
Clean Translation of an Imperative Reversible

Programming Language

Holger Bock Axelsen

DIKU, Dept. of Computer Science, University of Copenhagen
funkstar@diku.dk

Abstract. We describe the translation techniques used for the code
generation in a compiler from the high-level reversible imperative pro-
gramming language Janus to the low-level reversible assembly language
PISA. Our translation is both semantics preserving (correct), in that
target programs compute exactly the same functions as their source pro-
grams (cleanly, with no extraneous garbage output), and efficient, in that
target programs conserve the complexities of source programs. In par-
ticular, target programs only require a constant amount of temporary
garbage space.

The given translation methods are generic, and should be applicable
to any (imperative) reversible source language described with reversible
flowcharts and reversible updates. To our knowledge, this is the first com-
piler between reversible languages where the source and target languages
were independently developed; the first exhibiting both correctness and
efficiency; and just the second compiler for reversible languages overall.

1 Introduction

Reversible computing is the study of computation models that exhibit both for-
ward and backward determinism [2]. Historically, reversible computing originates
in the physics of computation: Irreversible computations (for example, seen in
our inability to recover the input to a nand-gate from its output, or the previous
value of a variable or register after most assignments) can be shown to have a
physical effect on the machines that execute them, in the form of heat dissipation
and power consumption [7]. For reversible computations these physical conse-
quences are no longer implied, and it should therefore be possible to lower the
power consumption of computing machinery by using reversible components [5].
Lowering power demands is increasingly important as microprocessor technology
bottoms out at the atomic level.

To obtain maximal benefit from reversibility a reversible computer should
be reversible at every abstraction layer, so reversible hardware [16,13] demands
reversible software. However, reversible programming languages are rare and un-
derdeveloped. This is unfortunate, given that reversible programming finds use
in many diverse areas of computer science. As an example, in quantum comput-
ing [14] programs are necessarily reversible (modulo measurements, which are
destructive.) Other application include bidirectional model transformation [10],

J. Knoop (Ed.): CC 2011, LNCS 6601, pp. 144–163, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Clean Translation of an Imperative Reversible Programming Language 145

static analysis of program properties such as average case time complexity [11],
and complex program transformations such as inversion [15].

In the context of compiler theory, we find that there are no well-established
principles for translation between reversible languages. Two baseline criteria for
such a compiler comp are its correctness and efficiency. Correctness means that
the translation should be semantics preserving, and efficiency here means that
the translation should be complexity preserving: Given a source program p, the
target program q = [[comp]] p should compute the same function as the source
program modulo data representation, i.e., [[p]] = [[q]], and the source and target
programs should have the same asymptotic complexities wrt resource usage. That
such translations are possible is critical for the usefulness of reversible languages.

Both correctness and efficiency present novel challenges for the translation
of reversible programming languages: High-level reversible languages are usually
reversible at a coarser level than low-level reversible languages. In our source
language, Janus, reversibility bottoms out with fairly complex (reversible) state-
ments like x += a *(5+b) - 17/y, whereas in the target language, PISA, re-
versibility bottoms out with individual instructions like ADDI r1 10, which is
much more fine-grained. The problem is that the components of the source
language that exist below the granularity of reversibility (for instance, the ir-
reversible expressions in Janus) must still be implemented reversibly in the tar-
get language, without generating any extraneous garbage data for the output.
Targeting a reversible assembly language also means that fundamental conven-
tional techniques, such as using scratch registers for temporary values, must be
revised, as we can not allow overwrite registers. Finally, the source languages
contain novel program features that no classical languages exhibit, such as the
procedure uncall statement in Janus, which executes a procedure backwards.

In this paper, we present the techniques used for code generation in a cor-
rect and efficient translation from the high-level imperative reversible language
Janus [9,19,17] to the low-level reversible assembly language PISA [16,6,3,13]. We
consider these to be the most developed and well-understood extant reversible
languages in their respective classes. A compiler based on the techniques was
implemented and tested. To our knowledge, this paper presents the first trans-
lation of reversible languages where the source and target languages have been
independently developed, and only the second compiler overall (the other being
Frank’s R-compiler [6, Apps. C & D].) Our main contributions are as follows.

– We provide a full description of code generation for a correct and efficient
translation of Janus to PISA.

– We give general clean translation methods for generic reversible control flow
operators, which avoids code duplication of the computation and uncompu-
tation of their conditional expressions.

– We give methods for explicit register allocation in reversible evaluation of
expression trees.

146 H.B. Axelsen

Program

p ::= d∗ (procedure id s)+

d ::= x | x[c]
Statements

s ::= x⊕= e | x[e]⊕= e
| call id | uncall id
| if e then s else s fi e
| from e do s loop s until e
| skip | s s

Expressions, operators, constants

e ::= c | x | x[e] | e⊗ e
⊗ ::= ⊕ | * | && | <= | · · ·
⊕ ::= + | - | ^
c ::= · · · | -1 | 0 | 1 | · · ·

Syntax domains

p∈Program
s ∈ Statement

e ∈Expression
x∈Variable

⊗ ∈Operator
id ∈ProcedureID

Fig. 1. Syntax of Janus

Overview. Sect. 2 presents the target and source languages, Sect. 3 motivates
the guiding principles underlying the translation, and Sect. 4 provides schemes
for code generation. We discuss the implemented compiler in Sect. 5, related
work in Sect. 6, and give conclusions and directions for future work in Sect. 7.

2 Languages

Here, we provide a brief overview of the source and target languages.

2.1 Source Language: Janus

The source language for the translation is Janus, an imperative structured
high-level reversible language designed in the early 80’s [9]. Its recent formal-
ization [19] and extension [17] makes it one of the most well-understood and
well-developed reversible language in existence. We specifically use the version
of Janus defined in [19].

A Janus program consists of a list of global variable declarations, and a list
of procedure (subroutine) declarations, see Fig. 1 (some operators are omitted
for space reasons). A global1 variable is a (32-bit signed) integer x, or a (zero-
indexed) static size array of integers x[c]. All variables and arrays are initialized
to zero.

1 In this version of Janus there are no local variables.

Clean Translation of an Imperative Reversible Programming Language 147

A procedure is a non-parameterized list of statements. A statement s is a
reversible assignment2 to an integer variable x ⊕= e or array entry x[e1]⊕= e2;
a (recursive) procedure call call id ; a procedure uncall uncall id ; a reversible
conditional selection if e1 then s1 else s2 fi e2, or a reversible loop
from e1 do s1 loop s2 until e2.

Briefly, the semantics of Janus is as follows. A reversible assignment updates
the left value by adding (+=), subtracting (-=) or (bitwise) xoring (^=) the value
of the expression on the right hand side to the original value. The variable being
updated must neither occur in the right hand side nor in the array index ex-
pression, to conserve reversibility. A reversible conditional selection is similar to
a classical if-then-else, but the value of the fi-expression must be true after
execution if the then-branch was taken, and false otherwise. A reversible loop is
similar to a classical do-while, but the from-assertion must be true when enter-
ing the loop, and false in all subsequent iterations (cf. Fig. 7). A call recursively
executes a named procedure, and an uncall executes the procedure with its in-
verse functionality. Such direct programming access to the inverse semantics of
a languages is a unique feature of reversible languages.

To provide Janus with a stand-alone execution behaviour, the last procedure
in the procedure list acts as the main procedure for a program, and is executed
at run-time.3

2.2 Target Language: PISA

We target the Pendulum Instruction Set Architecture assembly language (PISA),
as described in [6,3]. The Pendulum [16] is a RISC architecture, with 32 general
purpose 32-bit signed integer registers, designated r0 to r31.4 A formal seman-
tics for PISA and an abstract von Neumann machine on which to run it, is
described in [3]. A minimal assembly language BobISA, inspired by PISA, is be-
ing developed [13] for future implementation in reversible logic [12]. PISA is thus
representative of a large class of reversible machine languages.

A PISA program is a list of (possibly labeled) RISC-style machine instruc-
tions, see Fig. 2 for a representative excerpt. An instruction is either a data
instruction, or a branching instruction, or a special instruction used in program
control.

A data instruction has no direct influence on control flow. The data instruc-
tions are reversible versions of classical RISC instructions. As an example, the
ADD r1 r2 instruction performs the reversible update r1 ← r1 + r2 (in Janus
syntax r1 += r2). To conserve reversibility the source and target registers must

2 A reversible assignment follows the pattern of a reversible update: It is a function of
the form g(x, y) = (x⊕ f(y), y), where ⊕ is a binary operator that is injective in its
first argument, i.e., that b⊕ a = c⊕ a⇒ b = c. This makes g injective. Note that f
is unrestricted, allowing us to use irreversible operators, such as logical conjunction,
in the right hand side of a reversible assignment. See also [3,17].

3 An online interpreter can be found at http://topps.diku.dk/pirc/janus
4 By convention, r0 is usually preserved as 0, r1 is the call stack pointer and r2 is used

to store return offsets in procedure calls.

http://topps.diku.dk/pirc/janus

148 H.B. Axelsen

Program
p ::= ([l :] i)+

i ::= a | b | s
Data instructions

a ::= ADD r r | SUB r r | NEG r | XOR r r | · · ·
| ADDI r c | SUBI r c | XORI r c | · · ·
| ORX r r r | ANDX r r r | SLTX r r r | · · ·
| EXCH r r

Branching instructions

b ::= BRA l | RBRA l
| BEQ r r l | BNE r r l | BGEZ r l | · · ·
| SWAPBR r

Special instructions
s ::= DATA c | START | FINISH

Immediates
c ::= · · · | -1 | 0 | 1 | · · ·

Syntax domains

p∈Program
l ∈Label

a∈DataInst
b ∈BranchInst

s∈ Special
r∈Register

Fig. 2. Syntax of PISA (Excerpt)

be different. One may also use immediates in place of a source register. For
instructions which do not mimic an operation which is injective in an argu-
ment, expanding instructions such as ANDX r1 r2 r3 (which performs r1 ←
r1 XOR (r2 AND r3)) are available. This is also used in comparison opera-
tions, such as set-if-less-than SLTX. Reversible memory access is provided by
EXCH r1 r2 which exchanges the contents of r1 with the value in the memory cell
pointed to by r2.

A branching instruction is an unconditional (e.g., BRA l) or conditional branch
(e.g., BGEZ r l) to a label. Branching is made reversible through the architectural
design of PISA: At load time, labels are replaced with the relative offset of a
branch instruction and its target. A branch instruction does not overwrite the
program counter pc directly, but instead adds the offset to a control register, the
branch register br . In between the execution of any two instructions, the pc is
reversibly updated by adding the br to it if br �= 0, and proceeding to the next
instruction, if not.

To program jumps in PISA one can use paired branches : A branch target
should contain a branching instruction pointing back to the jump point, in order
to clear the br and resume normal step-wise execution. A final control register,
the direction bit dir , controls the interpretation and execution direction, allowing

Clean Translation of an Imperative Reversible Programming Language 149

for programmer control of the execution direction through the ingenious reverse
branch instruction RBRA. To allow for a labeled instruction to be jumped to from
many source points, the SWAPBR r instruction exchanges the value of br with
that in register r. Further details in [6,3].

The special instructions are not executed at run-time: The DATA c instruction
is used to initialize the memory cell at that point with c at load-time. Execution
begins at the START instruction, and halts at the FINISH instruction.

3 Motivation

Before providing technical details, we motivate the guiding principles for the
translation.

Historically, the study of reversible computing (starting with Landauer [7]
and Bennett [4]) has been focused on transformations from irreversible to re-
versible programs (for Turing machines), so-called reversibilizations. Critically,
such transformations are neither semantics nor complexity preserving: The tar-
get program of such a transformation computes a different function from the
source program, with additional garbage data in the output (e.g., a trace of ev-
ery computation step), and can be asymptotically very inefficient (e.g., requiring
as much space as time, regardless of the space usage of the source program.)

Bennett suggests a method for programs computing injective functions, see [4,
p. 530], which is semantics preserving. While this is extensionally clean (i.e.,
correct), it is still not satisfactory: The method requires the use of a complete
execution trace, so target programs would be extremely inefficient, using as much
space as time. This is clearly not acceptable for any realistic computing device.

Thus, using existing reversibilizations is unsuitable when we want both cor-
rect and efficient translation between reversible language. In fact, no general
reversibilization (from irreversible source to reversible target) will be able to
guarantee both properties without breaking widely believed conjectures in com-
plexity theory (such as the existence of one-way functions.) However, we also
believe that translations between strictly reversible languages can be both cor-
rect and efficient. Thus we should not rely on general reversibilizations.

The central idea of our translation is to exploit that Janus is reversible at
the level of individual statements in addition to the overall reversibility between
input and ouput. We can aim for an intensionally clean translation where each in-
dividual statement is translated cleanly, without having to accumulate garbage.
We still need to evaluate expressions as a subpart of statements, and this will
require some use of reversibilization (leading to temporary garbage) as expres-
sion evaluation is inherently irreversible. However, we should be able to remove
the garbage data immediately following any use of the expression value, exactly
because the individual statements are reversible. This will allow us to reuse the
space that would otherwise be filled by accumulating garbage data!

This has a dramatic effect on efficiency: Expressions are non-recursive, so their
size is effectively a (rough) bound on how much garbage we can accumulate by

150 H.B. Axelsen

max(|e1|, |e2|, . . . , |ek|)

Time

Garbage space

e2

start

Time
e1 e4 e2

Garbage space

e−1
2 e−1

1e−1
4

e−1
7e1 e−1

2e−1
4e−1

1 e4 e7

.

.(a)

(b)
halt

start halt

(unbounded)

(bounded)

Fig. 3. Garbage space usage during target execution for two different approaches to
reversible translation. (a) corresponds to Bennett’s method for injective functions. (b) is
our translation. {e1, e2, . . . , ek} is the (finite) set of expressions in a particular program.

simulating any single one. This leads to a constant upper bound for garbage
use for any given program (which only has finitely many expressions, each of
fixed size), regardless of how many times we need to evaluate them in a program
execution, in stark contrast to what happens with general reversibilization. Fig. 3
shows a conceptual representation of this.

The removal of any garbage data serves to make the translation correct, and
doing so immediately makes the translation efficient (assuming we can translate
the other component of Janus correctly and efficiently as well.) Thus, by actively
exploiting the reversibility of the source language, we expect the irreversible sub-
parts to be simulable without any impact on neither semantics nor complexity.
Of course, this means that we have to come up with good, garbage-free transla-
tions for the remaining parts of the source language.

We now turn to the details of the translation based on these ideas.

4 Translation

In this section we present the translation techniques used in our compiler. In
particular, we show the development of the code generation schemes used in

Clean Translation of an Imperative Reversible Programming Language 151

< variable defs >
< procedure code >

start : START ; Start program here
ADDI rsp size(q) ; Init stack pointer
BRA main ; Call main procedure
SUBI rsp size(q) ; Clear stack pointer

finish : FINISH ; Exit program here

Fig. 4. Overall layout of a translated program q

the translation. Although we show the translation for two particular languages,
the presentation is intended to be sufficiently abstract that one may adapt the
schemes for use with other reversible source and target languages (or parts
thereof) as well. Many parts of the compiler (parsing, syntax analysis etc.)
were straightforwardly implemented using classical methods, and will not be
discussed.

Janus is a structured language, we can inductively define the translation over
the Janus syntax, and the presentation follows this structure:

– Overall target program structure is shown in Sect. 4.1.
– Procedure encapsulation and procedure calls are translated in Sect. 4.2.
– Reversible assignments (atomic statements) are translated in Sect. 4.3.
– Control flow operators are translated in Sect. 4.4.
– Expression evaluation is implemented in Sect. 4.5.

4.1 Overall Program Structure

A source program consists of declaration lists of global variables and procedures.
The variables are global and of fixed size, so we can use the DATA 0 instruction
to allocate space for them in the translated program. We use the order of decla-
rations from the source, and use the names as labels, e.g.

lx : DATA 0
...

DATA 0

⎫
⎪⎬

⎪⎭
n cells for array x[n] ,

ly : DATA 0 ; 1 cell for integer y .

This will allow us to read the result of a program execution directly from these
memory locations when the target program halts. Variables are also kept in
memory across statements that do not refer to them, to simplify the translation.

Following the space for variables comes a list of translated procedures, see be-
low for details. Finally, a small section of code defines the execution behaviour.
We assume that the program is loaded at address 0. Program execution be-
gins with the pc at the START instruction labeled start . We shall need a call
stack for recursive program calls, so a stack pointer rsp (any of the general pur-
pose registers, but usually r1) is initialized to point at the first free memory cell

152 H.B. Axelsen

BRA f

ftop: BRA fbot

SUBI rsp 1 ; Pop return offset
EXCH rro rsp ; from stack

f : SWAPBR rro ; Entry/exit point
NEG rro ; Flip offset sign
EXCH rro rsp ; Push return offset
ADDI rsp 1 ; on stack
< code for f > ; Procedure body

fbot: BRA ftop

Caller Callee

Fig. 5. Translation and calling convention for (recursive) procedures. The arrows show
the control flow of a procedure call to f .

above the program by offsetting it with the size of the program size(q) (which
is a constant). Then, we call main , (where main is the name of the last defined
procedure in the program) using the calling convention below. Returning from
this procedure call leads to the termination of the program with the FINISH
instruction labeled finish. Following this, the call stack will be empty, and we
clear the stack pointer, for cleanness.

4.2 Procedure Definitions and Procedure Calls

Procedure declarations are translated using a generalized version of the calling
convention for PISA defined in [6], with added support for recursion.5 The trans-
lation is most easily explained by considering how a caller and callee interact,
see Fig. 5 for code.

The caller uses a simple BRA f instruction to call a procedure. This leads
to a jump to the instruction labeled f . This entry/exit point is common to all
callers, so the jump offset from caller to callee (the value currently in the branch
register br), is moved to a general purpose return offset register rro , using the
SWAPBR instruction. If rro is 0 when the call is made, the combined effect of
the BRA and SWAPBR is to jump from caller to callee and proceed with normal
step-wise execution from the callee entry point.

When returning from the procedure, the desired offset from callee to caller is
the same distance as the original jump offset but with reverse sign, so we negate
rro with NEG to get the return offset. The ADDI and EXCH instruction pushes
the return address onto the call stack. The procedure body (which can include
recursive calls to f) is then executed. After this, the paired BRA instructions send

5 In the extended version of Janus [17] procedures are equipped with call-by-reference
parameters. The above calling convention can support this straightforwardly in the
call sequence by placing the references in an activation record on the call stack. These
can be popped into procedure-dependent dedicated registers for formal parameters
in the callee prologue (or when needed) and dereferenced when formal parameters
are used.

Clean Translation of an Imperative Reversible Programming Language 153

(1) <code for ra ← [[e1]] > ; Generates garbage G1

(2) ADDI ra lx ; Add base address to index
(3) <code for re ← [[e2]] > ; Generates garbage G2

(4) EXCH rd ra ; Swap array entry into rd

(5) ADD rd re ; Update array entry
(6) EXCH rd ra ; Swap back array entry
(7) <inverse code of 3> ; Removes garbage G2

(8) SUBI ra lx ; Subtract base address
(9) <inverse code of 1> ; Removes garbage G1

Fig. 6. Translation of reversible (array) assignment x[e1]+= e2. For assignments which
use -= or ^= substitute the instruction in line 5 with SUB or XOR.

control to the top of the procedure encapsulation. Here, we pop the return offset
from the stack and put it into rro , with the SUBI and EXCH instructions. Then,
the SWAPBR returns control to the caller, where the BRA instruction restores the
br to 0 again, and the caller continues its execution.

Note that the use of a call stack does not lead to garbage data: Any data that
is added to the stack by a call is also cleared when returning from the call, so
the size of the stack is conserved over, though not during, calls. Since the stack
is initially empty when the program calls the main procedure, it will also be so
when the program terminates.

Finally, procedure uncalls are supported by the use of the RBRA instruction in
place of BRA in the caller. Nothing needs to change in the callee, which means
that the same code can be shared for both calls and uncalls.

4.3 Reversible Assignments

Janus assignment statements are reversible updates. These can be implemented
using a generalized version of Bennett’s method, where the intermediate copying
phase is replaced by in-place updating the left hand side variable, see [3]. The
main difficulty we face is that expression evaluation is, in general, irreversible,
and embedding this evaluation in PISA will necessarily generate garbage data.
For a clean translation, this garbage must be disposed of, i.e., it must be re-
versibly cleared.

We shall detail the case of assignment to an array variable, x[e1] += e2. The
translation of this is as follows (see Fig. 6 for a corresponding code template):

(1) Reversibly evaluate the index expression e1, placing the result in (zero-
cleared) register ra . This will generate some garbage data G1. (2) Add the base
address lx of the array x to ra, yielding the exact address of the entry in mem-
ory. (3) Reversibly evaluate the update expression e2, placing the result in zero-
cleared register re. This will generate garbage data G2. (4) Swap the array
entry from its location in memory (given by ra) with some register rd, which
need not be zero-cleared, but which must be different from ra and re. (5) Up-
date the array entry value in rd by adding (subtracting, xoring) re. (6) Swap
the updated array entry back to its memory location, restoring rd to its original

154 H.B. Axelsen

���
����

��e1

t

f

� s1

��

�

�

�
e2

t

f

�

� s2 �

�
�

�

�

�
e1

t

f

� s1

�
��
����

��e2
t

f

�s2�

�

if e1 then s1 else s2 fi e2 from e1 do s1 loop s2 until e2

Fig. 7. Reversible flowcharts for the Janus CFOs

value. (7) Uncompute (unevaluate) expression e2, removing all the garbage data
G2 generated in the forwards evaluation of this expression and clearing re. This
can be done with the inverse of the code from step 3, see below. (8) Subtract
the base address of x from ra, leaving only the index. (9) Uncompute the index
expression e1, clearing garbage data G1 and register ra. For this, use the inverse
of the code generated for step 1.

Steps 1–6 are almost completely conventional, except for the fact that the
computations in steps 1 and 3 have the side effect of generating garbage data.
If we ignore garbage we would not need to perform steps 7–9, but seeing as
we want a clean semantics-preserving translation at the statement level these
uncomputations are necessary.

All PISA instructions have inverses that are single PISA instructions as well.
The inverse of ADD is SUB, the inverse of ANDX is itself, etc. This can be exploited
to generate the inverse code for the uncomputations in steps 7 and 9 in a very
straightforward manner: Reverse the list of instructions, and invert each instruc-
tion in the code from steps 1 and 3. This also means that steps 6–9 are actually
the inverses of steps 1–4, so the entire effect of the translated code will be to
update the array entry (step 5), with no garbage data left afterwards.

The value in register ra, once we have computed the specific address in step 2,
must be conserved over the evaluation of e2 in step 3. It is only because we know
that the register is later cleared that we may use it as a free register in future
computations. In other words, no instruction in PISA can by itself be used to
declare a register dead, making general register allocation in PISA non-trivial.

4.4 Control Flow Operators

Frank provides some (informal) guidelines for programming control structures
in PISA [6, Ch. 9]. However, it is unclear how these can be used for a clean
translation of Janus: There is little to no discussion of evaluation of conditionals,
garbage handling, or any such concepts. Furthermore, the discussion of loops is
largely limited to fixed iteration for-loops, which are much less general than
Janus loops. However, Janus CFOs are fully implementable in PISA without
generating any garbage data, as we shall demonstrate.

We shall use a bottom-up approach to explain our translation. It is easy to
see that the Janus CFOs (Fig. 7) can be decomposed using the simpler reversible

Clean Translation of an Imperative Reversible Programming Language 155

���
����

��e
t

f

�

�

��

�

�

�
e

t

f

�

�

test assertion

Fig. 8. General reversible flowchart nodes

constructs in Fig. 8. The test is simply a conventional conditional branch, while
the assertion is a join of control flow, where the conditional expression must be
true when entering the node via the edge labeled t, and false if entering via the
edge labeled f, see [18]. We shall examine how each of these constructs can be
translated cleanly to PISA and combined for the translation of Janus CFOs.

Translation of Tests. An initial attempt at a PISA translation of the test
would be to follow the standard method: Evaluate the expression, placing the
result in (zero-cleared) register re. Use a conditional jump on re for the control
flow, jumping to another place in the code if the expression evaluated to zero
(coding for false) and falling through if not (coding for true). In PISA this looks
as follows.

<code for re ← [[e]] > ; Evaluate e
test : BEQ re r0 test false ; Jump if [[e]] = 0

<code for true branch>
...

test false : BRA test ; Receive jump
<code for false branch>

...

While functional, this approach poses several problems, the major of which is
the massive generation of garbage: The value of the evaluation is left in regis-
ter re after being used by the conditional branch, and the evaluation of e will
likely leave garbage data in other registers and possibly in memory as well. The
simplest way of removing the garbage data would be to push it onto a “garbage
stack”, but this would break the cleanness of the translation. Furthermore, since
the test is a reversible flowchart, we expect to be able to simulate it in PISA
without having to resort to the Landauer embedding.

We observe that we can use the inverse of the expression evaluation code for
a Lecerf reversal [8]:

<code for re ← [[e]] > ; Evaluate e
<inverse code for re ← [[e]] > ; Unevaluate e

The total effect of this is to compute the identity. (We shall write re → [[e]] as
a shorthand for the uncomputation.) Because branch instructions can not alter

156 H.B. Axelsen

the contents of re, we can place the uncomputation code at the start of both the
true and false branch, and the total effect will be to compute the test without
generating garbage.

<code for re ← [[e]] > ; Evaluate e
test : BEQ re r0 test false ; Jump if [[e]] = 0

<code for re → [[e]] > ; Unevaluate e
<code for true branch>

...
test false : BRA test ; Receive jump

<code for re → [[e]] > ; Unevaluate e
<code for false branch>

...

Note that the uncomputation code occurs twice in this translation. Because the
expressions may be very large, this can have a significant impact on program
size, with all its drawbacks, especially wrt debugging. This code duplication can
be avoided per the following observation: Only the value of re has an effect on the
control flow. Every other piece of garbage data from the expression evaluation
may be safely uncomputed before the conditional jump. To clear re itself we
require some knowledge of its value at the branches. If we jumped to the false
branch then re is necessarily zero, and so already cleared. If we fell through to the
true branch, then re was non-zero. Expression evaluation may in general return
any integer result for re, so it seems that we have no way of deterministically
clearing re in the true branch.

However, for conditional evaluations we may reduce the expression result fur-
ther to being either 0 (for false) or 1 (for true), since only two distinct values are
actually necessary to make the jump work (we write [[e]]c for such conditional
evaluation). This is easily implemented in PISA: If rx contains the integer value
of [[e]], we may compute [[e]]c in re as follows.

condtop : BEQ rx r0 condbot ; If [[e]] �= 0,
XORI re 1 ; set re = [[e]]c = 1,

condbot : BEQ rx r0 condtop ; else leave re = 0.

With this strategy, re contains either 0 or 1 after evaluation of the conditional ex-
pression. Copy this result into an (initially zero-cleared) register rt. We can now
clear re along with the other garbage in the uncomputation before the jump.6

After the jump rt can now be deterministically cleared in the true branch by a
single XORI instruction, since we know it must contain a 1. The full translation
of a test is shown in Fig. 9; it avoids code duplication, and generates no garbage
data.7 (We discuss the error check below.)
6 Technically, we do not need the extra register rt. We can organize the uncomputa-

tion to clear everything except re. This is more efficient, but the details depend on
the evaluation strategy for conditional expressions; in particular, on the top-level
operator in e.

7 An alternative strategy is to implement the expression evaluation as a subroutine.
This removes the need for the inverse code as well, as we can use an RBRA instruction
for the uncomputation.

Clean Translation of an Imperative Reversible Programming Language 157

BNE rt r0 error ; Error check
<code for re ← [[e]]c > ; Evaluate e
XOR rt re ; Set rt = re

<code for re → [[e]]c > ; Unevaluate e
test : BEQ rt r0 test false ; Jump if [[e]] = 0

XORI rt 1 ; Clear rt

<code for true branch>
...

test false : BRA test ; Receive jump
<code for false branch>

...

Fig. 9. Code template for translation of the conditional test in Fig. 8

...
<code for true branch>
XORI rt 1 ; Set rt = 1

assert true : BRA assert ; Jump
...

<code for false branch>
assert : BNE rt r0 assert true ; Receive jump

<code for re ← [[e]]c > ; Evaluate e
XOR rt re ; Clear rt

<code for re → [[e]]c > ; Unevaluate e
BNE rt r0 error ; Error check

Fig. 10. Code template for translation of the assertion in Fig. 8

Translation of Assertions. We observe that an assertion is actually the in-
verse of a test. Since we already have a garbage-free translation of tests, we can
use this symmetry property on the translation template in Fig. 9 to get a simi-
larly garbage-free translation of assertions, practically for free. A translation of
assertions is shown in Fig. 10.

Due to programmer errors, an assertion might fail : e might evaluate to true
when coming from the false branch, and vice versa. In the given translations,
such an error will manifest itself in the value of rt: A failed assertion means that
rt will not be zero-cleared after the assertion code is executed. Rather than let
the machine continue with erroneous (though reversible) behaviour, we can catch
failed assertions by dynamic error checks. This is accomplished by checking the
final value of rt. If it is non-zero then the assertion failed, and we jump to an
error handling routine error. Translated code may be executed in reverse (e.g., in
procedure uncalls). In that case a test acts as an assertion, so we need dynamic
error checks in the translation of tests as well. Hence the seemingly superfluous
check at the beginning of the translated test.

158 H.B. Axelsen

BNE rt r0 error ; Error check
<code for re ← [[e1]]c > ; Evaluate e1

XOR rt re ; Set rt = re

<code for re → [[e1]]c > ; Unevaluate e1

test : BEQ rt r0 test false ; Jump if [[e]]c = 0
XORI rt 1 ; Clear rt

<code for true branch>
XORI rt 1 ; Set rt = 1

assert true : BRA assert ; Jump
test false : BRA test ; Receive jump

<code for false branch>
assert : BNE rt r0 assert true ; Receive jump

<code for re ← [[e2]]c > ; Evaluate e2

XOR rt re ; Clear rt

<code for re → [[e2]]c > ; Unevaluate e2

BNE rt r0 error ; Error check

Fig. 11. Translation of a Janus if e1 then s1 else s2 fi e2

Complete Translation of CFOs. The translations for the reversible control
flow nodes in Figs. 9 and 10 can now be combined to yield the complete trans-
lation of a Janus conditional selection, see Fig. 11. The principles carry over
directly to the the translation of a reversible loop, where the placement of code
is a little more intricate, see Fig. 12.

The only Janus CFO left is the sequence operator. The other translated CFOs
are structured with only one entry and exit point, so this amounts to simple code
concatenation. Thus, all of Janus’ control structures (and statements in general)
are implementable in PISA with garbage-free translations.

4.5 Expression Evaluation

Janus expression evaluation is irreversible: different stores may evaluate a given
expression to the same value. This means that we cannot, in any way, implement
expression evaluation cleanly in a reversible language: Evaluating an expression
necessarily leaves garbage. This was recognized in the translation of reversible
assignments and CFOs, where we chose to unevaluate the expression immedi-
ately after the use of the expression value, to clear any such garbage generated.
This makes the translation of statements clean, which is the best we can achieve.

The problem of reversible expression evaluation then reduces to finding a
way of forwards evaluating expressions in general using reversible instructions,
generating garbage as necessary. Because expressions are uncomputed after use,
any reversibilization will work, but we should still aim for efficiency.

Expressions in Janus are trees, so we can use simple post-order traversal to
generate code (Maximal Munch, cf. [1, Ch. 9]). A leaf node on the tree (repre-
senting a constant or variable) is simply copied into a free register. An internal

Clean Translation of an Imperative Reversible Programming Language 159

XORI rt 1 ; Set rt = 1
entry : BEQ rt r0 assert ; Receive jump

<code for re ← [[e1]]c > ; Evaluate e1

XOR rt re ; Clear rt = [[e1]]c
<code for re → [[e1]]c > ; Unevaluate e1

BNE rt r0 error ; Error check
<code for s1 >
BNE rt r0 error ; Error check
<code for re ← [[e2]]c > ; Evaluate e2

XOR rt re ; Set rt = [[e2]]c
<code for re → [[e2]]c > ; Unevaluate e2

test : BNE rt r0 exit ; Exit if [[e2]]c = 1
<code for s2 >

assert : BRA entry ; Jump to top
exit : BRA test ; Receive exit jump

XORI rt 1 ; Clear rt

Fig. 12. Translation of a Janus from e1 do s1 loop s2 until e2 loop

node (an expression e1⊗e2, ignoring unary operators) is (recursively) translated,
yielding the following code structure.

1. <code for re1 ← [[e1]] >
e1 ⊗ e2 =⇒ 2. <code for re2 ← [[e2]] >

3. <code for re ← re1 [[⊗]] re2 >

Here, re1 , re2 and re are zero-cleared registers. This mimics the conventional
translation of expressions, but in the reversible setting we are faced with two
interesting problems. How do we allocate registers? How can we translate irre-
versible operators?

Register Allocation for Expression Trees. In irreversible languages this
can be done optimally using the Sethi-Ullman algorithm. This is not available
to us in reversible languages, as scratch registers cannot be indiscriminately
overwritten. The Sethi-Ullman algorithm assumes them to be dead, but in this
translation they are still live, as they will be reversibly cleared in uncomputation.
In any case, overwriting a register simply is not possible in PISA. We thus also
expect register pressure to be somewhat higher in reversible machine code. It is
therefore important to know how we can free registers.

Instead of the usual categories of live and dead registers, we partition the
register file into the following sets.

– Free registers. We know these to be zero-cleared, and may use them freely.
– Commit registers. These contain values that we shall need at a future point

in the expression evaluation.
– Garbage registers. These contain values that are no longer needed for the

computation.

In the translation of e1 ⊗ e2 above, re1 is a free register before step 1. During
step 2 it is a commit register as we need it for step 3, after which it becomes

160 H.B. Axelsen

a garbage register. By maintaining the partitioning explicitly during the code
generation for the expression, we can use several strategies to free registers.

– Pebbling. Garbage registers can be locally uncomputed. This is space-wise
efficient, but can be very costly wrt time, if done recursively.

– Garbage spills. Garbage registers can be pushed unto the stack. This re-
quires space, but reduces the number of executed instructions needed for an
evaluation.

– Commit spills. We can push a context of commit registers onto the stack,
and restore them when they are needed.

In the implemented compiler a mixture of all three strategies is used: At leaf
nodes in the expression tree pebbling is used as the uncomputations at leafs
are extremely short. For inner nodes garbage spills are used, with commit spills
only as a last resort. With global variables allocated to memory, and no local
variables, the compiler uses explicit register allocation throughout, without the
use of virtual registers.

Operator Translation. With very few exceptions (unary minus, bitwise nega-
tion) the operators in Janus expressions are irreversible. However, most operators
are still supported in PISA in various guises. Assume that we want to evaluate
x⊗ y, with the values of x and y stored in rx and ry, respectively.

Addition, subtraction and exclusive-or are directly supported. For example,
x + y can be evaluated by ADD rx ry . This has the added advantage of reusing
rx as the commit register for the total expression, leaving only ry as garbage.
Other operators, such as bitwise disjunction, x | y, have expanding support which
consumes a free register (re): ORX re rx ry.

The most interesting, however, are those with no clear support in PISA, ex-
panding or otherwise. As an example, we shall look at the equality test x = y.
We shall need the SLTX (set-less-than-xor) instruction,

[[SLTX rd rs rt]] = rd ← rd ⊕ ((rs < rt) ? 1 : 0) ,

where ⊕ is (bitwise) exclusive-or. We can use simple logical identities to reduce
equality to the less-than comparisons. An obvious choice would seem to be

x = y ⇔ ¬(x < y ∨ y < x)

However, both the logical NOR operation and less-than are only available as
expanding instructions: Näıvely using this identity requires three free registers
(here rs, rt and re) to compute x = y as follows.

SLTX rs rx ry

SLTX rt ry rx

NORX re rs rt

Since registers are a scarce commodity, we want to do better, and indeed we can.
Note that at most one of x < y or y < x can be true (< is antisymmetric).

x = y ⇔ ¬(x < y ⊕ y < x) .

Clean Translation of an Imperative Reversible Programming Language 161

Exclusive-or is directly supported, and logical negation is reversible, so we can
evaluate x = y using only one free register:

SLTX re rx ry

SLTX re ry rx

XORI re 1

Some operators (such as logical conjunction) still require three registers. Finally,
there are also operators in Janus that have no short implementation in PISA,
e.g., multiplication or modulus, which can require executing hundreds of PISA
instructions. For these one can inline and specialize a reversible simulation of the
operator, or use the reversible simulations as subroutines, with proper parameter
handling. In the latter case, it is important that the callee subroutine does not
perturb any registers other than those of the arguments.

5 Implementation

A compiler based on the above translation methods was implemented in ML
(Moscow ML, version 2.01), in approximately 1500 lines of code. Target pro-
grams were tested on the PendVM Pendulum simulator8 and compared with
source runs in a Janus interpreter. All tests corroborated the correctness and
efficiency of the translation, so target programs do not leave garbage data in
neither registers nor memory.

The largest program translated was a PISA interpreter written in Janus, spe-
cialized to a PISA program running a simple physical simulation of a falling
object. Weighing in at slightly more than 500 lines of Janus code, this is pos-
sibly the largest reversible program ever written, and was certainly the most
complex available to the author. The compiled code is ca. 12K PISA instruc-
tions long. This program had still negligible compile and execution times, so we
omit timing statistics. In general, target programs were about 10–20 times larger
(in lines of code) than their source programs.

6 Related Work

The only other work on compilers for reversible languages known to the au-
thor is Frank’s R-to-PISA compiler [6]. The R-compiler is described mainly by
commented code in [6, App. D], and is not being maintained, which makes it
difficult to discern how the compiler is intended to work abstractly, and verify
its correctness and/or efficiency.

R is a prototype reversible procedural language developed specifically for com-
pilation to PISA. R shares some features with Janus, but also has a number of
significant differences. For example, R’s control flow operators (CFOs) are fairly
weak. R-loops are made for definite iteration, and there is no if-then-else CFO.
The R if-then CFO uses just a single conditional expression as both if- and fi-
conditional. Also, all subexpressions of the conditional must be conserved across
8 C. R. Clark, The Pendulum Virtual Machine. Available at
http://www.cise.ufl.edu/research/revcomp/users/cclark/pendvm-fall2001/

http://www.cise.ufl.edu/research/revcomp/users/cclark/pendvm-fall2001/

162 H.B. Axelsen

the branch body. In particular, this means that no variables occurring in the
conditional expression can be updated in the body, severely limiting the expres-
siveness of R. On the other hand, R does have some advanced features that Janus
does not, like direct access to memory, and input/output facilities. However, the
emerging picture is still that R is somewhat limited in its expressiveness as a
programming language, compared to Janus.

We believe such restrictions were imposed on R to simplify compilation: The
R-compiler can leave any garbage values used for conditional expressions in place
across the branch bodies, computing and uncomputing the expression (which re-
moves the garbage) only once, and only after the conditional is exited. While the
analogous translation in Janus requires two computations and uncomputations,
this also implies that the translation of R is not intentionally clean. This strategy
is furthermore not applicable to Janus translation, where if- and fi-conditional
expressions are allowed to be different, and variables occuring therein are allowed
to be updated freely in the branch bodies. (However, our translation could easily
be applied to R.) Finally, by not clearing the garbage value before entering the
branch body, target programs can generate unbounded garbage data at run-time
in recursive procedure calls, which breaks efficiency.

7 Conclusion and Future Work

We presented a correct and efficient translation for compiling the reversible high-
level programming language Janus to the reversible low-level machine language
PISA. Target programs produced using this translation conserve both the se-
mantics (correctness) and space/time complexities (efficiency) of the source pro-
grams. We achieved this by making the translation intensionally (as well as
extensionally) clean: Reversibility in Janus bottoms out at the statement level,
and the compilation reflects this by translating each individual statement in the
source program cleanly. This has the effect that at no point in the execution
of any translated program do we accumulate more than a constant amount of
temporary garbage data.

By breaking down the control flow operators of Janus into simpler reversible
flowchart nodes, we found that we could exploit the symmetry properties of
reversible flowcharts to simplify the translation. We also eliminated the need
for code duplication in the translation. The developed translation methods are
generic, and will work for all languages with control flow describable by reversible
flowcharts and statements describable by reversible updates.

The aim here was to produce a working compiler that demonstrates the fun-
damental structure of a correct and efficient translation between reversible lan-
guages, leaving plenty of opportunities for development and future research.
General register allocation methods for reversible assembly languages must be
developed, and might benefit from the novel partitioning of registers we use
for register allocation for expression trees. The heavy use of uncomputation of
expression evaluations in both reversible assignments and conditionals suggest
that novel as well as conventional optimizations (such as common subexpression
elimination) could be very useful in compilers for reversible languages.

Clean Translation of an Imperative Reversible Programming Language 163

Acknowledgments. A preliminary version of this work was presented at the 2nd
Workshop on Reversible Computing in Bremen, July 2010.

References

1. Appel, A.W.: Modern Compiler Implementation in ML. Camb. Uni. Press, New
York (1998)

2. Axelsen, H.B., Glück, R.: What do reversible programs compute? In: Hofmann, M.
(ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 42–56. Springer, Heidelberg (2011)

3. Axelsen, H.B., Glück, R., Yokoyama, T.: Reversible machine code and its abstract
processor architecture. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR
2007. LNCS, vol. 4649, pp. 56–69. Springer, Heidelberg (2007)

4. Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and
Development 17, 525–532 (1973)

5. De Vos, A.: Reversible Computing: Fundamentals, Quantum Computing and Ap-
plications. WILEY-VCH, Weinheim (2010)

6. Frank, M.P.: Reversibility for Efficient Computing. PhD thesis, MIT (1999)
7. Landauer, R.: Irreversibility and heat generation in the computing process. IBM

Journal of Research and Development 5(3), 183–191 (1961)
8. Lecerf, Y.: Machines de Turing réversibles. Récursive insolubilité en n ε N de

l’équation u = θnu, oú θ est un “isomorphisme de codes”. Comptes Rendus Heb-
domadaires 257, 2597–2600 (1963)

9. Lutz, C.: Janus: a time-reversible language. Letter written to R. Landauer (1986),
http://tetsuo.jp/ref/janus.html

10. Mu, S.-C., Hu, Z., Takeichi, M.: An algebraic approach to bi-directional updating.
In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 2–20. Springer, Heidelberg
(2004)

11. Schellekens, M.: MOQA; unlocking the potential of compositional static average-
case analysis. Journal of Logic and Algebraic Programming 79(1), 61–83 (2010)

12. Thomsen, M.K., Axelsen, H.B.: Parallelization of reversible ripple-carry adders.
Parallel Processing Letters 19(2), 205–222 (2009)

13. Thomsen, M.K., Glück, R., Axelsen, H.B.: Towards designing a reversible processor
architecture (work-in-progress). In: Reversible Computation. Preliminary Proceed-
ings, pp. 46–50 (2009)

14. Thomsen, M.K., Glück, R., Axelsen, H.B.: Reversible arithmetic logic unit for
quantum arithmetic. J. of Phys. A: Math. and Theor. 42(38), 2002 (2010)

15. van de Snepscheut, J.L.A.: What computing is all about. Springer, Heidelberg (1993)
16. Vieri, C.J.: Reversible Computer Engineering and Architecture. PhD thesis, MIT

(1999)
17. Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible programming lan-

guage. In: Proceedings of Computing Frontiers, pp. 43–54. ACM Press, New York
(2008)

18. Yokoyama, T., Axelsen, H.B., Glück, R.: Reversible flowchart languages and the
structured reversible program theorem. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II.
LNCS, vol. 5126, pp. 258–270. Springer, Heidelberg (2008)

19. Yokoyama, T., Glück, R.: A reversible programming language and its invertible
self-interpreter. In: Proceedings of Partial Evaluation and Program Manipulation,
pp. 144–153. ACM Press, New York (2007)

http://tetsuo.jp/ref/janus.html

	Clean Translation of an Imperative Reversible Programming Language
	Introduction
	Languages
	Source Language: Janus
	Target Language: PISA

	Motivation
	Translation
	Overall Program Structure
	Procedure Definitions and Procedure Calls
	Reversible Assignments
	Control Flow Operators
	Expression Evaluation

	Implementation
	Related Work
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

