main loop [21,22,23,24].

Parallel algorithms are generally more robust to contour noise than sequential
ones. Subfield-based algorithms usually produce shaky skeletons, and fully par-
allel algorithms require an extended support (usually, 5× 5× 5), while for other
strategies the usual support is a 3 × 3 × 3 neighborhood (i.e. N26).

For our aims, a parallel directional algorithm is the best choice.

2 Background

Our method is based on two different works. We use constraints that were orig-
inally introduced by Bertrand and Couprie [25] in the context of sequential
thinning, and the design of the masks used in our parallel directional algorithm
is based on those defined by Palágyi and Kuba [12].

2.1 Bertrand and Couprie Isthmus Based Thinning

In 2007, Bertrand and Couprie [25] proposed a sequential thinning based on
isthmuses.
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Definition 1. Let X ⊆ Z3, p ∈ X,

– p is a 1D-isthmus iff Tk(p, X) ≥ 2.
– p is a 2D-isthmus iff Tk̄(p, X̄) ≥ 2.

The strategy used by Bertrand and Couprie consists in dynamically detecting
the considered isthmuses (1D or 2D) and accumulating them in a constraint
set. A point can be deleted if it is simple and not in the constraint set. By
this way, a point detected as an isthmus in a given iteration cannot be removed
later. Depending on the considered isthmuses, the method provides curvilinear
skeletons (in case of 1D isthmuses) or surface skeletons (in case of 2D isthmuses).

The consideration of isthmuses instead of extremities points is interesting for
two reasons: isthmuses can be easily locally defined and detected (it is not the
case of surface end points), and appear less often than extremities during thin-
ning process, leading to less noisy skeletons. However, the sequential approach is
less adapted than parallel ones for this purpose, and provides skeletons of lower
quality.

2.2 Palágyi and Kuba 6-Directional Thinning

In 1998, Palágyi and Kuba [12] proposed a 6-directional thinning algorithm
producing curvilinear skeletons, which we denote by PKD6.

Each iteration of PKD6 consists of 6 sub-iterations in which points are re-
moved from the shape if and only if the configuration of their 26-neighborhood
matches at least one mask of the mask set Md for the given direction d. The
mask set MU used for the UP direction is presented in Fig. 2. Mask sets
MD,MN ,MS,ME ,MW for the other directions (DOWN, NORTH, SOUTH,
EAST and WEST ) are obtained by appropriate rotations and reflections. The
algorithm is summarized in Alg. 1. Palágyi and Kuba proved that their algo-

Algorithm 1. PKD6 [12]
Data: X ⊆ Z3

Result: A skeleton of X
1 Y = X
2 repeat
3 foreach direction d in (U, D, N, S, E, W ) do
4 Y = Y \ {p ∈ Y ; p matching one mask of Md}
5 until stability ;
6 return Y

rithm preserves topology, using the following theorem (Theorem 1) proved by
Ma in [26].

Definition 2. [26] Let X ⊂ Z3 be an object. The set D = {d1, ..., dk} ⊆ X is
called a simple set of X if D can be arranged in a sequence 〈di1 , ..., dik

〉 in which
each dij is simple for X \ {di1 , ..., dij−1} for j = 1, ..., k.
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M1 M2 M3

M4 M5 M6

Fig. 2. Base masks M1-M6 and their rotations around the vertical axis form the set
of masks MU for direction UP. Points marked by a black disk have to belong to the
object, points marked by a white disk have to be out of the object, and at least one
point marked by a cross in masks M1 and M5 has to belong to the object.

Definition 3. [26] A 3D parallel reduction operation is said to preserve topol-
ogy if, for all possible 3D pictures, the set of all points that are deleted simulta-
neously is simple.

Theorem 1. [26] A 3D parallel reduction operation preserves topology if all of
the following conditions hold:

1. Only simple points are deleted.
2. If two points belonging to the object, p and q, of a 2 × 2 square in Z3 are

deleted, then the set {p, q} is simple.
3. If three points belonging to the object, p, q and r, of a 2× 2 square in Z3 are

deleted, then the set {p, q, r} is simple.
4. If four points belonging to the object, p,q,r and s, of a 2×2 square in Z3 are

deleted, then the set {p, q, r, s} is simple.
5. No component of the object contained in a 2×2×2 cube in Z3 can be deleted

completely.

Theorem 2. [12] The thinning algorithm PKD6 preserves topology.

3 New Method

We propose a 6-directional thinning algorithm based on isthmuses. Our algo-
rithm is designed in two steps, separating the thinning process (using a 6-
directional approach) and the isthmuses detection. Each iteration consists of:

1. updating the constraint set, by adding points of the object detected as
isthmuses,



Isthmus-Based 6-Directional Parallel Thinning Algorithms 181

Algorithm 2. D6I1D
Data: X ⊆ Z3, K ⊆ X
Result: A skeleton of X

1 repeat
2 K = K ∪ ΨI1D(X)
3 foreach direction d in (U, D, N, S, E, W ) do
4 X = τd(X, K)

5 until stability ;
6 return X

2. removing deletable points of the object which are not in the constraint set
(see Algo.2).

This design allows for the preservation of some points defined a priori by the
initial set K (which may be empty). The function ΨI1D(X) returns the set of
all the 1D-isthmuses of X (see Def. 1). The function τd(X, K) returns the set
X \S, S being the set of all points from X \K respecting deletion conditions in
X for direction d. This function is defined in the following of this section.

3.1 Design of Deletion Condition Masks

Contrary to deletion conditions used in directional algorithms found in the liter-
ature, those of τd permit the deletion of curve end points, the constraint points
being considered separately.

Deletion conditions can be represented using a set of masks: a point respects
deletion conditions if and only if it matches at least one of the masks. In this
section, we present the masks used by τd, obtained by modifying those used by
PKD6.

In order to separate geometrical and topological conditions, we have to allow
in τd the deletion of ending points (i.e. points with only one neighbor in the
object). For this purpose, we add three masks to Md, representing ending points
which may be removed for the direction d. These masks are shown in Fig. 3 for
the case d = U .

Proving that our algorithms preserve topology (Prop.2 and Prop.3) can be
done using the framework of critical kernels, introduced by Bertrand [27]. This
framework is indeed the most powerful one for both proving and designing n-
dimensional homotopic thinning algorithms. However, in this particular case it
is simpler to build on the proof that was given by Palágyi and Kuba for PKD6,
as our algorithm only slightly differs from the latter.

Proposition 2. Algorithm PKD6 with mask sets Md extended by adding con-
venient rotations of Mα, Mβ and Mγ preserves topology.

Proof. We prove that all conditions of theorem 1 hold.



182 B. Raynal and M. Couprie

Mα Mβ Mγ

Fig. 3. Masks Mα-Mγ and their rotations around vertical axis are added to the set of
masks MU for direction UP in order to remove ending points

Let X ⊆ Z3 and p ∈ X . If p matches a mask in MU , then we know that
it is simple from theorem 2. If p matches a mask in {Mα, Mβ , Mγ}, then p is
obviously simple.

Let Z be a set of object points contained in a 2× 2 square in Z3, or being an
object component contained in a 2 × 2 × 2 cube in Z3, with |Z| ≥ 2.

If all points of Z match masks of MU , then we know that all conditions of
theorem 1 hold, from theorem 2.

Otherwise, if one point p of Z matches a mask in {Mα, Mβ, Mγ}, then clearly
|Z| = 2. Let q be the other point in Z. By examination of all configurations, it
can be seen that any mask in MU ∪ {Mα, Mβ, Mγ} positioned on q does not
match, thus Z cannot be deleted. ��

3.2 Mask Set Reduction

The set of masks MU ∪ {Mα, Mβ, Mγ} can be compacted as proposed in Fig.4.
We can observe that mask M ′

1 matches exactly the same configurations as
those matched by masks M1 and Mα. In the same way, mask M ′

5 matches ex-
actly the same configurations as those matched by masks M5 and Mβ . Masks
M ′

2,M ′
3,M ′

4,M ′
6 and M ′

7 are respectively the same as M2,M3,M4,M6 and Mγ .
Using the sets M′

d with d ∈ {U, D, N, S, E, W}, we can now define τd, as
proposed in algorithm 3.

Algorithm 3. τd

Data: X ⊆ Z3, K ⊆ X
Result: A subset of X

1 R = set of points matching a mask belonging to M′
d

2 R = R \ K
3 return X \ R

Proposition 3. Algorithm D6I1D preserves topology.

Proof. From proposition 2, algorithm PKD6 with mask sets Md extended by
adding convenient rotations of Mα, Mβ and Mγ preserves topology. We observe
that:
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M ′
1 M ′

2 M ′
3

M ′
4 M ′

5 M ′
6 M ′

7

Fig. 4. Final set of masks M′
U for direction UP

– D6I1D differs only from this algorithm by constraining some points to be
preserved;

– if theorem 1 holds for an operation A, then it also holds for an operation B
that removes only a subset of the points removed by A.

These observations lead to the conclusion that D6I1D preserves topology. ��

3.3 Other Kinds of Skeletons

In fact, our algorithm offers great flexibility, due to the fact that constraint
set detection (function Ψ) can be changed to implement other conditions. We
provide two examples of such variations.

Ultimate Skeletons. In order to obtain ultimate skeletons instead of curvilin-
ear ones, we propose a very simple variation of D6I1D, consisting in replacing
ΨI1D by the function returning empty set (K is unchanged). We call this varia-
tion D6U.

Surface Skeletons. In order to obtain surface skeletons instead of curvilinear
ones, we propose a very simple variation of D6I1D, consisting in replacing ΨI1D

by a function ΨI2D returning the set of 2D-isthmuses (see Def. 1), which can be
locally detected. We call this variation D6I2D.

4 Comparative Results

We implemented our method in C++, using two usual optimizations: border
lists [24], in order to check only border points in each iteration, and look-up
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Fig. 5. Skeletons obtained with different algorithms. For each object, from the left to
the right: PKD6,D6I1D, D6I2D. The used objects, from the left to the right, then from
the top to the bottom: hand, chair, pipe, cylinder and Buddha.
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Table 1. For each object, the size of the image, the numbers of object points (OP),
and for both D6I1D and D6I2D, the number of skeleton points (SP), the number of
iterations (It) and the computation time in seconds (CT(s))

PKD6 D6I1D D6I2D
Object Size OP SP It CT(s) SP It CT(s) SP It CT(s)

Buddha 180 × 400× 180 2 514 223 1 953 90 1.06 1 636 90 1.06 66 492 56 0.98

chair 300 × 215× 215 907 601 855 81 0.35 814 82 0.35 20 238 28 0.33

pipe 300 × 300× 300 663 586 224 386 1.00 78 385 1.03 54 562 10 0.36

cylinder 200 × 200× 200 1 077 425 455 112 0.56 229 112 0.57 31 452 26 0.47

hand 185 × 350× 220 2 281 776 899 94 0.80 863 94 0.81 13 756 55 0.79

tables in order to use pre-computation, for each possible configuration of 26-
neighborhood, of the deletion tests and isthmuses detection. The results, ob-
tained on a PC under Linux, with a processor Intel(R) Core(TM) 2 Quad Q8200
at 2.33 GHz, are presented in Table 1.

Concerning the quality of the resulting skeleton, as no general quality mea-
surement exists (to our knowledge), we propose to visually compare the results
of PKD6 and D6I1D (see Fig. 5). It can be observed that our algorithm provides
results with less spurious branches than PKD6.

5 Conclusion

In this paper, we have proposed a new scheme based on isthmus, highly flexible,
fast to compute, and providing different kinds of good quality skeletons.
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Abstract. In this paper we will define relations between quasi-linear
transformations, numeration systems and fractals. A Quasi-Linear Trans-
formation (QLT) is a transformation on Zn which corresponds to the
composition of a linear transformation with an integer part function. We
will first give some theoretical results about QLTs. We will then point
out relations between QLTs, numeration systems and fractals. These re-
lations allow us to define new numeration systems, fractals associated
with them and n-dimensional fractals. With help of some properties of
the QLTs we can give the fractal dimension of these fractals.
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1 Introduction

Fractal tiles generated by numeration systems and substitutions have been widely
studied, see for example [1],[2], [5]. In this paper we define discrete linear trans-
formations called QLT which generate tilings of Zn. The tilings studied here are
self-similar, they allow us to generate n-dimensional fractals. In dimension two
we point out relations between QLTs and numeration systems which allow us to
define new numeration systems. These discrete linear transformations are also
in relation with discrete lines [17],[13].

Let g be a linear transformation from Zn to Qn, defined by a matrix 1
w A where

A is an integer matrix and w a positive integer. If we compose this transformation
with an integer part function we obtain a Quasi-Linear Transformation (QLT)
from Zn to Zn. We will only consider the integer part function with a positive
remainder. We will denote it � �. If x and y are two integers, �x

y � denotes the
quotient of the Euclidean division of x by y. We denote G as the QLT defined
by g. Main research results on QLTs are listed in the first section of this paper.

Let us consider β an algebraic number and D a set of elements of Z[β]. β
is a valid base using the digit set D if every integer c ∈ Z[β] has a unique

representation (decomposition) of the form: c =
n∑

j=0
ajβ

j , where aj ∈ D and
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n ∈ N. Then (β,D) is called a numeration system. The third section will point
out some relations between QLTs and numeration systems when β is a Gaussian
integer (β = a+ıb, with a, b ∈ Z) or an algebraic integer of order 2 (β2+bβ+a = 0
with a, b ∈ Z). These relations and some properties of QLTs will allow us to
generate new numeration systems.

In the fourth section we will see how QLTs generate fractals (some of them are
in relation with numeration systems). In 2D the fractal dimension of the border
of these fractals can be determined by substitutions associated with the QLT.
These substitutions have been defined in [8] and [11]. For the n-dimensional
fractals the fractal dimension is determined directely using properties of QLTs.

2 Quasi-Linear Transformations

In this section we recall definitions and results that can be found in [7], [10], [3],
[4] and that are useful in the rest of the paper. The proposition 1 can be found
in [10]. Proposition 2 extends to Zn a result given in [7] and [10] in Z2.

Definition 1. Let g be a linear transformation from Zn to Qn, defined by a ma-
trix 1

wA where A = (ai,j)1≤i,j≤n is an integer matrix and w a positive integer.
The Quasi-Linear Transformation or QLT associated with g is the transforma-
tion of the discrete plane Zn defined by the composition of g with the greatest
integer part function noted � �. This QLT is then noted G.

In the following we will denote δ = det(A), where det(A) is the determinant of
A, and we’ll assume that δ > 0. The linear transformation defined by the matrix
1
ω A extends to Rn and for each point Y of Rn, there exists a unique point X of
Rn such that Y = g(X). This is not the same for a QLT. Indeed, each point of
Zn can have either none, one or several antecedents: The set of antecedents of
X ∈ Zn is then called tile with index X .

Definition 2. We call tile with index X ∈ Zn and denote PG,X the set:

PG,X = {Y ∈ Zn|G(Y ) = X}

Definition 3. We call p-tile or tile of order p ∈ N, with index X ∈ Zn, and
denote P p

X the set: P p
G,X = {Y ∈ Zn|Gp(Y ) = X} where Gp denotes the trans-

formation G iterated p times.

Definition 4. Two tiles are geometrically identical if one is the image of the
other by a translation of an integer vector.

In this paper we focus on a particular type of QLTs, called ”m-determinantal
QLTs” and which are defined by 1

wA such that ω is a multiple of the determinant
of A.

Definition 5. A QLT defined by a matrix 1
w A such that w = m det(A) where m

is a positive integer, is called a m-determinantal QLT. A 1-determinantal QLT
will be called a determinantal QLT.
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In the following G will denote a m-determinantal QLT associated with the matrix
1

mδ A where δ = det(A), and g the associated rational linear transformation. To
simplify the notations, tiles PG,X and P p

G,X will be noted PX and P p
X . Moreover

(0, 0, . . . , 0) ∈ Zn will be simply noted O. Let denote ÂT the transpose the

cofactor matrix of A, we have A−1 =
1
δ
ÂT . The following proposition allow to

determine recursively the p-tiles of a m-determinantal QLT using translations
and PO, the proof can be found in [10].

Proposition 1. The p-tiles generated by a m-determinantal QLT are all geo-
metrically identical and can be generated recursively by translations of PO. More
precisely, if Tv refers to the translation of the vector v and if ÂT is the transpose
of the cofactor matrix of A we have, for all p ≥ 1:

P p
Y = T(mÂT )p

Y P p
O (1)

and P p+1
O =

⋃
X∈PO

T(mÂT )p
XP p

O =
⋃

X∈P p
O

T(mÂT )XPO (2)

Example 1. Figure 1 shows the tile of order 2 of the QLT defined by 1
8

(
2 3

−2 1

)
,

this tile is composed of 8 tiles of order 1. For each tile of order one we give the
index of the tile which is a point of PO. In figure 2 we see a fractal associated with

this QLT. Figure 3 shows the tile of order 12 of the QLT defined by 1
2

(
−1 1
−1 −1

)
and figure 4 shows the tile of order 7 of the QLT defined by 1

2

(
0 −1
1 −1

)
.

(-1;3)

(-2;3) (-1;2)

(0;2)

(-2;2)

(0;1)

(0;0)(-1;1)

Fig. 1. Tile of order 2 containing 8 tiles of
order 1

Fig. 2. Fractal associated with QLT

It is well known that if g is a contracting linear transformation of Rn then g
has the origin as unique fixed point and for each X ∈ Rn the sequence gn(X)
tends toward this fixed point. We will say that a QLT G is contracting if g
is contracting. But such a QLT has not necessarily a unique fixed point. The
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behaviour under iteration of 2D contracting QLTs has been studied in [7], [16],
[14] and [15]. The following definition and theorem will be used to define new
numeration systems.

Definition 6. A consistent Quasi-Linear Transformation is a QLT which has
the origin as unique fixed point such that for each discrete point Y the sequence
(Gn(Y ))n≥0 tends toward this unique fixed point.

Consider a 2D-QLT defined by 1
ω

(
a b
c d

)
, the infinite norm of g is then

||g||∞ =
1
ω

max(| a |+ | b |, | c |+ | d |).

The following theorem, proved in [7], states conditions such that a 2D-QLT is a
consistent QLT.

Theorem 1. Let G be a QLT in Z2 such that ||g||∞ < 1, G is a consistent QLT
if and only if one of the three following conditions is verified:

(1) b ≤ 0, a + b ≤ 0, c > 0 and d ≤ 0
(2) a ≤ 0, b > 0, c ≤ 0 and c + d ≤ 0
(3) a ≤ 0, b ≤ 0, c ≤ 0 and d ≤ 0

Remark 1. It would be to long to give here the conditions such that a QLT of
norm 1 is consistent. These conditions can be found in [7] and [11] and will be
used to define some numeration systems.

The following proposition determines the number of points of a tile of order
p and will be used in the last section to determine the fractal dimension of
n-dimensional fractals.

Proposition 2. The number of points of a p-tile generated by a m-determinantal
QLT in Zn is equal to δp(n−1)mnp.

Proof. Let first proof that the tile PO contains exactely δn−1mn points.
Case of m = 1 and n = 2. It is known (see [7] and [15]) that in this case the

number of points of PO equals δ.
Case of m = 1 and n > 2. It has been proved in [7] and [3] that for each in-

teger matrix A it exists an unimodular matrix U such that AU = B where
B is an upper triangular integer matrix and that the points of the tiles of
A are in one-to-one correspondance with the points of the tiles of B. There-
fore we will only do the proof for an upper triangular integer matrix B =
(bi,j)1≤i,j≤n, we then have δ = b1,1b2,2 . . . bn,n. Let denote PO, the tile as-
sociated with B and P ′

X the tiles associated with B′ = (b′i,j)1≤i,j≤n−1 with
b′i,j = bi+1,j+1 and δ′ = b2,2b3,3 . . . bn,n = det(B). By recurrence hypothe-
sis we will suppose that the number of points of P ′

X equals δ′n−2. We have:
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(x1, x2, . . . , xn) ∈ PO

⇔

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 ≤ b1,1x1 + b1,2x2 + . . . + b1,nxn < δ
0 ≤ b2,2x2 + . . . + b2,nxn < δ
...

...
...

0 ≤ bn,nxn < δ

⇔

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− b1,2x2+...+b1,nxn

b1,1
≤ x1 < δ′ − b1,2x2+...+b1,nxn

b1,1

0 ≤ b2,2x2+...+b2,nxn

δ′ < b1,1
...

...
...

0 ≤ bn,nxn

δ′ < b1,1

⇔
{
− b1,2x2+...+b1,nxn

b1,1
≤ x1 < δ′ − b1,2x2+...+b1,nxn

b1,1

(x2, x3, . . . , xn) ∈ P ′
i2,i3,...,in

with ik = 0, 1, . . . , b1,1 for k = 2, 3, . . . , n

The number of solutions for x1 equals δ′ and each tile P ′
i2,i3,...,in

contains δ′n−2,
therefore we have δ′δ′n−2bn−1

1,1 = δn−1 points.
If m > 1, let denote P ′

X the tiles associated with 1
δ A and PO the tile associated

with 1
mδ A, we have:

(x1, x2, . . . , xn) ∈ PO

⇔

⎧⎪⎨⎪⎩
0 ≤ a1,1x1 + a1,2x2 + . . . + a1,nxn < mδ
...

...
...

0 ≤ an,1x1 + an,2x2 + . . . + an,nxn < mδ

⇔

⎧⎪⎨⎪⎩
0 ≤ a1,1x1+a1,2x2+...+a1,nxn

δ < m
...

...
...

0 ≤ an,1x1+an,2x2+...+an,nxn

δ < m
⇔ (x1, x2, . . . , xn) ∈ P ′

i1,i2,...,in
with i1, i2, . . . , in = 0, 1, . . . , m− 1

But each P ′
i1,i2,...,in

contains δn−1 points, it follows thats PO contains δn−1mn

points.
We conclude that the number of points of PO equals δn−1mn.
Let now supose that the number of points of P p

O equals δp(n−1)mnp, we have
P p+1

O =
⋃

X∈PO
T(mÂT )p

XP p
O (see proposition 1), it follows that the number of

points of P p+1
O equals δp(n−1)mnpδn−1mn = δ(p+1)(n−1)mn(p+1). �	

3 Quasi-Linear Transformations and Numeration Systems

Let β denote a complex number and D a finite set of elements of Z[β]. (β,D)
is a valid base for Z[β] if each element c of Z[β] can be written uniquely in the
form c = c0 + c1β + c2β

2 . . . + cnβn with ci ∈ D and n ∈ N; the length of the
decomposition is then n + 1. We also say that (β,D) is a numeration system of
Z[β] and D is the set of digits of this numeration system.
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Fig. 3. Border of P 12
O Fig. 4. Border of P 7

O

3.1 Case of Gaussian Integers

The results below can be found in [8]: They allow us to determine numeration
systems of Z[i] by considering β = a + ib a Gaussian integer and D a set of
Gaussian integers.

Definition 7. Let c = x + iy and β = a + ib be two Gaussian integers. The

integer division of c by β, noted
⌊

c

β

⌋
, is defined by:

⌊
c

β

⌋
=

⌊
ax + by

a2 + b2

⌋
+

i

⌊
−bx + ay

a2 + b2

⌋
.

This division corresponds to the usual division of complex numbers composed
with the integer part function, so we have the following relation with QLTs.

Proposition 3. Let β = a + ib and c = x + iy be two Gaussian integers and let

c′ = x′ + iy′ =
⌊

c

β

⌋
. The point (x′, y′) is then the image of the point (x, y) by

the QLT Gβ defined on Z2 by the matrix
1

a2 + b2

(
a b
−b a

)
.

The following theorem and its proof can be found in [7] and [8].

Theorem 2. Let β = a + ib be a Gaussian integer and D the set of Gaussian

integers c such that
⌊

c

β

⌋
= 0, the three following properties are then equivalent:

1. (β,D) is a numeration system,
2. The QLT Gβ is a consistent Quasi-Linear Transformation,
3. a ≤ 0 and | a |+ | b | > 1.

Remark 2. Consider the QLT Gβ and note PO and P p
O the tiles defined by this

QLT. In order to determine the set of digits, we have to determine PO. In [7]
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and [9] we can find an algorithm that allows to determine PO. P p
O represents

the elements of Z[β] such that the decomposition in the numeration system is
of length p. For example, figure 3 represents the elements of Z[−1 + i] such that
the decomposition in the numeration system (−1 + i, {0,−1}) is of length 12.

3.2 Case of Algebraic Integers of Order 2

Now we consider β an algebraic integer such that β2 + bβ + a = 0 with a, b ∈ Z.
We only consider the case where β is a complex number, that is to say b2−4a < 0.
We will define numeration systems of Z[β] where the digits are elements of Z[β].
First we will define an integer division by β, this integer division corresponds to
a QLT that will define the digits of the numeration system. We will define the
division by using another base of Z[β], the QLT associated with the division will
depend on these base, a good choice of the base will raise to a consistent QLT
and so define a numeration system.

Remark 3. Let β1 = q + β with q ∈ Z, we have Z[β] = Z[β1], indeed:

x = x1 + x2β ∈ Z[β]
⇔ ∃x1, x2 ∈ Z | x = x1 + x2β
⇔ ∃x1, x2 ∈ Z | x = x1 − x2q + x2β1
⇔ ∃x′

1, x
′
2 ∈ Z | x = x′

1 + x′
2β1

⇔ x ∈ Z[β1]

Let now define the integer division using this base. We have β2 + bβ + a = 0, so
1
β = −β+b

a = −β1+q−b
a and β2

1 = β1(2q− b)− q2 + qb− a. Let x = x1 + x2β1, we
have:

x

β
=

(x1 + x2β1)(−β1 + q − b)
a

=
x2(β1(b− 2q) + q2 − qb + a) + β1(x2(q − b)− x1) + x1(q − b)

a

=
x1(q − b) + x2(q2 − qb + a) + (−x1 − x2q)β1

a
.

We define the integer division of x by β by the composition of the division above
with the integer part function.

Definition 8. Let x = x1 + x2β1, the quotient of the integer division of x by β,

noted �x
β �, is defined by �x

β � = �x1(q − b) + x2(q2 − qb + a)
a

�+� (−x1 − x2q)
a

�β1.

Proposition 4. Let x = x1 +x2β1, and y = y1 +y2β1 = �x
β �. The point (y1, y2)

is then the image of the point (x1, x2) by the QLT Gβ1 defined on Z2 by:

1
a

(
q − b a− qb + q2

−1 −q

)
.
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A digit of the numeration system is an element x of Z[β] such that �x
β � = 0,

therefore the set of digits is

D = {x ∈ Z[β] | �x
β
� = 0} = {x = x1 + x2β1 | Gβ1(x1, x2) ∈ PO}

where PO is the tile of order one associated to the QLT Gβ1 .

Theorem 3. Let β be an algebraic integer such that β2 + bβ + a = 0 and D the

set of elements c of Z[β] such that
⌊

c

β

⌋
= 0, the three following properties are

then equivalent:

1. There exists q such that (β,D) is a numeration system,
2. There exists q such that the QLT Gβ1 is a consistent QLT,
3. (b ≥ 2 ) or (b = 1 and a ≥ 2)

Proof. (β,D) is a numeration system if and only if for all c ∈ Z[β], there exist
c0, c1, . . . , cp ∈ D such that c = c0+c1β+. . .+cpβ

p. Moreover, this decomposition
has to be unique. It is easy to see that if this decomposition exists then ci =
xi + yiβ1 with (xi, yi) = Gi

β1
(x, y) where x + yβ1 = c. We conclude that the

decomposition exists and is unique if and only if for each (x, y) ∈ Z2 there
exists p ∈ N such that Gp

β1
(x, y) = (0, 0). Finally (β,D) is a numeration system

if and only if Gβ1 is a consistent QLT. Theorem 1 gives the necessary and
sufficient conditions such that Gβ1 is a consistent QLT but only for QLTs such
that ||Gβ1 ||∞ < 1. The first and the third case of this theorem can not be
satisfied. Indeed, in these two cases we have the condition q2 − qb + a ≤ 0 and
we have assumed that b2 − 4a < 0 so that q2 − qb + a is always positive. The
second case corresponds to the conditions

q − b ≤ 0, q2 − qb + a > 0, −1 ≤ 0 and − 1− q ≤ 0

which is equivalent to −1 ≤ q ≤ b. But ||Gβ1 ||∞ < 1, implies

||Gβ1 ||∞ =
1
a
max(b− q + q2− qb+ a; 1+ |q|) < 1⇔

{
q2 − (b + 1)q + b < 0 (1)

1 + |q| < a (2)

If b ≤ 2, the conditions −1 ≤ q ≤ b and q2 − (b + 1)q + b < 0 are conflicting.
But if b > 2, the condition (1) is satisfied for 1 < q < b and the condition (2)
1 + q < a can always be satisfied (because b2 < 4a).

When b = 2 the QLT associated with the integer division is of norm 1. If

we choose q = 2 the QLT is defined by the matrix
1
a

(
0 a− 1
−1 −1

)
which is a

consistent QLT (see [7],[11]).
When b = 1, the QLT associated with the integer division is defined by

1
a

(
q − 1 a− q + q2

−1 −q

)
. If a = 1 and q > 1 the QLT is not contracting, if a = 1

and q = 0 or 1 the QLT is not consistent (see [7]). If a > 1, we can choose q = 1,

then the QLT is defined by
1
a

(
0 a

−1 −1

)
which is a consistent QLT. �	
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Example 2. Let β2 + 3β + 3 = 0, and β1 = 1 + β, the QLT corresponding to

the integer division by β is defined by
1
3

(
−2 1
−1 −1

)
, the set of digits is D =

{0,−1,−2− β}. If we choose β1 = 2 + β, the QLT corresponding to the integer

division by β is defined by
1
3

(
−1 1
−1 −2

)
, the set of digits is D = {0,−1,−2}.

4 Quasi-Linear Transformations and Fractals

4.1 Border of Tiles in 2-Dimension

Let β denote a complex number and D a finite set of elements of Z[β]. (β,D)
is a valid base for Z[β] if each element c of Z[β] can be written uniquely in the
form c = c0 + c1β + c2β

2 . . . + cnβn with ci ∈ D and n ∈ N.
Gilbert [6] proved that if (β,D) is a valid base for Z[β], then every complex

number c ∈ C has an infinite representation (not necessarily unique) in the form:

c =
p∑

j=−∞
cjβ

j , cj ∈ D.

Let us consider the set of complex numbers with zero integer part in this nu-
meration system (also called ”fundamental domain” in the literature [12]), that
is to say the set K of complex numbers c such that:

c =
−1∑

j=−∞
cjβ

j , cj ∈ D.

In [5] Gilbert determined the fractal dimension of the border of this set con-
sidering the base β = −n + i with n ∈ N and D = 0, 1, . . . , n2. Note Kp ={

c ∈ C|c =
p∑

j=1

cj

βj

}
, the set K is the limit of Kp when p tends toward infinity.

Denote by ρ and θ the module and argument of β: β = ρeiθ. We have ρ =
√

δ
where δ is the determinant of the matrix associated to the division, and so:

Kp =

{
c ∈ C|c =

p∑
j=1

cj

βj
with cj ∈ D

}

=

⎧⎨⎩c ∈ C|c =
1
βp

p∑
j=1

cjβ
p−j with cj ∈ D

⎫⎬⎭
=

1
βp

⎧⎨⎩c ∈ C|c =
p−1∑
j=0

cjβ
j with cj ∈ D

⎫⎬⎭
If β is a Gaussian integer D = PO, if β is an algebraic integer

D = {x = x1 + x2β1|(x1, x2) ∈ PO} .
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In [8] we studied particular determinantal QLTs associated with matrices of the

form 1
a2+b2

(
a b
−b a

)
and showed how the border of the p-tiles of these QLTs can

be generated by a substitution. This study has been generalized to every 2D
determinantal QLT, so we define substitutions that generate the border of the
p-tiles P p

O. We don’t give the method to generate the substitutions in this paper,
it can be found in [11]. The susbtitution associated with the QLT, determines
the border of PO. If at each step of the substitution we divide the length of
these segments by

√
δ, we obtain the border of a fractal set noted F (which

corresponds exactely to the fundamental domain in case of Gaussian integers).
Let denote by Np the number of segments of P p

O, the susbtitution allows to
determine Np. Using the counting box dimension we can determine the fractal
dimension of the border which is given by d = limp→+∞

log Np

log δ
p
2
.

Example 3. Figure 3 represents a tile associated to the numeration system (−1+
i, {0,−1}), the associated set Kp defined above tends to the fundamental domain
of this numeration system, we obtain the fractal dimension d = 1, 5236 (which
conforms to the result found in [5]). Figure 4 doesn’t correspond to a numeration
system, the fractal dimension of the set obtained is d = 1, 303.

4.2 Fractals of Zn

Consider the recurrence given in proposition 1 which allows the construction of
Pn

O ∈ Zn. By applying this recurrence to a subset P ′
O of PO, that is to say that

we define
P ′p+1

O =
⋃

X∈P ′
O

T(mÂT )p
XP ′p

O =
⋃

X∈P ′p
O

T(
m̂A

T
)

X
P ′

O

Proposition 5. Let denote Np the number of points of P ′p
O and N the number

of points removed from PO to obtain P ′
O. We have Np = (mnδn−1 −N)p.

Proof. In property 2 we proved that the number of points of PO equals mnδn−1

therefore N1 = mnδn−1 − N . Suppose that Np = (mnδn−1 − N)p, we have
P ′p+1

O =
⋃

X∈P ′
O
T(mÂT )p

XP ′p
O , it follows that:

Np+1 = N1Np = (mnδn−1 −N)(mnδn−1 −N)p = (mnδn−1 −N)p+1. �	

Like above, at each step of the recurrence, we divide the size of the points by
mδ

n−1
n . We then obtain a fractal whose box-counting dimension is given by

d = lim
p→∞

log(mnδn−1 −N)p

log((mδ
n−1

n )p)
=

log(mnδn−1 −N)

log(mδ
n−1

n )

If we consider numeration systems, P ′
O corresponds to a subset D′ of the set of

digits D, so that the fractal obtained corresponds to the set of numbers with
zero integer part and whose decomposition uses only the digits of D′.
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Example 4. In figures 5,6 and 2 we see PO and the fractal generated.The black
points of P0 are removed to obtain P ′

O (which corresponds to the grey points).

The QLT in figure 5 is defined by 1
9

(
0 −3
3 0

)
, the fractal dimension of the set

is log(7)
log(3) = 1, 7712, it corresponds to the numeration system (−3i, {u + iv|u =

0, 1, 2 v = 0,−1,−2}) and represents the set of numbers with zero integer part
and whose decomposition don’t use the digits 0 and 2−2i. In figure 6 the QLT is

defined by 1
13

(
−2 3
−3 −2

)
, the fractal dimension of the set is 2 log(8)

log(13) = 1, 6214, it

corresponds to the numeration system (−2 + 3i, {0,−1,−2,−3,−4,−1 + i,−2+
i,−3 + i − 4 + i,−2 + 2i,−3 + 2I,−2 − i,−3 − i}) and represents the set of
numbers with zero integer part and whose decomposition don’t use the digits

0,−4,−1 + i,−3 + 2i and −2− 2i. In figure 2 the QLT is defined by 1
9

(
2 3

−2 1

)
and the fractal dimension of the set is 2 log(5)

log(8) = 1, 5479.

Fig. 5. Fractal associated with numera-
tion systems

Fig. 6. Another fractal associated with
numeration systems

5 Conclusion

We have seen relations that exist between QLTs, numeration systems and frac-
tals. We used consistent 2D-QLTs (see definition 6) to define new numeration
systems of Z[β] where β is an algebraic integer of order 2. These numeration
systems are associated with 2D-fractals in two ways. If we consider the set of
numbers with zero integer part in the numeration system we obtain a set with
fractal border. The fractal dimension of this border is determined with help of
substitution associated to particular QLTs. This way to obtain fractals is gen-
eralised to all m-determinantal 2D QLTs (see definition 5). As a future work, it
would be interesting to generalise this method to Zn which implies the general-
isation of substitutions in higher dimension. If we consider the set of numbers
with zero integer part and whose decompositions use a subset of the set of digits
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we obtain another fractal set. Properties of the QLTs associated to the numera-
tion systems allow to determine the fractal dimension of these sets. This way to
obtain fractal (and their fractal dimension) is generalised to all m-determinantal
QLTs in Zn. As a future work we would like to generalise the numeration systems
to algebaic number of higher order. In [2], the author studied fractals associated
with shift radix systems (which generalize numeration systems). Some of these
fractals can be obtained usign QLTs, one of our future works is to study the
relations between QLTs and these numeration systems.
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Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp.
493–504. Springer, Heidelberg (2009)

4. Coeurjolly, D., Blot, V., Jacob-Da Col, M.-A.: Quasi-Affine Transformation in 3-
D: Theory and Algorithms. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009.
LNCS, vol. 5852, pp. 68–81. Springer, Heidelberg (2009)

5. Gilbert, W.J.: The Fractal Dimension of Sets derived from Complex Bases. Canad.
Math. Bull. (1986)

6. Gilbert, W.J.: Complex Based Number Systems. University of Waterloo (2002),
http://www.math.uwaterloo.ca/~wgilbert/Research/FractalPapers.html

7. Jacob, M.-A.: Applications quasi-affines. PhD thesis, Université Louis Pasteur,
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Abstract. This paper presents a path-based distance where local dis-
placement costs vary both according to the displacement vector and
with the travelled distance. The corresponding distance transform al-
gorithm is similar in its form to classical propagation-based algorithms,
but the more variable distance increments are either stored in look-up-
tables or computed on-the-fly. These distances and distance transform
extend neighborhood-sequence distances, chamfer distances and gener-
alized distances based on Minkowski sums. We introduce algorithms to
compute, in Z2, a translated version of a neighborhood sequence distance
map with a limited number of neighbors, both for periodic and aperi-
odic sequences. A method to recover the centered distance map from the
translated one is also introduced. Overall, the distance transform can be
computed with minimal delay, without the need to wait for the whole
input image before beginning to provide the result image.

1 Introduction

In [8] discrete distances were introduced along with sequential algorithms to
compute the distance transform (DT) of a binary image, where each point is
mapped to its distance to the background. These discrete distances are built from
adjacency and connected paths (path-based distances): the distance between two
points is equal to the cost of the shortest path that joins them. For distance d4
(“d” in [8]), defined in the square grid Z2, each point has four neighbors located
at its top, left, bottom and right edges. Similarly, for distance d8 (“d∗” in [8]),
each point has four extra diagonally located neighbors. In both cases, d4 and
d8, the cost of a path is defined as the number of displacements. These simple
distances have been extended in different ways, by changing the neighborhood
depending on the travelled distance ([9,2]), by weighting displacements [5,2], or
even by a mixed approach of weighted neighborhood sequence paths [10].

Section 2 presents definitions of distances, disks and some properties of non-
decreasing integer sequences that will be used later. Section 3 introduces a new
generalization of path-based distances where displacement costs vary both on the
displacement vector and on the travelled distance. An application is presented
in section 4 for the efficient computation of neighborhood-sequence DT in 2D.

I. Debled-Rennesson et al. (Eds.): DGCI 2011, LNCS 6607, pp. 199–210, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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2 Preliminaries

Lambek-Moser inverse of a integer sequence [4]. Let the function f de-
fine a non-decreasing sequences of integers (f(1), f(2), . . . ) For the sake of sim-
plicity, we call f a sequence. The inverse sequence of f , denoted by f †, is a
non-decreasing sequence of integers defined by:

f(m) < n ⇔ f †(n) �< m . (1)

An interesting property of a sequence f and its inverse f † is that, by adding
the rank of each term to these two sequences, we obtain two complementary
sequences f(m) + m and f †(n) + n [4]. This property extends the results given
by Ostrowski et al. [7] about Beatty sequences [1]. From [4], we deduce that the
inverse of the sequence f(m) = �τm� with a scalar τ , is f †(n) = n

τ − 1� so
f(m) + m = �(1 + τ)m� and f †(n) + n = (1 + 1

τ )n− 1� are two complementary
sequences. If τ is irrational, these sequences are Beatty sequences and, for any
positive n, (1 + 1

τ )n− 1� is equal to �(1 + 1
τ )n� as given in [1].

Proposition 1. f †(f(m) + 1) + 1 is the rank of the smallest term greater than
m where f increases.

Proof.

f †(f(m) + 1) + 1 = m′ ⇔
{

f †(f(m) + 1) < m′

f †(f(m) + 1) ≥ m′ − 1

⇔
{

f(m′) ≥ f(m) + 1
f(m′ − 1) < f(m) + 1

⇔ f(m′) > f(m) and f(m′ − 1) ≤ f(m) .

If we extend f with f(0) = 0, and define g by g(0) = 0, g(n +1) = f †(f(g(n))+
1) + 1, then f(g(n)) takes, in increasing order, all the values of f , each one
appearing once.

Definition 1 (Discrete distance). A function d : Zn×Zn → N is a translation-
invariant distance if the following conditions holds ∀x, y, z ∈ Zn, ∀λ ∈ Z:

1. translation invariance d(x + z, y + z) = d(x, y) ,
2. positive definiteness d(x, y) ≥ 0 and d(x, y) = 0⇔ x = y ,
3. symmetry d(x, y) = d(y, x) ,

In the following sections, we will drop definiteness and symmetry to define
“asymmetric pseudo-distances”.

Definition 2 (Disk). The disk D(p, r) of center p and radius r and the sym-
metrical disk Ď(p, r) are the sets:

D(p, r) = {q : d(p, q) ≤ r} ,

Ď(p, r) = {q : d(q, p) ≤ r} .
(2)
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Table 1. Example of a non-decreasing sequence f and its Lambek-Moser inverse. f is
the cumulative sequence of the periodic sequence (1, 2, 0, 3), f† its inverse. f†(f(n) +
1)+1 locates the rank of the next f increase. For instance, f(6) = 9, f†(f(6)+1)+1 = 8
is the rank of appearance of the first value greater than 9, which is 12 in this case.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
f(n) 1 3 3 6 7 9 9 12 13 15 15 18 19 21

f†(n) 0 1 1 3 3 3 4 5 5 7 7 7 8 9
f†(f(n) + 1) + 1 2 4 4 5 6 8 8 9 10 12 12 13 14 16

By definition, any disk of negative radius is empty and the disk of radius 0 only
contains its center (D(p, 0) =

{
p
}
).

Definition 3 (Distance transform). The distance transform DTX of the bi-
nary image X is a function that maps each point p to its distance from the closest
background point:

DTX : Zn → N

DTX(p) = min
{
d(q, p) : q ∈ Zn \X

}
.

(3)

Alternatively, since all points at a distance less than DTX(p) to p belong to
X (Ď(p, DTX(p) − 1) ⊂ X) and at least one point at a distance to p equal to
DTX(p) is not in X (Ď(p, DTX(p)) �⊂ X) then:

DTX(p) ≥ r ⇔ Ď(p, r − 1) ⊂ X . (4)

The DT is usually defined as the distance to the background which is equiva-
lent to the distance from the background by symmetry. The equivalence is lost
with asymmetric distances, and this definition better reflects the fact that DT
algorithms always propagate paths from the background points.

In this paper, we consider path-based distances, i.e. distance functions that
associate to each couple of points (p, q), the minimal cost of a path from p to q.
For a simple distance, a path is a sequence of points where the difference between
two successive points is a displacement vector taken in a fixed neighborhood N ,
and the cost (or length) of a path is the number of its displacements. The cost
of the path (p0, . . . , pn, pn + v) derives from the cost of the path (p0, . . . , pn):

L(p0, . . . , pn) = r ⇒ ∀v ∈ N ,L(p0, . . . , pn, pn + v) = r + 1 . (5)

Rosenfeld and Pfaltz specifically forbid paths where a point appears more than
once [8]. This restriction has no effect on the distance because a path where a
point appears more than once can not be minimal. In a similar manner, they
exclude the null vector from the neighborhood, forbidding a point to appear
several times consecutively. As before, it has no effect on the distance. Notice
that, in terms of distance, forbidding a path is equivalent to giving it an infinite
cost, so that it can not be minimal. (5) can be rewritten as:

L(p0, . . . , pn) = r ⇒ ∀v,L(p0, . . . , pn, pn + v) = r + cv ,
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where

cv =

{
1 if v ∈ N
∞ otherwise

.

For a NS-distance characterized by the sequence B:

L(p0, . . . , pn) = r ⇒ ∀v,L(p0, . . . , pn, pn + v) = r + cB
v (r) , (6)

where the displacement cost cB
v (r) is 1 for a displacement vector in the neigh-

borhood B(r + 1) and infinite otherwise:

cB
v (r) =

{
1 if v ∈ NB(r+1)

∞ otherwise
(7)

For a weighted distance with mask M = {(vk; wk) ∈ Zn × N∗}1≤k≤m, the dis-
tance increment only depends on the displacement vector, but not on the distance
already travelled:

L(p0, . . . , pn) = r ⇒ ∀v,L(p0, . . . , pn, pn + v) = r + cv , (8)

cv =

{
w if (v; w) ∈ M
∞ otherwise

Briefly, the displacement cost for a vector v and the travelled distance r, is 1 or
∞, independently of r for simple distances, is equal to 1 or∞ whether v belongs
or not to NB(r) for a NS-distance, is in N∗∪{∞} according to the chamfer mask
and independently of r for a weighted distance.

In the following, we propose to use a displacement cost, denoted by cv(r), with
values in N∗ ∪{∞}, that depends both on the displacement vector v and on the
travelled distance r. According to the previous remarks, the cost associated to
the null displacement will always be unitary:

∀r ∈ N, c0(r) = 1 . (9)

3 Path-Based Distance with Varying Weights

Definition 4 (Path). We call path from p to q, any finite sequence of points
P = (p = p0, p1, . . . , pn = q) with at least one point, and denote by P(p, q), the
set of these paths.

Notice that this definition of a path is not related to any adjacency relation.
The sequence P = (p) is allowed as a path from p to itself. It is distinct from
P = (p, p), the path from p to itself with a null displacement.

Definition 5 (Partial and total costs of a path). Let N be a set of vectors
containing the null vector 0 and the positive displacement costs cv (with c0(r) = 1
and cv �∈N (r) = ∞). The total cost of the path P = (p0, p1, . . . , pn) is:

L(P ) = Ln(P ) , (10)
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where Li(P ) is the partial cost of the path truncated to its i + 1 first points (i.e.,
to its i first displacements):

L0(P ) = L(p0) = 0 , (11)
Li+1(P ) = L(p0, . . . , pi+1) = Li(P ) + cpipi+1

(Li(P )) . (12)

Definition 6. We use the notation Cvk(r) = r + cvk(r). cvk(r) is the relative
cost of the displacement vk when the distance travelled so forth is r. Cvk(r)
represents the partial cost of the path after this displacement (the absolute cost
of this displacement):

Li+1(P ) = Li(P ) + cpipi+1
(Li(P )) = Cpipi+1

(Li(P )) . (13)

Definition 7. The pseudo-distance induced by
({

vk

}
, cvk

)
is defined by:

d(p, q) = 0 ⇔ p = q

d(p, q) = min
P∈P(p,q)

{
L(P )

}
.

Definition 8. We call minimal relative (resp. absolute) cost of displacement,
denoted by ĉ (resp. Ĉ), the quantity ĉv(r) = min

{
cv(s) + s − r, ∀s ≥ r

}
(resp.

Ĉv(r) = min
{
Cv(s), ∀s ≥ r

}
).

Proposition 2 (Preservation of cost order by concatenation). Appending
the same displacement to existing paths preserves the relation order of their costs.
Let P = (p1, · · · , pnP ) and Q = (q1, · · · , qnQ) be two paths with costs L(P ) and
L(Q), v a vector and P ′ = (p1, · · · , pnP , pnP +v), Q′ = (q1, · · · , qnQ , qnQ +v) the
extended paths with costs L(P ′) and L(Q′) measured with minimal displacement
costs. Then:

L(P ) ≤ L(Q) ⇒ L(P ′) ≤ L(Q′) . (14)

Proof. From (13), L(P ′) = Ĉv(L(P )) and L(Q′) = Ĉv(L(Q)). By definition of
Ĉv , s ≤ r ⇒ Ĉv(s) ≤ Ĉv(r), which gives (14).

Proposition 3. Let N =
{
vk

}
be a set of vectors and, cv(r), the displacement

costs for these vectors. There exists a path P from p to q of cost L(P ) = r
measured with costs cv(r) if and only if there exists a path P ′ from p to q of cost
L′(P ′) = r measured with the minimal displacement costs ĉv(r).

p0

p1

p2 p3

cp0p1(0) cp1p2(L1(P ))

cp2p3(L2(P ))

Fig. 1. Total cost of a path P = (p0, p1, p2). Costs of displacements p0p1, p1p2 and
p2p3 depend on the partial costs L0(P ) = 0, L1(P ) = cp0p1(0) + 0 and L2(P ) =
cp1p2(L1(P )) + L1(P ). The total cost of P is cp2p3(L2(P )) + L2(P ).
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Proof. Consider the cost of P after i displacements, Li(P ) = Li(p0, p1, . . . , pi),
we note m0 = 1, m0<i≤n = 1 + Li(P ) − Li−1(P ) − ĉpi−1pi(Li−1(P )) = 1 +
cpi−1pi(Li−1(P ))− ĉpi−1pi(Li−1(P )) and Mi =

∑i
j=0 mi the cumulated sum of

mi. Clearly, if L(P ) is finite then each mi is finite and positive because ĉv(r) is
less than or equal to cv(r) by construction. Let P ′ be the (finite) path obtained
by mi occurrences of each point pi:

P ′ = (p0, p1 . . . p1︸ ︷︷ ︸
m1

, . . . , pi . . . pi︸ ︷︷ ︸
mi

, . . . , pn . . . pn︸ ︷︷ ︸
mn

) .

We take as an induction hypothesis that the partial cost of P ′ after mi occur-
rences of pi, L′

Mi−1(P
′), is equal to Li(P ). It holds for i = 0 because L′

M0−1(P
′) =

L′
m0−1(P ′) = L′

0(P ′) = 0 = L0(P ). If the hypothesis holds for i − 1, then the
partial cost of P ′ after the first occurrence of pi is L′

Mi−1
(P ′) = Li−1(P ) +

ĉpi−1pi(Li−1(P )), and after mi − 1 repeats of pi, equals: L′
Mi−1+mi−1(P

′) =
L′

Mi−1(P
′) = Li−1(P )+ĉpi−1pi(Li−1(P ))+mi−1 = Li−1(P )+cpi−1pi(Li−1(P ))

= Li(P ) and the hypothesis is true at rank i. Therefore, for every path of finite
cost r measured with L, there exists a path with the same cost measured with L′.
This is shown in Fig. 2a.

Conversely, let P ′ be a path with finite cost measured by L′. We build a path
P where each point of P ′ appears m′

i times consecutively with m′
i such that

m′
i− 1 + cpipi+1

(L′
i(P

′) + m′
i− 1) = ĉpipi+1

(L′
i(P

′)). By definition of ĉ, ∀r, ∃s :
ĉv(r) = cv(s) + s− r, so m′

i exists. Let M ′
0 = 0 and M ′

0<i≤n =
∑i−1

j=0 mj, be the
cumulated sum of the previous terms of m′

i.
The induction hypothesis is that the partial cost of P , measured with L, at

the first occurence of pi, LM ′
i
(P ), is equal to L′

i(P
′). It holds for i = 0 with

a null partial cost LM ′
0
(P ) = L0(P ) = 0 = L′

0(P
′). If the hypothesis holds at

rank i, the partial cost of P , after m′
i − 1 repetitions of pi, if LM ′

i+m′
i−1(P ) =

LM ′
i
(P ) + m′

i − 1 = L′
i(P

′) + m′
i − 1, and at the first occurence of pi+1, equals

L′
i(P

′)+m′
i−1+cpipi+1

(L′
i(P

′)+m′
i−1) = L′

i(P
′)+ ĉpipi+1

(L′
i(P

′)) = L′
i+1(P

′)
and the hypothesis also holds at rank i + 1. An example of such a path is shown
on Fig. 2b.

Corollary 1. Displacement costs cv and ĉv induce the same pseudo-distance.

According to (9), any path from p to q of cost less than r can be extended with
null displacements to reach cost r:

L(p0, . . . , pn = q) = s < r ⇒ L(p0, . . . , pn = q, . . . , q︸ ︷︷ ︸
1+r−s

) = r (15)

Proposition 4. There exists a path of cost r from p to q if and only if
d(p, q) ≤ r.

Proof. If a path of cost r from p to q exists then by definition of the distance,
d(p, q) = r if P cost is minimal, d(p, q) < r otherwise. Conversely, if d(p, q) = s
then there exists a path of cost s from p to q that, according to (15), can be
extended to cost r ≥ s.
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(a)
p0 p1 p2

+5 +3

+3
+1+1

+2

+1

r 0 1 2 3 4 5 6
cv (r) 5 2 ∞ ∞ ∞ 3 1
ĉv (r) 3 2 5 4 3 2 1

(b)
p0 p1 p2

+3 +4

+1

+2
+1

+1
+1

+1 r 0 1 2 3 4 5 6
cv (r) 5 2 ∞ ∞ ∞ 3 1
ĉv (r) 3 2 5 4 3 2 1

Fig. 2. (a) Given P = (p0, p1, p2), shown with dashed lines, has a total cost L(P ) = 8
measured with displacement costs cv . P ′ = (p0, p1, p1, p1, p2, p2), solid lines, is built
in such a way that its cost L′(P ′) measured with minimal displacement costs ĉv , is
equal to L(P ) = 8. (b) Given P ′ = (p0, p1, p2), shown with solid lines, has a total cost
L′(P ′) = 7 measured with displacement costs ĉv . P = (p0, p0, p1, p1, p1, p1, p2), dashed
lines, is built in such a way that L(P ) = L′(P ′) = 7.

Corollary 2. For any value of r greater than or equal to d(p, q), there exists a
path from p to q which cost is exactly r. The closed disk centered in p with radius
r is the set of points for which a path from p of cost equal to r exists:

q ∈ D(p, r) ⇔ ∃P ∈ P(p, q),L(P ) = r . (16)

An iterative construction rule of disks is deduced from (16):

∀r > 0, D(p, r) =
⋃

v∈N

{
q : ∃P ∈ P(p, q − v) and Cv(L(P )) = r

}
=

⋃
v∈N

s : Cv (s)=r

D(p + v, s) (17)

4 Minimal Delay Distance Transform

In [12], Wang and Bertrand, proposed a single scan asymmetric generalized
DT based on a neighborhood for which there exists a scanning order such that
when a point p in the image is scanned, all neighbors of p have already been
scanned (forward scan condition). Then, they extended this result to a sequence
where two neighborhoods with forward scan condition are alternated (i.e., B =
(1, 2)) [13]. In the following we propose a method to compute an asymmetric
generalized DT based on any number of neighborhoods having forward scan
condition used in an arbitrary order defined by a sequence B, either periodic
or not. For our purpose, we will use translated versions of regular NS-distances
neighborhoods, in order to meet the forward scan condition for each of them.
The resulting translated distance map can easily be transformed back into a
regular, symmetrical, NS-distance map.
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Proposition 5. The DT of an image X with the distance induced by the neigh-
borhood N and the displacement costs Cv is such that:

DTX(p) =

{
0 if p �∈ X

min
{
Ĉv(DTX(p− v)), v ∈ N ∗} otherwise

(18)

where Ĉv represents the minimal absolute displacement costs corresponding to
Cv (definition 8).

Proof. Case p �∈ X directly results from definitions 3 and 7. Suppose now that
p ∈ X so any path from q �∈ X to p has at least one displacement. Prop. 3
states that distances induced by

({
vk

}
, Cvk

)
and

({
vk

}
, Ĉvk

)
are equal so we

consider the latter cost increments for which prop. 2 holds. According to prop.
2, if P = (q = p0, . . . , pn = p − v) is a minimal path from q to p − v then
P ′ = (q = p0, . . . , pn, p+v) has a minimal cost — among paths from q to p with
second last point p−v — equal to Ĉv(L(P )). So Ĉv(DTX(p−v)) is the shortest
distance from a point q �∈ X to p via p−v. Since all paths which last displacement
v does not belong to N have an infinite cost and can not be minimal, (18) holds.

4.1 Generalized Distance Transform

When all vectors in N ∗ are directed forward relatively to the scan order, (18)
propagates paths from background pixels in a single scan. As a consequence,
a generalized DT using any number of neighborhoods N1 . . .Nn, selected by a
sequence B, B(i) ∈ [1, n], derives directly from (7, 18) and minimal costs given
by:

Ĉv(r) = min
{
s : s > r and v ∈ NB(s)

}
. (19)

let χv(r) denote the characteristic function of the set NB(r) (i.e., χv(r) =
1 if v ∈ NB(r); 0 otherwise) and χΣ

v (r) its cumulative sum (χΣ
v (r) =

∑
s≤r

χv(r)).

Then according to prop. 1:

Ĉv(r) = [χΣ
v ]†(χΣ

v (r) + 1) + 1 . (20)

Algorithm 1 produces a generalized DT using any sequence of neighborhoods
(N represents their union) in forward scan condition, using displacement costs
given by (20). A similar algorithm was already presented for the decomposition
of convex structuring polygons [6].

4.2 Translated NS-Distance Transform

The sequence of disks for a NS-distance induced by a sequence B is produced
by iterative Minkowski sums of neighborhoods:

D(p, 0) =
{
p
}
, D(p, r) = D(p, r − 1)⊕NB(r) .

For each neighborhood Nj , we apply a translation vector tj such that the trans-
lated neighborhood N ′

j = Nj⊕
{
tj

}
is in forward scan condition. In a translation
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Data: X: a set of points
Data: N : neighborhood in forward scan condition
Data: Ĉv : minimal absolute displacement costs
Result: DTX : generalized distance transform of X
foreach p in DT domain, in raster scan do

if p /∈ X then
DTX(p) ← 0

else
l ← ∞
foreach v in N do

l ← min
{
l; Ĉv (DTX(p − v)

}
end
DTX(p) ← l

end

end
Algorithm 1. Single scan asymmetric distance transform

preserved scan order, tj translates the first visited point in Nj to the origin. As-
suming a nD standard raster scan order:

tj = (0, . . . , 0︸ ︷︷ ︸
n−j

, 1, . . . , 1︸ ︷︷ ︸
j

) (21)

The translated neighborhoods N ′
1 and N ′

2 obtained with t1 = (0, 1) and t2 =
(1, 1) are depicted in Fig. 3a and Fig. 3b. Characteristic functions for vectors in
N ′

1 \ N ′
2, N ′

2 \ N ′
1 and N ′

1 ∩ N ′
2 (see Fig. 3c-e) are respectively 1B, 2B and the

constant value 1 resulting in the following minimal displacement costs:

Ĉv(r) =

⎧⎪⎪⎨⎪⎪⎩
Ĉ1

v(r) = 1†
B(1B(r) + 1) + 1 if v ∈ N ′

1 and v �∈ N ′
2

Ĉ2
v(r) = 2†

B(2B(r) + 1) + 1 if v �∈ N ′
1 and v ∈ N ′

2

Ĉ12
v (r) = r + 1 if v ∈ N ′

1 and v ∈ N ′
2

Periodic sequence. When B is a periodic sequence, minimal relative costs ĉv

are also periodic sequences. Take the periodic sequence of the octagonal dis-
tance B = (1, 2), then 1B(r)r≥0 = (0, 1, 1, 2, . . . ), 1†

B(r)r>0 = (0, 2, 4, . . . ),
Ĉ1

v(r)r≥0 = (1, 3, 3, 5 . . . ) and ĉ1
v(r)r≥0 = (1, 2, 1, 2 . . . ). Similarly, 2B(r)r≥0 =

(0, 0, 1, 1, 2, . . . ), 2†
B(r)r>0 = (1, 3, . . . ), Ĉ2

v(r)r≥0 = (2, 2, 4 . . . ) and ĉ2
v(r)r≥0 =

(2, 1, 2, 1 . . . ).

Rate-based sequence. Suppose now that the sequence of neighborhoods is defined
as a Beatty sequence (as in [3]): B(r) = �τr�− �τ(r− 1)�, with τ ∈ [1, 2] so that
B(r) ∈ {1, 2}. 1B and 2B are respectively the cumulative sums of 2 − B(r) =
(2− τ)r� − (2− τ)(r− 1)� and B(r)− 1 = �(τ − 1)r� − �(τ − 1)(r− 1)�. Then
1B(r) = (2− τ)r�, 2B(r) = �(τ − 1)r�, 1†

B(r) = � r−1
2−τ � and 2†

B(r) =  r
τ−1 − 1�.

This allows to compute Ĉ1
v and Ĉ2

v on the fly. For the octagonal distance, τ = 3
2 ,

1B(r) =  r
2�, 2B(r) = � r

2�, 1†
B(r) = 2r − 2 and 2†

B(r) = 2r − 1.
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(a) (b) (c) (d) (e) (f)

Fig. 3. Neighborhoods used for the translated NS-distance transform. (a), and (b) are
respectively the type 1 and 2 translated neighborhoods, N ′

1 and N ′
2. (c) and (d) and

(e) are respectively N ′
1 \ N ′

2, N ′
2 \ N ′

1 and N ′
1 ∩ N ′

2, each set associated to a different
sequence of displacement costs. (f) is the whole set of neighbors, N ′

1 ∪N ′
2, used for the

translated NS-DT.

1 1 1 1
1 1 2 2 2 2 1

1 2 2 2 3 3 2 2 1
1 2 2 2 2 3 4 3 2 1
1 2 1 1 2 2 3 2 2 1
1 1 1 2 2 2 1

1 1 1

1 1 1 1
1 1 2 2 2 2 1

1 2 2 2 3 3 2 2 1
1 2 2 2 2 3 4 2 1
1 2 1 1 2 2 3 2 1
1 1 1

1 1 1
222

3
2
1

1 1 1 1
1 1 1 1 1 1 1

1 1 1 2 2 2 2 1 1
1 1 2 2 2 2 2 2 2 1
1 2 2 2 2 2 3 3 2 1
1 2 2 2 3 3 3

2 2 4

1 1 1 1
1 1 1 1 1 1 1

1 1 1 2 2 2 2 1 1
1 1 2 2 2 2 2 2 2 1
1 2 2 2 2 2 3 3 2 1
1 2 2

2 2 4
332 3

(a) (b)

Fig. 4. (a) Octagonal DT of a binary image. (b) Translated octagonal DT. Highlighted
centers of disks (a) are translated to the same location, highlighted (b) with value 3.

An example result of algorithm 1 for the translated octagonal distance (with
displacement costs obtained either from sequence B = (1, 2) either from τ = 3

2 )
is shown in Fig. 4b.

4.3 Symmetric DT from Asymmetric DT

Let
{
t(r), r ∈ N∗} be a sequence of translation vectors such that the translated

disks D′(p, r) = D(p + t(r), r) and Ď′(p, r) = Ď(p − t(r), r) are increasing
according to the set inclusion. For a sequence of disks produced by translated
neighborhoods defined in (21), the translation vectors are:

t(r) = t(r − 1) + tB(r)

=
∑

j

jB(r)tj

=

⎛⎝ n∑
j=n

jB(r), . . . ,
n∑

j=1

jB(r)

⎞⎠
In particular, for the 2D case:

t(r) = (2B(r),1B(r) + 2B(r)) = (2B(r), r) . (22)
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Data: DT′
X : translated distance map of X

Result: DTX : centered distance map of X
foreach p in DT′ domain do

if DT′(p) = 0 then
DT(p) ← 0

else
foreach j do

r ← max
{
1;DT′(p + tj)

}
r ← j†B(jB(r)) + 1; // First r ≥ DT′(p − tj) such that B(r) = j
while r ≤ DT′(p) do

DT(p − t(r − 1)) ← r
r ← j†B(jB(r) + 1) + 1; // Next r such that B(r) = j

end

end

end

end

Algorithm 2. Obtention of a regular (centered) DT from a translated DT

DT′
X has equivalence with values of DTX :

DTX(p) ≥ r ⇔ Ď(p, r − 1) ⊆ X

⇔ Ď′(p + t(r − 1), r − 1) ⊆ X

⇔ DT′
X(p + t(r − 1)) ≥ r . (23)

Consequently:

DTX(p) = r ⇔ DTX(p) ≥ r and DTX(p) < r + 1
⇔ DT′

X(p + t(r)) ≤ r ≤ DT′
X(p + t(r − 1)) . (24)

Knowing DT′
X(p) and DT′

X(p+t), we can deduce the values of DTX(p−t(r−1))
for all values of r between DT′

X(p+ t) and DT′
X(p) for which t(r) = t(r−1)+ t,

i.e., t = tB(r). Algorithm 2 recovers the values r of the centered DT by selecting
all r in the interval [DT′

X(p+tj), DT′
X(p)] such that B(r) = j. Iterating through

values r with B(r) = j is achieved using prop. 1. Values of DT′
X become available

before the whole image is computed. For instance, in a standard raster scan, as
soon as line y is processed, all lines of DT′

X above y − rmax are fully recovered
(where rmax denotes the maximal value of DT′ in that line).

5 Conclusion

In this paper, a path-based pseudo-distance scheme where displacement costs
vary both with the displacement vector and with the travelled distance was
presented. This scheme is generic enough to describe neighborhood-sequence dis-
tances, weighted distances as well as generalized distances produced by Minkow-
ski sums. It was shown that a set of displacement costs can be provided in
a minimal form, where each displacement vector is assigned a non-decreasing
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sequence of costs, without altering the distance function. These non-decreasing
sequences are directly applied in the distance transform algorithm to keep track
of the costs of minimal paths from the background. An application to a translated
neighborhood-sequence distance transform in a single scan was presented along
with a method to recover the proper, centered, distance transform. Combined
methods provide partial result with a minimal delay, before the input image is
fully processed. Their efficiency can benefit all applications where neighborhood-
sequence distances are involved, particularly when pipelined processing architec-
tures are involved, or when the size of objects in the source image is limited.

The pseudo-distance presented here is strongly linked to the properties of
non-decreasing integer sequences studied by Lambek and Moser. An implemen-
tation in C language is publicly available at http://www.irccyn.ec-nantes.
fr/~normand/LUTBasedNSDistanceTransform.
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Abstract. In this paper, some methods for representing objects using
path-based distances are considered. The representations can be used
as anchor points when extracting medial representations of the objects.
The distance transform (DT) is obtained by labeling each object element
with the distance to the background. By local operations on the DT,
different sets of anchor points can be obtained. We present two different
methods based on local operations and prove that the representations are
reversible, when this is the case. The methods are defined for weighted
distances based on neighborhood sequences, which includes for example
the well known cityblock and chessboard distances.

1 Introduction

The medial axis introduced in [3] is an important and often used concept in
image processing. The basic idea is to represent the object with its centerline.
When applied to digital images, the set of centers of maximal balls (CMBs) is
often used when generating a medial axis to guarantee that the original object
can be reconstructed. A ball in an object X is maximal if it is not contained in
any other ball in X . The original object can be recovered from the set of centers
of maximal balls (CMBs) together with the corresponding radii. We say that
such a representation is reversible.

In this paper, we focus on distance functions defined as the minimal cost-path
between points. With such path-based distance functions, the distance between
two points is calculated by counting the number of (weighted) steps needed to
go from one point to the other. We distinguish these digital distance functions
from the Euclidean metric which is not discrete in this sense. The simplest
digital distance functions are the city-block and chessboard distance functions.
We consider distance functions defined using both weights (weighted distances)
and neighborhood sequences (distances based on neighborhood sequences or ns-
distances for short). For the simple distance functions the CMBs appear as
local maxima in the distance transform (DT) and are thus easy and fast to
extract. For CMBs in the general case with weighted distances or ns-distances,
a look-up table is needed in general. In this paper, we present and analyze some
natural generalizations of local maxima for weighted ns-distances that are fast
and efficient to compute.

I. Debled-Rennesson et al. (Eds.): DGCI 2011, LNCS 6607, pp. 211–222, 2011.
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Many authors have considered the local-maxima approach, see, e.g., [13,1,8,18].
For weighted distances, the local maxima in the DT are the points that do not
propagate distance information to neighboring grid points when computing the
DT. When non-unit weights or a neighborhood sequence of length>1 is used, there
are local maxima that are not CMBs. One approach to overcome this problem is
to relabel the distance values, see [1,14]. Relabeling is not enough for all distance
functions and another approach is to use look-up tables to extract the set of CMBs,
see, e.g., [14,4,12,11]. Another issue is that the set of local maxima and the points
that do not propagate distance information when computing the DT are not al-
ways equal.

In this paper, some methods for object representation using local operations
for weighted ns-distances will be examined. We consider the following represen-
tations:

– Maximal path-points : The points that do not propagate distance information
when computing the DT.

– Local B-maxima: When a neighborhood sequence is used to define the dis-
tance, the size of the neighborhood at a point p is given by the neighborhood
that is used when computing the DT, can be used to check for local maxima,
this is the local B-maxima.

– Local B∗-maxima: Similar to the local B-maxima, but the size of the neigh-
borhood is given by another element in the neighborhood sequence. Local
B∗-maxima was introduced for ns-distances in [8].

– Reducing the number of points in a reversible representation: By removing
superfluous points in a reversible representation, a sparse representation is
obtained that is still reversible.

In a previous paper, [15], we found that maximal path-points are not well-suited
for representing objects for some distance functions. In this paper, we prove
that the set MP of maximal path-points can be computed efficiently by a local
approach. We also give an alternative method that can be used also for ns-
distances. Some of the results on maximal path-points can also be found in [14].

CMBs and local maxima in DTs using the weighted distance have been used
for, e.g., skeletonization algorithms [18,2], object decomposition [17], and reso-
lution pyramids [6]. Local maxima in DTs obtained using ns-distances [8] have
also been considered in applications such as discrete shading [9] and normal
approximation [10].

2 Distance Functions

In this section, some definitions and notions found in, e.g., [14,15,16] are given.
Two grid points p1 = (x1, y1),p2 = (x2, y2) ∈ Z

2 are r-neighbors, r ∈ {1, 2}, if

|x1 − x2|+ |y1 − y2| ≤ r and (1)
max {|x1 − x2|, |y1 − y2|} = 1.
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The points p1,p2 are adjacent if p1 and p2 are r-neighbors for some r. Two r-
neighbors such that the equality in (1) is attained are called strict r-neighbors.

Using the notion of 1- and 2-neighbors above, the city-block and chessboard
distance functions can be defined. We will consider two ways of generalizing
these distance functions by using weights and/or neighborhood sequences.

A ns B is a sequence B = (b(i))∞i=1, where each b(i) denotes a neighborhood
relation in Z2. If B is periodic, i.e., if for some fixed strictly positive l ∈ Z+,
b(i) = b(i + l) is valid for all i ∈ Z+, then we write B = (b(1), b(2), . . . , b(l)).

The following notation is used for the number of 1:s and 2:s in the ns up to
position k.

1k
B = |{i : b(i) = 1, 1 ≤ i ≤ k}| and 2k

B = |{i : b(i) = 2, 1 ≤ i ≤ k}|.

A path Pp,q = 〈p = p0,p1, . . . ,pn = q〉 of length n with start point p0 and end
point pn, is a sequence p0,p1, . . . ,pn of adjacent grid points. A path is a B-path
of length n if, for all i ∈ {1, 2, . . . , n}, pi−1 and pi are b(i)-neighbors.

Definition 1. Given the ns B, the ns-distance d(p0,pn; B) between the points
p0 and pn is the length of (one of) the shortest B-path(s) between the points.

Let the real numbers α and β (the weights) and a B-path Pp,q of length n,
where exactly l (l ≤ n) pairs of adjacent grid points in the path are strict 2-
neighbors be given. The cost of the (α, β)-weighted B-path Pp,q is (n− l)α + lβ.
The B-path Pp,q between the points p0 and pn is a minimal cost (α, β)-weighted
B-path between the points p0 and pn if no other (α, β)-weighted B-path between
the points has lower cost than the (α, β)-weighted B-path Pp,q.

Definition 2. Given the ns B and the weights α, β, the weighted ns-distance
dα,β(p0,pn; B) is the cost of (one of) the minimal cost (α, β)-weighted B-path(s)
between the points.

Only weights in the interval α ≤ β ≤ 2α are considered.
We write L (Pp,q) to denote the length of the path Pp,q and Cα,β (Pp,q) to de-

note the cost of the path Pp,q. The concatenation of two paths Pp0,pn andQq0,qm

such that pn and q0 are adjacent is Pp0,pn ·Qq0,qm = 〈p0,p1, . . . ,pn,q0,q1, . . . ,
qm〉.

3 Weighted ns-Distance and Distance Transforms

We state now a functional form of the distance between two grid points (0, 0)
and (x, y) in Z2, where x ≥ y ≥ 0. Observe that by translation-invariance and
symmetry, the distance between any two grid points is given by the formula
presented in Theorem 1.

The following theorem is proved in [14,16]:

Theorem 1. Let the point (x, y), where x ≥ y ≥ 0, be given. The weighted
ns-distance between 0 and (x, y) is given by

dα,β (0, (x, y); B) = (2k − x− y) · α + (x + y − k) · β,

where k = min
{
l ∈ N : l ≥ x + max

(
0, y − 2l

B

)}
.
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When computing the distance transform, this is of course done on a finite subset
of the grid, the image domain I ⊂ Z2. The object, a subset of I is denoted X
and its complement in I is the background X . We denote the distance transform
for path-based distances with DTC, where the subscript indicates that costs are
computed.

Definition 3. The distance transform DTC of an object X ⊂ I is the mapping

DTC : I → R
+
0 defined by

p �→ d
(
p, X

)
, where

d
(
p, X

)
= min

q∈X
{d (p,q)} .

For weighted ns-distances, the size of the neighborhood allowed in each step is
determined by the length of the minimal cost-paths (not the cost), so this value
is also needed when propagating distance information. We define the transform
DTL that holds the length of a minimal cost-path at each point.

Definition 4. The transform DTL of an object X is the mapping

DTL : I → N defined by
p �→ d1,1 (p,q; B) , where

q is such that dα,β (q,p; B) = dα,β

(
p, X; B

)
.

In [14], algorithms (proved to give correct results) for computing DTC and DTL
are given. The transforms DTC and DTL are illustrated in Figure 1. In the fig-
ures, each grid point is represented by the corresponding Voronoi region (picture
element or pixel). The algorithms in [14] can also be used to compute the re-
verse DT, which is used to obtain the original object from the reversible object
representation.

4 Object Representation by Maximal Path-Points

When extracting CMBs for weighted distances, there is a correspondence be-
tween the points that do not propagate distance information and the local max-
ima in the DT, [12]. We will now define this correspondence also for the distances
that are defined by neighborhood sequences. A distance propagating path is a
path along which local distance values can be propagated when computing the
DT. See Figure 1.

Definition 5. Given an object grid point p ∈ X and a background grid point
q ∈ X, the minimal cost B-path Pq,p = 〈q = p0,p1, . . . ,pn = p〉 is a distance
propagating B-path if

(i) Cα,β (〈p0, . . . ,pi〉) = DTC (pi) for all i and
(ii) pi,pi+1 are b (DTL (pi) + 1)− neighbors for all i.
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In an object X , the end-point of a distance propagating path of maximal length
is called a maximal path-point, defined below. A local B-maximum is a local
maximum obtained by using the neighborhood that is used to propagate distance
information at that point, i.e., the neighborhood defined by b (DTL (p) + 1) at
the point p.

Definition 6. A point p ∈ X is called a maximal path-point if there is a q ∈ X
and a path Pq,p = 〈q = p0,p1, . . . ,pn = p〉 such that the following statements
both hold:

– Pq,p is a distance propagating B-path of length n defining DTC(p) and
– there is no p′ such that 〈p0,p1, . . . ,pn = p,p′〉, i.e., Pq,p · 〈p′〉 is a minimal

cost (α, β)-weighted B-path of length n + 1 such that
DTC(p′) = Cα,β (〈p0,p1, . . . ,pn = p,p′〉).

Also, the path Pq,p is called a maximal path.

We denote the set of maximal path-points by MP . It is clear that the set of
maximal path-points are the points that do not propagate distance information
to neighboring grid points when computing DTC .

Definition 7. Let the ns B and the weights (α, β) such that α ≤ β ≤ 2α be
given. A point p ∈ X is a local B-maximum if for all its 1-neighbors ri:

DTC(ri) < DTC(p) + α

and, if b(DTL(p) + 1) = 2, for all its strict 2-neighbors rj:

DTC(rj) < DTC(p) + β.

In Theorem 3, we will prove that under some conditions the set of local B-
maxima and the set MP are equivalent. To check if a grid point p is a local
B-maximum, the size of the neighborhood at p is used. Since the size of the
neighborhood at p is determined by DTL (p) and DTL in its original form is not
unique for some objects, we need to put an additional constraint on DTL. This
problem is illustrated in the following example.

Example 1. Consider B = (1, 2) and (α, β) = (2, 3). In Figure 1(a) and (b), two
minimal cost (2, 3)-weighted B-paths from X to the point p with the distance
value 10 are shown. Since they are of different lengths, different neighborhoods
are considered at p.

We will prove that, when DTL satisfies the following definition, then the set of
maximal path-points and the set of local B-maxima are equivalent.

Definition 8. Given an object X, a ns B and weights α, β, we say that DTL as-
sociated with DTC holds information about the smallest neighborhoods if it holds
information about the minimal cost-path with smallest size of the neighborhood
at each point of X.
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Fig. 1. (a,b): DTC with two distance propagating paths overlaid, both containing the
point labeled 10, defining different neighborhoods at the point. (c): DTL With infor-
mation about the smallest neighborhoods. The ns B = (1, 2) and weights α = 2 and
β = 3 are used.

Let the ball obtained by weighted ns-distances with radius r ∈ R+ be
B (p, r) = {q : dα,β (p,q; B) < r}. The main theorem from [15] is that the set
MP together with the corresponding distance values is a reversible representa-
tion of the object:

Theorem 2. If either
α < β ≤ 2α or (2)

α = β and (B = (1) or B = (2)), (3)

then ∀q ∈ X \MP , ∃p ∈MP : q ∈ B(p, DTC(p)).

We now give a more efficient way of computing the set MP . We will see that,
given a point p, it is enough to consider a small neighborhood of that point to
determine if it is a maximal point or not. This will be done using the notion of
local B-maxima:

Theorem 3. If DTL holds information about the smallest neighborhoods is used
in Definition 7, then Definition 7 and Definition 6 define the same set of points.

Proof. Let p ∈ X be a maximal path-point. Then there is a q ∈ X and a distance
propagating B-path Pq,p such that any b (L (Pq,p) + 1)-neighbor r to p is such
that

DTC (r) < Cα,β (Pq,p · 〈r〉) = Cα,β (Pq,p) + ω,

where ω is α if p, r are 1-neighbors and β if p, r are strict 2-neighbors. This
holds for any neighborhood smaller than or equal to b (L (Pq,p) + 1), so it holds
for the smallest neighborhood. This implies that p is a local B-maximum.

If, on the other hand, p ∈ X is a local B-maximum, then there is a q ∈ X
and a distance propagating B-path Pq,p with smallest neighborhood at p such
that DTC (p) = Cα,β (Pq,p). For this path, any b (L (Pq,p) + 1)-neighbor r to p
is such that

DTC (r) < Cα,β (Pq,p · 〈r〉) = Cα,β (Pq,p) + ω,
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where ω is α if p, r are 1-neighbors and β if p, r are 2-neighbors. Therefore, p is
also a maximal path-point. �	
The Algorithm 1 below can be applied to all distance functions presented here.
It is a one-scan algorithm. It follows that it is linear in time. Note that for ns-
distances (when (α, β) = (1, 1)), the set of maximal path-points together with
the radii is in general not a reversible representation of X .

Algorithm 1. Algorithm for finding the set of maximal path-points
Input: B, (α, β), DTC , the DTL that holds information about the smallest

neighborhoods
Output: The set MP
For each point p in X: Assign p to MP if the conditions in Definition 7 are
fulfilled.

5 Local B∗-Maxima

In the previous section, we used an approach inspired by how algorithms that
compute DTs work – the points that do not propagate distance information are
stored as the object representation. In this section, an approach similar to the
local B-maxima will be used. A point p in an object X is a local B∗-maximum
if it satisfies the following definition:

Definition 9. Let the ns B and the weights (α, β) such that α ≤ β ≤ 2α be
given. A point p ∈ X is is a local B∗-maximum if for all its 1-neighbors ri:

DTC(ri) < DTC(p) + α

and, if b(DTL(p)) = 2, for all its strict 2-neighbors rj:

DTC(rj) < DTC(p) + β.

Note that the only difference between Definition 7 and 9 is that another neigh-
borhood is used to decide when strict 2-neighbors are allowed for finding local
maxima. Opposed to the local B-maxima, the local B∗-maxima can be used to
derive reversible representations for ns-distances.

Lemma 1. Let Pp,q be a minimal cost-path between p and q.
If 2L(Pp,q)

B > 2Pp,q and q and r are 2-neighbors, then

dα,β (p, r; B) ≤ dα,β (p,q; B) + β.

Proof. Since 2L(Pp,q)
B > 2Pp,q , there is at least one element 2 in the neighborhood

sequence that does not correspond to a strict 2-step in the path Pp,q. Therefore,
there is a point r′ that is 1-neighbor with both q and r and a minimal cost-path
Pp,r′ obtained by swapping a 1-step in Pp,q to a 2-step. We have

dα,β (p, r′; B) ≤ dα,β (p,q; B) + β − α.

Now, by adding a 1-step to Pp,r′ , a B-path between p and r of cost dα,β (p,q; B)+
β is obtained. �	
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Lemma 2. Given two arbitrary points w and p.

– If q and p are 1-neighbors, then

B(p, r) ⊂ B(q, r + α),

where r = dα,β (w,p; B).
– If q and p are strict 2-neighbors and there is a minimal cost B-path Pw,p

between the points such that b (L (Pw,p)) = 2. Then

B(p, r) ⊂ B(q, r + β),

where r = dα,β (w,p; B).

Proof. Consider the case when q and p are 1-neighbors. Let r ∈ B(p, r), i.e.,
dα,β (r,p; B) < dα,β (w,p; B). We will now prove that, when the conditions in
the lemma is fulfilled, r ∈ B(q, r + α).

By adding a 1-step to the path defining dα,β (r,p; B), a B-path between r
and q of length dα,β (r,q; B) + α is obtained. Thus,

dα,β (r,q; B) ≤ dα,β (r,p; B) + α < dα,β (w,p; B) + α,

so r ∈ B(q, r + α).
Now we focus on the case when q and p are 2-neighbors. Let r ∈ B(p, r), i.e.,

dα,β (r,p; B) < dα,β (w,p; B) . (4)

The path Pr,p is a minimal cost B-path between r and p. The path Pw,p is
a minimal cost B-path between w and p such that b (L (Pw,p)) = 2 by the
conditions in the lemma.
� Case i L (Pr,p) ≥ L (Pw,p) (not possible when α = β, since then the path-
length is proportional to the path-cost)
Since Pr,p is longer than Pw,p, but has lower cost, it follows that 2L(Pr,p)

B > 2Pr,p .
Now

dα,β (r,q; B) ≤ dα,β (r,p; B) + β (by Lemma 1)
< dα,β (w,p; B) + β. (by (4))

Therefore, r ∈ B(q, r + β)
� Case ii L (Pr,p) < L (Pw,p)
• Case ii-a L (Pr,p) = L (Pw,p)− 1
Since b (L (Pw,p)) = 2

dα,β (r,q; B) ≤ dα,β (r,p; B) + β < dα,β (w,p; B) + β.

Therefore, r ∈ B(q, r + β) also in this case.
• Case ii-b L (Pr,p) ≤ L (Pw,p)− 2
� Case ii-b-1 dα,β (r,p; B) ≤ dα,β (w,p; B)− 2α + β

dα,β (r,q; B) ≤ dα,β (r,p; B) + 2α independent of B
≤ dα,β (w,p; B) + β since Case ii-b-1
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Therefore, r ∈ B(q, r + β)
� Case ii-b-2 dα,β (r,p; B) > dα,β (w,p; B)− 2α + β
In this case, we have 2Pr,p > 2Pw,p and since L (Pr,p) < L (Pw,p), we have that
2L(Pr,p)

B > 2Pr,p . Using Lemma 1, we get

dα,β (r,q; B) ≤ dα,β (r,p; B) + β < dα,β (w,p; B) + β,

so r ∈ B(q, r + β). �	

When applied to a DTL that holds information about the smallest neighbor-
hoods, Lemma 2 proves the following theorem:

Theorem 4. ∀r in X that is not a local B∗-maximum, there is a local B∗-
maximum p : r ∈ B(p, DTC(p)).

It follows that the linear-time Algorithm 2 below can be used to extract reversible
representations of an object X .

Algorithm 2. Algorithm for finding the set of local B∗-maxima.
Input: B, (α, β), DTC , the DTL that holds information about the smallest

neighborhoods
Output: The set of local B∗-maxima
For each point p in X: Assign p to MP if the conditions in Definition 9 are
fulfilled.

6 Reducing the Cardinality of Object Representations

Let the set of points in the object representation be MR. In [5], an algorithm
that can be used to reduce the set MR is presented. The idea is to iteratively
remove the maximal path-points that correspond to balls that are covered by
the union of all other balls in MR. This is done by, for each p ∈ X , computing
how many balls B (q, DTC(q)) with center q ∈ MR that meet p. If all points in
a ball B (q, DTC(q)) with center q ∈ MR meet at least two balls, then q can
be removed from MR. Repeating this procedure for increasing distance values
gives a representation of X that consist of few points. We call the obtained
representation the reduced MR. Note that the reduced MR obtained in this
way might not be the optimal set, [7].

7 Examples

In Figure 2, local B-maxima (computed by Algorithm 1), local B∗-maxima
(computed by Algorithm 2), and sets of CMBs are shown using some distance
functions. CMBs can be extracted by, e.g., exhaustive search or by look-up ta-
bles, [14,4,12,11]. The object in Figure 2 is not perfectly recovered by the local
B-maxima for ns-distances, since it is not a reversible representation for ns-
distances.
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local B-maxima local B∗-maxima CMBs Reduced CMB
(the set MP )

B = (1), (α, β) = (1, 1)

222 elements 222 elements 222 elements 177 elements
B = (2), (α, β) = (1, 1)

250 elements 250 elements 250 elements 161 elements
B = (1, 2), (α, β) = (1, 1)

418 elements 295 elements 295 elements 157 elements
B = (2), (α, β) = (3, 4)

453 elements 453 elements 317 elements 118 elements
B = (1, 2), (α, β) = (2, 3)

451 elements 406 elements 278 elements 131 elements
B = (1, 2, 1, 2, 2), (α, β) = (4, 5)

471 elements 435 elements 289 elements 126 elements

Fig. 2. Object representations for some weighted ns-distances. The object contains
1640 elements. The recovered object is shown for each set of object representations.
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8 Conclusions and Future Work

We have presented two methods based on local neighborhoods that can be used
for distance functions defined by a neighborhood sequence and weights:

– Maximal path-points (introduced in [15]) defined as the points that do not
propagate distance information when computing the DT. We proved that
the set of maximal path-points MP can be computed efficiently by finding
local B-maxima.

– Local B∗-maxima.

Both methods are fast, since the methods both use local neighborhoods.
If the weights α and β are equal, then the method based on maximal path-

points does not give reversible representations. Note that, when a constant neigh-
borhood sequence is used, the two approaches are equal, see Figure 2.

The object representation based on local B∗-maxima was used for ns-distances
(i.e., without weights) in [8]. The proof in [8] is based on closed balls and the
conditions for the non-weighted case are the same as the ones used here.

An interesting observation is that, for ns-distances, the set of local B∗-maxima
is equivalent to the set of CMBs in Figure 2. We are not aware of any verification
that this is true in general, but it seems likely, so we leave this as a conjecture.

The quality of the representations for weighted ns-distances using the lo-
cal operations presented here (local B-maxima and local B∗-maxima) shown in
Figure 2 can be improved. It is well-known, [1,14], that when non-unit weights
are used, the distance values in the DT should be relabeled. In [1], it is proved
that when using the weights α = 3 and β = 4 and a constant ns B = (2),
then the set of local maxima in a relabeled DT equals the set of CMBs. In [14],
object representations obtained by relabeling of general weighted ns-distances
combined with local B-maxima (i.e., maximal path-points) is described. The
number of elements is significantly reduced by this relabeling.

Experimental results have shown that the object representation obtained by
relabeling DTC with weighted ns-distances combined with local B∗-maxima is
very similar to the set of CMBs. We thus have some promising, preliminary result
showing that the number of points in the object representation is significantly
reduced when relabeling is used. It seems that reducing the object representation
in this way does not affect the reversibility. Therefore, we expect our future
research to generate strong results on object representations using relabeled
DTs.
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12. Rémy, E., Thiel, E.: Medial axis for chamfer distances: computing look-up tables
and neighbourhoods in 2D or 3D. Pattern Recognition Letters 23, 649–661 (2002)

13. Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. Jour-
nal of the ACM 13(4), 471–494 (1966)

14. Strand, R.: Distance Functions and Image Processing on Point-Lattices: with focus
on the 3D face- and body-centered cubic grids. Ph.D. thesis, Uppsala University,
Sweden (November 2008)

15. Strand, R.: Shape representation with maximal path-points for path-based dis-
tances. In: Proceedings of 5th International Symposium on Image and Signal Pro-
cessing and Analysis (ISPA 2007), Istanbul, Turkey. pp. 397–402 (2007)

16. Strand, R.: Weighted distances based on neighbourhood sequences. Pattern Recog-
nition Letters 28(15), 2029–2036 (2007)

17. Svensson, S., Sanniti di Baja, G.: Using distance transforms to decompose 3D
discrete objects. Image and Vision Computing 20(8), 529–540 (2002)

18. Svensson, S., Borgefors, G., Nyström, I.: On reversible skeletonization using anchor-
points from distance transforms. Journal of Visual Communication and Image Rep-
resentation 10(4), 379–397 (1999)



Efficient Robust Digital Hyperplane Fitting with
Bounded Error

Dror Aiger, Yukiko Kenmochi, Hugues Talbot, and Lilian Buzer

Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, France

Abstract. We consider the following fitting problem: given an arbitrary
set of N points in a bounded grid in dimension d, find a digital hyperplane
that contains the largest possible number of points. We first observe that
the problem is 3SUM-hard in the plane, so that it probably cannot be
solved exactly with computational complexity better than O(N2), and
it is conjectured that optimal computational complexity in dimension
d is in fact O(Nd). We therefore propose two approximation methods
featuring linear time complexity. As the latter one is easily implemented,
we present experimental results that show the runtime in practice.

Keywords: fitting, digital hyperplane, approximation, linear program-
ming, randomization.

1 Introduction

This article is about efficient and effective hyperplane fitting in the presence of
outliers, formulated in the discrete setting. This is a well-known problem with
many applications in computer vision and image analysis. In the following we
consider an arbitrary set of pixels S in discrete space Zd, (with typically d = 2
or 3), and ask the question of what is the closest co-dimension 1 hyperplane
(i.e. a line in 2D or a plane in 3D) that best fits this set of pixels. Clearly this
problem depends on the notion of fitting and the definition of hyperplane.

Irrespective of the formulation, recent applications of this problem include
shape approximation [3,19], image registration [18,20] and image segmentation
[12,14]. More generally, the problem of robust parameter estimation from noisy
data is also closely related [10].

The problem is connected to the problem of robust regression, for instance
using least squares, weighted least-squares, least-absolute-value regression and
least median of squares (LMS) [4,15,17]. In this setting, an hyperplane H of
co-dimension 1 corresponds to the following continuous model:

H = {(x1, x2, . . . , xd) ∈ R
d : a1x1 + a2x2 + . . . + adxd + ad+1 = 0}, (1)

with the ai ∈ R. Note it is common to add an additional normalization con-
straint such as

∑d
i=1 |ai| = 1 or

∑d
i=1 a2

i = 1. Such a formulation corresponds to
minimizing various cost functions. For instance least-square fitting, which has a
closed-form solution, minimizes the geometric distance from all the given points

I. Debled-Rennesson et al. (Eds.): DGCI 2011, LNCS 6607, pp. 223–234, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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to the model, whereas least-absolute-value regression optimizes the �1 distance
instead. Both models are very efficient but not very robust to outliers. In con-
trast, LMS minimizes the median of either the geometric or �1 distance to the
model, and is robust to the presence of outliers, as long as they do not represent
more than half of the dataset. There exists polynomial, optimal algorithms for
LMS, but their space and computational complexity grow at least as quickly as
O(Nd), and there does not seem to exist dependable implementations for d ≥ 3.

1.1 Approximate Line and Plane Fitting

Well-known and most used methods for hyperplane fitting include the Hough
Transform (HT) [6,11], RANSAC [7] and associated variations [5]. HT uses an
accumulative approach in the discretized dual space and an ad-hoc detection
of high accumulated values. The computational complexity of traditional HT is
O(Nδd−1), where N is the number of given points and δ is the (discrete) size of
image sides. This is linear for a fixed δ and a fixed d.

RANSAC and its variation consider random d-tuples of points (i.e. pairs and
triplets respectively for 2D or 3D) within the pixel set S, forming respectively a
candidate hyperplane, and compute a distance from S to the candidate hyper-
plane. Many distances can be considered, including robust versions that may or
may not be true distances. A distance or score is associated with every candidate
hyperplane. After a number of candidate trials that depend on the size of S, the
best-fitting hyperplane featuring the minimum distance or score is given as the
output. The computational complexity of RANSAC is linear in the size N of S
if the number of inliers is a constant fraction of N .

Both HT and RANSAC are efficient, linear-time complexity algorithms. How-
ever neither can claim to find a global or even error-bounded approximate solu-
tion to an associated optimization problem.

1.2 Discrete, Optimal Formulation

Because the problem is inherently discrete, it is useful to consider a purely dis-
crete formulation of the problem.

Recently, such a discrete, optimization-based framework for this problem was
proposed in [24] for 2D lines and 3D planes. This approach consists of consider-
ing a discrete line or plane using Reveillès definition [16], i.e. a set of grid points
between a pair of continuous-domain lines or planes with rational coefficients
separated by a distance w. For a given pixel set S of size N and a given w, an
optimal hyperplane is one for which a maximal number of pixels lie between the
two continuous hyperplanes. Even though the pair of hyperplanes form a convex
set, the problem is combinatorial in nature, and a non-polynomial, branch-and-
bound approach was initially suggested to find the optimal solution. This was
later solved with an O(Nd log N) algorithm for d = 2, 3 in [21,22,23], and im-
proved in [13] with an O(N2) solution in 2D using a topological sweep method.
While a polynomial solution of degree equal to the dimension of the problem is
useful, it is still too inefficient for many application. Typically, the problem is
currently solvable for N = 103 but impractical for N = 106 in 3D.
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In the rest of the paper we first show that the problem is 3SUM-hard in 2D,
i.e. that a computational complexity of O(N2) is likely the best that can be
expected for 2D, as well as O(Nd) for higher dimension d. This motivated us
to pursue an approximate solution with known bounded error, with linear-time
complexity. We present two algorithms that give us different bounded errors;
one is the number of inliers, and another is the width of digital hyperplanes.
Since algorithms based on HT and RANSAC provide no error bound, and no
guarantee of optimality of any kind, this render our solution competitive with
RANSAC and HT, while insuring a good quality solution. We demonstrate this
on a pair of artificial and real examples.

2 The Problem of Digital Hyperplane Fitting

2.1 Definition

An hyperplane in Euclidean space Rd, d ≥ 2, is defined by (1), and in this
paper we use the following normalization constraint instead of the above more
conventional ones: −1 ≤ ai ≤ 1 for i = 1, 2, . . . , d such that there exists at
least one ai that equals to 1. Note that this normalization technique enables
us to bound the range of every coefficient between −1 and 1, except for ad+1:
practically ad+1 is also bounded by the size of an input image.

A digital hyperplane, which is the digitization of a hyperplane H in the dis-
crete space Zd, is then defined by the set of discrete points satisfying two in-
equalities:

D(H) = {(x1, x2, . . . , xd) ∈ Z
d : 0 ≤ a1x1 + a2x2 + . . . + adxd + ad+1 < w} (2)

where w is a given constant. From the digital geometrical viewpoint, if we set
w = 1, then the definition is equivalent to that of naive hyperplanes [16], where
parameters can be rational numbers. As mentioned above, at least one coefficient
ai equals 1 among ai for i = 1, 2 . . . , d, so hereafter we set ad = 1 for simplicity.
In other words, we mainly deal with the following linear inequalities

0 ≤ a1x1 + a2x2 + . . . + ad−1xd−1 + xd + ad+1 < w (3)

instead of the ones in (2). Note that practically we use d different types of the
inequalities for representing digital hyperplanes depending on d settings of ai = 1
for all i = 1, . . . , d.

2.2 Problem Formulation

Given a set S of discrete points coming from the [0, δ]d grid (i.e. the hypercubic
grid with a distance between two neighbours = 1), the problem is to find a digital
hyperplane that contains a maximum number of points, called an optimal digital
hyperplane. Discrete points that are contained in the fitted digital hyperplane,
are called inliers; the complement points are called outliers. Our problem is
then equivalent to finding a digital hyperplane such that the number of inliers
be maximum.
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We need the following definition for geometric understanding:

Definition 1. A slab is the region on and in between two parallel hyperplanes
in d-space. An ω-slab is a slab of size ω, meaning that the distance between the
two hyperplanes is ω.

If the distance ω is taken in the xd-axis direction in the space (x1, x2, . . . , xd) and
ω = w, then D(H) can be geometrically interpreted as a w-slab. Thus, finding
the optimal digital hyperplane for a given S is equivalent to finding a w-slab that
contains the maximum number of points in S. Using standard geometric duality
induced by (3), the problem of finding this w-slab is equivalent to finding a point
that is covered by a maximum number of w-slabs in the dual space as follows:
every point p in the d-dimensional primal space (x1, x2, . . . , xd) is mapped to a
hyperplane H in the d-dimensional dual space (a1, a2, . . . , ad−1, ad+1) and the
set of all hyperplanes in the primal that have a distance (in the xd-axis direction)
smaller than w to p are mapped to the set of points in the dual contained in a
w-slab (distance w in the ad+1-axis direction) one of whose sides is equal to H.
Details for the d = 2 case can be found in [13].

In the following sections, the problem of digital hyperplane fitting will be
considered either in the primal space (Sections 3 and 5) or in the dual space
(Section 4).

3 Theoretical Observation on Exact Fitting

We consider the [0, δ]d grid, and a set S of N discrete points is given. As our
input is a binary image, N is necessarily smaller than δd. We show in this section
that, for any N that is smaller than δd, the exact solution of the fitting problem
is as hard to obtain as that of O(Nd) problems; for d = 2, we call such a class of
problems the 3SUM problem. For the sake of simplicity, we start our discussion
in the 2D plane.

3SUM is the following computational problem, introduced by Gajentaan and
Overmars [9] and conjectured to require roughly quadratic time complexity:
given a set T of n integers, are there elements a, b, c in T such that a+b+c = 0?
A problem is called 3SUM-hard if solving it in subquadratic time implies a
subquadratic time algorithm for 3SUM.

Observation 1. The problem of digital line fitting is 3SUM-hard.

Proof. The problem of finding three colinear points among a given set of discrete
points was proven to be 3SUM-Hard in [9]. We now reduce our problem of digital
line fitting to the problem of finding three colinear points.

Given a set S of discrete points, we can compute the value δ correspond-
ing to the length of the bounding box of S in linear time. For three points
a = (xa, ya), b = (xb, yb), c = (xc, yc) such that xa �= xb, the vertical distance
between a straight line lab going through a and b and a point c is given by
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d(lab, c) = |(c−a)∧(b−a)|
|(0,1)∧(b−a)| . Note that ∧ is the exterior product between two vec-

tors, which is an algebraic generalization of the cross product between two 3D
vectors to any d dimension (here, d = 2), so that the result is a bivector. As
we process integer coordinates, if we consider three non colinear points, we thus
know that |(c − a) ∧ (b − a)| ≥ 1. Then, we know that |(0, 1) ∧ (b − a)| =
|xa − xb| ≤ δ by definition of δ. Therefore, we can conclude that for any three
non-colinear points d, e, f of S, we have: d(lde, f ) ≥ 1

δ . We can scale the points
of S in linear time by an integer factor δ in order to obtain the new set S′. Then,
any three non-colinear points d′, e′, f ′ of S′ must satisfy d(ld′e′ , f ′) ≥ 1.

To conclude, if our algorithm for finding an optimal digital line detects at
least three points d, e, f that can be covered by a digital line, this means that
they satisfy d(lde, f) < 1. However, as we know that in S′, three non colinear
points would generate a thickness equal to or greater than 1, this means that
these three points are colinear. Thus, using our algorithm and a linear-time re-
duction, we can detect if S contains three colinear points, therefore our problem
is 3SUM-hard.

The extension of 3SUM problem to higher dimensions is considered as the prob-
lem of detecting affine degeneracy of a given collection of N hyperplanes, i.e.
finding a subset of d + 1 hyperplanes intersecting in a common point. This is
conjectured to require O(Nd) time. In this paper, we do not seek a proof since
the case for d = 2 is sufficient for our purpose, as we seek a linear algorithm.

As solving the problem exactly in arbitrary dimension is likely at least
quadratic, we next suggest two approximations. The first has a theoretical proved
characteristics but is not easy to implement. The second is a more practical algo-
rithm that features a proven worst case runtime and can be easily implemented.
Moreover, its practical runtime can be much better than what is suggested by
its worst case analysis.

4 Approximation with Bounded Error in Number of
Inlier Points

In this section, we show that if the optimal number of inlier points is not too
small (i.e. Ω(N)), an approximation of the optimal digital hyperplane can be
found in linear time, with respect to N and the runtime also depends on the
given approximation value ε. We use the dual space and make a simple use of the
tool to solve approximately the problem of linear programming with violations,
presented in [2]. In this approximation, we do not use the fact that the points
lie on a grid and it is correct for any set of points in Rd.

We start with the results of Aronov et al. [2] on linear programming with
violations. They obtained a randomized algorithm which is correct with high
probability. Afshani et al. also [1] obtained a Las Vegas algorithm (i.e. one that
either provides the correct answer or informs about failure).
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Theorem 1 (Aronov et al. [2]). Let L be a linear program with n constraints
in Rd, and let f be the objective function to be minimized. Let kopt be the min-
imum number of constraints that must be violated to make L feasible, and let v
be the point minimizing f(v) with kopt constraints violated. Then one can out-
put a point u ∈ Rd such that u violates at most (1 + ε)kopt constraints of L,
and f(u) ≤ f(v). The results returned are correct with high probability. The
expected running time (which also holds with high probability) of this algorithm
is O(n + ε−4 log n) for d = 2, and O(n(ε−2 log n)d+1) for larger d.

In our case, we are only interested in finding a point in the dual space that
is covered by the maximum number of w-slabs. We reduce this problem to the
problem of linear programming with violations and solve it using the result of [2].
The following observation is a result of replacing each w-slab with two halfspaces
that have the w-slab as their intersection, represented by (3). We thus have 2N
constraints and a point in space is violating (i.e., not covered by) k w-slabs
among N , if and only if it is violating k halfspaces among the 2N . Therefore,
the tool for finding a point violating the minimum number of halfspaces finds
also a point that is covered by the maximum number of w-slabs. Let nopt be the
maximum possible number of w-slabs that can contain a point in d-space (i.e.,
inliers) and let kopt the optimal number of violations, N = kopt + nopt. For the
approximation parameter, we observe that since we find a point that violates
at most (1 + ε)kopt slabs, we actually find a point that is covered by at least
N − (1 + ε)kopt w-slabs. Let n be the number of points that are covered by the
w-slab we just found. If nopt = Ω(N) we have n > (1− cε)nopt for some fixed c.

We now observe the following:

Observation 2. Given a set of N points in the d-dimensional space and some
ε > 0, we can find a w-slab that contains at least (1 − ε)nopt points, where
nopt is the maximum possible number of points that can be found in a w-slab,
assuming nopt = Ω(N). The runtime is O(N + ε−4 log N) for d = 2 and
O(N(ε−2 log N)d+1) for larger d.

This result can be immediately used for our original problem of finding the
optimal digital hyperplane by using the set of grid points.

5 Approximation with Bounded Error in Digital
Hyperplane Width

In this section, we show another kind of approximation that makes use of the
fact that the input points are in a bounded grid as well. The meaning of this
approximation is slightly different from the previous one. The advantage of this
version is that it is easy to implement, unlike the previous one that is mainly
of theoretical interest and is probably hard to implement. Moreover, using this
approximation, we can do both: prove its worst case runtime and also allow to get
optimal solution with practical good runtime and/or to have an approximation
to any desired level in better runtime than the worst case. We need the following
result from Fonseca and Mount [8].
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Theorem 2 (Fonseca and Mount [8]). For a set of N points in the unit
d-dimensional cube and some ε > 0, one can build a data structure with O(ε−d)
storage space, in O(N + ε−d logO(1)(ε−1)) time, such that for a given query hy-
perplane H, the number of points on and bellow H can be approximately reported
in O(1) time, in the following sense: all the points (below H) that have a larger
distance1 than ε from H are counted. Points that are closer to H on both sides
may or may not reported.

See the next section for the detail of building a specially-designed data structure
for the query.

We can now state and prove the main theorem of this section:

Theorem 3. Given a set of N points on a grid [0, δ]d, and some ε > 0, w > 0,
a digital hyperplane of width w + 5ε that contains n > nopt points, can be found
in O(N +( δ

ε )d logO(1)( δ
ε )) time where nopt is the maximum number of points that

any digital hyperplane of width w in [0, δ]d can contain.

Proof. For simplicity, we can assume that all points are given in the unit d-
dimensional cube such that their coordinates are integer multiplication of 1/δ.
Let w′ = w/δ be the new width and ε′ = ε/δ be the new approximation pa-
rameter. We first build the data structure for halfspace range count in O(N +
ε′−d logO(1)(ε′−1)) time (Theorem 2) and then we query all O(ε′−d) hyperplanes
twice (every digital hyperplane is a w-slab that is the intersection of two halfs-
paces) in constant time for each one of them.

For the approximation, we will consider the 2-dimensional case, which is sim-
pler to describe. Our algorithm queries all (w′ + 3ε′)-slabs by querying two par-
allel lower halfplanes of distance w′ + 3ε′ and subtract their returned numbers.
As seen in Figure 1, any optimal digital line must be contained between two
such parallel lines of distance w′ + 3ε′, Q1, Q2. Let nopt be the optimal number
of points contained in the optimal digital line. Let n1 be the number of points
returned by querying a line Q1 and n2 be the number of points returned by
querying Q2. We only build the database for lower halfplanes (i.e. those contain
(0,−∞)). Note that we query all possible halfplanes that exist in the data struc-
ture, which is discretized so that the minimum distance between two is ε. The
runtime is indeed linear in N and in δd since we only have O(( δ

ε )d) halfplanes.
Recall that by the approximation guaranteed by the data structure, if the

optimal line is contained between Q1 and Q2, then n1−n2 ≥ nopt. On the other
hand, a larger number can be found elsewhere when we query some other slab,
but it is guaranteed (see Figure 1) that all reported points lie within a slab of
width w′+5ε′. Thus we either found a slab containing the optimal digital line or
we found another slab. In both cases, the number of reported points is greater
than or equal to nopt and the width of the slab containing them is w′ + 5ε′.

A typical use for digital lines would be to use w = 1 and 0 < ε < 0.5.
1 The �2 distance is used in [8] while the �1 distance is used in this paper. However,

the theorem still holds since the �1 distance is always greater than or equal to the
�2 distance.
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w

ε

Optimal digital line L

ε

ε

ε

ε

Q1

Q2

Fig. 1. The relations between optimal and approximate digital lines (see the text).
Note that the approximate digital line does not necessarily contains the optimal line.

6 Implementation

We first note that for most practical situations, the set of points given as input
is obtained through some sort of feature extraction algorithm (e.g. corner or
edge detector). These extractors always require runtime which is at least linear
in the size of the bounding box (in voxels). This means that our approximate
algorithm is optimal in the sense of its runtime.

We implemented the algorithm described in Section 5 in C++ on a standard
PC. In contrast to the optimal algorithm, the new algorithm is very simple to
implement using recursion. We implemented the algorithm for d = 3 as this case
is relatively expensive to solve with an optimal algorithm that would have a run-
time of O(N3). Optimal algorithms in 3D and above are also effectively difficult
to implement. Our implementation is conceptually similar in any dimension. For
every box in space we first build the range counting data structure recursively.
We first find the points that lie inside each one of the 8 children of the box (this
is performed in logarithmic time using orthogonal range searching) and then we
create the range counting data structure for each one of them recursively using
the box of size ε as the smallest box. Then for building the data structure for
the current box we create the set of all possible digital planes (depending on ε)
and query each one of them in all children, summing the number of points.

We now go over all planes in the outer box (the bounding box of the set of
input points) and for each plane, we query the number of points bellow this
plane and bellow a parallel plane of distance w +5ε as described in the previous
section. We simply take the pair (which is a slab) in which the number of points
resulting from the subtraction of the two is the largest. A practical problem
however is the memory requirement, since the algorithm has space (and roughly
time) complexity O((δ/ε)3), so in 3D it may require large amounts of memory
depending on the approximation parameter.
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(a) (b) (c)

(d) (e)

Fig. 2. Experimental results of digital plane fitting for a 3D synthetic volume data
generated by 400 points in a digital plane and 100 randomly generated points (outliers).
The approximation algorithm with bounded error in digital plane width is applied with
the value of ε set to be 2.0 (a), 1.0 (b), 0.5 (c), and 0.25 (d): rose points are inliers and
blue points are outliers. A fitted digital plane is visualized as a pair of rose parallel
planes. The optimal solution (e) obtained by the exact algorithm [22] is also illustrated.

7 Experimental Results

We used two 3D digital images for our experiments: some synthetic test data
and a real electron nano-tomography image.

The 3D synthetic data was created such that 400 grid points were samples
from a digital plane formulation with setting w = 1, and 100 grid points were
added randomly. Four different ε values were used: 2.0, 1.0, 0.5 and 0.25. For
comparison, the exact algorithm [22] with time complexity O(N3 log N) was also
applied. As seen in Table 1, the computation time is long, however it does yield
the optimal solution containing 406 inlier points (i.e. the 400 expected points
plus 6 random ones).

The approximation results indicate, as illustrated in Fig. 2 and Table 1, that
the smaller the value of ε, the more precise the solution; when ε = 2, a solution
relatively far from the optimal was obtained. Table 1 also shows that two different
numbers of points were obtained for each value of ε: the first one is the number of
points in a fitted digital plane with width w, and the second one is the number of
points in a fitted digital plane with width w+5ε. Note that the second number is
guaranteed to be greater than or equal to the optimal number of inlier points by
design, and it indeed converges to the optimum as ε is decreasing (see Table 1).
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Table 1. The runtimes, parameters and numbers of points of fitted digital planes in
Fig. 2

parameters nb. of points
runtime a1 a2 a3 a4 w w + 5ε

Approximate fitting
ε = 2.0 31 msec −0.0625 −0.0625 1 −10.9 110 485
ε = 1.0 266 msec −0.5 −0.5 1 −3.0002 300 435
ε = 0.5 2172 msec −0.5 −0.5 1 −3.0002 300 421
ε = 0.25 16640 msec −0.5625 −0.546875 1 −2.55002 362 410

Exact fitting [22]
with exact comp. 35 min 29.109 sec −47/81 −43/81 1 −203081/81000 406

without exact comp. 4 min 36.908 sec −0.580247 −0.530864 1 −2.507173

(a) (b)

Fig. 3. Results of digital plane fitting for a pre-processed 3D binary nano-tomography
image containing 205001 points. The approximation algorithm with bounded error in
digital plane width is applied with ε = 4 for w = 1 (a) and w = 25 (b).

We can observe as well from Table 1 that the smaller the value of ε, the higher
the runtime. Therefore, it is necessary in practice to find an appropriate value
for ε, which provides a sufficiently approximate solution within a reasonable
timeframe.

The second data we used was a 3D binary image generated from a electron
nano-tomography image containing a cubical crystal. The image is very noisy
due to the dimension of the sample and the physically-constrained tomography
reconstruction method. The original image is of 512×511×412 with gray values.
After binarizing the image by a threshold, we detected the boundary points by
using the 6-neighborhood and extracted the maximum connected component by
using the 26-connectivity. Finally, we obtained 205001 points in the 512× 511×
412 grid. This number of points is too large to apply the exact algorithm [22]:
it would have required on the order of 1018 operations, i.e. many months of
runtime. Instead we ran the approximate algorithm with some adjustments of
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the values for ε and w. We set ε = 4 to obtain its runtime around 12 seconds
with w = 1; the result is illustrated in Fig. 3 (a). As we saw that the cube wall
is very noisy, we also performed a fitting with w = 25 to obtain a thicker digital
plane (see Fig. 3 (b)).

8 Conclusion

In this article we have presented two approximate discrete hyperplane fitting
methods with outliers. The first uses an approach based on linear programming
with violations. It is continuous in nature and features interesting complexities
but is difficult to implement. The second is discrete in nature, it uses an ac-
cumulation and query data structure and is easy to implement. This method
features bounded error defined in this way: for a given N points, a width w and
an error factor ε, the hyperplane found contains in a width equal to w + 5ε at
least as many points as the optimum would with a width of w. It features a
computational complexity in O(N +

(
δ
ε

)d
), where δ is the distance between two

neighbours in the hypergrid. The algorithm is therefore linear in the number of
points in the set being considered, but exponential in the approximation factor
with d, the geometric dimension. Memory requirements are also exponential with
ε and d in the same way.

Nonetheless, as we show in the article that the exact solution is 3SUM-hard,
this method is useful. The computational complexity is given in the worst case,
in practice it can be much better. The algorithm is in particular well-behaved
when there are few outliers. Due to lack of space, we did not show it in the
paper, but the algorithm converges to the optimal solution, and in the discrete
case there exists a finite ε for which the algorithm provides the optimal solution,
even though this ε might be too small to be practical.
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16. Reveillès, J.P.: Géométrie discrète, calcul en nombres entiers et algorithmique.
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Abstract. In this paper we propose an analytical description of different
kinds of digital circles that appear in the literature and especially in
digital circle recognition algorithms.

1 Introduction

Digital primitive recognition is an important topic for the digital geometry and
pattern recognition communities. Two of the most basic primitives have been
intensively studied, the digital straight line and the digital circle, and many dif-
ferent recognition algorithms have been proposed. One of the key elements in
recognizing a digital primitive is actually knowing what object is recognized.
This is not as obvious at it seems. Firstly, there are many ways of defining a
digital primitive for a given Euclidean one. This means that depending on the
considered definition, a same set of pixels can be recognized as a digital prim-
itive or not. Most recognition algorithms provide parameters of the Euclidean
primitive and the corresponding digital primitive is implicit. This makes any
comparison between different algorithms hard because different sets are recog-
nized. Secondly, there is the actual problem of the definition of a digital primitive.
A digital primitive that is only defined as the result of an algorithm or implicitly
by a set of properties does not easily allow a global mathematical description.

An analytical description of a digital primitive is interesting for several rea-
sons: it provides a simple way of verifying whether a point or a set of points
belongs to the primitive or not, it often provides generalizations that cannot be
easily derived from an algorithm. For instance, the Bresenham circle has been
defined for integer coordinate centers and integer radii as the result of a dig-
itization algorithm. As we will see, its analytical description straightforwardly
extends the previous definition to non integer centers and radii. Extensions to
higher dimensions are also possible. Although we don’t consider that in this
paper, it is one of the perspectives of this paper.

J-P. Reveillès [23] proposed an analytical description for the digital straight
lines in 1991. Most, if not all, the digital straight segment recognition algorithms
recognize a connected subset of a kind or another of Reveillès digital straight

I. Debled-Rennesson et al. (Eds.): DGCI 2011, LNCS 6607, pp. 235–246, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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lines. In the different digital circle recognition algorithms, there are various dig-
ital circle definitions proposed without any analytical characterization. In this
paper, we propose analytical definitions of most digital circles, i.e. each digital
circle is defined as the solution of a system of analytical inequalities.

After a short recall on digital analytical models and the analytical descrip-
tion of the Andres circle, we propose an analytical description of the supercover,
standard and näıve circles. In the same way, we propose an analytical descrip-
tion of the digital circles defined as the boundary of the Gauss digitization of
Euclidean circles. We end the paper with a discussion.

2 Digital Analytical Circle Description

In this section, we propose analytical descriptions for several definitions that
appear in digital circle recognition algorithms.

2.1 Recall on Digital Analytical Models

We consider here digital analytical models based on a distance d. Let us consider
a Euclidean object E. The digitization Dd(E) of E according to the digital
analytical model associated to d is defined by:

Dd(E) =
{

p ∈ Z
2|d(p, E) ≤ 1

2

}
.

This global definition is particularly interesting because several digitization mod-
els can be derived with respect to the classical distances such as the Manhattan
distance d1, the Euclidean distance d2 or the Tchebychev distance d∞. There are
also some basic properties that are very useful when constructing digital objects
such as, for E, F two Euclidean objects, Dd(E ∪ F ) = Dd(E) ∪Dd(F ) (see [5]
for more details on the supercover analytical model).

There is an equivalent definition that involves a structuring element: the unit
sphere Bd(1) of diameter one for the distance d. The morphological definition
can be written as follow:

Dd(E) = (E ⊕Bd(1))
⋂

Z2

where A⊕B = {a + b, a ∈ A, b ∈ B} is the Minkowski sum.

The Euclidean region E ⊕ Bd(1) is called the offset region. The Pythagorean
model is based on the d2 distance, the supercover model is based on the d∞
distance and the naive model on the d1 distance. These models respectively
define the Andres, supercover and closed naive digital circles.

In the following subsections, we focus on the analytical models of the Eu-
clidean circle of center (xo, yo) ∈ R2 and radius R ∈ R+, denoted by C (xo, yo, R),
and we derive analytical definitions of the above-mentioned digital circles from
their morphological definitions.
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2.2 Andres Circle

The Andres circle, which is based on the Euclidean distance, has been proposed
in all dimensions by Andres [6]. In two dimensions, it is defined as follows:
(x, y) ∈ Z2 belongs to the Andres circle of center (xo, yo) and radius R if and
only if:

(R − 1
2
)2 ≤ (x− xo)2 + (y − yo)2 < (R +

1
2
)2

Note that in this definition, xo, yo and R are not integers. If we consider a closed
definition with ≤ on both inequalities for the Andres circle then it is easy to see
that it is associated to the distance d2:

(C ⊕B2(1))
⋂

Z
2

The recognition of Andres circles can be solved by annulus fitting, which is a
problem that has been extensively studied by the computational geometry com-
munity [1]. More recently, people of the digital geometry community have also
considered the problem of annulus fitting in the case of Andres circles corrupted
by noise [28].

2.3 Supercover Circles

The supercover model is based on the d∞ distance. In two dimensions, the corre-
sponding structuring element is the unit square B∞(1), which is the axis-aligned
closed unit square, i.e. B∞(1) = {(x, y) ∈ R2|max (|x|, |y|) ≤ 1

2}.
The supercover model is very well adapted for linear objects and every lin-

ear object can be described analytically in this model [5]. However, it can also
be applied on pieces of C2 curves where the slope of the tangent monotonously
increases or decreases like in circle quadrants. For instance, let us consider the
circular arc A of the circle C(0, 0, R) between the angles 0 to π

2 . The offset region
A⊕B∞(1) is the union between the closed unit squares centered on (0, R) and
(R, 0) at both ends of A, and the region bounded by the translation of A by the
vector (1

2 , 1
2 ), the translation of A by the vector (− 1

2 ,− 1
2 ), the straight segment

joining (− 1
2 , R − 1

2 ) and (1
2 , R + 1

2 ), the straight segment joining (R − 1
2 ,− 1

2 )
and (R + 1

2 , 1
2 ) (fig. 1.a).

Due to symmetries, the offset region of the three other quadrants is defined
in the same way so that each point of C ⊕ B∞(1) either lies in one of the four
closed unit squares centered in (0, R), (R, 0), (0,−R), (−R, 0) or belongs to one
of the four disks of radius R and center (− 1

2 ,− 1
2 ), (1

2 , 1
2 ), (− 1

2 , 1
2 ), (1

2 ,− 1
2 ), but

not to both of them (fig. 1.b).
We can thus derive an analytical description of the supercover circle:

Proposition 1 (Supercover of a circle). A point (x, y) ∈ Z2 belongs to the
supercover circle C∞(xo, yo, R) =

(
(C ⊕B∞(1)) ∩ Z2

)
, if and only if:
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A

1

1

R

R

0
0

(a) (b)

Fig. 1. Construction of the offset region used to define the supercover of a circle

|y − yo| ≤ 1
2 and |(|x− xo| −R)| ≤ 1

2
or

|x− xo| ≤ 1
2 and |(|y − yo| −R)| ≤ 1

2
or

R2 − 1
2
− (|x − xo|+ |y − yo|) ≤ (x− xo)2 + (y − yo)2 ≤

R2 − 1
2

+ (|x− xo|+ |y − yo|)

Proof. The first part of the analytical description corresponds to the squares
at the cardinal points and is obvious. We get the last part of the analytical
description by developing and applying axial symmetries to the equations for the
first quadrant (x−xo− 1

2 )2+(y−yo− 1
2 )2 ≥ R2 and (x−xo+ 1

2 )2+(y−yo+ 1
2 )2 ≤

R2. �	

The supercover of C∞(0, 0, 5) and C∞(1
2 , 1

2 , 5) are respectively depicted in fig. 2.a
and b.

Note that Lincke proposed another interpretation of this result based on math-
ematical morphology operations [17][fig. 4].

Note in addition that Nakamura and Aizawa, based on a cellular scheme,
defined a digital disk [20] that is actually a supercover disk. The outer border of
their digital disk is thus also the outer border of a supercover circle.

2.4 Standard Analytical Circles

The standard model has been defined only for linear primitives in [4]. In the
supercover model, when the Euclidean object passes through a point p com-
posed only of half-integer coordinates, there is a bubble, i.e. four digital points
that are the vertices of the axis-aligned closed unit square centered on p. For
instance, the supercover of the point

( 1
2 , 1

2

)
is composed of the digital points

{(0, 0); (0, 1); (1, 0); (1, 1)}. Similarly, in fig. 2.b, the points (5+ 1
2 , 1

2 ), (4+ 1
2 , 3+ 1

2 ),
(3 + 1

2 , 4 + 1
2 ), (1

2 , 5 + 1
2 ) (only for the first quadrant) are lying on C(1

2 , 1
2 , 5) and

are thus center of bubbles.
There can be two different definitions of standard circles depending if we re-

move the outer or inner border of the offset region C ⊕ B∞(1). The analytical
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(a) (b)

Fig. 2. The supercover of C∞(0, 0, 5) (a) and C∞( 1
2
, 1

2
, 5) (b) is depicted with black

disks

description of the outer standard circle C+
∞(xo, yo, R) is obtained by replacing

|x− xo| ≤ R + 1
2 by |x− xo| < R + 1

2 , |y − yo| ≤ R + 1
2 by |y − yo| < R + 1

2 and
(x−xo)2+(y−yo)2 ≤ R2− 1

2+(|x−xo|+|y−yo|) by (x−xo)2+(y−yo)2 < R2− 1
2+

(|x−xo|+|y−yo|) in the analytical description of the supercover circle (the outer
border is removed). Similarly, the analytical description of the inner standard
circle C−

∞(xo, yo, R) is obtained by simply replacing R2− 1
2−(|x−xo|+|y−yo|) ≤

(x−xo)2 +(y−yo)2 by R2− 1
2 − (|x−xo|+ |y−yo|) < (x−xo)2 +(y−yo)2 in the

supercover circle definition (the inner border is removed). The inner standard
circle C−

∞(1
2 , 1

2 , 5) is depicted in fig. 3.a.
Most of the bubbles are removed in the standard model (compare for instance

fig. 2.b and fig. 3.a). However, neither the outer nor the inner standard circles are
always simply 4-connected because it may remain a bubble around one of the four
cardinal points (like in fig. 3.a). The inner standard circle is however interesting

(a) (b)

Fig. 3. The inner standard analytical circle C
−
∞( 1

2
, 1

2
, 5) is depicted in (a) with black

disks. The Kovalevsky circle K(0, 0, 5) is depicted in (b) with big disks along the bound-
ary of the gray area. Note that C

−
∞( 1

2
, 1

2
, 5) and K(0, 0, 5) are similar objects up to a

translation
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because it corresponds to the Kovalevsky circle [15], denoted by K(xo, yo, R) and
defined as the set of points of half-integer coordinates (x, y) ∈ (Z+ 1

2 )× (Z+ 1
2 )

that belongs to the boundary of the dilatation of the Gauss digitization of the
interior of of C(xo, yo, R) by B∞(1), i.e. the boundary of {(i, j) ∈ Z2|(i− xo)2 +
(j − yo)2 ≤ R2} ⊕B∞(1).

In fig. 3.b, the Gauss digitization of C(0, 0, 5) is depicted with black disks.
The gray area is its dilatation by B∞(1). Kovalevsky circle is depicted with red
disks lying along the boundary of the gray area.

Proposition 2. The point (x, y) ∈ Z
2 belong to C

−
∞(xo + 1

2 , yo + 1
2 , R) if and

only if the point (x− 1
2 , y − 1

2 ) belongs to K(xo, yo, R).

Proof. Firstly, we will prove that if the point (x− 1
2 , y− 1

2 ) belong to K(xo, yo, R),
then the point (x, y) belongs to C−

∞(xo + 1
2 , yo + 1

2 , R) (i) and secondly, we will
prove that if the point (x− 1

2 , y− 1
2 ) does not belong to K(xo, yo, R), then (x, y)

does not belong to C−
∞(xo + 1

2 , yo + 1
2 , R).

Let us shortly denote by C the circle of center (xo, yo) ∈ R2 and radius R ∈ R+.
For all points p(x, y) ∈ (Z + 1

2 ) × (Z + 1
2 ), the four vertices of p ⊕ B∞(1) are

points of Z2. Those that are enclosed by C or lie on C are referred as foreground
points, the others are referred as background points.

(i) For all points p(x− 1
2 , y− 1

2 ) ∈ K(xo, yo, R), at least one vertex of p⊕B∞(1)
is a foreground point and at least one is a background point, because p is assumed
to belong to K(xo, yo, R). As a consequence, C must intersect p ⊕ B∞(1) and
by duality C ⊕ B∞(1) contains p. Note that since C cannot pass through any
background point, p does not belong to the inner border of C ⊕B∞(1) (if any),
but is either in its interior or is lying on the outer border. Since this membership
is preserved under translation, (x, y) belongs to C−

∞(xo + 1
2 , yo + 1

2 , R).
(ii) For all points p(x− 1

2 , y− 1
2 ) /∈ K(xo, yo, R), the four vertices of p⊕B∞(1)

are either all foreground points or all background points. In the last case, C does
not intersect p⊕B∞(1) and by duality C⊕B∞(1) does not contain p and we are
done. In the first case, C may pass through one of the foreground points and p
may thus lie in the inner border of C ⊕B∞(1) (which always exists in this case).
Since the inner border of the offset region is removed in the standard model
and since the incident relations are preserved under translation, (x, y) does not
belong to C−

∞(xo + 1
2 , yo + 1

2 , R). �	

Due to this proposition, the recognition algorithm of Kovalevsky [15] provides a
way of recognizing inner standard circles.

2.5 Closed Näıve and Näıve Analytical Circles

The näıve model, introduced in [3], is based on the d1 distance. In two dimen-
sions, the corresponding structuring element is the unit square B1(1), which
is a square of side size

√
2

2 and with a 45◦ rotation compared to B∞(1), i.e.
B1(1) = {(x, y) ∈ R2|(|x|+ |y|) ≤ 1

2}.
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The analytical description of the closed näıve circle is therefore very similar
to the one of the supercover circle (compare the offset region defining a closed
näıve circle in fig. 4.a and the one defining a supercover circle in fig. 1.b).

Proposition 3 (Closed näıve circle). A point (x, y) ∈ Z2 belongs to the
closed näıve circle C1(xo, yo, R) =

(
(C ⊕B1(1)) ∩ Z2

)
, if and only if:

|(x− y)− (xo − yo)| ≤ 1
2 and

∣∣|x + y − (xo + yo)| −R
√

2
∣∣ ≤ 1

2
or

|(x + y)− (xo + yo)| ≤ 1
2 and

∣∣|x− y − (xo − yo)| −R
√

2
∣∣ ≤ 1

2
or

R2 − 1
4
−max(|x− xo|, |y − yo|) ≤ (x− xo)2 + (y − yo)2

≤ R2 − 1
4

+ max(|x− xo|, |y − yo|)

Proof. The proof of this proposition is very similar to the proof of proposition 1.
The last part of the equations is obtained by developing and applying the corre-
sponding symmetries to (x−xo− 1

2 )2+(y−yo)2 ≥ R2 and (x−xo+ 1
2 )2+(y−yo)2 ≤

R2. �	

Similarly to the two definitions of standard circles, it is possible to define an
inner näıve circle, denoted by C

−
1 (xo, yo, R), and an outer näıve circle, denoted

by C
+
1 (xo, yo, R), by removing the inner or outer border of the of the offset

region C ⊕B1(1). Due to this convention, when C crosses a point of coordinates
(x + 1

2 , y) in the first octant, C−
1 does not contain (x, y), whereas C

+
1 does not

contain (x + 1, y). For instance, in fig. 4.b, we can see the closed näıve circle
C1(1

4 , 1
4 , 7

2 ). The Euclidean circle C crosses the points of coordinates (−1, 3+ 1
2 ),

(3 + 1
2 ,−1), (−2,−2− 1

2 ) and (−2− 1
2 ,−2) (clockwise from the top-left point),

which implies that the points (−2, 3), (0, 4), (4, 0), (3,−2), (−2,−3), (−2,−2)
and (−3,−2) have three 8-neighbors. However, C−

1 (1
4 , 1

4 , 7
2 ) (resp. C+

1 (1
4 , 1

4 , 7
2 ))

is simply 8-connected because it does not contain the points (−1, 3), (3,−1),
(−2,−2) (resp. (−1, 4), (4,−1), (−2,−3) and (−3,−2)).

An inner or outer näıve circle may nonetheless not always be simply 8-
connected because sharp corners may occur at octant boundaries (fig. 4.c). Ex-
actly the same thing happens for Bresenham circles [7] as it is well known (see
for instance [18][section 5]) because of the following proposition:

Proposition 4 (Bresenham Circle). Bresenham circle is a closed, inner and
outer näıve circle.

Proof. Let us assume that xo, yo, R are integers. A Bresenham circle is a closed
8-connected digital curve that is the digitization of C(xo, yo, R). Moreover, its
points are the closest ones to C(xo, yo, R) [16]. As such it corresponds to the
näıve digitization model.

Moreover no point
(
x± 1

2 , y
)

or
(
x, y ± 1

2

)
, with (x, y) ∈ Z2, belongs to a

Euclidean circle that has a center of integer coordinates and an integer radius.
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(a) (b) (c)

Fig. 4. Offset region defining a closed näıve circle (a). A closed näıve circle C1( 1
4
, 1

4
, 7

2
)

(b). Bresenham circle of radius 4 that is not simply 8-connected (c).

The closed, inner and outer näıve models of such circles are thus identical and
corresponds to their Bresenham digitization. �	

This proposition shows that the analytical description we propose for näıve cir-
cles is an extension of the Bresenham circles to arbitrary centers and radii. If we
consider that the natural extension of the Bresenham circle corresponds to the
circles that are simply 8-connected except around octant boundaries, then the
outer näıve circle is the best choice. This corresponds to the definition proposed
by Pham [22] (see [2]). Note that there is a slight mistake in the starting point
in Pham’s generation algorithm. This type of mistake is difficult to spot with a
generation algorithm. One advantage of an analytical definition is that it can be
used to test such algorithms.

Several papers have dealt with the problem of recognizing näıve circles: the
paper of Pham [22] in 1992 for outer näıve circles and the papers of Sauer [24]
in 1993 and Damaschke [9] in 1995 for Bresenham circles.

3 Gauss Type Digitized Circles

In this section, we propose two analytical definitions that do not directly rely
on the global model presented in section 2.1 but that are very similar.

Definition 1 (d1-Gauss circle). A point (x, y) belongs to the d1-Gauss circle
G∞ (xo, yo, R) if and only if:

R2 − 2 max (|x− xo|, |y − yo|)− 1 < (x− xo)2 + (y − yo)2 ≤ R2

Definition 2 (d∞-Gauss circle). A point (x, y) belongs to the d∞-Gauss circle
G1 (xo, yo, R) if and only if:

R2 − 2(|x− xo|+ |y − yo|)− 1 < (x − xo)2 + (y − yo)2 ≤ R2

It is easy to sketch the region where the points of G1(xo, yo, R) or G∞
(xo, yo, R) lie (it is bounded by circular arcs in fig. 5).
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(a) (b)

Fig. 5. Illustration of G1(0, 0, 3.5) in (a) and G∞(0, 0, 3.5) in (b)

These digital circles actually correspond to the boundary of the Gauss digiti-
zation of C. More precisely:

Proposition 5. The d1-Gauss (resp. d∞-Gauss) circle G1(xo, yo, R) (resp.
G∞(xo, yo, R)) is the set of points of the Gauss digitization of the interior of
C(xo, yo, R), denoted by DG(C), such that their 4-(resp. 8-)neighborhood is not
totally included in DG(C).

Proof. We will focus on G1(xo, yo, R) because the proof about G∞(xo, yo, R)
is the same. Firstly (i), we will prove that if p ∈ G1(xo, yo, R), then the 4-
neighborhood of p is not totally included in DG(C) and secondly (ii), we will
prove that if p /∈ G1(xo, yo, R), then either the 4-neighborhood of p is totally
included in DG(C) or not included at all.

(i) For all p(x, y) ∈ G1(xo, yo, R), (x−xo)2 +(y−yo)2 ≤ R2 and therefore p ∈
DG(C). Let us now assume that p lies in the first octant, i.e. (x−xo) > (y−yo) ≥
0. On the one hand (x+1−xo)2 +(y−yo)2 = (x−xo)2 +(y−yo)2+2(x−xo)+1.
On the other hand (x−xo)2+(y−yo)2 > R2−2(x−xo)−1 due to definition 1. As
a result, (x+1−xo)2+(y−yo)2 > R2, i.e. (x+1, y) /∈ DG(C). Due to symmetries,
we can conclude that the 4-neighborhood of p is not totally included in DG(C)
for all p(x, y) ∈ G1(xo, yo, R).

(ii) For all p(x, y) /∈ G1(xo, yo, R), two cases must be distinguished. If p /∈
DG(C), we are done. Otherwise, let us assume that p lies in the first octant, i.e.
(x− xo) > (y− yo) ≥ 0. Since (x− xo)2 + (y− yo)2 ≤ R2− 2(x− xo)− 1 in that
case, we have (x + 1 − xo)2 + (y − yo)2 < R2, i.e. (x + 1, y) ∈ DG(C). Due to
symmetries, we can conclude that the 4-neighborhood of p is totally included in
DG(C) in that case and we are done. �	

The d1-Gauss circles, also referred as circles digitized under Kim scheme in
[20,12,22], appear in many different recognition algorithms [13,14,21,12,10,8].

4 Discussion and Perspectives

In this paper we have presented analytical inequalities describing the supercover,
inner and outer standard, closed näıve, inner and outer näıve, d1- and d∞-Gauss
circles.



244 E. Andres and T. Roussillon

Fiorio et. al. [11] proposed an analytical characterization for standard and
näıve circles that is very close to the one we are proposing here. They obtained
their formula based on differential considerations and thus obtained only the
last part of the analytical descriptions. Geometrically, the offset region involved
in their approach is only made up with four disks without any square. In ad-
dition, the Euclidean circle whose parameters are the same as the ones of the
standard or näıve circle is not perfectly centered within the offset region. There-
fore, their approach could not be used to characterize existing digital circles (like
Kovalevsky circle) as we did in this paper.

Having an analytical characterization has many advantages: it provides a way
of verifying if a given set of digital points is a given digital circle or a subset
of such a digital circle, it provides a way of verifying the correctiveness of dig-
ital circle generation algorithms. Furthermore, our approach leads to a unified
framework for digital circle recognition algorithms based on linear programming
techniques. The only exception is Andres circles that can be handled through
algorithms based on annulus fitting.

Let Σ be a set of n digital points. Is Σ a given digital circle C(xo, yo, R)
(where C ∈ {C∞,C−

∞,C+
∞,C1,C

−
1 ,C+

1 ,G∞,G1}) ?
We give below a general scheme in two steps in order to solve the recognition

problem using linear programming. This approach is not new and has been used
in [9] for Bresenham circles, but we extend it to all the above-mentioned digital
circles.

The first step consists in setting a straight segment joining a point s and a
point t to each digital point p ∈ Σ, such that C(xo, yo, R) intersects [st] if and
only if p belongs to C(xo, yo, R). This step can be easily performed if the octant
(with respect to (xo, yo)) where each p ∈ Σ lies is known. We do not provide
further details due to lack of space, but the octant of all p ∈ Σ can be deduced
from Σ in linear time. The straight segments assigned to each digital point of
C∞(0, 0, 5) (a), C1(0.5, 0.5, 3.5) (b) and G1(0, 0, 3) (c) are depicted in fig. 6. Note
that s is not included for C ∈ {C+

∞,C+
1 } in [st], whereas t is not included in [st]

for C ∈ {C−
∞,C−

1 ,G∞,G1} (see fig. 6.c for instance).
In the second step, the sets of points s ∈ S and t ∈ T provide the constraints

of a convex program that be translated into a linear one [21,9] and can then
be solved in linear-time using Megiddo prune and search technique [19] or in
expected linear-time using Seidel randomized technique [25].

That’s why all the recognition algorithms that appear in the literature
[13,14,21,12,15,22,24,27,10,8] are all techniques of solving a unique linear pro-
gram. The difference lies in the manner of solving the problem.

In [21,9], a 3D point belonging to the intersection of 2n half-spaces in the
parameters space is searched with Megiddo algorithm. In the space that is dual to
the parameters space, a plane separating two sets of n 3D points is searched using
tools coming from computational geometry [10]. In [12,15,22,27,8] a 2D point
belonging to the intersection of n2 half-planes is searched in the original plane
using either brute-force algorithms [15,22,27] or tools coming from computational
geometry [12,8].
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(a) (b) (c)

Fig. 6. Constraints assigned to each digital point of C∞(0, 0, 5) (a), C1(0.5, 0.5, 3.5)
(b) and G1(0, 0, 3) (c)

One of the main perspective of this paper is of course the extensions that
analytical descriptions allow: extension to thick digital circles (by considering
structuring elements Bd(k) with k > 1) and extension to higher dimensions,
which seems possible but not trivial. Another perspective is the extension to
more complex algebraic curves [26].
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Abstract. We address the problem of constructing an approximate con-
tinuous representation of a digital contour with guarantees on the Haus-
dorff error between the digital shape and its reconstruction. Instead of
polygonalizing the contour, we propose to reconstruct the shape with
circular arcs. To do so, we exploit the recent curvature estimators. From
their curvature field, we introduce a new simple and efficient algorithm
to approximate a digital shape with as few arcs as possible at a given
scale, specified by a maximal admissible Hausdorff distance. We show
the potential of our reconstruction method with numerous experiments
and we also compare our results with some recent promising approaches.
Last, all these algorithms are available online for comparisons on arbi-
trary shapes.

1 Introduction

Digital curve representation or approximation by

(a) (b)
δH = 2.018 δH = 2.011
288 segments 27 arcs, 1 segment

simple primitives is useful for further shape anal-
ysis (recognition, matching, etc). Many methods
approximate digital curves by a polygonal con-
tour, using corner points or multi-scale analysis
[6]. We propose here to work with higher order
primitives like arcs of circle. This representation
is more efficient for curved shapes like the one
illustrated on the following floating figure and
captures better its geometry.

In a previous work [11] we have explored the potential of different curva-
ture estimators for corner detection. Together with a scale parameter, the ob-
tained polygonal reconstructions were able to represent the contour by adapting
the number of points according to the local value of curvature (see for exam-
ple the polygon (a) of the upper floating figure). However as shown in figure
(b), the circle arc primitive is much more efficient to represent numerous shapes.
The previous example shows how arcs based representation gives a more

I. Debled-Rennesson et al. (Eds.): DGCI 2011, LNCS 6607, pp. 247–259, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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compact description for the same accuracy (same Hausdorff error δH , more faith-
ful normals). In this paper we investigate curvature based arc reconstruction by
introducing a simple reconstruction algorithm which exploits different recent
curvature estimators.

Among previous works about reconstruction of digital contours with higher
order primitives, we can mention the work of Rosin et al. [16], who constructed
firstly a polygonal description and detected fitting arcs by grouping connected
lines. Horng et al. [8] and Tortorella [18] introduced curve-fitting methods with
an approach based on dynamic programming. Bodansky [4] presented a method
for the approximation of a polyline with straight segments, circular arcs and free
curves. It contains two steps. The first step is the segmentation of polygonal lines
into fragments (short polygonal lines) and the second step is the approximation
of the fragments by geometric primitives. If some fragments can not be approxi-
mated by geometric primitives with acceptable precision, they are recognized as
free curves.

It is obvious that curvature information is meaningful for curve reconstruc-
tion by circle arcs and segments. A circle arc corresponds to a constant part
in the curvature profile of the studied curve. Some methods have exploited
this measure for curve reconstruction. Chen et al. [2] proposed a method for
segmenting a digital curve into lines and arcs from curvature profile in which
the number of primitives is given. This procedure contains two stages. The first
stage computes a starting set of break points and determines an initial approx-
imation by arcs and lines based on this set. This stage relies on the detec-
tion of significant changes along the curvature profile. The second stage is an
optimization phase which adjusts the break points until the fitting error is
locally minimized. Afterwards, Horng [7] proposed an adaptive smoothing ap-
proach for decomposition of a digital curve into arcs and lines. The input curve
is segmented into arcs and lines according to the smoothed curvature represen-
tation. The curvature profile is determined by Gaussian filtering. Then, it is
smoothed with an adaptive smoothing technique. Similarly, Salmon et al. [17]
presented a method for decomposing a curve into arcs and segments according
to the curvature profile too. They used a notion of discrete curvature which is re-
lated to the circumscribed circle induced by blurred segments. Their main idea is
to extract key points on the curvature profile, which are then used for reconstruc-
tion. However the instability of this curvature estimator induces some complex
curvature processing which adds new parameters and reduce the applicability of
the approach.

We propose here to examine the potentiality of three recent curvature estima-
tors in the context of reconstruction with circle arcs. Their main properties (sta-
bility wrt noise especially) are briefly described in Section 2. The reconstruction
algorithm is presented in Section 3, and uses indifferently two of these estimators.
We finally validate our reconstruction technique with several experimentations
in Section 4. The visual curvature reconstruction [13] and the method of [15] act
as reference reconstruction methods.
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2 Recent Curvature Estimators

An overview of different curvature estimators are given in the following and
more details can be found in their respective reference (see also the comparative
evaluation in [11]).

Global Minimization Curvature (GMC). Curvature estimation is very
problematic since infinitely many shapes have the same digitization. The idea of
the GMC estimator [9] is to determine, among all possible shapes that have the
same digitization as the digital object under study, the shape which minimizes
its squared curvature. This shape is the most probable or expected shape if only
a digital object is given, since it is the smoothest possible. Then the curvature
field estimation is simply the curvature field of the minimal shape.

It is not a trivial task to determine this minimal shape. A phase-field approach
is proposed in [1]. In [9], the proposed approximate optimization method provides
a piecewise constant curvature field, so as the reconstructed shape boundary is
made of circular arcs with tangent continuity. Furthermore it takes into account
possible noise in the input data, with the use of blurred segments as a preprocess
[3]. This estimator determines a curvature field with the smallest possible number
of inflexion points. It is also almost rotation invariant due to processing with
maximal digital straight segments. Its stability makes it particularly suitable to
our reconstruction algorithm.

Binomial Convolution Curvature (BCC). This estimator was proposed by
Malgouyres et al. [14,5] as a discrete alternative to the Gaussian smoothing
technique for estimating the curvature of a digital contour. Differential oper-
ators of order n are obtained as successive convolutions of m (say) binomial
kernels and n difference kernels. The authors have shown that this differential
estimator is multigrid convergent for well-chosen m (m depends on the sam-
pling rate and other parameters like maximal curvature), even in the presence
of noise. The main problem with this method is how to choose this m for a
given input shape, since there is an ad hoc balance to be made between accuracy
and smoothness, and some parameters are tricky to estimate. This method is
also computationnaly costly for large m. We will nevertheless use it to show
that our reconstruction method is relatively independent of the curvature field
estimation.

Visual Curvature (VC). The visual curvature has been introduced by Liu,
Latecki and Liu [13]. Its principle is to measure the number of extreme points of
the height function along several directions, within a given window around each
point. It is thus clear that points on the shape boundary that are also vertex of
its convex hull are always extreme points. Furthermore, they introduced a scale
parameter which keeps only extreme points surrounded by big enough concave
or convex parts. This process filters non-significant features at a given scale.
Keeping only the vertices with a non-zero multiscale visual curvature defines a
simplified polygon. The sequence of polygons obtained by increasing the scale
parameter from 0 to 1 creates a natural filtration of polygons, the simplest one
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being the convex hull. A drawback of the method is that the visual curvature
is only a qualitative estimation of the curvature in the general case. Further-
more, the simplified polygons are not controlled by an error measure. Lastly,
this method requires four parameters. The visual curvature technique is recog-
nized as a good feature detector and multiscale contour polygonalizer. Since the
estimator is not suitable for our circle arc reconstruction (no distinction between
concave/convex area), we will use it only for comparison purpose to assess the
quality of our reconstruction method.

3 Contour Reconstruction with Circle Arcs

We propose a simple strategy to reconstruct a digital contour with the circle arc
primitive. The main idea is to decompose the curvature estimation profile so as
to find the significant curved areas which can be approximated by a circle arc.
For this purpose a split/merge strategy is proposed. Split/merge is governed by
a given maximal Hausdorff error Emax with respect to the input digital contour.
This parameter acts as a scale for the reconstruction. It also induces specific
parametrizations of curvature estimators, which will be described in the multi-
scale reconstruction paragraph.

Algorithm 1 gives an overview of the main reconstruction process. First the
curvature profile is decomposed into constant curvature parts. Then the set of
local maxima/minima is extracted to define the initial regions as circle arcs.
Since the circle arc estimation does not guarantee an error smaller than Emax, a
split process is first proposed to reduce the error between the circle arc and the
curve until it becomes less than the maximal allowed value. The merge phase
extends them with their neighborhood regions while the associated circle arc
gives an error lower than Emax. Before describing the error measure we focus on
the problem of arc reconstruction from a contour region.

Arc reconstruction. Given a contour region Ri
CA1

CA2

RR

A2

A1

A′
2 A′

1

A′
3

Cbi Cfi

Cci

I1

I2

there are several ways to reconstruct a circle arc Ai

from two endpoints Cbi and Cfi . A first solution is
to use the curvature information to determine the
different possible solutions if there exist. Such a re-
construction is illustrated on the following figure by
assuming a constant curvature value κi = 1

R esti-
mated on the contour between Cbi and Cfi . The
two possible centers of the osculating circles of ra-
dius R are represented with the intersections I1 and
I2 of the two dotted circles of center Cbi and Cfi . From these two points I1 and
I2, four circle arcs A1, A′

1 and A2, A′
2 are deduced as potential candidates for

the reconstruction. Then the sign of the curvature retains only the circle arcs of
same convexity. To select the final solution, we compute the distance between
each middle arc point with the middle contour point Cci . In the previous illus-
trating example, the final arc will be A2 since the euclidean distance between
Cci and CA2 is less than the one between Cci and CA1 .
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A second method of reconstruction simply assumes that the circle arc should
interpolate the middle point Cci of the contour region. In this case the center of
the circle arc can be determined if the center point is not collinear with the two
other points Cbi and Cfi . By referring to the previous example the reconstructed
circle arc is given by A′

3. The two approaches have been experimented and the
latter one gives the best results.

Error measure. Through the reconstruction process we need to evaluate the
precision of the approximation by computing the error made between the re-
constructed circle arcs (Ai) of extremities (Cbi , Cfi) and the pieces of digital
contour (Ci) defined between the two points. We propose to use the Hausdorff
distance δH(Ai, Ci) defined as:

δH(Ai, Ci) = max{max
b∈Ci

{min
a∈Ai

d(a, b)}, max
a∈Ai

{min
b∈Ci

d(a, b)}}

The first term maxb∈Ci{mina∈Ai d(a, b)} is computed in linear time by taking
into account for each point Cj the angle θAi of the circle arc and the angle θCj

of the contour point Cj with the segment OiCfi where Oi is center of the circle
arc Ai. Two cases need to be considered (see Fig. 1(a)). If θCj < θAi then the
minimal distance to the arc can be defined as the distance between Cj and the
projection C′

j of Cj on the this circle. The minimal distance between Cj to any
point of Ai is thus given by R − ||OiCj || where R is the radius of the circle of
center Oi. If θCj is greater than the circle arc angle θAi then the projection C′

j

is not located on the circle arc and the error is then defined by the minimal
distance between ||CjCfi || and ||CjCbi ||.

θAi

θck

θcj

Ck

C′
k

Cj
C′

j

Ai

Cbi Cfi

Ck

P4

P3P2

P1

Ai

Cbi Cfi

(a) (b)

Fig. 1. Illustration of the evaluation of the Hausdorff distance between the circle arc
and the digital contour

The second term of the Hausdorff error measure implies a O(N2) complexity
since for any point of the arc, the minimum distance with the N points of the
contour part CbiCfi is required. We therefore only approximate this measure, by
computing the minimal distance only for some sampling points on the circle arc.
They are defined so as to obtain at least one sampling point on each quadrant
(worst case for a circle arc with angle close to 2π). Thus four points are used to
define the error (illustrated on Fig. 1(b)).
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Merging process. The first merging process is initiated from the constant
plot areas which are a local minima/maxima. The advantage of such strategy
is to be independent of the choice of the initial contour point. Note that a
precision parameter ε can be used to consider that two curvature values are
equal. Then in order to avoid the presence of inconsistent circle arc, merging
is allowed only between two contour regions with the same sign of curvature
(definition included in the function isExtendable). It is also necessary to have
a strategy for selecting in which order neighboring regions are merged with
the considered central region. Here, the region whose mean curvature is closest
is selected as first candidate to be merged. Such strategy is associated to the
functions selectFirstNearest, selectSecondNearest and extendFrontFirst
from Algorithm3.

As described in Algorithm 1 the merging process is applied in a second phase
in order to merge the potential arc regions located between two local max-
ima/minima. Finally, after this process, the function selectMinErrPrimitive
is called to optionally verify if the straight segment could improve the recon-
struction error. In order to favor circle arc reconstruction the straight segment
is chosen only if it implies an error decrease at least equal to Emax/2.

Algorithm 1. Reconstruction with arcs and segments
Data: C = {Ci}n

i=0 digital curve, κ = {κi}n
i=0 curvature estimation,

float maxArcError;
Result: curve represented by a set of arcs and segments.
begin

Decompose κ into a set of constant curvature interval S defined by:
{(b0, f0), ..., (bi, fi), ..., (bM , fM )}.
For each contour point Ci, store in regionIndex[i] the index k ∈ {0, ..M} of
its region S[k].
Extract from S the set Sm containing all the regions which are a local
maxima/minima.
Stmp = S;
while nbElements(Stmp)! = 0 do

Stmp = SPLIT REGIONS(Stmp, S, regionIndex, maxArcError);
// First extension from mini/maxima regions:
while nbElements(Sm)!=0 do

Sm = EXTEND PLOT REGIONS(Sm, S, regionIndex, κ, maxArcError);
// Second extension from all others regions Su:
Su= set of index of valid non maxima/minima regions of the current regions.
while nbElements(Su)!=0 do

Su = EXTEND PLOT REGIONS(Su, S, regionIndex, κ, maxArcError);
// Verify or change primitive for region which are better approximate
// by a straight segment:
checkBestPrimitive(S, tabRegionIndex, maxArcError);

end
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Algorithm 2. SPLIT REGIONS
Data: The set setToCheck of region index to be checked for splitting.
The set S of all curve PlotRegions.
The rIndex associating each point Ci to its region S[k].
maxArcError: the maximal error allowed for splitting.
Result: A set containing all new index of splitted region.
for i = 0; i < sizeOf(setToCheck); i + + do

PlotRegion plotReg = S[i];
float error = ComputeError(plotReg);
if error > maxArcError then

// Split the considered region
PlotRegion newRegion1, newRegion2;
newRegion1.b = plotReg.b;
newRegion1.f = (plotReg.b+size(plotReg)/2)mod (rIndex.size());
newRegion2.b = (plotReg.b+size(plotReg)/2+1)mod (rIndex.size());
newRegion2.f = plotReg.f;
add(S, newRegion1); add(S, newRegion2);
add(splitSet, newRegion1); add(splitSet, newRegion2);
InvalidAndUpdateReg(S[i], rIndex); updateRegs(newRegion1,
newRegion2, rIndex);

return splitSet ;

Multi-scale reconstruction. The reconstruction process is governed by a max-
imal error, which naturally induces a multi-scale reconstruction. To speed up the
process and enhance the detection of significant points, the curvature estimator
should also be tuned to take into account this error. This is easily done for the
GMC curvature estimator, whose thickness parameter ν corresponds nicely with
the Hausdorff error Emax. Fig. 2(a) illustrates the blurred segment of width ν
used in the GMC curvature estimator. When using the GMC estimator, the
maximal error and the thickness ν are simply set to the chosen scale value. For
the reconstruction with the BCC estimator its mask size has a linear dependence
with the chosen scale value (although the initial mask size must be somehow de-
termined by the user it was set as the contour size for the following experiment),
while the maximal error is set equal to the chosen scale.

Time complexity. The global reconstruction complexity is first dependant of
the curvature estimator. Since the error measure is computed in linear time, the
complexity for the split/merging process is in the worst case equal to O(n2) when
the contour (composed of n points) is reconstructed with a final arc obtained by
adding one point at each step. On average the complexity is equal to O(nlog(n)).

Beside the difference in quality of the reconstructions, which is described in the
next section, the choice of GMC or BCC estimator influences the efficiency of the
merging process. Fig. 2(b) shows the number of region merges obtained for both
estimators. The resulting plot shows that GMC is around 7 times more efficient
than BCC for the merging process. The main reason of this difference comes
from the stability of the GMC estimator (see [11] for detailed comparisons).
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Algorithm 3. EXTEND REGIONS
Data: The set setToExtend of region index to be checked for merging.
The set S of all PlotRegions.
The rIndex associating each point Ci to its region S[k].
The curvature estimation κ = {κi}n

i=0,
maxArcError: the maximal error allowed after a merge.
Result: The set of region indexes which were updated: resultSet
for i = 0; i < nbElements(setToExtend); i++ do

PlotRegion reg = SetToExtend[i];
PlotRegion regBack = getBackRegion(reg, S, rIndex);
PlotRegion regFront = getFrontRegion(reg, S, rIndex);
PlotRegion regFirst = selectFirstNearest(regBack, reg, regFront, κ);
PlotRegion regSec = selectSecondNearest(regBack, reg, regFront , κ);
bool frontFirst = extendFrontFirst(regBack, reg, regFront, κ);
if is Extendable(reg, regFirst, κ) then

PlotRegion tmp = MERGE(reg, regFirst, frontFirst);
float error = COMPUTE ERROR(tmp);
if error < maxArcError then

add(resultSet, tmp); add(S, tmp);
InvalidAndUpateReg(reg, rIndex);
InvalidAndUpateReg(regFirst, rIndex);

if is Extendable(reg, regSec, κ) then
PlotRegion tmp = MERGE(reg, regSec, !frontFirst);
float error = COMPUTE ERROR(tmp);
if error < maxError then

add(resultSet, tmp); add(S, tmp);
InvalidAndUpateReg(reg, rIndex);
InvalidAndUpateReg(regSec, rIndex);

return resultSet ;
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Fig. 2. Illustration of the blurred segment recognition of width ν illustrated in blue
(a). A resulting arc detection at the scale Emax = ν is illustrated in red. Comparison
of the number of merges of circle arcs when the reconstruction is defined with GMC
estimator or with BCC estimator by using different scales (horizontal axis) (b).
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4 Experiments and Comparisons

In this section, the experiments and comparisons were performed on a MacBook
Pro running Mac OS X 10.6.4, with a processor 2.8 GHz Intel Core 2 Duo and
4GB of memory. Note that most of the experiments presented here are available
online [12]: the reader may here tests and compares the different methods with
its own shapes. First, we reconstruct the kangaroo shape of Fig. 4. Images (a-d)
show the reconstructions obtained with the GMC estimator. For all experiments
of the figure, resulting arcs are represented alternatively in blue and green color
while straight segments are represented in red. The comparison between GMC
and BCC (images (e-h)) curvature estimators shows a relative equivalence of
the reconstructions: approximately the same accuracy with the same number of
primitives (slight advantage of accuracy for GMC). However BCC is much slower,
especially at large scale. Note that the initial constant curvature intervals were
defined from the same precision parameter ε set to 10e − 6 for both GMC and
BCC estimator.

We also compare our proposed method with the NASR method of Nguyen,
who proposed a linear time algorithm for approximate circle arc recognition
(chapter 4, page 133) [15]. The method is based on the representation of the
contour in the tangent space and shares with the GMC estimator the preprocess
with blurred segments (thickness is used as a scale parameter for comparisons).
NASR method is faster than GMC and BCC approach (Fig. 4, images (i-l)),
but is much less accurate at a comparable scale (i.e. for the same number of
primitives). The Fig. 3 displays the number of primitives (segments and arcs)
according to the scale. GMC and BCC show comparable evolution while circle
arc primitives disappear in NASR at large scales.

As mentioned in Section 2, we also perform comparisons with the classical vi-
sual curvature reconstruction ([13], see Fig. 5), later called VC. Depending on its
parameters, VC is generally faster than GMC, especially at large scale. However,
for a given number of primitives, the GMC reconstruction always achieves better
accuracy than VC (Hausdorff distance about 6-7 times smaller). Note that arcs
and segments represent the same cost since each reconstructed arc interpolates
the middle region point CCi (second method of arc reconstruction described in
Section 3). To conclude the experimentation, a last comparison was performed on
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(c) GMC: A = 17, S = 3 (g) BCC A = 20, S = 9 (k) NASR A = 1, S = 16
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(d) GMC: A = 14, S = 2 (h) BCC A = 15, S = 8 (l) NASR A = 0, S = 14
619 ms. δH = 17.2402 33420 ms. δH = 17.7125 190 ms. δH = 32.8938

Fig. 4. Results and comparisons using the Hausdorff distance δH of the same recon-
struction process by using GMC and BCC curvature estimators (a-h). Images (i-l) show
for comparison, the result with NASR method by using the same scale parameter.
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Fig. 5. Reconstruction results of the proposed method (a-e) at different scales. Com-
parisons with the Visual Curvature based approach.
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Fig. 6. Experiments and comparisons of three methods applied on a photography of a
flower drawing. For GMC and NASR, the resulting circle arcs are represented alterna-
tively with blue and green color while straight segments are represented in red.

a real photography of a drawing (Fig. 4) with the three different methods GMC,
NASR and VC. The resulting representations confirm that GMC is always more
precise for a given number of primitives.

5 Conclusion

This paper has proposed a simple method to reconstruct a digital contour with
circular arcs, given a scale parameter that is simply the maximal Hausdorff
error. Although the method is not specific to one curvature estimator, the GMC
estimator has shown the best adequacy with our algorithm, since it gives precise
results while keeping a reasonable execution time. The comparisons with the
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recent works demonstrate the quality of the proposed reconstruction. In future
works, we plane to integrate more information in the reconstruction process,
namely the automatic noise detection and the information on flat/curve contour
parts [10], in order to obtain a parameter free contour reconstruction.
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Abstract. The relative convex hull of a simple polygon A, contained
in a second simple polygon B, is known to be the minimum perimeter
polygon (MPP). Digital geometry studies a special case: A is the inner
and B the outer polygon of a component in an image, and the MPP is
called minimum length polygon (MLP). The MPP or MLP, or the rela-
tive convex hull, are uniquely defined. The paper recalls properties and
algorithms related to the relative convex hull, and proposes a (recursive)
algorithm for calculating the relative convex hull. The input may be sim-
ple polygons A and B in general, or inner and outer polygonal shapes
in 2D digital imaging. The new algorithm is easy to understand, and
is explained here for the general case. Let N be the number of vertices
of A and B; the worst case time complexity is O(N2), but it runs for
“typical” (as in image analysis) inputs in linear time.

Keywords: relative convex hull, minimum perimeter polygon, mini-
mum length polygon, shortest path, path planning.

1 History and Outline of the Paper

Studies about relative convex hulls started in the 1970s in image analysis, robo-
tics and computer vision. Sklansky [6] proposed the notion of the relative convex
hull at a time when digital imaging was still in its infancy, and digital images of
low resolution. The relative convex hull is known to be identical to the minimum
perimeter polygon (MPP). This polygon circumscribes a given set within an
available (polygonal) domain. Figure 1 shows on the left an inner polygon A,
an outer polygon B, and the convex hull of A relatively to B; the image on the
right in this figure illustrates stacked cavities for those two polygons.

The relative convex hull generalizes the concept of the convex hull. Algorithms
for the computation of convex hulls of simple polygons are basic procedures in
computational geometry or digital image analysis. For example, Melkman [4]
proposed a linear time algorithm for connected simple polylines; a simple polyline
consists of subsequent (connected) line segments, without any crossing. The end
vertex of one line segment coincides with the start vertex of the following line
segment, possibly apart from the start and end vertex of the simple polyline (i.e.,
the simple polyline does not need to form a loop). A simple polygon is defined
by a simple polyline if this forms a loop. The polyline is then the frontier of this
polygon. The Melkman algorithm works efficiently for any simple polyline by

I. Debled-Rennesson et al. (Eds.): DGCI 2011, LNCS 6607, pp. 260–271, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. An example of polygons A and B having stacked cavities. Left: Convex hull of
A relatively to B (i.e., the relative convex hull) shown by the bold line. Right: Covers
of stacked cavities.

using a deque (i.e., a double-ended queue) while computing the convex hull. We
use this efficient algorithm as part of our new algorithm for the computation of
the relative convex hull of a simple polygon. This convex hull is defined relatively
to a second (larger) simple polygon.

Planning a shortest path for a robot in a restricted two-dimensional (2D)
environment may also be solved by computing the relative convex hull of one
simple inner polygon with respect to an outer simple polygon: The outer polygon
might be defined by corners (vertices) of the available area, and the inner polygon
by corners (vertices) of the obstacles. Obviously, inner and outer polygons in this
case differ from polygons in image analysis. Here, vertices are in the real plane,
edges are not limited to be isothetic, and the “width” of the space between inner
and outer polygon is not constrained a-priori. Some publications about relative
convex hulls are discussing geometric properties, but not algorithms, such as [8]
or [9]. Proposed algorithms will be briefly reviewed below, before discussing a
new algorithm. The paper is restricted to simple polygons. (The inner polygon
could also be replaced by sets of points or other data.)

The new algorithm is for the general case of simple polygons (such as in
the robotics scenario), but also for more constrained polygons such as in the
digital imaging example. The relative convex hull provides a way of multigrid-
convergent length measurement in digital imaging [2], thus making full use of
today’s high resolution image data. In this particular context, the MPP is called
minimum length polygon (MLP), and defines a multigrid-convergent method for
length estimation. This method is an alternative way to purely local counts
(e.g., counting edges along a digital frontier of an object ). Local counts do
not support more accurate length estimates in general when increasing the grid
resolution. The advantage of having high resolution camera technology available
would be wasted in image analysis if a method is applied that is not multigrid
convergent. For showing multigrid convergence of the MLP towards the true
perimeter, assume that a measurable set in the Euclidean plane is digitized
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(Jordan digitization; see [2]) into an inner and and outer polygon. The relative
convex hull (or MLP) is then calculated such that it is containing the inner
polygon, but itself is contained in the outer polygon. It has been shown [3] that
the perimeter of this relative convex hull is converging towards the perimeter of
the digitized measurable set with increasing the grid resolution.

First, the paper briefly recalls basic definitions and properties that are pre-
liminaries to explain the algorithmic methods. We review existing algorithms for
the computation of the relative convex hull. Next we list and show new theoreti-
cal results. They allow us to propose a completely new algorithmic approach for
calculating the relative convex hull (or the MLP).

2 Basics

A simple polygon is bounded by a circular chain of co-planar line segments such
that two segments only intersect at end (or start) vertices, and only if they are
consecutive segments in the given circular chain. This circular chain is also called
the frontier of the simple polygon.

A subset S ⊂ R2 of points is convex iff S is equal to the intersection of all half
planes containing S. The convex hull CH(S) of a set of points S is the smallest
(by area) convex polygon P that contains S.

2.1 The Relative Convex Hull

A finite set of n points in the plane can be associated with the set of n vertices
of a simple polygon. The convex hull of a simple polygon A is a simple polygon
CH(A), and this has a reduced number of vertices if A is not convex. A simple
polygon is also called a Jordan polygon because its frontier is a Jordan curve.1

Definition 1. A cavity of a polygon A is the topological closure of any connected
component of CH(A) \A.

For example, in Fig. 1, the only cavity of A (defined by cover number 1), contains
three non-connected subsets of cavities of B. A simple polygon A with n vertices
has at most �n/2� cavities; in the maximum case all the cavities are triangles.
In general, cavities are notated by CAVi(A), where i = 1, 2, . . . follows the order
of vertices on the frontier of A. A polygon is non-convex iff it has at least one
cavity. A cavity is again a simple polygon with a minimum of three vertices,
bounded by three straight line segments or more. This polygon may be convex
or non-convex.

Definition 2. A cover is a straight line segment in the frontier of CH(A) that
is not part of the frontier of A.

A cover separates a uniquely assigned cavity from the exterior of CH(A). A cover
is defined by two vertices ps and pe, the start vertex of a cavity and the end
1 A Jordan curve separates two connected regions the plane, here the interior of the

polygon from the exterior of the polygon.
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Fig. 2. The inner polygon A has three cavities with nonempty intersections with cav-
ities of the outer polygon B. Cavity CAV2(A) has an empty intersection with cavities
in B.

vertex of a cavity. The maximum depth of stacked cavities for the polygons A
and B shown in Fig. 2 is two.

Let A be a simple polygon with n vertices, A = 〈p1, p2, ..., pn〉, and let B be
a simple polygon with m vertices, B = 〈q1, q2, ..., qm〉, with A ⊆ B ⊂ R2.

Definition 3. A polygon A is B-convex iff any straight line segment in B that
has both end points in A, is also contained in A. The convex hull of A relatively
to B (in short, the B-convex hull of A; formally CHB(A)) is the intersection of
all B-convex polygons containing A.2

The minimum length polygon (MLP) of a 2D digital object coincides with the
relative convex hull of an inner grid polygon relatively to an outer grid polygon,
normally defined in a way like simulating an inner and outer Jordan digitization.
In 2D digital imaging, an object is a digitization of a measurable set S ⊂ R2

into a regular grid. We assume that a 2D picture P is composed of equally sized
squares, where edges have length 1 and centers have integer coordinates. The
inner polygon A is the union of all grid squares completely contained in the
topological interior of a given object S ⊆ R2. The outer polygon B is the union
of all grid squares having a nonempty intersection with the set S and the inner
polygon A. The unknown frontier of the set S is assumed to be a Jordan curve
γ located between the frontiers of polygons A and B.

The relative convex hull of A relatively to B (i.e., the MLP) is also located
between the frontiers of polygons A and B, and its length is an approximation
of the length of γ that converges to the true length of γ with increasing grid
resolution [2]. It is uniquely defined for a given digitized object. The inner and
the outer polygon of a Jordan digitization have the constraint that they are at

2 This definition can also be generalized to higher dimensions.
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Hausdorff distance 1. Mappings exist between vertices and between cavities in
A and in B. The MLP may be calculated in linear time [1], where “linear” refers
(e.g.) to the total number of grid squares between the inner and outer polygon.

In the general case, a simple polygon A inside of a simple polygon B, does not
necessarily satisfy those constraints or properties, introduced due to the specifics
of the regular grid. For the general case it is known that for all simple polygons
A and B, only convex vertices of polygon A and only concave vertices of polygon
B are candidates for the vertices of the relative convex hull [8].

Recently [5], an arithmetic MLP (AMLP) and a combinatorial MLP (CMLP)
were proposed with the purpose of designing new algorithms for the compu-
tation of MLP.3 For briefly discussing the AMLP, we consider the Gauss dig-
itization of sets S ⊂ R2: All grid squares with their centroids in S belong to
the resulting digital object. A set of connected grid squares is also called a
polyomino. To be precise, a digital object is a polyomino iff it is 4-connected
and the complement is 4-connected. The frontier of such a digitized object is
a Jordan curve consisting of grid edges that separate the interior of the object
from the exterior; these isothetic edges can be encoded by a Freeman chain
code. The arithmetic definition is based on the fact that the tangential cover
of the frontier of a digital object is a sequence of maximal digital straight lines
(MDSS). The frontier of a digital region can always be uniquely divided into
MDSS, assuming the start point is fixed (e.g., uppermost, leftmost). The ob-
ject is digitally convex iff each pair of adjacent MDSSs of the tangential cover
takes a convex turn. There are four different types of connected MDSSs with
a single point overlap, called zones. A convex (concave) zone is an inextensi-
ble sequence of MDSSs where each pair of consecutive MDSSs takes a convex
(concave) turn. The so-called inflexion zones are those parts where a convex
turn is followed by a concave turn, or a concave turn is followed by a convex
turn.

For a connected part of the frontier with only two kinds of steps (note: a
digital straight line includes only two kinds of steps, c and c + 1 mod 4) the left
envelope (resp. right envelope) is the sequence of straight lines of the convex hull
of the associated vertices of the inner polygon (outer polygon). It is a polygonal
line starting at vi and ending at vj clockwise (counterclockwise). The AMLP is
a closed polygonal line defined by those zones that may be convex, non-convex,
or a segment connecting a vertex of the outer polygon with a vertex of the inner
polygon, or a segment connecting a vertex of the inner polygon with a vertex
of the outer polygon. The CMLP is based on a combinatorial approach (for
details see [5]). Both definitions are equivalent to the MLP, however they lead
to different linear time algorithms.

3 The authors of [5] motivate their work by a claim that the algorithm in [1] is faulty.
Actually, it appears that the theoretical preparation of the algorithm in [1] in Eu-
clidean space (when using Euclidean straight segments between vertices of the inner
and outer polygon) is correct, but when using digital straight segments (DSSs) for
an efficient implementation of the algorithm in the grid, only a simplified version of
a DSS algorithm (DSSs up to complexity level 2 only) is used.
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2.2 Algorithms for Calculating Relative Convex Hulls

Computing the relative convex hull of one simple polygon with respect to another
simple polygon can be done in nearly (see below) linear time. In [11], the author
changes the task to a shortest path problem between two vertices in a simple
polygon by considering one extreme vertex of the inner polygon as start and end
vertex at the same time, and by cutting B \A, thus introducing a new (double-
oriented) edge and combining outer and inner polygon into a single polygon.
Then he proposes the triangulation of this resulting polygon B \ A, followed
by finding the shortest path. The triangulation can be done in O(n log log n)
time [10], and finding the shortest path can be done in linear time, using this
triangulation. However the triangulation is a very complex operation, and [11]
provides no further details besides such a rough sketch.

The algorithm in [1] computes the MLP in linear time with respect to the
total number of vertices. It traces the inner polygon (or outer polygon) counter-
clockwise, saves the coordinates of all convex or concave vertices in a list, and
it marks each vertex with a plus sign if it takes a positive turn (convex), and a
minus sign if it takes a negative turn (concave). Collinear vertices are ignored
because they are not candidates for the MLP. All concave vertices of A are re-
placed by the concave vertices of B, by applying the (existing!) bijective map
between those vertices. This step can be done in linear time. In a second run,
the algorithm starts at a known MLP-vertex and it computes the next vertex
of the relative convex hull by checking its location between the negative sides
(straight line between known MLP-vertex and next concave vertex) and the pos-
itive sides (straight line between known MLP-vertex and next convex vertex).
This step needs only linear time because candidate vertices need only be checked
once. However the number of computations could be reduced by copying those
vertices into the final list of the relative convex hull that belong to the convex
hull of the inner polygon. (See the footnote on the previous page.)

Linear time algorithms for the computation of AMLP and CMLP are given in
[5]. The authors point out that those algorithms are simpler than existing ones,
and that they are easier to implement. The algorithm for the computation of the
AMLP computes first the tangential cover of a digitized object in linear time.
The tangential cover is decomposed into zones (convex, concave, inflexion), and
for each zone the vertices of the convex hulls of the polygonal line of the zone are
computed using the algorithm in [4], and then added to a list. Both algorithms
work only for polyominos, and the number of different zones increases with the
number of cavities.

3 Theoretical Results

We state the following for highlighting two obvious facts:

Proposition 1. The B-convex hull of a simple polygon A is equal to the convex
hull of A iff the convex hull of A is completely contained in B (i.e., CH(A) ⊆ B),
or if B is convex.



266 G. Klette

On the other hand, the B-convex hull of a simple polygon A is different to
CH(A) if there exist at least one cavity in A and one cavity in B such that the
intersection CAVi(A)

⋂
CAVj(B) is not empty.

Theorem 1. All vertices of the convex hull of a simple polygon A inside a simple
polygon B are vertices of the B-convex hull of A.

Proof. First we consider start and end vertices ps and pe of one fixed cavity
CAV(A). They are per definition vertices of the convex hull of A. If the inter-
section CAV(A)

⋂
CAV(B) is empty then B has no vertices inside the cavity of

A, and because A ⊆ B, the straight line between ps and pe connects vertices in
A and B. Assuming that CAV(A)

⋂
CAV(B) is not empty then there is at least

one vertex qi ⊆ B inside the cavity of A, and the straight line between ps and
pe crosses the exterior of B. A polygonal line between ps and pe, connecting the
vertices of B inside the cavity, exists such that all of its line segments do not
cross the frontier of A, and also do not cross the frontier of B.

Now we consider two consecutive vertices of CH(A) that are not the start or
the end of a cavity; they belong to the CHB(A) per definition. �	

We assume that the convex hull of A is saved in a deque D(A) after the applica-
tion of the Melkman algorithm. We can copy those vertices to the B-convex hull
of A, and we have to insert additional vertices into the deque D(A) between ps

and pe, for each cavity in A.
Let us consider cavities in polygons A and B with CAV(A)

⋂
CAV(B) �= ∅.

Let Inew be the polygon inside the cavity of A that is defined by vertices ps and
pe in A and all the vertices in B located inside this cavity of A (see Fig. 3, with
Inew = 〈ps, q3, q4, . . . q11, pe〉).

Theorem 2. All the vertices of the convex hull of Inew belong to the relative
convex hull of A between ps and pe.

Proof. We assume that Inew has no cavity. Then Inew is convex and all the
straight lines between vertices of Inew are inside the convex hull of A, and they
do not cross the exterior of B. They do not cross A because A ⊆ B. If Inew has
a cavity with vertices of B inside the cavity then the vertices ps and pe on Inew

belong obviously to the convex hull of this polygon. The straight lines between
those vertices are completely in CH(A) and in B (see q10, q11, p10 in Fig. 3). If
vertices of A are inside the cavity (see p2, p3, q6 in Fig. 3) then the straight line
between vertices ps and pe would cross A. A polygonal line starting at ps and
ending at pe connects vertices in A. �	

If the new polygon Inew has a cavity CAV(Inew) with vertices of A inside, then
the start and the end vertex of CAV(Inew) and the vertices of Onew constitute
again a new inner polygon, and the start and the end vertex of CAV(Inew) and
the vertices of Inew constitute a new outer polygon (see Fig. 3). This establishes
the basic idea of the new (recursive) algorithm.

We follow, in counterclockwise order, both frontiers of the original polygons.
The computation of convex hulls starts usually (in computational geometry)
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Fig. 3. Polygon A has one cavity. Inew has one cavity with one vertex of A inside.

at vertices with extreme values because it is obvious that vertices of A with
extreme values (maximum and minimum y-coordinate, maximum and minimum
x-coordinate) belong to the convex hull CH(A); those extrema are also vertices
of the relative convex hull CHB(A). Furthermore, for the computation of the
convex hull and for finding overlapping cavities in A and in B, we use the fact
that a vertex pi of a polygon is convex if the frontier takes a positive turn, that
means the determinant t(pi−1, pi, pi+1) > 0, and analog a vertex is concave if
the value of the determinant is negative. A vertex is collinear if the value of the
determinant is zero.

In the digital image case, there exists a bijective mapping between cavities in
A and in B for the inner and outer Jordan digitization polygons. This mapping
is a useful constraint for the computation of the MLP. It simplifies the process
of finding overlapping cavities in A and B in this special situation.

4 Recursive Algorithm

Our new algorithm is a recursive procedure. The base case of the recursion,
where it stops, is the triangle. We use Theorem 1: The relative convex hull
CHB(A) for simple polygons A ⊆ B is only different from CH(A) if there is at
least one cavity in A and one in B such that the intersection of those cavities
is not empty. The algorithm copies vertices of the convex hull of the inner poly-
gon one by one until it finds a cavity. If it detects a cavity in A, then it finds
the next cavity in B that has a nonempty intersection with the cavity in A, if
there is any. The algorithm computes the convex hull of the new inner polygon
Inew (all vertices of B inside the cavity of A, also the start vertex of CAV(A),
and also the end vertex of CAV(A)). For each cavity in this convex hull, the al-
gorithm computes the convex hulls of the next new polygons. If there is no cavity
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remaining, then it inserts the computed vertices inside the cavity, between ps

and pe, for all cavities in A, and it returns the relative convex hull of the given
polygon A relatively to B. - This is the basic outline, and we discuss it now more
in detail.

We assume that vertices of A and B are given with their coordinates in a
list. We compute the convex hulls of both polygons by applying the Melkman
algorithm [4]. The computation for both polygons starts at the vertices with
minimum y-coordinates. For a given ordered set of n vertices A=〈p1,p2,. . . , pn〉,
the algorithm delivers the convex hull in a deque D(A) where the first and the
last element are the same vertices.

The difference between the indices of two consecutive vertices pj and pi in
the resulting deque D(A) is equal to 1 if there is no cavity between pj and pi.
We do not change D(A). A cavity in A with the starting vertex ps = pj and the
end vertex pe = pi has been found if (i− j) > 1. The next step finds a cavity in
the convex hull of the outer polygon. It searches the deque D(B). If it finds a
cavity, it checks if a straight line between the vertices of B crosses the straight
line ps and pe, and it computes the convex hull for ps, pe and all the vertices
of B that are left of ps, pe and inside the cavity. If all vertices inside a cavity of
B, including qs and qe, are on the right of straight line pspe, then this cavity of
B does not intersect a cavity of A; see CAV2(A) in Fig. 2. The relative convex
hull does not change between ps and pe. We check the next cavity of B, with qs

on the right of pspe. The convex hull changes if qs is on the right of pspe and
if one vertex between qs and qe, saved in the original list B, is on the left of
pspe.

For example, consider Fig. 3. In this example the convex hull of A is saved in a
deque and the set of vertices equals D(A) = 〈p1, p2, p10 . . . p16, p1〉. We trace the
deque. The difference between the first two indices is 1, we calculate the difference
between the second and the third vertex. Between p2 = ps and p10 = pe there
must be a cavity because the difference of the indices is larger than 1. Vertices
of B inside the cavity between ps and pe define now the new inner polygon with
vertices Inew = 〈ps, q3, q4, . . . q11, pe〉, and vertices of A inside the cavity between
ps and pe define a new outer polygon with vertices Onew = 〈ps, p3, p4, . . . p9, pe〉.
All vertices of the convex hull D(Inew) = 〈ps, q6, q7, . . . q10, pe, ps〉 are vertices
of the relative convex hull. The polygon Inew has one cavity p2, p3, q6 with one
vertex of polygon A inside. This defines again a new inner polygon. The convex
hull of three vertices is always the same set of three vertices. The recursion stops.
We replace p2 and q6 with p2, p3, q6 in D(Inew). We continue to check for cavities
until we reach pe. The adjusted deque replaces the start and the end vertices in
D(A). In our example (see Fig. 3) the next cavity in D(Inew) starts at q10 and
ends at pe. But inside the cavity there is no element of the outer polygon. Thus,
the relative convex hull does not change.

We continue to trace the deque D(A) at p10 until p1 is reached, and we skip
vertex by vertex because there is no other cavity in A; D(A) stays unchanged.
This concludes the example.
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The following pseudo code provides the basic structure of the algorithm.

Algorithm 1. (Calculation of the relative convex hull)
Input: Simple polygons A = 〈p1, p2, . . . , pn〉 and B = 〈q1, q2, . . . , qm〉, A ⊆ B.
Output: Relative convex hull in D(I) (counterclockwise).

1: Initialize D(I) = ∅, D(O) = ∅
2: Call Procedure RCH(A, B, D(I), D(O), n, m, p1, pn)

Note that p1 = pn+1 and q1 = qm+1. This algorithm applies recursively a
procedure RCH(I, O, D(I), D(O), l, t, ps, pe) that is sketched in Fig. 4.

1: Compute convex hulls of I and O in deques D(I) and D(O), respectively, l is
number of vertices in I , t is number of vertices in O, ps is the start vertex and pe

is the end vertex of the inner polygon. k = 1 and j = 1 are loop variables.
2: Remove the last elements in D(I) and D(O)
3: while k < l do
4: if Cavity between two consecutive vertices in D(I), (dk and dk+1) then
5: ps = dk and pe = dk+1

6: while j < t do
7: if Overlapping cavity between two consecutive vertices in D(O) then
8: Update I such that I includes ps and pe and all vertices in O inside the

cavity of I , L is the number of vertices
9: if L > 3 then

10: Update O such that O includes ps and pe and all vertices in I inside
the cavity of I , T is the number of vertices

11: Call RCH(I,O, D(I), D(O), L, T, ps, pe)
12: end if
13: Insert q between ps and pe in D(I)
14: end if
15: end while
16: Return D(I)
17: end if
18: end while
19: Return D(I)

Fig. 4. Recursive procedure

The Melkman algorithm delivers the convex hull in a deque with the first
element at the bottom of the deque and also at the top of the deque. We need
to remove the elements from the top after the computation of convex hulls.

5 Discussion

Note that any vertex on A or B is accessed by the algorithm only at most as
often as defined by the depth of a stacked cavity. This defines this algorithm as
being of linear time complexity, measured in the total number of vertices on A
and B, if (!) this depth is limited by a constant, but of quadratic time in the worst
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case sense. For the general case, if there are “many” cavities in A, then they are
all “small”, and the algorithm has again linear run-time behavior. If there is just
one ”big” cavity (similar to Fig. 3), then the recursion only proceeds for this
one cavity, and we are basically back to the upper bound for the original input,
but now for a reduced number of vertices. The worst case in time complexity
is reached if there is a small number of ”large cavities” in A and B, causing
repeated recursive calls within originally large cavities of A, and the number of
recursive calls defines the depth of those stacked cavities. However, such cases
appear to be very unlikely in applications.

We discuss a few more details briefly for the example shown in Fig. 1. The
cover pspe of the first cavity cuts off three components of the original polygon
B. The resulting simple polyline (from ps to pe) is not allowed to cross the
segment pspe, see Fig. 5, left. We have two simple polylines from ps to pe,
defining the inner and the outer polygon. Note that the inner polygon is now in
general not simple, but this is not restricting the algorithm, because double edge
orientations can only occur on pspe (and the Melkman algorithm is for simple
polylines anyway). For the second cavity, see Fig. 5, right. Here, the bold black
line shows the calculated convex hull of the inner simple polyline, which defines
again a new cavity.

Now consider the special case that A and B may be considered to be inner
and outer digitizations of a set S ⊂ R2. The inner and outer polygons of a
Jordan digitization satisfy special constraints. The step of finding the cavities
with a nonempty intersection is faster because the algorithm can now use the
existing [1] bijective map between cavities. Once we have found a cavity in A
then there must be a cavity in B, and vertices for the new inner polygon are
easy to find. First, the algorithm traces the inner polygon and the outer polygon
counterclockwise and it saves the coordinates of all convex or concave vertices
in a list. Then the recursive procedure returns the MLP. The maximum number
of cavities in a polyomino with n convex or concave vertices is �n/2�. In this
maximum number case, the algorithm would stop after two loops.

Fig. 5. First and second cavity for the example in Fig. 1
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6 Conclusion

We presented a completely new algorithm for the computation of the B-convex
hull of arbitrary simple polygons. It is a recursive procedure that is very simple
and of low time complexity. The procedure uses a linear time algorithm for the
computation of convex hulls, both for inner and outer polygons, starting with
the given input polygons, and then continuing with the polygons defined in
recursively defined cavities. The algorithm runs in linear time if the maximum
depth of stacked cavities of A is limited by a constant. We continue to study the
expected time complexity of the algorithm under some general assumptions of
variations (i.e., distribution) for possible input polygons A and B.
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Abstract. In this paper, we address the problem of tangent estimation for digital 
curves. We propose a simple, geometry based tangent estimation method for 
digital curves. The geometrical analysis of the method and the maximum error 
analysis for digital elliptic curves are presented. Numerical results have been 
tested for digital ellipses of various eccentricities (circle to very sharp ellipses) 
and the maximum error of the proposed method is bounded and is less than 5.5 
degrees for reasonably large ellipses. The error for digital circles is also 
analyzed and compared with a recent tangent estimation method. In addition, 
the tangent estimation technique is applied to a flower shaped digital curve with 
six inflexion points and the results demonstrate good performance. The 
proposed tangent estimator is applied to a practical application which analyzes 
the error in a geometric ellipse detection method. The ellipse detection method 
is greatly benefited by the proposed tangent estimator, as the maximum error in 
geometrical ellipse detection is no more critically dependent upon the tangent 
estimation (due to the reduced error in tangent estimation). The proposed 
tangent estimator also increases the reliability and precision of the ellipse 
detection method.  

Keywords: Tangent estimation, digital curves, error analysis, elliptic curves. 

1   Introduction 

Many image processing applications require tangent estimation for digital curves  
[1-10]. Examples include corner detection, inflection point detection, shape 
representation, Hough transform based methods for conic fitting, projective estimation 
of  3-dimensional shapes.  

Geometric problems like estimating tangents, curvature, or shape features are well 
established for continuous non-digitized parametric curves. These problems become 
significantly difficult in the digitized pixel space of images, as the analytical 
equations may not take any continuous solution. The chosen solution is almost always 
an approximate integer solution nearest to the actual solution of the analytic 
equations. On one hand, digitization severely reduces the information contained in the 
continuous curves. On the other hand, the continuous curve can be analytically 
characterized using equation of finite number of coefficients (geometric parameters). 
Digitization introduces a non-linear corruption in the continuous curve which cannot 
be analyzed using equations [8-12]. 
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Estimating the tangents in digitized curves is challenging because of three main 
reasons: 

• The tangent is defined typically on a point, though it is a property of the 
continuous curve to which the point belongs. Thus, it has the local as well as the 
global properties of the curve. Due to the digitization, both these properties are 
affected and the nature or extent of effect cannot be quantified or analyzed using 
simple mathematical tools. At best, some estimates of maximum error or 
localized precision may be developed. 

• Usually, while estimating the tangents, prior information about the nature of the 
curve is not available. Further, appropriate size of the local region around a point 
is also not known. Choosing these parameters is mainly heuristic based and not 
robust. 

• Digitization permits many similar (though not the same) curves to be fit on the 
same digital pixel sequence. Thus, the tangents can never be obtained uniquely 
for the digital curves. 

There are several approaches for tangent estimation in the case of digital curves. One 
of the methods to find the tangents is to use continuous function (typically second 
order) to approximate the curvature of the digital curve in a local region around the 
point of interest [13-14]. Then the derivative of the continuous function is used to 
determine the tangent. Such approach is restrictive in the choice of the nature of 
continuous function and the definition, shape, and dimension of the local region, etc. 
Besides being computationally intensive, they are also afflicted by the quantization 
noise. Further, there are applications where tangents need to be computed to fit a 
shape (for example ellipse) on the digital curve. In such cases, it is difficult to rely on 
a method that first fits a shape in the local region to estimate the tangent, and then 
uses the tangent to fit a shape to the whole curve. In order to overcome the problem of 
choosing the continuous function, researchers sometimes use a Gaussian filter to 
smoothen the digital curve and obtain a smooth continuous curve. This Gaussian 
smoothened continuous curve is then used for estimating the tangents [15].  

Yet another method is to consider a family of continuous curves of various types. 
The whole digital curve is approximated by one of the continuous curves in the family 
using a global optimization technique. Then the tangents are computed on the curve 
chosen by optimization [16]. 

A different approach is to approximate the digital curves using line segments. Two 
main variations in this approach are in vogue. The first variation is based on the 
maximal segments [8, 11-12]. At the point of interest, the maximal line segments 
passing through it are found and weighted convex combination of their slopes is used 
to find the orientation of the tangent. Though this method is parameter-free, has 
asymptotic convergence, and incorporates convexity property, it is developed 
basically on heuristics, rather than analytic foundation.  

Another variation is to approximate the digital curve using small line segments 
such that the maximum deviation of any point on the digital curve with one of the 
fitted line segments is small, below a threshold value of a few pixels [17]. This 
procedure divides the curve into small sub-curves each corresponding to a fitted line 
segment. Then the slope of the tangent at the midpoint of each sub-curve is 
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considered to be the same as the slope of the corresponding line segment. The main 
restriction with this method is that the tangents are available only at some points of 
the digital curves, viz., the mid points of the digital sub-curves. 

We propose a tangent estimation method that is considerably simpler than all the 
above methods and has firm analytical foundation. Further, for estimating the slope of 
the tangent, only two points at a certain distance from the point of interest need to be 
found and no apriori information about the nature of curve is required. We prove that 
in the case of non-digitized ellipses, the slope computed by our method matches the 
slope of the actual tangent at any point on the curve. Though the proof is presented for 
elliptic curve only, it can be extended to all the conics. We considered elliptic curve 
because of its wide applicability. For the case of digital curve, we derive the 
expressions of the maximum error in tangent estimation. Based on the derivation, we 
compute the maximum error in the tangent estimation for a large range of ellipses, 
which include small circles to highly eccentric ellipses. The results sufficiently 
demonstrate the strength of the proposed tangent estimation method.  

We also consider an example where this analysis of the upper bound of the error 
has significant influence. In the three point geometric Hough transform method [7], it 
was shown that the error in tangent estimation is the most important practical 
contributor of the error [1]. It was also shown that if the maximum error in 
computation is known, a reliability region for the computed centers can be predicted 
based upon a probability density function [1]. We use the maximum error for the 
proposed tangent estimation for this application.  

In the following, Section 2 presents the proposed tangent estimation method and 
the geometrical proof of the concept. Section 3 analyzes the maximum error in the 
tangent estimation for digital curves using the proposed method. Section 4 presents 
numerical examples to illustrate the effectiveness of the proposed tangent estimator. 
Section 5 shows an application of the proposed tangent estimation method for ellipse 
detection. Section 6 concludes the article. 

2   Proposed Tangent Estimation Method 

In this section, we present the proposed tangent estimation method. The discussion 
has been restricted to elliptic curves. The analysis is easily extensible to any other 
conic as well. This section develops and tests the concept for the continuous curve 
only. We introduce the concept in section 2.1 and present the geometric proof of the 
validity of the concept in section 2.2. 

2.1   The Concept 

Let us consider an ellipse: 

( ) ( )2 2
1x a y b+ =

                                                    
(1) 

where, a  and b  ( a b≥ ) are the lengths of semi-major and semi-minor axes. Suppose 

we are interested in finding the tangent at the point ( )0 0 0,P x y . We know that the 

actual slope of the tangent at 0P  is given as follows: 
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2

0
0

0

d

d

xy b
m

x a y
⎛ ⎞= = −⎜ ⎟
⎝ ⎠                                                    

(2) 

In reality, since we do not know the curve to which 0P  belongs, we cannot compute 

the tangent analytically as above. We propose to use a small circle of radius R b  
centered at 0P :  

 ( ) ( )2 2 2
0 0x x y y R− + − =

                                               
(3) 

The circle intersects the ellipse given by (1) at points 1P  and 2P . There are two steps 

for finding the tangent at 0P . First , find the slope of the line 1 2P P  (denoted by m ). 

Second, find a line with slope m  passing through the point 0P .  

 

Fig. 1. Illustration of the geometric concept used for tangent estimation at the point 0P  

The idea is demonstrated in Figure 1 above. The slope m  of the line 1 2P P  is given 

by: 

( ) ( )2 1 2 1m y y x x= − −
                                                    

(4) 

2.2   Geometric Proof of the Proposed Concept 

For analysing the error in the proposed method we first need to find the coordinates of 
points 1P  and 2P . For the ease of analysis, we define the coordinates of the points on 

the ellipse using a parametric notation as: 

  cos ; sinx a y bθ θ= =                                                 (5) 

Specifically, the coordinates of 0P  are given by ( )0 0cos , sina bθ θ . It should be noted 

that θ  is not a geometric angle. Then, we can substitute (5) and the coordinates of 0P  

in (3) to find the intersection points 1P  and 2P : 

  ( ) ( )2 2 2
0 0cos cos sin sina a b b Rθ θ θ θ− + − =

                         
(6) 

The above equation can be simplified using algebraic and trigonometric 
manipulations as follows: 
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2 2 2 2 2 20 0 04sin sin cos
2 2 2

a b R
θ θ θ θ θ θ− ⎛ + + ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠          

     (7) 

The solutions of the above equation gives the intersection points. The derivation for 
solving the above equation is very long and tedious. For brevity, we circumvent the 
derivation and state that for R b , the value of θ  is close to 0θ :  

0 ; 0θ θ θ θ= + Δ Δ ≈                                                   (8) 
Then (7) can be written as: 

 
2 2 2 2 20 0 0

0
lim 4sin sin cos

2 2 2
a b

θ

θ θ θ θ θ θ
Δ →

− + +
+

⎧ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎨ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎩  

 ( )2 2 2 2 2 2
0 04sin sin cos

2
a b R

θ θ θΔ⎛ ⎞= + =⎜ ⎟
⎝ ⎠  (9) 

Thus, θΔ  can be computed as follows: 

( )
2

1

2 2 2 2
0 0

2sin
4 sin cos

R

a b
θ

θ θ
−
⎛ ⎞
⎜ ⎟Δ = ±
⎜ ⎟+⎝ ⎠

                               (10) 

Then the coordinates of 1P  correspond to the negative value of θΔ , while the 

coordinates of 2P  correspond to the positive value of θΔ , i.e. 2 1 02θ θ θ+ = , and the 

slope of the line 1 2P P  is given as follows: 

( )2 1 2 1
0

2 1

sin sin
cot cot

cos cos 2

b b b b
m

a a a a

θ θ θ θ θ
θ θ

− +⎛ ⎞= = − = −⎜ ⎟− ⎝ ⎠                (11) 

Substituting the parametric coordinates for 0x  and 0y  in (2), we get: 

0 0

d
cot

d

y b
m

x a
θ= = −                                                   (12) 

We notice from (11) and (12) that in the analytical case (absence of digitization), if  
R b , then there is no error in the computation of the slope with the proposed 
method. 

2.3   Choice of R  

The aim in choosing R b  is that 0θΔ ≈  and consequently ( )sin 2 0θΔ ≈ , such 

that (9) is valid. Suppose we choose a maximum value of θΔ , denoted by maxθΔ , 

then using (10) and 0 0θ = , the expression for choosing R  is given as: 

( )max2 sin 2R b θ≤ Δ                                              (13) 

For example, if we use ( )max 18θ πΔ = , i.e., 10 , such that ( )sin 2 0.0872θΔ = , 

then 0.1743R b≤ . 
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3   Maximum Error in Tangent Estimation Due to Digitization 

Due to digitization in the case of images, a general point ( , )P x y  is approximated by 

a pixel ( , )P x y′ ′ ′  as follows: 

round( ); round( )x x y y′ ′= =                                 (14) 

where round( )x denotes the rounding the value of real number x  to its nearest 

integer. ( , )P x y′ ′ ′  satisfy the following: 

,x y′ ′∈                                                            (15) 

;x x x y y y′ ′= + Δ = + Δ                                                 (16) 

0.5 0.5, 0.5 0.5x y− ≤ Δ ≤ − ≤ Δ ≤                                      (17) 
We shall use (16) and (17) for estimating the maximum error in the computation of 
the slope of the numeric tangent m . Let the slope of numeric tangent computed by 
pixels 1 1 1( , )P x y′ ′ ′  and 2 2 2( , )P x y′ ′ ′  (corresponding to 1P  and 2P ) be denoted by m′ . We 

shall call the numeric tangent computed with pixels as the digital tangent. Then m′  
can be solved as follows: 

2 1 2 1 2 1

2 1 2 12 1

1
y y y y x x

m m
x x x xx x

′ ′ ⎛ ⎞ ⎛ ⎞− Δ − Δ Δ − Δ′ = = + +⎜ ⎟ ⎜ ⎟′ ′ − −− ⎝ ⎠ ⎝ ⎠                      
 (18) 

The angular difference between the numeric tangent and the digital tangent is used as 
the estimate of the error. This angular difference is given as: 

1 1 1tan ( ) tan ( ) tan
1

m m
m m

mm
φ − − − ′−⎛ ⎞′∂ = − = ⎜ ⎟′+⎝ ⎠                          

(19) 

Substituting (18) in (19), we get: 

( ) ( )
( )( ) ( ) ( )

2 1 2 11

2
2 1 2 1 2 1

tan
1

m x x y y

m x x x x m y y
φ −

⎛ ⎞Δ − Δ − Δ − Δ⎜ ⎟∂ =
⎜ ⎟+ − + Δ − Δ + Δ − Δ⎝ ⎠       

        (20) 

Now based on the minimum and maximum possible values of 1x′Δ , 2x′Δ , 1y′Δ , and 

2y′Δ , we have the nine cases, corresponding to ( ) { }2 1 1,0,1x xΔ − Δ ∈ −  and 

( ) { }2 1 1,0,1y yΔ − Δ ∈ − .  

However, it can be shown that the maximum error occurs in cases 

2 1 2 1 1x x y yΔ − Δ = Δ − Δ = : 

( ) ( ) ( )( )22
max 3

1
max sin cos cos sin cos sins s

s
φ φ φ φ φ φ φ⎛ ⎞∂ = ± − ± ± + ± ±⎜ ⎟

⎝ ⎠     
(21) 

where, ( ) ( )2 2

2 1 2 1s x x y y= − + −  and ( )1tan mφ −= . It should be noted that the 

above derivation of the error bound is applicable to any general continuous line 
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connecting any points 1P  and 2P  and the corresponding digital line with the slope 

m′ . However, in the present case, 1P  and 2P  are given by (10). Thus, the error bound 

maxφ∂  is related to R  through s .   

4   Numerical Results 

In this section, we present numerical results for the maximum error due to the 
proposed tangent estimation method. Let us consider that the digital ellipses of 
interest have the length of semi-minor axis 30b ≥ . Then, using section 2.3, a 
reasonable value of R  is 5.229R ≤ .  

 

  

(a) ( )max 0φ θ∂  for all various 

values of eccentricity e  and 

0θ , using 3R =  

(b) ( )max 0φ θ∂  for all 

various values of eccentricity 
e  and 0θ , using 5R =  

(c) ( )( )max 0 0max ;φ θ θ∂ ∀  

for various values of e, using 
3, 4,5R =  

Fig. 2. Numerical results: maximum error in tangent estimation of digital ellipses using 30b =  

We perform three simulations, each with a different value of R , viz., 3R =  and 

5R =  respectively. For each simulation we vary the eccentricity ( )2 2 2e a b a= −  

of the digital ellipse varies from 0 to 0.999 (circle to extremely sharp ellipses), while 
keeping 30b = , and compute ( )max 0φ θ∂ . The result are presented in Figure 2 (a-b). 

In Figure 2(c), we present ( )( )max 0 0max ;φ θ θ∂ ∀  for various values of eccentricities 

for { }3,4,5R ∈ . It is notable that the maximum error in the computation of the 

tangents is very small. It is less than 5.25  for 3R =  and less than 3.1  for 5R = .  
Next, we consider digital circles whose radii range from 30 pixels to 10000 pixels. 

We use three different values of R , viz., 3R = , 4R =  and 5R =  respectively, and 

compute ( )( )max 0 0max ;φ θ θ∂ ∀ . The results shown in Figure 3(a). 

In order to understand the difference between the observed maximum error for 
various values of R , let us consider the ratio of the maximum error due to digitization 
(which is equal to 0.5) to the radius R  of the circle used for computing the tangent: 
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( )0.5 / R . It is evident that this ratio is higher for 3R =  as compared to 5R = . Thus, 

the error in the computation of tangent using 5R =  is less than when 3R =  is used. If 
the minimum value of b  is higher, such that we can choose larger value of 
R (satisfying (13)), the maximum error in the computation of tangents will further 
reduce. 

For comparison with the recently proposed MSTλ −  estimator, we consider the 
example test proposed in [12]. Hundred experiments were performed, in each of 
which a digitized curve corresponding to radius 100 and a randomly chosen center 
within 1 pixel region were formed and absolute error in the computation of tangent 
was computed using MSTλ −  and the proposed method. The average error in the 
computation of tangent is shown in Figure 3(b). The results show that the proposed 
tangent estimation method has lower error than MSTλ −  estimator. Further, while 
the error in the MSTλ −  estimator is high at the shift of every quadrant, this feature 
is not strong in the proposed tangent estimation method. 

 

 
(a) Maximum error in tangent
estimation of digital circles

with radius from [ ]30,10000

using different values of R  

(b) Average absolute error in the computation of tangents for 
100 experiments with digitized circles of radius 100 and
centers within 1 pixel region chosen randomly. The result is
compared with MSTλ −  estimator [12] 

Fig. 3. Analysis of error for digitized circles 

Finally, we show the error in tangent estimation for an analytical shape with 
inflexion points. We consider the flower shape with 6 petals: 

( ) ( )400 400
1 1.5sin 6 cos 60;   1 1.5sin 6 sin 60

3 3
x yθ θ θ θ= − + = − +

      
   (22) 

The digitized shape is shown in Figure 4(a). The smallest circle enclosing this shape 
completely has a radius 200. The directions of the tangents on the actual and tangents 
computed on the digitized curve using 20R =  are shown in Figure 4(b). The plot 
shows a good agreement between the actual and computed tangents. The maximum 
and average errors for various values of R  are plotted in Figure 4(c) We mention 
here that the maximum error occurs when the point of interest is close to the inflexion 
point. The error at the inflexion point itself is small (close to the average error) due to 
symmetry of the shape.  
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(a) The digitized 
flower shape 
represented by (22) 

(b) The angle of the tangents on 
the actual curve and the digital 
curve (using R=20) 

(c) The error in the computation 
of the tangent due to digitization 
for various values of R 

Fig. 4. Example of an analytical curve with inflexion points 

5   Practical Application: Hough Transform Based Ellipse 
Detection Method (Yuen [7]) 

Yuen proposed a variation of randomized Hough transform for detecting ellipses that 
uses three points on a digital curve to first determine the center of the ellipse and then 
perform Hough transform [7]. This method was analyzed in [1] and it was shown that 
the error in the estimation of tangents is the most important contributing factor in this 

method. In the paper, the result were shown using max 15φ∂ = , which was chosen 

empirically and is reasonable for the existing methods. However, for the proposed 

method, we see that the maximum error is less than 5.25 . Thus, the error contributed 
in Yuen’s method [7] for digital ellipses due to the tangent estimation is expected to 
decrease significantly.  

In [1], among the four tests presented for analyzing the relative error errr a  of 

ellipse fitting using Yuen’s method [7], Test 4(a,b) present the error contributed due 

to the erroneous tangent estimation. We substitute max 5.25φ∂ =  and compute the 

results of Test 4(a,b) of [1] considering digitization. The results are presented in 
Figure 5. It can be seen that the error due to tangents is significantly less than the 

results presented in [1], which considered max 15φ∂ = . 

 
max 5.25φ∂ = °  corresponding to the 

proposed tangent estimator 
max 15φ∂ = ° corresponding to the value used 

in [1] 
Test 4(a) of [1] Test 4(b) of [1] Test 4(a) of [1] Test 4(b) of [1] 

Fig. 5. Impact of the proposed method on the error analysis [1] for Yuen’s method [7]. The 
figures correspond to tests 4(a) and 4(b) of [1]. The dotted plot (red) shows the maximum error 
for the complete range of parameters, while the solid line (blue) shows the average error for the 
complete range for a particular value of [10,100]a ∈ . 
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Fig. 6. The Rayleigh distribution function proposed in [1] for describing the probability density 

function of the relative error  errr a  in Yuen’s method [7]. The distribution for the proposed 

tangent estimator uses err 0.05r a = , while err 0.1r a =  was used in [1]. 

The value of 0.05errr a =  obtained using the proposed tangent estimation method 

is very close to the errr a  for the remaining tests in [1]. Thus, the error in estimation 

of tangents is no longer the most important contributing factor in the error analysis of 

[1]. In [1], the average value of relative error errr a  is computed for four tests, and 

the maximum errr a  among all the four tests is used to define probability density 

function (a Rayleigh’s function) as below: 

( )( )2 2
err errF( ) 1 exp ( ) 2r a r a σ= − −

                                 
(23) 

where err 2r aσ π= . The Rayleigh distributions obtained using err 0.05r a =  

(corresponding to the proposed tangent estimation method, max 5.25φ∂ = ) and 

err 0.1r a =  (originally used in [1] considering max 15φ∂ = ) are shown in Figure 6. 

In the methods, where Yuen’s method [7] is used as a supplementary, or a part of 
the ellipse detection process, and the centers are computed using other methods (like 
least squares) as well, we can use (23) to choose a trust region. Suppose we want to 
verify the centers achieved using two methods, one of them is Yuen’s method, then 
we may say that the computed centers using the two methods are 90% reliable if: 

• For err 0.1r a = , the distance between the two centers is err 0.17r a <=  

• For err 0.05r a = , the distance between the two centers is err 0.085r a <=  

Thus, the proposed tangent estimation method provides a stricter trust region and the 
centers can be computed more reliably as well as precisely using the proposed tangent 
estimation method. 

6   Conclusion 

A simple, geometry based method is proposed for estimating the tangents of digital 
curves. The proof of the geometric concept used in the method is also presented. In 
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addition, for digital ellipses, we perform the maximum error analysis and give explicit 
analytical terms for the maximum error. The maximum error in the tangent estimation 
using the proposed method is small (worst case 5.25° for the considered examples).  

It is shown that the proposed tangent estimation method can have significant 
impact on some practical applications. For example, it is shown that if good tangent 
estimation methods like the proposed method are used in a specific application, the 
trust region for computing the centers of the ellipses (using various methods) can be 
chosen more strictly, which shall enhance the reliability as well as the precision of the 
ellipse detection method. 

At present, the analysis and results have been presented for digital ellipses and 
circles only. An example of digital curve with inflexion points is also considered. It is 
easily extensible to other conics like parabola, hyperbole, etc. It can also be extended 
to quadric curves (fourth order curves). Work is in progress for comparing the 
performance of the proposed tangent estimation method with the other tangent 
estimation methods. In this comparison, we shall consider various performance 
criteria like precision, maximal error, isotropy, convergence, convexity on ideal 
digital shape, and time complexity [12]. Such study shall help the image processing 
community in choosing good tangent estimators suitable for their corresponding 
applications while understanding the strengths and limitations of the tangent estimator 
used by them. 
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Laurent Provot and Yan Gérard

Univ. Clermont 1, ISIT, Campus des Cézeaux, 63172 Aubière, France
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Abstract. We provide a new method to estimate the derivatives of a
digital function by linear programming or other geometrical algorithms.
Knowing the digitization of a real continuous function f with a resolution
h, this approach provides an approximation of the kth derivative f (k)(x)
with a maximal error in O(h

1
1+k ) where the constant depends on an

upper bound of the absolute value of the (k + 1)th derivative of f in a
neighborhood of x. This convergence rate 1

k+1
should be compared to the

two other methods already providing such uniform convergence results,
namely 1

3
from Lachaud et. al (only for the first order derivative) and

( 2
3
)k from Malgouyres et al..

Keywords: Derivative estimation, Digital Level Layer, Convergence rate,
Linear Programming.

1 Introduction

One of the main goal of digital geometry is to provide a theory of digital differen-
tial geometry valid on digital surfaces or digital functions. In this framework, the
question of the derivative of a function at any order k is central. To be suitable
for applications, we are waiting from a digital derivative that it remains close
from a continuous derivative if we apply it on the restriction of the function on a
digital subset around a point. More formally, it means that we want a property
of uniform convergence if the resolution h tends to 0. Such a property of dig-
ital derivatives has been first investigated by Vialard, Lachaud, de Vieilleville,
Feschet in [7,4,8] and Brunet, Fourey, Malgouyres, Esbelin in [5,1]. The first
approach is based on the estimation of digital tangents and provides a uniform
error in O(h1/3) for the first order derivative while the second approach dealing
with binomial convolutions has a maximal error in O(h(2/3)k

) for the derivative
of order k. The purpose of the paper is to provide a third method based on Tay-
lor polynomial with a uniform error in O(h

1
k+1 ). The drawback of the method

is that it depends on a parameter of maximal roughness.
The principle is to fit the values of a digital function by a polynomial. Exact

fitting, namely interpolation, is not always possible but we expand the values
of the function F (x) in intervals [F (x) − R; F (x) + R] so that we can find a
polynomial P (X) verifying P (x) ∈ [F (x) − R; F (x) + R] in a neighborhood of
x0. How can we choose R? and the neighborhood of x0?

I. Debled-Rennesson et al. (Eds.): DGCI 2011, LNCS 6607, pp. 284–295, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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We start the paper by introducing the notion of roughness of a function,
namely the minimum R necessary to find a polynomial approximating the func-
tion F with an error smaller than R. We then use this polynomial approximation
P to provide derivatives of F . In Section 4, we present theoretical results by
bounding the error and in Section 5, we provide some experimental results.

2 Roughness of Order k

2.1 Definition

Let F : X → R be a real function defined on a domain X which can be any
subset of R, but most often a real interval, Z or a finite subset of consecutive
integers. A classic idea about any function f is to approximate its values by a
polynomial P (X) ∈ Rk[X ] of bounded degree. Except in degenerated cases or
if the cardinality of X is less than or equal to k + 1, it is not possible to find
a polynomial in Rk[X ] fitting exactly F , namely satisfying for all x in X the
equalities F (x) = P (x). Hence approximating methods have been developed,
such as Least Squares Fitting. In the framework of this paper, we focus on
uniform fitting:

Definition 1. For any function F : X → R with X ⊂ R and any fixed order
k, the roughness of F of order k, denoted Roughnessk(F ) is the lower bound of
the values R such that there exists a polynomial P (X) in Rk[X ] fitting F with a
uniform error smaller than R, namely

Roughnessk(F ) = inf
P∈Rk[X]

(
sup
x∈X

∣∣P (x) − F (x)
∣∣) .

Fig. 1. On the left, a function F . In the middle, we expand each value of F in an interval
as small as possible so that there exists a polynomial of degree at most 2 passing through
each vertical segment (drawn on the right). This minimal radius around the values of
F is the roughness of order 2 of F since we use here polynomials of degree at most 2.

What does it mean in practice? That instead of considering the exact value
F (x) at each x of X , we expand it in an interval Ix = [F (x)−R; F (x)+R]. There
is a threshold Rk(F ) such that, with R < Rk(F ), there exists no polynomial of
degree at most k verifying P (x) ∈ Ix for any x ∈ X while for R > Rk(F )
there exists at least one polynomial satisfying these conditions (Fig. 1). This
polynomial is used in next sections to provide an estimation of the derivative of
order k of F .
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We can also notice that if X is finite, the lower bound becomes a minimum.
If X is not bounded, it is possible to find an infinite roughness, for instance if F
is an exponential, its difference with a polynomial can not be bounded. Last, we
add that the sequence Roughnessk(F ) is decreasing with k and decreases until
0 if X is finite. We have Rk(F ) = 0 when k ≥ |X | − 1 (a null roughness means
that there exists an exact fitting of F by a polynomial).

2.2 Taylor-Lagrange Inequality

Let us recall Taylor-Lagrange inequality for a function F : R→ R of class Ck+1.
We consider the Taylor Polynomial Tx0(x) =

∑k
i=0

f(i)(x0)
i! (x − x0)i of degree

k. If we assume that |f (k+1)(x)| ≤ M for x ∈ [x0 − r; x0 + r], we have the
inequality |F (x)−Tx0(x)| ≤ M (x−x0)k+1

(k+1)! . It means that for any x in the interval
[x0 − r; x0 + r], the uniform distance between the Taylor polynomial at x0 and
F is less than or equal to M rk+1

(k+1)! . By taking x0 = a+b
2 and 2r = b− a, it leads

to the next property:

Property 1. The roughness of the restriction F[a;b] of a function F on an interval

[a; b] is smaller than
∥∥F (k+1)

[a;b]

∥∥
∞

( b−a
2 )k+1

(k+1)! .

2.3 Roughness and Vertical Thickness

The roughness of order 1 is related to the vertical thickness of the graph of
F but it is not only true for the order 1. Let us recall the definition of the
thickness: Given a finite subset S of Rd (we call vertical the direction of the last
coordinate), we define its vertical thickness as the minimal value δ such that all
points x of S verify h ≤ n.x ≤ h + δ where the last coordinate of the normal
vector n is 1. The double inequality h ≤ n.x ≤ h + δ simply means that the
point x is between the hyperplane of equation h = n.x and its translation by
vector (0, · · · , 0, δ). Hence the vertical thickness is the minimal vertical height
of a strip containing S between two parallel hyperplanes (Fig. 2).

Now if we look at the double inequalities defining the roughness of order k of
F , we find exactly the same kind of constraints: By denoting ai the coefficients
of polynomial P (X), the double inequality F (x)−R ≤ P (x) ≤ F (x)+R can be
rewritten a0−R ≤ −

∑k
i=1 aix

i+1F (x) ≤ a0+R. This is exactly h ≤ n.x ≤ h+δ

Fig. 2. On the left, a finite set S. On the right, the vertical thickness of S is the minimal
height of a strip containing S.
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where h plays the role of a0 − R, where δ is equal to 2R, where the unknown
normal vector n (of last coordinate 1) corresponds to the opposite of the unknown
coefficients of the polynomial completed by a last coordinate equal to 1 namely
n = ((−ai)1≤i≤k; 1) and where the input points x are given by ((xi)1≤i≤k; F (x))
for all x in X . It leads to the property:

Property 2. The roughness of order k of F is the half of the vertical thickness of
the set S =

{(
(xi)1≤i≤k; F (x)

)
for x ∈ X

}
.

2.4 Computation

The roughness can be computed by Linear Programming or directly by some
algorithms of Computational Geometry.

Linear Programming. For computations, we consider a function F : X →
R defined on a finite domain X . By denoting ai the coefficients of the fitting
polynomial P (X) =

∑k
i=1 aiX

i, the roughness of order k of F is the minimum
of the objective function R under linear constraints F (x) − R ≤

∑k
i=1 aix

i ≤
F (x)+R for any x ∈ X (variables are coefficients ai and R while the values x and
F (x) are given in the input). Hence the minimum of R can be computed by any
algorithm of linear programming (Simplex, Interior Points, . . . ). It means that
its value can be obtained in linear time in the size of X since linear programming
in fixed dimension can be solved in O(n) time where n is the number of linear
constraints [6].

Computational Geometry. According to property 2, we can compute the
roughness as the vertical thickness of a set in dimension k + 1. The first idea to
compute this thickness is to pass through the convex hull of the set of points.
There is however another faster approach based on the chords set: the vertical
thickness of the set S can be obtained as the height of the facet of the convex
hull of S − S (the chords) cutting the vertical axis (see [2] for details). The
principle of the chords algorithm is to climb all along the vertical axis with the
same kind of ideas used in QuickHull or GJK [3]. The time of computation is
quasi-linear in practice but its generalization in nD requires new ideas in order
to avoid loops.

3 Digital Estimation of F (k)(0)

3.1 Parameter

Our estimation of the order k derivative of a function F defined on a discrete
domain X at a given point is a direct corollary of the previous notion of rough-
ness. For convenience, we consider a function F : Z→ Z. The aim of this section
is to provide a method to estimate a kind of kth derivative of F at 0. By trans-
lation, it provides a method to estimate the derivatives F (k)(x) at any integer.
Unfortunately, we do not provide a canonical definition of these values. The
estimation method we provide depends on a parameter of maximal roughness
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Rmax. We will see in the next section that by choosing this parameter greater
than 1

2 + ||f(k+1)(x)||∞
(k+1)! , we obtain nice results of convergence of the digital deriva-

tive of maximal roughness Rmax towards the real continuous derivative.
It leads of course to the question: can the maximal roughness be chosen auto-

matically? Previous remark relates it to an upper bound of the k + 1-derivative
around the considered point. Hence a possible maximal roughness Rmax can be
estimated with finite differences (for instance F (1)−F (−1)

2 for an estimation of
F ′(0), F (1) + F (−1)− 2F (0) for an estimation of F ′′(0), . . . ). As we will see in
experiments, another approach is to fix a priori this threshold between 1

2 and 1
(1
2 seems to be a minimum to take into account the gaps of the digitization).

3.2 Definition

We consider the restriction F[−m;m] of the function F in a neighborhood of 0
going from −m to m. Given the maximal roughness parameter Rmax, if m is
small enough, the roughness of order k of F[−m;m] is smaller than this maximum
authorized Rmax (if m = 0, the roughness at any order k is null). The idea is
to increase m until the roughness of F[−m;m] becomes greater than the fixed
parameter Rmax. The intervals [−m; m] providing a roughness smaller than the
limit are called k-neighborhood of 0 wrt. F :

Definition 2. Given F : Z → Z and a maximal roughness Rmax, a k-neigh-
borhood of 0 is an integer interval [−m; m] such that the restriction F[−m;m] has a
roughness of order k less than Rmax. The maximal k-neighborhood [−mmax; mmax]
of 0 is the largest k-neighborhood.

There are two versions of these definitions, one with a strict inequality
Roughnessk(F[−m;m]) < Rmax and another one where we allow a large inequal-
ity Roughnessk(F[−m;m]) ≤ Rmax. At this step, we are not enough advanced to
determine if one is better than the other. We can just notice that if we want the
notion of maximal neighborhood of order 1 to collapse with the notion of digital
tangent already defined in digital geometry [7], we should choose Rmax = 1

2
and a strict inequality since digital straight segments have a vertical thickness
strictly less than 1. This leads to the introduction of the derivative of order k:

Definition 3. Let [−m; m] be the maximal k-neighborhood of 0 for a function
F of maximal roughness Rmax. There exists at least a polynomial P (X) =∑k

i=1 aix
i in Rk[X ] verifying F (x) − Roughnessk(F[−m;m]) ≤ P (x) ≤ F (x) +

Roughnessk(F[−m;m]) for any integer x from −m to m. We define the kth deriva-
tive of F at 0 by F (k)(0) = k!ak.

Attentive readers will notice that it can arise non unique solutions P (X) in de-
generated cases. In this case, which coefficient ak should we choose to define the
derivative? Again, depending on the application we can leave open the choice,
consider that there is no good value and that it is better to provide an inter-
val as a solution, or that the mean on the interval [akmin ; akmax ] is the best
representative of the possible derivatives that can be chosen.
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Of course, this definition does not match all the properties of continuous
derivative. We have for instance no guarantee that by derivating a derivative
of order k, we obtain the same value as by computing directly the derivative of
order k+1. Hence how can we say that this definition is suitable? with a property
we investigate in the next section in order to show that the digital derivative
estimation converges towards the continuous value.

4 Error Bounding

Let us consider the framework of Numerical Analysis or Signal Theory. We con-
sider a real function f : R → R of class Ck+1 known from its digitization in a
grid of horizontal and vertical resolution h. It means that we know a portion
of the digital function F : Z → Z defined by F (x) =

⌊ f(hx)
h

⌋
. We can estimate

the derivatives of F around 0 with a given maximal roughness by the method
described in the previous section. As we have here the initial value of f , the
question is to determine the maximal error of this method of estimation on the
real derivative of order k – corrected by a scale factor h1−k – namely to bound
the difference f (k)(0)− h1−kF (k)(0). This scale factor comes from the fact that
the derivative of order k of x �→ f(hx)

h is
( f(hx)

h

)(k) = hk−1f (k)(hx). We provide
the following upper bound:

Theorem 1. Let f : R→ R be a real function of class Ck+1 whose derivative of
order k + 1 is bounded by M in a neighborhood of 0 (more precisely we assume
|f (k+1)(x)| ≤ M for x ∈ [−L; L]). We have |f (k)(0) − h1−kF (k)(0)| ≤ uk(1

2 +
M

(k+1)! + Rmax)h
1

k+1 for the estimation of F (k)(0) with roughness Rmax ≥ 1
2 +

M
(k+1)! .

The proof relies on two inequalities: the first one says that the difference be-
tween Taylor polynomial T (x) of f(hx)

h around 0 of order k and F (x) = � f(hx)
h �

is small. The second one expresses the fact that the difference between � f(hx)
h �

and the polynomial P (x) that coefficients are obtained by computations of the
approximation F with maximal roughness Rmax is also small in a discrete neigh-
borhood of 0. It leads to bound the difference between P (x) and T (x) (� f(hx)

h �
plays the role of intermediary value) on a discrete neighborhood. With an im-
portant lemma on discrete norms on polynomials, we obtain the claimed result.
Details of the proof are given in next subsections.

4.1 Bounding the Difference T (x) − P (x) on a Discrete
Neighborhood

It is the first step of the proof of Theorem 1. We consider values of x in the
interval

[
−h− k

k+1 ; h− k
k+1
]

with h small enough to have hx included in [−L; L] for
all these values (in other words h is chosen smaller than Lk+1). It follows that the
(k + 1)th derivative of f(hx)

h namely hkf (k+1)(hx) verifies
( f(hx)

h

)(k+1) ≤ hkM .
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According to Taylor-Lagrange inequality at point 0 for function f(hx)
h , we have∣∣T (x)− f(hx)

h

∣∣ ≤ hkM
(k+1)!x

k+1 ≤ hkM
(k+1)! (h

− k
k+1 )k+1 namely∣∣∣∣T (x)− f(hx)

h

∣∣∣∣ ≤ M

(k + 1)!
(1)

whereT (x) is theTaylor polynomial of f(hx)
h at0 :T (x) = f(0)+

∑k
i=1 hi−1 f(i)(0)

i! xi.

As we have 0 ≤ f(hx)
h −

⌊ f(hx)
h

⌋
≤ 1, it follows that

∣∣∣⌊ f(hx)
h

⌋
+ 1

2 −
f(hx)

h

∣∣∣ ≤ 1
2 and

with bounding (1):

∀x ∈
[
− h− k

k+1 ; h− k
k+1
]
,

∣∣∣∣T (x)− 1
2
−
⌊f(hx)

h

⌋∣∣∣∣ ≤ 1
2

+
M

(k + 1)!
(2)

Now we can be interested in the bounding of the difference between P (x) and
F (x) =

⌊ f(hx)
h

⌋
. According to inequality (2) and condition Rmax ≥ 1

2 + M
(k+1)!

of Theorem 1, it follows that the interval [−h− k
k+1 ; h− k

k+1 ] is a neighborhood of
0 for maximal roughness Rmax. Hence the maximal neighborhood of 0 for the
function F is at least the interval [−h− k

k+1 ; h− k
k+1 ].

Now let us introduce the polynomial P (x) obtained with our method to esti-
mate the derivative of a digital function : it is a solution of inequalities |P (x)−
F (x)| ≤ Roughnessk(F[−m;m]) where [−m; m] is the maximal k-neighborhood
of 0 for the function F and maximal roughness Rmax. As the maximal neigh-
borhood contains [−h− k

k+1 ; h− k
k+1 ], we have:

∀x ∈ [−h− k
k+1 ; h− k

k+1 ] ∩ Z,

∣∣∣∣P (x)−
⌊f(hx)

h

⌋∣∣∣∣ ≤ Rmax (3)

It follows directly from inequalities (2) and (3)

∀x ∈ [−h− k
k+1 ; h− k

k+1 ] ∩ Z,
∣∣∣T (x)− 1

2
− P (x)

∣∣∣ ≤ 1
2

+
M

(k + 1)!
+ Rmax (4)

4.2 Discrete Norms on Polynomials

The aim of this subsection is to show that two polynomials whose difference can
be bounded on a discrete interval {−m...m} – as previous polynomials T − 1

2 and
P – have necessarily close coefficients.

Lemma 1. We assume k < 2m. Let A(X) and B(X) be two polynomials of
degree at most k whose difference |A(X) − B(X)| is less than a constant C on
a discrete interval {−m...m}. We have a difference |ak − bk| of coefficients of
degree k which is smaller than Cvkm−k where vk is a constant depending only
on k.

Let us denote αk(m, n) the maximum of the coefficient of degree k among all
polynomials P (X) of degree at most n and verifying |P (x)| ≤ 1 for all integers
x from −m to m.
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Property 3. – The value αk(m, n) decreases with m.
– The value αk(m, n) increases with n.
– For any positive integer μ, we have αk(μm, n) ≤ αk(m, n)/μk.
– We have 1/mk ≤ αk(m, n)
– If we assume m ≥ 2p where p = �(n − 1)/2� + 1, we have αk(m, n) ≤

(2p)kαk(p, n)/mk namely mkαk(m, n) is bounded as a function of m.

Proof. The decrease of αk(m, n) in m and increase in n are straightforward.
For going from αk(μm, n) to αk(m, n), we just have to notice that if P (X)

satisfies −1 ≤ P (x) ≤ 1 for any integer x from −μm to μm, then P (μX) whose
coefficient of degree k is μkak verifies −1 ≤ P (μx) ≤ 1 for all integers x from
−m to m. It follows that |μkak| ≤ αk(m, n). It proves that the maximum of |ak|
is at most αk(m, n)/μk namely αk(μm, n) ≤ αk(m, n)/μk.

To prove 1/mk ≤ αk(m, n), we just have to notice that the polynomial
P (X) = Xk/mk verifies −1 ≤ P (x) ≤ 1 for all integer x from −m to m. Hence
the maximum αk(m, n) of the coefficient of degree k under these constraints is
at least 1/mk.

For the last inequality, we define p = �(n − 1)/2� + 1 because it is the first
integer for which αk(p, n) is defined (it verifies 2p+1 > n). The assumption m ≥
2p allows to write m ≤ 2m−2p which leads to (i) m/p ≤ 2(m−p)/p = 2(m/p−1).
As the function αk(m, n) increases with m, we have αk(m, n) ≤ αk(�m/p�p, n).
With μ = �m/p�, it provides (ii) αk(m, n) ≤ αk(p, n)/�m/p�k. If we look at
the denominator �m/p�k, we have �m/p� > m/p − 1 ≥ m/2p according to (i).
Hence we obtain �m/p�k > (m/2p)k. In our main inequality (ii), it leads to
αk(m, n) ≤ (2p)kαk(p, n)/mk.

The property 3 shows that the values αk(m, n) decrease in 1/mk. Lemma 1 is
just a consequence of this property for n = k, i.e αk(m, k) ≤ vk

mk .

4.3 Some Values for αk(m, n)

– With n = 0, we have α0(m, 0) = 1. More generally we have α0(m, n) = 1.
– With n = 1, we have α1(m, 1) = 1/m.
– With n = 2, we have α1(m, 2) = 1/m and α2(m, 2) = 2/m2.
– With n = 3, we have α1(m, 3) = 3

m if m is even and α1(m, 3) = 3m2+1
(m−1)m(m+1)

if m is odd. α2(m, 3) = 2/m2. α3(m, 3) = 4
m3 if m is even and α3(m, 3) =

4
(m−1)m(m+1) if m is odd.

– Withn = 4,wehaveα1(m, 4) = α1(m, 3),α2(m, 4) = 2m2

(m−i)(m+i)i2 ,α3(m, 4) =
α3(m, 3) and α4(m, 4) = 2

(m−i)(m+i)i2 where i is the closest integer from m√
2
.

4.4 Synthesis

To obtain Theorem 1, we just apply Lemma 1 on inequality (3) with T (X)− 1
2

and P (X) as polynomials A(X) and B(X), 1
2 + M

(k+1)! +Rmax as constant C and

m =
⌊
h− k

k+1
⌋
. We first recall that our estimation of the derivative F (k)(0) is k!ak
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where ak is the coefficient of degree k of P . For k > 0, the coefficient of degree k of
T (X)− 1

2 is hk−1 f(k)(0)
k! . It follows

∣∣∣F (k)(0)
k! −hk−1 f(k)(0)

k!

∣∣∣ ≤ ( 1
2 + M

(k+1)! +Rmax

)
vk

mk

namely
∣∣h1−k F (k)(0)

k! −f (k)(0)
∣∣ ≤ ( 1

2 + M
(k+1)! +Rmax

)
k!vk

h1−k

mk . It remains to say

that for h small enough (according to k) we have m =
⌊
h− k

k+1
⌋
≥ (1− ε)h− k

k+1

and thus m−k ≤ (1−ε)−km
k2

k+1 . It leads to
∣∣h1−k F (k)(0)

k! −f (k)(0)
∣∣ ≤ ( 1

2 + M
(k+1)! +

Rmax

)
k!(1− ε)−kvkh1−k+ k2

k+1 . With uk = k!(1− ε)−kvk it provides Theorem 1.

4.5 State of the Art

The previous approach based on Taylor Polynomial provides a numerical algo-
rithm to estimate the derivatives of a function known from its digitization with
a guaranteed result. It is however not the first method to solve this problem.
Several works have been developed in order to estimate the derivatives of such
a function. Lachaud et al. provide a method with a mean convergence rate in
O(h2/3) and a worst case convergence rate in O(h1/3) to estimate the tangent of
the curve, namely its first order derivative [4]. This approach is based on maxi-
mal digital segment recognition and is thus rather close to the approach provided
here (the difference is in the choice of the maximal thickness or roughness). The
construction of a curvature estimator that has the property of asymptotic conver-
gence was however still open in this framework [8]. More recently, Malgouyres et
al. provide a new method based on binomial estimation allowing to estimate the
derivatives at any order [5,1]. The maximal error of this kth derivative estimator
converges in O(h(2/3)k

).
It makes at least two other methods to estimate the derivatives of a function

known from its digitization with a controlled uniform error. As far as we know,
no other result has been published in this specific framework. Hence there are
three methods to compare according to at least three theoretical criteria:

The speed of convergence: The speeds of convergence of the three methods
are of the form O(hd) where h is the resolution (tending to 0) and d is the
degree. The higher the exponent d, the better the convergence. For the method
based on discrete segments, we have a degree (in the worst case) of 1

3 only for
the first order derivative. For the binomial method the degree of convergence is
(2
3 )k to estimate the derivative of order k while the approach based on Taylor

Polynomial and Linear Programming provides a degree of 1
k+1 . We compare

these three degrees for the orders of derivatives from 1 to 5 (Tab. 1).

Table 1. Comparison between the degree of convergence of the three methods to
estimate the kth derivative

k 1 2 3 4 5
1/3 = 0.333(

2
3

)k 2/3 = 0.666 4/9 = 0.444 8/27 = 0.296 16/81 = 0.19753 32/243 = 0.1317
1

k+1
1/2 = 0.5 1/3 = 0.333 1/4 = 0.25 1/5 = 0.2 1/6 = 0.1666
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The number of points necessary to compute the estimation: For the
approach based on maximal digital segments, the number of points is the size of
the maximal segment which has no upper bound (there is an upper bound for the
smallest digital segment in Ω(m1/3 log m) in [8]). With the convolution method,
the first value given for the size of the mask is m = h− 1

1.01 but a proposition
allows to work with only O(

√
m lnm) points [1]. With the Taylor Polynomial

approach, the relation h = m−1− 1
k leads to use at least 2m + 1 = 2h− k

k+1 + 1
points. This number of points depends on the order of the derivative. For k = 1,
the degree is − 1

2 . For k = 2, it is − 2
3 and more generally − k

k+1 for the derivative
of order k (we need more points if we increase k).

The complexity of the computation: In both cases, the computation time
is directly related to the number of points, i.e. to the previous criterion. For
the computation of the maximal digital segment, this can be done in linear
time in the number of points. For the convolution, the time of computation is
again linear in the size of the binomial mask m. For the Taylor Polynomial, the
method uses a linear program. Hence the time of computation could be linear
in m (O(m) with Megiddo algorithm [6]). But without any information on the
minimal neighborhood that can be chosen to provide an approximation, we have
to increase the neighborhood at each step and check that the maximal roughness
is not exceeded. This process can be improved – as in the framework of digital
tangents – but this naive approach provides a time of computation quadratic in
the size of the maximal neighborhood.

We have compared the three approaches according to theoretical criteria but
it would be probably more enlightening to compare them on a benchmark of
functions whose derivative are known.

5 Experiments

We propose is this section some results obtained with our Taylor based method
to estimate derivatives of a digital function F (x). Fig. 3 shows a digitization

Fig. 3. A digitization F (x) of the sine function at resolution h = 0.05 and an estimation
of its derivatives from order 1 to 3 by using our Taylor based method
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of the sine function (according to the grid intersect quantization (GIQ), i.e.
F (x) =

⌊ sin(hx)
h + 1

2

⌋
) with a resolution h = 0.05 and an estimation of its

first, second and third derivatives with a roughness Rmax = 1
2 . The continuous

derivative has been drawn for each estimation to compare with the expected
theoretical results. To emphasize the influence of the resolution, the sine function
has been digitized (GIQ) with different values of h and an estimation of the
second derivative of this digitization (with Rmax = 1

2 ) has been done. The results
are depicted in Fig. 4. As we might expect the finer the resolution is, the more

Fig. 4. Estimations of the second derivative of the digitization of sine at different
resolutions

Fig. 5. Estimations of the second derivative of the digitization of sine at different
roughness. The left part (x < 0) of the digitization is noisy to see the influence of the
roughness parameter.
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accurate the estimation is. Last, an estimation of the second derivative of a
digitization of the sine with a resolution h = 0.05 has been computed at different
roughness (Fig. 5). To see the effect of this parameter, the digitization has been
partially perturbed (when x < 0) with a uniform noise. Although the most
accurate results on the regular part of the digitization are obtained with the
smallest roughness Rmax = 1

2 , on the noisy part the estimation is completely
distorted. If we increase the roughness the estimation becomes reliable in the
noisy part, but higher roughness values tend to smooth the results.

6 Conclusion

We have proposed in this paper a method to estimate the derivatives of a digital
function. It is a kind of generalization of the method based on digital tangents.
The main idea was to relax the thickness constraint, our roughness parameter,
and to allow the degree of the fitting polynomial to be greater than 1. This led
to an interesting theoretical result of convergence in O

(
h

1
k+1
)
. A perspective

would be to extended this framework to multivariable functions but much more
experiments are required to determine the relative benefits or drawbacks of this
method, in terms of time of computations and accuracy of the results, compared
to the convolutions approach.
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Abstract. This paper deals with the Simplified Generalized Perpendic-
ular Bisector (SGBP) presented in [15,1]. The SGPB has some interesting
properties that we explore. We show in particular that the SGPB can be
used for the recognition and exhaustive parameter estimation of noisy
discrete circles. A second application we are considering is the error es-
timation for a class of rotation reconstruction algorithms.
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1 Introduction

In this paper we are discussing properties and applications of the Simplified
Generalized Perpendicular Bisector (SGPB) that has been introduced in [15,1].
The SGPB is an extension of the classical notion of perpendicular bisector.
The Generalized Perpendicular Bisector (GPB) for two 2D regions A and B is
defined as the union of the perpendicular bisectors of all the couple of points
(p, q) where p and q are respectively points of the regions A and B. The regions
we are going to focus on are pixels. The boundary of a GPB between two pixels
is composed of line segments and parabola segments. In order to simplify the
computational aspects, the SGPB has been introduced. It is only composed of
straight line segments. Contrary to a 2D perpendicular bisector, the GPB and
SGPB are not lines but surfaces. Bisectors between points and curves or between
two curves have also been discussed in detail in the literature [7,11] but to our
best knowledge, no definition for the bisector between two coplanar surfaces such
as pixels has been proposed before [15].

The SGPB has some interesting properties and can be useful in several dif-
ferent applications mainly when noisy data is considered. The first application
we present is the adaptive pixel SGPB and its use for noisy circle recognition.
This is similar to the idea presented in [14] for discrete straight lines. The second
application concerns the parameter estimation of rotations. For this, the Gener-
alized Perpendicular Symmetry transform is introduced. We use this to examine
the rotation estimation algorithm recently proposed by Fontjine et al. [8] and
illustrate its behaviour for noisy data.
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(a) (b) (c)

Fig. 1. The exact perpendicular bisector (a) and the approximation (b) where the
parabolic pieces have been dropped by extending the straight lines (c). The generalized
bisector is slightly reduced.

The paper is organized as follows: section 2 recalls some properties of the
SGPB. The section 3 is devoted to the SGBP and the adaptive pixel size SGBP.
In particular some of its properties are highlighted and an application to noisy
circle recognition is provided. The next section deals with the symmetry rela-
tively to a SGPB and its application to rotation parameter estimation.

2 Definition and Properties of the SGBP [15,1]

As mentioned in the introduction, the Generalized Perpendicular Bisector (GPB)
between two 2D regions A and B (see Figure 1(a)) is defined as the union of the
perpendicular bisectors of all the couples of points (p, q) where p (resp. q) belongs
to the regions A (resp. B). In our case we are considering bounded connected
regions since we focus on regions that are pixels (that may have different sizes).

By definition, points of the perpendicular bisector are equidistant to both
points p and q. Thus a particular point r on the perpendicular bisector is the
center of a hypersphere that passes through p and q. Hence, we can set an
alternative definition of the GPB. Let S1 and S2 be two bounded connected
regions and X an Euclidean point of Rn. Let dimin(X) = minY ∈Si(d(X, Y )),
dimax(X) = maxY ∈Si(d(X, Y )) where d is the usual Euclidean distance. Every
Euclidean point X ∈ Rn such that:

[d1min(X), d1max(X)]
⋂

[d2min(X), d2max(X)] �= ∅ (1)

belongs to the GPB of S1 and S2 (see Figure 1(a)). The boundary of the GPB
between two pixels is composed of line segments and parabola segments. The
parabola segments can be easily removed by extending the line segments. This
defines the Simplified GPB (SGPB) (See Figure 1(b,c)). Another way of consid-
ering this is simply to state that the minimum distance to a pixel is approximated
by the distance to the closest vertex of the pixel rather than to the closest vertex
or edge. In other words, the SGPB of two pixels P1 and P2 of size respectively
λ1 and λ2 is given by the following equations:
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(a) (b)

Fig. 2. (a) Simplified Generalized Perpendicular Bisector and Simplified Generalized
Circumcenter of three adaptive pixels ; (b) The 6 border segments and the 4 half-lines
of a SGPB {Di}i∈[1,10] and its characteristic points {Pi}i∈[1,8] (D1 = D10 and D5 = D6).
The line bundle F8 and the line beam beam(P4,P5).

SGPB(P1, P2) =
{
(x, y) ∈ R2,(√

(x− C2x)2 +
(
y − C2y

)2 ≤√(x− F1x)2 +
(
y − F1y

)2)
∧
(√

(x− C1x)2 +
(
y − C1y

)2 ≤√(x− F2x)2 +
(
y − F2y

)2) }
where Cix, Fix ∈ {

(
xi + λi

2

)
,
(
xi − λi

2

)
}, Ciy, Fiy ∈ {

(
yi + λi

2

)
,
(
yi − λi

2

)
}.

The SGPB between two pixels P1 and P2 is bounded by line segments and
half-lines as shown in the Figure 2(b).

Proposition 1. The boundary of 2D-Simplified Generalized Perpendicular Bi-
sector between two pixels (x1, y1) of size λ1 and (x2, y2) of size λ2 is composed
by at most 10 line segments and half-lines.

The proof of this proposition is straightforward.
Let us introduce some concepts and notations useful for the purpose of this

section. Let {Di}i∈[1,10] be the border segments and half-lines of SGPB(P1, P2).
Let {Pi}i∈[1,8] be the characteristic points of SGPB(P1, P2): i.e. Pi belongs to
the border of the SGPB(P1, P2) and we organize in such a way that Pi = Di ∩
Di+1 if i ∈ [1; 4] and Pi = Di+1∩Di+2 if i ∈ [5; 8] (see Figure 2(b)). D1,D10,D5,D6
are the support lines for the half-lines on the border of the SGPB(P1, P2). In
fact, as the following lemma shows half-lines are linked two by two:

A first immediate property is given by following lemma:

Lemma 1. Let A(a1, a2) of size λA and B(b1, b2) of size λB be two pixels such
as ai ± λA

2 �= bi ± λB

2 . The border segments D1 and D10 are supported by the
same line and this is also the case for segments D5 and D6.

The proof of this lemma is straightforward using formula (1). It is also easy to
see that in case ai ± λA

2 = bi ± λB

2 then D1 and D10 or D5 and D6 are not equal
but parallel.
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Fig. 3. Dual of three SGPB corresponding to three pixels

2.1 Dual of a SGPB

It is easy to determine if a point belongs to a SGPB but not so for a straight line
although the SGPB is defined as a union of straight lines. One way of handling
this problem is to consider the dual of a SGPB. The dual (see [6] for more details)
of the perpendicular bisector between Euclidean points A(xa, ya) and B(xb, yb)
is defined as the point (xb−xa

ya−yb
,

x2
a−x2

b+y2
a−y2

b

2(ya−yb)
) for yA − yB �= 0. In the case where

yA − yB = 0 we have a point at the infinity.

Proposition 2. The dual of a SGPB is a convex polygon of at most 8 vertices
and 8 edges. At most two vertices may be at the infinite and the corresponding
edges of the dual polygon are in this case vertical.

Proof. The boundary of the SGPB is formed of straight lines segments and half-
lines. The dual is therefore a polygon. It is easy to see that this polygon is
convex. Let us consider two points A and B on the boundary of the dual of a
SGPB. These two points correspond to two straight lines LA and LB that belong
to the SGPB. The intersection point I between LA and LB corresponds to the
straight line AB in the dual. The point I is inside the SGPB. All the straight
lines passing through I form two bundles delimited by LA and LB with one of
them containing only lines that are inside the SGPB since LA and LB are inside
the SGPB. The other bundle contains lines that are outside the SGPB. A point
outside the segment [AB] and not inside the polygon corresponds to a straight
line that does not belong to the SGPB and thus to the bundle that contains
lines that do not belong to the SGPB. The points that belong to the segment
[AB] correspond therefore to straight lines of the bundle that contain only lines
inside the SGPB. All the points of [AB] are therefore inside the polygon and
this proves that the polygon is convex. The number of vertices and edges of the
polygon is an immediate result of Proposition 1. �

Determining if a point belongs to a convex polygon with bounded number of
edges and thus if a straight line belongs to the SGPB is trivially done in O(1).
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3 Adaptive Pixel SGPB and Noisy Circle Recognition

In [14] some of the authors considered a straight line recognition method that
takes into account noise by locally increasing the size of the various pixels. Using
a resizing function [14] and a local noise estimator (for example the one proposed
by Kerautret et al. [10]), pixel sizes are adaptively increased according to the
local perturbation on the straight line. The size increased pixels are called Adap-
tive Pixels [14]. The idea here is to do exactly the same with the SGPB for noisy
circle recognition purposes.

First, let us introduce the Simplified Generalized Circumcenter (SGC) of a set
of n finite and connected regions S = (Si)i∈[1,n]. It is defined as the intersection
of the SGPB of every two regions of the set (see Figure 2(a)) :

SGC(S) =
⋂

i,j∈[1,n],i<j

(SGPB(Si, Sj)).

Theorem 1. Each point of the Simplified Generalized Circumcenter corresponds
to the center of at least one circle that intersects all the Adaptive Pixels.

Proof. The proof is similar to the one of Theorem 1 presented in [15]: Each point
of the SGC obtained by the intersection of adaptive pixel SGBP s corresponds
to an intersection of radii intervals (dimension 1) for every two adaptive pixels.
A direct application of Helly’s Theorem tell us that there exists at least one
common radius to all these intervals and thus at least one circle of this radius
centered on the SGC point that intersects all the adaptive pixels. �

Proposition 3. Let us consider a set of adaptive pixels Pi of various sizes. The
dual of all the straight lines crossing the duals of all the SGPB of every pair of
pixels Pi and Pj is the dual of the Simplified Generalized Circumcenter.

This proposition is an immediate consequence of the definition of the SGC and
the definition of our notion of dual.

3.1 Application to Noisy Circle Recognition

On the Figure 4, we can see a Bresenham circle of radius 5 with misplaced and
missing pixels. The SGC can be seen in the middle of the different adaptive
pixels. One circle example (the center is marked by a black dot in the SGC)
is shown. Each pixel size is increased according to a local noise estimator. The
algorithm is the same as the one for regular circles presented in [15]. The SGPB
of each couple of pixels (with the new sizes) is computed and their intersection
provides a set of possible circle centers, the Simplified Generalized Circumcenter
(SGC). A further computation provides for each point of the SGC, the interval
of possible circle radii that correspond to circles intersecting all the size increased
pixels.
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Fig. 4. Circle parameters exhaustive estimation with noisy data

4 Generalized Reflection Symmetry and Biased Rotation
Parameter Estimation

As a second application, we show how the SGPB helps to visualize the errors
that occur when noisy data are used in the rotation reconstruction algorithm
recently proposed by Fontijne et al. [8]. For this we are going to introduce a
generalization of the reflection symmetry.

4.1 Bundles and Strips

We define the line bundle Fi as the set of lines Δ that pass through Pi with slopes
in the interval [slope(Di), slope(Di+1)] (or [slope(Di+1), slope(Di+2)] according
to the values of i) as shown in the Figure 2(b). We also define a line strip
strip(Pi,Pj) by the set of parallel lines bordered by Δi ∈ M passing through
Pi for i ∈ [1; 4] and Δj ∈ M passing through Pj for j ∈ [5; 8] as shown in the
figure 2(b).

A line in the SGPB can either be characterized as a point inside the dual
of the SGPB or by using bundles Fi and strips. Considering a line D in the
SGPB two cases are possible. In the first case, the line D passes through Pi

then D belongs to Fi. In the second case the line D does not pass through Pi

then there exists Pj and Pk such that a translate D′ of D passes through Pj and
another translate D′′ of D passes through Pk. In this latter case, D belongs to
strip(Pj ,Pk) (see Figure 2(b)). This leads to a second characterization of a line
inside a SGPB:
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Property 1 (Lines in the SGPB). Every line in the SGPB belongs either to
a bundle Fi or is included in a strip strip(Pk,Pl)

Furthermore, we have the additional property:

Property 2. The union of the 8 bundles covers the GPB.

Proof. Let X a point of the GPB. Since the border of the GPB is composed of
two convex polylines ∂C1 and ∂C2, there exists two lines Δ1 and Δ2 which pass
through X and respectively p1 ∈ ∂C1 and p2 ∈ ∂C2. Obviously, p1 and p2 ∈ Pi.�

Generalized Reflection Symmetry for a pixel. When considering the per-
pendicular bisector B of two points p and q, it is obvious that p is the image of q
and q the image of p through a reflection symmetry of axis B. Let us define the
Generalized Reflection Symmetry GRS(P1, P2) of a point as the union of the
reflection symmetries of axis the straight lines in the SGPB of two pixels P1 and
P2. Not surprisingly, the image of a pixel P3 by a GRS(P1, P2) is not a pixel.
Let us characterize the obtained region denoted CGRS(P1,P2)(P3) (See Figure 6).

P1

dmin(m1, P2)
dmax(m1, P2)

m1 = (x1, y1)

◦(x2, y2)
P2

Pj

Pi

Δi

Δj

P

(a) (b)

Fig. 5. (a) Image of the pixel P2 by a partial bundle from m1; (b) Image of the pixel
P by the strip(Δi, Δj)

By construction, a point p of CGRS(P1,P2)(P3) is the symmetric of a point p3
belonging to the pixel P3 with respect to a line Δ that belongs to SGPB(P1, P2).
More formally, this can be written as:

CGRS(P1,P2)(P3) = {p ∈ R
2/∃p3 ∈ P3, ∃Δ ∈ SGBP (P1, P2), p = sym(p3, Δ)}

where sym(p3, Δ) denotes the reflection symmetry of the point p3 with respect
to the line Δ. Hence, the following characterization of a point belonging to
CGRS(P1,P2)(P3) is obtained:

Definition 1 (GRS of a pixel). Let P1 and P2 be two pixels centered in (x1, y1)
and (x2, y2) and the associated SGPB(P1, P2). Let CGRS(P1,P2)(P3) be the image
of the pixel P3 by GRS(P1, P2). A point (x, y) belongs to CGRS(P1,P2)(P3) if the
following assertions are true:
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CGRS(P1,P2)(P3)
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(a) (b) (c)

Fig. 6. (a) Generalized Reflection Symmetry of a pixel (12,16) relatively to a SGPB
between the pixel (0,0) and (3,4); (b) Image of a pixel by a GRS. The obtained shape
is composed of ring pieces; (c) Symmetric of a pixel P3 with respect to the lines Δ1

and Δ2.

(i) ∃(x′, y′) such that (x3− 0.5 ≤ x′ ≤ x3 + 0.5) and (y3− 0.5 ≤ y′ ≤ y3 +0.5)
(ii) (x, y) can be written as (−2ac−a2x′+b2x′−2aby′

a2+b2 , −2bc−2abx′+a2y′−b2y′

a2+b2 ) such
that (x2,

−c−ax2
b ), (x1,

−c−ax1
b ), (−by1−c

a , y1), (−by2−c
a , y2) satisfy the dis-

tance law (1).

Let us detail a way to construct the GRS of a pixel. The image of a pixel P3 by
a complete1 line bundle passing through a point p is a ring centered in p defined
by the circles centered in p with radii dmin(p, P3) and dmax(p, P3). In our case,
the bundle is not complete2, the result is then a piece of ring (see Figure 5(a)).
Let Pi and Pj be the images of the pixel P by the two lines which define a strip.
The image of the pixel P by this line strip is the strip bounded by the images of
the pixel relatively to the line passing through the centers of Pi and Pj as shown
in the Figure 5(b).

Let P3 be the pixel of which the image is to be computed. The lines Dj are
the lines bounding the SGPB(P1, P2) and Pi the characteristic points of the
SGPB(P1, P2). Let Ij be the images of P3 by Dj . Since D1 = D10 and D5 = D6
(lemma 1), there are only eight different images. Then we consider the images
of P3 by the whole line bundle Fi that passes through Pi = Dl ∩ Dm. These
images are the ring pieces starting with Il, ending with Im of internal radius
dmin(Pi, P3) and external radius dmax(Pi, P3). We therefore obtain eight ring
pieces that form a closed object (since D1 = D10 and D5 = D6) as shown in the
Figure 6(b).

The last building step consist in integrating the images of P3 by all the possible
strips that are included in the SGPB(P1, P2). This leads to a second character-
ization of the shape CGRS(P1,P2)(P3) :

1 Complete means all the lines are passing through the point.
2 That means the slopes of the lines are included between slopemin and slopemax.
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Characterization 1 (GRS of a pixel). A point belongs to the image of a pixel
P3 by the GRS(P1, P2) between the pixel P1 and P2 if and only if it belongs to the
set points defined by the eight pieces of rings centered in Pi for 1 ≤ i ≤ 4 of radius
dmin(Pi1≤i≤4 , P3) and centered in Pi for 5 ≤ i ≤ 8 of radius dmax(Pi5≤i≤8 , P3),
where the Pi are the characteristic points of the SGBP.

The angular arc between the extrema of the region (as defined below)
CGRS(P1,P2)(P3) gives us an upper bound of “noise” that is added to a pixel
when its image by a GRS is computed. Let consider the lines Δ1 and Δ2 that
are the supports of the half-lines D1 and D5 (see Figure 6(c)). They intersect at
the point O = (x1+x2

2 , y1+y2
2 ). On Figure 6(c), the symmetric squares ABDC

and EFGH of the square abdc by the lines Δ1 and Δ2 are the extrema of the
region CGRS(P1,P2)(P3). As the lines Δ1 and Δ2 belong to the bundle of lines
that pass through the point O, the squares ABDC and EFGH are contained in
the ring centered in O formed by the circles C1 and C2 of radii R1 = dmin(O, P3)
and R2 = dmax(O, P3). Since B and H belong to C1 and C, F belong to C2, the
points A, D, G and E belong to the circle centered in O of radius R3 = R1+R2

2 .
Then, the angular length between the extrema of CGRS(P1,P2)(P3) is given by
(β + 2θ)(R1+R2

2 ), β and θ respectively denote the angles between the lines Oa
and Od and the lines Δ1 and Δ2.

4.2 Rotation Reconstruction Using the SGPB

In this section, the rotation reconstruction algorithm proposed by Fontijne et
al. [8] is adapted to noisy data using the SGPB. This algorithm is based on the
Cartan-Dieudonné theorem [3] that decomposes nD rotations into reflections.
Methods based on this approach [2,8] need exact point correspondences and
suffer from noisy data.

However, rotation reconstruction methods from point correspondences are
used in many application domains such as Computer Vision or body movement
analysis. Different approaches can be found in the literature [4,17,9]. Their draw-
backs are the impossibility to extend them in dimension higher than two or the
subtle geometrical model and computations they need. A simple algorithm based
on the decomposition of nD rotations into planar rotations has been developed
by some of the authors and it has been shown to be rather robust against noisy
data [13,12]. But, contrary to the Fontijne et al. [8] algorithm, this approach is
not well suited when the data are acquired incrementally.

The purpose of this section is to give some hints on how the SGPB could help
to develop an adapted version of the Fontijne et al. [8] algorithm to noisy data.
For this first attempt, only dimension two is explored but as SGPB is defined
for any dimension, extension to nD is expected.

Rotation reconstruction algorithm. To reconstruct the rotation R from n
points pi and their correspondences p′i = R(pi) the algorithm proposed in [8]
works by finding successive reflections using the Cartan-Dieudonné theorem [3].
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R2

R1

p1 p′1
p2

p′2

R1(p2)

(a) (b)

Fig. 7. (a) Reconstructing a 2D-rotation. Note that p′
1 is contained in R2, hence p′

1 =
R2(p′

1) = R2(R1(p1)). The rotation R = R2(R1(.)) is a rotation about the intersection
of R1 and R2. (b) Reconstruction of a noisy 2D-rotation.

Hence, for each i, we have p′i = R(pi) = Rk(· · ·R2(R1(pi)) · · · ) with k = �n
2 �,

where Ri are the reflections3.
The Ri are determined incrementally as perpendicular bisectors. The first

reflection R1 is determined as the perpendicular bisector of p1 and p′1, the second
reflection R2 is the perpendicular bisector of R1(p2) and p′2.

By construction, the reflections have the property that their composition does
not move previously aligned points. For example, as

p′1 = R1(p1) = R(p1) = Rk(· · ·R2(R1(p1)) · · · )
we must have Rk(· · ·R2(p′1) · · · ) = p′1.

The Figure 7 illustrates the algorithm in dimension two. It must be noted
that p′1 = R1(p1) is on the line R2 and it is the center of circle passing through
R1(p2) and p′2. Now, replacing the perpendicular bisectors with the SGPB could
help to adapt the algorithm of Fontijne et al. [8] to noisy data.

Adaptation of the rotation reconstruction algorithm to noisy data. The
algorithm described in the previous section supposes that exact point correspon-
dences are provided. However, in the case of noisy data, the reflections became
hard to determine. To deal with noisy data, the idea is to replace points by n-
dimensional pixels and to introduce the SGPB into the reflection determination
process. The expected result is a class of rotations that fit the input data.

Principle of the algorithm (see Figure 7(b)). First the points pi and their cor-
responding points p′i are replaced by n-dimensional pixels Pi and P ′

i . Then, the
SGPB M1 = SGPB(P1, P

′
1) (corresponding to R1 in the exact case) is deter-

mined. Using M1, the region CGRS(P1,P ′
1)(P2) is computed. This region corre-

sponds to R1(p2) in the exact case.
3 In this section, Ri denotes indistinguishably the reflection and the line that deter-

mines the reflection.
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In order to restrict CGRS(P1,P ′
1)(P2), we use the property that a circle cen-

tered on p′1 passing through p′2 and R1(p2) exists (see Figure 7(a)). In the pixel
case this means that we have to consider the set S of all circles centered on
points of P ′

1 passing through P ′
2. So region of interest for the next step is

CGRS(P1,P ′
1)(P2) ∩ S.

Now, the SGBP (CGRS(P1,P ′
1)(P2)∩S, P ′

2) is computed (see Figure 7(b)). The
obtained region must also be restricted with the set L of lines that pass through
P ′

1 while in the exact case the bisector R2 passes through p′1 (see Figure 7(a)).
This finally determines the region M2 = SGBP (CGRS(P1,P ′

1)(P2) ∩ S, P ′
2) ∩ L

corresponding R2 in the exact case. In higher dimension, this process is continued
with next point correspondences.

At the end of the algorithm we obtain a class of rotations that are determined
by lines chosen in the sequence of the Mi, 1 ≤ i ≤ n.

At present, we only have experienced this process in dimension 2 and we face
efficiency problems for computing the SGBP between a pixel and a complex
region such as the CGRS(P1,P ′

1)(P2). Currently, we are working on this efficiency
problem and also on the extension of this algorithm to higher dimension.

5 Conclusion

In this paper, we studied the Simplified Generalized Perpendicular Bisector and
its properties: whereas the classical Euclidean 2D perpendicular bisector (and all
the commonly used medial axis notions), the SGPB of two regions is a 2D surface
that collects all the perpendicular bisector of any couple of points of both regions.
We have particularly defined the SGPB between two pixels of different sizes. The
SGPB is useful to obtain an exhaustive parameter estimation of noisy circles.
We have also characterized the lines in the SGPB by showing that the dual of a
SGPB is a convex polygon and we have defined a new operation: the Generalized
Reflection Symmetry which is a symmetry relatively to a SGPB. This operation
allows us to adapt the algorithm of Fontijne et al. [8] to reconstruct rotations
while taking noisy data into account. In future works, the GPB will be further
studied. There are various notions of discrete bisector that have been proposed.
They are, among other applications, used to analyze and filter medial axis [5,16]
where the medial axis of a Jordan curve is in any point equidistant to its borders.
These notions of discrete bisectors are discrete curves. How these notions are
linked to the Generalized Bisector is one the question we would like to investigate.
Especially the links with Voronöı diagrams, medial axis and skeletons seems
promising. An extension in higher dimension will also be investigated.
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15. Rodŕıguez, M., Sere, A., Largeteau-Skapin, G., Andres, E.: Generalized perpen-
dicular bisector and circumcenter. In: Barneva, R., Brimkov, V., Hauptman, H.,
Natal Jorge, R., Tavares, J. (eds.) CompIMAGE 2010. LNCS, vol. 6026, pp. 1–10.
Springer, Heidelberg (2010)

16. Talbot, H., Vincent, L.: Euclidean skeletons and conditional bisectors. In: SPIE,
vol. 1818, pp. 862–876 (1992)

17. Watson, G.: Computing Helmert transformations, vol. 197, pp. 387–394 (2006)



Delaunay Properties of Digital Straight
Segments

Tristan Roussillon1 and Jacques-Olivier Lachaud2

1 Université de Lyon,
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Abstract. We present new results concerning the Delaunay triangula-
tion of the set of points of pieces of digital straight lines. More precisely,
we show how the triangulation topology follows the arithmetic decompo-
sition of the line slope as well as its combinatorial decomposition (split-
ting formula). A byproduct is a linear time algorithm for computing the
Delaunay triangulation and the Voronoi diagram of such sets.

1 Introduction

Let S be a set of n points in R2. Its convex hull is the intersection of every
half-planes containing S. A triangulation of S is a simplicial decomposition of
the convex hull of S where the vertices of the triangular facets are elements of S.
The Delaunay triangulation of S is a triangulation such that each facet satisfies
the Delaunay condition: the circumcircle of the facet contains no point from S
in its interior. Such a triangulation exists for every point set in R2 (and more
generally in arbitrary dimension), and it is the dual of the Voronoi diagram. It
plays a very important role in computational geometry and meshing. A lot of
algorithms exist to compute it, and have optimal time complexity O(n log n) [7].

The Delaunay triangulation of a set of Euclidean points has been deeply
studied in computational geometry. The special case of a set of digital points
(points in the digital plane Z2) is generally not addressed as is, but more as
a binary image. In this context, euclidean distance transforms provide a way
of computing digital Voronoi diagram i.e. each pixel is labeled according to
its closest site, but does not give the discrete Voronoi diagram, i.e. the set of
vertices, edges of the diagram and its topology, and thus do not give the Delaunay
triangulation either.

In this paper we study precisely the properties of the Delaunay triangulation
of specific subsets of the digital plane Z2, which are digital equivalents of straight
lines and segments. The standard line D(a, b, μ) of slope a

b and intercept μ is
the set of point (x, y) ∈ Z2 verifying μ ≤ ax − by < μ + |a| + |b| with a,
b, μ integer and gcd(a, b) = 1 [9]. The points verifying ax − by = μ (resp.

I. Debled-Rennesson et al. (Eds.): DGCI 2011, LNCS 6607, pp. 308–319, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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ax − by = μ + |a| + |b| − 1) are called the upper (resp. lower) leaning points.
The connected part of a standard line D(a, b, μ) between two consecutive upper
leaning points U and U ′ = U +(b, a) is called a pattern. It is a 4-connected path
joining U and U ′, conveniently denoted by UU ′. Its staircase representation is
the polygonal line joining the points of the pattern in the same order as the
4-connected path does. The chain code of a pattern is a Christoffel word. The
slope of a pattern is the slope of its vector

−−→
UU ′ = (b, a), i.e. a

b . These standard
definitions are illustrated on Fig. 1a. Note that any digital straight segment has
a unique decomposition into patterns, which makes patterns very important for
analyzing digital shapes.

We show in Section 2 that the Delaunay triangulation of a pattern has very
specific properties. They are related to the specific geometry of points within
a pattern. From an equivalent arithmetic point of view, they are related to
the continued fraction of the pattern slope or, from a combinatorial point of
view, to the splitting formula (e.g. see [5]). With these properties, we deduce in
Section 3 a linear time algorithm to compute the Delaunay triangulation and the
Voronoi diagram of such sets of points. The presented results may have several
interesting applications in computational geometry and digital shape analysis
which are discussed in Section 4.

2 Delaunay Properties of Patterns

Before stating precisely the main theorem, we introduce briefly some further
notions. From now on, we restrict our study to the first quadrant. Let UU ′ be
the pattern of the standard line D(a, b, 0) between U = (0, 0) and U ′ = (b, a)
with a > 0 and b > 0.

2.1 Triangulation of a Pattern

Let us denote by H(UU ′) the convex hull of UU ′. The staircase representation
of UU ′ is by definition below the straight segment [UU ′]. Therefore, H(UU ′) can
be divided into two parts lying on both sides of its staircase representation: the
upper part H+(UU ′), whose boundary contains [UU ′], in light gray fig 1.b, and
the lower one H−(UU ′), in dark gray fig 1.b.

Let us denote by T (UU ′) the Delaunay triangulation of UU ′. We will see that
it can similarly be divided into two parts T +(UU ′) and T −(UU ′), separated
by the staircase representation. Fig. 1.b shows the Delaunay triangulation of a
pattern of slope 4

7 .
We introduce here three equivalent definitions of the main facet of a pattern

(see Fig. 2).

Definition 1 (main facet). The main facet of a pattern UU ′ is the triangle
UBU ′, where B has the following equivalent definitions:

(geometric) the digital point B within UU ′ \ {U, U ′} that has the shortest or-
thogonal distance to the segment [UU ′];
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1

1

0 0 0

0 0

(a)

T +(UU ′)

T −(UU ′)
U

U ′

(b)

Fig. 1. (a) The points of D(2, 5, 0) are depicted with black disks. The two dotted
straight lines pass through the upper and lower leaning points. A pattern is high-
lighted with bigger disks. The letters of its chain code are indicated near its staircase
representation, which is depicted with a solid line. (b) The Delaunay triangulation of
the pattern UU ′ is divided into the upper part T +(UU ′), which contains the facets
lying in H+(UU ′), in light gray, and the lower part T −(UU ′), which contains the facets
lying in H−(UU ′), in dark gray.

(arithmetic) the lower Bezout point B to the vector
−−→
UU ′;

(combinatorial) the separation point B of the splitting formula (see [10],
chap. 4).

These characterizations are shown equivalent later in the paper.

Definition 2 (facets of a pattern). The facets of the pattern UU ′, denoted
by F(UU ′), is defined recursively as the union of the main facet UBU ′ of UU ′

and the facets of the pattern UB if a > 1 and the facets of the pattern BU ′ if
b > 1.

Note that this recursive definition is consistent because (i) UB and BU ′ are both
patterns (see Proposition 1 later), (ii) a+ b strictly decreases so that both a and
b reach 1 and the recursion terminates.

2.2 Main Result

We can now state precisely our main result.

Theorem 1. The facets of the pattern UU ′ is a triangulation of H+(UU ′). Fur-
thermore, each facet satisfies the Delaunay property, i.e. the circumcircle of each
triangular facet of F(UU ′) contains none of the points of the pattern UU ′ in its
interior.

In other words, the facets of the pattern UU ′ is exactly T +(UU ′).
We prove this theorem in the following subsections. We prove first that the

facets form a triangulation (Theorem 2), then that each of them has the Delaunay
property (Theorem 3).



Delaunay Properties of Digital Straight Segments 311

U

U ′

B

(a)

U

U ′

(b)

Fig. 2. (a) The gray area, bounded by the triangle UBU ′, is the main facet of UU ′.
Note that B = b−(UU ′) belongs to UU ′ and that UB and BU ′ are both patterns. (b)
The facets of UU ′ are defined by induction over the patterns included in UU ′.

2.3 The Facets of a Pattern Form a Triangulation

We recall that the remainder with respect to the standard line of slope a
b is

a function ra,b : Z2 → Z such that ra,b(x, y) = ax − by. In the sequel, ra,b(·)
is simplified into r(·) when the remainder refers to the standard line D(a, b, 0)
containing UU ′.

Definition 3 (support of a pattern). The support of the pattern UU ′ is the
set of lattice points S(UU ′) lying in a strip bounded by two straight lines orthog-
onal to the straight line (UU ′) and passing through U and U ′, i.e. S(UU ′) =
{(x, y) ∈ Z2|0 ≤ bx + ay ≤ a2 + b2 − 1}.

Given an integer k, let the straight line Lk goes through the lattice points X of
remainder r(X) = k. The lattice points of Lk are regularly spaced of a distance
equal to

√
a2 + b2. Since the points of S(UU ′) lie in a strip of width strictly less

than
√

a2 + b2, Lk contains only one point of S(UU ′) for each k. Thus, we may
define (see Fig. 2.a):

Definition 4 (Bezout point). The lower Bezout point of the pattern UU ′,
denoted by b−(UU ′) is the unique point of S(UU ′) whose remainder equals to 1.

Note that b−(UU ′), whose remainder equals to 1, belongs to the pattern UU ′

contained in D(a, b, 0) if and only if |a|+|b| ≥ 2, i.e. a �= 0 and b �= 0. Considering
that the orthogonal distance of a lattice point P with respect to the line UU ′

is |r(P )/
√

a2 + b2|, it is clear that the Bezout point to UU ′ is the point of
UU ′\{U, U ′} closest to the segment [UU ′], which proves the equivalence between
the geometric and arithmetic definition of the main facet (Definition 1).

Note that the main facet of a pattern never contains any lattice points:

Proposition 1. Let X be a lattice point defined with a positive integer k such
that r(X) = k. The triangle UXU ′ contains in its interior one or more lattice
points if and only if k > 1.

Proposition 1, which is directly proved with Pick formula, explains why, if
b−(UU ′) belongs to UU ′, the 4-path joining U to b−(UU ′) as well as the one
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joining b−(UU ′) to U ′, are both patterns. Therefore the inductive definition of
the facets of a pattern (Definition 2) makes sens. The number of facets of a
pattern is finite because F(UU ′) coincides with H+(UU ′) (compare Fig. 2.b and
Fig. 1.b), as shown below:

Theorem 2. The facets of a pattern UU ′ is a triangulation of H+(UU ′).

Proof. We shall prove this assertion by structural induction on the recursive
definition of the facets of a pattern.

(i) Base case: Let us take a pattern with a = 1 and b = 1. The facets of UU ′

are then reduced to the main facet UBU ′ which is the triangle (0, 0), (0, 1), (1, 1).
It is equal to its convex hull H+(UU ′) and is thus its triangulation.

(ii) Inductive step: Given a pattern UU ′ with a > 1 or b > 1, let us assume
that the facets of UB is a triangulation ofH+(UB) and the facets of UB′ is a tri-
angulation of H+(BU ′). We shall prove that the facets of UU ′ is a triangulation
of H+(UU ′).

First of all, sinceH+(UB) is below [UB] andH+(BU ′) is below [BU ′], both have
thus an empty intersection with the interior of the triangle UBU ′ (the main facet
of UU ′). Furthermore, H+(UU ′) forms a simple polygon (Euler characteristics
is 2) since it is the union of three simple polygons, with one more edge ([UU ′])
and one more face (UBU ′) than the union ofH+(UB) and H+(BU ′). Lastly, the
boundary edges of the facets of UU ′ are exactly the boundary edges ofH+(UU ′):
the main facet has its edge [UU ′] that is the upper edge of H+(UU ′), while the
lower edges ofH+(UB) andH+(BU ′) define the staircase representation of UU ′,
which is by definition the lower edges of H+(UU ′).

The facets of UU ′ thus define a triangulation of a simple polygon whose (only)
boundary is the same as the boundary of H+(UU ′). It is thus a triangulation of
H+(UU ′). �	

2.4 Delaunay Condition for Each Facet

It remains to prove that each facet of F(UU ′) satisfies the Delaunay condition.
In the whole subsection, we denote by B the lower Bezout point of the pattern
UU ′ (a > 0 and b > 0). Let us begin by a lemma that completes Proposition 1:

Lemma 1. For all P ∈ S(UU ′) with r(P ) > 1, the triangle UPU ′ contains B.

Lemma 1 and its proof are illustrated in Fig. 3.a.

Proof. For all P ∈ S(UU ′) such that r(P ) > 1, we prove below that the slope of
−−→
UP is smaller than the one of

−−→
UB and similarly that the slope of

−−→
PU ′ is greater

than the one of
−−→
BU ′, which prove that the triangle UPU ′ contains the triangle

UBU ′ and thus B.
Given a positive integer k, let Bk = k

−−→
UB. We have B = B1 ∈ S(UU ′) and

r(Bk) = k. Let k0 be the greatest k > 1 such that Bk−1 ∈ S(UU ′) (k0 = 3
in Fig. 3.a). The lattice point Bk0 is not in S(UU ′) and k0 ≥ 2. Hereafter, we
independently deal with the points of S(UU ′) of remainder ranging from 2 to
k0 − 1 (i) and greater than or equal to k0 (ii).
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(i) For the k0 − 2 points P of S(UU ′) such that 1 < r(P ) < k0,
−−→
UP has the

same slope as
−−→
UB.

(ii) For any point X , the tangent of the angle ∠XUU ′ is equal to the ratio
between the determinant of

−−→
UX,

−−→
UU ′ and the scalar product of

−−→
UX,

−−→
UU ′.

The scalar product with
−−→
UU ′ defines the length of the orthogonal projection on

the line (UU ′). It is obvious that the length of the projection of a point outside
the orthogonal strip S(UU ′) is greater than the length of the projection of any
point P within this strip, thus

−−−→
UBk0 ·

−−→
UU ′ >

−−→
UP ·

−−→
UU ′.

On the other hand, the determinant between
−−−→
UBk0 and

−−→
UU ′, which is equal

to r(Bk0 ) = k0, is smaller than or equal to the determinant between
−−→
UP and

−−→
UU ′ for all P ∈ S(UU ′) such that r(P ) ≥ k0.

tan(∠BUU ′) = tan(∠Bk0UU ′) =
det(

−−−→
UBk0 ,

−−→
UU ′)

−−−→
UBk0 ·

−−→
UU ′

<
det(

−−→
UP,

−−→
UU ′)

−−→
UP ·

−−→
UU ′

= tan(∠PUU ′).

As a consequence, the slope of
−−→
UP is smaller than the one of

−−→
UB for all P ∈

S(UU ′) such that r(P ) > 1. We can similarly show that the slope of
−−→
PU ′ is

greater than the one of
−−→
BU ′, which concludes the proof. �	

Lemma 1 is used in Lemma 2 and Lemma 4.

Lemma 2. Let D be a disk whose boundary passes through U and U ′ and whose
center is located above (UU ′). Let ∂D be its boundary. D \ ∂D contains a lattice
point below or on (UU ′) if and only if it contains (at least) B (Fig. 3.b).

Proof. Given a positive integer k, let Lk be the straight line passing through
the points of remainder k. Let SD be the set of lattice points of strictly positive
remainder contained in D. Since the center of D is located above (UU ′), the
length of the segment Lk ∩ D is smaller than

√
a2 + b2 for all k > 0. Thus

SD ⊂ S(UU ′) (Fig. 3.b).
Due to Lemma 1 (Fig. 3.a), ∠UPU ′ ≤ ∠UBU ′ for all P ∈ S(UU ′) such that

r(P ) ≥ 1, which concludes for all lattice points strictly below (UU ′).
Since [UU ′] does not contain any lattice points, except U and U ′, D\∂D does

not contain any lattice point on (UU ′), which concludes. �	

Let us now introduce the following key definition:

Definition 5 (background of a pattern). The background of the pattern
UU ′ is the set of lattice points located below or on the straight line (UB), or
below or on the straight line (BU ′).

Definition 5, illustrated in Fig. 4, is used in Lemma 3 and Lemma 4.

Lemma 3. Let D be a disk whose boundary ∂D is the circumcircle of UBU ′.
The disk D contains none of the background points of UU ′, except U, U ′, B, which
are all located on ∂D (Fig. 4.a).
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B3

B2

P �

S(UU ′)

U

U ′

B = B1

(a)

S(UU ′)

U

U ′

B

∂D

(b)

Fig. 3. (a) Illustration of Lemma 1. The triangle UP �U ′ contains B because P � belongs
to S(UU ′) (depicted by the set of black disks) and r(P �) > 1. The points Bk = k

−−→
UB

(indicated for k = 1, 2, 3) are used in the proof of Lemma 1 to show that the slope
of

−−→
UP is smaller than the one of

−−→
UB for all P ∈ S(UU ′) such that r(P ) > 1. (b)

Illustration of Lemma 2. D is a disk whose boundary ∂D pass through U , U ′ and B.
The interior D\∂D does not contain any lattice points located below or on the straight
line (UU ′) due to Lemma 1.

Proof. Let Bl (resp. Br) be the lower Bezout point of UB (resp. BU ′).
The proof is based on the two following arguments:

1. D contains neither Bl nor Br.
2. D contains neither the set of lattice points located below or on (UB), nor

the set of lattice points located below or on (BU ′).

Assuming 1) is true, argument 2) follows from Lemma 2 applied once for pattern
UB and once for pattern BU ′, which in turn concludes the proof due to the
definition of background (Definition 5).

Let us now prove argument 1). Moreover let us focus on Bl because the proof
about Br is similar. According again to Lemma 2, it is enough to show that the
remainder of Bl is strictly positive so as to show it is below (UU ′).

If a = 1, B = (1, 0), Bl = (0,−1) and r(Bl) = b. Thus, r(Bl) ≥ 1.
If a > 1, Bl belongs to the pattern UB, which belongs to the pattern UU ′. By

definition, all the points X ∈ UU ′ \ U ′ belong to S(UU ′) and have a remainder
r(X) ranging from 0 to |a| + |b| − 1 > 1. Moreover, given an integer k, there is
only one point X ∈ S(UU ′) such that r(X) = k. Since Bl �= B, we conclude
that r(Bl) > 1. �	

Lemma 4. The background of UU ′ is contained in the background of UB if
a > 1 and in the one of BU ′ if b > 1 (Fig. 4.b).

Proof. Let us assume that a > 1, the case where b > 1 being symmetric.
Let Bl be the lower Bezout point of UB. As in the proof of Lemma 3, it can

be shown that r(Bl) > 1. Due to Lemma 1, the triangle UBlU
′ contains the

triangle UBU ′.
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As a consequence, the slope of
−−→
BlB is greater than the one of

−−→
BU ′. Since the

triangle UBlB does not contain any lattice points due to Proposition 1, the set
of lattice points whose x-coordinate is greater than Bl and lying below or on
the straight line (BlB) contains the set of lattice points whose x-coordinate is
greater than Bl and lying below or on the straight line (BU ′).

Similarly the slope of
−−→
UBl is smaller than the one of

−−→
UB. Since the triangle

UBlB does not contain any lattice points due to Proposition 1, the set of lattice
points whose x-coordinate is smaller than Bl and lying below or on the straight
line (UBl) contains the set of lattice points whose x-coordinate is smaller than
Bl and lying below or on the straight line (UB).

Due to the definition of background (Definition 5), we can conclude that the
background of UB contains the background of UU ′ (like in Fig. 4.b), which
concludes the proof. �	

U

U ′

B

∂D

(a)

U

U ′

B

(b)

Fig. 4. (a) Illustration of Lemma 3. The set of lattice points located below UB or BU ′,
depicted with black disks, is the background of UU ′. The disk D passing through U ,
B, U ′ contains none of the points of the background UU ′. (b) Illustration of Lemma 4.
The background of UU ′ is contained in the background of UB, which has extra points,
the two visible ones are depicted with white disks.

We can now prove the Delaunay condition for each facet of F(UU ′):

Theorem 3. The circumcircle of each triangular facet of F(UU ′) contains none
of the background points of UU ′ in its interior.

Proof. We shall prove this assertion by structural induction on the recursive
definition of the facets of a pattern.

(i) Base case: Let us take a pattern with a = 1 and b = 1. The facets of UU ′

are then reduced to the main facet UBU ′, which is the triangle (0, 0), (0, 1), (1, 1).
The property is trivial by definition of the circumcircle.

(ii) Inductive step: Let UB and BU ′ be two patterns such that B is the lower
Bezout point of the pattern UU ′ with a > 1 or b > 1. Let us assume that
Theorem 3 is true for UB and BU ′. We shall prove that Theorem 3 is true
for UU ′.
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Lemma 3 concludes for the main facet UBU ′. We observe now the facets of UU ′

that are also facets of UB or BU ′. Since a > 1 or b > 1, the background of
UB or BU ′ contains the one of UU ′ due to Lemma 4. Since the circumcircle of
each triangular facet of F(UB) (resp. F(BU ′)) contains none of the background
points of UB (resp. BU ′) in its interior due to the induction hypothesis, it does
not contain any background point of UU ′ either. We can thus conclude. �	

Since UU ′ is contained in its background (UBU ′ does not contain any lattice
point due to Proposition 1), Theorems 2 and 3 clearly imply Theorem 1. The
facets of the pattern UU ′ coincides with the upper part of the Delaunay tri-
angulation of UU ′, i.e. F(UU ′) = T +(UU ′). It remains only to show that the
combinatorial characterization of the main facet (Definition 1) is the same as
either the arithmetic one or geometric one. This is done in the next section.

3 Applications

In this section, we explain how to efficiently compute the Delaunay triangulation
or the Voronoi diagram of the pattern UU ′ from the continued fraction expansion
of its slope.

3.1 Continued Fraction

Let [q0; . . . , qi, . . . , qn] (with qn > 1) be the quotients and (b0, a0), . . . , (bi, ai),
. . . , (bn, an) be the convergent vectors of the continued fraction expansion of a

b .
Note that (bn, an) is the closest approximation of (b, a) (without being equal to
(b, a)), because qn is assumed to be greater than 1. Let (bn+1, an+1) be equal by
convention to (b, a). The sequence of convergents verifies:

∀i ∈ 1, . . . , n, (bi+1, ai+1) = (bi−1, ai−1) + qi(bi, ai) (1)

Moreover, for all i ∈ 1, . . . , n, the determinant of (bi, ai) and (bi+1, ai+1) is equal
to 1 if i is odd and −1 if i is even.

For instance, the continued fraction representation of 3
5 is [0; 1, 1, 2] and the

sequence of its convergent vectors is (0, 1), (1, 0), (1, 1), (2, 1). Note that (5, 3) =
(1, 1) + 2(2, 1) (and (2, 1) = (1, 0) + 1(1, 1), etc.) as expected from eq. 1. In
addition, 5.1− 3.2 = −1 (and 2.1− 1.1 = 1, etc.). This suggests that the lower
Bezout point B is available from the quotients and the convergent vectors of the
continued fraction expansion of the slope a

b of UU ′ and indeed:

−−→
UU ′ =

−−→
UB +

−−→
BU ′ = (bn, an) +

(
(bn−1, an−1) + (qn − 1)(bn, an)

)
(2)

Eq. 2 is a formulation in terms of convergent vectors of the splitting formula,
originally expressed in terms of quotients [10, Theorem 4.1]. The combinatorial
characterization of the main facet of Definition 1 is therefore the same as the
arithmetic one.
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Note that (bn, an) =
−−→
UB if n is odd, but (bn, an) =

−−→
BU ′ if n is even. For

instance, if
−−→
UU ′ = (5, 3), the last convergent vector is

−−→
UB = (2, 1) and

−−→
BU ′ =

(1, 1) + (2− 1).(2, 1) = (3, 2).
Furthermore, the description of the slopes of UB and BU ′ can be easily

deduced from the one of UU ′: the quotients and convergent vectors associ-
ated to the slope of UB is [q0; . . . , qn−1] and (b0, a0), . . . , (bn−1, an−1) if n is
odd, [q0; . . . , qn − 1] and (b0, a0), . . . , (bn, an) if n is even, whereas the quotients
and convergent vectors associated to the slope of BU ′ is [q0; . . . , qn − 1] and
(b0, a0), . . . , (bn, an) if n is odd, [q0; . . . , qn−1] and (b0, a0), . . . , (bn−1, an−1) if n
is even.

3.2 Computation of the Delaunay Triangulation

The computation of the Delaunay triangulation of T −(UU ′) = F(UU ′) is made
by a simple recursive algorithm, which may be coarsely describe as follows:
find B = b−(UU ′), the lower Bezout point of UU ′, using the extended Eu-
clidean algorithm, add the triangular facet UBU ′ to F(UU ′) and split UU ′ into
UB and BU ′ in order to recursively apply the procedure on sub-patterns. The
algorithm stops when the sub-patterns are as small as two consecutive points
of UU ′.

Though, it is enough to run only once the extended Euclidean algorithm
because the sequence of convergent vectors of any sub-patterns is computed in
constant time from its parent pattern as said in the previous subsection.

To sum up, the extended Euclidean algorithm is only run once at the beginning
in O(log2(max (|a|, |b|))). Then, each step requires O(1) time to draw a new
triangular facet. Since there are exactly |a|+ |b|+1 points and |a|+ |b|−1 facets,
the whole algorithm is in O(|a|+ |b|), whereas any classic algorithm coming from
computational geometry is in O((|a| + |b|) log (|a|+ |b|)) in the RAM model.

To end, note that T −(UU ′), the lower part of the Delaunay triangulation of
UU ′, is the union of the facets of all the reversed patterns LL′ such that the
straight segment [LL′] is an edge of the lower convex hull of UU ′. The slopes
of such edges are also given by the continued fraction expansion of the slope
of UU ′. The connection between continued fractions and the convex hull of the
lattice points located above or below a straight segment was already noticed by
Klein in 1895 [3].

We do not provide further details due to lack of space, but the algorithm has
been implemented in Lua and is available on the web1. It may be run as an ipelet
in Ipe in order to draw the delaunay triangulation of any pattern described by
a straight segment.

3.3 Computation of the Voronoi Diagram

The partial Voronoi diagram (Fig. 5.a), which is dual of T +(UU ′) = F(UU ′),
is also computed by a simple recursive algorithm, because each vertex of the

1 http://liris.cnrs.fr/tristan.roussillon/code/delaunay.lua

http://liris.cnrs.fr/tristan.roussillon/code/delaunay.lua
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diagram is the center of the circumcircle of a triangular facet of F(UU ′) and
each edge of the diagram belongs to the bissector of an edge of a triangular facet
of F(UU ′).

The algorithm may be coarsely described as follows: start with the point at
infinity along the bissector of [UU ′], then find B = b−(UU ′), the lower Bezout
point of UU ′, using the extended Euclidean algorithm, link Ω, the center of the
circumcircle of UBU ′, to the previous vertex and split UU ′ into UB and BU ′

in order to recursively apply this procedure on sub-patterns.
Let B = (β, α). Simple calculations lead to:

Ω =
(a.(α2 + β2)− (a2 + b2).α

2
,
(a2 + b2).β − b.(α2 + β2)

2

)
For instance, if U ′ = (5, 3) and B = (2, 1), Ω = (−19

2 , 43
2 ) (Ω is the leftmost

vertex in Fig. 5.a).
To sum up, the partial Voronoi diagram dual of T +(UU ′) is a planar binary

tree whose vertices have integer or half-integer coordinates and whose edges
have a slope − bk

ak
such that ak

bk
is a fraction lying on the path going from the

Stern-Brocot tree root to the fraction a
b (3

5 in Fig. 5.b).

3/5

2/3 1/2

1/1

(a)

1/4 2/5 3/5 3/4 4/3 5/3 5/2 4/1

1/3 2/3 3/2 3/1

1/2 2/1

1/1

0/1 1/0

(b)

Fig. 5. The partial Voronoi diagram of a pattern of slope 3
5

is depicted in (a). The
figure is turned 90◦ to the left so that the slopes of the edges are those lying on the
path highlighted in (b), which goes from the Stern-Brocot tree root to the fraction 3

5
.

4 Discussion

The presented results may have several interesting applications in digital shape
analysis. First of all, it may lead to new algorithms for computing the Delaunay
triangulation of a digital shape, starting from a decomposition of its boundary
into digital straight segments, for instance the one given by the minimum length
polygon (see [8] for a recent algorithm). The input data would then be some
Θ(n

2
3 ) instead of n for digitization of smooth shapes. The Delaunay triangula-

tion contains all the α-shapes of its vertices [4], which is of great interest for
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shape reconstruction. The present work is also an essential step for enumerating
the maximal digital circular arcs along digitizations of Euclidean shapes, since
the center of these arcs are related to the Voronoi vertices. This enumeration
would help for determining the multigrid convergence of several discrete curva-
ture estimators, similarly to the number of maximal segments that was the key
ingredients to determine the multigrid convergence of tangent estimators. Our
results may also help in determining properties of the λ-medial axis [2] and its
digital counterpart [1]. Finally, a new class of geometric estimators from a set of
points relies uniquely on the local shape of the Voronoi diagram [6]. Our results
clearly avoid global Voronoi computation and may even give partial analytic
quantities for that kind of applications.
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Abstract. We address the problem of computing the exact character-
istics of any subsegment of a digital straight line with known charac-
teristics. We present a new algorithm that solves this problem, whose
correctness is proved. Its principle is to climb the Stern-Brocot tree of
fraction in a bottom-up way. Its worst-time complexity is proportionnal
to the difference of depth of the slope of the input line and the slope of
the output segment. It is thus logarithmic in the coefficients of the input
slope. We have tested the effectiveness of this algorithm by computing
a multiscale representation of a digital shape, based only on a digital
straight segment decomposition of its boundary.

Keywords: standard lines, digital straight segment recognition, Stern-
Brocot tree.

1 Introduction

Digital Straight Lines (DSL) and Digital Straight Segments (DSS) are useful to
describe the geometry of a digital shape (coding, discrete geometric estimators,
feature detection) and this explains why they have been so deeply studied (see the
survey [9] or [8]). When a straight line is digitized on a grid, we obtain a sequence
of grid points defining a digital straight line segment. Methods of recognizing
digital straight segments are known since long. In one of the first methods,
Freeman [7] suggested to analyze the regularity in the pattern of the directions in
the chain code [6] of a digital curve. Anderson and Kim [1] have presented a deep
analysis of the properties of DSS and suggested a different algorithm based on
calculating the convex hull of the points of digital curves to be analyzed. In [10],
Kovalevsky presented a new classification of digital curves into boundary curves
and visual curves. Boundary curves and lines are a useful mean for fast drawing of
regions defined by their boundaries. Modern DSS recognition algorithms achieves
a computational complexity of O(n), if n is the number of input points and with
a computing model where arithmetic operations takes O(1) time. Interestingly,
this complexity is obtained by algorithms based on arithmetic properties [12,11],
combinatorial properties [16], or dual-space construction [5]. These algorithms

I. Debled-Rennesson et al. (Eds.): DGCI 2011, LNCS 6607, pp. 320–332, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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are optimal, when no further information is known. However, in some case,
we may already know that a set of points is included in some DSL of known
characteristics. This happens for instance when computing the multiresolution
of a digital object, since analytic formulas give the multiresolution of DSL. We
assume that the digital shape was previously polygonalized as a sequence of M
DSS, for instance by a simple greedy DSS segmentation algorithm or with the
Minimum Perimeter Polygon [13]. We then calculate the characteristics of each
DSS when changing the resolution of the grid (see [14] for more details about
the covering of a DSL). In this case, a faster computation of the DSS parameters
is possible.

Many works deal with the relations between irreducible rational fractions and
digital lines (see [4] for characterization with Farey series, and [18] for a link with
decomposition into continuous fractions). In [2], Debled and Réveillès first intro-
duced the link between the Stern-Brocot tree and the recognition of digital line.
Recognizing a piece of digital line is like going down the Stern-Brocot tree up to
the directional vector of the line. To sum up, the classical online DSS recognition
algorithm DR95 [2] (also reported in [8]) updates the DSS slope when adding
a point that is just exterior to the current line (weak exterior points). In [17],
De Vieilleville and Lachaud have revisited a classical arithmetically-based DSS
recognition algorithm with new parameters related to a combinatorial represen-
tation of DSS. New analytic relations have been established and the relation
with the Stern-Brocot tree has been made explicit.

The main contribution of this paper is to present a fast algorithm which com-
putes the exact (minimal) characteristics of a DSS that is some subset of a DSL
of known characteristics (see [15] for more details about minimal characteris-
tics). More precisely, the input DSL, say D, is given as the continued fraction
of its slope. The DSS is specified by the positions of its two endpoints A and B.
Furthermore, the two lower leaning points of D surrounding A and B are given
as input. This new algorithm, called ReversedSmartDSS1, determines the char-
acteristics of the DSS by moving in a bottom-up way along the Stern-Brocot
tree, a famous tree structure that represents positive fractions. We prove the
correctness of this algorithm in Proposition 1. We further show in Proposition 2
that its worst-case computational complexity is Θ(k− k′), where [u0; u1, . . . , uk]
is the continued fraction of the slope of the input DSL and [u0; u1, . . . , uk′ ] is
the continued fraction of the slope of the output DSS. This result assumes a
computing model where standard arithmetic operations are in O(1), which is a
reasonnable assumption when analyzing digital shapes.

This complexity is first to compare with the SmartDSS algorithm [14], whose
worst-case computational complexity is Θ(

∑k′

i=0 ui ∗ δ), where δ is the num-
ber of patterns of the output DSS. The average of this sum for all fractions
a
b with a + b = n is experimentally lower than log2 n, and this sum is upper
bounded by n and lower bounded by 1. This complexity is secondly to compare
with the complexities of classical DSS recognition algorithms (e.g., DR95 [3], see

1 This name is in opposition to the SmartDSS algorithm [14], because it moves along
the Stern-Brocot in a reversed direction.
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also [9]), whose complexities are at best Θ(n). The ReversedSmartDSS algo-
rithm was implemented and tested and various experimental results show that
this algorithm performs better than the SmartDSS algorithm and the classical
DSS recognition algorithms (see Table 1).

Table 1. Computation times of the (h, v)-covering of various digital shapes with our
proposed approach. The digital shapes are: a circle of radius 2000; a flower with 5
petals, mean radius 5000 and variability of radius 7000; a polygon with 8 sides and
radius 2000. The symbol # stands for “number of”.

Shape Flower Circle Polygon
# points 67494 16004 15356

# segments 1991 574 44
h, v 2 4 10 2 4 10 2 4 10

# points (h, v) 33744 16870 6750 8000 4000 1600 7676 3840 1532
Smart DSS

# points tested 19352 11254 4367 5413 2977 1019 782 667 527
timings (ms) 3.1286 2.6446 2.2914 0.997 0.8902 0.7618 0.1258 0.1142 0.0946

Reversed Smart DSS
timings (ms) 2.364 2.103 2.078 0.758 0.702 0.625 0.104 0.097 0.084

In Section 2 we describe this new algorithm. We show the correctness of this
new algorithm in Section 3, as well as its computational complexity. The last
section concludes and presents future works.

2 A Coarsening Algorithm for Computing the
Characteristics of a Subsegment Included in a Known
DSL

We recall first that a standard digital straight line D in the fourth quadrant is
some subset of the digital plane {(x, y) ∈ Z2, ν ≤ αx + βy < ν + α + β}, where
(α, β, ν) ∈ Z+ × Z+ × Z form the characteristics of D. The fraction α

β is the
slope of the DSL. Any 4-connected piece of a DSL is a digital straight segment
(DSS). The characteristics of a DSS are the characteristics of the “simplest”
DSL covering it (the one with the smallest possible α). Lastly, a pattern (resp.
reversed pattern) is the Freeman chaincode joining two consecutive lower leaning
points (resp. upper leaning points). Patterns are a combinatorial characterization
of DSL.

In the next section, we describe our new algorithm for determining the charac-
teristics of any subsegment S of a digital straight line D in the fourth quadrant,
whose characteristics (α, β, ν) are known. We make use of the property that the
slope of S is either α

β or any one of the ancestors of α
β in the Stern-Brocot tree

([15], see also Proposition 3 of [14]). The principle of our new algorithm is to
follow a bottom-up way in the Stern-Brocot tree.

2.1 Overview of the Algorithm

Algorithm 1 is the general algorithm for computing the exact characteristics of
S knowing the characteristics (α, β, μ) of its covering line D. This algorithm
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Function ReversedSmartDSS ( In D : DSL(α, β), In L1, L2 : Points of Z
2, In A, B : Points

of Z
2 ) : DSS (a, b, μ);

Var Lp1, Lp2 : Point of Z
2;

Var dL : integer /* The horizontal distance between L1 and L2 */ ;
Var S : slope;
begin

if (Ax == Bx) then return (1, 0, Ax);1
if (Ay == By) then return (0, 1, Ay);2
dL ←L2x − L1x ;
if (dL ≥ 3β) or (dL == 2β and (A == L1 or B == L2)) or (A == L13

and B == L2) then return (α, β, αL1x + βL1y ) ;
/* S is included in two patterns of D */ ;
if (dL == 2β) then return DSSWithinTwoPatterns (D, L1, L2, A, B);4
/* S is included in one pattern of D */ ;
(D(α′, β′), Lp1, Lp2) ←NewLowerBound(D, L1, L2, A, B);5
if (Lp1 == L1) and (Lp2 == L2) then6

return FinalSlope(D, L1, L2, Lp1, Lp2, A, B);

return ReversedSmartDSS(DSL(α′, β′), Lp1, Lp2, A, B);7
end

Algorithm 1. Main algorithm. Computes the characteristics (a, b, μ) of a DSS S that
is some subset of a DSL D of slope α

β
and lower leaning points L1 and L2 (the ones

surrounding the segment AB). The DSS is defined by a starting point A and an ending
point B (A,B ∈ D).

thus computes the simplest DSL covering S. The segment S is defined by its two
endpoints A and B. Lastly, we give also as input the two lower leaning points
of D which surround A and B. Note that these input data are all known if the
DSL D was recognized by a classical recognition algorithm (e.g., DR95 [3]).

If A and B have the same abscissa (or same ordinate), then this algorithm
stops and return (1, 0, Ax) (or (0, 1, Ay)), which are the obvious results. Other-
wise, this algorithm then checks the horizontal distance between L1 and L2 to
measure the number of patterns covering the segment. Should this distance be:
(1) three times greater than β, (2) equal to 2β, A and L1 are superposed, or
B and L2 are superposed, or (3) A and L1 are superposed, and B and L2 are
superposed, then the algorithm stops and returns (α, β) (line 3). Indeed, in these
case, the DSS contains at least one pattern, so the characteristics follow.

Otherwise, if this horizontal distance is equal to 2β — S is included in
two patterns of D — then the characteristics are computed by the function
DSSWithinTwoPatterns (line 4), described by Algorithm 2.

2.2 S Is Included in Two Patterns of D

The function DSSWithinTwoPatterns (Algorithm 2) is really the core of this DSS
recognition method. In its loop, three different patterns are tested progressively,
so as to find the first that has exactly the sought slope. It is easy to see that,
since the segment is included in two patterns, the middle lower leaning point
Lm is the lowest point of the segment. Therefore, if the slope of the segment is
defined by a pattern (i.e. defined by two lower leaning point), then one of the
extremities of the pattern is this point Lm. We thus test in sequence the pos-
sible patterns to the left and to the right of Lm. However, the slope of a DSS may
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also be defined by a reversed pattern (i.e. defined by two upper leaning points).
We thus test also in sequence the possible reversed patterns.

The progressive computation of these three sequences of patterns (left pattern,
right pattern, reversed pattern) is done in a parallel manner. More precisely, they
are run consecutively one step at each time:
– line 4 with a call to LowerSlope(. . . , true) computes the next left patterns

and stops when the lower leaning point L1 overtakes or reaches A,
– line 5 with a call to LowerSlope(. . . , false) computes the next right patterns

and stops when the lower leaning point L2 overtakes or reaches B,
– line 6 with a call to UpperSlope computes the next reversed pattern and

stops when the upper point RU overtakes towards the left or reaches B and
the upper point LU overtakes towards the right or reaches A.

The conditions at lines 3, 7 and 8 corresponds to three possible cases where
respectively no, one, or two pattern computation(s) is/are stopped. At each iter-
ation, the pattern, reversed or not, with deepest slope is the candidate solution.
Various tests of the positions of the current leaning points with respect to the
segment AB allow to determine if this candidate is valid. If it is true, the func-
tion exits and returns the characteristics of the elected pattern. If it is false,
the function loops and computes the new three patterns. This function loops at
most k times, where k is the depth of the input slope.

Algorithm 3 computes in O(1) the characteristics of the lower bound in the
left (or right according to the boolean variable Left) of Lm. In this algorithm,
we fix Lm, move L1 right towards A (or L2 left towards B in the other case)
and calculate the value of the new slope between the new L1 and Lm (or Lm

and the new L2).
Algorithm 4 determines in O(1) the positions of the new upper leaning points

LU and RU , according to the parity of slope (line 1,3) (see [17] for more details
about the parity of the slope). We have moved LU and RU either towards the
left in the odd case or towards the right in the even case. But before moving, we
must calculate the number of subpatterns, that is covering the point A in the
even case (line 2) or B in the odd case (line 4).

Example. Let us look at a run of Algorithm 1 for the DSL D of slope 13/18 =
[0, 1, 2, 1, 1, 2] (Fig. 1), for the subsegment AB. Here the segment S is included
in two patterns 13/18. Since the condition on line 3 of Algorithm 1 is fulfilled,
we call DSSWithinTwoPatterns (Algorithm 2) to compute the characteristics
(a, b, μ) of S.

For the first step, left pattern has slope 3/4 (call LowerSlope, see Fig. 2,a),
right pattern has slope 5/7 (call LowerSlope, see Fig. 2,c), and reversed pattern
has slope 5/7 (call UpperSlope, see Fig. 2,b). As Algorithm 4 is stopped, we thus
compute the deepest slope of 3/4, 5/7 and 5/7, which is 5/7. Since the deepest
slope coincides with the slope returned by the stopped algorithm, Algorithm 2
stops and returns this slope (final result (5, 7, 6)).

Let us now give some explanations of (Fig. 2,a). In the first step, we fix L11 at
L1 and L22 at Lm, and we compute the previous slope PS = 5/7 of S = 13/18.
Since the parity of S is odd, then we calculate the number k of subpatterns
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Function DSSWithinTwoPatterns( In D : DSL (α, β), In L1, L2 : Lower
bounds of D, In A, B : Point of Z2) : DSS (a, b, μ);
Var U1, U2, Lm : Point of Z2; L, R, U : boolean;
Var S1, S2, S3, DS : slope;
Var DL, DR, DU : DSL (α, β), CF : Continued Fraction of D;
begin

L ←true, R ←true, U ←true, i ←0 ;
Lm ←MiddleLowerBound(L1, D), CF ←ContinuedFraction(D);1

U1 ←FirstUpperBound(D, L1, L2), U2 ←SecondUpperBound(U1, D);2

while i < |CF | do
if (L and R and U) then3

S1 ←LowerSlope(DL, L1, Lm, L2, A, true) /* Left Lower Slope */ ;4

S2 ←LowerSlope(DR, L1, Lm, L2, B, false) /* Right Lower Slope */ ;5

S3 ←UpperSlope(DU , U1, U2, A, B) /* Upper Slope */ ;6

if (L1 >= A or L2 <= B or (U1 >= A and U2 <= B)) then
DS ←DeepestSlope( S1 , S2 , S3 )/* DS The deepest slope */ ;

if L1 >= A then L ←false;
if L2 <= B then R ←false;
if (U1 >= A and U2 <= B) then U ←false;
if (L1 >= A and DS == S1) or (L2 <= B and DS == S2) or
(U1 >= A and U2 <= B and DS == S3) then break;

else if ((L and R) or (L and U) or (R and U)) then7
S1 ←(R and U) ? LowerSlope(DR, L1, Lm, L2, B, false)

: LowerSlope(DL, L1, Lm, L2, A, true) ;
S2 ←(L and R) ? LowerSlope(DR, L1, Lm, L2, B, false)

: UpperSlope(DU , U1, U2, A, B);
if ((((L and U) or (L and R)) and (L1 >= A)) or (((R and U) or
(L and R)) and (L2 <= B)) or (((R and U) or (L and U)) and
(U1 >= A and U2 <= B))) then DS ←DeepestSlope( S1 , S2 );
if (((R and U) and ((L2 <= B and DS == S1) or (U1 >= A and
U2 <= B and DS == S2))) or ((L and U) and ((L1 >= A and
DS == S1) or (U1 >= A and U2 <= B and DS == S2))) or ((L
and R) and ((L1 >= A and DS == S1) or (L2 <= B and
DS == S2)))) then break;
if (((L and U) or (L and R)) and (L1 >= A)) then L ←false;
if (((R and U) or (L and R)) and (L2 <= B)) then R ←false;
if (((R and U) or (L and U)) and (U1 >= A and U2 <= B)) then

U ←false;

else8
if L then DS ←LowerSlope(DL, L1, Lm, L2, A, true);
else if R then DS ←LowerSlope(DR, L1, Lm, L2, B, false);
else DS ←UpperSlope(DU , U1, U2, A, B);
if ((L and L1 >= A) or (R and L2 <= B) or (U and U1 >= A and
U2 <= B)) then break;

a ←DSx, b ←DSy , μ ←aLmx + bLmy ;
return (a, b, μ);

end

Algorithm 2. Computes the characteristics (a, b, μ) of a DSS S that is some subset
of a DSL D(α, β) repeated twice
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Function LowerSlope( In D : DSL (α, β), InOut L1, Lm, L2 : Lower bounds of D, In X(A
or B) : Point of Z

2, In Left : Boolean): DSS (a, b);
Var P, L11, L22 : Points of Z

2 /* L11 and L22 two lower leaning points */ ;
Var PS : slope;
Var k : integer;
Var parity : boolean;
begin

(P, L11, L22) ←Left ? (L1, L1, Lm) : (L2, Lm, L2) ;
parity ←Parity(D);
PS ←PreviousSlope(D);
if (parity is odd) then

k ←NumberOfCoveringSubPatterns(L11, X, PS, true, false);
P ← L11 − k(−PSy, PSx);

else
k ←NumberOfCoveringSubPatterns(L22, X, PS, true, false);
P ← L22 − k(PSy,−PSx);

if Left then L11 = P ;
else L22 = P ;
(a, b) ← (|Py − Lmy |, |Lmx − Px|);
(L1, L2) ←Left ? (L11, L2) : (L1, L22);
return (a, b);

end

Algorithm 3. Computes in O(1) the Lower (Left or Right) characteristics (a, b) of a
DSS that is some subset of a DSL D, given a starting point A and an ending point Lm

(Left part) or given a starting point Lm and an ending point B (Right part) (A, B ∈ D)
(Left pattern is L1Lm and Right pattern is LmL2)

(h,v)=(2,2)

B

A

S(5,7,6)

D(13,18,16)

L1

U2

U1

Lm

L2

S0(13,18,62)

U
pperSlope

R
ightLow

erSlope

LeftLow
erSlope

Fig. 1. A DSL D(13, 18, 16) with two patterns between L1 and L2 and an odd depth
slope. S (AB) is the covering of S0 by the tiling (h, v) = (2, 2), and also a subset of
D (AB is included in two patterns of D). Lower and upper leaning points are drawn
as red boxes. The (red, blue or cyan) arrows represent bottom-up move along the
Stern-Brocot Tree.

5/7 that is covering A from L11 to the right, such that this covering reaches or
overtakes A. It is impossible to take k = 3, because in this case this displacement
from L11 overtakes L22. So we take k = 2, and L11 is moved of two subpatterns
5/7 toward the right. We have now a new DSS S(3, 4) between the new L11 and
L22. In the second step, we calculate the previous slope PS = 1/1 of S = 3/4.
Since the parity of S is even, then we calculate the number k of subpatterns
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Function UpperSlope( In D : DSL (α, β), In U1, U2: Upper bound of D, In A, B : Points of
Z
2) : DSS (a, b) ;

Var LU, RU : Point of Z
2 /* Left and Right upper leaning points */ ;

Var S, PS : slope /* PS the previous slope of S */ ;
Var k : integer /* Number of subpatterns covering A or B */ ;
Var parity : boolean /* parity of slope continued fraction */ ;
begin

LU ← U1, RU ← U2;
if (LU > A and RU < B) then

return (α, β);

parity ←Parity(D), PS ←PreviousSlope(D);
if (parity is odd) then1

if (RU > B) then
k ←NumberOfCoveringSubPatterns(RU,B, PS, true, false);2
RU ← RU − k(PSy,−PSx);

if (LU < A) then
LU ← RU − (PSy,−PSx);

else3
if (LU < A) then

k ←NumberOfCoveringSubPatterns(LU,A, PS, true, false);4
LU ← LU − k(−PSy , PSx);

if (RU > B) then
RU ← LU − (−PSy, PSx);

(a, b) ← (LUy − RUy , RUx − LUx);
return (a, b);

end

Algorithm 4. Computes in O(1) the Upper characteristics (a, b) of a DSS that is some
subset of a DSL D (U1 and U2 are two upper leaning points of D), given a starting
point A and an ending point B (A, B ∈ D)

1/1 that is covering A from L22 to the left, such that this covering reaches or
overtakes A. It is impossible to take k = 4, because in this case this displacement
from L22 overtakes L11. So we take k = 3, and L11 is moved of three subpatterns
1/1 toward the left and we obtain a new DSS from the new L11 to L22. As L11
reach A, this algorithms stops and returns the left slope 1/1.

2.3 S Is Included in One Pattern of D

In the remaining case, S is included in one pattern only. The function New
LowerBounds (Algorithm 5) attempts to move L1 toward A with k1 subpatterns
and L2 toward B with k2 subpatterns, according to the parity of the depth of the
development of the slope in continued fractions (it means that Parity(D) is true
if D has a slope with even depth, false otherwise) and to the previous convergent
of the slope (line 5) (if the depth of the slope is a k − th convergent, then the
previous slope is a (k− 1)− th convergent). This displacement is constrained by
the fact that the leaning points must still surround A and B (see Fig. 3,(a),(b)).
In the case where L1 and L2 did not move, we can conclude on the characteristics
with a call to FinalSlope (Algorithm 6). In this algorithm, we focus on the three
cases. Firstly, if the second lower leaning point Lp2 is equal to B and Lp1 moves
toward A with either one previous slope or previous previous slope, according
to the parity of the depth of the slope. Secondly, if the first lower leaning point
Lp1 is equal to A and Lp2 moves towards B. Finally, if the lower leaning points
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1
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Lm (L11 ← Lm)
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Fig. 2. The DSS U1U2 (resp. L1Lm and LmL2) of characteristics (13, 18, 16), which
is a subset of L1L2 of Fig. 1. The blue arrows represent the move between the upper
(lower) leaning points, and k is the number of subpatterns covering B (A and B).

Function NewLowerBounds( In D : DSL (α, β), In L1, L2, A, B: Points of Z
2) : (DSL, Point of

Z
2, Point of Z

2);
Var L, V1, V2 : Point of Z

2;
Var k, k1, k2 : integer;
Var parity, coveringA, coveringB : boolean;
Var PS : slope;
begin

parity ←Parity(D), PS ←PreviousSlope(D);
L ←parity ? L1 : L2, coveringA ←parity ? true : false;
coveringB ←parity ? false : true;
k1 ←NumberOfCoveringSubPatterns(L,A, PS, coveringA, true);
k2 ←NumberOfCoveringSubPatterns(L,B, PS, coveringB , true);
if (parity is odd) then

Lp1 ← L1 − k1(−PSy, PSx), V2 ←L1 − k2(−PSy, PSx);
Lp2 ←(V2 ≤ L2) ? V2 : L2;

else
Lp2 ←L2 − k2(PSy, −PSx), V1 ←L2 − k1(PSy,−PSx);
Lp1 ←(V1 ≥ L1) ? V1 : L1;

k ←( parity is odd and Lp2! = L2) or ( parity is even and Lp1! = L1) ?
(Lp2x − Lp1x )/PSy : 1;
(α, β) ←((Lp1y − Lp2y )/k, (Lp2x − Lp1x )/k);
return (DSL(α, β), Lp1, Lp2);

end

Algorithm 5. Updates in O(1) the slope of the DSL D(α, β) according to the change
of the two lower leaning points from (L1, L2) to (Lp1, Lp2)
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L2 (Lp2
← L2)

B

L1 (Lp1 ← L1)

A

Lp1

B

Lp1

L2 (Lp2
← L2)

A

Lp2

L1

B

Lp2

L1

A

Lp1

L2

(a) S = 13/18, PS = 5/7 (b) S = 8/11, PS = 3/4 (c) S = 5/7

Fig. 3. L1L2 is a DSS of characteristics (13, 18, 16). The blue arrows represent the
move of the lower leaning points. (a) S = L1L2, L1 is moved of one subpatterns 5/7
towards the right. (b) S = Lp1L2, L2 is moved of one subpatterns 3/4 towards the left.
(c) Lp1 and Lp2 represent the lower leaning points of AB.

Function FinalSlope( In D : DSL (α, β), In L1, L2, Lp1, Lp2, A, B: Points of Z
2) : DSS

(a, b, μ);
Var PS, PPS : slope;
Var parity : boolean;
begin

PS ←PreviousSlope(D), PPS ←PreviousSlope(PS), parity ←Parity(D);
if (Lp2 == B) then

Lp1 ←Lp1 − ((parity) ? (−PSy, PSx) : (−PPSy, PPSx) );
(a, b) ←(Lp1y − Lp2y , Lp2x − Lp1x ), μ ←aL2x + bL2y ;

else if (Lp1 == A) then
Lp2 ←Lp2 − ((parity) ? (PPSy,−PPSx) : (PSy,−PSx) );
(a, b) ←(Lp1y − Lp2y , Lp2x − Lp1x ), μ ←aL1x + bL1y ;

else
(a, b) ←PS;
μ ←a(parity ? L1x : L2x )+ b(parity ? L1y : L2y );

return (a, b, μ);
end

Algorithm 6. Computes in O(1) the characteristics (a, b, μ) of a DSS in the case where
L1 == Lp1 and L2 == Lp2

did not move. We therefore conclude that AB has the slope of Lp1Lp2 (see
Fig. 3,(c)). If at least one of the leaning points has moved, then we recursively
call ReversedSmartDSS but with an input DSL with a slope depth at least one
smaller than the slope depth of D.

3 Correctness and Computational Complexity

We sketch here the proof of the correctness of algorithm ReversedSmartDSS
(Proposition 1). Proposition 2 establishes the time complexity of this algorithm,
as a function of the depth of the slopes of the input DSL and output DSS.

Proposition 1. For any DSL D such that A, B ∈ D, Algorithm 1 computes the
characteristics of the segment S = [AB] included in D.

Proof. We prove by induction on n (the depth of the slope of D) that Algorithm 1
computes the characteristics of the segment S in the fourth quadrant. The ini-
tial steps n = −1 or n = 0 are obvious since D is just a vertical or horizontal
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segment and has slope 1/0 or 0/1. In this case, Algorithm 1 returns the correct
characteristics (1, 0, Ax) or (0, 1, Ay). The induction hypothesis is that this al-
gorithm has a correct output for all points A, B ∈ D of slope [u0, u1, · · · , un].
We shall prove that the output is also correct for any points A, B in some DSL
D with a depth of its slope equal to n + 1.

If the horizontal distance between the lower leaning points L1 and L2 verifies
one of the three conditions of line 3, then Algorithm 1 stops and returns the char-
acteristics of the segment AB which are trivially in this case the characteristics
of D itself (i.e. depth is n + 1).

Otherwise, if this distance is equal to 2β, then we call Algorithm 2. There,
three algorithms are run in a parallel manner: (i) LowerSlope( . . . , true) at
line 4 for the pattern to the left of Lm, (ii) LowerSlope(. . . , false) at line 5 for
the pattern to the right of Lm, and (iii) UpperSlope at line 6 for the reversed
pattern containing Lm. More precisely, they are run consecutively one iteration
each time. This algorithm does not depend on the induction hypothesis. It just
calculates the largest pattern contained in [AB] either to the left or right of the
lowest point Lm, and the largest reversed pattern containing Lm. Since patterns
characterize a DSS slope, the deepest slope is exactly the slope of AB.

The last case occurs when S is included in only one pattern of D. We then
look for a simpler DSL than D that contains AB by moving the lower leaning
points toward AB (function NewLowerBounds). The simpler DSL is one of the
left or right ancestor of the slope of D in the Stern-Brocot tree, according to
its parity. If such a simpler DSS includes AB, then the lower leaning points are
moved. Here, we recursively call ReversedSmartDSS but with this new input
data, where the input DSL has a slope depth less or equal to n. The induction
hypothesis applies in this case. If no simpler DSS contains AB, the function
FinalSlope determines directly (without loop) the correct characteristics, with
simple checks. We can therefore conclude in all cases. �	

We assume that we have stored all the convergents of the slope of D before
running Algorithm 1. We further assume a computing model where standard
arithmetic operations takes O(1). Note that the largest integer used in the pre-
sented algorithms is lower than α2 + β2, if D has slope α

β , for a frame centered
on the DSS.

Proposition 2. Algorithm 1 takes O(n − n′) time complexity, where n is the
depth of the input DSL D with slope α

β = [u0, u1, · · · , un] and n′ is the depth of
the output DSS S with slope a

b = [u0, u1, · · · , un′ ].

Proof. Computation of Algorithm 1 on line 1, 2 and 3 is clearly O(1). Other-
wise, if S is included in two patterns of D (line 4), we then apply Algorithm 2
(detailed in the previous proposition). In the core of this algorithm, we call
three algorithms where the time complexity of each algorithm is O(1). Fur-
thermore, we repeat either the same condition (line 3) until one of the three
algorithms is stopped, line 7 if one is stopped, or line 8 if two are stopped. Since
the stopping occurs when the output slope is reached, the number of steps of
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Algorithm 2 is the difference between the depth slope of the input DSL and the
one of the output DSS, that is O(n− n′).

Otherwise, it means that S is included in one pattern of D. In this case, we
compute in O(1) the positions of the new two lower leaning points L1 and L2 of D
by calling NewLowerBounds (line 5). When the lower leaning points do not move,
then the function FinalSlope determines the correct characteristics in O(1).
Otherwise, we recursively call ReversedSmartDSS but with an input DSL with
a slope depth less or equal to n− 1. The preceding arguments recursively hold.
With this observation, the worst-case computational complexity of Algorithm 1
is clearly O(n− n′). �	

Lamé’s theorem implies that Algorithm 1 takes at most O(log(max(α, β))) time.

Timing measures. Execution times were measured for some contours (Table 1).
These times were obtained on a 2.10 GHz Intel Core 2 Duo. The listed numbers
include the computation time for subsampling contours and the associated num-
ber of tested points in the SmartDSS algorithm [14] and the computation of the
characteristics of each segment in the ReversedSmartDSS algorithm.

4 Conclusion

We have presented a novel fast DSS recognition algorithm with guaranteed log-
arithmic complexity, in the special case where a DSL container is known. The
algorithm principle is to move in a bottom-up way along the Stern Brocot Tree,
starting from the initial known DSL slope. Finally, we have used this algorithm
to efficiently compute the exact multiscale covering of a digital contour (Table 1).
Our algorithms are sensitive to the depth of the input DSL and output DSS,
and are clearly sublinear.
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d’images. Ph.D. thesis, Université Louis Pasteur, Strasbourg (1997),
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Abstract. Given a digital curve and a maximum error, we propose
an algorithm that computes a simplification of the curve such that the
Fréchet distance between the original and the simplified curve is less than
the error. The algorithm uses an approximation of the Fréchet distance,
but a guarantee over the quality of the simplification is proved. More-
over, even if the theoretical complexity of the algorithm is in O(n log(n)),
experiments show a linear behaviour in practice.

1 Introduction

Given a polygonal curve, the curve simplification problem consists in computing
another polygonal curve that (i) approximates the original curve, (ii) satisfies a
given error criterion, (iii) with as few vertices as possible. This problem arises
in a wide range of applications, such as geographic information systems (GIS),
computer graphics or computer vision, where the management of the level of
details is of crucial importance to save memory space or to speed-up analysis
algorithms.

This problem has been studied for many years for various metrics: classical
L1, L2, L∞ metrics (see [4] for a survey on simplification algorithms using these
metrics), Hausdorff distance or Fréchet distance. While the L norms and Haus-
dorff distance are relevant measures for many applications, they do not always
reflect the similarity or dissimilarity of two polygonal curves (see for instance
the example given in [10] for the Hausdorff distance). The main reason of this
discrepancy is that these metrics consider the curves as sets of points, and do
not reflect the course of the curves. However, the course of the curve may be im-
portant in some applications, like handwritting recognition for instance [11]. The
Fréchet distance is often used to overcome this problem as it nicely measures the
similarity between two curves. The Fréchet distance can be intuitively defined
considering a man walking his dog. Each protagonist walks along a path, and
controls its speed independently, but cannot go backwards. The Fréchet distance
between the two pathes is the minimal length of the leash required.

1.1 Fréchet Distance

Given two curves f and g specified by functions f : [0, 1] → R2 and g : [0, 1] →
R

2, and two non-decreasing continuous functions α : [0, 1] → [0, 1] and β :

I. Debled-Rennesson et al. (Eds.): DGCI 2011, LNCS 6607, pp. 333–345, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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[0, 1] → [0, 1] with α(0) = 0, α(1) = 1, β(0) = 0, β(1) = 1, the Fréchet distance
δF (f, g) between two curves f and g is defined as

δF (f, g) = inf
α,β

max
0≤t≤1

d(f(α(t)), g(β(t)))

where d denotes the Euclidean distance. The polygonal curve simplification prob-
lem was first studied for the Fréchet distance by Godau [7]. Alt and Godau pro-
posed in [3] an O(mn)-time algorithm to determine whether δF (P, Q) ≤ ε for
two polygonal curves P and Q of size n and m, and a given error ε > 0. The
complexity turns out to be O((m2n + n2m) log(mn)) for the actual computa-
tion of the Fréchet distance between two curves. A recent work [6] proposes a
near-linear time algorithm to compute an approximation of this distance.

1.2 Curve Simplification Problem

In the rest of the paper, we follow the notations used in [2] or [1]. Given a
polygonal curve P = 〈p1, . . . pn〉, a curve P ′ = 〈pi1 , . . . pik

〉 with 1 = i1 < . . . <
ik = n is said to simplify the curve P . P (i, j) denotes the subpath from pi to pj .

Given a pair of indices 1 ≤ i ≤ j ≤ n, δF (pipj, P ) denotes the error of the
segment pipj with respect to P (i, j). Then,

δF (P ′, P ) = max
1≤j≤k

δF (pij pij+1 , P )

For the sake of clarity, the simplified notation error(i, j) = δF (pipj , P ) will
sometimes be used. We also say that pipj is a shortcut.

P ′ is an ε-simplification of P if δF (P ′, P ) ≤ ε. The optimization problem is
the following: given a polygonal curve P , find a ε-simplification P ′ of P with
the minimum number of vertices. The approach of Imai and Iri [8] leads to an
optimal solution under the Fréchet distance in O(n3).

In [2], the authors propose an O(n log(n)) algorithm. The base of their algo-
rithm is greedy and very simple: points are added one by one while the error
of the shortcut is lower than ε, otherwise the process starts over from the last
point processed. The strength of their approach lies in the following property:

Lemma 1. [2, Lemma 3.3] Let P = {p1, p2, . . . , pn} be a polygonal curve in R2.
For 1 ≤ i ≤ l ≤ r ≤ j ≤ n, error(l, r) ≤ 2error(i, j)

This means that for any shortcut plpr such that error(l, r) > ε, there does
not exist a shortcut pipj such that error(i, j) ≤ ε

2 . They derive the following
theorem:

Theorem 1. [2, Theorem 3.4] Given a polygonal curve P in R
d and a param-

eter ε > 0, we can compute in O(n log(n)) an ε-simplification P ′ of P under
the Fréchet metric error with at most the number of vertices of an optimal ε

2 -
simplification.

The O(nlog(n)) complexity is achieved with a dichotomic processs in the greedy
algorithm. The question we arouse in this paper is the following: does there exist



Digital Curve Simplification under the Fréchet Distance 335

a linear-time guaranteed algorithm to compute an ε-simplification ? We propose
a guaranteed algorithm for digital curves whose complexity is Ω(n log(n)) in
theory but behaves in O(n) in practice. The main features of this algorithm are
the following: (i) approximation of the Fréchet distance as in [1], (ii) restriction
to digital curves. In section 2, we present the approximated distance, and give
the algorithm outline as a novel way of using the results of [1]. Section 3 is
the core of the paper and details the approximated distance efficient and online
update, with a restriction to digital curves to achieve a near-linear complexity.
Section 4 begins with a theoretical study of the complexity and the guarantee
of the proposed algorithm, and ends with some experimental results.

2 Guaranteed Algorithm Using an Approximated
Distance

2.1 Approximating the Fréchet Distance

In [1], Ali Abam et al. study the following problem: given a possibly infinite
sequence of points defining a polygonal path, maintain in a streaming setting, a
simplification of this set of points with 2k points and a bounded error. The error
is measured using the Hausdorff distance or the Fréchet distance. The Fréchet
distance being computationally too costly for this framework, they show that
error(i, j) can be upper and lower bounded by functions of two values, namely
ω(i, j) and b(i, j). ω(i, j) is the width of the points of P (i, j) in the direction
pipj . b(i, j) is the length of the longest backpath in the direction −−→pipj. Its precise
definition requires the following other definitions:

Definition 1. Let l be a straight line of directional vector −→d . α is the angle
between l and the abscissa axis.

projα(p) denotes the orthogonal projection of p onto the line of angle α.
If −−→plpm.

−→
d < 0, then projα(pl) is “after” projα(pm) in direction α, and we

denote projα(pl) >> projα(pm) (see Figure 1(a)).

Definition 2. −−→plpm is a positive shift if and only if −−→plpm.
−→
d > 0, negative

otherwise.

Definition 3. A backpath in direction α is a negative shift −−→plpm such that l < m
(see Figure 1(b)). pl is the origin of the backpath. The length of the backpath is
equal to d(projα(pl), projα(pm)).

Lemma 2 relates ω(i, j) and b(i, j) to error(i, j):

Lemma 2. [1, Lemma 4.2] The Fréchet error of a shortcut pipj satisfies
max(w(i,j)

2 , b(i,j)
2 ) ≤ error(i, j) ≤ 2

√
2max(w(i,j)

2 , b(i,j)
2 ).
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projα(pm)−→
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Fig. 1. (a) Illustration of Definitions 1 and 2. (b) Illustration of backpathes in direction
−−→pipj : −−→prpq is a backpath since it is a negative shift and pr is before pq on the curve
P (i, j). However, it is not the longest backpath: −−→plpm is also a backpath, of maximal
length b(i, j).

Algorithm 1. Greedy Fréchet simplification algorithm
i = 1, j = 2
while i < n do

while j < n and max(w(i, j), b(i, j)) ≤ ε√
2

do
j=j+1

create a new shortcut pipj−1

i = j − 1,j = i + 1

2.2 Algorithm Outline

Algorithm 1 presents the general outline of the ε-simplification.

Lemma 3. Algorithm 1 computes an ε-simplification P ′ of a polygonal curve P
such that |P ′| is lower than the number of vertices of an optimal ε

4
√

2
-

simplification of P.

Proof. When a shortcut pipj is created in P ′, the following two properties are
true: (i) max(w(i, j), b(i, j)) ≤ ε√

2
and (ii) max(w(i, j + 1), b(i, j + 1)) > ε√

2
.

From Lemma 2, (i) implies that error(i, j) ≤ ε which proves that P ′ is a ε-
simplification of P . From lemma 2 again, (ii) implies that error(i, j + 1) > ε

2
√

2
.

The hypothesis are then similar to the ones of the proof of [2, Theorem 3.4], and
a similar reasoning proves the guarantee.

Note that the complexity of Algorithm 1 has not been adressed yet. Indeed,
the difficulty lies in the updates of ω(i, j) and b(i, j) when a new point pj is
considered. These two variables depend directly on the direction −−→pipj . However,
when a new point is added, this direction may change drastically: Figure 2 shows
an example where the maximal width and maximal backpath are achieved for
different vertices of the polyline for −−→pipj and −−−−→pipj+1.
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pi

pj

b(i, j)

ω(i, j)

(a)

ω(i, j)

b(i, j)
pj+1

pi

(b)

Fig. 2. Updating ω(i, j) and b(i, j) can be costly in the general case: for instance, the
longest backpath is much smaller in (b) for the direction −−−−→pipj+1 than in (a) for the
direction −−→pipj

In the next section, we show how to update efficiently the decisions on ω(i, j)
and b(i, j), with a specification for digital curve to reach a near-linear time
complexity.

3 Updating the Approximated Distance Efficiently

In [1], where the approximated distance is defined, an actual computation of
the variables ω(i, j) and b(i, j) is necessary since the problem is to minimize
the error. However, as computing the exact values is too expensive, guaranteed
approximations are updated when a new point is added. Contrary to [1], in our
framework an update of these variables is not necessary, but the decisions “is
ω(i, j) ≤ ε√

2
?” and “is b(i, j) ≤ ε√

2
?” must be exact to ensure the computation

of an ε-simplification. This section is devoted to the design of new algorithmic
approaches to solve these two problems.

3.1 Decision on ω(i, j)

Instead of deciding whether ω(i, j) is under a given threshold or not, we show
that it is enough to check the distance between any point of P (i, j) and the
vector −−→pipj.

Property 1. Let dmax(i, j) = maxp∈P (i,j) d(p,−−→pipj). We have ω(i,j)
2 ≤ dmax(i, j) ≤

ω(i, j).

This property is actually implicitely used in the proof of Lemma 2 in [1, Lemma
4.2]. The authors use the following inequalities to define the approximated dis-
tance (the parameters (i, j) are ommited for the sake of lisibility):

max(
ω

2
,
b

2
) ≤ max(dmax,

b

2
) ≤ error ≤

√
2max(dmax, b) ≤

√
2max(ω, b)
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In our framework, it is much easier to use dmax instead of ω thanks to the
algorithm of Chan and Chin [5, Lemmas 1 and 2]. Given an origin point pi and
a set of points P (i, j) we construct the set Sij of straight lines l going through
pi such that maxp∈P (i,j)(p, l) ≤ r.

To do so, we use the following simple fact: d(p, l) ≤ r ⇔ the straight line l
crosses the disk of center p and radius r (see Figure 3(a)). Sij is a cone computed
incrementally in O(1) time considering for a point pk two new rays defined by
pi and the disk of center pk and radius r (see Figure 3(b)). As a result, deciding
whether dmax(i, j) is lower than r or not is equivalent to checking whether the
straight line (pi, pj) belongs to Sij or not.

< r

(a) (b)

Fig. 3. (a) A line which is at a distance lower than r from a point p crosses the disk of
center p and radius r. (b) The cone Sij (dark gray) is computed incrementally as the
intersection of the light gray cones.

3.2 Decision on b(i, j)

We first show that some particular points, named occulters, play a special role
in the decision on b(i, j). Then, we restrict the framework to digital curves to
get a better complexity thanks to the following two facts: the computation of
the occulters can be mutualized, and the number of occulters is bounded by the
error.

General considerations

Definition 4. A occulter for the direction −→d is a point pk such that for all
l < k, projα(pk) >> projα(pl). Moreover, an occulter is said to be active if
there is no occulter p′k with k′ > k.

Property 2. There is one and only one active occulter for a given direction −→d .

In other words, the active occulter of a curve P (i, j) in the direction −→d is the
point equal to arg max(projα(p)). Figure 4 (a) illustrates this definition.

Property 3. The origin of the longest backpath of P (i, j) is an occulter for the
direction −−→pipj .

Proof. Let −−−→pkpm be the longest backpath of P (i, j) in the direction −−→pipj. Suppose
that pk is not an occulter. Then there exist a point pl of P (i, j) such that l < k
and projα(pl) >> projα(pk). Thus −−→plpm is a backpath too, and ||projα(−−→plpm)|| >
||projα(−−−→pkpm)||, which is a contradiction with the fact that −−−→pkpm is the longest
backpath.
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Property 4. Consider the set of occulters {occj , j = 1 . . . n} of P (i, k). Let occmax

be the active occulter. Consider all the backpathes −−−−→occjpk ending at pk, if any.
Then ||projα(−−−−−−→occmaxpk)|| > ||projα(−−−−→occjpk)|| for all j.

Proof. By definition, projα(occmax) >> projα(occj) for all j, and the result
follows straighforwardly.

Putting together the previous properties, we see that updating the active occulter
is the key point of the computation of the longest backpath.

−→
d

(a)

5

0

1 2 6

4
3

−→
d

(b)

Fig. 4. (a) Occulters for the direction −→
d . The only active occulter is circled. (b) Back-

pathes in the direction −→
d : the origin of all the backpathes is an occulter, but only the

double-squared backpathes need to be considered in the algorithm.

Suppose that we are computing the backpathes in direction −→d for the curve
P (i, j). Suppose that all the points of P (i, k) have been processed, and that the
point pk+1 is added. If pkpk+1 is a positive shift then nothing needs to be done:

– pk+1 cannot be the origin of a backpath since it’s the last point processed.
– pk+1 is not the end of the longest backpath since projα(pk+1) >> projα(pk).

The case when pkpk+1 is a negative shift is detailed in Algorithm 2. Figure
4(b) illustrates the difference cases of Algorithm 2. Only the double-squared
backpathes are considered in the algorithm. Indeed, the backpathes number 2
and 5 are not taken into account because of Property 4. The backpath number 4
is not considered either because the end of the backpath follows a positive shift:
we know for sure that the backpath number 3 is longer. However, note that the
backpath number 0 is considered: the length of this backpath may be greater
than the threshold.

According to Algorithm 1 we see that Algorithm 2 must be applied for any
direction −−→plpm where pl and pm are any two points of the curve, with l < m.
In the general case, for a polygonal curve of n points, there are O(n2) such
directions, that can be computed as a preprocessing of the curve. In the case of
a digital curve embedded in an image of size n × n, the possible directions are
known a priori but O(n2) directions must still be considered. However, we see
in the following that the computation of the backpathes can be mutualized in
the case of digital curves.
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Algorithm 2. Active occulter update and backpath computation for a
direction −→d

Let occmax be the active occulter for P (i, k) in direction −→
d .1

if −−−−→pkpk+1 is negative then2

if −−−−→pk−1pk is positive then3

if projα(pk) >> projα(occmax) then4

occmax = pk5

The vector −−−−−−−−→occmaxpk+1 may be a backpath.6

Digital curves specificities. In the following, we consider 8-connected digital
curves, but the algorithm also works for 4-connected curves.

An elementary shift is a vector −−−−→pkpk+1. For a digital curve, there are only
8 elementary shifts, given by the chain codes, and denoted −→ei , i = 0 . . . 7 in
the following. We also classify the directions −→d = (dx, dy) into 8 octants as
illustrated in Figure 5.

0

12

3

4

5 6

7

−→
d

(a) (b)

Fig. 5. (a) Clustering of the directions into octants: for instance, the direction −→
d

belongs to the octant 0. (b) Illustration of the elementary positive shifts for each
octant.

Lemma 4. Consider any elementary shift −→ei . Then, the sign of −→d .−→ei is the
same for all the directions −→d of a given octant.

Proof. An octant clusters all the directions with a fixed sign for dx and dy, and
such that the order on dx and dy is the same. For instance, in the octant 0, we
find all the directions such that 0 ≤ dy < dx. Since the components ei,x and ei,y

of −→ei lie in {−1, 0, 1}, the sign of −→d .−→ei only depends on the signs and order of
dx and dy, which ends the proof.

As a consequence, for all the directions of a given octant the elementary posi-
tive and negative shifts are the same. In Figure 5(b), all the elementary positive
shifts are depicted for each octant. Thus, the tests of Algorithm 2 lines 2-3 are
the same for all the directions of a given octant. Nevertheless, on line 4, the
projections of two points on a direction −→d are compared, and this test is not
so easy when an octant of directions is considered. In the following the octant 0 is
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considered, but a similar reasoning can be done for the other cases. Consider the
Figure 6(a), where the plane is divided into four areas according to the position
of a point p:

– for any point q in the gray area, we have projα(q) >> projα(p) for any
direction of the octant 0;

– for any point q in the dashed area, we have projα(p) >> projα(q) for any
direction of the octant 0;

– in the white area, the order of the projections changes, as illustrated in
Figure 6(b-d).

Thus, we do not have only one active occulter to update anymore, but a set
of occulters for each octant. Any active occulter is associated to an interval of
angles for which it is actually the active occulter. From Property 2, we derive that
these intervals are disjoint and that there union is the interval [0, π

4 ]. Algorithm
3 describes how to update the active occulters for the directions of octant 0.
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q

p

β

α < β

(b)

q

p

β

α = β

(c)

q

p

β

α > β

(d)

Fig. 6. When the point q in the the white area (a), the order of the projections of p
and q on the line of angle α changes according to the angle β (b-d)

The complexity of Algorithm 3 depends on the number of active occulters.
The following lemma is used in the complexity analysis in Section 4 to prove
that the number of occulters per octant is bounded by the approximation error
in the case of digital curves.

Lemma 5. For a digital curve and for a given octant, there is at most one active
occulter per line and per column of Z2.

Idea of the proof. When two points p and q are on the same row or the same
column, then for all the directions of a given octant, either p is an occulter for
q or q is an occulter for p.

List of forbidden directions. From Algorithm 1, we see that the length of the
longest backpath is tested for each point, which defines a new direction. More-
over, we see from Algorithm 2 line 6 that for each negative shift, we can have as
many backpathes as active occulters. All in all, testing individually all the pos-
sible backpathes when a new point is added is too costly. To solve this problem,
we propose to maintain a “set” of the directions for which there exist a backpath
of length greater than the error ε.
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Algorithm 3. Update of the list of active occulters for the octant 0
Let p be the last point added, we want to check if p is an active occulter.1

forall the active occulters pi(αimin , αimax) do2

v = −→pip3

if −→v .(1, 0) < 0 and −→v .(1, 1) < 0 then4

p is not an active occulter5

if −→v .(1, 0) > 0 and −→v .(1, 1) > 0 then6

pi is not an active occulter anymore7

p is an active occulter on [0, ?] with αimin <? ≤ π
4

8

if −→v .(1, 0) > 0 and −→v .(1, 1) < 0 then9

compute the angle β ; /* see Figure 6 */10

if αimin ≤ β < αimax then11

p is an active occulter on [0, β]12

pi is an active occulter on [β, αimax ]13

if β < αimin then14

pi is still an active occulter15

if β ≥ αimax then16

pi is not an active occulter anymore17

p is an active occulter on [0, ?] with αimax ≤? ≤ π
4

18

+similar process for symmetrical cases (roles of pi and p inverted)19

This set actually consists of a list of intervals defined as follows. Consider a
backpath −−−→pkpm of length l. Then the length of the projection of this backpath
on the direction −→d is a function of l and the angle between −−−→pkpm and −→d . This
is illustrated in the Figure 7: for a given backpath of length l and angle α, and a
given error ε, the interval of directions for which the projection of the backpath
has a length greater than ε is computed easily. Eventually, such an interval is
computed for each backpath of length greater than ε, and the list of all these
intervals is called the list of forbidden directions.

At the end, we have the following equivalence: b(i, j) is greater than ε if
and only if the direction −−→pipj belongs to the list of forbidden directions. This
equivalence enables to test efficiently b(i, j) in O(log(ni)) for ni intervals (see
Algorithm 1).

4 Theoretical and Experimental Results

4.1 Complexity and Guarantee Analysis

Theorem 2. Algorithm 1, combined with Algorithm 2 and Algorithm 3, compute
in O(n log(ni)) an ε-simplification of a digital curve P under the Fréchet distance
with at most the number of vertices of an optimal ε

4
√

2
-simplification.

Proof. The proof of the guarantee is given by Lemma 3. The complexity of
the algorithm lies in: (i) the number of active occulters no and (ii) the size of
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|l cos(β − α)|
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Fig. 7. (a) Illustration of the function defining the length of the projection of a back-
path. (b) Plot of this function: when a threshold ε is fixed, the interval of angles for
which the length is greater than ε is defined.

the list of intervals of forbidden directions ni. Indeed, the general complexity is
O(n(no + log(ni))). Nevertheless, putting together Lemma 5 and the fact that
the width is bounded by the error, we get that no is also upper bounded by the
error, which ends the proof.

ni is more difficult to bound since one interval may be added after each negative
shift, but we see in the following section that experimentally, the algorithm runs
in linear time.

4.2 Experimental Behaviour

Figure 8 illustrates the results of our algorithm for a noisy flower with 5 extrem-
ities, for three different values of the ε parameter. The images were generated
with the Imagene toolkit [9].

In Figure 9(a), runtime results are depicted for noisy synthetic data of in-
creasing size: a circle, a flower with 5 extremities, and a phase accelerating flower
with 5 extremities. We see that the general behaviour is clearly linear in time. In

(a) (b) (c)

Fig. 8. Results of our algorithm on a noisy flower for a parameter ε equal to 3 in (a),
8 in (b) and 15 in (c)
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Fig. 9. Runtime results for noisy synthetic shapes. In (b), a noisy flower with five
extremities is used.

(a) (b)

Fig. 10. Comparison of the simplification results on a leaf, with an error equal to 8
with a criterion on the width only in (a), and approximated Frechet distance – width
and backpath length – in (b)

Figure 9(b), we study the runtime for different values of ε for noisy synthetic
flowers of increasing size. Once again, we see a linear behaviour for any value of
ε. A more detailed study of the evolution of the slope would give some hints to
refine the theoretical complexity analysis.

Lastly, in Figure 10 we compare the result of the approximated Frechet sim-
plification algorithm (where the width and the backpathes length are taken into
account) with the result of a simplification algorithm with a width criterion only
(points are added while w(i, j) is lower than the error). We see that for the same
error, even if the polygons returned by the two algorithms roughly have the
same number of vertices (56 in (a), 60 in (b)), the sharp features of the shape
are better preserved with the approximated Frechet distance.

5 Future Works

The first perspective is to refine the theoretical complexity from O(n log(n)) to
O(n) since the experimental results show a linear behaviour. Another perspective
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is to extend this algorithm (and its complexity) to general polygonal curves.
Indeed the main idea of the algorithm is to cluster the directions used for the
projection according to the directions of elementary shifts. This clustering is
possible if the minimal angle between two elementary shifts directions is known,
which is trivial in the case of digital curves, but could be computed as a prepro-
cessing for polygonal curves.
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Abstract. The family of separating circles of two finite sets S1 and S2 in the
plane consists of all the circles that enclose S1 but exclude S2. We prove that the
maximum and minimum distance between a point p and any separating circle in
this family can be found by examining only a finite subset of circles, although
the family itself is infinite. In addition, we introduce the concept of elementary
circular separations to clarify some of the properties of separating circles.

1 Introduction

We consider the problem of finding the shortest and largest distance between a point
and a family of separating circles. More precisely, let S− and S+ be two sets of planar
points. We consider the family of separating circles for which the points of S− always
lie inside the circles and the points of S+ outside. We want to show that shortest and
largest distance between a planar point and any member of this family can be found in
a finite number of steps, although the family itself is infinitely large. This result is also
of use for finding distances between two families of separating circles, or between a
straight line and a family of circles.

O’Rourke et al already noted that there is a unique smallest separating circle, which
can be found by convex programming [7]. The largest separating circle cannot be found
by convex programming and is not always unique. They also showed that any largest
separating circle of finite radius must either pass through 3 points of S+, or must pass
through 2 points of S+ and one of S−. Thus, the largest circle can be found by exam-
ining all the 3-point subsets of S− ∪ S+.

Our results on separating circles are also relevant for digitized circles. In the past
two distinct views have been developed on digital curves [6]. In one view one regards
a digital curve as a set of points for which there is a continuous curve that is passing
close to these points. This is the preferable viewpoint when regarding a digital curve as
the digitization of a continuous curve. A second view is preferred, when one considers
a digital curve as the boundary of a digital set. Then the digital set can be separated
from its complement by a continuous curve. The separation/closeness dichotomy reap-
pears when we examine the basic properties of digital curves. Elemental subsets are
the smallest subsets of a curve for which it is meaningful to define closeness. Thus, an
elemental circular subset has 4 points, since a circle can always pass at zero distance
from 3 points. The word elemental comes from robust estimation theory where it refers
to subsets that are just large enough to produce an estimate. As for separation, we will
introduce the concept of elementary circular separations, containing as few as 3 points.

I. Debled-Rennesson et al. (Eds.): DGCI 2011, LNCS 6607, pp. 346–357, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Several authors have proposed algorithms to determine circular separability [3–8].
Invariably, either the parameter domain of the separating circles, or its projection on
the plane of circle centers, plays an important role in these algorithms. In this work
we shall prove some additional results that link the parameter domains to elementary
circular separations.

2 Elementary Circular Separations and Parameter Domains

Elementary circular separations are introduced to provide a means of separating the
points of a set S = S− ∪ S+ unambiguously by circles, even when a circle passes
through some points of S. Since 3 points uniquely define a circle, the definition of
elementary circular separations is based on 3-point subsets, although more than 3 points
are allowed when they are circular by coincidence.

Let R ⊆ S be a set of 3 or more points lying on a common circle conveniently
denoted by CR. Let σR : R → {+,−} be a function that attributes a sign to each point
of R.

Definition 1. The sign function σR is called an elementary circular separation if there
exists a circle C not equal to CR, such that all the points of the preimage σ−1

R (+) lie
outside C and all the points of the preimage σ−1

R (−) lie inside C.

By definition C does not pass through any of the points of R. We will often use the
shorthands R+ = σ−1

R (+), and R− = σ−1
R (−). Note that although the total number of

points must be at least 3, one of the subsets R+ or R− may be empty.
Since the circle CR only passes through the points in R and not through any other

point of S, the separation function σR can be extended to a function σS over the entire
set in an unambigous way, where σS attributes the minus sign to a point that lies in
the interior of CR, and the plus sign when it is exterior. We will use the shorthands
S+ = σ−1

S (+), and S− = σ−1
S (−).

2.1 Path-Connected Parameter Sets

The extension of σR from an elementary separation to the entire set is straightforward.
We will show that the converse is also true. When a family is defined as the set of
circles that separate S into given parts S+ and S−, we show that this family can always
be represented by an elementary circular separation. To accomplish this we define path-
connected sets in the parameter space of separating circles. Let S be a non-empty finite
set of points in the plane. A circle is defined by an equation of the form

(x− a)2 + (y − b)2 − r2 = 0,

which can always be rewritten as

x2 + y2 − 2ax− 2by + c = 0, (1)

with a2 +b2−r2 = c. Conversely, (1) corresponds to a real circle provided c ≤ a2+b2.
We are interested in circles that separate the points of S unambiguously, which is the
case if they do not pass through any of the points of S. This leads to a 3D parameter
space from which some planes are removed.
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Definition 2. Let S be a finite subset of R2 and let U ⊂ R3 be the set parameter points
(a, b, c) such that

a2 + b2 > c,
x2

i + y2
i − 2axi − 2byi + c �= 0, (xi, yi) ∈ S.

(2)

The closure of a path-connected subset of U is called a domain of separating circles.

The set U is an open set consisting of multiple disconnected subsets, which may be
bounded or unbounded. If C is any circle not passing through the points of S, then the
unique domain in which its parameters lie will be denoted as D(C).

It is not difficult to see that the path-connected subsets of U are exactly the families
of circles that always separate the set S in the same two parts. According to Definition
2 the subset U consists of all the points in R3 for which

x2
i + y2

i − 2axi − 2byi + c �= 0

for (xi, yi) ∈ S. If we let (a, b, c) vary along a continuous path (a(t), b(t), c(t)), t ∈
[0, 1] then if a point p lies inside the circle defined by (a(0), b(0), c(0)) it will also be
inside the circle defined by (a(1), b(1), c(1)) since a path cannot contain circles that
pass through p. Similarly, exterior points will remain exterior along the path. Therefore,
the connected sets in U have the form

a2 + b2 > c,
x2

i + y2
i − 2axi − 2byi + c > 0, (xi, yi) ∈ σ−1

S (+),
x2

j + y2
i − 2axi − 2byi + c < 0, (xi, yi) ∈ σ−1

S (−),
(3)

where σS is a circular separation of S. Since a domain was defined as the closure of a
connected subset of U , a domain is a set that satisfies the following inequalities:

a2 + b2 ≥ c,
x2

i + y2
i − 2axi − 2byi + c ≥ 0, (xi, yi) ∈ σ−1

S (+),
x2

j + y2
i − 2axi − 2byi + c ≤ 0, (xi, yi) ∈ σ−1

S (−).
(4)

We shall denote this domain as D(σS).

2.2 Polyhedral and Polytopal Domains

It is often assumed that a domain of separating circles is always polyhedral. For a gen-
eral set S this is not always true, however. We shall make this more precise. The equa-
tion a2 + b2 = c defines a paraboloid [7, 8]. For each point (xi, yi) in S, the equation

x2
i + y2

i − 2axi − 2byi + c = 0

represents a plane tangent to this paraboloid. The tangent point is (a, b, a2 + b2). Half-
spaces of the form x2

i + y2
i − 2axi − 2byi + c ≥ 0 correspond to points of S+, and are

always oriented towards the paraboloid. Halfspaces that correspond to points of S− are
oriented away from the paraboloid.

There is also an unbounded non-polyhedral domain which consists of the circles that
do not contain any of the points of S, that is, S+ = S and S− = ∅. This domain is
not polyhedral as one of its boundary surfaces is the paraboloid c = a2 + b2. All other
domains are polyhedral, however.
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Proposition 1. Let S be a finite set. Let C be a circle not passing through any point of
S, giving rise to a circular separation σS . Then D(C) is a H-polyhedron if and only
if S− is non-empty. Furthermore, D(C) is a polytope if convS+ ∩ convS− contains a
non-empty open set.

Proof. First, if S− contains a single point p1, then the intersection of D(C) with the
surface c = a2 + b2 contains exactly one point, which represents the circle with radius
r = 0 centered at p1. If S− contains more than one point, each circle must have a
strictly positive radius, and the intersection of D(C) with the paraboloid c = a2 + b2

is therefore empty. In either case, we can discard the inequality a2 + b2 > c. Hence,
D(C) is a H-polyhedron, that is, the intersection of a finite set of closed half-spaces.

Second, the set defined by (4) is bounded provided there are no parameter points for
circles with infinite radius. For this it suffices that S+ cannot be separated from S− by
a straight line, even if we discard the points on that line. This is equivalent to stating
that convS+ ∩ convS− contains a non-empty open set. �	

Both conditions of Proposition 1 are satisfied if the interior of the convex hull of S+

contains at least one of the points of S−. Therefore, the simplest example of a polytopal
domain is when S+ contains three points p1, p2, p3, and S− a fourth point p4 which lies
inside the triangle p1p2p3. The polytope is then bounded by four planes. These planes
delimit four halfspaces, three oriented towards the paraboloid, and one oriented away
from the paraboloid.

2.3 Polytopal Domains and Elementary Circular Separations

There is a direct relation between elementary circular separations and domains. Since
an elementary circular separation can be extended unambigously to a global separation,
we define D(σR) as D(σR) = D(σS) where σS is the extension of σR. Assume further-
more, that the domain D(σR) is polytopal. Then each face of the polytope corresponds
to a point of S, i.e., a face lies in a plane of the form

x2
i + y2

i − 2axi − 2byi + c = 0

where (xi, yi) ∈ S. Similarly, each vertex of the polytope corresponds to an elemen-
tary circular separation. To be precise, a vertex lies at the intersection of three or more
parameter planes of the form

x2
1 + y2

1 − 2ax1 − 2by1 + c = 0,
. . .
x2

n + y2
n − 2axn − 2byn + c = 0,

(5)

where (x1, y1), . . . , (xn, yn) lie on a common circle. By attributing signs to the points
we can establish an elementary circular separation consistent with Definition 1. The
relative position of the vertex with respect to the polytope determines the sign of each
point. If the polytope is contained in the halfspace x2

1 + y2
1−2ax1−2by1 + c ≥ 0, then

(x1, y1) receives a positive sign, otherwise (x1, y1) receives a negative sign.
An edge of the polytope always corresponds to a family of circles that have two

points in common, as we can verify by explicit calculation. To be precise, the edge
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that connects a vertex (a1, b1, c1) with a vertex (a2, b2, c2), corresponds to a family of
circles of the form

x2 + y2 − 2(a1(1− t) + a2t)x − 2(b1(1− t) + b2t)y + c1(1− t) + c2t

where 0 ≤ t ≤ 1. Since all coincidence relations are preserved by an affine transfor-
mation, without loss of generality, we may assume that the vertices are (a1, b1, c1) =
(−1, 0, c1) and (a2, b2, c2) = (1, 0, c2). The above expression then simplifies to

c1(1 − t) + c2t− 2(−1 + 2t)x + x2 + y2. (6)

By letting t take two distinct values t1 and t2, we find that the intersection points are
(1/4(−c1 +c2),±1/4

√
−(c1− c2)2 − 8(c1 + c2)). Because these coordinates are in-

dependent of t1 and t2, each circle in (6) passes through the same two points.
Fig. 1 shows an example. The elementary circular separation with R− = {(1, 1),

(2, 1)}, and R+ = {(1, 0), (2, 0)}, induces the signs shown in Fig. 1 (a). The gray
points belong to S− and lie inside the separating circles, the black points belong to S+.
There are infinitely many circles that separate S into S+ and S−. Fig. 1 (a) shows one
of these circles. Fig. 1(b) shows the polytopal domain, which has 5 vertices. The gray
area in Fig. 1 (c) shows the possible positions of the circle centers, which can be found
by projecting the domain onto the ab-plane. Each vertex of the domain corresponds to
one circle, also shown in Fig. 1 (c). Each circle, and therefore each vertex, determines
an elementary circular separation.

Fig. 1. Family of separating circles

Fig. 2 shows a family of circles whose parameters lie on a polytope edge, all passing
through two common points. Clearly, if a planar point p lies inside one of these circles,
then p lies in at least one of the two circles that correspond to the vertices of the edge.
In other words, the area covered by all the members of the family is the same as the area
covered by the two circles of the vertices. This property can be generalized. Let C(a,b,c)
denote the circle with parameters (a, b, c).

Proposition 2. Let σS be a circular separation with polytopal domain D(σS). If a
planar point p lies inside one of the circles with parameters in D(σS), then there is a
vertex v = (a, b, c) of D(σS) such that p lies inside C(a,b,c).
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Fig. 2. Circles that correspond to a polytope edge. All the circles pass through two common
points.

Proof. The polytope D(σS) contains all the circles that separate S into two sets S−

and S+. The half-space H of circles containing the point p = (x0, y0) is determined by

x2
0 + y2

0 − 2ax0 − 2by0 + c < 0.

The point p lies inside one of the circles of D(σS) provided H ∩D(σS) �= ∅. If H ∩
D(σS) is non-empty, it forms a polytope which contains all the circles that contain p.
Since D(σS) is a polytope, H ∩D(σS) contains at least one vertex v of D(σS). Hence,
the circle C(a,b,c) contains p. �	

Thus the area covered by the interior of the circles in D(σS) is the same as the area
covered by the interior of the circles corresponding to the vertices of D(σS).

3 Properties of Elementary Circular Separations

We prove two additional properties of elementary circular separations. First, determin-
ing whether a circular set and a sign map form an elementary circular separation is
straightforward.

Proposition 3. Let σR : R → {+,−} be a map that attributes signs to the points of
a circular set R. Then the map σR is an elementary circular separation if and only if
σ−1

R (+) can be separated by a straight line from σ−1
R (−).

Proof. We use the shorthands R+ = σ−1
R (+), and R− = σ−1

R (−). First we show that
the preimages R+, R− of an elementary circular separation σR can always be separated
by a straight line. Let D be the common circle on which the points lie. Let L be any
straight line separating R+ from R−. Then L divides the open disk bounded by D into
two parts, L+ and L−, with R+ ⊂ L+ and R− ⊂ L−. Furthermore, L crosses D in
two distinct points v and w. Let q denote any point that lies on the bisector of v and w
and in L+. Then the circle C passing through v, q, w satisfies the conditions required
by Definition 1, that is, all the points in R+ lie outside C and all the points in R− lie
inside C.

Conversely, suppose the points of R+ ∪ R− lie on a common circle, but that R+

cannot be linearly separated from R−. Since they cannot be linearly separated, the
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intersection of their convex hulls, i.e., convR+∩convR−, is non-empty. However, since
the points lie on a circle, none of the points in R+ lies in convR−, and vice-versa. It
follows that there are two points p1, p2 in R+ and two points p3, p4 in R− such that the
line segment p1p2 crosses the line segment p3p4. If there exists a circle C that separates
R+ from R−, then C would also separate p1, p2 from p3, p4. Therefore it is sufficient
to prove that even these 4 points cannot be separated by a circle, with p1, p2 outside the
circle and p3, p4 inside the circle.

This part of the proof is illustrated in Fig. 3, which shows four points on a common
circle D, and the bisectors of the pairs {p1, p3}, {p3, p2}, {p2, p4}, and {p4, p1}. These
bisectors pass through the circle center and they divide the plane into 4 open disjoint
segments S1, . . . , S4. The bisector of {p1, p3} divides the plane into two open half-
planes. If a circle C has to satisfy Definition 1, then p1 must lie outside C and p3 inside
C, and the center of C must lie in the half-plane which contains p3. Furthermore, since
p2 must also lie outside C, it follows that the center of C must lie in the sector S3. On
the other hand, by considering p1, p2, and p4 we find that the center must also lie in the
sector S4. Since S3 ∩ S4 = ∅, this is impossible. �	

Fig. 3. Illustration of the proof of Proposition 3

With Proposition 3 we can list all elementary circular separation functions that can
be defined on a finite circular set. If we divide the points of a circular set into linearly
separable parts, these parts always belong to two disjoint circle segments. Hence, each
elementary circular separation corresponds to a partitioning of a circular set into two
contiguous parts.

O’Rourke et al showed that any largest separating circle of finite radius must either
pass through 3 points of S+, or it must pass through 2 points of S+ and one of S− [7].
As a related result, we will show that in a domain there is at least one circle passing
through 2 points of S+ and one point of S−.

Proposition 4. Let σS be a circular separation with polytopal domain D(σS). Then
D(σS) always contains a vertex defined by an elementary circular separation σR with
|σ−1

R (+)| ≥ 2 and |σ−1
R (−)| ≥ 1.

Proof. We use the shorthands S+ = σ−1
S (+) and S− = σ−1

S (−). Let C be any circle in
the domain D(σS). We will deform C continuously until its parameters coincide with
an elementary circular separation that satisfies the above requirements. We will start by
deforming C until it touches two points p+

1 , p+
2 of S+. Then we will deform it further

until it touches a third point p−3 that lies in S−.
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Since the domain is bounded, C separates S into two subsets S+ and S− that cannot
be linearly separated. Clearly, this is only possible if |S−| ≥ 1, and |S+| ≥ 3. First, we
increase the radius of C until the circle passes through a point p1 of S+, as shown in
Fig. 4(a). This is always possible since |S+| ≥ 3.

Second, consider the tangent to C passing through the point p1. Since S+ and S−

cannot be separated linearly, there must be at least one other point of S+ that lies at
same side of the tangent as all the points of S−. Hence, by moving the center a of C
along the line p1a away from p1, we can further increase the radius of the circle until it
passes through p1 and a second point p2 of S+. Fig. 4(b) illustrates this.

Finally, we arbitrarily select a point q of |S−| that does not lie on the line p1p2. We
distinguish two cases.

Case A. The point q lies at the same side from the line p1p2 as the center of C. Then
we start to move the center along the bisector of p1 and p2 in the direction of p1p2 until
the circle passes through p1, p2 and and q or one of the other points of S−. This is
illustrated in Fig. 4(c). Note that it may be necessary to move the center to the other
side of p1, p2.

Case B. The chosen point q lies at the side from the line p1p2 which is the opposite
of the side of the center of C, as shown in Fig. 4(d). In this case we increase the radius
of the circle by moving its center a along the bisector of p1 and p2 away from the line
p1p2 until C passes through p1, p2 and q or one of the other points of S−.

In both cases, however, the motion of the center of the circle may stop when the
circle touches a point of S+ before it reaches a point of S−. First, consider how this
can happen in case A. Fig. 4(e) shows that the circle has hit a third point p3 of S+ before
it reaches q. Note that this point must always lie at the side of p1p2 that is opposite to q.
If this happens, it suffices to replace the chord p1p2, by one of the smaller chords, for
example p1p3, and continue the shrinking process along the bisector of the new chord.
If we then hit another point of S+ we can keep replacing the chords by smaller chords.
Since S+ is finite this process must end until we hit one of the points in S−. Second,
we consider how this can happen in case B. Fig. 4(f) shows that the circle has hit a point
p3, which must lie at side of p1p2 that is opposite to q. Clearly, q lies at the same side
of the line p2p3 as the center of the circle. That is, we can replace the chord p1p2 by the
chord p2p3 and continue as in case A.

In either case, we can deform the circle until it passes through two points p1 and p2
of S+ and one point of S−. �	

In the example shown in Fig. 1, three of the 5 vertices satisfy the conditions of Propo-
sition 4. There is also a vertex with |R+| = 3, |R−| = 0. One of these four vertices
yields the largest separating circle.

4 Distances and Geometric Properties

Once the domains of the families of separating circles have been calculated several geo-
metric properties can be verified immediately, since they directly relate to the topologi-
cal relations between the polytopal domains. For example, given two families of circles
there exists a pair of concentric circles, one from each family, provided the circle cen-
ters of the two families intersect. This section considers a more involved computation:



354 P. Veelaert

Fig. 4. Illustration of the proof of Proposition 4

the distance between a family of circles and a point. The distance between a point p
and a circle C is defined as the shortest distance between p and any point q on C, and
will be denoted as d(p, C). If D(σS) is a polytopal domain of circles, then we define
the maximum distance between a point p as max(a,b,c)∈D(σS) d(p, C(a,b,c)). That is, as
maximum of the distances between p and any circle in D(σS). Likewise, the minimum
distance is defined as min(a,b,c)∈D(σS) d(p, C(a,b,c)). We will prove that the maximum
distance can be found by examining only the circles that correspond to the vertices of a
domain. We start with a simplified case.

Lemma 1. Let V = {(a1, b1, c1), (a2, b2, c2)} be a set of two parameter points, and
let P denote their convex span. Let p be any point in the plane. Then there is a point
u ∈ C(a1,b1,c1) ∪ C(a2,b2,c2) such that

max
(a,b,c)∈P

d(C(a,b,c), p) = d(u, p).

Furthermore, if p does not lie on one of the circles of P , then there is a point w ∈
C(a1,b1,c1) ∪ C(a2,b2,c2) such that min(a,b,c)∈P d(C(a,b,c), p) = d(w, p).

Proof. The proof follows from simple geometric considerations, illustrated in Fig. 5.
Fig. 5(a) shows two circles, one centered around c1 and one around c2, and an ellipse
passing through q1 and q2. This ellipse is part of the locus of points that are equidistant
to both circles. This locus also comprises a hyperbola (not shown here). The ellipse
consists of those equidistant points that lie inside one circle but outside the other circle.

The family of circles with parameters in P consists of circles that pass through the
points q1 and q2, and can be represented as

x2 + y2 − 2(a1(1− t) + a2t)x − 2(b1(1− t) + b2t)y + c1(1− t) + c2t (7)

with 0 ≤ t ≤ 1. With q1, q2, c1, c2 we construct 5 straight line segments. Together with
the ellipse they divide the plane into 8 distinct regions, shown in Fig. 5(b). For example,
region R7 is bounded by the ellipse, and the lines c2q1 and c2q2.
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The maximum distance between a planar point p and the family of circles (7) depends
on the region in which p lies. When p lies either in R3 or R4 the maximum distance
between p and (7) is the distance between p and q1. For example, when p lies in R4, this
maximum is attained by a circle whose center lies on the straight line passing through p
and q1. In that case, the circle lies ”behind” the point q1 as seen from p. Similarly, when
p lies either in R1 or R2, the maximum distance is equal to distance between p and q2.
When p lies in either R6 or R8, the maximum distance between p and (7) is the same
as the distance between p and the circle centered around c1. In fact, this is the furthest a
circle in this family can move away from p. Finally, when p lies in either R5 or R7, the
maximum distance is equal to the distance between p and the circle centered around c2.

In all the cases considered the maximum distance is given by either the distance to
the circle in (7) for which t = 0, that is C(a1,b1,c1),or for which t = 1, that is C(a2,b2,c2),
or by the distance to one of the two points q1 or q2 which are common to both circles.

For the minimum distance, the proof proceeds in a similar way. We only give a
brief sketch. Fig. 5(c) illustrates the proof when the polytope consists of a line segment
between the two parameter points (a1, b1, c1) and (a2, b2, c2). Fig. 5(c) shows how the
two circles, and their equidistant ellipse and equidistant hyperbola divide the plane in 8
regions. When p either lies in R2, R3, R6 or R7 there is a circle of the form (7) passing
through p. This case is excluded from the theorem. If p does not lie on a circle of P ,
then p either lies in R1, R4, R5 or R8. When p lies in R1 or R5, the closest circle is
C(a1,b1,c1). If p lies in R4 or R8, the closest circle is C(a2,b2,c2). Hence, the minimum
distance is either zero, or equal to min(d(p, C(a1,b1,c1)), d(p, C(a2,b2,c2))). �	

Fig. 5. (a) Two circles shown with dashed lines, and an ellipse of points that are equidistant to
both circles. (b) The ellipse and straight lines through the centers and the common points divide
the plane into 8 regions.

We now extend this result to a more general setting.

Theorem 1. Let σS be a circular separation with polytopal domain D(σS). Let V be
set of vertices of D(σS), and let W denote the set

⋃
(a,b,c)∈V Ca,b,c. Let p be any point

in the plane. Then there is a point u in W such that max(a,b,c)∈D(σS) d(C(a,b,c), p) =
d(u, p). Furthermore, if p does not lie on one of the circles of D(σS), then there is a
point w in W such that min(a,b,c)∈D(σS) d(C(a,b,c), p) = d(w, p).
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Proof. We use the shorthand S+ = σ−1
S (+) and S− = σ−1

S (−). It suffices to show
that the point u always lies on one of the circles C(a,b,c) where (a, b, c) ∈ V . Let
(a0, b0, c0) ∈ D(σS) be the parameters of a circle for which we have d(C(a0,b0,c0), p)
= max(a,b,c)∈P d(C(a,b,c), p). We will show that we can always replace C(a0,b0,c0) by
a circle C(a,b,c), with (a, b, c) ∈ V whose distance to p is at least as large as that of
C(a0,b0,c0). Showing that (a, b, c) ∈ V is equivalent to showing that C(a,b,c) contains at
least three points of S+ ∪ S−. We start by assuming that C(a0,b0,c0) does not contain
any point of S+∪S−. Then we can always move the center (a0, b0) away from p along
the line passing through (a0, b0) and p. If the radius is kept constant the distance will
increase. Since this is impossible, C(a0,b0,c0) contains at least one point of S+ ∪ S−.

Next, we assume that C(a0,b0,c0) contains just one point q1 of S+∪S−. Let L denote
the line passing through (a0, b0) and p. First, suppose q1 lies on L. Then it is clear that
we can move the center along L while keeping the distance to p fixed until we hit a
second point of of S+ ∪ S−. Second, suppose q1 does not lie on L. Let q′1 denote the
mirror image of q1 by the reflection across L. We define a pencil of circles of the form
(7) with common points q1, q′1 and center on L. Let q3 be the first point of S+ ∪ S−

that we hit when we move in this pencil (a0, b0) away from p, and let q4 be the first
point of S+ ∪ S− hit when we move (a0, b0) towards from p. Since P is bounded
both points must exist. Let C(a1,b1,c1) be the circle passing through q1, q′1, q3 and let
C(a2,b2,c2) denote the circle passing through q1, q′1, q4. According to Lemma 1 the
maximal distance between p and the pencil of circles is either the distance to C(a1,b1,c1),
to C(a2,b2,c2) or to one of the points q1, q′1. However, q1, q′1 lie at the same distance of
p, and q1 is a point of S+ ∪ S−. Hence, we can replace C(a0,b0,c0) always by a circle
that contains two points q1, q2 of S+ ∪S−, and state that the maximal distance is either
the distance to this circle or one of the points of S+ ∪ S−.

Finally, we can repeat the previous argument, but now for the pencil of circles defined
by the common points q1, q2, until we hit a third point of S+∪S−. The maximal distance
is either the distance to this new circle or to one of the points q1, q2, which are both in
S+ ∪ S−. For minimum distances, the proof is similar. �	

The above result also shows how an algorithm can compute the correct maximum or
minimum distance. First, for each edge of the polytope we compute the maximum dis-
tance between p and the circles of the edge. This can be done by examining the position
of p with respect to the straight lines shown in Fig. 5, where the circles correspond to
the vertices adjacent to the edge. If p lies in one of the regions R1, . . . , R4 the maxi-
mum distance is either d(p, q1) or d(p, q2). Otherwise, it is the distance to one of the
two circles corresponding to the vertices. After this distance has been computed for all
the edges, it suffices to take the global maximum.

To find the minimum distance one first has to verify whether p = (xp, yp) does not
lie on one the circles in P . It suffices to verify whether the plane

x2
p + y2

p − 2axp − 2byp + c = 0

crosses the polytope P . If p does not lie on any of the circles, the distance can be found
by computing the distance for each circle corresponding to a vertex, and by taking the
global minimum.
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5 Time Complexity and Conclusion

Clearly, the computation of the distance between a point and the separating circles de-
pends mainly on the computation of the complete face lattice (faces, edges, and vertices)
of the parameter polytope. Clarkson and Shor give a randomized algorithm in 3D with
expected time complexity of O(n log n), where n is the number of half-spaces. This
algorithm was derandomized by Chazelle [1, 2]. The polytope of separating circles for
|S| = n can therefore be computed in O(n log n) time, where O(n log n) is an
upper bound for the expected number of edges, as well as vertices in the face lattice.
The computation of the maximal and minimal distances requires the examination of all
edges and vertices, where each vertex or edge can be processed in constant time. Hence
distances can be computed in O(n log n) time.
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Abstract. An annulus is defined as a set of points contained between
two circles. This paper presents a method for fitting an annulus to a
given set of points in a 2D images in the presence of noise by maxi-
mizing the number of inliers, namely the consensus set, while fixing the
thickness. We present a deterministic algorithm that searches the opti-
mal solution(s) within a time complexity of O(N4), N being the number
of points.

Keywords: Digital geometry; shape fitting; consensus set; outliers; dig-
ital arc; annulus.

1 Introduction

Detection of basic geometric properties such as lines, planes and circles are essen-
tial tasks in the field of image analysis and computer vision. The main objective
of this paper is annulus fitting to a given set of points. For instance, annulus
fitting is useful for shape approximation [4] and image segmentation [6]. In this
paper, we present a novel method that, given an arbitrary 2D point cloud, finds
annuli of a given width that minimizes the number of outliers, or alternatively
maximizes the number of inliers. One of the possible application of our method
in the digital space is the fitting of discrete analytical circle of Andres [2]. The
set of points which do fit the model is also called consensus set. The idea of
using such consensus sets was proposed for the RANdom Sample Consensus
(RANSAC) method [9], which is one of the most widely used in the field of com-
puter vision. However RANSAC is inherently probabilistic in its approach and
does not guarantee any optimality while our method is both deterministic and
optimal in the size of the consensus set.

Different algorithms detecting annuli have been proposed. Most of these algo-
rithms minimize the thickness of the annuli (digital circle). Among them, some
consider that no noise is present in the image, and concentrate only on the prob-
lem of recognition instead of the fitting problem [16,5,1]. Some algorithms deal
with outliers [7,10,11] but the number of outliers is usually predefined [10,11]
and the problem consists in minimizing the width.

One frequently used approach in annulus recognition stems from the O’Rourke
et al. [13] disk recognition method that transformed it into a problem of circular
separability; they use a mapping that raises every point (x, y) to the paraboloid
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z = x2 + y2. Using this mapping, every circle in the primal space corresponds to
a plane cutting the paraboloid in the dual space and thus circular separability is
transformed to a plane separability in the dual space. This separability problem
is then solved in linear time using Megiddo’s or Dyer linear algorithms [8,12].
Recently, in the discrete geometry community, a simple online linear-time algo-
rithm for recognition of digital circular arcs has been proposed in [15] based on
the idea of O’Rourke et al. [13]; this algorithm can be used in an incremental
way, with a complexity O(n4/3) whenever a new point is added by using an opti-
mization proposed in [3]. Using O’Rourke’s mapping, an annulus of fixed area in
the primal space, corresponds to two parallel planes of fixed vertical thickness in
the dual space. The vertical thickness of the two parallel planes corresponding
to an annulus is however not fixed when the thickness w of the annuli and not
the area of the annuli is fixed, as is the case of our fitting problem. In this case,
the dual approach does not seem to simplify the problem.

To our knowledge there is no work neither in the continuous domain nor in the
discrete domain that treated the problem of optimal annulus fitting with fixed
width. Our main contribution is that we find exact solution(s) by minimizing
the number of outliers.

The rest of the paper is organized as follows: in section 2 we expose the problem
of annulus fitting, present some properties of annuli and explain how we can find
all the consensus sets. In sections 3 we show how to build an annulus from three
points. Section 4 provides the algorithm for finding the optimal annulus and shows
some results. Finally Section 5 states some conclusions and perspectives.

2 Annulus Fitting

An annulus A of width ω and radius R centered at C(Cx, Cy), is defined by the
set of points in R2 satisfying two inequalities:

S =
{
(Px, Py) ∈ R

2 : R2 ≤ (Px − Cx)2 + (Py − Cy)2 ≤ (R + ω)2
}

(1)

where C(Cx, Cy) ∈ R2 and R, ω ∈ R+.
Using the above annulus model, our fitting problem is then described as fol-

lows: given a finite set S =
{
(Px, Py) ∈ R

2
}

of n points such that n ≥ 3, and
given a width ω we would like to find an annulus A of width ω such that it
contains the maximum number of points in S. Points (Px, Py) ∈ S∩A are called
inliers; otherwise they are called outliers. It should be noted that n ≥ 3 since
if S contains less than 3 points, the fitting problem has an infinity number of
solutions.

We denote Bi (resp. Be) that we call the internal (resp. external) border of
the annulus, the set of points located at distance R (resp. R + ω) from C.

2.1 Annuli and Their Consensus Sets

Our approach is focused on inlier sets, also called consensus sets. Since S is
finite, it is obvious that the number of different consensus sets for the annulus
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is finite as well. Thus, if we can find all different consensus sets C from a given
set S, we just need to verify the size of each C and find the maximum one as the
optimal solution. Then the following question comes up naturally: is it possible,
given a width ω to find all the consensus sets of S? if the answer is positive, how
can we do it? In the section 2.2, we will answer both questions by giving some
properties related to annuli.

2.2 Annular Characterizations

The following theorem states that given a width ω, and given an annulus A
covering a set of points S, there exists at least another annulus A′ of same
width, that covers S and passes through at least 3 points of S.

Theorem 1. Let S be a set of n(n ≥ 3) points in R2. Let A = (C(Cx, Cy), R, ω)
be the annulus of center C(Cx, Cy), of internal radius R and of width ω such
that ∀(Px, Py) ∈ S, R2 ≤ (Px − Cx)2 + (Py − Cy)2 ≤ (R + ω)2. Then it exists
A′ = (C′(C′

x, C′
y), R′, ω) such that:

∃P0, P1, P2 ∈ S, ∀i ∈ [0, 2], Pi ∈ Bi or Pi ∈ Be

Proof. Let S be a set of n (n ≥ 3) points in R2. Let A = (C(Cx, Cy), R, ω) be
the annulus of center C(Cx, Cy) with internal radius R and width ω such that
A covers S: i.e. ∀(Px, Py) ∈ S, R2 < (Px − Cx)2 + (Py − Cy) < (R + ω)2. Our
first assumption is that no point of S is on the annulus borders.

The theorem proof is given in three steps: First we show that we can al-
ways decrease the radius so as to put at least one point of S on the annulus
external borders. We note this point P0. In the second step, we show that a
rotation centered on P0 allows to put another point P1 of S on one border.
The last step is more delicate since it consists in changing both the radius
and the center position so that a third point P2 is now on one of the borders
of the annulus. Of course, if in any of these steps we put more than one point
on the borders than we just skip one or more steps.

A First step: the radius decreasing. Let R0 be the distance between the farthest
point P0 of S from the center C of A. The annulus A0 = (C(Cx, Cy), (R0 −
ω), ω) is such that P0 is on its external border Be.

B Second step: the rotation centered on P0. Since the rotation center is on the
external border (see [A]), we can continuously rotate A0 to reach a second
point P1 of S.

We note P1 the first point reached. Let RotP0,θ the rotation centered on
P0 with angle θ, such that θ is the smallest angle verifying:

∃θ ∈ [0, 2π], ∃P1 ∈ S, R2 ≤ (P1x − Cx)2 + (P1y − Cy)2 ≤ (R + ω)2

We denote A1 = (RotP0,θ(C), R, ω).
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C Third step: the radius variation. After the first two steps, we obtain an annu-
lus A1 that has two points P0 and P1 of S on its borders. Two configurations
can appear: either both points are on the border Be, or the points are each
on a different border (case iii).
i. Both points P0 and P1 are on Be. In this case, any modification on the

radius R involves a move of the center along the bisector of segment P0
and P1. When the center C passes exactly between both points, some
problems may occur and we have to separate two cases:
∗ d(P0P1) ≥ 2ω: in this case, the center can pass between the points

and there always exists an annulus of width ω passing through both
points. All the points of S can be reached this way and we necessarily
encounter a third point of S. In Fig. 1a, we can see the annulus with
the two extreme cases, when the radius is +

−∞. Fig. 1b, shows an
initial set of points with an initial annulus of center C passing by
two external border points P0 and P1 (colored black), and the rotated
annulus (colored red) by moving the center toward −∞ from C to
C2 in order to reach a third points P2. Fig. 1c shows the case when
the center moves toward +∞ in order to reach a third points P2. The
movement of the center between +

−∞ allows to reach a third point.
∗ d(P0P1) < 2ω: when the points P0, P1 are on Be, the circle having

the two points on Be must have at least a radius of ω since if the
radius is less than ω, no internal circle and so no annulus can be built.
However when d(P0P1) < 2ω, the movement of the center from C to
C2 to reach a third points P3 cannot be done in all the cases. For
example in Fig. 1d, d(P0P1) = ω and in this case, the center cannot
move along the green line since ω2

4 +b2 >= ω2, i.e. b must be greater
than

√
3ω
2 . Therefore there exist some points of S that cannot be

reached. Fig. 1e shows a case where no annulus having three border
points can be constructed from the annulus having P0 and P1 on
Be. When this is the case, we have to change the configuration: we
choose as point P2 the point closest to the limit and we build the
annulus of width ω with internal circle passing through P0, P1 and
P2 (Fig. 1f).

ii. Both points are on different borders.
In Fig. 2a, b, c, there are three possible configurations of two points
on different border of the annulus A. In each of these configurations,
modifying the radius allows to reach almost all the initial set. If a point
P2 of S is inside the green circle Fig. 2d, e , inside the annulus, it has to
be reached by one of the annulus border. However, there exists an area
that is not reached by such a variation (in dark in Fig. 2d, e).
If the points of S are all in this dark part, we have to change our strategy:
we choose as point P2 of S the closest to one of the extreme lines and
we build the annulus of width ω such that the three points P0, P1 and
P2 are on Be (see Fig. 2g, h). This annulus thus covers the whole dark
area where all the other points of S are and it passes through 3 points
of S.
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Fig. 1. Third step: a), b) and c), shows case ii where both points P0 and P1 are on
the external border of A and the distance is greater than 2ω. The center C colored
blue must be moved along the line −∞ in b) and +∞ in c) in order to reach a third
point P2. The new center is C2 and is colored in red, d), e), f) shows case ii where both
points P0 and P1 are on the external border of A and the distance between them is
less than 2ω. The configuration must be changed by choosing a point P2 closest to the
limit and the new annulus is the one colored in red.

In Fig. 2c, f, where both points are at distance ω; we have to perform a
rotation centered on one of both points until reaching another point P ′

on the border. If we rotate using P0, the point P1 in Fig. 2f no longer
belongs to the border of the annulus. In this case the configuration can
be viewed as the same configurations we already addressed: either P ′

and P0 are on the internal border or P ′ is on the external border but
not at the distance ω from P0 (otherwise it would have been reached by
a circle centered on P0 with radius ω passing through P1 and thus we
would already have found the annulus we were searching for). Both cases
leads to a third point.

In all cases, if an annulus of width ω covers S, then it is possible to build an
annulus of same width that passes through 3 points of S. �

3 Building an Annulus of Width ω from Three Points

The following theorem states that we can build a finite number of annuli of width
ω from 3 points (see Fig. 3).

Theorem 2. There are at most 8 annuli of a given width ω passing through 3
given points P1, P2 and P3 of S.

Proof.

– If the 3 points are on the same circle: depending on the radius of the circle
one or two annuli can be build. If the radius of the circle is greater than ω
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Fig. 2. Third step: case iii, both P0 and P1 are on different border of A

then 2 annular are built, the first having the points on the internal border
and the other having the points on its external border. When the radius is
less than ω then only one annulus having the three points on its internal
border can be built.

– If 2 of the 3 points are on one border and the third one on the other: three
possible configurations exists either (P1, P2 or P3 is alone on one border)
and for each of them we can buid at most two annuli (the lonely point is
either on Bi or on Be). The principle of the building process is to build the
two circles C′ and C′′ that passes through the 2 points on the same border
and tangent (from the outside or inside) to the circle c of radius ω centered
on the third point. (see [14] for more details about the construction).

Fig. 3 shows the different cases of building the annulus, we assume that
P0 and P2 are on one border and P1 on the other. Fig. 3a shows the con-
struction method; the circle C of radius ω centered on P2 is drawn (blue
circle), then the two circles C′ and C′′ passing through P0 and P2 and tan-
gent to C are drawn (red circles). Fig. 3b presents the particular case where
P0 is exactly at distance ω from P1 (i.e. on the circle of center P1 and ra-
dius ω). In this case there is a unique circle that passes through P0 and
P2 and tangent to C. Finally, there is a particular case when both P0 and
P2 are inside the circle C (Fig. 3c), in this case it should be stated than
no annulus having P0 and P2 on one border and P1 on the other can be
found.
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Fig. 3. Building of an annulus of width ω from 3 points: a) P0 and P2 are outside the
circle C of radius ω centered on P1, b) P0 is on the circle C, c) P0 and P2 are inside
the circle C

4 Finding the Optimal Fitting Annulus of Width ω

The principle of this näıve algorithm is to test all the possible triplets of points
in S. For each triplet, we compute all the possible annuli (see theorem 2) and
count the number of inliers. The optimal annulus (or the annuli) is the one that
encloses the maximum number of inliers.

4.1 Algorithm

We now present Algorithm 1. Input is a set S of N discrete points and a
thickness w of our digital circle model. Output is a set V of parameter values
(Cop

x , Cop
y , Rop) corresponding to the fitted annuli that give the optimal consen-

sus sets. The time complexity of the algorithm is O(N4) because we have N
points in S and every combination of three points defines each of the 8 circles,
so taking the points three by three has a complexity of O(N3), then checking
how many inliers and outliers we have for a given annulus is done in O(N) time.

4.2 Experiments

We applied our method for 2D noisy digital Andres circles as shown in Fig. 4, 6,
7. For each of these set of points, an annulus of width ω = 3, ω = 1 and ω = 1 is
used respectively. Table 1 shows the number of points, the optimal consensus set
size as well as the center position and the radius R of the inner circle obtained
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Algorithm 1. Annuli fitting while fixing the thickness
input : A set S = {Pi}i∈[1,n] of N points and a thickness ω
output: A list V of parameter values [(Cop

x , Cop
y , Rop), ...] of the best fitted

annuli A
begin1

initialize Max = 0;2

foreach i ∈ [1, n − 2] do3

foreach j ∈ [i + 1, n − 1] do4

foreach k ∈ [j + 1, n]] do5

L=list of the existing annuli passing through Pi, Pj , Pk;6

foreach element of L do7

initialize nb inliers = 0;8

for m = 1, . . . , N do9

if dist(C, Pm) >= R and dist(C, Pm) <= R + ω then10

nb inliers = nb inliers + 1;11

if nb inliers > Max then12

clear(V);13

Max = nb inliers;14

set Cop
x = Cx, Cop

y = Cy , Rop = R;15

put (Cop
x , Cop

y , Rop) in V;16

else if nb inliers = Max then17

set Cop
x = Cx, Cop

y = Cy , Rop = R;18

append (Cop
x , Cop

y , Rop) in V;19

return V;20

end21

after the fitting. It should be noted that in Fig. 7, two optimal consensus sets
are possible, since two annulus having the same number of inliers can be fitted
(two circles in Fig. 7). This proves that our method is capable of detecting all
optimal consensus sets. Our method is also applied to an Andres arc of width 1
as shown in Fig. 5, we can see that the arc of width ω = 1 is detected.

5 Conclusion and Perspectives

In this paper we have presented a new method for fitting annulus to a set of
points while fixing the width of the annulus. Our approach is costly in terms
of computation time however, its main advantage is that it guarantees optimal
result from the point of view of maximal consensus set: we are guaranteed to fit
an annulus with the least amount of outliers. This is the first time, to the author’s
best knowledge that and exact optimal methods dealing with the problem of
annulus fitting with a fixed width with outliers has been proposed. One of the
future work concerns the complexity of our approach. Our approach is rather
brute-force and we obtain a O(N4) complexity. The question of improving this
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Table 1. The number of points and the optimal consensus set size for each of Fig. 4,
5, 6, 7

Figures Number of points Center position R Thickness w Opt. consensus set size
Fig. 4 289 (31,31) 13 3 286
Fig. 5 121 (101.581,102.226) 86 1 118
Fig. 6 119 (31,31) 14 1 65
Fig. 7 309 (31,31) (49,49) 19 1 114

Fig. 4. Annulus fitting for a noisy digital Andres circle of width 3

Fig. 5. Annulus fitting for a noisy digital Andres arc of width 1

complexity is open. We have wondered if this complexity may not be optimal.
Indeed, it should be noted that fitting a digital plane (corresponding to two
parallel continuous planes) to a given set of points in the presence of noise by
maximizing the number of inliers is solved in O(N3 log N) [17]. As we have
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Fig. 6. Annulus fitting for a noisy image of a digital Andres circle of width 1

Fig. 7. Annulus fitting for two noisy digital Andres circle of width 1

explained in the introduction, there does not seem to be an immediate way of
transforming our problem into a plane fitting problem with a O’Rourke type
mapping [13]. However, if such a way exists, we would still face a O(N3 log N)
lower complexity limit. One planned extension is also the fitting of 3D annuli.
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Abstract. Tomography is concerned with the reconstruction of images from their
projections. In this paper, we consider the reconstruction problem for a class of
tomography problems, where the images are restricted to binary grey levels. For
any given set of projections, we derive an upper bound on the di�erence between
any two binary images having these projections, and a bound on the di�erence
between a particular binary image and any binary image having the given pro-
jections. Both bounds are evaluated experimentally for di�erent geometrical set-
tings, based on simulated projection data for a range of images.

1 Introduction

The field of tomography studies the problem of reconstructing an object from its pro-
jections, recorded along a range of viewing angles. Projection images are typically ac-
quired by sending a certain beam (e.g., X-rays) through the object, while measuring the
attenuated beam profile that results after beam-object interaction. If a suÆcient number
of high-quality projection images are available, an accurate reconstruction of the object
can be computed using a tomographic reconstruction algorithm [6].

In various applications of tomography, only few projections can be acquired, or the
range of available projection directions is limited. Such reconstruction problems are
known as limited-data problems. In electron tomography, for example, the shape of the
sample holder limits the angular range of the projections [10]. In industrial tomography
for quality assurance, limitations on the duration of a scan impose an upper bound on
the number of projections. Applying classical reconstruction algorithms such as Filtered
Backprojection to limited-data problems often results in inferior reconstruction quality.
Several approaches have been proposed for overcoming these problems, by incorporat-
ing various forms of prior knowledge about the object in the reconstruction algorithm.
The field of discrete tomography focuses on the reconstruction of images that consist
of a small, discrete set of grey values [7,8]. By exploiting the knowledge of these grey
values in the reconstruction algorithm, it is often possible to compute accurate recon-
structions from far fewer projections than required by classical ”continuous” tomog-
raphy algorithms. Still, despite the discrete grey level assumption, the reconstruction
problem may be underdetermined and a large number of solutions may exist. In such

I. Debled-Rennesson et al. (Eds.): DGCI 2011, LNCS 6607, pp. 369–380, 2011.
c� Springer-Verlag Berlin Heidelberg 2011
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cases, it can be important to know how di�erent these solutions can be. If one can give
a bound on the maximum di�erence between two solutions, this also bounds the max-
imum di�erence between the unknown ground truth image, of which projections have
been measured, and any other solution.

In this paper, we focus on binary reconstruction problems, where the unknown image
is known to have only two grey levels, 0 and 1. The problem of bounding the di�erence
between binary reconstructions is closely related to the stability problem, which con-
cerns the question how the reconstruction changes if the projections are slightly modi-
fied [1,3,2,15]. In [13,14], Van Dalen presented sharp bounds on the di�erence between
any two binary images having the same projections for the case of two projections:
horizontal and vertical.

The bound we present here is much more general, as it can incorporate an arbitrary
number of projections and can even be applied in di�erent geometrical settings (lattice
images, as well as discretized continuous images). It is based on the observation first
made by Hajdu and Tijdeman in [5], that the Euclidean norm of all binary solutions
does not depend on the particular solution, and can be determined directly from the
projections. Using Pythagoras’ theorem, this allows for bounding the Euclidean norm
of the di�erence between two such solutions. Although the resulting bound will not be
strict in general, it is the first general bound for binary tomography problems that can
be used for an arbitrary number of projections and for several projection models.

This paper is structured as follows. In Section 2, we define a general class of re-
construction problems and discuss two specific examples of such problems, for lattice
images and a strip projection model, respectively. We also introduce notation and re-
call some basic properties. In Section 3, a general bound is derived on the di�erence
between two binary images having a given set of projections. In Section 4, a bound is
derived on the di�erence between a particular binary image, which is relatively easy
to compute, and any binary solution of the tomography problem. Section 5 presents
a series of simulation experiments and their results. From these results, the practical
value of the proposed bounds can be evaluated for di�erent types of images. Section 6
concludes the paper.

2 Notation and Model

Throughout the discrete tomography literature, several imaging models have been con-
sidered. In the grid model, an image is formed by assigning a value to each point in a
regular grid. In the case of binary images, each point is assigned a value of either 0 or
1; see Chapter 1 of [7]. Here, we consider square grids of the form A � �(i� j) � �2 :
1 � i� j � c� for c � 1; see Fig. 1(a). A projection is formed by considering the set of
parallel lines through one or more grid points in a certain direction (a� b) � �

2, with
a � 0 and (a� b) coprime, and summing the values of the points on each line. The grid
model can be used to model nanocrystals, consisting of atoms on a grid [9].

In many tomography applications, a continuous representation of the object is more
realistic, as there is no intrinsic grid structure. In such cases, the unknown image is
typically approximated by an image defined on a discrete pixel grid. A common model
for computing the projections of such a pixelized image is the strip model. In the strip
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(a) Grid model (b) Strip model

Fig. 1. Two di�erent projection models

model, a projection is computed by considering a set of parallel strips in a given direc-
tion and computing a weighted sum of all the pixels that intersect with each strip. The
weight is determined by the intersection area between the strip and the pixel [16].

We now define some general notation. An image is represented by a vector x �

(xi) � �n. We refer to the entries of x as pixels, although they can also correspond with
grid points, in the grid model. The derivation of our main results does not depend on
the particular projection model. Throughout this paper we assume that all images are
square, consisting of c rows and c columns, where n � c2. A binary image corresponds
with a vector x̄ � �0� 1�n.

For a given set of k projection directions, the projection map maps an image x to
a vector p � �

m of projection data, where m denotes the total number of line mea-
surements. As the projection map is a linear transformation, it can be represented by a
matrix W � (wi j) � �m�n, called the projection matrix. Entry wi j represents the weight
of the contribution of x j to projected line i. Note that for the grid model the projection
matrix is a binary matrix, while for the strip model its entries are real values in [0� 1].
The projection matrix W and vector p can be decomposed into k blocks as

W �

������������

W1

���

Wk

������������ � p �

������������

p1

���

pk

������������ � (1)

where each block Wd (d � 1� � � � � k) represents the projection map for a single direction
and each block pd represents the corresponding projection data.

From this point on, we assume that the projection matrix has the property that�m
i�1 wi j � k for all j � 1� � � � � n. This property is certainly satisfied for the grid model,

as every x j is counted with weight 1 for exactly one line in each projection direction.
The property is also satisfied for the strip projection model, as the total pixel weight for
each projection angle is equal to the area of a pixel, which is 1.

The general reconstruction problem consists of finding a solution of the system
Wx � p for given projection data p, i.e., to find an image that has the given projec-
tions. In binary tomography, one seeks a binary solution of the system. For a given
projection matrix W and given projection data p, let S W(p) :� �x � �n : Wx � p�, the
set of all real-valued solutions corresponding with the projection data, and let S̄ W(p) :�
S W(p) � �0� 1�n, the set of binary solutions of the system. As the main goal of incorpo-
rating prior knowledge of the binary grey levels in the reconstruction is to reduce the
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number of required projections, we focus on the case where m is small with respect to
n, such that the real-valued reconstruction problem is severely underdetermined.

As the projection matrix is typically not a square matrix, and also does not have full
rank, it does not have an inverse. Denote the Moore-Penrose pseudo inverse of W by
W� (see [4]) and let x� � W�p. Then x� has the following properties (see Chapter 3
of [4]): (i) it is the minimal Euclidean norm solution of the system Wx � p. (ii) it is
orthogonal to the nullspace �(W) of W. We call x� the central reconstruction of p. The
central reconstruction plays an important role in the binary reconstruction problem. We
will show in the next section that all binary solutions of the system have equal distance
to x�, so that one can consider the central reconstruction as lying ”in the middle” of all
binary solutions.

As our bounds on the distance between binary solutions depend on x�, computing
x� is necessary to compute the corresponding distance bounds. Due to the size of the
matrix W, explicit calculation of W� is usually unpractical for large images. As an
alternative, an iterative Krylov method for solving the system Wx � p, called CGLS
(Conjugate Gradient Least Squares), can be used [11], which is eÆcient in terms of
memory requirements and convergence speed. Apart from numerical errors, applying
CGLS to the system Wx � p results, after convergence, in the computation of W�p,
while not computing the matrix W� explicitly (see also [12]).

3 A Bound on the Di�erence between All Binary Solutions

We start this section by showing that the Euclidean norm of any binary solution of
Wx � p is completely determined by p.

Lemma 1. Let x̄ � S̄ W(p). Then, �x̄�2
2 �

�p�1

k .

Proof. By the definition of the �1-norm, �p�1 �
�m

i�1 	pi	 �
�m

i�1 pi, since pi � 0 (i �
1� � � � � n). Also,

m�
i�1

pi �

m�
i�1

��������
n�

j�1

wi j x̄ j

�������� �
n�

j�1

�������
m�

i�1

wi j

������� x̄ j �

n�
j�1

kx̄ j� (2)

and therefore �p�1 � k
�n

j�1 x̄ j.

As x̄ � �0� 1�n, we have �x̄�2
2 � �x̄�1 �

�n
j�1 x̄ j �

�p�1

k . 
�

The following lemma illustrates the importance of the central reconstruction, the short-
est real-valued solution in S W(p), by showing that the binary solutions are the shortest
among all integer solutions of the system.

Lemma 2. Let x̄ � S̄ W(p) and y � S W(p) � �n. Then �x̄�2 � �y�2, with equality if and
only if y � S̄ W(p).

Proof. Note that the statement is proved in [5], see Problem 2 and the subsequent para-
graph. However, for the convenience of the reader we give the proof here.
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We have

		x̄		22 �
n�

i�1

x̄2
i �

n�
i�1

x̄i �

n�
i�1

yi �

�m
j�1 p j

k
� (3)

Observing that
n�

i�1

yi �

n�
i�1

y2
i � 		y		22� (4)

with equality if and only if y is binary, yields the result. 
�

Supposing the existence of at least two di�erent binary solutions, Lemma 1 allows us
to derive an upper bound for the Euclidean distance between those solutions.

Theorem 1. Let x̄� ȳ � S̄ W(p) and x� � W�p. Put R :�
	

�p�1

k � �x��2
2. Then �x̄�x��2 �

�ȳ � x��2 � R, and �ȳ � x̄�2 � 2R.

Proof. From the definition of x� we have (x̄ � x�) � �(W), and x�  (x̄ � x�). Using
Pythagoras’ theorem and Lemma 1 yields

�x̄ � x��2
2 �

�p�1

k
� �x��2

2 � R2� (5)

which means that any binary solution is on the hypersphere centered in x� with radius	
�p�1

k � �x��2
2. Therefore,

�x̄ � ȳ�2 � �x̄ � x��2 � �ȳ � x��2 � 2R� 
�

Corollary 1. Let x̄� ȳ � S̄ W(p). Then �x̄ � ȳ�1 � 4( �p�1

k � �x��2
2)�

Proof. As x̄ and ȳ are binary, we have �x̄ � ȳ�1 � �x̄ � ȳ�2
2. The corollary now follows

directly from Theorem 1. 
�

The norm �x̄� ȳ�1 corresponds to the number of pixels that are di�erent between x̄ and
ȳ. As one is typically mainly interested in the fraction of pixels that can be di�erent, we
introduce the variability of (W� p), defined by V :� 4R2

n , which is an upper bound for
the fraction of pixels that are di�erent between any two binary solutions.

4 A Bound on the Di�erence with a Particular Binary Image

The fact that all elements of S̄ W(p) have equal distance to the central reconstruction
x�, combined with the facts that binary solutions are the shortest solutions among all
integer solutions (Lemma 2) and that x� is the shortest real-valued solution, suggests
that binary solutions can often be found near x�. It is therefore natural to consider the
image that is obtained by rounding each entry of x� to the nearest binary value.

Let ��� � min(	�	� 	� � 1	) for � � �, and put T �

	�n
i�1�x

�
i �

2, i.e., the Euclidean

distance from x� to the nearest binary vector. Applying Theorem 1 yields
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Corollary 2. If R � T, then S̄ W(p) � �.
If R � T, then all solutions in S̄ W(p) can be obtained by rounding the values in x�

to the nearest binary values, and variations are only possible for the entries i where
x�i �

1
2 .

Let r̄ � �0� 1�n such that �r̄�x��2 � T , i.e., r̄ is among the binary vectors that are nearest
to x� in the Euclidean sense. If R � T and R � T is small, it is possible to say that a
fraction of the rounded values are correct, i.e., to provide an upper bound on the number
of pixel di�erences between any solution in S̄ W(p) and r̄.

In most cases we can not say which rounded values are correct. Suppose that x̄ �

S̄ W(p) and that r̄i � 1 whereas x̄i � 0. Note that we have x�i �
1
2 . Put r̃ :� r̄ and then

set r̃i to 0. We then have �r̃ � x��2
2 � �r̄ � x��2

2 � 	x�i � 1	2 � 	x�i 	
2 � �r̄ � x��2

2 � 2x�i � 1.
Similarly, if r̄i � 0, then the squared Euclidean distance increases by 1 � 2x�i by setting
pixel i to 1. Each time an entry i of r̄ is changed, the squared Euclidean distance to x�

increases by bi :� 	2x�i � 1	.
As the Euclidean distance from x� to x̄ is R, a bound can now be derived on the

maximal number of pixels in r̄ that must be changed to move from r̄ to x̄.
Let us order the values bi (i � 1� � � � � n) such that bi � bi�1 for 1 � i � n � 1.

Assuming that S̄ W(p) � �, we have R � �r̄� x��2 and the change of s entries of r̄ would
increase the distance between r̄ and x� such that R2 � �r̄ � x��2

2 �
�s

j�1 b j.

Theorem 2. Let r̄, R and bi (i � 1� � � � � n) be as defined above. Let x̄ � S̄ W(p) and
x� � W�p. Choose s such that

s�
i�1

bi � R2 � �r̄ � x��2
2 �

s�1�
j�1

b j� (6)

Then at most s pixels can have the wrong value in r̄ with respect to x̄ and at least n � s
pixels must have the correct value.

Proof. Due to the increasing order of the bi’s, changing more than s pixels in r̄ will
result in a vector r̃ for which 		r̃ � x�		2 � R, which cannot be an element of S̄ W(p). 
�

Corollary 3. Let s be as in Theorem 2. Let x̄� ȳ � S̄ W(p). Then 		x̄ � ȳ		1 � 2s.

In fact, Corollary 3 can be sharpened as follows. Theorem 2 bounds the number of
pixel di�erences between x̄ and r̄, and between ȳ and r̄. When using these two bounds
to determine an upper bound on the number of di�erences between x̄ and ȳ, we can
assume that these two sets of pixel di�erences are disjoint, as otherwise the di�erence
between x̄ and ȳ will only be smaller. This observation leads to the following corollary:

Corollary 4. Let r̄ and bi (i � 1� � � � � n) be as defined above. Let x̄� ȳ � S̄ W(p). Choose
t such that

t�
i�1

bi � 2(R2 � �r̄ � x��2
2) �

t�1�
j�1

b j� (7)

Then at most t pixels can be di�erent between x̄ and ȳ.
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5 Experiments and Results

A series of experiments was performed to investigate the practical value of the bounds
given in Theorems 1 and 2, for a range of images. The experiments are all based on
simulated projection data obtained by computing the projections of the test images (so-
called phantoms) in Fig. 2: (1) a simple, nearly convex object; (2) a more complex
object, containing a small hole; (3) a cross-section of a cylinder head from a combustion
engine; (4) a cross-section of femur rat bone. All phantoms have a size of 512�512
pixels. For experiments with varying image size (smaller than 512�512), the phantoms
have been downscaled to obtain binary images of the appropriate sizes.

In each experiment, the central reconstruction x� was first computed using the CGLS
algorithm. Based on the central reconstruction, the variability V was computed, and r̄
was computed by rounding x� to the nearest binary vectors (choosing r̄i � 1 if x�i �

1
2 ).

The upper bound s from Theorem 2 on the number of di�erences between r̄ and the
phantom image x̄ was then computed, followed by a bound on the fraction of pixel
di�erences U :� s

n , and the actual fraction of di�erences E :� e
n , where e is the number

of pixel di�erences between r̄ and x̄.
In the next subsections, the experimental results will be presented for the grid model

and the strip model, respectively.

(a) Phantom 1 (b) Phantom 2 (c) Phantom 3 (d) Phantom 4

Fig. 2. Original phantom images used for the experiments

In the grid model, a projection direction is represented by a pair of integers (a� b) �
�

2, such that gcd(a� b) � 1 and a � 0. Let � be the set of all such pairs. For any pos-
itive integer M, put �M :� �(a� b) � � : max(a� 	b	) � M� and order the elements of
�M , firstly by increasing value of a, secondly by increasing value of 	b	, and thirdly by
decreasing value of b. For example, �3 � �(1� 3)� (1��3)� (2� 3)� (2��3)� (3� 1)� (3��1)�
(3� 2)� (3��2)�. For any positive integer M, the ordered set �M is formed by concate-
nating�1� � � � ��M; for example,�3 � �(0� 1)� (1� 0)� (1� 1)� (1��1)� (1� 2)� (1��2)� (2� 1)�
(2��1)� (1� 3)� (1��3)�
(2� 3)� (2��3)� (3� 1)� (3��1)� (3� 2)� (3��2)�. To perform an experiment with k projection
angles, the first k directions were selected from the set �20. This means that when the
number of direction is increased, the old set of directions is always included in the new
set of directions.

Experiments have been performed based on the three phantom images, scaled to
sizes of 32�32, 128�128 and 512�512 respectively, varying the number of projection
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(a) Phantom 1, 32�32 (b) Phantom 1, 128�128 (c) Phantom 1, 512�512

(d) Phantom 2, 32�32 (e) Phantom 2, 128�128 (f) Phantom 2, 512�512

(g) Phantom 3, 32�32 (h) Phantom 3, 128�128 (i) Phantom 3, 512�512

(j) Phantom 4, 32�32 (k) Phantom 4, 128�128 (l) Phantom 4, 512�512

Fig. 3. Grid model: computed bounds as a function of the number of projection directions
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(a) Phantom 1, 32�32 (b) Phantom 1, 128�128 (c) Phantom 1, 512�512

(d) Phantom 2, 32�32 (e) Phantom 2, 128�128 (f) Phantom 2, 512�512

(g) Phantom 3, 32�32 (h) Phantom 3, 128�128 (i) Phantom 3, 512�512

(j) Phantom 4, 32�32 (k) Phantom 4, 128�128 (l) Phantom 4, 512�512

Fig. 4. Strip model: computed bounds as a function of the number of projection directions
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(a) Phantom 1, c
k � 16 (b) Phantom 2, c

k � 8

(c) Phantom 3, c
k � 4 (d) Phantom 4, c

k � 4

Fig. 5. Grid model: computed bounds as a function of the image width c, while keeping the ratio
c
k constant

(a) Phantom 1, c
k � 16 (b) Phantom 2, c

k � 8

(c) Phantom 3, c
k � 4 (d) Phantom 4, c

k � 4

Fig. 6. Strip model: computed bounds as a function of the image width c, while keeping the ratio
c
k constant
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directions. The results are shown in Fig. 3. In a second series of experiments, the size
of the image was varied from 32�32 up to 512�512. When increasing the image width
c, the number of pixels grows quadratically with c, while the number of line sums per
projection direction grows linearly with c. To compare results for di�erent image sizes,
the ratio c

k , between the image width and the number of projection directions is kept
constant, increasing the number of projection directions along with the image size. The
ratio c

k is chosen separately for each phantom, such that it leads to values near U � 0�01
for suÆciently large images.

The experiments for the strip model have been performed using projection angles
equally distributed between 0 and 180 degrees. Projections have been computed based
on sets of parallel strips, each strip having a width that equals the pixel size.

Experiments have been performed based on the three phantom images, scaled to
sizes of 32�32, 128�128 and 512�512 respectively, varying the number of projection
directions. The results are shown in Fig. 3. In a second series of experiments, the size
of the image was varied from 32�32 up to 512�512. while keeping the ratio c

k constant,
increasing the number of projection directions along with the image size. The ratio c

k
is chosen separately for each phantom, such that it leads to values near U � 0�01 for
suÆciently large images.

Despite the fact that the four phantoms have strong di�erences in shape and mor-
phology, and that the grid and strip models are quite di�erent, the results shown in Figs.
3-6 are surprisingly consistent throughout all experiments. Clearly, both the variability
V and the upper bound U on the fraction of pixel di�erences between r̄ and x� become
smaller as the number of projection directions is increased. We see that the phantom
x̄ is typically much closer to r̄ than to x�, and that the actual fraction of di�erences
between these two images is approximated quite sharply by the upper bound U. In Fig.
3(d), (g) and (j), and Fig. 4(j), part of the graph E is missing. In fact, in these cases E is
zero, such that they cannot be displayed in the logarithmic scale.

In the strip model, the total number of measured line sums is given by ck, whereas
the total number of unknown pixels is c2. Fig. 6 illustrates that even if c

k � 4, the bound
from Theorem 2 leads to a guarantee that the fraction of pixel di�erences between x̄
and r̄ is of the order of 1%, so r̄ is a very good approximation of the original binary
image.

6 Outlook and Conclusions

In this article, we have presented two general bounds on the accuracy of reconstruc-
tions in binary tomography, with respect to the unknown original object. The bounds
can be computed eÆciently and give guarantees on the number of pixels that can be
di�erent between any two binary reconstructions that satisfy given line sums, and on
the di�erence between a particular binary image, obtained by rounding the central pro-
jection to the nearest binary vector, and any binary image satisfying the projections.
The experimental results show that by using these bounds, one can prove that the num-
ber of di�erences between binary reconstructions must be very small, even when the
corresponding real-valued system of equations is severely underdetermined. In order to
make these bound practically useful, our results will have to be extended to deal with
noisy projection data, which we will incorporate in future research.
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Tiling the Plane with Permutations
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73376 Le Bourget du Lac
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Abstract. A permutomino is a polyomino uniquely determined by a
pair of permutations. Recently permutominoes, and in particular convex
permutominoes have been studied by several authors concerning their
analytical and bijective enumeration, tomographical reconstruction, and
the algebraic characterization of the associated permutations [2,3]. On
the other side, Beauquier and Nivat [5] introduced and gave a character-
ization of the class of pseudo-square polyominoes, i.e. polyominoes that
tile the plane by translation: a polyomino is called pseudo-square if its
boundary word may be factorized as XY X Y .

In this paper we consider the pseudo-square polyominoes which are
also convex permutominoes. By using the Beauquier-Nivat characteriza-
tion we provide some geometrical and combinatorial properties of such
objects, and we show for any fixed X, each word Y such that XY X Y is
pseudo-square is prefix of an infinite word Y∞ with period 4 |X|N |X|E .

Some conjectures obtained through exhaustive search are also pre-
sented and discussed in the final section.

1 Introduction

Tiling the plane using polyominoes is a rather popular research topic, sometimes
related with computational theory, mathematical logic and discrete geometry.
This subject has been studied under different points of view: combinatorial prop-
erties of the tiles have been considered in order to count them or the patterns
they produce in the plane, and, consequently, group them in classes present-
ing similar behaviors; a geometrical approach has been applied in order to find
new characterizations of the tiles in terms of their shape or properties of their
border; finally, also tomographical aspects of tilings have been studied with the
aim of retrieving geometrical properties of a tiling from partial and sometimes
inaccurate measurements of the local densities (see [6]).

Interesting results have been achieved by restricting the class of sets of tiles
only to those having one single element. In particular Wijshoff and Van Leeuwen
[8] considered the exact polyominoes (i.e. polyominoes which tile the plane by
translation) and proved that the problem of recognizing them is decidable. In [5],

I. Debled-Rennesson et al. (Eds.): DGCI 2011, LNCS 6607, pp. 381–393, 2011.
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Beauquier and Nivat studied the same problem from a purely geometrical point
of view and they found a characterization of all the exact polyominoes by using
properties of the words which describe their boundaries. In particular they stated
that the boundary word coding these polyominoes shows a pattern XY ZX Y Z,
called a pseudo-hexagon, where one of the variable may be empty in which case
the pattern XY X Y is called a pseudo-square. Successively, in [1] the authors
studied some combinatorial and enumeration problems on the pseudo-square
convex polyominoes.

In this paper we relate pseudo-square polyominoes with the class of permu-
tominoes. A permutomino of size n is a polyomino determined by particular pairs
(π1, π2) of permutations of length n, such that π1(i) �= π2(i), for 1 ≤ i ≤ n (see,
for instance, Fig. 4). An equivalent definition for a permutomino is that, for each
abscissa (ordinate) between 1 and n, there is exactly one vertical (horizontal)
side in the boundary with that coordinate.

Permutominoes can be viewed as special types of permutation diagrams, and
they have been introduced by Kassel et al. [7] while studying some algebraic
problems related with the R̃-polynomials associated with a pair (π1, π2) of per-
mutations.

During the last years, a particular class of permutominoes, namely the class of
convex permutominoes have been widely studied: in [3] the authors provide their
enumeration according to the size, while in [2] the authors give a characterization
of permutation defining convex permutominoes.

In this paper we consider the class of pseudo-square convex permutominoes
(briefly, psc-permutominoes), i.e. polyominoes which are both pseudo-square and
convex permutominoes. This problem raises interesting properties since it relates
to combinatorics on words and classical problems on polyominoes. Moreover
these objects are uniquely defined by permutations, thus they give us an effec-
tive way to tile the plane using permutations. Hence this problem shows strict
relations with the vast combinatorics on pattern avoiding permutations [2].

In this paper we focus on the problem of establishing if, for a given word X ,
there is at least a word Y which is compatible with X , that is, XY X Y represents
a psc-permutomino. Using the Beauquier-Nivat characterization, and the results
from [1], we show that for any given X there are at most two different words
of minimal length Y and Y ′ compatible with X . These words are such that
|Y | = |Y ′|, and Y ′ can be obtained from Y by means of renaming of words.
Moreover, they individuate the growing direction of the permutomino, so we
distinguish among the up and the down-growing direction of a psc-permutomino
and study these two cases separately.

In studying the psc-permutominoes with up-growing direction, we prove that
X uniquely determines an infinite word Y∞, and that every word Y which is
up-compatible with X (i.e. XY X Y is a psc-permutomino with up-growing di-
rection) is a prefix of Y∞. Moreover we show that Y∞ has period 4 |X |E |X |N .
The same results can be reformulated in the case of down-growing direction.

Several challenging problems remain open, and some conjectures obtained
through exhaustive search are also presented and discussed in the final section.
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2 Two Classes of Polyominoes

In the plane Z×Z a cell is a unit square whose vertices have integer coordinates,
and a polyomino is a finite connected union of cells having no cut point (see Fig.
1(a)). Polyominoes are defined up to translations, and we deal with polyominoes
without “holes”, i.e. polyominoes whose boundary is a single loop. A column
(resp. row) of a polyomino is the intersection between the polyomino and an
infinite strip of cells whose centers lie on a vertical (resp. horizontal) line. A
polyomino is said to be column-convex (resp. row-convex) when its intersection
with any vertical (resp. horizontal) line is connected. A polyomino is convex if
it is both column and row convex (see Fig. 1(b,c)).

(c)(a) (b)

Fig. 1. A polyomino (a), a column-convex polyomino (b), a convex polyomino (c)

A particular subclass of the class of convex polyominoes consists of the paral-
lelogram polyominoes, defined by two lattice paths that use north (vertical) and
east (horizontal) unitary steps, and intersect only at their origin and extremity.
These paths are commonly called the upper and the lower path (see Fig. 2).

Fig. 2. A parallelogram polyomino, its upper and lower paths

The boundary of a polyomino can be conveniently represented by a boundary
word defined on the alphabet Σ = {N, S, E, W}, where N (resp. E, S, W )
stands for the north (resp. east, south, west) unit step. The word representing a
polyomino is obtained simply by following its boundary from a starting point in
a clockwise orientation. For instance, the polyomino in Fig. 1(c), starting from
the highlighted point, is represented by the word

X = NWNNNNEENEESSESSESSWSWWWNW.
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Moreover, if X = x1x2 . . . xr is a word, where xi ∈ {N, E, S, W}, then the
complement X = xr . . . x2x1 is defined by N = S, S = N , W = E, and E = W .
We define the length of a word X by |X | = r, and by |X |xi the number of
occurrences of the letter xi in X . We observe that in any polyomino the length
of the boundary word coincides with its perimeter.

2.1 Polyominoes That Tile the Plane

In [5], Beauquier and Nivat studied the class of exact polyominoes, i.e. poly-
ominoes that tile the plane by translation. They found a characterization of all
the exact polyominoes by using properties of the words which describe their
boundaries. In particular they stated that the boundary words coding these
polyominoes show a pattern XY ZX Y Z, called a pseudo hexagon, where one
of the variable may be empty in which case the pattern XY X Y is called a
pseudo-square.

In the rest of the paper, we will deal with pseudo-square convex polyominoes
(briefly psc-polyominoes) As an example, the polyomino in Fig. 3 (a) is a psc-
polyomino, and the decomposition of its boundary word is

X = NNENEEN , Y = EENE , X = N E E N E N N and Y = ENE E.

We recall some properties about psc-polyominoes obtained in [1], which will be
useful through the paper. We first consider pseudo-square parallelogram poly-
ominoes. In this case we have:

Proposition 1. If X Y X Y is a decomposition of the boundary word of a pseudo-
square parallelogram polyomino, then XY encodes its upper path, and Y X its
lower path. Moreover, X starts and ends with N , and Y starts and ends with E.

For psc-polyominoes which are not parallelograms, we can have at most two
decompositions which are strictly related to each other:

1. the first one is such that the path X of the decomposition starts from the
lowest point in the leftmost column and ends in the leftmost point in the
uppermost row (see Figure 3 (c)), then it has the form N+(E ∨ N)∗N+.
The starting point of such decomposition is called A; we observe that also
parallelogram polyominoes have this kind of decomposition;

2. the second one is such that the path X starts from the uppermost point in
the leftmost column and ends in the rightmost point in the uppermost row,
(see Figures 3 (b), (d)). The starting point of such decomposition is called B.

We also observe that each psc-polyomino with a decomposition of the second type
can be transformed – under an horizontal reflection – into another psc-polyomino
whose decomposition is of the first type (note that the two polyominoes may
coincide). So, without loss of generality we will only consider psc-polyominoes
of with a decomposition of the first type, starting from A. Hence, from now on,
the word X encoding the boundary of a generic psc-permutomino is assumed to
have the form N+(E ∨N)∗N+.
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(a)

B

(d)(c)

A

(b)

B

Fig. 3. (a) a psc-polyomino (with highlighted cells) having only a decomposition of the
first type, and the corresponding tiling of the plane; (b) a psc-polyomino having one
decomposition of the second type; in (c), (d) a psc-polyomino admitting decompositions
of the first and of the second type; the starting points are A and B, respectively

2.2 Polyominoes Determined by Permutations

Let P be a polyomino without holes, having n rows and n columns, n ≥ 1. Let
A =

(
A1, . . . , A2(r+1)

)
be the list of its vertices (i.e., corners of its boundary)

ordered in a clockwise direction starting from the lowest leftmost vertex, with
Ai = (xi, yi). We say that P is a permutomino if P1 = (A1, A3, . . . , A2r+1) and
P2 = (A2, A4, . . . , A2r+2) represent two permutations of length n. Obviously, if
P is a permutomino, then r = n, see Fig. 4. As an immediate consequence we
have that m = n, and so a permutomino has n rows and n columns (n will be
called its size), and the number of its vertices is 2(n + 1). The two sets P1 and
P2 can be regarded as two permutation matrices of [n + 1] = {1, 2, . . . , n + 1}
having no common points; we indicate the permutations associated with them by
π1 and π2, respectively (see Fig. 4). They are called the permutations associated
with P .

21π  = ( 2, 5, 6, 1, 7, 3, 4 ) π  = ( 5, 6, 7, 2, 4, 1, 3 )

Fig. 4. A permutomino and the two associated permutations. The dotted black vertices
represent the elements of P1, while the circled vertices the elements of P2.
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From the definition any permutomino P of size n has the property that, for
each abscissa (ordinate) between 1 and n there is exactly one vertical (horizontal)
side in the boundary of P with that coordinate. It is simple to observe that this
property is also a sufficient condition for a polyomino to be a permutomino.

3 Convex Permutominoes Tiling the Plane

In this section we study convex permutominoes which are also pseudo-square
polyominoes, that we call pseudo-square convex permutominoes (briefly, psc-
permutominoes). They present interesting geometrical and combinatorial as-
pects.

First, we recall that we assume that the word X encoding the boundary of a
generic psc-permutomino has the form N+(E ∨N)∗N+. Moreover, we will work
indifferently with the word or the path representation of X and Y .

We say that a binary word X is compatible with Y if the word X Y X Y repre-
sents the boundary of a psc-polyomino. So, for instance, we have that the word
X = NNENN is compatible with Y = EENEE (see Fig. 5 (a)), with Y ′ =
EESEE (see Fig. 5 (b)), and with Y ′′ = EESEESSEESSSEESSEESEE
(see Fig. 5 (c)). A word X of the form N+(E ∨ N)∗N+ is said to be exact if
there is at least a word Y which is compatible with X .

From the definition of permutomino and of pseudo-square, and from the con-
vexity constraint, The following statement holds.

Proposition 2. For each word X of the form N+(E ∨ N)∗N+ there exist at
most two different words Y and Y ′, having minimal length, compatible with X
such that:

(a) (b)

(c)

Fig. 5. Three psp-permutominoes obtained from the same word X = NNENN . The
permutomino in (a) has an upward growing direction, while those in (b) and (c) have
a downward the growing direction.
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1. neither Y nor Y ′ is a prefix of the other,
2. if there exists Y ′′ compatible with X, then either Y or Y’ is a prefix of Y”.

It is also clear that, in a pseudo-square convex permutomino, the word X com-
pletely determines the related words Y and Y ′. For instance referring to Figure 5,
the word X = NNENN is compatible with Y = EENEE, and Y ′ = EESEE
while Y ′′ = Y ′SSEESSSEESSY ′.

The first classification of psc-permutominoes is given by the concept of grow-
ing direction, which follows directly from Proposition 2. We say that a psc-
permutomino has upward growing direction if the word Y has the form E+(N ∨
E)∗E+. Similarly, we say that it has downward growing direction if Y has the
form E+(S∨E)∗E+ (see Fig. 5). In the next sections we will study separately the
psc-permutominoes having upward and downward growing direction. According
to this, we say that X and Y are up-compatible (resp. down-compatible) with
X if X Y X Y is a psc-permutomino having upward (resp. downward) growing
direction.

3.1 Up-Growing Direction: Pseudo-square Parallelogram
Permutominoes

The reader may have noticed that psc-permutominoes having upward growing
direction are precisely the pseudo-square parallelogram permutominoes (see Fig-
ure 5 (a)). We observe that, starting from X , and given a positive integer n, there
is a unique path Y (n) of length n, and using steps E and N , such that the ob-
ject X(n) obtained by concatenating Y (n) at the beginning and at the end of X
has exactly one side for each abscissa and ordinate between 1 and n. Similarly,
letting n tend to infinity, we obtain a unique infinite path Y∞, and an object
X(∞) having exactly one side for each abscissa and ordinate greater than 1 (see
Fig. 6). In X(n), the path Y∞ starting from the end (resp. beginning) of X
will be called the upper (resp. lower) path of X(n). The following property is
straightforward.

Proposition 3. Every word Y which is up-compatible with X is a prefix of Y∞.

In what follows, we prove that the word Y∞ is periodic, and we provide a simple
algorithm to determine a prefix of length n of Y∞ from X .

First, we start by recalling the definition of mex of positive (or empty) integer
set v, noted mex(v): it is the smallest positive integer of the complementary of the
set v in N. For instance, if v = {0, 1, 4} then the complement of v is {2, 3, 5, 6, . . .}
thus mex(v) = 2. This definition appears in some works of A.S. Fraenkel and it
is related to the Nim game, Sturmian and balanced sequences [4].

The basic idea for constructing the path Y∞ is to look separately at the
horizontal and vertical steps in X .

The first step consists in building the vector V whose ith entry Vi is given by
the length of the ith vertical segment in X , and the vector H , whose ith entry
is given by the length of the ith horizontal segment in Y . So, for instance, if
X = NNENN we have V = (2, 2) and H = (1), see Fig. 6 (a).
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W

(b)

W

2

2

1

2

3

1

Y

(a)

3

2

Fig. 6. The path X(∞) does not cross itself: (a) we have no pseudo-square parallel-
ogram permutomino; (b) there is a word Y of length less than the period W of Y∞
such that X is up-compatible with Y , and we have a pseudo-square parallelogram
permutomino

Then we focus on the vertical steps growth, and for any given i ≥ 1 we
construct the integer set v(i) by iteration, according to the following rule:

Base: v(1) = {0, V1, V1 + V2, V1 + V2 + V3, . . .}: it is the set of the ordinates
where the vertical segments of X start or end; moreover, we set the variable
p(1) = 0.

Step: v(i + 1) = v(i) ∪ mex(v(i)) ∪ mex(v(i)) − p(i) + max(v(i)), then we set
p(i + 1) = mex(v(i)).

We also build the integer vector VY , whose ith entry is given by the term
mex(v(i− 1))− p(i− 1). Referring to our example, we have:

- v(1) = {0, 2, 4}, and p(1) = 0;
- mex(v(1)) = 1, mex(v(1))−p(1)+max(v(1)) = 5, that is v(2) = {0, 1, 2, 4, 5},

and VY = (1); now, p(2) = mex(v(1)) = 1;
- mex(v(2)) = 3 and mex(v(2)) − p(2) + max(v(2)) = 3 − 1 + 5 = 7, then

v(3) = {0, 1, 2, 3, 4, 5, 7}, and VY = (1, 2); now p(3) = 3;
- mex(v(3)) = 6 and mex(v(3)) − p(3) + max(v(3)) = 6 − 3 + 7 = 10, that is

v(4) = {0, 1, 2, 3, 4, 5, 6, 7, 10}, and VY = (1, 2, 3); now, p(4) = 6;
- mex(v(4)) = 8 and mex(v(4)) − p(4) + max(v(4)) = 12, that is v(5) =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12} and VY = (1, 2, 3, 2).
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We observe that the i-th element of VY is just the length of the ith vertical
segment added in the construction of Y∞ (see Fig. 6 (a)). Now if we go on with
the iteration, we observe that, for any i > 4, VY (i) = VY (j), where j is simply
the rest of the division of i by 4. This implies that VY is periodic of period 4.
This means that the vertical segments in Y∞ are such that the length of the i-th
vertical segment is equal to VY (i mod 4).

Starting from H , and with an analogous algorithm, we can recursively build
the set h(i), and then the vector HY , whose ith entry gives the length of the ith
horizontal segment in Y∞. Referring to our example, we have that HY is periodic
of length 2, precisely HY = (2). This means that all the horizontal steps in Y∞
have length 2 (see Fig. 6 (a)).

Using the previously defined tools, we are now ready to prove our main result.

Theorem 1. For any given X = N+(E∨N)∗N+, there exists a positive integer
p dividing 4 |X |N |X |E such that the infinite word Y∞ has period p.

Proof. To prove the periodicity of Y∞ it is sufficient to prove that the vectors
VY and HY are periodic. First of all, let us make some remarks on the construc-
tion of v(i) previously described. We recall that p(i) = mex(v(i− 1)) with the
convention that mex(v(0)) = 0. Thus there is an invariant in the construction:
mex(v(i)) − p(i) + max(v(i)) −mex(v(i)) = max(v(i)) −mex(v(i − 1)). In fact,
by construction we have max(v(i)) = mex(v(i − 1))− p(i− 1) + max(v(i − 1)),
then

max(v(i)) −mex(v(i− 1)) = −p(i− 1) + max(v(i− 1))
= max(v(i− 1))−mex(v(i− 2))
= max(v(1)) −mex(v(0)) = max(v(1)).

In other words, at each step i > 0 of the iteration we add to v(i) two elements
at distance max(v(1)). In the path Y∞ that we are building, these two elements
represent a vertical segment in the lower path, and a vertical segment in the
upper path, respectively.

Now we would like to encode the set v(i) by means of a vector w(i)[0, . . . ,
max(v(i))] whose entries are the symbols {a, b, c, ·}, using the following:

i. for every element j in the base set v(1) we place the symbol a in position j
of w(1), and all other places are filled with ·,

ii. at the generic step i+1 of the iteration, the newly added element mex(v(i)) is
represented by placing b in position mex(v(i)) of w(i+1), while the element
mex(v(i))−p(i)+max(v(i)) is represented placing c in position mex(v(i))−
p(i)+max(v(i)) of w(i+1). We use the symbol · to say that a given position
has not been filled yet by a b.

Thus, at each step we add two new symbols, b and c, to the word w(i− 1), and
they are always at distance max(v(1)).

So referring to our example, v(1) is represented by the word w(1) = a · a · a,
then the set v(2) = {0, 1, 2, 4, 5} is represented by aba · ac, since we add a
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W

Y

(b)

W

(a)

Fig. 7. The path X(∞) crosses itself: (a) there is no pseudo-square parallelogram
permutomino; (b) there is a word Y of length less than the period W of Y∞ such that
X is up-compatible with Y , and we have a pseudo-square parallelogram permutomino

b in position 1 and a c in position 5, at distance max(v(1)) = 4. Then the
representation for v(3) = {0, 1, 2, 3, 4, 5, 7} is w(3) = ababac · c. Successively we
have w(4) = ababacbc · ·c, w(5) = ababacbcb · c · c, and so on.

We can prove now that the element 2 max(v(1)) always represents a segment
in the lower path and it is coded by b. Otherwise, by the invariant 2 max(v(1))−
max(v(1)) = max(v(1)) should represent a vertical segment of the lower path,
and this is impossible because max(v(1)) is clearly coded by a.

Using the same argument: each a of the word w(1) in position j > 0 is
“translated” by max(v(1)) to a b in position j + max(v(1)); each b is position
j ≥ 0 of w(i) is translated to a c in position j + max(v(1)), and similarly each c
is position j ≥ 0 of w(i) is translated to a b in position j + max(v(1)).

Thus, it’s when the element in position 2 max(v(1)) is filled by a b for the first
time that we find the period. Indeed, let i be the first index such that w(i) has
a b in position 2 max(v(1)). Concerning the word w(i) we have a in position 0, a
in position max(v(1)) and b in position 2 max(v(1)). For all other positions, a in
position j implies b in position j + max(v(1)), and c in position j + 2 max(v(1)).
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(a) (b)

Fig. 8. (a) the path Y∞: there is no word Y which is up-compatible with X; (b) a
prefix Y ′ of the path Y ′

∞ which is down-compatible with X

By construction the b in position 2 max(v(1)) is the last b placed in w(i), and
all the positions on the right of it are either filled by a c or by a dot. Moreover, all
the other c in position greater than 2 max(v(1)) have been translated from an a in
position j by the translation 2 max(v(1)). Finally, there is a clear correspondence
between the elements of w(1) and those of w(i)[2 max(v(1)), . . . , max(v(i))],
which leads to the periodicity. Referring to our example, we have w(1) = a ·a ·a,
then w(5) = ababacbc | b · c · c. In summary, we need 2 |X |N iterations to have
periodicity on VY f the vertical steps, while similarly, we need 2 |X |E iterations
to have periodicity on HY . By mixing the two words, we have that Y∞ has pe-
riod 2 |X |N · 2 |X |E = 4 |X |N |X |E. �	
The proof of Theorem 1 gives us a simple recursive way to generate the infinite
word Y∞:

- Y∞(0) = ∅;
- Y∞(i) = Y∞(i− 1)EHY (i) mod |HY | NVY (i) mod |VY |.

Then Y∞ is the limit of Y∞(i) for i→∞.
From now on, let X be given, let p be the period of Y∞, and let W =

Y∞[1, . . . , p]. We remark that the previously described algorithm gives us as
a corollary a simple way to check if the boundary of X(∞) crosses itself or not.
Since Y∞ is periodic, it is sufficient to check it for at most p steps. Summariz-
ing, concerning pseudo-square parallelogram permutominoes, we may have the
following possibilities:

1. the boundary of X(∞) crosses itself. Then by Theorem 1 it crosses itself
infinitely many times. In this case, we may have the two possibilities: (a)
we have no pseudo-square parallelogram permutomino (see Fig. 7 (a)); (b)
there is a prefix Y of W which is up-compatible with X , and we have a
pseudo-square parallelogram permutomino (see Fig. 7 (b)).
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2. the boundary of X(∞) does not cross itself; in this case, it may happen
that there are no words Y which are up-compatible with X (see Fig. 6 (a));
otherwise, if there is at least a word Y up-compatible with X , then there
are infinitely many such words; assuming that Y is the word having minimal
length among these ones, then they have the form W ∗Y (see Fig. 6 (b),
where the black points identify the paths Y, WY, W 2Y, . . ., and the white
points identify the paths W, W 2, . . .).

4 Down-Growing Direction

Most of the considerations made for the up-growing direction can be easily re-
formulated for the down-growing direction. Also in this case, for a given word
X of the form N+(E ∨ N)∗N+, we can define an infinite word Y ′

∞, and every
word Y ′ which is down-compatible with X is a prefix of Y ′

∞. Moreover, we can
write down an algorithm – completely analogous to that presented in the pre-
vious section – to recursively build the word Y ′

∞. There is also a strict relation
between the two words Y∞ and Y ′

∞ which is exploited in the next statement.

Proposition 4. Let X be a word of the form N+(E ∨ N)∗N+. The following
properties hold:
i) Y ′

∞ is obtained from Y∞ by changing all N steps with S steps (see Fig. 8).
ii) The word Y ′

∞ is periodic, and its period is a divisor of 4 |X |N |X |E.
iii) If X is up-compatible with Y , then X is down-compatible with the word Y ′,
which is obtained from Y by changing all N steps with S steps (see Fig. 5).

The converse of iii) however does not hold, for instance Fig. 5 shows that X =
NENEN is down-compatible with a word Y ′, while it is not up-compatible with
the word Y – obtained from Y ′ by changing all S steps with N steps – and there
is no word Y which is up-compatible with X .

5 Further Work

Using an exhaustive program written in SAGE we were led to formulate some
conjectures, tested for |X | ≤ 13. In a polyomino, the properties of being both a
pseudo square and a permutomino determine strong symmetries of the word X ,
more precisely it seems that

Conjecture 1. If the word X of the form N+(E ∨N)∗N+ is exact, then it is a
palindrome having odd length.

The reader can test this conjecture on all the examples presented throughout
the paper. Assuming Conjecture 1, by symmetry, we have that each word Y
related to X in the decomposition of P as pseudo-square is a palindrome of odd
length too. The converse of Conjecture 1 does not hold, as one can easily check
with the word X = NNNENNN . Our main goal would be to characterize
the palindromic words which determine psc-permutominoes and then possibly



Tiling the Plane with Permutations 393

enumerate these words according to the length. For instance, we have three exact
words of length 5, NNENN (both in the up-growing and in the down-growing
directions), NEEEN and NENEN (only in the down-growing direction).

Another challenging and more general problem concerns the study of pseudo-
hexagon convex permutominoes; in this case, as established in [1], many of the
basic properties of pseudo-square convex polyominoes do not hold so we do not
have unicity of the decomposition. Also the problem of studying non convex
permutominoes which tile the plane by translation is completely open.
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Abstract. In this paper we use the algebraic approach to Discrete To-
mography introduced by Hajdu and Tijdeman to study functions f :
Z

2 → {−1, 0, +1} which have zero line sums along the lines correspond-
ing to certain sets of four directions.

Keywords: Discrete Tomography, X-ray, Unique Reconstruction, Gen-
erating Function.

1 Introduction

The main problems of Discrete Tomography deal with the reconstruction and the
uniqueness questions. The first problem consists in the retrieval of an unknown
finite subset of points of the so called lattice set Z2, from the knowledge of its
X-rays taken along a given set of directions. The second problem focuses on the
unique determination of a lattice set by means of its X-rays taken along a given
set S of lattice directions. In both cases we have to do with lattice sets (see [3]
and [4] for an overview of the topics). Recently, Hajdu and Tijdeman introduced
in [1] an algebraic approach for discrete tomographical problems which is based
on generating functions and divisibility properties of polynomials. This reveals
to be useful for studying both the above problems, and especially uniqueness. In
this paper we follow this idea in order to analyze functions f : Z2 → {−1, 0, +1}
which has zero line sums along the lines corresponding to certain sets of four
directions. Our study begins from the following result in [2]: for any fixed rect-
angle A in Z2 there exists a “valid” set S of four directions (at least when A
is not too ”small“), depending only on the size of A, such that any two subsets
of A can be distinguished by means of X-rays along the directions in S. The
proof was given by constructing explicitly a valid set S of four directions in any
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possible case. We focus on sets S of four directions. We first prove a necessary
condition for S to be a set of directions of uniqueness (Theorem 2). Then, in
Theorem 3, we find an algebraic necessary condition for a {−1, 0, +1} valued
function f , under sets of four lattice directions taken according to Theorem 2,
in order to have |f | ≤ 1. We also provide algebraic conditions for constructing
such functions. Finally we deduce a uniqueness result in Corollary 1.

2 Notations and Preliminaries

For all notations we refer to [2]. Here we just recall the notion of valid set of
directions. Let a, b ∈ Z with gcd(a, b) = 1 and a ≥ 0, with the further assumption
that b = 1 if a = 0. We call (a, b) a lattice direction. Let A = {(i, j) ∈ Z2 : 0 ≤
i < m, 0 ≤ j < n}. If f : A → Z is a function, then |f | = max(i,j)∈A{|f(i, j)|}. A
set S = {(ak, bk)}d

k=1 of d directions is said to be valid for A, if
∑d

k=1 ak < m,
and

∑d
k=1 |bk| < n. In [2] L. Hajdu proved the following

Theorem 1. Let m and n be integers with m ≥ n ≥ 5 and m �= 6, and
let A = {(i, j) ∈ Z2 : 0 ≤ i < m, 0 ≤ j < n}. Put d = 5 if (m, n) ∈
{(8, 6), (8, 8), (10, 6), (12, 6)}, and d = 4 otherwise. Then there exists a valid set
S for A consisting of d directions depending only on n if n ≥ 15, and on m and
n otherwise, such that if the function f : A → Z has zero line sums along the
lines corresponding to the directions in S and |f | ≤ 1, then f is identically zero.

It follows that, under the above assumptions, if two functions f, g : A → {0, 1}
are tomographically equivalent (that is is they have equal line sums along the
lines corresponding to the directions in S) , then f = g. When n ≤ 15 analogous
results hold, but depending also on m and in some cases with d = 5 directions.
See [2] for details.

Let (a, b) be a lattice direction, then

f(a,b)(x, y) =

⎧⎪⎪⎨⎪⎪⎩
xayb − 1, if a > 0, b > 0
xa − y−b, if a > 0, b < 0
x− 1, if a = 1, b = 0
y − 1, if a = 0, b = 1

For any set S of valid lattice directions, we denote by FS(x, y) =
∑

f(i, j)xiyj

the polynomial associated to S defined as follows (see [2, pag. 19]):

FS(x, y) =
∏

(a,b)∈S

f(a,b)(x, y).

For any function f : A→ Z, its generating function is defined by

Gf (x, y) =
∑

(i,j)∈A

f(i, j)xiyj.

If f has zero line sums along the lines taken in the directions of S, then FS(x, y)
divides Gf (x, y) over Z ([1, Lemma 3.1]).
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Further, we say that a point (i, j) ∈ A is a multiple positive point for f (or
Gf ) if f(i, j) > 1. Analogously, (i, j) ∈ A is said to be a multiple negative point
for f if f(i, j) < −1.

3 Necessary Conditions for Unique Reconstructions

In view of the tomographic problem of recognizing an arbitrary set of points in
Z2 by means of X-rays corresponding to a given set S of directions, an easy
general necessary condition is the following.

Lemma 1. Let S be any valid set of lattice directions, and let FS(x, y) =∑
f(i, j)xiyj be the polynomial associated to S. If f(i, j) ∈ {−1, 0, 1}, then there

exist two tomographically equivalent lattice sets with respect to S.

Proof. Let F1, F2 be the sets of points (i, j) such that f(i, j) = −1 and f(i, j) =
1, respectively. Then FS(x, y) has zero sums along the directions in S, so that
F1, F2 are tomographically equivalent. �	

The following is a useful result proved by L. Hajdu [2, Lemma 3.2], related to
the problem of unique reconstruction.

Lemma 2. Let S = {(ak, bk)}d
k=1 be any valid set of lattice directions. Suppose

that FS(x, y) =
∑

f(i, j)xiyj has a coefficient f(i, j) outside the set {−1, 0, 1}.
Then there exist two disjoint subsets S1 and S2 of S, such that |S1| = |S2| (mod
2) and ∑

(a,b)∈S1

(a, b) =
∑

(a,b)∈S2

(a, b) (1)

Consider now a set S = {u1, u2, u3, u4} of four distinct lattice directions u1 =
(a, p), u2 = (b, q), u3 = (c, r), u4 = (d, s). In this case, Lemma 3 in [2] can be
improved.

Lemma 3. Let S = {u1, u2, u3, u4}, and FS(x, y) =
∑

f(i, j)xiyj its associated
polynomial. Then FS(x, y) has a coefficient f(i, j) outside the set {−1, 0, 1} if
and only if there exist two disjoint subsets S1 and S2 of S, such that |S1| = |S2|
(mod 2) and ∑

(a,b)∈S1

(a, b) =
∑

(a,b)∈S2

(a, b) (2)

Proof. If FS(x, y) has a coefficient f(i, j) /∈ {−1, 0, 1}, then, by [2, Lemma 3]
there exist two disjoint subsets S1 and S2 of S, such that |S1| = |S2| (mod 2)
and (2) holds.

Suppose now the contrary. Since |S| = 4, two disjoint subsets S1 and S2 of S
can exist, such that |S1| = |S2| (mod 2) and (2) holds, if and only if one direction
is the sum of the remaining three, or the sum of one pair equals the sum of the
other. Therefore, up to permute the order in the choice of the directions, we
must consider the following two cases.
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CASE 1. u4 = u1 + u2 + u3
CASE 2. u4 = u1 + u2 − u3

Let’s show that in both cases we can always find a coefficient f(i, j) which does
not belong to the set {−1, 0, 1}.

CASE 1. Let u4 = u1 + u2 + u3 so that (d, s) = (a + b + c, p + q + r). Since S
consists of distinct directions, without loss of generality we can assume

0 ≤ a ≤ b ≤ c, b, c �= 0 (3)

Moreover, FS(x, y) is formed by monomials as in Table 1 (up to a common
factor yh if p, q, r are not all positive). Consequently the coefficient 2 vanishes
if the monomial xa+b+cyp+q+r is equal to one of the monomials with a positive
coefficient. Note that

1. x2(a+b+c)y2(p+q+r) �= xa+b+cyp+q+r, by (3).
2. If x2a+b+cy2p+q+r = xa+b+cyp+q+r , then a = 0 and p = 0, which is impossi-

ble for a direction (a, p). For the same reason it is xb+cyq+r �= xa+b+cyp+q+r

3. xa+2b+cyp+2q+r �= xa+b+cyp+q+r since b �= 0. For the same reason it is
xa+cyp+r �= xa+b+cyp+q+r

4. xa+b+2cyp+q+2r �= xa+b+cyp+q+r since c �= 0.
5. xa+byp+q �= xa+b+cyp+q+r since c �= 0.
6. 1 �= xa+b+cyp+q+r since a + b + c > 0.

Table 1. Monomials of FS(x, y) in CASE 1

sign + sign −

x2(a+b+c)y2(p+q+r) x2a+2b+cy2p+2q+r

x2a+b+cy2p+q+r x2a+b+2cy2p+q+2r

xa+2b+cyp+2q+r xa+2b+2cyp+2q+2r

xa+b+2cyp+q+2r 2xa+b+cyp+q+r

xa+byp+q xayp

xa+cyp+r xbyq

xb+cyq+r xcyr

1

This shows that in CASE 1 there is a coefficient f(i, j) which does not belong
to the set {−1, 0, 1}.

CASE 2. Let u4 = u1 + u2 − u3 so that (d, s) = (a + b − c, p + q − r). Without
loss of generality we can assume

0 ≤ a ≤ b, 0 ≤ a + b− c, b �= 0 (4)

Now FS(x, y) is formed by monomials as in Table 2 (still up to a common factor
yh if p, q, r are not all positive).
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Table 2. Monomials of FS(x, y) in CASE 2

sign + sign −

x2(a+b)y2(p+q) x2(a+b)−cy2(p+q)−r

x2a+b−cy2p+q−r x2a+by2p+q

xa+2b−cyp+2q−r xa+2byp+2q

2xa+byp+q xa+b+cyp+q+r

xa+cyp+r xa+b−cyp+q−r

xb+cyq+r xayp

1 xbyq

xcyr

The coefficient 2 vanishes if the monomial xa+byp+q equals one with negative
sign. Note that

1. If x2(a+b)−cy2(p+q)−r = xa+byp+q, then c = a + b and r = p + q, deriving
d = 0 and s = 0, which is impossible for a direction (d, s). For the same
reason it is xcyr �= xa+byp+q

2. If x2a+by2p+q = xa+byp+q, then a = 0 and p = 0, which is impossible for a
direction (a, p). For the same reason it is xbyq �= xa+byp+q

3. xa+2byp+2q �= xa+byp+q, since b �= 0 by (4).
4. If xa+b+cyp+q+r = xa+byp+q, then c = 0 and r = 0, which is impossible for

a direction (c, r). Analogously we have xa+b−cyp+q−r �= xa+byp+q.
5. xayp �= xa+byp+q, since b �= 0 by (4).

Consequently, also in CASE 2 there is a coefficient f(i, j) which does not belong
to the set {−1, 0, 1}, and the proof is complete. �	
From Lemma 3 we derive the following necessary condition of unique reconstruc-
tion.

Theorem 2. The sets of four directions that uniquely determine the lattice sets
in a finite grid must be of the form {u1, u2, u3, u1 + u2 ± u3}.
Proof. By Lemma 1 a set S = {u1, u2, u3, u4} of four direction could be a set of
uniqueness if the associated polynomial FS(x, y) =

∑
f(i, j)xiyj has at least a

coefficient f(i, j) /∈ {−1, 0, 1}. By CASE 1 and CASE 2 in Lemma 3 this occurs
if and only if u4 = u1 + u2 ± u3. �	
Remark 1. Let S be a set of four lattice directions such that FS(x, y) has some
coefficient outside {−1, 0, 1}. By Lemma 3 we know that there exist two disjoint
subsets S1, S2 of S, such that |S1| = |S2|(mod2), and

∑
u∈S1

u =
∑

u∈S2
u, and

by Theorem 2 we get that S = S1 ∪ S2, where S1 = {u1, u2, u3}, S2 = {u4} in
CASE 1, and S1 = {u1, u2}, S2 = {u3, u4} in CASE 2. For such a set S we define
the set S1 − S2 as follows

S1 − S2 = {±(ui − uj), ui ∈ S1, uj ∈ S2}

.
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4 Sets of Four Directions for Unique Reconstructions

In this section we analyze the functions g : Z2 → Z which have zero line sums
along the lines corresponding to a given set of directions S, |g| ≤ 1, and vanish
outside a finite latice set. Notice that these properties are invariant by integer
translations, so that we can argue up to integer translations, when necessary.

Let S = {u1, u2, u3, u4} be a valid set of four lattice directions, and let

FS(x, y) =
∏

(a,b)∈S

f(a,b)(x, y) =
∑

f(i, j)xiyj

be its associated polynomial. Define Q(S) =
{
(i, j) ∈ Z2 : f(i, j) �= 0

}
. We par-

tition the set Q(S) into two disjoint subsets, according to the sign of the weight
f(i, j) of the point (i, j) ∈ Q(S):

P = {(i, j) ∈ Q(S) : f(i, j) > 0} N = {(i, j) ∈ Q(S) : f(i, j) < 0} (5)

Notice that if b ≥ 0 for all (a, b) ∈ S then the set P consists of the points

0, u1 + u2, u1 + u3, u1 + u4,
u2 + u3, u2 + u4, u3 + u4, u1 + u2 + u3 + u4

(6)

and the set N consists of the points

u1, u2, u3, u4,
u1 + u2 + u3, u1 + u2 + u4, u1 + u3 + u4, u2 + u3 + u4.

(7)

not all necessarily distinct. If b < 0 for some (a, b) ∈ S, then the sets P and N
consist of the points (6) and (7), respectively, translated by the vector (0,−h),
where h is the sum of negative values of b for (a, b) ∈ S. In the following we
shall assume that P and N are represented by (6) and (7), respectively, since
the properties we are looking for are invariant by integer translations. From the
algebraic viewpoint, this corresponds with substituting the polynomial FS(x, y)
by the rational function ydFS(x, y).

For u = (h, k) ∈ Z2, let fu
− : Z2 → Z, fu

+ : Z2 → Z be the maps whose
generating functions are Gfu

−(x, y) = (xhyk−1)FS(x, y) and Gfu
+
(x, y) = (xhyk+

1)FS(x, y), respectively. Notice that for h < 0 or k < 0, Gfu
− , Gfu

+
are rational

functions, which can be mapped to polynomials by integer translations.

Lemma 4. Let S = {u1, u2, u3, u1 + u2 ± u3} be a set of four lattice directions,
and let u ∈ Z2. If u ∈ S or −u ∈ S, then |fu

−| > 1.

Proof. If u = (h, k) ∈ S, then u ∈ N by (7), so that f(h, k) < 0. By definition the
coefficient of the monomial xhyk in the generating function Gfu

− of fu
− is given by

f(0, 0)−f(h, k). Moreover, since (0, 0) ∈ P we have f(0, 0)−f(h, k) ≥ 2, so that
|fu

−| > 1. If −u ∈ S, then −u ∈ N by (7), so that f(−h,−k) < 0. By definition
the coefficient of the monomial of degree zero in the generating function Gfu

− of
fu
− is given by f(−h,−k)− f(0, 0) ≤ −2, so that |fu

−| > 1. �	
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Lemma 5. Let S = {u1, u2, u3, u1 + u2 ± u3} be a set of four lattice directions.
For each ui ∈ S there exists u = (h, k) ∈ (S1 − S2) such that ui is a multiple
negative point for fu

+.

Proof. Let ui = (hi, ki) ∈ S and let u = (h, k) ∈ (S1 − S2) such that u = ui−uj

for some uj = (hj , kj). Then (hi, ki) = (h + hj , k + kj) so that the coefficient of
the monomial xhiyki in the generating function Gfu

+
of fu

+ is given by f(hi, ki)+
f(hj , kj). Since ui, uj ∈ N , then f(hi, ki) + f(hj , kj) ≤ −2. Therefore, ui is a
multiple negative point for fu

+. �	

Lemma 6. Let S = {u1, u2, u3, u4} be a set of four lattice directions, such that
u4 = u1 + u2 ± u3. Then the following hold

1. |fu
−| ≤ 1 if and only if u = 0, or u ∈ (S1 − S2) and u4 = u1 + u2 + u3, or

u ∈ (S1 − S2) ∪ {±(u1 + u2)} and u4 = u1 + u2 − u3.
2. |fu

+| ≤ 1 if and only if u ∈ S or −u ∈ S.

Proof. We first note that if u = 0 then |f0
−| is identically zero, so that |f0

−| ≤ 1,
while |f0

+| = 2f , so that |f0
+| > 1.

If u ∈ S or −u ∈ S, then, by Lemma 4 |fu
−| > 1. Consequently, in order

to get |fu
−| ≤ 1, we must choose ±u /∈ S. Analogously, if u ∈ (S1 − S2), then

u = ±(ui − uj) for some ui, uj ∈ S. By Lemma 5, either ui or uj is a multiple
negative point of fu

+ so that |fu
+| > 1. Consequently, in order to get |fu

+| ≤ 1, we
must choose u /∈ (S1 − S2).

Consider the multiple (positive or negative) point w = (1/2)(u1 + u2 + u3
+ u4) ∈ Q(S) for FS (see Table 1 and Table 2). Let z ∈ Z2 such that z = w + u.
If z /∈ Q(S) then fu

±(z) = f(w), so that z is a multiple point (positive or
negative) for fu

±, and consequently |fu
±| > 1. Then, in order to get |fu

±| ≤ 1, we
need z ∈ Q(S).

Let us first suppose that u4 = u1 + u2 + u3, so that w is a multiple negative
point for FS . Then, by (6) and (7), to have z ∈ Q(S), the vector u must be
selected as follows

u = 0, u = ±u1, u = ±u2, u = ±u3,
u = ±u4, u = ±(u4 − u1), u = ±(u4 − u2), u = ±(u4 − u3),

The case u = 0 has already been considered. By Lemma 4 the cases ±u ∈ S
cannot give |fu

−| ≤ 1. To this, the only possible choice is u ∈ (S1 − S2). The
explicit computations of Gfu

−(x, y) = (xhyk − 1)FS(x, y) for (h, k) ∈ (S1 − S2)
show that in fact |fu

−| ≤ 1 in all the cases, and (1) is proved.
The cases u ∈ {±(u4 − u1),±(u4 − u2),±(u4 − u3)} correspond to u ∈

(S1 − S2), and consequently cannot give |fu
+| ≤ 1 by Lemma 5. To this, the

only possible choices are u ∈ S or −u ∈ S . The explicit computations of
Gfu

+
(x, y) = (xhyk +1)FS(x, y) for such h, k show that in fact |fu

+| ≤ 1 in all the
cases, and (2) is proved.
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Now, assume u4 = u1 + u2 − u3. Then, by (6) and (7), to have z ∈ Q(S) the
vector u must be selected as follows

u = 0, u = ±u1, u = ±u2, u = ±u3
u = ±u4, u = ±(u3 − u1), u = ±(u3 − u2), u = ±(u1 + u2)

The case u = 0 has already been considered above. If u ∈ S or −u ∈ S then
|fu

−| > 1, by Lemma 4. Therefore, we remain with u ∈ (S1 − S2)∪{±(u1 +u2)},
and the explicit computations of Gfu

−(x, y) = (xhyk−1)FS(x, y) for such u show
that it is always |fu

−| ≤ 1. Therefore, (1) is proved also in this case.
Differently, to get |fu

+| ≤ 1, we must avoid u ∈ (S1 − S2), by Lemma 5, and
u = ±(u1 + u2), as it is shown by the explicit computations of Gfu

+
(x, y) =

(xhyk + 1)FS(x, y). Thus, we remain with u ∈ S or −u ∈ S. The explicit com-
putations of Gfu

+
(x, y) = (xhyk + 1)FS(x, y) for such u show that it is always

|fu
+| ≤ 1. Therefore (2) is proved also in this case. �	

From the above lemmas, we can derive a necessary condition for a {−1, 0, +1}
valued function g, which has zero line sums along the lines corresponding to sets
of four lattice directions taken according to Theorem 2, in order to have |g| ≤ 1.

Theorem 3. Let S = {u1, u2, u3, u1+u2±u3} be a set of four lattice directions.
Let g : Z2 → Z be a non trivial function which has zero line sums along the lines
corresponding to the directions in S, and vanishes outside a finite lattice set. If
|g| ≤ 1 then there exists r ∈ N such that

Gg(x, y) =
r∑

t=1

δ(t)xi(t)yj(t)FS(x, y), (8)

where δ(t) = ±1, and for each t ∈ {1, ..., r}, there exists t′ ∈ {1, ..., r} such that
the vector u(t) = (i(t), j(t))− (i(t′), j(t′)) satisfies the following conditions

1. u(t) = 0, or u(t) ∈ (S1 − S2) and u4 = u1 + u2 + u3, or u(t) ∈ (S1 − S2) ∪
{±(u1 + u2)} and u4 = u1 + u2 − u3, if δ(t) �= δ(t′).

2. u(t) ∈ S or −u(t) ∈ S if δ(t) = δ(t′).

Proof. By Theorem 1 in [1], Gg(x, y) = P (x, y)FS(x, y) for some polynomial
P (x, y) ∈ Z[x, y]. Each monomial aijx

iyj of P (x, y) can be split into a sum of
monomials with coefficients ±1, so that P (x, y) =

∑r
t=1 δ(t)xi(t)yj(t), and

Gg(x, y) =
r∑

t=1

δ(t)xi(t)yj(t)FS(x, y),

where δ(t) = ±1. Consider the multiple (positive or negative) point

w = (1/2) (u1 + u2 + u3 + u4)

for FS . We have |f(w)| = 2, where f is the function with generating func-
tion FS . By multiplying FS(x, y) times xi(t)yj(t), the value f(w) = 2 of the
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the multiple (positive or negative) point w is attached to the translated point
w + (i(t), j(t)). Since |g| ≤ 1, such value must be reduced by adding to the
corresponding monomial a monomial with same degree and coefficient with
opposite sign. Thus, for each t ∈ {1, ..., r}, some point zt ∈ Q(S) must ex-
ist, and some monomial δ(t′)xi(t′)yj(t′) �= δ(t)xi(t)yj(t) of P (x, y), such that
zt + (i(t′), j(t′)) = w + (i(t), j(t)). It follows that the function(

δ(t)xi(t)yj(t) + δ(t′)xi(t′)yj(t′)
)

FS(x, y) =

xi(t′)yj(t′)
(
δ(t)xi(t)−i(t′))yj(t)−j(t′) + δ(t′)

)
FS(x, y)

has no multiple points. Let us define u(t) = (i(t), j(t)) − (i(t′), j(t′)) = zt − w.
By Lemma 6 applied to the vector u(t) and to the function(

δ(t)xi(t)−i(t′))yj(t)−j(t′) + δ(t′)
)

FS(x, y),

we get either (1) or (2), depending on the signs of δ(t) and δ(t′), which provide
a necessary condition for |g| ≤ 1. �	

We now provide some algebraic conditions which show how a {−1, 0, +1} valued
function g, with required norm |g| ≤ 1, can be constructed. We first fix some
notations. Let g : Z2 → Z be a non trivial function whose generating function is
defined by Gg(x, y) = P (x, y)FS(x, y), for some polynomial P (x, y), consisting of
r monomials. For h ∈ {1, ..., r}, let gh : Z2 → Z be the function whose generating
function is determined by multiplying FS(x, y) time the first h monomials of
P (x, y). Let

Qh(S) =
{
(i, j) ∈ Z

2 : gh(i, j) �= 0
}

and

Ph = {(i, j) ∈ Qh(S) : gh(i, j) > 0}, Nh = {(i, j) ∈ Qh(S) : gh(i, j) < 0}.

In particular Q0(S) = Q(S), P0 = P , and N0 = N . Let Mh denote the set
of multiple points of Qh(S), and let M+

h , M−
h be the subsets of Mh formed by

the points of Mh belonging to Ph and Nh, respectively. In particular M0 = {w},
namely the multiple point of Q(S). Moreover, for any pair of sets X, Y , we define

X − Y = {±(u− v), u ∈ X, v ∈ Y }.

Proposition 1. Let S = {u1, u2, u3, u1 + u2 ± u3} be a set of four lattice di-
rections. Let g : Z2 → Z be a non trivial function whose generating function
is defined by Gg(x, y) =

∑r
t=1 δ(t)xi(t)yj(t)FS(x, y), where δ(t) = ±1. For each

h ∈ {1, ..., r − 1}, consider the monomial δ(h + 1)xi(h+1)yi(h+1). Suppose that
δ(h + 1) = 1 and the following conditions hold

1. If (c, d) ∈M+
h then (i(h + 1), i(h + 1)) = (c, d)− (e, f), with (e, f) ∈ N

2. If (c, d) ∈M−
h then (i(h + 1), i(h + 1)) = (c, d)− (e, f), with (e, f) ∈ P
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3. (i(h + 1), i(h + 1)) /∈ (Ph − P) ∪ (Nh −N ).
4. (i(h + 1), i(h + 1)) + w ∈ Nh if w ∈ M+

0 , (i(h + 1), i(h + 1)) + w ∈ Ph if
w ∈M−

0

Then Mh+1 ⊆ Mh .

Proof. We give the proof just in the case when both w and (c, d) are positive.
The other cases can be obtained by changing the argument in obvious ways.
If (c, d) ∈ M+

h we add a monomial xi(h+1)yi(h+1) with (i(h + 1), i(h + 1)) =
(c, d) − (e, f), (e, f) ∈ N and (i(h + 1), i(h + 1)) /∈ (Ph − P) ∪ (Nh − N ). This
ensures that the negative point (e, f) overlaps (c, d), and consequently that the
multiplicity of (c, d) is lowered. Moreover, in order to avoid new multiple points
in the updated configuration, we need (i(h+1), i(h+1)) /∈ (Ph−P)∪ (Nh−N ),
and (i(h + 1), i(h + 1)) + w ∈ Nh. �	

Remark 2. By the above proposition we can construct a {−1, 0, +1} valued func-
tion g : Z2 → Z, with required norm |g| ≤ 1, starting from a given polynomial
P (x, y)FS(x, y) which associated configuration has multiple points. To this we
add progressively new monomials according to Proposition 1. See the following
example, first part. Of course, we can also work with monomials with negative
sign, up to exchange P with N , and Ph with Nh in the above conditions. See
for instance the second part in the following example.

Example 1. Consider the following set of four directions

S = {(1, 0), (0, 1), (1, 2), (2, 1)},

and the polynomial associated to S:

FS(x, y) =
∑

f(i, j)xiyj = (x− 1)·(y − 1)·(x2·y − 1)·(x·y2 − 1)

Let gh : Z2 → Z with generating function given by

Ggh
(x, y) = (x·y + x2y2 + x + x2y)·(x− 1)·(y − 1)·(x2·y − 1)·(x·y2 − 1) =

x6·y6 − x6·y4 − x5·y6 + x5·y5 − x5·y3 + x5·y2 − 2·x4·y5 + x4·y4 + x4·y3

−x4·y2 + x4·y + x3·y5 − x3·y4 + x3·y3 + x3·y2 − 2·x3·y + x2·y4 − x2·y3+
x2·y − x2 − x·y2 + x

Notice that the multiple negative point (4, 5) can be mapped to a simple point by
adding the monomial x3y4, which corresponds to the choice (e, f) = (1, 1). This
satisfies the condition (3, 4) /∈ (Ph − P) ∪ (Nh − N ) (since (i, j) + (3, 4) /∈ Ph

for each (i, j) ∈ P , and (i, j) + (3, 4) /∈ Nh for each (i, j) ∈ N ). Moreover
(3, 4)+(2, 2) = (5, 6) ∈ Nh. Therefore, all conditions in Proposition 1 are fulfilled,
and consequently the addition of x3y4 does not introduce new multiple points
in the updated configuration. Indeed we get
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Ggh+1(x, y)=(x·y + x2y2 + x + x2y + x3y4)·(x−1)·(y−1)·(x2·y − 1)·(x·y2 − 1)

= x7·y8 − x7·y7 − x6·y8 + x6·y7 + x6·y5 − x6·y4 − x5·y7 + x5·y6 − x5·y3

+ x5·y2 + x4·y7 − x4·y6 − x4·y5 + x4·y3 − x4·y2 + x4·y + x3·y3 + x3·y2

− 2·x3·y + x2·y4 − x2·y3 + x2·y − x2 − x·y2 + x,

so that the number of multiple points decreases.
The multiple point which remains can be eliminated by adding the monomial

x3y, which corresponds to the choice (e, f) = (0, 0). In fact, we have (i, j) +
(3, 1) /∈ (Ph+1 − P) ∪ (Nh+1 −N ), and (3, 1) + (2, 2) = (5, 3) ∈ Nh+1 as before.
Therefore, since no new multiple point appears, we get

(x·y + x2y2 + x + x2y + x3y4 + x3y)·(x− 1)·(y − 1)·(x2·y − 1)·(x·y2 − 1) =
x7·y8 − x7·y7 + x7·y5 − x7·y4 − x6·y8 + x6·y7 − x6·y3 + x6·y2 − x5·y7 + x5·y6

−x5·y4 + x5·y3 + x4·y7 − x4·y6 − x4·y5 + x4·y4 + x3·y3 − x3·y + x2·y4 − x2·y3

+x2·y − x2 − x·y2 + x,

which provides a function g : Z2 → Z with |g| ≤ 1, as required.
We can also add monomials with negative coefficients, by exchanging P with

N , and Ph for Nh in the above conditions. For example, if we start with the
polynomial Ggh

(x, y) = (x·y+x2·y2+x+x2·y)·(x−1)·(y−1)·(x2·y−1)·(x·y2−1)
we can continue in the following way.

To eliminate the multiple negative point −2x4y5 we can subtract the mono-
mial x4y4, which corresponds to the choice (e, f) = (1, 0) ∈ N , consistent with
the conditions (i, j) + (4, 4) /∈ Nh for each (i, j) ∈ P , and (i, j) + (4, 4) /∈ Ph for
each (i, j) ∈ N . Thus we get

(x·y + x2·y2 + x + x2·y − x4·y4)·(x − 1)·(y − 1)·(x2·y − 1)·(x·y2 − 1)
= −x8·y8 + x8·y7 + x7·y8 − x7·y7 + x7·y6 − x7·y5 + x6·y7 − x6·y6 + x6·y5−
x6·y4 − x5·y7 + x5·y4 − x5·y3 + x5·y2 − x4·y5 + x4·y3 − x4·y2 + x4·y + x3·y5

−x3·y4 + x3·y3 + x3·y2 − 2·x3·y + x2·y4 − x2·y3 + x2·y − x2 − x·y2 + x

The remaining multiple point can be eliminated by subtracting the monomial
x3, which corresponds to the choice (e, f) = (0, 1) ∈ N , consistent with the
conditions (i, j) + (3, 0) /∈ Nh+1 for each (i, j) ∈ P , and (i, j) + (4, 4) /∈ Ph+1 for
each (i, j) ∈ N . Thus we get

(x·y + x2·y2 + x + x2·y − x4·y4 − x3)·(x− 1)·(y − 1)·(x2·y − 1)·(x·y2 − 1) =
−x8·y8 + x8·y7 + x7·y8 − x7·y7 + x7·y6 − x7·y5 − x7·y4 + x7·y3 + x6·y7−
x6·y6 + x6·y5 − x6·y3 + x6·y2 − x6·y − x5·y7 + x5·y4 − x5·y2 + x5·y − x4·y5+
x4 + x3·y5 − x3·y4 + x3·y3 + x3·y2 − x3·y − x3 + x2·y4 − x2·y3 + x2·y − x2

−x·y2 + x,

which provides the generating function of a function g : Z2 → Z with |g| ≤ 1, as
required.

The previous results unable us to deduce the following uniqueness result.
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Corollary 1. S = {u1, u2, u3, u1 + u2 ± u3} be a set of four lattice directions.
Let h, g : Z2 → {0, 1} be tomographically equivalent with respect to S. If

Gh−g(x, y) =
r∑

t=1

δ(t)xi(t)yj(t)FS(x, y),

with δ(t) = ±1, and the degrees i(t), j(t) do not satisfy the conditions of
Theorem 3, then h = g.

Proof. For the function φ = h − g it results |φ| ≤ 1. Since Gφ(x, y) does not
satisfy Theorem 3 then φ = 0, and consequently h = g. �	

5 Conclusion and Perspectives

In this paper we studied {−1, 0, +1} valued functions under certain sets of four
lattice directions. From their algebraic properties we deduced a uniqueness result.
A further step could consist in considering a grid A of fixed size as in the result
in [2] in order to show that in fact there exist whole families of suitable valid sets
of four directions depending only on the size of A, such that any two subsets of
A can be distinguished by means of such sets of directions.
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Growth of Discrete Projection Ghosts Created
by Iteration

Imants Svalbe and Shekhar Chandra

School of Physics, Monash University, Australia

Abstract. Ghost images contain specially aligned pixels with intensities
that are designed to sum to zero when projected at any of a pre-selected
set of discrete angles. Ghost images find use in synthesizing the content of
missing rows of image or projection space from data that contains some
deliberate level of information redundancy. Here we examine the proper-
ties of ghost images that are constructed through a process of iterated
convolution. An initial ghost is propagated by cumulative displacements
into other discrete directions to expand the range of angles that have
zero-sum projections. The discrete projection scheme used here is the
finite Radon transform (FRT). We examine these accumulating ghosts
to quantify the growth of their dynamic range of their pixel values and
the spread of their spatial extent. After N propagations, a pair of points
with intensity ±1 can replicate to produce a maximum total intensity
of 2N . For the discrete projections of the FRT, we show that column-
oriented iterations better suppress the range and rate of growth of ghost
image values. After N row-based iterations, the peak pixel values of FRT
ghost images grow approximately as 20.8N . After N column-based itera-
tions, the peak pixel values of FRT ghost images grow approximately as
20.7N . The slower rate of expansion of pixel values for column iteration
comes at the expense of fragmenting the compactness of the set of FRT
projection angles that are chosen to sum to zero.

1 Introduction

Ghosts are deceptively simple spatial images composed of signed pixel values, so
arranged that projections of the ghost image data vanish or sum to zero for a
range of pre-selected projection angles. The addition of linear combinations of
scaled and shifted patterns of ghost values to a discrete object then adds nothing
to the content of some of its projected views. Reconstruction of the object from
its projected views is then either not unique or has an inconsistent interpretation,
depending on the projected views that are taken.

Ghosts have formed an integral part in the post-Radon history of the recon-
struction of digital images from discrete projections. Katz [9] and Louis [11]
showed that the fidelity of reconstructed images is predicated on the banish-
ment of ghosts or zero projections from the input data. Ghost theory gave rise
to the Katz-criterion that specifies the number of acquired 1D projected views
of an object that is sufficient for accurate reconstruction of a 2D slice. Images

I. Debled-Rennesson et al. (Eds.): DGCI 2011, LNCS 6607, pp. 406–416, 2011.
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are uniquely and exactly reconstructable from a set of projections if and only if
the set of the projection angles constrains their ghost images to be supersets of
the reconstructed image dimensions.

Gardner and Gritzman [5] and Barcucci et al [1] showed how polygonal ar-
rangements of translated switching components could be used to generate ghosts
at any selection of projection angles. Their work underlined the importance of
these structures in fixing the sets that can be reconstructed uniquely from finite
sets of projected sums. Zopf [17] examined ways to minimise the size of the ar-
rangement of switching elements, a topic that is further addressed in Svalbe and
Normand [14]. Herman and Davidi [8] examined the practical effect of adding
ghosts to images reconstructed from sub-sampled sets of real projection data.
The spatial extent and range of image intensities for ghosts that are created by
iterated displacement of switching elements is the subject of this paper.

The discrete projection scheme that we use here is the finite Radon transform
(FRT) developed by [12]. These projections are applied to data embedded on
prime-sized arrays. The FRT formalism relies on the unique and exact tiling in
2D space of oriented slices in discrete images and their associated discrete Fourier
transforms. This “discrete slice theorem” approach was developed by [6].

Ghosts provide a bridge between the symmetric set of discrete projections of
the FRT and the more general asymmetric sets of the discrete Mojette trans-
form [7]. The distribution of pixel grey scales in a ghost and their spatial extent
in image space are crucial aspects that govern how easily they can be imple-
mented to de-convolve mixtures of ghosts. Reconstructions that use a projection
set with one or more missing projections will generate artefacts in the recon-
structed image. These image artefacts can be seen to be linear combinations of
ghosts, as the projected image intensities must sum to zero for each missing an-
gle. If the image contains regions that are known to be constant, then the added
mixtures of ghosts will perturb these constant values. This property suggests a
way to remove image reconstruction artefacts [4].

We examine and quantify the spatial spread and the rate at which the signed
pixel values in a ghost image grow under a scheme where iterative convolutions
are used to increment the size of the angle set for which the discrete projections
will sum to zero. Ghosts created by this method become non-minimal after just
a few iteration steps. Minimal ghosts span the full extent of the image space,
but contain the theoretical minimum of 2N pixels; N with value +1, and N
pixels with value −1. Methods to generate minimal ghosts are presented in [15].
Examination of the properties of minimal ghosts is presented in a companion
paper [14].

The finite Radon transform is reviewed in section 2. Section 3 outlines the
method of constructing ghosts by iterative convolution. Section 4 gives some
examples of ghosts constructed by iterations oriented along the row and column
directions. Section 5 compares quantitatively the growth patterns of these two
methods. Section 6 outlines some areas where this work may be extended and
summarises our current findings.
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2 Discrete Projections and the Finite Radon Transform

The Finite Radon Transform (FRT) is a linear transform that preserves all of
the information present in the original image. The image I(x, y) is always ex-
actly recoverable from its FRT R(t, m). A fast algorithm to compute the FRT
and its inverse, based on the number theoretic transform, was presented in [3].
A symmetrised form of the FRT enables a systematic redundant encoding of
data makes it suitable for an error correcting internet transmission scheme [13].
Ghosts form an inherent part of the data encoding method in the latter work.

We consider data displayed on a p×p image array, where p is prime. The FRT
projects this data at a set of p + 1 discrete projection angles. Each projection is
comprised of p parallel translated rays. Each ray sums the intensity of exactly
p pixels located in the image domain. The FRT assumes that the data wraps
periodically at the boundaries of the image. Then I(x + mp, y + np) = I(x, y)
for any integers m and n. The FRT, R(t, m), of an image I(x, y) is defined as

R(t, m) =
∑

I(〈t + my〉p, y), (1)

where 0 � t < p, 0 � m � p, and the notation 〈j〉p means taking the modulus
(or integer remainder) of j with respect to division by p. The sum R(t, 0) is taken
along column t of the image, whilst the sum R(t, p) is taken along the tth image
row. A ghost at N angles means R(t, m) = 0 for all t at N values of m.

The discrete projection angle, m, is defined as the gradient of a line, or projec-
tion ray, linking pixels located at points m steps across and one pixel down from
each other. The projection angle tan−1(1/m) can be re-mapped to conventional
tomographic angles, with one unique angle for each value of m, as the direction
of the ray that links nearest neighbour pixels that lie on a ray with the same
value of t [10]. Then θj = tan−1(yj/xj), where the vector linking nearest neigh-
bour pixels has relative coordinates (xj , yj). A scheme to perform exact discrete
rotations of FRT projections was presented in [16]. Affine transformations, in the
spatial domain or in FRT space, can be applied to perform discrete rotations
on ghost images. The property of projections summing to zero for N projection
angles is retained under these transformations, provided that the affine mapping
is invertible.

3 Generating Ghosts by Iteration

Figure 1 shows the principle of iterative ghost generation. An initial ghost, usu-
ally corresponding to zero-sum projections along the row or column direction,
is chosen. This ghost has a trivial structure, requiring only 2 pixels, one with
value +1 and the other with value −1. The separation of these pixels is ar-
bitrary, but to maximise ghost compactness, the two pixels are kept adjacent
(Figure 1(a)). This pair of pixels is propagated into other discrete projection
directions (for example along the column direction, Figure 1(b), and the diago-
nal direction, Figure 1(c)). A sign-reversed copy of the initial ghost is added at
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(a) (b) (c) (d)

Fig. 1. Pairs of +1 and −1 pixels can be displaced and added iteratively to produce
cancellation in new directions. A horizontal ghost a) is shifted vertically b) and then
diagonally c) to produce a ghost that is invisible at three projection directions: 0, 45
and 90 degrees. d) The third step can be translated so that one pixel with a +1 value
has the same location as a pixel with a −1 value. This reduces the number of image
pixels to 2N − 2.

some displacement along a new angle, ensuring cancellation of the sums in both
original and the new direction is preserved. This process is repeated to include
all of the angles for which the ghost must sum to zero. After N steps it is possi-
ble to attain a maximum image intensity of 2N if there is no overlap of the +1
and −1 values at the same pixel location after the dilation.

The sign-reversed ghost can be deliberately translated to ensure the next −1
valued pixel is superimposed on the location of the last +1 valued pixel. This
method always cancels at least two of the current ghost pixels and reduces the
spatial extent and rate that pixel intensities will increase under subsequent itera-
tions. The rate of growth of pixel intensities in iterated ghost images still remains
O(2N ).

4 Ghost Generation by Row vs. Column Oriented
Iteration

The FRT, R(t, m), projects data from a symmetric I(x, y) space of size p × p.
However the row (x) direction is arbitrarily chosen as the t axis which represents
the displacement of each projected ray. The projection angle m accumulates as
displacements along the column (y) direction at step 〈my〉p. The FRT projections
thus turn out to be sensitive to the row or column symmetry of any process we
apply.

A simple algorithm is given in Algorithm 1 to describe iterative ghost con-
struction, in an initially blank p× p 2D image space, A(x, y).

Here the function CS denotes a circular shift of the matrix A. The operation
CS moves the origin of the matrix A to the point (x, y). The pixel locations
(and the pixel content) wrap modulus p under circular shifts. The algorithm is
iterated N − 1 times to produce the set of N required discrete projection angles.
Gradient xi : yi corresponds to an angle at xi steps across and yi steps down.

For row displacements, the circular shift parameters take the values 1 � xi �
N and yi = 1. An example of the ghosts produced by this method is given in
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begin Ghost Construction
A ← 0 ; // A is an empty p × p array

// A contains initial ghost, here along direction m = 0
A(0, 0) = +1;
A(0, 1) = −1;
for i ← 1 to N − 1 do

// Iteratively subtract shifted versions of A from A
A = A − CS(A, [xi : yi]);

end

end

Algorithm 1. A simple algorithm describing iterative ghost construction

Figure 2(a) and the FRT of that ghost image is shown in Figure 2(b). Because
the displacements are here m steps across for each step down (m : 1 gradients),
the directions of the zero-sum ghosts correspond to sequential values of m. The
sum of the absolute values of all pixels in row-dilated images is always exactly 2N
after N row-oriented dilations. The spatial extent of the ghost after 8 dilations,
as expected, covers 9 full image rows.

For column displacements, the circular shift parameters are xi = 1 and 1 �
yi � N . An example of the ghosts produced by this method is given in Figure 3(a)
and the FRT of that ghost image is shown in Figure 3(b). Because the shifts
here are one step across for m steps down (1 : m gradients), the directions of
the zero-sum ghosts are sequential values of 1/m = m−1 (mod p). The angles
are hence sequential in the inverse values of m, the integer angle parameter.

The sum of the absolute values of all pixels in column-displaced images after
N dilations varies slowly with N , as shown in Table 1. The spatial extent of the
ghost after 8 dilations covers 8 image rows (the initial ghost, m = 0, is a column
entry).

Table 1. Growth of the dynamic range of the absolute values of the ghost pixels after
N iterations along the row and column directions. The “sum absolute” figure is the
integrated intensity of the absolute value of all the ghost image pixels for each N . The
values here are computed for an array size p = 127.

Number of ghosts, N 7 8 10 12 16 20

Row Iteration

min/max −5/5 −6/8 −20/18 −49/58 −468/526 −4968/5448

Sum absolute 27 28 210 212 216 220

Column Iteration

min/max −1/1 −1/1 −2/2 −4/4 −21/21 −146/146

Sum absolute 26 40 104 304 3040 34224
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(a) (b)

Fig. 2. (a) A 17 × 17 ghost image I(x, y) with N = 8 zero-sum projections created
by row-oriented iterated convolutions. (b) the FRT, R(t,m), of (a). The first 8 rows
corresponding to m = 0 to 7 are zero-sum projections. The pixel values in (a) range
from −6 (shown as black) to +8 (shown as white). Mid-grey corresponds to a value of 0.
The summed pixel values in (b) range from −56 to +70. The bracketed regions enclose
empty image and projection space, respectively. The large values on the bottom row of
(b) are the row sums (m = p) of the pixel values shown in the image (a). These values
accumulate rapidly for row-oriented displacements.

(a) (b)

Fig. 3. (a) A 17 × 17 ghost image I(x, y) with N = 8 zero-sum projections created
by column-oriented iterated convolutions. (b) The FRT, R(t,m) of (a). The 8 rows
corresponding to m = {0, 1, 3, 5, 6, 7, 9, 13} are zero-sum projections. The black arrows
point to these zero-sum projections. The pixel values in (a) range from −1 (shown as
black) to +1 (shown as white). Mid-grey corresponds to a value of 0. The summed
pixel values in (b) range between −6 to +8. The bracketed portion of the image space
in (a) is empty.
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5 Growth of Iterated Ghosts

Table 1 shows examples of the growth of ghost image pixel values under the two
methods outlined above.

The values given in Table 1 are sensitive to p when N ≈ p because of the
strong overlap of pixel positions after each wrapping. For p ! N , the ghost
pattern wraps, at modulus p, around the array in a clean spiral pattern that
causes minimal pixel position overlaps. In Table 1, p = 127 and the maximum
value of N is 20.

A log plot of the mean absolute ghost image pixel value (gmax) as a function
of the number of ghost angles, N , is well fitted by a straight line. For the column
displacements, log2(gmax) ≈ 0.7(N−9). For the row displacements, log2(gmax) ≈
0.8(N − 5). The value of N at which we observe the onset of pixel intensities
rise above +1 and −1 is smaller for the row-based dilations. The rate of growth
of ghost image pixel values is significantly greater for the row-based approach
rather than for column-based iteration.

Examples of ghost images at a larger N and image scale are given in Figure 4.
Despite the large range of pixel values required to construct these ghosts, their
spatial extent is quite small (being confined to 20 rows or columns respectively
for N = 20). The small spatial footprint of iterated ghost images may be a
significant advantage in many applications [2,4].

Applying affine mappings (computed modulus p) to N zero-sum projection
ghost images such as those in Figure 5 spreads the ghost pixels entries across
the image space. However the resultant affine-mapped ghost images still have N
zero-sum projections, albeit at a new set of FRT angles.

6 Further Work and Conclusions

The multi-valued ghosts shown here have been used in “de-ghosting” applica-
tions where rows of missing image data can be recovered exactly [4,2]. There
we exploited the fact that the correct data is known to have zero or constant
value across redundant parts of the image space. Missing data causes non-zero
reconstructions in those regions that should be zero. Missing projection data
can be regarded as being comprised of linear combinations of scaled and shifted
ghost images.

The ghost images in Figure 4 are reminiscent of the Gabor oriented-filters
used in texture analysis. It would be interesting to pursue this connection, as
the 1D Fourier transform of each FRT row corresponds directly to a 1D slice in
2D FFT space.

The great advantage of ghosts constructed from only +1 and −1 pixel values
is that they can be used to create a mixture of image and anti-image data where
the combined image then has zero-sum projections at N angles. This type of
“expanded” ghost was used in [13] to encode redundancy into data for forward
error correction in a proposed data transmission scheme. For small N (N < 9),
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(a)

(b)

Fig. 4. Two 251×251 ghost images, each image has N = 20 zero-sum projection angles.
The row-iterated ghosts in (a) have pixel values that range from −4968 to +5448. The
values in (b), for column-iterated ghosts, range from −146 to +146. The original image
intensities have been both normalised to the range 0 − 255 for display.
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(a)

(b)

Fig. 5. A 127 × 127 ghost image with N = 29 zero-sum projections. Here the column-
iterated ghosts have wrapped around the array from bottom to top. (b) Affine transform
of (a) is still an N = 29 ghost image, but at a new set of FRT angles. The same pixel
intensities are now mapped uniformly across the image space in (b).
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the dilation method yields ghosts with pixel values restricted to ±1. For these
cases it is possible to keep a single +1 pixel at (0, 0) and reorder the pixel
placements on subsequent rows whilst preserving the ghost properties.

Adding a copy of a negated ghost to a +1 pixel position cancels that pixel
value to zero. Applying this process repetitively enables creation of a large blank
space within the ghost structure that makes it suitable for image/anti-image
generation (see Figure 6). The increase in pixel values of the overlaid ghosts
causes larger intensities in the anti-image as it is synthesized from scaled image
values multiplied by the brightness of the lower components of the ghost data.
The addition of displaced ghost images causes further lateral spread of the ghost
pixels. This method of creating “clear space” in a ghost image is then limited to
clearing rows until the ghost image/anti-image wraps around to the top of the
array.

(a) (b) (c)

(d) (e)

Fig. 6. The +1 pixel in the top left corner of the top row of the ghost image is retained
in the sequence (a) through (e). Translated copies of image (a) are added to the second
row of (a) to produce image (b), which has zero pixel values on row 2. The process
is repeated to zero the pixel entries on row 3 in (c), row 4 in (d) and row 5 in (e).
The ghost image in (e), being composed of translated and scaled copies of the ghost
image in (a) has exactly the same zero-sum projection rows after applying the FRT.
The original image intensities in (a) through (e) have been normalised to the range
0 − 255 for display.
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Properties of Minimal Ghosts
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Abstract. A ghost image is an array of signed pixel values so positioned
as to create zero-sums in all discrete projections taken across that im-
age for a pre-defined set of angles. The discrete projection scheme used
here is the finite Radon transform. Minimal ghosts employ just 2N pix-
els to generate zero-sum projections at N projection angles. We describe
efficient methods to construct N th order minimal ghost images on prime-
sized 2D arrays. Ghost images or switching components are important
in discrete image reconstruction. Ghosts usually grow larger as they are
constrained by more projection angles. When ghosts become too large
to be added to an image, image reconstruction from projections becomes
unique and exact. Ghosts can be used to synthesize image/anti-image
data that will also exhibit zero-sum projections at N pre-defined an-
gles. We examine the remarkable symmetry, cross- and auto-correlation
properties of minimal ghosts. The geometric properties of minimal ghost
images may make them suitable to embed in data as watermarks.

1 Introduction

Ghosts and switching components play an important role in deciding whether
an exact discrete image can be reconstructed from a given set of projections.
Switching components enable the data located at certain image positions to be
interchanged whilst leaving unchanged one or more projected views of that data.
Similarly, ghosts are primitive images that can be added to any existing data
set without changing some projected views of that data [11,14]. A unique image
is able to be reconstructed, without prior information or assumptions, when the
addition of any ghost to an image is prohibited by the constraints imposed by
the projections of that data.

This paper presents an efficient way to construct very large numbers of visually
distinct ghost images, each of which has N zero-sum projections. These images,
constructed on a p × p 2D array, where p is prime, are comprised of N pixels
with value +1 and N pixels with value −1. Affine transforms can be applied to
remould the spatial distribution of the 2N pixel entries as desired.

Our first application of these minimal ghosts is to encode redundancy into
image data. Ghosts form a direct, causal link between data in image space and
projected views of that data in some projection space. Here we purposefully cou-
ple original image data with anti-image data built from ghost images. Combining
image and anti-image data into the same space guarantees it too will have zero-
sum projections at the same pre-selected angles. The location of the anti-image

I. Debled-Rennesson et al. (Eds.): DGCI 2011, LNCS 6607, pp. 417–428, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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data is restricted to fall within redundant portions of the original image space
(any region where the image has constant or zero values). Redundancy that was
designed in projection space is then able to be explicitly encoded into the spatial
domain data. This approach has relevance to forward error-correction schemes
in redundant data transmission [18].

Our second application of minimal ghosts exploits the strong geometric con-
straints of locating 2N pixels so that they sum to zero along N projection di-
rections. Minimal ghost images have strong symmetry, compact auto-correlation
and diffuse cross-correlation properties. Minimal ghost images could serve as
low-visibility, high-security and robust watermarks.

Section 2 reviews briefly the discrete projection scheme in which ghost image
pixel values sum to zero. Section 3 compares the complex ghost structures created
by straight-forward iterated convolutions with the more demanding requirements
to synthesize N th order ghosts using O(N) rather than O(2N ) pixels. Observa-
tions on the systematics of the minimal ghost generation method are made here.
Section 4 gives examples to highlight the strong symmetry properties of minimal
ghosts. In Section 5, we use minimal ghosts as the skeletal structure to construct
image/anti-image combinations. The combined image/anti-image data inherits
the zero-sum projection properties of the ghost image. Section 6 demonstrates
the high auto- and low cross-correlations that exist between minimal ghost im-
ages of order N . Section 7 summarises our current conclusions and foreshadows
extensions to this work.

2 Discrete Projections, Finite Radon and Affine
Transforms

The projection scheme used here is that of the finite Radon transform (FRT)
[17]. FRT and its inverse are based on the paired transforms developed by
Grigoryan [6] that exactly splits a 2D DFT signal into a set of 1D discrete
oriented slices. The FRT is a highly symmetrised form of the discrete Mojette
projective transform [7].

All information present in an original image I(x, y) is captured, in full, by
the set of discrete FRT projections, R(t, m). I(x, y) is hence exactly recoverable
from R(t, m). A fast algorithm to compute the FRT projections and to invert
them, based on the number-theoretic transform, was presented in [3]. The FRT
is well-suited for the systematic encoding of redundant data. This approach was
exploited in a proposal for an efficient forward error-correcting internet data-
transmission scheme [18]. Ghost images were used for systematic encoding of
the data in that work.

The FRT projects data from a p × p image array, where p is prime, at a
set of p+ 1 discrete projection angles. Each projection is comprised of p parallel
translated rays. Each ray sums the intensity of exactly p pixels located across the
image domain. The FRT projection rays wrap periodically when they encounter
any boundary of the image. The FRT, R(t, m), of an image I(x, y) is defined as:
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∀m ∈ [0, p− 1], R(t, m) =
∑

y

I(〈t + my〉p , y) ; R(t, p) =
∑

x

I(x, t). (1)

The translate parameter t has 0 ≤ t < p, the projection angle parameter m has
0 ≤ m ≤ p. The notation 〈j〉p means taking the modulus (or integer remainder)
of j with respect to division by p.

The discrete projection angle, m, is defined as the gradient of a projection ray
that links pixels located m steps across and one pixel down from each other. The
projection angle tan−1(1/m) can be re-mapped to conventional tomographic an-
gles, with one unique angle for each value of m [12]. There the nearest-neighbour
pixels that belong the same translate, t define the ray direction. The sum R(t, 0)
is taken along column t of the image, whilst the sum R(t, p) is taken along the
tth image row. A ghost image with N zero-sum projection angles has R(t, m) = 0
for all t at N values of m.

A scheme to perform exact, discrete rotations of image data from within the
FRT domain was presented in [20]. The property of parallelism is preserved by
affine mappings, whether the mapping is applied in image or projection space.
Arnold’s cat [1] provided an early example of information-conserving, discrete
image mappings. The parallel, zero-sum projected rays in any ghost image will
be retained as parallel, zero-sum projections after any invertible affine transfor-
mation is applied to that image.

3 Constructing Ghosts and Minimal Ghosts

3.1 An Overview of Ghosts

Non-minimal ghosts can be constructed in a straightforward way using a process
of iterated convolutions as has been shown by the earlier work of [2,5,10,23].
Fig. 1a shows a pair of +1 and −1 points that will form a zero-sum projec-
tion when added to any row of an image. This primitive shape can be propa-
gated at some new angle, for example along the column directions, as shown in
fig. 1b. Adding a displaced copy of the original ghost, with signs reversed, means
that the sums taken in the original direction and along the new direction are
both guaranteed to be zero, as shown again in fig. 1c, where the cancellation
now includes the diagonal direction. This simple propagating process results in
a ghost image that contains up to 2N pixels after displacing the accumulating
shapes in N directions. The complexity of iteratively-built ghost structures rises
exponentially with N .

The displacements can be overlapped, as shown in fig. 1d, to reduce the num-
ber of pixels required to form a ghost image. In a periodic array, a large dis-
placement that makes the image wrap, modulus p, back onto itself can also be
used to effect the partial cancellation. A related paper [21] reviews the use of
N iterated convolutions to produce ghosts with N zero-sum projection angles.
That paper examines the rate of growth of the dynamic range and the increase
of spatial extent of ghost images, as a function of N, the number of zero-sum
projections.
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+1 −1

(a)

+1 −1
−1 +1

(b)

+1 −1
−1 +1

−1 +1
+1 −1

(c)

+1 −1
−1 0 +1

+1 −1

(d)

Fig. 1. Groups of +1 and −1 pixels displaced in some new direction maintain their
cancelling sums in that direction. A horizontal ghost a) is displaced vertically b) and
then their union is displaced diagonally c) to produce a ghost that is invisible at three
projection directions: 0, 45 and 90 degrees. d) The third dilation can be displaced so
that one pixel with a +1 value has the same location as a pixel with a −1 value. This
reduces the number of ghost image pixels to 2N − 2.

3.2 Minimal Ghost Construction

Our objective here is to produce ghosts with a large number N of zero-sum
projections using the smallest possible number of non-zero pixels. Fewer pixels
are required if a +1 pixel can form a zero-sum with −1 pixels that lie in more
than one direction. If each of the N pixels with value +1 can be positioned to
line up with N pixels of value −1 along exactly the same N directions, then a
total of just 2N pixels are required to construct an N th order ghost.

An efficient method to generate minimal ghosts was presented in [22]. It relies
on finding integer values a, b, c and d for a matrix T = [a b; c d], such that
the matrix T 2N , evaluated modulus p, yields the identity matrix I = [1 0; 0 1].
This procedure is akin to finding the cyclic primitive roots of a complex vec-
tor, quaternion or pseudo-tensor. Such matrices will exist for some values of p,
because integers with exponent N are cyclic when they are computed modulus p.

The initial matrix T is used to map the (x0, y0) coordinates of (an arbitrarily
selected) +1 ghost pixel location (here called C0) to produce the first −1 ghost
pixel location (here called S0). The matrix T i then remaps that current (x, y)
point to the location of the next +1 (for i even) or −1 (for i odd) valued ghost
pixel location (here called Ci and Si) respectively. The matrix T 2N−1 maps the
coordinates of the last Si point back to C0, the coordinate of the initial starting
point. Examples of T and corresponding Ci and Si points for some values of N
are given in appendix A.1. To check this procedure works, the FRT projection,
R(t, m), of the p× p ghost image is computed and the value of R must be zero,
for all t, for N values of m.

At present, we employ a simple brute-force search method to find a candidate
matrix T . Not all matrices T for which T 2N = I (mod p) will produce minimal
ghosts. We have not conducted a detailed investigation of the properties of the
working matrix solutions, but have observed some of the systematic traits in the
solutions for T that do work. For example, T has solutions when p = 2αN ± 1,
where α is a positive integer. The largest value of N that leads to non-trivial
ghost results is 2N = p + 1. Solutions for N = p or p − 1 can be found, but
these lead to the so-called “universal ghosts”, strings of pixels that form 4- or
8-connected lines in image space. Universal ghosts form zero-sums for all but
one or two of the p + 1 FRT directions [22].
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The structure of ghosts becomes simpler in image or projection space as N
approaches either 1 or p. This result is strikingly similar to that for the decom-
position of open, median and close filters from mathematical morphology into
sets of primitive erosions (or dilations) [15,16,19]. In this respect, minimal ghosts
with the “median” value of N = (p± 1)/2 will have the greatest structural com-
plexity. These median-minimal ghosts offer the optimal compromise of having
a large number of zero-sum angles, yet maintaining a sparse distribution of ±1
pixel values spread across the image.

3.3 Systematics of Minimal Ghost Construction

Valid solutions for T are given by T = [0 1; p− 1 xi], where xi is an element of a
set X of integers. Each xi ∈ X gives a different, visually distinct, working ghost
image solution. Variations of the above form include T = [n 1; nxi − 1 xi] and
T = [0 n; n−1 xi], where n−1 is the inverse of n, modulus p. Here the common
link is that det(T ) = 1. The sum and product, modulus p, of the full set of
integers xi ∈ X also have interesting properties. For example, for N = 2p′,
where p′ is prime,

∏
xi = ±p′ with the sign fixed by p′ = 4α±1 for some integer

α. When N is even, X contains pairs of complementary values, xi and p− xi.
The ghost images generated by each solution xi appear visually distinct, but

they are related to each other through affine spatial transforms. The integers xi

depend on N and the array size p for which T 2N = I. Some examples of the set X
that correspond to various N are given in appendix A.2. However the size of the
set X , nX , depends only on the value of N . If N is prime, N = 2nX(N)+1; if N
is a power of a prime, for example pα, then nX = pα−1nX(p). For composite N ,
for example, N = i×j×k . . . , then nX(N) = (2m−1)nX(i)×nX(j)×nX(k) . . . ,
where m is the number of odd factors of N .

Choosing different initial coordinates C0, also gives rise to visually different
ghost images. Often the N values of m that form zero-sums will fall into distinct,
non-overlapping selections of the p + 1 possible discrete projection angles. The
choice of the initial location (x0, y0) for C0 is arbitrary, provided only that this
choice does not lead to degenerate mappings, where the coordinates for Ci+1 =
K × Ci and Si+1 = K ′ × Si, for some constants K and K ′. Degeneracy results
when the same projection angle m satisfies the zero-sum constraint N times.

By symmetry, if the choice C0 = (j, k) leads to a degeneracy, then so too does
C0 = (k, j). Increased levels of degeneracy occur for the smaller integers in the
set X . If (i, j) and (i, k) are degenerate choices for C0, we find that 〈j + k〉p = xi.
Degenerate mappings do not occur for all N . For example, when N = (p + 1)/2,
exactly two sets of mutually exclusive zero-sum projection angle sets can form.
There are no ‘spare’ projection angles to act as degenerate m’s.

The size of the set X , its constituency and the degeneracy under the choice
of array size p and the C0 location are all interesting parameters to study from
a number-theoretic perspective. These parameters rely on the spacing of prime
integers and cyclic permutations of prime sets.
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Fig. 2. a) A 23 × 23 image space I(x, y), containing twelve +1 pixels (white) and
twelve −1 pixels (black). The pixel locations are designed to make the projected
sums of this image vanish at 12 pre-selected angles. b) The 23 × 24 discrete pro-
jections, R(t, m), of the image in a). The projection translate variable, t, is plotted
horizontally, with the discrete projection angle, m, shown as the vertical axis. R(0, 0)
is at the top left corner of b). Note all the projection values at 12 distinct angles
(m = 0, 3, 7, 8, 9, 10, 13, 16, 17, 18, 19, 23) have the value zero (shown here as grey).

An example 12th order minimal ghost image is shown in fig. 2a. This 23× 23
image contains 12 pixels with value +1 (shown as white) and 12 pixels with
value −1 (shown as black). Projecting this image results in zero-sums at 12
projection angles, as shown in fig. 2b.

4 Properties of Minimal Ghost Images

The zero-sum properties of a ghost image remain invariant under intensity scaling
(for example, using pixel values of ±g instead of ±1), under image translation
(where addresses wrap modulus p) and affine transforms where the mappings
are done modulus p (provided the affine mapping, as expressed in homogenous
coordinates, has a proper inverse). The sum of scaled and translated N th order
ghost images corresponding to a given set of N projection angles is then also a
ghost image at those same N angles.

A most remarkable property of minimal ghosts is their strong symmetry. When
N is even, ghost images generate N/2 lines that link pairs of the +1 points and
N/2 lines that link pairs of the −1 points. Incredibly, these N lines have a com-
mon intersection point that exactly bisects each of these N lines (see fig. 3).
For odd N ghosts, the N lines linking pairs of +1 and −1 points have a com-
mon intersection point that also bisects each of these N lines. This remarkable
symmetry recalls the “n-gon” behaviour of cyclic integers in the Fermat and
Carmichael prime number sets [3].
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(a) (b)

Fig. 3. Minimal ghosts for a) N = 8, xi = 8 for C0 = (1, 4) and b) N = 9, xi = 3 for
C0 = (1, 5) on a 17 × 17 array. Lines joining paired ghost pixel locations are shown.
The N lines are all perfectly bisected at a single point of symmetry, located here at
(p/2, p/2). The position of two pixels in a) have been wrapped to the opposite edge of
the array, modulus p (shown by the box) to complete the symmetry.

For each non-degenerate choice of starting point, C0, the symmetry point
for a ghost image generated by the T 2N method is located at (p/2, p/2). Other
symmetry points, for example, (0, 0), (p/2, 0) and (0, p/2) are located between
periodic replications of the p × p ghost image. The N -line bisection symmetry
is preserved after applying affine transforms, but can be hard to spot visually.
The mean location, (xN , yN), of all of the Ci points is always coincident with the
mean location of all of the Si points. We find this point using xN = N−1∑Ci(xi)
and yN = N−1∑Ci(yi) (or, equally, by using the

∑
Si coordinates). Here

N ×N−1 ≡ 1 (mod p).
The ghost images generated by the T 2N method always have either odd- or

even-reflective symmetry about the leading diagonal. The ghost image of fig. 2a
has even symmetry, whilst those of fig. 3 both have odd symmetry. After a trans-
pose operation, the positions of the Ci and Si pixels are exchanged (Ci ↔ Si)
under odd symmetry or simply swap positions (Ci ↔ Cj , Si ↔ Sj) under even
symmetry.

5 Compacted Ghosts and the Construction of
Image/Anti-image Data

Here we warp the structure of a ghost image, like those in fig. 3, using affine
transforms. The aim is to isolate a single ghost image pixel as far away as possi-
ble from its neighbouring points. This warping opens up a large space in which
the targeted point can make maximum use of the ghost translation invariance
property. Fig. 4a shows a 127× 127 ghost image with N = 7. It has a single +1
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point at (0, 0) and the next non-zero-pixel is located at (63, 33). The ghost in
fig. 4a can be scaled to some arbitrary intensity and then translated across 127
pixel locations for each of 33 rows. The scaled and translated ghosts can be used
to portray an image.

An anti-image is constructed by scaling the N ghost pixels by a different
intensity at each translation of the ghost image. The space that follows the clear
rows of the first isolated ghost pixel then contains N−1 positive and N negative
copies of the image data. The combined image and anti-image data has zero-sums
at the same N selected projection angles as the ghost image. Fig. 4b shows an
example of an image and anti-image constructed from a 127×33 section, cropped
from the Lena image, embedded in a 127× 127 space. The ghost here has order
N = 7. Both images shown in fig. 4 have zero-sum projections at m = {5, 38,
60, 68, 85, 102, 110}.

The interest here lies in maximising the amount of clear image space that can
be created by affine distortion of these minimal ghost images. We have, so far,
only applied random affine mappings to the ghost images and then searched to
find those ghosts that yield the largest clear row space. The clear-space capacity
varies with N and p. For example, at p = 421, we can find 130 clear rows when
N = 4. Table 1 gives values for Nrows, the number of empty image rows, as a
function of N , the number of zero-sum projections, for p = 127.

The solutions given in Table 1 are the result of a non-exhaustive, brute-force
search. We intend to apply these compacted ghosts to help symmetrise sets
of Mojette projections and hence reconstruct images from asymmetric sets of
projection data [4] and for data encoding schemes [18].

(a) (b)

Fig. 4. a) An N = 7 compacted ghost in a 127× 127 space that exhibits a large clear
space between ghost pixels. There are 33 rows of clear image space between the +1
pixel at (0, 0) and the next −1 ghost image pixel, located at (63, 33). b) A 127 × 127
image comprised of data (rows 0–33) followed by anti-data (rows 34–126). The FRT of
the combined image shown in b) is zero at 7 discrete projection angles.
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Table 1. Nrows, the largest number of completely empty rows, for a 127 × 127 ghost
image space, as a function of N , the number of zero-sum angles

N 3 4 6 7 8 9 14 16 18 21 32 64
Nrows 35 33 22 32 30 20 15 14 13 9 7 5

6 2D Correlations between Minimal Ghost Images

There is considerable interest in the generation of 2D sequences that have perfect-
or near-perfect correlation properties [8,9,13]. A perfect sequence on an m × n
array has a normalised peak auto-correlation value of m×n at one location and
is zero everywhere else. Near-perfect sequences have off-centre correlation values
of ±1 or ±2, rather than zero. The theoretical interest here extends to practical
applications in encryption, message-coding and watermarking applications [13].

The remarkable geometric properties of minimal ghosts lead us to examine
the correlation properties of ghost images. Ghosts with N zero-sums contain
N pixels of +1 and N pixels of −1. The peak value of a p × p ghost image
auto-correlation is then 2N, considerably less than p2 .

However these ghost images are sparse and “random” in appearance and so
are easy to hide as small perturbations of existing data structures. The linear
structure of universal ghosts, where N ≈ p, makes them less suitable as can-
didates for watermarks. The largest non-trivial (median) ghost images contain
N = (p + 1)/2 points. These ghosts provide randomised, high density coverage

(a) (b)

Fig. 5. Ghost images for N = 64, p = 127 generated by xi = 3 and a) C0 = (1, 0)
and b) for C0 = (1, 1). The auto-correlation of a) has a peak value of 128 at (127, 127),
other locations have absolute values ≤ 2. The cross-correlation between a) and b) has
values +1, 0 or −1.
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of the p×p array space and have a peak auto-correlation value of p+1. Although
ghost images are generated on p × p arrays, the ghost images can be regarded
as occupying a subset of this space, particularly after applying the compacting
affine transforms discussed in section 5.

The strength of the cross-correlation between minimal ghost images depends
on whether they have the same value of N , if the ghosts were generated by the
same matrix T with the same xi ∈ X , and if they have the same set of zero-sum
angles (i.e. depending on the choice of C0). The worst case cross-correlations
between ghost images give rise to values of ±4 or less. The cross-correlation of
a ghost with a random affine-mapped version of itself is thus restricted to ±4 or
less, independently of the array size p.

The off-peak value of ghost image auto-correlations is ±2 or less. For example,
at p = 127 and N = 64, the ghost generated by xi = 3 has a peak auto-
correlation value of 128, with 3844 pixels of grey value -2, 504 at −1, 55316 at
zero, 524 at +1 and 3720 pixels with value +2 (see fig. 5).

7 Conclusions

An N th order ghost image contains pixels with value ±1 or 0 that are aligned to
create zero-sum projections for N discrete projection angles. We have demon-
strated the means to generate large numbers of distinct ghost images on 2D
prime-sized arrays, with each image containing the minimum possible 2N non-
zero pixels.

These minimal ghost images exhibit interesting discrete geometric properties.
The N lines that link specific pairs of ghost pixels were shown to intersect at a
single symmetry point that bisects, exactly, each of these N lines. The shape of
ghost images can be warped by affine transforms to maximise or minimize the
distance between neighbouring ghost pixels. Compact ghost images permit the
construction of significantly-sized blocks of image/anti-image data that inherits
zero-sum projection properties from the parent ghost image.

The auto-correlation of an N th order minimal ghost has a peak value of 2N ,
with side lobes of ±2 or less. The peak cross-correlation value for pairs of minimal
N th order ghosts can be as low as±1 for ghosts that have distinct sets of zero-sum
angles, but it is always less than ±4. Many ghost images can be nested within the
same data region with zero or minimal pixel overlap. The correlation properties
of nested and co-located ghost images suggest very flexible and reliable signal
recovery strategies. Minimal ghost images may make good data watermarks.

We are keen to further understand the properties of the matrix T and the
set X of generating integers that produce ghosts on prime-sized arrays. Using
a symbolic mathematics package to explore the elements of the matrices T and
T i has revealed some interesting polynomial patterns. There are strong links
between N th order minimal ghost images and N by N Latin squares [22]. Large
order Latin squares provide very interesting data encryption prospects.

It would also be useful to develop efficient methods to compact ghost images
by purposeful means, rather than, as now, searching through large numbers of
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random affine ghost transformations. Finding the maximum and minimum size of
the empty space between non-zero ghost pixels is also important. Establishment
of a theoretical upper-bound for “collision-free” translation of an N th order ghost
in a p× p image would be an important finding.

The method used here to find minimal ghosts on prime 2D arrays can probably
be extended to obtain N th order zero-sums projected across planes or lines in
prime 3D cubes and higher dimension arrays. This will also be an interesting
topic to pursue.
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A Appendices

A.1

Example lists of Ci and Si ghost pixel coordinates and their zero-sum gradients,
mi are given below for (left) p = 17, N = 8, T = [1 0; 16 8], C0 = (1, 4), see
fig. 3a and (right) p = 17, N = 9, T = [1 0; 16 3], C0 = (1, 5), see fig. 3b.

Ci = 1 14 0 3 16 3 0 14
4 6 11 13 13 11 6 4

Si =
4 6 11 13 13 11 6 4

14 0 3 16 3 0 14 1

mi = 1 2 3 5 6 7 9 16

Ci = 1 14 12 2 2 12 14 1 10
5 3 16 7 16 3 5 15 15

Si =
5 3 16 7 16 3 5 15 15

14 12 2 2 12 14 1 10 1

mi = 4 5 7 8 10 12 13 15 16

A.2

Lists of xi ∈ X , for some example values of N , at selected values of p are given
below.

N = 7, p = 13: {3 5 6} p = 127: {61 91 103}
N = 8, p = 17: {5 8 9 12} p = 127: {42 48 79 85}
N = 9, p = 17: {3 4 10} p = 127: {53 87 114}
N = 11, p = 23: {9 12 13 17 19} p = 131: {10 33 53 75 82}
N = 14, p = 29: {10 12 13 16 17 19} p = 139: {37 46 54 85 93 102}
N = 37, p = 73: {3 5 8 11 18 20 26 27 29 37 38 40 43 50 51 56 57 66}
N = 39, p = 79: {5 26 32 35 37 41 55 56 58 59 72 76}
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Abstract. In this article we introduce mathematical morphology on
hypergraphs. We first define lattice structures and then mathematical
morphology operators on hypergraphs. We show some relations between
these operators and the hypergraph structure, considering in particular
duality and similarity aspects.

1 Introduction

Mathematical morphology is a widely used theory for contemporary informa-
tion processing in various lattice frameworks. Concerning structural information
processing, mathematical morphology has been developed on graphs [6,10,15,16],
but nothing has been done yet on hypergraphs to the best of our knowledge.

Hypergraphs were introduced in the 60s as a generalization of graphs [1], where
edges become hyperedges and can connect more than two vertices, and have then
been intensively studied. They have shown their interest in various fields such as
computer science, game theory, databases, data mining, optimization [17], image
processing and segmentation [4,5].

The aim of this paper is to propose preliminary definitions and results in this
context. We consider an hypergraph defining the underlying space: H = (V , E)
with V the set of vertices and E the set of hyperedges. The powerset of V and
E are denoted by P(V) and P(E), respectively. We denote a hypergraph by
H = (V, E) with V ⊆ V and E ⊆ E .

After introducing some more notations and basic concepts related to hyper-
graphs in Section 2, our first objective (Section 3) is to define a lattice structure
(T ,$) on the hypergraphs of H, with $ a partial ordering on T such that
(T ,$) is a complete lattice (suitable structure for mathematical morphology,
as shown in [3,7,8,11]). Mathematical morphology operators on hypergraphs are
then defined in Section 4. Then, in Section 5, we consider dual hypergraphs
and establish some links between morphological dilations and hypergraph dual-
ity concepts. Finally, in Section 6 we propose a simple example for computing
similarity between hypergraphs based on dilations.
� This work was partially funded by a grant from Institut Télécom / Télécom Paris-
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2 Basic Concepts on Hypergraphs [1]

A hypergraph H denoted by H = (V, E = (ei)i∈I) on a finite set V is a family
(which can be a multi-set) (ei)i∈I , (where I is a finite set of indices) of subsets of
V called hyperedges. Sometimes we will denote V as V (H), and E as E(H). Let
(ej)j∈{1,2,...l} be a sub-family of hyperedges of E. The set of vertices belonging
to these hyperedges is denoted by V (∪j∈{1,2,...l}ej), and V (e) denotes the set
of vertices forming the hyperedge e. When no confusion may arise, we will just
denote by e the set of vertices it contains. If

⋃
i∈I ei = V , the hypergraph is

without isolated vertex (a vertex x is isolated if x ∈ V \
⋃

i∈I ei). By definition
the empty hypergraph is the hypergraph H∅ such that V = ∅ and E = ∅.

Let H = (V, (ei)i∈I) be a hypergraph. A induced subhypergraph H(V ′) of H
with V ′ ⊆ V is a hypergraph defined as H(V ′) = (V ′, (ei ∩ V ′)ei∩V ′ �=∅

). The
partial hypergraph H ′ of H generated by J ⊆ I is the hypergraph (V, (ej)j∈J ).
Given a subset V ′ ⊆ V , a subhypergraph H ′ is the partial hypergraph H ′ =
(V ′, {ei, i ∈ I | ei ⊆ V ′}). Without loss of generality we can suppose that
the empty hypergraph, H∅ = (∅, ∅) is a partial hypergraph, (resp. (induced)
subhypergraph) of any hypergraph.

The star centered at x is the set of hyperedges containing x, denoted by H(x).
The value d(x) = |H(x)| is the degree of x.

If the family of hyperedges is a set of subsets of V , we say that H is without
repeated hyperedge i.e. i �= j ⇐⇒ ei �= ej . The rank of H is the maximum
cardinality of a hyperedge. A hypergraph is linear if |ei ∩ ej| ≤ 1 for i �= j. A
loop is a hyperedge with a cardinality equal to one. A simple hypergraph is a
hypergraph H = (V, E = (ei)i∈I) such that: ei ⊆ ej =⇒ i = j.

The dual H∗ of a hypergraph without empty hyperedge and isolated vertex
H is a hypergraph whose set of vertices is isomorphic (denoted &) to the set
of hyperedges of H , and whose hyperedges are given by X1, X2, . . . Xn where
Xj = {ei|xj ∈ ei}. The transpose At of the incidence matrix A = ((aij)) of a
hypergraph H (i.e. aij = 1 iff vertex i belongs to hyperedge j) is the incidence
matrix of H∗ = (V ∗ & E, E∗ & (H(x))x∈V ): for v∗j ∈ V ∗ and e∗i ∈ E∗, v∗j ∈ e∗i
if and only if aij = 1. Consequently (H∗)∗ = H . Note that a hypergraph can be
equivalently defined as a family (potentially multi-set) of hyperedges on a set of
vertices, or as an incidence matrix.

A hypergraph H = (V, E) is isomorphic to a hypergraph H ′ = (V ′, E′) (H &
H ′), if there exist a bijection f : V → V ′ and a permutation π of I such that:
f(V (ei)) = aπ(i), for ei ∈ E and aπ(i) ∈ E′. The mapping f is then called
isomorphism of hypergraphs. Note that H & H ′ if and only if H∗ & H ′∗.

Let H = (V, E) be a hypergraph, E = (e1, e2, . . . , em). A path P in H from xi1

to xis+1 is an alternated vertex-edge sequence xi1 , ei1 , xi2 , ei2 , . . . , xis , eis , xis+1

such that {xik
, xik+1} ∈ eik

, (k = i1, i2, ..., is) and xik
�= xij , eik

�= eij (ik �= ij),
where s is called the length of path P . The distance between vertices x and y,
d(x, y) is the minimum length among those of all paths which connect x and y.
If for each pair of vertices (x, y) there is a path from x to y, the hypergraph H
is said connected.
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3 Lattice Structures on Hypergraphs

In this section we define a few lattices on hypergraphs, as the basic algebraic
structures on which mathematical morphology operators are then defined.

A lattice on the set of vertices can be simply defined by T = (P(V),⊆).
This is the classical lattice defined on the powerset of a set, with the standard
set inclusion as partial ordering. It is a complete lattice. However is it not really
interesting since it does not say anything on the structure of the hypergraph.

A more interesting lattice can be defined, based on closed sets of vertices,
involving the stars of vertices. Let H = (V, E) be a hypergraph and let V ′ ⊆ V .
We say that V ′ is a closed set if ∀(x, y) ∈ V ′2, V (H(x)∩H(y)) ⊆ V ′. We denote
by C(H) the family of closed sets with the empty set.

Proposition 1. The structure (C(H),⊆) is a complete lattice. The infimum is
∧ = ∩ and the supremum is: ∀(V ′, V ”) ∈ C(H)2, V ′∨V ” = ∩{V ′′′ ∈ C(H) | V ′∪
V ′′ ⊆ V ′′′}, i.e. the intersection of all closed sets containing V ′ ∪ V ”, and its
extension to any family. The smallest element is ∅ and the largest element is V .
Note that C(H) is a Moore family [3].

A lattice on the set of hyperedges can be defined by T = (P(E),⊆). Again
it is a classical complete lattice on the powerset of a set and classical results
can be used directly. The next definitions, on the hypergraphs themselves, are
probably more interesting.

Lattices on the hypergraphs will allow us to better account for the whole
structural information encoded in hypergraphs, considering both vertices and
hyperedges in the definition of the lattice structure.

The simplest idea is to consider the inclusion on the powerset of vertices and
edges, respectively. Other ideas could be to define a partial ordering based on
the notions of induced sub-hypergraph, partial hypergraph and sub-hypergraph.

In all cases, T is defined as:

H = (V, E) ∈ T ⇔

⎧⎨⎩
V ⊆ V
E ⊆ E
{x ∈ V | ∃e ∈ E, x ∈ e} ⊆ V

(1)

The last condition ensures that H is actually a hypergraph, where the hyperedges
are sets of vertices of V , and can be equivalently written as ∀e ∈ E, V (e) ⊆ V .
There is no equivalent restriction on V if isolated vertices are accepted.

Partial ordering based on the inclusion on the powersets of vertices and hyper-
edges

Definition 1

∀(H1, H2) ∈ T 2, H1 = (V1, E1), H2 = (V2, E2), H1 $ H2 ⇔
{

V1 ⊆ V2
E2 ⊆ E2

(2)

This definition is similar to the one used in [6] for graphs.
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Proposition 2. The following properties hold:

– $ defines a partial ordering on T .
– The infimum is: H1 ∧ H2 = (V1 ∩ V2, E1 ∩ E2), and for any family (Hi):∧

i Hi = (
⋂

i Vi,
⋂

i Ei).
– The supremum is: H1 ∨H2 = (V1 ∪ V2, E1 ∪ E2), and for any family (Hi):∨

i Hi = (
⋃

i Vi,
⋃

i Ei).
– (T ,$) is a complete lattice, which is moreover sup-generated. Its smallest

element is H∅ = (∅, ∅) and its largest element is H = (V , E). We have∨
∅ =

∧
T = H∅ and

∧
∅ =

∨
T = H.

Note that it is not complemented (in order to have E ∪ Ec = E , we would have
to consider in Ec all hyperedges that are not in E, including those which have
vertices both in V and in V c, so (V c, Ec) would not be a hypergraph in T ).

Partial ordering based on the notion of induced sub-hypergraph

Definition 2. A partial ordering can be defined from the type of inclusion which
is implicit in the definition of induced sub-hypergraph, as:

∀(H1, H2) ∈ T 2, H1 $i H2 ⇔
{

V1 ⊆ V2
E1 = {e ∩ V1 | e ∈ E2}

(3)

i.e. H1 is the sub-hypergraph induced by H2 for V1.

Proposition 3. The relation $i is a partial ordering on T .

It might be more suitable (to allow for more frequent comparisons between
hypergraphs) to propose a less strict version where E1 is only required to be
included in the set of hyperdeges of the induced sub-hypergraph:

Definition 3

∀(H1, H2) ∈ T 2, H1 $′
i H2 ⇔

{
V1 ⊆ V2
E1 ⊆ {e ∩ V1 | e ∈ E2}

(4)

Proposition 4. The following properties hold:

– $′
i is a partial ordering on T .

– (T ,$′
i) is a complete lattice.

– The infimum is: H1∧′
iH2 = (V1∩V2, {e1∩V2, e2∩V1 |e1 ∈ E1, e2 ∈ E2}∩E}),

and a straightforward extension to any family (Hi).
– The supremum is: H1 ∨′

i H2 = (V1 ∪ V2, E1 ∪ E2), and its extension to any
family (Hi).

– The smallest element is H∅ = (∅, ∅) and the largest element is H = (V , E).

Another idea involves isomorphisms, as in the following definition.

Definition 4. Let H be the set of isomorphism classes of hypergraphs. A partial
order on H can be defined, for all H1, H2 in H as:

H1 ≤f H2 ⇐⇒ H1 is isomorphic (by f) to an induced subhypergraph of H2
(5)
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Proposition 5. The structure (H,≤f ) is a complete lattice. The supremum is
sup{H1, H2}=H1∨H2 (as in Proposition 2 for $), and the infimum inf{H1, H2}
is the maximum common induced subhypergraph (and their extension to any
family).

Partial ordering based on the notion of partial hypergraph

Definition 5

∀(H1, H2) ∈ T 2, H1 $p H2 ⇔
{

V1 = V2
E1 ⊆ E2

(6)

Proposition 6. $p is a partial ordering on T , and (T ,$p) is a complete lattice.

This is simply a restriction of $ by considering only the hypergraphs with the
same set of vertices, so it will not be further considered.

Partial ordering based on the notion of sub-hypergraph

Definition 6

∀(H1, H2) ∈ T 2, H1 $s H2 ⇔
{

V1 ⊆ V2
E1 = {e | e ∈ E2 and V (e) ⊆ V1}

(7)

Note that the condition on the hyperegdes is stronger than E1 ⊆ E2 and we may
have more hyperegdes.

Another possibility would be to define $′
s by replacing the equality in the

condition on the hyperedges by an inclusion (as for $′
i).

Proposition 7. $s and $′
s are partial ordering on T .

These partial orderings may be interesting when the notions of (induced) sub-
hypergraphs are explicitly involved in the application at hand.

In the following, we use $ for defining in a general way a partial ordering
between two hypergraphs.

4 Mathematical Morphology on Hypergraphs

Algebraic Dilation and Erosion. Once we have a complete lattice, the whole
algebraic apparatus of mathematical morphology applies.

Let (T ,$) and (T ′,$′) be two complete lattices (which can be any of those
defined in Section 3, and do not need to be equal). All the following definitions
and results are common to the general algebraic framework of mathematical
morphology in complete lattices [3,7,8,11,13].

Definition 7. An operator δ : T → T ′ is a dilation if: ∀(xi) ∈ T , δ(∨ixi) =
∨′

iδ(xi), where ∨ denotes the supremum associated with $ and ∨′ the one asso-
ciated with $′. An operator ε : T ′ → T is an erosion if: ∀(xi) ∈ T ′, ε(∧′

ixi) =
∧iε(xi), where ∧ and ∧′ denote the infimum associated with $ and $′, respec-
tively.

All classical properties of mathematical morphology then hold [3,7,8], and are
therefore not recalled here.
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Structuring Element and Morphological Operations. In classical mor-
phology dilations and erosions can be expressed by means of a set, called struc-
turing element, which defines a neighborhood at each point [12], and this idea
has been used for graphs as well [16]. The structuring element “centered” at x
is Bx = δ({x}). More generally, the structuring element can be interpreted as a
binary relation between two elements, thus enabling the extension of this idea
to any lattice.

Defining morphological dilations on hypergraphs calls for canonical decompo-
sitions of the elements of the considered lattice.

In the case of the lattice (P(V),⊆), each subset of vertices V can be trivially
decomposed as V = ∪x∈V {x}, and a morphological dilation then writes δB(V ) =
∪x∈V Bx = ∪x∈V δ({x}).

In the case of the lattice (P(E),⊆), each subset of hyperedges E can be decom-
posed as E = ∪e∈E{e}, and a morphological dilation is then δB(E) = ∪e∈EBe =
∪e∈Eδ({e}).

Let us now consider the lattice of hypergraphs, with the partial ordering
$ (see Definition 1). Let H = (V, E) be a hypergraph of this lattice. For E,
a natural decomposition consists of E = ∨e∈E{e}. For V the decomposition
should be consistent with the one of E, in order to associate an “elementary”
hypergraph to each e. We thus consider V (e), the set of vertices associated with
e. Additionally, the decomposition should also involve all vertices that do not
belong to any hyperedge. We denote by V\E this set of vertices. Finally we
propose the following canonical decomposition of H , from its sup generating
property: H = (∨e∈E(V (e), {e})) ∨ (∨x∈V\E

({x}, ∅)).
The question of how the structuring element should be defined depends on

the application and on the type of desired results. Examples are provided next.

Example 1. Let us consider T = (P(E),⊆). An example of structuring element,
defining the elementary dilation of each hyperedge, consists in taking all hyper-
edges which have at least one vertex in common with the considered hyperedge:

∀e ∈ E, Be = δ({e}) = {e′ ∈ E | V (e) ∩ V (e′) �= ∅}, (8)

where the intersection applies on the sets of vertices defining e and e′. Dilating
a subset E by this structuring element means adding all hyperedges that are
directly connected to E.

As an illustration, let us consider the two hypergraphs depicted in Figure 1.
For the first one, we have for instance δ(e1) = {e1, e2, e3, e4}, δ(e2) = {e1, e2, e3},
and for the second one, δ(ei) = {e1, e2, e2}, for i = 1, 2, 3.

Example 2. Another example, where less hyperedges are added, can be obtained
by imposing a minimal cardinality on the intersection: ∀e ∈ E, Bk

e = {e′ ∈
E | |V (e) ∩ V (e′)| ≥ k}.
Example 3. Let us now consider dilations from T = (P(E),⊆) into T ′ =
(P(V),⊆). This will be useful later on when considering dual hypergraphs (see
Section 5). Then the elementary dilation should map a hyperedge to a subset of
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e1 e1

e2e2

e3e3

e4

Fig. 1. Two hypergraphs (V, E1), (V, E2), defined on the same set of vertices. Hyper-
edges are displayed as sets of vertices.

vertices. A trivial example is: ∀e ∈ E, Be = δ({e}) = {x ∈ V | x ∈ e} = V (e),
where again e is considered as a subset of vertices. This achieves the required
mapping, but does not really dilate anything.

Example 4. More interesting, we can define a structuring element as in Example
1, but considering the resulting subset of vertices: ∀e ∈ E, Be = δ({e}) = {x ∈
V | ∃e′ ∈ E , x ∈ e′ and V (e) ∩ V (e′) �= ∅} = ∪{V (e′) | V (e′) ∩ V (e) �= ∅}. As in
Example 2, we could add more strict constraints on the intersection, if we want
the dilation to include less vertices.

Example 5. Let us now consider T = ({H = (V, E)},$). An elementary di-
lation can be defined according to the proposed canonical decomposition as:
∀x ∈ V\E , δ({x}, ∅) = ({x}, ∅), for isolated vertices, and for elementary hyper-
graphs associated with hyperdeges: ∀e ∈ E, δ(V (e), {e}) = (∪{V (e′) | V (e′) ∩
V (e) �= ∅}, {e′ ∈ E | V (e′) ∩ V (e) �= ∅}).

Note that if we consider also attributes on the vertices (or hyperedges), other
examples can be provided by using a similarity between attributes. For instance
isolated vertices could be dilated by adding all vertices that have similar attribute
values.

5 Dualities

In the sequel δ({u}) will be simply denoted by δ(u).
Let H = (V, E) be a hypergraph with V �= ∅, E �= ∅, and let H∗ = (V ∗, E∗) its
dual. Let also

δ : V −→ P(V )

be a mapping. From this mapping we define another one as:

V −→ P(V )
x �−→ δ∗(x) = {y ∈ V ; x ∈ δ(y)}

Let us notice that we can also define δ∗∗ as

V −→ P(V )
x �−→ δ∗∗(x) = {y ∈ V ; x ∈ δ∗(y)}
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The following proposition establishes basic results which will be useful next
for deriving other results on duality, an important concept on hypergraphs. A
particularly interesting result is the one expressed in Corollary 1 at the end of this
section, linking morphological operators, derived rough spaces, and probability
distributions.

Proposition 8. Let H = (V, E) be a hypergraph with V �= ∅, E �= ∅ and δ and
δ∗ as introduced above; we have:

a) for all X ∈ P(V ), δ∗(X) =
⋃

x∈X δ∗(x) = {y ∈ V, X ∩ δ(y) �= ∅} (resp.
δ(X) =

⋃
x∈X δ(x) = {y ∈ V, X ∩ δ∗(y) �= ∅}) iff δ∗ is a dilation (resp. δ is

a dilation);
b) for all X ∈ P(V ), if

⋃
x∈X δ∗(x) = V (resp.

⋃
x∈X δ(x) = V ) then X ⊆⋃

X∩δ∗(y) �=∅ δ∗(y) (resp. X ⊆
⋃

X∩δ(y) �=∅ δ(y));
c) δ∗∗ = δ on V ;
d) if δ∗∗ and δ are dilations then δ∗∗ = δ.

Proof. a) Assume that δ∗ is a dilation. The first equality is obvious by definition.
Let us show the second one. Let y ∈ δ∗(X) =

⋃
x∈X δ∗(x) then there is a x ∈ X

such that y ∈ δ∗(x) ⇐⇒ x ∈ δ(y), so y ∈ {z ∈ V, X ∩ δ(z) �= ∅}.
Let X ∈ P(V ), and y ∈ {z ∈ V, X ∩ δ(z) �= ∅}, there is x ∈ X such that
x ∈ δ(y)⇐⇒ y ∈ δ∗(x), consequently y ∈

⋃
x∈X δ∗(x).

Conversely, if the equalities hold, then it follows from the first one that δ∗ com-
mutes with the supremum, and is hence a dilation.
b) Obvious.
c) Let z ∈ δ∗∗(x) then x ∈ δ∗(z), and therefore z ∈ δ(x).
In the same way z ∈ δ(x) =⇒ x ∈ δ∗(z) and z ∈ δ∗∗(x). So δ∗∗ = δ on V .
d) From the definition of a dilation.

Let δ : P(V ) −→ P(V ) be a dilation. It gives rise to a hypergraph Hδ =
(V, (δ(x))x∈V ), where δ(x) is seen as a hyperedge built by the vertices defining
δ(x). Now, let H = (V, E) be a hypergraph. We can associate a dilation to H ,
for instance by considering the following structuring function:

V −→ P(E)
x �−→ δ(x) = {e ∈ E; x ∈ e}

Proposition 9. Let δ : V −→ P(V ) be a mapping and H = (V, E) be an hy-
pergraph (V �= ∅, E �= ∅) without isolated vertex and without repeated hyperedge.
We have: H & Hδ ⇐⇒ H∗ & Hδ∗ .

Proof. Suppose that H & Hδ. Because H is without repeated hyperedge, if x �= y
then δ(x) �= δ(y), i. e. δ(x) = δ(y) implies that x = y, so δ is injective on V .
Let H = (V ; E) and Hδ = (Vδ = V ; Eδ = (δ(x))x∈V ) be hypergraphs. We have:
H & Hδ ⇐⇒ there a bijection f : V −→ Vδ such that e ∈ E ⇐⇒ f(e) = δ(x) ∈
Eδ, x ∈ V . Since Hδ has no repeated hyperedge, notice that (δ(x))x∈V ) is a set
{δ(x), x ∈ V }.
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It is known that H & Hδ ⇐⇒ H∗ & H∗
δ , with H∗ = (V ∗ & E; E∗ &

(H(x)x∈V )), H∗
δ = (V ∗

δ & (δ(x))x∈V ); E∗
δ & (H(x)x∈V ). It is sufficient to show

that H∗
δ & Hδ∗ , with Hδ∗ = (Vδ∗ & V ; Eδ∗ & (δ∗(x))∈V ). Let g be a correspon-

dence defined by:
{δ(y), y ∈ V } −→ V
δ(x) �−→ g(δ(x)) = x

Since δ is injective, we have δ(x) = δ(y) =⇒ x = y = g(δ(x)) = g(δ(y)), this
correspondence is well defined i. e. it is a mapping.
Clearly g is surjective; moreover g is injective since |{δ(y), y ∈ V }| = |V |. Hence
g is a bijection.

Now, H(x) ∈ E∗
δ ⇐⇒ H(x) = {δ(ui), x ∈ δ(ui)} = {δ(u1), δ(u2), . . . δ(uk)} ∈

E∗
δ ⇐⇒ g(H(x)) = {g(δ(ui)), i ∈ {1, 2, 3, . . . k}} = {u1, u2, . . . uk} = δ∗(x),

because x ∈ δ(ui) ⇐⇒ ui ∈ δ∗(x).
Hence H(x) ∈ E∗

δ ⇐⇒ g(H(x)) = δ∗(x) ∈ Eδ∗ . So H∗
δ & Hδ∗ , and finally

H & Hδ ⇐⇒ H∗ & Hδ∗ .

Proposition 10. Let H∗ = (V ∗, E∗) be a hypergraph and let P = (pi)i∈{1,2,...,t}
be a discrete probability distribution on V ∗, taking rational values. This proba-
bility distribution gives rise to a dilation, (resp. a erosion).
Let δ be a dilation on V ∗, then this dilation gives rise to a discrete probability
distribution on V ∗.

Proof. To prove the proposition, we will exhibit a particular dilation from P ,
and respectively a particular probability distribution from a dilation.
Let P = (pi)i∈{1,2,...,t} be a discrete probability distribution with rationale values
on V ∗. For all i ∈ {1, 2, . . . , t} there are ai, bi ∈ N, bi �= 0, such that pi = a

b =

a |V ∗|
b |V ∗| =

a |V ∗|

|V ∗| . We have:

1 =
∑

i pi =
∑

i

a |V ∗|

|V ∗| =∑
i(

� a
.|V ∗|�
|V ∗| ) +

|V ∗|−
∑

�a
.|V ∗|�

|V ∗| =
∑

i(
� a

.|V ∗|�+|V ∗|−
∑

� a
.|V ∗|�

|V ∗| ).

Let V ∗
1 = {x∗

1, x
∗
2, . . . x

∗
� a1

1
.|V ∗|�}, V ∗

2 = {x∗
� a1

1
.|V ∗|�+1, . . . x

∗
� a1

1
.|V ∗|�+�a2

2
.|V ∗|�} . . .

V ∗
t+1 = V ∗ \

⋃t
i=1 V ∗

i . Without loss of generality, we can assume that V ∗
i �= ∅

for all i ∈ {1, 2, . . . , t + 1}. By construction we have: V ∗
i ∩ V ∗

j = ∅ for all i, j ∈
{1, 2, . . . , t + 1}, i �= j. Consequently (V ∗

i )i∈{1,2,...,t+1} is a partition of V ∗.
The hypergraph H∗ = (V ∗, E∗) can be seen as a dual of a hypergraph H =
(V, E). Because V ∗ & E ⇐⇒

⋃t+1
i=1 V ∗

i &
⋃t+1

i=1 Ei, K = (Ei)i∈{1,2,...,t+1} is a
partition of E, where Ei is a subset of E, dual of V ∗

i . Let us define for A ⊆ E

ε(A) = {Ei ∈ K; Ei ⊆ A} and δ(A) = {Ei ∈ K, Ei ∩A �= ∅}.

It is easy to verify that ε is an erosion and δ a dilation from (P(E),⊆) into
(P(P(E)),⊆).
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Now, let δ be a dilation on V ∗; the relation x∗
i ∼δ y∗

j ⇐⇒ δ(x∗
i ) = δ(y∗

j ) is an
equivalence relation on V ∗. We then denote by V ∗

i the equivalence classes:

V ∗/ ∼δ= {V ∗
i; i ∈ {1, 2, . . . t}}.

Let us now define pi = |V ∗ |
|V ∗| . We then have 0 ≤ pi ≤ 1 for all i ∈ {1, 2, . . . t} and∑

i pi = 1, thereby (pi)i∈{1,2,...t} is a discrete probability distribution.

This proposition is also interesting to establish links with rough sets. The defi-
nition of lower and upper approximations in terms of erosion and dilation, and
the equivalence with rough sets have been developed in [2,3]. This result ex-
tends these notions to the case of hypergraphs, and ε(A) and δ(A) exhibited
in the proof are then lower and upper approximations of A in a rough space
(this is close to the approach proposed in [14]). Moreover, it adds a link with
probabilities.

Corollary 1. Any discrete distribution of probability on V ∗ gives rise to a rough
space on E.
Conversely any rough space on E gives rise to a discrete distribution of proba-
bility on V ∗.

6 Hypergraph Similarity Based on Dilations

As an example of using mathematical morphology on hypergraphs, we briefly
propose a notion of similarity between hypergraphs, based on dilations. It is
well known that hypergraphs can be used to model several types of networks,
such as biological, computer science, semantic networks [9,18,19]. One of the
most important tasks is to compare two networks. This comparison can be done
using isomorphisms. However, there are two main drawbacks related to the use
of isomorphisms:

– the first one concerns tractability, since there is no efficient algorithm to
produce an isomorphism between two hypergraphs;

– the second one is that the isomorphism assumption is too rigid, and does
not allow considering two hypergraphs as similar if they are not strictly
isomorphic.

So we propose to define a new type of “comparator” between hypergraphs, based
on dilation, which allows to introduce some “tolerance” for comparing sets of
hyperedges, defining a similarity as a degree of overlap between dilated sets of
hyperedges.

For any hypergraph (V, E), we define a dilation on the hyperedges E, for
example as:

P(E) −→ P(E)
A �−→ δ(A) = {e ∈ E; V (A) ∩ e �= ∅}

In the sequel we suppose that if δ(A) = ∅ then A = ∅ (this typically holds when
δ is extensive).
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Let H1 = (V, E1) and H2 = (V, E2) be two hypergraphs without empty
hyperedge and δE1 and δE2 dilations defined on the set of hyperedges of H1 and
H2, respectively. We define a similarity function s by:

P(E1)× P(E2) \ (∅, ∅) −→ R+

(A, B) �−→ s(A, B) = |δE1(A)∩δE2(B)|
|δE1(A)∪δE2(B)|

As an illustration, let us consider again the example in Figure 1, with the defini-
tion of dilation as in Equation 8. We have quite high similarity values, which fit
with the intuition, although the hypergaphs are not isomorphic: s(e1, ei) = 3

4 ,
i ∈ {1, 2, 3}; s(e2, ei) = 3

3 , i ∈ {1, 2, 3}; s(e3, ei) = 3
4 , i ∈ {1, 2, 3}; s(e4, ei) = 2

3 ,
i ∈ {1, 2, 3}; s({e1, e2}; B) = s({e1, e3}; B) = s({e1, e4}; B) = s({e2, e3}; B) =
s({e2, e4}; B) = s({e3, e4}; B) = 3

4 , for B ⊆ E2, B �= ∅; s({e1, e2, e3}; B) =
s({e2, e3, e4}; B) = s({e1, e3, e4}; B) = s({e1, e2, e4}; B) = 3

4 , for B ⊆ E2, B �= ∅;
and s({e1, e2, e3, e4}; B) = 3

4 , for B ⊆ E2, B �= ∅.

Proposition 11. Let H1 = (V, E1) and H2 = (V, E2) be two hypergraphs with-
out empty hyperedge, and δE1 and δE2 extensive dilations (i.e. for each hyperegde
e, we have e ∈ δEi(e)) defined on E1 and E2. We have the following properties:

a) ∀(ei, ej) ∈ E1 × E2, s((ei, ej)) = 0⇐⇒ E1 ∩ E2 = ∅;
b) ∀(ei, ej) ∈ E1 × E2, s((ei, ej)) = 1 =⇒ E1 = E2,
c) s is symmetrical.

Proof. a) ∀(ei, ej) ∈ E1 ×E2, s((ei, ej)) = 0⇐⇒ ∀(ei, ej) ∈ E1 ×E2, δE1(ei) ∩
δE2(ej) = ∅ =⇒ ∀(ei, ej) ∈ E1 × E2, ei �∈ δE2(ej) and ej �∈ δE1(ei) hence
E1 ∩ E2 = ∅. Indeed, since δE2 is extensive, ej ∈ δE2(ej) and ∪ej δE2(ej) = E2,
and therefore having ei �∈ δE2(ej) for all ej implies ei �∈ E2. Similarly ej �∈ E1.
Conversely, if E2 ∩E2 �= ∅, then P(E1) ∩ P(E2) �= ∅ and any δE1(A) is disjoint
from any δE2(B).
b) ∀(ei, ej) ∈ E1×E2, s((ei, ej)) = 1 ⇐⇒ ∀(ei, ej) ∈ E1×E2δE1(ei) = δE2(ej).
Since δ is extensive, ∀ei ∈ E1, ei ∈ δE1(ei), hence ei ∈ δE2(ei) and therefore
ei ∈ E2. Similarly ∀ej ∈ E2, ej ∈ E1. Therefore E1 = E2.
c) The symmetry of s is straightforward.

7 Conclusion

In this article we introduced mathematical morphology on hypergraphs. To show
the relevance of this relationship between these two domains, we have exhibited a
notion of duality in mathematical morphology which corresponds to the concept
of duality which is important in the theory of hypergraphs. Other properties
of hypergraphs can undoubtedly be expressed using morphological operators
(probably such as transversal of a subset of hyperedges of a hypergraph, match-
ing contained in a subset of vertices of a hypergraph). Future work will aim on
the one hand at exploring such properties, and on the other hand at studying in
more depth the concept of similarity.
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Abstract. In this work, we propose a framework that allows to build
morphological operators for processing and filtering objects defined on
(abstract) simplicial complex spaces. We illustrate with applications to
mesh and image processing, for which, on the provided examples, the
proposed approach outperforms the classical one.

1 Introduction

Introduced by Poincaré [11] for studying the topology of spaces of arbitrary
dimensions, a simplicial complex can be seen as a mesh, i.e. a space with a tri-
angulation. The basic building block of the complex is the cell, which can be
thought of as a set of elements having various dimensions glued together accord-
ing to certain rules (e.g., a triangle, its edges and vertices). Although simplicial
complexes have a wide variety of different usages (e.g., in computer graphics,
in Computer-Aided Design or in modeling), their processing has mostly been
considered in term of simplification, for example to obtain a simpler model with
less details. However, it is more and more frequent to have data associated with
the elements of a mesh (e.g. a curvature or a texture). Processing (filtering) the
values associated with a mesh is not a common problem per se in the litera-
ture. On the other hand, filtering is a common theme in image processing, and
abstract (simplicial or cubical) complexes have been promoted, in particular by
Kovalevsky [7], in order to provide a sound topological basis for image analysis,
and are more and more popular [4,1,2]. Then again, the values are most of the
time located on one of the elements of the cell, usually the facet, i.e. the largest
element of the cell. In a purely discrete perspective, being able to deal with
smaller elements of the cell will allow a kind of “subpixelic” processing.

In this perspective, mathematical morphology provides a useful toolbox made
of non-linear operators. Thanks to their algebraic definitions in the framework of
lattices, those morphological operators can be applied to many kinds of organized
information, and in particular to simplicial complexes.

The complexes can be considered as a natural generalization of the graphs in
the sense that a (symmetric) graph is a one dimensional complex. In the past, sev-
eral authors studied morphological operators on graphs [14,5,9,3,13]. However, to
the best of our knowledge, very few studies exist about basic morphological oper-
ators on complexes [8], and none deal with the filtering problem. The goal of this
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paper is to help bridging this gap. Our main result is a framework for building
morphological operators on complex spaces. As main examples of application, we
present a set of operators (erosions/dilations, granulometries/anti-granulometry,
and alternate sequential filters) that act on the subcomplexes of a space which
is itself a simplicial complex. Although this work is settled in the framework of
simplicial complexes, all the results extend to cubical complexes.

The article is organized as follows. Section 2 presents the working space, sim-
plicial complexes and lattices. Then, Section 3 introduces operators acting on
the defined spaces and shows that these operators are dilations, identifies their
adjoint erosions, and presents morphological operators on subcomplexes result-
ing from the composition of these adjoint operators. Finally, Section 4 introduces
a framework that allows morphological operators depending on dimension pa-
rameters to be defined and illustrates their use to image and mesh processing.

2 Lattice of Simplicial Complexes

The goal of this work is to explore mathematical morphology on simplicial com-
plex spaces. To this end, this first section recalls the definition of (abstract)
simplicial complexes. Then, after a reminder on lattices, we state that the set of
all subcomplexes of the space is a lattice. Hence, as will show the next sections
of the paper, morphological operators acting on subcomplexes can be studied.

We call (abstract) simplex any finite nonempty set. The dimension of a sim-
plex x, denoted by dim(x), is the number of its elements minus one. A simplex
of dimension n is also called an n-simplex.

Fig. 1(a) (resp. b, and c) graphically represents a simplex x = {a} (resp.
y = {a, b} and z = {a, b, c}) of dimension 0 (resp. 1, 2). Fig. 1(d) shows a set of
simplices composed of one 2-simplex ({a, b, c}), three 1-simplices ({a, b}, {b, c}
and {a, c}) and three 0-simplices ({a}, {b} and {c}).

(a) (b) (c) (d)

Fig. 1. Graphical representation of (a) a 0-simplex, (b) a 1-simplex, (c) a 2-simplex,
and (d) a 2-cell

We call simplicial complex, or simply complex, any set X of simplices such that,
for any x ∈ X , any nonempty subset of x also belongs to X . The dimension of
a complex is equal to the greatest dimension of its simplices. In the following, a
complex of dimension n is also called an n-complex.

For instance, Fig. 1(d) represents an elementary 2-complex. The set of black
and gray elements in Fig. 2(a) represents a 2-complex made of more simplices.
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Important Notations. In this work, the symbol C denotes a nonempty n-
complex, with n ∈ N. This complex C stands for our working space in this
paper. The set of all subsets of C is denoted by P(C ).

Recall that a (complete) lattice is a partially ordered set in which any two ele-
ments have a unique least upper bound, called supremum, and a unique greatest
lower bound, called infimum. Such structures are of particular importance for
mathematical morphology. Note that the set P(C ), equipped with the inclusion
relation, is a lattice. In this lattice P(C ), the supremum and the infimum are
respectively the union and the intersection.

Any subset of C that is also a complex is called a subcomplex (of C ). We
denote by C the set of all subcomplexes of C . The set C equipped with the
inclusion relation, is a sublattice of P(C ) since C is a subset of P(C ) closed
under union and intersection.

A subcomplex X of C is called a cell of C if there exists a simplex x in X
such that X is exactly the set of all subsets of x. Any subcomplex X ∈ C is sup-
generated by the family G of all cells of C that are included in X : X = ∪{Y ∈ G}.
Conversely, any family G of cells sup-generates an element of C. In this sense,
the cells can be seen as the elementary building blocks of the complexes.

If X is a subset of C , we denote by X the complement of X (in C ): X = C \X .
The complement of a subcomplex of C , in general, is not a subcomplex. For

instance, observe in Fig. 2(a) that, if C is the complex represented in black and
gray, then the complement of the gray subcomplex X is not a subcomplex. Thus,
contrarily to the lattice P(C ) which is complemented, the lattice C is not.

Any subset X of C whose complement X is a subcomplex is called a star
(in C ). We denote by S the set of all stars in C . As C, S is a sublattice of P(C ).

Note that the intersection C∩S is nonempty since it always contains ∅ and C .
The lattice C is our main working space in the rest of the paper. As a conclu-

sion to this section, let us summarize its properties as follows.

Property 1. The set C of the subcomplexes of C is a complete lattice sup-
generated by the set of all cells of C ; this lattice is not complemented.

3 Morphological Operators on Simplicial Complex Spaces

Our goal is to investigate morphological dilations and erosions that act on com-
plexes, (where both the inputs and the outputs of the operators are complexes),
and that produce nontrivial granulometries, (i.e., granulometries where the di-
lations are not idempotent). Indeed, such nontrivial granulometries are known
to be important in mathematical morphology for analyzing and filtering digital
objects according to their size. After a short reminder on morphological adjunc-
tions in the framework of lattices, we present operators that are classical for
handling topological spaces such as simplicial complexes. Then, we show that
dilations, erosions and granulometries satisfying the above-mentioned properties
can be obtained by carefully composing these topological operators.

In mathematical morphology (see, e.g., [12]), any operator that associates ele-
ments of a lattice L1 to elements of a lattice L2 is called a dilation if it commutes
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with the supremum. Similarly, an operator that commutes with the infimum is
called an erosion. The notion of adjunction, recalled below, allows dilations and
erosions to be classified into pairs of operators leading to granulometries.

Let L1 and L2 be two lattices whose order relations and suprema are denoted
by ≤1, ≤2, ∨1, and ∨2. Two operators α : L2 → L1 and αA : L1 → L2 form an
adjunction (αA , α) if α(a) ≤1 b ⇔ a ≤2 αA (b) for every element a in L2 and
b in L1. It is well known (see, e.g., [12]) that, given two operators α and αA ,
if the pair (αA , α) is an adjunction, then αA is an erosion and α is a dilation.
Furthermore, if α is a dilation, the following relation characterizes its adjoint
erosion αA :

∀a ∈ L1, αA (a) = ∨2 {b ∈ L2 | α(b) ≤1 a} (1)
Let us now present two pairs of adjoint operators, which are classical in topology,
and that will serve us to obtain nontrivial granulometries on complexes. Let x
be a simplex in C , we set x̂ = {y | y ⊆ x, y �= ∅} and x̌ = {y ∈ C | x ⊆ y}.

The operators Cl : P(C )→ P(C ) and St : P(C )→ P(C ) are defined by:

∀X ∈ P(C ), Cl(X) =
⋃
{x̂ | x ∈ X}; and (2)

∀X ∈ P(C ), St(X) =
⋃
{x̌ | x ∈ X}. (3)

By definition, the operators Cl and St commute under union. Thus, they are di-
lations on P(C ). Hence, by direct application of Eq. (1), the adjoint erosions ClA

and StA of Cl and St are given by:

∀X ∈ P(C ), ClA (X) =
⋃
{Y ∈ P(C ) | Cl(Y ) ⊆ X}; and (4)

∀X ∈ P(C ), StA (X) =
⋃
{Y ∈ P(C ) | St(Y ) ⊆ X}. (5)

The four operators presented above are illustrated in Fig. 2, where the sub-
sets X, Y, Z, V , and W , made of gray simplices in Figs. 2(a), 2(b), 2(c), 2(d),
and 2(e), satisfy the following relations Y = St(X), Z = StA(X), V = Cl(Y ),
W = ClA (Z).

Let X ∈ P(C ). The set Cl(X) (resp. St(X)) is the smallest complex (resp.
star) that contains X , and the set ClA (X) (resp. StA (X)) is the largest com-
plex (resp. star) contained in X . Hence, clearly, C (resp. S) is the invariance
domain of Cl and ClA (resp. St and StA ): C = {X ∈ P(C ) | Cl(X) = X} =
{X ∈ P(C ) | ClA (X) = X} (resp. S = {X ∈ P(C ) | St(X) = X} = {X ∈
P(C ) | StA (X) = X}). These facts are well known in the context of topolog-
ical spaces [6] where the sets St(X), St(X), ClA (X), and StA (X) are called
respectively the (simplicial) closure, the star, the core, and the interior of X .

Since the operators Cl and St are dilations, they constitute a straightfor-
ward choice to investigate morphology on complexes. However, these dilations
are idempotent: Cl ◦ Cl(X) = Cl(X) and St ◦ St(X) = St(X). Thus, they
lead to trivial granulometries. In order to obtain nontrivial granulometries, one
could consider the composition Dil = Cl ◦ St. Indeed, the operator Dil is a
dilation (since it is a composition of dilations), which, in general, is not idem-
potent, and whose results are always complexes. By the theorem of compo-
sition of adjunctions (see [12], p. 59), the adjoint erosion Er of Dil is given
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by Er = DilA = StA ◦ClA . Due to the remarks of the previous paragraph, the
set Er(X) is always a star. Thus, in general, the set Er(X) is not a complex.
Hence, the pair (Er, Dil) does not lead to granulometries acting on complexes.

In order to obtain nontrivial granulometries on complexes, let us restrict the
operators of Eqs. 2 and 3. More precisely, we define the operators ) : S → C
and � : C → S by:

∀X ∈ S, )(X) = Cl(X); and (6)
∀Y ∈ C, �(Y ) = St(Y ). (7)

The only differences between ) and Cl are the domains of activity of the oper-
ators. A similar remark holds true for � and St. These operators ) and � are
also obviously two dilations. Then, using again Eq. 1, the adjoint erosions )A

and �A of ) and � are given by:

∀X ∈ C, )A (X) =
⋃
{Y ∈ S | ) (Y ) ⊆ X} ; and (8)

∀Y ∈ S, �A (Y ) =
⋃
{X ∈ C | � (X) ⊆ Y } . (9)

It can be easily seen that the star )A (X) is the interior of the complex X and that
the complex �A (Y ) is the core of the star Y . Therefore, one straightforwardly
deduces the following property that links the adjoint of �, St, ), and Cl in a
surprising way.

Property 2. The two following propositions hold true:

∀X ∈ C, )A (X) = StA (X); and (10)
∀Y ∈ S, �A (Y ) = ClA (Y ). (11)

It is known in topology that the closure and interior operators are dual with
respect to the complement. Thus, we deduce the following result.

Property 3. The operators ) and )A (resp. � and �A ) are dual w.r.t. the com-
plement in P(C ): we have )A (X) = )

(
X
)
, for any X ∈ C (resp. �A (Y ) = �

(
Y
)
,

for any Y ∈ S)

Note that using directly Eqs. 8 and 9, computing )A (X) (resp. �A (X)) requires
an exponential time since the family of all stars (complexes) must be considered.
On the other hand, as the operators Cl and St are locally defined, )(X) and �(X)
can be computed in linear-time. Hence, as a consequence of Property 3, )A (X)
and �A (X) can also be computed in linear-time.

Let us now compose the dilations ) and �, as well as their adjoints, to obtain
a pair of adjoint dilations and erosions that act on complexes.

Definition 4. We define the operators δ and ε acting on C by:

δ = ) ◦ � (12)
ε = �A ◦ )A (13)
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(a) X (b) Y (c) Z (d) V (e) W

Fig. 2. Illustration of morphological dilations and erosions on complexes [see text]

For instance, Figs. 2(d) and 2(e) represent, in gray, the complexes V = δ(X)
and W = ε(X), if X is the complex represented in gray in Fig. 2(a).

Due to the theorem of composition of adjunctions (see, e.g., [12], p. 59), the
following result can be deduced.

Theorem 5. The two operators δ and ε are respectively a dilation and an ero-
sion acting on C. Furthermore, the pair (ε, δ) is an adjunction.

The dilation δ and the erosion ε, as well as the classical dilations and erosions on
grid points by symmetrical structuring elements, are in general not idempotent.
However, contrarily to classical dilations and erosions on grid points, the erosion
ε and the dilation δ are not dual with respect to the complement since the
lattice C is not complemented.

As the pair (ε, δ) is an adjunction, the compositions φ = ε ◦ δ and γ =
δ ◦ ε are respectively a closing and an opening. In other words, the operators φ
and γ are both increasing and idempotent, whereas φ is extensive and γ is anti-
extensive. Furthermore, since δ and ε are not idempotent, the operators obtained
by iterating ε and δ lead to nontrivial granulometries, as we will detail in the
next section.

Figs. 3(b) and 3(d) depict, in gray, the results of φ and γ applied to the
gray complexes X of Fig. 3(a) and Y of Fig. 3(c). Observe, in particular, that
these operators can be intuitively regarded as elementary closing and opening
on complexes.

4 Dimensional Operators

From their very definition, simplicial complex spaces allow for handling objects
of different dimension (e.g., “curvilinear”, “surfacic” or “volumic” objects), as
well as objects of heterogeneous dimension (e.g., made of “curvilinear”, “sur-
facic” and “volumic” sub-objects). The operators introduced in the previous
section add or remove simplices independently of the dimension of the objects.
In this section, we introduce a framework for morphological operators that take
dimension into account. We first present (Definition 6) the building blocks of the
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(a) X (b) φ(X) (c) Y (d) γ(Y )

Fig. 3. Illustration of morphological closing and opening on complexes

framework: a family of adjoint operators that depend on dimensional parame-
ters. By combining these building blocks, many morphological operators acting
on subcomplexes, substars, and subsets of the space C can be obtained. As an
example, we instantiate (Definition 9) a granulometry and an alternate sequen-
tial filter acting on the lattice of all subcomplexes of C. Then, it is shown that
these filters lead to interesting results on images, as suggested by a comparison
with classical morphological image filters. Finally, the ability of the proposed
filters to smooth subsets of a mesh is also illustrated.

Let X ⊆ C and let i ∈ [0, n], we denote by Xi the set of all i-simplices
of X : Xi = {x ∈ X | dim(x) = i}. In particular, Ci is the set of all i-simplices
of C . We denote by P(Ci) the set of all subsets of Ci.

Definition 6 (dimensional operators). Let i, j ∈ N such that i ≤ j ≤ n.
We define the operators δ+

i,j and ε+
i,j acting from P(Ci) into P(Cj) and the

operators δ−j,i and ε−j,i acting from P(Cj) into P(Ci) as follows:

P(Ci) → P(Cj) P(Cj) → P(Ci)
X → δ+

i,j(X) such that X → δ−j,i(X) such that
δ+
i,j(X) = {x ∈ Cj | ∃y ∈ X, y ⊆ x} δ−j,i(X) = {x ∈ Ci | ∃y ∈ X, x ⊆ y}

X → ε+
i,j(X) such that X → ε−j,i(X) such that

ε+
i,j(X) = {x ∈ Cj | ∀y ∈ Ci, y ⊆

x =⇒ y ∈ X}
ε−j,i(X) = {x ∈ Ci | ∀y ∈ Cj , x ⊆
y =⇒ y ∈ X}

In other words, δ+
i,j(X) is the set of all j-simplices of C that include an i-simplex

of X , δ−j,i(X) is the set of all i-simplices of C that are included in a j-simplex
of X , ε+

i,j(X) is the set of all j-simplices of C whose subsets of dimension i all
belong to X , and ε−j,i(X) is the set of all i-simplices of C that are not contained
in any j-simplex of X .

It is interesting to remark that, since a graph is a 1-complex, the operators
δ+
0,1, δ−1,0, ε+

0,1 and ε−1,0 are exactly the operators δ×, δ•, ε× and ε•, presented
by Cousty et al. in [3]. These operators are the basic blocks of all morphological
graph operators studied in [3]. Thus, the present framework encompasses the
one of [3] that itself allows for recovering most graph operators from Vincent
and Heijmans [14,5], the operators of Meyer and Angulo [9], and the classical
operators by symmetric structuring elements on grid points.
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The next property establishes that the dimensional operators of Definition 6
can be classified into pairs of adjoint operators. Thus, as we shall see later, they
can be used as building blocks for the design of morphological operators acting
on subsets of C such as complexes or stars.

Property 7 (adjunction and duality). Let i, j ∈ N such that i ≤ j ≤ n.
- The pairs (ε+

i,j , δ
−
j,i) and (ε−j,i, δ

+
i,j) are adjunctions.

- The operators δ+
i,j and ε+

i,j (resp. δ−j,i and ε−j,i) are dual of each other: ∀X ⊆ Ci,
ε+

i,j(X) = Cj \ δ+
i,j(Ci \X) (resp. ∀X ⊆ Cj, ε−j,i(X) = Ci \ δ−j,i(Cj \X)).

The operators of Section 3 can all be characterized through dimensional opera-
tors since, for any X in P(C ), we have Cl(X) =

⋃
{δ−j,i(Xj) | i, j ∈ N, i ≤ j},

and St(X) =
⋃
{δ+

i,j(Xi) | i, j ∈ N, i ≤ j}.
In fact, by compositions, suprema, and infima of the dimensional opera-

tors, many erosions, dilations, openings and closings, which act on C, S, P(Ci)
(with i ∈ [0, n]), and P(C), and which depend of dimensional parameters, can
be designed. As a proof of concept, let us introduce a family of filters that act
on the lattice of all subcomplexes of C and that enriches the granulometries
obtained from Section 3.

Definition 8. Let d be an integer such that 0 ≤ d ≤ n and let X ∈ C. We define
the operators γd/(n+1) and φd/(n+1) by, for any X ∈ C.

γd/(n+1)(X) =
⋃{

δ−j,i(Xj) | j ∈ [d, n], i ∈ [0, j]
}

; and (14)

φd/(n+1)(X) =
⋃[

{Xi | i ∈ [0, n− d− 1]} ∪ {ε+
n−d,j(Xd) | j ∈ [n− d, n]}

]
(15)

For instance Figs. 4(a), 4(b), 4(c) and 4(d) represent in gray the complexes
φ1/3(X), φ2/3(X), γ1/3(Y ), and γ2/3(Y ), where X and Y are the subcomplexes
shown in gray in Figs. 3(a) and 3(c).

Let d ∈ [0, n], and let X be a subcomplex of C. It can be seen that γd/(n+1)(X)
is the union of the cells of dimension greater than or equal to d that are included
in X . On the other hand, φd/(n+1)(X) is the union of the cells of X and of those
of C whose elements of dimension between 0 and n− d belong to X .

From these characterizations, we can deduce that the operators γd/(n+1) and
φd/(n+1) are respectively an opening and a closing on C.

It can also be remarked that the family of operators {γd/(n+1) | d ∈ [0, n]}
and {φd/(n+1) | d ∈ [0, n]} are ordered with respect to the value of the in-
dex d: ∀X ∈ C, ∀d1, d2 ∈ [0, n − 1], if d1 ≤ d2, then we have φd1/(n+1)(X) ⊆
φd2/(n+1)(X) and γd2/(n+1)(X) ⊆ γd1/(n+1)(X). In morphology, such families
are called granulometries. For direct applications to real-life problems, these
granulometries may appear useless since they contain only a fixed number n
of operators whereas the size of the objects to be analyzed can be arbitrarily
large. In order to overcome this problem, in the next definition, these granulome-
tries are extended by composing them with the adjunctions (and their iterated
version) of Section 3.
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(a) φ1/3(X) (b) φ2/3(X) (c) γ1/3(Y ) (d) γ2/3(Y )

Fig. 4. Dimensional openings and closings applied to the complexes X and Y of Fig. 3

Let α be an operator defined on a lattice L and let i be a nonnegative integer.
The operator αi is defined by the identity when i = 0 and by α◦αi−1 otherwise.

Definition 9 (granulometry, ASF). Let k be a nonnegative integer.

1. We define Γk/(n+1) (resp. Φk/(n+1)) by δi ◦ γd/(n+1) ◦ εi (resp. εi ◦φd/(n+1) ◦
δi) where i and d denote respectively the quotient and the remainder of the
integer division of k by (n + 1)

2. We define ASFk/(n+1) by the identity when k = 0 and by ASFk/(n+1) =
Γk/n+1 ◦ Φk/n+1 ◦ASF(k−1)/(n+1) otherwise.

Property 10. 1. The families {Γk/(n+1)|k ∈ N} and {Φk/(n+1)|k ∈ N} are
granulometries:
– for any k ∈ N, Γk/(n+1) (resp. Φk/(n+1)) is an opening (resp. closing)

on C.
– for any two elements i, j ∈ N such that i ≤ j, we have Γj/(n+1)(X) ⊆

Γi/(n+1)(X) and Φi/(n+1)(X) ⊆ Φj/(n+1)(X), for any X ∈ C.
2. The family {ASFk/(n+1) | k ∈ N} is a family of alternate sequential filters:

– for any two elements i, j ∈ N, if i ≤ j, then we have ASFj/(n+1) ◦
ASFi/(n+1) = ASFj/(n+1).

Note that if we reduce the granulometric and ASF families of Definition 9 to
the operators where k is a multiple of (n + 1), then we recover exactly the
granulometries and ASFs induced by the adjunctions of Section 3. In this sense,
the proposed granulometries and ASFs enrich the elementary ones on complexes.

Let us now illustrate on an 2D image that, in practice, these operators also
enrich the classical morphological filters used in image analysis. To this end ,
we consider simplicial complexes based on the neighborhood relation given by
the hexagonal grid (see e.g., Fig. 2(a)) where the grid points (or pixels) cor-
respond to 0-simplices. In this context, Fig. 5(f) shows the result of ASF6/3
applied to the complex derived from the white pixels of image 5(a). For com-
parison, Fig. 5(c) and Fig. 5(e) show the results of classical alternate sequential
filter and graph alternate sequential filters [3] on hexagonal grid. On this image,
the ASFs introduced in this paper outperform the classical and graph operators.
Nevertheless, they require more iterations (6 vs. 2 and 4). Therefore, in order
to compare the proposed ASF with filters using the same number of iterations,
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(a) Original image. (b) Noisy version, MSE = 19.56%.

(c) Classical ASF with 2 iterations.
MSE = 16.14%.

(d) Classical ASF with 6 itera-
tions and triple resolution. MSE =
4.05%.

(e) Graph ASF4/2 [3](see text).
MSE = 6.88%.

(f) ASF6/3. MSE = 2.57%.

Fig. 5. ASF illustration [see text]

we produce another filtered image (Fig. 5(d)) that is obtained by tripling the
resolution of the noisy image and applying a classical ASF of size 2× 3 = 6. It
can be seen that this last procedure removes more noise than the classical ASF
but does not perform as well as the ASF introduced in the present paper. The
mentioned value MSE is the mean square error, multiplied by 100, that is, the
percentage of wrong pixels w.r.t. the original image.

Fig. 6(a) shows a rendering of a tridimensional mesh of a statue. Fig. 6(b)
shows, in black, the complex resulting from the threshold at level 0.51 of the
pseudo-inverse of the mean curvature of that mesh (see [10] for further details
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(a) (b) (c) (d)

Fig. 6. (a) Rendering of a tridimensional mesh (i.e. a 2-complex embedded in R
3). (b)

a threshold of the curvature map of (a). (c) Result of the operator ASF8/3 applied to
the subcomplex shown in black in (b). (d) Crops, from top to bottom, of (b) and (c)
respectively. Data courtesy of the French Museum Center for Research.

and motivations on such procedures). To illustrate the possible smoothing effect
of the operator on values associated to a mesh, we present in Fig. 6(c) the result
of ASF8/3 applied to the black subset of the mesh shown on Fig. 6(b). Fig. 6(d)
presents, from top to bottom, zooms on the parts of Fig. 6(b) and 6(c) that are
marked by bold rectangles.

5 Conclusion and Future Work

This paper proposes a framework that allows to build morphological operators
for analyzing and filtering objects defined on simplicial complex spaces. In par-
ticular, using this framework, we propose a set of operators (erosions/dilations,
granulometries, and alternate sequential filters), which act on the lattice of sub-
complexes, that are shown to be useful for mesh and image filtering. Further-
more, the proposed framework extends straightforwardly to define operators
with similar behavior acting on the lattice of stars of C . Future work includes a
systematic investigation of the morphological operators that can be built based
on our framework as well as its straightforward extension to weighted simplicial
complexes [4,2]. In particular, links with operators from discrete calculus will be
highlighted.

Acknowledgement. The authors are grateful to Christian Ronse for his in-
depth reading of a previous version of this paper and his numerous helpful com-
ments.
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Abstract. Component-trees associate to a discrete grey-level image a descriptive
data structure induced by the inclusion relation between the binary components
obtained at successive level-sets. This article presents a method to extract a subset
of the component-tree of an image enabling to fit at best a given binary target
selected beforehand in the image. A proof of the algorithmic eÆciency of this
method is proposed. Application examples related to the extraction of drop caps
from ancient documents emphasise the usefulness of this technique in the context
of assisted segmentation.

Keywords: component-tree, image analysis, grey-level images.

1 Introduction

The component-tree (also known as dendrone [2], confinement tree [4] or max-tree [10])
is a graph-based structure which models some characteristics of a grey-level image
by considering its binary level-sets obtained from successive thresholding operations.
Component-trees have been involved, in particular, in the development of morphologi-
cal operators [10,1].

By definition, they are particularly well-suited for the design of methods devoted to
process grey-level images based on hypotheses related to the topology (connectedness)
and the specific intensity (locally�globally minimal or maximal) of structures of inter-
est. Based on these properties, component-trees have been involved in various kinds of
image processing methods [2,4,10,3,5,9,11].

Several works related to component-trees have been devoted to enable their eÆcient
computation [4,10,1,8]. In particular, the ability to compute them in (quasi-)linear time
opens the way to the development of interactive and eÆcient segmentation methods.

The design of interactive segmentation methods is an active research field (see, e.g.,
[6] for a recent survey). This dynamism is justified by (i) the increasing necessity to
analyse images in a large spectrum of application fields, (ii) the diÆculty to develop
fully automatic segmentation methods, and (iii) the importance to develop segmentation
methods as tools for assisting the user by explicitly using his expertise.

� The research leading to these results has received funding from the French Agence Nationale
de la Recherche (Grant Agreement ANR-2010-BLAN-0205).

I. Debled-Rennesson et al. (Eds.): DGCI 2011, LNCS 6607, pp. 453–464, 2011.
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Some of interactive segmentation methods aim at correcting a rough segmentation
initially performed in a manual fashion. In this article, we focus on this kind of issue,
especially in the (frequent) case where the structures of interest to be segmented are the
ones of extremal intensities. In this context, component-trees can be of high usefulness.

Based on these considerations, this article is devoted to answer the following prob-
lem: Let I be a grey-level image, let T be its component-tree, and let G be a binary
object defined on the same domain as I (assumed to be a rough segmentation of I); how
can we determine a part of T (and thus of I) which enables to fit at best G with the
lowest computational cost? This “best” approximation can, in particular, be considered
from a quantitative point of view, i.e., by finding a solution minimising the amount of
false positives�negatives.

The article is organised as follows. In Sec. 2, definitions related to the notion of
component-tree are recalled. In Sec. 3, definitions and notations related to the consid-
ered issue are proposed. In Sec. 4, some solutions to the proposed problem are described
and their linear algorithmic cost is established. Algorithmic considerations are proposed
in Sec. 5. An application to the segmentation of drop caps from ancient documents is
proposed in Sec. 6, in order to illustrate the relevance of the method and its actual use-
fulness in real image analysis applications. Conclusions will be found in Sec. 7.

2 Component-Tree

Let n � ��. Let us consider an adjacency relation on the discrete grid defined by �n, for
instance, the 2n- or the (3n � 1)-adjacency. Let X � �n be a non-empty set of �n.

We say that two points x� y � X are connected (in X), and we note x �X y, if there
exists a sequence (xk)t

k�1 (t � 1) of elements of X such that x1 � x, xt � y and xk, xk�1

are adjacent for all k � [[1� t � 1]]. Note that �X is an equivalence relation on X. The
connected components of X are the elements of the quotient set X��X (noted �[X] in
the sequel). We say that X is connected if �[X] � �X�.

Let E 	 �n be a finite connected set. Let 
 � � � � and V � [[
��]]. A discrete
grey-level image I can be defined as a function I : E  V (we also note I � VE).

For any v � V , we define the thresholding function Xv : VE  �(E) (where �(E) �
�Y � Y � E�) by Xv(I) � �x � E � v � I(x)� for all I � VE .

For any v � V , and any X � E, we define the cylinder function CX�v : E  V by
CX�v(x) � v if x � X and 
 otherwise. A discrete image I � VE can then be expressed as

I �
�
v�V

CXv(I)�v �
�
v�V

�
X��[Xv(I)]

CX�v (1)

where
�

is the pointwise supremum for the sets of functions.
Let � �

�
v�V �[Xv(I)] be the set of all the connected components obtained from

the di�erent thresholdings of I at values v � V . The inclusion relation � is then a
partial order on � . Let v1 � v2 � V . Let B1� B2 � E be the binary images defined by
Bk � Xvk (I) for k � �1� 2�. Let C2 � �[B2] be a connected component of B2. Then, there
exists a (unique) connected component C1 � �[B1] of B1 such that C2 � C1.
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Fig. 1. (a) A grey-level image I : [[0�9]]2 � [[0�4]] (from 0, in black, to 4, in white). (b–f)
Threshold images Xv(I) (white points) for v varying from 0 (b) to 4 (f). (g) The component-
tree of I. Its levels correspond to increasing thresholding values v. The root (i.e., the upper node
located at the level v � 0) corresponds to the support E � [[0�9]]2 of the image.

Based on these properties, it can be easily deduced that the Hasse diagram of the
partially ordered set (� ��) is a tree (i.e., a connected acyclic graph), and more precisely
a rooted tree, the root of which is the supremum X�(I) � E. This tree is called the
component-tree of I.

Definition 1. Let I � VE be a grey-level image. The component-tree of I is the rooted
tree T � (� � L�R) such that:

(i) � �
�

v�V �[Xv(I)]
(ii) L � �(X� Y) � �2 � Y 	 X � �Z � � � Y � Z 	 X � Y � Z�

(iii) R � max(� ��) � X�(I) � E

The elements of� (resp. of L) are the nodes (resp. the edges) of T . The element R is the
root of T . For any N � � , we set ch(N) � �N� � � � (N� N�) � L�; ch(N) is the set of
the children of the node N in T . An example of component-tree is illustrated in Fig. 1.

Each node of � is a binary connected component distinct from all the other nodes.
However, such a connected component can be an element of �[Xv(I)] for several (suc-
cessive) values v � V . For each X � � , we set m(X) � max�v � V � X � �[Xv(I)]� �
minx�X�I(x)�. We then consider that X is “associated” to the value m(X), i.e., to the
highest value of V which generates this connected component.

The following definition, establishing “correlation scores” between a node and a
given binary object, will be useful in the sequel of the article.

Definition 2. Let I � VE be a grey-level image. Let T � (� � L�R) be the component-
tree of I. Let N � � be a node of T . Let G � �n be a binary object. We set p�(N�G) �
�(N �

�
N��ch(N) N�)�G�, and n(N�G) � �N �G�. The value n(N�G) is the number of points

of N which do not belong to G. The value p�(N�G) is the number of points of N which
belong to G and which do not belong to any children of N.

Remark 3. When building the component-tree of I, it is possible to store, at each node
N � � , the set of points EN � N �

�
N��ch(N) N�. This leads, in particular, to an algo-

rithmically useful partition �EN �N�� of E. In such conditions, for a given binary object
G � �n, the computation of all the p�(N�G) and n(N�G) (N � �) can obviously be per-
formed in linear time �(�E�). In the sequel, we will assume that p�(N�G) and n(N�G)
have been computed and are then available for every node N � � .
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3 Purpose

Component-trees can be used to develop image processing�analysis procedures based
on filtering or segmentation strategies. Such procedures generally consist of determin-
ing a subset �� � � among the nodes of the component-tree T � (� � L�R) of a consid-
ered image I : E  V .

When performing segmentation, the (binary) resulting image Is � E is defined as the
union of the nodes of �� , i.e., as

Is �
�
N���

N (2)

In this context, the determination of the nodes to preserve is a complex issue, which can
be handled by considering attributes (i.e., qualitative or quantitative information related
to each node) to characterise the nodes of interest. An alternative solution is to search
the set of nodes �� � � which enables to generate a binary object being as similar as
possible to a given binary target (e.g., an approximate segmentation obtained from a
manual process). In the sequel of the article, we focus on this specific issue, which can
be formalised as an optimisation problem.

Problem to solve. Let I � VE be a grey-level image. Let T � (� � L�R) be the
component-tree of I. Let G � E be a binary image. Let d be a (pseudo-)distance on
�(E). How can we compute a set of nodes �� � � such that d(

�
N��� N�G) is minimal,

i.e., such that the best binary object which can be built from � is as close as possi-
ble to G? More formally, the problem can be summarised as a minimisation problem,
consisting of determining

�� � arg min
� ���(� )

�d
� �

N�� �

N�G
�
� (3)

An intuitive solution for determining a useful (pseudo-)distance d is to consider the
amount of false positives�negatives induced by

�
N�� � N w.r.t. the considered binary

object of interest G.

Definition 4. Let � � [0� 1]. Let d� : �(E) � �(E)  �� be the function defined by

d�(X� Y) � ���X � Y � � (1 � �)��Y � X� (4)

The pseudo-distance1 d� constitutes a good similarity criterion between binary objects.
Note that d0(X� Y) � �Y � X� (resp. d1(X� Y) � �X � Y �), i.e., d0(X� Y) (resp. d1(X� Y)) is
the amount of false negatives (resp. false positives) in X w.r.t. Y.

In the next sections, we will consider this (pseudo-)distance. It will be established
that it leads to algorithmically eÆcient processes, and satisfactory applicative results.

1 The function d� is actually not a distance since d�(X�Y) � d�(Y� X) if and only if � � 1�2,
d�(X�Y) � 0 � X � Y if and only if � � ]0� 1[, and d� does not satisfy, in general, the triangle
inequality.
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4 Theoretical Study

4.1 Preliminary Properties

The following property directly derives from the definitions of Sec. 2.

Property 5. Let I � VE be a grey-level image. Let T � (� � L�R) be the component-tree
of I. Let N � ch(E). Let �N � �N� � � � N� � N�. Let I�N � VN be the grey-level image
corresponding to the restriction of I to the node N. The Hasse diagram (�N � LN) of the
partially ordered set (�N ��) enables to define the component-tree TN � (�N � LN � N)
of I�N which is actually a subtree of T . Note in particular that �E� � ��N �N�ch(E) is a
partition of � , while �(E� N)�N�ch(E) � �LN �N�ch(E) is a partition of L.

Definition 6. Let I � VE be a grey-level image. Let T � (� � L�R) be the component-
tree of I. Let x � E. We set �x � �N � � � x � N�, �x � � is the subset of all the nodes
of � which contain x.

Since E � � , the following property is obvious, while the next one derives from the
structure of the component-tree.

Property 7. Let I � VE be a grey-level image. Let T � (� � L�R) be the component-tree
of I. Let x � E. Then, �x is non-empty.

Property 8. Let I � VE be a grey-level image. Let T � (� � L�R) be the component-tree
of I. Let x � E. Then, (�x��) is a completely ordered set.

Definition 9. Let I � VE be a grey-level image. Let T � (� � L�R) be the component-
tree of I. Let � : �(�)  �(E) be the function defined by �(� �) �

�
N�� � N for all

� � � � . We set � � �(�(�)) � ��(� �)�� �	� , � is the set of all the binary objects
which can be generated from the subsets of nodes of � .

Although there exist 2��� distinct subsets� � of� , most of these subsets generate a same
binary object of E, more formally, we have ��� � ��(�)� (and generally ��� � ��(�)�).

Property 10. Let I � VE be a grey-level image. Let T � (� � L�R) be the component-
tree of I. Let � be the set of the objects which can be generated from the subsets of
nodes of � . Let Q � �. Then, we have

�[Q] � min
	
�
1(Q) (5)

Less formally, the set of the connected components of Q is actually a subset of nodes of
� which is included in any other subset of nodes � � of � generating Q. Such sets � �

are then redundant (they contain in particular some nodes which are included in other
nodes, and then useless for the generation of Q).

4.2 Main Properties

Smallest Superset � Largest Subset. In this subsection, we first focus on a specific case
of the considered issue, which consists of finding a subset of nodes of the component-
tree of an image I such that the object generated by these nodes is included in
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(resp. includes) the binary target G and is the largest (resp. the smallest) one verifying
this property. This problem is equivalent to consider a pseudo-distance d which only
takes into account the amount of false negatives (resp. false positives) w.r.t. G.

The next property establishes that there exists a (unique) solution to this problem.

Property 11. Let I � VE be a grey-level image. Let T � (� � L�R) be the component-
tree of I. Let � be the set of the objects which can be generated from the subsets of
nodes of � . Let G � E. Then there exist G��G
 � � such that

G� � min
	
�Q � � � G � Q� (6)

G
 � max
	
�Q � � � Q � G� (7)

Proof. If G � �, by setting G� � � � �, we are done. Let us now suppose that G � �.
For any x � G, we set Nx � min	�x. Let G� �

�
x�G Nx. Then we have G� � � and

G � G�. Let Q� � � such that G � Q�. Let y � G�. If y � G, then we have y � Q�.
Let us now suppose that y � G� � G. Then, there exists x � G such that y � Nx. Since
x � G � Q�, there exists N � �x such that N � Q�. But then, we have y � Nx � N � Q�.
Consequently, we have Q � Q�, and thus G� � min	�Q � � � G � Q�.

Let G
 �
�

N���N	G N. We have G
 � � and G
 � G. Let Q� � �Q � � � Q � G�.
Let us suppose that there exists x � Q� �G
. In particular, we have x � G. There exists
Nx � �x such that Nx � Q�. If Nx � G then we have x � Nx � G
: contradiction. If
Nx � G then we have Q� � G: contradiction. Consequently, for all x � Q�, we have
x � G
, and thus G
 � max	�Q � � � Q � G�. ��

We define now two functions which enable to compute these solutions G� and G


(Def. 12, Props. 13 and 14) and we show that they authorise a computation in linear
time w.r.t. the size (i.e., the number of nodes) of the component-tree of the considered
image I or the size of the support E of this image (Prop. 15).

Definition 12. Let I � VE be a grey-level image. Let T � (� � L�R) be the component-
tree of I. Let G � E. Let � ��� 
 � �(�)� be the functions recursively defined, for all
N � � , by

� �(N) �

�
�N� if p�(N�G) � 0�

N��ch(N) �
�(N�) if p�(N�G) � 0

(8)

� 
(N) �

�
�N� if n(N�G) � 0�

N��ch(N) �

(N�) if n(N�G) � 0

(9)

In particular, if ch(N) � �, we have
�

N��ch(N) �

(N�) �

�
N��ch(N) �

�(N�) � �, which
guarantees the termination of these recursive definitions. The function � � (resp. � 
)
provides, for any node N � � , the subset of nodes of the subtree of T having N for root,
which enables to generate the set (G � N)� (see Eq. (6)) (resp. (G � N)
 (see Eq. (7)))
for the restriction of the image I to N.

Property 13. Let � � �����. Let I � VE be a grey-level image. Let T � (� � L�R) be
the component-tree of I. Let G � E. Then we have

�[G�] � � �(E) (10)
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Proof. Let X� Y � � �(E). By definition, we have X� Y � � . Moreover, if X � Y, it
obviously comes that X � Y � �. Consequently, there exists Q � � such that � �(E) �
�[Q]. By induction from the definition of � �(E) (resp. � 
(E)), we easily deduce that�

N�� �(E) N �
�

N���p�(N�G)�0 N (resp.
�

N�� �(E) N �
�

N���n(N�G)�0 N). In particular, it
follows that

�
N�� �(E) N � �Q � � � G � Q� (resp.

�
N�� �(E) N � �Q � � � Q � G�).

Let N � � �(E). Let y � G such that y � N and y �
�

N��ch(N) N� (such a point y exists
as p�(N�G) � 0). Then, N � min	�y, and since y � G�, we must have N � G�.
Consequently, we have

�
N�� �(E) N � G�, and then

�
N�� �(E) N � G� and � �(E) �

�[G�]. Let x � G
 �
�

N�� �(E) N. Then, there exists N � �x such that N � G
. As
x �

�
N�� �(E) N, we have N � � 
(E), and in particular, n(N�G) � 0. But then, there

exists y � N such that y � G, and thus, G
 � G: contradiction. Consequently, we have
G
 �

�
N�� �(E) N, and then G
 �

�
N�� �(E) N and � 
(E) � �[G
]. ��

The following property immediately derives from Prop. 13.

Property 14. Let � � �����. Let I � VE be a grey-level image. Let T � (� � L�R) be
the component-tree of I. Let G � E. Then we have

G� �
�

N�� �(E)

N (11)

Property 15. Let � � �����. Let I � VE be a grey-level image. Let T � (� � L�R) be
the component-tree of I. Let G � E. Then �[G�] (and thus G�) can be computed with
a linear algorithmic complexity �(max����� �E��), w.r.t. the number of nodes of the tree
or the size of the image.

Proof. From the definition of � �(E), it is easily proved that each node is processed
at most once. For each one of these �(���) processed nodes, one equality (related to
p�(N�G) or n(N�G), which are assumed to be precomputed, see Remark 3) is tested,
and the status of the node (“in” or “out of” the result � �(E)) is possibly modified.
These two operations have a constant algorithmic complexity �(1). The whole process
then presents a linear complexity �(���). The generation of G� from � �(E) can be
performed by modifying, for each node N of � and for each point x of N (these points
being stored in EN for each node N, see Remark 3) the status of x to indicate that it
belongs to G�. This process then presents an algorithmic complexity �(�E�). Hence the
result holds. ��

General Case. We now focus on the general case of the problem stated in Sec. 3, which
consists of finding a set of nodes �� of the component-tree of an image I verifying
Eq. (4), for the pseudo-distance d� proposed in Def. 4. The purpose is then to find the
best compromise (according to a chosen weight � � [0� 1]) between the amount of false
positives and false negatives w.r.t. a binary target G.

Since the set � of the objects which can be generated from the subsets of nodes of
a component-tree is finite, there necessarily exists a solution to this problem. Hereafter,
we show that such a solution (Def. 16) can be computed in linear time w.r.t. the size
(i.e., the number of nodes) of the component-tree of the considered image I or the size
of the support E of this image (Props. 19 and 20).
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Definition 16. Let � � [0� 1]. Let I � VE be a grey-level image. Let T � (� � L�R) be the
component-tree of I. Let G � E. Let  � �����. Let � � : �  �(�) and c� : �  ��

be the functions recursively cross-defined, for all N � � , by

(� �(N)� c�(N))�

�
(�N�� ��n(N�G)) if ��n(N�G)  (1 � �)�p�(N�G) �

	
N��ch(N) c�(N�)

(
�

N��ch(N) �
�(N�)� (1 � �)�p�(N�G) �

	
N��ch(N) c�(N�)) otherwise

(12)
In particular, if ch(N) � �, we have

�
N��ch(N) �

�(N�) � � (which guarantees the ter-
mination of these recursive definitions), and

	
N��ch(N) c�(N�) � 0. The function � �

provides, for any node N � � , the subset of nodes of the subtree of T having N for root,
which enables to generate the set (G � N)� (see Eq. (13), below) for the restriction of
the image I to N. The function c� provides the cost (w.r.t. d�) of this best solution.

Definition 17. Let � � [0� 1]. Let I � VE be a grey-level image. Let T � (� � L�R) be
the component-tree of I. Let � be the set of the objects which can be generated from the
subsets of nodes of � . Let G � E. We define G� � � as

G� �
�

N�� �(E)

N (13)

From a reasoning similar to (and actually simpler than) the one of Prop. 13, we have
the following result.

Property 18. Let � � [0� 1]. Let I � VE be a grey-level image. Let G � E. Then we
have

� �(E) � �[G�] (14)

Property 19. Let � � [0� 1]. Let I � VE be a grey-level image. Let T � (� � L�R) be
the component-tree of I. Let � be the set of the objects which can be generated from the
subsets of nodes of � . Let G � E. Then, we have

d�(G��G) � c�(E) � min
Q�

�d�(Q�G)� (15)

Proof. Let us suppose that ch(E) � �. Then we have � � ��� E�, d�(��G) � (1 �
�)�p(E�G) and d�(E�G) � ��n(E�G). If ��n(E�G)  (1 � �)�p�(E�G)�

	
N�ch(E) c�(N),

i.e., if ��n(E�G)  (1��)�p(E�G), then � �(E) � �E�, c�(E) � ��n(E) and thus we have
d�(G��G) � d�(E�G) � c�(E) � minQ��d�(Q�G)�. If ��n(E�G) � (1 � �)�p(E�G),
then we have � �(E) � �, c�(E) � (1 � �)�p(E�G) � (1 � �)�p�(E�G) and thus,
d�(G��G) � d�(��G) � c�(E) � minQ��d�(Q�G)�. Consequently, the property is true
whenever ch(E) � �. Let us now suppose that ch(E) � � and that the property holds for
any N � ch(E) (w.r.t. I�N , TN and G � N, instead of I, T and G, see Prop. 5). Note that
minQ��d�(Q�G)� � min�d�(E�G)�minQ���E��d�(Q�G)��, while d�(E�G) � ���E �G� �
��n(E), and minQ���E��d�(Q�G)� � minQ���E� ���Q�G�� (1��)��G �Q�. Note also that
�Q�N�N�ch(E) is a partition of Q whenever Q � E while �G�

�
N�ch(E) N���G�N�N�ch(E)

is a partition of G (by omitting the possibly empty subsets). If Q � E, we have
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d�(Q�G) � ���Q�G��(1��)��G�Q� � ���
�

N�ch(E)(Q�N)�G��(1��)��((G�
�

N�ch(E) N)��
N�ch(E)(G�N))�Q� �

	
N�ch(E) ���(Q�N)�G��(1��)��(G�

�
N�ch(E) N)�Q��

	
N�ch(E)

(1 � �)��(G � N) � Q� �
	

N�ch(E)(���(Q � N) � (G � N)� � (1 � �)��(G � N) � (Q � N)�) �
(1��)��G�

�
N�ch(E) N� �

	
N�ch(E)(���(Q�N)�(G�N)��(1��)��(G�N)�(Q�N)�)�(1�

�)�p�(E). From the above partition properties, it then comes that minQ���E��d�(Q�G)� �
minQ���E��

	
N�ch(E) (���(Q�N)�(G�N)��(1��)��(G�N)�(Q�N)�)�(1��)�p�(E)� � (1�

�)�p�(E)�
	

N�ch(E) min����(Q�N)�(G�N)��(1��)��(G�N)�(Q�N)�� � (1��)�p�(E)�	
N�ch(E) d�(Q � N�G � N) � (1 � �)�p�(E) �

	
N�ch(E) c�(N), by induction hypothesis.

Consequently, minQ��d�(Q�G)� � min���n(E)� (1 � �)�p�(E) �
	

N�ch(E) c�(N)�, and
the result follows by induction from Def. 16. ��

Property 20. Let � � [0� 1]. Let I � VE be a grey-level image. Let G � E. Then
� �(E) � �[G�] (and thus G�) can be computed with an algorithmic complexity
�(max����� �E��), linear w.r.t. the number of nodes of the tree or the size of the
image.

Proof. The proof is similar to the proof of Prop. 15. The only di�erence lies in the
fact that the set of conditions to be tested (��n(N)  (1 � �)�p�(N) �

	
N��ch(N) c�(N�))

requires at most ��� comparison operations ( ) and 4���� arithmetic operations (�����),
while the computation of all the terms c�(�) involves (at most) the value c�(N�) only
once for any N� � � , leading to less than ��� additions in the set of all the

	
terms.

Such supplementary operations then do not increase the algorithmic complexity �(���)
of the computation of � �(E) by comparison to � �(E). Hence the result holds. ��

Remark 21. The set of nodes � �(E) and its associated binary object G� enable to
minimise d�(��G), and thus to obtain an optimal solution to the issue considered in this
work. However, � �(E) and G� are generally not unique. To illustrate this assertion,
let us consider the trivial case where G � � (resp. G � E) and � � 0 (resp. � � 1).
Obviously, in such a case, any set of nodes and any associated binary object minimise
d0(��G) (resp. d1(��G)), which is always equal to 0. However, the way to define  in
Eq. (12) enables to break this non-determinism by choosing to favour the smallest (�)
or the largest (�) solution (w.r.t. the inclusion relation �) among all the possible ones.
In particular, if  is set to � (resp. to �) we have � � � � 0 (resp. � 
 � � 1) (the easy
proof of this assertion is left to the reader).

5 Algorithmics

From the above study, which provides an answer to the question stated in Sec. 1, we
can derive the method described in Alg. 1. (For the sake of readability, this algorithm,
which is intrinsically recursive, is described in an iterative fashion.)

In its general form, the method corresponds to Def. 16, which solves the general case
considered in Sec. 4.2. In the specific case where � � 0 and  � � (resp. � � 1 and
 � �), the method corresponds to Eq. (8) (resp. Eq. (9)) in Def. 12, which solves the
specific case of the smallest result including (resp. the largest result included in) the
rough segmentation, considered in Sec. 4.2.
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Algorithm 1. Segmentation method

Input
I : E � V (image to be segmented);
G � E (rough segmentation of I)
� � [0� 1] (weight parameter for false positives�negatives)
� � ����� (order involved in the cost minimisation formula)
Output
G� � E (final segmentation of I)

Algorithm
1 - Component-tree computation
T � (	 � L�R) (component-tree of I)
for all N � 	 do

EN � N 

�

N��ch(N) N�

p�(N�G) � �EN �G�
n(N�G) � �N 
G�

end for
2 - Cost minimisation
for v �  to � do

for all N � 	 such that m(N) � v do
if ��n(N�G) � (1 � �)�p�(N�G) �

�
N��ch(N) c�(N�) then

c�(N) � ��n(N�G)
� �(N) � �N�

else
c�(N) � (1 � �)�p�(N�G) �

�
N��ch(N) c�(N�)

� �(N) �
�

N��ch(N) �
�(N�)

end if
end for

end for
3 - Result computation
G� �

�
N�� �(E) N

6 Application Example: Assisted Segmentation of Drop Caps

As established in the previous sections, given an image, a rough segmentation, and
a parameter controlling the trade-o� between false positives and false negatives, it is
possible to compute, in linear time, the best segmentation composed by the connected
components stored in the component-tree of the image. Based on Alg. 1, an interactive
segmentation software tool has been developed, and applied to the extraction of drop
caps textural parts from ancient documents [7]. These drop caps are issued from the
Madonne database OLDB (Ornamentals Letters DataBase), which consists of more than
6000 grey-scale graphical decorative initials extracted from archival documents2. Drop
caps images are composed of a letter (uppercase) part and textural parts. They are noisy
and contain artifacts such as superimposed text, coming from neighbouring book pages.

2 We would like to thank the Centre d’Études Supérieures de la Renaissance for the permission
to use their archival documents.
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(a) (b) (c) � � 0�02 (d) � � 0�37 (e) � � 0�31

(f) (g) (h) � � 0�06 (i) � � 0�72 (j) � � 0�19

(k) (l) (m) � � 0�02 (n) � � 0�64 (o) � � 0�16

(p) (q) (r) � � 0�06 (s) � � 0�73 (t) � � 0�41

Fig. 2. Segmentation process. First column: initial images. Second column: user-defined rough
segmentations (in red). Third to fifth columns: examples of proposed segmentation results for
di�erent values of � (fifth column: best obtained segmentation).

The size of these images varies from 150 � 150 to 750 � 750 pixels. In this study, we
are interested in the fast extraction of objects belonging to the textural (background)
part of the drop cap (these objects are of extremal intensity, which is compliant with the
requirements of the method). The components are then used afterwards as query objects
in a system for drop caps retrieval and indexation.

The segmentation protocol, exemplified in Fig. 2 is the following one. Given a drop
cap image, (first column), the user proposes a manually-defined rough segmentation
(second column). He can then choose the most satisfactory segmentation by simply
interactively tuning the � value (third to fifth column) between 0 and 1 in a threshold-
like fashion. For each chosen �, the segmentation is computed on the fly, in real time.
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7 Conclusion

In this article, it has been established that the component-tree structure can be used to
compute, in linear time, a binary object which fits at best (w.r.t. false positives�negatives
criteria) a given binary target which can be assumed to identify structures of interest in
a digital grey-level image.

Based on this result a segmentation method has been proposed and successfully ap-
plied to the case of document analysis, emphasising the relevance of the approach.

In a further extended version of this work, it will be shown that this interactive seg-
mentation method can be optimised from both time and space point of views, by estab-
lishing in particular the increasing property of the results w.r.t. the � values. Additional
applications to medical images will also be proposed.
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Image Denoising with a Constrained Discrete
Total Variation Scale Space
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Abstract. This paper describes an approach for performing image resto-
ration using a coupled differential system that both simplifies the image
while preserving its contrast. The first process corresponds to a differen-
tial inclusion involving discrete Total Variations that simplifies more and
more the observed image as time evolves. The second one extracts some
pertinent geometric information contained in the series of simplified im-
ages and recovers the constrast using Bregman distances. Convergence
and exact computational properties of the method rely on the discrete
and combinatorial properties of discrete Total Variations.

Keywords: Discrete Total Variation, Bregman Distances, Differential
Inclusions, Network Flows.

1 Introduction

Minimization of the Total Variation (TV) with a quadratic data fidelity term is
a popular tool for performing image restoration since the seminal work of [3,23].
Although the solution has sharp boundaries it is also known that the minimizer
may present a loss of contrast [17,24]. In this paper we propose an approach to
address this issue within the framework of a coupled scale-space process.

One popular approach to avoid the loss of contrast consists in considering
robust edge-preserving priors [1,5,8,12,18,19,25] instead of TV. Such regulariza-
tion terms aim at not penalizing too much large gradient that are assumed to
correspond to a contour in the reconstructed image. Among these priors, the
Potts model and truncated-quadratic prior are the most well-known. However,
such a prior yields a non-convex optimization problems where a global minimizer
cannot be generally computed in practice. Thus a local minimum or a critical
point is obtained using an approximation algorithm [8].

Another approach relies an a Bregman distance procedure that is originally
proposed by Osher et al. in [20]. This scheme is an iterative method that consists
of minimizing a sequence of convex minimization problems where each of them
refines at each step a degraded image. More precisely, the process starts from
a constant image and converges toward the observed noisy image. It relies on
iterating the following two steps: the normals of the levels are firstly filtered using
TV while a surface is approximately fitted to these estimated normal in a second
step. These two operations are iterated until the reconstructed image satisfies a

I. Debled-Rennesson et al. (Eds.): DGCI 2011, LNCS 6607, pp. 465–476, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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prescribe criterion. The contrast of the reconstructed image is much better than
the one obtained from a pure TV approach since it emphasized the geometric
information contained in the normals of the level lines as opposed to the actual
gray values. This procedure has also received the name of inverse scale space [4]
since objects of finer scale are incrementally added to the reconstructed image.
Note that this approach can also be rewritten in terms of Bregman distance [20].
In [10], some theoretical links between the iterative Bregman distance scheme
and the use of robust edge preserving priors are highlighted.

In this paper we consider an approach that relies on coupling the TV-flow
(which corresponds to the solution of a differential inclusion) that incrementally
simplifies the original noisy image with a procedure that intends to recover the
contrast. More precisely, the flow is used to extract some information about the
geometry of the image: in this paper we consider the relative order between
any two adjacent pixels (note that this information essentially corresponds to
considering the normal of the level lines as in the Bregman process). This in-
formation is used in a second step that looks for an image that is the closest
(relatively to l2) to the observed data while it has the same relative order as the
one obtained from the flow image. Interestingly enough, the imposition of the
relative order is achieved though a Bregman distance. Note that our approach
is a forward scale-space approach (as opposed to inverse as in [20]).

The remainder of this paper is as follows: some useful notations and definitions
are given in section 2 while some theoretical results about differential inclusions
are presented in section 3. Our approach is described in section 4. Finally we
draw some conclusions in section 5.

2 Some Notations and Definitions

A discrete Markovian framework is considered [25]. An image is defined on a
lattice referred to as V with cardinality |V| = N . We see any image as a vector
living in RN . The value of an image u at the site i ∈ V is referred to as ui.
We endow the lattice with a neighborhood system and we consider pairwise
interactions between sites. We denote by (i, j) the interaction between two sites
i and j that are neighbors of each other (relatively to the neighborhood system).
The set of all of pairwise interactions is denoted by W and we set |W| = M .

In this paper we consider first order Discrete Total Variation (DTV) energies
[3,6,11] with separable quadratic fidelity. In order to define first order DTVs, let
us first follow [21] by noting that a discrete gradient, denoted by ∇, is defined on
any lattice endowed with a neighborhood system. This discrete gradient measures
the variation for any two pixels in interaction and is thus a linear mapping
∇ : RN → RM . In the remainder of this paper we should consider the matrix
representation of ∇ . The adjoint operator of the discrete gradient corresponds
to the divergence denoted by div and is defined as usual as

〈u, div w〉N = 〈−∇u,w〉M .
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We refer the reader to [21] for more details and properties of these linear opera-
tors. In this paper we define the Discrete Total Variation J(u) for any image u
as the l1 norm of the discrete gradient and is thus defined as

J(u) = ‖∇u‖1,N =
∑

(i,j)∈W
Ri,j(u) =

∑
(i,j)∈W

|uj − ui| , (1)

where each function Ri,j : u ∈ RN �→ |uj−ui| ∈ R is associated with every single
interaction (i, j). Note that we have only considered non-weighted DTVs for the
sake of clarity. Indeed, all results presented in this paper also holds for weighted
versions of DTVs (i.e., each interacting term is weighted with a non-negative
coefficient).

Finally, let us introduce the notion of subgradient and subdifferential. Let us
consider F : RN → ĪR, a proper convex lower semi-continuous function. The
subdifferential of F at the point x corresponds to a set, denoted by ∂F (x),
defined as the following:

∂F (x) = {s ∈ R
N | ∀y ∈ R

N , 〈y − x, s〉+ F (x) ≤ F (y)} .

When F is differentiable at the point x then ∂F (x) is reduced to a singleton
that contains the gradient of F evaluated at x. Any element of ∂F (x) is called
a subgradient of F at x. Also, for all p ∈ {1, . . . , N} and x ∈ RN , ∂pF (x)
denoted the subdifferential at x of the partial function F(xk)k �=p

: u ∈ R �→
F (x1, . . . , xp−1, u, xp+1, . . . , xN ). We refer the reader to [15,16] for a complete
study of these notions.

3 Differential Inclusion

This section is devoted to the presentation of the differential inclusion that de-
scribes the trajectory of the first process, i.e., the DTV-flow. We first recall some
theoretical results that are essential for the theoretical soundness of our approach
as well as for the computational point of view.

We consider the following differential inclusion problem that formally writes as{
du
dt (t) ∈ −∂J(u(t)) on (0, +∞)
u(0) = v

, (2)

Note that the non-differentiability of J may lead to several possible solutions.
Following [2], we should consider the slowest solution that essentially consists in
considering the subgradient of J at the current point with minimal Euclidean
norm instead of the full subdifferential. Such a point of view not only yields a
solution of the differential inclusion but also reduces it to a differential equation.
We now list some fundamental properties that are proved for instance in [2].

Proposition 1. Let F : RN → R̄ be a proper lower semicontinuous convex func-
tion. The differential inclusion (2) has a unique absolutely continuous solution
u(·) : [0, +∞)→ R that satisfies
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du
dt

(t) = −m(∂F (u(t))) for all t ≥ 0, (3)

where m(∂F (u(t))) is the orthogonal projection of the origin onto ∂F (u(t)) .
Besides, the following holds:

(i) t �→ ‖u′(t)‖ is nonincreasing.
(ii) t �→ u(t) converges toward a minimizer of F .

In this paper we are interested in the trajectory generated when F corresponds
to a discrete Total Variation given by (1) and where the initial condition is set to
the observed data. This process generates a trajectory which simplifies the image
and eventually converges toward a constant image. This yields a Discrete Total
Variation flow that has been used in image processing (see for instance [14]).

Let us just note that the whole trajectory using DTV can be exactly computed
using a network flow approach [21]. Such an approach relies on the fact that the
trajectory t �→ u(t) is piecewise affine (one way to show this piecewise affine
property is to reformulate DTV such that it fits the form of equation (3.4.7) of
[15, p. 380]) We refer the reader to [9] for more details on the computations of
such a trajectory.

4 A Discrete Total Variation Scale Space Approach

This section describes our approach. First, we show how to preserve the relative
order of an image as a variational formulation using Bregman distance. Then,
we describe how the latter is coupled with the differential inclusion to yield a
contrast preserving denoising approach. Some numerical results are eventually
presented.

4.1 Relative Order and Bregman Distances

The goal of this subsection is to characterize the set of all images which have
the same relative order with respect to a given image using generalized Bregman
distances.

Two images u and v are said to have the same relative order if and only if
the following assertion holds: For all interactions (i, j) ∈ W we have(

If vi < (>)vj then ui ≤ (≥)uj

)
or

(
If vi = vj then ui = uj

)
. (4)

Following [20], we introduce the generalized Bregman distance which is a mutli-
valued version of the standard Bregman distance (which is originally defined
for differentiable convex functions) based on the notion of subgradients. More
precisely, the generalized Bregman distance DG(u,v) between u and v, relatively
to the lower semi-continuous function G : IRN → ĪR, is the set of all quantities
defined as the following:
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D
p(v)
G (u,v) = G(u)−G(v) − 〈p(v)|u − v〉N , (5)

where p(v) ∈ ∂G(v).
Our goal is to describe the relative order set with the help of generalized

Bregman distance for DTV, i.e., with G = J . More precisely, we will show
that by choosing an adequate particular subdifferential p(v) (among all possible
ones in the set ∂J(v)), then any image u which has the same relative order with
respect to v satisfies D

p(v)
J (u,v) = 0. To determine this subgradient, we use

the combinatorial structure of DTV. We show that it is enough to consider the
subgradients of the functions Ri,j associated to each interaction (i, j). Besides,
we are able to express this set with generalized Bregman distance associated
with each function Ri,j .

Let us detail this step. Consider any function Ri,j : IRN → IR associated to
the interaction (i, j) and its associated generalized Bregman distance. In order
to define the latter (following the definition given by (5)), we need to pick an
element of the subgradient of Ri,j evaluated at the point v. We consider the
subgradient of minimal Euclidean norm living in ∂Ri,j(v) that is referred to
as m(∂Ri,j(v)). The choice of picking the one with minimal Euclidean norm is
essential for our approach and will be justified later. The following proposition
which relates DTV generalized Bregman distances and relative order is essential
for our approach.

Proposition 2. Let v be an image. An image u has the same relative order as
v if and only if u verifies the following equalities:

∀(i, j) ∈ W , D
m(∂Ri,j(v))
Ri,j

(u,v) = |uj − ui|+ mi(∂Ri,j(v))(uj − ui) = 0 , (6)

where mi(∂Ri,j(v)) is the value of the image m(∂Ri,j(v)) at the site i, i.e.,
mi(∂Ri,jv) = (m(∂Ri,j(v)))i .

The proof of this proposition is given in Appendix A. Let us note that the
proposition may fail to hold for if some particular choice of subgradients if it is
not the one of minimal Euclidean norm. Indeed, equality (6) rewrites for any
p(v) ∈ ∂(Ri,j(v)) and u ∈ RN as the following (see Appendix A):

D
p(v)
Ri,j

(u,v) = |uj − ui|+ pi(v)(uj − ui) = 0, (7)

where pi(v) = (p(v))i (i.e., the value of the image p(v) at the site i). Now let
us consider only interactions for which we have vi = vj . For those interactions
we have that pi(v) ∈ [−1, 1] . We shall see that equality (7) is not necessarily
equivalent to the relative order property, depending on the element picked in the
subgradient:

1. If pi(v) = 1, then, according to (7) we have : D
p(v)
Ri,j

(u,v) = 0 ⇔ ui ≥ uj .

Thus, there are some images satisfying equality constraint (7) which do not
satisfy the relative order of image v for the interaction (i, j).
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2. If pi(v) = −1, then, according to (7) we have : D
p(v)
Ri,j

(u,v) = 0 ⇔ ui ≤ uj .
As for the previous case, the equivalence may not hold.

3. If pi(v) ∈]− 1, 1[, them according to (7) we have : D
p(v)
Ri,j

(u,v) = 0 ⇔ ui =
uj . This mean that all images satisfying equality constraint (7) follows the
relative order of the image v for the interaction (i, j).

For cases where vi �= vj the subdifferential is reduced to one element and it
is easy to check that the equivalence holds. Therefore, instead of picking the
subgradient with minimal norm we could have chosen any one for which the ith

component is different from 1 or −1 when vi = vj (and the pick the only possible
subgradient for the other cases). We choose the one with minimal norm not only
because it makes the equivalence to hold but also because it is essential for the
convergence and thus soundness of our approach.

4.2 A Coupled Scale-Space Approach

We are now ready for describing our approach.
First we consider the unique slow solution of the differential inclusion (2)

with discrete Total Variations, i.e., F = J with the observed image v as the
initial condition. Let us note this solution as t �→ u(t) , and we consider the
sequence (u(t))t≥0 . As the solution corresponds to a Discrete Total Variation
flow, we have that a scale space is generated such that the original image is more
and more simplified as time evolves. Although one can only use DTV-flow for
denoising such as in [13] for instance, it also suffers a loss of contrast [17] as
for denoising by minimizing Total Variation with quadratic data fidelity term
[23]. Thus, we wish to recover the contrast while keeping the important features
contained in the flow.

For this purpose, we introduce a second sequence (ũ(t))t≥0 that are obtained
from (u(t))t≥0. The most important features we wish to preserve in this paper
is the shape of the level so that no geometric information will be introduced.
Besides, we also wish to maintain the relative order of gray-level value between
two adjacent pixels. Such constraints correspond to maintaining a relative order.
In order to recover the contrast we wish to search for the image that is the closest
(in the sense of the Euclidean norm) to the observed one while satisfying the
relative order.

More precisely, we generate the sequence (ũ(t))t≥0 from (u(t))t≥0 such that
for all t ∈ R+ the image ũ(t) is the unique solution of the following quadratic
convex constrained problem

ũ(t) := arg min
g∈S(t)

{1
2
||g − v||22

}
, (8)

which corresponds to the projection of observed image v into closed convex set
S(t). This set corresponds to images whose relative orders the same as u(t) . It
is formally defined as the following:
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1. Set u(0) = ũ(0) = v
2. Solve the differential inclusion problem{

u′(t) ∈ −∂J(u(t)) on (0, +∞)
u(0) = v

,

3. For all (i, j) ∈ W, compute mi(∂Ri,j) as below

mi(∂Ri,j(u(t))) =

⎧⎪⎨⎪⎩
−1 if u(t)i > u(t)j ,

0 if u(t)i = u(t)j ,

1 if u(t)i < u(t)j .

4. Solve
ũ(t) := arg min

g∈S(t)

{1
2
||g − v||22

}
Fig. 1. Our procedure

S(t) =
⋂

(i,j)∈W

{
g ∈ R

N |Dm(∂Ri,j(u(t)))
Ri,j

(
g,u(t)

)
= 0
}

=
⋂

(i,j)∈W

{
g ∈ R

N | |gj − gi|+ mi(∂Ri,j(u(t)))(gj − gi) = 0
}
, (9)

where mi(∂Ri,j(u(t))) is given by

mi(∂Ri,j(u(t))) =

⎧⎪⎨⎪⎩
−1 if u(t)i > u(t)j ,

0 if u(t)i = u(t)j ,

1 if u(t)i < u(t)j .

Our approach is summarized in Figure 1. We can further give a result of con-
vergence for this algorithm which is summarized in the following proposition.

Proposition 3. Assume that the observed image v has zero mean, then the se-
quence of images (ũ(t))t>0 generated by previous theoretical algorithm converges
toward the constant image 0.

We only give the fundamental elements of the proof. According to theorem 1
of [2, p.147], theorem 1 of [2, p.149] and theorem 2 of [2, p.160], we prove that
limn m

(
∂Ri,j(u(t))

)
= 0 and also that the sequence (ũ(t))t>0 is bounded. Ac-

cording to theorem 4.18 [22, p.120] and proposition 4.9 [22, p.120] we conclude
that 0 is unique cluster point of sequence (ũ(t))t>0.

Proposition 3 yields a natural stopping rule. Assuming the variance σ2 of the
noise that corrupts the image is known, one natural stopping criteria is to stop
the process as soon as the residual satisfies ‖ũ(t) − v‖22,N ≥ Nσ2. Note that if
‖v‖22,N > Nσ2 then the stopping criteria is never met and thus the denoised
image is the null image (this behavior is similar to the existence of Lagrange
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multiplier for Total Variation minimization with quadratic constraint [7]). Also,
although the function t �→ u(t) is a continuous function, t �→ ũ(t) might not be
(actually it is not for practical interesting cases).

4.3 Numerical Results

From a practical point of view we take benefit from the fact that the solution of
the differential inclusion with Discrete Total Variation given in (2) is piecewise
affine. It is thus enough to detect specific times where the subgradient of J with
minimal norm is changing to be able to generate the trajectory. This can be
easily computed using a network flow approach (see [9]). On a time interval
on which the solution of the differential inclusion is affine, its subgradient of
minimal Euclidean norm is constant and thus the convex constraint set S(·) is
constant of this interval, and thus the solution ũ(·) is constant on this interval. It
can further be shown that there is a finite number of specific time for which the
subgradient of minimal Euclidean norm is changing. Thus, the implementation
detects these specific time, compute the solution ũ at this time. It iterates until
the stopping criteria is met (or the subgradient of minimal Euclidean norm is
zero).

In this experiment, we consider Discrete Total Variations that involves the
8-connectivity. The weights for the 4 nearest neighbors are set to 1, while the
weights for the diagonal ones are set to 1/

√
2 .

Figure 2 depicts an original image and its noisy version corrupted by an
independent Gaussian additive noise of zero mean and variance σ2 = 122 . The
result using our approach is depicted in Figure 3 along with its residual. One
can see that the residual seems to contain very little geometric information. The
mean square error (MSE) is 48.6191.

(a) original image (b) noisy image

Fig. 2. Original image is depicted in (a) while its corrupted version by an additive
Gaussian noise (zero mean) of variance σ2 = 122 is depicted in (b)
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(a) Our result (b) Residual

Fig. 3. Result using our approach: The denoised image and and its difference with the
noisy image are respectively depicted in (a) and (b)

(a) TV minimizer (b) Residual

Fig. 4. Total Variation result: The minimizer and and its difference with the noisy
image are respectively depicted in (a) and (b)

For comparison puposes we also present in Figure 4 the result obtained using
a standard variational model involving Discrete Total Variation with a quadratic
constraint ; we refer the reader to [7,23] more details. The MSE for this approach
is 49.26. Although the MSE for both approaches are essentially the same it is
clearly seen that the residual is much better for approach as it contains much
less geometrical detail.
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5 Conclusion

This paper has described an approach to restore images while preserving the
contrast. It consists on coupling the solution a simplification process, here a
DTV-flow, with another process that recovers the contrast. We have shown the
well-soundness and the convergence of our approach.

Further extension consists in replacing the Total Variation flow by more elab-
orated flows. Also, although our approach is a forward scale-space it would be
interesting to better understand the theoretical links, if any, with the inverse
scale space of Osher et al. [20].
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A Appendix

Proof of proposition 2 : Let v ∈ RN , be an image and consider an interaction
(i, j) ∈ W . First, for all p(v) ∈ ∂Ri,j(v) and u ∈ RN , according to proposition
11.3 [22] we can rewrite D

p(v)
R (u,v) defined by (5) as below :

D
p(v)
R (u,v) = Ri,j(u) + R∗

i,j(p(v)) − 〈p(v)|u〉N , (10)

where Ri,j(u) = r(dt
i,ju), with r : x ∈ R �→ |x| and di,j ∈ RN defined such that:

(di,j)i = −1, (di,j)j = 1 and for all p ∈ {1, . . . , N} − {i, j} (di,j)p = 0. Also,
by invoking [22] theorem 11.23(b) we have :

R∗
i,j(p(v)) = inf

w∈R

{r∗(w) | − w di,j = p(v)} , (11)

where :

r∗(x) =

{
0 if |x| ≤ 1
+∞ otherwise

. (12)
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As ||p(v)||∞ ≤ 1, and according to (11) and (12), the generalized Bregman
distance (10) becomes:

D
p(v)
R (u,v) = inf

w∈R

{|uj − ui|+ r∗(w) + w〈di,j |u〉N | − w di,j = p(v)}

= |uj − ui|+ pi(v)(uj − ui) . (13)

By a simple subdifferential calculus we have:

∂iRi,j(v) =

⎧⎪⎨⎪⎩
−1 if vi > vj

[−1, 1] if vi = vj

1 if vi < vj

⇒ mi(∂Ri,j(v)) =

⎧⎪⎨⎪⎩
−1 if vi > vj

0 if vi = vj

1 if vi < vj

(14)

Therefore, taking p(v) = m(∂Ri,j(v)) in (13), and according to (14), we have
the following three cases:

1. If vi > vj , we have the following equivalences:

D
m(∂R (v))
R (u,v) = |uj−ui|+(uj−ui)=0 ⇔ ui−uj = |uj−ui| ⇔ ui ≥ uj .

2. If vi < vj , we have the following equivalences:

D
m(∂R (v))
R (u,v) = |uj−ui|−(uj−ui)=0 ⇔ uj−ui = |uj−ui| ⇔ uj ≥ ui .

3. If vi = vj , we have the following equivalence:

D
m(∂R (v))
R (u,v) = |uj − ui| = 0 ⇔ ui = uj .

Therefore, the equivalence stated in proposition 2 is proved. �
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Abstract. Forman theory, which is a discrete alternative for cell com-
plexes to the well-known Morse theory, is currently finding several ap-
plications in areas where the data to be handled are discrete, such as
image processing and computer graphics. Here, we show that a discrete
scalar field f , defined on the vertices of a triangulated multidimensional
domain Σ, and its gradient vector field Grad f through the Smale-like
decomposition of f [6], are both the restriction of a Forman function F
and its gradient field Grad F that extends f over all the simplexes of
Σ. We present an algorithm that gives an explicit construction of such
an extension. Hence, the scalar field f inherits the properties of Forman
gradient vector fields and functions from field Grad F and function F .

Keywords: Morse Theory, Forman Theory, Morse Decomposition.

1 Introduction

Morse theory is a powerful tool for understanding the topology and the geometry
of a manifold M on which a C2-differentiable real-valued function f is defined.
A Morse function f induces decompositions of M (called Morse complexes) into
regions associated with critical points of f , based on the study of the behavior
of the gradient vector field of f . In 1998, Forman introduced a new theory for
cell complexes, that is a discrete equivalent to Morse theory [8]. He proved that
almost all the main results from Morse theory are valid for discrete functions.

We describe a discrete decomposition for a triangulated n-dimensional do-
main Σ with manifold carrier, associated with a scalar field f and originally
proposed in [6], called a Smale-like decomposition. This decomposition simulates
the Morse complexes of f in the discrete case, and defines a discrete gradient
field Grad f , which represents the topological structure of the field. We have
used such decomposition in combination with simplification operations to build
a multi-scale morphological representation of scalar fields [2, 5].

We construct an extended form of discrete gradient field Grad f defined by
a Smale-like decomposition, called an extended discrete gradient field EGrad f .
The extended form always points in the direction in which function f is descend-
ing, and thus it agrees with the (negative) flow induced by the scalar field f . We
show that this field is a Forman gradient vector field VF of a Forman function F ,
whose restriction over the vertices of Σ coincides with the initial scalar field f .
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We give the explicit formulation of a Forman function F that satisfies the above
property.

As a consequence, we have that it is possible to use all the machinery of
Forman theory without actually working with the entire Forman function F , or
even with the related Forman gradient vector field VF = EGrad f ; the vector
sub-field Grad f is sufficient to study the behavior of scalar field f . Specifically,
EGrad f (and thus F ) can be simplified by applying a cancellation operator,
which eliminates critical cells of EGrad f in pairs. This simplification operator
will form a basis of a hierarchical representation of the morphology of the ini-
tial scalar field f , and of the simplicial complex Σ. We intend to build such a
hierarchical model, based on a cancellation operator, in the near future.

The remainder of this paper is organized as follows. In Sections 2 and 3,
we summarize some results related to Morse and Forman theory, respectively.
In Section 4, we review related work in this area. In Section 5, we recall the
algorithm that computes the Smale-like decomposition. In Section 6, we present
the algorithmic construction of a discrete vector field EGrad f , which extends
the discrete gradient field Grad f induced by the Smale-like decomposition to
a Forman gradient vector field. In Section 7, we define a Forman function F ,
whose Forman gradient vector field VF coincides with EGrad f . In Section 8,
we draw some concluding remarks and discuss our current and future work.

2 Morse Theory and Morse Complexes

Morse theory captures the relationship between the topology of a manifold M
and the critical points of a scalar function f defined on the manifold [13, 14].

Let f be a C2 real-valued function defined over a closed compact n-manifold
M . A point p is a critical point of f if and only if the gradient∇f = ( ∂f

∂x1
, ..., ∂f

∂x )
(in some local coordinate system around p) of f vanishes at p. Function f is a
Morse function if all its critical points are non-degenerate. The number i of
negative eigenvalues of the Hessian matrix Hesspf is called the index of critical
point p, and p is called an i-saddle. A 0-saddle (an n-saddle) is also called
a minimum (a maximum). An integral line of f is a maximal path which is
everywhere tangent to ∇f . Each integral line starts and ends at critical points
of f , called its origin and its destination.

Integral lines that converge to (originate at) a critical point p of index i form an
i-cell ((n− i)-cell), called a descending (ascending) cell of p. The descending and
ascending cells decompose M into descending and ascending Morse complexes,
denoted as Γd and Γa, respectively. A Morse function f is called a Morse-Smale
function if each non-empty intersection of a descending and an ascending cell is
transversal. These intersections define a Morse-Smale complex.

3 Forman Theory

Forman theory is a discrete counterpart of Morse theory, and its main purpose
is to transpose the results of Morse theory from a smooth to a combinatorial
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setting. A function F , defined on all simplexes (and not only on vertices) of a
finite simplicial complex Σ, is called a Forman function if for any p-simplex σ,
all the (p− 1)-simplexes in the boundary of σ have a lower F value than σ, and
all the (p + 1)-simplexes in the coboundary of σ have a higher F value than σ,
with at most one exception. A simplex is critical if there is no exception to this
rule. More formally, a function F : Σ → R is a Forman function if for every
p-simplex σ, both the following conditions are satisfied

(1) #{τ (p+1) > σ : F (τ) ≤ F (σ)} ≤ 1, (2) #{ν(p−1) < σ : F (ν) ≥ F (σ)} ≤ 1.

These inequalities cannot be equalities at the same time. A p-simplex σ ∈ Σ is
a critical simplex of index p if both the following conditions are satisfied

(1) #{τ (p+1) > σ : F (τ) ≤ F (σ)} = 0, (2) #{ν(p−1) < σ : F (ν) ≥ F (σ)} = 0.

The absolute minimum of F on a a triangulation of a closed manifold occurs at
a vertex; the absolute maximum occurs at a maximal dimensional simplex [8].
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Fig. 1. (a) Forman function F , and (b) the corresponding discrete gradient vector
field VF , on a 2D simplicial complex. Each simplex σ is labelled by the value of F at σ.

In the example in Figure 1 (a), a Forman function F defined on a 2D simplicial
complex is illustrated. Each simplex is labelled by its function value. Vertex
labelled 0 and edge labelled 11 are critical simplexes of F .

Forman theory can be introduced starting from a notion of a discrete vector
field, which can be imagined as a collection of arrows, connecting a p-simplex
of Σ to an incident (p + 1)-simplex, such that each simplex is a head or a tail of
at most one arrow. A simplex is critical if it is neither the head nor the tail of
any arrow. A discrete vector field V is a Forman gradient vector field if there are
no closed V -paths in V . More formally, a discrete vector field V on a simplicial
complex Σ is a collection of pairs (σ, τ), such that

(1) σ is a p-simplex, and τ is a (p + 1)-simplex of Σ,
(2) σ is a face of τ (σ < τ), and
(3) each simplex of Σ is in at most one pair of V .

A V -path is a sequence σ0, τ0, σ1, τ1, ..., σr+1 of p-simplexes σi and (p + 1)-
simplexes τj , i = 0, .., r + 1, j = 0, .., r, such that (σi, τi) ∈ V , τi > σi+1,
and σi �= σi+1. A sequence σ0, τ0, σ1, τ1, ..., σr+1, r > 0, is a closed path if it is a
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V -path, and σr+1 = σ0. A discrete vector field V is called a discrete (Forman)
gradient vector field if and only if there are no closed V -paths in V . A critical
simplex of V of index p is a p-simplex σ which does not appear in any pair of
V . In other words, a simplex σ is critical if V (σ) = ∅, and σ /∈ ImV . A gradient
vector field V is a subgraph (a forest) of the (non-oriented) Hasse diagram of Σ.

There is a correspondence between Forman functions and Forman gradient
vector fields. For each Forman function F , a Forman gradient vector field VF

can be constructed, by drawing an arrow from a p-simplex σ to a (p+1)-simplex
τ (adding a pair (σ, τ) to VF ) if τ > σ and F (τ) ≤ F (σ). Conversely, for each
Forman gradient vector field V there exists a (non-unique) Forman function F
such that the gradient field VF of F is V [7]. The example in Figure 1 (b) shows
a Forman gradient vector field VF of the Forman function F in Figure 1 (a).

4 Related Work

There have been several proposals which construct a Forman gradient vector
field, or a Forman function, on a simplicial complex Σ. Computation of a Forman
gradient vector field V with minimal number of critical cells on a 2D simplicial
complex Σ with a manifold domain has been discussed by Lewiner et al. [12],
with the objective to compute the homology of Σ. It is not possible to analyze a
specific scalar field f given on vertices of Σ using this approach. Forman theory
has been used to build approximations of a Morse-Smale complex by Cazals
et al. [1], with the objective to segment the surface of a molecule, using a discrete
Connolly function f computed on each vertex of the surface.

In [11], King et al. consider the problem of computing a Forman gradient
vector field V and the corresponding Forman function F , which extends a scalar
field f given on the vertices of a triangulated surface. Simplification of V by
cancellation of critical simplexes is included in the algorithm. Forman function
F is arbitrarily close to the maximum of f over vertices of σ. Forman function
which we construct here can be easily converted into another Forman function
G, satisfying the same condition. As opposed to the gradient field EGrad f
which we construct, gradient field V constructed in [11] does not always point
in the direction in which scalar field f is decreasing. The approach in [11] is
extended to arbitrary dimensions by Jerše and Mramor Kosta in [10], and it is
used to define a Forman gradient vector field V on a regular cell complex Γ with a
manifold carrier ΔΓ . Descending regions related to critical cells of V are defined.
It is shown that after a finite number of subdivisions, all descending regions are
topological disks. Ascending regions are defined using the dual complex.

In [9], Gyulassy et al. use Forman theory and a divide-and-conquer technique
to compute an approximation of the Morse-Smale complex of a scalar field f
defined on the vertices of a regular cell complex Γ with manifold carrier. It is
not guaranteed that the constructed discrete gradient vector field V , if applied
to a triangulated domain, points in the direction in which the scalar field f is
decreasing. Forman function F corresponding to field V is not constructed.
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In [3], Cousty et al. demonstrate a link between collapse operator for maps
and watersheds on pseudomanifols. It is assumed that a function F (which is not
a Forman function) is defined on all simplexes of a pseudomanifold. A collapse
is used on the level sets of F to obtain watershed of F .

5 The Smale-Like Discrete Decomposition

In this Section, we describe a dimension independent region-based method, in-
troduced in [4], for extracting an approximation of a descending Morse complex
related to maxima, called a Smale-like decomposition, starting from a scalar field
f defined on the vertices of a triangulated manifold domain Σ.

The process of region-growing is based on the elevation values at the ver-
tices of Σ, and the connectivity of Σ. It is assumed that f(p) �= f(q) if p �= q
(p and q are vertices of Σ). This condition, which is assumed in other methods
that produce a segmentation of Σ using Forman theory [9–11], ensures, over reg-
ular complexes, the uniqueness of the decomposition, and can be achieved by a
small perturbation of scalar field f . The decomposition obtained will depend on
the way the input data is perturbed. The algorithm extracts descending regions
of a discrete Morse complex, related to maxima of f , and can be modified in an
obvious way to obtain ascending regions related to minima. Overlay of ascend-
ing and descending regions defines an approximation of a discrete Morse-Smale
complex.
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Fig. 2. (a) Initialization, and (b) the complete region associated with point p at ele-
vation 18. (c) The decomposition of a two-dimensional triangulated domain D. Points
are labelled by their function value. Arrows indicate the region growing process.

In the preprocessing step, the vertices of Σ are sorted in descending order of
their elevation, and are processed in this order. A current set K is kept, which
is initialized to be equal to Σ. A descending region C(p), associated with global
maximum p, is initialized with all the simplexes in St(p) (the closure of the star
of p in K), and the boundary ∂C(p) of C is equal to the link Lk(p) in K. For
example, in Figure 2 (a), each vertex p of a 2D triangulated surface is labelled by
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the value of a scalar field f at p. A global maximum of f is achieved at a point
labelled 18, and the descending region C(18) is initialized with all the simplexes
in the closed star of vertex 18.

After the initialization step, the region growing step of the algorithm is per-
formed. For each top ((n−1)-dimensional) simplex γ ∈ ∂C(p), which is incident
to another simplex (cone) q ∗ γ ∈ K − C(p), if f(q) is less than f(r), for all
vertices r of γ, then C(p) is extended to C(p) ∪ q ∗ γ, and the boundary ∂C(p)
of C(p) is updated by replacing γ with all faces of the cone q ∗ γ that contain q.
Region growing is illustrated in Figure 2 (b). Region C(p) is extended iteratively,
until no more simplexes can be added to it while maintaining the above prop-
erty. Then, the interior of C(p) is deleted from K, and the process is repeated
until there are no more n-simplexes in K. After all vertices of the example illus-
trated in Figure 2 are processed, decomposition given in Figure 2 (c) is obtained.
Figure 3 shows the results produced by the Smale-like decomposition algorithm
on a 2D terrain data set, representing Mount Marcy (courtesy of USGS).

(a) (b)

Fig. 3. (a) Perspective view of the 119 unstable components, produced by the Smale-
like decomposition algorithm, applied to Mount Marcy with 69718 triangles. (b) Wire-
frame model.

6 Extended Discrete Gradient Field

A discrete gradient field Grad f can be defined using the decomposition al-
gorithm described in the previous Section. It associates with each (n − 1)-
dimensional simplex γ, which has been used in the extension process, the cone
q∗γ added to C(p), i.e., Grad f(γ) = q∗γ. Here, we extend the field Grad f into
a discrete gradient vector field EGrad f , defined on all simplexes of Σ, which
we call extended discrete gradient field.

Intuitively, for each pair (γ, q ∗ γ), such that Grad f(γ) = q ∗ γ, EGrad f can
be defined over all i-faces σi of (n− 1)-simplex γ, 0 ≤ i ≤ n− 2, by associating
σi with cone q ∗ σi, i.e., by adding the pair (σi, q ∗ σi) to EGrad f (by setting
EGrad f(σi) := q ∗ σi). Geometrically, this extension consists of emanating
vectors from all faces σi of γ towards vertex q. This is compatible with Smale-
like decomposition process since f(q) < f(r) for all vertices r of γ. Note that,
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according to this construction, all faces of γ are not critical since they are tails of
vectors. If any of such (n−1)-dimensional cones q ∗σn−2 is used later to expand
C(p) in the Smale-like decomposition process, the pair (σn−2, q∗σn−2) has to be
removed from EGrad f , and the (n−1)-dimensional cone q∗σn−2 is processed in
the same way as (n− 1)-simplex γ above. In this way we avoid having a simplex
σ such that there is an arrow starting at, and an arrow ending at σ. We now
give a formal description of the step-by-step algorithm which defines a discrete
field EGrad f . Steps (1), (2), and (3) define EGrad f on (n − 1)-dimensional,
i-dimensional (for 0 ≤ i ≤ (n − 3)), and (n − 2)-dimensional simplexes of Σ,
respectively.

Definition 1. The extended discrete gradient field EGrad f of a scalar func-
tion f (and of the corresponding discrete gradient field Grad f) defined on the
vertices of an n-dimensional triangulated domain Σ is given by

(1) if γ is an (n − 1)-simplex such that Grad f(γ) = q ∗ γ (γ is expanding a
component C(p) to include the cone q ∗ γ) then EGrad f(γ) := q ∗ γ.

(2) For all i-simplexes σi < γ, where EGrad f(γ) = q ∗ γ for some q, and i =
0, . . . , n−3, EGrad f(σi) := q∗σi if EGrad f(σi) has not been defined before
when another (n−1)-simplex γ incident to σi was considered. Otherwise, σi

is skipped (since it has already an attached value by EGrad f).
(3) For all (n− 2)-dimensional simplexes σn−2 < γ, where EGrad f(γ) = q ∗ γ

for some q, we distinguish two cases:
(a) If the (n− 1)-dimensional cone q ∗ σn−2 does not participate in the ex-

pansion process of C(p), and if it is not already paired with some (n−2)-
simplex in EGrad f (if it is not in the image of EGrad f), then we set
EGrad f(σn−2) := q ∗ σn−2.

(b) Otherwise, we set (temporarily) EGrad f(σn−2) := ∅. In this case, cone
q ∗ σn−2 represents a new expanding (n− 1)-simplex of C(p). Return to
steps (1), (2) and (3) to define EGrad f on cone q ∗ σn−2 (i.e., to set
EGrad f(q ∗ σn−2) := Grad f(q ∗ σn−2)), on i-faces of cone q ∗ σn−2,
0 ≤ i ≤ n− 3, and on (n− 2)-faces of cone q ∗ σn−2, respectively.

For each simplex σ in the open star of a vertex p which starts a new component,
such that σ does not belong to the boundary or interior of another component
C(t), σ is a critical simplex, and EGrad f(σ) := ∅. We note here that our ex-
tended field EGrad f depends on the order in which top simplexes are processed.
Such order dependence is common to other approaches which compute a discrete
gradient vector field starting from a scalar function f [9, 11].

We present in Figure 4 the extended discrete gradient field EGrad f induced
by scalar field f , illustrated in Figure 2. Simplexes γ are edges and their faces
σi are vertices (i.e., we have only i = 0). Edge γ = [3; 9] expands the component
C(18), by adding triangle [3; 9; 2] to C(18), and EGrad f([3; 9]) := [3; 9; 2] (step
(1)). End points of edge [3; 9] are the (n − 2)-simplexes described above. Edge
[3; 2] does not participate in the expansion of the new component C(18) :=
C(18) ∪ [3; 9; 2]. Thus, EGrad f([3]) = [3; 2] (step (3a)). The other vertex [9]
of edge [9; 2], with vertex [2] forms an edge that expands the updated C(18),
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Fig. 4. (a) Function Grad f , defined by the Smale-like decomposition of Figure 2. (b)
The corresponding extended discrete gradient field EGrad f .

so (temporarily) EGrad f([9]) = ∅ (step (3b). Vertex [9] is visited again when
triangle [9; 2; 1] is considered. Function EGrad f associates vertex [9] with edge
[9; 1], since edge [9; 1] does not expand C(p) (step (3a)). Vertex [9] is revisited
again when triangle [9; 1; 7] is considered. The process skips here vertex [9] since
it has already a non-empty value by EGrad f (step (2)). We have here one
(global) minimum [0] and the entire stars St(18) and St(17), and a part of St(7)
as critical cells corresponding to local maxima 18 and 17.

Theorem 1. The extended discrete gradient field EGrad f defined by the algo-
rithm in Definition 1 is a Forman gradient vector field.

Proof. We need to show that (i) EGrad f is a discrete vector field, and (ii)
there are no closed EGrad f -paths in Σ.

(i) From the construction of EGrad f it is clear that EGrad f pairs an i-
simplex σi with an (i + 1)-simplex (cone) q ∗ σi, 0 ≤ i ≤ n− 1, that simplex σi

is a face of the cone q ∗ σi, and that each simplex is a head or a tail of at most
one arrow. Thus, EGrad f is a discrete vector field.

(ii) Let us assume that the sequence σ0, τ0, σ1, τ1, ..., σr, τr, σ0 of i-simplexes
σk and (i + 1)-simplexes τl, k, l = 0, ..r, r > 0, is a closed EGrad f -path in Σ.
Then (σk, τk) ∈ EGrad f , (i.e., EGrad f(σk) = τk), τk > σk+1, and σk �= σk+1.
By the construction of EGrad f , and the condition that f(p) �= f(q) for any two
vertices p and q of Σ, we have that τ0 = q ∗ σ0, and f(q) < f(p), for each vertex
p of σ0, implying that min

p∈τ0
f(p) < min

p∈σ0
f(p). Simplex σ1 is a face of τ0 different

from σ0, which implies that q is a vertex of σ1, and min
p∈σ1

f(p) = min
p∈τ0

f(p) = f(q).

Now min
p∈σ1

f(p) = min
p∈τ0

f(p) < min
p∈σ0

f(p). If we continue in this way inductively, we

conclude that min
p∈σ0

f(p) = min
p∈τr

f(p) < min
p∈σ0

f(p), a contradiction. Thus, there are

no closed EGrad f -paths in Σ, and EGrad f is a Forman gradient vector field.
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7 A Discrete Forman Function for the Extended
Gradient Field

In this Section, we construct a Forman function F , which extends scalar field f ,
such that the discrete gradient vector field VF of F coincides with V . We denote
as d(γ) the length of the longest V -path which starts at γ, as D the maximum
of d(γ) over all cells of Σ, and as A the minimum (absolute) difference of values
of function f over all vertices of Σ.
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Fig. 5. Field EGrad f (a) and the corresponding Forman function F (b)

Let Σ be a simplicial complex, and let f be a scalar function defined on the
vertices of Σ. Let V be a discrete gradient vector field on Σ, consisting of pairs
of simplexes (σ, τ), i.e., such that V (σ) = τ = q ∗ σ, where q is a vertex of Σ.
If f(q) < f(p) for all vertices p ∈ σ, then an extended discrete function F on all
i-simplexes γ of Σ, 0 ≤ i ≤ n, given by

(1) If γ is critical, then F (γ) = max
p∈γ

f(p) + iA
n ,

(2) If V (γ) �= ∅, then F (γ) = max
p∈γ

f(p)+iA
n (1+ d(γ)

nD ) = max
p∈γ

f(p)+iA
n +i A

n2
d(γ)
D ,

(3) If γ = V (σ), then F (γ) = F (σ),

is a Forman function, such that gradient vector field VF of F coincides with
V . For i = 0, an i-dimensional simplex is a vertex p of Σ, for which we have
F (p) = f(p). Thus, f is the restriction of F on the set of vertices of Σ. The first
term, max

p∈γ
f(p), relates functions f and F . The second term, iA

n , ensures that

each face τ of a simplex σ has a lower F value than σ. The third term, i A
n2

d(γ)
D ,

ensures that function F is non-increasing along each descending gradient path.
In Figure 5, we give an example of an extended discrete function F , induced by
the extended discrete field of Section 6. Here, n = 2, D = 5, and A = 1.

In the proof that F is a Forman function, we use the following facts:
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(a) if σ is a face of τ , then max
p∈σ

f(p) ≤ max
p∈τ

f(p),

(b) if σ is an i-dimensional simplex, and τ is a j-dimensional simplex of Σ
(0 ≤ i < j ≤ n), then

i
A

n
≤ i

A

n
+ i

A

n2

d(σ)
D

≤ i
A

n
+ i

A

n2 < i
A

n
+ n

A

n2 = i
A

n
+

A

n
= (i + 1)

A

n
≤ j

A

n
.

We consider a pair of simplexes σ and τ , such that σ is an i-simplex, τ is a
j-simplex, 0 ≤ i < j ≤ n, and σ is a (proper) face of τ , and we show that
F (σ) < F (τ) if V (σ) �= τ . Then, the conclusion will follow for i = j − 1. We
consider separately the cases when σ and τ belong to one of the three sets which
partition the set of all simplexes of Σ, namely critical simplexes, simplexes which
have a non-empty image by V , and simplexes which are in the image of V . For
lack of space, we give the proof in two cases only.
(i) σ is critical, and V (τ) �= ∅. Then by (a) and (b)

F (σ) = max
p∈σ

f(p) + i
A

n
< max

p∈τ
f(p) + j

A

n
+ j

A

n2

d(τ)
D

= F (τ).

(ii) V (σ) �= ∅, and τ ∈ ImV .
If V (σ) = τ , then F (σ) = F (τ).
If V (σ) = γ �= ∅ and τ = V (τ ′) for some τ ′ �= σ, then F (τ) = F (τ ′), τ = q ∗ τ ′

for some vertex q ∈ Σ.
If τ ′ is a (j − 1)-dimensional co-face of σ (if q /∈ σ), then j − 1 > i (τ �= V (σ),
thus τ ′ �= σ, and τ ′ is a proper co-face of σ), and by (a) and (b)

F (σ) = max
p∈σ

f(p)+i
A

n
+i

A

n2

d(σ)
D

< max
p∈τ ′

f(p)+(j−1)
A

n
+(j−1)

A

n2

d(τ ′)
D

= F (τ).

If, on the other hand, τ ′ is not a co-face of σ (if q ∈ σ), then f(q) < f(p), for
all p ∈ τ ′, and all other vertices of σ different from q (if they exist), are in τ ′.
Thus, max

p∈σ
f(p) ≤ max

p∈τ ′
f(p).

If j − 1 > i, then by (b)

F (σ) = max
p∈σ

f(p)+i
A

n
+i

A

n2

d(σ)
D

< max
p∈τ ′

f(p)+(j−1)
A

n
+(j−1)

A

n2

d(τ ′)
D

= F (τ).

If j − 1 = i, then τ ′ and σ are i-cells, V (τ ′) = τ , and σ is a face of τ , implying
that d(τ ′) = d(σ) + 1, and

F (σ) = max
p∈σ

f(p)+i
A

n
+i

A

n2

d(σ)
D

< max
p∈τ ′

f(p)+(j−1)
A

n
+(j−1)

A

n2

d(τ ′)
D

= F (τ).

It can be proven in a similar way in all other cases that for each pair of
simplexes σ and τ , where σ is a face of τ , F (σ) < F (τ), unless if V (σ) = τ , in
which case F (σ) = F (τ). Thus, F is a Forman function on Σ.

Note that we can define another Forman function G by
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Fig. 6. (a) σ is a critical simplex, τ is a co-face of σ, and V (τ ) �= ∅. V (σ) = γ �= ∅,
and τ is a co-face of γ, (b) τ = V (τ ′) and τ ′ is a co-face of σ; τ = V (τ ′) and τ ′ is not
a co-face of σ (with dimension of τ ′ (c) greater than, or (d) equal to, dimension of σ).

(1) If γ is critical, then G(γ) = max
p∈γ

f(p) + iA
n δ′,

(2) If V (γ) �= ∅, then F (γ) = max
p∈γ

f(p) + iA
n δ′ + i A

n2
d(γ)
D δ′′,

(3) If γ = V (σ), then F (γ) = F (σ),

where δ′ < ε
2

1
A , and δ′′ < ε

2
n
A for some arbitrary small positive ε < A. Such

function G(σ) differs by at most ε from the maximum of f over all vertices of σ.

8 Concluding Remarks

We have defined an extended form EGrad f of a discrete gradient vector field
Grad f , and we have defined a Forman function F which coincides with f on
the vertices of Σ, such that the gradient field of F coincides with EGrad f . Our
work has similarities with the work by King et al. [11], and by Gyulassy et al. [9]
(when applied to a triangulated domain). The main difference is that our vector
field always points in the direction of the vertex with smallest function value.

This property is not always satisfied by other approaches that construct a
Forman gradient vector field V starting from a scalar function f given on vertices
of Σ, as pointed out in [9, 11]. In this sense, our gradient field EGrad f reflects
better the behavior of the scalar field f .

Moreover, in [9], a Forman function whose gradient vector field coincides with
V is not constructed. In [11], such a Forman function F , which extends scalar
field f , is constructed. It satisfies an additional condition that for each simplex
σ, F (σ) is arbitrarily close to the max

p∈σ
f(p). We have shown in Section 7 that

the Forman function F that we construct can be re-scaled to another Forman
function G satisfying the same condition.

As an application of our work, we plan to apply the Forman simplification
(cancellation) operator to our extended discrete gradient field EGrad f and
discrete gradient field Grad f . In this way, we hope to reduce significantly the
number of critical cells in Σ. We plan to investigate how this simplification
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affects the vector fields, in order to define a multi-resolution model based on
both Morse and Forman theory, and obtain a compact and topology preserving
multi-resolution representation of scalar field f .
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Abstract. A fast and efficient algorithm to obtain an orthogonally con-
vex decomposition of a digital object is presented. The algorithm reports
a sub-optimal solution and runs in O(n log n) time for a hole-free object
whose boundary consists of n pixels. The approximate/rough decom-
position of the object is achieved by partitioning the inner cover (an
orthogonal polygon) of the object into a set of orthogonal convex com-
ponents. A set of rules is formulated based on the combinatorial cases
and the decomposition is obtained by applying these rules while consider-
ing the concavities of the inner cover. Experimental results on different
shapes have been presented to demonstrate the efficacy, elegance, and
robustness of the proposed technique.

Keywords: convex component; convex decomposition; image analysis;
polygon decomposition; rectangular component.

1 Introduction

Polygons are frequently used by practitioners to solve geometric problems related
with image processing and computer vision [6, 7, 21–23, 27, 28]. Computational-
geometric problems on general polygons are solved usually by decomposing them
into simpler components, solving the problem for each component using a spe-
cialized algorithm, and then combining the partial solutions. A polygon can
be decomposed into rectangular components, convex components, star-shaped
components, monotone components, etc. Polygon decomposition has many ap-
plications in theory and practice [4, 10, 25–27].

Polygon decompositions can be classified based on the interrelation among de-
composed components. If the components do not overlap except at their bound-
aries, then the decomposition is termed as a partition. If overlapping pieces are
allowed, then it is called a cover. Decomposing a polygon into simpler compo-
nents can be performed with or without addition of extra vertices, which makes
the problem complex but leads to fewer components. A decomposition must be
minimal in some sense. Some applications use decomposition of a polygon into

I. Debled-Rennesson et al. (Eds.): DGCI 2011, LNCS 6607, pp. 489–500, 2011.
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Object A Inner isothetic cover A′
in Decomposition of A′

in

Fig. 1. A sample digital object and its orthogonal decomposition by our algorithm

minimum number of components, and some other applications use decomposition
that minimizes the total length of internal edges [11]. In our work, decomposition
is performed using the notion of partitioning.

Many works have been done on decomposition in general domain as well
as in orthogonal domain. In general domain, decomposition of a polygon with
holes into minimum number of components is NP-hard [5, 15, 17, 20], whether
allowing or disallowing Steiner points. Allowing Steiner points, an O(n log n)-
time approximation algorithm under minimum edge-length criteria was stated
in [12]. No optimal algorithm is known for decomposing hole-containing polygons
when Steiner points are allowed; in [8, 16], it has been shown that such problems
are NP-hard. In 3D domain also, several works have been done, and in [1, 13,
14] some approximation algorithms are given, since exact convex decomposition
is NP-hard. Various applications of decomposition problems may be seen in
[2, 7, 16, 18, 19].

Interestingly, the problems which are NP-hard for general polygons, may be-
come tractable when restricted to orthogonal domain. An O(n2)-time algorithm
to cover a simple orthogonal polygon with minimum number of orthogonally
convex polygons is given in [24], where polygons are classified and decomposed
based on dent diagrams. Another O(n2)-time algorithm in [9] gives the solution
to the problem of covering a horizontally convex orthogonal polygon with mini-
mum number of orthogonally convex polygons and with the minimum number of
orthogonal star-shaped polygons. But, our algorithm allows all kinds of orthog-
onal polygon without holes as input. Our work is focused on the decomposition
of a given orthogonal polygon (i.e., polyomino) without holes (which acts as the
tight inner isothetic cover of a hole-free digital object) into a sub-optimal1 set
of orthogonally convex components (OCC, or, hv-convex polyominoes) such that
(c1) each OCC is orthogonal with all its vertices as grid points and (c2) no two
OCC overlap each other except at their boundaries. Condition c1 implies that
extra vertices are allowed only in the form of grid points. Figure 1 illustrates
a digital object A, its inner isothetic cover (for g = 13), and the decomposed

1 Exhaustive experimentation (Sec. 4) shows that our algorithm frequently produces
optimal solution.
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Fig. 2. Different types of concavities

set of OCC (which needed no extra vertex). It should be mentioned here that,
to the best of our knowledge, there exists no proof till date to show whether
partitioning an orthogonal polygon into a minimal set of OCCs can be done in
polynomial time.

2 Preliminaries

A given digital object, A, is first imposed on an orthogonal grid, G. The grid con-
sists of a set of equi-spaced horizontal lines and a set of equi-spaced vertical lines,
their vertical/horizontal spacing being termed as the grid spacing, g. Using the
algorithm TIPS [3], we obtain (the ordered set of vertices of) the inner isothetic
cover, A′

in, which is the maximum-area orthogonal polygon inscribing A such
that the vertices of A′

in are grid points (points of intersection among horizontal
and vertical grid lines).

2.1 Storing the Vertices

The vertices of A′
in are dynamically inserted in the circular doubly-linked list, L,

and simultaneously in two temporary tables, Hx and Hy, during the construction
of A′

in. Each table is structured like a hash table without any hash key, and
contains all slots from the minimum to the maximum grid coordinate. In Hx

(Hy), a vertex vi(xi, yi), is stored in the slot of xi (yi). The size of each slot xi

(yi) of Hx (Hy) is dynamically allocated depending on the number of vertices
having abscissa xi (ordinate yi); the concerned number of vertices is obtained by
lexicographic sorting of L to two temporary lists, L′

x (x- and y-coordinates as
the respective primary and secondary keys) and L′

y (y- and x-coordinates as the
respective primary and secondary keys). L′

x (L′
y) is also used to prepare the slots

of Hx (Hy) in O(n/g) time, since O(n/g) is the number of vertices (explained
in Sec. 3.5), n being the number of border pixels of A, and g, the grid size. For
each vertex vi, L contains its coordinates, type (= 1 when the internal angle at
vi is θi = 90o and 3 when θi = 270o), and id of the cell incident at vi with partial
object occupancy only if type = 3; for type = 1, id is set to 0. (Example: With
type = 3, if the top-right cell is partially occupied by the object A, then id = 1;
if it is the top-left one, then id = 2, and so on.)

In L, the component number ki (initialized as ‘1’) corresponding to each
vertex vi, is also stored. When a component is extracted during decomposi-
tion, the component count k is increased and ki of each vertex of the extracted
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Fig. 3. Start and terminal vertices of P11, P12, P21, P22 w.r.t. C1 and C2

component is reset to k. During the construction of A′
in, a linked list Lc is cre-

ated, which contains all the concavities in the order as they appear in L. (Two
or more consecutive Type 3 vertices creates a concavity [Fig. 2].) Each entry in
Lc contains the coordinates of two consecutive Type 3 vertices of the concerned
concavity along with concavity type and concavity number. A vertex pattern
of “1331” may occur in four possible simple concavities, namely, Type L (left),
Type R (right), Type T (top), and Type B (bottom) [Fig. 2], determined from
the Type 3 vertex ids stored in L. Three or more consecutive Type 3 vertices
form a compound concavity, which are stored as simple concavities in Lc, each
consisting of two consecutive Type 3 vertices and these simple concavities are
assigned the same concavity number in Lc.

2.2 Identifying the Sub-polygons of a Concavity

If a horizontal/vertical line (as the case may be) li is drawn along the (simple)
concavity Ci, then the polygon is divided into two sub-polygons lying on one
side of li and the the main polygon on other side (Fig. 3). li is called concavity
line passing through the consecutive Type 3 vertices of Ci. If one of the two
sub-polygons is extracted as an OCC, then Ci is resolved. Each sub-polygon has
at least two points on the concavity line, li, named as the start vertex (Type 3)
and the terminal vertex. In Fig. 3, for concavity C1, the respective sub-polygons
P11 and P12 have s11 = v3 and s12 = v4 as start vertices, and t11 = v′3 and
t12 = v7 as terminal vertices. The sub-polygon appearing before (after) the
concavity is described in the clockwise (counterclockwise) manner.

Terminal vertex of a sub-polygon is found using Hx and Hy, as all vertical
edges are stored in Hx and horizontal edges in Hy. For the polygon shown in
Fig. 3, L = 〈v1, v2, . . . , v14〉. For C1 (Type L), we obtain the slot of Hx containing
the start vertices v3 and v4. As v7 appears next to v4, v7 becomes the terminal
vertex of P12. However, as no vertex exists in Hx before v3, the horizontal edge
(v1, v14) lying above v3 is detected from Hy. The x-coordinate of v3 lies between
those of v1 and v14, whence the y-coordinate of the terminal vertex of P11 equals
that of v1 or v14. For C2 (Type B) or a Type T/Type R concavity, the terminal
vertices are detected in a similar manner.
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3 Rules for Decomposition

The decomposition is carried out using Lc (Sec. 2.1). To resolve each concavity,
apparently one convex component should be extracted. For example, in Fig. 3,
extraction of P11 resolves C1 and extraction of P21 resolves C2, which, however,
does not yield an optimal solution. Hence, rules are always applied to a pair of
concavities at a time. The (sub-)optimality is obtained as explained next.

3.1 Two Simple, Orthogonal, Consecutive Concavities

If the lines of concavity l1 and l2, corresponding to C1 and C2, are orthogonal and
intersect at v, and no sub-polygon of any concavity contains the other concavity
in full, then extraction of only one sub-polygon resolves both C1 and C2 (Fig. 4(a-
d)). The combined type of C1 and C2 may be LB, BR, RT, or TL. By traversing
from s12 to v = t12, the component is extracted to resolve two concavities at a
time. We have the following cases:

– v ∈ {s11, s12, s21, s22} (Fig. 4(a)): v is a vertex present in L.
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Fig. 4. Rules of decomposition for l1 ⊥ l2. (There also exist rotational versions of the
above cases—dealt in similar ways.)
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– v lies on the edge (s11, s12) or (s21, s22) (Fig. 4(b)): v is inserted appropriately
in L (using Hx and Hy).

– v lies not on the boundary but inside A′
in (Fig. 4(c)): v is inserted in L (as

above).
– v lies on (the boundary of) or outside A′

in (Fig. 4(d, e)): Find the point of
intersection, v′, between the line perpendicular to l1 and passing through
s12 and the line perpendicular to l2 and passing through s21. If v′ lies inside
A′

in, then the component is extracted by anticlockwise traversal from s12
down to v′ and ending at s12 (Fig. 4(d)). If v′ lies on or outside A′

in, then
P11 is first extracted to solve C1 and then P22 to solve C2 (Fig. 4(e)).

– If C1 (C2) lies entirely in one sub-polygon, say P21, corresponding to C2
(C1), then both P11 and P22 are extracted (Fig. 4(f)).

3.2 Two Simple, Parallel, Consecutive Concavities

If the projection of the edge (s11, s12) on l2 (or of the edge (s21, s22) on l1)
lies on or inside A′

in, then extraction of one sub-polygon resolves both C1 and
C2 (Fig. 5(a-d)). Otherwise, P11 and P21 are extracted to resolve the respective
concavities, C1 and C2 (Fig. 5(e, f): extracted sub-polygons shown in deep gray).

3.3 Compound Concavities

When there is a series of t(> 2) consecutive Type 3 vertices, then it is broken
into t−1 simpler concavities, each consisting of two consecutive Type 3 vertices.
For example, in Fig. 6, there are three pairs L1T1, R1B1, and L2T2, which are
solved in three steps.

3.4 Demonstration

In Fig. 7(a), the concavities are numbered in the order in which they are stored
in Lc. The first concavity in Lc is C1, whose next and previous concavities are C2
and C10, respectively. As the concavity lines of C1 and C10 are parallel, the rules
of Sec. 3.2 are applied to extract the OCC (shown in deep gray in Fig. 7(c)). The
second among the three consecutive Type 3 vertices (for C1 and C2) is included
in the extracted OCC. Thus, three concavities are solved at a time (C1, C2,
and C10). Lc gets updated, and C3 and C4 are first checked, but no rules can
be applied on them. So, C3 is checked with its previous concavity in Lc, i.e.,
C9. They are at 1800, and the OCC is extracted (Fig. 7(d)). Next pair is C4
and C5, which does not admit a single OCC extraction; so, C4 is checked with
its previous, i.e., C8, but they also do not. Hence, one more backward traversal
is made to test C4 and C7. Their concavity lines are parallel, and the OCC is
extracted according to the rules stated in Sec. 3.2 (shown in Fig. 7(e)). In this
manner, other concavities are also removed, to obtain the final result (Fig. 7(f)).
The total number of OCC is k = 7 against the total number of simple concavities
as c = 10.
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Fig. 5. Rules of decomposition for l1 parallel to l2. (There also exist rotational/flip
versions of the above cases—dealt in similar ways.)
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Fig. 6. Decomposition of a compound concavity

3.5 Time Complexity

The algorithm first constructs the inner isothetic cover A′
in, vertex list L, con-

cavity list Lc, and the two hash tables (Hx and Hy). All this needs O(n) time,
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Fig. 7. A demonstration of getting OCC by our algorithm

where n is the pixels constituting the contour of the object A, which is considered
here as a connected component without holes. This follows from the combined
fact that the intersection of each grid edge with A is checked in O(g) time, and
the number of grid points visited is bounded by O(n/g). All grid points lying
on A′

in are inserted in L in O(1) time. All the concavities are inserted in Lc

in O(n) time. For preparation of Hx and Hy from L′
x and L′

y (Sec. 2.1), total
computational cost is O(n log n). Hence, the total time complexity for Stage 1
is O(n log n).

In Stage 2, traversal of Lc needs O(n) time. Searching in Hx and Hy is per-
formed in this stage, which takes O(log n) computational time per search. This
follows from the fact that we apply binary search in each slot, which contains
at most O(n) elements in the dynamically-allocated array form (Sec. 2.1). There
would be O(n) such searches, consuming O(n log n) time in total. Insertion of
extra grid points in L may take O(n log n) time in worst case. Deletion of each
node from Lc requires O(1) time, thereby consuming O(n) time in total. Hence,
the total worst-case time complexity for Stage 2 also is O(n log n), wherefore the
overall time complexity of the entire algorithm becomes O(n log n).
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Logo 416
g = 7, c = 6, g = 12, c = 4, g = 15, c = 3,

k = 5 k = 3 k = 3

Logo 111
g = 1, c = 3, g = 5, c = 3, g = 11, c = 2,

k = 3 k = 3 k = 3

Logo 5 g = 10, c = 3, g = 17, c = 4, g = 19, c = 2,
k = 3 k = 3 k = 2

Logo 230 g = 9, c = 3, g = 13, c = 3, g = 20, c = 2,
k = 3 k = 3 k = 2

Logo 294
g = 3, c = 4, g = 12, c = 4, g = 18, c = 4,

k = 3 k = 3 k = 3

Fig. 8. Experimental results of orthogonal convex decomposition for various grid sizes
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Logo 294
g = 3, c = 2, g = 7, c = 2, g = 20, c = 2,

k = 3 k = 3 k = 3

Logo 364
g = 1, c = 4, g = 10, c = 4, g = 17, c = 4,

k = 3 k = 3 k = 3

Logo 471 g = 5, c = 2, g = 8, c = 2, g = 12, c = 2,
k = 2 k = 2 k = 2

Logo 571 g = 14, c = 2, g = 15, c = 2, g = 19, c = 3,
k = 2 k = 2 k = 3

Logo 7
g = 3, c = 4, g = 9, c = 4, g = 20, c = 4,

k = 3 k = 3 k = 3

Fig. 9. Another set of results of orthogonal convex decomposition for various grid sizes
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4 Results and Conclusion

We have implemented the algorithm in C in Linux Fedora Release 7, Kernel
version 2.6.21.1.3194.fc7, Dual Intel Xeon Processor 2.8 GHz, 800 MHz FSB.
It is tested on several datasets containing various digital images of different
shapes and forms. The decomposition takes place on inner cover of the images.
In Figs. 8 and 9, results of several typical objects are given for various grid
sizes. The different OCCs are marked by different colors. The total number
of decomposed OCCs depends on the number of concavities and also on their
mutual configurations and orientations. The count k of OCC for a given digital
object also depends on the grid size (required while extracting the inner cover
A′

in of the object A), since the number of concavities (c) increases for lower grid
sizes.

The proposed algorithm is designed in a manner so as to decompose arbi-
trary digital objects into orthogonally convex components (OCC), which might
be useful for shape analysis. The algorithm can decompose a hole-free orthogo-
nal polygon into a sub-optimal set of OCCs in O(n log n) time by considering all
the concavities of the polygon. The steps of the algorithm are based on the rules
designed out of the combinatorial possibilities. Exhaustive experimentation has
been performed to verify its efficiency and robustness, and the results show the
decompositions, which are mostly optimal.
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Abstract. We consider the problem of surface comparison given as spa-
tial point clouds that can be explicitly projected onto a plane. This prob-
lem can be reduced to comparison of mesh functions of two variables
given on different grids. A general case when both grids are unstruc-
tured and have different density is of interest. A measure to compare
such functions that allow to estimate difference on areas with nodes from
both grids and an algorithm to compute it are proposed. Estimation for
computational complexity of the algorithm is presented. Computing ex-
periments on real data (3d face models) were carried out.

Keywords: discrete surface model, metrics for surface comparison, un-
structured grid, Delaunay triangulation, minimum spanning tree, 3d face
image.

1 Introduction

With the rapid progress of modern 3d scanning technologies [1], objects’ surfaces
can be routinely acquired as discrete surface models, which consist of clouds of
points with 3d coordinates. Spatial objects’ shape can be considered as a set
of schlicht surfaces, i.e., such that can be uniquely projected onto a plane (see
Fig. 1). In this paper, new measures for comparison of such surfaces and effective
methods to compute them are devised.

Exact and computationally efficient algorithms for computing disparity mea-
sures between surfaces are required in many applications of image analysis and
computer graphics. Surface comparison and matching methods are needed to
solve problems of surface classification, registration, reconstruction by its sepa-
rate fragments, etc.

Raw schlicht surface data acquired by 3d scanner can be considered as a
discrete function defined at nodes of (generally speaking) unstructured grid.
This means that nodes of a grid can be spread randomly, i.e., there is no ordered
structure in the grid.

There are two main presentation methods for modelling of schlicht surfaces:
definition of surface on structured (uniform) and unstructured grids (see Fig. 1).

I. Debled-Rennesson et al. (Eds.): DGCI 2011, LNCS 6607, pp. 501–512, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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The first method is tedious in case of requirement for sufficiently detailed presen-
tation of surface. Besides, a selection problem of cell size of a grid appears. The
size should be optimal to get adequate accuracy of surface approximation for
concrete applied problem. In case of unstructured grids, surface approximation
quality is higher. At the same time it is required to introduce and design more
complex measures for surface comparison given on different grids and processing
algorithms.

Fig. 1. Examples of schlicht surface (on the left), unstructured grid (in the middle)
and uniform (structured) grid (on the right)

At the first stage of the most proposed approaches for surface comparison two
source unstructured grids are transformed to a general uniform grid [2]. Then a
measure between two surfaces is computed. At the transformation stage inter-
polation and extrapolation of source data are used. Therefore surface approx-
imation quality decreases. A lot of methods are too computationally intensive
for achievement of adequate accuracy. In this paper, we propose the approach,
which saves given nonregularity of grids.

In [3] the author proposed a measure for comparison of functions, which will
be discussed further. The proposed algorithm to compute the measure used
Delaunay triangulations of each point clouds, general Delaunay triangulation
constructed for both clouds, function interpolation on basis of localization of
triangulations in each other and function comparison on single cells of gen-
eral triangulation. Localization was implemented on basis of minimum spanning
trees. In this paper, we concentrate on modifications of this measure for case
when source grids are not only unstructured but also have different density and
designing an effective algorithm to compute new measures.

In practise, such measures are needed for comparison of surfaces acquired
by 3d scanners of different accuracy: there are applications for 3d face model
matching or matching of 3d face model of person and his 3d jaw models in
orthodontics [4]. Jaw models are acquired by special orthodontic scanner of very
high accuracy, 3d scanner for acquisition of face models is of less accuracy.

This paper is organized as follows. A review of surface comparison problem,
formalized problem statement and the proposed measures are given in section 2.
The proposed algorithm for measure computing and evaluation of its complexity
are given in section 3. Section 4 presents experimental results for comparison of
3d face surfaces. Conclusion is given in section 5.
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2 Surface Comparison Problem

Though there has been a great deal of progress in 3d object comparison field,
computationally efficient and accurate surface comparison is still an urgent and
unsolved problem.

2.1 Related Work

A large body of research addresses not to discrete surface model but to ini-
tial continuous surface representation or definition of surface on a uniform
grid [5], [6]. In [5] measure for comparison of surfaces f1, f2 defined on grids
g1, g2 was introduced as the following:

ρ(f1, f2) = max
g1[i]∈g1

min
g2[j]∈g2

d(g1[i], g2[j]),

Some researches proposed methods of referencing or comparison by descriptors.
For example, in [7] the objects’ comparison problem was reduced to graph com-
parison problem. Vertices of graph represent separate fragments of object’s sur-
face and edges represent information about their connectivity.

In [8] the problem of surfaces given on different point sets was considered.
Distance from a point of one surface to the other one was computed along a
normal to the nearest spline for this point. Comparison measure based on com-
puting of distance difference along surface normals is interesting as it doesn’t
require transformation of source grids to the common one.

2.2 Mathematical Problem Statement

A 3d schlicht surface S given as a point cloud {(xi, yi, zi)}N
i=1 can be considered as

the one-valued function z = F (x, y) defined on the discrete set {(xi, yi)}N
i=1. We

construct plane Delaunay triangulation of this set. Triangulated surface model
consists of spatial triangles defined by the values zi at nodes (xi, yi) of this
triangulation. Such piecewise linear model interpolates the initial surface S.

Definition 1. A finite point set G : {(xi, yi) ∈ R2|i = 1, . . . , N}, N ≥ 3 is
called a nonuniform two-dimensional grid.

Suppose R is a rectangle in R2, G is the set of nonuniform two-dimensional grids
contained in R, F is the set of single-valued functions given on grids from G.

Consider the following problem statement.
Let S1, S2 be two schlicht surfaces defined by discrete functions F1, F2 ∈ F at

the nodes of grids G1, G2 ∈ G, respectively, N1 = |G1|, N2 = |G2|. It is required
to introduce measures for comparison of surfaces S1, S2 and design an approach
to compute them.

Note that two surfaces are given on two different grids and it is not possible
to compute a measure between them directly. So the basic idea of the proposed
approach is to fill ”missing” values of each surface at the nodes of the other grid.
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Let F̂ be a continuous piecewise linear function in R2. We say that F̂ approx-
imates F at G if F̂ (x, y) ≡ F (x, y) for all (x, y) ∈ G. By F̂ denote the set of
continuous functions in R2 that approximates functions from F .

Denote by T1 and T2 the Delaunay triangulations constructed on grids G1
and G2, respectively. The Delaunay triangulation constructed on the union of
two grids G = G1 ∪G2 is called the general (or united) Delaunay triangulation
and is denoted by T .

2.3 Proposed Measures

Let ρ be a function in F such that the following conditions hold: ∀F1, F2, F3 ∈
F : ρ(F1, F2) ≥ 0, ρ(F1, F2 + F3) ≤ ρ(F1, F2) + ρ(F1, F3). We shall say that ρ is
a difference functional of two functions (schlicht surfaces).

Consider a function μ(x, y) that defined weight of difference between two
surfaces at a certain point with coordinates (x, y) in accordance with significance
of function similarity in the region contained this point. Let A, B, C be nodes of
the united grid G. By definition, put:

Vμ(A, B, C, F1, F2) =
∫∫

�ABC

∣∣F̂1(x, y)− F̂2(x, y)
∣∣μ(x, y) dxdy. (1)

In [3], the author proposed the following measure:

ρVµ(F1, F2) =
∑

�ABC∈T

Vμ(A, B, C, F1, F2)/S�ABC , (2)

where weighted difference volume is summarised over all triangles � ABC of
the general triangulation and each summand is normalised by the area of trian-
gle S�ABC .

By introducing of function μ(x, y) on surfaces the defined measure can be
adapted for concrete applied problems. For example, in case of face models’
comparison, μ can have greater value on regions where skin is close with a skull
than on another regions with more tissues.

In fact, measure (1)-(2) is an analog of L1-metric for interpolated source
functions F̂1 and F̂2.

In case μ(x, y) is the identical function, similarity of all surface patches allows
with equal weight. But objective nature of data is that source grids are not
always uniform. There often exists such regions, which have sufficiently great
area and consist of nodes from one of the grids only.

Let V be a value of Vμ for μ(x, y) ≡ 1; suppose ρV (F1, F2) is measure (2) for
condition of Vμ = V : V = Vμ

∣∣
μ≡1, ρV = ρVµ

∣∣
Vµ=V

.
The defect of ρV is that it allows both type of regions where nodes from two

grids are mixed with one another and where one of the grids is more thick than
the other using the same weight. Such measure can be successfully used in case
when nodes of both grids are distributed uniformly with roughly equal density.
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In the considered case, when grids are unstructured and have different density
this defect is revealed. To get out from it we propose a measure that takes in
account only representative data, i.e., regions, where nodes of both grids are
concentrated:

ρδV (f1, f2) =
∑

�ABC∈T :
�ABC /∈T1,
�ABC /∈T2

V (A, B, C, f1, f2)/S�ABC . (3)

We claim that ρδV (f1, f2) ≡ ρVµ(f1, f2) for

μ(x, y) =

⎧⎪⎨⎪⎩
1, (x, y) ∈�ABC : �ABC ∈ T, �ABC /∈ T1 or

�ABC /∈ T2;
0, otherwise.

(4)

Indeed, this follows from definition of ρVµ .

3 Methods

During merging process of two Delaunay triangulations T1 and T2, some edges
and triangles move to the united triangulation without changes and some of
them are destroyed. So there are new edges and triangles, which connect nodes
from different grids, in the general triangulation T .

We say that an edge or a triangle is called interface if it connects nodes from
both of grids G1, G2. On Fig. 2 all interface triangles constructed during merging
are filled.

Measure (3) is calculated over interface triangles only. Naive algorithm to com-
pute this measure examines each triangle and calculates difference volume (1) if
this triangle is interface. For effective calculation of the measure more complex
algorithm for extracting of interface triangles is needed.

Note also that in case when nodes of two grids are well mixed with one another
all triangles of T can be interface. In this case values of measures (2) and (3)
are equal. The advantage of measure (3) appears in cases when one surface
is presented in more detail than the other. For example, in practise one can
meet this case solving surface matching problem for surfaces acquired by two 3d
scanners of different accuracy.

Fig. 2. Two triangulated grids (on the left) and united Delaunay triangulation with
fill interface triangles (on he right)
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Fig. 3. Example of face models with different levels of detail

3.1 Algorithm for Interface Triangles Extraction

A set of interface triangles decomposes on several subsets. Each subset is a chain
of triangles, which are pairwise incident by edges. This chain can be closed or
open-ended (see Fig. 4). In the second case each of two terminal triangles has at
least one boundary side, i.e., side from a convex hull Conv(G) of G.

Fig. 4. Two open-ended chains (on the left) and three closed chains of interface trian-
gles (on the right)

Therefore an algorithm for interface triangles extraction reduced to tracing of
chains mentioned above.

Let us introduce concepts of connection for triangulation elements.

Definition 2. A set of nodes and edges (edges and triangles) of triangulation is
called connected if for any pair of its nodes (edges) there exists a chain consisted
of pairwise incident nodes and edges (edges and triangles).

Definition 3. A maximal connected set of nodes and edges is said to be a clout
if it moves completely (without changes) to general triangulation T from one of
the source triangulations.

Let us remark that the problem of chain tracing can be considered as the problem
of clout location in triangulation.

We say that an interface edge of general triangulation T is called a starter if
it belongs to a chain that is not traced yet. In other words, a starter initializes
the process of chain tracing.

Hence the proposed algorithm for interface triangles extraction consists of the
following stages:
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1. Search for initial starter;
2. Tracing of chain conformable to the found starter;
3. Search for the next starter. If it exists move to the previous stage, otherwise

finish.

Let us consider each stage in detail.

Search for First Starter. Assume that nodes of G1 and G2 are lexicograph-
ically ordered and g1[0], g2[0] are the leftmost nodes of grids. Without loss of
generality, we can assume that g1[0] ≺ g2[0].

Let us consider a circle that passes through g1[0] and g2[0] of center on hori-
zontal ray with origin at g2[0] directed to the left.

Now we shall give the following definitions. A circle is called empty with
respect to the grid G if it doesn’t contain nodes of G. A circle is incident to
a point if it passes through this point. A circle incident to a point is called a
maximal empty circle if it is empty and has maximal radius. We say that an
edge satisfies the Delaunay condition if there exists an empty circle that passes
through the endpoints of this edge.

By construction, the considered circle is empty w.r.t. G2. At the same time
it can contain some nodes g1[i1], . . . , g1[in] from G1. Let us construct a set of n
different circles of center at the same horizontal ray that passes through one of
these nodes. Choose a node g1[k] ∈ g1[i1], . . . , g1[in] such that it conforms to the
circle of minimal radius from the constructed set (see Fig. 5).

Fig. 5. Search for initial starter

The circle of minimal radius is empty w.r.t. G1 and G2, consequently w.r.t.
G. It follows that the edge connected nodes g1[k] and g2[0] satisfies the Delaunay
condition and belongs to general triangulation T . The edge g1[k]g2[0] is the first
starter because the conditions of the following theorem hold.

Theorem 1. (starter existence criterion) A node g1[i] of a grid G1 has an inci-
dent interface edge of the general Delaunay triangulation constructed on G1∪G2
iff there exists a circle C such that the following conditions hold

(i) C is incident to this node;
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(ii) C is empty w.r.t. the set G1 \ {g1[i]};
(iii) C contains inside or on the boundary at least one node of the second

grid G2.

Proof. Necessity. If two nodes of different grids G1, G2 form the interface edge of
T then they have the incident empty circle that satisfies all required conditions
by definition.

Sufficiency. Suppose v ∈ G1 and there exists the circle such that it is incident
to v, contains inside and/or on its boundary nodes u1, . . . , um ∈ G2 but is
empty w.r.t. other nodes of G1. Let us consider a set of m embedded circles that
pass through pairs of nodes v, ui, i = 1, . . . , m and have the common with the
initial circle tangent at v. The circle from this set of minimal radius is incident
to v ∈ G1, uk ∈ G2 and empty w.r.t. G1 ∪ G2. Therefore nodes v and uk form
the interface edge, which can be chosen as a starter.

Search time for the first starter is composed of time to compute the leftmost
nodes of both grids and single look-up of nodes from G2 during circle of minimal
radius search. Thus time is linear in number of nodes in united grid.

Tracing of Chain of Interface Triangles. During tracing process sequential
extraction of interface edges occurs. An interface edge extracted on a certain
iteration is declared as current. The first starter becomes the first current edge.

Let AB be a current edge. During joining of edges AB and BA to lists of
incident nodes for A and B, respectively, edges of these lists (bundles) that
don’t satisfy the Delaunay condition must be destroyed. Hence bundle correction
procedure for interface edge is needed (see Fig. 6). It is based on checking the
Delaunay condition by angle criterion [9].

The tracing process for chain using the found starter consists of the following
steps:

a) To declare the starter as a current edge;
b) To correct bundles of endpoints of the current edge in the triangulations T1,

T2 (destroy edges that don’t satisfy the Delaunay condition);
c) To construct a new edge that connects nodes of different grids;

Fig. 6. Bundle correction for an interface edge AB. Edges AA1 and BB1 are destroyed
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d) To destroy edges in T1 and T2 that intersect the triangle formed by he current
and new edges;

e) To declare the new edge as a current and go to (b).

The tracing algorithm has analogy with an algorithm for Delaunay triangulation
construction, which consists of cleaning and sewing together stages, from [10].

If on step (c) a new edge coincides with the starter then the traceable chain
is closed. If we don’t succeed in new edge construction then the current edge is
a terminal edge of the chain. In the last case it is needed to continue the tracing
process from the starter to the other side until the second terminal edge is found.

Search for Next Starter. Search of the rest of the starters is implemented
using minimal spanning trees (MST) for Delaunay triangulations T1, T2 as if
during chain tracing process connection of Delaunay triangulation is disturbed
(see Definition 2) then there must be an edge of MST in the set of destroyed
edges.

Let us introduce some definitions. We say that a bridge is an edge of MST for
T1 or T2 such that it was destroyed during chain tracing process. An influence
circle of a bridge is a circle such that this bridge is a diameter of it. One of the
endpoints (nodes) of a bridge belongs to already traced chain and the other one
is still a free node.

Lemma 1. For any free node there exists an incident starter.

In these terms, a free node, which has an incident starter for initialising chain
tracing process, is generated during bridge destroying.

The following lemma is used to look for the second node of the starter:

Lemma 2. Suppose B is a free node, A is a node of a triangulation T , a
pair A, B forms a starter. Then B is inside of at least one of the maximal
empty circles in T that are incident to A.

Search for starter using the free node A and the bridge AB consists of the
following steps:

a) Search for traced interface triangle such that there is the free node A in the
circumcircle of it (using search along AB);

b) Search for interface triangles such that they are adjacent to the found triangle
and there is A inside their circumcircles;

c) To construct a set D = {D1, . . . , Dn} of nodes of the found triangles that
are inside of the influence circle for the bridge AB;

d) To construct a circle of center on AB that passes through the nodes Di,
A for any Di ∈ D and select the node Di∗ that conforms to the circle of
minimal radius (similarly to search for the first starter). The edge Di∗A,
which connects the selected node with the free one, is a new starter.

3.2 Computational Complexity of the Algorithm

In this subsection we present some auxiliary lemmas for evaluation of complexity
of the proposed algorithm.
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By the above a bridge is an edge of MST. MST of a triangulation is a subgraph
of this triangulation [12]. This means that the influence circle of a bridge is
empty w.r.t. endpoints and middle points of this bridge. Using this property we
can estimate intersection measure between a bridge and the influence circle of
another bridge.

Lemma 3. A bridge can not cut from the influence circle of another bridge an
arc of size more than 60◦.

Lemma 4. Suppose AA1 and BB1 are bridges of a triangulation T1, both AA1
and BB1 intersect an edge PQ of a triangulation T2, node P is inside of both
influence circles of the bridges AA1, BB1. Then different of angles ∠APA1
and ∠BPB1 is not less than 60◦.

Lemma 5. Suppose an edge of T1 intersects several bridges of T2. Then an
endpoint of this edge is inside of influence circles of at the most two bridges.

This implies that we can estimate number of bridges in T1 that can be destroyed
by an edge of T2.

Lemma 6. During merging procedure of two Delaunay triangulations each edge
intersects at the most four bridges that it destroys.

The above four lemmas were proved by Mestetskiy, Tsarik in [13]. These lemmas
are needed for proof of the following theorem.

Theorem 2. Computational complexity of algorithm for interface triangles ex-
traction is O(N), where N is a number of nodes in general grid.

The proof is omitted.
Let us consider main stages of general algorithm for computing measure (3)

(see [14]) and complexity of each stage:

1) Construction of Delaunay triangulations T1, T2: O(N1 log N1) +
O(N2 log N2);

2) Construction of minimal spanning trees of triangulations using Cherion, Tar-
jan algorithm (see [15]): O(N1) + O(N2);

3) Localization of each of two grids G1, G2 in the triangulation of the other
grid: O(N) experimentally;

4) Interpolation each of two functions F1, F2 on the grid that the other function
is defined on: O(N);

5) Extraction of all interface triangles: O(N);
6) Summing V over all interface triangles, we obtain value of measure: O(N).

Note that stage (5) doesn’t use results of stages (3) and (4). It can be proved
that stage (3) can be implemented during or after extraction procedure using
its intermediate results. Hence theoretical complexity (not only experimental) of
stage (3) is linear.

Therefore total computational complexity for measure computing of surfaces
given by discrete models is O(N log N) because of triangulation construction
stage. In case of surfaces are given by triangular models the complexity is O(N).
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4 Experiments

Computational experiments were carried out on 3d face models acquired by
3d scanner BroadwayTM designed by Artec Group Company [1]. The database
consists of 48 models received by scanning of 8 different persons (6 different
models for each person). Different models of one and the same person were used
as surfaces for comparison.

Suppose S1, S2 are surfaces for comparison, S′
2 is a reduced (simplified) second

surface. S′
2 is acquired from S2 by uniform random thinning of the second grid.

As the result of thinning 15% nodes of the second grid were removed.
Grids of S1, S2 are unstructured (nonuniform) but has approximately equal

density. Hence we assume a value of measure (2) between them as adequate initial
estimation. Grids of S1 and S′

2 are unstructured grids with different density.
Table 1 shows an example of measure values for comparison of surfaces from

the database. We see that the measure (3) estimates difference between surfaces
S1 and S′

2 more adequate than the measure (2). Values of both measures (2)
and (3) are bigger than the initial estimation but the difference between (3) and
the initial estimation is less. Similar results were received for the rest models of
the database.

Table 1. Value of measures (2) & (3) for surface comparison

Measure Value (mm) Comments
ρV (S1, S2) 7094 Adequate estimation for S1 & S2

ρV (S1, S
′
2) 17963 ρV (S1, S

′
2) > ρV (S1, S2)

ρδV (S1, S
′
2) 10884 ρδV (S1, S

′
2) ≈ ρV (S1, S

′
2)

5 Conclusions

New measure adapted for comparison problem of surfaces defined on unstruc-
tured grids with different density is introduced. An efficient algorithm for mea-
sure computing is proposed.

The measure allows only surface fragments that are represented by nodes of
both grids. We call such fragments interface fragments. For efficiency of mea-
sure computing a new algorithm for interface triangles extraction is proposed.
Computational complexity of the algorithm is presented.

Computing experiments for comparison of surfaces defined on grids with dif-
ferent density were carried out. As experimental estimations have shown, the
introduced measure is adequate for such kind of source grids.
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Abstract. Since the pioneering work by (Cohen and Kimmel, 1997) on finding a
contour as a minimal path between two end points, shortest paths in volume im-
ages have raised interest in computer vision and image analysis. This paper con-
siders the calculation of a Euclidean shortest path (ESP) in a three-dimensional
(3D) polyhedral space Π . We propose an approximate κ(ε) · O(M |V |) 3D ESP
algorithm, not counting time for preprocessing. The preprocessing time complex-
ity equals O(M |E|+ |F|+ |V | log |V |) for solving a special, but ‘fairly general’
case of the 3D ESP problem, where Π does not need to be convex. V and E are
the sets of vertices and edges of Π , respectively, and F is the set of faces (trian-
gles) of Π . M is the maximal number of vertices of a so-called critical polygon,
and κ(ε) = (L0 − L)/ε where L0 is the length of an initial path and L is the
true (i.e., optimum) path length. The given algorithm solves approximately three
(previously known to be) NP-complete or NP-hard 3D ESP problems in time
κ(ε)·O(k), where k is the number of layers in a stack, which is introduced in this
paper as being the problem environment. The proposed approximation method
has straightforward applications for ESP problems when analyzing polyhedral
objects (e.g., in 3D imaging), of for ‘flying’ over a polyhedral terrain.

1 Introduction and Related Work

Since the pioneering work in [10] on finding contours as minimal paths between two
end points, minimal paths in volume images have raised interest in computer vision and
image analysis (for example, [5,11]). In medical image analysis, minimal paths were
extracted in 3D images and applied to virtual endoscopy [11]. However, so far, minimal
path computation is typically based on the Fast Marching Method which only considers
grid points as the possible vertices of the minimal paths; but there exist Euclidean short-
est paths such that none of its vertices is a grid point; see, e.g., the example in Section 4
of [17]. Thus, paths detected by the Fast Marching Method cannot be always the exact
Euclidean shortest paths.

There already exist several approximation algorithms for 3D ESP calculations, and
we briefly recall those. Pioneering the field, [21] presents an

O(n4(m + log(n/ε))2/ε2)

algorithm for the general 3D ESP problem, where n is the descriptional complexity of
polyhedral scene elements (that is, vertices, edges, and faces of the polyhedron), ε the

I. Debled-Rennesson et al. (Eds.): DGCI 2011, LNCS 6607, pp. 513–524, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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accuracy of the algorithm, and m the maximum number of bits for representing a single
integer coordinate of elements of the polyhedral scene. This was followed by [9], which
presents an approximation algorithm for computing an (1 + ε)-shortest path from p to
q in time

O(n2λ(n) log(n/ε)/ε4 + n2 log nr log(n log r))

where r is the ratio of the Euclidean distance de(p, q) to the length of the longest edge
of any given obstacle, and

λ(n) = α(n)O(α(n)O(1))

where α(n) = A−1(n, n) is the inverse Ackermann function (see, e.g., [18]), which
grows very slowly.

Assume a finite set of polyhedral obstacles in R3. Let p, q be two points outside
of the union of all obstacles, and 0 < ε < 1. Reference [12] gives an O(log(n/ε))
algorithm to compute an (1 + ε)-shortest path from p to q such that it does not intersect
the interior of any obstacle. However, this algorithm requires a subdivision of R3 which
may be computed in O(n4/ε6).

Given a convex partition of the free space, [2] presents anO((n/ε3)(log 1/ε)(logn))
algorithm for the general 3D ESP problem. Recently, [1] proposes algorithms for cal-
culating approximate ESPs amid a set of convex obstacles. For latest results related to
surface ESPs, see [4].

Altogether, the task of finding efficient and easy to implement solutions in this field
is certainly challenging; see, for example, [19] saying on page 666 the following, when
addressing mainly exact solutions: “The problem is difficult even in the most basic
Euclidean shortest-path problem ... in a three-dimensional polyhedral domain Π , and
even if the obstacles are convex, or the domain Π is simply connected.”

Rubberband algorithms provide a general strategy for solving ESP problems. See
[16] for a general introduction into rubberband algorithms; they are characterized by
sets of steps, defining possible locations of vertices of Euclidean shortest paths, a local
optimization strategy, and a termination criterion; for example, see [16,22]. This class
of algorithms emerged from a particular rubberband algorithm that was proposed in
2000 for calculating shortest paths in 3D image analysis [6,17].

In this paper, we apply a rubberband algorithm to present an approximate

κ(ε) · O(M |V |) +O(M |E|+ |S|+ |V | log |V |)

algorithm for ESP calculations when Π is a (type-2, see Definition 2 below) simply
connected polyhedron which is not necessarily convex.

The given algorithm solves approximately three NP-complete or NP-hard 3D ESP
problems in time κ(ε) · O(k), where k is the number of layers in a stack, which is
introduced as the problem environment below. Our algorithm has straightforward appli-
cations for ESP problems when analyzing polyhedral objects (e.g., in 3D imaging; for
the extensive work using geodesics we just cite [26] as one example), or for ‘flying’
over a polyhedral terrain. The best known result for the latter problem is due to [27]
by proposing anO((n/ε)(log n)(log log n)) algorithm for computing a (2(p−1)/p + ε)-
approximation of an Lp-shortest path above a polyhedral terrain.
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Section 2 provides necessary definitions and theorems. Section 3 describes our al-
gorithm. Section 4 gives the time complexity of the algorithm. Section 5 illustrates the
algorithm by some examples. Section 6 concludes the paper.

2 Basics

The algorithm in this paper generalizes a rubberband algorithm which was studied in
[17] for computing ESPs in voxel-curves [14], where each voxel is a grid cube.

We denote by Π a simple polyhedron (i.e., a compact polyhedral region which is
homeomorphic to a unit ball) in the 3D Euclidean space, which is equipped with an xyz
Cartesian coordinate system. Let E be the set of edges of Π ; V = {v1, v2, . . . , vn} the
set of vertices of Π . For p ∈ Π , let πp be the plane which is incident with p and parallel
to the xy-plane. The intersection πp ∩Π is a finite set of simple polygons; a singleton
(i.e., a set only containing a single point) is considered to be a degenerate polygon.

Definition 1. A simple polygon P , being a connected component of πp ∩Π , is called
a critical polygon of Π (with respect to p).

Any vertex p defines in general a finite set of critical polygons. The notion of a critical
polygon is also generalized as follows: We assume a simply connected (possibly un-
bounded) polyhedron Π , and we allow that the resulting (generalized) critical polygons
may also be unbounded. For example, a generalized critical polygon may have a vertex
at infinity, or it can be the complement of a critical polygon, as specified in Definition 1.
(Section 5 will also make use of generalized critical polygons.)

Definition 2. We say that a simple polyhedron Π is a type-1 polyhedron iff any vertex
p defines exactly one convex critical polygon. We say that a simple polyhedron Π is a
type-2 polyhedron iff any vertex p defines exactly one simple critical polygon.

Obviously, each type-1 simple polyhedron is also a type-2 simple polyhedron. Our main
algorithm below applies to type-2 simple polyhedra.

In what follows, Π is a type-2 simple polyhedron. For a simple polygon P , let P ◦

be its topological interior, P • the closure of P ◦, and ∂P = P •\P ◦ the frontier of P .
Let ρ(p, q) be a path from p to q.

We recall some concepts introduced in [20]. Let (x0, y0, z0) be a point in 3D space.
Let

S1 = {(x, y, z0) : x0 ≤ x <∞∧ y0 ≤ y < ∞}
S2 = {(x, y, z0) : −∞ < x ≤ x0 ∧ y0 ≤ y < ∞}
S3 = {(x, y, z0) : −∞ < x ≤ x0 ∧ −∞ < y ≤ y0}
S4 = {(x, y, z0) : x0 ≤ x <∞∧−∞ < y ≤ y0}

Si is called a q-rectangle of type i, where i = 1, 2, 3, 4. Furthermore, let (x1, y1, z0) be
a point in 3D space such that x1 > x0 and y1 > y0. Let

Sh = {(x, y, z0) : −∞ < x < ∞∧ y0 ≤ y ≤ y1}
Sv = {(x, y, z0) : x0 ≤ x ≤ x1 ∧ −∞ < y < ∞}
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(x0,y0,z0)

(x0,y1,z0)
Sh2 Sh1

S0

S3 S4

S1

(x0,y0,z0) (x0,y0,z0) (x1,y0,z0)

Sv 1

Sv 2

Fig. 1. Axis-aligned rectangles

Finally, let Sh1 = {(x, y, z0) : x0 ≤ x < ∞∧ y0 ≤ y ≤ y1}
Sh2 = {(x, y, z0) : −∞ < x ≤ x0 ∧ y0 ≤ y ≤ y1}
Sv1 = {(x, y, z0) : x0 ≤ x ≤ x1 ∧ y0 ≤ y < ∞}
Sv2 = {(x, y, z0) : x0 ≤ x ≤ x1 ∧ −∞ < y ≤ y0}

Sh, Sv, Sh , and Sv are called horizontal or vertical strips, for j = 1, 2. According to
their geometric shape, we notice that

(i) S1 [S2,S3,S4] isunboundedindirection(+x, +y) [(−x, +y), (−x,−y), (+x,−y)];
(ii) Sh [Sv] is unbounded in direction ±x [±y];

(iii) Sh1 [Sh2 , Sv1 , Sv2 ] is unbounded in direction +x [−x, +y, −y].

Si, Sh, Sv, Sh , and Sv are also called axis-aligned rectangles, where i = 1, 2, 3, 4
and j = 1, 2. The stack S of axis-aligned rectangles is called terrain-like if, for at least
one of the four directions −x, +x, −y, or +y, each rectangle in S is unbounded (see
Figure 1).

Let {s1, s2, . . . , sm} be a set of m line segments and S the union of those segments.
Let p1 and p2 be two different points not in S; see Fig. 2. We recall that points in R

3

may be sorted by the lexicographic order of their coordinates.

Lemma 1. de(p1, p) + de(p2, p) = min{de(p1, q) + de(p2, q) : q ∈ S} and lexico-
graphic order define a unique point in S, which can be computed in O(m) time.

pp1

p2

Fig. 2. Two points p1 and p2 and m segments
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Proof. Consider m = 1. For line segment si, there is a unique point qi ∈ si such that

de(p1, qi) + de(p2, qi) = min{de(p1, q) + de(p2, q) : q ∈ si}

Consider case m = 2 and points q1 and q2. If de(p1, q1) + de(p2, q1) < de(p1, q2) +
de(p2, q2), then p = q1. If de(p1, q1) + de(p2, q1) > de(p1, q2) + de(p2, q2), then
p = q2. If de(p1, q1) + de(p2, q1) = de(p1, q2) + de(p2, q2), then we decide for that
point which comes first in lexicographic order. Cases m > 2 follow analogously. �	

Let P be a convex critical polygon of Π , defined by the plane z = c. Let p1 and p2
be two points such that their z-coordinates satisfy z1 < c < z2. Then we also have the
following (see Theorem 23, page 146, [15]):

Lemma 2. There is a unique point p ∈ P • such that

de(p1, p) + de(p2, p) = min{de(p1, q) + de(p2, q) : q ∈ P •}

3 ESP Computation

We start by presenting a procedure, used by a rubberband algorithm (Algorithm 1 be-
low), and then frequently called in the main algorithm (Algorithm 3) of this paper.

Let F = {F1, F2, . . . , Fm} be the set of all faces of Π , and V the set of all vertices
of Π . – The following very basic Procedure 1 simply ‘walks around’ the polyhedron by
tracing an intersection with a given plane. We do not detail this procedure; it is a fairly
straightforward isoheight trace of a polyhedron, assuming that the data structure of the
polyhedron links edges to faces.

Procedure 1. (compute a sequence of vertices of the critical polygon; see Fig. 3)
Input: Set F and a vertex v ∈ V such that πv intersects Π in more than just one point.
Output: An ordered sequence of all vertices in Vv , which is the vertex set of the critical
polygon Pv .

v

z

y

x
Fig. 3. The labeled vertex v identifies a sequence of six vertices of the critical polygon Pv , defined
by the intersection of plane πv with the shown (Schönhardt) polyhedron
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The main ideas of the rubberband algorithm below (Algorithm 1) are as follows: For
a start, we randomly take a point in the closure of each critical polygon to identify an
initial path from p to q. Then we enter a loop; in each iteration, we optimize locally
the position of point p1 by moving it within its critical polygon, then of p2, . . ., and
finally of pk. At the end of each iteration, we check the difference between the length of
the current path to that of the previous one; if it is less than a given accuracy threshold
ε > 0 then we stop. Otherwise, we go to the next iteration. - Let px be the x-coordinate
of point p, v1z the z-coordinate of point v1, and so forth.

Algorithm 1. (a rubberband algorithm for type-1 polyhedra)
Input: Two points p and q, a set {P •

v1
, P •

v2
•
v }, where Pv is a critical polygon of

a given polyhedron Π , k vertices vi ∈ ∂Pv such that pz < v1z < · · · < vkz < qz , for
i = 1, 2, . . . , k, and there is no any other critical polygon of Π between p and q; given
is also an accuracy constant ε > 0.
Output: The set of all vertices of an approximate shortest path which starts at p, then
visits approximate optimal positions p1, p2, . . ., pk in that order, and finally ends at q.

1: For each i ∈ {1, 2, . . . , k}, let the initial vertex pi be a vertex of P •
v .

2: Let L0 = ∞. Calculate L1 =
∑k

i=0 de(pi, pi+1), where p0 = p and pk+1 = q.
3: while L0 − L1 ≥ ε do
4: for i = 1, 2, . . . , k do
5: Compute1 a point qi ∈ P •

v such that
de(pi−1, qi) + de(qi, pi+1) = min{de(pi−1, p) + de(p, pi+1) : p ∈ P •

v }
6: Update the path 〈p, p1, p2, . . . , pk, q〉 by replacing pi by qi.
7: end for
8: Let L0 = L1 and calculate L1 =

∑k
i=0 de(pi, pi+1).

9: end while
10: Return 〈p, p1, p2, . . . , pk, q〉.

The set {P •
v1

, P •
v2

, . . . , P •
v } in Algorithm 1 is called the step set of this rubberband

algorithm. (Identifying a ‘suitable’ step set is normally the main issue when defining a
rubberband algorithm; see, for example, discussion of step sets in [16,22].)

Theorem 1. If Π is a type-1 polyhedron in the input of Algorithm 1, then the solution
obtained by Algorithm 1 is an approximate global solution to the 3D ESP problem.

Proof. Let X = Πk
i=1P

•
u ⊂ Rk, where P •

u is as defined in Algorithm 1. As Π is a
type-1 polyhedron, then Pu is a convex polygon, where i = 1, 2, . . . , k. Let Y ⊂ X
be the set of all solutions obtained by Algorithm 1, for any initialization in X and the
given ε > 0.

As each Pu is a convex polygon, by Lemma 2, the point qi in Step 5 of Algorithm 1
is unique, and qi depends continuously upon pi−1 and pi+1 defined in Step 5 of Algo-
rithm 1. Thus, Algorithm 1 defines a continuous function, denoted by f , mapping from
X (i.e., an initialization) into Y , with values depending on the used accuracy ε > 0.2

1 If pi−1pi+1 ∩ P ◦
v �= ∅, then assign qi ← pi−1pi+1 ∩ P ◦

v .
2 If each P •

u is degenerated into a single edge, then there exists a unique solution to the ESP
problem; independent of the chosen initialization, solutions will converge to this unique solu-
tion if ε goes to zero; see [8,23,25].
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Now let v̄ = (v1, v2, . . . , vk) ∈ Y . Then vi is either located on an edge of polygon
Pu , which is contained in the frontier ∂Pu , for i = 1, 2, . . . , k, or vi is located in the
interior P ◦

u , and vi−1, vi and vi+1 are collinear. Thus, Y is a finite set.
It remains to prove that Y is a singleton. Let v̄0 ∈ Y ; we have that f−1(v̄0) ⊂ X . For

each initialization v̄ ∈ f−1(v̄0), as f is a continuous function, there exists a sufficiently
small open neighborhood (with respect to the usual topology on R

k) of v̄, denoted by
N(v̄, δv̄), such that for each v̄′ ∈N(v̄, δv̄), f(v̄′) = v̄0. Thus, N(v̄, δv̄) ⊆ f−1(v̄0) and
∪v∈f−1(v̄0)N(v̄, δv̄) ⊆ f−1(v̄0).

On the other hand, because (simply by definition) f−1(v̄0) = {v̄ : v̄0 = f(v̄)} and
v̄ ∈ N(v̄, δv̄), we have that f−1(v̄0) ⊆ ∪v̄∈f−1(v̄0)N(v̄, δv̄). Therefore, f−1(v̄0) =
∪v̄∈f−1(v̄0)N(v̄, δv̄). Because N(v̄, δv̄) is an open set, f−1(v̄0) is also open. Let

f−1(v̄0) = ∪k
i=1Si

where Si is an open subset of P •
u , for i = 1, 2, . . . , k. Recall that f−1(v̄0) ⊂ X , thus

there exists an Si such that ∅ ⊂ Si ⊂ P •
u .

Without loss of generality, suppose that ∅ ⊂ S1 ⊂ P •
u1

. This implies that there exists
a point (x0, y0) ∈ P •

u1
such that ∅ ⊂ S1|x0 ⊂ P •

u1
|x0 .3 Thus, S1|x0 is a nonempty

open subset of P •
u1
|x0 . Set S1|x0 is a union of a countable number of open or half-open

intervals (see Proposition 5.1.4 in [24]).
Thus, there exists a point w1 ∈ P •

u1
|x0 \S1 such that, for every positive ε1, there

exists a point w′
1 ∈ N(w1, ε1)∩ S1 [again, N(w1, ε1) is an open neighborhood with

respect to the usual topology on P •
u1

]. Therefore, there exists a point v̄1 ∈ X\f−1(v̄0)
such that, for each positive ε1, there exists a point v̄′1 ∈ N(v̄1, ε1)∩ f−1(v̄0). This
contradicts that f is a continuous function on X . Thus, Y is a singleton. �	

As an informal interpretation of this proof: If ε is sufficiently small then Y is a neigh-
borhood N(v̄, δv̄) of a single point v̄, where δv̄ is sufficiently small (depending on ε)
such that computers regard N(v̄, δv̄) as a single point v̄ because of rounding.

If input Π is a type-2 polyhedron then the solution obtained by Algorithm 1 might
not be an approximate global solution to the 3D ESP problem. However, following The-
orem 1, we propose the following modification of Algorithm 1 for type-2 polyhedrons,
with an initial mapping of non-convex polygons on their convex hulls:

Algorithm 2. (a rubberband algorithm for type-2 polyhedra)
Both input and output are the same as in Algorithm 1.

1: For i ∈ {1, 2, . . . , k}, apply (e.g.) the Melkman algorithm for computing C(Pv ),
the convex hull of Pv .

2: Let C(P •
v1

), C(P •
v2

), . . . , C(P •
v ), p, and q be the input of Algorithm 1 for comput-

ing an approximate shortest route 〈p, p1, . . . , pk, q〉.
3: For i = 1, 2, . . . , k − 1, find4 a point qi ∈ C(P •

v ) such that
de(pi−1, qi) + de(qi, pi+1) = min{de(pi−1, p) + de(p, pi+1) : p ∈ C(P •

v )}.
Update the path for each i by pi = qi.

3 S|x0 = {(x0, y) : (x, y) ∈ S ∧ x = x0}
4 If pi−1pi+1 ∩ P ◦

p �= ∅, then set qi ← pi−1pi+1 ∩ P ◦
p .
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4: Let P •
v1

, P •
v2

, . . . , P •
v , p and q be the input of Algorithm 1, and points pi as obtained

in Step 3 are the initial vertices pi in Step 1 of Algorithm 1. Continue with running
Algorithm 1.

5: Return 〈p, p1, . . . , pk−1, pk, q〉 as provided in Step 4.

Step 2 iterates through the closures of convex hulls. The iteration through step sets
C(P •

v ) only occurs in Step 4 (i.e., when applying Subalgorithm 1 for a second time,
using the same ε). Algorithm 2 provides an (1 + (L2 − L1)/L)-approximate global
solution for the ESP, where L is the length of an optimal path; L1 is the length of the
path obtained in Step 2; L2 the length of the final path obtained in Step 5. Note that
L2 ≥ L1, and L2 = L1 if all polygons Pi are convex. Also note that L < L1, then
(1 + (L2 − L1)/L) ≤ L2/L1. Thus, Algorithm 2 provides an L2/L1-approximate
global solution for the ESP problem.

The main ideas of Algorithm 3 below are as follows: We apply Procedure 1 to com-
pute the step set of a rubberband algorithm as given in Algorithms 1 or 2. Then we
simply apply this rubberband algorithm to compute (of course, approximately only, de-
fined by the chosen accuracy ε) the ESP.

For the input polyhedron we assume that it is of type-2. For example, the Schönhardt
polyhedron as shown in Fig. 3 is of type-2, but it might be rotated such that the resulting
polyhedron is not of type-2 anymore.

Algorithm 3. (main algorithm)
Input: Two points p and q in Π ; sets F and V of faces and vertices of Π , respectively.
Output: The set of all vertices of an approximate shortest path, starting at p and ending
at q, and contained in Π .

1: Initialize V ′ ← {v : pz < vz < qz ∧ v ∈ V }.
2: Sort V ′ according to the z-coordinate.
3: We obtain V ′ = {v1, v2, . . . , vk′} with v1z ≤ v2z ≤ . . . ≤ vk′z .
4: Partition V ′ into pairwise disjoint subsets V1, V2, . . ., and Vk such that

Vi = {vi1, vi2, . . . , vin }, with vijz
= vij+1z

, for j = 1, 2, . . . , ni − 1, and
vi1z < vi+11z , for i = 1, 2, . . . , k − 1. [That is, this step partitions the set V ′ into
some subsets such that the points in the same subset have an identical z-coordinate.]

5: Set ui ← vi1, where i = 1, 2, . . ., k.
6: Set V ′′ ← {u1, u2, . . . , uk} (then we have that u1z < u2z < . . . < ukz).
7: for each ui ∈ V ′′ do
8: Apply Procedure 1 for computing Vu (i.e., a sequence of vertices of the critical

polygon Pu ).
9: end for

10: Set Fstep ← {P •
u1

, P •
u2

, . . . , P •
u }.

11: Set P ← {p} ∪ V ′′ ∪ {q}.
12: Apply Algorithm 2 on inputs Fstep and P , for computing the shortest path ρ(p, q)

inside of Π .
13: Convert ρ(p, q) into the standard form of a shortest path by deleting all vertices

which are not on any edge of Π (i.e., delete pi if pi is not on an edge of Pu ).

By the discussions after Algorithm 2, we have the following
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Theorem 2. Algorithm 3 provides an L2/L1-approximate global solution for the ESP
problem, where L1 is the length of the path obtained in Step 2 of Algorithm 2; L2 is the
length of the final path obtained in Step 5 of Algorithm 2.

4 Time Complexity

At first, we can show (calculation of upper time bounds for involved steps is fairly
straightforward) that Procedure 1 can be computed inO(|Vv ||E(Sv)|+|F|) time, where
Sv = {F : F ∈ F ∧ e = uw ∈ E(F ) ∧ (uz ≤ vz ≤ wz ∨ wz ≤ vz ≤ uz)}. Then
we can show that the time complexity of Algorithm 1 equals κ(ε) · O(

∑k
j=1 |Vv |),

where κ(ε) is the number of iterations of the while loop in Algorithm 1. By Lemma 1,
Step 5 can be computed in O(|Vv |) time, where Vv is as in Algorithm 1, for j = 1,

2, . . ., k. Thus, each iteration of Algorithm 1 can be computed in O(
∑k

j=1 |Vv |) time.
Obviously, Algorithm 2 has the same time complexity as Algorithm 1. - These three
results allow us then to show that Algorithm 3 can be computed in

κ(ε) · O(
k∑

j=1

|Vu |) +O(
k∑

j=1

|Vu ||E(Su )|+ |F|+ |V | log |V |)

where the second term is the time for preprocessing. This can finally be reformulated in
the more compact form that Algorithm 3 is of complexity

κ(ε) · O(M |V |) +O(M |E|+ |F|+ |V | log |V |)

for M = max{|Vu | : j = 1, 2, . . . , k}, where the second O(. . .) term is the time for
preprocessing.

In Algorithm 1, let κ(ε) = L0−L
ε be a function which only depends upon the dif-

ference between the lengths L0 of an initial path and L of the optimum path, and the
accuracy constant ε. Let Lm be the length of the m-th updated path, for m = 0, 1, 2, . . .,
with Lm − Lm+1 ≥ ε (otherwise the algorithm stops). It follows that

κ(ε) =
L0 − L

ε
≥ 1 +

L1 − L

ε
≥ · · · ≥ m +

Lm − L

ε

The sequence {m+ Lm−L
ε } is monotonously decreasing, lower bounded by 0, and stops

at the first m0 where Lm0 − Lm0+1 < ε.
We have implemented a simplified version of Algorithm 1 where all P •

v s were de-
generated to be line segments. Thousands of experimental results indicated that κ(ε)
does not depend on the number k of segments but the value of ε. We selected ε = 10−15

and k was in between 4 and 20,000, the observed maximal value of κ(ε) was 380,000.
It shows that the smallest upper bound of κ(ε) ≥ κ(10−15) ≥ 380,000. In other words,
the number of iterations in the while-loop can be huge even for some small value of k.
On the other hand, all these experimental results indicated that |Lm − Lm+1| ≤ 1.2,
when m > 200 and L was between 10,000 and 2,000,000. It showed that κ(1.2) ≤ 200
and the relative error |Lm−Lm+1|/L ≤ 1.2×10−4. In other words, these experiments
showed that the algorithm already reached an approximate ESP with a very minor rel-
ative error after 200 iterations of the while loop; the remaining iterations were ‘just’
spent on improving a very small fraction of the length of the path.
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5 Examples: Three NP-Complete or NP-Hard Problems

We apply Algorithms 2 and 3 for approximate solutions of hard problems, characterized
below (by appropriate references) as being NP-complete or NP-hard. Let p, q ∈ Π such
that pz < qz . Let Vpq = {v : pz < vz < qz∧v ∈ V }, where V is the set of all vertices of
Π . For doing so, we are allowing for input polyhedra different from the bounded type-
2 polyhedra so far, but only input polyhedra which allow us to use those algorithms
without any further modification.

We consider unbounded polyhedra (which also satisfy the type-2 constraint), and,
thus, generalized critical polygons.

Example 1. Let Π be a simply connected polyhedron such that each critical polygon is
the complement of an axis-aligned rectangle. Following Section 4, the Euclidean short-
est path between p and q inside of Π can be approximately computed in κ(ε) ·O(|Vpq |)
time. Therefore, the 3D ESP problem can be approximately solved efficiently in such a
special case. Finding the exact solution is NP-complete because of the following

Theorem 3. ([20], Theorem 4) It is NP-complete to decide wether there exists an
obstacle-avoiding path of Euclidean length at most L among a set of stacked axis-
aligned rectangles (see Fig. 4). The problem is (already) NP-complete for the special
case that the axis-aligned rectangles are all q-rectangles of types 1 or 3.

z

5

x

y

-2-4-6-8

p

q

Fig. 4. A path from p to q which does not intersect any of the shown rectangles at an inner point

Example 2. Let Π be a simply connected polyhedron such that each critical polygon is
the complement of a triangle. Following Section 4, the Euclidean shortest path between
p and q inside of Π can be approximately computed in κ(ε) · O(|Vpq |) time. Finding
the exact solution is NP-hard because of the following

Theorem 4. ([7]) It is NP-hard to decide whether there exists an obstacle-avoiding
path of Euclidean length at most L among a set of stacked triangles.

Example 3. Let S be a stack of k horizontal or vertical strips. The Euclidean shortest
path among S can be approximately computed in κ(ε) · O(k) time. Finding the exact
solution is NP-complete because of the following
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Theorem 5. ([20], Theorem 5) It is NP-complete to decide whether there exists an
obstacle-avoiding path of Euclidean length at most L among a finite number of stacked
horizontal and vertical strips.

Example 4. Let S be a stack of k terrain-like axis-parallel rectangles. The Euclidean
shortest path among S can be approximately computed in κ(ε) · O(k) time. The best
known algorithm for finding the exact solution has a time complexity in O(k4) due to
the following

Theorem 6. ([20], Theorem 6) Let S be a stack of k terrain-like axis-parallel rectan-
gles. The Euclidean shortest path among S can be computed in O(k4) time.

6 Conclusions

This paper described an algorithm for solving the 3D ESP problem when the domain
Π is a type-2 simply connected polyhedron; the algorithm has a time complexity in
κ(ε) ·O(M |V |)+O(M |E|+ |F|+ |V | log |V |) (whereO(M |E|+ |F|+ |V | log |V |)
is the time for preprocessing). It was also shown that the algorithm approximately solves
three NP-complete or NP-hard problems in time κ(ε) · O(k), where k is the number of
layers in the given stack of polygons.

Our algorithm has straightforward applications on ESP problems in 3D imaging
(where proposed solutions depend on geodesics), or when ‘flying’ over a polyhedral
terrain. The best result so far for the latter problem was an O((n/ε)(log n)(log log n))
algorithm for computing a (2(p−1)/p + ε)-approximation to the Lp-shortest path above
a polyhedral terrain.

As there does not exist an algorithm for finding exact solutions to the general 3D
ESP problem (see Theorem 9, [3]), our method defines a new opportunity to find ap-
proximate (and efficient!) solutions to the discussed classical, fundamental, hard and
general problems.
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Rinaldi, Simone 381
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