

Lecture Notes in Computer Science 6601
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA

Jens Knoop (Ed.)

Compiler
Construction

20th International Conference, CC 2011
Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2011
Saarbrücken, Germany, March 26–April 3, 2011
Proceedings

13

Volume Editor

Jens Knoop
TU Vienna
Faculty of Informatics
Institute of Computer Languages
Argentinierstr. 8 / E185.1, 1040 Vienna, Austria
E-mail: knoop@complang.tuwien.ac.at

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-19860-1 e-ISBN 978-3-642-19861-8
DOI 10.1007/978-3-642-19861-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011922832

CR Subject Classification (1998): D.2, D.3, D.2.4, C.2, D.4, D.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

ETAPS 2011 was the 14th instance of the European Joint Conferences on The-
ory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new conferences.
This year it comprised the usual five sister conferences (CC, ESOP, FASE, FOS-
SACS, TACAS), 16 satellite workshops (ACCAT, BYTECODE, COCV, DICE,
FESCA, GaLoP, GT-VMT, HAS, IWIGP, LDTA, PLACES, QAPL, ROCKS,
SVARM, TERMGRAPH, and WGT), one associated event (TOSCA), and seven
invited lectures (excluding those specific to the satellite events).

The five main conferences received 463 submissions this year (including 26
tool demonstration papers), 130 of which were accepted (2 tool demos), giving
an overall acceptance rate of 28%. Congratulations therefore to all the authors
who made it to the final programme! I hope that most of the other authors
will still have found a way of participating in this exciting event, and that you
will all continue submitting to ETAPS and contributing to make of it the best
conference on software science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2011 was organised by the Universität des Saarlandes in cooperation
with:

� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST)

VI Foreword

It also had support from the following sponsors, which we gratefully thank:
DFG Deutsche Forschungsgemeinschaft; AbsInt Angewandte Infor-

matik GmbH; Microsoft Research; Robert Bosch GmbH; IDS Scheer

AG / Software AG; T-Systems Enterprise Services GmbH; IBM Re-

search; gwSaar Gesellschaft für Wirtschaftsförderung Saar mbH;

Springer-Verlag GmbH; and Elsevier B.V.

The organising team comprised:

General Chair: Reinhard Wilhelm
Organising Committee: Bernd Finkbeiner, Holger Hermanns (chair),

Reinhard Wilhelm, Stefanie Haupert-Betz,
Christa Schäfer

Satellite Events: Bernd Finkbeiner
Website: Hernán Baró Graf

Overall planning for ETAPS conferences is the responsibility of its Steering Com-
mittee, whose current membership is:

Vladimiro Sassone (Southampton, Chair), Parosh Abdulla (Uppsala), Gilles
Barthe (IMDEA-Software), Lars Birkedal (Copenhagen), Michael O’Boyle (Ed-
inburgh), Giuseppe Castagna (CNRS Paris), Marsha Chechik (Toronto), Sophia
Drossopoulou (Imperial College London), Bernd Finkbeiner (Saarbrücken) Cor-
mac Flanagan (Santa Cruz), Dimitra Giannakopoulou (CMU/NASA Ames),
Andrew D. Gordon (MSR Cambridge), Rajiv Gupta (UC Riverside), Chris Han-
kin (Imperial College London), Holger Hermanns (Saarbrücken), Mike Hinchey
(Lero, the Irish Software Engineering Research Centre), Martin Hofmann (LMU
Munich), Joost-Pieter Katoen (Aachen), Paul Klint (Amsterdam), Jens Knoop
(Vienna), Barbara König (Duisburg), Shriram Krishnamurthi (Brown), Juan de
Lara (Madrid), Kim Larsen (Aalborg), Rustan Leino (MSR Redmond), Gerald
Luettgen (Bamberg), Rupak Majumdar (Los Angeles), Tiziana Margaria (Pots-
dam), Ugo Montanari (Pisa), Luke Ong (Oxford), Fernando Orejas (Barcelona),
Catuscia Palamidessi (INRIA Paris), George Papadopoulos (Cyprus), David
Rosenblum (UCL), Don Sannella (Edinburgh), João Saraiva (Minho), Helmut
Seidl (TU Munich), Tarmo Uustalu (Tallinn), and Andrea Zisman (London).

I would like to express my sincere gratitude to all of these people and or-
ganisations, the Programme Committee Chairs and members of the ETAPS
conferences, the organisers of the satellite events, the speakers themselves, the
many reviewers, all the participants, and Springer for agreeing to publish the
ETAPS proceedings in the ARCoSS subline.

Finally, I would like to thank the Organising Chair of ETAPS 2011, Holger
Hermanns and his Organising Committee, for arranging for us to have ETAPS
in the most beautiful surroundings of Saarbrücken.

January 2011 Vladimiro Sassone
ETAPS SC Chair

Preface

This volume contains the papers presented at CC 2011, the 20th International
Conference on Compiler Construction (CC). This jubilee gives reason to briefly
look back at the origins of the CC conference series. CC originated as a se-
ries of workshops on compiler compiler that has been organized since 1986 by
Günter Riedewald in the German Democratic Republic. In 1992 the series was
relaunched by Uwe Kastens in Paderborn. The extension of the scope of CC
that was connected with this relaunch was reflected in the new name of the
series: Compiler Construction. In 1994 the workshop on compiler construction
became the conference on compiler construction. It continued being held every
two years until 1998. In 1998 the CC conference federated to ETAPS. Since
then CC is one of the ETAPS member conferences and is held every year. These
days, CC is a forum for the presentation and discussion of recent developments
in processing programs in the most general sense: analyzing and transforming
or executing input that describes how a system operates, including traditional
compiler construction as a special case.

CC 2011, the 20th instance of the International Conference on Compiler Con-
struction, was held during March 28-29 in Saarbrücken, Germany, as part of the
14th instance of the European Joint Conferences on Theory and Practice of
Software (ETAPS 2011). The 15 papers in this volume were selected from 52
submissions giving an overall acceptance rate of 28.85%. The Program Com-
mittee (PC) carried out the reviewing and paper selection process completely
electronically, in several rounds. Initially, each paper was assigned to three com-
mittee members for review. Additional reviews were obtained for papers that
were identified during the discussion at the virtual PC meeting in order to help
the committee to decide which papers to finally accept. This way every paper
was reviewed by at least three reviewers, both by committee members and ex-
ternal experts. Moreover, the reviews of most papers were extended by notes
that were taken during the virtual PC meeting. These notes should provide the
authors of submitted papers with additional feedback on their papers. They were
an anonymous digest of the discussion of the papers and could thus contain the
views of several reviewers and committee members. The virtual PC meeting took
place from November 29 to December 12, 2010. It was extended by two days in
order to allow for a detailed and thorough consideration of every submission. By
the end of the meeting, a consensus emerged to accept the 15 papers presented
in this volume.

The invited speaker at CC 2011 was Martin Odersky, whose talk was enti-
tled “Future-Proofing Collections: From Mutable to Persistent to Parallel”. The
abstract of the invited talk opens these proceedings.

VIII Preface

The continued success of the CC conference series for now more than two
decades would not be possible without the help of the CC community. First of
all, I would like to greatly acknowledge and thank all the authors who submitted
a paper. Even if your paper was not accepted this time, I would like to express
my appreciation for the time and effort you invested and hope to be able to
welcome you to CC 2011 in Saarbrücken all the same. My gratitude also goes
to the PC members and the many external reviewers, who wrote reviews, for
their hard work and their knowledgeable and substantial reports. My special
thanks also go to the developers and supporters of the EasyChair conference
management system, whose professional and free service was crucial for handling
the submission of papers and camera-ready copies and for running the virtual
PC meeting. Finally, I would like to thank the entire ETAPS Steering Committee
and the local Organizing Committee of ETAPS 2011, who made this year’s 20th
jubilee instance of the CC conference series as part of ETAPS 2011 possible.

I hope you will enjoy the papers in these proceedings and that they will be
useful for your future work.

January 2011 Jens Knoop

Conference Organization

Program Chair

Jens Knoop TU Vienna, Austria

Program Committee

Alex Aiken Stanford University, USA
Koen De Bosschere Ghent University, Belgium
Alain Darte CNRS, Laboratoire de l’Informatique du

Parallelisme, Lyon, France
Evelyn Duesterwald IBM T.J. Watson Research Center,

Hawthorne, USA
Sabine Glesner TU Berlin, Germany
Robert Glück University of Copenhagen, Denmark
David Gregg Trinity College Dublin, Ireland
Sebastian Hack Saarland University, Saarbrücken, Germany
Matthias Hauswirth University of Lugano, Switzerland
Christoph Kessler Linköping University, Sweden
Jens Knoop, Chair TU Vienna, Austria
Jens Krinke University College London, UK
Xavier Leroy INRIA, Paris-Rocquencourt, France
Yanhong Annie Liu State University of New York at Stony Brook,

USA
Kathryn McKinley University of Texas at Austin, USA
Peter Müller ETH Zurich, Switzerland
Alan Mycroft University of Cambridge, UK
Jens Palsberg University of California, Los Angeles, USA
Markus Schordan UAS Technikum Wien, Austria
Helmut Seidl TU Munich, Germany
Jingling Xue The University of New South Wales, Sydney,

Australia

Reviewers

Denis Barthou
Mike Bauer
Michael Beyer
Klaas Boesche
Maximilian Bolingbroke
Florian Brandner

Jon Brandvein
Matthias Braun
Peter Calvert
Poul J. Clementsen
Joel Denny
Peng Di

X Conference Organization

Tom Dillig
Mattias Eriksson
Paul Feautrier
Morten Fjord-Larsen
Thomas Göthel
Michael Gorbovitski
Bernhard Gramlich
Daniel Grund
Armin Größlinger
Philipp Haller
Nigel Horspool
François Irigoin
Ralf Karrenberg
Lennart C. L. Kats
Uday Khedker
Jörg Kreiker
Roland Leißa
Bo Lin
Helena Loose
Anil Madhavapeddy
Avinash Malik
Christoph Mallon
Torben Mogensen
Mayur Naik

Dominic Orchard
Gabriela Ospina
Scott Owens
Matthew Parkinson
Fernando Magno Quintão Pereira
Michael Petter
Marcel Pockrandt
J. Ramanujam
Charlie Reams
Robert Reicherdt
Sergei A. Romanenko
Tom Rothamel
Claus Rørbech
Elke Salecker
Lei Shang
Axel Simon
Per Stenström
Scott Stoller
Yulei Sui
Tuncay Tekle
Dirk Tetzlaff
Michael Kirkedal Thomsen
Qing Wan

Table of Contents

Invited Talk

Future-Proofing Collections: From Mutable to Persistent to Parallel 1
Martin Odersky

JIT Compilation and Code Generation

Dynamic Elimination of Overflow Tests in a Trace Compiler 2
Rodrigo Sol, Christophe Guillon,
Fernando Magno Quintão Pereira, and Mariza A.S. Bigonha

Staged Static Techniques to Efficiently Implement Array Copy
Semantics in a MATLAB JIT Compiler . 22

Nurudeen Lameed and Laurie Hendren

SSA-Based Register Allocation with PBQP . 42
Sebastian Buchwald, Andreas Zwinkau, and Thomas Bersch

Program Analysis

Probabilistic Points-to Analysis for Java . 62
Qiang Sun, Jianjun Zhao, and Yuting Chen

Faster Alias Set Analysis Using Summaries . 82
Nomair A. Naeem and Ondřej Lhoták

JPure: A Modular Purity System for Java . 104
David J. Pearce

Tainted Flow Analysis on e-SSA-Form Programs . 124
Andrei Rimsa, Marcelo d’Amorim, and
Fernando Magno Quintão Pereira

Reversible Computing and Interpreters

Clean Translation of an Imperative Reversible Programming
Language . 144

Holger Bock Axelsen

Interpreter Instruction Scheduling . 164
Stefan Brunthaler

XII Table of Contents

Parallelism and High-Performance Computing

Actor-Based Parallel Dataflow Analysis . 179
Jonathan Rodriguez and Ondřej Lhoták

Using Disjoint Reachability for Parallelization . 198
James Jenista, Yong hun Eom, and Brian Demsky

Data Layout Transformation for Stencil Computations on Short-Vector
SIMD Architectures . 225

Tom Henretty, Kevin Stock, Louis-Noël Pouchet, Franz Franchetti,
J. Ramanujam, and P. Sadayappan

Subregion Analysis and Bounds Check Elimination for High Level
Arrays . 246

Mackale Joyner, Zoran Budimlić, and Vivek Sarkar

Task and Data Distribution

Practical Loop Transformations for Tensor Contraction Expressions on
Multi-level Memory Hierarchies . 266

Wenjing Ma, Sriram Krishnamoorthy, and Gagan Agrawal

A Static Task Partitioning Approach for Heterogeneous Systems Using
OpenCL . 286

Dominik Grewe and Michael F.P. O’Boyle

Author Index . 307

Future-Proofing Collections: From Mutable to
Persistent to Parallel

Martin Odersky

Programming Methods Group (LAMP)
School of Computer and Communication Sciences (IC)

École Polytechnique Fédérale de Lausanne (EPFL)
Lausanne, Switzerland

martin.odersky@epfl.ch

Abstract. Multicore processors are on every desk now. How are we go-
ing to make use of the extra power they provide? Some think that actors,
or transactional memory, or some other new concurrency construct will
save the day by making concurrent programming easier and safer. Even
though these are welcome, I am skeptical about their ultimate success.
Concurrency is fundamentally hard and no dressing up will be able to
hide that fact completely.

A safer and for the programmer much simpler alternative is to treat
parallel execution as essentially an optimization. A promising applica-
tion area are collections. Programming by transforming and aggregating
collections is simple, powerful, and can be optimized by executing bulk
operations in parallel. To be able to do this in practice, any side effects
of parallel operations need to be carefully controlled. This means that
immutable, persistent collections are more suitable than mutable ones.

In this talk I will describe the new Scala collections framework, and
show how it allows a seamless migration from traditional mutable col-
lections to persistent collections, and from there to parallel collections.
I show how the same vocabulary of methods can be used for either type
of collection, and how one can have parallel as well as sequential views
on the same underlying collection.

The design of this framework is guided by the “uniform return type
principle”: every collection transformer should return the same kind of
collection it applies to. Simple as this sounds, it is surprisingly hard to
achieve in a statically typed language with a rich type hierarchy (in fact, I
know of no other collections framework that achieved it). In the talk I will
explain the type-systematic constructions required by the principle. I will
also present some thoughts on how we might develop type-explanation
capabilities of compilers to effectively support these techniques in a user-
friendly way.

J. Knoop (Ed.): CC 2011, LNCS 6601, p. 1, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Dynamic Elimination of Overflow Tests in a
Trace Compiler

Rodrigo Sol1, Christophe Guillon2, Fernando Magno Quintão Pereira1,
and Mariza A.S. Bigonha1

1 UFMG – 6627 Antônio Carlos Av, 31.270-010, Belo Horizonte, Brazil
{rsol,fpereira,mariza}@dcc.ufmg.br

2 STMicroelectronics – 12 Jules Horowitz St, B.P. 217, 38019, Grenoble, France
christophe.guillon@st.com

Abstract. Trace compilation is a technique used by just-in-time (JIT)
compilers such as TraceMonkey, the JavaScript engine in the Mozilla
Firefox browser. Contrary to traditional JIT machines, a trace compiler
works on only part of the source program, normally a linear path inside
a heavily executed loop. Because the trace is compiled during the inter-
pretation of the source program the JIT compiler has access to runtime
values. This observation gives the compiler the possibility of producing
binary code specialized to these values. In this paper we explore such op-
portunity to provide an analysis that removes unnecessary overflow tests
from JavaScript programs. Our optimization uses range analysis to show
that some operations cannot produce overflows. The analysis is linear in
size and space on the number of instructions present in the input trace,
and it is more effective than traditional range analyses, because we have
access to values known only at execution time. We have implemented
our analysis on top of Firefox’s TraceMonkey, and have tested it on over
1000 scripts from several industrial strength benchmarks, including the
scripts present in the top 100 most visited webpages in the Alexa in-
dex. We generate binaries to either x86 or the embedded microprocessor
ST40-300. On the average, we eliminate 91.82% of the overflows in the
programs present in the TraceMonkey test suite. This optimization pro-
vides an average code size reduction of 8.83% on ST40 and 6.63% on
x86. Our optimization increases TraceMonkey’s runtime by 2.53%.

1 Introduction

JavaScript is the most popular programming language used in the client-side
of web applications [12]. Supporting this statement is the fact that JavaScript
is used in 97 out of the 100 most popular websites in the alexa 2010 report1.
Thus, it is very important that JavaScript programs benefit from efficient exe-
cution environments. Web browsers normally interpret programs written in this
language. However, to achieve execution efficiency, JavaScript programs can be

1 http://www.alexa.com

J. Knoop (Ed.): CC 2011, LNCS 6601, pp. 2–21, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Dynamic Elimination of Overflow Tests in a Trace Compiler 3

compiled during interpretation – a process called just-in-time (JIT) compila-
tion. There are many ways to perform JIT compilation. TraceMonkey [14], the
Mozilla Firefox 3.1’s JIT compiler, translates the most executed program traces
into machine code. A program trace is a linear sequence of code representing a
path inside the program’s control flow graph.

The Firefox JIT compiler, among many optimizations, does type specializa-
tion on JavaScript programs. For instance, JavaScript sees numbers as double
precision 64-bit values in the IEEE 754 format [8, p.29]; however, TraceMon-
key tries to manipulate them as integer values every time it is possible. Dealing
with integers is much faster than handling floating-point arithmetics, but it is
necessary to ensure that this optimization does not change the semantics of the
program. So, every time an operation produces a result that might exceed the
precision of the integer type, it is necessary to perform an overflow test. In case
the test fails, float-point numbers must replace the original integer operands.

Overflow tests are pervasive in the machine code produced by TraceMonkey, a
performance nuisance already acknowledged by the Mozilla community2. Over-
flow tests impose two major problems. First, because each test may force an
early exit from tracing mode, these tests complicate optimizations that require
code motion, such as partial redundancy elimination and instruction scheduling.
Second, instructions that handle overflows increase code size: about 12.3% of
the x86 code produced by TraceMonkey per script in this compiler’s test suite
implement overflow tests. This extra code is a complication on small devices that
run JavaScript, such as the ST family of microcontrollers3. We have attacked
this issue via a flow sensitive range analysis that proves that some overflow tests
are redundant, and we present the results of this work in this paper. Our anal-
ysis runs in linear time on the number of instructions in the input trace. This
analysis is implemented on top of TraceMonkey; however, it does not depend on
a particular compiler. On the contrary, it works on any JIT engine that uses the
trace paradigm to do code generation.

Our algorithm does range analysis [17,20], i.e, it tries to estimate the lowest
and greatest values that can be assigned to any variable. However, our approach
differs from previous works because we use values known only at runtime in
order to put bounds on the range of values that integer variables might assume
during the program execution. This is a form of partial evaluation [18], yet done
at runtime [4], because our analysis is invoked by a just-in-time compiler while
the target application is being interpreted. By relying on such values we are
able to perform much more aggressive range inferences than traditional static
analyses. In terms of implementation, our analysis is similar to the ABCD al-
gorithm that eliminates array bound-checks [3]; however, there are important
differences. First, our algorithm is simpler, for it runs on a program trace, which
is straight-line code. Because it runs on a trace, our algorithm is linear on the
number of program variables, and not quadratic, as other analyses that keep
def-use chains of variables. Second, we perform the whole analysis at once, in a

2 https://bugzilla.mozilla.org/show bug.cgi?id=536641
3 http://www.st.com/mcu/familiesdocs-51.html

4 R. Sol et al.

single traversal of the input trace, whereas ABCD runs on demand. In addition
to these differences, the fact that we use the runtime value of variables lets us
be less conservative.

We have implemented our analysis on top of TraceMonkey (release from 2010-
10-3), the JIT compiler used by the Firefox web browser, and we have targeted
two different processors, x86 and ST40. We have correctly compiled and run over
one million lines of JavaScript code taken from a vast collection of benchmarks,
including the TraceMonkey’s test suite, and the top 100 webpages according to
the Alexa index. Currently our implementation can only remove overflow tests
from arithmetic operations performed on variables declared locally, i.e, we do
not handle global variables yet. Nevertheless, we recognize 59% of the overflow
tests in the TraceMonkey test suite, which contains over 800 scripts. On average,
our algorithm eliminates 91.82% of the overflow tests that we recognize in these
scripts, providing an average code size reduction of 6.63% on x86, and 8.83% on
ST40. Our research-quality implementation adds 2.53% of time overhead on the
core TraceMonkey implementation (time to compile and run the script) without
other optimizations enabled. However, we speculate that an industrial-strength
implementation of our algorithm will be able to obtain runtime gains. We have
instrumented the Firefox browser, to check the behavior of our algorithm in
actual webpages: on the average we remove 53.5% of the overflow tests per
webpage. This number is lower when compared to the TraceMonkey’s test suite
because there are more global variables in actual webpages.

The remainder of this paper is organized as follows. Section 2 describes the
TraceMonkey JIT compiler. In that section we show, by means of a simple ex-
ample, how a trace is produced and represented. We describe our analysis in
Section 3. Section 4 provides some experimental data that shows that our analy-
sis is effective. We discuss related work in Section 5. Finally, Section 6 concludes
this paper.

2 TraceMonkey in a Nutshell

There exists a number of recent works describing the implementation of trace-
based JIT compilers, such as Tamarim-trace [6], HotpathVM [15], Yeti [27] and
TraceMonkey [14]. In order to explain this new compilation paradigm, in this
section we describe the TraceMonkey implementation. TraceMonkey has been
built on top of SpiderMonkey, the original JavaScript interpreter used by the
Firefox Browser. To produce x86 machine code from JavaScript sources, Trace-
Monkey uses the Nanojit4 compiler. The whole compilation process goes through
three intermediate representations, a path that we reproduce in Figure 1.

1. AST: the abstract syntax tree that the parser produces from a script file.
2. Bytecodes: a stack based instruction set that SpiderMonkey interprets.
3. LIR: the low-level three-address code instruction representation that Nanojit

receives as input.

4 https://developer.mozilla.org/en/Nanojit

Dynamic Elimination of Overflow Tests in a Trace Compiler 5

jsparser jsemitter jsinterpreter JIT

file.js AST Bytecodes
LIR x86

spiderMonkey nanojit

trace

engine

Fig. 1. The TraceMonkey JavaScript JIT compiler

SpiderMonkey has not been originally conceived as a just-in-time compiler, a
fact that explains the seemly excessive number of intermediate steps between the
source program and the machine code. Segments of LIR instructions – a trace
in TraceMonkey’s jargon – are produced according to a very simple algorithm
[14]:

1. each conditional branch is associated to a counter initially set to zero.
2. If the interpreter finds a conditional branch during program interpretation,

then it increments the counter. The process of checking and incrementing
counters is called, in TraceMonkey’s jargon, the monitoring phase.

3. If the counter is two or more, and no trace exists for that counter, then the
trace engine starts translating the bytecodes to a segment of LIR instruc-
tions, while they are interpreted. Overflow tests are inserted into this LIR
segment. The process of building the trace is called recording phase.

4. Once the trace engine finds the original branch that started the recording
process, the current segment is passed to Nanojit.

5. The Nanojit compiler translates the LIR segment, including the overflow
tests, into machine code, which is dumped into main memory. The program
flow is diverted to this code, and direct machine execution starts.

6. After the machine code runs, or in case an exceptional condition happens,
e.g, an overflow test fails or a branch leaves the trace, the flow of execution
goes back to the interpreter.

From bytecodes to LIR: we use the program in Figure 2 (a) to illustrate the
process of trace compilation, and also to show how our analysis works. This
is an artificial program, clearly too naive to find use in the real world; how-
ever, it contains the subtleties necessary to put some strain on the cheap anal-
ysis that must be used in the context of a just-in-time compiler. This program
would yield the bytecode representation illustrated in Figure 2 (b). Notice that
we took the liberty of simplifying the bytecode intermediate language used by
TraceMonkey.

A key motivation behind the design of the analysis that we present in Section 3
is the fact that TraceMonkey might produce traces for program paths while these
paths are visited for the first time. This fact is a consequence of the algorithm
that TraceMonkey uses to identify traces. At the beginning of the interpretation

6 R. Sol et al.

foo (N) {

var sum = 0;

var i = 0;

while (i < N) {

i++;

if (i % 2 != 0) {

sum += i;

} else {

sum -= i;

i = 2147483648;

}

}

print(sum);

}

foo(10);

push 0

st sum

push 0

st i

push i

push N

lt

br

push i

inc

st i

push 2

mod

push 0

ne

br

push sum

push i

add

st sum

push sum

push i

sub

st sum

push 2147483648

st i

goto

push sum

print

1

2

3

4

5

6

7

(a) (b)

Fig. 2. Example of a small JavaScript program and its bytecode representation

process TraceMonkey finds the branch at Basic Block 2 in Figure 2 (b), and
the trace engine increments the counter associated to that branch. The next
branch will be found at the end of Basic Block 3, and this branch’s counter
will be also incremented. The interpreter then will find the goto instruction at
the end of Basic Block 6, which will take the program flow back to Block 2. At
this moment the trace engine will increment again the counter of the branch in
that basic block. Once the trace engine finds a counter holding the value two,
it knows that it is inside a loop, and starts the recording phase, which produces
a LIR segment. However, this segment does not correspond to the first part of
the program visited: in the second iteration of the loop, Basic Block 5 is visited
instead of Basic Block 4. In this case, the segment that is recorded is formed by
Basic Blocks 2, 3, 5 and 6.

Because the trace that is monitored by the trace engine is not necessarily
the trace that is recorded into a LIR segment, it is difficult to remove overflow
tests during the recording phase. A conditional test, such as a < N , where N is
constant, helps us to put bounds on the range of values that a might assume.
However, in order to know that N is constant, we must ensure that the entire
recorded segment does not contain commands that change N ’s value. Although
it is not possible to remove overflow tests directly during the recording phase,
it is possible to collect constraints on the ranges of the variables in this step.
These constraints will be subsequently used to remove overflow tests at the

Dynamic Elimination of Overflow Tests in a Trace Compiler 7

push 0

st sum

push 0

st i

push i

push N

lt

br

push i

inc

st i

push 2

mod

push 0

ne

br

push sum

push i

add

st sum

push sum

push i

sub

st sum

push 2147483648

st i

goto

push sum

print

1

2

3

4

5

6

7

Init: load %0 "i"

 load %1 "N"

 %2 = lt %0 %1

 branch %2 Exit

 load %3 "i"

 %4 = inc %3

 %5 = ovf

 branch %5 Exit

 store "i" %4

 %6 = mod %3 2

 %7 = eq %6 0

 branch %7 Exit

 load %8 "sum"

 load %9 "i"

 %10 = sub %8 %9

 %11 = ovf

 branch %11 Exit

 store "sum" %10

 store "i" 2147483648

 goto Init

Fig. 3. This figure illustrates the match between the recorded trace and the LIR seg-
ment that the trace engine produces for it

Nanojit level. Thus, we perform the elimination of overflow tests once the whole
LIR segment has been produced, right before it is passed to Nanojit. Continuing
with our example, Figure 3 shows the match between the recorded trace and the
LIR segment that the trace engine produces for it.

From LIR to x86: Before passing the LIR segment to Nanojit, the interpreter
augments this segment with two sequences of instructions: the prologue and the
epilogue. The prologue contains code to map the values from the interpreter’s
execution environment to the execution environment where the compiled binary
will run. The epilogue contains code to perform the inverse mapping. Nanojit
produces machine code, e.g x86, ARM, ST40, from the LIR segment that it
receives from the interpreter. The overflow tests are implemented as side-exit
code: a sequence of instructions that has two functions: (i) it recovers the state
of the program right before the overflow took place, and (ii) it jumps to the
exit of the trace, returning control back to the interpreter. Figure 4 shows a
simplified version of the x86 code that would be produced for our example trace.
Notice that our analysis has no role at this point of the compilation process –
we include it in this discussion only to give the reader a full picture of the trace
compiler.

8 R. Sol et al.

Init:

load %0 "i"

load %1 "N"

%2 = lt %0 %1

branch %2 Exit

load %3 "i"

%4 = inc %3

%5 = ovf

branch %5 Exit

store "i" %4

%6 = mod %3 2

%7 = eq %6 0

branch %7 Exit

load %8 "sum"

load %9 "i"

%10 = sub %8 %9

%11 = ovf

branch %11 Exit

store "sum" %10

store "i" 2147483648

goto Init

Prologue:

load %11 ITP[i]

store "i" %11

load %12 ITP[N]

store "N" %12

load %13 ITP[sum]

store "sum" %13

goto Init

Exit:

load %14 "i"

store ITP[i] %11

load %15 "N"

store ITP[N] %12

load %16 "sum"

store ITP[sum] %13

return

Prologue:

 pushl ...

 movl ...

 movl ...

 movl ...

 jmp Init

Init:

 leal ...

 incl ...

 jvf RS1

 movl ...

 andl ...

 testb ...

 je Exit

 movl ...

 leal ...

 subl ...

 jvf RS2

 movl ...

 movl ...

 cmpl ...

 jb Init

Exit:

 movl ...

 movl ...

 movl ...

 popl ...

 leave

(LIR) (x86)
RS1:

 movl ...

 movl ...

 movl ...

 movl ...

 jmp Exit

RS2:

 movl ...

 movl ...

 movl ...

 movl ...

 jmp Exit

Fig. 4. The LIR code, after the insertion of a prologue and an epilogue, and the
schematic x86 trace produced by Nanojit

3 Flow Sensitive Range Analysis

The flow sensitive range analysis that we use to remove overflow tests relies on
a directed acyclic graph to determine the ranges of the variables. This graph,
henceforth called constraint graph, has four types of nodes:

Name: represent program variables. Each node contains a counter, which rep-
resents a particular definition of a variable. These nodes are bound to an
integer interval, which represents the range of values that the definition they
encode might assume.

Assignment: denoted by mov, represent the copy of a value to a variable.
Relational: represent comparison operations, which are used to put bounds

on the ranges of the variables. The comparison operations considered are:
equals (eq), less than (lt), greater than (gt), less than or equals (le), and
greater than or equals (ge).

Arithmetic: represent operations that might require an overflow test. We have
two types of arithmetic nodes: binary and unary. The binary operations
are addition (add), subtraction (sub), and multiplication (mul). The unary
operations are increment (inc) and decrement (dec). Division is not handled
because it might legitimately produce floating-point results.

Dynamic Elimination of Overflow Tests in a Trace Compiler 9

The analysis proceeds in two phases: construction of the constraint graph and
range propagation. The remaining of this section describes these phases.

3.1 Construction of the Constraint Graph

We build the constraint graph during the trace recording phase of TraceMonkey,
that is, while the instructions in the trace are being visited and a LIR segment
is being produced. In order to associate range constraints to each variable in the
source program we use a program representation called Extended Static Single
Assignment (e-SSA) [3] form, which is a superset of the well known SSA form [9].
In the e-SSA representation, a variable is renamed after it is assigned a value,
or after it is used in a conditional.

Converting a program to e-SSA form requires a global view of the program,
a requirement that a trace compiler cannot fulfill. However, given that we are
compiling a program trace, that is, a straight line segment of code, the conversion
is very easy, and happens at the same time that the constraint graph is built,
e.g, during the trace recording step. The conversion works as follows: counters
are mantained for every variable. Whenever we find a use of a variable v we
rename it to vn, where n is the current value of the counter associated to v.
Whenever we find a definition of a variable we increment its counter. Considering
that the variables are named after their counters, incrementing the counter of a
variable effectively creates a new name definition in our representation. So far
our renaming is just converting the source program into Static Single Assignment
form [9]. The e-SSA property comes from the way that we handle conditionals.
Whenever we find a conditional, e.g, a < b, we learn new information about the
ranges of a and b. Thus, we redefine a and b, by incrementing their counters.

There are two events that change the bounds of a variable: simple assignments
and conditional tests. The first event determines a unique value for the variable.
The second puts a bound in one of the variable’s limits, lower or upper. These
are the events that cause us to increment the counters associated to variables.
Thus, it is possible to assign unique range constraints to each new definition of
a variable. These range constraints take into consideration the current value of
the variables at the time the variable is found by the trace engine. We determine
these values by inspecting the interpreter’s stack. We have designed the following
algorithm to build the constraint graph:

1. initialize counters for every variable in the trace. We do this initialization
on the fly: the first time a variable name is seen we set its counter to zero,
otherwise we increment its current counter. If we see a variable for the first
time, then we mark it as input, otherwise we mark it as auxiliary. If a variable
is marked as input, then we set its upper and lower limits to the value that the
interpreter currently holds for it. Otherwise, we set the variable boundaries
to undefined values, e.g,] −∞, +∞[.

2. For each instruction i that we visit:
(a) if i is a relational operation, say v < u, we build a relational node that has

two predecessors: variable nodes vx and uy, where x and y are counters.
This node has two successors, vx+1 and uy+1.

10 R. Sol et al.

i0 [0, 0] N0 [10, 10]sum0 [0, 0]

lt

i1 [?, ?] N1 [?, ?]

inc

i2 [?, ?]

sub

sum1 [?, ?]

mov

i3 [?, ?]

2147483648

1

2

3

4

Fig. 5. Constraint graph for the trace in Figure 3. The numbers in boxes denote the
order in which the nodes were created.

(b) For each binary arithmetic operation, e.g, v = t + u, we build an arith-
metic node n. Let the nodes related to variables tx and uy be the prede-
cessors of n, and let vz be its successor.

(c) For each unary operation, say u++, we build a node n, with one prede-
cessor ux, and one successor ux+1.

(d) For each copy assignment, e.g, v = u, we build an assignment node,
which has predecessor ux, and successor vy+1, assuming y is v’s counter.

Figure 5 shows the constraint graph to our running example, assuming that
the function foo was called with the parameter N = 10. Notice that we bound
the input variables to intervals: sum0 ⊆ [0, 0], i0 ⊆ [0, 0] and N0 ⊆ [10, 10].
When constructing the constraint graph, it is important to maintain a list with
the order in which each node was created. This list, which we represent by the
numbers in boxes, will be later used to guide the range propagation phase.

3.2 Range Propagation

During the range propagation phase we find which overflow tests are necessary,
and which ones can be safely removed from the target code. The propagation of
ranges is preceded by a trivial initialization step, when we replace the constraints
of the input variables with] − ∞, +∞[if those variables have been updated
inside the trace. This is the case, for example, of variables sum0 and i0 in the
example from Figure 5. In order to do the propagation of range intervals, we
visit all the arithmetic and relational nodes, in topological order. This ordering
is given by the “age” of the node. Nodes that have been created earlier, during
the construction of the constraint graph are visited first. Notice that we get this
ordering for free, simply storing the arithmetic and relational nodes in a queue
while we create them, during the construction of the constraint graph. If every
variable is defined before being used, then by following the node creation order,

Dynamic Elimination of Overflow Tests in a Trace Compiler 11

Arithmetics

x + (+∞) = +∞+ x = +∞, x �= −∞ x + (−∞) = −∞+ x = −∞, x �= +∞

x× (±∞) = ±∞× x = ±∞, x > 0 x× (±∞) = ±∞× x = ∓∞, x < 0

Increment: x1 = x0 + 1

x0.l + 1 > MAX INT
x1.l = +∞

x0.u + 1 > MAX INT
x1.u = +∞

x0.l + 1 ≤ MAX INT
x1.l = x0.l + 1

x0.u + 1 ≤ MAX INT
x1.u = x0.u + 1

Addition: x = a + b

a.l + b.l < MIN INT
x.l = −∞

a.u + b.u < MIN INT
x.u = −∞

a.l + b.l > MAX INT
x.l = +∞

a.u + b.u > MAX INT
x.u = +∞

MIN INT ≤ a.l + b.l ≤ MAX INT
x.l = a.l + b.l

MIN INT ≤ a.u + b.u ≤ MAX INT
x.u = a.u + b.u

Multiplications: x = a× b

a.l × b.l < MIN INT
x.l = −∞

a.u× b.u < MIN INT
x.u = −∞

a.l × b.l > MAX INT
x.l = +∞

a.u× b.u > MAX INT
x.u = +∞

MIN INT ≤ a.l × b.l ≤ MAX INT
x.l = MIN(a.{l, u} × b.{l, u})

MIN INT ≤ a.u× b.u ≤ MAX INT
x.u = MAX(a.{l, u} × b.{l, u})

Fig. 6. Range propagation for arithmetic nodes. Decrements and subtractions are
similar to increments and additions. We use a.{l, u} × b.{l, u} as a short form for
(a.l × b.l, a.l × b.u, a.u× b.l, a.u × b.u).

the propagation of ranges guarantees that whenever we reach an arithmetic,
relational or assignment node, all the name nodes that point to it have been
visited before.

Each arithmetic and relational node causes the propagation of ranges in a par-
ticular way, always preserving the invariant that the lower bound of an interval
is less than or equal its upper bound. Figure 6 shows the updating rules that we
use for some arithmetic nodes. We use standard IEEE extended arithmetics [16],
except that, to improve our analysis, we assume that the result of multiplying
infinity and zero is zero. Furthermore, we let the sum of]−∞, x[plus]+∞, +∞[
to be] − ∞, +∞[, and vice-versa. We denote the interval [l, u] associated to a

12 R. Sol et al.

Less than with constant: (a1, N1)← (a < N)?, when a.l ≤ N.l = N.u

a1.u = MIN(a.u, N.u − 1) N1.l = N.l

a1.l = a.l N1.u = N.u

General less than: (a1, b1)← (a < b)?, when [a.l, a.u] ∩ [b.l, b.u] �= ∅

a1.u = MIN(a.u, b.u − 1) b1.l = MAX(b.l, a.l + 1)

a1.l = a.l b1.u = b.u

Equal to constant: (a1, N1)← (a = N)?, when a.l ≤ N.l = N.u ≤ a.u

a1.l = N.l N1.l = N.l

a1.u = N.u N1.u = N.u

General equals: (a1, b1)← (a = b)?, when [a.l, a.u] ∩ [b.l, b.u] �= ∅

a1.l = MAX(a.l, b.l) b1.l = MAX(a.l, b.l)

a1.u = MIN(a.u, b.u) b1.u = MIN(a.u, b.u)

Fig. 7. Range propagation for two relational nodes. The value of variable N is not
updated inside the trace.

node a by a.l and a.u. Although we state the range propagation rules using in-
finity precision arithmetics, our actual implementation uses wrapping semantics,
i.e: if x + 1 > x, then x = +∞. Only arithmetic nodes might cause overflows;
and each of our five types of arithmetic nodes might produce overflows in differ-
ent ways. For instance, if we find an increment of [−∞, v.u], then we keep the
overflow associated to this node, as long as v.u+1 ≤ MAX INT. Figure 7 shows
the updating rules for some relational nodes. These nodes are not associated to
any overflow test, but they help us to constrain the range of intervals bound to
program variables. As an optimization, we do not update the ranges of variables
that are not defined inside the trace. This is the case, for instance, of Variable
N in the program of Figure 2 (a). Notice that we do not perform range updates
that break the invariant v.l ≤ v.u.

After range propagation we have a conservative estimate of the intervals that
each integer variable might assume during program execution. This information
allows us to go over the LIR segment, before it is passed to Nanojit, removing
the overflow tests that our analysis has deemed unnecessary. Figure 8 shows
this step: we have removed the overflow test from the inc operation, because it
receives as input a node bound to the interval] − ∞, 9]; hence, its result will
never be greater than 10. However, our analysis cannot prove that the test in
the sub operation is also unnecessary, although that is the case.

Dynamic Elimination of Overflow Tests in a Trace Compiler 13

...

load %3 "i"

%4 = inc %3

%5 = ovf

branch %5 Exit

store "i" %4

...

load %8 "sum"

load %9 "i"

%10 = sub %8 %9

%11 = ovf

branch %11 Exit

store "sum" %10

...

i0]- ,+ [N0[10,10]sum0]- ,+ [

lt

i1]- ,9] N1[10,10]

inc

i2]- ,10]

sub

sum1]- ,+ [i3[2147483648,2147483648]

This test can be

removed, because

variable i is in

the range [- , 9]

This test cannot be

removed, because

we do not know

the range of sum
1
.

mov

2147483648

Fig. 8. Once we know the ranges of each variable involved in an arithmetic operation
we can remove the associated overflow test, if it is redundant

3.3 Complexity Analysis

The proposed algorithm has running time linear on the number of instructions of
the source trace. To see this fact, notice that the constraint graph has a number
of conditional and arithmetic nodes proportional to the number of instructions
in the trace. During our analysis we traverse the constraint graph one time,
at the range propagation phase, visiting each node only once. We do not have
to preprocess the graph beforehand, in order to sort it topologically, because
we get this ordering from the sequence in which instructions are visited in the
source trace. Our algorithm is also linear in terms of space, because each type of
arithmetic node has a constant number of predecessors and successors. This low
complexity is in contrast to the complexity of many graph traversal algorithms,
which are O(E), where E is the number of edges in the graph. These algorithms
have a worst case quadratic complexity on the number of vertices, because E =
O(V 2). We do not suffer this drawback, for in our case E = O(V).

4 Experimental Results

We have implemented our algorithm on top of TraceMonkey, revision 2010-
10-01. Our implementation handles the five arithmetic operations described in
Section 3.1, namely additions, subtractions, increments, decrements and mul-
tiplications. We perform the range analysis described in Section 3 during the
recording phase of TraceMonkey, that is, while a segment of JavaScript byte-
codes is translated to a segment of LIR. We have also modified Nanojit to remove
the overflow tests, given the results of our analysis. Our current implementation

14 R. Sol et al.

has some shortcomings, which are all due to our limited understanding of Trace-
Monkey’s implementation, and that we are in the process of overcoming:

– we cannot read values stored in global variables, a fact that hinders us from
removing overflows related to operations that manipulate these values.

– We cannot recognize when TraceMonkey starts tracing constructs such as
foreach{...}, while(true){...} and loops that range on iterators.

The benchmarks. We have correctly compiled and executed over one million
lines of JavaScript code that we took from three different benchmark suites:

Alexa top 100: the 100 most visited webpages, according to the Alexa in-
dex5. This list includes Google, Facebook, Youtube, etc. We tried to follow
Richards et al.’s methodology [12], manually visiting each of these pages
with our instrumented Firefox. Notice that we present results for only 80 of
these benchmarks, because we did not find overflow tests in 20 webpages.

Trace-Test: the test suite that is used in TraceMonkey6. This collection
of scripts includes popular benchmarks, such as Webkit’s Sunspider and
Google’s V8. Many scripts do not contain arithmetic operations; thus, we
show results only for the 224 scripts that contains at least one overflow test.

PeaceKeeper: an industrial strength benchmark used to test browsers7.

The hardware. We have used our modified TraceMonkey compiler in two dif-
ferent hardware: (i) x86: 2GHz Intel Core 2 Duo, with 2GB of RAM, featuring
Mac OS 10.5.8. (ii) ST40-300: a real-time processor manufactured by STMicro-
electronics. The ST40 runs STLinux 2.3 (kernel 2.6.32), has a 450MHz clock,
provides 200MB of physical memory and 512MB of virtual memory. This target
is a two level cache architecture with separated 32KB intruction and 32KB data
L1 caches on top of a 256KB unified L2 cache.

How effective is our algorithm? Figure 9 shows the effectiveness of our
algorithm when we run it on the Alexa webpages and the Trace-Test scripts.
We have ordered the scripts on the x-axis according to the effectiveness of our
algorithm. We present static numbers, in the sense that we have not instrumented
the binary traces to see how many times each overflow test is executed. On the
average, we remove 91.82% of the overflows tests from the scripts in Trace-Test,
and 53.50% of the overflow tests from the Alexa webpages. This is the geometric
mean; that is, we are very effective in removing overflow tests from most of the
scripts. In particular, we remove most of the overflow tests used in counters that
index simple loops. However, the arithmetic mean is much lower, because of the
outliners. Three of these scripts, which are part of SunSpider (included in Trace-
Test) deal with cryptography and manipulate big numbers. They account for
8,756 tests, out of which we removed only 347. In absolute terms we remove 961

5 http://www.alexa.com/
6 http://hg.mozilla.org/tracemonkey/file/c3bd2594777a/js/src/

trace-test/tests
7 http://service.futuremark.com/peacekeeper/index.action

Dynamic Elimination of Overflow Tests in a Trace Compiler 15

Fig. 9. The effectiveness of our algorithm in terms of percentage of overflow tests
removed per script. (Top) Alexa; geo mean: 53.50%. (Bottom) Trace-test; geo mean:
91.82%. Hardware: same results for ST40 and x86. The 224 scripts are sorted by average
effectiveness. We removed 700/859 overflow tests for PeaceKeeper (one script).

out of 11,052 tests in the Trace-Test benchmark, and 2,680 out of 11,126 tests
in the Alexa benchmark. The arithmetic mean, in this case, is 8.7% for Trace-
Test, and 24.08% for Alexa. Figure 9 does not contain a chart for PeaceKeeper,
because this benchmark contains only one script. We removed 700 tests out of
the 859 tests that we found in this script.

What is the code size reduction due to the elimination of overflow
tests? On the x86 target, TraceMonkey uses eight instructions to implement
each overflow test, which includes the branch-if-overflow instruction, load in-
structions to reconstruct the interpreter state and an unconditional jump back
to interpreter mode. On the ST40 microprocessor, TraceMonkey uses 10 in-
structions. We eliminate all these instructions after removing an overflow test.
Figure 10 shows the average size reduction that our algorithm obtains on each
target. On the average, we shrink each script by 8.83% on the ST40, and 6.63%
on the x86. On most of the scripts the size reduction is modest; however, there
are cases in which our algorithm decreases the binaries by over 60.0%. Notice
that by using integers instead of floating-point numbers TraceMonkey already
reduces the size of the binaries that it produces. For instance, on the ST40, Trace-
Monkey obtains an average 31.47% of size reduction with the floating-point to
integer optimization.

What is the effect of our algorithm on TraceMonkey’s runtime? Fig-
ure 11 shows that, on the average, our algorithm has increased the runtime of

16 R. Sol et al.

Fig. 10. Size reduction per script in two different architectures. (Top) ST40; geo mean:
8.83%. (Bottom) x86; geo mean: 6.63% Benchmark: Trace-Test. The 224 scripts are
sorted by average size reduction.

TraceMonkey by 2.56% on the x86. This time includes parsing, interpreting,
JIT compiling and executing the scripts. Our algorithm increases the time of
JIT compilation, but decreases the time of script execution. So far the cost, in
time, is negative for two reasons: a prototype implementation and a low benefit
optimization. Figure 11 shows that running our analysis without disabling over-
flows tests increases TraceMonkey’s runtime by 4.12%. Furthermore, the effects
of avoiding the overflows tests are negligible. Most of the time, the impact of
an overflow test is the cost of executing the x86 instruction branch-if-overflow;
however, this instruction is normally predicted as not taken. If we disable ev-
ery overflow test without running the analysis, then we improve the runtime by
1.56% on the scripts that finish correctly. The noise in the chart is due to short
runtimes – the slowest script executes for 0.73s, and the fastest for 0.01s.

Why sometimes we fail to remove overflows? We have performed a man-
ual study on the 42 smallest programs from Trace-Test in which we did not
remove overflow tests. Each of these tests contains a loop indexed by an induc-
tion variable. Figure 12 explains our findings. In 69% of the traces, we failed to
remove the test because the induction variable was bounded by a global variable.
As we explained before, our implementation is not able to identify the values of
global variables; hence, we cannot use them in the estimation of ranges. In 17%
of the remaining cases the trace is produced after a foreach control structure,
which our current implementation fails to recognize. Once we fix these omissions,
we will be able to remove at least one more overflow test in 36 out of these 42

Dynamic Elimination of Overflow Tests in a Trace Compiler 17

No analysis, no overflow test

Analysis removing ovf tests

Analysis not removing ovf tests

Fig. 11. Impact of our algorithm on TraceMonkey’s runtime. Benchmark: Trace-Test.
Hardware: x86. The 224 scripts are sorted by average runtime increase. We run each
test 8 times, ignoring smallest and largest outliers. Zero is TraceMonkey’s runtime
without our analysis and with overflow tests enabled.

Fig. 12. The main reasons that prevent us from removing overflow tests

scripts analyzed. There was only one script in which our algorithm legitimately
failed to remove a test: in this case the semantics of the program might lead to
a situation in which an overflow, indeed, happens.

What we gain by knowing the runtime value of variables? We perform
more aggressive range estimations than previous range analyses described in the
literature, because we are running alongside a JIT compiler, a fact that gives
us the runtime value of variables, including loop limits. Statically we can only
rely on constants to start placing bounds in variable ranges. Non-surprisingly, a
static implementation of our algorithm removes only 472 overflow tests from the
Trace-Test, which corresponds to 37% of the tests that we remove dynamically.

Why are effectiveness results so different for Trace-Test and Alexa?
Figure 9 shows that our algorithm is substantially more effective when applied
on the programs in Trace-Test than on the programs in the Alexa top 100 pages.
This happens because most of the scripts in the Trace-Test benchmark suite
are small, and contain only simple loops controlled by locally declared variables,
which our algorithm can recognize. In order to compare the two test suites,
we have used our instrumented Firefox to produce the histogram of assembly

18 R. Sol et al.

Fig. 13. A histogram of the bytecodes present in Trace-Test and PeaceKeeper, com-
pared to the bytecodes present in the Alexa collection. X-axis: instructions i ordered
by their frequency in the Alexa collection.

instructions that TraceMonkey generates for each benchmark. Figure 13 shows
the results of our findings. We have produced this chart by plotting pairs (i, f(i)),
which we define as follows:

1. let I be the list formed by the 100 most common SpiderMonkey bytecodes
found in the Alexa benchmark. We order the bytecodes i according to a(i),
the frequency of occurrences of i in the Alexa collection.

2. For each bytecode i ∈ I and benchmark B ∈ {Trace-Test, PeaceKeeper}, we
let b(i) be i’s frequency in B, and we let f(i) = a(i) − b(i).

The closer to zero the values of f(i), more similar is the frequency of i in the Alexa
collection and in the other benchmark. Using this rough criterion, we see that
PeaceKeeper is closer to Alexa than Trace-Test. Summing up the absolute values
of f(i), we find 0.24 for PeaceKeeper and 0.75 for Trace-Test. Coincidentally, our
analysis is more effective on Trace-Test than on PeaceKeeper.

5 Related Work

Just-in-time compilers are old allies of programming language interpreters. Since
the seminal work of John McCarthy [19], the father of Lisp, a multitude of JIT
compilers have been designed and implemented. A comprehensive survey on
just-in-time compilation is given by John Aycock [1].

The optimization that we propose in this paper is a type of partial evaluation
at runtime. Partial evaluation is a technique in which a compiler optimizes a pro-
gram, given a partial knowledge of its input [18]. Variations of partial evaluation
have been used to perform general code optimization [22,23]. This type of par-
tial evaluation in which the JIT compiler uses runtime values to produce better

Dynamic Elimination of Overflow Tests in a Trace Compiler 19

binaries is sometimes called specialization by need [21]. Implementations that use
this kind of technique include Python’s Psyco JIT compiler [21], Matlab [7,10]
and Maple [4]. Partial evaluation has been used in the context of just-in-time
compilation mostly as a form of type specialization [7,5,14]. That is, once the
compiler proves that a value belongs into a certain type, it uses this type directly,
instead of resorting to costly boxing and unboxing techniques.

The competition between popular browsers has brought renewed attention to
trace compilation. However, the idea of focusing the compilation effort on code
traces, instead of whole methods, has been known at least since the work of
Bala et al. [2], or even before if we consider trace scheduling [11]. Traces have
been independently integrated on JIT-compilers by Gal [13] and Zaleski [27].
Currently, there are many trace-based JIT-compilers [6,14,15,27]. For a formal
overview of trace compilation, we recommend the work of Guo and Palsberg [26].

Our algorithm to remove overflow tests is a type of range analysis [17,20].
Range analysis tries to infer lower and upper bounds to the values that a vari-
able might assume during the program execution. In general these algorithms
rely on theorem provers, an approach deemed too slow to a JIT compiler. Bodik
et al. [3] have described a specialization of range analysis that removes array
bound checks, the ABCD algorithm, that targets JIT compilation. Zhendong
and Wagner [25] have described a type of range analysis that can be solved in
polynomial time. Stephenson et al. [24] have used a polynomial time analysis to
infer the bitwidth of each integer variable used in the source program. Contrary
to our approach, all these previous algorithms work on the static representation
of the source program. Such fact severely constraints the amount of informa-
tion that these analysis can rely on. By knowing the runtime value of program
variables we can perform a very extensive, yet fast, range analysis.

6 Conclusion

This paper has presented a new algorithm to remove redundant overflow tests
during the JIT compilation of JavaScript programs. The proposed algorithm
works in the context of a trace compiler. Our algorithm is able to find very
precise ranges for program variable by inspecting their runtime values. We have
implemented our analysis on top of TraceMonkey, the JIT compiler used by the
Mozilla Firefox browser to speed up the execution of JavaScript programs. We
have submitted our implementation to Mozilla, as a Firefox patch, available at
http://github.com/rodrigosol/Dynamic-Elimination-Overflow-Test. In
terms of future work, we would like to improve the performance and effective-
ness of our implementation. For instance, currently we can only read the runtime
values of local variables, a limitation that we are working to overcome.

Acknowledgments. This project has been made possible by the cooperation
FAPEMIG-INRIA, grant 11/2009. Rodrigo Sol is supported by the Brazilian
Ministry of Education under CAPES and CNPq. We thank David Mandelin
from the Mozilla Foundation for helping us with TraceMonkey.

20 R. Sol et al.

References

1. Aycock, J.: A brief history of just-in-time. ACM Computing Surveys 35(2), 97–113
(2003)

2. Bala, V., Duesterwald, E., Banerjia, S.: Dynamo: a transparent dynamic optimiza-
tion system. In: PLDI, pp. 1–12. ACM, New York (2000)

3. Bodik, R., Gupta, R., Sarkar, V.: ABCD: eliminating array bounds checks on
demand. In: PLDI, pp. 321–333. ACM, New York (2000)

4. Carette, J., Kucera, M.: Partial evaluation of maple. In: PEPM, pp. 41–50. ACM,
New York (2007)

5. Chambers, C., Ungar, D.: Customization: optimizing compiler technology for self, a
dynamically-typed object-oriented programming language. SIGPLAN Not. 24(7),
146–160 (1989)

6. Chang, M., Smith, E., Reitmaier, R., Bebenita, M., Gal, A., Wimmer, C., Eich,
B., Franz, M.: Tracing for web 3.0: trace compilation for the next generation web
applications. In: VEE, pp. 71–80. ACM, New York (2009)

7. Chevalier-Boisvert, M., Hendren, L., Verbrugge, C.: Optimizing matlab through
just-in-time specialization. In: Gupta, R. (ed.) CC 2010. LNCS, vol. 6011, pp.
46–65. Springer, Heidelberg (2010)

8. ECMA Committe. ECMAScript Language Specification. ECMA, 5th edn. (2009)
9. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently

computing static single assignment form and the control dependence graph.
TOPLAS 13(4), 451–490 (1991)

10. Elphick, D., Leuschel, M., Cox, S.: Partial evaluation of MATLAB. In: Pfenning, F.,
Macko, M. (eds.) GPCE 2003. LNCS, vol. 2830, pp. 344–363. Springer, Heidelberg
(2003)

11. Fisher, J.A.: Trace scheduling: A technique for global microcode compaction.
Trans. Comput. 30, 478–490 (1981)

12. Richards, G., Lebresne, S., Burg, B., Vitek, J.: An analysis of the dynamic behavior
of javascript programs. In: PLDI, pp. 1–12 (2010)

13. Gal, A.: Efficient Bytecode Verification and Compilation in a Virtual Machine.
PhD thesis, University of California, Irvine (2006)

14. Gal, A., Eich, B., Shaver, M., Anderson, D., Kaplan, B., Hoare, G., Mandelin, D.,
Zbarsky, B., Orendorff, J., Ruderman, J., Smith, E., Reitmair, R., Haghighat, M.R.,
Bebenita, M., Change, M., Franz, M.: Trace-based just-in-time type specialization
for dynamic languages. In: PLDI, pp. 465–478. ACM, New York (2009)

15. Gal, A., Probst, C.W., Franz, M.: Hotpathvm: an effective jit compiler for resource-
constrained devices. In: VEE, pp. 144–153 (2006)

16. Goldberg, D.: What every computer scientist should know about floating-point
arithmetic. Comput. Surv. 23, 5–48 (1991)

17. Harrison, W.H.: Compiler analysis of the value ranges for variables. IEEE Trans.
Softw. Eng. 3(3), 243–250 (1977)

18. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation, 1st edn. Prentice Hall, Englewood Cliffs (1993)

19. McCarthy, J.: Recursive functions of symbolic expressions and their computation
by machine, part i. Communications of ACM 3(4), 184–195 (1960)

20. Patterson, J.R.C.: Accurate static branch prediction by value range propagation.
In: PLDI, pp. 67–78. ACM, New York (1995)

21. Rigo, A.: Representation-based just-in-time specialization and the psyco prototype
for python. In: PEPM, pp. 15–26. ACM, New York (2004)

Dynamic Elimination of Overflow Tests in a Trace Compiler 21

22. Schultz, U.P., Lawall, J.L., Consel, C.: Automatic program specialization for java.
TOPLAS 25(4), 452–499 (2003)

23. Shankar, A., Sastry, S.S., Bod́ık, R., Smith, J.E.: Runtime specialization with op-
timistic heap analysis. SIG. Not. 40(10), 327–343 (2005)

24. Stephenson, M., Babb, J., Amarasinghe, S.: Bidwidth analysis with application to
silicon compilation. In: PLDI, pp. 108–120. ACM, New York (2000)

25. Su, Z., Wagner, D.: A class of polynomially solvable range constraints for inter-
val analysis without widenings. Theoretical Computeter Science 345(1), 122–138
(2005)

26. Guo, S.y., Palsberg, J.: The essence of compiling with traces. In: POPL. ACM,
New York (2011) (page to appear)

27. Zaleski, M.: YETI: a gradually extensible trace interpreter. PhD thesis, University
of Toronto (2007)

Staged Static Techniques to Efficiently
Implement Array Copy Semantics in a

MATLAB JIT Compiler�

Nurudeen Lameed and Laurie Hendren

School of Computer Science, McGill University, Montréal, QC, Canada
{nlamee,hendren}@cs.mcgill.ca

Abstract. Matlab has gained widespread acceptance among scientists.
Several dynamic aspects of the language contribute to its appeal, but also
provide many challenges. One such problem is caused by the copy seman-
tics of Matlab. Existing Matlab systems rely on reference-counting
schemes to create copies only when a shared array representation is up-
dated. This reduces array copies, but requires runtime checks.

We present a staged static analysis approach to determine when copies
are not required. The first stage uses two simple, intraprocedural anal-
yses, while the second stage combines a forward necessary copy analy-
sis with a backward copy placement analysis. Our approach eliminates
unneeded array copies without requiring reference counting or frequent
runtime checks.

We have implemented our approach in the McVM JIT. Our results
demonstrate that, for our benchmark set, there are significant overheads
for both existing reference-counted and naive copy-insertion approaches,
and that our staged approach is effective in avoiding unnecessary copies.

1 Introduction

Matlab
TM1 is a popular programming language for scientists and engineers. It

was designed for sophisticated matrix and vector operations, which are common
in scientific applications. It is also a dynamic language with a simple syntax that
is familiar to most engineers and scientists. However, being a dynamic language,
Matlab presents significant compilation challenges. The problem addressed in
this paper is the efficient compilation of the array copy semantics defined by the
Matlab language. The basic semantics and types in Matlab are very simple.
Every variable is assumed to be an array (scalars are defined as 1x1 arrays) and
copy semantics is used for assignments of one array to another array, parameter
passing and for returning values from a function. Thus a statement of the form
a = b semantically means that a copy of b is made and that copy is assigned to
a. Similarly, for a call of the form a = foo(c), a copy of c is made and assigned

� This work was supported, in part, by NSERC and FQRNT.
1 http://www.mathworks.com/products/pfo/

J. Knoop (Ed.): CC 2011, LNCS 6601, pp. 22–41, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Staged Static Techniques to Efficiently Implement Array Copy Semantics 23

to the parameter of the function foo, and the return value of foo is copied to
a. Naive implementations take exactly this approach.

However, in the current implementations of Matlab the copy semantics is
implemented lazily using a reference-count approach. The copies are not made
at the time of the assignment, rather an array is shared until an update to one
of the shared arrays occurs. At update time (for example a statement of the
form b(i) = x), if the array being updated (in this case b) is shared, a copy is
generated, and then the update is performed on that copy. We have verified that
this is the approach that Octave open-source system [1] takes (by examining and
instrumenting the source code). We have inferred that this approach (or a small
variation) is what the Mathworks’ closed-source implementation does based on
the user-level documentation [19, p. 9-2].

Although the reference-counting approach reduces unneeded copies at run-
time, it introduces many redundant checks, requires space for the reference
counts, and requires extra code to update the reference counts. This is clearly
costly in a garbage-collected VM, such as the recently developed McVM, a spe-
cializing JIT [8,9]. Furthermore, the reference-counting approach may generate
a redundant copy during an update of a variable, if the updated variable shares
an array only with dead variables.

Thus, our challenge was to develop a static analysis approach, suitable for
a JIT compiler, which could determine which copies were required, without re-
quiring reference counts and without the expense of dynamic checks. Since we
are in the context of a JIT compiler, we developed a staged approach. The first
phase applies very simple and inexpensive analyses to determine the obvious
cases where copies can be avoided. The second phase tackles the harder cases,
using a pair of more sophisticated static analyses: a forward analysis to locate all
places where an array update requires a copy (necessary copy analysis) and then
a backward analysis that moves the copies to the best location and which may
eliminate redundant copies (copy placement analysis). We have implemented our
analyses in the McJIT compiler as structured flow analyses on the low-level AST
intermediate representation used by McJIT.

To demonstrate the applicability of our approach, we have performed sev-
eral experiments to: (1) demonstrate the behaviour of the reference-counting
approaches, (2) to measure the overhead associated with the dynamic checks in
the reference-counting approach, and (3) demonstrate the effectiveness of our
static analysis approach. Our results show that actual needed copies are infre-
quent even though the number of dynamic checks can be quite large. We also
show that these redundant checks do contribute significant overheads. Finally, we
show that for our benchmark set, our static approach finds the needed number
of copies, without introducing any dynamic checks.

The paper is organized as follows. Sec. 2 describes the McLab project and how
this work fits into the project. Sec. 3 describes the simple first-stage analyses, and
Sec. 4 and Sec. 5 describe the second-stage forward and the backward analyses,
with examples. Sec. 6 discusses the experimental results of our approach; we
review some related work in Sec. 7, and Sec. 8 concludes the paper.

24 N. Lameed and L. Hendren

2 Background

The work presented in this paper is a key component of our McLab system [2].
McLab provides an extensible set of compilation, analysis and execution tools
built around the core Matlab language. One goal of the McLab project is to
provide an open-source set of tools for the programming language and compiler
community so that researchers (including our group) can develop new domain-
specific language extensions and new compiler optimizations. A second goal is
to provide these new languages and compilers to scientists and engineers to both
provide languages more tailored to their needs and also better performance.

Generation

Domain−Specific LanguagesAspectMatlab Matlab

Extension
Extension

McLab Framework

McLab IR

Matlab Generator

Fortran

Matlab

McFor

Converter

Matlab−to−Fortran

McVM

High−level analyses and transformations

Matlab
Frontend

McJIT

Analyses and
Specialization

QuickCheck

Necessary Copy

Analyses
& Copy Placement

LLVM Code

Fig. 1. Overview of McLab (shaded boxes correspond to analyses in this paper)

The McLab framework is outlined in Fig. 1, with the shaded boxes indicat-
ing the components presented in this paper. The framework is comprised of an
extensible front-end, a high-level analysis and transformation engine and three
backends. Currently there is support for the core Matlab language and also
a complete extension supporting AspectMatlab[5].2 The front-end and the
extensions are built using our group’s extensible lexer, Metalexer [7], and Jas-
tAdd [11]. There are three backends: McFor, a FORTRAN code generator [18];
a Matlab generator (to use McLab as a source-to-source compiler); and McVM,

2 We use AspectMatlab for some dynamic measurements in Sec. 6.

Staged Static Techniques to Efficiently Implement Array Copy Semantics 25

a virtual machine that includes a simple interpreter and a sophisticated type-
specialization-based JIT compiler, which generates LLVM [17] code.

The techniques presented in this paper are part of McJIT, the JIT compiler
for McVM. McJIT is built upon LLVM, the Boehm garbage collector [6], and
several numerical libraries [4,28]. For the purposes of this paper, it is important
to realize that McJIT specializes code based on the function argument types that
occur at runtime. When a function is called the VM checks to see if it already
has a compiled version corresponding to the current argument types. If it does
not, it applies a sequence of analyses including live variable analysis and type
inference. Finally, it generates LLVM code for this version.

When generating code McJIT assumes reference semantics, and not copy se-
mantics, for assignments between arrays and parameter passing. That is, arrays
are dealt with as pointers and only the pointers are copied. Clearly this does
not match the copy semantics specified for Matlab and thus the need for the
two shaded boxes in Fig. 1 in order to determine where copies are required and
the best location for the copies. These two analysis stages are the core of the
techniques presented in this paper. It is also important to note that the special-
ization and type inference in McJIT means that variables that certainly have
scalar types will be stored in LLVM registers and thus the copy analyses only
need to consider the remaining variables. The type-inference analysis is used to
disambiguate between function calls and array accesses since Matlab uses the
same syntax for both.

In the next section we introduce the first stage of our approach which is the
QuickCheck. Following that we introduce the second stage — the necessary copy
and copy placement analyses.

3 Quick Check

The QuickCheck phase (QC) is a combination of two simple and fast analyses.
The first, written parameters analysis, is a forward analysis which determines the
parameters that may be modified by a function. The intuition is that during a
call of the function, the arguments passed to it from the caller need to be copied
to the corresponding formal parameters of the function only if the function may
modify the parameters. Read-only arguments do not need to be copied.

The analysis computes a set of pairs, where each pair represents a parameter
and the assignment statement that last defines the parameter. For example, the
entry (p1, d1) indicates that the last definition point for the parameter p1 is
the statement d1. The analysis begins with a set of initial definition pairs, one
pair for each parameter declaration. The analysis also builds a copy list, a list
of parameters which must be copied, which is initialized to the empty list. The
analysis is a forward flow analysis, using union as the merge operator. The key
flow equations are for assignment statements of two forms:

p = rhs: If the left-hand side (lhs) of the statement is a parameter p, then
this statement is redefining p, so all other definitions of p are killed and this

26 N. Lameed and L. Hendren

new definition of p is generated. Note that according to the Matlab copy
semantics, such a statement is not creating an alias between p and rhs,
but rather p is a new copy; subsequent writes to p will write to this new
copy.

p(i) = rhs: If the lhs is an array index expression (i.e., the assignment state-
ment is writing to an element of p), and the array symbol p is a parameter,
it checks if the initial definition of the parameter reaches the current assign-
ment statement and if so, it inserts the parameter into the copy list.

At the end of the analysis, the copy list contains all the parameters that must
be copied before executing the body of the function.

The second analysis is copy replacement, a standard sort of copy propaga-
tion/elimination algorithm that is similar to the approach used by an APL com-
piler [27]. It determines when a copy variable can be replaced by the original
variable (copy propagation). If all the uses of the copy variable can be replaced by
the original variable then the copy statement defining the copy can be removed
after replacing all the uses of the copy with the original (copy elimination).

If the analysed function does not return an array and all the remaining copy
statements have been made redundant by the QC transformation, then there is
no need to apply a more sophisticated analysis. However, if copies do remain,
then phase 2 is applied, as outlined in the next two sections.

4 Necessary Copy Analysis

The necessary copy analysis is a forward analysis that collects information that
is used to determine whether a copy should be generated before an array is
modified. To simplify our description of the analysis, we consider only simple
assignment statements of the form lhs = rhs. It is straightforward to show that
our analysis works for both single (one lhs variable) and multiple assignment
statements (multiple lhs variables). We describe the analysis by defining the
following components.

Domain: the domain of the analysis’ flow facts is the set of pairs comprising
of an array reference variable and the ID of the statement that allocates the
memory for the array; henceforth called allocators. We write (a, s) if a may
reference the array allocated at statement s.

Problem Definition: at a program point p, a variable references a shared
array if the number of variables that reference the array is greater than one.
An array update via an array reference variable requires a copy if the variable
may reference a shared array at p and at least one of the other variables that
reference the same array is live after p.

Flow Function: out(Si) = gen(Si) ∪ (in(Si) − kill(Si)).

Staged Static Techniques to Efficiently Implement Array Copy Semantics 27

Given the assignment statements of the forms:

Si : a = alloc (1)
Si : a = b (2)

Si : a(j) = x (3)
Si : a = f(arg1, arg2, ..., argn) (4)

where Si denotes a statement ID; alloc is a new memory allocation performed
by statement Si

3; a, b are array reference variables; x is a rvalue; f is a func-
tion, arg1, arg2, ..., argn denote the arguments passed to the function and the
corresponding formal parameters are denoted with p1, p2, ..., pn.

We partition in(Si) using allocators. The partition, Qi(m), containing flow
entries for allocator m is:

Qi(m) = {(x, y)|(x, y) ∈ in(Si) ∧ y = m} (5)

Now consider statements of type 2 above; if the variable b has a reaching def-
inition at Si then there must exist some (b, m) ∈ in(Si) and there exists a
non-empty Qi(m)((b, m) ∈ Qi(m)).

In addition, if b may reference a shared array at Si then |Qi(m)| > 1. Let us
call the set of all such Qi(m)s, Pi. We write Pi(a) for the set of Qis obtained by
partitioning in(Si) using the allocators of the variable a.

Considering statements of the form 3, Pi(a) �= ∅ implies that a copy of a must
be generated before executing Si and in that case, Si is a copy generator. This
means that after this statement a will point to a new copy and no other variable
will refer to this copy.

We are now ready to construct a table of gen and kill sets for the four assign-
ment statement kinds above. To simplify the table, we define

Killdefine(a) = {(x, s)|(x, s) ∈ in(Si) ∧ x = a}
Killdead = {(x, s)|(x, s) ∈ in(Si) ∧ not live(Si, x)}
Killupdate(a) = {(x, s)|(x, s) ∈ in(Si) ∧ x = a ∧ Pi(a) �= ∅}

Stmt Gen set Kill set

(1) {(x, s)|x = a ∧ s = Si ∧ live(Si, x)} Killdefine(a) ∪Killdead

(2) {(x, s)|x = a ∧ (y, s) ∈ in(Si) ∧ y = b ∧ live(Si, x)} Killdefine(a) ∪Killdead

(3) {(x, s)|x = a ∧ s = Si ∧ Pi(x) �= ∅} Killupdate(a) ∪Killdead

(4) see gen(f) below Killdefine(a) ∪Killdead

Computing the gen set for a function call is not straightforward. Certain built-
in functions allocate memory blocks for arrays; such functions are categorized
as alloc functions. A question that arises is: does the return value of the called
function reference the same shared array as a parameter of the function? If the
return value references the same array as a parameter of the function then this
sharing must be made explicit in the caller, after the function call statement.
Therefore, the gen set for a function call is defined as:
3 Functions such as zeros, ones, rand and magic are memory allocators in Matlab.

28 N. Lameed and L. Hendren

gen(f) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(a, Si)}, if live(Si, a) and isAllocFunction(f)

{(x, s)|x = a ∧ (argj , s) ∈ in(Si) ∧ live(Si, x)},
if ret(f) aliases paramj(f), 0 < j ≤ size(params(f)),

{(a, Si)}, if ∀(p ∈ params(f)), not (ret(f) aliases p)

{(x, s)|x = a ∧ arg ∈ args(f) ∧ (arg, s) ∈ in(Si) ∧ live(Si, x)},
otherwise (e.g., if f is recursive)

The first alternative generates a flow entry (a, Si) if the rhs is an alloc function
and the lhs (a) is live after statement Si; this makes statement Si an allocator.
In the second alternative, the analysis requests for the result of the necessary
copy analysis on f from an analysis manager.4 The manager caches the result
of the previous analysis on a given function. From the result of the analysis on
f , we determine the return variables of f that are aliases to the parameters of
f and hence aliases to the arguments of f . This is explained in detail under the
next section on Initialization. The return variable of f corresponds to the lhs
(a) in statement type 4. Therefore we generate new flow entries from those of
the arguments that the return variable may reference according to the summary
information of f and provided that a is also live after Si. The third alternative
generates {(a, Si)}, if the return variable aliases no parameters of f . The fourth
alternative is conservative: new flow entries are generated from those of all the
arguments to f . This can happen if the call of f is recursive or f cannot be
analyzed because it is neither a user-defined function nor an alloc function.

We chose a simple strategy for recursion because recursive functions occur
rarely in Matlab. In a separate study by our group, we found that out of
15966 functions in 625 projects examined, only 48 functions (0.3%) are directly
recursive. None of the programs in our benchmarks had recursive functions.

Therefore, we expect that the conservative option in the definition of gen(f)
above will be rarely taken in practice.

Initialization: The input set for a function is initialized with a flow entry for
each parameter and an additional flow entry (a shadow entry) for each parameter
is also inserted. This is necessary in order to determine which of the parameters
(if any) return variable references. We use a shadow entry to detect when a
parameter that has not been assigned to any other variable is updated. At the
entry to a function, the input set is given as
in(entry) = {(p, s)|p ∈ params(f)∧ s = Sp}∪ {(p′, s)|p ∈ params(f)∧ s = Sp}.

We illustrate this scheme with an example. Given a function f , defined as:
function u = f(x, y)

u = x;
end

the in set at the entry of f is {(x, Sx), (x′, Sx), (y, Sy), (y′, Sy)} and at the end
of the function, the out set is {(u, Sx), (x, Sx), (x′, Sx), (y, Sy), (y′, Sy)}.
4 This uses the same analysis machinery as the type estimation in McJIT.

Staged Static Techniques to Efficiently Implement Array Copy Semantics 29

We now know that u is an alias for x and encode this information as a
set of integers. An element of the set is an integer representing the input pa-
rameter that the output parameter may reference in the function. In this ex-
ample, the set is {1} since x is the first (1) parameter of f . This is useful
during a call of f . For instance, in c = f(a, b); we can determine that c is
an alias for the argument a by inspecting the summary information generated
for f .

4.1 if-else Statement

So far we have been considering sequences of statements. As our analysis is done
directly on a simplified AST, analyzing an if-else statement simply requires
that we analyze all the alternative blocks and merge the result at the end of the
if-else statement using the merge operator (∪).

4.2 Loops

We compute the input set reaching a loop and the output set exiting a loop using
standard flow analysis techniques, that is, we merge the input flow set from the
loop’s entry with the output set from the loop back-edge until a fixed point is
reached.

To analyse a loop more precisely, we implemented a context-sensitive loop
analysis [16], but found that real Matlab programs did not require the context-
sensitivity to achieve good results. The standard approach is sufficient for typical
Matlab programs.

5 Copy Placement Analysis

In the previous section, we described the forward analysis which determines
whether a copy should be generated before an array is updated. One could use
this analysis alone to insert the copy statements, but this may not lead to the
best placement of the copies and may lead to redundant copies. The backward
copy placement analysis determines a better placement of the copies, while at the
same time ensuring safe updates of a shared array. Examples of moving copies
include hoisting copies out of if-then constructs and out of loops.

The intuition behind this analysis is that often it is better to perform the
array copy close to the statement which created the sharing (i.e. statements
of the form a = b) rather than just before the array update statements (i.e.
statements of the form a(i) = b) that require the copy. In particular, if the
update statement is inside a loop, but the statement that created the sharing
is outside the loop, then it is much better to create the copy outside of the
loop. Thus, the copy placement analysis is a backward analysis that pushes
the necessary copies upwards, possibly as far as the statement that created the
sharing.

30 N. Lameed and L. Hendren

5.1 Copy Placement Analysis Details

A copy entry is a three-tuple:

e =< copy loc, var, alloc site > (6)

where copy loc denotes the ID of the node that generates the copy, var de-
notes the variable containing a reference to the array that should be copied, and
alloc site is the allocation site where the array referenced by var was allocated.
We refer to the three components of the three-tuple as e.copy loc, e.var, and
e.alloc site.

Let C denote the set of all copies generated by a function.
Given a function, the analysis begins by traversing the block of statements

of the function backward. The domain of the analysis’ flow entries is the set of
copy objects and the merge operator is intersection (∩).

Define Cout as the set of copy objects at the exit of a block and Cin as the
set of copy objects at the entrance of a block. Since the analysis begins at the
end of a function, Cout is initialized to ∅. The rules for generating and placing
copies are described here.

Statement Sequence. Given a sequence of statements, we are given a Cout for
this block and the analysis traverses backwards through the block computing a
Cin for the block. As each statement is traversed the following rules are applied
for the different kinds of the assignment statements in the sequence. The sets
in(Si), Qi(m), Pi(a) are defined in Section 4.

Rule 1: array updates, Si : a(y) = x : Given that the array variable of the
lhs of statement Si is a, when a statement of this form is reached, we add a copy
for each partition for a shared array to the current copy set. Thus

Cin := Cin ∪
{

∅ if Pi(a) = ∅
{< s, x, y > |s = Si ∧ x = a ∧ Qi(y) ∈ Pi(x)} otherwise

Rule 2: array assignments, Sj : a = b : If ∀e ∈ Cin(e.var �= a and e.var �= b),
and ∀e ∈ Cout(e.var �= a and e.var �= b), we skip the current statement. However,
if in the current block, ∃e ∈ Cin(e.var = a or e.var = b), we remove e from
the current copy flow set Cin. This means that the copy has been placed at
its current location — the location specified in the copy entry e. Otherwise, if
∃e ∈ Cout(e.var = a or e.var = b), we perform the following:

if Pj(a) = ∅, this is usually the case, we move the copy from the statement
e.copy loc to Sj and remove e from the flow set. The copy e has now been finally
placed.

if Pj(a) �= ∅, ∀(Qi(m) ∈ Pj(a)), we add a runtime equality test for a against
the variable x (x �= a) of each member of Qi(m) at the statement e.copy loc.

Staged Static Techniques to Efficiently Implement Array Copy Semantics 31

Since Pj(a) �= ∅, there is at least a definition of a that reaches this statement
and for which a references a shared array. In addition, because the copy e was
generated after the current block there are at least two different paths to the
statement e.copy loc, the current location of e. We place a copy of e at the
current statement Sj and remove e from the flow set. Note that two copies of e
have been placed; one at e.copy loc and another at Sj . However, runtime guards
have also been placed at e.copy loc, ensuring that only one of these two copies
materializes at runtime.

We expect that such guards will not usually be needed, and in fact none of
our benchmarks required any guards.

if-else Statements. Let Cif and Celse denote the set of copies generated in
an if and an else block respectively. First we compute

C′ := (Cout ∩ Celse ∩ Cif)

Then we compute the differences

C′
out := Cout \ C′; C′

else := Celse \ C′; C′
if := Cif \ C′

to separate those copies that do not intersect with those in other blocks but
should nevertheless be propagated upward. Since the copies in the intersection
will be relocated, they are removed from their current locations.

And finally,

Cin := C′
out ∪ C′

else ∪ C′
if ∪ {< s, e.var, e.alloc site > |s = SIF ∧ e ∈ C′}

Note that a copy object e with its first component set to SIF is attached to the
if-else statement SIF . That means if these copies remain at this location, the
copies should be generated before the if-else statement.

Loops. The main goal here is to identify copies that could be moved out of
a loop. To place copies generated in a loop, we apply the rules for statement
sequence and the if-else statement. The analysis propagates copies upward
from the inner-most loop to the outer-most loop and to the main sequence until
either loop dependencies exist in the current loop or it is no longer possible to
move the copy according to Rule 2 in Section 5.1.

A disadvantage of propagating the copy outside of the loop is that if none
of the loops that require copies is executed then we would have generated a
useless copy. However, the execution is still correct. For this reason, we assume
that a loop will always be executed and generate copies outside loops, wherever
possible. This is a reasonable assumption because a loop is typically programmed
to execute. With this assumption, there is no need to compute the intersection
of Cloop and Cout. Hence

Cin := Cout ∪ {< s, e.var, e.alloc site > |s = Sloop ∧ e ∈ Cloop})

32 N. Lameed and L. Hendren

5.2 Using the Analyses

This section illustrates how the combination of the forward and the backward
analyses is used to determine the actual copies that should be generated. First
consider the following program, test3. Fig. 2(a) shows the result of the forward
analysis.

1 function test3()
2 a = [1:5];
3 b = a;
4 i = 1;
5 if (i > 2) % I
6 a(1) = 100;
7 else
8 a(1) = 700;
9 end

10 a(1) = 200;
11 disp(a); disp(b);
12 end

Gen set In Out
2 {(a, S2)} ∅ {(a, S2)}
3 {(b, S2)} {(a, S2)} {(a, S2)(b, S2)}
6 {(a, S6)} {(a, S2), (b, S2)} {(b, S2)(a, S6)}
8 {(a, S8)} {(a, S2), (b, S2)} {(b, S2), (a, S8)}
10 ∅ {(b, S2), (a, S6), (a, S8)} {(b, S2), (a, S6), (a, S8)}

(a) Necessary Copy Analysis Result

Cout Cin Current Result
10 ∅ ∅ ∅
8 ∅ {< S8, a, S2 >} {(a, S8)}
6 ∅ {< S6, a, S2 >} {(a, S6)}
I ∅ {< SI , a, S2 >} {(a, SI)}
3 {< SI , a, S2 >} ∅ {(a, SI)}
2 ∅ ∅ {(a, SI)}

(b) Copy Placement Analysis Result

Fig. 2. Introductory example for Copy Placement Analysis

Fig. 2(b) gives the result of the backward analysis. The I used in Fig. 2 stands
for the if-else statement in test3. The analysis begins from line 12 of test3.
The out set Cout is initially empty. At line 10, Cout is still empty. When the
if-else statement is reached, a copy of Cout (∅) is passed to the Else block and
another copy is passed to the If block. The copy {< S8, a, S2 > is generated
in the Else block because |Q(S2) = {(a, S2), (b, S2)}| = 2, hence Pi(a) �= ∅.
Similarly < S6, a, S2 > is generated in the If block.

By applying the rule for if-else statement described in Section 5.1, the
outputs of the If and the Else blocks are merged to obtain the result at SI (the
if-else statement). Applying Rule 2 for statement sequence (Section 5.1) in S3,
< SI , a, S2 > is removed from Cin and the analysis terminates at S2. The final
result is that a copy must be generated before the if-else statement instead of
generating two copies, one in each block of the if-else statement. This example
illustrates how common copies generated in the alternative blocks of an if-else
statement could be combined and propagated upward to reduce code size.

The second example, tridisolve is a Matlab function from [10]. The forward
analysis information is shown in Fig. 3(a). The table shows the gen and in sets
at each relevant assignment statement of tridisolve. The results in different loop
iterations are shown using a subscript to represent loop iteration. For example,
the row number 252 refers to the result at the statement labelled S25 in the
second iteration. The analysis reached a fixed point after the third iteration.

At the function’s entry, the in set is initialized with two flow entries for
each parameter of the function as outlined in Sec. 4. The analysis continues
by generating the gen, in and out sets according to the rules specified in Sec-
tion 4. Notice that statement S25 is an allocator because P25(b) �= ∅ since

Staged Static Techniques to Efficiently Implement Array Copy Semantics 33

function x = tridisolve(a,b,c,d)
% TRIDISOLVE Solve tridiagonal system of equations.
20: x = d;
21: n = length(x);

for j = 1:n−1 %F 1
mu = a(j)/b(j);

25: b(j+1) = b(j+1) − mu∗c(j);
26: x(j+1) = x(j+1) − mu∗x(j);

end
29: x(n) = x(n)/b(n);

for j = n−1:−1:1 %F 2
31: x(j) = (x(j)−c(j)∗x(j+1))/b(j);

end

Gen In

20 {(x, Sd, 0)} {(a, Sa, 0), (a′, Sa, 0), (b, Sb, 0), (b′, Sb, 0), (c, Sc, 0), (c′, Sc, 0), (d, Sd, 0),
(d′, Sd, 0)}

251 {(b, S25, 1)} {(a, Sa, 0), (a′, Sa, 0), (b, Sb, 0), (b′, Sb, 0), (c, Sc, 0), (c′, Sc, 0), (d′, Sd, 0),
(x, Sd, 0)}

261 {(x, S26, 1)} {(a, Sa, 0), (a′, Sa, 0), (b′, Sb, 0), (c, Sc, 0), (c′, Sc, 0), (d′, Sd, 0), (x, Sd, 0),
(b, S25, 1)}

252 {(b, S25, 2)} {(a, Sa, 0), (a′, Sa, 0), (b, Sb, 0), (b′, Sb, 0), (c, Sc, 0), (c′, Sc, 0), (d′, Sd, 0),
(x, Sd, 0), (b, S25, 1), (x, S26, 1)}

262 {(x, S26, 2)} {(a, Sa, 0), (a′, Sa, 0), (b′, Sb, 0), (c, Sc, 0), (c′, Sc, 0), (d′, Sd, 0), (x, Sd, 0),
(b, S25, 2), (x, S26, 1)}

253 {(b, S25, 3)} {(a, Sa, 0), (a′, Sa, 0), (b, Sb, 0), (b′, Sb, 0), (c, Sc, 0), (c′, Sc, 0), (d′, Sd, 0),
(x, Sd, 0), (b, S25, 2), (x, S26, 2)}

263 {(x, S26, 3)} {(a, Sa, 0), (a′, Sa, 0), (b′, Sb, 0), (c, Sc, 0), (c′, Sc, 0), (d′, Sd, 0), (x, Sd, 0),
(b, S25, 3), (x, S26, 2)}

29 {(x, S29, 0)} {(a′, Sa, 0), (b, Sb, 0), (b′, Sb, 0), (c, Sc, 0), (c′, Sc, 0), (d′, Sd, 0), (x, Sd, 0),
(b, S25, 3), (x, S26, 3)}

311 ∅ {(a′, Sa, 0), (b, Sb, 0), (b′, Sb, 0), (c, Sc, 0), (c′, Sc, 0), (d′, Sd, 0), (b, S25, 3),
(x, S29, 0)}

312 ∅ {(a′, Sa, 0), (b, Sb, 0), (b′, Sb, 0), (c, Sc, 0), (c′, Sc, 0), (d′, Sd, 0), (b, S25, 3),
(x, S29, 0)}

(a) Necessary Copy Analysis Result

Cout Cin Current Result
31 ∅ ∅ ∅
F2 ∅ ∅ ∅
29 ∅ {(S29, a, Sd)} {(x, S29)}
26 {(S29, x, Sd)} {(S26, x, Sd)} {(x, S29), (x, S26)}
25 {(S29, x, Sd)} {(S25, b, Sb), (S26, x, Sd)} {(x, S29), (x, S26), (b, S25)}
F1 {(S29, x, Sd)} {(SF1 , x, Sd), (S25, b, Sb)} {(x, SF1), (b, S25)}
20 ∅ {(S25, b, Sb)} {(x, SF1), (b, S25)}
0 ∅ ∅ {(x, SF1), (b, S0)}

(b) Copy Placement Analysis Result

Fig. 3. Example for tridisolve

|Q25(Sb)| = |{(b, Sb, 0), (b′, Sb, 0)}| > 1. Similarly, S26 and S29 are also alloca-
tors. This means that generating a copy of the array referenced by the variable b
just before executing the statement S25 ensures a safe update of the array. The
same is true of the array referenced by the variable x in lines 26 and 29. How-
ever, are these the best points in the program to generate those copies? Could
the number of copies be reduced? We provide the answers to these questions
when we examine the results of the backward analysis.

34 N. Lameed and L. Hendren

Fig. 3(b) shows the copy placement analysis information at each relevant
statement of tridisolve. Recall that the placement analysis works by traversing
the statements in each block of a function backward. In the case of tridisolve,
the analysis begins in line 31 in the second for loop of the function. The set
Cout is passed to the loop body and is initially empty. The set Cin stores all
the copies generated in the block of the for statement. Line 31 is neither a
definition nor an allocator, therefore no changes are recorded at this stage of the
analysis.

At the beginning of loop F2, the analysis merges with the main path and
the result at this point is shown in row F2. Statement S29 generated a copy as
indicated by the forward analysis, therefore Cin is updated and the result set is
also updated. The analysis then branches off to the first loop and the current Cin

is passed to the loop’s body as Cout. The copies generated in loop F1 are stored
in Cin, which is then merged with Cout at the beginning of the loop to arrive at
the result in row F1. The result set is also updated accordingly; at this stage,
the number of copies has been reduced by 1 as shown in the column labelled
Current Result of Fig. 3(b). The copy flow set that reaches the beginning of
the function is non-empty. This suggests that the definition or the allocator of
the array variables of the remaining entries could not be reached. Therefore, the
array variables of the flow entries must be the parameters of the function and
the necessary copy should be generated at the function’s entry. Hence, a copy of
the array referenced by b must be generated at the entry of tridisolve.

6 Experimental Results

To evaluate the effectiveness of our approach, we set up experiments using bench-
marks collected from disparate sources, including those from [10,22,23]. Table 1
gives a short description of the benchmarks together with a summary of the re-
sults of our analyses, which we discuss in more detail in the following subsections.
For all our experiments, we ran the benchmarks with their smallest input size
on an AMD AthlonTM 64 X2 Dual Core Processor 3800+, 4GB RAM computer
running Linux operating system; GNU Octave, version 3.2.4; Matlab, version
7.9.0.529 (R2009b) and McVM/McJIT, version 0.5.

The purpose of our experiments was three-fold. First, we wanted to measure
the number of array updates and copies performed by the benchmarks at run-
time using existing systems (Sec. 6.1). Knowing the number of updates gives an
idea of how many dynamic checks a reference-counting-based (RC) scheme for
lazy copying, such as used by Octave and Mathworks’ Matlab, need to perform.
Recall that our approach does not usually require any dynamic checks. Knowing
the number of copies generated by such systems allows us to verify that our
approach does not increase the number of copies as compared to the RC ap-
proaches. Secondly, we would like to measure the amount of overhead generated
in RC systems (Sec. 6.2). Finally, we would like to assess the impact of our static
analyses in terms of their ability to minimize the number of copies (Sec. 6.3).

Staged Static Techniques to Efficiently Implement Array Copy Semantics 35

6.1 Dynamic Counts of Array Updates and Copies

Our first measurements were designed to measure the number of array updates
and array copies that are required by existing RC systems, Octave and Math-
works’ Matlab. Since we had access to the open-source Octave system we were
able to instrument the interpreter and make the measurements directly. How-
ever, the Mathworks’ implementation of Matlab is a proprietary system and
thus we were unable to instrument it to make direct measurements. Instead, we
developed an alternative approach by instrumenting the benchmark programs
themselves via aspects using our AspectMatlab compiler amc [5]. Our aspect5

defines all the patterns for the relevant points in a Matlab program including
all array definitions, array updates, and function calls. It also specifies the ac-
tions that should be taken at these points in the source program. In effect, the
aspect computes all of the information that a RC scheme would have, and thus
can determine, at runtime, when an array update triggers a copy because the
number of references to the array is greater than one. The aspect thus counts
all array updates and all copies that would be required by a RC system.

Table 1. Benchmarks and the results of the copy analysis6

Copies
Array Lower Bound With Analyses

Benchmark Updates Aspect Octave Naive QC CA
adpt adaptive quadrature using Simpson’s rule 19624 0 0 12223 12223 0
capr capacitance of a transmission line using finite

difference and Gauss-Seidel iteration
9790800 10000 10000 40000 20000 10000

clos transitive closure of a directed graph 2954 0 0 2 2 0
crni Crank-Nicholson solution to the one-

dimensional heat equation
21143907 4598 6898 11495 6897 4598

dich Dirichlet solution to Laplace’s equation 6935292 0 0 0 0 0
fdtd 3D FDTD of a hexahedral cavity with con-

ducting walls
803 0 0 5400 5400 0

fft fast fourier transform 44038144 1 1 2 2 1
fiff finite-difference solution to the wave equation 12243000 0 0 0 0 0
mbrt mandelbrot set 5929 0 0 0 0 0
nb1d N-body problem coded using 1d arrays for the

displacement vectors.
55020 0 0 10984 10980 0

nb3d N-body problem coded using 3d arrays for the
displacement vectors.

4878 0 0 5860 5858 0

nfrc computes a newton fractal in the complex
plane -2..2,-2i..2i

12800 0 0 6400 6400 0

trid Solve tridiagonal system of equations 2998 2 2 5 2 2

In Table 1 the column labelled # Array Updates gives the total num-
ber of array updates executed. The column # Copies shows the number of
copies generated by the benchmarks under Octave (reported as Octave in the
table) and Matlab (column labelled Aspect). The column # Copies is split
into two: Lower Bound and With Analyses. The number of copies gener-
ated by Octave and Matlab (Aspect) are considered the expected lower bounds

5 This aspect is available at: www.sable.mcgill.ca/mclab/mcvm mcjit.html
6 The benchmarks are also available at: www.sable.mcgill.ca/mclab/mcvm mcjit.html

36 N. Lameed and L. Hendren

(since they perform copies lazily, and only when required) and are therefore
grouped under Lower Bound in the table.7

At a high-level, the results in Table 1 show that our benchmarks often perform
a significant number of array updates, but very few updates trigger copies. We
observed that no copies were generated in ten out of the thirteen benchmarks.
This low rate for array copies is not surprising because Matlab programmers
tend to avoid copying large objects and often only read from function parameters.
With Analyses comprises of three columns, Naive, QC, and CA representing
respectively, the number of copies generated in our naive system, with the QC
phase, and with the copy analysis phase. We return to these results in Sec. 6.3.

6.2 The Overhead of Dynamic Checks

With RC approaches a dynamic check is needed for each array update, in order to
test if a copy is needed. Our counts indicated that several of our benchmarks had
a high number of updates, but no copies were required. We wanted to measure
the overhead for all of these redundant dynamic checks. The ideal measurement
would have been to time the redundant checks in a JIT-based system that used
reference-counting, such as Mathworks’ Matlab. Unfortunately we do not have
access to such a system. Instead we performed two similar experiments, as re-
ported in Table 2, for three benchmarks with a high number of updates and no
required copies (dich, fiff and mbrt).

Table 2. Overhead of Dynamic Checks

McVM Octave(O)
McJIT McJIT(+RC) Overhead(%) Time(s) Overhead

Bmark time(s) # LLVM time(s) # LLVM time size O(+RC) O(-RC) (%)
dich 0.18 546 0.27 625 47.37 14.47 425.05 408.08 4.16
fiff 0.39 388 0.52 415 33.72 6.96 468.64 438.69 6.83
mbrt 5.06 262 5.65 271 11.69 3.44 34.91 31.95 9.29

We first created a version of Octave that does not insert dynamic checks before
array update statements. In general this is not safe, but for these three bench-
marks we knew no copies were needed, and thus removing the checks allowed us
to measure the overhead without breaking the benchmarks. The column labelled
O(+RC) gives the execution time with dynamic checks and the column labelled
O(-RC) gives the times when we artificially removed the checks. The difference
gives us the overhead, which is between 4% and 9% for these benchmarks. Al-
though this is not a huge percentage, it is not negligible. Furthermore, we felt
that the absolute time for the checks was significant and would be even more
significant in a JIT system which has many fewer other overheads.

To measure overheads in a JIT context, we modified McJIT to include enough
reference-counting machinery to measure the overhead of the checks (remember

7 Note that for the benchmark crni Octave performs 6898 copies, whereas the lower
bound according to the Aspect is 4598. We verified that Octave is doing some spu-
rious copies in this case, and that the Aspect number is the true lower bound.

Staged Static Techniques to Efficiently Implement Array Copy Semantics 37

that McVM is garbage-collected and does not normally have reference counts).
For the modified McVM we added a field to the array object representation to
store reference counts (which is set to zero for the purposes of this experiment)
and we generated LLVM code for a runtime check before each array update state-
ment. Table 2 shows, in time and code size, the amount of overhead generated by
redundant checks. The column labelled McJIT is the original McJIT and the
column labelled McJIT(+RC) is the modified version with the added checks.
We measured code size using the number of LLVM instructions (# LLVM) and
execution time overhead in seconds. For these benchmarks the code size overhead
was 3% to 14% and the running time overhead ranged from 12% to 47%.

Our conclusions is that the dynamic checks for a RC scheme can be quite
significant in both execution time and code size, especially in the context of a
JIT. Thus, although the original motivation of our work was to enable a garbage-
collected VM that did not require reference counts, we think that our analyses
could also be useful to eliminate unneeded checks in RC systems.

6.3 Impact of Our Analyses

Let us now return to the number of copies required by our analyses, which are
given in the last three columns of Table 1. As a reminder, our goal was to achieve
the same number of copies as the lower bound.

The column labelled Naive gives the number of copies required with a naive
implementation of Matlab’s copy semantics, where a copy is inserted for each
parameter, each return value and each copy statement, where the lhs is an array.
Clearly this approach leads to many more copies than the lower bound.

The column labelled CA gives the number of copies when both phases of our
static analyses are enabled. We were very pleased to see that for our benchmarks,
the static analyses achieved the same number of copies as the lower bound, with-
out requiring any dynamic checks. The column labelled QC shows the number
of copies when only the QuickCheck phase is enabled. Although the QuickCheck
does eliminate many unneeded copies, it does not achieve the lower bound. Thus,
the second stage is really required in many cases.

To show the impact copies have on execution performance, we measured the
total bytes of array data copied by a benchmark together with its corresponding
execution time. These are shown in Fig. 4 and Table 3 for Naive, QC and CA.
The columns Naive

QC and Naive
CA of Table 3 show respectively how many times

QC and CA perform better than Naive. The table shows that CA generally
outperforms QC and Naive. Copying large arrays affects execution performance
and the results in Table 3 validate this claim. Where a significant number of
bytes were copied by the naive implementation, for example, capr, crni and
fdtd, CA performs better than both Naive and QC. In the three benchmarks
that do not generate copies, the performance of CA is comparable to Naive and
QC. This shows that the overhead of CA is low. It is therefore clear from the
results of our experiments that the naive implementation generates significant
overhead and is therefore unsuitable for an high-performance system.

38 N. Lameed and L. Hendren

Fig. 4. The total bytes of array data copied by the benchmarks under the three options

Table 3. Benchmarks against the total execution times in seconds

Bmark Naive QC CA Naive
QC

Naive
CA

Bmark Naive QC CA Naive
QC

Naive
CA

adpt 1.57 1.57 1.61 1.00 0.98 fiff 0.39 0.39 0.39 0.99 0.99
capr 1.54 0.91 0.58 1.70 2.66 mbrt 5.06 5.12 5.04 0.99 1.00
clos 0.49 0.49 0.48 0.99 1.01 nb1d 0.48 0.48 0.45 1.00 1.07
crni 135.09 140.35 131.62 0.96 1.03 nb3d 0.48 0.48 0.36 1.00 1.35
dich 0.18 0.18 0.18 1.00 1.00 nfrc 3.23 3.23 3.25 1.00 0.99
fdtd 3.79 3.78 2.80 1.00 1.35 trid 1.57 1.04 1.02 1.51 1.53
fft 1.50 1.50 1.47 1.00 1.02

Impact of the First Phase. We measured the number of functions that are
completely resolved by the first phase of our approach — in terms of finding all
the necessary copies required to guarantee copy semantics. We found that out
of the 23 functions in the benchmark set, the first stage (i.e., QuickCheck) was
only able to resolve about 17% of the functions. None of the benchmarks was
resolved completely by QC. The main reason for this poor performance is that
the first phase cannot resolve functions that return arrays to their callers. And
like most Matlab programs, most of the functions in the benchmarks return
arrays. This really shows that the second stage is actually required to completely
determine the needed copies by typical Matlab programs.

So, the bottom line is that a very low fraction of array updates result in
copies, and frequently no copies are necessary. For our benchmark set, our static
analysis determined the needed number of copies, while at the same time avoiding
all the overhead of dynamic checks. Furthermore, our approach does not require
reference counting and thus enables an efficient implementation of array copy
semantics in garbage-collected systems like McVM.

7 Related Work

Redundant copy elimination is a hard problem and implementations of languages
such as Python [3] are able to avoid copy elimination optimizations by providing

Staged Static Techniques to Efficiently Implement Array Copy Semantics 39

multiple data structures: some with copy semantics and others with reference
semantics. Programmers decide when to use mutable data structures. However,
efficient implementations of languages like the Matlab programming language
that use copy semantics require copy elimination optimization. The problem is
similar to the aggregate update problem in functional languages [12,14,21,24,26].
To modify an aggregate in a strict functional language, a copy of the aggregate
must be made. This is in contrast with the imperative programming languages
where an aggregate may be modified multiple times.

APL [15] is one of the oldest array-based languages. Weigang [27] describes
a range of optimizations for APL compiler, including a copy optimization that
finds uses of a copy of a variable and replaces the copy with the original variable
wherever possible. We implemented this optimization as part of our QuickCheck
phase. We found the optimization effective at enabling the elimination of redun-
dant copy statements by the dead-code optimizer. However, this optimization
is unable to eliminate redundant copies of arguments and return values. Hudak
and Bloss [14] use an approach based on abstract interpretation and conventional
flow analysis to detect cases where an aggregate may be modified in place. Their
method combines static analysis and dynamic techniques. It involves a rear-
rangement of the execution order or an optimized version of reference counting,
where the static analysis fails. Our approach is based on flow analysis but we do
not change the execution order of a program.

Interprocedural aliasing and the side-effect problem [20] is related to the copy
elimination problem. By using call by reference semantics, when an argument is
passed to a function during a call, the parameter becomes an alias for the argu-
ment in the caller and if the argument contains an array reference, the referenced
array becomes a shared array; any updates via the parameter in the callee up-
dates the same array referenced by the corresponding argument in the caller.
Without performing a separate and expensive flow analysis, our approach eas-
ily detects aliasing and side effects in functions. Wand and Clinger present [26]
interprocedural flow analyses for aliasing and liveness based on set constraints.
They present two operational semantics: the first one permits destructive up-
dates of arrays while the other does not. They also define a transformation from
a strict functional language to a language that allows destructive updates. Like
Wand and Clinger, our approach combines liveness analysis with flow analysis.
However, unlike Wand and Clinger, our analyses are intraprocedural and have
been implemented in a JIT compiler for an imperative language.

The work of Goyal and Paige [13] on copy optimization for SETL [25] is par-
ticularly interesting. Their approach combines a RC scheme with static analysis.
A combination of must-alias and live-variable analyses is used to identify dead
variables and the program points where a statement that redefines a dead vari-
able can be inserted to facilitate destructive updates. Like our approach, this
technique is capable of eliminating the redundant copying of a shared location
that can occur during an update of the location; however, it is different from
our approach. In particular, it generates dynamic checks to detect when to make
copies. As mentioned in Sec. 6, our approach rarely generates dynamic checks.

40 N. Lameed and L. Hendren

8 Conclusions and Future Work

In this paper we have presented an approach for using static analysis to deter-
mine where to insert array copies in order to implement the array copy semantics
in Matlab. Unlike previous approaches, which used a reference-counting scheme
and dynamic checks, our approach is implemented as a pair of static analysis
phases in the McJIT compiler. The first phase implements simple analyses for
detecting read-only parameters and standard copy elimination, whereas the sec-
ond phase consists a forward necessary copy analysis that determines which
array update statements trigger copies, and a backward copy placement analy-
sis that determines good places to insert the array copies. All of these analyses
have been implemented as structured-based analyses on the McJIT intermediate
representation.

Our approach does not require frequent dynamic checks, nor do we need the
space and time overheads to maintain the reference counts. Our approach is
particularly appealing in the context of a garbage-collected VM, such as the one
we are working with. However, similar techniques could be used in a reference-
counting-based system to remove redundant checks. Our experimental results
validate that, on our benchmark set, we do not introduce any more copies than
the reference-counting approach, and we eliminate all dynamic checks.

References

1. GNU Octave, http://www.gnu.org/software/octave/index.html
2. McLab, http://www.sable.mcgill.ca/mclab/
3. Python, http://www.python.org
4. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du

Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK
Users’ Guide, 3rd edn. SIAM, Philadelphia (1999)

5. Aslam, T., Doherty, J., Dubrau, A., Hendren, L.: AspectMatlab: An Aspect-
Oriented Scientific Programming Language. In: Proceedings of the 9th Interna-
tional Conference on Aspect-Oriented Software Development, pp. 181–192 (March
2010)

6. Boehm, H., Spertus, M.: N2310: Transparent Programmer-Directed Garbage Col-
lection for C++ (June 2007),
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2310.pdf

7. Casey, A., Hendren, L.: MetaLexer: A Modular Lexical Specification Language.
In: Proceedings of the 10th International Conference on Aspect-Oriented Software
Development (March 2011)

8. Chevalier-Boisvert, M.: McVM: An Optimizing Virtual Machine for the MATLAB
Programming Language. Master’s thesis, McGill University (August 2009)

9. Chevalier-Boisvert, M., Hendren, L., Verbrugge, C.: Optimizing MATLAB through
Just-In-Time Specialization. In: International Conference on Compiler Construc-
tion, pp. 46–65 (March 2010)

10. Moler, C.: Numerical Computing with MATLAB. SIAM, Philadelphia (2004)
11. Ekman, T., Hedin, G.: The Jastadd Extensible Java Compiler. In: OOPSLA 2007:

Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented
Programming Systems and Applications, pp. 1–18. ACM, New York (2007)

http://www.gnu.org/software/octave/index.html
http://www.sable.mcgill.ca/mclab/
http://www.python.org
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2310.pdf

Staged Static Techniques to Efficiently Implement Array Copy Semantics 41

12. Gopinath, K., Hennessy, J.L.: Copy Elimination in Functional Languages. In:
POPL 1989: Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 303–314. ACM, New York (1989)

13. Goyal, D., Paige, R.: A New Solution to the Hidden Copy Problem. In: Levi, G.
(ed.) SAS 1998. LNCS, vol. 1503, pp. 327–348. Springer, Heidelberg (1998)

14. Hudak, P., Bloss, A.: The Aggregate Update Problem in Functional Programming
Systems. In: POPL 1985: Proceedings of the 12th ACM SIGACT-SIGPLAN Sym-
posium on Principles of Programming Languages, pp. 300–314. ACM, New York
(1985)

15. Iverson, K.E.: A Programming Language. John Wiley and Sons, Inc., Chichester
(1962)

16. Lameed, N., Hendren, L.: Staged Static Techniques to Efficiently Implement Array
Copy Semantics in a MATLAB JIT Compiler. Technical Report SABLE-TR-2010-
5, School of Computer Science, McGill University, Montréal, Canada (July 2010)

17. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: CGO 2004: Proceedings of the International Sym-
posium on Code Generation and Optimization, p. 75. IEEE Computer Society,
Washington, DC, USA (2004)

18. Li, J.: McFor: A MATLAB to FORTRAN 95 Compiler. Master’s thesis, McGill
University (August 2009)

19. MathWorks. MATLAB Programming Fundamentals. The MathWorks, Inc. (2009)
20. Muchnick, S.: Advanced Compiler Design and Implementation. Morgan Kaufmann,

San Francisco (1997)
21. Odersky, M.: How to Make Destructive Updates Less Destructive. In: POPL 1991:

Proceedings of the 18th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 25–36. ACM, New York (1991)

22. Press, H.W., Teukolsky, A.S., Vetterling, T.W., Flannery, P.B.: Numerical Recipes:
the Art of Scientific Computing. Cambridge University Press, Cambridge (1986)

23. Rose, L.D., Gallivan, K., Gallopoulos, E., Marsolf, B.A., Padua, D.A.: FALCON:
A MATLAB Interactive Restructuring Compiler. In: Huang, C.-H., Sadayappan,
P., Banerjee, U., Gelernter, D., Nicolau, A., Padua, D.A. (eds.) LCPC 1995. LNCS,
vol. 1033, pp. 269–288. Springer, Heidelberg (1996)

24. Sastry, A.V.S.: Efficient Array Update Analysis of Strict Functional Languages.
PhD thesis, University of Oregon, Eugene, USA (1994)

25. Schwartz, J.T., Dewar, R.B., Schonberg, E., Dubinsky, E.: Programming with Sets;
an Introduction to SETL. Springer, New York (1986)

26. Wand, M., Clinger, W.D.: Set Constraints for Destructive Array Update Optimiza-
tion. Journal of Functional Programming 11(3), 319–346 (2001)

27. Weigang, J.: An Introduction to STSC’s APL Compiler. SIGAPL APL Quote
Quad 15(4), 231–238 (1985)

28. Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated Empirical Optimizations of
Software and the ATLAS Project. Parallel Computing 27(1-2), 3–35 (2001)

SSA-Based Register Allocation with PBQP

Sebastian Buchwald, Andreas Zwinkau, and Thomas Bersch

Karlsruhe Institute of Technology (KIT)
{buchwald,zwinkau}@kit.edu,
thomas.bersch@student.kit.edu

Abstract. Recent research shows that maintaining SSA form allows to
split register allocation into separate phases: spilling, register assign-
ment and copy coalescing. After spilling, register assignment can be
done in polynomial time, but copy coalescing is NP-complete. In this pa-
per we present an assignment approach with integrated copy coalescing,
which maps the problem to the Partitioned Boolean Quadratic Problem
(PBQP). Compared to the state-of-the-art recoloring approach, this re-
duces the relative number of swap and copy instructions for the SPEC
CINT2000 benchmark to 99.6% and 95.2%, respectively, while taking
19% less time for assignment and coalescing.

Keywords: register allocation, copy coalescing, PBQP.

1 Introduction

Register allocation is an essential phase in any compiler generating native code.
The goal is to map the program variables to the registers of the target archi-
tecture. Since there are only a limited number of registers, some variables may
have to be spilled to memory and reloaded again when needed. Common regis-
ter allocation algorithms like Graph Coloring [3,6] spill on demand during the
allocation. This can result in an increased number of spills and reloads [11]. In
contrast, register allocation based on static single assignment (SSA) form allows
to completely decouple the spilling phase. This is due to the live-range splits
induced by the φ-functions, which render the interference graph chordal and
thus ensure that the interference graph is k-colorable, where k is the maximum
register pressure.

The live-range splits may result in shuffle code that permutes the values (as
variables are usually called in SSA form) on register level with copy or swap
instructions. To model this circumstance, affinities indicate which values should
be coalesced, i.e. assigned to the same register. If an affinity is fulfilled, inserting
shuffle code for the corresponding values is not necessary anymore. Fulfilling such
affinities is the challenge of copy coalescing and a central problem in SSA-based
register allocation.

J. Knoop (Ed.): CC 2011, LNCS 6601, pp. 42–61, 2011.
© Springer-Verlag Berlin Heidelberg 2011

SSA-Based Register Allocation with PBQP 43

In this work we aim for a register assignment algorithm that is aware of affini-
ties. In order to model affinities, we employ the Partitioned Boolean Quadratic
Problem (PBQP), which is a generalization of the graph coloring problem. In
the following, we

– employ the chordal nature of the interference graph of a program in SSA form
to obtain a linear PBQP solving algorithm, which does not spill registers,
but uses a decoupled phase instead.

– integrate copy coalescing into the PBQP modelling, which makes a separate
phase afterwards unnecessary.

– develop a new PBQP reduction to improve the solution quality by merging
two nodes, if coloring one node implies a coloring of the other one.

– introduce an advanced technique to handle a wide class of register constraints
during register assignment, which enlarges the solution space for the PBQP.

– show the competitiveness of our approach by evaluating our implementation
for quality and speed. Additionally, some insight into our adaptations is
gained by interpreting our measurements.

In Section 2 we describe related register allocation approaches using either SSA
form or a PBQP-based algorithm, before we combine both ideas in Section 3,
which shows the PBQP algorithm and our adaptations in detail. Section 4
presents our technique to handle register constraints. Afterwards, an evaluation
of our implementation is given in Section 5. Finally, Section 6 describes future
work and Section 7 our conclusions.

2 Related Work

2.1 Register Allocation on SSA Form

Most SSA-based compilers destruct SSA form in their intermediate represen-
tation after the optimization phase and before the code generation. However,
maintaining SSA form provides an advantage for register allocation: Due to the
live-range splits that are induced by the φ-functions, the interference graph of
programs in SSA form is chordal [4,1,13], which means every induced subgraph
that is a cycle, has length three. For chordal graphs the chromatic number is
determined by the size of the largest clique. This means that the interference
graph is k-colorable, if the spiller has reduced the register pressure to at most
k at each program point. Thus, spilling can be decoupled from assignment [13],
which means that the process is not iterated as with Graph Coloring.

To color the interference graph we employ the fact that there is a perfect
elimination order (PEO) for each chordal graph [7]. A PEO defines an ordering
< of nodes of a graph G, such that each successively removed node is simplicial,
which means it forms a clique with all remaining neighbors in G. After spilling,
assigning the registers in reverse PEO ensures that each node is simplicial and
thus has a free register available. Following Hack, we obtain a PEO by a post-
order walk on the dominance tree [11].

44 S. Buchwald, A. Zwinkau, and T. Bersch

In addition to φ-functions, live-range splits may originate from constrained
instructions. For instance, if a value is located in register R1, but the constrained
instruction needs this value in register R2, we can split the live-range of this
value. More generally, we split all live-ranges immediately before the constrained
instruction to allow for unconstrained copying of values into the required registers
and employ copy coalescing to remove the overhead afterwards. With this in
mind, we add affinity edges to the interference graph, which represent that the
incident nodes should be assigned to the same register. Each affinity has assigned
costs, which can be weighted by the execution frequency of the potential copy
instruction. The goal of copy coalescing is to find a coloring that minimizes
the costs of unfulfilled affinities. Bouchez et al. showed that copy coalescing for
chordal graphs is NP-complete [1], so one has to consider the usual tradeoff
between speed and quality.

Grund and Hack [10] use integer linear programming to optimally solve the
copy coalescing problem for programs in SSA form. To keep the solution time
bearable some optimizations are used, but due to its high complexity the ap-
proach is too slow for practical purposes.

In contrast, the recoloring approach from Hack and Goos [12] features a heuris-
tic solution in reasonable time. It improves an existing register assignment by
recoloring the interference graph. Therefore, an initial coloring can be performed
quickly without respect to quality. To achieve an improvement, the algorithm
tries to assign the same color to affinity-related nodes. If changing the color of
a node leads to a conflict with interfering neighbors, the algorithm tries to solve
this conflict by changing the color of the conflicting neighbors. This can cause
conflicts with other neighbors and recursively lead to a series of color changes.
These changes are all done temporarily and will only be accepted, if a valid
recoloring throughout the graph is found.

Another heuristic approach is the preference-guided register assignment in-
troduced by Braun et al. [2]. This approach works in two phases: in the first
phase the register preferences of instructions are determined and in the second
phase registers are assigned in consideration of these preferences. The preferences
serve as implicit copy coalescing, such that no extra phase is needed. Further-
more, the approach does not construct an interference graph. Preference-guided
register assignment is inferior to recoloring in terms of quality, but significantly
faster.

2.2 PBQP-Based Register Allocation

The idea to map register allocation to PBQP was first implemented by Scholz
and Eckstein [16] and features a linear heuristic. Since their implementation does
not employ SSA form, they need to integrate spilling into their algorithm. Hames
and Scholz [14] refine the approach by presenting a new heuristic and a branch-
and-bound approach for optimal solutions. The essential advantage of the PBQP
approach is its flexibility, which makes it suited for irregular architectures.

SSA-Based Register Allocation with PBQP 45

3 PBQP

3.1 PBQP in General

The PBQP is a special case of a Quadratic Assignment Problem and essentially
consists of multiple interdependent choices with associated costs. While the prob-
lem can be expressed formally [8], a graph-based approach is more intuitive. Each
graph node has an associated choice vector, which assigns each alternative its
cost in R. For each node only one alternative can be selected. Interdependencies
are modeled by directed edges with an associated matrix, which assigns a cost
to each combination of alternatives in R∪{∞}. Naturally, a node with n choices
and one with m choices have cost vectors of dimension n and m, respectively. An
edge between them must have a corresponding matrix of size n×m. If we select
the i-th alternative at the source node and the j-th alternative at the target
node, we implicitly select the entry at the i-th row and j-th column of the edge
matrix.

A selection assigns each node one of its alternatives. This also implies a matrix
entry for each edge. The cost of a selection is the sum of all chosen vector and
matrix entries. If this cost is finite, the selection is called a solution. The goal of
the PBQP is to find a solution with minimal cost.

u v

w

⎛
⎝0

0
0

⎞
⎠

⎛
⎝0

0
0

⎞
⎠

⎛
⎝0

0
0

⎞
⎠

⎛
⎝∞ 0 0

0 ∞ 0
0 0 ∞

⎞
⎠

⎛
⎝∞ 0 0

0 ∞ 0
0 0 ∞

⎞
⎠

⎛
⎝∞ 0 0

0 ∞ 0
0 0 ∞

⎞
⎠

Fig. 1. PBQP instance for 3-coloring

Figure 1 shows a PBQP instance for 3-coloring. Each node u, v, and w has
three alternatives that represent its possible colors. Due to the edge matrices,
each solution of the PBQP instance has to select different colors for adjacent
nodes and thus represents a valid 3-coloring. The reduction from 3-coloring
to PBQP renders PBQP NP-complete. Additionally, it shows that finding any
PBQP solution is NP-complete, since each solution is optimal. However, our al-
gorithm can still solve all of our specific problems in linear time as we show in
Section 3.4.

46 S. Buchwald, A. Zwinkau, and T. Bersch

3.2 PBQP Construction

As mentioned above, SSA-based register allocation allows to decouple spilling
and register assignment, such that register assignment is essentially a graph
coloring problem. In Figure 1 we show that PBQP can be considered as a gener-
alization of graph coloring by employing color vectors and interference matrices:

Color vector. The color vector contains one zero cost entry for each possible
color. (

0 0 0
)T

Interference matrix. The matrix costs are set to ∞, if the corresponding col-
ors are equal. Otherwise, the costs are set to zero.⎛

⎝∞ 0 0
0 ∞ 0
0 0 ∞

⎞
⎠

Register allocation can be considered as a graph coloring problem by iden-
tifying registers and colors. In order to integrate copy coalescing into register
assignment, we add affinity edges for all potential copies, which should be pre-
vented.

Affinity matrix. The matrix costs are set to zero if the two corresponding
registers are equal. Otherwise, the costs are set to a positive value that
represents the cost of inserted shuffle code.⎛

⎝0 1 1
1 0 1
1 1 0

⎞
⎠

A PBQP instance is constructed like an interference graph by inspecting the
live-ranges of all values. The values become nodes and get their corresponding
color vectors assigned. For each pair of interfering nodes an interference matrix is
assigned to the edge between them. Likewise, the affinity cost matrix is assigned
to an edge between a pair of nodes, which should get the same register assigned.
If a pair of nodes fulfills both conditions, then the sum of both cost matrices is
assigned. While the copy cannot be avoided in this case, there may still be cost
differences between the register combinations.

3.3 Solving PBQP Instances

Solving the PBQP is done by iteratively reducing an instance to a smaller in-
stance until all interdependencies vanish. Without edges every local optimum is
also globally optimal, so finding an optimal solution is trivial (unless there is
none). By backpropagating the reductions, the selection of the smaller instance
can be extended to a selection of the original PBQP instance. Originally, there
are four reductions [5,9,16]:

SSA-Based Register Allocation with PBQP 47

RE: Independent edges have a cost matrix that can be decomposed into two
vectors u and v, i.e. each matrix entry Cij has costs ui + vj . Such edges
can be removed after adding u and v to the cost vector of the source and
target node, respectively. If this would produce infinite vector costs, the
corresponding alternative (including matrix rows/columns) is deleted.

R1: Nodes of degree one can be removed, after costs are accounted in the
adjacent node.

R2: Nodes of degree two can be removed, after costs are accounted in the
cost matrix of the edge between the two neighbors; if necessary, the edge is
created first.

RN: Nodes of degree three or higher. For a node u of maximum degree we
select a locally minimal alternative, which means we only consider u and its
neighbors. After the alternative is selected, all other alternatives are deleted
and the incident edges are independent, so they can be removed by using
RE.

RE, R1, and R2 are optimal in the sense that they transform the PBQP
instance to a smaller one with equal minimal costs, such that each solution of
the small instance can be extended to a solution of the original instance with
equal costs. For sparse graphs these reductions are very powerful, since they
diminish the problem to its core. If the entire graph can be reduced by these
reductions, then the resulting PBQP selection is optimal. If nodes of degree three
or higher remain, the heuristic RN ensures linear time behavior.

Hames et al. [14] introduced a variant of RN that removes the corresponding
node from the PBQP graph without selecting an alternative. Thus, the decision
is delayed until the backpropagation phase. We will refer to this approach as late
decision. The other approach is early decision, which colors a node during RN.
In this paper we follow both approaches and we will show which one is more
suitable for SSA-based register allocation.

3.4 Adapting the PBQP Solver for SSA-Based Register Allocation

In the context of SSA-based register allocation, coloring can be guaranteed to
succeed, if done in reverse PEO with respect to the interference graph. This

48 S. Buchwald, A. Zwinkau, and T. Bersch

seems to imply that our PBQP solver must assign registers in reverse PEO.
However, we show in the following that this restriction is only necessary for
heuristic reductions. Therefore, choosing a node for heuristic decision must use
the last node of the PEO for early decision and the first node of the PEO for late
decision. This different selection of nodes is needed, because the backpropagation
phase inverts the order of the reduced nodes.

Early application of optimal reductions. There is a conflict between the
necessity to assign registers in reverse PEO and the PBQP strategy to favor
RE, R1, and R2 until only RN is left to apply. Fortunately, we can show that
the application of this reductions preserves the PEO property with Theorem 1
below.

Lemma 1. Let P be a PEO of a graph G = (V, E) and H = (V ′, E′) an induced
subgraph of G, then P |V ′ is a PEO of H.

Proof. For any node v ∈ H let Vv = {u ∈ NG(v) | u > v} be the neighbor nodes
in G behind in P and respectively V ′

v = {u ∈ NH(v) | u > v}. By definition
V ′

v ⊆ Vv. Vv is a clique in G, therefore V ′
v is a clique in H and v is simplicial,

when eliminated according to P |V ′ . �
From Lemma 1 we know, that R1 preserves the PEO, since the resulting graph
is always an induced subgraph. However, R2 may insert a new edge into the
PBQP graph.

Lemma 2. Let P be a PEO of a graph G = (V, E) and v ∈ V a vertex of degree
two with neighbors u, w ∈ V . Further, let H=(V’,E’) be the subgraph induced by
V \ {v}. Then P |V ′ is a PEO of H ′ = (V ′, E′ ∪ {{u, w}}).
Proof. If {u, w} ∈ E this follows directly from Lemma 1, since no new edge is
introduced. In the other case, we assume without loss of generality u < w. Since
{u, w} �∈ E, v is not simplicial and we get u < v. Therefore, the only neighbor
node of u in H behind in P must be v. Within H ′ the node w is the only neighbor
of u behind in the PEO, hence u is simplicial. For the remaining nodes v and w
the lemma follows directly from Lemma 1. �
With Lemma 2 the edge inserted by R2 is proven harmless, so we can derive
the necessary theorem now. Remember that the PEO must be derived from the
interference graph, while our PBQP graph may also include affinity edges.

Theorem 1. Let G = (V, E) be a PBQP graph, i(E) the interference edges in
E, i.e. edges that contain at least one infinite cost entry, P a PEO of (V, i(E))
and H = (V ′, E′) the PBQP graph G after exhaustive application of RE, R1 and
R2. Further, let Ei be the interference edges that are reduced by RE. Then, P |V ′

is a PEO of (V ′, i(E′) ∪ Ei).

Proof. If at least one affinity edge is involved in a reduction, there is no new
interference edge and we can apply Lemma 1. If we consider only interference
edges, Lemma 1 handles R1 and Lemma 2 handles R2. Applying RE for an
interference edge moves the interference constraint into incident nodes. Thus,
we have to consider such edges Ei for the PEO. �

SSA-Based Register Allocation with PBQP 49

U

V

W

Y

(
R0
R1

)

(
R0
R1

)

⎛
⎝R0

R1
R2

⎞
⎠

(∞ 0
0 ∞

)

(∞ 0 0
0 ∞ 0

)

(∞ 0 0
0 ∞ 0

)

(
0 1 1
1 0 1

)

(a) PBQP instance that cannot be reduced
further by RE, R1 or R2

U W

Y

(
R0
R1

) ⎛
⎝R0

R1
R2

⎞
⎠(∞ ∞ 0

∞ ∞ 0

)

(
1 0 1
0 1 1

)

(b) PBQP instance after merging V
into U

Fig. 2. Example of an RM application

Merging PBQP nodes. The PBQP instances constructed for register assign-
ment contain many interference cliques, which cannot be reduced by optimal
reductions. This implies that the quality of the PBQP solution highly depends
on the RN decisions. In this section we present RM, a new PBQP reduction that
is designed to improve the quality of such decisions.

Figure 2a shows a PBQP instance that cannot be further reduced by applica-
tion of RE, R1 or R2. Hence, we have to apply a heuristic reduction. We assume
that the PEO selects U to be the heuristically reduced node. The new reduction
is based on the following observation: If we select an alternative at U , there is
only one alternative at V that yields finite costs. Thus, a selection at U implicitly
selects an alternative at V . However, the affinities of V are not considered during
the reduction of U . The idea of the new reduction is to merge the neighbor V
into U . After the merge, U is also aware of V ’s affinities which may improve the
heuristic decision.

To perform the merge, we apply the RM procedure of Algorithm 1 with argu-
ments v = V and u = U . In line 2 the algorithm chooses w = Y as adjacent node.
We now want to replace the affinity edge (v, w) by an edge (u, w). In lines 4–9
we create a new matrix Δ for the edge (u, w). To construct this matrix we use
the fact that the selection of an alternative i at u also selects an alternative iv at
v. Thus, the i-th row of Δ is the iv-th row of Cuw. For our example this means
that we have to swap the rows for R0 and R1 in order to obtain Δ from Cvw .
Since (u, w) does not exist, we create the edge with the matrix Δ. Afterwards
we delete the old edge (v, w).

50 S. Buchwald, A. Zwinkau, and T. Bersch

Algorithm 1. RM merges the node v into the node u. The notation is adopted
from [16].
Require: a selection at u implies a specific selection at v.
1: procedure RM(v, u)
2: for all w ∈ adj(v) do
3: if w �= u then
4: for i← 1 to |cu | do
5: c← 0
6: if cu(i) �=∞ then
7: iv ← imin(Cuv(i, :) + cv)
8: c← Cvw(iv, :)
9: Δ(i, :)← c

10: Cuw ← Cuw + Δ
11: remove edge (v, w)
12: ReduceI(v)

In the next iteration, the algorithm chooses w = W as adjacent node. Similar
to the previous iteration, we compute the matrix Δ. Since the edge (u, w) exists,
we have to add Δ to the matrix Cuw. After the deletion of (v, w), the node
v has degree one and can be reduced by employing R1. Figure 2b shows the
resulting PBQP instance. Due to the merge the edge (U, W) is independent.
After removing the edge the PBQP instance can be solved by applying R1 and
R2, leading to an optimal solution.

Although RM is an optimal reduction, we only apply it immediately before
a heuristic reduction at a node U . If there is a neighbor V of U that can be
merged into U we apply RM for these two nodes. This process iterates until no
such neighbor is left. In some cases—like our example—the RM allows further
optimal reductions that supersede a heuristic reduction at U . If U still needs a
heuristic reduction, the neighbors of the merged nodes are also considered by
the heuristic and thus can improve the heuristic decision.

The reason for applying RM only immediately before a heuristic decision at a
node u is that in this case each edge is reassigned only once, due to the fact that
the node u (and all incident edges) will be deleted after the merge. Thus, each
edge is considered at most twice: once for reassignment, and once during the
reduction of u. As a result, the overall RM time complexity is in O(mk2) where
m = |E| is the number of edges in the PBQP graph and k is the maximum
number of alternatives at a node. The same argument can be used to show
that the overall RN time complexity is in O(mk2). Together with the existing
optimal reductions this leads to an overall time complexity in O(nk3 + mk2)
where n = |V | denotes the number of nodes in the PBQP graph [5,16]. Since k
is the constant number of registers in our case, the solving algorithm has linear
time complexity.

Similar to the other PBQP reductions, RM modifies the PBQP graph and
thus we have to ensure that our PEO is still valid for the resulting graph.

SSA-Based Register Allocation with PBQP 51

Theorem 2. Let G = (V, E) be a PBQP graph, i(E) the interference edges in
E, P a PEO of (V, i(E)) and H = (V ′, E′) the PBQP graph G after exhaustive
application of RM and the reduction of the greatest node u with respect to P .
Further, let Ei be the interference edges that are reduced by RE. Then, P |V ′ is
a PEO of (V ′, i(E′) ∪ Ei).

Proof. If u is reduced by RN or R1 this follows from Lemma 1. In the R2 case,
let v be the last node whose merge changed u’s degree. The theorem follows from
applying Lemma 1 for u and all nodes that are merged before v and Lemma 2
for v and all nodes that are merged after v. Independent edges will be handled
as in Theorem 1. �

4 Register Constraints

For SSA-based register allocation, naïve handling of register constraints can
inhibit a coloring of the interference graph. For example, Figure 3a shows an
instruction instr with three operands and two results. The operands I1 and
I2 are live before the instruction, but are not used afterwards, so they die at
the instruction. In constrast, operand I3 is used afterwards (as indicated by the
dashed live-range) and interferes with both results. We assume that a, b and c are
the only available registers. The values are constrained to the annotated registers,
for instance, the operand I1 is constrained to registers {a, b}. However, a previous
instruction may impose the constraint {c} on I1. Since both constraints are
contradictory, there is no coloring of the interference graph. To prevent such
situations, Hack splits all live-ranges before the constrained instruction [11]. For
our example, this allows to fulfill the constraints by inserting a copy from register
c to register a or b.

The next problem is that a PEO ensures a k-coloring only for unconstrained
nodes. For example, we can derive the coloring order I1, I2, I3, O1, O2 from a
PEO of Figure 3a, but assigning c to I2 inhibits a valid register assignment. To
tackle this issue we employ the fact that if we obtain the PEO by a post-order
walk of the dominance tree, the values live before and immediately after the
constrained instruction are colored first. Thus, if we provide a coloring for these
nodes, we can use our PEO to color the remaining nodes. Hack showed [11] how
such a coloring can be found in the case of simple constraints, i.e. if each value
is either constrained to one register or unconstrained. In case of a value with
a non-simple constraint, the interference cliques before and after the statement
are colored separately and values with non-simple constraints are pinned to the
chosen color. This may increase the register demand, but ensures a valid register
allocation.

Simple constraints can easily be integrated into the PBQP solving algorithm,
since we only have to ensure that operands which are live after the constrained
instruction are colored first. However, pinning the values to a single register is
very restrictive. In the following, we assume that the spiller enables a coloring
by inserting possibly necessary copies of operands and present an algorithm that
can deal with hierarchic constraints.

52 S. Buchwald, A. Zwinkau, and T. Bersch

I1 I2 I3

instr

O1 O2

{a, b} {a, b, c} {a, b, c}

{a} {b}
(a) Constrained instruction

I1 I2 I3

instr

O1 O2

{a} {b} {a, b, c}

{a} {b}
(b) Constraints after transferring
result constraints to operands

I1 I2 I3

instr

O1 O2

{a, b, c} {a, b, c} {c}

{a} {b}
(c) Constraints after relaxation of
operand constraints

I1 I2 I3

instr

O1 O2

{a, b} {a, b, c} {c}

{a} {b}
(d) Final constraints for PBQP
construction

Fig. 3. Handling of constrained instructions

Definition 1 (hierarchic constraints). Let C be a set of register constraints.
C is hierarchic if for all constraints C1 ∈ C and C2 ∈ C holds:

C1 ∩ C2 �= ∅ ⇒ C1 ⊆ C2 ∨ C2 ⊆ C1.

This definition excludes “partially overlapping” constraints, like C1 = {a, b} and
C2 = {b, c}. As a result, the constraints form a tree with respect to strict
inclusion, which we call constraint hierarchy. For instance, the constraint hi-
erarchy for the general purpose registers of the IA-32 architecture consists of
Call = {A, B, C, D, SI, DI}, a subset Cs = {A, B, C, D} for instructions on 8-
or 16-bit subregisters, and all constraints that consist of a single register.

For hierarchic constraints we obtain a valid register assignment of an inter-
ference clique by successively coloring a most constrained node. However, for
a constrained instruction we also have to ensure that after coloring the values,

SSA-Based Register Allocation with PBQP 53

Algorithm 2. Restricting constraints of input operands.
1: procedure restrictInputs(Ins,Outs)
2: C ← Ins ∪ Outs
3: while C �= ∅ do
4: Cmin ← getMinimalElement(C)
5: Cpartner ← getMinimalPartner(C,Cmin)
6: C ← C \ {Cmin, Cpartner}
7: if Cpartner from Ins then
8: assign Cmin to partner value

which are live before an instruction instr, we still can color the values live after
instr. In Figure 3a O1 and O2 are constrained to a and b, respectively, and thus
c must be assigned to I3. Unfortunately, c may also be chosen for I2 according
to its constraints, if it is colored before I3. To avoid such situations, we want
to modify the constraints in a way that forces the first two operands to use the
same registers as the results. This is done in three steps:

1. Add unconstrained pseudo operands/results until the register pressure equals
the number of available registers.

2. Match results and dying operands to assign result constraints to the corre-
sponding operand, if they are more restrictive.

3. Try to relax the introduced constraints of the previous step, to enable more
affinities to be fulfilled.

The first step ensures that the number of dying operands and the number of
results are equal, which is required by the second step. For our example in
Figure 3a we have nothing to do, since the register pressure before and after
instr is already equal to the number of available registers.

4.1 Restricting Operands

We employ Algorithm 2 for the second step. The algorithm has two parameters:
A multiset of input constraints and a multiset of output constraints. It iteratively
pairs an input constraint with an output constraint. For this pairing we select
a minimal constraint (with respect to inclusion) Cmin. Then we try to find a
minimal partner Cpartner , which is a constraint of the other parameter such that
Cmin ⊆ Cpartner . If Cmin is an output constraint we transfer the constraint to
the partner. It is not necessary to restrict output constraints, since the inputs
are colored first and restrictions propagate from there.

For our example in Figure 3a the algorithm input is {I1, I2} and {O1, O2}.
The constraints of O1 and O2 are both minimal. We assume that the function
getMinimalElement chooses O1 and thus Cmin = {a}. Since O1 is a result,
the corresponding partner must be an operand. We select the only minimal
partner I1 which leads to Cpartner = {a, b}. We now have our first match (I1, O1)
and remove both values from the value sets. Since the result constraint is more
restrictive, we assign this constraint to the operand I1. In the next iteration we

54 S. Buchwald, A. Zwinkau, and T. Bersch

match I2 and O2 and restrict I2 to {b}. The resulting constraints are shown in
Figure 3b. Due to the introduced restrictions, the dying operands have to use
the same registers as the results.

In the following, we prove that getMinimalPartner always finds a minimal
partner. Furthermore, we show that Algorithm 2 cannot restrict the operands
constraints in a way that renders a coloring of the values, which are live before
the instruction, impossible.

Theorem 3. Let G = (V = I ∪ O, E) a bipartite graph with I = {I1, . . . , In}
and O = {O1, . . . , On}. Further, let R = {R1, . . . , Rn} be a set of colors (reg-
isters) and constr : V → P(R) a function that assigns each node its feasible
colors. Moreover, let c : v �→ Rv ∈ constr(v) be a coloring of V that assigns each
color to exactly one element of I and one element of O. Let M ⊆ E be a perfect
bipartite matching of G such that

{u, v} ∈ M ⇒ c(u) = c(v).

Then, Algorithm 2 finds a perfect bipartite matching M ′ such that there is a
coloring c′ : v �→ R′

v ∈ constr(v) that assigns each color to exactly one element
of I and one element of O with

{u, v} ∈ M ′ ⇒ c′(u) = c′(v).

Proof. We prove the theorem by induction on n. For n = 1 there is only one
perfect bipartite matching and since c(I1) = c(O1) ∈ (constr(I1) ∩ constr(O1))
we have constr(I1) ⊆ constr(O1) or constr(O1) ⊆ constr(I1). Thus, Algorithm 2
finds the perfect bipartite matching which can be colored by c′ = c.

For n > 1, without loss of generality, we can rename the nodes such that
∀i : c(Ii) = c(Oi) and Algorithm 2 selects O1 as node with minimal constraints.
If the algorithm selects I1 to be the minimal partner, we can remove I1 and O1
from the graph, the color c(I1) from the set of colors R and apply the induction
assumption.

In case the algorithm does not select I1 as minimal partner let Ip be the
minimal partner. Our goal is to show that there is a coloring for

M ′′ = (M \ {{I1, O1}, {Ip, Op}}) ∪ {{I1, Op}, {Ip, O1}}
and then apply the induction assumption. To obtain such a coloring we consider
the corresponding constraints. Since O1 has minimal constraints and c(I1) =
c(O1) ∈ (constr(I1) ∩ constr(O1)), we get constr(O1) ⊆ constr(I1). Further-
more, we know that Ip is the minimal partner of O1 which means constr(O1) ⊆
constr(Ip) by definition. Thus, we get ∅ �= constr(O1) ⊆ (constr(I1)∩constr(Ip))
and since Ip is the minimal partner of O1, we get constr(Ip) ⊆ constr(I1). Using
these relations, we obtain

c(O1) ∈ constr(O1) ⊆ constr(Ip)

c(Op) = c(Ip) ∈ constr(Ip) ⊆ constr(I1).

SSA-Based Register Allocation with PBQP 55

Thus, c′′ = c[I1 �→ c(Op), Ip �→ c(O1)] is a coloring for M ′′. We now remove
{Ip, O1} from the graph and c′′(O1) from the set of colors R and apply the
induction assumption, resulting in a matching M ′′′ and a coloring c′′′. Since c′′′

does not use the color c′′(O1), we can extend the matching M ′′′ to

M ′ = M ′′′ ∪ {Ip, O1}

and the corresponding coloring c′′′ to

c′(v) =

{
c′′(O1) , v ∈ {Ip, O1}
c′′′(v) , otherwise

so {u, v} ∈ M ′ ⇒ c′(u) = c′(v) holds. �

4.2 Relaxing Constraints

The restriction of the operands ensures a feasible coloring. However, some of the
operands may now be more restricted than necessary, so the third step relaxes
their constraints again. For instance, in Figure 3b the operands I1 and I2 are
pinned to register a and b, respectively, but assigning register b to I1 and register
a to I2 is also feasible. To permit this additional solution, the constraints can
be relaxed to {a, b} for both operands. In the following, we provide some rules
that modify the constraint hierarchy of the input operands in order to relax
the previously restricted constraints. We introduce two predicates to determine
whether a rule is applicable or not.

Dying. A node is dying if the live-range of the operand ends at the instruction.
Its assigned register is available for result values.

Saturated. A constraint C is saturated, if it contains as many registers |C| as
there are nodes, which must get one of those registers assigned |{I ∈ I |
CI ⊆ C}|. This means, every register in C will be assigned in the end.

Figure 4 shows the transformation rules for constraint hierarchies. The rules are
applied greedily from left to right. A constraint Ci is underlined if it is saturated.
Each constraint has a set of dying nodes Ii and a set of non-dying nodes Ij .

The rule shown in Figure 4a combines two saturated constraints that contain
only dying nodes. Applying this rule to the constraint hierarchy of our example
in Figure 3b lifts the constraints of I1 and I2 to {a, b}. Since both values die, it
is not important which one is assigned to register a and which one to register b.

We now apply the rule of Figure 4b. This rule removes registers from a node
constraint if we know that these registers are occupied by other nodes, i.e. the
constraints consisting of these registers are saturated. Reconsidering the exam-
ple shown in Figure 4d, the nodes I1 and I2 can only be assigned to register a
and b. Thus, I3 cannot be assigned to one of these registers and we remove them
from the constraint of I3. The transformation removes all nodes from the upper
constraint. Usually, we delete such an empty node after reconnecting all children

56 S. Buchwald, A. Zwinkau, and T. Bersch

I1 I2
C1 C2

I1 ∪ I2
C1 ∪ C2

⇒

(a) Merging two saturated con-
straints consisting of dying nodes

I1 ∪ I2
C1

C2

I1

I2

C1

C2 C1 \ C2

⇒

(b) Restricting non-dying nodes due
to a saturated constraint

I1

I2 ∪ I3

C1

C2

I1 ∪ I2

I3

C1

C2

⇒

(c) Moving dying nodes along
the constraint hierarchy

{I3}

{I1} {I2}

{a, b, c}

{a} {b}

{I3}

{I1, I2}

{a, b, c}

{a, b}

⇒
4a

{I1, I2} {I3}

{a, b, c}

{a, b} {c}

⇒
4b

{I1, I2}

{I3}

{a, b, c}

{c}

⇒
4c

(d) Application of the transformation rules to relax the operand constraints
shown in Figure 3b

Fig. 4. Rules to relax constraints and a usage example

to its parent, because an empty node serves no purpose and the removal may
enable further rule applications. However, since {a, b, c} is the root of our tree—
holding only unconstrained nodes—we keep it.

Since we want to relax the constraints of dying nodes as much as possible, the
rule shown in Figure 4c moves dying nodes upwards in the constraint hierarchy.
This is only allowed, if the constraint C1 does not contain non-dying nodes. For
our example of Figure 4d we relax the constraints of I1 and I2 further to {a, b, c}.
This would be disallowed without the application of 4b, because a or b could
then be assigned to I3, which would render a coloring of the results impossible.

SSA-Based Register Allocation with PBQP 57

4.3 Obtaining a Coloring Order

After exhaustive application of the transformation rules, we obtain an ordering
of the constraints by a post-order traversal of the constraint hierarchy, so more
constrained nodes are colored first. For example, in Figure 4d the node I3 must
be colored first due to this order. Within each constraint of the hierarchy, the
associated values are further ordered with respect to a post-order traversal over
the original constraint hierarchy. The second traversal ensures that “over-relaxed”
values, i.e. values with a constraint that is less restrictive than their original
constraint, are colored first. For our example in Figure 4d this means that we
have to color I1 before I2, although their relaxed constraints are equal. The final
node order is I3, I1, I2. For the PBQP, we intersect the original (Figure 3a)
and the relaxed constraints (Figure 3c); resulting in the constraints shown in
Figure 3d. We now have an order to color the values live immediately before the
constrained instruction. Likewise, we obtain an order for the results by coloring
the more constrained values first. Finally, we obtain a coloring order for the
whole PBQP graph by employing the PEO for the remaining (unconstrained)
nodes. This order ensures that our PBQP solver finds a register assignment even
in presence of constrained instructions.

5 Evaluation

In this section we evaluate the impact of our adaptations. First, the late decision
is compared to early decision making. Also, we investigate the effects of RM.
Finally, our approach is compared to the current libFirm allocator in terms of
speed and result quality.

5.1 Early vs. Late Decision

As mentioned in Section 3.3 we implemented early decision as well as late deci-
sion. We evaluated both approaches using the C programs of the SPEC CINT2000
benchmark suite. The programs compiled with late decision do not reach the
performance of the programs compiled with early decision for any benchmark,
showing a slowdown of 3.9% on average. Especially the 253.perlbmk benchmark
performs nearly 20% slower.

We think that the quality gap stems from the different handling of affinities.
An early decision takes account of the surrounding affinity costs and propagates
them during the reduction. For a late decision a node and incident affinity edges
are removed from the PBQP graph first; then the decisions at adjacent nodes
are made without accounting the affinity costs. When the late decision is made,
the affinities may not be fulfilled due to decisions at interference neighbors that
were not aware of these affinities.

5.2 Effects of RM

We added RM to our PBQP solver and Table 1 shows that 3.4% of the PBQP
reductions during a SPEC compilation are RM. The number of nodes, remaining

58 S. Buchwald, A. Zwinkau, and T. Bersch

Table 1. Percentages of reduction types

RM disabled RM enabled

Reduction Applications Ratio Applications Ratio

R0 2,047,038 — 2,013,003 —
RE 126,002 — 33,759 —
R1 106,828 13.9% 94,529 11.9%
R2 363,221 47.2% 382,705 48.0%
RN 298,928 38.9% 292,872 36.7%
RM 0.0% 26,850 3.4%

after the graph is completely reduced, is given in the R0 row, but technically
these nodes are not “reduced” by the solver, so they are excluded from the ratio
calculation. RE is also excluded, since it reduces edges instead of nodes. The
heuristic RN makes up 36.7% of the reductions, so these decisions are significant.
The number of independent edge reductions decreases to nearly a fourth in
total, which suggests that a significant number of RE stem from nodes, whose
assignment is determined by a heuristic reduction of a neighbor. In case of RM,
those edges are “redirected” to this neighbor instead. Another effect is that the
number of heuristic decisions decreases by 2%. This reflects nodes that can be
optimally reduced after merging the neighbors into them. Altogether, the costs
of the PBQP solutions decreased by nearly 1% on average, which shows that
RM successfully improved the heuristic decisions.

5.3 Speed Evaluation

To evaluate the speed of the compilation process with PBQP-based copy co-
alescing, we compare our approach to the recoloring approach [12]. Both ap-
proaches are implemented within the libFirm compiler backend, so all other
optimizations are identical. The SPEC CINT2000 programs ran on an 1.60GHz
Intel Atom 330 processor on top of an Ubuntu 10.04.1 system. We timed the rele-
vant phases within both register allocators and compare the total time taken for
a compilation of all benchmark programs. The recoloring approach uses 11.6 sec-
onds for coloring and 27.3 seconds for copy coalescing, which is 38.9 seconds in
total. In contrast, the PBQP approach integrates copy coalescing into the col-
oring, so the coloring time equals the total time. Here, the total time amounts
to 31.5 seconds, which means it takes 7.4 seconds less. Effectively, register as-
signment and copy coalescing are 19% faster when using the PBQP approach
instead of recoloring.

5.4 Quality Evaluation

To evaluate the quality of our approach, we compare the best execution time
out of five runs of the SPEC CPU2000 benchmark programs with the recoloring
approach. The results in Table 2 show a slight improvement of 0.1% on average.

SSA-Based Register Allocation with PBQP 59

Table 2. Comparison of execution time in seconds with recoloring and PBQP

Benchmark Recoloring PBQP Ratio

164.gzip 345 350 101.4%
175.vpr 446 444 99.7%
176.gcc 179 179 99.8%
181.mcf 336 335 99.6%
186.crafty 233 231 99.4%
197.parser 468 467 99.7%
253.perlbmk 355 354 99.8%
254.gap 252 253 100.4%
255.vortex 417 418 100.1%
256.bzip2 374 371 99.4%
300.twolf 684 680 99.4%

Average 99.9%

Table 3. Dynamic copy instructions in a SPEC run (in billions)

PBQP Recoloring Ratio

Benchmark Instr. Swaps Copies Instr. Swaps Copies Swaps Copies

164.gzip 332 3.14% 0.71% 326 2.01% 0.19% 156.2% 374.7%
175.vpr 202 4.38% 0.29% 201 4.32% 0.25% 101.4% 113.8%
176.gcc 165 4.20% 0.30% 165 3.95% 0.28% 106.4% 108.9%
181.mcf 50 4.22% 0.00% 50 4.72% 0.00% 89.4% 1047207.5%
186.crafty 208 8.14% 0.56% 209 8.36% 0.64% 97.4% 87.7%
197.parser 365 4.13% 0.56% 366 4.48% 0.28% 92.2% 198.5%
253.perlbmk 396 4.64% 0.28% 408 5.97% 0.14% 77.7% 202.1%
254.gap 259 7.02% 0.08% 259 6.86% 0.40% 102.4% 20.1%
255.vortex 379 3.08% 0.53% 377 3.12% 0.16% 98.9% 339.2%
256.bzip2 295 6.30% 0.14% 298 6.15% 0.93% 102.4% 14.9%
300.twolf 306 4.80% 0.90% 306 4.33% 1.30% 110.6% 69.1%

Average 269 4.91% 0.40% 269 4.93% 0.42% 99.6% 95.2%

In addition, we assess the quality of our copy minimization approach by count-
ing the inserted copies due to unfulfilled register affinities. We instrumented the
Valgrind tool [15] to count these instructions during a SPEC run. Despite dy-
namic measuring, the results in Table 3 are static, because the input of the
benchmark programs is static. Since the number of instructions varies between
programs, we examine the percentage of copies. We observe that nearly 5% of the
executed instructions are swaps and around 0.4% are copies on average. Because
of the small number of copies a difference seems much higher, which results in
the seemingly dramatic increase of 1047208% swaps for 181.mcf. On average the
percentages decrease by 0.4% and 4.8%, respectively.

60 S. Buchwald, A. Zwinkau, and T. Bersch

6 Future Work

Some architectures feature irregularities which are not considered in the context
of SSA-based register allocation. The PBQP has been successfully used to model
a wide range of these irregularities by appropriate cost matrices [16]. While the
modelling can be adopted for SSA-based register assignment, guaranteeing a
polynomial time solution is still an open problem.

7 Conclusion

This work combines SSA-based with PBQP-based register allocation and in-
tegrates copy coalescing into the assignment process. We introduced a novel
PBQP reduction, which improves the quality of the heuristic decisions by merg-
ing nodes. Additionally, we presented a technique to handle hierarchic register
constraints, which enables a wider range of options within the PBQP. Our im-
plementation achieves an improvement over the SSA-based recoloring approach.
On average, the relative number of swap and copy instructions for the SPEC
CINT2000 benchmark was reduced to 99.6% and 95.2%, respectively, while tak-
ing 19% less time for assignment and coalescing.

References

1. Bouchez, F., Darte, A., Rastello, F.: On the complexity of register coalescing. In:
CGO 2007: Proceedings of the International Symposium on Code Generation and
Optimization, pp. 102–114 (2007)

2. Braun, M., Mallon, C., Hack, S.: Preference-guided register assignment. In: Gupta,
R. (ed.) CC 2010. LNCS, vol. 6011, pp. 205–223. Springer, Heidelberg (2010)

3. Briggs, P., Cooper, K.D., Torczon, L.: Improvements to graph coloring register
allocation. ACM Trans. Program. Lang. Syst. 16(3), 428–455 (1994)

4. Brisk, P., Dabiri, F., Macbeth, J., Sarrafzadeh, M.: Polynomial time graph coloring
register allocation. In: 14th International Workshop on Logic and Synthesis. ACM
Press, New York (2005)

5. Buchwald, S., Zwinkau, A.: Instruction selection by graph transformation. In: Pro-
ceedings of the 2010 International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, CASES 2010, pp. 31–40. ACM, New York (2010)

6. Chaitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, M.E., Mark-
stein, P.W.: Register allocation via coloring. Computer Languages 6(1), 47–57
(1981)

7. Dirac, G.: On rigid circuit graphs. Abhandlungen aus dem Mathematischen Semi-
nar der Universität Hamburg 25, 71–76 (1961)

8. Ebner, D., Brandner, F., Scholz, B., Krall, A., Wiedermann, P., Kadlec, A.: Gener-
alized instruction selection using SSA-graphs. In: LCTES 2008: Proceedings of the
2008 ACM SIGPLAN-SIGBED Conference on Languages, Compilers, and Tools
for Embedded Systems, pp. 31–40. ACM, New York (2008)

9. Eckstein, E., König, O., Scholz, B.: Code instruction selection based on SSA-graphs.
In: Anshelevich, E. (ed.) SCOPES 2003. LNCS, vol. 2826, pp. 49–65. Springer,
Heidelberg (2003)

SSA-Based Register Allocation with PBQP 61

10. Grund, D., Hack, S.: A fast cutting-plane algorithm for optimal coalescing. In:
Adsul, B., Vetta, A. (eds.) CC 2007. LNCS, vol. 4420, pp. 111–125. Springer,
Heidelberg (2007)

11. Hack, S.: Register allocation for programs in SSA form. Ph.D. thesis, Universität
Karlsruhe (October 2007)

12. Hack, S., Goos, G.: Copy coalescing by graph recoloring. In: PLDI 2008: Proceed-
ings of the 2008 ACM SIGPLAN Conference on Programming Language Design
and Implementation (2008)

13. Hack, S., Grund, D., Goos, G.: Register allocation for programs in SSA-form. In:
Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 247–262. Springer,
Heidelberg (2006)

14. Hames, L., Scholz, B.: Nearly optimal register allocation with PBQP. In: Light-
foot, D.E., Ren, X.-M. (eds.) JMLC 2006. LNCS, vol. 4228, pp. 346–361. Springer,
Heidelberg (2006)

15. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. SIGPLAN Not. 42(6), 89–100 (2007)

16. Scholz, B., Eckstein, E.: Register allocation for irregular architectures. In: LCTES-
SCOPES, pp. 139–148 (2002)

Probabilistic Points-to Analysis for Java

Qiang Sun1, Jianjun Zhao1,2, and Yuting Chen2

1 Department of Computer Science and Engineering
2 School of Software

Shanghai Jiao Tong University
800 Dongchuan Road, Shanghai 200240, China

Abstract. Probabilistic points-to analysis is an analysis technique for defining
the probabilities on the points-to relations in programs. It provides the compiler
with some optimization chances such as speculative dead store elimination, spec-
ulative redundancy elimination, and speculative code scheduling. Although sev-
eral static probabilistic points-to analysis techniques have been developed for C
language, they cannot be applied directly to Java because they do not handle the
classes, objects, inheritances and invocations of virtual methods. In this paper,
we propose a context-insensitive and flow-sensitive probabilistic points-to anal-
ysis for Java (JPPA) for statically predicting the probability of points-to relations
at all program points (i.e., points before or after statements) of a Java program.
JPPA first constructs an interprocedural control flow graph (ICFG) for a Java pro-
gram, whose edges are labeled with the probabilities calculated by an algorithm
based on a static branch prediction approach, and then calculates the probabilistic
points-to relations of the program based upon the ICFG. We have also developed
a tool called Lukewarm to support JPPA and conducted an experiment to com-
pare JPPA with a traditional context-insensitive and flow-sensitive points-to anal-
ysis approach. The experimental results show that JPPA is a precise and effective
probabilistic points-to analysis technique for Java.

Keywords: points-to analysis, probability, Java.

1 Introduction

Points-to analysis is an analysis technique which is widely used in compiler opti-
mization and software engineering [1,2]. The goal of points-to analysis is to compute
points-to relations between variables of pointer types and their allocation sites. Context-
sensitivity and flow-sensitivity are two major aspects of points-to analysis for improv-
ing the precision of the analysis [3]. While the context-sensitive points-to analysis [4,5]
distinguishes the different contexts in which a method is invoked and then analyzes the
method individually for each context, the flow-sensitive points-to analysis [6,7] takes
into account the control flows inside a program or a method, and computes the solutions
(i.e., points-to relations) for the program points on the control flow of each method. Es-
pecially, a flow-sensitive points-to analysis helps deduce that for each points-to relation
whether it definitely exists or maybe exists at any program point.

Probabilistic points-to analysis [8], which defines the probability of each points-to
relation, provides the compiler with some optimization chances. With the probabilistic

J. Knoop (Ed.): CC 2011, LNCS 6601, pp. 62–81, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Probabilistic Points-to Analysis for Java 63

points-to relations, a compiler may perform speculative dead store elimination, redun-
dancy elimination, and code scheduling [9,10,11]. For example, by speculation a com-
piler with a recovery mechanism may characterize a variable as redundant if its points-to
relation is of high probability of the same as those of other variables. A probabilistic
points-to analysis usually follows two steps to compute, during the executions of a pro-
gram, the quantitative information of the likelihood a points-to relation maybe holds.
First, all the execution paths and their frequencies are collected at runtime. Second, the
points-to relations are deduced and the probabilities of points-to relations are computed
according to the path frequencies. However, a challenge about decreasing the costs of
computation of the probabilities in a large-scale program still exists because a program
may run hundreds of times and a large amount of time and memory can be consumed.

One possible solution to above problem is to conduct static probabilistic points-to
analyses of programs. Although several static probabilistic points-to analysis techniques
have been developed for C language, they cannot be applied directly to the analysis
of Java programs due to the differences between Java and C languages. For example,
the techniques for analyzing C function pointers usually compute the points-to set for
each function pointer and the probabilities of the elements inside. We could not use
these techniques to analyze the invocation of Java virtual methods, while a Java virtual
method is invoked by an object, and an analysis of the invocation of the method re-
quires the determination of the receiver and the exploration of the distributions over the
points-to set for the receiver.

In this paper, we propose a context-insensitive and flow-sensitive probabilistic
points-to analysis for Java (JPPA) for statically predicting the probability of each
points-to relation at each program point of a Java program. JPPA first constructs a call
graph through the traditional static analysis [12,13,14], and then builds an intraproce-
dural control flow graph (CFG) with probabilities for each method in the call graph.
The probabilities can be computed according to the result of a static branch prediction.
After that JPPA combines the call graph and CFGs to construct an interprocedural CFG
(ICFG), and then carries out the data-flow analysis on the ICFG for constructing the
probabilistic points-to graph at each program point. In JPPA, a points-to relation is not
confined to yes/no but is associated with a real number representing the probability. We
have also implemented JPPA with a tool called Lukewarm and conducted an experiment
to evaluate the effectiveness of JPPA. The experimental results show that, for our bench-
mark programs, JPPA provides a cost-effective manner in computing the probabilistic
points-to relations in Java programs.

This paper makes the following contributions:

– Abstraction. We define the probabilities on the edges of ICFG, and these probabil-
ities, which share one destination node, forms a distribution. We also use a discrete
probability distribution to represent a points-to set with probabilities.

– Analysis Approach. We develop a probabilistic points-to analysis technique for
Java named JPPA, which takes into account the object-oriented features such as
inheritance and polymorphism. Especially, in order to improve the performance
of analysis, JPPA computes a partial probabilistic points-to graph before parameter

64 Q. Sun, J. Zhao, and Y. Chen

1 public class Shape {
2 public Double area = null;
3 public Double set(Double s) {
4 this.area = s;
5 return s;
6 }
7 public static void main(String args[]) {
8 int a = randomInt();
9 int b = randomInt();
10 Shape p = null;
11 if(a>0 && b>0) {
12 p = new Circle(); //o1
13 }
14 else {
15 p = new Square(); //o2
16 }
17 Double q =

new Double(Math.abs(a*b)); //o3
18 Double r = p.set(q);
19 System.out.println(p.area);
20 }
21 private static double randomInt() {
22 return Math.floor(Math.

random()*11-5);
23 }
24 }

25 public class Circle extends Shape {
26 public Double area = null;
27 public Double radius = null;
28 public Double set(Double s) {
29 super.area = new Double(0); //o4
30 this.area = s;
31 this.radius =

new Double(Math.sqrt(s/3.14)); //o5
32 return this.radius;
33 }
34 }

35 public class Square extends Shape {
36 public Double sideLength = null;
37 public Double set(Double s) {
38 this.area = s;
39 this.sideLength =

new Double(Math.sqrt(s)); //o6
40 return this.sideLength;
41 }
42 }

Fig. 1. A sample Java program

passing; in order to improve the precision of analysis, JPPA computes the probabil-
ities over the edges of ICFG dynamically. We have also developed a tool to support
the JPPA approach.

– Analysis Results. We have conducted an experiment to evaluate JPPA, and the
experimental results show that our analysis can be used to compute precisely the
probabilistic points-to information in Java programs.

2 Example

We next present an example to illustrate how our static probabilistic points-to anal-
ysis works. Fig. 1 shows a Java program with three classes: Shape, Circle, and
Square. Class Shape declares shapes and their sizes, and classes Circle and Square
extend Shape with two fields radius and sideLength respectively. The method
randomRealNum() in class Shape randomly generates values to simulate the inputs
from the real world. The main() method in class Shape receives an input and then
creates a shape (either a circle or a square) and prints its field of area.

Suppose randomRealNum() generates the real numbers complying to the uniform
distribution in the range [−5, +5]. The probabilities of the if-else branches (see lines
11-16) in the main() method can be easily referred: the if branch is of a probability
of 0.25 and the else branch a probability of 0.75. Suppose the objects created in the
sample program in Fig. 1 are oi (i=1..6).

Our JPPA analysis consists of four steps. At the beginning, a call graph is constructed
through the traditional static analysis [12,13,14] in order to remove the unreachable
methods to reduce the analyzing costs. Although the call graph built by static anal-
ysis may not be precise enough as it still contains some unreachable methods, JPPA
can refine it based on the points-to information. The points-to set {o1, o2} of variable
p at line 18 can be computed through analyzing the statements at lines 12 and 15.

Probabilistic Points-to Analysis for Java 65

Circle.set

1.0

1.0

1.0

29: super.area = new
Double(0);

30: this.area = s;

31: this.radius =
new

Double(Math.sqrt(s/
3.14));

32: return
this.radius;

Square.set

1.0

1.0

38: this.area = s;

39: this.sideLength =
new

Double(Math.sqrt(s));

40: return
this.sideLength;

18: Double r =
p.set(q);

main

1.0

1.0 1.0

0.250.75

10: Shape p = null;

11: if(a>0 && b>0)

12: p = new
Round();

15: p = new
Square();

17: Double q = new
Double(Math.abs(a*b));

1.0

19: System.out.println
(p.area);

Return

1.0

1.0

(a) The CFGs for methods main, Circle.set and Square.set

(b) The ICFG for the whole sample program

Fig. 2. The CFGs and ICFG of the sample program in Fig. 1

66 Q. Sun, J. Zhao, and Y. Chen

0.25 0.75

Fig. 3. The probabilistic points-to analysis for method main (part I)

ra
di

usShape.a
rea

1.0
areaShap

e.a
rea

1.0
areaShap

e.a
rea

1.0

sid
eL

en
gth

1.0
area

area

Fig. 4. The probabilistic points-to analysis for methods Circle.set and Square.set

Through identifying the classes of o1 and o2, both the methods Circle.set() and
Square.set() can be invoked at line 18. Therefore, the analyzed methods includes
main(), Circle.set(), and Square.set().

The second step is to construct a CFG for each method in the call graph. Fig. 2 (a)
shows the CFGs for methods main(), Circle.set() and Square.set(), in which
each node in the CFG represents a statement and each edge is labeled with a real number
for the predecessor-dependent probability (see Section 3). Since the traverse of node 15
must be preceded by the traverse of node 11, the probability of the edge from node
11 to node 15 is 1.0; a traverse of node 17 may succeed the traverse of node either 12
or 15 and the probabilities of the if-else branches are 0.75 and 0.25, and therefore the
probabilities of the edges from nodes 15 and 12 to 17 are 0.75 and 0.25, respectively.

The third step is to combine the CFGs of the methods of interests into an interproce-
dural CFG (ICFG) according to the call graph. Fig. 2 (b) shows the ICFG of the sample
program with the probabilities on the edges. Note that we add some new nodes to the
ICFG in order to simplify our discussion. Node 18’ copies the node 18 in order to re-
ceive the return values of the method invocation Circle.set() or Square.set().
For each method, an entry node and a return node are added to assign the parameters
and return values, respectively. The probabilities on the interprocedural return edges are
initialized by 0.0 at first and then adjusted in the final step.

Probabilistic Points-to Analysis for Java 67

ra
di

us

Shap
e.a

rea

1.0 are
a

sideLength

1.0
area

ra
di

us

Shap
e.a

rea

1.0 are
a

sideLength

1.0

area

Fig. 5. The probabilistic points-to analysis for method main (part II)

The final step is to analyze each node in the ICFG to compute the probabilistic points-
to graph. Fig. 3 illustrates the probabilistic points-to analysis of the statements between
lines 11 and 17. The probabilistic points-to graphs (Fig. 3 (a) and Fig. 3 (b)) are cal-
culated after analyzing the statements at lines 12 and 15, respectively. Before line 17,
Fig. 3 (c) is calculated by merging the two graphs in Fig. 3 (a) and 3 (b). After analyzing
the statement at line 17, the graph in Fig. 3 (d) is generated. Because of the analysis in
the first step, either Circle.set() or Square.set() can be invoked in line 18. The
probabilities on the interprocedural edges are adjusted according to the points-to prob-
abilities of the receiver objects. The variable p points to the objects o1 and o2 with the
probabilities 0.25 and 0.75 respectively. The probabilities of the edges from the return
nodes of methods Circle.set() and Square.set() to the node 18’ are adjusted by
0.25 and 0.75. A detailed algorithm about the calculation of the probabilistic points-to
graphs is given in Section 3.

Since the field area is overloaded in the class Circle, the field declared in class
Shape is marked as Shape.area. The problem does not occur in class Square because
it inherits area from class Shape. Fig. 4 manifests the analysis of Circle.set() and
Square.set(), and Fig. 5 shows the analysis from the end of method call to the end
of method main(). In Fig. 5, the graph (l) is built by merging the two graphs (h) and
(k), in which the local variables are eliminated and the return value is marked by the
dish square node. The graph (m) represents the points-to graph after the method call
that is generated by updating the graph (d) before the method call uses the graph (l) and
replacing the return node by r node.

3 Probabilistic Points-to Analysis for Java

3.1 Probabilistic Points-to Graph

Traditionally, in order to conduct a points-to analysis of a Java program, three sets are
defined [4]:

– Ref : a set containing all reference variables in the program and all static fields in
its classes.

68 Q. Sun, J. Zhao, and Y. Chen

– Obj: a set containing the names of all objects created at the object allocation sites.
– Field: a set containing instance fields but not the static fields in the classes.

In addition, we define R ⊆ Ref ∪Obj ×Field containing all object references if they
belong to Ref or have a form of 〈o, f〉 ∈ Obj × Field. Two relations are defined on
the three sets: (r, o) ∈ Ref × Obj representing that a reference variable r points to an
object o and (〈o, f〉, o′) ∈ (Obj×Field)×Obj representing that a field f of the object
o points to an object o′.

The goal of probabilistic points-to analysis is to compute the probability of each
points-to relation holding at every program point. A program point is a code location
before or after a statement executed. In order to do this, we define an expected proba-
bility as follows:

Prob(l, d) =

{
Expected(l,d)
Expected(l) Expected(l) �= 0,

0 Expected(l) = 0.

where d is a points-to relationship, Expected(l) is the times which a program point l
is expected to turn up on the program execution paths and Expected(l,d) is the times
which d is expected to hold dynamically at a program point l [15].

For a given program point l, the points-to set of a reference r or 〈o, f〉 with proba-
bilities satisfies a discrete probability distribution over the object set Obj, and the prob-
abilistic points-to relationships at l is a set of the distributions. A discrete probability
distribution over a set Obj is a mapping

Δ : Obj �→ [0, 1],
∑

o∈Obj

Δ(o) = 1.

The support of Δ is �Δ� := {o ∈ Obj | Δ(o) > 0}. If a points-to relation d is in the
form of (r, o) or (〈o1, f〉, o2) at the program point l, the distributions of the references
satisfy Δr(o) = Prob(l, (r, o)) or Δo1.f (o2) = Prob(l, (〈o1, f〉, o2)).
o is the point distribution over Obj satisfying

o(t) =

{
1 t = o, t ∈ Obj,

0 otherwise.

If Δi is a distribution for each i in some finite index set I and
∑
i∈I

pi = 1,
∑
i∈I

pi · Δi

is also a distribution (
∑
i∈I

pi · Δi)(o) =
∑
i∈I

pi · Δi(o), o ∈ Obj. Every distribution

can be represented as a linear combination of the point distributions with the form of
Δ =

∑
o∈�Δ	

Δ(o) · o.

� Example. The distribution of variable p before line 18 is represented by Δp =
0.25o1 + 0.75o2. �
In our research, we use probabilistic points-to graph (PPG) for probabilistic points-
to analysis of Java programs. A PPG is a directed multi-graph whose nodes are the
elements belonging to Ref and Obj. Each edge has a probability and represents a

Probabilistic Points-to Analysis for Java 69

probabilistic points-to relation either from a variable to an object or from an object to
another object. Specially, an edge from an object o1 to another o2 (e.g., the edge from
node o2 to node o3 in Fig. 4(j)) means a field of o1 points to o2, and holds the field
information. Thus a PPG contains a distribution set of the reference variables.

� Example. For the program point after line 18 in Fig. 1, the PPG (see Fig. 5(m))
shows the distributions of p, q, r and all field references.

Δp = 0.25o1 + 0.75o2 Δr = 0.25o5 + 0.75o6 Δq = 1.0o3
Δo1.radius = 1.0o5 Δo1.Shape.area = 1.0o4 Δo1.area = 1.0o3
Δo2.area = 1.0o3 Δo2.sideLength = 1.0o6 �

In the research we provide a program with predecessor-dependent probabilities in-
formation so that PPGs can be precisely calculated. In order to perform probabilistic
points-to analysis, a program is represented by a ICFG (e.g., Fig. 2 (b)) whose edges are
labeled with probabilities. We call this probability predecessor-dependent probability to
distinguish the branch probability. A branch probability [16] (edge prob(si → sj)) is
an estimate of the likelihood that a branch will be taken. For any two statement s1 and
s2 in a method, the predecessor-dependent probability is an estimate of the likelihood
that s1 directly reaches s2. The branch probabilities calculated by the branch prediction
algorithm [16] can not be directly applied to the merge operation in our framework.
The branch probabilities on the edges of the intra-method CFG can be used to compute
the predecessor-dependent probabilities. Given a path (s0, ..., sn), the path probability
is computed by

path prob(s0, ..., sn) =
n∏

i=0

edge prob(si → si+1)

where s0 represents the method entry statement. The predecessor-dependent probability
for the edge (si, sj) is computed by

EP ((si, sj)) =
∑

path prob(s0, ..., si)∑
path prob(s0, ..., si, sj)

� Example. After the branch prediction analysis, we have
edge prob(10 → 11) = 1.0, edge prob(15 → 17) = 1.0, edge prob(12 → 17) = 1.0,
edge prob(11 → 12) = 0.25, edge prob(11 → 15) = 0.75.
The predecessor-dependent probability of the edge from 15 to 17 is calculated as fol-
lows:

EP ((15, 17)) =
path prob(10, 11, 15, 17)

path prob(10, 11, 15, 17) + path prob(10, 11, 12, 17)

=
1.0 × 0.75 × 1.0

1.0 × 0.75 × 1.0 + 1.0 × 0.25 × 1.0
= 0.75 �

Since in Java there are four ways to assign a value to a reference variable that may
change a points-to relation. The statements in these four forms should be analyzed.
These forms are:

– Create an object: v = new C;
– Assign a value: v = r;

70 Q. Sun, J. Zhao, and Y. Chen

– Read an instance field : v = r.f ;
– Write an instance field : v.f = r.

� Example. Nodes 32 and 21 in Fig. 2 (b) create an object and write an instance
field, respectively. �

3.2 Intraprocedural Analysis

A points-to analysis can be formulated as a data flow framework which includes transfer
functions formulating the effect of statements on points-to relations [6]. As a result, our
probabilistic points-to analysis framework can be represented by a tuple

(L,�, Fun, P, Q, E, ι, M, EP)

where:

– L is a lattice and a PPG can be regarded as an element of L
– � is the meet operator
– Fun ⊆ L �→ L is a set of monotonic functions
– P is the set of the statements
– Q ⊆ P × P is the set of flows between statements
– E is the initial set of statements
– ι specifies the initial analysis information
– M : P �→ Fun is a map from statements to transfer functions
– EP : Q �→ [0, 1] is an predecessor-dependent probability function

The partial order over L is determined by

∀G1, G2 ∈ L, G1 � G2 iff ∀r ∈ R, �ΔG1
r � ⊆ �ΔG2

r �.
And the meet operation of two graphs G1 and G2 is

G1 � G2 = {p · ΔG1
r + (1 − p) · ΔG2

r | r ∈ R, p ∈ [0, 1]}.
Let fs ∈ Fun be the transfer function of the statement s, and Gin(s) and Gout(s)
represent the PPGs at the program points before and after the statement s, respectively,
we have

Gin(s) =

{
ι if s ∈ E⊔{Gout(s′) | (s′, s) ∈ Q} otherwise

Gout(s) = fs(Gin(s))

The statement s is associated with the transfer function that transforms Gin(s) to
Gout(s), and the analysis iteratively computes the Gin(s) and Gout(s) for all nodes
until convergence.

In a probabilistic points-to analysis, E only contains the first statement during the
program execution and ι is a special probabilistic points-to graph in which all the ref-
erence variables point to undefined target (i.e., UND) with total probabilities. Next we
describe the transfer functions for assignments and branches.

Probabilistic Points-to Analysis for Java 71

Table 1. Computing distributions

Statement Updating the distributions of Gout(s)
v = new C Δ

Gout(s)
v ← o

v = r Δ
Gout(s)
v ← Δ

Gin(s)
r

v = r.f Δ
Gout(s)
v ← ∑

o∈�Δ
Gin(s)
r �

Δ
Gin(s)
r (o) ·ΔGin(s)

o.f

v.f = r Δ
Gout(s)
o.f ← Δ

Gin(s)
v (o) ·ΔGin(s)

r + (1−Δ
Gin(s)
v (o)) ·ΔGin(s)

o.f , o ∈ �ΔGin(s)
v

Assignments. For any assignment statement s, there is a corresponding transfer func-
tion Fs. Fs takes Gin(s) as input and computes the result Gout(s). A transfer function
first copies Gin(s) to Gout(s) and then updates Gout(s). Table 1 describes transfer
functions for assignment statements: the transfer function for v = new C updates the
distribution Δ

Gout(s)
v with the point distribution of o created by new C expression;

the transfer function for v = r replaces the distribution Δ
Gout(s)
v with the distribution

Δ
Gin(s)
r ; the transfer function for v = r.f composes the distributions of the field f

of all the objects in the support set of Δ
Gin(s)
r ; and the transfer function for v.f = r

updates multiple distributions in the form of o.f .
A probabilistic points-to analysis also needs to take arrays into account, each of

which may contain multiple references. Since an array array, is initialized as

C [] array = new C [n];

where n can be either a constant or a variable, it is difficult to infer the range of n.
We can obtain the array elements of multiple references and estimate the total number
of references they point to if we cannot determine the points-to set of each element
in a static manner. When an element o is stored to array (i.e., array[i] = o), o is
added to the points-to set of array, say Pt(array). Then each points-to probability is
recalculated

p =
1

|Pt(array)|
where |Pt(array)| is the number of the elements in Pt(array). When array[i] is
accessed (e.g., v = array[i]), the distribution of v is updated by the distribution of
array.

Branch. When multiple nodes directly reach a destination node s in a CFG, the meet
operation is adopted in the calculation of Gin(s). Suppose s is the successor of the
nodes si(i ∈ I) in a CFG. The following condition is satisfied∑

i∈I

EP ((si, s)) = 1

where EP ((si, s)) represents the probability of edge (si, s). The meet operation can be
described by

Gin(s) =
⊔

{Gout(si) | i ∈ I} �
∑
i∈I

EP ((si, s)) · Gout(si).

72 Q. Sun, J. Zhao, and Y. Chen

� Example. In an if-then-else statement, suppose Gout(sthen) and Gout(selse) are
the PPGs at the exit points of the then and else branches respectively, pt and pf are the
probabilities of the then and else branches respectively, and pt + pf = 1. A PPG at
sjoin, the statement succeeding the if-then-else statement, can be computed by using
meet operation: Gin(sjoin) = pt · Gout(sthen) + pf · Gout(selse). �

Loop. The loop body B can be unfolded for arbitrary times. The computation can be
formulated as

Gin =
∑

pi · F i(G0)
α≤i≤β

+ p0 · G0,
∑

α≤i≤β

pi + p0 = 1

where α and β are the upper-bound and lower-bound of iteration number, G0 represents
the initial PPG before entering the loop, F is the transfer function of loop body B, p0
represents the probability of not entering the loop, pi represents the probability of i
times iteration. Two problems arise when a loop is analyzed: (1) how to estimate the
upper- and lower-bounds of iteration number, and (2) how to estimate the probability of
some iteration number.

In JPPA, the loop body is unfolded for the upper-bound times. The lower-bound of
iteration number is 0. The upper-bound of iteration number is the minimum N , which

satisfies ∀r ∈ R, �ΔF N (G0)
r � = �ΔF N+1(G0)

r �. The probability of each iteration num-
ber is 1/(N + 1).

Exception Handling. The exception handling in Java encapsulates exception in class,
uses the exception handling mechanism of try-catch-finally and gets more robust ex-
ception handling code finally. In JPPA framework, the probabilistic points-to analysis
can easily go deep into the exception blocks through building the CFG for them. In the
try-catch-finally structure, the exceptions are thrown out from every program point in
the try block, then the edges from the program points to the entry point of catch block
are generated. In our study we adopt Soot to construct CFGs for try-catch-finally struc-
tures. However, a precise calculation of points-to relation information in exceptions
requires obtain all program points that may throw these exceptions, which remains in
our future work.

3.3 Interprocedural Analysis

Interprocedural probabilistic points-to analysis analyzes points-to relations crossing the
boundary between methods. At each call site, points-to relations are mapped from
the actual parameters to the formal parameters, and the results are mapped back to
the variables in the caller.

Since a Java program may rely heavily on libraries with a number of irrelevant meth-
ods, JPPA adopts RTA algorithm [13] to produce an approximation of the corresponding
call graph so that some irrelevant methods can be ignored. After that, JPPA uses the call
graph to construct the ICFG. At each call site, two extra nodes are generated for each
callee: an entry node recording the passing of parameters, and a return node recording
the returns of the callee. Specially, all values returned by the callee are assigned to a
unique variable in the return node. JPPA then refines the ICFG by adjusting the proba-
bilities on the interprocedural edges according to the PPGs at all method call sites.

Probabilistic Points-to Analysis for Java 73

When a method call is analyzed, a partial PPG is propagated through an interproce-
dural edge to the callee method. JPPA takes a set of actual parameters and a PPG as its
inputs, and then computes all the objects that can be accessed by these actual parame-
ters. The partial PPG as a result includes all the points-to relations with the probabilities
that may be manipulated by the callee method.

Since JPPA is a context-insensitive analysis without distinguishing the contexts un-
der which a method is invoked, it may share one callee method with different calling
contexts. Thus a meet operation can be defined as

Gin(sm) =
∑

csi∈CS

EP (ecsi) · Gout(scsi), ecsi = (scsi , sm)

where m is the callee method, Gin(sm) is the PPG before the program point entering
the method m, CS denotes the set of call sites at each of which m is invoked, EP (ecsi)
denotes the probability of the invocation of m at csi, and Gout(scsi) represents the PPG
after the passing of parameters at csi.

When the return value is assigned to the variable in the caller method, all the points-
to relations updated by the callee method need to be reflected upon the PPG after the
method invocation.

Virtual Invocation. In Java, virtual method is a method whose behavior can be over-
ridden within an inheriting class by a method with the same signature. The compiler
and loader can guarantee the correct correspondence between objects and the methods
applied to them.

A virtual method m is usually invoked explicitly or implicitly by a this object, and
thus this needs to be mapped to the receiver object invoking m. Suppose m is declared
in class C and at each call site csi ∈ CS, m may be invoked in a form ri.m() where ri

is the receiver object invoking m at csi. At each call site csi, there exits an object set

seti = {o | o ∈ �Δri� ∧ o.Class ∈ MatchedClass(C, m)}

where MatchedClass(C, m) is a set of classes containing class C and all its subclasses
in each of which m is inherited. The distribution of this can be computed

Δthis =
∑

csi∈CS

∑
o∈seti

EP (ecsi) · Δri(o)
a

−
o,

a =
∑

csi∈CS

∑
o∈seti

EP (ecsi) · Δri(o), ecsi = (scsi , sm)

where EP (ecsi) denotes the probability of invocation of m at csi.

� Example. In Fig. 1, the distribution of this in method Circle.set can be cal-
culated as 1.0o1, which is more precise than that calculated by using the formula in
Section 3.3 (i.e., 0.25o1 + 0.75o2). �

The return value of a virtual invocation also needs to be taken into account in or-
der to achieve a conservative resolution. Suppose a virtual invocation at a call site cs is

74 Q. Sun, J. Zhao, and Y. Chen

Fig. 6. A framework of Lukewarm tool

v = r.m(). With the points-to set of r, we can deduce the set of methods that can be
invoked at cs and denote each method remained in the set Mv. The distribution of the
variable v can be calculated by

Δv =
∑

mj∈Mv

EP (e) · Δreturnmj
, e = (sret

mj
, s′cs)

where EP (e) denotes the probability of mj invoked at cs, and Δreturnmj
the distribu-

tion of the return value of mj . EP (e) is then adjusted on the base of the distribution
of r.

� Example. In Fig. 1, the distribution of variable r is 0.25o5 + 0.75o6. �

4 Implementation

We have developed a tool called Lukewarm to support our method. Fig. 6 shows the
framework of Lukewarm: the inputs are Jimple code (a typed 3-address intermediate
representation) [17,18], the call graph of the program which are generated by Soot [19],
and the predecessor-dependent probabilities computed by a static branch prediction
analysis [16]; the outputs are the PPGs at all program points. Lukewarm provides engi-
neers with support in probabilistic points-to analysis of Java programs by the following
four steps:

– Use RTA algorithm in Soot to construct the call graph covering all reachable meth-
ods, and then construct the CFGs for these methods and combine them to form an
ICFG;

– Annotate each edge with a probability calculated based on the static branch predic-
tion approach;

– Extract all the references and objects from the ICFG and generate the transfer func-
tion for each node;

– Adopt a worklist algorithm on the nodes of the ICFG to compute the PPG for each
program point. A worklist is initialized to contain a node which is associated with
an empty PPG. Everytime one node n in the worklist is retrieved, and the PPGs of
its Gin and Gout are calculated on the basis of the transfer function. If Gin or Gout

of n is changed (The graphs Ga and Gb are equivalent iff ‖Ga−Gb‖e < ε.), all the
successive nodes of n are added to the worklist. This procedure is repeated until the
worklist is empty. Based on the observations, we choose ε to be 0.01 in this paper
for the reason that it can balance the efficiency and precise.

Probabilistic Points-to Analysis for Java 75

Table 2. Java benchmarks

Program #Statement #Block Description
HashMap 20929 12307 A small program using HashMap in Java library.
ArrayList 150 27 A small program using ArrayList in Java library.
antlr 52058 23167 A parser generator and translator generator.(DaCapo)
xalan 24186 13716 An XSLT processor for transforming XML documents.(DaCapo)
luindex 24947 14144 A text indexing tool.(DaCapo)
hsqldb 24466 13714 An SQL relational database engine written in Java.(DaCapo)
toba-s 34374 16661 A tool translating Java class files into C source code.(Ashes)
Jtopas 32226 21042 A Java library for the common problem of parsing text data. (SIR)
JLex 32058 16120 A lexical analyzer generator for Java.
java cup 37634 18049 A LALR parser generator written in Java.

5 Experiments

We have conducted three experiments on JPPA by comparing it with a context-
insensitive and flow-sensitive points-to analysis (TPA for short) proposed by Hind
et al [20]. The principle of TPA is to use an iterative dataflow analysis framework
to compute the points-to set for each reference variable on each node of the CFG of
the program. The first experiment was conducted to evaluate the precision of points-to
sets calculated through JPPA, the second one was to evaluate the capability of JPPA to
calculate the points-to relations maybe holding, and the third one was to evaluate the
performance of JPPA. All experiments were conducted on a machine with an AMD
SempronTM 1.80GHz CPU and 1G heap size (option -Xmx1024m).

Table 2 shows benchmark programs used in the experiments, which include the SIR
suite [21], programs from the Ashes suite [22], programs from the DaCapo suite [23],
and two programs for testing java.util.HashMap and java.util.ArrayList.
Table 2 also shows the total number of statements (#Statement) in Jimple code and
that of basic blocks (#Block) of each benchmark program.

5.1 Precision of Points-to Analysis

In the first experiment, the points-to sets computed by JPPA and TPA for each reference
were the same at each program point. Table 3 shows the average and the maximum sizes
of the points-to sets of each benchmark program as well the percentage of the points-to
set with only one object inside. It can be seen that for each benchmark program the aver-
age size of points-to sets is less than 2, and the maximum size is less than 20. A rational
claim is that the closer to 1 the average size of points-to sets is, the more traditional op-
timization techniques we can use because optimizations usually require the information
about the points-to relations definitely holding. For example, if the points-to set of the
receiver variable contains only one object, it can reduce the direct overhead of dispatch-
ing the message and provide the opportunities for method inlining and interprocedural
analysis.

In addition, most points-to sets of the benchmark programs have only one object
inside, as the row OneObject.Pt (%) indicates. It means that both JPPA and TPA can
explore most points-to relations.

76 Q. Sun, J. Zhao, and Y. Chen

Table 3. JPPA measurements

Program HashMap ArrayList antlr xalan luindex hsqldb toba-s Jtopas JLex java cup
#Avg.Size.Pt 1.49 1.32 1.05 1.60 1.95 1.49 1.29 1.86 1.04 1.72
#Max.Size.Pt 6 8 13 13 13 13 19 13 9 18
OneObject.Pt(%) 79.57 93.80 98.50 86.22 77.58 81.34 91.33 74.12 99.15 87.58

5.2 Precision of Probabilities

In the second experiment, we chose some program points. For each program point l,
we obtained the corresponding dynamic probabilistic points-to graph Gd as a standard
and then evaluated JPPA and TPA by calculating their probabilistic points-to graphs at
l (say GJPPA

s and GTPA
s , respectively) and the corresponding average graph distances

to Gd. In this experiment, Gd was computed by using a dynamic method:

– Perform a program instrumentation in order to collect at runtime the hashcodes of
all objects in the program and variables at l;

– Execute the program and use the hashcodes of the objects to explore the points-to
relations at l;

– Execute the corresponding benchmark program multiple times and record the fre-
quency for each points-to relation.

The average of distance can be calculated by

AV Gdistance =
∑ ‖Gs − Gd‖e

N

where N is the number of program points of interest, and Gs is a probability points-
to graph of any program point generated either by JPPA or TPA, and ‖Gs − Gd‖e

calculates the average of the normalized Euclidean distances between the distributions
of Gs and Gd, which can be calculated by

‖Gs − Gd‖e =

∑
r∈R

√
0.5 · ∑

o∈Obj

(Δs
r(o) − Δd

r(o))2

|R| .

AV Gdistance ranges from zero to one and was used to measure the divergence between
a probability points-to graph computed by JPPA or TPA and that computed by the dy-
namic method. AV Gdistance = 0 means that the PPG computed by JPPA or TPA is
regarded as correct, and AV Gdistance = 1 means that it may be totally wrong.

In the experiment, when using JPPA, we assumed that all incoming edges of a node
of ICFG have the same probability, and then computed the probabilistic points-to re-
lations. When using TPA, we assumed that the probability of each points-to relation
belonging to a points-to set is equal. Fig. 7 shows the average distances between the
PPGs computed by JPPA and TPA and those computed by the dynamic method. For
each benchmark program, the average distance corresponding to JPPA is shorter than
that corresponding to TPA. However, for the programs hsqldb and Jtopas, the dis-
tances corresponding to JPPA are not of significant divergences to those corresponding

Probabilistic Points-to Analysis for Java 77

Fig. 7. The comparison of graph distances between JPPA and TPA

to TPA. After a thorough investigation, we found that the arrays of objects used in these
programs can decrease the precision of JPPA to compute probabilities. It is one of our
future research directions to find out how to improve the precision of JPPA when a
number of arrays of objects are available in the programs.

JPPA reaches the same precision of points-to sets as that of TPA, but has a much
higher precision of probabilities than that of TPA. In addition, the precision of proba-
bilities of JPPA is very close to that of the dynamic method. It demonstrates that JPPA
can be an effective approach to probabilistic points-to analysis of Java programs.

5.3 Analysis Performance

In the third experiment, an investigation of the execution time and memory usage was
conducted after the benchmark programs were executed several times. Table 4 shows
the running time and memory usage for each benchmark program. A vertical line | is
used to divide a result of using JPPA from that of using TPA. We also counted the num-
ber of the references (#reference), static fields (#static-field), and objects (#object) for
each benchmark program in order to find out the factors that will affect the performance.

After analyzing the results, we found that the distributions of the static fields signifi-
cantly affects the performance of both JPPA and TPA because the points-to sets of these
fields can propagate to all nodes in the ICFG. Specially, when a points-to set of a static
field is of a large number of elements, the performance will decrease rapidly because
of the propagation of a great amount of data. In addition, the use of arrays of objects
in Java also decrease the performance of JPPA because they are handled conservatively
and thus a number of redundant objects are contained in points-to sets and also will be
propagated.

78 Q. Sun, J. Zhao, and Y. Chen

Table 4. Performance

Program #reference #static-field #object Time (Sec) Memory (MB)
HashMap 4200 104 296 32.98 33.47 176.36 195.82
ArrayList 42 0 9 1.41 1.36 0.38 0.31
antlr 8651 158 972 329.03 369.52 239.79 203.98
xalan 4906 133 398 36.54 40.98 206.56 228.24
luindex 5095 133 419 43.06 43.87 218.97 237.01
hsqldb 4883 114 417 41.26 41.03 213.33 227.99
toba-s 5876 140 750 131.63 103.96 316.97 331.69
Jtopas 5896 107 440 139.70 167.45 298.07 330.80
JLex 5491 129 481 56.90 54.23 296.81 306.58
java cup 6431 132 825 215.14 146.64 303.02 334.37

From the experiment, we found that JPPA spends more time and memory in com-
puting the probabilities for the points-to relations than TPA does. However, the cost of
using JPPA is only about 1.2 times of that of using TPA, which is still acceptable.

5.4 Threats to Validity

A threat to validity is that when using JPPA, we assumed that all incoming edges of a
node in the ICFG have the same probability, and when using TPA, we assumed that the
probability of each points-to relation belonging to a points-to set is equal. In practice,
these assumptions are very strong in that edges of ICFG may hold different probabili-
ties, which may be hardly determined precisely before the analysis. A more reasonable
solution is to use the edge profiling information estimated by the machine learning
techniques to compute the predecessor-dependent probabilities which will be explored
in our future work.

6 Related Work

In the past several years, points-to analysis has been an active research field. A survey
of algorithms and metrics for points-to analysis has been given by Hind [24].

Traditional points-to analysis. Context-sensitivity and flow-sensitivity are two ma-
jor dimensions of pointer analysis precision. Context-sensitive and flow-sensitive al-
gorithms (CSFS) [25,26,27,28] are usually precise, but are difficult to scale to large
programs. Recently Yu et al. [29] proposed a level-by-level algorithm that improves
the scalability of the context-sensitive and flow-sensitive algorithm. Context-insensitive
and flow-insensitive (CIFI) algorithms [30,31] have the best scalability on the large
programs with overly conservative results. Equality-based analysis and inclusion-based
analyses have become the two widely accepted analysis styles. Through carrying out the
experiments, Foster et al. [32] compared several variations of flow-insensitive points-to
analysis for C, including polymorphic versus monomorphic and equality-based versus
inclusion-based.

How well the algorithms scale to large programs is an important issue. Trade-offs
are made between efficiency and precision by various points-to analyses, including

Probabilistic Points-to Analysis for Java 79

context-sensitive and flow-insensitive analyses [4,5,33] and context-insensitive and
flow-sensitive analyses [6,20,7]. However, these conventional points-to analyses do not
provide with the probabilities for the possible points-to relations, which is one of main
goals of JPPA proposed in this paper.

Probabilistic pointer analysis for C. With the proposition of the speculative optimiza-
tions, the probability theory has been introduced into the traditional program analy-
sis. In earlier work, Ramalingam [15] proposed a generic data flow frequency analysis
framework that uses the edge frequencies propagation to compute the probability a fact
holds true at every control flow node. Chen et al. [8] developed a context-sensitive and
flow-sensitive probabilistic point-to analysis algorithm. This algorithm is based on an
iterative data flow analysis framework, which computes the transfer function for each
control flow node and propagates probabilistic information additionally. In addition,
this algorithm also handles interprocedural points-to analysis on the basis of Emami’s
algorithm [25]. Their experimental results demonstrates that their technique can esti-
mate the probabilities of points-to relations in benchmark programs with reasonable
accuracy although they have not disambiguated heap and array elements. Compared
with Chen et al.’s algorithm, JPPA is also on the basis of an iterative data flow analysis
framework but with context-insensitive analysis. In addition, the concept of the discrete
probability distribution are introduced to JPPA.

Silva and Steffan [34] proposed a one-level context-sensitive and flow-sensitive prob-
abilistic pointer analysis algorithm that statically predicts the probability of each points-
to relation at every program point. Their algorithm computes points-to probabilities
through the use of linear transfer functions that are efficiently encoded as sparse ma-
trices. Their experimental results demonstrates that their analysis can provide accurate
probabilities, but omits handling alias between the shadow variables. JPPA provides a
safer result in its analysis because the transfer functions of accessing of instance fields
do not use the shadow variables during its propagation of the distributions.

7 Conclusions

In this paper we have presented JPPA, a context-insensitive and flow-sensitive algo-
rithm for calculating the probabilistic points-to relations in Java programs. JPPA also
predicts the likelihood of points-to relations without depending on runtime profiles. In
order to ensure the safety of the result, JPPA takes Java libraries into account. We have
conducted experiments to validate JPPA by comparing it with the traditional context-
insensitive and flow-sensitive points-to analysis. The experimental results show that
JPPA not only produces precise probabilities of points-to relations for Java, but also
maintains a similar performance to the traditional context-insensitive and flow-sensitive
points-to analysis.

In the future, we would like to continue our efforts to improve and extend JPPA to
support more powerful functions concerned with points-to analysis, such as handling
of arrays of objects. Also with a more mature approach and the corresponding tool, we
would like to apply them in some large-scale projects to investigate how our approach
can benefit real projects. We would also like to extend JPPA to a context-sensitive anal-
ysis approach in order to improve its precision.

80 Q. Sun, J. Zhao, and Y. Chen

Acknowledgements

We would like to thank the anonymous reviewers for their useful comments and sugges-
tions. We would also like to thank Longwen Lu, Hongshen Zhang, Yu Kuai and Cheng
Zhang for their discussions on this work. This work was supported in part by National
Natural Science Foundation of China (NSFC) (Grant No. 60970009 and 60673120).

References

1. Das, M., Liblit, B., Fähndrich, M., Rehof, J.: Estimating the impact of scalable pointer analy-
sis on optimization. In: Proceedings of the 8th International Static Analysis Symposium, pp.
260–278 (2001)

2. Hind, M., Pioli, A.: Which pointer analysis should I use? In: Proceedings of the 2000 ACM
SIGSOFT International Symposium on Software Testing and Analysis, pp. 113–123 (2000)

3. Chatterjee, R., Ryder, B.G., Landi, W.A.: Complexity of points-to analysis of Java in the
presence of exceptions. IEEE Transactions on Software Engineering 27(6), 481–512 (2001)

4. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for points-to analy-
sis for Java. ACM Transactions on Software Engineering and Methodology 14, 1–41 (2002)

5. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using binary
decision diagrams. In: Proceedings of the ACM SIGPLAN 2004 Conference on Program-
ming Language Design and Implementation, pp. 131–144 (2004)

6. Choi, J.D., Burke, M., Carini, P.: Efficient flow-sensitive interprocedural computation of
pointer-induced aliases and side effects. In: Proceedings of the 20th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 232–245 (1993)

7. Hardekopf, B., Lin, C.: Semi-sparse flow-sensitive pointer analysis. In: Proceedings of the
36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pp. 226–238 (2009)

8. Chen, P.S., Hwang, Y.S., Ju, R.D.C., Lee, J.K.: Interprocedural probabilistic pointer analysis.
IEEE Transactions on Parallel and Distributed Systems 15(10), 893–907 (2004)

9. Oancea, C.E., Mycroft, A., Harris, T.: A lightweight in-place implementation for software
thread-level speculation. In: Proceedings of the 21st Annual ACM Symposium on Parallel
Algorithms and Architectures, pp. 223–232 (2009)

10. Scholz, B., Horspool, R.N., Knoop, J.: Optimizing for space and time usage with speculative
partial redundancy elimination. In: Proceedings of the 2004 ACM SIGPLAN/SIGBED Con-
ference on Languages, Compilers, and Tools for Embedded Systems, pp. 221–230 (2004)

11. Dai, X., Zhai, A., chung Hsu, W., chung Yew, P.: A general compiler framework for specula-
tive optimizations using data speculative code motion. In: Proceedings of the 2005 Interna-
tional Symposium on Code Generation and Optimization, pp. 280–290 (2005)

12. Dean, J., Grove, D., Chambers, C.: Optimization of object-oriented programs using static
class hierarchy analysis. In: Proceedings of the 9th European Conference on Object-Oriented
Programming, pp. 77–101 (1995)

13. Bacon, D.F., Sweeney, P.F.: Fast static analysis of C++ virtual function calls. In: Proceed-
ings of the 1996 ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages and Applications, pp. 324–341 (1996)

14. Sundaresan, V., Hendren, L., Razafimahefa, C., Vallée-Rai, R., Lam, P., Gagnon, E., Godin,
C.: Practical virtual method call resolution for Java. In: Proceedings of the 2000 ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Appli-
cations, pp. 264–280 (2000)

Probabilistic Points-to Analysis for Java 81

15. Ramalingam, G.: Data flow frequency analysis. In: Proceedings of the 1996 Conference on
Programming Language Design and Implementation, pp. 267–277 (1996)

16. Wu, Y., Larus, J.R.: Static branch frequency and program profile analysis. In: Proceedings of
the 27th Annual International Symposium on Microarchitecture, pp. 1–11 (1994)

17. Vallée-Rai, R., Hendren, L.J.: Jimple: simplifying Java bytecode for analyses and transfor-
mations. Sable technical report, McGill (1998)

18. Vallée-Rai, R.: The Jimple framework. Sable technical report, McGill (1998)
19. Soot: http://www.sable.mcgill.ca/soot
20. Hind, M., Burke, M., Carini, P., deok Choi, J.: Interprocedural pointer alias analysis. ACM

Transactions on Programming Languages and Systems 21(4), 848–894 (1999)
21. Do, H., Elbaum, S., Rothermel, G.: Infrastructure support for controlled experimentation

with software testing and regression testing techniques. Empirical Software Engineering: An
International Journal 10, 405–435 (2004)

22. Ashes Suite Collection, http://www.sable.mcgill.ca/software
23. Blackburn, S.M., Garner, R., Hoffman, C., Khan, A.M., McKinley, K.S., Bentzur, R., Di-

wan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A., Jump, M., Lee,
H., Moss, J.E.B., Phansalkar, A., Stefanović, D., VanDrunen, T., von Dincklage, D., Wie-
dermann, B.: The DaCapo benchmarks: Java benchmarking development and analysis. In:
Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-Oriented Program-
ing, Systems, Languages, and Applications, pp. 169–190 (2006)

24. Hind, M.: Pointer analysis: haven’t we solved this problem yet? In: Proceedings of the 2001
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engi-
neering, pp. 54–61 (2001)

25. Emami, M., Ghiya, R., Hendren, L.J.: Context-sensitive interprocedural points-to analysis in
the presence of function pointers. In: Proceedings of the ACM SIGPLAN 1994 Conference
on Programming Language Design and Implementation, pp. 242–256 (1994)

26. Landi, W., Ryder, B.G., Zhang, S.: Interprocedural modification side effect analysis with
pointer aliasing. In: Proceedings of the ACM SIGPLAN 1993 Conference on Programming
Language Design and Implementation, pp. 56–67 (1993)

27. Whaley, J., Rinard, M.: Compositional pointer and escape analysis for Java programs. In:
Proceedings of the 14th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages and Applications, pp. 187–206 (1999)

28. Wilson, R., Lam, M.S.: Efficient context-sensitive pointer analysis for C programs. In: Pro-
ceedings of the ACM SIGPLAN 1995 Conference on Programming Language Design and
Implementation, pp. 1–12 (1995)

29. Yu, H., Xue, J., Huo, W., Feng, X., Zhang, Z.: Level by level: making flow- and context-
sensitive pointer analysis scalable for millions of lines of code. In: Proceedings of the 8th
International Symposium on Code Generation and Optimization, pp. 218–229 (2010)

30. Steensgaard, B.: Points-to analysis in almost linear time. In: Proceedings of the 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 32–
41 (1996)

31. Andersen, L.: Program analysis and specialization for the C programming language. DIKU
report 94-19, University of Copenhagen (1994)

32. Foster, J.S., Fähndrich, M., Aiken, A.: Polymorphic versus monomorphic flow-insensitive
points-to analysis for C. In: SAS 2000. LNCS, vol. 1824, pp. 175–199. Springer, Heidelberg
(2000)

33. Lhoták, O., Hendren, L.: Context-sensitive points-to analysis: Is it worth it? In: Mycroft, A.,
Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 47–64. Springer, Heidelberg (2006)

34. Silva, J.D., Steffan, J.G.: A probabilistic pointer analysis for speculative optimizations. In:
Proceedings of the 12th International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 416–425 (2006)

http://www.sable.mcgill.ca/soot
http://www.sable.mcgill.ca/software

Faster Alias Set Analysis Using Summaries

Nomair A. Naeem and Ondřej Lhoták

University of Waterloo, Canada
{nanaeem,olhotak}@uwaterloo.ca

Abstract. Alias sets are an increasingly used abstraction in situations which re-
quire flow-sensitive tracking of objects through different points in time and the
ability to perform strong updates on individual objects. The interprocedural and
flow-sensitive nature of these analyses often make them difficult to scale. In this
paper, we use two types of method summaries (callee and caller) to improve
the performance of an interprocedural flow- and context-sensitive alias set anal-
ysis. We present callee method summaries and algorithms to compute them. The
computed summaries contain sufficient escape and return value information to
selectively replace flow-sensitive analysis of methods without affecting analysis
precision. When efficiency is a bigger concern, we also use caller method sum-
maries which provide conservative initial assumptions for pointer and aliasing
relations at the start of a method. Using caller summaries in conjunction with
callee summaries enables the alias set analysis to flow-sensitively analyze only
methods containing points of interest thereby reducing running time. We present
results from empirically evaluating the use of these summaries for the alias set
analysis. Additionally, we also discuss precision results from a realistic client
analysis for verifying temporal safety properties. The results show that although
caller summaries theoretically reduce precision, empirically they do not. Further-
more, on average, using callee and caller summaries reduces the running time of
the alias set analysis by 27% and 96%, respectively.

1 Introduction

Inferring properties of pointers created and manipulated by programs has been the sub-
ject of intense research [12, 24]. A large spectrum of pointer analyses, from efficient
points-to analyses to highly precise shape analyses, have been developed. A useful
tradeoff between the two extremes, and an increasingly used abstraction, is the alias
set analysis. This static abstraction represents each runtime object with the set of all
local pointers that point to it, and no others. The abstraction is neither a may-point-to
nor a must-point-to approximation of runtime objects. Instead, each alias set represents
exactly those pointers that reference the particular runtime object. As a result, like in
a shape abstraction [26], every alias set (except the empty one) corresponds to at most
one concrete object at any given point in time during program execution. This ability to
statically pinpoint a runtime object enables strong updates which makes the abstraction
suitable for analyses that track individual objects [6, 21, 10, 18]. We discuss the alias
set analysis in more detail in Section 2.

Unlike a shape analysis which emphasizes the precise relationships between objects,
and is expensive to model, an alias set analysis, like a pointer abstraction, focuses on
local pointers to objects. This makes computing the alias set abstraction faster than

J. Knoop (Ed.): CC 2011, LNCS 6601, pp. 82–103, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Faster Alias Set Analysis Using Summaries 83

shape analyses. However, since the analysis is flow-sensitive and inter-procedural it is
still considerably slower than most points-to analyses. In this paper we propose two
ways to further speed-up the alias set analysis; callee summaries providing effect and
return value information and caller summaries that make conservative assumptions at
method entry.

Flow sensitive analyses take into account the order of instructions in the program
and compute a result for each program point. Although typically more precise than
those that are insensitive to program flow, flow-sensitive analyses often have longer
execution times than their insensitive counterparts. Computing such precise information
for each program point is often overkill; clients of the analysis need precise results only
at specific places. Long segments of code might exist where a client neither queries the
analysis nor cares about its precision. As an example, consider a static verification tool
that determines whether some property of lists and iterators is violated by the code in
Figure 1. The verification tool is a client of the alias set analysis as it requires flow-
sensitive tracking of individual objects to statically determine runtime objects involved
in operations on lists and iterators. Notice that precise alias sets are required only when
operations of interest occur. For the example, these are the two calls to next at lines
7 and 10 and the call to add at line 11. On the other hand, a typical alias set analysis
computes flow-sensitive results for all program points irrespective of the fact that it is
likely to be queried only at a few places.

 class Foo {
 void foo(){
1 List a = new ...
2 addElements(a)
3 List b = new ...
4 bar(a,b)
5 ...
 }
 }

 void bar(List a, List b){
6 Iterator it = a.iterator
7 x = it.next()
8 method3(x)
9 method7(b)
10 ... = it.next()
 }

 11 b.add()

1
2

3
4 5

6

7 8

Fig. 1. Sample code illustrating the use of callee and caller summaries

In such situations, we propose the use of a selectively flow-sensitive alias set analy-
sis that uses callee method summaries as a cheaper option. Only methods that contain a
point of interest (which we call shadows), or transitively call methods containing shad-
ows, are analyzed flow-sensitively. For all other methods, callee summaries providing
effect information for the parameters of a method invocation and the possible return
value are used. If callee summaries were available, only methods 1, 2, 7 and 8 from
Figure 1 would have to be analyzed flow-sensitively since they contain shadows or call
methods containing shadows. For the entire segment of code represented by methods 3-
6, flow-sensitive information is not required and callee summaries can be used instead.
In particular, while analyzing method 2 the alias set analysis need not propagate the
analysis into method 3 at line 8 and instead its callee summary can be used. From the
client’s perspective this is acceptable since it does not query any program point within
methods 3-6. In fact, as long as callee summaries contain sufficient information so that

84 N.A. Naeem and O. Lhoták

foregoing flow-sensitive analysis of methods without shadows does not affect alias set
precision in methods with shadows, the client’s precision will be unaffected. Details of
the construction of callee summaries and their use in the alias set analysis are given in
Section 3.

The advantage any static analysis derives from interprocedurally analyzing a pro-
gram is that the analysis need not make conservative worst case assumptions at method
entry. This certainly holds true for the alias set analysis. At a callsite, the analysis en-
sures an appropriate mapping from the caller scope arguments to the callee scope pa-
rameters so that alias sets in the callee precisely represent aliasing at the start of the
method. However, when efficiency is a bigger concern, we propose the use of caller
summaries which are conservative and sound approximations of incoming alias sets.
A direct benefit of using such summaries at method entries is that methods that were
previously analyzed flow-sensitively only to obtain precise entry mappings for methods
containing shadows no longer require flow-sensitive analysis. For example, since meth-
ods 1 and 7 in Figure 1 were analyzed flow-sensitively only because they contain calls
to methods 2 and 8, with the added use of caller summaries this is no longer required.
Only methods 2 and 8 will be analyzed flow-sensitively with caller summaries used to
seed their initial alias sets and callee summaries used at all callsites.

Unlike callee summaries, caller summaries can affect the precision of the alias set
abstraction since important aliasing information available at a particular callsite might
not be propagated into the callee and instead some conservative assumption is made.
The degree to which the use of caller summaries affects precision is dependent on the
choice of caller summary as well as the client analysis.

This paper makes the following three contributions:

– We describe callee method summaries for the alias set analysis which provide suffi-
cient information at a method callsite to forego flow-sensitive analysis of the callee
without a loss of precision in the caller. We present algorithms to compute such
summaries and a transfer function that employs the computed summary. (Section 3)

– We present the simplest caller summary as a proof of concept to using such sum-
maries to flow-sensitively analyze even fewer methods. A transfer function for the
alias set abstraction that uses both callee and caller summaries is also presented.
(Section 4)

– We empirically evaluate the effect of caller summaries on the precision of a realistic
client analysis and present precision metrics for the alias set abstraction. The effect
on the running time of different incarnations of the alias set analysis is discussed.
(Section 5)

2 Alias Set Analysis

The alias set abstraction employs abstract interpretation to summarize all possible run-
time environments. The abstraction contains an alias set for every concrete object that
could exist at run time at a given program point. The merge operation is a union of
the sets of alias sets coming from different control flow paths. A given alias set o� is
exactly the set of local variables that point to the corresponding concrete object at run
time. Individual alias sets do not represent may- or must- points-to approximations of

Faster Alias Set Analysis Using Summaries 85

runtime objects, although the abstraction subsumes these relationships. If two pointers
must point to the same object at a program point, then all alias sets in the abstraction
for that point will either contain both pointers or neither. Similarly, if two pointers point
to distinct objects at a program point then the abstraction at that point will not contain
any alias sets containing both pointers.

2.1 Intermediate Representation and Control Flow Graph

We assume that the program has been converted into an SSA-based intermediate repre-
sentation containing the following kinds of instructions:

s ::= Copy(x ← y) | Store(y.f ← x) | Load(x ← y.f) |
Null(x ← null) | New(x ← new) | Call(m(p0 · · · pk))

The instructions copy pointers between variables, store and load objects to and from
fields, assign null to variables, create new objects and call a method m. For method
calls, the receiver is specified as the first argument p0 followed by the arguments p1 to
pk. φ instructions, introduced during SSA conversion, act as copy instructions with a
different multi-variable copy for each incoming control flow edge.

The interprocedural control flow graph is created in the standard way; nodes repre-
sent instructions and edges specify predecessor and successor relationships. Each proce-
dure begins with a unique Start node and ends at a unique Exit node. By construction,
a call instruction is divided into two nodes; call and return. A call edge connects the call
node in the caller with the start node in the callee. A return edge connects the exit node
in the callee with the return node in the caller. A CallFlow edge connects a call node to
its return node completely bypassing the callee (Figure 2). This edge is parameterized
with the method it bypasses and the variable the return from the call is assigned to.

Start foo

New(y)

call(bar(x,y))

Start bar

Load(z,x.f)

Exit
return

Exit

CallFlow[bar,y]

call

return

Copy(x,y)

Copy(ret,z)

 void foo(){
 y = new ...
 x = y
 y = x.bar(y)
 }

Object bar(Object y){
 z = x.f
 return z
}

Fig. 2. Interprocedural control flow graph with call, return and CallFlow edges

2.2 Intra-procedural Alias Set Analysis

Flow-sensitivity enables the alias set analysis to precisely track abstract objects through
different points in time. The analysis mimics the effect of program instructions in
changing the targets of pointers and accordingly updates the alias sets representing each

86 N.A. Naeem and O. Lhoták

runtime object. For example, consider the instruction x ← new. At runtime an object o
is allocated in the heap and x points to that object. Correspondingly, the static abstrac-
tion creates the alias set {x} representing the object’s abstraction o�. Since a pointer
can only point to one concrete object at a time, x points to the newly created object and
none other. If a copy instruction y ← x creates a new reference to the runtime object
o the analysis mimics this effect by updating the alias set to {x,y}. Hence, at all times
each concrete object is represented by some alias set, though due to the conservative na-
ture of the analysis there may be alias sets which represent no runtime object. For most
instructions in the program, given an alias set representing some runtime object o, it is
possible to compute the exact set of pointers which will point to o after the execution of
the instruction.

An exception to this is the load from the heap (v ← e). Since the abstraction only
tracks local variables, the analysis is uncertain whether the object being loaded is rep-
resented by a given alias set o� before the instruction, and whether the destination vari-
able v should therefore be added to o�. To be conservative, the analysis accounts for
both possibilities and creates two alias sets, one containing v (o� ∪ {v}) and one not
containing v (o� \ {v}). At this point a straightforward optimization can be applied;
only objects that had previously escaped to the heap via a Store can be loaded. We have
implemented this optimization in the alias set abstraction. At each program point, the
abstraction computes two sets of alias-sets ρ� and h� with the condition that h� ⊆ ρ�

and that h� contains only those alias sets which are abstractions of run time objects that
have escaped into the heap.

In previous work [18] we presented the intra-procedural transfer functions for the
alias set abstraction which we reproduce in Figure 3. The core of the transfer function
is the helper function �s�o� which, depending on the instruction, updates an existing

�s�1o�(o�) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

o� ∪ {v1} if s = v1 ← v2 ∧ v2 ∈ o�

o� \ {v1} if s = v1 ← v2 ∧ v2 �∈ o�

o� \ {v} if s ∈ {v ← null, v ← new}
o� if s = e← v

undefined if s = v ← e

focus[h�](v, o�) �
{ {

o� \ {v}} if o� �∈ h�{
o� \ {v}, o� ∪ {v}} if o� ∈ h�

�s�1O� [h�](O�) �
{ ⋃

o�∈O��s�
1
o�(o�) if s �= v ← e⋃

o�∈O� focus[h�](v, o�) if s = v ← e

�s�1ρ�(ρ�, h�) � �s�1gen ∪ �s�1O� [h�](ρ�)

�s�1gen �
{ {{v}} if s = v ← new
∅ otherwise

�s�1h�(ρ�, h�) � �s�O� [h�]
({

h� ∪ {o� ∈ ρ� : v ∈ o�} if s = e← v

h� otherwise

)

�s�1ρh�(ρ�, h�) �
〈
�s�1ρ�(ρ�, h�), �s�1h�(ρ�, h�)

〉
Fig. 3. Transfer functions on individual alias sets. The superscript1 identifies the version of the
transfer function; we will present modified versions of the transfer functions later in the paper.

Faster Alias Set Analysis Using Summaries 87

alias set. For a copy instruction (v1 ← v2) any alias set that contains the source variable
v2 is modified by adding the target variable v1, since after the instruction the source and
target both point to the same location. Since a pointer can only point to one location at
a time, instructions that overwrite a variable v modify an existing alias set by removing
v as after the instruction v no longer points to the runtime object abstracted by this set.
The store instruction (e ← v) has no effect on an alias set since alias sets by definition
only track local variables.

The focus operator in Figure 3 handles the uncertainty due to heap loads. As dis-
cussed earlier, only objects that were previously stored in the heap can be loaded.
Therefore, for alias-sets not in h�, focus(v, o�) removes v from o� since the loaded ob-
ject cannot possibly be represented by o� and after the assignment v no longer points to
o�. On the flip side, if o� represents an escaped object, then it is split into two, one repre-
senting the single concrete object that may have been loaded, and the other representing
all other objects previously represented by o�.

Two additional special cases are handled. First, for a store (e ← v), all abstract
objects that contain the variable v are added to h�. Second, for an allocation instruction,
a new alias set containing only the destination variable v is created and added to ρ�.

Figure 4 graphically shows the effect of a sequence of three instructions on the alias
set abstraction. For illustration we assume that before the first instruction, ρ� and h�

already contain an alias set {x,z} i.e. an abstraction of an object that is pointed to by
local variables x and z and might also have external references from the heap. Note
also the presence of a single empty alias set which represents all runtime objects that
are not referenced through any local variables. This keeps the abstraction finite. With
the allocation instruction, a new alias-set {x} is added to ρ�. At the same time, �s��

o

removes x from the alias set {x,z} since x no longer points to this runtime object.
After the copy instruction both y and z point to the same runtime object. The heap load
highlights a number of analysis features. First, note that the analysis determines that
the loaded object cannot be the newly created object from instruction 1. Second, since
{x,z} was in h�, so is {y,z}. The analysis applies the focus operator. Third, notice the
creation of the alias set {z}which represents a loaded object that previously had no local
variable references. Figure 4 illustrates the two key properties of alias set analysis (i)
the abstraction can distinguish individual objects i.e. each alias set represents at most
one runtime object and (ii) the transfer functions flow-sensitively track the effect of
instructions on pointers. Each column represents what happens to a particular concrete

x,z

z

y,z

y y,z z

x

x

x

x new

y z

z e

Fig. 4. An illustration of the transfer functions for computing the alias set abstraction

88 N.A. Naeem and O. Lhoták

object as different instructions execute; all that changes is the set of pointers pointing
to the object at different program points.

2.3 Inter-procedural Alias Set Analysis

The intra-procedural transfer function can be extended to be inter-procedural by defin-
ing the transfer functions for call and return. The overall effect of calling a function m
is �return� ◦ �m� ◦ �call� for each possible callee. To determine the callees possible at
each call site, we used a call graph computed using the default subset-based points-to
analysis implemented in Spark [16]. The function �call�o� is straightforward to define;
actual arguments in each alias set are replaced by the corresponding parameters and
all other variables are removed. Given a substitution r that maps each argument to its
corresponding parameter, the function is defined in Figure 5.

�call�1o�(o�) �
{

r(v) : v ∈ o� ∩ dom(r)
}

rv(o�
c, o

�
r) �

⎧⎨
⎩

o�
c if p does not return a value

o�
c ∪ {vt} vs ∈ o�

r

o�
c \ {vt} vs �∈ o�

r

�return�1o�(o�
c) �{rv(o�

c, o
�
r) : o�

r ∈ �m� ◦ �call�}

Fig. 5. Transfer functions for �call�o� and �return�o�

Defining the return from a function m is more challenging since any object that
might be returned by m is abstracted by some alias set containing variables local to
m. On its own this is insufficient to map variables from a callee alias set to one in the
caller since it is unknown which caller variables, if any, pointed to the object before the
call. Instead, the analysis uses a function that, given a call site and the computed flow
function �m� ◦ �call�, computes the appropriate caller-side alias sets after the function
returns. For the �return�o� function in Figure 5, o�

c is the caller-side abstraction of an
object existing before the call and the set �m� ◦ �call� contains all possible callee-side
alias sets (o�

r) that could be returned. The function rv takes each such pair (o�
c, o

�
r),

where vs is the callee variable being returned and vt is the caller variable to which the
return value is assigned. Intuitively, if the object that was represented by o�

c in the caller
before the call is returned from the callee (i.e. vs ∈ o�

r), then vt is added to o�
c. If some

other object is returned, then vt is removed from o�
c, since vt gets overwritten by the

return value. In the case of an object newly created within the callee, the empty set is
substituted for o�

c, since no variables of the caller pointed to the object before the call.
Overall, �return� yields the set of possible caller-side alias sets of the object after the
call. We refer the interested reader to our previous work [20] for more details.

3 Callee Summaries

Although precise, the alias set analysis in its original form is expensive to compute.
Using efficient data structures [19] and algorithms [22,20] only improves the efficiency

Faster Alias Set Analysis Using Summaries 89

to some extent. In situations where a faster running time is desired we propose the use of
method summaries. In this section, we discuss the use of callee summaries that decrease
the computation load, without any effect on a client analysis.

The key insight is that clients of a flow-sensitive whole program analysis often need
precise information at a small subset of program points. On the other hand, a flow-
sensitive program analysis computes precise information at all program points and
therefore computes a lot more information than required. Computing this unnecessary
information is wasteful and should be avoided. We use callee summaries to achieve this.

Before we explain the contents of a callee summary let us see how the alias set
analysis can use such summaries. Consider a callsite, with a target method m. If an
oracle predicts that a client of the alias set analysis never queries any program point
within m or any methods transitively called by m, then computing flow-sensitive alias
results for all methods in the transitive closure of m is unnecessary. Instead a callee
summary, which provides information regarding the parameters and return value, could
be used. For many client analyses such an oracle exists. In Section 5 we discuss one such
client analysis that leverages alias sets in proving temporal properties of objects. The
points of interest for this analysis i.e. the shadows, are operations that change the state
an object is in and are statically known ahead of time. Additionally, callee summaries
can be used for methods in the standard library; the alias set analysis can be seeded
to use callee summaries for all chains of calls into the library. Analyses such as those
detecting memory leaks and automatically deallocating objects [6, 21], that already use
alias sets, could benefit from such summaries to only analyze application code.

The key requirement we put on a callee summary is that it should enable the analysis
to bypass flow-sensitively analyzing a method without impacting precision in the caller.
Table 1 provides a summary of the contents of such a summary. The summary is divided
into escape (αesc) and return value (αret) information.

Table 1. Callee Summary for a callsite with target method m

Escape Information (αesc)
params set of parameters (including receiver) that may be stored into the heap by

m or procedures transitively called by m

Return Value Information (αret)
params set of parameters (including receiver) that might be returned by m.
heap might an object loaded from the heap be returned?
fresh might a newly created object be returned?
escaped might a newly created object be stored in the heap before being returned?
null might a null reference be returned?

To determine the contents of a callee summary one must understand the effect of a
method call on the alias set abstraction. First, the callee might escape the receiver or
arguments of the call. This might occur directly, when a callee’s parameter is stored
in a field, or indirectly, when a parameter is copied to a local reference which is then
stored. In Figure 6 the function foo escapes both its parameters, p directly via a store to

90 N.A. Naeem and O. Lhoták

field f of class Foo and q indirectly by first copying the reference to y and then storing
in Foo.f . Therefore, a callee summary analysis must track such copies and ultimately
provide a list of all parameters that might have escaped.

Second, the return value from the callee might be assigned to a reference in the caller.
To see how this might affect aliasing in the caller consider once again the example in
Figure 6. The function foo returns the pointer y which is a copy of q, one of foo’s
parameters. Therefore, the returned reference is the argument which is mapped to q, in
this case variable b. At run time, the effect of calling foo is that after the call, a and b
must point to the same object. Let us examine the effect on the abstraction at the callsite
if the interprocedural transfer functions from Figure 5 were used. �call� determines that
b and q point to the same location and �foo� determines that q and y point to the same
location. This leads �return� to infer that since b and y point to the same location and
y is assigned to a, b and a must point to the same location after the call; an alias set
containing both a and b is created in the caller. In order to forego flow-sensitive analysis
of foo in favour of a callee summary, the summary must specify which of the callee’s
parameters might be returned so that similar updates can be made at the callsite. Other
possible returned references include references to newly created objects or those loaded
from the heap.

bar(){
 Object a = new ...
 Object b = new ...
 a = foo(a,b)
 ...
}

foo(Object p, Object q){
 Foo.f = p;
 y = q;
 Foo.f = y;
 return y;
}

Fig. 6. An example illustrating the effect of a method call on alias sets in the caller

3.1 Computing Callee Summaries

The algorithm to compute the set of parameters that escape (αesc) from a method m is
presented in Figure 7. The algorithm takes as input a SSA-based control flow graph of
the method and returns a set of indices which refer to the positions of parameters in the
method’s signature which might have escaped 1. Lines 1-10 populate a worklist with
variables that either escaped through a store or through a function call from within m.
The algorithm then proceeds through each variable v in the worklist. Using the SSA
property that each variable has a single reaching definition the algorithm retrieves the
unique definition def of v (line 15). If def represents the Start node then v is a receiver
or a parameter and the appropriate index is added to the mayEscape set. For a copy
instruction v ← s, s is added to the worklist, since v and s both point to the same
escaped object. Notice that the order between the instruction that escapes v and the
copy from s to v does not matter, since in SSA-form once a variable is defined its value

1 Recall from Section 2 that we write a function call as m(p0, · · · pk) where p0 denotes the
receiver of the call and p1 to pk are the arguments.

Faster Alias Set Analysis Using Summaries 91

input: SSA-based CFG of method m
output:mayEscape
declare mayEscape : Set[Int], WorkList: FIFOWorklist[Var], seen : Set[Var]

1 foreach instruction inst ∈ cfg do
2 switch inst

3 case inst = Store(v) : add v to WorkList end-case
4 case inst = CallSite(args, retval) :
5 foreach tgt ∈ callees(inst) do
6 WorkList += { args(i) : i ∈ EscapeSummaries(tgt) }
7 od
8 end-case
9 end-switch
10 od
11 while WorkList not empty
12 Select and Remove variable v from WorkList
13 if seen contains v then continue fi
14 add v to seen
15 def = uniqueDef(cfg,v)
16 switch def

17 case def = Start(p0 · · · pk): mayEscape += { i : pi = v } end-case
18 case def = Copy(v,s): add s to WorkList end-case
19 case def = CallSite(args, retval):
20 foreach tgt ∈ callees(def) do
21 WorkList += { args(i) : i ∈ RetValSummaries(tgt).params }
22 od
23 end-case
24 case def = Phi : foreach Copy(v,s) ∈ phi.defs(v) do add s to WorkList od end-case
25 end-switch
26 od

Fig. 7. Algorithm to compute callee escape summary (αesc) for a method m

remains unchanged. If variable v is assigned the return value from a function call then
all arguments corresponding to the parameters that might be returned are added to the
worklist since these might have escaped (lines 19-23). A SSA φ instruction acts as a
multi-variable copy statement.

Figure 8 presents the algorithm to compute the return value summary for a function
m. The algorithm maintains a worklist of variables that might be returned. The worklist
is seeded with the unique return variable of m. For each variable v in the worklist, de-
pending on its unique definition, the return value summary and the worklist are updated.
In lines 12-14, if v is defined at the Start node then, since a Start node defines the
receiver or parameters of method m, the corresponding index of the parameter is stored
in params. This represents the situation when the receiver or a parameter to m might
be returned. Lines 15-23 update the return value summary if v is assigned the return
value at a callsite. The return value summaries of all possible target methods at the
callsite are consulted and the fresh, heap and null fields of the summary of m
appropriately updated. If any of the return value summaries indicate that a receiver or
parameter might be returned the corresponding argument is added to the worklist. Copy

92 N.A. Naeem and O. Lhoták

input: SSA-based CFG of method m
output:retValSum
declare WorkList: FIFOWorklist[Var], seen : Set[Var]

1 retValSum = RetValSum { params: Set[Int], heap = fresh = escaped = null = false }
4 if m.isV oid then return retValSum fi
5 Insert unique return variable into WorkList
6 while WorkList not empty
7 Select and remove variable v from WorkList
8 if seen contains v then continue fi
9 add v to seen
10 def = uniqueDef(cfg,v)
11 switch def

12 case def = Start(p0 · · · pk) :
13 retValSum.params += { i : pi = v }
14 end-case
15 case def = CallSite(args, retval) :
16 foreach tgt ∈ callees(def) do
17 calleeRetValSum = RetValSummaries(tgt)
18 if calleeRetValSum.fresh then retValSum.fresh = true fi
19 if calleeRetValSum.heap then retValSum.heap = true fi
20 if calleeRetValSum.null then retValSum.null = true fi
21 WorkList += { args(i) : i ∈ calleeRetValSum.params }
22 od
23 end-case
24 case def = Copy(v,s) : add s to WorkList end-case
25 case def = Phi :
26 foreach Copy(v,s) ∈ phi.defs(v) do add s to WorkList od
27 end-case
28 case def = Load : retValSum.heap = true end-case
29 case def = New : retValSum.fresh = true end-case
30 case def = Null : retValSum.null = true end-case
31 end-switch
32 foreach inst ∈ cfg do
33 switch inst

34 case inst = Store(v) :
35 if seen contains v then retValSum.escaped = true fi
36 end-case
37 case inst = CallSite (args, retval) :
38 foreach tgt ∈ callees(inst) do
39 if seen contains args(i) : i ∈ EscapeSummaries(tgt) then
40 retValSum.escaped = true
41 fi
42 od
43 end-case
44 end-switch
45 od

Fig. 8. Algorithm to compute the return value summary (αret) for a method m

Faster Alias Set Analysis Using Summaries 93

and Phi instructions add sources of assignments to the worklist. Load, New and Null
instructions require an update to the corresponding heap, fresh and null fields of
the return value summary. Two special cases must also be handled; if any possibly re-
turned variable was stored in a field or escaped by a function called by m, escaped is
set to true.

Since the callee summary of a function m depends on summaries of functions called
by m, the algorithms presented must be wrapped in an interprocedural fixed-point com-
putation. A worklist keeps track of all functions whose summaries may need to be
recomputed. Whenever the summary of a function changes, all of its callers are added
to the worklist. The computation iterates until the worklist becomes empty.

3.2 Using Callee Summaries

To leverage callee summaries in the alias set analysis the transfer functions from
Figures 3 and 5 are modified. These modifications are presented in Figure 9. We de-
note the set of methods that contain shadows or transitively call methods containing
shadows by M∗. The function �call�1o� is modified so that arguments in the caller are
mapped to parameters in the callee only for methods in M∗, the methods that are still
analyzed flow-sensitively. Since return instructions are only encountered in methods not
using callee summaries no change is required to the return function �return�1o� .

For methods not in M∗, we define the transfer function �CallF low� for the simi-
larly named edge connecting a call node to a return node in the caller. The �CallF low�
function uses two helper functions mustReturn and mightReturn which employ
the return value summary αret to update alias sets by simulating the effect of analyzing
the callee. The function mustReturn is true only when the object represented by o�

before the call is returned by the callee. Therefore the null, fresh and heap flags of the
return value summary should be false since a non-null object, that was not allocated
in the callee nor loaded from the heap should be returned. Additionally, o� must con-
tain the corresponding arguments of all parameters that might be returned by the callee.
Parameters that might be returned are given by αret.params and the corresponding ar-
guments are retrieved through the inverse function r, where r is the function mapping
arguments to parameters.

The helper function mightReturn determines whether o� might be returned. This
is true if o� represents an escaped object (o� ∈ h�) and an object loaded from the
heap might be returned. An object representing o� might also be returned if at least one
parameter, whose corresponding argument is in o�, might be returned. To handle the
uncertainty when mightReturn is true, �CallF low� accounts for both possibilities
similarly to the focus operation. If the returned object must not be o� then the variable
assigned from the return of the callee cannot possibly point to o� after the call.

The callee escape summary αesc is utilized to update alias sets representing objects
that might escape due to the function call (the function escape in Figure 9). If any of the
corresponding arguments to parameters that escape (αesc.params) are in an alias set in
ρ�, the alias set is added to h� since the function call escapes the parameter. The transfer
function must also handle situations when the callee allocates and returns a new object.
If αret.fresh is true and the return from the callee is assigned to variable v, an alias set

94 N.A. Naeem and O. Lhoták

�call�2o�(o�) �
j

�call�1
o�(o�) if s = call ∧ target(call) ∈ M∗

∅ otherwise

mustReturn(o�, αret) �

8<
:

true if !αret.fresh ∧!αret.heap ∧!αret.null ∧
∀p, p ∈ o� : p ∈ r(αret.params)

false otherwise

mightReturn[h�](o�, αret) �

8<
:

true if (o� ∈ h� ∧ αret.heap)∨
∃p, p ∈ o� : p ∈ r(αret.params)

false otherwise

�CallF low�2o� [h�, m, v](o�) �

8>><
>>:

∅ if m ∈ M∗

{o� ∪ v} if m /∈ M∗ ∧ mustReturn(o�, m.αret)
{o� \ v, o� ∪ v} if m /∈ M∗ ∧ mightReturn[h�](o�, m.αret)

{o� \ v} otherwise

�s�2ret �
j
{{v}} if s = CallF low[m, v] ∧ m /∈ M∗∧ m.αret.fresh

∅ otherwise

�s�2O� [h�](O�) �

8>><
>>:

S
o�∈O��s�

1
o�(o�)

if s /∈ {v ← e, CallF low[m, v]}S
o�∈O��CallF low�2

o� [h�, m, v](o�) if s = CallF low[m, v]S
o�∈O� focus[h�](v, o�) if s = v ← e

�s�2ρ�(ρ�, h�) � �s�1gen ∪ �s�2ret ∪ �s�1O� [h�](ρ�)

escape(ρ�, h�, m) � h� ∪ {o� ∈ ρ� : ∃p, p ∈ o� : p ∈ r(m.αesc.params)}

�s�2esc(m) �
j
{{v}} if m.αret.fresh∧ m.αret.escaped

∅ otherwise

�s�2h�(ρ�, h�) �

8>><
>>:

�s�2
O� [h�]

`
h� ∪ {o� ∈ ρ� : v ∈ o�}

´
if s = e ← v

�s�2esc(m) ∪ �s�2
O� [h�]escape(ρ�, h�, m)

if s = CallF low[m, v] ∧ m /∈ M∗

�s�2
O�[h�]

`
h�

´
otherwise

Fig. 9. Modified transfer functions for the alias set analysis using callee summaries

containing only v is added to ρ�. If the freshly created object might have been stored in
the heap before being returned (αret.escaped is true) a similar alias set is added to h�.

4 Caller Summaries

In this section we present caller summaries as a mechanism to speed up the interproce-
dural context-sensitive alias set analysis. Although static analyses that infer properties
of pointers can be useful even when the analysis is carried out locally on individual
methods, such analyses shine most when computed interprocedurally. The added abil-
ity to carry forward computed pointer and aliasing information from a caller into a
callee by mapping arguments to parameters can significantly improve precision. How-
ever, when efficiency is a bigger concern a natural trade-off is to forego some precision
by conservatively assuming initial pointer and aliasing relationships for the parameters
of a method.

The reason using caller summaries improves efficiency is that it decreases the num-
ber of the methods the must be analyzed flow-sensitively. Let us revisit the example in

Faster Alias Set Analysis Using Summaries 95

Figure 1. Using callee summaries enables the alias set analysis to discard flow-sensitive
analysis of methods 3-6 since they do not contain any shadows. However, even though
methods 1 and 7 do not contain shadows, they are analyzed flow-sensitively to ensure
that at a callsite to a method containing a shadow, precise information can be mapped
into the callee. In an analysis that uses caller summaries to make conservative assump-
tions at every method entry, flow-sensitively analyzing such methods is un-needed since
the precise information computed at the callsite will never be propagated into the callee.

We have implemented a conservative mechanism for computing caller summaries. In
our summaries, initial alias sets are created for the parameters of a method such that the
abstraction at the start of the method specifies that any two parameters might be aliased.
In our intermediate representation the method bar in the example from Figure 1 has
three parameters; the this receiver and the two List references a and b. The caller
summary for this method contains the following sets: {}, {this}, {a}, {b}, {this,a},
{this,b}, {a,b} and {this,a,b}. Notice that given these alias sets the only conclusion
that can be drawn is that the three parameters might be aliased i.e. no must or must-
not relationships exist between the parameters. This is overly conservative. Firstly, the
caller summary does not take into account any type information. Although a and b are
both references to a List data structure, the receiver this is of type Foo and, unless
Foo is declared a supertype of List, a reference of type Foo can never point to a
List object. Secondly, the caller summaries do not leverage any pointer information.
For example, subset-based points-to analyses that use allocation sites as their object
abstraction are often performed at onset for constructing a callgraph. Using this type
of pointer analysis could potentially improve the precision of the caller summary in
situations where the pointer analysis can specify that parameters a and b were created
at different allocation sites.

Our reason for using a naive caller summary was to investigate the maximum pre-
cision degradation due to such summaries. Whereas the callee summaries presented in
the preceding section do not affect precision, caller summaries do. As an example let
us look more closely at the example in Figure 1. The method bar receives two List
references, a and b. An alias set analysis which does not utilize caller summaries is able
to differentiate between the two references. In particular, at the start of method bar
the analysis infers that a and b must-not alias (two separate lists were created at lines 1
and 3 and assigned to a and b respectively, and a reference of one is never copied to the
other). However, the naive caller summary assumes that a and b could be aliased. Hence
the precision of the alias set analysis degrades i.e. fewer must-not facts are computed.

This decrease in precision can cascade into client analyses. For example suppose a
client of the alias set analysis is a verification tool for the property that an iterator’s
underlying list structure has not been modified when its next method is invoked (ex-
ecuting such code results in a runtime exception). If caller summaries are not used, the
analysis infers that the iterator’s underlying list i.e the list referenced by a, is never
modified since a and b must-not point to the same object and the code only modifies the
list referenced by b. Hence, the client analysis can prove that line 10 is not a violation of
the property. However, when caller summaries are used, the client analysis infers that
the list pointed to by reference a might be modified (the caller summary suggests that
a and b might be aliased and an element is added at line 11 to the list pointed to by

96 N.A. Naeem and O. Lhoták

reference b). Hence the client analysis loses precision since it can no longer prove that
the next operation at line 10 is safe w.r.t. the property being verified. We empirically
evaluate the loss in precision of using caller summaries on the alias set analysis and a
client analysis in Section 5.

�call�3o�(o�) � callerSummaries(target(call))

�CallF low�3o� [h�, m, v](o�) �

8<
:

{o� ∪ v} if mustReturn(o�, m.αret)
{o� \ v, o� ∪ v} if mightReturn[h�](o�, m.αret)

{o� \ v} otherwise

�s�3h�(ρ�, h�) �

8<
:

�s�2
O� [h�]

`
h� ∪ {o� ∈ ρ� : v ∈ o�}

´
if s = e ← v

�s�2esc(m) ∪ �s�2
O� [h�]escape(ρ�, h�, m) if s = CallF low[m, v]

�s�2
O�[h�]

`
h�

´
otherwise

Fig. 10. Updated transfer functions for the alias set analysis using callee and caller summaries

Modifying the alias set analysis to use caller summaries is straightforward. Figure 10
shows those transfer functions which have been modified from their earlier version
(Figure 9). First, the call function is modified. Instead of mapping arguments to pa-
rameters, the caller summary provides the set of alias sets to seed the callee’s analysis.
Second, callee summaries are used for all methods instead of only those not in M∗.

5 Experiments

Any standard dataflow analysis framework can be used to compute the alias set abstrac-
tion using the original transfer functions from Section 2 or the subsequently modified
versions from Sections 3 and 4. We have chosen to implement these incarnations as
instances of the efficient interprocedural finite distributive subset (IFDS) algorithm of
Reps et al. [22]. The algorithm requires an analysis domain P(D) for some finite set
D, and transfer functions that are distributive. The alias set abstraction satisfies these
conditions where D is the set of all possible alias sets. The key to IFDS’s efficiency
is the distributivity of transfer functions which enables it to evaluate the functions on
individual alias sets, rather than on the entire set of alias sets at a program point. Space
restrictions limit us in providing interesting details of the algorithm. Instead we refer
the interested reader to the ever growing body of work discussed in Section 6.

For the experiments we used the DaCapo Benchmark suite, version 2006-10-MR2
with the standard library from JDK 1.3.1 12 for antlr, pmd and bloat, and JDK 1.4.2 11
for the rest, since they use features not present in JDK 1.3. The intermediate repre-
sentation is constructed using the Soot Framework [29] with reflective class loading
modelled through reflection summaries obtained using ProBe [15] and *J [9]. To give
an indication of the size of these benchmarks we computed the number of methods
statically reachable in the control flow graph created by Soot and present these in
Table 2. Time taken to pre-compute the callee summaries using the algorithms dis-
cussed in Section 3 are also shown.

In our experiments we have used a static analysis that verifies conformance to tem-
poral properties specified using a statemachine-based specification [2] as a client of the

Faster Alias Set Analysis Using Summaries 97

Table 2. Number of statically reachable methods and the time to precompute callee summaries

Benchmark antlr bloat chart fop hsqldb jython luindex lusearch pmd xalan
Reachable Methods 4452 5955 14912 27408 11418 14437 7358 7821 9365 14961

Callee SummaryTime(s) 8 12 29 72 28 50 10 10 15 29

alias set abstraction. In previous work [18], we presented a two stage approach to veri-
fying such properties. In the first stage an alias set abstraction of objects in the program
is computed. The second stage uses this abstraction to compute an abstraction for the
state an object, or group of objects, is in. This enables statically verifying whether the
state machine might end up in an error state indicating a violation of the property.

Our choice of client analysis was dictated by two reasons. First, each temporal prop-
erty specifies its own points of interest; only events that transition the state machine
of that property are considered shadows. By choosing different properties we ensure a
varying set M∗, the set of methods for which callee summaries are used. The properties
we experimented with are presented in Table 3. The code fragment from Figure 1 uses
the FSI property. Shadows for FSI are the next operation on an iterator and updates on
the Collection type e.g. add, clear, remove. A second reason for choosing this client
analysis is that it cleanly teases apart the computation of the alias set abstraction and
its use in computing the state abstraction. This enables us to measure the precision and
efficiency of the alias set abstraction in a real-world scenario.

Table 3. Temporal properties investigated to obtain a varying set M∗

FailSafeEnum (FSE): A vector should not be updated while enumerating it
FailSafeEnumHash(FSEH): A hashtable should not be updated while enumerating its keys/values
FailSafeIter (FSI): A collection should not be updated while iterating over it
HasNext (HN) The hasNext method should be called prior to every call to next on an iterator
HasNextElem (HNE): The hasNextElem method should be called prior to every call to

nextElement on an enumeration
Reader (R): A Reader should not be used after its InputStream has been closed
Writer (W): A Writer should not be used after its OutputStream has been closed

We call a pair containing a benchmark and temporal property a test case. Since not
all benchmarks exercise all temporary properties we have chosen to present results only
for test cases when a temporal property is applicable for a benchmark e.g. the antlr
benchmark never uses a Writer and hence the corresponding temporal property is inap-
plicable.

5.1 Shadow Statistics

Section 3 proposed the use of callee summaries for methods not in M∗ and Section 4
proposed the use of caller summaries for all methods thereby requiring flow-sensitive
analysis of only methods containing shadows (S). We measured the percentage of reach-
able methods that are in M∗ and S and present these in Table 4. The maximum percent-
age of methods in M∗ was for the test case jython-FSI where 59.9% of the methods
are in M∗. Notice that the methods containing shadows for jython-FSI are only 0.6%

98 N.A. Naeem and O. Lhoták

Table 4. Percentage of reachable methods that contain shadows or transitively call methods with
shadows (M∗) and methods that contain shadows (S)

antlr bloat chart fop hsqldb jython luindex lusearch pmd xalan
M∗ S M∗ S M∗ S M∗ S M∗ S M∗ S M∗ S M∗ S M∗ S M∗ S

FSE 56.3 0.7 47.6 0.1 1.6 0.1 59.8 0.4 1.6 0.4 1.1 0.2 9.5 0.1 50.0 0.6
FSEH 56.3 1.1 2.8 0.1 59.8 0.4 1.1 0.3 0.8 0.2 49.9 0.3
FSI 56.3 4.2 50.6 0.6 47.7 0.5 54.0 0.1 59.9 0.6 53.1 0.4 52.4 0.6 52.4 1.0 50.0 0.5
HN 56.0 2.6 50.5 0.4 47.6 0.1 54.0 0.1 59.8 0.2 53.1 0.2 52.3 0.3 52.2 0.5 0.1 0.1
HNE 56.3 0.7 0.1 0.1 1.6 0.1 59.8 0.2 0.5 0.2 0.3 0.1 6.6 0.1 49.9 0.2
R 7.5 0.2 4.2 0.3 59.8 0.2 0.9 0.1 2.3 0.3 7.7 0.1 49.9 0.1
W 55.8 0.5 47.6 0.3 5.7 0.6 0.8 0.1 1.7 0.3 0.2 0.1 49.9 0.4

indicating that most methods are in M∗ since they call methods containing shadows. On
average (geometric mean) M∗ contains 11.9% of the reachable methods implying that
callee summaries are used for the remaining 88.1%. When using both callee and caller
summaries a mere 0.3% of reachable methods (average of set S) require flow-sensitive
analysis.

5.2 Efficiency

To measure the effect of summaries on the time required to compute the alias set ab-
straction we computed the abstractions using the three versions of the transfer functions.
In Table 5 we show the running time of the original alias set abstraction (ORIG), the
alias set abstraction which uses only callee summaries (CS) and the abstraction using
both callee and caller summaries (CCS). The times for CS and CCS include the time
for computing the callee summary and CCS also includes the time to compute the caller
summary.

For all test cases, the time required to compute the abstraction is reduced when callee
summaries are used for methods not in M∗. The greatest reduction is for pmd-writer
which takes 99.6% less time to compute (6670 vs 29 seconds). The reason for this is
quite obvious; for pmd-writer, M∗ contains only 12 methods out of the 9365 reachable
methods. On average the use of callee summaries reduces the time to compute the alias
set abstraction by 27%. Introducing caller summaries has a more significant impact; an
average reduction of 96% is witnessed over the entire test set.

5.3 Client Analysis Precision

As discussed earlier we chose a static analysis that verifies conformance to temporal
properties as a client of the alias set analysis. The analysis represents temporal proper-
ties as state machines where operations on object(s) transition the state machine asso-
ciated with the object(s). To distinguish the objects on which operations are performed,
the analysis uses an alias set abstraction. The result of the analysis is a list of shad-
ows that cannot be verified by the analysis; these include actual violations and false
positives.

To evaluate the effect of using caller summaries on the precision of the analysis
(callee summaries have no effect on precision) we executed the client analysis using

Faster Alias Set Analysis Using Summaries 99

Table 5. Time taken to compute the alias set abstraction for the original transfer functions
(ORIG), the transfer functions leveraging Callee Summaries (CS) and the transfer functions em-
ploying both Callee and Caller Summaries (CCS)

antlr bloat chart fop hsqldb jython luindex lusearch pmd xalan

FSE
ORIG 484 5934 1351 2390 1017 580 2638 5052
CS 349 5422 220 1524 118 151 37 4484
CCS 15 108 40 71 19 18 26 112

FSEH
ORIG 500 1426 2020 1054 576 6395
CS 386 226 1397 120 133 5834
CCS 18 39 77 17 17 51

FSI
ORIG 1810 1653 4057 1316 2335 1057 553 3685 5100
CS 1683 1022 4051 651 1671 391 407 2069 5099
CCS 563 72 109 37 69 17 17 29 119

HN
ORIG 1601 1665 3735 1406 2225 1019 485 5273 5262
CS 1556 1035 3289 714 1390 393 388 5031 164
CCS 455 44 115 41 70 18 17 29 45

HNE
ORIG 457 1607 1450 2233 1098 562 5182 4361
CS 358 119 220 1481 137 121 32 3588
CCS 16 18 40 77 18 17 26 44

R
ORIG 511 1416 2205 1097 563 4348 3280
CS 55 238 1487 123 123 35 3172
CCS 13 39 73 16 16 27 48

W
ORIG 1551 3840 1450 1067 607 6670 3468
CS 1411 3553 318 120 146 29 3323
CCS 19 447 37 17 18 28 66

the ORIG and CCS abstractions. As per our discussion in Section 4, we expected a
decrease in precision since caller summaries cause the alias set abstraction to compute
fewer aliasing facts. However, the results surprised us; none of the 54 test cases showed
any degradation in the client analysis. The CCS abstraction contained sufficient must
and must-not aliasing at each shadow of a test case to produce the same transitions on
the abstract state machine.

Our conclusion from this experiment is that even though caller summaries cause a
theoretical decrease in precision, this does not automatically translate into precision
loss for the client analysis. Situations exist where the benefits of using caller summaries
heavily outweigh the slight chance of losing precision.

5.4 Fine-Grained Precision Metrics

When the client analysis did not show a loss of precision, we set out to develop a fine-
grained metric for evaluating precision of alias sets. Using the alias set abstraction we
compute must and must-not alias pairs for variables live at the shadows of each test
case. Then we sum the alias pairs for all shadows in a test case to give us two precision
metrics: MA the aggregated must-alias pairs and MNA the aggregated must-not alias
pairs. As expected, the metric values for ORIG and CS are identical indicating that
no precision is lost by using callee summaries. Table 6 presents the results of ORIG

100 N.A. Naeem and O. Lhoták

(alternately CS) vs CCS2. For each test case the MA and MNA values for ORIG are
presented. Below this is a number indicating the number of alias pairs that are lost with
CCS. For example, the MA value for jython-FSE is 51 indicating that 51 different alias-
pairs were identified at the shadows of this test case. The absence of a number below
indicates no decrease in precision when using caller summaries. The MNA value for
jython-FSE is 189. The -7 below indicates that 7 must-not alias pairs were lost when
caller summaries were used.

Table 6. Alias set abstraction precision in terms of aggregated must aliasing (MA) and must not
aliasing (MNA) metrics computed at the shadows for each test case

bloat chart jython luindex lusearch pmd xalan
MA MNA MA MNA MA MNA MA MNA MA MNA MA MNA MA MNA

FSE
51 189 6 98 18 91 0 35 371 1180

-7 -2 -1 -1 -64

FSEH
930 1546 4 63 1 17 179 384
-21 -19 -4 -2

FSI
1152 18858 3344 6244 404 583 76 226 77 233 459 1505 350 1042

-611 -212 -254 -32 -1 -1 -3 -79 -22

HN
606 7584 704 1529 322 386 95 202 58 112 127 839 0 13

-328 -14 -214 -1 -53

HNE
0 21 11 133 8 91 0 13 0 41 45 194

0 -10 -2 -1

R
253 427 59 80 203 222 56 130 671 1395
-9 -14 -44 -44 -7 -20

W
7 306 56 83 200 219 0 22 524 799

-55 -41 -41 -21

Of the 54 test cases, only 9 showed a degradation in the MA precision metric.
The four highest degradations were for luindex-R (75%), luindex-W (73%), lusearch-R
(22%) and lusearch-W (21%). The average (geometric mean) degradation for the 9 test
cases was 8%. 31 of the 54 test cases also noted a decrease in the MNA metric. The
maximum decrease was 17% for bloat-W with an average decrease of 4%.

6 Related Work

Kildall’s framework [14] for intraprocedural dataflow analysis was extended by Sharir
and Pnueli [27] to perform context-sensitive interprocedural dataflow analysis using
either the call-strings or functional approach. The functional approach computes the
effect of each procedure by composing functions for individual instructions in the pro-
cedure thereby obtaining a summary function fp : D → D, where D is the dataflow
analysis domain. Once the summary function for a procedure has been computed it
is used at each call site of the procedure to model the effect of the call. Sagiv, Reps
and Horwitz [22] extended the original formalism to P(D) for a finite set D with the

2 Due to space limitations we do not present results for antlr, fop and hsqldb.

Faster Alias Set Analysis Using Summaries 101

condition that the functions on individual dataflow facts should be distributive. Dis-
tributivity of transfer functions enables the graphical representation of these functions
as bipartite graphs with O(D) nodes. The IFDS algorithm has been used to solve both
locally separable problems such as reaching definitions, available expressions and live
variables, and non-locally-separable problems such as uninitialized variables and copy-
constant propagation. Its efficiency makes it suitable for computing a variety of useful
static abstractions [10, 23, 28, 31, 13, 25, 19].

Other frameworks for computing procedure summaries have also been proposed.
Gulwani and Tiwari [11] developed procedure summaries in the form of constraints
that must be satisfied for some generic assertion to hold at the end of the procedure.
Their key insight was to use weakest preconditions of such generic assertions. Further-
more, for efficiency they use strengthening and simplification of these preconditions to
ensure early termination. The approach has been used to compute two useful abstrac-
tions; unary uninterpreted functions and linear arithmetic. Recently, Yorsh et al. [32]
introduced an algorithm which also computes weakest preconditions and relies on sim-
plification for termination. They describe a class of complex abstract domains (includ-
ing the class of problems solvable using IFDS) for which they can generate concise and
precise procedure summaries. Their approach uses symbolic composition of the trans-
fer functions for the instructions in the program to obtain a compact representation for
the possibly infinite calling contexts.

In contrast to the related work discussed above, we propose a technique to reduce the
number of methods that must be analyzed using any of the approaches discussed above
(our implementation uses the IFDS algorithm [22] to compute the alias set abstraction).
Under certain conditions, instead of computing expensive procedure summaries through
IFDS, our analysis uses cheaper callee summaries without a loss of precision.

Cherem and Rugina [7] present a flow-insensitive, unification-based context-sensitive
analysis to construct method summaries that describe heap effects. The analysis is pa-
rameterized for specifying the depth of the heap to analyze (k) and the number of fields to
track per object (b). Varying the values for k and b results in different method summaries;
smaller values produce lightweight summaries whereas larger values result in increased
precision. Method summaries were shown to significantly improve a client analysis that
infers uniqueness of variables i.e. when a variable holds the only reference to an object.

Also related are analyses which traverse the program callgraph (mostly bottom-up but
some top-down analyses have also been proposed) and compute a summary function for
each procedure [30,4,5]. This summary function is then used when analyzing the callers.

Escape analysis has been widely studied [8,3,1,30] and used in a variety of applica-
tions ranging from allocating objects on the stack to eliminating unnecessary synchro-
nization in Java programs. To determine whether an object can be allocated on the stack
and whether it is accessed by a single thread, Choi et al. [8] compute object escape in-
formation using connected graphs. A connected graph summarizes a method and helps
identify non-escaping objects in different calling contexts. In their work on inferring
aliasing and encapsulation properties for Java [17], Ma and Foster present a static anal-
ysis for demand-driven predicate inference. Their analysis computes predicates such as
checking for uniqueness of pointers (only reference to an object), parameters that are
lent (callee does not change uniqueness) and those that do not escape a callee.

102 N.A. Naeem and O. Lhoták

7 Summary
This paper presented callee and caller summaries as a means to improve the efficiency
of an alias set analysis. We described the information required from a callee summary
to ensure that their use does not decrease precision at a callsite. Algorithms to compute
the callee summary and the alias set transfer function leveraging the summaries were
also presented. Through experimental evidence we showed that a client analysis and
alias set precision metrics are unaffected by the use of callee summaries. On average a
27% reduction in the running time to compute the abstraction was witnessed.

In situations where some loss of precision is acceptable in favour of larger gains in
efficiency, we showed how caller summaries that make assumptions about pointer and
aliasing relationships at method entry can be employed. In order to gauge the maximum
decrease in precision, we chose to use a conservative caller summary which assumes
that any two parameters of a method might be aliased. Empirical evaluation of the effect
of using caller summaries on the precision of the client analysis revealed no decrease in
the abilities of the client analysis. For a fine-grained evaluation of precision, two met-
rics deriving aggregated must and must-not aliasing between variables were calculated.
The average decrease was 8% for the must- and 4% for the must-not alias metric. The
running time for computing the alias set abstraction decreases by 96% on average if
both callee and caller summaries are used.

Future directions include experimenting with other client analyses of the alias set
abstraction, using callee and caller summaries for the standard library, and developing
less conservative caller summaries such as those briefly mentioned in Section 4.

Acknowledgements. This work was supported, in part, by the Natural Sciences and En-
gineering Research Council of Canada and Ontario Ministry of Research and Innovation.

References

1. Aldrich, J., Chambers, C., Sirer, E.G., Eggers, S.J.: Static analyses for eliminating unneces-
sary synchronization from Java programs. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS,
vol. 1694, pp. 19–38. Springer, Heidelberg (1999)

2. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, O., de Moor,
O., Sereni, D., Sittampalam, G., Tibble, J.: Adding trace matching with free variables to
AspectJ. In: OOPSLA 2005, pp. 345–364 (2005)

3. Blanchet, B.: Escape analysis for object-oriented languages: application to Java. In:
OOPSLA 1999, pp. 20–34 (1999)

4. Chatterjee, R., Ryder, B.G., Landi, W.A.: Relevant context inference. In: POPL 1999, pp.
133–146 (1999)

5. Cheng, B.-C., Hwu, W.-M.W.: Modular interprocedural pointer analysis using access paths:
design, implementation, and evaluation. In: PLDI 2000, pp. 57–69 (2000)

6. Cherem, S., Rugina, R.: Compile-time deallocation of individual objects. In: ISMM 2006,
pp. 138–149 (2006)

7. Cherem, S., Rugina, R.: A practical escape and effect analysis for building lightweight
method summaries. In: Adsul, B., Vetta, A. (eds.) CC 2007. LNCS, vol. 4420, pp. 172–186.
Springer, Heidelberg (2007)

8. Choi, J.-D., Gupta, M., Serrano, M., Sreedhar, V.C., Midkiff, S.: Escape analysis for Java. In:
OOPSLA 1999, pp. 1–19 (1999)

9. Dufour, B.: Objective quantification of program behaviour using dynamic metrics. Master’s
thesis, McGill University (June 2004)

Faster Alias Set Analysis Using Summaries 103

10. Fink, S.J., Yahav, E., Dor, N., Ramalingam, G., Geay, E.: Effective typestate verification in
the presence of aliasing. ACM Trans. Softw. Eng. Methodol. 17(2), 1–34 (2008)

11. Gulwani, S., Tiwari, A.: Computing procedure summaries for interprocedural analysis. In:
De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 253–267. Springer, Heidelberg (2007)

12. Hind, M.: Pointer analysis: haven’t we solved this problem yet? In: PASTE 2001, pp. 54–61
(2001)

13. Horwitz, S., Reps, T., Sagiv, M.: Demand interprocedural dataflow analysis. In: SIGSOFT
FSE 1995, pp. 104–115 (1995)

14. Kildall, G.A.: A unified approach to global program optimization. In: POPL 1973, pp. 194–
206 (1973)

15. Lhoták, O.: Comparing call graphs. In: PASTE 2007, pp. 37–42 (2007)
16. Lhoták, O., Hendren, L.: Scaling Java points-to analysis using Spark. In: Hedin, G. (ed.) CC

2003. LNCS, vol. 2622, pp. 153–169. Springer, Heidelberg (2003)
17. Ma, K.-K., Foster, J.S.: Inferring aliasing and encapsulation properties for Java. In: OOPSLA

2007, pp. 423–440 (2007)
18. Naeem, N.A., Lhoták, O.: Typestate-like analysis of multiple interacting objects. In:

OOPSLA 2008, pp. 347–366 (2008)
19. Naeem, N.A., Lhoták, O.: Efficient alias set analysis using SSA form. In: ISMM 2009, pp.

79–88 (2009)
20. Naeem, N.A., Lhoták, O., Rodriguez, J.: Practical extensions to the IFDS algorithm. In:

Gupta, R. (ed.) CC 2010. LNCS, vol. 6011, pp. 124–144. Springer, Heidelberg (2010)
21. Orlovich, M., Rugina, R.: Memory leak analysis by contradiction. In: Yi, K. (ed.) SAS 2006.

LNCS, vol. 4134, pp. 405–424. Springer, Heidelberg (2006)
22. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via graph reacha-

bility. In: POPL 1995, pp. 49–61 (1995)
23. Rinetzky, N., Sagiv, M., Yahav, E.: Interprocedural shape analysis for cutpoint-free pro-

grams. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 284–302. Springer,
Heidelberg (2005)

24. Ryder, B.G.: Dimensions of precision in reference analysis of object-oriented programming
languages. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 126–137. Springer, Heidelberg
(2003)

25. Sagiv, M., Reps, T., Horwitz, S.: Precise interprocedural dataflow analysis with applications
to constant propagation. Theoretical Computer Science 167(1-2), 131–170 (1996)

26. Sagiv, M., Reps, T., Wilhelm, R.: Solving shape-analysis problems in languages with de-
structive updating. ACM Trans. Program. Lang. Syst. 20(1), 1–50 (1998)

27. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In: Muchnick,
S.S., Jones, N.D. (eds.) Program Flow Analysis: Theory and Applications, ch. 7, pp. 189–
233. Prentice-Hall, Englewood Cliffs (1981)

28. Shoham, S., Yahav, E., Fink, S., Pistoia, M.: Static specification mining using automata-based
abstractions. In: ISSTA 2007, pp. 174–184 (2007)

29. Vallée-Rai, R., Gagnon, E., Hendren, L.J., Lam, P., Pominville, P., Sundaresan, V.: Optimiz-
ing Java bytecode using the soot framework: Is it feasible? In: Watt, D.A. (ed.) CC 2000.
LNCS, vol. 1781, pp. 18–34. Springer, Heidelberg (2000)

30. Whaley, J., Rinard, M.: Compositional pointer and escape analysis for Java programs. In:
OOPSLA 1999, pp. 187–206 (1999)

31. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W.: Scalable
shape analysis for systems code. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 385–398. Springer, Heidelberg (2008)

32. Yorsh, G., Yahav, E., Chandra, S.: Generating precise and concise procedure summaries. In:
POPL 2008, pp. 221–234 (2008)

JPure: A Modular Purity System for Java

David J. Pearce

School of Engineering and Computer Science,
Victoria University of Wellington, New Zealand

djp@ecs.vuw.ac.nz

Abstract. Purity Analysis is the problem of determining whether or not a method
may have side-effects. This has applications in automatic parallelisation, extended
static checking, and more. We present a novel purity system for Java that em-
ploys purity annotations which can be checked modularly. This is done using
a flow-sensitive, intraprocedural analysis. The system exploits two properties,
called freshness and locality, to increase the range of methods that can be consid-
ered pure. JPure also includes an inference engine for annotating legacy code. We
evaluate our system against several packages from the Java Standard Library. Our
results indicate it is possible to uncover significant amounts of purity efficiently.

1 Introduction

Methods which don’t update program state may be considered pure or side-effect free.
Knowing which methods are pure in a program has a variety of applications, such
as: specification languages [19,1,3,10], model checking [31], compiler optimisations
[9,18,36], atomicity [13], query systems [21,34] and memoisation of function calls [15].

Several existing techniques are known for determining purity in OO languages
(e.g. [26,30,22,23]). The majority employ interprocedural pointer analysis as the un-
derlying algorithm. While this yields precise results, there are a number of drawbacks:
firstly, it requires the whole program be known in advance [29]; secondly, it takes a sig-
nificant amount of time to run, which is prohibitive in normal day-to-day development.

A useful alternative is to use annotations. Here, pure methods are first annotated
with @Pure; then, a purity checker is provided to help enforce the purity protocol in
programs. For this approach to be practical, the purity checker must be efficient to fit
within normal day-to-day development. A sensible way of ensuring this is to require
that the annotations be modularly checkable. That is, the purity annotations on one
method can be checked in isolation from others. Unfortunately, the majority of previous
works on purity analysis, particularly those which depend upon interprocedural pointer
analysis, do not generate modularly checkable annotations.

An obvious difficulty with any annotation-based purity system is the vast amount of
legacy code that would first need to be annotated. In particular, the Java standard library
has not been annotated to identify pure methods. To address this, we present a purity
system that is split into two components: a purity inference and a purity checker. The
purity inference operates as a source-to-source translation, taking in existing Java code
and adding modularly checkable @Pure annotations (and any auxiliary annotations
required). The purity checker can then check these annotations are correct efficiently

J. Knoop (Ed.): CC 2011, LNCS 6601, pp. 104–123, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

JPure: A Modular Purity System for Java 105

at compile-time. The idea behind this is simple: users take their existing applications,
infer the @Pure annotations once using the (potentially expensive) purity inference;
then, they maintain them using the (efficient) purity checker.

An important requirement for an annotation-based purity system is that the anno-
tations themselves must be simple to use. This is because, once the annotations are
inferred, we expect programmers to use and understand them. Our system uses only
three annotations, @Pure, @Local and @Fresh, but remains sufficiently flexible for
many real-world examples.

The contributions of this paper are as follows:

1. We present a novel purity system which employs modularly checkable annotations.
This exploits freshness and locality to increase the number of methods which can
be considered pure. The system comprises a purity checker and a purity inference.
The latter operates as a source-source translation for annotating legacy code.

2. We formalise the intraprocedural analysis that underpins both the purity checking
and purity inference algorithms.

3. We report on experiments using our system on several packages from the Java Stan-
dard Library. Our results indicate that at least 40% of methods in these packages
are pure.

2 A Simple Purity System

We start by considering a simple purity system which is surprisingly effective in practice
and, crucially, employs modularly checkable annotations. We then highlight several
problems which stem from code found in the Java Standard Library. Later, in §3, we
refine this simple system to resolve these problems.

2.1 Overview

In the simple purity system, pure methods are indicated by a @Pure annotation. The
following characterises the meaning of purity within the system:

Definition 1 (Pure Method). A method is considered pure if it does not assign (directly
or indirectly) to any field or array cell that existed before it was called.

This implies that, for a method to be pure, any method it calls must also be pure. There-
fore, for any call-site, we must conservatively approximate the set of methods that may
be invoked. To check annotations modularly, we can only rely on the static type infor-
mation available at a given call-site. For example:

1 public void f(List<String> x) { x.add("Hello"); }

As we do not know what implementations of List may be supplied for x, we must
assume any is possible and, hence, that the invocation may dispatch to any implemen-
tation of List.add(). Thus, for method f() above to be considered pure, every
implementation of List.add() must itself be pure.

The simple purity system must also follow a covariant typing protocol. This requires
that pure methods can only be overridden by methods which are also pure. The follow-
ing illustrates:

106 D.J. Pearce

1 class Parent {
2 @Pure void f() {}
3 }
4

5 class Child extends Parent {
6 int x;
7 void f() { x=1; }
8 }

If we considered Parent.f() in isolation, one would conclude it is pure. However,
Child.f() is clearly not pure, since it assigns field x. Thus, following the covariant
typing protocol, the purity checker must reject this code.

2.2 Modular Checking

We now give an informal argument as to why the annotations produced by the simple
purity system are modularly checkable. Essentially, there are three cases to consider:

(1) Direct Field Assignment. A method annotated@Pure cannot assign to fields. This
can be easily checked by inspecting its implementation.

(2) Indirect Field Assignment. A method annotated @Pure may only call methods
which are themselves pure. This is checked by ensuring, for each call-site, the
method invoked is annotated @Pure. Since this is determined using static type
information, it may not be the actual method invoked (due to dynamic dispatch).
However, it is safe as the covariant typing protocol ensures all overriding methods
must be pure.

(3) Method Overriding. A method annotated @Pure can only be overridden by meth-
ods which are also annotated @Pure. This ensures the covariant typing protocol is
followed and is easily checked by comparing the annotations on a method with
those it overrides.

The argument here is that: one can check a method annotated @Pure is indeed pure
simply by inspecting its implementation, and those signatures of methods it calls or
overrides. This follows the general approach to type checking, as adopted by e.g. Java’s
type checker.

2.3 Problem 1 — Iterator

We now consider several problems that arose when using the simple purity system on
real code. The first is that of java.util.Iterator. The following illustrates:

1 public Test {
2 private List<String> items;
3 boolean has(String x) {
4 for(String i : items) {
5 if(x == i) { return true; }
6 }
7 return false;
8 }}

JPure: A Modular Purity System for Java 107

At a glance, method Test.has() appears pure. But, this is not the case because the
for-loop uses an iterator. Roughly speaking, the loop is equivalent to the following:

1 boolean has(String x) {
2 Iterator iter = items.iterator();
3 while(iter.hasNext()) {
4 String i = iter.next();
5 if(x == i) { return true; }
6 }
7 return false;
8 }

Here, iter.next() is called to get the next item on the list. However, this method up-
dates its Iterator object and, hence, cannot be considered pure. In section §3, we re-
solve this by extending the system to make explicit the fact that items.iterator()
only ever returns fresh — i.e. newly allocated — objects.

2.4 Problem 2 — Append

The second kind of problem one encounters with the simple system is illustrated by the
following, adapted from java.lang.AbstractStringBuilder:

1 class AbstractStringBuilder {
2 char[] data;
3 int count; // number of items used
4 AbstractStringBuilder append(String s){
5 ...
6 ensureCapacity(count + s.length());
7 s.getChars(0, s.length(), data, count);
8 ...
9 return this;

10 }}

Here, getChars() works by copying the contents of s into data at the correct po-
sition. Because of this, getChars() and, hence, append() cannot be considered
pure under Definition 1. So, why is this a problem? Well, consider the following:

1 String f(String x) { return x + "Hello"; }

Again, at a glance, this method appears pure. However, the bytecode generated for
this method indirectly calls AbstractStringBuilder.append() and, hence, it
cannot be considered pure.

Clearly, we want methods such as f() above to be considered pure. In section §3, we
achieve this by extending the system to determine that: firstly, the StringBuilder
object created for the string append is fresh; secondly, that the array referred to by data
is in the locality of that StringBuilder object. When an object (the child) is in the
locality of another (the parent), we have a guarantee that the child is fresh if the parent
is fresh. Thus, assignments to the array referenced by data are permitted as it is known
to be fresh (since the StringBuilder object is fresh).

108 D.J. Pearce

3 Our Improved Purity System

In this section, we detail our purity system which improves upon the simple approach
outlined in §2. Our system is implemented in a tool called JPure, and we report on
experiments using it in §5.

3.1 Freshness and Locality

Let us recall the first problem encountered with the simple purity system, as discussed
in §2.3:

1 @Pure boolean has(String x) {
2 Iterator iter = items.iterator();
3 while(iter.hasNext()) {
4 String i = iter.next();
5 if(x == i) { return true; }
6 }
7 return false;
8 }

To show that this method is pure under Definition 1 requires two guarantees:

1. That items.iterator() always returns a fresh (i.e. newly allocated) object.
2. That iter.next() can only modify the localilty (i.e. local state) of the

Iterator object.

Intuitively, the idea is that, when an object is fresh, so is its locality. Then, by Defini-
tion 1, state in its locality can be modified as it did not exist prior to the method (i.e.
has()) being called. In §3.2 we will give a more precise definition of locality.

To indicate a method returns a fresh object, or that it only ever modifies an object’s
locality, we employ two additional annotations: @Fresh and @Local. Thus, for the
Collection and Iterator interfaces, we would add the following annotations:

1 interface Collection {
2 @Fresh Object iterator();
3 ...
4 }
5 interface Iterator {
6 @Pure boolean hasNext();
7 @Local Object next();
8 ...
9 }

Here, @Fresh implies all implementations of iterator() must return a fresh ob-
ject and, furthermore, must be pure (as, for brevity, we say @Fresh implies @Pure).
Likewise, since hasNext() is annotated @Pure, its implementations must be pure.
Finally, the @Local annotation on next() implies its implementations may only
modify the Iterator’s locality.

JPure: A Modular Purity System for Java 109

3.2 Understanding Locality

To make our notions of freshness and locality more precise, we must consider which
parts of an object they apply to. For example, an Iterator instance returned from
iterator() may be freshly allocated; but, it is almost certainly not the case that all
objects reachable from it are (e.g. the items being iterated over). Thus, we need some
way to determine how much of an object’s reachable state is included in its locality.

Definition 2 (Locality). The locality of an object includes every field defined by its
class and, for those annotated @Local, the locality of the referenced object.

Fields of primitive type are always in the locality of their containing object. For
fields of reference type, the field itself is always in the locality, but the referenced object
may or may not be (depending on whether the field is annotated @Local or not). Our
definition of locality is, in some ways, similar to the notion of ownership (see e.g. [4,8]);
however, we are able to exploit some counter-intuitive properties of pure methods to get
a simpler, more flexible system.

Figure 1 illustrates the main ideas. For an instance of TypedList, its locality in-
cludes the fields length, data and elementType. The locality of the object refer-
enced by data is also included, whilst that referred to by elementType is not. The
presence of an @Local annotation on copy() indicates it is a local method:

Definition 3 (Local Method). A local method may modify the locality of any parame-
ter annotated@Local but, in all other respects, must remain pure. The method receiver
(i.e. this) is treated as a special parameter, with @Local placed on the method itself.

By Definition 3, copy() may modify the locality of this and, by Definition 1, any
state created during its execution.

The following rules clarify in more detail what a local method conforming to Defi-
nition 3 is permitted to do:

1class TypedList {
2 private int length;
3 private @Local Object[] data;
4 private Type elementType;
5

6 @Local public TypedList(Type type, int maxSize) {
7 length = 0;
8 data = new Object[maxSize];
9 elementType = type;

10 }
11

12 @Local public void copy(TypedList dst) {
13 length = dst.length;
14 type = dst.type;
15 data = new Object[dst.length];
16 for(int i=0;i!=length;++i) { data[i] = dst.data[i]; }
17} }

Fig. 1. An example illustrating the main aspects of locality

110 D.J. Pearce

Rule 1. A local method may assign fresh objects to any field in the locality of a param-
eter annotated @Local.

Rule 2. A local method may assign any reference to a field in the locality of a parameter
annotated @Local, provided that field is not itself annotated @Local.

To better understand these rules, consider them in the context of Figure 1. The assign-
ment to data on Line 15 is permitted under Rule (1) above. Similarly, the assignments
to length and type on Lines 13 and 14 are permitted under Rule (2) since they are
both in the locality of this, but are not annotated @Local. Finally, the assignment
to elements of data on Line 16 is permitted under Rule (2). This is because elements
of an array object are treated as though they were fields. Since these “fields” cannot be
annotated with @Local, Rule (2) must apply.

3.3 Locality Invariants

The rules for checking local methods given in the previous section may seem strange,
but they are needed to preserve the locality invariants:

Locality Invariant 1 (Construction). When a new object is constructed, its locality is
always fresh.

The purpose of Locality Invariant 1 is to ensure we can safely modify the locality of
fresh objects within pure methods.

Locality Invariant 2 (Preservation). When the locality of a fresh object is modified,
its locality must remain fresh.

The purpose of Locality Invariant 2 is to ensure that the locality of a fresh object remains
fresh, even after modifications to it. Without this guarantee, we become limited in how
we can subsequently modify this locality. For example:

1class Link {
2 private @Local Link next;
3

4 public @Local void set(Link link) {
5 this.next = link; // violates invariant 2
6 }
7 public @Fresh Link create() {
8 Link c = new Link();
9 c.set(this.next);

10 c.next.set(null); // problem
11 return c;
12}}

Here, method set() violates Locality Invariant 2 by assigning an arbitrary reference
to field next. This is a problem because the locality of a fresh Link may no longer
be fresh after this assignment (i.e. if the link assigned is not fresh). This problem
manifests itself in create() as, after set() is called on Line 9, the locality of the
object referenced by c is no longer entirely fresh (i.e. c.next is not fresh). As a result,
the call to set() on Line 10 causes a side-effect — meaning create() should not
be considered pure (recall @Fresh implies @Pure).

JPure: A Modular Purity System for Java 111

3.4 The Law of Locality

Locality can be regarded as a simplified form of ownership suited to purity analysis.
Unlike ownership we can be more flexible regarding object aliasing. In particular, the
seemingly counter-intuitive law of locality is useful:

Definition 4 (Law of Locality). When checking @Local annotations, one can safely
assume parameters are not aliased.

This law seems strange, but it relates to the overall goal of purity analysis. To understand
it better, consider the following:

1 void f(T a, @Local T b) { b.field = 0; }

Here, it is clear that b must be annotated @Local, since its locality is modified. How-
ever, the question is: should a be annotated @Local as well? Given that a and b could
be aliased on entry, it seems as though we should assume they are. However, under the
law of locality, we can assume they are not.

So, why does the law of locality work? Well, the key lies in the way @Local anno-
tations are used to show methods are pure. Consider the following:

1 @Pure void g() { T x = new T(); f(x,x); }

This method is considered pure precisely because the object passed in for parameter b
is fresh. Thus, if a and b are aliased on entry to f() we have one of two things: either,
the caller is impure (in which case it doesn’t matter); or, the object passed in for b is
fresh. In the latter, it immediately follows that a is fresh — hence, neither the Locality
Invariants nor Definition 1 are violated by the assignment in f().

4 Implementation

We have implemented the purity system outlined in §3 as part of a tool called JPure,
which supports purity checking and purity inference. The former can be done efficiently
in a modular fashion. The latter performs a source-to-source translation of Java source
code, whilst annotating it with @Pure, @Local and @Fresh annotations where ap-
propriate. Both tools employ an intraprocedural analysis to determine the freshness and
locality of variables within a method. The purity inference propagates that information
interprocedurally using Static Class Hierarchy Analysis [11] to ensure annotations re-
main modularly checkable. In this section, we formalise the dataflow analysis which
underpins both modes of operation.

4.1 Intermediate Language

Before presenting the details of our analysis, we first introduce an Intermediate Lan-
guage (IL) to base this on. The IL is small and compact, and we deliberately omit many
features of the Java language. Despite this, it provides a useful vehicle for presenting
the key aspects of our analysis.

112 D.J. Pearce

The syntax of our intermediate language is given in Figure 2. The IL uses unstruc-
tured control-flow, and employs only very simple statements. We also assume our vari-
ables are class references, and ignore other types altogether (since they are of no con-
cern here). Likewise, we provide only very limited forms of expression in if condi-
tions. A simple IL program is given below:

1 void meth(Object x) {
2 Object y;
3 y = new MyClass();
4 if(x == null) goto label1;
5 y = x;
6 label1:
7 y.f();
8 }

Our intraprocedural analysis will determine that method f() may be called on the
object referred to by x. If this method is impure, the entire method must be impure; or,
if this method has a @Local receiver, then x will be annotated @Local; otherwise,
if f() is @Pure then the whole method may be annotated @Pure (i.e. provided the
MyClass constructor is).

4.2 Overview

The intraprocedural analysis employs an abstract environment, Γ, which conservatively
models the freshness and locality of visible objects. This maps variables to a set of
abstract references which range over {?, ε, �x, �y, . . .}. Here, ? indicates an unknown
object, ε indicates a fresh object or primitive value and, finally, �x, �y, . . . are named
objects. One named object is provided for each parameter, and represents the object it
referenced on entry. The analysis tracks how these flow through the method, in a manner
similar to an intraprocedural pointer analysis.

Figure 3 illustrates the analysis operating on a simple local method, copy(). Recall
from Definition 3 that, since the method is annotated @Local, it is entitled to modify
the locality of the receiver (i.e. this), but in all other respects must remain pure.

The intraprocedural analysis assumes the following abstract environment holds on
entry to copy() (i.e. immediately after Line 4):

Γ↓(4) = {this �→ {�this}, src �→ {�src}}
At this stage, l and t are undefined and, hence, not present in the abstract environment.
Thus, we see that this references named object �this, and src references �src. The
abstract environment immediately following the assignment to l on Line 6 is:

Γ↓(6) = {this �→ {�this}, src �→ {�src}, l �→ {ε}}
Here, l maps to the special value ε which represents both primitive values (as in this
case) and fresh objects. The abstract environment immediately following the assign-
ment to t on Line 8 is:

Γ↓(8) = {this �→ {�this}, src �→ {�src}, l �→ {ε}, t �→ {?}}

JPure: A Modular Purity System for Java 113

Intermediate Language Syntax:
M ::= T m(T x) { Object v [L:] S }
S ::= v = w | v = c | v.[T]f = w | v = w.[T]f | v = u.m[Tf](w) | v = new [Tf](w)

| return v | if(v==w) goto L | goto L

c ::= null, . . . ,−1, 0, 1, . . .
T ::= C | int
Tf ::= T→ T

Fig. 2. Syntax for a simple intermediate language. Here, C represents a valid class name, whilst c
represents a constant. We only consider class reference and int types, since these are sufficient
to illustrate the main ideas. Finally, field accesses and method calls are annotated with the static
type of the field/method in question.

1 class LL { int length; Object data; @Local LL next;
2 void set(LL next) { this.next = next; }
3

4 @Local void copy(LL src) {
5 if(src == null) goto exit2;
6 int l = src.length;
7 this.length = l;
8 Object t = src.data;
9 this.data = t;

10 t = this.next;
11 t.copy(src.next);
12 exit2:
13 }
14 @Fresh Object clone() {
15 int tmp = this.length;
16 LL t = new LL(tmp);
17 t.copy(this);
18 return t;
19 }
20 @Local LL(int n) {
21 this.length = n;
22 if(n > 0) goto label1:
23 this.next = null;
24 goto exit1;
25 label1:
26 this.next = new LL(n-1);
27 exit1:
28 }}

lthis

lthis ldst lthis

lthis ldst

lthis ldst

lthis ldst

l ldst

this dst l t

5: if(src == null)

6: l = src.length

8: t = src.data

7: this.length = l

9: this.data = t

true

10: t = this.next

11: t.copy(src.next)

12: return

false this

lthis ldst ?

lthis ldst ?

lthis ldst

Fig. 3. A simple linked list example which contains (among other things) a local method copy,
which updates the locality of the receiver this. Alongside, the result of our intraprocedural
analysis are shown for this method.

114 D.J. Pearce

In the above, ? represents an unknown object reference, and indicates that there is no
information available at this point about the object t refers to. Nevertheless, this un-
known reference can be safely assigned to this.data on Line 9 under Rule (2) from
§3.2.

The second assignment to t on Line 10 is treated differently from the first, because
field next is annotated @Local. The abstract environment immediately following this
assignment is:

Γ↓(10) = {this �→ {�this}, src �→ {�src}, l �→ {ε}, t �→ {�this}}
This captures the fact that t still refers to an object in the locality of �this. This is
needed to determine that the subsequent invocation, t.copy(src.next), is safe.
That is, since copy() is permitted to modify the locality of its receiver and, at this
point, t refers to an object within this locality, the invocation t.copy(src.next)
is permitted.

4.3 Abstract Semantics

The effect of a statement on an abstract environment is determined by its abstract se-
mantics, which we describe using transition rules. These summarise the abstract envi-
ronment immediately after the instruction in terms of that immediately before it. The
abstract semantics for the intraprocedural analysis are given in Figure 4. Here, Γ[v �→ φ]
returns an abstract environment identical to Γ, except that v now maps to φ. Similarly,
Γ[v] returns the abstract reference for v in Γ. Several helper functions and constants are
used in the semantics:

– isFresh(m,Tf) — true iff the given method (determined by its name m and
static type Tf) is annotated @Fresh.

– isImpure(m,Tf) — true iff the given method (determined by its name m and
static type Tf) is impure. That is, it is neither annotated with @Pure, nor any of its
parameters are marked with @Local. Note, $ indicates a constructor.

– isLocal(f,T) — true iff the given field (determined by its name f and static
type T) is annotated @Local.

– isLocal(i,m,Tf) — true iff the parameter at position i in the given method
(determined by its name m and static type Tf) is annotated @Local.

– isLocalOrFresh(ls)—true iff the parameters identified in ls⊆{�1, . . . ,�n, ε}
are annotated @Local in the method being analysed. Note, ?∈ls is not permitted.

– thismeth — expands to (m, Tf) where m is the name of the method being analysed,
and Tf is its type.

As another example, let us consider how the intraprocedural analysis applies to the
method clone() from Figure 3. This is annotated @Fresh which implies: firstly, it
must return an object that did not exist prior to its invocation; secondly, it may not mod-
ify any state that existed prior to its invocation (since @Fresh implies @Pure).

The intraprocedural analysis assumes the following abstract environment holds on entry
to clone():

Γ↓(14) = {this �→ {�this}}

JPure: A Modular Purity System for Java 115

c ∈ {null, . . . ,−1, 0, 1, . . .}
tf(v=c,Γ) −→ Γ[v �→ {ε}] [S-C]

tf(v=w,Γ) −→ Γ[v �→ Γ[w]]
[S-V]

¬isImpure(m, Tf)
isFresh(m, Tf) =⇒ φ = {ε} ¬isFresh(m, Tf) =⇒ φ = {?}

isLocal(u, m, Tf) =⇒ isLocalOrFresh(Γ[u])
isLocal(w1, m, Tf) =⇒ isLocalOrFresh(Γ[w1])

. . .
isLocal(wn, m, Tf) =⇒ isLocalOrFresh(Γ[wn])

tf(v=u.m[Tf](w), Γ) −→ Γ[v �→ φ]

[S-M]

T = int

tf(v=w.[T]f, Γ) −→ Γ[v �→ {ε}] [S-F1]
T �= int ¬isLocal(f, T)

tf(v=w.[T]f, Γ) −→ Γ[v �→ {?}][S-F2]

isLocalOrFresh(Γ[w])
T �= int isLocal(f, T)

tf(v=w.[T]f, Γ) −→ Γ[v �→ Γ[w]]
[S-F3]

isLocalOrFresh(Γ[v])
isLocal(f, T) =⇒ Γ[w] = {ε}

tf(v.[T]f=w, Γ) −→ Γ

[S-W]

¬isImpure($, Tf)
isLocal(w1, $, Tf) =⇒ isLocalOrFresh(Γ[w1])

. . .
isLocal(wn, $, Tf) =⇒ isLocalOrFresh(Γ[wn])

tf(v=new[Tf](w), Γ) −→ Γ[v �→ {ε}]

[S-N]

tf(if(v==w) goto L, Γ) −→ Γ
[S-I]

tf(goto L, Γ) −→ Γ
[S-G]

isFresh(thismeth) =⇒ Γ[v] = ε

tf(return v, Γ) −→ Γ
[S-R]

Fig. 4. Abstract semantics for checking the correctness of methods annotated @Pure, @Fresh
or @Local. The rules assume the method being analysed has at least one of these annotations.

Then, by application of rule S-F1, it computes the following to hold immediately after
Line 15:

Γ↓(15) = {this �→ {�this}, tmp �→ {ε}}
At this point, a call to the LL(int) constructor is encountered. Constructors are treated
like other methods, and may be annotated with @Pure, @Local or not at all (i.e. if
they are impure). The LL(int) constructor is annotated with @Local, and is treated
in the same way as a local method. Hence, it is permitted to modify the locality of this

116 D.J. Pearce

(but must remain pure in all other respects). Therefore, rule S-N applies here, and so
the following is determined to hold immediately after Line 16:

Γ↓(16) = {this �→ {�this}, tmp �→ {ε}, t �→ {ε}}
Recall that clone() must be pure (since @Fresh implies @Pure), and that the
LL(int) constructor is @Local (hence, it may modify state). Rule S-N safely em-
bodies these requirements as, in a constructor, this is (by definition) fresh.

Finally, the analysis applies rule S-M to determine the abstract environment immedi-
ately after Line 17. This is identical to Γ↓(16) as copy(LL) has no return value. The
analysis then applies rule S-R to confirm the return value is indeed fresh.

4.4 Dataflow Equations

We formalise the intraprocedural analysis in the usual way by providing dataflow equa-
tions over the control-flow graph:

Γ↑(n) =
⊔
m→n

Γ↓(m)

Γ↓(n) = tf
(
S(n), Γ↑(n)

)
Here, m and n represent nodes in the control-flow graph, and m→n the directed edge be-
tween them. Similarly, tf denotes the transfer function, whose operation is determined
by the semantics of Figure 4, whilst S(n) gives the statement at node n. The abstract en-
vironment immediately before node n is given by Γ↑(n), whilst that immediately after
is given by Γ↓(n). Finally, we define the meet of two abstract environments as follows:

Γ1 � Γ2 = {x �→ φ1 ∪ φ2 | x ∈ dom(Γ1) ∪ dom(Γ2) ∧ φ1 = Γ1[x] ∧ φ2 = Γ2[x]}
To be complete, we must detail the initial store used in the dataflow analysis. This is
defined as follows:

Γ↑(0) = {x �→ {�x} | x ∈ Params} ∪ {this �→ ε}
Here, Params is the set of all parameters accepted by the method being analysed.
Furthermore, we assume that node 0 is the entry point of the control-flow graph. Ob-
serve that the analysis assumes parameters are unaliased on entry. Whilst this may seem
unsound, it is safe under the law of locality (see §3.4).

4.5 Purity Checking

As discussed previously, our purity system breaks into two components: a purity
checker and a purity inference. The former checks the annotations in a given pro-
gram are used correctly; the latter infers @Pure, @Local, and @Fresh annotations
on legacy code.

In this section, we consider the purity checker in more detail. This checks each
method in isolation from others using the rules from §3.2 and the intraprocedural anal-
ysis discussed earlier. For any method m, the purity checker ensures a covariant typing

JPure: A Modular Purity System for Java 117

protocol is followed for @Fresh and @Pure annotations, and a contra-variant proto-
col is followed for @Local annotations. This is done by examining the annotations on
those methods overridden by m (which is the same approach used in the Java compiler
for checking generic types).

For methods annotated with @Pure, @Fresh or @Local, the intraprocedural anal-
ysis is used to check the annotations are properly adhered to. In this case, the rules of
Figure 4 are treated in a similar manner to normal typing rules. If the analysis can con-
struct a valid abstract environment before and after each statement, then the method is
considered safe (with respect to its purity annotations). Or, if it is unable to do this, an
error is reported.

4.6 Purity Inference

The purity inference is also based on the intraprocedural analysis; however, the rules
from Figure 4 are treated differently and information may be propagated interproce-
durally. For example, some rules (e.g. S-F3) require that fields be annotated @Local,
whilst others (e.g. S-W) can require that parameters be annotated @Local. Other rules
(e.g. S-R) are indifferent on whether an annotation actually has to be present or not.

In order to uncover as much purity as possible, the inference adopts a greedy ap-
proach. Initially, it assumes all methods are annotated @Fresh or @Pure (depend-
ing on their return type) and all fields are annotated @Local. Then, it processes each
method in turn and, upon encountering something which invalidates these assumptions,
downgrades them as necessary. For example, consider the following method:

1 void f(Counter t) { t.count = 1 }

The inference initially assumes f() is @Pure. Upon encountering the assignment on
Line 2 this assumption becomes untenable under rule S-W (which requires t be fresh
or annotated @Local). Since t is not fresh, it removes the @Pure annotation on f(),
and replaces it with a @Local annotation on t.

When the annotations on a method are downgraded, this can have a knock-on effect
for other methods. In particular, if one method g() calls f() and, subsequently, it
transpires thatf() is not@Pure, then this implies g() is no longer@Pure. To address
this, the purity inference propagates information interprocedurally using static class
hierarchy analysis. The following example illustrates:

1 class Parent {
2 void f(Test x, Test y) { g(x) }
3 void g(Test z) { z.field = 1; }
4 }
5 class Child extends Parent {
6 int field;
7 void f(Test u, Test v) { }
8 }

Let us assume the inference initially visits Parent.f(), then Parent.g(). The
inference will conclude that Parent.f() is @Pure, since Parent.g() is assumed
@Pure. However, when subsequently examining Parent.g() it will realise that

118 D.J. Pearce

z must be annotated @Local. At this point, it identifies all potential call sites of
Parent.g() using Static Class Hierarchy Analysis [11]. The method Parent.f()
contains one such call-site and, hence, is re-examined. As a result, Parent.f() is
downgraded from being @Pure and, instead, x is annotated @Local. The inference
must ensure all @Local annotations adhere to a contravariant typing protocol. There-
fore, it propagates the new @Local annotation up the class hierarchy, resulting in u
being annotated @Local in Child.f().

A similar strategy is employed for propagating information about other annotations,
such as @Fresh and @Local on fields, interprocedurally. The inference will continue
doing this until no further changes are necessary (i.e. it has reached a fixed-point).
Finally, since the inference only relies on static class hierarchy analysis, the resulting
annotations are guaranteed to be modularly checkable.

5 Experimental Results

We have implemented our analysis as part of a tool called JPure. This is open source and
freely available from http://www.ecs.vuw.ac.nz/˜djp/jpure. Our main
objective with the tool is to develop a set of modularly checkable purity annotations
for the Java Standard Library. We are interested in this because it represents the first,
and most difficult, obstacle facing any purity system based on annotations.

Our experimental data is presented in Figure 5. Here, column “#Method” counts
the total number of (non-synthetic) methods; “#Pure” counts the total number of pure
methods (i.e. those annotated @Pure, or those annotated with @Fresh but with no
@Local parameters); “#Local” counts the total number of methods with one or more
parameters annotated @Local, compared with the total number accepting one or more
parameters of reference type; “#Fresh” counts the total number of methods guaranteed
to return fresh objects, compared with the total number which return a reference type.

When generating this data, our system assumed all classes being inferred (i.e. all
those in the packages shown in Figure 5) were internal, and all others were external.
Then, since annotations were not generated for external classes, their methods were
conservatively regarded as impure. Thus, we would expect to see greater amounts of
purity if more of the standard library were considered in one go (i.e. because some
internal methods call out to external methods).

One issue is the treatement of native methods, which our inference assumed were
pure. Whilst this is not ideal, it remains for us to manually identify native methods with
side-effects. We would not expect this to affect the data since it mostly relates to I/O,
and methods such as Writer.write() were inferred as impure anyway.

5.1 Discussion

The results presented in Figure 5 show surprising amounts of purity can be uncovered
using our purity inference and (modularly) checked with our purity checker. Recall the
inference assumed methods in external packages (i.e. packages other than those listed)
were impure. By analysing more of the standard library in one go, we may uncover
more purity in those packages listed (since they call methods in external packages).

http://www.ecs.vuw.ac.nz/~djp/jpure

JPure: A Modular Purity System for Java 119

pkg #Methods #Pure #Local #Fresh

java.lang 1624 995 (61.2%) 103 / 599 (17.1%) 113 / 520 (21.7%)
java.util.prefs 202 75 (37.1%) 5 / 125 (4.0%) 25 / 80 (31.2%)
java.lang.management 130 105 (80.7%) 0 / 16 (0.0%) 34 / 60 (56.6%)
java.lang.instrument 15 15 (100.0%) 0 / 9 (0.0%) 3 / 5 (60.0%)
java.util.concurrent 525 142 (27.0%) 16 / 242 (6.6%) 15 / 164 (9.1%)
java.util.regex 371 181 (48.7%) 32 / 181 (17.6%) 24 / 70 (34.2%)
java.util 2151 647 (30.0%) 171 / 1043 (16.3%) 108 / 745 (14.4%)
java.util.concurrent.atomic 170 41 (24.1%) 8 / 80 (10.0%) 3 / 21 (14.2%)
java.util.concurrent.locks 98 39 (39.7%) 1 / 35 (2.8%) 8 / 15 (53.3%)
java.io 1017 374 (36.7%) 111 / 491 (22.6%) 22 / 153 (14.3%)
java.util.zip 255 131 (51.3%) 36 / 90 (40.0%) 6 / 23 (26.0%)
java.lang.annotation 17 10 (58.8%) 1 / 8 (12.5%) 2 / 10 (20.0%)
java.util.jar 134 39 (29.1%) 3 / 75 (4.0%) 8 / 44 (18.1%)
java.util.logging 238 49 (20.5%) 8 / 140 (5.7%) 2 / 69 (2.8%)
Total 6947 2843 (40.9%) 495 / 3134 (15.7%) 373 / 1979 (18.8%)

Fig. 5. Experimental data on packages from the Java Standard Library

An interesting question is whether or not we could more purity in these packages
by further extending our system. By manually inspecting the inferred annotations, we
found a few surprises. In particular, neither java.lang.Object.equals() nor
java.lang.Object.hashCode() were inferred as @Pure. This was surprising
as: firstly, we did not expect implementations of these methods to have side-effects; sec-
ondly, these methods are so widely used that their impurity must be having a
large knock-on effect. Through a detailed examination of methods which override
java.lang.Object.equals(), we identified various reasons why it could not be
annotated @Pure. For example, java.util.GregorianCalendar.equals()
has side-effects. A common pattern in such methods is to use one or more fields as
a cache. The first time the method is called, objects are created and assigned to these
fields, whilst subsequent invocations reuse them. This causes a problem for our system,
since the field assignment forces the method to be local or — worse still — impure (e.g.
if the fields are static).

6 Related Work

Interprocedural side-effect analysis has a long history, with much of the early work fo-
cused on compiler optimisation for languages like C and FORTRAN [7,17]. The use
of pointer analysis as a building block quickly became established, and remains criti-
cal for many modern side-effect and purity systems (e.g [26,30,22]). In such cases, the
precision and efficiency of the side-effect analysis is largely determined by that of the
underlying pointer analysis. Numerous pointer analyses have been developed which of-
fer different precision-time trade-offs (see e.g. [27,33,25]). Almost all of these perform
whole-program analysis and, as such, are inherently unmodular.

There are several good examples of side-effect systems built on top of pointer analy-
sis. Salcianu and Rinard employ a combined pointer and escape analysis, and generate

120 D.J. Pearce

regular expressions to characterise externally mutated heap locations [30]. Rountev’s
system is designed to work with incomplete programs [26]. It assumes a library is
being analysed, and identifies methods which are observationally pure to its clients.
Side-effects are permitted on objects created within library methods, provided they do
not escape. The system uses fragment analysis [28] to approximate the possible in-
formation flow and is parameterised on the pointer analysis algorithm. Thus, it could
be considered a modularly checkable system, provided the underlying pointer analysis
was. A critical difference from our work, is the lack of a concept comparable to locality
for succinctly capturing side-effects. Instead, raw points-to information feeds the anal-
ysis, meaning that any modularly checkable annotations used would necessarily reflect
this — making them cumbersome for a human to maintain. In experiments conducted
with this system, around 22% of methods were found to be side-effect free. Nguyen and
Xue adopt a similar approach for dealing with dynamic class loading [23]. Benton and
Fischer present a lightweight type and effect system for Java, which characterises ini-
tialisation effects (i.e. writes to object state during construction) and quiesing fields (i.e.
fields which are never written after construction) [2]. Their approach is parameterised
on the pointer analysis algorithm. As above, this means that, while it could be consid-
ered modularly checkable, it would require cumbersome annotations that were hard to
maintain. Finally, they demonstrate that realistic Java programs exhibit a high-degree
of mostly functional behaviour.

Systems have also been developed which do not rely on interprocedural analysis.
Instead, they typically rely on Static Class Hierarchy Analysis (SCHA) [11] to approx-
imate the call-graph, as we do. The advantage of this, as discussed in §1, is that it
lends itself more easily to modular checking. Clausen developed a Java bytecode op-
timiser using SCHA which exploits knowledge of side-effects [9]. In particular, it de-
termines whether a method’s receiver and parameters are pure, read-only, write-only
or read-write. Here, pure is taken to mean: is not accessed at all. Cherem and Rugina
describes a mechanism for annotating methods with summaries of heap effects in Java
programs [6]. In principle, these could be checked modularly, although they did not
directly address this. An interprocedural, context-sensitive analysis is also provided for
infering summaries. This differs from our work, in that it is more precise, but generates
larger, and significantly harder to understand, annotations.

Aside from compiler optimisations, another important use of purity information lies
with specification and assertion languages. The issue here is that, in the specification of
a method, one cannot invoke other methods unless they are pure. The Java Modelling
Language (JML) provides a good example [20]. Here, only methods marked pure may
be used in pre- and post-conditions. In [19] a simple approach to checking the purity
of such methods is given — they may not assign fields, perform I/O or call impure
methods. However, as discussed in §2, this is insufficient for real-world code, such as
found in Java’s standard libraries. Barnett et al. also considered this insufficient in prac-
tice and, instead, proposed a notion of observational purity [1]. Thus, a pure method
may have side-effects, provided they remain invisible to callers. They permit field writes
in pure methods, provided those fields are annotated as secret. JML supports an anno-
tation — modifies — which identifies the locations a method may modify. The ES-
C/Java tool attempts to statically check JML annotations [14]. Cataño identified that it

JPure: A Modular Purity System for Java 121

does not check modifies clauses, and presented an improved system [5]. However,
their system ignores the effect of pointer aliasing altogether. Spec# is another speci-
fication language which requires methods called from specifications be pure [10]. Fi-
nally, Nordio et al. employ pure methods to model pre- and post-conditions for function
objects [24].

There are numerous other works of relevance. In [18], an interprocedural pointer
analysis is used to infer side-effect information for use in the Jikes RVM. This enabled
upto a 20% improvement in performance for a range of benchmarks. Zhao et al. took
a simpler approach to infering purity within Jikes [36]. Whilst few details were given
regarding their method, it appears similar to that outlined in §2. However, they achieved
a 30% speedup on a range of benchmarks. In [13], pure methods are used in verify
atomocity of irreducible procedures. However, no mechanism for checking their purity
was given, and instead the authors assume an existing analysis that annotates methods
appropriately. Finifter et al. adopt a stricter notion of purity, called functional purity,
within the context of Joe-E — a subset of Java [12]. A method is considered function-
ally pure if it is both side-effect free, and deterministic. Here, methods are allowed to
return different objects for the same inputs, provided that they are equivalent, and their
reachable object graphs are isomorphic. The authors report on their experiences identi-
fying (manually) pure methods in several sizeable applications. DPJizer infers method
effect summaries and annotates the program accordingly [32]. This is used to help port-
ing of Java programs to DPJ — a language for writing safe parallel programs [16]. DPJ
provides a type system that guarantees noninterference of parallel tasks.

Finally, Xu et al. consider a dynamic notion of purity, rather than the more com-
mon static approach [35]. They examined the number of methods which exhibit pure
behaviour on a given program run. They considered different strengths of purity, and
found that, while weak definitions exposed significant purity, this information was not
always that useful in practice.

7 Conclusion

We have presented a novel purity system that is specifically designed to generate and
maintain modularly checkable purity annotations. The system employs only three an-
notations, @Pure, @Local and @Fresh, but remains sufficiently flexible for many
real-world examples. The key innovation lies in the concepts of locality and, particu-
larly, in the locality invariants and the law of locality. We have evaluated our system
against several packages from the Java Standard Library, and found that over 40% of
methods were inferred as pure.

Acknowledgments. Thanks to Art Protin for useful feedback on an earlier draft.

References

1. Barnett, M., Naumann, D.A., Schulte, W., Sun, Q.: 99.44% pure: Useful abstractions in spec-
ification. In: Proc. FTFJP, pp. 11–19 (2004)

2. Benton, W.C., Fischer, C.N.: Mostly-functional behavior in Java programs. In: Jones, N.D.,
Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 29–43. Springer, Heidelberg
(2009)

122 D.J. Pearce

3. Bierhoff, K., Aldrich, J.: Lightweight object specification with typestates. In: ESEC/SIG-
SOFT FSE, pp. 217–226. ACM Press, New York (2005)

4. Boyapati, C., Liskov, B., Shrira, L.: Ownership types for object encapsulation. In: Proc.
POPL, pp. 213–223. ACM Press, New York (2003)

5. Cataño, N., Huisman, M.: CHASE: A static checker for JML’s Assignable clause. In: Zuck,
L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp.
26–40. Springer, Heidelberg (2002)

6. Cherem, S., Rugina, R.: A practical escape and effect analysis for building lightweight
method summaries. In: Adsul, B., Vetta, A. (eds.) CC 2007. LNCS, vol. 4420, pp. 172–186.
Springer, Heidelberg (2007)

7. Choi, J.-D., Burke, M., Carini, P.: Efficient flow-sensitive interprocedural computation of
pointer-induced aliases and side effects. In: Proc. POPL, pp. 232–245. ACM Press, New
York (1993)

8. Clarke, D., Potter, J., Noble, J.: Ownership Types for Flexible Alias Protection. In: Proc.
OOPSLA, pp. 48–64. ACM Press, New York (1998)

9. Clausen, L.R.: A Java bytecode optimizer using side-effect analysis. Concurrency - Practice
and Experience 9(11), 1031–1045 (1997)

10. Darvas, Á., Leino, K.R.M.: Practical reasoning about invocations and implementations of
pure methods. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 336–
351. Springer, Heidelberg (2007)

11. Dean, J., Grove, D., Chambers, C.: Optimization of object-oriented programs using static
class hierarchy analysis. In: Olthoff, W. (ed.) ECOOP 1995. LNCS, vol. 952, pp. 77–101.
Springer, Heidelberg (1995)

12. Finifter, M., Mettler, A., Sastry, N., Wagner, D.: Verifiable functional purity in Java. In: Proc.
CCS, pp. 161–174. ACM Press, New York (2008)

13. Flanagan, C., Freund, S.N., Qadeer, S.: Exploiting purity for atomicity. In: Proc. ISSTA, pp.
221–231. ACM Press, New York (2004)

14. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended
static checking for Java. In: Proc. PLDI, pp. 234–245. ACM Press, New York (2002)

15. Heydon, A., Levin, R., Yu, Y.: Caching function calls using precise dependencies. In: Proc.
PLDI, pp. 311–320 (2000)

16. Jr., R.L.B., Adve, V.S., Dig, D., Adve, S.V., Heumann, S., Komuravelli, R., Overbey, J.,
Simmons, P., Sung, H., Vakilian, M.: A type and effect system for deterministic parallel
Java. In: Proc. OOPSLA, pp. 97–116. ACM Press, New York (2009)

17. Landi, W., Ryder, B.G., Zhang, S.: Interprocedural side effect analysis with pointer aliasing.
In: PLDI, pp. 56–67 (1993)

18. Le, A., Lhoték, O., Hendren, L.: Using inter-procedural side-effect information in JIT opti-
mizations. In: Bodik, R. (ed.) CC 2005. LNCS, vol. 3443, pp. 287–304. Springer, Heidelberg
(2005)

19. Leavens, G.T.: Advances and issues in JML. In: Presentation at Java Verification Workshop
(2002)

20. Leavens, G.T., Leino, K.R.M., Poll, E., Ruby, C., Jacobs, B.: JML: notations and tools sup-
porting detailed design in Java. In: OOPSLA Companion, pp. 105–106 (2000)

21. Lencevicius, R., Holzle, U., Singh, A.K.: Query-based debugging of object-oriented pro-
grams. In: Proc. OOPSLA, pp. 304–317. ACM Press, New York (1997)

22. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for points-to and
side-effect analyses for Java. SIGSOFT Softw. Eng. Notes 27(4), 1–11 (2002)

23. Nguyen, P.H., Xue, J.: Interprocedural side-effect analysis and optimisation in the presence
of dynamic class loading. In: Proc. ACSC, pp. 9–18 (2005)

JPure: A Modular Purity System for Java 123

24. Nordio, M., Calcagno, C., Meyer, B., Müller, P., Tschannen, J.: Reasoning about function
objects. In: Vitek, J. (ed.) TOOLS 2010. LNCS, vol. 6141, pp. 79–96. Springer, Heidelberg
(2010)

25. Pearce, D.J., Kelly, P.H.J., Hankin, C.: Efficient field-sensitive pointer analysis for C. ACM
TOPLAS 30 (2007)

26. Rountev, A.: Precise identification of side-effect-free methods in Java. In: Proc. ICSM, pp.
82–91. IEEE Computer Society, Los Alamitos (2004)

27. Rountev, A., Milanova, A., Ryder, B.G.: Points-to analysis for Java using annotated con-
straints. In: Proc. OOPSLA, pp. 43–55 (2001)

28. Rountev, A., Milanova, A., Ryder, B.G.: Fragment class analysis for testing of polymorphism
in Java software. In: Proc. ICSE, pp. 210–220 (2003)

29. Rountev, A., Ryder, B.G.: Points-to and side-effect analyses for programs built with pre-
compiled libraries. In: Wilhelm, R. (ed.) CC 2001. LNCS, vol. 2027, pp. 20–36. Springer,
Heidelberg (2001)

30. Salcianu, A., Rinard, M.: Purity and side effect analysis for Java programs. In: Cousot, R.
(ed.) VMCAI 2005. LNCS, vol. 3385, pp. 199–215. Springer, Heidelberg (2005)

31. Tkachuk, O., Dwyer, M.B.: Adapting side effects analysis for modular program model check-
ing. SIGSOFT Softw. Eng. Notes 28(5), 188–197 (2003)

32. Vakilian, M., Dig, D., Bocchino, R.L., Overbey, J., Adve, V.S., Johnson, R.: Inferring method
effect summaries for nested heap regions. In: Proc. ASE, pp. 421–432 (2009)

33. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using Binary
Decision Diagrams. In: Proc. PLDI, pp. 131–144. ACM Press, New York (2004)

34. Willis, D., Pearce, D.J., Noble, J.: Caching and incrementalisation in the java query language.
In: Proc. OOPSLA, pp. 1–18. ACM Press, New York (2008)

35. Xu, H., Pickett, C.J.F., Verbrugge, C.: Dynamic purity analysis for Java programs. In: Proc.
PASTE, pp. 75–82. ACM Press, New York (2007)

36. Zhao, J., Rogers, I., Kirkham, C., Watson, I.: Pure method analysis within jikes rvm. In: Proc.
ICOOOLPS (2008)

Tainted Flow Analysis on e-SSA-Form Programs

Andrei Rimsa1, Marcelo d’Amorim2, and Fernando Magno Quintão Pereira1

1 UFMG – 6627 Antônio Carlos Av, 31.270-010, Belo Horizonte, Brazil
2 UFPE – Av. Prof. Luis Freire, 50.740-540, Recife, Brazil

rimsa@live.com, damorim@cin.ufpe.br, fpereira@dcc.ufmg.br

Abstract. Tainted flow attacks originate from program inputs mali-
ciously crafted to exploit software vulnerabilities. These attacks are com-
mon in server-side scripting languages, such as PHP. In 1997, Ørbæk and
Palsberg formalized the problem of detecting these exploits as an instance
of type-checking, and gave an O(V 3) algorithm to solve it, where V is the
number of program variables. A similar algorithm was, ten years later,
implemented on the Pixy tool. In this paper we give an O(V 2) solution
to the same problem. Our solution uses Bodik et al.’s extended Static
Single Assignment (e-SSA) program representation. The e-SSA form can
be efficiently computed and it enables us to solve the problem via a sparse
data-flow analysis. Using the same infrastructure, we compared a state-
of-the-art data-flow solution with our technique. Both approaches have
detected 36 vulnerabilities in well known PHP programs. Our results
show that our approach tends to outperform the data-flow algorithm for
bigger inputs. We have reported the bugs that we found, and an imple-
mentation of our algorithm is now publicly available.

1 Introduction

Web applications are pervasive in the Internet. They are broadly used and often
manipulate sensitive information. It comes to no surprise that web applications
are common targets of cyber attacks [24]. A cyber attack typically initiates with
a remote attacker carefully forging inputs to corrupt a running system. A study
performed by CVE1 with statistics for the year 2006 shows that cross-site script-
ing accounts for 18.5% of the web vulnerabilities, while PHP includes and SQL
injection account, respectively, for 13.1% and 13.6%. All three vulnerabilities are
commonly found in web applications. To put the significance of these threats in
perspective, the annual SANS’s report2 estimates that a particular type of at-
tack – malicious SQL injection – has happened approximately 19 million times
in July of 2009. Therefore, the static detection of potential vulnerabilities in web
applications is an important problem.

Many web vulnerabilities are described as Tainted Flow Attacks. Examples
include: SQL injection, cross-site scripting, malicious file inclusion, unwanted
command executions, eval injections, and file system attacks [24,29,31]. This

1 http://cve.mitre.org/docs/vuln-trends/index.html
2 http://www.sans.org/top-cyber-security-risks/origin.php

J. Knoop (Ed.): CC 2011, LNCS 6601, pp. 124–143, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://cve.mitre.org/docs/vuln-trends/index.html
http://www.sans.org/top-cyber-security-risks/origin.php

Tainted Flow Analysis on e-SSA-Form Programs 125

pattern consists of a remote individual exploring potential leaks in the system via
its public interface. In this context, the interface is the web and the vulnerability
is the lack of “sanity” checks on user-provided data before using it on sensitive
operations. To detect this kind of attack one needs to answer the following
question: does the target program contain a path on which data flows from some
input to a sensitive place without going through a sanitizer function? A sanitizer
is a function that either “cleans” malicious data or warns about the potential
threat. We call the previous question the Tainted Flow Problem.

The tainted flow problem was formalized by Ørbæk and Palsberg in 1997 as
an instance of type-checking [16]. They wrote a type system to the λ-calculus,
and proved that if a program type-checks, then it is free of tainted flow vul-
nerabilities. Ten years later, Jovanovic et al. provided an implementation of an
algorithm that solves the tainted flow problem for PHP 4.0 on the Pixy tool.
This algorithm was a data-flow version of Ørbæk and Palsberg’s type system. It
has an average O(V 2) running-time complexity, yet the Pixy’s implementation
suffers from worst case O(V 4) complexity. Ørbæk and Palsberg’s solution, when
seen as a data-flow problem, admits a worst case O(V 3) solution [16, p.30].

This paper improves on the complexity of these previous results. The algo-
rithm that we propose is, in the worst case, quadratic on the number of variables
in the source program, both in terms of time and space. The low asymptotic com-
plexity is justified by the use of a program representation called Extended Static
Single Assignment (e-SSA) form, introduced by Bodik et al. [5], which can be
computed in linear time on the program size. This intermediate representation
makes it possible to solve the tainted flow problem as a sparse analysis, which
associates constraints directly to program variables, instead of associating them
to variables at every program point. This paper brings forward the following
contributions:

– An efficient algorithm to solve the tainted flow problem. A distinguishing
feature of this algorithm is the use of the e-SSA representation to generate
constraints. See Section 4.4.

– An implementation of the algorithm on top of phc [3,4], an open source PHP
compiler3. Our implementation of e-SSA is now part of the compiler’s official
distribution.

– An evaluation of the proposed approach on public PHP applications, in-
cluding benchmarks used in previous works [13,14,31], and the consequent
exposure of previously unknown vulnerabilities. See Section 5.

Our analysis can be generalized to other procedural languages. We chose PHP
for two reasons. First, it is popular for developing server-side web applications.
For example, PHP programs can be found in over 21 million Internet domains4.
Second, PHP has been the focus of previous research on static detection of
tainted flow vulnerabilities, and benchmarks are easily available.

3 http://www.phpcompiler.org/
4 http://php.net/usage.php

http://www.phpcompiler.org/
http://php.net/usage.php

126 A. Rimsa, M. d’Amorim, and F.M. Quintão Pereira

2 Examples of Tainted Flow Attacks

A tainted flow attack is characterized by a subpath from a source to a sink func-
tion that does not include calls to sanitizing functions. A source function reads
information from an input channel (e.g., from an HTML form) and passes it to
the program. Sinks are functions that peform sensitive operations, such as writ-
ing information into the program’s output channel (e.g., to a dynamically gener-
ated webpage). Sanitizers are functions that protect the program. For instance,
proving that untrusted information is safe, removing malicious contents from
tainted data, or firing exceptions when necessary. The literature describes many
kinds of tainted flow attacks. Some noticeable examples are cross-site scripting
(XSS) [9,24], SQL injection [29,31], malicious evaluations5, local/remote file in-
clusions6, and unwanted command execution7. In this section, we explain two of
these vulnerabilities in more detail; however, in the rest of the paper we chose
to focus on cross site scripting attacks only. Important to note that our frame-
work is capable of handling other types of attacks. In particular, we have showed
elsewhere [21] that it can be used to search for SQL injections.

2.1 Cross-Site Scripting

A cross-site scripting attack can occur when a user is able to dump HTML
text into a dynamically-generated page. An attacker uses this vulnerability to
inject JavaScript code into the page, usually trying to steal cookie information
to acquire session privileges. The program below illustrates this situation. In this
case, the user provides the input “<script>does.something.evil;</script>”
to the variable name from the code fragment below.

<?php $name = $_GET[’name’]; echo $name; ?>

Note that a potentially malicious JavaScript could be used instead of
does.something.evil. A workaround for this threat is to strip HTML-related
data from the user input. In this case, from the JavaScript passed as input. The
function htmlentities, shown below, does the trick by encoding special char-
acters into their respective HTML entities. For example, this function translates
the symbol “<” to “<”.

<?php $name = htmlentities($_GET[’name’]); echo $name; ?>

Cross-site scripting attacks fit into the tainted flow problem framework. A pos-
sible input configuration, in this case, would be:

Sources : $_GET, $_POST, . . .
Sinks : echo, print, printf
Sanitizers : htmlentities, htmlspecialchars, strip_tags

5 http://cwe.mitre.org/data/definitions/95.html
6 http://projects.webappsec.org/Remote-File-Inclusion
7 http://secunia.com/advisories/26201/

http://cwe.mitre.org/data/definitions/95.html
http://projects.webappsec.org/Remote-File-Inclusion
http://secunia.com/advisories/26201/

Tainted Flow Analysis on e-SSA-Form Programs 127

2.2 SQL Injection Attacks

The SQL injection attack is another common type of security flaw. In this attack
an adversary uses the parameters of SQL queries to manipulate a database. The
effect can go from reporting incorrect results to the user to modifying database
contents. The program below contains a vulnerability of this kind.

<?php

$userid = $_GET[’userid’];

$passwd = $_GET[’passwd’];

...

$result = mysql_query("SELECT userid FROM users WHERE

userid=$userid AND passwd=’$passwd’");

?>

Note that this program does not sanitize its inputs. A malicious user could obtain
access to the application by providing the text “1 OR 1 = 1 --” in the userid
field. The double hyphen starts a comment in MySQL. The following query is
obtained with the input variables replaced: SELECT userid FROM users WHERE
userid=1 OR 1 = 1 -- AND passwd=’ANY PASSWORD’. The execution of this
query outputs one row and therefore bypass the authentication procedure.

A workaround for this threat is to sanitize the variable userid to ensure that
it only contains numerical characters; a task that we perform either casting it to
integer or checking its value with functions like is_numeric. One can sanitize
variable $passwd using the addslashes function, which inserts slashes (escape
characters) before a predefined set of characters, including single quotes. A typ-
ical configuration of SQL injection is given below:

Sources : $_GET, $_POST, . . .
Sinks : mysql_query, pg_query, *_query
Sanitizers : addslashes, mysql_real_escape_string, *_escape_string

3 Formal Definition and Previous Solution

Nano-PHP. We use the assembly-like Nano-PHP language to define the tainted
flow problem. A label l ∈ L refers to a program location and is associated to one
instruction. A Nano-PHP program is a sequence of labels, l1l2 . . . lexit. Figure 1
shows the six instructions of the language. We use the symbol ⊗ to denote any
operation that uses a sequence of variables to define another variable.

Semantics. We define the semantics of Nano-PHP programs with an abstract
machine. The state M of this machine is characterized with a tuple (Σ, F, I),
informally defined as follows:

Store Σ : Var → Abs e.g., {x1 �→ clean , . . . , xn �→ tainted}
Code Heap F : L→ [Ins] e.g., {l1 �→ i1 . . . ia, . . . , ln �→ ib}
Instruction Sequence I : [Ins] e.g., i5i6 . . . in

128 A. Rimsa, M. d’Amorim, and F.M. Quintão Pereira

Name Instruction Example

Assignment from source x = ◦ $a = $_POST[’content’]

Assignment to sink • = v echo($v)

Simple assignment x = ⊗(x1, . . . , xn) $a = $t1 * $t2

Branch bra l1, . . . , ln general control flow
Filter x1 = filter $a = htmlentities($t1)

Validator validate x, lc, lt if (!is_numeric($1))

abort();

Fig. 1. The Nano-PHP syntax

[S-Source] (Σ, F, x = ◦; S)→ (Σ\[x �→ tainted], F, S)

[S-Sink]

Σ � v = clean
(Σ, F, • = v; S)→ (Σ, F, S)

[S-Simple]

Σ � �(x1, . . . , xn) = v

(Σ, F, x = ⊗(x1, . . . , xn); S)→ (Σ\[x �→ v], F, S)

[S-Branch]

{li} ⊆ dom(F) F (li) = S′ 1 ≤ i ≤ n

(Σ, F, bra l1, . . . ln; S)→ (Σ, F, S′)

[S-Filter] (Σ, F, x = filter; S)→ (Σ\[x �→ clean], F, S)

[S-ValidC]

Σ � x = clean {lc} ⊆ dom(F) F (lc) = S′

(Σ, F, validate(x, lc, lt); S)→ (Σ, F, S′)

[S-ValidT]

Σ � x = tainted {lt} ⊆ dom(F) F (lt) = S′

(Σ, F, validate(x, lc, lt); S)→ (Σ, F, S′)

Fig. 2. Operational semantics of Nano-PHP

The symbol Var denotes the domain of program variables. The symbol Abs
denotes the domain of abstract states {⊥, clean, tainted}. The store Σ binds
each variable name, say x ∈ Var , to an abstract value v ∈ Abs. The code
heap F is a map from a program label to a sequence of instructions. Each
sequence corresponds to one basic block from the Nano-PHP program. Only
labels associated to entry basic block instructions appear in F . The list I denotes
the next instructions for execution. We say that the abstract machine can take
a step if from a state M it can make a transition to state M ′. More formally, we
write M → M ′. We say that the machine is stuck at M if it cannot make any
transition from M .

Figure 2 illustrates the transition rules describing the semantics of Nano-PHP
programs. Rule S-Source states that an assignment from source binds the left-
hand side variable to the tainted abstract state. Rule S-Sink is the only one that
can cause the machine to get stuck: the variable on the right hand side must be

Tainted Flow Analysis on e-SSA-Form Programs 129

bound to clean in order to execute a safe assignment to sink. Rule S-Simple

says that, given an assignment x = ⊗(x1, x2, . . . , xn), the abstract state of x is
defined by folding the join operation (as described on Table 1) onto the list of
variables in the right hand side, e.g.: x1 � x2 . . . � xn. Rule S-Branch defines
a non-deterministic branch choice: the machine chooses one target in a range of
possible labels and branches execution to the instruction at this label.

Nano-PHP organizes the sanitizer function in two groups: filters and valida-
tors. Filters correspond to functions that take a value, typically of string type,
and return another value without malicious fragments from the input. For sim-
plicity we do not show the input parameter in the syntax of Nano-PHP. Rule S-

Filter shows that an assignment from a filter binds the variable on the left side
to the clean state. We can use this syntax to define assignments from constants
(e.g., v = 1). Validators are instructions that combine branching with a boolean
function that checks the state for tainting. The instruction validate(x, lc, lt) has
two possible outcomes. If x is bound to the clean state, the machine branches ex-
ecution to F (lc). If x is bound to the tainted state, execution branches to F (lt).
Again, we omit the boolean function itself from the syntax for simplicity. Rules
S-ValidC and S-ValidT define these cases. We assume that in any Nano-PHP
program every variable must be defined before being used; therefore, we rule out
the possibility of passing x to a validator when Σ x = ⊥.

Important consideration. Before we move on to describe the traditional data flow
solution to the tainted flow problem, a note about functions is in order. In this
paper we describe an intraprocedural analysis. Thus, we conservatively consider
that input parameters and the return values of called functions are all definitions
from source. A context insensitive, interprocedural version of the algorithms
in this paper can be produced by creating assignments from actual to formal
parameters. We opted for not doing it due to an engineering shortcoming: our
limited knowledge of phc has hindered us thus far from crossing the boundaries
of functions.

The problem. We define the tainted flow problem as follows.

Definition 1. The Tainted Flow Problem

Instance: a Nano-PHP program P .
Problem: determine if the machine can get stuck executing P .

Data Flow Analysis. Given a Nano-PHP program, we can solve the tainted flow
problem using a forward-must data flow analysis. Our analysis binds information

Table 1. Definition of least upper bound over pairs of abstract values

� ⊥ clean tainted

⊥ ⊥ clean tainted
clean clean clean tainted

tainted tainted tainted tainted

130 A. Rimsa, M. d’Amorim, and F.M. Quintão Pereira

Table 2. Data-Flow equations to solve the Tainted Flow Problem

l � �

x = ◦ �l, l+� = JOIN (l) \ [x �→ tainted]
• = x �l, l+� = JOIN (l)

x = ⊗(x1, . . . , xn) �l, l+� = JOIN (l) \ [x �→ JOIN (l)(x1) � . . . � JOIN (l)(xn)]
bra l1, . . . , ln �l, li� = JOIN (l), 1 ≤ i ≤ n

x = filter �l, l+� = JOIN (l) \ [x �→ clean]
validate x, lc, lt �l, lc� = JOIN (l) \ [x �→ clean]

�l, lt� = JOIN (l)

to program points, which are the regions between pairs of consecutive Nano-PHP
labels. We define a lattice (Abs, <) by augmenting the set Abs with the following
ordering ⊥ < clean < tainted. Table 1 shows the least upper bound for subsets
of Abs including pairs of elements from Abs . The map lattice (Var → Abs , <′)
is obtained with the typical lifting of the lattice associated to Abs . Recall that
the set Var is finite. We represent data-flow information with the function � � :
L → L → Var → Abs. This function associates to each program point (l, l′) a
map storing the abstract values of each program variable. We use the notation
�l1, l2� to denote information at (l1, l2). It abbreviates the function application
(� �l1)l2. Note that � � is also a lattice.

Table 2 defines the transfer functions (Var → Abs)→ (Var → Abs) associated
to each instruction. The initial state of the analysis associates undefined to all
program variables at every point, i.e., � � = λl1 . λl2 . λv . ⊥. We let PRED(l)
be the set of program points immediately before label l, and define the auxiliary
function JOIN as follows:

JOIN (l) =
⊔

�li, l� , li ∈ PRED(l)

Given two functions �k′, k� and �l′, l�, we define
⊔ {�k′, k�, �l′, l�} as

λv .(�k′, k�v)�(�l′, l�v), with � given by Table 1. The combined transfer function
tr : � � → � � is defined as usual with the composition of all individual transfer
functions. Function tr admits fix-points as the lattice is finite and all individual
transfer functions are monotone.

The join operation denotes accumulation of information across control flow
edges. In this case, information flows from the predecessor edges of a node. Note
that we define operation JOIN over a map lattice. Informally, the semantics of
this operation is to apply � over elements on the image of the functions according
to the definition on Table 1. For example {x �→ clean , y �→ clean} � {x �→
tainted , y �→ ⊥} = {x �→ clean � tainted , y �→ clean � ⊥}.

Illustrative Example. Figure 3 illustrates the result of a data-flow analysis. We
let DB to denote a global database, and we assume that DB.get might produce
tainted data. The function DB.isMember works as a validator. We have replaced

Tainted Flow Analysis on e-SSA-Form Programs 131

l0: v = l1: x = filter

l2: validate(v, l6, l8)

l3: • = x

l6: bra l3, l7

l4: x = l7: • = v

l8: bra l8

{xclean, vtainted}

{x , vtainted}

{xclean, vclean}

{xtainted, vclean}

{x tai
nted

, v cle
an
}

l5: v = (v)

{xtainted, vclean}

<?php
$v = DB.get($_GET['child']);
$x = "";
if (DB.isMember($v)) {
 while (DB.hasParent($v)) {
 echo($x);
 $x = $_POST['$v'];
 $v = DB.getParent($v);
 }
 echo($v);
}
?>

{x tainted
,v clean

}

{xtainted, vclean}

{xtainted, vclean}

{x clean
, v tainted

}
{xtainted, vtainted}

Fig. 3. A simple PHP program (left), and its equivalent Nano-PHP version (right),
augmented with the result of data-flow analysis

a call to DB.hasParent by the simple branch at l6, as this operation does not
create new data. Similarly, we have replaced the call to DB.getParent by v =
⊗(v). We use l8, a label jumping to itself, to mark the end of the program. We
show the maps produced by the data-flow analysis on the edges of the Nano-
PHP program. In this program the data-flow analysis obtains a fix-point in two
iterations. The example contains a tainted flow vulnerability, given by the path
l4 → l5 → l6 → l3. At l4 we read variable x, e.g., $x = $ POST[’$v’], and at l3
we feed it to a sink function, e.g., echo($x). Note that variable v cannot be used
in a tainted flow attack, because it is sanitized by the function DB.isMember.

Complexity. We can solve this data-flow analysis using the chaotic iteration
model. If the CFG of the input program has I instructions and V variables
then we can perform O(I × V) iterations. Each union is O(V), and we may
have O(I) unions per iteration. Thus, our data-flow analysis has complexity
O(V 2 × I2). However, it is possible to speedup the algorithm executing the
transfer functions in a topological order of the program’s dominator tree [2]. In
particular, Palsberg [17] gives an O(V 3) type-inference algorithm that solves the
tainted flow problem. In practice, this data-flow analysis is O(V × I) [2, p.209].

4 The Proposed Solution

In this section we describe our solution to the tainted flow problem. Our approach
is divided into the three parts below. We give time complexity in terms of the
number of variables (V) in the source program.

1. Convert the input program to the Extended Static Single Assignment (e-
SSA) form. The construction of the dominator tree is O(V α(V)), where α
is the inverse Auckerman function, normally regarded as constant, and the
insertion of φ-functions is O(V 2), yet linear in practice [2, p.408].

132 A. Rimsa, M. d’Amorim, and F.M. Quintão Pereira

2. Traverse the e-SSA-form program collecting use-chains: O(V).
3. Use the algorithm in Figure 8 to find tainted flow vulnerabilities: O(V 2), but

O(V) in practice.

4.1 E-SSA Form Is the Linchpin of Fast Tainted Flow Analysis

We use the Extended Static Single Assignment (e-SSA) representation to simplify
our tainted flow analysis. The e-SSA program representation is a superset of the
well known Static Single Assignment (SSA) form [10]. This representation has
been used by Bodik et al. [5] to eliminate array bound checks. Its main advantage,
in our case, is the possibility of acquiring useful information from the outcome of
conditional tests, and then binding this information directly to variables, instead
of pairs of variables and program points. We convert a Nano-PHP program to
e-SSA form using the algorithm below:

1. For each instruction i = validate x, lc, lt:
(a) replace i by a new instruction validate x, xc, lc, xt, lt, where xc and xt

are fresh variables;
(b) rename every use of x dominated by lc to xc. A label l dominates a use

of variable x at label lu if, and only if, every path from the program’s
entry point to lu goes across l.

(c) rename every use of x dominated by lt to xt;
2. Convert the resulting program into SSA form. For a fast algorithm, see Appel

and Palsberg [2, p.410].

In order to represent Nano-PHP program in e-SSA form, we modify the syntax
of this language in two ways. First, we add φ-functions to the language. These
special instructions are an abstraction first introduced by Cytron et al. [10] to
represent SSA-form programs. φ-functions are used at control-flow join points,
and they receive as parameter one variable name associated to each control-flow
predecessor. A φ-function such as xn = (x1, . . . , xm), placed at label l has the
effect of assigning xi, 1 ≤ i ≤ m to xn, depending on which predecessor of l
was last visited before execution reaches l. The use of a variable in SSA-form
programs is associated to only one definition. Thus, to convert a program into
the SSA form, we rename each definition of a variable v to a different name,
and join definitions of v that reach a common program point by φ-functions.
These new φ-functions produce fresh definitions of v; thus, the process continues
until the program stabilizes. There exist almost linear time algorithms to convert
programs to SSA-form [15]. E-SSA-form programs are also SSA-form programs;
thus, they have the property that each variable has only one definition.

Second, we modify the syntax of the validator instruction, which become
validator (x, xc, lc, xt, lt)8. Conceptually, the validator splits the live range of
variable x in two parts, depending on whether or not its abstract value is tainted.
Note that when converting a program into e-SSA form, we rename every use of

8 Bodik et al. use special instructions called π-functions to create xc and xt [5].

Tainted Flow Analysis on e-SSA-Form Programs 133

x in labels dominated by lc to xc, and rename every use of x in labels dominated
by lt to xt. The new instruction has the following semantics:

[S-EssaC]

Σ x = clean {lc} ⊆ dom(F) F (lc) = S′

(Σ, F, validate(x, xc, lc, xt, lt); S)→ (Σ \ [xc �→ clean], F, S′)

[S-EssaT]

Σ x = tainted {lt} ⊆ dom(F) F (lt) = S′

(Σ, F, validate(x, xc, lc, xt, lt); S)→ (Σ \ [xt �→ tainted], F, S′)

Rule S-EssaC says that a validator, upon receiving a clean variable x, guarantees
that the variable will be clean henceforth. Given that every use of x dominated by
lc has been renamed to xc beforehand, we simply continue the program execution
in an environment where xc is bound to clean. Rule S-EssaT does the opposite:
if a validator fails on a variable x, we know that x is tainted; hence, we continue
the program execution in an environment where xt is bound to tainted.

The e-SSA representation allows us to acquire static information from the
outcome of conditionals. Hence, we can associate unique constraints to variables,
as Figure 4 illustrates. The original program in Figure 3 contains two variables, x
and v. We know that these variables are clean in some program points, but not in
all. The e-SSA representation allows us to identify these program points precisely.
The modified program has five variables created after v: {v0, v5, v9, v2c, v2t}, plus
three variables created after x: {x1, x4, x9}. Let’s consider the first group of
variables. Given that v0 is produced by source assignment, we know that it is
tainted. Variable v2c must be necessarily clean, as it is produced by the validation
of v9. On the other hand, v2t must be necessarily tainted, for the opposite reason.
Variable v5, which results from the application of an operation – assignment –
on a clean variable, is also clean. Finally, v9, which may be assigned either a
clean or a tainted value, is tainted, as this is the most conservative choice to
detect security vulnerabilities.

l0: v0 = l1: x1 = filter

l2: validate(v0, v2c, l9, v2t, l8)

l3: • = x9 l4: x4 = l7: • = v9

l8: bra l8

l5: v5 = (v9)
l9: x9 = (x1, x4)

 v9 = (v2c, v5)

l6: bra l3, l7

Fig. 4. The example of Figure 3 converted into e-SSA form

134 A. Rimsa, M. d’Amorim, and F.M. Quintão Pereira

v0

x1x9

x4

v5

v2c

v2t

v9

source

sink

validator

filter

Fig. 5. The reachability graph built after the program in Figure 4

4.2 Tainted Analysis as Graph Reachability

Given a Nano-PHP program P , we represent it as a graph G, in which each
node nv ∈ G denotes a variable v ∈ P . We build the reachability graph directly
from the e-SSA-form Nano-PHP program. Each particular type of instruction
produces a specific configuration of nodes in the reachability graph, as Table 3
shows. Roughly, there is an edge linking nu to nv if information flows from
variable u to v. Notice that, were it not for filters and validators, our reacha-
bility graph would represent the def-use chains of the Nano-PHP program. The
program from Figure 4 gives origin to the reachability graph in Figure 5.

Table 3. Mapping program instructions to nodes in the reachability graph

Instruction Example Nodes

v = ◦ $v = $_POST[‘id’]

v_POST['id']

• = v echo($v)

$v echo

v = ⊗(v1, . . . , v2) $a = $t1 * $t2

$t1

$t2
$a

v = filter $a = stripslashes($t1)
$a

stripslashes

v = φ(v1, . . . , v2) $v = phi($v1, $v2)

$v1

$v2
$v

validate (v, vc, lc, vt, lt) if(is_num($i))

$i $i2

$i1 is_num

Tainted Flow Analysis on e-SSA-Form Programs 135

Definition 2 rephrases the tainted flow problem as an instance of graph reach-
ability. The traversal of the reachability graph is related to the notion of program
slicing [30]. Any node u that reaches a node v is part of the program slice that
defines the behavior of v.

Definition 2. The Tainted Flow Problem as Graph Reachability

Instance: a graph G that describes a Nano-PHP program P .
Problem: determine if G contains a path from a source to a sink that does

not cross any sanitizer.

4.3 Addressing Aliasing with HSSA

Aliasing is a phenomenon typical of imperative languages, in which two names
reference the same memory location. Aliasing complicates static analyses because
it requires the analyzer to understand that updates in the state of a variable may
also apply to other variables. To see the implications of aliasing on tainted flow
analysis, let’s consider the PHP program in Figure 6 (Left). Assuming that
$_GET is a source and echo is a sink, then the program is logically bug free.
That is, the name $i, which is used in a sink, has been sanitized as name $j,
because both names, $i and $j represent the same variable. The ordinary e-SSA
representation will not catch this subtlety, as Figure 6 shows. There is a clear
path from $i0 to the sink that does not go across any sanitizer.

In order to deal with aliasing we use an augmented flavor of the e-SSA rep-
resentation, that we derive from a representation called Hashed Static Single
Assignment (HSSA) form [7]. This last program representation is used inter-
nally by phc [3, Sec 6.5], our baseline compiler. For each assignment v = E in
a SSA-form program, the equivalent HSSA-form program contains an assign-
ment (v, a1, . . . , an) = E, where a1, . . . an are the aliases of v at the assignment
location. Following this strategy, our augmented representation generates new
names for each variable created by a sanitizer. The literature contains a plethora
of methods to conservatively estimate the set of aliases of a variable. We use the
flow sensitive, interprocedural analysis [18] that we obtain from phc. Moving on
with our example, Figure 7 shows the program and the reachability graph after

$i0 $j2t

$_GET['var'] !is_clean

filter $j3 $j4

$j1

$j2c

echo

l0: i0 = l1: j1 &= i0

l2: validate(j1, j2c, l4, j2t, l3)

$i = $_GET['var']

$j =& $i

if (!clean($j)) {

 $j = filter($i);

}

echo($i);

l3: j3 = filter

l5: • = i0

l4: j4 = (j2c, j3)

Fig. 6. An example of how aliasing complicates the tainted flow analysis. In the right
side we show the reachability graph built for the e-SSA form program.

136 A. Rimsa, M. d’Amorim, and F.M. Quintão Pereira

$i0 $j2t

$_GET['var'] !is_clean

filter

$j3 $j4

$j1

$j2c

l0: i0 = l1: j1 &= i0

l2: validate(j1, {j2c,i2c}, l4, {j2t,i2t}, l3)

l3: {j3, i3} = filter

l5: • = i4

l4: j4 = (j2c, j3)

 i4 = (i2c, i3)

$i2c

$i2t

$i3 $i4

echo

Fig. 7. (Left) input program in e-SSA form augmented with the results of alias anal-
yses. (Right) final reachability graph.

augmenting the e-SSA form program in Figure 6 with the results of alias analy-
sis. In the new reachability graph there is no path from a source to a sink that
does not go across a sanitizer. Thus, we report that the program is bug-free.

4.4 A Solution Quadratic in Time and Space

The function markTaintedVars, given in Figure 8 finds bugs in e-SSA-form Nano-
PHP programs. We use SML/NJ’s syntax plus Erlang-style guards in pattern
matching, as in the auxiliary function hasTaintedChild. This function simulates
a traversal of the reachability graph that we described in Section 4.2, but it does
not really build the graph. Instead, it relies on the use-chains of the variables to
guide the traversal. The use-chain of a variable x is a function USE that maps
x to every instruction where this variable is used.

Function markTaintedVars receives three parameters: a set {i, i1, . . . , in} of
instructions to process, an environment Σ that maps variables to either clean
or tainted, and a set of visited instructions, which we keep to avoid visiting the
same instruction twice. MarkTaintedVars processes each instruction forwardly,
i.e, an instruction that defines a variable x is buggy if any of the instructions that
use x is buggy. We assume that every variable used in a sink function is buggy.
We use the auxiliary function hasTaintedChild to check if any of the instructions
in the use chain of a variable x defines a variable that has been set as tainted in
the environment. Notice that neither markTaintedVars or hasTaintedChild deals
with switches or filter instructions. These instructions will never define or use
tainted variables, and will never be found by any of these functions.

Complexity. The function markTaintedVars is quadratic in time and space. Be-
cause markTaintedVars keeps the use-chains of every variable, this function uses
O(V × I) space, where V is the number of variables in the input program, and
I is the number of instructions in this program. The function is recursively
called at most once per each program instruction. When the function is called,
it might do a linear search on the use-chain of a variable, inside the function
doUseChainSearch. Therefore, this function has time complexity O(I2).

Tainted Flow Analysis on e-SSA-Form Programs 137

fun hasTaintedChild {. . . , (• = x), . . .} ⇒ true
| hasTaintedChild Σ {. . . , (x = ⊗(. . .)), . . .} ∧ Σ � x = clean ⇒ true
| hasTaintedChild Σ {. . . , (x = φ(. . .)), . . .} ∧ Σ � x = clean ⇒ true
| hasTaintedChild Σ {. . . , (validate(, , , x,)), . . .} ∧ Σ � x = clean ⇒ true
| hasTaintedChild ⇒ false

fun markTaintedVars ∅ Σ ⇒ Σ
| markTaintedVars {i, i1, . . . , in} Σ V ⇒

let
val V ′ = {i} ∪ V
fun doUseChainSearch v =

let
val N = USE (v) \ V ′

val Σ′ = markTaintedVars ({i1, . . . , in} ∪N) Σ V ′

in
if hasTaintedChild Σ′ USE (v)
then Σ′[v �→ tainted]
else Σ′

end
in

case i of
• = x→ markTaintedVars {i1, . . . , in} Σ[x �→ tainted] V ′

x = ◦ → doUseChainSearch x
x = ⊗(. . .)→ doUseChainSearch x
x = φ(. . .)→ doUseChainSearch x
validate x, xc, lc, xt, lt → doUseChainSearch xt

end

Fig. 8. The algorithm that finds bugs in Nano-PHP programs

5 Experiments

We have implemented the data-flow analysis discussed in Section 3 and our e-
SSA based analysis from Section 4 on top of the phc open source compiler [3,4].
This compiler, started in 2005 by Edsko de Vries and John Gilbert, is imple-
mented in C++, and currently uses our implementation of e-SSA as an internal
representation. Our implementation of data-flow analysis uses a standard work-
ing list algorithm, and runs on a quasi-topological ordering of the CFG of the
input program [2, pag.360].

Benchmarks: We have run our analysis on 20,900 files publicly available in 30
PHP content management systems (CMS). Most of these applications appear in
previous works [13,14,31]. The names of these applications are given in Figure 9.
In this section we show results for 13,297 files out of the 20,900 inputs (63.6%).
The omissions are due to the fact that phc, being a static compiler, is not able
to analyze some features of PHP, such as dynamic file inclusion or dynamic
code evaluation. None of these failures are due to our implementations, i.e, they
happen before we have the chance to run the tainted flow analyses. A detailed
account of each phc failure is provided by Rimsa [21].

138 A. Rimsa, M. d’Amorim, and F.M. Quintão Pereira

Set up: Currently our tool reads a configuration file that determines which
functions (user defined or from libraries) are sinks, sources and sanitizers. For
these experiments we use a configuration file that identifies cross-site script-
ing attacks, which we describe in Section 2.1. Notice that by properly pointing
sources, sinks and sanitizers our analysis can be easily modified to handle other
vulnerabilities, such as SQL injections (Section 2.2).

Efficiency: We compare the time to run the data-flow analysis (Section 3) and
the time to run our sparse analysis (Section 4). We run the data-flow analysis
on the original program, before the conversion to SSA (and e-SSA) form. In
order to produce e-SSA form programs, we start from a non-SSA form program,
and augment it with special instructions, i.e, π and φ-functions [5,10]. Figure 9
shows that the e-SSA based approach is faster than the data-flow approach as
the size of the input functions grow. Each bar is the average sum of the times to
process each function of the benchmark, over 10 runs. On the average, our sparse
analysis is 28% faster than the traditional data-flow approach. We measure the
time to analyze each function individually, and we do not consider functions
containing less than 100 assembly instructions, for in this case time measure-
ments are too imprecise. Our benchmarks have provided us with 1,122 function
above this threshold. The largest function that we have analyzed contains 1,141
instructions. We speculate that once we cross the boundaries of functions, and
analyze whole PHP applications, which might contain thousands of functions,
and millions of lines of code, our analysis will be much more efficient than the
data-flow approach.

Fig. 9. Average execution time (ms) per benchmark for data-flow and e-SSA-based
analyses. Bars are sorted by the time to run the data-flow based analysis.

Tainted Flow Analysis on e-SSA-Form Programs 139

Table 4. Precision results. F is the number of files, and LOC/F is the number of lines of
PHP code per file. Affected is the number of files containing tainted flow vulnerabilities.
TP are true positives, and FP are false positives.

benchmark version
files warnings

total processed
affected TP FP

F LOC / F F LOC / F

MODx 1.0.3 472 231 308 228 3 1 1
Exponent CMS 0.97 3456 42 2833 32 3 28 11

DCP Portal 7.0 beta 535 97 392 61 7 5 11
Pligg 1.0.4 380 146 179 154 3 1 0

RunCMS 2.1 737 134 361 86 2 1 6
avg. - - - - - 3.60 7.20 5.8

Precision: Both our e-SSA based analysis and the data-flow analysis have suc-
ceeded on the same inputs, reporting 63 warning messages across 25 distinct
PHP files. Table 4 details these numbers for the subjects that contain confirmed
vulnerabilities. Manual inspection of each of these warnings revealed actual vul-
nerabilities in 36 of these reports, i.e., a 45% false positive ratio. The false pos-
itives are due to the lack of whole program analysis, which force us to assume
that every function parameter is tainted. We used this list of bugs to perform
cross-site scripting attacks in 9 distinct PHP files. To the best of our knowledge,
none of these vulnerabilities have been previously reported. We have submitted
all these vulnerabilities to the bugtraq at http://www.securityfocus.com/.
For a detailed account of each bug, see Rimsa [21,22].

5.1 An Example of a Real-World Bug

In order to illustrate our analysis, we will show an actual bug that our imple-
mentation found in the content management system MODx CMS version 1.0.3.
We have reported this bug to the developers9, who acknowledge the presence
of the bug. In this example we use the PHP program in Figure 10, which was
publicly available on 2010-5-4.

One of the steps of the installation process lets the user choose a database
collation from a small suite of options. Users specify this database via three
parameters: host, uid and pwd. Users also specify their choice for a col-
lation system via a string, which the PHP program stores in the variable
database collation. The PHP file queries a database, using this vari-
able as a key. However, in case the parameters host, uid or pwd do not
determine a valid database, the module receives a collation option from a
variable originated from a post request, i.e., a form. This string, stored in
database collation, is printed in the output without sanitization, as we
see in Line 17 of Figure 10. Therefore, in order to print a malicious script
in the user’s webpage, we can choose an invalid host for the database, and

9 http://www.securityfocus.com/bid/41454

http://www.securityfocus.com/bid/41454

140 A. Rimsa, M. d’Amorim, and F.M. Quintão Pereira

<?php
$host = $_POST['host'];
$uid = $_POST['uid'];
$pwd = $_POST['pwd'];
$database_collation = $_POST['database_collation'];
$output = '<select id="database_collation" name="database_collation">
<option value="'.$database_collation.'" selected >'
 .$database_collation.'</option></select>';
if ($conn = @ mysql_connect($host, $uid, $pwd)) {
 // get collation
 $getCol = mysql_query("SHOW COLLATION");
 if (@mysql_num_rows($getCol) > 0) {
 $output = '<select id="database_collationse_collation"
 name="database_collation">';
 while ($row = mysql_fetch_row($getCol)) {
 $selected = ($row[0]==$database_collation ? ' selected' : '');
 $output .= '<option value="'.$row[0].'"'.$selected.'>'.$row[0].
 '</option>';
 }
 $output .= '</select>';
 }
}
echo $output;
?>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Fig. 10. An installation file used in MODx CMS version 1.0.3. This file contains a XSS
vulnerability, which we have highlighted in boldface.

l4: database_collation4 = ol5: output5 = (database_collation4)

l9: output9 = ()

l : output = (output5, output14) l17: • = output

l3: bra l9, l

$database_collation4

$_POST['...']

echo$output5

$output

l3: bra l11, l3

l11: select11 = (database_collation4)

l12: output12 = (select11)l14: output14 = ()

Fig. 11. (Left) the Nano-PHP representation of the program in Figure 11 – we show
only the highlighted lines. (Right) The reachability graph.

write the script code directly in the form that feeds database collation. For
instance, we can steal cookies from the user’s browsing environmentwith the string
“</option></select><script>window.alert(document.cookie);</script>”.
Our analysis finds this vulnerability, as we illustrate in Figure 11. The reachability
graph that we build for the example program contains a path from the variable
database collation, which is initialized from a source, to the function echo,
which we qualify as a sink.

6 Related Work

The tainted flow problem is well known in the literature [13,19,28,29,31]. Wasser-
man and Su [29] have used context-free grammars and string analysis [8] to prove

Tainted Flow Analysis on e-SSA-Form Programs 141

that functions manipulate strings safely. Another strategy, which uses symbolic
execution to solve the tainted flow problem, was proposed by Xie and Aiken [31].
While our analysis has conditional validators powered by the e-SSA representa-
tion, these other approaches try to infer new functions as validators. However,
a direct comparison between these previous two works and ours is not possible,
because the tools are not publicly available. We can only speculate that, by us-
ing symbolic execution or string analysis, they are more expensive than ours,
although likely more precise. There exist; however, publicly available tools that
perform tainted flow analysis. One of them is MARCO [19], a Java bytecode
analyzer. Another is Pixy [13], a PHP analyzer. MARCO relies on program slic-
ing [30] to find the set of tainted variables, whereas Pixy uses a variation of the
data-flow analysis from Section 3. Neither tool takes the results of conditional
tests into consideration; hence, both are path insensitive – a problem that our
intermediate representation permits us to circumvent.

Many compiler analyses are based on the notion of graph reachability. In this
case, the subject graph normally represents part of a program slice [30]. This
strategy was made popular by the pioneering works of Choi et al. [6] and Reps
et al. [20]. For a clear explanation of the use of graphs to model data-flow prob-
lems, we recommend the work of Scholz et al. [23]. The tainted flow problem
has been modeled as instances of graph reachability before [11,12,28]. In par-
ticular, relying on a modified notion of thin slicing [26], Tripp et al. [28] have
been able to analyze remarkably large benchmarks. However, to the best of our
knowledge, we present the first algorithm that uses the e-SSA representation to
handle conditional validators inside the graph reachability framework. Condi-
tional validators increase the precision of our analysis, as a given variable might
be treated as clean in some program path, and tainted in others, and the e-SSA
representation makes it possible to model this flow sensitivity sparsely.

The e-SSA intermediate program representation [5] allows us to model a data-
flow problem sparsely. There exist many program representations that have been
designed with this purpose. The most well known member of this family is the
Static Single Assignment (SSA) form [10]. Another program representation that
has been conceived with similar objectives is the Static Single Information (SSI)
form [1,25], which deals with backward data-flow analyses. We opted to use the e-
SSA form because, contrary to SSA form, it allows us to capture information from
conditional tests. The SSI representation also gives us this type of information;
however, it inserts almost seven times more copies into the source program when
compared to the e-SSA form and takes almost 15 times longer to build [27].

7 Conclusion

This paper presented a novel and efficient approach to statically identify security
vulnerabilities in code that can result in tainted flow attacks. Key to our speedup
was the e-SSA program representation. This enabled us to encode our analysis as
a graph reachability problem using a non-iterative data flow algorithm . We have
implemented our analysis on top of phc, an open source PHP compiler, and have

142 A. Rimsa, M. d’Amorim, and F.M. Quintão Pereira

used it to find real bugs in well known web applications. We reported all the new
bugs that we found to the maintainers of the target applications. Some of these
developers acknowledged and fixed the vulnerabilities. Our implementation of
the e-SSA representation is currently available in the phc compiler, our analysis
code is available at http://www.dcc.ufmg.br/llp/projects/phc-tainted/.

Acknowledgment. Andrei Rimsa is supported by CAPES. We thank Paul Big-
gar for invaluable help with the phc compiler, and Roberto Bigonha plus the
anonymous reviewers for helping to improve the text.

References

1. Ananian, S.: The Static Single Information Form. Master’s thesis, MIT (September
1999)

2. Appel, A.W., Palsberg, J.: Modern Compiler Implementation in Java, 2nd edn.
Cambridge University Press, Cambridge (2002)

3. Biggar, P.: Design and Implementation of an Ahead-of-Time Compiler for PHP.
Ph.D. thesis. Trinity College, Dublin (2009)

4. Biggar, P., de Vries, E., Gregg, D.: A practical solution for scripting language
compilers. In: SAC, pp. 1916–1923. ACM, New York (2009)

5. Bodik, R., Gupta, R., Sarkar, V.: ABCD: eliminating array bounds checks on
demand. In: PLDI, pp. 321–333. ACM, New York (2000)

6. Choi, J.D., Cytron, R., Ferrante, J.: Automatic construction of sparse data flow
evaluation graphs. In: POPL, pp. 55–66 (1991)

7. Chow, F.C., Chan, S., Liu, S.M., Lo, R., Streich, M.: Effective representation of
aliases and indirect memory operations in SSA form. In: Gyimóthy, T. (ed.) CC
1996. LNCS, vol. 1060, pp. 253–267. Springer, Heidelberg (1996)

8. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise analysis of string ex-
pressions. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer,
Heidelberg (2003)

9. Chugh, R., Meister, J.A., Jhala, R., Lerner, S.: Staged information flow for
javascript. In: PLDI, pp. 50–62. ACM, New York (2009)

10. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph.
TOPLAS 13(4), 451–490 (1991)

11. Foster, J.S., Terauchi, T., Aiken, A.: Flow-sensitive type qualifiers. In: PLDI, pp.
1–12. ACM, New York (2002)

12. Hammer, C., Krinke, J., Snelting, G.: Information flow control for java based on
path conditions in dependence graphs. In: ISSSE, pp. 1–10. IEEE, Los Alamitos
(2006)

13. Jovanovic, N., Kruegel, C., Kirda, E.: Pixy: A static analysis tool for detecting
web application vulnerabilities (short paper). In: S&P, pp. 258–263. IEEE, Los
Alamitos (2006)

14. Jovanovic, N., Kruegel, C., Kirda, E.: Precise alias analysis for static detection of
web application vulnerabilities. In: PLAS, pp. 27–36. ACM, New York (2006)

15. Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph.
TOPLAS 1(1), 121–141 (1979)

16. Ørbæk, P., Palsberg, J.: Trust in the λ-calculus. Journal of Functional Program-
ming 7(6), 557–591 (1997)

Tainted Flow Analysis on e-SSA-Form Programs 143

17. Palsberg, J.: Efficient inference of object types. Inf. Comput. 123(2), 198–209
(1995)

18. Pioli, A., Burke, M., Hind, M.: Conditional pointer aliasing and constant propa-
gation. Tech. Rep. 99-102, SUNY at New Paltz (1999)

19. Pistoia, M., Flynn, R.J., Koved, L., Sreedhar, V.C.: Interprocedural analysis for
privileged code placement and tainted variable detection. In: Gao, X.-X. (ed.)
ECOOP 2005. LNCS, vol. 3586, pp. 362–386. Springer, Heidelberg (2005)

20. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: POPL, pp. 49–61. ACM, New York (1995)

21. Rimsa, A.: Efficient detection of tainted flow vulnerabilities. Master’s thesis, Fed-
eral University of Minas Gerais (UFMG) (December 2010)

22. Rimsa, A.A., d’Amorim, M., Pereira, F.M.Q.: Efficient static checker for tainted
variable attacks. In: SBLP. SBC (2010)

23. Scholz, B., Zhang, C., Cifuentes, C.: User-input dependence analysis via graph
reachability. Tech. rep., Sun Microsystems, Inc. (2008)

24. Scott, D., Sharp, R.: Specifying and enforcing application-level web security poli-
cies. Trans. on Knowl. and Data Eng. 15, 771–783 (2003)

25. Singer, J.: Static Program Analysis Based on Virtual Register Renaming. Ph.D.
thesis, University of Cambridge (2006)

26. Sridharan, M., Fink, S.J., Bodik, R.: Thin slicing. In: PLDI, pp. 112–122. ACM,
New York (2007)

27. Tavares, A.L.C., Pereira, F.M.Q., Bigonha, M.A.S., Bigonha, R.: Efficient SSI con-
version. In: Brazilian Symposium on Programming Languages (SBLP), pp. 1–14
(2010)

28. Tripp, O., Pistoia, M., Fink, S., Sridharan, M., Weisman, O.: TAJ: Effective taint
analysis of web applications. In: PLDI, pp. 87–97. ACM, New York (2009)

29. Wassermann, G., Su, Z.: Sound and precise analysis of web applications for injection
vulnerabilities. In: PLDI, pp. 32–41. ACM, New York (2007)

30. Weiser, M.: Program slicing. In: ICSE, pp. 439–449. IEEE, Los Alamitos (1981)
31. Xie, Y., Aiken, A.: Static detection of security vulnerabilities in scripting languages.

In: USENIX-SS. USENIX Association (2006)

Clean Translation of an Imperative Reversible
Programming Language

Holger Bock Axelsen

DIKU, Dept. of Computer Science, University of Copenhagen
funkstar@diku.dk

Abstract. We describe the translation techniques used for the code
generation in a compiler from the high-level reversible imperative pro-
gramming language Janus to the low-level reversible assembly language
PISA. Our translation is both semantics preserving (correct), in that
target programs compute exactly the same functions as their source pro-
grams (cleanly, with no extraneous garbage output), and efficient, in that
target programs conserve the complexities of source programs. In par-
ticular, target programs only require a constant amount of temporary
garbage space.

The given translation methods are generic, and should be applicable
to any (imperative) reversible source language described with reversible
flowcharts and reversible updates. To our knowledge, this is the first com-
piler between reversible languages where the source and target languages
were independently developed; the first exhibiting both correctness and
efficiency; and just the second compiler for reversible languages overall.

1 Introduction

Reversible computing is the study of computation models that exhibit both for-
ward and backward determinism [2]. Historically, reversible computing originates
in the physics of computation: Irreversible computations (for example, seen in
our inability to recover the input to a nand-gate from its output, or the previous
value of a variable or register after most assignments) can be shown to have a
physical effect on the machines that execute them, in the form of heat dissipation
and power consumption [7]. For reversible computations these physical conse-
quences are no longer implied, and it should therefore be possible to lower the
power consumption of computing machinery by using reversible components [5].
Lowering power demands is increasingly important as microprocessor technology
bottoms out at the atomic level.

To obtain maximal benefit from reversibility a reversible computer should
be reversible at every abstraction layer, so reversible hardware [16,13] demands
reversible software. However, reversible programming languages are rare and un-
derdeveloped. This is unfortunate, given that reversible programming finds use
in many diverse areas of computer science. As an example, in quantum comput-
ing [14] programs are necessarily reversible (modulo measurements, which are
destructive.) Other application include bidirectional model transformation [10],

J. Knoop (Ed.): CC 2011, LNCS 6601, pp. 144–163, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Clean Translation of an Imperative Reversible Programming Language 145

static analysis of program properties such as average case time complexity [11],
and complex program transformations such as inversion [15].

In the context of compiler theory, we find that there are no well-established
principles for translation between reversible languages. Two baseline criteria for
such a compiler comp are its correctness and efficiency. Correctness means that
the translation should be semantics preserving, and efficiency here means that
the translation should be complexity preserving: Given a source program p, the
target program q = [[comp]] p should compute the same function as the source
program modulo data representation, i.e., [[p]] = [[q]], and the source and target
programs should have the same asymptotic complexities wrt resource usage. That
such translations are possible is critical for the usefulness of reversible languages.

Both correctness and efficiency present novel challenges for the translation
of reversible programming languages: High-level reversible languages are usually
reversible at a coarser level than low-level reversible languages. In our source
language, Janus, reversibility bottoms out with fairly complex (reversible) state-
ments like x += a *(5+b) - 17/y, whereas in the target language, PISA, re-
versibility bottoms out with individual instructions like ADDI r1 10, which is
much more fine-grained. The problem is that the components of the source
language that exist below the granularity of reversibility (for instance, the ir-
reversible expressions in Janus) must still be implemented reversibly in the tar-
get language, without generating any extraneous garbage data for the output.
Targeting a reversible assembly language also means that fundamental conven-
tional techniques, such as using scratch registers for temporary values, must be
revised, as we can not allow overwrite registers. Finally, the source languages
contain novel program features that no classical languages exhibit, such as the
procedure uncall statement in Janus, which executes a procedure backwards.

In this paper, we present the techniques used for code generation in a cor-
rect and efficient translation from the high-level imperative reversible language
Janus [9,19,17] to the low-level reversible assembly language PISA [16,6,3,13]. We
consider these to be the most developed and well-understood extant reversible
languages in their respective classes. A compiler based on the techniques was
implemented and tested. To our knowledge, this paper presents the first trans-
lation of reversible languages where the source and target languages have been
independently developed, and only the second compiler overall (the other being
Frank’s R-compiler [6, Apps. C & D].) Our main contributions are as follows.

– We provide a full description of code generation for a correct and efficient
translation of Janus to PISA.

– We give general clean translation methods for generic reversible control flow
operators, which avoids code duplication of the computation and uncompu-
tation of their conditional expressions.

– We give methods for explicit register allocation in reversible evaluation of
expression trees.

146 H.B. Axelsen

Program

p ::= d∗ (procedure id s)+

d ::= x | x[c]
Statements

s ::= x⊕= e | x[e]⊕= e
| call id | uncall id
| if e then s else s fi e
| from e do s loop s until e
| skip | s s

Expressions, operators, constants

e ::= c | x | x[e] | e⊗ e
⊗ ::= ⊕ | * | && | <= | · · ·
⊕ ::= + | - | ^
c ::= · · · | -1 | 0 | 1 | · · ·

Syntax domains

p∈Program
s ∈ Statement

e ∈Expression
x∈Variable

⊗ ∈Operator
id ∈ProcedureID

Fig. 1. Syntax of Janus

Overview. Sect. 2 presents the target and source languages, Sect. 3 motivates
the guiding principles underlying the translation, and Sect. 4 provides schemes
for code generation. We discuss the implemented compiler in Sect. 5, related
work in Sect. 6, and give conclusions and directions for future work in Sect. 7.

2 Languages

Here, we provide a brief overview of the source and target languages.

2.1 Source Language: Janus

The source language for the translation is Janus, an imperative structured
high-level reversible language designed in the early 80’s [9]. Its recent formal-
ization [19] and extension [17] makes it one of the most well-understood and
well-developed reversible language in existence. We specifically use the version
of Janus defined in [19].

A Janus program consists of a list of global variable declarations, and a list
of procedure (subroutine) declarations, see Fig. 1 (some operators are omitted
for space reasons). A global1 variable is a (32-bit signed) integer x, or a (zero-
indexed) static size array of integers x[c]. All variables and arrays are initialized
to zero.

1 In this version of Janus there are no local variables.

Clean Translation of an Imperative Reversible Programming Language 147

A procedure is a non-parameterized list of statements. A statement s is a
reversible assignment2 to an integer variable x ⊕= e or array entry x[e1]⊕= e2;
a (recursive) procedure call call id ; a procedure uncall uncall id ; a reversible
conditional selection if e1 then s1 else s2 fi e2, or a reversible loop
from e1 do s1 loop s2 until e2.

Briefly, the semantics of Janus is as follows. A reversible assignment updates
the left value by adding (+=), subtracting (-=) or (bitwise) xoring (^=) the value
of the expression on the right hand side to the original value. The variable being
updated must neither occur in the right hand side nor in the array index ex-
pression, to conserve reversibility. A reversible conditional selection is similar to
a classical if-then-else, but the value of the fi-expression must be true after
execution if the then-branch was taken, and false otherwise. A reversible loop is
similar to a classical do-while, but the from-assertion must be true when enter-
ing the loop, and false in all subsequent iterations (cf. Fig. 7). A call recursively
executes a named procedure, and an uncall executes the procedure with its in-
verse functionality. Such direct programming access to the inverse semantics of
a languages is a unique feature of reversible languages.

To provide Janus with a stand-alone execution behaviour, the last procedure
in the procedure list acts as the main procedure for a program, and is executed
at run-time.3

2.2 Target Language: PISA

We target the Pendulum Instruction Set Architecture assembly language (PISA),
as described in [6,3]. The Pendulum [16] is a RISC architecture, with 32 general
purpose 32-bit signed integer registers, designated r0 to r31.4 A formal seman-
tics for PISA and an abstract von Neumann machine on which to run it, is
described in [3]. A minimal assembly language BobISA, inspired by PISA, is be-
ing developed [13] for future implementation in reversible logic [12]. PISA is thus
representative of a large class of reversible machine languages.

A PISA program is a list of (possibly labeled) RISC-style machine instruc-
tions, see Fig. 2 for a representative excerpt. An instruction is either a data
instruction, or a branching instruction, or a special instruction used in program
control.

A data instruction has no direct influence on control flow. The data instruc-
tions are reversible versions of classical RISC instructions. As an example, the
ADD r1 r2 instruction performs the reversible update r1 ← r1 + r2 (in Janus
syntax r1 += r2). To conserve reversibility the source and target registers must

2 A reversible assignment follows the pattern of a reversible update: It is a function of
the form g(x, y) = (x⊕ f(y), y), where ⊕ is a binary operator that is injective in its
first argument, i.e., that b⊕ a = c⊕ a⇒ b = c. This makes g injective. Note that f
is unrestricted, allowing us to use irreversible operators, such as logical conjunction,
in the right hand side of a reversible assignment. See also [3,17].

3 An online interpreter can be found at http://topps.diku.dk/pirc/janus
4 By convention, r0 is usually preserved as 0, r1 is the call stack pointer and r2 is used

to store return offsets in procedure calls.

http://topps.diku.dk/pirc/janus

148 H.B. Axelsen

Program
p ::= ([l :] i)+

i ::= a | b | s
Data instructions

a ::= ADD r r | SUB r r | NEG r | XOR r r | · · ·
| ADDI r c | SUBI r c | XORI r c | · · ·
| ORX r r r | ANDX r r r | SLTX r r r | · · ·
| EXCH r r

Branching instructions

b ::= BRA l | RBRA l
| BEQ r r l | BNE r r l | BGEZ r l | · · ·
| SWAPBR r

Special instructions
s ::= DATA c | START | FINISH

Immediates
c ::= · · · | -1 | 0 | 1 | · · ·

Syntax domains

p∈Program
l ∈Label

a∈DataInst
b ∈BranchInst

s∈ Special
r∈Register

Fig. 2. Syntax of PISA (Excerpt)

be different. One may also use immediates in place of a source register. For
instructions which do not mimic an operation which is injective in an argu-
ment, expanding instructions such as ANDX r1 r2 r3 (which performs r1 ←
r1 XOR (r2 AND r3)) are available. This is also used in comparison opera-
tions, such as set-if-less-than SLTX. Reversible memory access is provided by
EXCH r1 r2 which exchanges the contents of r1 with the value in the memory cell
pointed to by r2.

A branching instruction is an unconditional (e.g., BRA l) or conditional branch
(e.g., BGEZ r l) to a label. Branching is made reversible through the architectural
design of PISA: At load time, labels are replaced with the relative offset of a
branch instruction and its target. A branch instruction does not overwrite the
program counter pc directly, but instead adds the offset to a control register, the
branch register br . In between the execution of any two instructions, the pc is
reversibly updated by adding the br to it if br �= 0, and proceeding to the next
instruction, if not.

To program jumps in PISA one can use paired branches : A branch target
should contain a branching instruction pointing back to the jump point, in order
to clear the br and resume normal step-wise execution. A final control register,
the direction bit dir , controls the interpretation and execution direction, allowing

Clean Translation of an Imperative Reversible Programming Language 149

for programmer control of the execution direction through the ingenious reverse
branch instruction RBRA. To allow for a labeled instruction to be jumped to from
many source points, the SWAPBR r instruction exchanges the value of br with
that in register r. Further details in [6,3].

The special instructions are not executed at run-time: The DATA c instruction
is used to initialize the memory cell at that point with c at load-time. Execution
begins at the START instruction, and halts at the FINISH instruction.

3 Motivation

Before providing technical details, we motivate the guiding principles for the
translation.

Historically, the study of reversible computing (starting with Landauer [7]
and Bennett [4]) has been focused on transformations from irreversible to re-
versible programs (for Turing machines), so-called reversibilizations. Critically,
such transformations are neither semantics nor complexity preserving: The tar-
get program of such a transformation computes a different function from the
source program, with additional garbage data in the output (e.g., a trace of ev-
ery computation step), and can be asymptotically very inefficient (e.g., requiring
as much space as time, regardless of the space usage of the source program.)

Bennett suggests a method for programs computing injective functions, see [4,
p. 530], which is semantics preserving. While this is extensionally clean (i.e.,
correct), it is still not satisfactory: The method requires the use of a complete
execution trace, so target programs would be extremely inefficient, using as much
space as time. This is clearly not acceptable for any realistic computing device.

Thus, using existing reversibilizations is unsuitable when we want both cor-
rect and efficient translation between reversible language. In fact, no general
reversibilization (from irreversible source to reversible target) will be able to
guarantee both properties without breaking widely believed conjectures in com-
plexity theory (such as the existence of one-way functions.) However, we also
believe that translations between strictly reversible languages can be both cor-
rect and efficient. Thus we should not rely on general reversibilizations.

The central idea of our translation is to exploit that Janus is reversible at
the level of individual statements in addition to the overall reversibility between
input and ouput. We can aim for an intensionally clean translation where each in-
dividual statement is translated cleanly, without having to accumulate garbage.
We still need to evaluate expressions as a subpart of statements, and this will
require some use of reversibilization (leading to temporary garbage) as expres-
sion evaluation is inherently irreversible. However, we should be able to remove
the garbage data immediately following any use of the expression value, exactly
because the individual statements are reversible. This will allow us to reuse the
space that would otherwise be filled by accumulating garbage data!

This has a dramatic effect on efficiency: Expressions are non-recursive, so their
size is effectively a (rough) bound on how much garbage we can accumulate by

150 H.B. Axelsen

max(|e1|, |e2|, . . . , |ek|)

Time

Garbage space

e2

start

Time
e1 e4 e2

Garbage space

e−1
2 e−1

1e−1
4

e−1
7e1 e−1

2e−1
4e−1

1 e4 e7

.

.(a)

(b)
halt

start halt

(unbounded)

(bounded)

Fig. 3. Garbage space usage during target execution for two different approaches to
reversible translation. (a) corresponds to Bennett’s method for injective functions. (b) is
our translation. {e1, e2, . . . , ek} is the (finite) set of expressions in a particular program.

simulating any single one. This leads to a constant upper bound for garbage
use for any given program (which only has finitely many expressions, each of
fixed size), regardless of how many times we need to evaluate them in a program
execution, in stark contrast to what happens with general reversibilization. Fig. 3
shows a conceptual representation of this.

The removal of any garbage data serves to make the translation correct, and
doing so immediately makes the translation efficient (assuming we can translate
the other component of Janus correctly and efficiently as well.) Thus, by actively
exploiting the reversibility of the source language, we expect the irreversible sub-
parts to be simulable without any impact on neither semantics nor complexity.
Of course, this means that we have to come up with good, garbage-free transla-
tions for the remaining parts of the source language.

We now turn to the details of the translation based on these ideas.

4 Translation

In this section we present the translation techniques used in our compiler. In
particular, we show the development of the code generation schemes used in

Clean Translation of an Imperative Reversible Programming Language 151

< variable defs >
< procedure code >

start : START ; Start program here
ADDI rsp size(q) ; Init stack pointer
BRA main ; Call main procedure
SUBI rsp size(q) ; Clear stack pointer

finish : FINISH ; Exit program here

Fig. 4. Overall layout of a translated program q

the translation. Although we show the translation for two particular languages,
the presentation is intended to be sufficiently abstract that one may adapt the
schemes for use with other reversible source and target languages (or parts
thereof) as well. Many parts of the compiler (parsing, syntax analysis etc.)
were straightforwardly implemented using classical methods, and will not be
discussed.

Janus is a structured language, we can inductively define the translation over
the Janus syntax, and the presentation follows this structure:

– Overall target program structure is shown in Sect. 4.1.
– Procedure encapsulation and procedure calls are translated in Sect. 4.2.
– Reversible assignments (atomic statements) are translated in Sect. 4.3.
– Control flow operators are translated in Sect. 4.4.
– Expression evaluation is implemented in Sect. 4.5.

4.1 Overall Program Structure

A source program consists of declaration lists of global variables and procedures.
The variables are global and of fixed size, so we can use the DATA 0 instruction
to allocate space for them in the translated program. We use the order of decla-
rations from the source, and use the names as labels, e.g.

lx : DATA 0
...

DATA 0

⎫⎪⎬
⎪⎭ n cells for array x[n] ,

ly : DATA 0 ; 1 cell for integer y .

This will allow us to read the result of a program execution directly from these
memory locations when the target program halts. Variables are also kept in
memory across statements that do not refer to them, to simplify the translation.

Following the space for variables comes a list of translated procedures, see be-
low for details. Finally, a small section of code defines the execution behaviour.
We assume that the program is loaded at address 0. Program execution be-
gins with the pc at the START instruction labeled start . We shall need a call
stack for recursive program calls, so a stack pointer rsp (any of the general pur-
pose registers, but usually r1) is initialized to point at the first free memory cell

152 H.B. Axelsen

BRA f

ftop: BRA fbot

SUBI rsp 1 ; Pop return offset
EXCH rro rsp ; from stack

f : SWAPBR rro ; Entry/exit point
NEG rro ; Flip offset sign
EXCH rro rsp ; Push return offset
ADDI rsp 1 ; on stack
< code for f > ; Procedure body

fbot: BRA ftop

Caller Callee

Fig. 5. Translation and calling convention for (recursive) procedures. The arrows show
the control flow of a procedure call to f .

above the program by offsetting it with the size of the program size(q) (which
is a constant). Then, we call main , (where main is the name of the last defined
procedure in the program) using the calling convention below. Returning from
this procedure call leads to the termination of the program with the FINISH
instruction labeled finish. Following this, the call stack will be empty, and we
clear the stack pointer, for cleanness.

4.2 Procedure Definitions and Procedure Calls

Procedure declarations are translated using a generalized version of the calling
convention for PISA defined in [6], with added support for recursion.5 The trans-
lation is most easily explained by considering how a caller and callee interact,
see Fig. 5 for code.

The caller uses a simple BRA f instruction to call a procedure. This leads
to a jump to the instruction labeled f . This entry/exit point is common to all
callers, so the jump offset from caller to callee (the value currently in the branch
register br), is moved to a general purpose return offset register rro , using the
SWAPBR instruction. If rro is 0 when the call is made, the combined effect of
the BRA and SWAPBR is to jump from caller to callee and proceed with normal
step-wise execution from the callee entry point.

When returning from the procedure, the desired offset from callee to caller is
the same distance as the original jump offset but with reverse sign, so we negate
rro with NEG to get the return offset. The ADDI and EXCH instruction pushes
the return address onto the call stack. The procedure body (which can include
recursive calls to f) is then executed. After this, the paired BRA instructions send

5 In the extended version of Janus [17] procedures are equipped with call-by-reference
parameters. The above calling convention can support this straightforwardly in the
call sequence by placing the references in an activation record on the call stack. These
can be popped into procedure-dependent dedicated registers for formal parameters
in the callee prologue (or when needed) and dereferenced when formal parameters
are used.

Clean Translation of an Imperative Reversible Programming Language 153

(1) <code for ra ← [[e1]] > ; Generates garbage G1

(2) ADDI ra lx ; Add base address to index
(3) <code for re ← [[e2]] > ; Generates garbage G2

(4) EXCH rd ra ; Swap array entry into rd

(5) ADD rd re ; Update array entry
(6) EXCH rd ra ; Swap back array entry
(7) <inverse code of 3> ; Removes garbage G2

(8) SUBI ra lx ; Subtract base address
(9) <inverse code of 1> ; Removes garbage G1

Fig. 6. Translation of reversible (array) assignment x[e1]+= e2. For assignments which
use -= or ^= substitute the instruction in line 5 with SUB or XOR.

control to the top of the procedure encapsulation. Here, we pop the return offset
from the stack and put it into rro , with the SUBI and EXCH instructions. Then,
the SWAPBR returns control to the caller, where the BRA instruction restores the
br to 0 again, and the caller continues its execution.

Note that the use of a call stack does not lead to garbage data: Any data that
is added to the stack by a call is also cleared when returning from the call, so
the size of the stack is conserved over, though not during, calls. Since the stack
is initially empty when the program calls the main procedure, it will also be so
when the program terminates.

Finally, procedure uncalls are supported by the use of the RBRA instruction in
place of BRA in the caller. Nothing needs to change in the callee, which means
that the same code can be shared for both calls and uncalls.

4.3 Reversible Assignments

Janus assignment statements are reversible updates. These can be implemented
using a generalized version of Bennett’s method, where the intermediate copying
phase is replaced by in-place updating the left hand side variable, see [3]. The
main difficulty we face is that expression evaluation is, in general, irreversible,
and embedding this evaluation in PISA will necessarily generate garbage data.
For a clean translation, this garbage must be disposed of, i.e., it must be re-
versibly cleared.

We shall detail the case of assignment to an array variable, x[e1] += e2. The
translation of this is as follows (see Fig. 6 for a corresponding code template):

(1) Reversibly evaluate the index expression e1, placing the result in (zero-
cleared) register ra . This will generate some garbage data G1. (2) Add the base
address lx of the array x to ra, yielding the exact address of the entry in mem-
ory. (3) Reversibly evaluate the update expression e2, placing the result in zero-
cleared register re. This will generate garbage data G2. (4) Swap the array
entry from its location in memory (given by ra) with some register rd, which
need not be zero-cleared, but which must be different from ra and re. (5) Up-
date the array entry value in rd by adding (subtracting, xoring) re. (6) Swap
the updated array entry back to its memory location, restoring rd to its original

154 H.B. Axelsen

���
����

��e1

t

f

� s1

��

�

�

�
e2

t

f

�

� s2 �

�
�

�

�

�
e1

t

f

� s1

�
��
����

��e2
t

f

�s2�

�

if e1 then s1 else s2 fi e2 from e1 do s1 loop s2 until e2

Fig. 7. Reversible flowcharts for the Janus CFOs

value. (7) Uncompute (unevaluate) expression e2, removing all the garbage data
G2 generated in the forwards evaluation of this expression and clearing re. This
can be done with the inverse of the code from step 3, see below. (8) Subtract
the base address of x from ra, leaving only the index. (9) Uncompute the index
expression e1, clearing garbage data G1 and register ra. For this, use the inverse
of the code generated for step 1.

Steps 1–6 are almost completely conventional, except for the fact that the
computations in steps 1 and 3 have the side effect of generating garbage data.
If we ignore garbage we would not need to perform steps 7–9, but seeing as
we want a clean semantics-preserving translation at the statement level these
uncomputations are necessary.

All PISA instructions have inverses that are single PISA instructions as well.
The inverse of ADD is SUB, the inverse of ANDX is itself, etc. This can be exploited
to generate the inverse code for the uncomputations in steps 7 and 9 in a very
straightforward manner: Reverse the list of instructions, and invert each instruc-
tion in the code from steps 1 and 3. This also means that steps 6–9 are actually
the inverses of steps 1–4, so the entire effect of the translated code will be to
update the array entry (step 5), with no garbage data left afterwards.

The value in register ra, once we have computed the specific address in step 2,
must be conserved over the evaluation of e2 in step 3. It is only because we know
that the register is later cleared that we may use it as a free register in future
computations. In other words, no instruction in PISA can by itself be used to
declare a register dead, making general register allocation in PISA non-trivial.

4.4 Control Flow Operators

Frank provides some (informal) guidelines for programming control structures
in PISA [6, Ch. 9]. However, it is unclear how these can be used for a clean
translation of Janus: There is little to no discussion of evaluation of conditionals,
garbage handling, or any such concepts. Furthermore, the discussion of loops is
largely limited to fixed iteration for-loops, which are much less general than
Janus loops. However, Janus CFOs are fully implementable in PISA without
generating any garbage data, as we shall demonstrate.

We shall use a bottom-up approach to explain our translation. It is easy to
see that the Janus CFOs (Fig. 7) can be decomposed using the simpler reversible

Clean Translation of an Imperative Reversible Programming Language 155

���
����

��e
t

f

�

�

��

�

�

�
e

t

f

�

�

test assertion

Fig. 8. General reversible flowchart nodes

constructs in Fig. 8. The test is simply a conventional conditional branch, while
the assertion is a join of control flow, where the conditional expression must be
true when entering the node via the edge labeled t, and false if entering via the
edge labeled f, see [18]. We shall examine how each of these constructs can be
translated cleanly to PISA and combined for the translation of Janus CFOs.

Translation of Tests. An initial attempt at a PISA translation of the test
would be to follow the standard method: Evaluate the expression, placing the
result in (zero-cleared) register re. Use a conditional jump on re for the control
flow, jumping to another place in the code if the expression evaluated to zero
(coding for false) and falling through if not (coding for true). In PISA this looks
as follows.

<code for re ← [[e]] > ; Evaluate e
test : BEQ re r0 test false ; Jump if [[e]] = 0

<code for true branch>
...

test false : BRA test ; Receive jump
<code for false branch>

...

While functional, this approach poses several problems, the major of which is
the massive generation of garbage: The value of the evaluation is left in regis-
ter re after being used by the conditional branch, and the evaluation of e will
likely leave garbage data in other registers and possibly in memory as well. The
simplest way of removing the garbage data would be to push it onto a “garbage
stack”, but this would break the cleanness of the translation. Furthermore, since
the test is a reversible flowchart, we expect to be able to simulate it in PISA
without having to resort to the Landauer embedding.

We observe that we can use the inverse of the expression evaluation code for
a Lecerf reversal [8]:

<code for re ← [[e]] > ; Evaluate e
<inverse code for re ← [[e]] > ; Unevaluate e

The total effect of this is to compute the identity. (We shall write re → [[e]] as
a shorthand for the uncomputation.) Because branch instructions can not alter

156 H.B. Axelsen

the contents of re, we can place the uncomputation code at the start of both the
true and false branch, and the total effect will be to compute the test without
generating garbage.

<code for re ← [[e]] > ; Evaluate e
test : BEQ re r0 test false ; Jump if [[e]] = 0

<code for re → [[e]] > ; Unevaluate e
<code for true branch>

...
test false : BRA test ; Receive jump

<code for re → [[e]] > ; Unevaluate e
<code for false branch>

...
Note that the uncomputation code occurs twice in this translation. Because the
expressions may be very large, this can have a significant impact on program
size, with all its drawbacks, especially wrt debugging. This code duplication can
be avoided per the following observation: Only the value of re has an effect on the
control flow. Every other piece of garbage data from the expression evaluation
may be safely uncomputed before the conditional jump. To clear re itself we
require some knowledge of its value at the branches. If we jumped to the false
branch then re is necessarily zero, and so already cleared. If we fell through to the
true branch, then re was non-zero. Expression evaluation may in general return
any integer result for re, so it seems that we have no way of deterministically
clearing re in the true branch.

However, for conditional evaluations we may reduce the expression result fur-
ther to being either 0 (for false) or 1 (for true), since only two distinct values are
actually necessary to make the jump work (we write [[e]]c for such conditional
evaluation). This is easily implemented in PISA: If rx contains the integer value
of [[e]], we may compute [[e]]c in re as follows.

condtop : BEQ rx r0 condbot ; If [[e]] �= 0,
XORI re 1 ; set re = [[e]]c = 1,

condbot : BEQ rx r0 condtop ; else leave re = 0.

With this strategy, re contains either 0 or 1 after evaluation of the conditional ex-
pression. Copy this result into an (initially zero-cleared) register rt. We can now
clear re along with the other garbage in the uncomputation before the jump.6

After the jump rt can now be deterministically cleared in the true branch by a
single XORI instruction, since we know it must contain a 1. The full translation
of a test is shown in Fig. 9; it avoids code duplication, and generates no garbage
data.7 (We discuss the error check below.)
6 Technically, we do not need the extra register rt. We can organize the uncomputa-

tion to clear everything except re. This is more efficient, but the details depend on
the evaluation strategy for conditional expressions; in particular, on the top-level
operator in e.

7 An alternative strategy is to implement the expression evaluation as a subroutine.
This removes the need for the inverse code as well, as we can use an RBRA instruction
for the uncomputation.

Clean Translation of an Imperative Reversible Programming Language 157

BNE rt r0 error ; Error check
<code for re ← [[e]]c > ; Evaluate e
XOR rt re ; Set rt = re

<code for re → [[e]]c > ; Unevaluate e
test : BEQ rt r0 test false ; Jump if [[e]] = 0

XORI rt 1 ; Clear rt

<code for true branch>
...

test false : BRA test ; Receive jump
<code for false branch>

...

Fig. 9. Code template for translation of the conditional test in Fig. 8

...
<code for true branch>
XORI rt 1 ; Set rt = 1

assert true : BRA assert ; Jump
...

<code for false branch>
assert : BNE rt r0 assert true ; Receive jump

<code for re ← [[e]]c > ; Evaluate e
XOR rt re ; Clear rt

<code for re → [[e]]c > ; Unevaluate e
BNE rt r0 error ; Error check

Fig. 10. Code template for translation of the assertion in Fig. 8

Translation of Assertions. We observe that an assertion is actually the in-
verse of a test. Since we already have a garbage-free translation of tests, we can
use this symmetry property on the translation template in Fig. 9 to get a simi-
larly garbage-free translation of assertions, practically for free. A translation of
assertions is shown in Fig. 10.

Due to programmer errors, an assertion might fail : e might evaluate to true
when coming from the false branch, and vice versa. In the given translations,
such an error will manifest itself in the value of rt: A failed assertion means that
rt will not be zero-cleared after the assertion code is executed. Rather than let
the machine continue with erroneous (though reversible) behaviour, we can catch
failed assertions by dynamic error checks. This is accomplished by checking the
final value of rt. If it is non-zero then the assertion failed, and we jump to an
error handling routine error. Translated code may be executed in reverse (e.g., in
procedure uncalls). In that case a test acts as an assertion, so we need dynamic
error checks in the translation of tests as well. Hence the seemingly superfluous
check at the beginning of the translated test.

158 H.B. Axelsen

BNE rt r0 error ; Error check
<code for re ← [[e1]]c > ; Evaluate e1

XOR rt re ; Set rt = re

<code for re → [[e1]]c > ; Unevaluate e1

test : BEQ rt r0 test false ; Jump if [[e]]c = 0
XORI rt 1 ; Clear rt

<code for true branch>
XORI rt 1 ; Set rt = 1

assert true : BRA assert ; Jump
test false : BRA test ; Receive jump

<code for false branch>
assert : BNE rt r0 assert true ; Receive jump

<code for re ← [[e2]]c > ; Evaluate e2

XOR rt re ; Clear rt

<code for re → [[e2]]c > ; Unevaluate e2

BNE rt r0 error ; Error check

Fig. 11. Translation of a Janus if e1 then s1 else s2 fi e2

Complete Translation of CFOs. The translations for the reversible control
flow nodes in Figs. 9 and 10 can now be combined to yield the complete trans-
lation of a Janus conditional selection, see Fig. 11. The principles carry over
directly to the the translation of a reversible loop, where the placement of code
is a little more intricate, see Fig. 12.

The only Janus CFO left is the sequence operator. The other translated CFOs
are structured with only one entry and exit point, so this amounts to simple code
concatenation. Thus, all of Janus’ control structures (and statements in general)
are implementable in PISA with garbage-free translations.

4.5 Expression Evaluation

Janus expression evaluation is irreversible: different stores may evaluate a given
expression to the same value. This means that we cannot, in any way, implement
expression evaluation cleanly in a reversible language: Evaluating an expression
necessarily leaves garbage. This was recognized in the translation of reversible
assignments and CFOs, where we chose to unevaluate the expression immedi-
ately after the use of the expression value, to clear any such garbage generated.
This makes the translation of statements clean, which is the best we can achieve.

The problem of reversible expression evaluation then reduces to finding a
way of forwards evaluating expressions in general using reversible instructions,
generating garbage as necessary. Because expressions are uncomputed after use,
any reversibilization will work, but we should still aim for efficiency.

Expressions in Janus are trees, so we can use simple post-order traversal to
generate code (Maximal Munch, cf. [1, Ch. 9]). A leaf node on the tree (repre-
senting a constant or variable) is simply copied into a free register. An internal

Clean Translation of an Imperative Reversible Programming Language 159

XORI rt 1 ; Set rt = 1
entry : BEQ rt r0 assert ; Receive jump

<code for re ← [[e1]]c > ; Evaluate e1

XOR rt re ; Clear rt = [[e1]]c
<code for re → [[e1]]c > ; Unevaluate e1

BNE rt r0 error ; Error check
<code for s1 >
BNE rt r0 error ; Error check
<code for re ← [[e2]]c > ; Evaluate e2

XOR rt re ; Set rt = [[e2]]c
<code for re → [[e2]]c > ; Unevaluate e2

test : BNE rt r0 exit ; Exit if [[e2]]c = 1
<code for s2 >

assert : BRA entry ; Jump to top
exit : BRA test ; Receive exit jump

XORI rt 1 ; Clear rt

Fig. 12. Translation of a Janus from e1 do s1 loop s2 until e2 loop

node (an expression e1⊗e2, ignoring unary operators) is (recursively) translated,
yielding the following code structure.

1. <code for re1 ← [[e1]] >
e1 ⊗ e2 =⇒ 2. <code for re2 ← [[e2]] >

3. <code for re ← re1 [[⊗]] re2 >

Here, re1 , re2 and re are zero-cleared registers. This mimics the conventional
translation of expressions, but in the reversible setting we are faced with two
interesting problems. How do we allocate registers? How can we translate irre-
versible operators?

Register Allocation for Expression Trees. In irreversible languages this
can be done optimally using the Sethi-Ullman algorithm. This is not available
to us in reversible languages, as scratch registers cannot be indiscriminately
overwritten. The Sethi-Ullman algorithm assumes them to be dead, but in this
translation they are still live, as they will be reversibly cleared in uncomputation.
In any case, overwriting a register simply is not possible in PISA. We thus also
expect register pressure to be somewhat higher in reversible machine code. It is
therefore important to know how we can free registers.

Instead of the usual categories of live and dead registers, we partition the
register file into the following sets.

– Free registers. We know these to be zero-cleared, and may use them freely.
– Commit registers. These contain values that we shall need at a future point

in the expression evaluation.
– Garbage registers. These contain values that are no longer needed for the

computation.

In the translation of e1 ⊗ e2 above, re1 is a free register before step 1. During
step 2 it is a commit register as we need it for step 3, after which it becomes

160 H.B. Axelsen

a garbage register. By maintaining the partitioning explicitly during the code
generation for the expression, we can use several strategies to free registers.

– Pebbling. Garbage registers can be locally uncomputed. This is space-wise
efficient, but can be very costly wrt time, if done recursively.

– Garbage spills. Garbage registers can be pushed unto the stack. This re-
quires space, but reduces the number of executed instructions needed for an
evaluation.

– Commit spills. We can push a context of commit registers onto the stack,
and restore them when they are needed.

In the implemented compiler a mixture of all three strategies is used: At leaf
nodes in the expression tree pebbling is used as the uncomputations at leafs
are extremely short. For inner nodes garbage spills are used, with commit spills
only as a last resort. With global variables allocated to memory, and no local
variables, the compiler uses explicit register allocation throughout, without the
use of virtual registers.

Operator Translation. With very few exceptions (unary minus, bitwise nega-
tion) the operators in Janus expressions are irreversible. However, most operators
are still supported in PISA in various guises. Assume that we want to evaluate
x⊗ y, with the values of x and y stored in rx and ry, respectively.

Addition, subtraction and exclusive-or are directly supported. For example,
x + y can be evaluated by ADD rx ry . This has the added advantage of reusing
rx as the commit register for the total expression, leaving only ry as garbage.
Other operators, such as bitwise disjunction, x | y, have expanding support which
consumes a free register (re): ORX re rx ry.

The most interesting, however, are those with no clear support in PISA, ex-
panding or otherwise. As an example, we shall look at the equality test x = y.
We shall need the SLTX (set-less-than-xor) instruction,

[[SLTX rd rs rt]] = rd ← rd ⊕ ((rs < rt) ? 1 : 0) ,

where ⊕ is (bitwise) exclusive-or. We can use simple logical identities to reduce
equality to the less-than comparisons. An obvious choice would seem to be

x = y ⇔ ¬(x < y ∨ y < x)

However, both the logical NOR operation and less-than are only available as
expanding instructions: Näıvely using this identity requires three free registers
(here rs, rt and re) to compute x = y as follows.

SLTX rs rx ry

SLTX rt ry rx

NORX re rs rt

Since registers are a scarce commodity, we want to do better, and indeed we can.
Note that at most one of x < y or y < x can be true (< is antisymmetric).

x = y ⇔ ¬(x < y ⊕ y < x) .

Clean Translation of an Imperative Reversible Programming Language 161

Exclusive-or is directly supported, and logical negation is reversible, so we can
evaluate x = y using only one free register:

SLTX re rx ry

SLTX re ry rx

XORI re 1

Some operators (such as logical conjunction) still require three registers. Finally,
there are also operators in Janus that have no short implementation in PISA,
e.g., multiplication or modulus, which can require executing hundreds of PISA
instructions. For these one can inline and specialize a reversible simulation of the
operator, or use the reversible simulations as subroutines, with proper parameter
handling. In the latter case, it is important that the callee subroutine does not
perturb any registers other than those of the arguments.

5 Implementation

A compiler based on the above translation methods was implemented in ML
(Moscow ML, version 2.01), in approximately 1500 lines of code. Target pro-
grams were tested on the PendVM Pendulum simulator8 and compared with
source runs in a Janus interpreter. All tests corroborated the correctness and
efficiency of the translation, so target programs do not leave garbage data in
neither registers nor memory.

The largest program translated was a PISA interpreter written in Janus, spe-
cialized to a PISA program running a simple physical simulation of a falling
object. Weighing in at slightly more than 500 lines of Janus code, this is pos-
sibly the largest reversible program ever written, and was certainly the most
complex available to the author. The compiled code is ca. 12K PISA instruc-
tions long. This program had still negligible compile and execution times, so we
omit timing statistics. In general, target programs were about 10–20 times larger
(in lines of code) than their source programs.

6 Related Work

The only other work on compilers for reversible languages known to the au-
thor is Frank’s R-to-PISA compiler [6]. The R-compiler is described mainly by
commented code in [6, App. D], and is not being maintained, which makes it
difficult to discern how the compiler is intended to work abstractly, and verify
its correctness and/or efficiency.

R is a prototype reversible procedural language developed specifically for com-
pilation to PISA. R shares some features with Janus, but also has a number of
significant differences. For example, R’s control flow operators (CFOs) are fairly
weak. R-loops are made for definite iteration, and there is no if-then-else CFO.
The R if-then CFO uses just a single conditional expression as both if- and fi-
conditional. Also, all subexpressions of the conditional must be conserved across
8 C. R. Clark, The Pendulum Virtual Machine. Available at
http://www.cise.ufl.edu/research/revcomp/users/cclark/pendvm-fall2001/

http://www.cise.ufl.edu/research/revcomp/users/cclark/pendvm-fall2001/

162 H.B. Axelsen

the branch body. In particular, this means that no variables occurring in the
conditional expression can be updated in the body, severely limiting the expres-
siveness of R. On the other hand, R does have some advanced features that Janus
does not, like direct access to memory, and input/output facilities. However, the
emerging picture is still that R is somewhat limited in its expressiveness as a
programming language, compared to Janus.

We believe such restrictions were imposed on R to simplify compilation: The
R-compiler can leave any garbage values used for conditional expressions in place
across the branch bodies, computing and uncomputing the expression (which re-
moves the garbage) only once, and only after the conditional is exited. While the
analogous translation in Janus requires two computations and uncomputations,
this also implies that the translation of R is not intentionally clean. This strategy
is furthermore not applicable to Janus translation, where if- and fi-conditional
expressions are allowed to be different, and variables occuring therein are allowed
to be updated freely in the branch bodies. (However, our translation could easily
be applied to R.) Finally, by not clearing the garbage value before entering the
branch body, target programs can generate unbounded garbage data at run-time
in recursive procedure calls, which breaks efficiency.

7 Conclusion and Future Work

We presented a correct and efficient translation for compiling the reversible high-
level programming language Janus to the reversible low-level machine language
PISA. Target programs produced using this translation conserve both the se-
mantics (correctness) and space/time complexities (efficiency) of the source pro-
grams. We achieved this by making the translation intensionally (as well as
extensionally) clean: Reversibility in Janus bottoms out at the statement level,
and the compilation reflects this by translating each individual statement in the
source program cleanly. This has the effect that at no point in the execution
of any translated program do we accumulate more than a constant amount of
temporary garbage data.

By breaking down the control flow operators of Janus into simpler reversible
flowchart nodes, we found that we could exploit the symmetry properties of
reversible flowcharts to simplify the translation. We also eliminated the need
for code duplication in the translation. The developed translation methods are
generic, and will work for all languages with control flow describable by reversible
flowcharts and statements describable by reversible updates.

The aim here was to produce a working compiler that demonstrates the fun-
damental structure of a correct and efficient translation between reversible lan-
guages, leaving plenty of opportunities for development and future research.
General register allocation methods for reversible assembly languages must be
developed, and might benefit from the novel partitioning of registers we use
for register allocation for expression trees. The heavy use of uncomputation of
expression evaluations in both reversible assignments and conditionals suggest
that novel as well as conventional optimizations (such as common subexpression
elimination) could be very useful in compilers for reversible languages.

Clean Translation of an Imperative Reversible Programming Language 163

Acknowledgments. A preliminary version of this work was presented at the 2nd
Workshop on Reversible Computing in Bremen, July 2010.

References

1. Appel, A.W.: Modern Compiler Implementation in ML. Camb. Uni. Press, New
York (1998)

2. Axelsen, H.B., Glück, R.: What do reversible programs compute? In: Hofmann, M.
(ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 42–56. Springer, Heidelberg (2011)

3. Axelsen, H.B., Glück, R., Yokoyama, T.: Reversible machine code and its abstract
processor architecture. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR
2007. LNCS, vol. 4649, pp. 56–69. Springer, Heidelberg (2007)

4. Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and
Development 17, 525–532 (1973)

5. De Vos, A.: Reversible Computing: Fundamentals, Quantum Computing and Ap-
plications. WILEY-VCH, Weinheim (2010)

6. Frank, M.P.: Reversibility for Efficient Computing. PhD thesis, MIT (1999)
7. Landauer, R.: Irreversibility and heat generation in the computing process. IBM

Journal of Research and Development 5(3), 183–191 (1961)
8. Lecerf, Y.: Machines de Turing réversibles. Récursive insolubilité en n ε N de

l’équation u = θnu, oú θ est un “isomorphisme de codes”. Comptes Rendus Heb-
domadaires 257, 2597–2600 (1963)

9. Lutz, C.: Janus: a time-reversible language. Letter written to R. Landauer (1986),
http://tetsuo.jp/ref/janus.html

10. Mu, S.-C., Hu, Z., Takeichi, M.: An algebraic approach to bi-directional updating.
In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 2–20. Springer, Heidelberg
(2004)

11. Schellekens, M.: MOQA; unlocking the potential of compositional static average-
case analysis. Journal of Logic and Algebraic Programming 79(1), 61–83 (2010)

12. Thomsen, M.K., Axelsen, H.B.: Parallelization of reversible ripple-carry adders.
Parallel Processing Letters 19(2), 205–222 (2009)

13. Thomsen, M.K., Glück, R., Axelsen, H.B.: Towards designing a reversible processor
architecture (work-in-progress). In: Reversible Computation. Preliminary Proceed-
ings, pp. 46–50 (2009)

14. Thomsen, M.K., Glück, R., Axelsen, H.B.: Reversible arithmetic logic unit for
quantum arithmetic. J. of Phys. A: Math. and Theor. 42(38), 2002 (2010)

15. van de Snepscheut, J.L.A.: What computing is all about. Springer, Heidelberg (1993)
16. Vieri, C.J.: Reversible Computer Engineering and Architecture. PhD thesis, MIT

(1999)
17. Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible programming lan-

guage. In: Proceedings of Computing Frontiers, pp. 43–54. ACM Press, New York
(2008)

18. Yokoyama, T., Axelsen, H.B., Glück, R.: Reversible flowchart languages and the
structured reversible program theorem. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II.
LNCS, vol. 5126, pp. 258–270. Springer, Heidelberg (2008)

19. Yokoyama, T., Glück, R.: A reversible programming language and its invertible
self-interpreter. In: Proceedings of Partial Evaluation and Program Manipulation,
pp. 144–153. ACM Press, New York (2007)

http://tetsuo.jp/ref/janus.html

Interpreter Instruction Scheduling

Stefan Brunthaler

Institut für Computersprachen
Technische Universität Wien

Argentinierstraße 8,
A-1040 Wien

brunthaler@complang.tuwien.ac.at

Abstract. Whenever we extend the instruction set of an interpreter, we
risk increased instruction cache miss penalties. We can alleviate this prob-
lem by selecting instructions from the instruction set and re-arranging
them such that frequent instruction sequences are co-located in memory.
We take these frequent instruction sequences from hot program traces of
external programs and we report a maximum speedup by a factor of 1.142.
Thus, interpreter instruction scheduling complements the improved
efficiency of an extended instruction set by optimizing its instruction
arrangement.

1 Motivation

For compilers instruction scheduling is an important optimization that re-arranges
assembler instructions of a program to optimize its execution on a native machine
without changing the semantics of the original program, i.e., the native machine is
constant, but we can change the order of assembler instructions of the program. In-
terestingly, the situation is actually the other way around in interpreters. Usually,
the bytecode instructions of an interpreter cannot be re-arranged without chang-
ing the semantics of the corresponding programs. However, we can re-arrange the
instructions of an interpreter, such that frequently executed sequences of instruc-
tions become co-located in memory, which allows for better instruction cache uti-
lization. So, for interpreters, the program is constant,but we can change the virtual
machine to optimize the execution of a program.

Interpreter instruction scheduling becomes increasingly important when an
interpreter has a large instruction set, because in such an interpreter not all
instructions can be held in caches at all times. Consequently, there is a trade-
off between the optimizations and their benefit being influenced by possible
cache miss penalties. Our own previous work [4,3] on improving the efficiency of
interpreters using purely interpretative optimization techniques, relies heavily on
instruction set extension. Fortunately, these optimization techniques are efficient
enough to offset increased cache-miss penalties, however, we feel that by using
interpreter instruction selection, the gains of these optimization techniques can
be noticeably improved.

J. Knoop (Ed.): CC 2011, LNCS 6601, pp. 164–178, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Interpreter Instruction Scheduling 165

Other optimization techniques like superinstructions and replication [5] focus
on improving branch prediction and instruction cache utilization by copying in-
struction implementations together into one instruction or distributing copies
of the same instruction over the interpreter dispatch routine to improve local-
ity. Contrary to these approaches, interpreter instruction scheduling does not
increase the size of the interpreter’s dispatch loop, but focuses on improving
instruction cache utilization instead of improving branch prediction.

Our contributions are:

– We formalize the general concept of interpreter instruction scheduling.
– We present detailed examples of how interpreter instruction scheduling works,

along with an implementation of our algorithm; the implementation is com-
plemented by a detailed description and results of running the algorithm on
an actual benchmark program.

– We report a maximum speedup of 1.142 and an average speedup of 1.061
when using interpreter instruction scheduling on the Intel Nehalem architec-
ture, and provide results of our detailed evaluation.

2 Background

We present a formal description of the problem of interpreter instruction schedul-
ing.

I := i0, i1, . . . , in

A := a0, a1, . . . , an

P := p0, p1, . . . , pm

∀p ∈ P : ∃j : ij ∈ I ∧ aj ∈ A ⇔ p = (ij , aj)

T := {(p, f) | p ∈ P ∧ f ∈ N}
K := {p | (p, f) ∈ T ∧ f ≥ L}
K ⊂ P

(1)

We define an interpreter I as a set of n instructions i. To each instruction i
corresponds a native machine address a of the set of n addresses A, i.e., the
address for some interpreter instruction ij is aj . Next, we define a program
P consisting of m instruction occurrences, which are tuples of an instruction
i and the corresponding address a. This concludes the definition of the static
view on an interpreter. However, our optimization requires profiling information
obtained at run-time. Thus, we define the trace T of a program P as the set of
all tuples of an instruction occurrence p and its execution frequency f . Since a
trace contains much more information than we need, we define a kernel K, that
contains all instruction occurrences p of our program P that have execution
frequencies above some definable threshold L.

166 S. Brunthaler

Given these definitions, the following functions allow us to precisely capture
the concept of the distance between instructions.

s(pi) := |ai+1 − ai|

d(pi, pj) :=

{
|aj − ai| − s(pi) if i ≤ j,
|ai − aj | − s(pj) if i > j.

doverall(P) :=
m∑

j=1

d(pj−1, pj)

(2)

First, we define a function s that computes the size of an instruction i. Next,
we define a function d that computes the distance of two arbitrary instructions.
Here, the important thing is to note, that if two instruction occurrences pi and
pj refer to two adjacent instructions, i.e., pi = (ii, ai) and pj = (ii+1, ai+1), then
the distance between them is zero. (d(pi, pj) = |ai+1 − ai| − |ai+1 − ai|) Finally,
the overall distance of a program is the sum of all of its sequential distances.
Using static program data, this makes no sense, because we do not a priori know
which parts of program P are hot. Here, we use our kernel K, which contains only
relevant parts of the program, with respect to the overall computational effort.
Thus, we define interpreter instruction scheduling as finding a configuration of
interpreter instructions that results in a minimal overall distance over some
kernel K.

For further illustration, we introduce a working example here. We are go-
ing to take a close look on how interpreter instruction scheduling works, using
the fasta benchmark of the computer language benchmarks game [6]. Running
the fasta program on the Python interpreter, for example with an argument
of 50,000, results in the execution of 10,573,205 interpreter instructions. If we
instrument a Python interpreter to trace every instruction executed, with ad-
ditional location information, such as the instruction offset and the function it
belongs to, we can easily extract the computationally relevant kernels from a
running program. If we restrict ourselves to only consider kernels for interpreter
instruction scheduling, we can significantly reduce the amount of information
to consider. For example, an aggregated trace of the fasta program shows that
the interpreter executes 5,976,237 instructions while interpreting the genRandom
function, i.e., more than half of the totally executed instructions can be at-
tributed to just one function (cf. Table 1.) Another function—an anonymous list
comprehension—requires 4,379,824 interpreted instructions (cf. Table 2.) To-
gether, the genRandom function and the list comprehension represent 97.95% of
all executed instructions.

Though Tables 1, and 2 indicate that our trace gathering tool is imprecise,
since it seems to lose some instruction traces, it is precise enough to indicate
which parts of the instructions are kernels. For example, the kernel of func-
tion genRandom includes all 15 instructions between the offsets 64 and 184,
whereas the kernel of the anonymous list comprehension includes all 12 instruc-
tions between the offsets 24 and 104. In consequence, our interpreter instruction

Interpreter Instruction Scheduling 167

Table 1. Dynamic bytecode frequency for genRandom function of benchmark program
fasta

Frequency Offset Instruction Identifier
1 16 STORE FAST A

1 24 LOAD GLOBAL NORC

1 32 LOAD FAST B NORC

1 40 CALL FUNCTION NORC

1 48 STORE FAST C

1 56 SETUP LOOP

396,036 64 LOAD FAST A NORC

400,000 72 LOAD FAST NORC

400,000 80 INCA LONG MULTIPLY NORC

396,037 88 LOAD FAST NORC

400,000 96 INCA LONG ADD NORC TOS

396,041 104 LOAD FAST B NORC

400,000 112 INCA LONG REMAINDER NORC TOS

396,040 120 STORE FAST A

400,000 128 LOAD FAST D NORC

400,000 136 LOAD FAST A NORC

400,000 144 INCA FLOAT MULTIPLY NORC

396,039 152 LOAD FAST C NORC

400,000 160 INCA FLOAT TRUE DIVIDE NORC TOS

396,039 168 YIELD VALUE

399,999 184 JUMP ABSOLUTE

Table 2. Dynamic bytecode frequency for an anonymous list comprehension of bench-
mark program fasta

Frequency Offset Instruction Identifier
6,600 16 LOAD FAST A

402,667 24 FOR ITER RANGEITER

396,002 32 STORE FAST B

399,960 40 LOAD DEREF

396,001 48 LOAD DEREF NORC

396,000 56 LOAD DEREF NORC

396,000 64 LOAD DEREF NORC

396,000 72 FAST PYFUN DOCALL ZERO NORC

395,999 80 FAST C VARARGS TWO RC TOS ONLY

395,999 88 INCA LIST SUBSCRIPT

395,998 96 LIST APPEND

395,998 104 JUMP ABSOLUTE

6,600 112 RETURN VALUE

168 S. Brunthaler

scheduling algorithm only has to consider the arrangement of 27 instructions
which constitute almost the complete computation of the fasta benchmark. If
all 27 instructions are distinct, the optimal interpreter instruction scheduling
consists of these 27 instructions being arranged sequentially and compiled ad-
jacently, according to the order given by the corresponding kernel. However,
because of the repetitive nature of load and store instructions for a stack-based
architecture, having a large sequence of non-repetitive instructions is highly un-
likely. Therefore, our interpreter instruction scheduling algorithm should be able
to deal with repeating sub-sequences occurring in a kernel. In fact, our fasta
example contains repetitions, too. The genRandom function:

– LOAD FAST A NORC, at offsets: 64, 136.
– LOAD FAST NORC, at offsets: 72, 88.

The anonymous list comprehension contains the following repetition:

– LOAD DEREF NORC, at offsets: 48, 56, 64.

Fortunately, however, only single instructions instead of longer sub-sequences
repeat. Therefore, for the fasta case, an optimal interpreter instruction schedul-
ing can easily be computed. We generate a new optimized instruction set from
the existing instruction set and move instructions to the head of the dispatch
loop according to the instruction order in the kernels. We maintain a list of all
instructions that have already been moved, and whenever we take a new in-
struction from the kernel sequence, we check whether it is already a member of
that remembered list. Thus, we ensure that we do not re-reorder already moved
instructions. For our fasta example, this means that for all of the repeated in-
structions, we only generate them when we process them for the first time, i.e.,
only at the first offset position for all occurrences. Consequently, interpreter in-
struction scheduling generates long chains of subsequently processed instruction
sequences that correspond extremely well to the major instruction sequences
occurring in the fasta benchmark. In fact, we report our highest speedup by a
factor of 1.142 for this benchmark.

Thus, if we have an interpreter with many instructions—such as interpreters
doing extensive quickening based purely interpretative optimizations, such as
inline caching via quickening [4], or eliminating reference counts with quick-
ening [3]—we can reduce potential instruction cache misses using interpreter
instruction scheduling.

3 Implementation

The implementation includes all details necessary to implement interpreter in-
struction scheduling. First, we present an in-depth discussion of how to deal
with sub-sequences and why we are interested in them (Section 3.1). Next, we
are going to explain how to compile an optimized instruction arrangement with
gcc (Section 3.2).

Interpreter Instruction Scheduling 169

3.1 Scheduling in the Presence of Repeating Sub-sequences

As we have seen in the previous section (cf. Section 2), not all kernels con-
tain repeating sub-sequences. However, all larger program traces are likely to
contain sub-sequences, or at least similar sequences of instructions. Thus the
overall distance of a kernel K depends substantially on the distance of its
sub-sequences. We encode the whole trace into a graph data structure and
will create an interpreter instruction schedule that contains the most frequent
sequences.

In order to demonstrate this approach, we introduce another example from the
computer language benchmarks game [6], viz. the nbody benchmark. Running
the nbody benchmark with an argument of 50,000 on top of our instrumented
Python interpreter for dynamic bytecode frequency analysis results in the ex-
ecution of 68,695,970 instructions, of which 99.9% or 68,619,819 instructions
are executed in the advance function. Its kernel K consists of a trace of 167
instructions, distributed among just 29 instructions.

Creating an instruction schedule using the simple algorithm of the previous
section (cf. Section 2) is going to be sub-optimal, since it does not account for
representation of repeating sub-sequences. To properly account for these sub-
sequences, we create a weighted directed graph data-structure of all 29 instruc-
tions as nodes. Since the kernel is a sequence of instructions, we create an edge
in this digraph for each pair of adjacent instructions. Whenever we add an edge
between two nodes that already exists, we increment the weight of the already
existing edge, instead of adding another one. (cf. Figure 1)

Once we have such a digraph, we obtain an instruction schedule with a mini-
mum distance the following way. Given we have some node, our algorithm always
chooses the next node by following along the edge with the highest weight. First,
we create a list named open that contains tuples of nodes and the collective
weight of edges leading to that node. We sort the open list in descending order
of the collective weight component. Because we actually only need the collective
weight for choosing the first node and ensuring that we process all nodes, we can
now safely zero out all weights of the tuples in the open list. Then, we start the
actual algorithm by fetching and removing the first tuple element from the open
list; we assign the node part to n and ignore the weight. Next, we check whether
n has already been scheduled by checking whether the schedule list contains n.
If it has not been scheduled yet, we append it to the schedule list. Then, we
start looking for a successor node m. We process the successor nodes by having
them sorted in descending order of the edge-weight associated between nodes n
and m. We repeatedly fetch nodes m from the list of successors until we find a
node that has not already been scheduled or the list is finally empty. If we do
not find a node m, then we have to restart by fetching the next node from the
open list. If we find a node m, then we add the reachable nodes from n to m to
the open list and sort it, such that the successors with the highest weight will be
chosen as early as possible. Next we assign m to n and restart looking for m’s
successors.

170 S. Brunthaler

STORE_FAST

LOAD_FAST_B_NORC

1

LOAD_FAST_NORC

1

SETUP_LOOP

1

LOAD_FAST_A_NORC

2

LOAD_FAST_C_NORC 1

2

INCA_FLOAT_MULTIPLY_NORC

1

STORE_FAST_A

STORE_FAST_B

1

1

STORE_FAST_C

1

1

STORE_FAST_D

1

INCA_FLOAT_MULTIPLY_NORC_SEC

1

INCA_FLOAT_ADD

3

INCA_FLOAT_MULTIPLY_NORC_TOS

2

INCA_LIST_ASS_SUBSCRIPT_NORC_TOS

3

JUMP_ABSOLUTE

2

4

INCA_LOAD_CONST_NORC

7

INCA_UNPACK_TUPLE_TWO

1

1

ROT_THREE

6

1

LOAD_FAST_D_NORC 1

2

1

1 2

3

7

3

GET_ITER_NORC

1

INCA_FLOAT_SUBTRACT

1

1

1

3

1

LOAD_DEREF_NORC

1

POP_BLOCK

2

FOR_ITER_RANGEITER

1

5

13

INCA_FLOAT_POWER_NORC_TOS

1

FOR_ITER_LISTITER

1

1

9

1

1

13

INCA_LIST_SUBSCRIPT_NORC

2

3

3

2

7

3

1

11DUP_TOPX_NORC

9

1

2

9

Fig. 1. Instructions of kernel for nbody benchmark

Interpreter Instruction Scheduling 171

The following listing shows our implementation in Python, followed by a de-
tailed description of how it works:

def rsorted(dict):
""" Sorts dictionary entries by their numeric values in

descending order.
"""
return sorted(dict.items(), key=lambda (key , value): -value)

def schedule_instr(graph):
schedule= []

open= rsorted(graph.most_frequent_vertices ())
open is a list of tuples (node , number of edges)
open= [(node , 0) for (node , edge_count) in open]
now , we erased the number of edges , such that when we add
the reachable destination nodes for the current source
node , and we sort the <open > list , the node that can be
reached with the edge having the highest weight will be
the first element on the <open > list

while open:
fetch the tuple , ignore the number of edges
(n, _)= open.pop (0)
while n:

if n not in schedule:
schedule.append(n)

reachable= rsorted(n.get_destinations ())
if not reachable:

break

find reachable nodes that have not been scheduled yet
(m, _)= reachable.pop (0)
while m in schedule:

if len(reachable) > 0:
(m, _)= reachable.pop (0)

else:
m= None

if m:
n= m ## assign successor node
open= rsorted(reachable + open) ## keep reachable nodes sorted

else:
break

return schedule

Running this algorithm on our kernel for the nbody benchmark computes the
schedule presented in Table 3.

3.2 Compilation of the Interpreter

Once we have computed a schedule of interpreter instructions, we need to compile
the interpreter with that schedule. We have extended our interpreter generator
from our previous work ([3]) to generate all instructions, not just the optimized
derivatives. Since we already have a schedule, it is straightforward to generate an
optimized instruction set from the standard instruction set. We just process the
schedule in order, move instructions from the old instruction set, and add these
instructions to the optimized instruction set. Once, we have processed the plan,
we just add the remaining instructions to the new optimized instruction set.

172 S. Brunthaler

Table 3. Interpreter Instruction Schedule for the nbody benchmark

No. Instruction No. Instruction
1 INCA LOAD CONST NORC 16 LOAD DEREF NORC

2 INCA LIST SUBSCRIPT NORC 17 GET ITER NORC

3 LOAD FAST NORC 18 FOR ITER LISTITER

4 INCA FLOAT MULTIPLY NORC 19 STORE FAST A

5 INCA FLOAT ADD 20 STORE FAST B

6 ROT THREE 21 STORE FAST D

7 INCA LIST ASS SUBSCRIPT NORC TOS 22 INCA FLOAT MULTIPLY NORC SEC

8 LOAD FAST A NORC 23 JUMP ABSOLUTE

9 DUP TOPX NORC 24 POP BLOCK

10 LOAD FAST B NORC 25 LOAD FAST C NORC

11 INCA FLOAT SUBTRACT 26 LOAD FAST D NORC

12 STORE FAST C 27 INCA UNPACK TUPLE TWO

13 INCA FLOAT MULTIPLY NORC TOS 28 INCA FLOAT POWER NORC TOS

14 STORE FAST 29 FOR ITER RANGEITER

15 SETUP LOOP

There are compiler optimizations that can change the instruction order as
computed by our interpreter instruction scheduling. First of all, basic block re-
ordering as done by gcc 4.4.3 will eliminate our efforts by reordering basic blocks
after a strategy called “software trace-cache” [10]. Fortunately, we can switch
this optimization off, by compiling the source file that contains the interpreter
dispatch routine with the additional flag -fno-reorder-blocks. However, the
instructions are still entangled in a switch-case statement. Since it is possible for
a compiler to re-arrange case statements, we decided to remove the switch-case
statement from the interpreter dispatch routine as well. Because our interpreter
is already using the optimized threaded code dispatch technique [2], removing
the switch-case statement is simple. However, we stumbled upon a minor mishap:
gcc 4.4.3 now decides to generate two jumps for every instruction dispatch. Be-
cause the actual instruction-dispatch indirect-branch instruction is shared by all
interpreter instruction implementations, available expression analysis indicates
that it is probably best to generate a direct jump instruction back to the top of
the dispatch loop, directly followed by an indirect branch to the next instruction.
On an Intel Nehalem (i7-920), gcc 4.4.3 generates the following code at the top
of the dispatch loop:
.L1026:

xorl %eax , %eax
.L1023:

jmp *%rdx

And a branch back to the label .L1026 at the end of every instruction:
movq opcode_targets.14198(,%rax ,8), %rdx
jmp .L1026

Of course, this has detrimental effects on the performance of our interpreter.
Therefore, we use gcc’s -save-temps switch while compiling the interpreter

Interpreter Instruction Scheduling 173

routine with -fno-reorder-blocks to retrieve the final assembler code emit-
ted by the compiler. We implemented a small fix-up program that rebuilds the
basic blocks and indexes their labels from the interpreter’s dispatch routine
(PyEval EvalFrameEx), determines if jumps are transitive, i.e., to some basic-
block that itself contains only a jump instruction, and copies the intermediate
block over the initial jump instruction. Thus, by using this fix-up program, we
obtain the original threaded-code jump sequence:

movq opcode_targets.14198(,%rax ,8), %rdx
xorl %eax , %eax
jmp *%rdx

Finally, we need to assemble the fixed-up file into the corresponding object file
and link it into the interpreter executable.

4 Evaluation

We use several benchmarks from the computer language benchmarks game [6].
We ran the benchmarks on the following system configurations:

– Intel i7 920 with 2.6 GHz, running Linux 2.6.32-25 and gcc version 4.4.3.
(Please note that we have turned off Intel’s Turbo Boost Technology to have
a common hardware baseline performance without the additional variances
immanently introduced by it [7].)

– Intel Atom N270 with 1.6 GHz, running Linux 2.6.28-18 and gcc version
4.3.3.

We used a modified version of the nanobench program of the computer language
benchmark game [6] to measure the running times of each benchmark program.
The nanobench program uses the UNIX getrusage system call to collect usage
data, for example the elapsed user and system times as well as memory usage of
a process. We use the sum of both timing results, i.e., elapsed user and system
time as the basis for our benchmarks. Because of cache effects, and unstable
timing results for benchmarks with only little running time, we ran each program
50 successive times and use arithmetic averages over these repetitions for our
evaluation. Furthermore, we compare our improvements to the performance of
our most recent interpreter without interpreter instruction selection [3].

Figure 2 contains our results of running comparative benchmarks on the In-
tel Nehalem architecture. For each of our benchmarks, we generate a dedicated
interpreter that has an optimized interpreter instruction schedule based on the
profiling information obtained by running this benchmark program. We normal-
ized our results by those of our previous work [3], such that we can tell whether
interpreter instruction scheduling improves performance of an interpreter with
an extended instruction set (our interpreter has 394 instructions). Similarly,
Figure 3 contains our results of running this comparative setup on our Intel Atom
CPU based system. First, lets discuss the results we obtained on the Intel Atom
system (cf. Figure 3). We obtained the maximum speedup by a factor of 1.1344
when running the spectralnorm benchmark, the minimum speedup by a factor

174 S. Brunthaler

Benchmarks

S
pe

ed
up

0.95

0.975

1.0

1.025

1.05

1.075

1.10

1.125

1.15

binarytrees−10

binarytrees−12

binarytrees−14

fannkuch−8

fannkuch−9

fasta−050k

fasta−100k

fasta−150k

mandelbrot−200

mandelbrot−400

mandelbrot−500

nbody−050k

nbody−100k

nbody−150k

spectralnorm−100

spectralnorm−200

spectralnorm−300

Interpreters

IIS−binarytrees

IIS−fannkuch

IIS−fasta

IIS−mandelbrot

IIS−nbody

IIS−spectralnorm

Fig. 2. Comparative benchmark results on the Intel Nehalem CPU

Benchmarks

S
pe

ed
up

0.95

0.975

1.0

1.025

1.05

1.075

1.10

1.125

binarytrees−10

binarytrees−12

binarytrees−14

fannkuch−8

fannkuch−9

fasta−050k

fasta−100k

fasta−150k

mandelbrot−200

mandelbrot−400

mandelbrot−500

nbody−050k

nbody−100k

nbody−150k

spectralnorm−100

spectralnorm−200

spectralnorm−300

Interpreters

IIS−binarytrees

IIS−fannkuch

IIS−fasta

IIS−mandelbrot

IIS−nbody

IIS−spectralnorm

Fig. 3. Comparative benchmark results on the Intel Atom CPU

of 1.0736 when running the mandelbrot benchmark, and an average speedup
by a factor of 1.1032. The figure clearly indicates that for every benchmark, the
interpreter with the instruction scheduling corresponding to that benchmark
achieves the highest speedup. Interestingly, most instruction schedules perform
better on most benchmarks, with the notable exception being the mandelbrot
benchmark—a finding that holds true for our results on the Intel Nehalem, too.

Interpreter Instruction Scheduling 175

Our results on the Intel Nehalem architecture paint a different picture. While
the maximum speedup by a factor of 1.142 is higher than the one we report for
the Atom CPU, its average speedup by a factor of 1.061 is lower. It is reasonable
to assume that this is due to the Nehalem architecture having bigger caches,
which affects the performance potential of interpreter instruction scheduling. In
addition, there are only two benchmarks, viz. fasta and mandelbrot, where
the interpreter having an optimized instruction schedule for the corresponding
benchmark actually perform better than the others. For all other benchmarks,
the computed instruction schedule given the profiling information is not optimal,
i.e., the schedules computed for some other benchmark allow some of the other
interpreters to perform noticeably better. Further investigation is necessary, to
identify the cause of this rather surprising finding—particularly in presence of
the actually expected findings confirmed on the Atom CPU.

5 Related Work

We group the discussion of related work into two groups, viz., related work on
compilers and related work on interpreters. First, we will discuss the related
work on compilers.

Pettis and Hansen [9] present their work on optimizing compilers for the
Hewlett Packard’s PA-RISC architecture. They optimize the arrangement of
procedures and basic blocks based on previously obtained profiling information.
Interestingly, our reordering algorithm is almost identical to their “algo1” algo-
rithm; they may even be identical, but because no implementation is given, this
remains unclear. Another interesting fact is that both our maximum achievable
speedups are identical, i.e., both our work achieves a maximum speedup by a
factor of 1.14.

More recently, Zhao and Amaral [11] demonstrate algorithms to optimize
switch-case computation as well as case-statement ordering in the Open Re-
search Compiler [1]. While both our approaches employ information gathered at
run-time, the application scenario is quite different. For instance, their approach
focuses on optimizing switch-case statements, and they calculate the order in
which they should be generated by their rank according to frequency. In con-
trast, our work focuses on optimization of interpreters, particularly those without
using the switch-case dispatch technique. Because of better instruction cache uti-
lization, we choose to use another algorithm that recognizes the importance of
properly covering instruction sequences. So in a sense, the major difference is
that their optimization approach focuses on larger compiled programs that use
switch-case statements, whereas we recognize the nature of an interpreter, where
execution remains within its instruction set at all times. Another direct conse-
quence of this fundamental difference is that in an interpreter we are usually
not interested in the default case, since this indicates an error, i.e., an unknown
opcode, which in practice happens never—the exception being malicious intent
of a third party.

176 S. Brunthaler

As for related work on interpreters, the most important work is by Lin and
Chen [8]. Their work is similar to ours, since they show how to partition inter-
preter instructions to optimally fit into NAND flash pages. Furthermore, they
describe that they too use profiling information to decide which combination of
interpreter instructions to co-locate on one specific flash page. Their partitioning
algorithm pays attention to the additional constraint of NAND flash page size,
i.e., their algorithm computes a configuration of interpreter instructions that
fits optimally within the flash pages and keeps dependencies between the pages
at a minimum. For the context of our work it is unnecessary to superimpose
such a constraint to our algorithm. Though, if one were to set the parameter N
determining the NAND flash page size of their algorithm to the maximum repre-
sentable value, all instructions would be packed into just one partition. Then, our
algorithms should produce similar interpreter instruction arrangements. Another
difference between our respective approaches is that ours operates on a higher
level. While they post-process the assembly output generated by gcc to enable
their optimizations, our approach is based on re-arranging the instruction at the
source code level. Though we admittedly have to fix-up the generated assembly
file as well, due to the detrimental effects of a misguided optimization. Because
of their ties to embedded applications of the technique and its presentation in
that context, we think that our presentation is more general in nature. In ad-
dition, we complement our work with extensive performance measurements on
contemporary non-embedded architectures.

Ertl and Gregg [5] present an in-depth discussion of two interpreter opti-
mization techniques—superinstructions and replication—to improve the branch
prediction accuracy and instruction cache utilization of virtual machines. While
the optimization technique of replication is not directly related to interpreter in-
struction scheduling, it improves the instruction cache behavior of an interpreter
at the expense of additional memory. The idea of superinstructions is to combine
several interpreter instructions into one superinstruction, thus eliminating the
instruction dispatch overhead between the single constituents. While this im-
proves branch prediction accuracy, it improves the instruction cache utilization,
too: Since all instruction implementations must be copied into one superinstruc-
tion, their implementations must be adjacent, i.e., co-located in memory, which
is optimal with respect to instruction cache utilization and therefore results in
extremely good speedups of up to 2.45 over a threaded-code interpreter without
superinstructions. However, superinstructions can only be used at the expense of
additional memory, too. Since interpreter instruction scheduling happens at pre-
compile, and compile time respectively, of the interpreter, there are no additional
memory requirements—with the notable exception of minor changes because of
alignment issues. Because the techniques are not mutually exclusive, using inter-
preter instruction scheduling in combination with static superinstructions will
further improve the performance of the resulting interpreter.

Summing up, the major difference between the related work on compilers and
our work is that the former focuses on optimizing elements visible to the com-
piler, such as procedures, basic blocks, and switch-case statements, whereas our

Interpreter Instruction Scheduling 177

work focuses on re-arranging interpreter instructions—which are transparent to
compilers. Related work on interpreters achieves a significantly higher speedup,
however, at the expense of additional memory. Our work demonstrates that is
possible to improve interpretation speed without sacrificing memory.

6 Conclusion

We present a technique to schedule interpreter instructions at pre-compile time
in order to improve instruction cache utilization at run-time. To compute the
schedule, we rely on profiling information obtained by running the program
to be optimized on an interpreter. From this information, we extract a kernel,
i.e., an instruction trace that consumes most of the computational resources,
and construct a directed graph of that kernel. We use a simple algorithm that
recognizes the importance of repeating sub-sequences occurring in that kernel
when scheduling the interpreter instructions, and report a maximum speedup
by a factor of 1.142 using this technique.

Future work includes investigation on the effectiveness of other scheduling
algorithms—such as implementation of a dynamic programming variant, or com-
paring the effectiveness of algorithms mentioned in the related work section—,
as well as addressing the pending question regarding the optimality of computed
schedules. In addition, we are interested in devising a dynamic variant comple-
menting our static interpreter instruction scheduling technique.

Acknowledgments

We express our thanks to Jens Knoop for reviewing early drafts of this paper, as
well as to Anton Ertl for providing extensive information concerning related work.
Furthermore, we are grateful to the anonymous reviewers for providing helpful re-
marks to improve the presentation of this paper, and making valuable suggestions
for addressing future work. Finally, we thank the Austrian Science Fund (FWF)
for partially funding this research under contract number P23303-N23.

References

1. Open Research Compiler (October 2010), http://ipf-orc.sourceforge.net/
2. Bell, J.R.: Threaded code. Communications of the ACM 16(6), 370–372 (1973)
3. Brunthaler, S.: Efficient interpretation using quickening. In: Proceedings of the 6th

Symposium on Dynamic Languages (DLS 2010), Reno, Nevada, US, October 18,
ACM Press, New York (2010)

4. Brunthaler, S.: Inline caching meets quickening. In: D’Hondt, T. (ed.) ECOOP
2010. LNCS, vol. 6183, pp. 429–451. Springer, Heidelberg (2010)

5. Ertl, M.A., Gregg, D.: Optimizing indirect branch prediction accuracy in virtual
machine interpreters. In: Proceedings of the SIGPLAN 2003 Conference on Pro-
gramming Language Design and Implementation (PLDI 2003), pp. 278–288. ACM,
New York (2003)

http://ipf-orc.sourceforge.net/

178 S. Brunthaler

6. Fulgham, B.: The computer language benchmarks game,
http://shootout.alioth.debian.org/

7. Intel: Intel Turbo Boost Technology in Intel Core microarchitecture (Nehalem)
based processors. Online (November 2008), http://download.intel.com/design/
processor/applnots/320354.pdf?iid=tech%_tb+paper

8. Lin, C.-C., Chen, C.-L.: Code arrangement of embedded java virtual machine for
NAND flash memory. In: Stenström, P., Dubois, M., Katevenis, M., Gupta, R., Un-
gerer, T. (eds.) HiPEAC 2007. LNCS, vol. 4917, pp. 369–383. Springer, Heidelberg
(2008)

9. Pettis, K., Hansen, R.C.: Profile guided code positioning. SIGPLAN Notices 25(6),
16–27 (1990)

10. Ramı́rez, A., Larriba-Pey, J.L., Navarro, C., Torrellas, J., Valero, M.: Software trace
cache. In: Proceedings of the 13th International Conference on Supercomputing
(ICS 1999), Rhodes, Greece, June 20-25, pp. 119–126. ACM, New York (1999)

11. Zhao, P., Amaral, J.N.: Feedback-directed switch-case statement optimization.
In: Proceedings of the International Conference on Parallel Programming Work-
shops (ICPP 2005 Workshops), Oslo, Norway, June 14-17, pp. 295–302. IEEE, Los
Alamitos (2005)

http://shootout.alioth.debian.org/
http://download.intel.com/design/processor/applnots/320354.pdf?iid=tech%_tb+paper
http://download.intel.com/design/processor/applnots/320354.pdf?iid=tech%_tb+paper

Actor-Based Parallel Dataflow Analysis

Jonathan Rodriguez and Ondřej Lhoták

University of Waterloo,
Waterloo, Ontario, Canada

{j2rodrig,olhotak}@uwaterloo.ca

Abstract. Defining algorithms in a way which allows parallel execution is be-
coming increasingly important as multicore computers become ubiquitous. We
present IFDS-A, a parallel algorithm for solving context-sensitive interproce-
dural finite distributive subset (IFDS) dataflow problems. IFDS-A defines these
problems in terms of Actors, and dataflow dependencies as messages passed be-
tween these Actors. We implement the algorithm in Scala, and evaluate its per-
formance against a comparable sequential algorithm. With eight cores, IFDS-A is
6.12 times as fast as with one core, and 3.35 times as fast as a baseline sequential
algorithm. We also found that Scala’s default Actors implementation is not opti-
mal for this algorithm, and that a custom-built implementation outperforms it by
a significant margin. We conclude that Actors are an effective way to parallelize
this type of algorithm.

Keywords: Actors, compilers, concurrency, dataflow analysis, IFDS, Scala.

1 Introduction

Multi-core CPU architectures are becoming increasingly common in all types of com-
puter hardware, even now in low-end consumer devices. Learning to use these addi-
tional cores is a necessary step in developing more capable software. If compilers and
program analysis tools could benefit from the additional computation power available
in multi-core computers, then an increase in the precision of these tools could be ac-
complished without compromising speed.

In this paper, we present an algorithm for solving context-sensitive IFDS (Interpro-
cedural Finite Distributive Subset) dataflow analysis problems [14] in a way which
takes advantage of any additional CPU cores which may be present. Constructing this
type of algorithm using traditional thread-and-lock expressions can be a difficult ex-
ercise because it requires reasoning about shared data consistency in the presence of
non-deterministic thread interleavings, reasoning which is extraordinarily difficult for
human minds [9, 16]. We approach the task by expressing the algorithm using the Ac-
tor model [1, 6]. The Actor model has no notion of shared variables. Instead, each actor
maintains a local state only, and communicates by passing messages to other actors.
As far as we are aware, this is the first implementation of IFDS which uses a message-
passing model to communicate changes in state.

Like IFDS, many other dataflow analysis algorithms use a worklist to iterate to a
fixed-point solution, and therefore have the same general structures as IFDS. Although

J. Knoop (Ed.): CC 2011, LNCS 6601, pp. 179–197, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

180 J. Rodriguez and O. Lhoták

we do not explore other dataflow analysis algorithms here, we expect the actor-based
approach to parallelization to work well for many of them.

This paper is based on previous thesis work with IFDS and Scala’s Actor library [15],
and we extend it here to include an alternative implementation of the runtime Actor
scheduler which supports priority ordering of messages passed.

Section 3 summarizes the nature of IFDS problems and their solution. The single-
threaded E-IFDS algorithm, which contains several practical extensions to the orig-
inal IFDS algorithm, is presented here. Section 4 summarizes the Actor model and
its semantics. Section 5 introduces the IFDS-Actors, or IFDS-A, algorithm. Section 6
discusses implementation details, including an Actor scheduler implementation which
supports priority ordering of messages. Section 7 contains an empirical evaluation of
the performance of IFDS-A and compares it to E-IFDS.

2 Related Work

The IFDS algorithm was originally presented by Reps, Horwitz, and Sagiv as a pre-
cise and efficient solution to a wide class of context-sensitive, interprocedural dataflow
analysis problems [14]. The Extended IFDS algorithm formalized a set of extensions to
the IFDS algorithm which increased its utility for a wider set of analysis problems [11].
The E-IFDS algorithm we present in this paper is essentially Extended IFDS with some
minor differences.

Adapting analysis algorithms to operate using multiple CPU cores may lead to sig-
nificantly improved performance of these algorithms. The Galois system approaches
this problem by providing new syntactic constructs which enable thread-safe parallel
iteration over unordered sets [7, 8]. Méndez-Lojo, Matthew, and Pingali [10] used the
Galois system to implement a multi-core version of a points-to analysis algorithm by
Hardekopf and Lin [5]. Using an eight-core computer, they were able to show perfor-
mance improvements over Hardekopf and Lin for analyses which took longer than 0.5
seconds to run.

A second approach to creating multi-core analysis algorithms is to express them in
terms of the Actor Model, which describes computations as sets of logical processes
which communicate via message-passing [1, 6]. The Erlang lanugage [19] has built-in
support for the Actor model, and Scala [12] includes an implementation of the Actor
model in its standard library [4]. Panwar, Kim, and Agha studied the application of the
Actor model to graph-based algorithms, and in particular tested varying strategies of
work distribution among CPU cores [13].

3 Baseline Sequential Algorithm: E-IFDS

The E-IFDS algorithm is a sequential dataflow analysis algorithm which extends the
IFDS algorithm of Reps, Horwitz, and Sagiv [14]. We briefly explain the IFDS dataflow
analysis problem, followed by a presentation of E-IFDS.

Dataflow analysis seeks to determine, for each instruction in an input program, facts
which must hold during execution of that instruction. The types of facts which the

Actor-Based Parallel Dataflow Analysis 181

analysis discovers depend on the type of analysis used. For example, an uninitialized-
variables analysis discovers facts of the form “x is uninitialized at this instruction,” and
a variable-type analysis discovers facts of the form “the type of the object x points to is
a subtype of T.”

A control-flow graph (CFG) describes the structure of the input program. Each node
in the CFG represents an instruction. A directed edge from instruction a to b indicates
that b may execute immediately after a.

A flow function models the effect of each type of instruction in the input program.
A flow function takes a set of facts as input, and it computes a new set of facts as out-
put. Whenever the dataflow analysis discovers new facts holding after an instruction, it
propagates the new facts along the edges in the CFG to the successors of the instruction.

algorithm Solve(N∗ , smain , successors, flow)
begin

[1] ResultSet := { 〈smain, 0〉 }
[2] WorkList := { 〈smain, 0〉 }
[3] while WorkList �= ∅ do
[4] Remove any element 〈n, d〉 from WorkList
[5] for each d′ ∈ flow(n, d) and n′ ∈ successors(n) do
[6] Propagate(

〈
n′, d′〉)

[7] od
[8] od
[9] return ResultSet

end

procedure Propagate(item)
begin

[10] if item /∈ ResultSet then Insert item into ResultSet; Insert item into WorkList fi
end

Algorithm 1. A Naive Algorithm for Solving IFDS Problems

IFDS, or Interprocedural Finite Distributive Subset, problems are dataflow analysis
problems with the following properties.

– The analysis is interprocedural in that it takes the effects of called procedures into
account.

– Each instruction is associated with a finite set of facts, and each such set is a subset
of a larger finite fact set D.

– At control flow merge points, the sets of facts coming from different control flow
predecessors are combined using set union.

– The flow functions are distributive, i.e. for any two fact sets D1 and D2, and any
flow function f , f(D1 ∪D2) = f(D1) ∪ f(D2). The distributive property enables
flow functions to be compactly represented and efficiently composed.

The distributivity of the flow function makes it possible for an analysis to evaluate each
transfer function f one fact at a time. For example, consider the input set of facts DI =
{a, b, c}. This set can be written as the union {}∪{a}∪{b}∪{c}. Therefore, the result
of the transfer function f(DI) can be computed as f({})∪ f({a})∪ f({b})∪ f({c}).
In general, the transfer function can be computed for any input sets by taking the union
of the results of applying the transfer function to the empty set and to singleton sets.

182 J. Rodriguez and O. Lhoták

Algorithm 1 is a simple algorithm that finds the merge over all paths solution of an
IFDS problem. Its inputs are N∗, the set of nodes in the control-flow graph; smain,
the entry point of the main procedure; successors, which maps a node in N∗ to its
control-flow successors in N∗; and flow, the flow function. The flow function takes two
parameters n, a node in N∗, and d, a fact in the set D∪{0}. A value of d ∈ D represents
the singleton set {d}, and d = 0 represents the empty set. The flow function evaluates
the transfer function for the given node n on the singleton or empty set, and returns a
set of facts to be propagated to successor nodes in the CFG.

The ResultSet collects all facts along with the nodes at which they were discovered.
The first element put into the ResultSet is 〈smain, 0〉, indicating that the empty set
of facts reaches the beginning of the program. Every time the algorithm discovers a
new fact reaching a node, it accumulates it in ResultSet and adds it into the WorkList.
Elements from the WorkList may be removed and processed in any order. Whenever an
element is removed, the flow function is evaluated on it and any newly generated facts
are added to the ResultSet and the WorkList. When the WorkList is empty, no additional
facts can be derived, so the algorithm terminates.

The actual IFDS algorithm [14] is more precise in that it computes the merge over
all valid paths solution rather than the merge over all paths. A valid path is a path
through the interprocedural control flow graph in which calls and returns are matched:
the control flow edge taken to return from a procedure must lead to the point of the most
recent call of that procedure. Here, we present and parallelize E-IFDS, a variation of
the Extended IFDS algorithm [11], which in turn is an extension of the original IFDS
algorithm [14]. The full E-IFDS algorithm is given in Algorithm 2.

The differences between E-IFDS and Extended IFDS are:

– The Extended IFDS algorithm maintains a SummaryEdge set, whereas E-IFDS
does not.

– The Extended IFDS algorithm explicitly supports the Static Single Assignment
form, or SSA, without loss of precision. E-IFDS does not make any explicit provi-
sions for SSA.1

– E-IFDS explicitly allows multiple called procedures at a single call-site, whereas
the Extended IFDS algorithm does not.

The key idea that enables the IFDS class of algorithms to compute a solution over
only valid paths is that they accumulate path-edges of the form d1 → 〈n, d2〉 rather
than just facts of the form 〈n, d〉. Instead of representing a fact, a path-edge represents
a function: the path-edge d1 → 〈n, d2〉 means that if the fact d1 is true at the beginning
of the procedure containing n, then the fact d2 is true at n. Given a node n, the set of
path-edges terminating at n defines the function:

f(Din) = {d2 : d1 ∈ Din ∪ {0} and d1 → 〈n, d2〉 ∈ path-edges}
Thus the path-edges accumulated at the return of a procedure define a function that
computes the facts holding after the procedure from a given set of facts holding before
that specific call of the procedure.

1 Adding SSA support is largely just a matter of propagating predecessor nodes along with the
path-edges so that the Phi nodes know which branch a given fact came from.

Actor-Based Parallel Dataflow Analysis 183

algorithm Solve(N∗ , smain , successors, flowi, flowcall, flowret, flowthru)
begin

[1] PathEdge := { 0 → 〈smain, 0〉 }
[2] WorkList := { 0 → 〈smain, 0〉 }
[3] CallEdgeInverse := ∅
[4] ForwardTabulate()
[5] return all distinct 〈n, d2〉 where some d1 → 〈n, d2〉 ∈ PathEdge

end

procedure Propagate(item)
begin

[6] if item /∈ PathEdge then Insert item into PathEdge; Insert item into WorkList fi
end

procedure ForwardTabulate()
begin

[7] while WorkList �= ∅ do
[8] Remove any element d1 → 〈n, d2〉 from WorkList
[9] switch n

[10] case n is a Call Site :
[11] for each d3 ∈ flowcall(n, d2, p) where p ∈ calledProcs(n) do
[12] Propagate(d3 → 〈sp, d3〉)
[13] Insert 〈p, d3 → 〈n, d2〉〉 into CallEdgeInverse
[14] for each d4 such that d3 → 〈ep, d4〉 ∈ PathEdge do
[15] for each d5 ∈ flowret(ep, d4, n, d2) do
[16] Propagate(d1 → 〈returnSite(n), d5〉)
[17] od
[18] od
[19] od
[20] for each d3 ∈ flowthru(n, d2) do
[21] Propagate(d1 → 〈returnSite(n), d3〉)
[22] od
[23] end case

[24] case n is the Exit node ep :
[25] for each 〈c, d4〉 such that 〈p, d1 → 〈c, d4〉〉 ∈ CallEdgeInverse do
[26] for each d5 ∈ flowret(ep, d2, c, d4) do
[27] for each d3 such that d3 → 〈c, d4〉 ∈ PathEdge do
[28] Propagate(d3 → 〈returnSite(c), d5〉)
[29] od
[30] od
[31] od
[32] end case

[33] case n is not a Call Site or Exit node :
[34] for each d3 ∈ flowi(n, d2) and n′ ∈ successors(n) do
[35] Propagate(d1 → 〈

n′, d3
〉

)
[36] od
[37] end case

[38] end switch
[39] od

end

Algorithm 2. The E-IFDS Algorithm

Intra-procedurally, the algorithm generates new path-edges by composing existing
path-edges with the flow function. If a path-edge d1 → 〈n, d2〉 exists and n′ is a control
flow successor of n, then for each d3 ∈ flow(n, d2), a new path-edge d1 → 〈n′, d3〉 is
created (lines 33–37). Thus the computed path-edges represent the transitive closure of
the flow function within each procedure.

184 J. Rodriguez and O. Lhoták

The flow function for E-IFDS is separated into four functions for convenience:

– flowi(n, d) : Returns the facts derivable from d at instruction node n.
– flowcall(n, d, p) : Computes call-flow edges from the call-site n to the start of a

called procedure p.
– flowret(n, d, c, dc) : Computes return-flow edges from the exit node n to the return-

site. The fact dc at the call-site c is the caller context required by some analyses;
〈n, d〉 is reachable from 〈c, dc〉.

– flowthru(n, d) : A convenience function which allows transmission of facts from
call-site to return-site without having to propagate through called procedures.

When a call is encountered, the algorithm creates summary edges which summarize
the effect of a procedure from the caller’s point of view. Each summary edge is the
composition of a call-flow edge, a path-edge of the called procedure, and a return-
flow edge. The summary edges are then composed with existing path-edges that lead
to the call site to create new path-edges that lead to the return site. Lines 14–18 and
lines 25–31 compute summary edges and propagate the corresponding new path-edges.
Figure 1 illustrates the relationships between the CFG (left), dataflow edges determined
by flow functions (right, solid lines), and dataflow edges computed by the algorithm
(right, dashed lines). Whenever a summary edge is generated, E-IFDS uses it to generate
new path-edges, as if the summary edge were an ordinary dataflow edge. Unlike the
original IFDS algorithm, E-IFDS does not need to keep a set of all summary edges; it
discards each summary edge immediately after using it to extend a path-edge.

Fig. 1. Generating Call-Site Summary Edges for E-IFDS

4 The Actor Model

The basic notion behind the Actor model is that any computation can be defined as a set
of entities, or actors, which communicate by passing messages. Each actor processes
the messages it receives in some sequential order. The actor buffers received messages
until it can process them, as shown in Figure 2. The theory behind this model was
orginally developed by Hewitt [6] and the semantics of actors were refined by a number
of others, notably Agha [1].

Actor-Based Parallel Dataflow Analysis 185

Fig. 2. The Actor Abstraction

The main difference between actor-based programming and object-oriented pro-
gramming is that actor-based message-passing is asynchronous and unordered2,
whereas in many object-oriented systems method calls are by default synchronous and
ordered. The sending actor does not wait for the receiving actor to process the message,
and the time between the send and the receive may be arbitrarily long. [1, 6]

The notation used to define actors is shown in Figure 3. An actor definition is called
an actor class to distinguish it from an ordinary class. This notation contains the fol-
lowing components: a name, a list of arguments, a statement block stmtsinit which ex-
ecutes upon actor construction, and a set of cases which are matched against incoming
messages. A match succeeds if the message type and the number of message parameters
is the same as the pattern. For example, the message AddEdge〈“A”,“B”〉 matches the
pattern AddEdge〈d1, d2〉. When the match succeeds, the values of d1 and d2 are “A”
and “B”, respectively. Scala’s pattern matching semantics select the first pattern that
matches; subsequent patterns are not tested. Actor classes may also contain a finally
clause, which is executed immediately after the execution of any case statement.

def ActorName(arguments)
stmtsinit

begin (message) switch
case message matches pattern1 : stmts1
. . .
case message matches patternn : stmtsn

finally : stmtsfinal

end

Fig. 3. Actor Class Definition

All argument variables and all local variables created by stmtsinit persist for the
lifetime of the actor and are visible to all statements stmts1 through stmtsn and
stmtsfinal. These variables are analogous to member variables in object-oriented lan-
guages; they persist until the actor is garbage-collected. Any variables created by
stmts1 through stmtsn or stmtsfinal are only live and visible inside their respec-
tive statement blocks. These variables are created in response to a received message
and so do not persist after the message is processed.

2 As we will show later, however, applying a message prioritization policy can result in perfor-
mance improvements.

186 J. Rodriguez and O. Lhoták

When the actor receives a message, it selects at most one case statement for process-
ing. Local variables created by the statements following case are stored in a temporary
frame that is discarded when those statements finish executing.

5 Actor-Based Parallel Algorithm: IFDS-A

The IFDS-Actors algorithm, or IFDS-A, takes the same parameters and produces the
same results as E-IFDS, but takes advantage of additional CPU cores. Algorithm 3
shows the main IFDS-A algorithm. Algorithm 4 defines the actors that respond to path-
edge propagation.

algorithm Solve(N∗ , smain , successors, flowi, flowcall, flowret, flowthru)
begin

[1] for each n ∈ N∗ do switch
[2] case n is a Call Site : NA[n] := new CallSiteActor(n) end case
[3] case n is the Exit node ep : NA[n] := new ExitActor(p) end case
[4] case n is not a Call Site or Exit node : NA[n] := new IntraActor(n) end case
[5] end switch od
[6] Tracker := new TrackerActor(currentThread)
[7] Propagate(smain , AddPathEdge〈0, 0〉)
[8] Wait for Done〈〉
[9] return all distinct 〈n, d2〉 where some d1 → d2 ∈ NA[n].PathEdge

end

pure function Propagate(n, message)
begin

[10] Send synchronous Inc〈〉 to Tracker
[11] Send message to NA[n]

end

def TrackerActor(receiver)
[12] local count := 0

begin (message) switch
[13] case message matches Inc〈〉 :
[14] count := count + 1
[15] case message matches Dec〈〉 :
[16] count := count - 1
[17] if count = 0 then Send Done〈〉 to receiver fi

end

Algorithm 3. The Top-Level IFDS-A Algorithm

IFDS-A is based on a simple conceptual mapping. IFDS-A constructs one actor for
each node in the CFG. For each propagated path-edge, IFDS-A sends a message. The
algorithm does not need a centralized WorkList because the actor library implicitly
buffers all messages until they are processed. Instead of a centralized PathEdge set,
each actor records a local set of all the path-edges leading into it. Where E-IFDS stores
a path-edge d1 → 〈n, d2〉, the IFDS-A node-actor corresponding to CFG node n, or
NA[n], simply stores d1 → d2.

IFDS-A defines three types of node-actors, corresponding to call-site nodes, exit
nodes, and other instruction nodes. Lines 1–5 in Algorithm 3 create the node-actors,
and Algorithm 4 defines the node-actor classes.

Actor-Based Parallel Dataflow Analysis 187

def CallSiteActor(n)
[1] local PathEdge := ∅
[2] local CallEdge := ∅
[3] local CalleePathEdge := ∅

begin (message) switch
[4] case message matches AddPathEdge〈d1, d2〉 :
[5] if d1 → d2 /∈ PathEdge then
[6] Insert d1 → d2 into PathEdge
[7] for each p ∈ calledProcs(n) and d3 ∈ flowcall(n, d2, p) do
[8] Propagate(sp, AddPathEdge〈d3, d3〉)
[9] Insert 〈p, d2 → d3〉 into CallEdge
[10] for each d4 such that 〈p, d3 → d4〉 ∈ CalleePathEdge do
[11] for each d5 ∈ flowret(ep, d4, n, d2) do
[12] Propagate(returnSite(n), AddPathEdge〈d1, d5〉)
[13] od
[14] od
[15] od
[16] for each d3 ∈ flowthru(n, d2) do
[17] Propagate(returnSite(n), AddPathEdge〈d1, d3〉)
[18] od
[19] fi
[20] case message matches AddCalleePathEdge〈p, d1, d2〉 :
[21] Insert 〈p, d1 → d2〉 into CalleePathEdge
[22] for each d4 such that 〈p, d4 → d1〉 ∈ CallEdge do
[23] for each d5 ∈ flowret(ep, d2, n, d4) do
[24] for each d3 such that d3 → d4 ∈ PathEdge do
[25] Propagate(returnSite(n), AddPathEdge〈d3, d5〉)
[26] od
[27] od
[28] od
[29] finally : Send Dec〈〉 to Tracker

end

def ExitActor(p)
[30] local PathEdge := ∅

begin (message) switch
[31] case message matches AddPathEdge〈d1, d2〉 :
[32] if d1 → d2 /∈ PathEdge then
[33] Insert d1 → d2 into PathEdge
[34] for each c ∈callers(p) do
[35] Propagate(c, AddCalleePathEdge〈p, d1, d2〉)
[36] od
[37] fi
[38] finally : Send Dec〈〉 to Tracker

end

def IntraActor(n)
[39] local PathEdge := ∅

begin (message) switch
[40] case message matches AddPathEdge〈d1, d2〉 :
[41] if d1 → d2 /∈ PathEdge then
[42] Insert d1 → d2 into PathEdge
[43] for each d3 ∈ flowi(n, d2) and n′ ∈ successors(n) do
[44] Propagate(n′ , AddPathEdge〈d1, d3〉)
[45] od
[46] fi
[47] finally : Send Dec〈〉 to Tracker

end

Algorithm 4. IFDS-A Node-Actor Classes

188 J. Rodriguez and O. Lhoták

In addition to a PathEdge set, the CallSiteActor contains a CallEdge set. The
CallEdge set retains the known call-flow edges (Algorithm 4 line 9) because summary-
edge generation requires the inverse of flowcall (i.e. given some fact d2, finding all
d1 such that d2 ∈ flowcall(n, d1, p)) (line 22). CallEdge stores elements of the form
〈p, d1 → d2〉 because it must remember both the call-flow edge d1 → d2 and the proce-
dure p the edge goes to. The function of CallEdge in IFDS-A is the same as CallEdgeIn-
verse in E-IFDS.

Node-actor operation is identical to the corresponding operations in E-IFDS, with
one exception: IFDS-A’s exit node-actor forwards its edges to the call-site node-actor
instead of generating summary edges itself. The reason for this is that the summary
edges generated in response to facts at the exit node require access to the PathEdge
and CallEdge sets present in the CallSiteActor. Summary edge generation must read
both of these sets in one atomic operation to avoid missing updates to one of them.
Therefore, the ExitActor sends every path-edge it receives to all of its call-site actors
via the AddCalleePathEdge message.

The CallSiteActor retains the path-edges it receives in the CalleePathEdge set, for
use by the normal AddPathEdge code (Algorithm 4 lines 10–14). E-IFDS call-site code
accesses callee path-edges directly (Algorithm 2 lines 14–18), but the concurrent envi-
ronment of IFDS-A requires each CallSiteActor to retain its own copy.

IFDS-A does not have a centralized WorkList, so it cannot use the “empty-worklist”
condition to determine analysis completion. Instead, it uses a separate Tracker object
to detect completion. The Tracker, created on line 6 and defined on lines 12–17 of
Algorithm 3, keeps a count of unprocessed node-actor messages. Every time an actor
calls Propagate to issue a new unit of work, it issues an Inc〈〉 message to increment the
Tracker’s count. Whenever an actor finishes processing a message, it sends a Dec〈〉mes-
sage to the Tracker to decrement the count. When the count reaches zero, the Tracker
sends Done〈〉 (line 17, Algorithm 3) to wake up the main thread (line 8). Propagate
sends Inc〈〉 synchronously because the Tracker must process the Inc〈〉 before its corre-
sponding Dec〈〉; otherwise the count could reach zero before all units of work complete.
Communicating with the Tracker may appear to incur excessive message-passing over-
head, but in practice we implement the Tracker with hardware-supported atomic-integer
operations.

6 Implementation

We implement E-IFDS and IFDS-A in the Scala language, version 2.8.0 Beta 1. We use
Soot [18], a Java bytecode optimization framework, to convert the input programs into
CFGs suitable for our analysis.

6.1 The Variable Type Analysis

The analysis used for evaluation is the flow-sensitive variant of Variable Type Analysis
(VTA) [17] defined by Naeem, et al. [11]. This analysis defines the fact-set D to be the
set of all pairs 〈v, T 〉 where v is a variable and T is a class type in the source program.

Actor-Based Parallel Dataflow Analysis 189

The presence of a fact 〈v, T 〉 in the result set means that the variable v may point to
an object of type T . Stated differently, the presence of 〈v, T 〉 means that the analysis is
unable to prove that v will not point to an object of type T .

Redundant Fact Removal. The original IFDS algorithm does not assume any rela-
tionships among facts, yet VTA and some other analyses do provide structured relation-
ships. For VTA, if 〈v, T 〉 and 〈v, superclass(T)〉 are in the same fact-set, then 〈v, T 〉
is redundant. In our implementation of VTA, we check for redundant facts whenever
we consider inserting a new element in the PathEdge set. A path-edge d1 → 〈n, d2〉
where d2 is redundant is not inserted. If d2 is not redundant, then any other path-edges
which become redundant are removed from the PathEdge set. This prevents redundant
facts from being considered in any future processing.

Priority Ordering. When using redundant fact removal, it may be advantageous to
execute worklist items in a prioritized order. We implement an ordering for VTA facts
which gives a higher priority to path-edges where the type T in d2 has a smaller distance
from the root type (i.e. Object). Without this ordering, the algorithms could do the
work of constructing large fact sets only to discover later that much of the work was
unnecessary.

6.2 Scheduling Actor Executions

Executing an actor-based algorithm on current mainstream hardware requires a sched-
uler to distribute work items among available processors. Normally, the scheduler cre-
ates some number of worker threads which the operating system dynamically assigns
to available processors. Each unit of work is passed to the scheduler as soon as it is
generated, and the scheduler eventually3 assigns it to a worker thread for execution.

Scala’s Actor Library. In our first implementation, we used Scala’s standard Actor
library. Scala’s Actor implementation creates a Mailbox, or queue of unprocessed mes-
sages, for each actor created. The sending actor calls the Actor.send function on
the receiving actor to insert a message into the receiving actor’s Mailbox. Whenever the
receiving actor completes processing a message, it checks its Mailbox. If the Mailbox
is non-empty, it removes a message which it passes to the underlying scheduler (by
default, the Java ForkJoinPool) for execution. If the Mailbox is empty when the
receiving actor finishes processing a message (or if no messages have yet been sent to
the it), it becomes idle. If the receiving actor is idle, then calls to Actor.send bypass
the Mailbox and submit the message directly to the scheduler.

There are two weaknesses of this implementation. The first is a performance weak-
ness. In our preliminary experiments, we found that the overhead of handling a message
was approximately 2 to 5 μs, an overhead which in some cases approached 50% of to-
tal execution time. Overhead from the synchronized keyword is incurred on every
call to Actor.send and every call to the scheduler, which may be one source of in-
efficiency. In addition, many messages must be queued and dequeued twice: once in

3 By “eventually” we mean that every unit of work must be executed, not that the delay between
time of submission to the scheduler and execution time is necessarily long.

190 J. Rodriguez and O. Lhoták

a Mailbox, and again in the scheduler. Furthermore, the Scala Actor library seems to
suffer from some scalability problems. For some inputs, the implementation runs more
slowly with 8 threads than 4 threads. The second weakness of this implementation is
that it does not support priority ordering of messages.

The Task-Throwing Scheduler. We created the Task-Throwing Scheduler to remedy
these weaknesses. Instead of implementing an actor abstraction on top of a generic
scheduler, we created a scheduler which is built specifically for actor-based programs.
Algorithm 5 shows the Task-Throwing Scheduler.

There are two basic concerns when implementing an actor scheduler. The first con-
cern is efficient scheduling of executable tasks, a concern which is common to all sched-
ulers. In two respects we follow the lead of Arora et al. [2]. First, that work-stealing
schedulers tend to make efficient use of processor resources, and second, that calling a
Yield() statement after failing to acquire a lock is necessary for optimal performance
on systems where we have no direct control over how the operating system schedules
threads. Each of T threads in the scheduler runs Algorithm 5 until stopped. Each thread
executes tasks from its own queue (specified by qid) until a failure occurs, at which time
it yields control to any other threads ready to run (line 3) and then executes a task from
a random queue (line 4) before checking its own queue again. Each queue is protected
by a lock (from array L).

The second basic concern of an actor scheduler is maintaining mutually exclusive
execution of tasks destined for the same actor. We accomplish this by including a lock
for each actor which is acquired prior to running the user-defined Actor.execute
function (lines 11–14). Each actor also includes qid, the queue number the currently
executing task came from (line 12). If another thread attempts to execute a second task
on the actor while it is busy, then lock acquisition fails and the task is re-inserted into the
queue that the first task came from (line 17). This “throwing” action not only maintains
mutual exclusion between tasks executing on the same actor, but also tends to group
these tasks into the same work queue.

The Task-Throwing Scheduler uses boolean variables as locks, and requires the un-
derlying hardware to support an atomic-exchange operation. Lock variables are true
if held by some thread, false if not. The AtomicExchange function atomically
writes a given value to a lock variable and returns the value previously held. The
TryAcquire function (line 37) makes a single attempt to acquire a lock, returning
true if successful. ExecuteNext uses TryAcquire so that it doesn’t block ex-
ecution while there is potentially other useful work the thread could be doing. This
non-blocking behaviour is particularly important when acquiring a lock on an actor,
which could otherwise block for an arbitrarily long period of time. The Send function,
which may be called from any thread or actor, uses Acquire (line 38), which blocks
until the queue lock becomes free. Unlike actor locks, queue locks are only held for
very short periods of time. Releasing a lock is as simple as setting the lock variable to
false (line 39).

The Task-Throwing Scheduler is deadlock-free. An informal proof of this is as fol-
lows: After a queue lock is acquired by a thread, it is always released before the thread
acquires any other locks (lines 7–10,20 and 24–26). While holding an actor lock (lines
11–14), the user-defined Actor.execute function may subsequently call Send,

Actor-Based Parallel Dataflow Analysis 191

declare Q: static array of queues [0 .. T - 1] of pairs (Actor &, Message)
declare L: static array of volatile booleans [0 .. T - 1]

abstract class Actor:
lock: volatile boolean
qid: Integer
virtual function execute (m: Message)

end

algorithm WorkerThread (qid: Integer)
begin

[1] while true do
[2] if ExecuteNext (qid) == false then
[3] Yield ()
[4] while ExecuteNext (rand () % T) == false do Yield () od
[5] fi
[6] od

end

static function ExecuteNext (qid: Integer)
begin

[7] if TryAcquire (L[qid]) then
[8] if Q[qid] is not empty then
[9] Remove next (a, m) from Q[qid]
[10] Release (L[qid])
[11] if TryAcquire (a.lock) then
[12] a.qid := qid
[13] a.execute (m)
[14] Release (a.lock)
[15] return true
[16] else
[17] Send (a, m)
[18] fi
[19] else
[20] Release (L[qid])
[21] fi
[22] fi
[23] return false

end

global function Send (a: Actor &, m: Message)
begin

[24] Acquire (L[a.qid])
[25] Insert (a, m) into Q[a.qid]
[26] Release (L[a.qid])

end

function TryAcquire (lock: volatile boolean &)
begin

[27] return AtomicExchange (&lock, true) == false
end

function Acquire (lock: volatile boolean &)
begin

[28] while AtomicExchange (&lock, true) == true do Yield () od
end

function Release (lock: volatile boolean &)
begin

[29] lock := false
end

Algorithm 5. The Task-Throwing Scheduler

192 J. Rodriguez and O. Lhoták

which acquires a queue lock. A thread holding an actor lock always releases it be-
fore attempting to acquire any other actor lock. Since any thread can hold at most one
actor lock and one queue lock, and the actor lock is always acquired first, it follows that
the execution of the scheduler code cannot introduce any lock acquisition cycles, and
therefore cannot cause a deadlock.

7 Evaluation

We ran our performance tests on an eight-core AMD Opteron machine running the
Oracle JRockit JVM version 3.1.2. We used the Oracle JVM because we were having
some problems with the Sun JVM crashing.

Our test inputs are the programs luindex, antlr, and jython from the DaCapo Bench-
mark Suite version 2006-10-MR2 [3]. We analyse the source of the benchmarks only,
but not the standard libraries. We make conservative worst-case assumptions about the
types of objects returned from standard library methods.

7.1 Available Parallelism

Before evaluating actual performance, we wanted to estimate the maximum amount of
parallelism available in the IFDS-A algorithm. To perform this estimation, we execute
IFDS-A with a single-threaded worklist. Execution is performed using a doubly-nested
loop, where the outer loop finds a maximal set of work units from the work-list that
could be executed in parallel, and the inner loop executes this set of work units. Two
work units are deemed to be executable in parallel if and only if they operate on different
actors. The number of iterations the inner loop performs for a single iteration of the
outer loop is the available parallelism (or parallel width), and the number of outer
loop iterations is the length of a chain of sequentially dependent operations (or parallel
depth). If all work units required the same amount of time to execute, the parallel depth
is the optimal amount of time in which the algorithm could execute to completion, and
the maximum parallel width is the number of processors that would be necessary to
achieve this optimal time.

1

10

100

1000

10000

0% 20% 40% 60% 80% 100%

Total Work Done

Av
ai

la
bl

e P
ar

all
eli

sm

Luindex
Antlr
Jython

Fig. 4. Available Parallelism

Actor-Based Parallel Dataflow Analysis 193

Figure 4 shows the available parallelism for each input as a function of the percentage
of work units completed. These charts provide an indication of how many processors
the algorithm can keep busy for the given input, and for how long. For example, antlr
provides sufficent parallelism to keep 100 processors busy for the first 85% of work
units processed. The last 15% of work units will take longer than 15% of the total ex-
ecution time because of insufficient parallelism to keep 100 processors busy. Jython
has a similarly large available parallelism. In contrast, luindex has considerably smaller
available parallelism, where a substantial fraction of the total work done exhibits a par-
allel width of only 2 units. This lack of available parallelism may limit the performance
scalability of luindex.

7.2 Performance

We measured the performance of IFDS-A with the Scala Actor library and our Task
Throwing Scheduler, and compared the results with the E-IFDS reference implementa-
tion. We tested the effects of priority queuing and different thread counts on the imple-
mentation’s performance.

Table 1. Comparing Scheduling Methods

LUINDEX ANTLR JYTHON
Policy Scheduler Th Time Acc Rej Fwd Time Acc Rej Fwd Time Acc Rej Fwd

FIFO

None (E-IFDS) 1 38 0.9 - - 220 5.9 - - 363 10 - -
ScalaActor 1 92 1.1 1.3 0.06 432 6.2 3.1 0.4 881 14 39 19
ScalaActor 8 18 1.2 1.4 0.06 89 6.2 3.1 0.4 242 14 40 19
TaskThrow 1 81 1.2 1.2 0.05 371 6.2 3.2 0.4 533 13 37 18
TaskThrow 8 12 0.9 0.9 0.06 60 6.0 3.1 0.4 176 16 48 24

Priority
None (E-IFDS) 1 14 0.25 - - 235 5.2 - - 198 5.6 - -
TaskThrow 1 31 0.37 0.30 0.02 366 5.2 2.4 0.4 349 5.6 8.2 7.2
TaskThrow 8 5 0.36 0.29 0.02 62 5.3 2.5 0.4 63 5.3 7.7 6.9

Table 1 summarizes the effects of the scheduler policy on performance. The columns
of this table are:

– Policy: Indicates FIFO or priority processing of worklist elements.
– Scheduler: “None” is the single-threaded E-IFDS algorithm, “ScalaActor” is the

default scheduler in the Scala Actors library, and “TaskThrow” is the new task-
throwing scheduler.

– Th: Number of worker threads. Rows with a thread count of 8 are shown in bold.
Each worker thread has its own worklist.

– Time: Average (geometric mean) time in seconds taken to perform one solve.
– Acc: Average number of worklist items accepted for processing, in millions.
– Rej: Average number of worklist items rejected after removal from a worklist be-

cause they had already been processed earlier, in millions.
– Fwd: Average number of worklist items forwarded from end-nodes to call-site

nodes, in millions.

194 J. Rodriguez and O. Lhoták

The scheduling policy is only enforced within a single worker thread, not across
worker threads. Different worker threads can move through their worklists at differ-
ent speeds depending on how long each item takes to process. Task-throwing, work-
stealing, lock acquisition, and kernel scheduling activities also affect which worker
processes which message. It is interesting to note that using multiple worker threads
can sometimes result in execution orders that are more efficient than a strict adherence
to the scheduling policy.

The task-throwing scheduler is significantly faster than Scala’s default scheduler on
all the benchmarks tested. Furthermore, the task-throwing scheduler supports priority
ordering of messages, whereas the default Actors implementation does not.

There are two major sources of overhead in the parallel IFDS-A algorithm compared
to the sequential E-IFDS algorithm. The first source of overhead is passing messages
for redundant path-edges. Unlike E-IFDS, which detects redundant path-edges before
insertion into the worklist, IFDS-A checks for redundancy only after a message is re-
ceived. The second source is forwarding end-node path-edges to call-site nodes. While
E-IFDS can handle these edges immediately, IFDS-A must re-send each path-edge at
an end-node to all associated call-site nodes.

For luindex, rejected and forwarded messages account for slightly more than half of
the total messages sent by IFDS-A, more than doubling the total number of worklist
items processed by E-IFDS. For antlr, rejected and forwarded messages account for a
somewhat smaller proportion of the total messages, and for jython, they account for a
signficanly larger proportion.

Table 2. Performance with Different Thread Counts (Priority Scheduling Policy)

LUINDEX ANTLR JYTHON
Scheduler Th Time Sp/Sc Time Sp/Sc Time Sp/Sc
E-IFDS 1 13.6 1.0/ - 235.0 1.0/ - 198.4 1.0/ -

TaskThrow

1 30.9 0.4/1.0 366.1 0.6/1.0 349.1 0.6/1.0
2 14.6 0.9/2.1 188.9 1.2/1.9 177.2 1.1/2.0
4 8.0 1.7/3.9 101.0 2.3/3.6 99.0 2.0/3.5
8 5.2 2.6/6.0 61.5 3.8/6.0 62.6 3.2/5.6
16 4.7 2.9/6.6 61.4 3.8/6.0 60.0 3.3/5.8
32 5.2 2.6/6.0 61.8 3.8/5.9 69.6 2.9/5.0
64 4.8 2.8/6.4 61.6 3.8/5.9 68.3 2.9/5.1

Table 2 shows the performance of IFDS-A using the priority scheduling policy. Two
performance figures for each benchmark/thread count combination. The first, “Sp,” is
the speedup obtained relative to the sequential E-IFDS. The second, “Sc,” is the scala-
bility of performance relative to IFDS-A with one thread. Figures 5, 6, and 7 show the
speedup graphically. The vertical error bars are the 95% confidence intervals.

When only one thread is available, the additional overhead of IFDS-A puts it at a sub-
stantial performance disadvantage. With two threads, however, IFDS-A is largely able
to match the performance of E-IFDS, and with more threads it is able to exceed the per-
formance of E-IFDS by a substantial margin. Luindex exhibited the worst speedup of
the three, and antlr exhibited the best. Luindex may have a performance disadvantage

Actor-Based Parallel Dataflow Analysis 195

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 2 4 8 16 32 64

Threads

S
pe

ed
up

IFDS-A
E-IFDS

Fig. 5. Performance Chart for LUINDEX Analysis

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 4 8 16 32 64

Threads

S
pe

ed
up

IFDS-A
E-IFDS

Fig. 6. Performance Chart for ANTLR Analysis

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 2 4 8 16 32 64

Threads

S
pe

ed
up

IFDS-A
E-IFDS

Fig. 7. Performance Chart for JYTHON Analysis

196 J. Rodriguez and O. Lhoták

because the parallelism available in the problem is limited. Jython is hindered by
message-passing overhead because of the relatively large number of rejected and call-
site forwarding messages it generates.

Although our test machine has only eight cores, we also test with 16, 32, and 64
threads to see how our scheduler behaves with thread counts larger than the number of
cores. As it turns out, 16 threads provides a small performance improvement over eight
threads, indicating that our scheduling algorithm is not making full use of all processing
resources available when only given eight threads. At 32 and 64 threads, however, we
see performance worsen slightly due to the extra processing overhead incurred by larger
numbers of threads.

At peak performance on our eight-core machine, we see IFDS-A reach 2.90x, 3.83x,
and 3.31x speedup relative to E-IFDS for luindex, antlr, and jython, respectively, for an
average speedup of 3.35x. Maximum scalability of these benchmarks is 6.56x, 5.97x,
and 5.82x for an average scalability of 6.12x.

Since the slopes of these performance curves only level off after reaching eight
threads on our eight-core machine, we can reasonably expect additional performance
improvements on machines with larger numbers of cores.

8 Conclusions

This work began as an effort to see if a computationally expensive context-sensitive
dataflow analysis algorithm could be expressed using message-passing, in the hope that
some performance gain on multi-core computers would be seen. The resulting algo-
rithm, IFDS-A, yielded performance gains which were significantly better than we ini-
tially expected. To the best of our knowledge, IFDS-A is the first implementation of
IFDS that uses message-passing to communicate changes in state.

The implementation of IFDS-A performs substantially worse on a single core than
the equivalent E-IFDS implementation. With two cores, there is still little reason to
use IFDS-A because its performance is not much better E-IFDS (and in some cases is
worse). With four or more cores, however, IFDS-A outperforms E-IFDS by a significant
margin. On an eight-core computer, IFDS-A is on average 6.12 times as fast as it is with
a single core, and 3.35 times as fast as the baseline implementation.

Priority ordering of worklist items was possible with the right scheduling mecha-
nism, but it required implementation of a new scheduler.

There are several directions for possible future work, which include:

– verifying performance against a larger number of benchmarks,
– applying actor-based techniques to other types of analyses,
– reducing overhead by only creating one actor per function or one actor per basic

block, and
– experimenting with different scheduling mechanisms to improve performance.

Acknowledgements. This work was supported, in part, by the Natural Sciences and
Engineering Research Council of Canada.

Actor-Based Parallel Dataflow Analysis 197

References

1. Agha, G.: Actors: A model of concurrent computation in distributed systems. MIT Press,
Cambridge (1986)

2. Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling for multiprogrammed multi-
processors. Theory Comput. Systems 34(2), 115–144 (2001)

3. Blackburn, S.M., Garner, R., Hoffman, C., Khan, A.M., McKinley, K.S., Bentzur, R.,
Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A., Jump, M.,
Lee, H., Moss, J.E.B., Phansalkar, A., Stefanović, D., VanDrunen, T., von Dincklage, D.,
Wiedermann, B.: The DaCapo benchmarks: Java benchmarking development and analysis.
In: OOPSLA (2006)

4. Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based programming.
Theor. Comput. Sci. 410(2-3), 202–220 (2009)

5. Hardekopf, B., Lin, C.: The ant and the grasshopper: fast and accurate pointer analysis for
millions of lines of code. In: PLDI 2007: Proceedings of the 2007 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, pp. 290–299. ACM, New York
(2007)

6. Hewitt, C., Baker, H.: Laws for communicating parallel processes. In: IFIP (1977)
7. Kulkarni, M., Burtscher, M., Inkulu, R., Pingali, K., Casçaval, C.: How much parallelism is

there in irregular applications? In: PPoPP (2009)
8. Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan, G., Bala, K., Chew, L.P.: Optimistic

parallelism requires abstractions. In: PLDI (2007)
9. Lee, E.A.: The problem with threads. Computer 39(5), 33–42 (2006)

10. Méndez-Lojo, M., Mathew, A., Pingali, K.: Parallel inclusion-based points-to analysis. In:
OOPSLA (2010)

11. Naeem, N.A., Lhoták, O., Rodriguez, J.: Practical extensions to the IFDS algorithm. In:
Gupta, R. (ed.) CC 2010. LNCS, vol. 6011, pp. 124–144. Springer, Heidelberg (2010)

12. Odersky, M., Spoon, L., Venners, B.: Programming in Scala: A Comprehensive Step-by-step
Guide. Artima Incorporation, USA (2008)

13. Panwar, R., Kim, W., Agha, G.: Parallel implementations of irregular problems using high-
level actor language. In: IPPS (1996)

14. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via graph reacha-
bility. In: POPL (1995)

15. Rodriguez, J.D.: A Concurrent IFDS Dataflow Analysis Algorithm Using Actors. Master’s
thesis, University of Waterloo, Canada (2010)

16. Stein, L.A.: Challenging the computational metaphor: Implications for how we think. Cy-
bernetics and Systems 30(6), 473–507 (1999)

17. Sundaresan, V., Hendren, L., Razafimahefa, C., Vallée-Rai, R., Lam, P., Gagnon, E., Godin,
C.: Practical virtual method call resolution for Java. In: OOPSLA (2000)

18. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot - a Java byte-
code optimization framework. In: CASCON (1999)

19. Virding, R., Wikström, C., Williams, M.: Concurrent programming in ERLANG, 2nd edn.
Prentice Hall International (UK) Ltd., Hertfordshire (1996)

Using Disjoint Reachability for Parallelization

James C. Jenista, Yong hun Eom, and Brian Demsky

University of California, Irvine

Abstract. We present a disjoint reachability analysis for Java. Our analysis com-
putes extended points-to graphs annotated with reachability states. Each heap
node is annotated with a set of reachability states that abstract the reachability
of objects represented by the node. The analysis also includes a global pruning
step which analyzes a reachability graph to prune imprecise reachability states
that cannot be removed with local reasoning alone. We have implemented the
analysis and used it to parallelize 8 benchmarks. Our evaluation shows the anal-
ysis results are sufficiently precise to parallelize our benchmarks and achieve an
average speedup of 16.9×.

1 Introduction

As the number of cores in mainstream processors increases, more software application
domains are challenged with developing parallelized implementations in order to har-
ness the available cores. Program analyses such as points-to analysis [1, 2] and shape
analysis [3–7] support parallelization tools, particularly in application domains like sci-
entific programs that exhibit highly regular data structures and workloads with much
parallelism. In the future, developers will likely need to parallelize programs in the
domain of object-oriented desktop and server applications where the program heap is
complicated by many levels of abstraction or arbitrary data structure composition.

We believe the key to efficient and general heap analysis in support of paralleliz-
ing object-oriented applications is to focus on reachability. Data structures often have
a single root object — disjoint reachability analysis can statically extract the property
that the objects that comprise a data structure are only reachable from at most one data
structure root object. This property is powerful for parallelizing tasks — the combi-
nation of (1) the static reachability analysis plus (2) a lightweight dynamic check to
determine that the variables live into two tasks reference different root objects suffices
to guarantee that the two tasks will not perform conflicting data accesses.

The use of reachability for parallelization is not new; points-to analysis is typically
fast and can be scaled to millions of lines of code, but reachability information derived
from it is imprecise so it can assist parallelization of only very specific code patterns. A
path of edges in a points-to graph can capture that a data structure root object can reach
the objects that comprise the data structure, but also admits the possibility that many
data structure root objects can reach the same objects.

Reachability from objects is essential and different from the reachability from vari-
ables discovered by alias analysis [8–10] — reachability from variables can only express
a finite number of disjoint sets. Variable reachability cannot discover that an unbounded
set of live data structures do not share objects. This property is often necessary to paral-
lelize computations on data structures.

J. Knoop (Ed.): CC 2011, LNCS 6601, pp. 198–224, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Using Disjoint Reachability for Parallelization 199

The strategy of shape analysis is to statically model a potentially unbounded heap
with a shape graph, where heap objects that share a common pattern of references are
summarized with a shape node. While reachability properties can be deduced from a
precise shape graph, in the worst case a program’s heap shape is difficult to analyze to
the effect that the derived reachability properties are much less precise.

Naik and Aiken introduced the concept of disjoint reachability in support of static
race detection [11]. We introduce a new approach to disjoint reachability analysis with
sufficient precision for parallelizing Java programs with general heap structures. Our
analysis compactly represents the reachability of the many objects abstracted by a sin-
gle node of a points-to graph by annotating each node with a set of reachability states.
The reachability of an object is conservatively approximated by one of the reachabil-
ity states for the corresponding node in the points-to graph. Shape information is not
preserved in general; in this regard, shape analysis and disjoint reachability analysis
are complementary. For instance, a compiler might generate tree-specific parallel code
when shape analysis discovers that a structure is a valid tree.

Existing heap analyses have primarily either used equivalence classes of objects (e.g.
TVLA [5], separation logic [12], storage shape graphs [3]) or access paths [4, 10] to
reason about heap references. Disjoint reachability analysis combines aspects of both
approaches — it combines an abstraction that decomposes the heap into static regions
with reachability annotations that provide access path information. Choi et al. used a
combination of storage and paths for alias analysis [13], however that approach focuses
only on reachability from variables and is subject to the limitations discussed above.

1.1 Basic Approach

Disjoint reachability analysis extends a standard points-to graph with reachability an-
notations. The nodes in our points-to graph abstract objects and the edges abstract heap
references between objects. While the points-to graph captures some reachability infor-
mation; nodes in the points-to graph by necessity must abstract many objects. In general
it is impossible to determine whether a path of edges in a points-to graph from a node
nsrc to a node ndst represents a path of references from one object or many objects ab-
stracted by nsrc to an object abstracted by ndst. We therefore annotate nodes with sets of
reachability states. A reachability state for an object o contains a tuple for each node n
that gives an abstract count of how many objects abstracted by node n can reach o.

Using reachability states only on nodes can make it difficult to precisely propagate
changes to reachability states. We therefore also annotate edges with sets of reachability
states. The reachability state for an edge abstracts the reachability states for the objects
that can be reached through that edge. In addition to enabling the analysis to more
precisely propagate changes to reachability states, edge reachability annotations can
also serve to refine the reachability information for a node based on the reference used
to access an object abstracted by the node.

We evaluate the precision of disjoint reachability analysis in support of a task-level
parallelizing approach that relies on reachability properties rather than exploiting heap
shape. Out-of-order Java (OoOJava) [14, 15] decomposes a sequential program into
tasks and discovers which data structure root objects a task uses to obtain references to
other objects. OoOJava then queries disjoint reachability analysis to discover whether

200 J.C. Jenista, Y.h. Eom, and B. Demsky

the objects reachable by two tasks are disjoint conditionally on whether the root ob-
jects of the tasks are distinct at runtime. This information enables parallelization when
combined with a constant-time dynamic check that verifies the tasks access distinct root
objects. OoOJava reports disjoint reachability results back to the developer to identify
unintended sharing that prevents parallelization. We also note disjoint reachability anal-
ysis is employed by Bamboo [16], another task-based parallel programming model.

Our analysis is demand-driven — it takes as input a set of allocation sites that are
of interest to the analysis client. The analysis then computes the reachability only from
the objects allocated at the selected allocation sites to all objects in the program.

1.2 Contributions

The paper makes the following contributions:

• Disjoint Reachability Analysis: It presents a new demand-driven analysis that dis-
covers precise disjoint reachability properties for a wide variety of programs.

• Reachability Abstraction: It extends the points-to graph abstraction with reachabil-
ity annotations to precisely reason about reachability properties.

• Global Pruning: It introduces a global pruning algorithm to improve the precision
of reachability states.

• Experimental Results: It presents experimental results for several benchmarks. The
results show that the analysis successfully discovers disjoint reachability properties
and that it is suitable for parallelizing the benchmarks with significant speedups.

The remainder of the paper is organized as follows. Section 2 presents an example
that illustrates how the analysis operates. Section 3 presents the program representa-
tion and the reachability graph. Section 4 presents the intraprocedural analysis. Sec-
tion 5 presents the interprocedural analysis. Section 6 evaluates the analysis on several
benchmarks. Section 7 presents related work; we conclude in Section 8. The appendix
formalizes the reachability abstraction and overviews the correctness of the analysis.

2 Example

Figure 1 presents an example that constructs several graphs and then updates the ver-
tices in those graphs. The graphLoop method populates an array with Graph ob-
jects. The developer uses the task keyword to indicate that the annotated block is
worth executing in parallel with the current thread if it is safe to do so without vio-
lating the program’s sequential semantics. Our analysis will show that each Vertex
object is reachable from at most one Graph object. This information could be used to
parallelize the execution of tasks in the loop in Line 11. If a runtime check shows that
instances of the task in Line 13 operate on different Graph objects, then our static anal-
ysis results will imply that task instances operate on disjoint sets of Vertex objects.
The OoOJava compiler [14] therefore flags the allocation site on Line 4 to indicate to
the analysis that it needs information about the reachability from Graph objects to all
objects. In this example, the disjoint reachability results allow the OoOJava compiler to
generate a parallel implementation.

Using Disjoint Reachability for Parallelization 201

1 p u b l i c void graphLoop (i n t nGraphs) {
2 Graph [] a=new Graph [nGraphs] ;
3 f o r (i n t i =0 ; i<nGraphs ; i ++) {
4 Graph g=new Graph () ; /∗ A n a l y s i s c l i e n t f l a g s t h i s s i t e ∗ /
5 Ver t ex v1=new Ver t ex () ;
6 g . v e r t e x =v1 ;
7 Ver t ex v2=new Ver t ex () ;
8 v2 . f =v1 ; v1 . f =v2 ;
9 a [i]= g ; }

10

11 f o r (i n t i =0 ; i<nGraphs ; i ++) {
12 Graph g=a [i] ;
13 task { /∗ T h i s t a s k u p d a t e s t h e graph v e r t i c e s . ∗ /
14 Ver t ex v=g . v e r t e x ;
15 whi l e (! v . marked) {
16 v . marked = t rue ;
17 v . u p d a t e V e r t e x () ;
18 v=v . f ; } } } }

Fig. 1. Graph Example

2.1 Intraprocedural Analysis

We next examine the analysis of the graphLoop method. Our analysis computes a
reachability graph for each program point. Figure 2(a) presents the analysis results just
after the allocation of the Graph and Vertex objects referenced by variables g and
v1, respectively. The rectangular heap node n2 abstracts the most recently allocated
Graph object and is associated with a flagged allocation site; we call such heap nodes
flagged heap nodes and shade them in all graphs in this paper. The analysis computes
reachability only from flagged nodes. Heap nodes are assigned unique identifiers of
form ni, where i is an unique integer. The reachability set {[〈n2, 1〉]} on n2 indicates
the object abstracted by that node has the reachability state [〈n2, 1〉]. The reachability
set {[〈n2, 1〉]} on the g edge indicates that the corresponding heap reference can only
reach objects whose reachability state is [〈n2, 1〉].

A reachability state for object o contains a set of reachability tuples: a reachability
tuple consists of a heap node abstracting objects that may reach o and an arity that
indicates how many objects abstracted by that node may reach o. The reachability state
[〈n2, 1〉] means that the object with that reachability state is reachable from at most one
Graph object abstracted by heap node n2 and no other flagged objects. In Figure 2(a),
node n4 abstracts the most recently allocated Vertex object from Line 5 and has the
reachability set {[]}, meaning at this program point the object abstracted by n4 is not
reachable from any flagged objects. Appendix A precisely defines the abstraction.

Figure 2(b) presents the analysis results after the vertex field of the Graph
object is updated to reference the Vertex object in Line 6. The set of reachability
states for n4 is updated to {[〈n2, 1〉]} to reflect that the Vertex object is now reachable

202 J.C. Jenista, Y.h. Eom, and B. Demsky

single-object heap
region node

heap region node
containing

multiple-object
heap region node

reference edge
reachability state

set of reachability
states

{[<n ,1>],
[<n ,1>] }

1

2

[<n ,1>]1

g

Vertex
alloc line 5

Graph
alloc line 4

n 2

n 4

{[<n ,1>] }2

{[<n ,1>]}2

{ } []

v1
{ } []

(a) First Itera-
tion of Line 5

g

Vertex
alloc line 5

vertex

Graph
alloc line 4

n 2

n 4

{[<n ,1>] }2

{[<n ,1>]}2

{[<n ,1>]}2

{[<n ,1>]}2

v1
{[<n ,1>]}2

(b) First Itera-
tion of Line 6

g

Vertex
alloc line 5

Vertex
alloc line 7

vertex

Graph
alloc line 4

f

f

n 2

n 4 n 6

{[<n ,1>] }2

{[<n ,1>]}2

{[<n ,1>]}2

{[<n ,1>]}2 {[<n ,1>]}2

{[<n ,1>]}2

{[<n ,1>]}2

v1
{[<n ,1>]}2

v2
{[<n ,1>]}2

(c) First Iteration of Line 8

a

Graph[]
alloc line 2

Vertex
alloc line 5

Graph Sum.
alloc line 4

vertex

elementGraph
alloc line 4

Vertex Sum.
alloc line 5

Vertex
alloc line 7

vertex

f

f

n 2 n 1 n 3

n 4 n 5 n 6

{[<n ,1>]}3

{ [] }
{[<n ,1>]}3{[<n ,1>]}2

{[<n ,1>]}2

{[<n ,1>]}2

{[<n ,1>]}3

{[<n ,1>]}3 {[<n ,1>]}3{[<n ,1>]}3

{[<n ,1>]}3

g

{[<n ,1>]}2

v1
{[<n ,1>]}2

{[<n ,1>]}3

(d) Second Iteration of Line 6

Fig. 2. Intraprocedural reachability graph results for several program points

a

Graph[]
alloc line 2

Vertex
alloc line 5

Vertex
alloc line 7

Graph Sum.
alloc line 4

vertex

elementGraph
alloc line 4

element

f

f

Vertex Sum.
alloc line 5

Vertex Sum.
alloc line 7

vertex

f

f

n 2 n 1 n 3

n 4 n 6 n 5 n 7

{[<n ,1>]}2

{[<n ,1>],[<n ,1>]}2 3

{ [] }
{[<n ,1>]}3{[<n ,1>]}2

{[<n ,1>]}2

{[<n ,1>]}2 {[<n ,1>]}2

{[<n ,1>]}2

{[<n ,1>]}2

{[<n ,1>]}3

{[<n ,1>]}3 {[<n ,1>]}3{[<n ,1>]}3

{[<n ,1>]}3

{[<n ,1>]}3

Fig. 3. Analysis result at Line 10 of graphLoop

from at most one Graph object. The newly created edge models the reference from the
vertex field of the Graph object. Edges are marked with the field they abstract.

Figure 2(c) presents the analysis results after Line 8. At this point a second Vertex
object has been allocated and the two Vertex objects have references to one another.
The heap reference from n4 to n6 propagated the reachability set {[〈n2, 1〉]} to n6.

Using Disjoint Reachability for Parallelization 203

The intraprocedural analysis continues until it computes a fixed-point solution. Fig-
ure 2(d) presents the analysis results after visiting Line 8 a second time. Node n2 ab-
stracts the most recently allocated Graph object while node n3 summarizes the Graph
object from the previous loop iteration. We denote summary heap nodes as rectangles
with chords across each corner. The reachability state [〈n3, 1〉] has propagated back-
ward across all edges up to the reference from variable a. Disjoint reachability analysis
maintains the invariant that a reference is annotated with the reachability states of any
objects reachable by following that reference. Note we omit the empty reachability state
[] in some reachability sets for brevity.

Figure 3 presents the analysis results at Line 10 of the example program. These re-
sults state that any Vertex object is reachable from at most one Graph object because
(1) the analysis client flagged the only allocation site for Graph objects and (2) there is
no heap node abstracting Vertex objects with a reachability state indicating the con-
trary. Examples of reachability states for a Vertex object that is possibly reachable
from more than one Graph object are [〈n2, 1〉, 〈n3, 1〉] and [〈n3, MANY〉].

Disjoint reachability analysis will determine that a given Vertex object is reachable
from at most one Graph object regardless of the relative shape of Vertex objects in
the heap. In Section 6 we describe how OoOJava queries disjoint reachability results
such as this in order to parallelize benchmarks with a variety of heap structures. In
this example, the OoOJava compiler will use the analysis results to generate a simple
dynamic check: if the Graph object referenced by variable g is different from Graph
objects referenced in previous iterations, then the task in Line 13 may safely execute in
parallel with the current thread.

3 Analysis Abstractions

This section presents the analysis abstractions for the input program, elements of the
reachability graph, and reachability annotations that extend reachability graphs.

3.1 Program Representation

The analysis takes as input a standard control flow graph representation of each method.
Program statements have been decomposed into statements relevant to the analysis:
copy, load, store, object allocation, and call site statements.

3.2 Reachability Graph Elements

Our analysis computes a reachability graph for the exit of each program statement.
Reachability graphs extend the standard points-to graph representation to maintain ob-
ject reachability properties. Heap nodes abstract objects in the heap. There are two heap
nodes for each allocation site m ∈ M in the program — one heap node abstracts the
single most recently allocated object at the allocation site, and the other is a summary
node that abstracts all other objects allocated at the site1.

1 Our implementation generalizes this to support abstracting the k most recently allocated ob-
jects from the allocation site with single-object heap nodes.

204 J.C. Jenista, Y.h. Eom, and B. Demsky

In general, analysis clients only need to determine reachability from some subset of
the objects in the program. The analysis takes as input a set of allocation sites MF ⊆ M
for objects of interest — the analysis then computes for all objects in the program their
reachability from objects allocated at those sites.

The reachability graph G has the set of heap nodes n ∈ N = M × {0,summary}.
The analysis client specifies a set of flagged heap nodes NF = MF ×{0,summary} ⊆
N that it is interested in determining reachability from.

Graph edges e ∈ E abstract references r ∈ R in the concrete heap and are of the
form 〈v, n〉 or 〈n, f, n′〉. The heap node or variable that edge e originates from is given
by src(e) and the heap node that edge e refers to is given by dst(e). Every reference
edge between heap nodes has an associated field f ∈ F = Fields ∪ element2.

The equation E ⊆ V × N ∪ N × F × N gives the set of reference edges E in a
reachability graph. We define the convenience functions:

En(v) = {n | 〈v, n〉 ∈ E} (3.1)

Ee(v) = {〈v, n〉 | 〈v, n〉 ∈ E} (3.2)

En(n) = {n′ | 〈n, f, n′〉 ∈ E} (3.3)

Ee(n) = {〈n, f, n′〉 | 〈n, f, n′〉 ∈ E} (3.4)

En(v, f) = {n′ | 〈v, n〉, 〈n, f, n′〉 ∈ E} (3.5)

Ee(v, f) = {〈n, f, n′〉 | 〈v, n〉, 〈n, f, n′〉 ∈ E} (3.6)

3.3 Reachability Annotations

This section discusses how our analysis augments a points-to graph with reachability
annotations; Appendix A formalizes this abstraction. A reachability tuple 〈n, μ〉 is a
heap node and arity pair where the arity value μ is taken from the set {0, 1, MANY}. The
arity μ gives the number of objects from the heap node n that can reach the relevant
object. The arity 0 means the object is not reachable from any objects in the given heap
node, the arity 1 means the object is reachable from at most one object in the given heap
node, and the arity MANY means the object is reachable from any number of objects in
the given node. The arities have the partial order 0 � 1 � MANY.

A reachability state φ ∈ Φ contains exactly one reachability tuple for every distinct
flagged heap node. For efficiency, our implementation elides arity-0 reachability tuples.
When we write reachability states, we use brackets to enclose the reachability tuples to
make them visually more clear. For example, the reachability state φn = [〈n3, 1〉] ∈
Φn7 that appears on node n7 in Figure 3 indicates that it is possible for at most one
object in heap node n3, and zero objects from any other flagged heap nodes (i.e. n2) to
reach an object from heap node n7.

The function AN : N → P(P(M)) maps a heap node n to a set of reachability
states. The reachability of an object abstracted by the heap node n is abstracted by one
of the reachability states given by the functionAN . We representAN as a set of tuples
of heap nodes and reachability states and define the helper function:

AN (n) = {φ | 〈n, φ〉 ∈ AN}. (3.7)

When a new reference is created, the analysis must propagate reachability information.
Simply using the graph edges to do this propagation would yield imprecise results. To
improve the precision of this propagation step, the analysis maintains for each edge
the reachability states of all objects that can be reached from that edge. The function

2 The special field element abstracts all references from an array’s elements.

Using Disjoint Reachability for Parallelization 205

AE : E → P(P(M)) maps a reference edge e to the set of reachability states of all
the objects reachable from the references abstracted by e. If there exists a path of heap
references r1; r2; rj that leads to an object o with the reachability state φ then for each
edge ei that abstracts a reference ri, φ ∈ AE(ei). We representAE as a set of tuples of
edges and reachability states and define the helper functions:

AE(v) = {φ | 〈〈v, n〉, φ〉 ∈ AE}, (3.8)

AE◦
(v) = {〈〈v, n〉, φ〉 | 〈〈v, n〉, φ〉 ∈ AE}, (3.9)

AE(e) = {φ | 〈e, φ〉 ∈ AE}. (3.10)

In programs that construct unbounded data structures, heap nodes and reference edges
must be summarized in the finite heap abstraction. Summarization in basic points-to
analysis rapidly loses precision for reachability properties. Disjoint reachability analy-
sis improves the precision of reachability information with AN because it can express
that an object is reachable from only a single object abstracted by a given summary
node. The abstraction AE is instrumental for precisely updating the reachability states
of heap nodes because it refines path information present in the points-graph alone and
allow the analysis to more precisely propagate changes to reachability states than is
possible from the points-to graph alone. Another critical aspect of AE is that an edge
in effect selects some subset of reachability states of a node — the analysis uses this
information to refine the reachability states for a node.

4 Intraprocedural Analysis

We begin by presenting the intraprocedural analysis. Section 5 extends this analysis to
support method calls. The analysis is structured as a fixed-point computation.

4.1 Method Entry

The method entry transfer function creates an initial reachability graph to abstract the
part of the calling methods’ heaps that are reachable from parameters. In the example,
the initial reachability graph is empty because the method graphLoop does not take
parameters. Method context generation is explained in detail in Section 5.1.

4.2 Copy Statement

A copy statement of the form x=y makes the variable x point to the object that y refer-
ences. The analysis always performs strong updates for variables — it discards all the
reference edges from variable x and then copies all the edges along with their reachabil-
ity states from variable y. Equation 4.1 and Equation 4.2 describe the transformations.

4.3 Load Statement

Load statements of the form x=y.f make the variable x point to the object that y.f
references. Existing reference edges for the field are copied to x as described by Equa-
tion 4.3. Note that this statement does not change the reachability of any object. The
reachability on new edges from x, as described by Equation 4.4, is the intersection of
AE(〈y, n〉) and AE(〈n, f, n′〉), because x can only reach objects that were reachable
from both the variable y and a heap reference abstracted by the edge 〈n, f, n′〉.

206 J.C. Jenista, Y.h. Eom, and B. Demsky

y
Φy

x=y

y
Φy

x
Φy

Φn Φn

(a) Copy Statement

E′ = (E − Ee(x)) ∪ ({x} × En(y)) (4.1)

AE ′
= (AE−AE◦

(x))∪
⋃

〈v,n〉∈Ee(y)

({〈x, n〉}×AE(y)) (4.2)

y
Φy

x=y.f

Φn

Φff

Φn’

y
Φy

Φn

Φff

Φn’ Φx ΦfΦy

x

= ∩

(b) Load Statement

E′ = (E −Ee(x)) ∪ ({x} × En(y, f)) (4.3)

AE ′
= (AE−AE◦

(x)) ∪
⋃

〈n,f,n′〉∈Ee(y,f)

⎧⎩{〈x, n′〉}×
(
AE(〈y, n〉) ∩AE(〈n, f, n′〉)

)⎫⎭ (4.4)

y
Φy

x=new

sum.

Φsum

sing.
Φn

sum.

Φsum

sing.

Φn∪

{[]}
z

Φz

y
Φy

z
Φz

x
{[]}

(c) Allocation Statement

AN ′
= {〈SN (n, nalloc),Sφ(φ,nalloc)〉 | 〈n, φ〉 ∈ AN}

∪{〈nalloc , φalloc〉} (4.5)

AE ′
= {〈SE(e, nalloc),Sφ(φ,nalloc)〉 | 〈e, φ〉 ∈ AE}

∪{〈〈x, nalloc〉, φalloc〉} (4.6)

E′ = {SE(e, nalloc) | e ∈ E} ∪ {〈x, nalloc〉} (4.7)

φalloc =

{
[〈nalloc , 1〉] if nalloc is flagged

[] otherwise
(4.8)

Fig. 4. Transfer Functions for Copy, Load, and Allocation Statements

4.4 Object Allocation Statement

The analysis abstracts the most recently allocated object from an allocation site as a
single-object heap node. A summary node for the allocation site abstracts any objects
from the allocation site that are older than the most recent.

The object allocation transfer function merges the single-object node nalloc into the
site’s summary node. The single-object node nalloc is then the target of a variable
assignment. Equations 4.5 through 4.7 describe the basic transformation. We define
the helper function SN (n, nalloc) to return the corresponding summary node for nalloc

if n = nalloc and n otherwise. We define SE(〈v, n〉, nalloc) = 〈v,SN (nalloc)〉 and
SE(〈n, f, n′〉, nalloc) = 〈SN (n, nalloc), f,SN (n′, nalloc)〉.

As stated, the single-object node and its reachability information merge with the
summary node. We define the helper function Sφ(φ, nalloc) to update a reachability
state by rewriting all reachability tuples with nalloc to use the summary node. If both
the single-object node and the summary node appeared in the same reachability state
before this transform, after rewriting the tuples there will be, conceptually, two sum-
mary node tuples in the state. In this case the tuples are combined and the new arity
for the summary heap node tuple is computed by +�, which is addition in the domain
{0, 1, MANY}. Note that the reachability annotations enable the analysis to maintain pre-
cise reachability information over summarizations.

Finally, if the heap node is flagged, the analysis generates the set of reachability
states {[〈nf , 1〉]}, where nf is the given heap node, for the new object’s node and edge.
Otherwise, it generates the set {[]} with the empty state for the node and edge.

Using Disjoint Reachability for Parallelization 207

4.5 Store Statement

Store statements of the form x.f=y point the f field of the object referenced by x
to the object referenced by y. Store statements can change the reachability of objects
reachable from y. Equation 4.9 describes how a store changes the edge set.

E′ = E ∪ (En(x)× {f} ×En(y)) (4.9)

Let ox be the object referenced by x in the concrete heap and oy be the object refer-
enced by y. The new edge from the object ox to the object oy can only add new paths
from objects that could previously reach ox to objects that were reachable from oy. In
the reachability graph, the heap nodes nx ∈ En(x) abstract ox and the heap nodes
ny ∈ En(y) abstract oy. The set of flagged heap nodes containing objects that could
potentially reach ox is given by the set of reachability states:

Ψx = AN (nx) ∩AE(〈x, nx〉). (4.10)

The reachability states of the objects reachable from oy is

Ψy = AE(〈y, ny〉). (4.11)

We define ∪� to compute the union of two reachability states. When two reachability
states are combined, tuples with matching heap nodes merge arity values according to
+�. We divide updating the reachability graph into the following steps:

1. Construct the New Graph: The analysis first constructs the new edge set as de-
scribed by Equation 4.9.

2. Update Reachability States of Downstream Heap Nodes: The reachability of ev-
ery object o′ reachable from oy is (i) abstracted by some ψy ∈ Ψy and (ii) there exist
a path of edges from the heap node that abstracts oy to the heap node that abstracts
o′ in which each edge has ψy in its reachability state. The newly created edge can
make the object o′ reachable from the objects that can reach ox — this set of objects
is abstracted by some reachability state ψx ∈ Ψx. Therefore the new reachability state
for o′ should be ψy∪� ψx. We capture this reachability change with the change tuple
set Cny

= {〈ψy, ψy ∪� ψx〉 | ψy ∈ Ψy, ψx ∈ Ψx}. Constraints 4.12 and 4.13 express
the path constraint (ii). The analysis uses a fixed point to solve these constraints and
then uses Equation 4.14 to update the reachability states of downstream nodes.

Λnode(ny) ⊇ Cny (4.12)

Λnode(n′) ⊇ {〈φ, φ′〉 | 〈φ,φ′〉 ∈ Λnode(n), 〈n, f, n′〉 ∈ E, φ ∈ AE(〈n, f, n′〉)} (4.13)

AN ′
(n) = {φ′ | φ ∈ AN (n), 〈φ, φ′〉 ∈ Λnode(n)}∪

{φ | φ ∈ AN (n), �φ′.〈φ, φ′〉 ∈ Λnode(n)} (4.14)

3. Propagate Reachability from Downstream Nodes to Edges: The analysis must
propagate the reachability changes of objects back to any edge that abstracts a
reference that can reach the object. Constraint 4.15 ensures that edges contain reach-
ability change tuples that capture the reachability changes in the incident objects.

208 J.C. Jenista, Y.h. Eom, and B. Demsky

Constraint 4.16 ensures that the change set contains tuples to re-establish the transi-
tive reachability state property.

Λedge(e)⊇{〈φ, φ′〉 | 〈φ, φ′〉 ∈ Λnode(dst(e)), φ ∈ AN (dst(e)), φ ∈ AE(e)} (4.15)

Λedge(e)⊇{〈φ, φ′〉 | 〈φ, φ′〉 ∈ Λedge(e′), φ ∈ AE(e), dst(e) = src(e′)} (4.16)

4. Propagate Reachability Changes Upstream of ox: The reachability states of edges
that abstract references that can reach ox must be updated to reflect the objects they
can now reach through the newly created edge. We define the change tuple set Cnx

=
{〈ψx, ψy ∪� ψx〉 | ψy ∈ Ψy, ψx ∈ Ψx} that updates the reachability states of edges
that can reach ox. Constraint 4.17 ensures that edges incident to the heap nodes that
abstract ox contain reachability change tuples that capture the reachability states of
the newly reachable objects. Constraint 4.18 ensures that the change set contains
tuples to re-establish the transitive reachability state property.

Υ edge(e)⊇{〈φ, φ′〉 | 〈φ, φ′〉 ∈ Cnx
, φ ∈ AE(e), dst(e) = nx} (4.17)

Υ edge(e)⊇{〈φ, φ′〉 | 〈φ, φ′〉 ∈ Υ edge(e′), φ ∈ AE(e), dst(e) = src(e′)} (4.18)

5. Update Edge Reachability: Finally, the analysis generates the reachability states
for the edges in the new graph. Equation 4.19 computes the reachability states of
all edges that existed before the store operation using the change tuple sets. Equa-
tion 4.20 computes the reachability for the newly created edges from the reachability
of the edges for y with the constraint that every reachability state on the edge must
be at least as large as the reachability state for the object ox. We define φ ⊆� φ′ if
∀〈n, μ〉 ∈ φ there exists a reachability tuple 〈n, μ′〉 ∈ φ′ such that μ � μ′.

AE ′
(e)=AE(e) ∪ {φ′ | 〈φ, φ′〉 ∈ Λedge(e), φ ∈ AE(e)} ∪

{φ′ | 〈φ, φ′〉 ∈ Υ edge(e), φ ∈ AE(e)} (4.19)

AE ′
(〈nx, f, ny〉)⊆{φ ∈ AE ′

(〈y, ny〉) | ∃φ′ ∈ AN ′
(nx), φ′ ⊆� φ} (4.20)

Strong Updates. While in general the analysis performs weak updates that simply add
edges, under certain circumstances the analysis can perform strong updates that also
remove edges to increase the precision of the results. Strong updates are possible under
either of two conditions. First, when variable x is the only reference to a heap node nx.
In this case we can destroy all reference edges from nx with field f because no other
variables can reach nx. Second, when the variable x references exactly one heap node
nx and nx is a single-object heap node. When this is true x definitely refers to the object
in nx and the existing edges with field f from nx can be removed.

For strong updates, the analysis first removes edges that the strong update eliminates.
It then performs the normal transform as described in this section. Note that when strong
updates remove edges, reachability of graph elements may change if the removed edges
provided the reachability path. Therefore, reachability states may become imprecise.
After a store transform with a strong update occurs, a global pruning step improves
imprecise reachability states. Section 4.9 presents the global pruning step.

Using Disjoint Reachability for Parallelization 209

4.6 Element Load and Store Statements

Our analysis implements the standard pointer analysis treatment of arrays: Array ele-
ments are treated as a special field of array objects and always have weak store seman-
tics. The analysis does not differentiate between different indices. This treatment can
cause imprecision for operations such as vector removes that move a reference from
one array element to another. Our implementation uses a special analysis to identify
array store operations that acquire an object reference from an array and then create a
reference from a different element of that array to the same object. Because the graph
already accounts for this reachability, the effects of such stores can be safely omitted.

4.7 Return Statement

Return statements are of the form return x and return the object referenced by x.
Each reachability graph has a special Return variable that is out of program scope. At
a method return the transfer function assigns the Return variable to the references of
variable x. We assume without loss of generality that the control flow graph has been
modified to merge the control flow for all return statements.

4.8 Control Flow Join Points

To analyze a statement, the analysis first computes the join of the incoming reachability
graphs. The operation for merging reachability graphs r0 and r1 into rout follows below:

1. The set of variables for rout is the set of live variables into the statement.
2. The set of heap nodes for rout is the union of the heap nodes in the input graphs. The

union of the reachability states is taken,AN
out(n) = AN

0 (n) ∪ AN
1 (n).

3. The set of reference edges for rout is the union of the reference edges of the input
graphs. Reference edges are unique in a reachability graph with respect to source,
field, and destination. For a reference edge e, AE

out(e) = AE
0 (e) ∪ AE

1 (e).

4.9 Global Pruning

When strong updates remove edges, the reachability states may become imprecise. The
call site transfer function in Section 5 can also introduce imprecise reachability states.
Our analysis includes a global pruning step that uses global reachability constraints
to prune imprecise reachability states to improve the precision of the analysis results.
The intuition behind global pruning is that multiple abstract states can correspond to
the same set of concrete heaps, and the global pruning step generates an equivalent
abstraction that locally has more precise reachability states.

Global Reachability Constraints. Reachability information must satisfy two reacha-
bility constraints that follow from the discussion in Section 3.3.

• Node reachability constraint: For each node n, ∀φ ∈ AN (n), ∀〈n′, μ〉 ∈ φ, if
μ ∈ {1, MANY} then there must exist a set of edges e1, . . . , em such that φ ∈ AE(ei)
for all 1 ≤ i ≤ m and the set of edges e1, . . . , em form a path through the reachability
graph from n′ to n.

210 J.C. Jenista, Y.h. Eom, and B. Demsky

• Edge reachability constraint: For each edge e, ∀φ ∈ AE(e) there exists n ∈ N and
e1, . . . , em ∈ E such that φ ∈ AN (n); φ ∈ AE(ei) for all 1 ≤ i ≤ m; and the set of
edges e1, . . . , em form a path through the reachability graph from e to n.

The first phase of the algorithm generates a reachability graph with the most precise
set of reachability states for the nodes. The second phase of the algorithm generates the
most precise set of reachability states for the edges.

1. Improve the precision of the node reachability states: The algorithm first uses
the node reachability constraint to prune the reachability states of nodes. This phase
uses the existing AE to prune reachability tuples from imprecise reachability states to
generate a more preciseAN ′

from the previousAN . The algorithm iterates through each
flagged node nf . The function AE

f (e) maps the edge e ∈ E to the set of reachability
states Φ for which each φ ∈ Φ (1) includes a non-zero arity reachability tuple with the
node nf and (2) there exist a path from nf to e for which every edge along the path
contains φ in its set of reachability states. We computeAE

f using a fixed-point algorithm
on the following two constraints:

∀e ∈ Ee(nf),AE
f (e) ⊇ AE(e), (4.21)

∀e ∈ E, e′ ∈ Ee(dst(e)),AE
f (e′) ⊇ AE(e′) ∩ AE

f (e). (4.22)

For each node n and each reachability state φ ∈ AN (n) the analysis shortens φ to
remove tuples 〈nf , 1〉 or 〈nf , MANY〉 to generate a new reachability state φ′ if φ does
not appear in AE

f (e) of any edge e incident to n. This step does not prune 〈nf , 1〉 or
〈nf , MANY〉 from the reachability states of flagged nodes nf . The analysis then propa-
gates these changes toAE of the upstream edges using the same propagation procedure
described by Equations 4.15 and 4.16 to generateAE

r .

2. Improve the precision of the edge reachability states: The algorithm next uses the
pruned node reachability states inAN ′

andAE
r to generate a more preciseAE ′

. The in-
tuition is that an edge can only have a given reachability state if there exists a path from
that edge to a node with that reachability state such that all edges along the path contain
the reachability state. The analysis starts from every heap node n and propagates the
reachability states of AN (n) backwards over reference edges. The analysis initializes
AE ′ = {AE

r (e) ∩AN ′(n) | ∀e ∈ E, n = dst(e)}. The analysis then propagates reach-
ability information backwards to satisfy the constraint:AE ′(e) ⊇ AE

r (e)∩AE ′(e′) for
all e′ ∈ Ee(dst(e)). The propagation continues until a fixed-point is reached.

4.10 Static Fields

We have omitted analysis of static fields or globals. We assume that the preprocessing
stage creates a special global object that contains all of the static fields and passes it to
every call site. Through this semantics-preserving program transformation, static field
store and load statements become normal store and load statements, respectively.

Using Disjoint Reachability for Parallelization 211

5 Interprocedural Analysis

The interprocedural analysis adds a call site transfer function to the intraprocedural
analysis. It uses a standard fixed-point algorithm that accommodates recursive call
chains and begins by analyzing the main method. Our analysis processes each method
using one context that summarizes the heaps for all call sites.

We expose only the callee reachable portion of the caller’s heap when analyzing a
callee method, similar to previous work [17, 18] but with extensions to accommodate
reachability properties. A summary of the transform follows:

i) Compute the portion of the heap that is reachable from the callee.
ii) Rewrite reachability states to abstract flagged heap nodes that are not in the callee

heap with special out-of-context heap nodes.
iii) Merge this portion of the heap with the callee’s current initial graph. If the graph

changes, schedule the callee for reanalysis.
iv) Specialize the callee’s current analysis result using the caller context.
v) Replace the callee reachable part of the caller’s heap with the specialized results.
vi) Merge nodes such that each allocation site has at most one summary heap node and

one single object heap node.
vii) Call the global pruning step (Section 4.9) to improve the precision of the graph.

5.1 Compute Callee Context Subgraph

For each call site, the analysis computes the subgraph Gsub ⊆ G that is reachable
from the call site’s arguments. For each incoming edge 〈n, f, n′〉 ∈ E into Gsub where
n /∈ Gsub and n′ ∈ Gsub, the analysis generates a new placeholder node np and a new
edge e′ = 〈np,R(n′)〉 where AE(e′) = AE(e). The placeholder node np serves as a
proxy flagged node for all reachability nodes in AN (n) during global pruning in the
callee context. For each incoming edge 〈v, n′〉 ∈ E into Gsub where n′ ∈ Gsub, the
analysis generates a new placeholder variable vp and placeholder edge ep = 〈vp, n

′〉
whereAE(ep) = AE(e).

5.2 Out-of-Context Reachability

Summarization presents a problem for any out-of-context flagged heap node nf /∈ Gsub

that appears in reachability states of an in-context heap node n ∈ Gsub. The interpro-
cedural analysis uses placeholder flagged nodes to rewrite out-of-context flagged heap
nodes in reachability states. Each heap node nf that appears in AN of a placeholder
node is (1) outside of the graph Gsub and (2) abstracts objects that can potentially reach
objects abstracted by the subgraph Gsub. The analysis replaces all such nodes in all in-
context reachability states with special out-of-context heap nodes for the allocation site.
There can be up to two out-of-context heap nodes per an allocation site: one is a sum-
mary node and one abstracts the most recently allocated object from the allocation site.
The purpose of these heap nodes is to allow the analysis of the callee context to summa-
rize in-context, single-object heap nodes without affecting out-of-context flagged heap
nodes that can reach objects in the callee’s reachability graph.

212 J.C. Jenista, Y.h. Eom, and B. Demsky

The analysis maps (1) the newest single-object heap node for an allocation site that
is out of the callee’s context to the special single-object out-of-context heap node and
(2) all other nodes for the allocation site that are out of the callee’s context for the heap
node to the special summary out-of-context heap node. The analysis stores this mapping
for use in the splicing step. These special out-of-context nodes serve as placeholders to
track changes to the reachability of out-of-context edges.

5.3 Merge Graphs

The analysis merges the subgraphs from all calling contexts using the join operation
from Section 4.8 to generate Gmerge. The analysis of the callee operates on Gmerge.

5.4 Predicates

The interprocedural analysis extends all nodes, edges, and reachability states in Gmerge

with a set of predicates. These predicates are included to prevent nodes and edges from
escaping to the wrong call site and are used to correctly propagate reachability states
in the caller. Predicates are comprised of the following atomic predicates, which can be
combined with logical disjunction (or):

• Edge e exists with reachability state φ in Gsub of the caller
• Node n exists with reachability state φ in Gsub of the caller
• Edge e exists in Gsub of caller
• Node n exists in Gsub of caller
• true

The caller analysis begins by initializing the predicates for all nodes, edges, and reach-
ability states to tautologies. For example, the initial predicate for a node n is that the
node n exists in the caller — this prevents node n from escaping to the wrong call site.
The initial predicate for a reachability state φ on node n is that node n exists in Gsub of
the caller with reachability state φ.

Store operations can change the reachability states of both edges and nodes. When
the propagation of a change set creates a new reachability state on a node or an edge, the
new state inherits the predicate from the previous state on the node or edge, respectively.
Object allocation operations can merge single-object heap nodes into the corresponding
summary node. In this case, predicates for the nodes are or’ed together. Likewise, if the
operation causes two edges to be merged, their predicates are also or’ed together. Du-
plicated reachability states may also be merged and their predicates are or’ed together.

Newly created nodes or edges are assigned the true predicate.

5.5 Specializing the Graph

The algorithm uses Gsub to specialize the callee heap reachability graph Gcallee. The
analysis makes a copy of the heap reachability graph Gcallee. It then prunes all elements
of the graph whose predicates are not satisfied by the caller subgraph Gsub. The callee
predicates of each heap element in Gcallee are replaced with the caller predicate for the
heap element in Gsub that satisfied the callee predicate.

Using Disjoint Reachability for Parallelization 213

If a reachability state contains out-of-context heap nodes, then the analysis uses
the stored mapping to translate the out-of-context heap nodes to caller heap nodes.
The stored mapping may map multiple heap nodes to the same out-of-context sum-
mary heap node. If the arity of the reachability tuple for an out-of-context heap node
was 1, then the analysis generates all permutations of the reachability state using the
stored mapping from Section 5.2. If the arity was MANY, the analysis replaces the
reachability tuple with a set of reachability tuples that contains one tuple for each
heap node that mapped to the out-of-context summary node and that tuple has arity
MANY.

5.6 Splice in Subgraph

This step splices the physical graphs together. The placeholder nodes are used to splice
references from the caller graph to the callee graph. The placeholder edges are used to
splice caller edges into the callee graph.

Finally, the reachability changes are propagated back into the out-of-context heap
nodes of the caller reachable portion of the reachability graph. The analysis uses pred-
icates to match the reachability states on the original edges from the out-of-context
portion of the caller graph into Gsub. The analysis generates a change set for each edge
that tracks the out-of-context reachability changes made by the callee. It then solves
constraints of the same form as Constraints 4.15 and 4.16 to propagate these changes to
upstream portions of the caller graph.

5.7 Merging Heap Nodes

At this point, the graph may have more than one single object heap node or summary
heap node for a given allocation site. The algorithm next merges all but the newest single
object heap node into the summary heap node. It rewrites all tokens in all reachability
states to reflect this merge, and then updates the arities.

5.8 Global Pruning

Finally, the analysis calls the global pruning algorithm to remove imprecision poten-
tially caused by our treatment of reachability from out-of-context heap nodes.

6 Evaluation

We have implemented the analysis in our compiler and analyzed eight OoOJava bench-
marks [14]. In OoOJava the developer annotates code blocks as tasks that the compiler
may decouple from the parent thread. OoOJava uses disjointness analysis combined
with other analyses to generate a set of runtime dependence checks that parallelize the
execution only when it can preserve the behavior of the original sequential code — an-
notations do not affect the correctness of the program. The analysis and benchmarks are
available at http://demsky.eecs.uci.edu/compiler.php.

http://demsky.eecs.uci.edu/compiler.php

214 J.C. Jenista, Y.h. Eom, and B. Demsky

Benchmark Time (s) Lines Speedup
Crypt 1.2 2,035 17.7×
KMeans 3.5 3,220 13.8×
Labyrinth 84.8 4,315 11.1×
MolDyn 13.8 2,299 13.8×
MonteCarlo 4.8 5,669 18.7×
Power 6.2 1,846 20.2×
RayTracer 22.1 2,832 20.0×
Tracking 331.2 4,747 20.2×

Fig. 5. Out-of-order Java Results (24 cores)

6.1 Benchmarks

We analyzed and parallelized the following eight benchmarks. From Java Grande [19]
we ported all of the large benchmarks: RayTracer, a ray tracer; MonteCarlo, a Monte
Carlo simulation; and MolDyn, a molecular dynamics simulation. We also ported Crypt,
an IDEA encryption algorithm, from Java Grande. We ported KMeans, a data clustering
benchmark, and Labyrinth, a maze-routing benchmark, from STAMP [20]. Power is a
power pricing benchmark from JOlden [21] and Tracking is a vision benchmark from
the SDVBS [22]. The benchmarks range from 1,846 to 5,669 lines of code, with an
average of 96.3 methods per benchmark.

6.2 Disjoint Reachability Analysis Results

We next examine the reachability properties the analysis extracted for our benchmarks.
We expect developers might examine the results for particular program points to learn
about possible sharing. For instance, disjoint reachability analysis reported that itera-
tions of the main loop in RayTracer reached a common scratchpad object which pre-
vented OoOJava from parallelizing the loop. The information allowed the authors to
move the scratchpad object into the loop scope to obtain a parallel implementation.

Section 4.6 states that disjoint reachability analysis does not differentiate between
array indices; however, it is common programming practice to store a parallelizable
workload in an array. Disjoint reachability analysis can provide sufficient precision for
parallelization in such a case by examining the disjoint reachability properties of an
object just after it is selected from an array, as shown in the example presented in Sec-
tion 2. We ported the array-based benchmarks using this simple pattern.

Labyrinth allocates Grid data structures in a way that makes it difficult for many
heap analyses to determine that the inner loop for finding routes may be parallelized.
The main complication is that an array of Grid data structures is allocated in a separate
method and then Grid data structures are reused in each iteration of the inner loop for
calculating a route. OoOJava flags the allocation of Grid root objects; disjoint reacha-
bility analysis then determines that, at the work division program point, the objects that
comprise a Grid data structure are only reachable from exactly one Grid data struc-
ture root object. Determining statically that different tasks access unique Grid objects
is likely to be challenging for any static analysis and therefore purely static approaches
are likely to fail. Instead, OoOJava generates a dynamic check that each task has a

Using Disjoint Reachability for Parallelization 215

unique Grid data structure root object which, combined with the static reachability
information, guarantees there are no conflicts on the Grid data structures.

Power calculates the price of power in a simulated network; each major branch of
the network is modeled with a Lateral object that references a tree of Branch and
Leaf objects. Disjoint reachability analysis finds that all Demand objects written to
during the simulation are reachable from at most one Lateral object. This allows
OoOJava to parallelize tasks by verifying they operate on different Lateral objects.

MolDyn allocates a collection of scratchpad data structures and gives one scratch-
pad data structure to each parallel task. In the main loop a second task aggregates the
results by reading all scratchpad objects. OoOJava flags the scratchpad root object;
disjoint reachability analysis concludes that all objects in the scratchpad data struc-
tures accessed by a parallel task are reachable from at most one scratchpad root object.
OoOJava therefore parallelizes the main computation using a dynamic check on the
scratchpad data structures and serializes the aggregation steps.

The benchmarks Tracking, KMeans, Crypt, and Monte use different data structures
but have a common work division pattern: the main loop consists of a parallel phase
followed by an aggregation phase. The results of disjoint reachability analysis for each
of these benchmarks correctly inform OoOJava that the aggregation phases must be
serialized because they have actual data structure conflicts.

6.3 Parallelization Speedups

We used OoOJava to analyze and parallelize eight benchmarks on a 2.27 GHz Xeon.
OoOJava makes queries to disjoint reachability analysis when generating a parallel im-
plementation. We then executed our benchmark applications on a 1.9 GHz 24-core
AMD Magny-Cour Opteron with 24 cores and 16 GB of memory. Figure 5 presents
the speedups and the time column shows the analysis time. The speedups are relative to
the single-threaded Java versions compiled to C using the same compiler.

The significant speedups indicate that disjoint reachability analysis extracts reach-
ability properties with sufficient precision for OoOJava to generate efficient parallel
implementations. The speedups in Crypt, KMeans, Labyrinth and MolDyn are lim-
ited by significant sequential dependences. RayTracer’s and MonteCarlo’s speedups are
also limited by sequential dependences. We compared our parallel implementations of
KMeans and Labyrinth to the parallelized TL2 versions included in STAMP, with and
without the additional overheads from array bounds checks in our compiler. With array
bounds checks our versions of KMeans and Labyrinth ran 1.70× and 1.51× faster than
TL2 versions, respectively, and without the checks they ran 2.62× and 2.08× faster.

To quantify the overhead of our research compiler, we compared the generated code
against the OpenJDK JVM 14.0-b16 and GCC 4.1.2. The sequential version of Crypt
compiled with our compiler ran 4.6% faster than on the JVM. We also developed a C++
version compiled with GCC and found our compiler’s version ran 25% slower than
the C++ version. Our compiler implements array bounds checking; with array bounds
checking disabled, the binary from our compiler runs only 5.4% slower than the C++
binary. We used the optimization flag -O3 for both the C++ version and the C code
generated by our compiler. This is in close agreement with more extensive experiments

216 J.C. Jenista, Y.h. Eom, and B. Demsky

Graph Vertex Vertexh v
v

Graph Vertex Vertexh v
c

c

c

c
v

(a) Concrete heap

n1
Graph

{[<n ,1>]}
1 c

h
v n3

{[<n ,1>,1

2

3

n2
Vertex

{[<n ,1>,
1

<n ,many>]}2
<n ,many>,
<n ,1>]}

(b) Reachability graph

Fig. 6. An example concrete heap with a reachability graph

we performed. Those experiments measured an average overhead for our compiler with
array bounds checks disabled of 4.9% relative to GCC.

7 Related Work

We discuss related work in heap analyses, logics, and type systems.

7.1 Shape Analysis

Disjoint reachability analysis discovers properties that are related to but different from
those discovered by shape analysis [3–7]. Shape analysis, in general, discovers local
properties of heap references and from these properties infers a rich set of derived prop-
erties including reachability and disjointness. Where shape analysis can find proper-
ties that arise from local invariants, disjoint reachability analysis can find the relative
disjointness and reachability properties for any pair of objects. Disjoint reachability
analysis complements shape analysis by discovering disjoint reachability properties for
arbitrarily complex structures. Calcagno et al. present a shape analysis that focuses on
discovering different heap properties [23].

We motivate our discussion of shape analysis with a concrete heap example. Fig-
ure 6(a) illustrates a simple concrete heap where a Graph can reach several Vertex
objects that all point to a graph-local Config object. We expect that many real pro-
grams construct data structures with sharing patterns similar to this example. A possible
reachability graph in Figure 6(b) contains enough information to show that Config
and Vertex objects are reachable from at most one Graph object. Some shape analy-
ses [3, 4] focus on local shape properties (Is every node in a tree a valid tree node?) and
understandably lose precision with the above example or the singleton design pattern.
Singleton design patterns include references to globally shared objects. Some paral-
lelizable phases may not even access the shared object, but the presence of a shared
object will cause problems for many shape analyses. Our analysis can infer that oper-
ations on different graphs that access both Vertex and Config objects may execute
in parallel. Note that this result is independent of the relative shape of Vertex objects
in the heap.

Marron et al. extend the shape approach for more general heaps with edge-sharing
analysis [7, 24]. Their analysis can discover that the Vertex objects from different
Graph objects are disjoint. However, their edge-sharing abstraction is localized and
thus cannot always resolve non-local reachability properties.

TVLA [5] is a framework for developing shape analysis. Disjointness properties can
be written as instrumentation predicates in TVLA, but the system will evaluate them

Using Disjoint Reachability for Parallelization 217

using the default update rule, providing acceptable results only for trivial examples.
To maintain precision, update rules for the disjointness predicates must be supplied, a
task that we expect is equivalent in difficulty to disjoint reachability analysis. While
TVLA contains reachability predicate update rules, these cannot capture that an object
is reachable from exactly one member of a summarized node. Furthermore, the TVLA
framework does not scale to the size of our benchmarks.

Separation logic [12] can express that formulas hold on disjoint heap regions. Distef-
ano [25] proposes a shape analysis for linked lists based on separation logic. Raza [26]
extends separation logic with assertions to identify statements that can be parallelized.
These shape analyses based on separation logic are at an early stage and cannot extract
disjoint reachability properties for our examples.

7.2 Alias and Pointer Analysis

Alias analysis [8–10] and pointer analysis [1, 2], like disjoint reachability analysis, ana-
lyze source code to discover heap referencing properties. Aiken [11] is similar, but their
type system names objects by allocation site and loop iteration. Unlike our analysis,
their approach cannot maintain disjointness properties for mutation outside of the allo-
cating loop. Lattner [27] employs a unification-based pointer analysis that scales well,
but cannot maintain disjointness properties for data structures that are merged at a later
program point. Conditional must not aliasing analysis by Naik and Chatterjee et al. de-
scribe a modular points-to analysis that does not extract disjoint reachability properties,
but introduces an alternative approach to abstracting caller contexts [28].

7.3 Other Analyses and Type Systems

Sharing analysis [29] computes sharing between variables. Sharing analysis could not
determine disjoint reachability properties for the example in Figure 1 of our paper as it
would lose information about the relative disjointness of graphs in the array.

Connection analysis discovers which heap-directed pointers may reach a common
data structure [30]. There are a finite number of pointers in a program, which implies
that connection analysis can only maintain a finite number of disjoint relations. For
example, connection analysis cannot determine that all Graph objects in our paper’s
example reference mutually disjoint sets of Vertex objects.

Ownership type systems have been developed to restrict aliasing of heap data struc-
tures [31, 32]. Our analysis infers similar properties without requiring annotations.

Craik and Kelly use the property of ownership among objects [33] to discover dis-
joint ownership contexts, similar to disjoint reachability properties. They do not attempt
to track side effects, so their analysis, in comparison to disjoint reachability analysis,
can scale better but has significantly less precision.

8 Conclusion

If a compiler can determine that code blocks perform memory accesses that do not
conflict, it can safely parallelize them. Traditional pointer analyses have difficulty rea-
soning about reachability from objects that are abstracted by the same node. We present

218 J.C. Jenista, Y.h. Eom, and B. Demsky

disjoint reachability analysis, a new analysis for extracting reachability properties from
code. The analysis uses a reachability abstraction to maintain precise reachability infor-
mation even for multiple objects from the same allocation site. We have implemented
the analysis and analyzed eight benchmark programs. The analysis results enabled par-
allelization of these benchmarks that achieved significant performance improvements.

Acknowledgements

This research was supported by the National Science Foundation under grants CCF-
0846195 and CCF-0725350. We thank Mark Marron and the reviewers for feedback.

References

1. Shapiro, M., Horwitz, S.: Fast and accurate flow-insensitive points-to analysis. In: POPL
(1997)

2. Landi, W., Ryder, B.G., Zhang, S.: Interprocedural modification side effect analysis with
pointer aliasing. In: PLDI (1993)

3. Chase, D.R., Wegman, M., Zadeck, F.K.: Analysis of pointers and structures. In: PLDI (1990)
4. Ghiya, R., Hendren, L.J.: Is it a tree, a dag, or a cyclic graph? A shape analysis for heap-

directed pointers in C. In: POPL (1996)
5. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. TOPLAS

(2002)
6. McPeak, S., Necula, G.C.: Data structure specifications via local equality axioms. In:

Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 476–490. Springer,
Heidelberg (2005)

7. Marron, M., Kapur, D., Hermenegildo, M.: Identification of logically related heap regions.
In: ISMM (2009)

8. Diwan, A., McKinley, K.S., Moss, J.E.B.: Type-based alias analysis. In: PLDI (1998)
9. Ruf, E.: Partitioning dataflow analyses using types. In: POPL (1997)

10. Deutsch, A.: Interprocedural may-alias analysis for pointers: Beyond k-limiting. In: PLDI
(1994)

11. Naik, M., Aiken, A.: Conditional must not aliasing for static race detection. In: POPL (2007)
12. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. LICS (2002)
13. Choi, J.D., Burke, M., Carini, P.: Efficient flow-sensitive interprocedural computation of

pointer-induced aliases and side effects. In: POPL (1993)
14. Jenista, J.C., Eom, Y., Demsky, B.: OoOJava: An out-of-order approach to parallel program-

ming. In: HotPar (2010)
15. Jenista, J.C., Eom, Y., Demsky, B.: OoOJava: Software out-of-order execution. In: PPoPP

(2011)
16. Zhou, J., Demsky, B.: Bamboo: A data-centric, object-oriented approach to multi-core soft-

ware. In: PLDI (June 2010)
17. Rinetzky, N., Bauer, J., Reps, T., Sagiv, M., Wilhelm, R.: A semantics for procedure local

heaps and its abstractions. In: POPL (2005)
18. Marron, M., Hermenegildo, M., Kapur, D., Stefanovic, D.: Efficient context-sensitive shape

analysis with graph based heap models. In: Hendren, L. (ed.) CC 2008. LNCS, vol. 4959,
pp. 245–259. Springer, Heidelberg (2008)

19. Smith, L.A., Bull, J.M., Obdrzálek, J.: A parallel Java Grande benchmark suite. In: SC (2001)
20. Cao Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transactional ap-

plications for multi-processing. In: IISWC (2008)

Using Disjoint Reachability for Parallelization 219

21. Cahoon, B., McKinley, K.S.: Data flow analysis for software prefetching linked data struc-
tures in Java. In: PACT (2001)

22. Venkata, S.K., Ahn, I., Jeon, D., Gupta, A., Louie, C., Garcia, S., Belongie, S., Taylor, M.B.:
SD-VBS: The San Diego Vision Benchmark Suite. In: IISWC (2009)

23. Calcagno, C., Distefano, D., OHearn, P., Yang, H.: Compositional shape analysis by means
of bi-abduction. In: POPL (2009)

24. Marron, M., Méndez-Lojo, M., Hermenegildo, M., Stefanovic, D., Kapur, D.: Sharing anal-
ysis of arrays, collections, and recursive structures. In: PASTE (2008)

25. Distefano, D., OHearn, P.W., Yang, H.: A local shape analysis based on separation logic.
LNCS (2006)

26. Raza, M., Calcagno, C., Gardner, P.: Automatic parallelization with separation logic. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 348–362. Springer, Heidelberg (2009)

27. Lattner, C., Adve, V.: Automatic pool allocation: improving performance by controlling data
structure layout in the heap. In: PLDI (2005)

28. Chatterjee, R., Ryder, B.G., Landi, W.A.: Relevant context inference. In: POPL (1999)
29. Méndez-Lojo, M., Hermenegildo, M.V.: Precise set sharing analysis for Java-style programs.

In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 172–187.
Springer, Heidelberg (2008)

30. Ghiya, R., Hendren, L.J.: Connection analysis: A practical interprocedural heap analysis for
C. IJPP (1996)

31. Clarke, D.G., Drossopoulou, S.: Ownership, Encapsulation and the Disjointness of Type and
Effect. In: OOPSLA (2002)

32. Heine, D.L., Lam, M.S.: A practical flow-sensitive and context-sensitive C and C++ memory
leak detector. In: PLDI (2003)

33. Craik, A., Kelly, W.: Using ownership to reason about inherent parallelism in object-oriented
programs. In: Gupta, R. (ed.) CC 2010. LNCS, vol. 6011, pp. 145–164. Springer, Heidelberg
(2010)

Appendix

A Semantics for Intraprocedural Analysis

Define the concrete heap H = 〈O, R〉 as a set of objects o ∈ O and a set of references
r ∈ R ⊆ O × {Fields} × O. We assume a straightforward collecting semantics for
the statements in the control flow graph that are relevant to our analysis. The collecting
semantics would record the set of concrete heaps that a given statement operates on.

The concrete domain for the abstraction function is a set of concrete heaps h ∈
P(H). The abstract domain is defined in Section 3.2. The abstract state is given by the
tuple 〈E,AN ,AE〉, where E is the set of edges,AN is the mapping from nodes to their
sets of reachability states, andAE is the mapping from edges to their sets of reachability
states. We next define the lattice for the abstract domain. The bottom element has the
empty set of edges E and empty reachability information for both the nodes AN and
the edgesAE . The top element for the lattice has (1) all the edges in E that are allowed
by type constraints between all reachability nodes, (2) each heap node n has tuples in
AN for the powerset of all heap nodes that are allowed by types to reach n, and (3)
each edge 〈n, f, n′〉 ∈ E has the powerset of the maximal set of tuples in AE that are
allowed by type constraints.

220 J.C. Jenista, Y.h. Eom, and B. Demsky

We next define the partial order for the reachability graph lattice. Equation A.1 de-
fines the partial order. The definition for the ⊆� relation between reachability states is
given in the Update Edge Reachability step of Section 4.5.

〈E,AN ,AE〉 �A 〈E′,AN ′
,AE ′〉 iff E ⊆ E′ ∧ 〈AN ,AE〉 � 〈AN ′

,AE ′〉(A.1)

〈AN ,AE〉 � 〈AN ′
,AE ′〉 iff ∀n ∈ N, ∀φ ∈ AN (n), ∃φ′ ∈ AN ′

(n),
φ ⊆� φ′ ∧ (∀〈n1, f1, n2〉, ..., 〈nk, fk, n〉 ∈ E,

φ ∈ AE(〈n1, f1, n2〉) ∩ ... ∩ AE(〈nk, fk, n〉)⇒
φ′ ∈ AE ′

(〈n1, f2, n2〉) ∩ ... ∩AE ′
(〈nk, fk, n〉)) (A.2)

The join operation (〈E1,AN
1,AE

1〉�〈E2,AN
2,AE

2〉) on the heap reachability graph
lattice simply takes the set unions of the individual components: 〈E1 ∪ E2,AN

1 ∪
AN

2,AE
1 ∪ AE

2〉.
We next define several helper functions. Equation A.3 defines the meaning of the

statement that object o is reachable from the object o′ in the concrete heap R. We
define the object abstraction function rgn(o) to return the single object heap node for
o’s allocation site if o is the most recently allocated object and the allocation site’s
summary node otherwise. Equation A.4 returns the number of objects abstracted by
heap node nf that can reach the object o. Equation A.5 abstracts the natural numbers
into one of three arities. Equation A.6 computes the abstract reachability state for object
o in the concrete heap 〈O, R〉.

rch(o′, o, R) = ∃f, o1, f1, ..., ol, fl.〈o′, f, o1〉, ..., 〈oi, fi, oi+1〉, ...,
〈ol, fl, o〉 ∈ R (A.3)

count(o, O, R, nf) = | {o′ | ∀o′ ∈ O.rgn(o′) = nf , rch(o′, o, R)} | (A.4)

abst(n) =

⎧⎪⎨
⎪⎩
0 n = 0
1 n = 1
MANY otherwise

(A.5)

φ(o, O, R) = {〈nf , abst(count(o, O, R, nf))〉 | nf ∈ NF } (A.6)

We next define abstraction functions that return the most precise reachability graph
for the set of concrete heaps h ⊆ P(H). We use the standard subset partial order-
ing relation for our concrete domain of sets of concrete heaps. Equation A.7 generates
the edge abstraction, Equation A.8 generates the reachability state abstraction for each
node, and Equation A.9 generates the reachability state abstraction for each edge. Note
that from the form of the definition of the abstraction function, we can see that it is
monotonic. We mechanically synthesize a concretization function γ(〈E,AN ,AE〉) =
�{h | α(h) � 〈E,AN ,AE〉} to create a Galois connection. The pair α and γ do not
form a Galois insertion as two abstract reachability graphs can have the exact same
set of concretizations. The global pruning algorithm addresses the practical effects on
analysis precision of this issue by converting abstract reachability graphs into equivalent
graphs that contain locally more precise reachability states.

Using Disjoint Reachability for Parallelization 221

αE(h) = {〈rgn(o), f, rgn(o′)〉 | ∀〈o, f, o′〉 ∈ R, ∀〈O, R〉 ∈ h} (A.7)

αAN (h) = {〈rgn(o), φ(o, O, R)〉 | ∀o ∈ O, ∀〈O, R〉 ∈ h} (A.8)

αAE (h) = {〈〈rgn(o′), f, rgn(o′′)〉, φ(o, O, R)〉 | ∀o ∈ O,

∀〈o′, f, o′′〉 ∈ R, ∀〈O, R〉 ∈ h.rch(o′′, o, R)} (A.9)

B Termination

Termination of the analysis is straightforward. Reachability graphs form a lattice, and
for a given set of allocation sites the lattice has a finite height. All transfer functions in
the analysis are monotonic except stores with strong updates and method calls. With a
simple modification to enforce monotonicity the analysis will terminate.

Our approach to enforcing monotonicity is to store the latest reachability graph result
for every back edge and program point after a method call. The fixed point interproce-
dural algorithm takes the join of its normal result with these graphs to ensure the local
result becomes no smaller.

C Soundness of the Core Intraprocedural Analysis

In this section, we outline the soundness of the core intraprocedural analysis. For all
soundness lemmas, we argue (α ◦ f)(h) �A (f# ◦ α)(h), where f represents the con-
crete operation and f# is the corresponding transfer function on the abstract domain,
to show soundness.

Lemma 1 (Soundness of Copy Statement Transfer Function). The transfer function
for the copy statement x=y is sound with respect to the concrete copy operation.

Proof Sketch: The soundness of the transfer function for the copy statement x=y is
straightforward. After the execution of the copy statement on the concrete heap, the
variable x references the object that y referenced before the statement. We note that
applying the abstraction function after the concrete copy statement yields the exact
same abstract reachability graph as applying the abstraction function followed by the
transfer function for the copy statement, therefore the copy transfer function is sound.

Lemma 2 (Soundness of Load Statement Transfer Function). The transfer function
for the load statement x=y.f is sound with respect to the concrete load operation.

Proof Sketch: The soundness of the transfer function for the load statement x=y.f is
also relatively straightforward. After the execution of the load statement on the concrete
heap, the variable x references the object referenced by the f field of the object refer-
enced by y. After abstraction, the edge for x would reference the same objects as the f
field of the objects referenced by y and have the same reachability set.

The soundness of the edge set transform follows from the definition of αE — all
objects that y.f could possibly reference are included in the set En(y, f). Therefore,
applying the abstraction function followed by removing the previous edges for x and
adding the set of edges {x} × En(y) gives an E set that contains all of the edges
generated by applying the transfer function and then abstraction function.

222 J.C. Jenista, Y.h. Eom, and B. Demsky

From the definition of αAE we can determine that for each n that could abstract
the object referenced by y and each corresponding n′ that could abstract the object
referenced by y.f, that the reference y.f could only reach objects with reachability
states included in the set AE(〈y, n〉) ∩ AE(〈n, f, n′〉). Note the subtle point that the
correctness of the intersection operation follows from the edge reachability aspect of
the abstraction function definition (and not from the lattice ordering) — there must
exist a path through the y reference and y.f to any objects that can be reached by the
new x and by the abstraction function both y and y.f will include the reachability
states of those objects. Therefore, the application of the abstraction function followed
by the transfer function generates a set of reachability states for edges of y that include
all of the reachability states generated by applying the concrete load statement followed
by the abstraction function.

Lemma 3 (Soundness of Allocation Statement Transfer Function). The transfer
function for the allocation statement x=new is sound with respect to the concrete allo-
cation operation.

Proof Sketch: The transfer function for the allocation statement is similarly straightfor-
ward. The execution of the allocation statement on the concrete heap followed by the
abstraction function yields an abstract reachability graph in which the previous newest
allocated object at the site is now mapped to the summary node. The allocation state-
ment transfer function applied to the abstraction function yields the exact same reacha-
bility graph and therefore the transfer function is sound.

If the allocation site is flagged, the new heap node has a single reachability state that
contains a single reachability token with its own heap node and the arity 1. The variable
edge contains the same set of reachability states. If the allocation site is not flagged, the
sets of reachability states contains only the empty reachability state.

Lemma 4 (Soundness of Store Statement Transfer Function). The transfer function
for the allocation statementx.f=y is sound with respect to the concrete store operation.

Proof Sketch: We define ox to be the concrete object referenced by x and oy to be the
concrete object referenced by y. The store operation can only add new paths in the
concrete heap that include the newly created reference 〈ox, f, oy〉. In the abstraction,
En(x) gives the heap nodes that abstract the objects that x may reference and En(y)
gives the heap nodes that abstract the objects that y may reference. The concrete op-
eration x.f=y creates a reference from the f field of the object that x references to
the object that y references. Applying the abstraction function, the creation of this new
reference in all concrete heaps represented by the abstract heap adds a set of edges
Enew ⊆ En(x)×{f}×En(y) to the abstract heap. Since the application of the transfer
function to the initial abstraction adds a larger set of edges, it generates an abstract edge
set that is higher in the partial order and therefore our treatment of edges in the store
statement is sound.

We next discuss the soundness of the transfer function with respect to the reacha-
bility states for nodes. We note that the addition of the concrete reference can only (1)
introduce new reachability from objects that could reach ox to objects that oy can reach
and (2) allow edges that could reach ox to reach objects that oy can reach. The set Ψx

Using Disjoint Reachability for Parallelization 223

defined in Equation 4.10 abstracts the reachability states for the objects that can reach
ox by the abstraction function. Similarly, Ψy from Equation 4.11 abstracts the allocation
sites for the objects that can reach the objects downstream of oy.

By the abstraction function and the partial order, if an object abstracted by a heap
node ny ∈ En(y) can reach an object abstracted by the heap node n′ with the abstract
reachability state φ, then there must exist a path of edges from ny to n′ ∈ N in the
abstract reachability graph in which every edge along the path has φ in its set of reach-
ability states and n′ has φ in its set of reachability states and φ ∈ Ψy. By the abstraction
function, the set of reachability states ψx ∈ Ψx for nx abstract ox’s reachability from
all objects from flagged nodes. Therefore, the constraints given by Equations 4.12 and
4.13 will propagate the correct reachability change set to n′ and Equation 4.14 applies
these reachability changes to n′. This implies that the set of reachability states for the
nodes is higher or equal in the partial order of reachability graphs to the graph gener-
ated by applying a concrete operation followed by abstraction and therefore the node
reachability states are sound.

We next discuss soundness with respect to edges that are upstream of the objects
downstream of oy in the pre-transformed concrete heap. Consider an object o abstracted
by the heap node n that the store operation changed its reachability state from φ to φ′.
By the abstraction function and partial order function, for any reference in the concrete
heap, which we abstract by e, that can reach an object abstracted by the heap node n,
there must exist a path of edges from e to n in the pre-transformed heap in which φ is
in the reachability state of each edge along the path. Therefore, Constraints 4.15 and
4.16 propagate the reachability change tuple 〈φ, φ′〉 to e which Equation 4.19 will then
apply to e and all edges along the path from e to e′.

Finally, we discuss soundness with respect to edges upstream of ox that the newly
created edge allows to reach objects downstream of oy. Consider any upstream reference
in the concrete heap, which we abstract by the edge e that can reach an object abstracted
by the heap node nx ∈ En(x) — any reachability state it has for the source object of
the store must be abstracted by φ ∈ Ψx in pre-transformed abstract reachability graph
and there must exist a path of edges from e to nx such that φ is in the reachability state
of every edge along the path. Therefore, Constraints 4.17 and 4.18 propagate the new
reachability change tuples {〈φ, φ ∪ ψy〉 | ψy ∈ Ψy} to e and Equation 4.19 will then
apply the change tuple to e.

At this point, only the new edge remains. Constraint 4.20 simply copies the reach-
ability states from the edge for y whose reachability must be the same. It eliminates
reachability states that are smaller in the partial order than any state in the source node
as they must be redundant with some larger state. The previous three paragraphs imply
that the set of reachability states for edges are higher or equal in the partial order of
reachability graphs to the graph generated by applying a concrete operation followed
by abstraction and therefore the edge reachability states are sound.

Lemma 5 (Soundness of Global Pruning Transformation). The global pruning
transformation is sound (it generates an abstraction that abstracts the same concrete
heaps).

Proof Sketch: We begin by overviewing the soundness of the first phase of the global
pruning algorithm. Consider a flagged heap node nf and a node n that contains nf in its

224 J.C. Jenista, Y.h. Eom, and B. Demsky

reachability state φ with non-0 arity. From the abstraction function and partial order, if
there is no path from nf to n with φ in each edge’s set of reachability states, then objects
in the reachability state φ cannot be reachable from objects abstracted by nf . Therefore,
removing nf from the reachability set φ on n and adding this new reachability set to
all edges that (1) have φ in their reachability state and (2) have a path to n in which all
edges along the path have φ in their reachability state generates an abstract reachability
graph that abstracts the same concrete heaps and therefore the first phase is sound.

We next discuss the soundness of the second phase. Consider an edge e with a reach-
ability state φ. If there is no path from edge e to some node n with all edges along the
path containing φ in their sets of reachability states and node n including φ in its set
of reachability states, then dropping φ from edge e’s set of reachability states yields an
abstract state that abstracts the same concrete heaps because if a reference abstracted by
e could actually reach an object with the reachability state φ then the path would exist.
Therefore, the second phase is sound.

D Interprocedural Analysis

We next outline the soundness of the interprocedural analysis. There is a small issue in
the interprocedural analysis with the abstraction function for single-object heap nodes.
It is possible to have a callee method that only conditionally allocates an object at an
allocation site that the caller has a single-object heap node for. The mapping procedure
will then merge the caller’s single-object heap node into the summary node even though
it may abstract the most recently allocated object from the site. One can see that this
does not pose a correctness issue through a simple transform of the program that adds
a special instruction at each method return that allocates an unreachable object at the
given allocation site if the callee did not. It is straightforward to see that such a transform
preserves the semantics of the program because it does not change the reachable runtime
object graph and after this transform the abstract semantics exactly match the concrete
program.

We outline the soundness of the interprocedural analysis by analogy to the intrapro-
cedural analysis with inlining. We note that the callee operates on a graph that is a
superset of the callee reachable part of the heap. If we consider only those elements
that are in the callee reachable part of the heap, the analysis (1) generates a reachability
subgraph that is greater in the partial order than the reachability graph that the inlined
version would have and (2) all of those elements get mapped to the caller’s heap. We
note that reachability state changes on the placeholder edges and edges from place-
holder nodes summarize the reachability changes of upstream edges and are sound for
the same reasons as the store transfer function.

Data Layout Transformation for Stencil Computations
on Short-Vector SIMD Architectures

Tom Henretty1, Kevin Stock1, Louis-Noël Pouchet1, Franz Franchetti2,
J. Ramanujam3, and P. Sadayappan1

1 The Ohio State University
2 Carnegie Mellon University
3 Louisiana State University

Abstract. Stencil computations are at the core of applications in many domains
such as computational electromagnetics, image processing, and partial differen-
tial equation solvers used in a variety of scientific and engineering applications.
Short-vector SIMD instruction sets such as SSE and VMX provide a promising
and widely available avenue for enhancing performance on modern processors.
However a fundamental memory stream alignment issue limits achieved perfor-
mance with stencil computations on modern short SIMD architectures. In this
paper, we propose a novel data layout transformation that avoids the stream align-
ment conflict, along with a static analysis technique for determining where this
transformation is applicable. Significant performance increases are demonstrated
for a variety of stencil codes on three modern SIMD-capable processors.

1 Introduction

Short vector SIMD extensions are included in all major high-performance CPUs. While
ubiquitous, the ISA and performance characteristics vary from vendor to vendor and
across hardware generations. For instance, Intel has introduced SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, AVX, and LRBni ISA extensions over the years. With ev-
ery processor, the latency and throughput numbers of instructions in these extensions
change. IBM, Freescale, and Motorola have introduced AltiVec, VMX, VMX128, VSX,
Cell SPU, PowerXCell 8i SPU SIMD implementations. In some instances (RoadRun-
ner, BlueGene/L), custom ISA extensions were designed since the supercomputing in-
stallation was big enough to warrant such an investment. These extensions provide from
2-way adds and multiplies up to 16-way fused multiply-add operations, promising sig-
nificant speed-up. It is therefore important to optimize for these extensions.

Stencil computations represent an important class, occuring in many image process-
ing applications, computational electromagnetics and solution of PDEs using finite dif-
ference or finite volume discretizations. There has been considerable recent interest in
optimization of stencil computations [7], [6], [16], [17], [26], [25], [11], [34], [10],
[4], [9], [37], [35], [38], [8], [36], [40], [24], [21], [31]. In this paper, we focus on the
problem of optimizing single-core performance on modern processors with SIMD in-
struction sets. Stencil computations are readily expressible in a form with vectorizable
innermost loops where arrays are accessed at unit stride. However, as elaborated upon

J. Knoop (Ed.): CC 2011, LNCS 6601, pp. 225–245, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

226 T. Henretty et al.

later, there is a fundamental performance limiting factor with all current short-vector
SIMD instruction sets such as SSE, AVX, VMX, etc. We formalize the problem through
the abstraction of stream alignment conflicts. We note that the alignment conflict issue
we formulate and solve in this paper pertains to algorithmic alignment constraints and
is distinctly different from the previously studied topic of efficient code generation on
SIMD architectures with hardware alignment constraints [22,12,41,13]. We address the
problem of resolving stream alignment conflict through the novel use of a nonlinear
data layout transformation and develop a compiler framework to identify and suitably
transform the computations.

for (t = 0; t < T; ++t) {
for (i = 0; i < N; ++i)

for (j = 1; j < N+1; ++j)
S1: C[i][j] = A[i][j] + A[i][j-1];

for (i = 0; i < N; ++i)
for (j = 1; j < N+1; ++j)

S2: A[i][j] = C[i][j] + C[i][j-1];
}

for (t = 0; t < T; ++t) {
for (i = 0; i < N; ++i)

for (j = 0; j < N; ++j)
S3: C[i][j] = A[i][j] + B[i][j];

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)

S4: A[i][j] = B[i][j] + C[i][j];
}

Performance:
AMD Phenom 1.2 GFlop/s
Core2 3.5 GFlop/s
Core i7 4.1 GFlop/s

Performance:
AMD Phenom 1.9 GFlop/s
Core2 6.0 GFlop/s
Core i7 6.7 GFlop/s

(a) Stencil code (b) Non-Stencil code

Fig. 1. Example to illustrate addressed problem: The stencil code (a) has much lower performance
than the non-stencil code (b) despite acccessing 50% fewer data elements

We use a simple example to illustrate the problem addressed. Consider the two sets
of loop computations in Fig. 1(a) and Fig. 1(b), respectively. With the code shown in
Fig. 1(a), for each of the two statements, 2×N2 + N distinct data elements are refer-
enced, with N2 elements of C and N2 +N elements of A being referenced in S1, and N2

elements of A and N2 + N elements of C being referenced in S2. With the code shown
in Fig. 1(b), each of S3 and S4 access 3×N2 distinct data elements, so that the code
accesses around 1.5 times as many data elements as the code in Fig. 1(a). Both codes
compute exactly the same number (2×N2) of floating point operations. Fig. 1 shows
the achieved single-core performance of the two codes on three different architectures,
compiled using the latest version of ICC with auto-vectorization enabled. It may be
seen that on all systems, the code in Fig. 1(b) achieves significantly higher performance
although it requires the access of roughly 50% more data elements.

As explained in the next section, the reason for the lower performance of the stencil
code in Fig. 1(a) is that adjacent data elements (stored as adjacent words in memory)
from arrays A and C must be added together, while the data elements that are added
together in the code of Fig. 1(b) come from independent arrays. In the latter case, we
can view the inner loop as representing the addition of corresponding elements from
two independent streams B[i][0:N-1] and C[i][0:N-1], but for the former, we are
adding shifted versions of data streams: A[i][0:N-1], A[i][1:N], C[i][0:N-1],
and C[i][1:N]. Loading vector registers in this case requires use of either (a) redun-
dant loads, where a data element is moved with a different load for each distinct vector
register position it needs to be used in, or (b) load operations followed by additional

Data Layout Transformation for Stencil Computations 227

inter- and intra-register movement operations to get each data element into the different
vector register slots where it is used. Thus the issue we address is distinctly differ-
ent from the problem of hardware alignment that has been addressed in a number of
previous works. The problem we address manifests itself even on architectures where
hardware alignment is not necessary and imposes no significant penalty (as for example
the recent Intel Core i7 archirecture).

In this paper, we make the following contributions. (1) We identify a fundamental
performance bottleneck for stencil computations on all short-vector SIMD architectures
and develop a novel approach to overcoming the problem via data layout transforma-
tion. (2) We formalize the problem in terms of stream alignment conflicts and present a
compile-time approach to identifying vectorizable computations that can benefit from
the data layout transformation. (3) We present experimental results on three target plat-
forms that demonstrate the effectiveness of the transformation approach presented in
this paper. To the best of our knowledge, this is the first work to identify and formalize
this problem with algorithmic stream alignment conflicts and provide a solution to it.

The paper is structured as follows. In the next section, we elaborate on the addressed
problem. In Sec. 3, we provide an overview of the data layout transformation approach
through examples. Sec. 4 presents the formalization and compile-time analysis for de-
tecting stream alignment conflicts. Sec. 5 presents experimental methodology and re-
sults. Related work is covered in Sec. 6 and we conclude in Sec. 7.

2 Background and Overview of Approach

2.1 Illustrative Example

The reason for the significant performance difference between the two codes shown in
Sec. 1, is that one of them (Fig. 1(a)) exhibits what may be called stream alignment
conflict, while the other (Fig. 1(b)) is free of such conflicts. When stream alignment
conflicts exist, the compiler must generate additional loads or inter-register data move-
ment instructions (such as shuffles) in order to get interacting data elements into the
same vector register positions before performing vector arithmetic operations. These
additional data movement operations cause the performance degradation seen in Fig. 1.
Fig. 2 shows the x86 assembly instructions generated by the Intel ICC compiler on a
Core 2 Quad system for code similar to that in Fig. 1(a), along with an illustration of the
grouping of elements into vectors. The first four iterations of inner loop j perform ad-
dition on the pairs of elements (B[0],B[1]), (B[1],B[2]), (B[2],B[3]), and
(B[3],B[4]). Four single-precision floating-point additions can be performed by a
single SSE SIMD vector instruction (addps), but the corresponding data elements to
be added must be located at the same position in two vector registers. To accomplish
this, ICC first loads vectors B[0:3] and B[4:7] into registers xmm1 and xmm2. Next,
a copy of vector B[4:7] is placed into register xmm3. Registers xmm1 and xmm3 are
then combined with the palignr instruction to produce the unaligned vector B[1:4] in
register xmm3. This value is used by the addps instruction to produce an updated value
for A[0:3] in xmm3. Finally, an aligned store updates A[0:3]. The vector B[4:7] in
register xmm2 is ready to be used for the update of A[4:7].

228 T. Henretty et al.

A

B

xmm1

xmm2

xmm3

A B C D E F G H

I J K L M N O P

I J K L

M N O P

J K L M

...

...

MEMORY CONTENTS

for (i = 0; i < H; i++)
 for (j = 0; j < W - 1; j++)
 A[i][j] = B[i][j] + B[i][j+1];

VECTOR REGISTERS x86 ASSEMBLY

movaps B(...), %xmm1
movaps 16+B(...),%xmm2
movaps %xmm2, %xmm3
palignr $4, %xmm1, %xmm3
;; Register state here
addps %xmm1, %xmm3
movaps %xmm3, A(...)

Fig. 2. Illustration of additional data movement for stencil operations

2.2 Stream Alignment Conflict

We now use a number of examples to explain the issue of stream alignment conflicts.
Before we proceed, we reiterate that the issue we address is a more fundamental al-
gorithmic data access constraint and is not directly related to the hardware alignment
restrictions and penalties on some SIMD instruction set architectures. For example, on
IBM Power series architectures using the VMX SIMD ISA, vector loads and stores must
be aligned to quadword boundaries. On x86 architectures, unaligned vector loads/stores
are permitted but may have a significant performance penalty, as on the Core 2 archi-
tecture. On the more recent Core i7 x86 architecture, there is very little penalty for
unaligned loads versus aligned loads. The performance difference on the Core i7 shown
in Fig. 1, however, provides evidence that the problem we address is a more fundamen-
tal algorithmic alignment issue. While hardware alignment restrictions/penalties on a
target platform may exacerbate the problem with stream alignment conflicts, the prob-
lem exists even if an architecture has absolutely no restrictions/penalties for unaligned
loads/stores. The work we present in this paper thus addresses a distinctly different
problem than that addressed by many other works on optimizing code generation for
SIMD vector architectures with hardware alignment constraints.

Vectorizable computations in innermost loops may be viewed as operations on
streams corresponding to contiguous data elements in memory. The computation in the
inner loop with statement S1 in Fig. 1(b) performs the computation C[i][0:N-1] =
A[i][0:N-1]+ B[i][0:N-1], i.e. the stream of N contiguous data elements
A[i][0:N-1] is added to the stream of N contiguous elements B[i][0:N-1] and the
resulting stream is stored in C[0][0:N-1]. In contrast, the inner loop with statement
S1 in Fig. 1(a) adds A[i][1:N] and A[i][0:N-1], where these two streams of length

Data Layout Transformation for Stencil Computations 229

N are subsets of the same stream A[i][0:N] of length N+1, but one is shifted with
respect to the other by one element. When such shifted streams are computed upon us-
ing current short-vector SIMD architectures, although only N+1 distinct elements are
accessed, essentially 2×N data moves are required (either through additional explicit
loads or inter-register data movement operations like shuffles). The extra moves are
required because of the inherent characteristic of short-vector SIMD instructions that
only elements in corresponding slots of vector registers can be operated upon.

While in the example of Fig. 1(a) the stream alignment conflict is apparent because
the misaligned streams arise from two uses of the same array in the same statement, the
same underlying conflict may arise more indirectly, as illustrated in Fig. 3.

for (i = 0; i < N+1; ++i)
for (j = 0; j < N+1; ++j) {

S3: A[i][j] = B[i][j] + C[i][j];
S4: D[i][j] = A[i][j] + C[i][j];

}

for (i = 0; i < N+1; ++i)
for (j = 0; j < N+1; ++j) {

S5: A[i][j] = B[i][j] + C[i][j];
S6: D[i][j] = A[i][j] + C[i][j+1];

}

(a) No stream alignment conflict (b) Stream alignment conflict exists

for (i = 0; i < N+1; ++i)
for (j = 0; j < N+1; ++j) {

S7: A[i][j] = B[i][j] + C[i][j];
S8: C[i][j] = A[i][j] + D[i][j+1];

}

(c) No stream alignment conflict

Fig. 3. Illustration of indirect occurrence of stream alignment conflict

In Fig. 3(a), the stream computations corresponding to the inner loop j are A[i][0:N]
= B[i][0:N]+C[i][0:N] for S3 and D[i][0:N] = A[i][0:N]+C[i][0:N] for S4.
Streams A[i][0:N] and C[i][0:N] are used twice, but all accesses are mutually
aligned. With the example shown in Fig. 3(b), however, the stream computations cor-
responding to the inner j loop are A[i][0:N] = B[i][0:N]+C[i][0:N] for S5 and
D[i][0:N] = A[i][0:N]+C[i][1:N+1] for S6. Here we have a fundamental stream
alignment conflict. If A[i][0:N] and C[i][0:N] are aligned together for S5, there
is a misalignment between A[i][0:N] and C[i][1:N+1] in S6. Finally, there is no
stream alignment conflict in Fig. 3(c) since the same alignment of A[i][0:N] with
C[i][0:N] is needed for both S7 and S8.

The abstraction of stream alignment conflicts is applicable with more general array
indexing expressions, as illustrated by the examples in Fig. 4. In Fig. 4(a), there is
no stream alignment conflict. In S9, streams B[i][i:i+N] and B[i+1][i:i+N] (the
second and third operands) need to be aligned. Exactly the same alignment is needed
between these streams in S10 (the first operand B[i][i+1:i+N+1] and the second
operand B[i+1][i+1:i+N+1]).

In contrast, in Fig. 4(b) a fundamental algorithmic stream alignment conflict exists
with the reused streams in S11 and S12. In S11, the stream B[i][i:i+N] (second
operand) must be aligned with B[i+1][i+1:i+N+1] (third operand), but in S12 stream

230 T. Henretty et al.

for (i = 1; i < N+1; ++i)
for (j = 0; j < N+1; ++j) {

S9: A[i][j] = B[i-1][i+j] +
B[i][i+j] +
B[i+1][i+j];

S10: A[i+1][j] = B[i][i+j+1] +
B[i+1][i+j+1] +
B[i+2][i+j+1];

}

for (i = 1; i < N+1; ++i)
for (j = 0; j < N+1; ++j) {

S11: A[i][j] = B[i-1][i+j+1] +
B[i][i+j] +
B[i+1][i+j+1];

S12: A[i+1][j] = B[i][i+j+2] +
B[i+1][i+j+1] +
B[i+2][i+j+2];

}

(a) No stream alignment conflict (b) Stream alignment conflict exists

Fig. 4. Illustration of stream alignment conflict with general array indexing expressions

B[i][i+2:i+N+2] (first operand) must be aligned with B[i+1][i+1:i+N+1] (second
operand). Thus the required alignments between the reused streams in S11 and S12 are
inconsistent — a +1 shift of B[i][x:y] relative to B[i+1][x:y] is needed for S11
but a -1 shift of B[i][x:y] relative to B[i+1][x:y] is needed for S12 i.e., a stream
alignment conflict exists.

A formalization and algorithm for compile-time characterization of the occurrences
of stream alignment conflicts is developed in Sec. 4. Before providing those details,
we present a novel approach through data layout transformation to avoid performance
degradation due to stream alignment conflicts.

3 Data Layout Transformation

In this section, we show how the poor vectorization resulting from stream alignment
conflicts can be overcome through data layout transformation. As explained in the pre-
vious section using Fig. 2, the main problem is that adjacent elements in memory map
to adjacent slots in vector registers, so that vector operations upon such adjacent ele-
ments cannot possibly be performed without either performing another load operation
from memory to vector register or performing some inter-register data movement. The
key idea behind the proposed data layout transformation is for potentially interacting
data elements to be relocated so as to map to the same vector register slot.

3.1 Dimension-Lifted Transposition

We explain the data layout transformation using the example in Fig. 5. Consider a one
dimensional array Y with 24 single-precision floating point data elements, shown in
Fig. 5(a), used in a computation with a stream alignment conflict, such as Z[i] =
Y[i-1] + Y[i] + Y[i+1].

Fig. 5(b) shows the same set of data elements from a different logical view, as a two-
dimensional 4× 6 matrix. With row-major ordering used by C, such a 2D matrix will
have exactly the same memory layout as the 1D matrix Y. Fig. 5(c) shows a 2D matrix
that is the transpose of the 2D matrix in Fig. 5(b), i.e., a dimension-lifted transpose of
the original 1D matrix in Fig. 5(a). Finally, Fig. 5(d) shows a 1D view of the 2D matrix
in Fig. 5(c).

It can be seen that the data elements A and B, originally located in adjacent memory
locations Y[0] and Y[1], are now spaced farther apart in memory, both being in column

Data Layout Transformation for Stencil Computations 231

Input code:

for (i = 1; i < 23; ++i)
Z[i] = Y[i-1] + Y[i] + Y[i+1];

(a) Original Layout

A B C D E F G H I J K L M N O P Q R S T U V W X

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

(d) Transformed Layout

A G M S B H N T C I O U D J P V E K Q W F L R X

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

(b) Dimension Lifted (c) Transposed

A G M S

B H N T

D J P V

E K Q W

F L R X

C I O U

V

V
N

A B C D E F

G H I J K L

M N O P Q R

S T U V W X

V
N

V

Fig. 5. Data layout transformation for SIMD vector length of 4

Compute
Steady State

of Array Z

Compute
Boundaries
of Array Z

Shuffle
Opposite

Boundaries
of Array Y

Original
Array Y

A G M S

B H N T

D J P V

E K Q W

F L R X

C I O U

F L R X

F L R

F L R

A G M S

G’ M’ S’

B H N T

A G M S

G M S

E K Q W

F L R X

F’ L’ R’

G M S

Fig. 6. Illustration of steady state and boundary computation

zero but in different rows of the transposed matrix shown in Fig. 5(c). Similarly, data
elements G and H that were adjacent to each other in the original layout are now in the
same column but different rows of the dimension-lifted transposed layout. The layout
in Fig. 5(c) shows how elements would map to slots in vector registers that hold four
elements each. The computation of A+B, G+H, M+N, and S+T can be performed using
a vector operation after loading contiguous elements [A,G,M,S] and [B,H,N,T] into
vector registers.

3.2 Stencil Computations on Transformed Layout

Fig. 6 provides greater detail on the computation using the transformed layout after a
dimension-lifted transposition. Again, consider the following computation:

for (i = 1; i < 23; ++i)
Sb: Z[i] = Y[i-1] + Y[i] + Y[i+1];

232 T. Henretty et al.

0

1

2

(a) Original Layout

(b) Transformed Layout

0 1 2

c0 c3c2c1
n0 n3n2n1

s0 s3s2s1

w0 w3w2w1e0 e3e2e1

c0 c3c2c1

w0 w3w2w1

e0 e3e2e1

n0 n3n2n1 s0 s3s2s1

Fig. 7. Illustration for 2D 5-point stencil

Sixteen of the twenty two instances of statement Sb can be computed using full vector
operations: [A,G,M,S] + [B,H,N,T] + [C,I,O,U]; [B,H,N,T] + [C,I,O,U] + [D,J,P,V];
[C,I,O,U] + [D,J,P,V] + [E,K,Q,W]; and [D,J,P,V] + [E,K,Q,W] + [F,L,R,X]. In Fig. 6,
these fully vectorized computations are referred to as the “steady state”. Six statement
instances (computing E+F+G, F+G+H, K+L+M, L+M+N, Q+R+S, and R+S+T) repre-
sent “boundary” cases since the operand sets do not constitute full vectors of size four.
One possibility is to perform the operations for these boundary cases as scalar oper-
ations, however, it is possible to use masked vector operations to perform them more
efficiently. Fig. 6 illustrates the boundary cases corresponding to elements at the top
and bottom rows in the transposed layout.

At the top boundary, a “ghost cell” is created by performing a right-shift to the bot-
tom row vector [F,L,R,X] by one position to align [X,F,L,R] above [A,G,M,S]. The vec-
tor operation [X,F,L,R]+[A,G,M,S]+[B,H,N,T] is then performed and a masked write
is performed so that only the last three components of the result vector get written. The
bottom boundary is handled similarly, as illustrated in Fig. 6.

Higher order stencils simply result in a larger boundary area. Further, the dimension-
lifted transpose layout transformation can be applied in the same manner for multi-
dimensional arrays, as illustrated in Fig. 7. The fastest varying dimension (rightmost
dimension for C arrays) of a multi-dimensional array is subjected to dimension-lifting
and transposition (with padding if the size of that dimension is not a perfect multiple of
vector length). Fig. 7 highlights a set of array locations accessed by a 2D 5-point stencil
computation on a four wide vector architecture.

In the following section, we present a compiler framework to automatically detect
where dimension lifting can be used to overcome the performance loss due to stream
alignment conflicts.

Data Layout Transformation for Stencil Computations 233

4 Framework for Stream Alignment Conflict

Stream alignment conflicts often occur when vectorizing stencil computations, as shown
in the examples of Section 2. Our goal in this section is to develop compiler algorithms
for detecting stream alignment conflicts. Note that stream alignment conflict is not lim-
ited to stencil computations; therefore, dimension-lifted transposition is useful for a
more general class of programs. In this paper, we limit the discussion to vectorizable
innermost loops. We assume that high-level transformations to expose parallel inner-
most loops that are good vectorization candidates have already been applied to the code
[1]. The first task is to collect all vectorizable innermost loops. Some conditions must
hold for our analysis to be performed: (1) all memory references are either scalars or
accesses to (multidimensional) arrays; (2) all dependences have been identified; and
(3) the innermost loop variable has a unit increment. Note that our framework handles
unrolled loops as well; for ease of presentation, we will assume a non-unrolled repre-
sentation of unrolled loops.

4.1 Program Representation

We first define our representation of candidate loops to be analyzed. The objective is to
detect (a) if a loop is vectorizable, and (b) if it has a stream alignment conflict that can
be resolved using dimension-lifted transposition of accessed arrays. We operate on an
abstract program representation that is independent of the programming language and
analyze the memory references of candidate innermost loops.

Innermost loops. Innermost loops are the only candidates we consider for vectorization
after dimension-lifted transposition of arrays. As stated earlier, we assume that such
loops have a single induction variable that is incremented by one in each iteration of the
loop. This is required to ensure the correctness of the analysis we use to characterize
the data elements accessed by an innermost loop. We also require the innermost loops
to have a single entry and exit point, so that we can precisely determine where to insert
the data layout transformation (i.e., dimension-lifted transposition) code.

Memory references. A loop contains a collection of memory references. All data ele-
ments accessed by any given iteration of the loop must be statically characterized by
an access function f of the enclosing loop indices and other parameters. For a given
execution of the loop whose iterator is i, all function parameters beside i must be con-
stant. f can be multidimensional for the case of an array reference, with one dimension
in f for each dimension of the array. For instance, for the reference B[i][alpha+M*j]
with innermost loop iterator j, the access function is fB(j) = (i,alpha + M. j).

4.2 Candidate Vector Loops

Dimension-lifted transposition may be useful only for arrays referenced in vectorizable
loops. We now provide a simple compiler test to determine which inner loops are candi-
dates for vectorization, based on data dependence analysis of the program. Specifically,
we require a candidate innermost loop to meet the following constraints1: (1) the loop

1 The case of vectorizing reductions is not addressed here.

234 T. Henretty et al.

does not have any loop-carried dependence; and (2) two consecutive iterations of the
loop access either the same memory location or two locations that are contiguous in
memory, i.e., the loop has either stride-zero or stride-one accesses.

Loop-Carried Dependences. To determine if a loop is parallel, we rely on the standard
concept of dependence distance vectors [19]. There is a dependence between two itera-
tions of a loop if they both access the same memory location and one of these accesses
is a write. If there is no loop-carried dependence, then the loop is parallel.

We now define the concept of a array-distance vector between two references, re-
stricted to the inner loop (all other variables are assumed constant).

Definition 1 (Array-Distance Vector between two references). Consider two access
functions f 1

A and f 2
A to the same array A of dimension n. Let ı and ı′ be two iterations

of the innermost loop. The array-distance vector is defined as the n-dimensional vector
δ(ı, ı′) f 1

A , f 2
A

= f 1
A(ı)− f 2

A(ı′).
Let us illustrate Definition 1 with two references A[i][j] and A[i-1][j+1], enclosed
by loop indices i and j with j as the innermost loop iterator. We have f 1

A(j) = (i, j) and
f 2
A(j) = (i−1, j + 1). The array-distance vector is

δ(j, j′) f 1
A , f 2

A
= (1, j− j′−1)

A necessary condition for the existence of a dependence carried by the innermost
loop is stated below.

Definition 2 (Loop-carried dependence). There exists a dependence carried by the
innermost loop between two references f 1

A and f 2
A, at least one of which is a write to

memory, if there exists ı �= ı′ such that δ(ı, ı′) f 1
A , f 2

A
= 0.

Note that δ(ı, ı′) f 1
A , f 2

A
requires the values of loop iterators other than the innermost loop

to be fixed. Also, when δ(ı, ı′) f 1
A , f 2

A
, the difference between the access functions, still

contains symbols beyond the inner-loop iterator (e.g., δ(ı, ı′) f 1
A , f 2

A
= (k,alpha)) we con-

servatively assume a loop-carried dependence unless the value of the symbols can be
determined statically.

Stride-one Memory Accesses. The second condition for a loop to be a candidate for
SIMD vectorization is that all memory accesses are such that two consecutive iterations
access either consecutive memory locations or an identical location, for all iterations of
the innermost loop.

To test for this property, we operate individually on each access function. Memory
references that always refer to the same location for all values of the innermost loop
are discarded: they are the equivalent to referencing a scalar variable. For each of the
remaining references, we form the array-distance vector between two consecutive it-
erations, and ensure the distance between the two locations is equal to 1. For the case
of multidimensional arrays, for the distance in memory to be 1, the array-distance vec-
tor must have a zero value in all but the last dimension where it must be one. This is
formalized as follows:

Data Layout Transformation for Stencil Computations 235

Definition 3 (Stride-one memory access for an access function). Consider an access
function fA surrounded by an innermost loop. It has stride-one access if ∀ı, δ(ı, ı +
1) fA, fA = (0, . . . ,0,1).

For example, consider A[i][j] surrounded by the innermost j loop. fA = (i, j) and
δ(j, j + 1) fA, fA = (0,1). Hence the j loop has stride-one access for fA as above. Let us
suppose that for the same fA, loop i is the innermost loop; in this case, we would have
δ(i, i + 1) fA, fA = (1,0) which does not satisfy the condition in Definition 3. Therefore
loop i does not have stride-one access with respect to fA.

4.3 Detection of Stream Alignment Conflict

A stream alignment conflict occurs when a given memory location is required to be
mapped to two different vector slots. So, it follows that if a memory element is not
used twice or more during the execution of the innermost loop, then a stream alignment
conflict cannot occur. If some memory element is reused, one of two cases apply: either
the element is reused only during the same iteration of the innermost loop, or it is used
by another iteration of the innermost loop. Stream alignment conflict can occur only for
the latter; if the element is reused during the same iteration, it is mapped to the same
vector slot and there is no stream alignment conflict.

Cross-Iteration Reuse Due to Distinct References. Our principle to detect if a given
memory location is being referenced by two different iterations follows the concept of
loop-carried dependence, but we extend now to all pairs of references and not limit to
those containing a write operation.

For a given innermost loop, we thus compute the array-distance vector for all pairs
of distinct references f 1 and f 2 to the same array, and see if there exists two distinct
iterations such that

δ(ı, ı′) f 1, f 2 = 0

Consider the example of Figure 8(a). For the case of f 1
B = (i, j + 1) and f 2

B = (i, j), we
can determine if there is cross-iteration reuse by forming the constraint δ(j, j′) f 1

B , f 2
b

=
(0, j + 1− j′) and solving the system of constraints

S :

{
j �= j′
0 = 0
j + 1− j′= 0

Since S has a solution, there is cross-iteration reuse in the innermost loop. Techni-
cally, the presence of a solution to S is only a necessary condition for cross-iteration
reuse. Some cases of cross-iteration reuse may not be detected, typically when dis-
tinct variables used in the access functions have the same value at runtime: the evalu-
ation of the expression of δ may be 0, but simply doing the difference of the symbols
may not give 0. Addressing this issue requires classical data-flow analysis problem for
arrays [19] and can be solved with a more complete analysis and under stronger assump-
tions on the form of the input code. In our framework, the only consequence of not de-
tecting dynamic cross-iteration reuse is that we may not have applied dimension-lifted
transposition at places where it could have been useful. Our analysis is conservative in
that sense but it requires only minimal assumptions on the input code.

236 T. Henretty et al.

for (i = lbi; i < ubi; ++i)
for (j = lbj; j < ubj; ++j)
A[i][j] = B[i][j+1] + B[i
][j] + B[i-1][j];

for (i = lbi; i < ubi; ++i)
for (j = lbj; j < ubj; ++j) {
R: A[i][j] += B[i][j-1]; S:
C[i][j] += B[i][j]; }

for (i = lbi; i < ubi; ++i) {
A[i][lbj] += B[i][lbj-1]; for (j
= lbj + 1; j < ubj; ++j) { A[i][
j] += B[i][j-1]; C[i][j-1]
+= B[i][j-1]; } C[i][ubj] +=
B[i][ubj]; }

(a) (b) (c)

Fig. 8. Code examples

Stream Offset. The presence of a cross-iteration reuse does not necessarily imply the
presence of a stream alignment conflict. In particular, all cases where cross-iteration
reuse can be removed by iteration shifting (that is, a simple offset of the stream) do
not correspond to a stream alignment conflict. Thus, in order to detect only the set of
arrays to be dimension-lifted and transposed, we need to prune the set of references
which do not generate a stream alignment conflict from the set of all references with
cross-iteration reuse. .

Consider the example of Figure 8(b) that has cross-iteration reuse. It is possible to
modify the innermost loop such that the reuse disappears via iteration shifting [19].
Shifting is the iteration space transformation view of manipulating the stream offset,
as it influences which specific instance of the statements are being executed under the
same iteration of loop j. Consider shifting the second statement by 1, the transformed
code is shown in Figure 8(c).

Definition 4 (Stream offset via shifting). Consider two statements R and S. Changing
the stream offset is performed by shifting the iterations of R with respect to the iterations
of S by a constant, scalar factor σR. All streams used by R have the same offset σR.

There are two important properties of shifting for stream offset. First, as shown above,
shifting can make cross-iteration reuse disappear in some cases. It can also introduce
new cross-iteration reuse by assigning different offsets to streams associated with the
same array.

Second, shifting is not always a legal reordering transformation. It may reorder the
statements inside the loop, and change the semantics. This translates to a strong condi-
tion on the legality of iteration shifting.

Definition 5 (Legality of iteration shifting). Consider a pair of statements R and S
such that they are surrounded by a common vectorizable innermost loop. Let σR be
(resp. σS) the shift factor used to offset the streams of R (resp. S). If there is a dependence
between R and S, then to preserve the semantics it is sufficient to set σR = σS.

To determine if iteration shifting can remove cross-iteration reuse, we first observe that
it changes the access functions of a statement R by substituting j with j−σR, given
j as the innermost loop iterator. The variable j can be used only in the last dimension
of the access function, since the loop is vectorizable with stride-one access. We then
formulate a problem similar to that of cross-iteration reuse analysis, with the important
difference being that we seek values of σ that make the problem infeasible; indeed if
the problem has no solution, then there is no cross-iteration reuse. We also restrict it to
the pairs of references such that all but the last dimension of the access functions are

Data Layout Transformation for Stencil Computations 237

equal, as all cases of reuse require this property. To ease the solution process, we thus
reformulate it into a feasibility problem by looking for a solution where ı = ı′ that is
independent of the value of ı.

Returning to the example in Figure 8(b), we have for B, f 1
B(j) = (i, j − 1) and

f 2
B(j) = (i, j). We first integrate the offset factors σ into the access function. As the

two statements are not dependent, we have one factor per statement that can be inde-
pendently computed. The access functions to consider are now f 1

B(j) = (i, j−σR−1)
and f 2

B(j) = (i, j−σS). We consider the problem

T :
{

j = j′
j−σR−1− j′+ σS = 0

If T has a solution for all values of j, that is, a solution independent of j then there is
no cross-iteration reuse. For T , σR = 0 and σS = 1 is a valid solution and this iteration
shifting removes all cross-iteration reuse.

In order to find a valid solution for the whole inner-loop, it is necessary to combine all
reuse equalities in a single problem: the σ variables are shared for multiple references
and must have a unique value. Hence, for code in Figure 8(a), the full system to solve
integrates δ(j, j′) f 1

A , f 2
A
, is augmented with σR and σS, and is shown below.

T :

{ j = j′
j−σR−1− j′+ σS = 0 Conditions for B
j−σR− j′−σS = 0 Conditions for A

T has no solution, showing that there is no possible iteration shifting that can remove
all cross-iteration reuse in Figure 8(a). Dimension-lifted transposition is thus required.

Putting It All Together. We now address the general problem of determining if a
given innermost loop suffers from a stream alignment conflict that can be solved via
dimension-lifted transposition. That is, we look for cross-iteration reuse that cannot be
eliminated via iteration shifting.

First, let us step back and precisely define in which cases dimension-lifted transposi-
tion can be used to solve a stream alignment conflict. Dimension-lifted transposition in
essence spreads out the memory locations of references involved in a stream alignment
conflict. In order to ensure there is no conflict remaining, one must precisely know, at
compile-time, the distance in memory required to separate all elements. This distance
must be a constant along the execution of the innermost loop. This translates to an addi-
tional constraint on the cross-iteration reuse that is responsible for the stream alignment
conflict: the reuse distance must be a constant. We define the scope of applicability of
dimension-lifted transposition as follows.

Definition 6 (Applicability of dimension-lifted transposition). Consider a collection
of statements surrounded by a common vectorizable inner loop. If there exists cross-
iteration reuse of a constant distance that cannot be eliminated by iteration shifting,
then the stream alignment conflict can be solved with dimension-lifted transposition.

If an array accessed in a candidate vector inner loop is dimension-lifted-and-transposed,
all arrays in the inner loop are also dimension-lifted-and-transposed. The data layout

238 T. Henretty et al.

Input P: input program
Output Arrays: the set of arrays to be dimension-lifted

L ← /0
forall innermost loops l in P do

forall arrays A referenced in l do
/* Check loop-carried dependence */
forall write references f 1

A to A do
forall references f 2

A to A do
S ← { ∃ (ı, ı′), δ(ı, ı′) f 1

A , f 2
A

= 0 }
if S �= /0 then goto next loop l

/* Check stride-one */
forall references fA to A do

S ← { ∀ ı, δ(ı, ı + 1) fA , fA = (0, ...,0,1) }
if S = /0 then goto next loop l

/* Check scalar reuse distance */
forall pairs of references f 1

A , f 2
A to A do

S ← {∃ (ı, ı′) δ(ı, ı′) f 1
A , f 2

A
= 0 }

if S �= /0 then
S ← { α ∈ Z, δ(ı, ı) f 1

A , f 2
A

= (0, ...,0,α) }
if S = /0 then goto next loop l

L ← L ∪ l
forall l ∈ L do
/* Check conflict after iteration shifting */
T ← createIterationShiftingProblem(l)
if T = /0 then

Arrays(l) ← all arrays in l

Fig. 9. Algorithm to detect arrays to be dimension-lifted-and-transposed

transformation implies significant changes in the loop control and in the order the data
elements are being accessed. All arrays must be dimension-lifted unless some com-
putations simply could not be vectorized anymore. We present in Figure 9 a complete
algorithm to detect which arrays are to be transformed by dimension-lifted transposition
in a program.

Procedure createIterationShiftingProblem creates a system of equalities that
integrates the shift factors σ as shown in Section 4.3. If this system has no solution,
then at least one cross-iteration reuse remains even after iteration shifting. Since we
have prevented the cases where the reuse is not a scalar constant, then the conflict can
be solved with dimension lifting. We thus place all arrays of the loop into the list of
arrays to be dimension-lifted-and-transposed.

While solving T , we compute values for σ to remove cross-iteration reuse. When it
is not possible to remove all cross-iteration reuses with iteration shifting, we compute
values for σ that minimize the distance between two iterations reusing the same ele-
ment. The largest among all reuse distances in the iteration-shifted program is kept and
used during code generation to determine the boundary conditions.

5 Experimental Evaluation

The effectiveness of the dimension-lifting transformation was experimentally evalu-
ated on several hardware platforms using stencil kernels from a variety of application

Data Layout Transformation for Stencil Computations 239

domains. First, we describe the hardware and compiler infrastructure used for experi-
ments. Next, the stencil kernels used in the experiments are described. Finally, experi-
mental results are presented and analyzed.

5.1 Hardware

We performed experiments on three hardware platforms: AMD Phenom 9850BE,
Intel Core 2 Quad Q6600, and Intel Core i7-920. Although all are x86 architectures,
as explained below, there are significant differences in performance characteristics for
execution of various vector movement and reordering instructions.

Phenom 9850BE. The AMD Phenom 9850BE (K10h microarchitecture) is an x86-64
chip clocked at 2.5 GHz. It uses a 128b FP add and 128b FP multiply SIMD units
to execute a maximum of 8 single precision FP ops per cycle (20 Gflop/s). The same
SIMD units are also used for double precision operations, giving a peak throughput
of 10 Gflop/s. Unaligned loads are penalized on this architecture, resulting in half the
throughput of aligned loads and an extra cycle of latency. The SSE shuffle instruction
shufps is used by ICC for single precision inter- and intra-register movement. Double
precision stream alignment conflicts are resolved by ICC generating consecutive movsd
and movhpd SSE instructions to load the low and high elements of a vector register.

Core 2 Quad Q6600. The Intel Core 2 Quad Q6600 (Kentsfield microarchitecture) is an
x86-64 chip running at 2.4 GHz. Like the Phenom, it can issue instructions to two 128-
bit add and multiply SIMD units per cycle to compute at a maximum rate of 19.2 single
precision GFlop/s (9.6 double precision Gflop/s). The movups and movupd unaligned
load instructions are heavily penalized on this architecture. Aligned load throughput is 1
load/cycle. Unaligned load throughput drops to 5% of peak when the load splits a cache
line and 50% of peak in all other cases. ICC generates the palignr SSSE3 instruction
for single precision inter- and intra-register movement on Core 2 Quad. Double preci-
sion shifts are accomplished with consecutive movsd-movhpd sequences as previously
described.

Core i7-920. The Intel Core i7-920 (Nehalem microarchitecture) is an x86-64 chip run-
ning at 2.66 GHz. SIMD execution units are configured in the same manner as the
previously described x86-64 processors, leading to peak FP throughput of 21.28 single
precision GFlop/s and 10.64 double precision Gflop/s. Unaligned loads on this proces-
sor are very efficient. Throughput is equal to that of aligned loads at 1 load/cycle in all
cases except cache line splits, where it drops to 1 load per 4.5 cycles. Single precision
code generated by ICC auto-vectorization uses unaligned loads exclusively to resolve
stream alignment conflicts. Double precision code contains a combination of consecu-
tive movsd-movhd sequences and unaligned loads.

5.2 Stencil Codes

We evaluated the use of the dimension-lifting layout transformation on seven stencil
benchmarks, briefly described below.

Jacobi 1/2/3D. The Jacobi stencil is a symmetric stencil that occurs frequently both in
image processing applications as well as with explicit time-stepping schemes in PDE

240 T. Henretty et al.

solvers. We experimented with one-dimensional, 2D, and 3D variants of the Jacobi
stencil, and used the same weight for all neighbor points on the stencil and the central
point.

In the table of performance data below, the 1D Jacobi variant is referred as J-1D. For
the 2D Jacobi stencil, both a five point “star” stencil (J-2D-5pt) and 9 point “box”(J-2D-
9pt) stencil were evaluated A seven point “star” stencil (J-3D-9pt) was used to evaluate
performance of Jacobi 3D code.

Heattut 3D. This is a kernel from the Berkeley stencil probe and is based on a dis-
cretization of the heat equation PDE.[17].

FDTD 2D. This kernel is the core computation in the widely used Finite Difference
Time Domain method in Computational Electromagnetics [31].

Rician Denoise 2D. This application performs noise removal from MRI images and
involves an iterative loop that performs a sequence of stencil operations.

Problem Sizes. We assume the original program is tiled such that the footprint of a tile
does not exceed the L1 cache size, thus all arrays are sized to fit in the L1 data cache.
As is common for stencil codes, for each of the benchmarks, there is an outer loop
around the stencil loops, so that any one-time layout transformation cost to copy from
an original standard array representation to the transformed representation involves a
negligible overhead.

Code versions. For each code, three versions were tested:

– Reference, compiler auto-vectorized
– Layout transformed, compiler auto-vectorized
– Layout transformed, explicitly vectorized with intrinsics

Vector Intrinsic Code Generation. Vector intrinsic code generation is based on the
process shown in Figure 6. An outline of the steps in code generation is provided next.

Convert stencil statement(s) into intrinsic equivalents. We convert C statements into
vector intrinsic equivalents. For example, consider the following 3 point 1D Jacobi
statement:

a[i] = b[i-1] + b[i] + b[i+1];

This statement can be expressed in SSE intrinsics:

adlt[i] = mm add ps(mm add ps(bdlt[i-1],bdlt[i), bdlt[i+1]);

Note that dlt suffixed arrays have been layout transformed.

Generate boundary code. The reuse distance information obtained with the framework
of Section 4 above is used to generate boundary code from the intrinsic statements. This
code contains the appropriate shifts and masked stores required to maintain program
correctness.

Generate intrinsic steady state code. Again, reuse distance information is used to gen-
erate a vector intrinsic inner loop. This loop, along with boundary code, replaces the

Data Layout Transformation for Stencil Computations 241

Phenom Core2 Quad Core i7
SP DP SP DP SP DP

GF/s Imp. GF/s Imp. GF/s Imp. GF/s Imp. GF/s Imp. GF/s Imp.

J-1D
Ref. 4.27 1.00× 3.08 1.00× 3.71 1.00× 2.46 1.00× 8.67 1.00× 3.86 1.00×
DLT 7.68 1.80× 3.79 1.23× 9.42 2.54× 2.83 1.15× 10.55 1.22× 4.01 1.04×
DLTi 11.38 2.67× 5.71 1.85× 13.95 3.76× 7.01 2.85× 15.35 1.77× 7.57 1.96×

J-2D-5pt
Ref. 6.96 1.00× 2.71 1.00× 3.33 1.00× 2.94 1.00× 8.98 1.00× 4.54 1.00×
DLT 9.00 1.29× 3.75 1.38× 8.86 2.66× 4.58 1.56× 10.20 1.14× 5.18 1.14×
DLTi 11.31 1.63× 5.67 2.09× 11.58 3.48× 5.85 1.99× 13.12 1.46× 6.58 1.45×

J-2D-9pt
Ref. 4.48 1.00× 3.21 1.00× 4.21 1.00× 2.72 1.00× 8.30 1.00× 4.11 1.00×
DLT 7.71 1.72× 3.81 1.18× 8.04 1.91× 4.08 1.50× 10.23 1.23× 5.23 1.27×
DLTi 12.26 2.74× 6.11 1.90× 12.01 2.85× 6.03 2.22× 13.62 1.64× 6.80 1.65×

J-3D
Ref. 6.01 1.00× 2.90 1.00× 6.07 1.00× 3.04 1.00× 9.04 1.00× 4.64 1.00×
DLT 6.84 1.14× 3.73 1.29× 8.07 1.33× 4.25 1.40× 9.46 1.05× 5.02 1.08×
DLTi 10.08 1.68× 5.36 1.85× 10.36 1.71× 5.31 1.75× 12.02 1.33× 6.04 1.30×

Heatttut-3D
Ref. 6.06 1.00× 3.02 1.00× 6.64 1.00× 3.29 1.00× 8.75 1.00× 4.55 1.00×
DLT 7.12 1.18× 3.36 1.11× 8.71 1.31× 4.45 1.35× 9.99 1.14× 4.91 1.08×
DLTi 9.59 1.58× 5.12 1.70× 8.86 1.33× 4.45 1.35× 11.99 1.37× 6.05 1.33×

FDTD-2D
Ref. 5.86 1.00× 3.26 1.00× 6.42 1.00× 3.35 1.00× 8.72 1.00× 4.34 1.00×
DLT 6.89 1.18× 3.65 1.12× 7.71 1.20× 4.03 1.20× 8.91 1.02× 4.73 1.09×
DLTi 6.64 1.13× 3.41 1.05× 8.03 1.25× 4.03 1.20× 9.74 1.12× 4.82 1.11×

Rician-2D
Ref. 3.29 1.00× 1.93 1.00× 1.87 1.00× 1.27 1.00× 3.98 1.00× 2.16 1.00×
DLT 3.46 1.05× 2.40 1.25× 2.59 1.39× 1.27 1.00× 4.13 1.04× 2.23 1.03×
DLTi 8.09 2.46× 2.56 1.33× 8.50 4.55× 1.27 1.00× 11.31 2.84× 2.23 1.03×

Fig. 10. Summary of experimental results. Ref is the unoptimized, auto-vectorized version. DLT
is the layout transformed, auto-vectorized version. DLTi is the layout transformed version imple-
mented with vector intrinsics.

original inner loop. Finally, well-known loop unrolling and register blocking optimiza-
tions are performed. It is interesting to note that unrolling the vanilla C versions of
the codes did not improve performance (in many cases impacted performance nega-
tively), while unrolled versions of the vector intrinsic code resulted in performance
improvement.

5.3 Results

Absolute performance and relative improvement for single and double precision ex-
periments across all platforms and codes are given in Figure 10. Intel C Compiler icc
v11.1 with the ‘-fast’ option was used for all machines.Vectorization pragmas were
added to the inner loops of reference and layout transformed codes to force ICC auto-
vectorization.

Double Precision. Double precision results are shown in columns labeled DP of
Figure 10. Significant performance gains are achieved across all platforms and on all
benchmarks. ICC auto-vectorized DLT code equaled or improved upon reference code
performance in all cases. The harmonic means of relative improvements across all dou-
ble precision benchmarks on x86-64 were 1.10× (Core i7), 1.22× (Phenom), and 1.28×
(Core 2 Quad). Individual benchmark improvements range from, worst case, 1.00× (2D
Rician Denoise on Core 2 Quad) to a best case of 1.56× (5 point 2D Jacobi on Core 2
Quad).

The auto-vectorized layout transformed code was fast but certain areas of it were still
very inefficient. While ICC automatically unrolled the inner loop of reference code, no

242 T. Henretty et al.

such unrolling was done for the layout transformed code. Further, ICC generated long
sequences of scalar code for boundary computations. These deficiencies were addressed
in the intrinsic versions of the codes. Scalar boundary code was replaced with much
more efficient vector code, and all inner loops were unrolled. Further gains can be also
be attributed to register blocking and computation reordering.

Intrinsic codes equaled or improved upon auto-vectorized versions in all cases, with
a worst case improvement equal to reference (2D Rician Denoise on Core 2 Quad) and
best case of 2.85× (Jacobi 1D on Core 2 Quad). Harmonic means of improvements
over reference were 1.35× (Core i7), 1.60× (Phenom), and 1.57× (Core 2 Quad).

Single Precision. While most scientific and engineering codes use double precision
for their computations, several image processing stencils use single precision. With the
current SSE vector ISA, since only two double precision elements can fit in a vector, ac-
celeration of performance through vectorization is much less than with single precision.
However, the increasing vector size of emerging vector ISAs such as AVX and LRBni,
imply that the performance improvement currently possible with single precision SSE
will be similar to what we can expect for double precision AVX, etc. For these reasons
we include single precision performance data for all benchmarks.

Significant single precision performance gains are achieved across all platforms and
on all stencils. They are reported in Figure 10 under the SP columns. Layout trans-
formed code auto-vectorized by ICC ran significantly faster than reference code on all
platforms. The harmonic means of relative performance improvements across all bench-
marks on x86-64 were 1.11× (Core i7), 1.29× (Phenom), and 1.61× (Core 2 Quad).
Individual benchmark improvements range from, worst case, 1.02× (2D FDTD on Core
i7) to a best case of 2.66× (5 point 2D Jacobi on Core 2 Quad).

Vector intrinsic code optimizations again further increased the performance gains for
auto-vectorized layout transformed code. All intrinsic codes were substantially faster
than their corresponding auto-vectorized versions. Minimum relative improvement over
reference on x86-64 was 1.12× (2D FDTD on Core i7) while maximum relative im-
provement was 4.55× (2D Rician Denoise on Core 2 Quad). Harmonic means of im-
provements over reference were 1.53× (Core i7), 1.81× (Phenom), and 2.15× (Core 2
Quad).

Discussion. Performance gains for all x86-64 codes can be attributed to the elimination
of costly intra-register movement, shuffle, and unaligned load instructions from inner
loop code. The performance gains on Core i7, while significant, were consistently the
smallest of any platform tested. This is partly explained by the relatively small perfor-
mance penalty associated with unaligned loads and shuffle on this CPU. Still, the DLT
intrinsic versions achieve a 1.53× average performance improvement for single preci-
sion and 1.35× for double precision codes on this platform. In contrast, the Kentsfield
Core 2 Quad, demonstrates consistently large performance improvements from lay-
out transformation. This can mainly be attributed to poorly performing vector shuffle
hardware.

Generally speaking, 1D Jacobi showed both the largest performance gains, and the
fastest absolute performance, while higher dimensional stencils showed smaller, but still
significant improvement. Higher dimensional stencils have more operands and more
intra-stencil dependences. This leads to higher register occupancy, higher load / store

Data Layout Transformation for Stencil Computations 243

unit utilization, and more pipeline hazards / stalls for these codes. This combination of
factors leads to less improvement with respect to the 1D case. General and application-
specific optimizations based on the data layout transformation described in this work
could likely achieve higher performance through careful instruction scheduling and tun-
ing of register block sizes to address these issues.

6 Related Work

A number of works have addressed optimizations of stencil computations on emerging
multicore platforms [6], [26], [25], [11], [34], [4], [9], [37], [35], [38], [36]. In addition,
other transformations such as tiling of stencil computations for multicore architectures
have been addressed in [40], [24], [21], [31]. Recently, memory customization for sten-
cils has been proposed in [33].

Automatic vectorization has been the subject of extensive study in the literature
[19,39]. There has been significant recent work in generating effectice code for SIMD
vector instruction sets in the presence of hardware alignment and stride constraints as
described in [12,28,13]. The difficulties of optimizing for a wide range of SIMD vector
architectures are discussed in [27,14]. In addition, several other works have addressed
the exploitation of SIMD instruction sets [22,23,29,28]. All of these works only ad-
dress SIMD hardware alignment issues. The issues of algorithmic stream alignment ad-
dressed in this paper are distinctly different from the problem addressed in those works
and the dimension-lifted transposition solution that we have developed has a significant
impact on performance even on SIMD architectures where hardware misalignment does
not significantly degrade performance.

Stream alignment shares a lot similarties with array alignment in data-parallel lan-
guages [2,5,20] and several related works. None of these works, however, considered
dimension-lifted transposition of accessed arrays. There has been prior work attempting
to use static linear data layout optimizations (such as permutations of array dimensions)
to improve spatial locality in programs [30,18]. These works do not address dimension-
lifted transposition. Rivera and Tseng [32] presented data padding techniques to avoid
conflict misses. Recently, linear data layout transformations to improve vector perfor-
mance have been proposed [15].

To avoid conflict misses and false sharing, Amarasinghe’s work [3] maps data ac-
cessed by a processor to contiguous memory locations by using strip-mining and per-
mutation of data arrays. In contrast, our approach attempts remap data in order to spread
out reuse carrying data in the innermost loops in order to have them map to the same
vector register slot; this avoids alignment conflicts and eliminates the need for extra
loads or inter- and intra-register data movement.

7 Conclusions

This paper identifies, formalizes and provides an effective solution for a fundamental
problem with optimized implementation of stencil computations on short-vector SIMD
architectures. The issue of stream alignment conflicts was formalized and a static analy-
sis framework was developed to identify it. A novel nonlinear data layout transformation

244 T. Henretty et al.

was proposed to overcome stream alignment conflicts. Experimental results on multiple
targets demonstrate the effectiveness of the approach on a number of stencil kernels.

Acknowledgments

This work was supported in part by the U.S. National Science Foundation through
awards 0926127, 0926687, and 0926688, and by the U.S. Army through contract
W911NF-10-1-0004. We thank the reviewers, especially “Reviewer 3”, for construc-
tive feedback that helped improve the paper.

References

1. Allen, R., Kennedy, K.: Automatic translation of fortran programs to vector form. ACM
TOPLAS 9(4) (1987)

2. Amarasinghe, S., Lam, M.: Communication optimization and code generation for dis-
tributed memory machines. In: PLDI (1993)

3. Anderson, J., Amarasinghe, S., Lam, M.: Data and computation transformations for multi-
processors. In: PPoPP (1995)

4. Augustin, W., Heuveline, V., Weiss, J.-P.: Optimized stencil computation using in-place
calculation on modern multicore systems. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-
Par 2009. LNCS, vol. 5704, pp. 772–784. Springer, Heidelberg (2009)

5. Chatterjee, S., Gilbert, J., Schreiber, R., Teng, S.: Automatic array alignment in data-parallel
programs. In: POPL (1993)

6. Datta, K., Kamil, S., Williams, S., Oliker, L., Shalf, J., Yelick, K.: Optimization and perfor-
mance modeling of stencil computations on modern microprocessors. SIAM Review 51(1)
(2009)

7. Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., Patterson, D., Shalf, J.,
Yelick, K.: Stencil computation optimization and auto-tuning on state-of-the-art multicore
architectures. In: SC 2008, pp. 1–12 (2008)

8. Datta, K., Williams, S., Volkov, V., Carter, J., Oliker, L., Shalf, J., Yelick, K.: Auto-tuning
the 27-point stencil for multicore. In: iWAPT 2009 (2009)

9. de la Cruz, R., Araya-Polo, M., Cela, J.M.: Introducing the semi-stencil algorithm. In:
PPAM (1) (2009)

10. Dursun, H., Nomura, K., Wang, W., Kunaseth, M., Peng, L., Seymour, R., Kalia, R.,
Nakano, A., Vashishta, P.: In-core optimization of high-order stencil computations. In:
PDPTA (2009)

11. Dursun, H., Nomura, K.-i., Peng, L., Seymour, R., Wang, W., Kalia, R.K., Nakano, A.,
Vashishta, P.: A multilevel parallelization framework for high-order stencil computations.
In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 642–653.
Springer, Heidelberg (2009)

12. Eichenberger, A., Wu, P., O’Brien, K.: Vectorization for simd architectures with alignment
constraints. In: PLDI (2004)

13. Fireman, L., Petrank, E., Zaks, A.: New algorithms for SIMD alignment. In: Adsul, B.,
Vetta, A. (eds.) CC 2007. LNCS, vol. 4420, pp. 1–15. Springer, Heidelberg (2007)

14. Hohenauer, M., Engel, F., Leupers, R., Ascheid, G., Meyr, H.: A simd optimization frame-
work for retargetable compilers. ACM TACO 6(1) (2009)

15. Jang, B., Mistry, P., Schaa, D., Dominguez, R., Kaeli, D.R.: Data transformations enabling
loop vectorization on multithreaded data parallel architectures. In: PPOPP (2010)

Data Layout Transformation for Stencil Computations 245

16. Kamil, S., Datta, K., Williams, S., Oliker, L., Shalf, J., Yelick, K.: Implicit and explicit
optimizations for stencil computations. In: MSPC 2006 (2006)

17. Kamil, S., Husbands, P., Oliker, L., Shalf, J., Yelick, K.: Impact of modern memory subsys-
tems on cache optimizations for stencil computations. In: MSP 2005 (2005)

18. Kandemir, M., Choudhary, A., Shenoy, N., Banerjee, P., Ramanujam, J.: A linear algebra
framework for automatic determination of optimal data layouts. IEEE TPDS 10(2) (1999)

19. Kennedy, K., Allen, J.: Optimizing compilers for modern architectures: A dependence-
based approach. Morgan Kaufmann, San Francisco (2002)

20. Kennedy, K., Kremer, U.: Automatic data layout for distributed-memory machines. ACM
TOPLAS 20(4) (1998)

21. Krishnamoorthy, S., Baskaran, M., Bondhugula, U., Ramanujam, J., Rountev, A., Sadayap-
pan, P.: Effective automatic parallelization of stencil computations. In: PLDI (2007)

22. Larsen, S., Amarasinghe, S.P.: Exploiting superword level parallelism with multimedia in-
struction sets. In: PLDI (2000)

23. Larsen, S., Witchel, E., Amarasinghe, S.P.: Increasing and detecting memory address con-
gruence. In: IEEE PACT (2002)

24. Li, Z., Song, Y.: Automatic tiling of iterative stencil loops. ACM TOPLAS 26(6) (2004)
25. Meng, J., Skadron, K.: Performance modeling and automatic ghost zone optimization for

iterative stencil loops on gpus. In: ICS (2009)
26. Micikevicius, P.: 3d finite difference computation on gpus using cuda. In: GPGPU-2 (2009)
27. Nuzman, D., Henderson, R.: Multi-platform auto-vectorization. In: CGO (2006)
28. Nuzman, D., Rosen, I., Zaks, A.: Auto-vectorization of interleaved data for simd. In: PLDI

(2006)
29. Nuzman, D., Zaks, A.: Outer-loop vectorization: revisited for short simd architectures. In:

PACT (2008)
30. O’Boyle, M., Knijnenburg, P.: Nonsingular data transformations: Definition, validity, and

applications. IJPP 27(3) (1999)
31. Orozco, D., Gao, G.R.: Mapping the FDTD Application to Many-Core Chip Architectures.

In: ICPP (2009)
32. Rivera, G., Tseng, C.-W.: Data transformations for eliminating conflict misses. In: PLDI

(1998)
33. Shafiq, M., Pericas, M., de la Cruz, R., Araya-Polo, M., Navarro, N., Ayguade, E.: Exploit-

ing memory customization in fpga for 3d stencil computations. In: FPT (2009)
34. Solar-Lezama, A., Arnold, G., Tancau, L., Bodik, R., Saraswat, V., Seshia, S.: Sketching

stencils. In: PLDI (2007)
35. Treibig, J., Wellein, G., Hager, G.: Efficient multicore-aware parallelization strategies for

iterative stencil computations. CoRR, abs/1004.1741 (2010)
36. Venkatasubramanian, S., Vuduc, R.: Tuned and wildly asynchronous stencil kernels for

hybrid cpu/gpu systems. In: ICS (2009)
37. Wellein, G., Hager, G., Zeiser, T., Wittmann, M., Fehske, H.: Efficient temporal blocking for

stencil computations by multicore-aware wavefront parallelization. In: COMPSAC (2009)
38. Wittmann, M., Hager, G., Treibig, J., Wellein, G.: Leveraging shared caches for par-

allel temporal blocking of stencil codes on multicore processors and clusters. CoRR,
abs/1006.3148 (2010)

39. Wolfe, M.J.: High Performance Compilers For Parallel Computing. Addison-Wesley, Read-
ing (1996)

40. Wonnacott, D.: Achieving scalable locality with time skewing. IJPP 30(3) (2002)
41. Wu, P., Eichenberger, A.E., Wang, A.: Efficient SIMD Code Generation for Runtime Align-

ment and Length Conversion. In: CGO (2005)

Subregion Analysis and Bounds Check Elimination
for High Level Arrays

Mackale Joyner1, Zoran Budimlić2, and Vivek Sarkar2

1 Texas Instruments, Dallas, TX 75243
2 Rice University, Houston, TX 77054

Abstract. For decades, the design and implementation of arrays in programming
languages has reflected a natural tension between productivity and performance.
Recently introduced HPCS languages (Chapel, Fortress and X10) advocate the
use of high-level arrays for improved productivity. For example, high-level arrays
in the X10 language support rank-independent specification of multidimensional
loop and array computations using regions and points. Three aspects of X10
high-level arrays are important for productivity but pose significant performance
challenges: high-level accesses are performed through point objects rather than
integer indices, variables containing references to arrays are rank-independent, and
all subscripts in a high-level array access must be checked for bounds violations.

The first two challenges have been addressed in past work. In this paper, we
address the third challenge of optimizing the overhead of array bounds checks
by developing a novel region-based interprocedural array bounds analysis to au-
tomatically identify redundant checks. Elimination of redundant checks reduces
the runtime overhead of bounds checks, and also enables further optimization
by removing constraints that arise from precise exception semantics. We have
implemented an array bounds check elimination algorithm that inserts special
annotations that are recognized by a modified JVM.

We also introduce array views, a high-level construct that improves productiv-
ity by allowing the programmer to access the underlying array through multiple
views. We describe a technique for optimizing away the overhead of many com-
mon cases of array views in X10. Our experiments show that eliminating bounds
checks using the results of the analysis described in this paper improves the per-
formance of our benchmarks by up to 22% over JIT compilation.

1 Introduction

Since the dawn of computing, arrays have played an important role in programming
languages as a central data structure used by application and library developers. How-
ever, the design and implementation of array operations have been subject to a natural
tension between productivity and performance. Languages such as APL and MATLAB
have demonstrated the productivity benefits of high-level arrays that support a powerful
set of array operations, but the usage of high-level arrays is typically restricted to proto-
typing languages because it has proved very challenging to deliver production-strength
performance for these operations. Conversely, languages such as C include low-level
arrays with a very restricted set of array operations (primarily, subscripting to access

J. Knoop (Ed.): CC 2011, LNCS 6601, pp. 246–265, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Subregion Analysis and Bounds Check Elimination 247

individual array elements) that are amenable to efficient production-strength implemen-
tations. Some languages, such as FORTRAN 90 and its successors, augment low-level
arrays with a few high-level operations that operate on entire arrays; in some cases, ef-
ficient code can be generated through optimized scalarization [30] for these high-level
operations, but it is often necessary for users of these languages to replace high-level
array operations by low-level equivalents when hand-tuning their code.

Chapel, Fortress and X10, initially developed within DARPA’s High Productivity
Computing System (HPCS) program, are all parallel high-level object-oriented lan-
guages designed to deliver both high productivity and high performance. These lan-
guages offer abstractions that enable programmers to develop applications for parallel
environments without having to explicitly manage many of the details encountered in
low level parallel programming. Unfortunately, runtime performance usually suffers
when programmers use early implementations of these languages. Compiler optimiza-
tions are crucial to reducing performance penalties resulting from their abstractions.

For example, high-level arrays in the X10 language support rank-independent spec-
ification of multidimensional loop and array computations using regions and points.
Three aspects of X10 high-level arrays are important for productivity but also pose
significant performance challenges: high-level accesses are performed through point
objects instead of integer indices, variables containing references to arrays are rank-
independent, and all high-level array accesses must be checked for bounds violations.

The first two challenges have been addressed in the past [17,18]. In this paper, we ad-
dress the optimizing the overhead of array bounds checks by developing a novel region-
based interprocedural array bounds analysis to automatically identify redundant checks.
Elimination of redundant checks reduces the runtime overhead of bounds checks, and
also enables further optimization by removing constraints that arise from precise excep-
tion semantics. A single high-level array access may result in multiple bounds checks,
one per dimension in general. We have implemented an array bounds check elimination
algorithm that eliminates these per-dimension checks from the X10 program when le-
gal to do so, and inserts special annotations to enable the underlying JVM to eliminate
the last remaining bounds check for the underlying linearized array. An unusual aspect
of our analysis is the use of must information (the sub-region relationship) to eliminate
bounds checks, while most of the traditional analysis use may information for bounds
check elimination.

We also introduce array views, a high-level construct that improves productivity by
allowing the programmer to access the underlying array through multiple views. We
present a method for optimizing away the overhead of some common cases of array
views in X10. Our experiments show that a bounds check elimination optimization
alone using the results of the analysis described in this paper improves the performance
of our benchmarks by up to 22% over JIT compilation and approaches the performance
of the code in which all runtime checks (bounds checks, null checks, cast checks, etc...)
are turned off.

2 Points, Regions and Arrays

High level arrays are embodied in a number of languages including the recent HPCS
languages and earlier languages such as Titanium [29]. Both Chapel and X10 build

248 M. Joyner, Z. Budimlić, and V. Sarkar

on ZPL’s foundational concepts of points and regions [24]. In this paper, we focus on
X10’s embodiment of high level arrays.

A point is an element of an n-dimensional Cartesian space (n ≥ 1) with integer-
valued coordinates, where n is the rank of the point. A region is a set of points, and
can be used to specify an array allocation or iteration constructs such as point-wise
sequential and parallel loops. For instance, the region [0:200,1:100] specifies
a collection of two-dimensional points (i,j) with i ranging from 0 to 200 and j
ranging from 1 to 100.

X10’s high level arrays can be used to express rank-independent loop and array com-
putations as shown in Figure 11. For simplicity, an additional loop is introduced to com-
pute the weighted sum using the elements in the stencil, but this loop could be replaced
by a high level array sum() operation as well. Note that the code in this example can
be executed on arrays with different ranks, by setting R inner and stencil appro-
priately.

region R_inner = ... ; // Inner region
region stencil = ... ; // Set of points in stencil
double omega_factor = ...;// Weight used for stencil points
for (int p=0; p<num_iterations; p++) {

for (point t : R_inner) { //
double sum = one_minus_omega * G[t];
for (point s : stencil) sum += omega_factor * G[t+s];
G[t] = sum;

}
}

Fig. 1. Rank-independent version of Java Grande SOR benchmark

Points and regions are first-class value types — a programmer can declare vari-
ables and create expressions of these types using the operations listed in Figure 2 —
in X10 [8]. In addition, X10 supports a special syntax for point construction — the
expression, “[a,b,c]”, is implicit syntax for a call to a three-dimensional point con-
structor, “point.factory(a,b,c)” — and also for variable declarations. The dec-
laration, “point p[i,j]” is exploded syntax for declaring a two-dimensional point
variable p along with integer variables i and j which correspond to the first and second
elements of p. Further, by requiring that points and regions be value types, the X10 lan-
guage ensures that individual elements of a point or a region cannot be modified after
construction.

A summary of array operations in X10 can be found in Figure 2. Note that the X10
array allocation expression, “new double[R]”, directly allocates a multi-dimensional
array specified by region R. The region associated with an array is available through
the .region field. In its full generality, an array allocation expression in X10 takes a
distribution instead of region. However, we will ignore distributions in this paper and
limit our attention to single-place executions although it is straightforward to extend
the subregion analysis and bounds check elimination algorithms in this paper to handle
distributed arrays.

1 This paper uses the old Java-based syntax from X10 v1.5 [8]. The latest version of X10 has a
different syntax and an updated type system, but retains the basic structure of high level arrays
from v1.5.

Subregion Analysis and Bounds Check Elimination 249

Region operations:

R.rank ::= # dimensions in region;
R.size() ::= # points in region
R.contains(P) ::= predicate if region R contains point P
R.contains(S) ::= predicate if region R contains region S
R.equal(S) ::= true if region R and S contain same set of points
R.rank(i) ::= projection of region R on dimension i
R.rank(i).low() ::= lower bound of i-th dimension of region R
R.rank(i).high() ::= upper bound of i-th dimension of region R
R.ordinal(P) ::= ordinal value of point P in region R
R.coord(N) ::= point in region R with ordinal value = N
R1 && R2 ::= region intersection
R1 || R2 ::= union of regions R1 and R2
R1 - R2 ::= region difference

Array operations:

A.rank ::= # dimensions in array
A.region ::= index region (domain) of array
A[P] ::= element at point P, where P belongs to A.region
A | R ::= restriction of array onto region R
A.sum(), A.max() ::= sum/max of elements in array
A1 <op> A2 ::= result of applying point-wise op on A1 and A2,

when A1.region = A2. region
(<op> can include +, -, *, and /)

A1 || A2 ::= disjoint union of arrays A1 and A2
(A1.region and A2.region must be disjoint)

A1.overlay(A2) ::= array with region, A1.region || A2.region,
with element value A2[P] for all points P in
A2.region and A1[P] otherwise.

Fig. 2. Region and array operations in X10

3 Region Analysis

3.1 Intraprocedural Region Analysis

Our static bounds analysis first runs a local pass over each method after we translate
the code into a static single assignment (SSA) form. Using a dominator based value
numbering technique [7], we assign value numbers to each point, region, array, and
array access inside the method body. These value numbers represent region association.
Upon completion of local bounds analysis, we map region value numbers back to the
source using the source code position as the unique id. Algorithm 1 shows the algorithm
for the intraprocedural region analysis.

To perform the analysis and transformation techniques described above, we use the
Matlab D framework developed at Rice University [9,11]. We generate an XML file
from the AST of the X10 program, then read this AST within the Matlab D compiler,
convert it into SSA, perform the value numbering based algorithms presented in this
chapter to infer the regions associated with arrays, points and regions in the program,
then use the unique source code position to map the analysis information back into the
X10 compiler.

We build both array region and value region relationships during the local analy-
sis pass. Discovering an array’s range of values exposes additional code optimization

250 M. Joyner, Z. Budimlić, and V. Sarkar

opportunities. Barik and Sarkar’s [4] enhanced bit-aware register allocation strategy
uses array value ranges to precisely determine how many bits a scalar variable requires
when it is assigned the value of an array element. In the absence of sparse data struc-
tures [19], sparse matrices in languages like Fortran, C, and Java are often represented
by a set of 1-D arrays that identify the indices of non-zero values in the matrix. This
representation usually inhibits standard array bounds elimination analysis because ar-
ray accesses often appear in the code with subscripts that are themselves array accesses.
We employ value range analysis to infer value ranges for arrays. Specifically, our array
value range analysis tracks all assignments to array elements. We ascertain that when
program execution assigns an array’s element a value using the mod function, a loop
induction variable, a constant, or array element value, we can analyze the assignment
and establish the bounds for the array’s element value range. 2

In Figure 3, assuming that the assignment of array values for row is the only row
update, analysis will conclude that row’s value region is reg1. Our static bounds analysis
establishes this value region relationship because the mod function inherently builds the
region [0:reg1.high()]. Figure 4 shows this analysis code view update for array element
assignments to row and col.

//code fragment is used to highlight
//interprocedural array element value
//range analysis
...
region reg1 = [0:dm[size]-1];
region reg2 = [0:dn[size]-1];
region reg3 = [0:dp[size]-1];
double[.] x = randVec(reg2);
double[.] y = new double[reg1];
int[.] val = new double[reg3]
int[.] col = new double[reg3];
int[.] row = new double[reg3];
Random R;...
for (point p1 : reg3) {
//array row has index set in reg3 and value range in reg1
row[p1] = Math.abs(R.Int()) % (reg1.high()+1);
col[p1] = Math.abs(R.Int()) % (reg2.high()+1);...

}
kernel(x,y,val,col,row,..);

double[.] randVec(region r1){
double[.] a = new double[r1];
for (point p2: r1)

a[p2] = R.double();
return a;

}

kernel(double[.]x,double[.]y,int[.]val,int[.]col,int[.]row,..){
for (point p3 : col)

y[row[p3]]+= x[col[p3]]*val[p3];
}

Fig. 3. Java Grande Sparse Matrix Multiplication (source view)

2 Note: when array a1 is an alias of array a2 (e.g. via an array assignment), we assign both a1
and a2 a value range of ⊥, even if a1 and a2 share the same value range, in order to eliminate
the need for interprocedural alias analysis. In the future, value range alias analysis can be
added to handle this case.

Subregion Analysis and Bounds Check Elimination 251

//code fragment is used to highlight
//interprocedural array element value
//range analysis
...
reg1 = [0:dm[size]-1];
reg2 = [0:dn[size]-1];
reg3 = [0:dp[size]-1];
x = reg2; //replaced call with region argument reg2
y = reg1;
col = reg3;
row = reg3;
Random R;...
p1 = reg3; //replaced \Xten{} loop with assignment to p1
row[p1] = [0:reg1.high()]; //followed by loop body
col[p1] = [0:reg2.high()];//created value range from mod
kernel(x,y,col,row,..);
...
region randVec(region r1){

a = r1;
p2 = r1; //replaced \Xten{} loop with assignment to p2
a[p2] = R.double(); //followed by loop body
return r1; //returns formal parameter

}
kernel(double[.]x,double[.]y,int[.]col,int[.] row,..){

p3 = col; //replaced \Xten{} loop with assignment to p3
y[row[p3]]+= x[col[p3]]*val[p3]; //followed by loop body

}

Fig. 4. Java Grande Sparse Matrix Multiplication (analysis view)

Fig. 5. Type lattice for region equivalence

We use an implicit, infinitely wide type lattice to propagate the values of the regions
through the program. The lattice is shown on Figure 5. In the Matlab D compiler [11],
a φ function performs a meet operation (∧) of all its arguments, where each argument
is a lattice value, and assigns the result to the target of the assignment.

3.2 Interprocedural Region Analysis

If a method returns an expression with a value number that is the same as a formal
parameter value number, analysis will give the array assigned the result of the method
call the value number of the corresponding actual argument at the call site.

Static interprocedural analysis commences once intraprocedural analysis completes.
During program analysis, we work over two different views of the code. The first is the
standard source view which affects code generation. The second is the analysis view.
Changes to the analysis view of the code do not impact code generation. In Figure 3,

252 M. Joyner, Z. Budimlić, and V. Sarkar

Algorithm 1. Intraprocedural region analysis algorithm builds local region relation-
ships

Input: CFG of X10 program
Output: regmap, a local mapping of each variable with type X10 array, region or

point to its region value number
begin

// initialization
foreach n ∈ Region, Point, Array do

regmap(n) = �
// infer X10 region mapping
foreach a ∈ assign do

if a ∈ φ function then

regmap(a.def)←
a.numargs∧

i=0

regmap(a.arg(i))

else if a.rhs ∈ constant then
regmap(a.lhs) = a.rhs

else
regmap(a.lhs) = regmap(a.rhs)

end

program execution assigns array x the result of invoking method RandomVector. Be-
cause our analysis determines that the method will return the region the program passes
as an argument (assuming region has a lower bound of 0), we will modify the analy-
sis view by replacing the method call with an assignment to the argument (reg2 in our
example). Figure 4 shows this update. When encountering method calls which our inter-
procedural regions analysis is not currently analyzing, we assign each formal argument
to the actual argument if and only if the actual argument has a region association. Each
actual argument can have one of the following three region states:

– If the method argument is a X10 array, region, or point, then the argument will be
in the full region state.

– The method argument has a partial region state when it represents the high or low
bound of a linear region.

– If the method argument does not fall within the first two cases, then we assign ⊥
to the argument (no region association). This distinction minimizes the number of
variables that we need to track during region analysis.

In addition to analyzing the code to detect region equivalence, we augment the analysis
with extensions to support sub-region relationships. Inferring sub-region relationships
between arrays, regions and points is similar in structure to region equivalence inference
analysis, but is different enough to warrant a separate discussion. As with the interpro-
cedural region equivalence analysis, there is an implicit type lattice, but this time the
lattice is unbounded in height as well as in width. The lattice is defined as follows:

– There ∃ an edge between regions A and B in the lattice L iff the two regions are of
the same dimensionality and region A is completely contained within region B.

Subregion Analysis and Bounds Check Elimination 253

– The lattice L meet operator ∧ is idempotent, commutative, and associative for all i
∈ L.

– Given the lattice L and i, j ∈ L, i < j iff i ∧ j = i and i �= j

During our analysis, we compute on demand an approximation of the sub-region lattice
relation — if we cannot prove that a region A is a sub-region of region B, then A∧B =
⊥. It is important to point out that, even though the subregion lattice is unbounded in
height and width, this does not adversely affect the running time or correctness of our
algorithm. The lattice is implicit — it is never completely computed or traversed in the
algorithm. Checking whether there is a sub-region relation between two regions takes
constant amount of time, regardless of their position in the lattice.

In addition, our analysis is flow-insensitive for global variables. When static analy-
sis determines that a global variable might be involved in multiple region assignments
involving different regions, the region for the variable becomes ⊥. In the future, we
can extend the algorithm to assign the variable the region intersection instead of ⊥.
Algorithm 2 presents pseudo code for the static interprocedural region analysis algo-
rithm. The interprocedural region analysis algorithm can be implemented to run in
O(|V |+ |E|) time for a graph G, where V is the number of array, point, and region vari-
ables in the whole program and E is the number of edges between them. An edge exists
between two variables if one defines the other. Theorem 1 shows that this algorithm has
complexity O(|V |+ |E|) and preserves program correctness:

Definition 1. Given a program P, let T be the set containing point, region and array
types in P and N be the set of variables in P with type t ∈ T such that for all m ∈ N:

(1) DEF(m) is the set of variables in P defined by m.
(2) REG(i) is the region associated with i. There ∃ precise region for i iff i ∈ V and

REG(i) �= or ⊥.

Definition 2. Given a directed graph G where V is the set of program variables of type
array or region, there exists an edge E between i, j ∈ V where i is the source and j is the
sink iff j ∈ DEF(i).

Theorem 1. The region analysis algorithm runs in time O(V+E) and preserves pro-
gram correctness.

Proof. Initially each node n ∈ V is placed on the worklist with lattice value . Once
node n is taken off the worklist, n can only be put back on the list iff n ∈ DEF(m) and m
< n or there ∃ precise regions for both n and m and REG(n) �= REG(m). In the latter case
n←⊥ before we place n back on the worklist. Since the lattice is bounded, all regions
in the lattice have finite size k, and a node n can only have its lattice value lowered, each
node can only be placed on the worklist a maximum of k+2 times. Because we traverse
source node edges when lattice value changes, each edge will be traversed a maximum
of k+1 times. Therefore, because V is a finite set of nodes, the algorithm must eventually
halt. Since each node n is placed on the worklist a maximum of k+2 times and its edges
are traversed a maximum of k+1 times, the complexity is O(V+E). Assuming the whole

254 M. Joyner, Z. Budimlić, and V. Sarkar

program is available to the region analysis algorithm, the algorithm preserves program
correctness. The region algorithm will produce an incorrect program iff the algorithm
assigns an incorrect precise region to a program variable with type array or region.
This would only occur when the variable can have multiple regions. However, when
a variable has multiple regions, the region analysis algorithm assigns the variable ⊥.
Therefore, the region analysis algorithm produces a correct program.

Algorithm 2. Interprocedural region analysis, maps variables of type X10 array,
point, and region to a concrete region

Input: X10 program
Output: regmap, a mapping of each variable with type X10 array, region or point

to its region
begin

// initialization
worklist = ∅, def = ∅
foreach n ∈ Region, Point, Array do

regmap(n) = �
worklist = worklist + n

foreach assign a do
if a.rhs ∈ constant then

regmap(a.lhs) = a.rhs
use(a.rhs) = use(a.rhs) ∪ a.lhs

foreach call arg c→ param f do
if c ∈ constant then

regmap(f) = c
use(c) = use(c) ∪ f

// infer X10 region mapping
while worklist �= ∅ do

worklist = worklist - n
foreach v ∈ use(n) do

if regmap(n) < regmap(v) in lattice then
regmap(v) = regmap(n)
worklist = worklist + v

else if regmap(n) �≥ regmap(v) in lattice then
regmap(v) = ⊥
worklist = worklist + v

end

3.3 Rectangular Region Algebra

In this paper, we refer to sub-arrays (products of intervals) as regions, as it has been the
common practice in recent literature. This is in contrast to the region concept originally
introduced by Triolet et al. [27] to describe convex sets of array elements, which are
strictly more powerful.

Subregion Analysis and Bounds Check Elimination 255

Often in scientific codes, loops iterate over the interior points of an array. If through
static analysis we can prove that loops are iterating over sub-regions of an array, we can
identify the bounds checks for those array references as superfluous. We use the exam-
ple on Figure 6 to highlight the benefits of employing region algebra to build variable
region relationships. Algorithm 3 shows the algorithm for region algebra analysis.

When our static region analysis encounters the dgefa method call with a region high
bound argument in Figure 6, analysis will assign dgefa’s formal parameter n the high
bound of region1’s second dimension and a the region region1. We shall henceforth
refer to the region representing region1’s second dimension as region1 2dim. Inside
dgefa’s method body, analysis will categorize nm1 as a region bound and region3 as a
sub-region of region1 2dim when inserting it in the region tree.

Next, we assign array col k the region region1 2dim and categorize kp1 as a sub-
region of region1 2dim. When static region analysis examines the binary expression
n-kp1 on the right hand side of the assignment to var1, it discovers that the n is re-
gion1 2dim.hbound() and kp1 is a sub region of region1 2dim. As a result, we can use
region algebra to prove that this region operation will return a region r where: r.lbound()
≥ region1 2dim.lbound() and r.bound()≤ region1 2dim.hbound(). Consequently, var1
will be assigned region1 2dim.

Finally, analysis determines that var2’s region is a sub-region of region1 2dim. As a
result, when analysis encounters the daxpy call it will assign daxpy formal parameter dx
the region region1 2dim and formal parameter dax reg the same region as var2 enabling
us to prove and signal to the VM that the bounds check for the array access dx[p2] in
daxpy’s method body is unnecessary.

//code fragment is used to highlight
//interprocedural region analysis using region algebra
int n = dsizes[size];
int ldaa = n;
int lda = ldaa + 1;
...
region region1 = [0:ldaa-1,0:lda-1];...
double[.] a = new double[region1]...
info = dgefa(a, region1.rank(1).high(), ipvt);
//dgefa method, lufact kernel
int dgefa(double[.] a, int n, int[.] ipvt){...

nm1 = n - 1;...
region region3 = [0:nm1-1];...
for (point p1[k] : region3) {

col_k = RowView(a,k);...
kp1 = k + 1...
int var1 = n-kp1;
region var2 = [kp1:n];...
daxpy(var1,col_k,kp1,var2,...);...

}
}
...
//daxpy method
void daxpy(int n,double[.]dx,int dx_off,region dax_reg,..){..

for (point p2 : dax_reg)
dy[p2]+= da*dx[p2];...

}

Fig. 6. Java Grande LU factorization kernel

256 M. Joyner, Z. Budimlić, and V. Sarkar

Algorithm 3. Region algebra algorithm discovers integers and points that have a
region association

Input: X10 program
Output: regAssoc, a mapping of each variable of type X10 array, region, point or

int to its region association
begin

// initialization
worklist = ∅, def = ∅
foreach n ∈ Region, Point, Array, int do

regAssoc(n) = �
worklist = worklist + n

foreach assign a do
if a.rhs ∈ constant ∨ bound then

regAssoc(a.lhs) = a.rhs
use(a.rhs) = use(a.rhs) ∪ a.lhs

foreach call arg c→ param f do
if c ∈ constant ∨ bound then

regAssoc(f) = a.rhs
use(c) = use(c) ∪ f

// infer X10 region mapping
while worklist �= ∅ do

worklist = worklist− n
foreach v ∈ use(n) do

if regAssoc(n) < regAssoc(v) in lattice then
regAssoc(v) = regAssoc(n)
worklist = worklist + v

else if regAssoc(n) �≥ regAssoc(v) in lattice then
regAssoc(v) = ⊥
worklist = worklist + v

end

3.4 Interprocedural Linearized Array Bounds Analysis

Our array bounds analysis algorithm as described in Section 3.1 and Section 3.2 makes
heavy use of X10 points and regions to discover when bounds checks are superfluous.
In general, the programmer iterates through the elements in an array by implementing
an X10 for loop whose header contains both a point declaration p1 and the region
r1 containing the set of points defining p1. As a result, when encountering an array
access with subscript p1, if our array bounds analysis can establish a subset relationship
between the array’s region and region r1, our analysis can signal the VM that a bounds
check for this array access is superfluous.

Figure 7 illustrates an MG code fragment where the application developer linearizes
a 3-dimensional array to boost runtime performance. This example shows why our cur-
rent array bounds analysis cannot rely on the compiler automatically converting lin-
earized arrays to X10 multi-dimensional arrays because the range for each dimension
in this case cannot be established. As a result, our bounds analysis must be extended

Subregion Analysis and Bounds Check Elimination 257

if we want to analyze linearized array accesses to discover useless bound checks.
Figure 7 highlights another extension to the array bounds analysis we previously de-
scribed in Section 3.1 and Section 3.2. Studying the MG code fragment reveals that all
the accesses to array r inside method psinv are redundant. Our array bounds analysis
adds the following requirements to prove that r’s bounds checks are redundant:

– The array region summary for psinv’s formal parameter r is a subset of the region
summary for zero3’s formal parameter z . The region summary for a given array
and procedure defines the valid array index space inside the procedure for which
a bounds check is useless. The region summary contains only an index set that
must execute when the programmer invokes this method. We do not include array
accesses occurring inside conditional statements in the region summary.

– The region representing the actual argument of psinv’s formal parameter r is a sub-
set of the region representing the actual argument for zero3’s formal parameter z.

– The program must call zero3 before calling psinv.
– Since our analysis modifies psinv’s actual method body, the previous requirements

must hold on all calls to psinv.

These requirements enable our interprocedural region analysis to de-linearize array
accesses into region summaries and to propagate the region summary information to
discover redundant bounds checks. Note: The algorithm does not reanalyze recursive
functions in a call chain. The algorithm can be extended to take advantage of recursion
by splitting the recursive function A into A and A’ and subsequently eliminating the
checks in A’.

//MG code fragment highlights opportunity to eliminate
//bound checks with procedure array bound summaries
int nm = 2+(1<<lm);
int nv = (2+(1<<ndim1))*(2+(1<<ndim2))*(2+(1<<ndim3));
int nr = (8*(nv+nm*nm+5*nm+7*lm))/7;
region reg_nr = [0:nr-1];
double[.]u=new double[reg_nr]; //create linearized array
zero3(u, 0, n1, n2, n3);
psinv(u, 0, n1, n2, n3);
...
void zero3(double[.] z, int off, int n1, int n2, int n3) {

for (point p1[i3,i2,i1]: [0:n3-1,0:n2-1,0:n1-1])
z[off+i1+n1*(i2+n2*i3)] = 0.0;

}...
void psinv(double[.] r, int roff, int n1, int n2, int n3) {...

for (point p40[i3,i2]: [1:n3-2,1:n2-2]) {
for (point p41[i1] : [0:n1-1]) {

r1[p41] = r[roff+i1+n1*(i2-1+n2*i3)]
+ r[roff+i1+n1*(i2+1+n2*i3)]
+ r[roff+i1+n1*(i2+n2*(i3-1))]
+ r[roff+i1+n1*(i2+n2*(i3+1))];

r2[p41] = r[roff+i1+n1*(i2-1+n2*(i3-1))]
+ r[roff+i1+n1*(i2+1+n2*(i3-1))]
+ r[roff+i1+n1*(i2-1+n2*(i3+1))]
+ r[roff+i1+n1*(i2+1+n2*(i3+1))];

}...
}}

Fig. 7. This MG code fragment shows an opportunity to remove all array r bounds checks in-
side the psinv method because those checks are all redundant since the programmer must invoke
method zero3 prior to method psinv

258 M. Joyner, Z. Budimlić, and V. Sarkar

4 Bounds Check Elimination

The results of the interprocedural region analysis described in Section 3 can be used
in different contexts in an optimizing compiler. In this section, we describe how the
subregion relationship computed in Section 3 can be used to eliminate unnecessary
array bounds checks in an X10 program.

Many high-level languages perform automatic array bounds checking to improve
both safety and correctness of the code, by eliminating the possibility of an incorrect
(or malicious) code randomly “poking” into memory through an out of bounds array
access or buffer overflow. While these checks are beneficial for safety and correctness,
performing them at run time can significantly degrade performance especially in array-
intensive codes. Two main ways that bounds checks can affect performance are:

1. The Cost of Checks. The runtime may need to check the array bounds when program
execution encounters an array access.

2. Constraining Optimizations. The compiler may be forced to constrain or disable
code optimizations in code region containing checks, in the presence of precise
exception semantics.

In our approach, we insert a special noBoundsCheck annotation 3 around an array sub-
script to signal to a modified version of the IBM J9 Java Virtual Machine 4 that it can
skip the array bounds check for that particular array access. These annotations can be
inserted if the compiler can establish one of the following properties:

1. Array Subscript within Region Bound. If the array subscript is a point that the pro-
grammer is using to iterate through region r1 and r1 is a subregion of the array’s
region, then the bounds check is unnecessary.

2. Subscript Equivalence. Given two array accesses, one with array a1 and subscript
s1 and the second with array a2 and subscript s2: if subscript s1 has the same value
number as s2, s1 executes before subscript s2 and array a1’s region is a subregion
of a2’s region, then the bounds check for a2[s2] is unnecessary.

We use a dominator-based value numbering technique [7] to find redundant array ac-
cesses. We annotate each array access in the source code with two value numbers. The
first value number represents a value number for the array access. We derive a value
number for the array access by combining the value numbers of the array reference and
the subscript. The second value number represents the array’s element value range. By
maintaining a history of these array access value numbers we can discover redundant
array accesses and eliminate them.

5 Array Views

Though multidimensional high-level arrays provide significant productivity benefits
compared to their low-level counterparts, there are many cases when a programmer

3 The ”annotation” is simply a call to an empty noBoundsCheck method that is recognized by
the JVM as a NOP and causes the JVM to skip the bounds check for the enclosed subscript.

4 Any JVM can be extended to recognize the noBoundsCheck annotation, but in this paper we
report our experiences with a version of the IBM J9 JVM that was modified with this capability.

Subregion Analysis and Bounds Check Elimination 259

wishes to “view” a subset of array elements using a different index set from that of the
original array e.g., when a subarray needs to be passed by reference to a procedure or
when a multi-dimensional array needs to be accessed as a one-dimensional array. In
contrast, languages such as APL and Matlab provide restructuring operations that are
value-oriented with copying semantics by default.

In this paper, we introduce array views for high-level arrays to address this limitation.
Array views give the programmer the opportunity to work with multiple views of an
array, with well defined bounds checks that are performed on the region associated
with the view. A programmer can exploit the array’s view to traverse an alternative
representation of the array. Prevalent in scientific codes is the expression of the form a
= b[i] which often assigns the variable a row i of array b when b is a two-dimensional
array. Array views can extend this idea by providing an alternate view for the entire
array. The following code snippet shows an array view example:

double[.] ia = new double[[1:10,1:10]];
double[.] v = ia.view([10,10],[1:1]);
v[1] = 42;
print(ia[10,10]);

The programmer declares array ia to be a 2-dimensional array. Next, the programmer
creates the array view v to represent a view of array ia, with starting point[10,10] and
region [1:1]. This essentially introduces a pointer to element ia[10,10]. Subsequently,
when the programmer modifies the array v, array ia is also modified resulting in the print
statement yielding the value 42. We will use a hexahedral cells code [12] as a running
example to illustrate the productivity benefits of using array views in practice.

//code fragment highlights array view productivity benefit
region reg_mex = [0:MESH_EXT-1];
region reg_mex_linear=[0:MESH_EXT*MESH_EXT*MESH_EXT-1];
double[.] x = new double[reg_mex_linear-];
double[.] y = new double[reg_mex_linear];
double[.] z = new double[reg_mex_linear];...
for (point pt3[pz] : reg_mex) {...

for (point pt2[py] : reg_mex) {...
for (point pt1[px] : reg_mex) {

//using less productive linearized array access
x[px+MESH_EXT*(py + MESH_EXT*pz)] = tx;
y[px+MESH_EXT*(py + MESH_EXT*pz)] = ty;
z[px+MESH_EXT*(py + MESH_EXT*pz)] = tz;
tx += ds;

}
ty += ds;

}
tz += ds;

}...
region reg_br = [0:MESH_EXT-2];
region reg_br_3D = [reg_br, reg_br, reg_br];
int[.] p1,p2 = new int[reg_br_3D];...
//would be invalid if x, y, and z were 3-D arrays
for (point pt7 : reg_br_3D) {

ux = x[p2[pt7]] - x[p1[pt7]];
uy = y[p2[pt7]] - y[p1[pt7]];
uz = z[p2[pt7]] - z[p1[pt7]]; ...

}

Fig. 8. Hexahedral cells code showing that problems arise when representing arrays x, y, and z
as 3-dimensional arrays due to programmers indexing into these arrays using an array access
returning integer value instead of a triplet

260 M. Joyner, Z. Budimlić, and V. Sarkar

Figure 8 illustrates one problem that arises when programmers utilize an array access
as a multi-dimensional array subscript. Since the subscript returns an integer, the devel-
oper cannot use the subscript for multi-dimensional arrays. As a result, the programmer
must rewrite this code fragment by first replacing the 3-dimensional arrays x, y and z
with linearized array representations. Subsequently, the developer needs to modify the
array subscripts inside the innermost loop of Figure 8 with the more complex subscript
expression for the linearized arrays. While this solution is correct, we can implement
a more productive solution using X10 array views as shown in Figure 9. This solution
enables programmers to develop scientific applications with multi-dimensional array
computations in the presence of subscript expressions returning non-tuple values.

Figure 9 shows the result of converting the 3-D X10 arrays into 3-D Java arrays
when analysis determines it is safe to do so. This compilation pass does not transform
the X10 arrays x, y, z, xv, yv, and zv because of their involvement in the X10 array.view()
method call. There is not a semantically-equivalent Java method counterpart for the X10
array.view() method. One drawback of array views as presented is that safety analysis
marks the view’s target array as unsafe to transform. Our compiler does convert the X10
general arrays p1 and p2 in Figure 9 into 3-D Java arrays. Although 3-D array accesses
in Java are inefficient, this transformation still delivers more than a factor of 3 speedup
over the code version with only X10 general arrays. Finally, we can achieve even better
performance by linearizing the 3-D Java arrays, and optimizing away the array views by
replacing them by assignments to the whole array. Figure 10 provides the final source
output for the hexahedral cells code fragment.

//code fragment highlights \Xten{} to Java array translation
region reg_mex = [0:MESH_EXT-1];
region reg_mex_3D = [reg_mex,reg_mex,reg_mex];
double[.] x,y,z = new double[reg_mex_3D];...
for (point pt3[pz] : reg_mex) {...

for (point pt2[py] : reg_mex) {...
for (point pt1[px] : reg_mex) {

x[pz,py,px] = tx; //use productive multi-D
y[pz,py,px] = ty; //access with array views
z[pz,py,px] = tz;
tx += ds;

}
ty += ds;

}
tz += ds;

}...
region reg_br = [0:MESH_EXT-2];
region reg_br_3D = [reg_br, reg_br, reg_br];
int[][][] p1,p2 = new int[reg_br_3D];...
region reg_linear=[0:MESH_EXT*MESH_EXT*MESH_EXT-1];
double[.] xv = x.view([0,0],[0:reg_linear];
double[.] yv = y.view([0,0],[0:reg_linear];
double[.] zv = z.view([0,0],[0:reg_linear];
for (point pt7[i,j,k]: reg_br_3D) {

ux = xv[p2[i][j][k]] - xv[p1[i][j][k]] ;
uy = yv[p2[i][j][k]] - yv[p1[i][j][k]] ;
uz = zv[p2[i][j][k]] - zv[p1[i][j][k]] ;...

}

Fig. 9. Array views xv, yv, and zv enable the programmer to productively implement 3-
dimensional array computations inside the innermost loop. We highlight the array transformation
of X10 arrays into Java arrays to boost runtime performance. In this hexahedral cells volume
calculation code fragment, our compiler could not transform X10 arrays x, y, z, xv, yv, zv into
Java arrays because the Java language doesn’t have an equivalent array view operation.

Subregion Analysis and Bounds Check Elimination 261

//code fragment shows opt with array linearization
region reg_mex = [0:MESH_EXT-1];
region reg_mex_3D = [reg_mex,reg_mex,reg_mex];
double[.] x,y,z = new double[LinearViewAuto(reg_mex_3D)];...
for (point pt3[pz] : reg_mex) {...

for (point pt2[py] : reg_mex) {...
for (point pt1[px] : reg_mex) {

x[pz,py,px] = tx; //use productive multi-D
y[pz,py,px] = ty; //access with array views
z[pz,py,px] = tz;
tx += ds;

}
ty += ds;

}
tz += ds;

}...
region reg_br = [0:MESH_EXT-2];
region reg_br_3D = [reg_br, reg_br, reg_br];
int[] p1,p2 = new int[LinearViewAuto(reg_br_3D)];...
region reg_linear=[0:MESH_EXT*MESH_EXT*MESH_EXT-1];
double[] xv = x;
double[] yv = y;
double[] zv = z;
for (point pt7[i,j,k]: reg_br_3D) { //sub M for MESH_EXT

ux=xv[p2[k+(M-1)(j+(M-1)*i)]-xv[p1[k+(M-1)(j+(M-1)*i)];
uy=yv[p2[k+(M-1)(j+(M-1)*i)]-yv[p1[k+(M-1)(j+(M-1)*i)];
uz=zv[p2[k+(M-1)(j+(M-1)*i)]-zv[p1[k+(M-1)(j+(M-1)*i)];..

}

Fig. 10. We show the final version for the Hexahedral cells code which demonstrates the com-
piler’s ability to translate X10 arrays into Java arrays in the presence of array views

6 Experimental Results

We performed our experiments on a single node of an IBM 16-way 4.7 GHz Power6
SMP with 186 GB main memory. The Java runtime environment used is the IBM J9
virtual machine (build 2.4, J2RE 1.6.0) which includes the IBM Testarossa (TR) Just-
in-Time (JIT) compiler [25].

It is important to note that all our experiments are performed on a JVM that already
performs dynamic bounds check elimination within a JIT compiler. Our improvements
are relative to a state-of-the art dynamic compilation system that already removes as
many runtime checks as it can.

We studied the X10 sequential ports of benchmarks from the Java Grande [16] suite.
We compare two versions of each benchmark. The first version is the ported code. The
second version, through static analysis, inserts noBoundsCheck calls around an array
index when the bounds check is unnecessary.

In columns 2,3 and 4 of Table 1, we report the dynamic counts for the Java Grande,
hexahedral, and 2 NAS parallel (cg, mg) X10 benchmarks. We compare dynamic counts
for potential general X10 array bounds checks against omitted general X10 array bounds
checks using our static analysis techniques. We use the term ”general X10 array” to refer
to arrays the programmer declares using X10 regions. In several cases our static bounds
analysis removes over 99% of potential bound checks.

In columns 5,6 and 8 of Figure 1, we report the execution times for the Java Grande,
hexahedral, and 2 NAS parallel (cg, mg) X10 benchmarks. Column 5 shows the execu-
tion times of the baseline unoptimized code that is executed on a JIT with dynamic
bounds check elimination. Column 6 shows the execution times with automatically

262 M. Joyner, Z. Budimlić, and V. Sarkar

generated noBoundsCheck annotations with runtime checks enabled. These annotations
alert the IBM J9 VM when array bounds checking for an array access is unnecessary.
Performing static array bounds analysis and subsequent automatic program transforma-
tion, we improve runtime performance by up to 22.3%. These results demonstrate that
our static no bounds check analysis helps reduce the performance impact of program-
mers developing applications in type-safe languages. We experience a -2.4% decrease in
performance for raytracer because the noBoundsCheck annotation cost was not amor-
tized over all bounds checks along the ”hot” path. This occurs when the ”hot” path
does not involve loops with noBoundsCheck annotations (hoisted out of loop). Column
8 of Table 1 shows the execution times that are obtained by running a version of the
code with all runtime checks turned off (including bounds checks, null checks and cast
checks) and illustrates how close does our optimization come to the theoretical limit on
runtime checks elimination. We can conclude that we still may further improve runtime
performance in some cases by eliminating other types of runtime checks such as null
checks or cast checks. One interesting result to point out is the mg benchmark, where
even though we eliminate only 5.8% of the total number of bounds checks, that does
not have a large effect on performance, since only 6.1% of the execution time is spent
on all runtime checks.

Table 1. Dynamic counts for Array Bounds Checks and execution times for unoptimized and
optimized versions of the code

Array Bounds Checks Sequential Runtime Performance in seconds
Dynamic Counts

Benchmarks total X10 total X10 percent optimized runtime all max.
ABCs ABCs eliminated baseline baseline improv. checks theor.

eliminated removed improv.
sparsemm 2.51×109 2.51×109 100.0% 34.46 27.02 21.6% 24.01 30.3%
crypt 1.0×109 1.0×108 10.0% 9.11 9.1 0.1% 8.79 3.5%
lufact 5.43×109 5.37×109 99.1% 46.86 40.43 13.7% 39.59 15.5%
sor 4.81×109 4.80×109 99.8% 3.67 3.66 0.2% 3.66 0.2%
series 4.0×106 4.0×106 99.9% 1233.77 1226.61 0.6% 1218.39 1.2%
moldyn 5.95×109 4.02×109 67.6% 89.98 88.65 1.5% 75.21 16.4%
montecarlo 7.80×108 4.20×108 53.8% 24.64 24.41 0.9% 24.19 1.8%
raytracer 1.18×109 1.18×109 100.0% 34.79 35.73 -2.4% 33.11 4.8%
hexahedral 3.59×1010 3.21×1010 89.4% 15.31 12.03 22.3% 10.38 32.2%
cg 3.04×109 1.53×109 50.4% 9.73 9.34 4.0% 9.04 7.1%
mg 6.61×109 3.83×108 5.8% 31.3 30.4 2.9% 29.39 6.1%

Finally, in Table 2, we compare Fortran, Unoptimized X10, Optimized X10, and
Java execution times for the 2 NAS parallel (cg, mg) benchmarks. The Optimized X10
significantly reduces the slowdown factor that results from comparing Unoptimized
X10 with Fortran. These results were obtained on the IBM 16-way SMP. Note: the 3.0
NAS Java mg version was run on a 2.16 GHz Intel Core 2 Duo with 2GB of memory due
to a J9 JIT compilation problem with this code version. In the future, we will continue
to extend our optimizations to further reduce the overhead of using high-level X10 array
computations.

Subregion Analysis and Bounds Check Elimination 263

Table 2. Fortran, Unoptimized X10, Optimized X10, and Java raw sequential runtime perfor-
mance comparison (in seconds) for 2 NAS Parallel benchmarks, obtained on the IBM 16-way
SMP machine

Benchmark Sequential Runtime Performance
Fortran Unoptimized X10 Optimized X10 Java
Version Slowdown Slowdown Slowdown

cg 2.58 10.43× 3.31× 1.60×
mg 2.02 46.72× 13.66× 9.53×

7 Related Work

Bodı́k et al. [6] reduce array bounds checks in the context of dynamic compilation
in a JVM. They focus their optimization on program hot spots to maximize benefits
and to amortize the cost of performing the analysis on a lightweight inequality graph.
Though it was limited to the intraprocedural context, a dynamic interprocedural anal-
ysis framework such as [21] can be used to extend their work to the interprocedural
context. Rather than modifying the JVM, our strategy is that the compiler communi-
cates to the JVM the results of the static analysis. Suzuki and Ishihata [26] provide
an intraprocedural array bounds checking algorithm based on theorem proving which
can be prohibitively costly. Most JIT compilers also perform array bounds analysis
to eliminate bounds checks. However, the analysis is generally intraprocedural, limit-
ing the effectiveness. A key difference between our work and [6,26] is that our work
targets high level arrays and leverages subregion analysis for enhanced bounds check
elimination.

Aggarwal and Randall [1] use related field analysis to eliminate bounds checks. They
observe that an array a and an integer b may have an invariant relationship where 0 ≤
b < a.length for every instance of class c. To find related fields, they analyze every
pair [a,b] where a is a field with type array(1-Dimensional) and b is a field with type
integer in class c. Heffner et al [14] extend this by addressing the overhead required to
prove program invariants for field relations at each point in the program. By contrast, we
examine every array, region, point, and integer variable. As a result, we can eliminate
bound checks for multi-dimensional arrays that Aggarwal and Randall would miss.

Gupta [13] uses a data-flow analysis technique to eliminate both identical and sub-
sumed bounds checks. Ishizaki et al. [15] extends Gupta’s work by showing when
bounds checks with constant index expressions can be eliminated. This algorithm relies
on the assumption that all arrays have a lower bound of 0, which is generally not the
case in X10. FALCON [22], is a compiler for translating MATLAB programs into For-
tran 90, that performs both static and dynamic inference of scalar (e.g. real, complex) or
fixed array types. MAJIC [2], a MATLAB just-in-time compiler, compiles code ahead
of time using speculation. Both the FALCON and MAJIC type inference schemes are
limited compared to our precise type inference with type jump functions since neither
uses symbolic variables to resolve types.

Some research in the verification community, such as the ASTREÉ static analyzer [5]
and the memory safety analysis of OpenSSH [10] has focused on proving safety of array

264 M. Joyner, Z. Budimlić, and V. Sarkar

accesses, which could also be used for optimization. These analyses are much heavier
weight than what we present in this paper.

The use of equivalence sets in our type analysis algorithm builds on past work on
equivalence analysis [3] and constant propagation [28]. As in constant propagation, we
have a lattice of height ≤ 3. By computing the meet-over-all-paths, our type inference
may be more conservative than Sagiv’s [23] algorithm for finding the meet-over-all-
valid-paths solution. The idea of creating specialized method variants based on the call-
ing context is related to specialized library variant generation derived from type jump
functions [9]. McCosh’s [20] type inference generates pre-compiled specialized variants
for MATLAB. The context in which we apply our algorithm differs from McCosh since
we perform type inference in an object-oriented environment on rank-independent type
variables that must be mapped to rank-specific types. Without function cloning during
rank analysis, formal parameters with multiple ranks resolve to ⊥.

8 Conclusions

In this paper, we addressed the problem of subregion analysis and bounds check elim-
ination for high level arrays. We describe a novel analysis technique that computes the
subregion relation between arrays, regions and points. We used this analysis to imple-
ment an array bounds elimination optimization, which improves the performance of our
benchmarks by up to 22% over JIT compilation and is very close to the performance
of the code where none of the runtime checks are performed. We also introduced array
views, a high-level construct that improves productivity by allowing the programmer
to access the underlying array through multiple views, and described a technique for
optimizing away the overhead resulting from this abstraction in some common cases.

References

1. Aggarwal, A., Randall, K.H.: Related field analysis. In: PLDI 2001, pp. 214–220 (2001)
2. Almási, G., Padua, D.: MaJIC: compiling MATLAB for speed and responsiveness. In: PLDI

2002, pp. 294–303 (2002)
3. Alpern, B., Wegman, M.N., Zadeck, F.K.: Detecting equality of variables in programs. In:

POPL 1988, pp. 1–11. ACM Press, New York (1988)
4. Barik, R., Sarkar, V.: Enhanced bitwidth-aware register allocation. In: Mycroft, A., Zeller, A.

(eds.) CC 2006. LNCS, vol. 3923, pp. 263–276. Springer, Heidelberg (2006)
5. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,

X.: A static analyzer for large safety-critical software. In: Proceedings of the ACM SIGPLAN
2003 Conference on Programming Language Design and Implementation (PLDI 2003), San
Diego, California, USA, June 7-14, pp. 196–207. ACM Press, New York (2003)

6. Bodı́k, R., Gupta, R., Sarkar, V.: ABCD: Eliminating Array Bounds Checks on Demand. In:
PLDI 2000, pp. 321–333. ACM Press, New York (2000)

7. Briggs, P., Cooper, K., Simpson, T.L.: Value numbering. Software Practice and Experi-
ence 27(6), 701–724 (1997)

8. Charles, P., Donawa, C., Ebcioglu, K., Grothoff, C., Kielstra, A., von Praun, C., Saraswat,
V., Sarkar, V.: X10: An object-oriented approach to non-uniform cluster computing. In:
OOPSLA 2005 Onward! Track (2005)

Subregion Analysis and Bounds Check Elimination 265

9. Chauhan, A., McCosh, C., Kennedy, K., Hanson, R.: Automatic type-driven library genera-
tion for telescoping languages. In: Supsercomputing 2003, Washington, DC (2003)

10. Dillig, I., Dillig, T., Aiken, A.: Fluid updates: Beyond strong vs. Weak updates. In: Gordon,
A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 246–266. Springer, Heidelberg (2010)

11. Fletcher, M., McCosh, C., Jin, G., Kennedy, K.: Compiling Parallel Matlab for General Dis-
tributions Using Telescoping Languages. In: ICASSP: Proceedings of the 2007 International
Conference on Acoustics, Speech and Signal Processing, Honolulu, Hawai’i, USA (2007)

12. Grandy, J.: Efficient computation of volume of hexahedral cells. Technical Report UCRL-
ID-128886, Lawrence Livermore National Laboratory (October 1997)

13. Gupta, R.: Optimizing array bound checks using flow analysis. ACM Lett. Program. Lang.
Syst. 2(1-4), 135–150 (1993)

14. Heffner, K., Tarditi, D., Smith, M.D.: Extending object-oriented optimizations for concur-
rent programs. In: PACT 2007: Proceedings of the 16th International Conference on Parallel
Architecture and Compilation Techniques (PACT 2007), pp. 119–129 (2007)

15. Ishizaki, K., et al.: Design, implementation, and evaluation of optimizations in a just-in-time
compiler. In: Proceedings of the ACM 1999 Conference on Java Grande, pp. 119–128 (1999)

16. The Java Grande forum benchmark suite,http://www.epcc.ed.ac.uk/javagrande
17. Joyner, M., Budimlić, Z., Sarkar, V.: Optimizing array accesses in high productivity lan-

guages. In: Proceedings of the High Performance Computation Conference (HPCC), Hous-
ton, Texas (September 2007)

18. Joyner, M., Budimlić, Z., Sarkar, V., Zhang, R.: Array optimizations for parallel implementa-
tions of high productivity languages. In: Workshop on Performance Optimization for High-
Level Languages and Libraries (POHLL), Miami, Florida (April 2008)

19. Mateev, N., Pingali, K., Stodghill, P., Kotlyar, V.: Next-generation generic programming and
its application to sparse matrix computations. In: ICS 2000: Proceedings of the 14th Interna-
tional Conference on Supercomputing, pp. 88–99 (2000)

20. McCosh, C.: Type-Based Specialization in a Telescoping Compiler for ARPACK. Master’s
thesis, Rice University, Houston, Texas (2002)

21. Pechtchanski, I., Sarkar, V.: Dynamic optimistic interprocedural analysis: a framework and
an application. In: Proceedings of the 16th ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, OOPSLA 2001, pp. 195–210. ACM,
New York (2001)

22. Rose, L.D., Padua, D.: Techniques for the translation of MATLAB programs into Fortran 90.
ACM Trans. Program. Lang. Syst. 21(2), 286–323 (1999)

23. Sagiv, M., Reps, T., Horwitz, S.: Precise interprocedural dataflow analysis with applications
to constant propagation. Theor. Comput. Sci. 167(1-2), 131–170 (1996)

24. Snyder, L.: A Programmer’s Guide to ZPL. MIT Press, Cambridge (1999)
25. Sundaresan, V., et al.: Experiences with multi-threading and dynamic class loading in a java

just-in-time compiler. In: CGO 2006, Washington, DC, USA, pp. 87–97 (2006)
26. Suzuki, N., Ishihata, K.: Implementation of an Array Bound Checker. In: POPL 1977, pp.

132–143 (1977)
27. Triolet, R., Irigoin, F., Feautrier, P.: Direct parallelization of call statements. SIGPLAN

Not. 21, 176–185 (1986)
28. Wegman, M.N., Zadeck, F.K.: Constant propagation with conditional branches. ACM Trans.

Program. Lang. Syst. 13(2), 181–210 (1991)
29. Yelick, K., et al.: Titanium: A High-Performance Java Dialect. Concurrency: Practice and

Experience 10(11) (September 1998)
30. Zhao, Y., Kennedy, K.: Scalarizing Fortran 90 Array Syntax. Technical Report TR01-373,

Department of Computer Science, Rice University (2001)

http://www.epcc.ed.ac.uk/javagrande

Practical Loop Transformations for Tensor
Contraction Expressions on Multi-level Memory

Hierarchies

Wenjing Ma1, Sriram Krishnamoorthy2, and Gagan Agrawal1

1 The Ohio State University, Columbus, OH, 43210, USA
{mawe,agrawal}@cse.ohio-state.edu

2 Pacific Northwest National Lab, Richland, WA, 99352, USA
sriram@pnl.gov

Abstract. Modern architectures are characterized by deeper levels of
memory hierarchy, often explicitly addressable. Optimizing applications
for such architectures requires careful management of the data move-
ment across all these levels. In this paper, we focus on the problem of
mapping tensor contractions to memory hierarchies with more than two
levels, specifically addressing placement of memory allocation and data
movement statements, choice of loop fusions, and tile size selection. Ex-
isting algorithms to find an integrated solution to this problem even for
two-level memory hierarchies have been shown to be expensive. We im-
prove upon this work by focusing on the first-order cost components,
simplifying the analysis required and reducing the number of candidates
to be evaluated. We have evaluated our framework on a cluster of GPUs.
Using five candidate tensor contraction expressions, we show that fusion
at multiple levels improves performance, and our framework is effective
in determining profitable transformations.

1 Introduction

Starting from the last 4-5 years, chip designers cannot enable sequential code
to be executed faster through increases in clock rates and/or instruction-level
parallelism. This paradigm shift is impacting high performance computing as
well, as clusters of uniprocessors are no longer the dominant HPC architectures.
Instead, clusters of multi-core and/or many-core architectures are becoming ex-
tremely common, and overall, architectures are becoming increasingly heteroge-
neous and complex. One emerging trend in HPC is towards clusters of GPUs.
In the list of top 500 supercomputers released in May 2010, two of the top seven
fastest supercomputers are based on GPUs. Because of the overall popularity
and cost-effectiveness of GPUs, this trend can be expected to continue.

Developing applications on these emerging systems involves complex opti-
mizations. Among other issues, orchestrating data movement across multiple
levels of hierarchy, and restructuring the computation to reduce the cost of such
data movement, are both challenging problems. As a specific example, consider
processing of a disk-resident dataset on a machine with one or more GPUs. If

J. Knoop (Ed.): CC 2011, LNCS 6601, pp. 266–285, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Practical Loop Transformations for Tensor Contraction Expressions 267

the size of the main memory is smaller than the size of the dataset, there will
be significant data movement costs between the disk and main memory. Simi-
larly, it is likely that the GPU device memory is smaller than the main memory.
Even though GPU memory capacities have increased rapidly, high-end GPUs
today have 3-6 GB memory, and cheaper or older GPUs have much less mem-
ory. In comparison, servers today easily have 12 or more GB of main memory.
Thus, data movements between main memory and device memory also need to
be carefully planned. Moreover, when considering a cluster of GPUs and/or a
single node connected with multiple GPUs, the data movement and optimization
problems are even more challenging.

Optimizations such as tiling and loop fusion can enable better data reuse
and reduce the cost of these data movements. However, what we need is an
integrated framework to enable these transformations across more than 2 levels
of memory hierarchy. There has been a considerable amount of work on compiler
optimizations for out-of-core programs [6,18,17,5,36], but the solutions do not
directly extend when data movements for another level need to be considered.
Similarly, there has been some work on optimizing data movements from main
memory to device memory [35,34,22]. As multi-level processor caches became
very common in mid-nineties, several compiler efforts considered optimizations
for them [25,32,30].

This paper presents an optimization framework for systems requiring data
movement across multiple memory hierarchy levels. Our work is specifically in
the context of tensor contractions [33,14], which can be viewed as generalized
matrix products. Sequences of tensor contractions arise in several domains, par-
ticularly, in ab initio computational models in quantum chemistry. Such contrac-
tions are often performed over several large multi-dimensional arrays, making it
very likely that input data does not fit in main memory. At the same time, these
applications are compute-intensive, and can benefit from GPUs.

We present an extensive framework for optimizing tensor contractions on a
system requiring explicit data movement across three memory hierarchy levels.
We address the following challenges: 1) determining the loop structure, which
comprises of fused and tiled loops, 2) the placement of memory allocation and
data movement statements for each of the memory hierarchy levels, and 3) the
tile sizes. While we specifically target machines with GPUs and problems with
out-of-core data structures, our framework can be applied on any system with
more than 2 explicitly managed memory hierarchy levels.

2 Background

The tensor contraction expressions we consider in this paper arise, for example,
in the context of the Coupled Cluster (CC) theory [3], a widely used method for
solving the electronic Schrödinger equation. A tensor contraction expression is
comprised of a collection of multi-dimensional summations of product of several
input tensors or arrays. Consider the following contraction:

268 W. Ma, S. Krishnamoorthy, and G. Agrawal

B(a, b, c, d) =
∑

p,q,r,s

C1(s, d)× C2(r, c)× C3(q, b)×C4(p, a)× A(p, q, r, s)

This contraction is referred to as a four-index transform. Here, A(p, q, r, s) is
a four-dimensional input tensor and B(a, b, c, d) is the transformed (output)
tensor. C1, C2, C3, and C4 are the transformation tensors. The indices a, b, . . .
denote the dimensionality of the tensors and the relationship between them
across tensors. Minimizing the operation count results in the following sequence
of binary tensor contractions:

T3(a, q, r, s) =
∑

p

C4(p, a)× A(p, q, r, s);T2(a, b, r, s) =
∑

q

C3(q, b)× T3(a, q, r, s)

T1(a, b, c, s) =
∑

r

C2(r, c) × T2(a, b, r, s);B(a, b, c, d) =
∑

s

C1(s, d)× T1(a, b, c, s)

where T 1, T 2, and T 3 are intermediate tensors. In each contraction, a set of
indices are summed over, or contracted, and are referred to as the summation
(or contracted) indices. These indices occur in both inputs of a binary contraction
and are also referred to as common indices. This is a generalization of matrix-
matrix multiplication with individual indices replaced by sets of indices.

The size of each dimension (or loop index) varies from 100 to a few thousand.
As a result, the input, output, and the intermediate tensors often do not fit into
the main memory of a single node. This, together with the high floating-point
intensity of these expressions, lends themselves to execution on a parallel system,
and considerable effort has been put on parallelization of these methods [15,2].

Effective execution of tensor contraction expressions on parallel systems with
multi-level memory hierarchies necessitates several transformations. In particu-
lar, the allocation and freeing of memories in the the multi-level hierarchy to-
gether with the associated data transfer needs to be carefully orchestrated. While
the execution is dominated by the floating point operations, data movement can
quickly overwhelm the total execution time if not effectively managed. Tiling di-
rectly benefits these calculations, analogous to its applicability to matrix-matrix
multiplication implementations. While much work on matrix multiplication fo-
cuses on square matrices, tensor contractions often involve highly rectangular
matrices, exacerbated by the higher dimensionality involved. In particular, it is
not uncommon for one of the arrays involved in a contraction to be small enough
to fit at some higher-level of the memory hierarchy, such as in the example above.

Loop fusion is an integral part of effective data locality management in such
multi-level memory hierarchies. Much of the early work on loop fusion either
focused on identifying the feasibility of fusing two loops, fusing the identified
loops [23,24], possibly with other transformations that enable loop fusion [38], or
a general transformation framework that encompasses loop permutation, fusion,
and other transformations under an abstract cost model [21,1,19].

In this paper, we focus on identifying effective fusions for tensor contrac-
tions with as concrete a cost model as possible. Specifically, we consider data
movement costs under memory constraints. For systems with only two levels of
memory hierarchy, this problem has been addressed before by Sahoo et al. [33].

Practical Loop Transformations for Tensor Contraction Expressions 269

We note that, unlike more general application classes, tensor contractions, which
consist of fully permutable loops, can be fused without requiring enabling loop
transformations.

3 Problem Statement and Notation

Given a sequence of binary contractions, such as the one in Section 2, efficient
code tailored to the specific memory hierarchy needs to be generated. We focus
on machines comprising more than two levels in the memory hierarchies. The
key decisions to be made are 1) determining the loop structure, comprising of
fused and tiled loops, 2) the placement of memory allocation and data movement
statements for each of the memory hierarchy levels, and 3) the tile sizes. It has
been shown previously that the the space of possible choices is exponentially
large [33]. Besides considering additional levels in the memory hierarchy in de-
termining fusion structures, we focus on the prescriptive approaches to choosing
candidate loop fusions without requiring expensive optimization procedures.

In our presentation, Ni, Nj , . . . and Ti, Tj, . . . denote sizes of full dimensions
and individual tiles along dimensions i, j, . . ., respectively. Lower case letters
denote loop and array reference indices, or sets of indices. A[a, b] denotes a tensor
indexed by a and b. In addition to identifying the dimensionality of the tensor, the
labels (here a and b) identify the relationship between the indices of the tensors
participating in a tensor contraction. The memory levels are denoted by α, β, . . .,
with α being the slowest memory hierarchy level. The size of memory available
at each level is denoted as Mα, Mβ, . . ., and the time to move one element of the
data between adjacent levels is Λαβ , Λβγ , We assume that data movement
is always performed between adjacent levels of the memory hierarchy. The cost
to perform one double precision floating point operation is denoted by Cflop.

4 Single Contraction Optimization

In this section, we determine the loop structure to map a single tensor contrac-
tion to a multi-level memory hierarchy. We first summarize existing results for
the case when data movement is considered at only a single level (e.g. from disks
to main memory). A detailed description is available from an earlier publica-
tion [33]. In a tensor contraction, the indices can be grouped into those that
are contracted and the remaining indices in the two input tensors. Given that
the loops are fully permutable and we reason about the total data movement
volume, ignoring issues such as stride of access, the indices can be grouped into
three composite indices. In the ensuing discussion, we refer to the contracted
indices as Nk, and the remaining indices in the two inputs as Ni and Nj.

One Array Fits in Memory: Consider the three tensors X [x, y], Y [y, z], and
Z[x, z] in a tensor contraction, where X , Y , and Z correspond to the three tensors
participating in a binary tensor contraction, one of them being the output tensor.
Without loss of generality, assume that X fits in memory. Let the size along the

270 W. Ma, S. Krishnamoorthy, and G. Agrawal

Allocate X

for z

Allocate Y

for x

Allocate Z

for y

//compute

(a)

Allocate X

for z

Allocate Z

for y

Allocate Y

for x

//compute

(b)

Allocate X

for z

Allocate Y,Z

for x,y

//compute

(c)

Allocate C

for k

Allocate A, B

load A, B

for i, j

//compute

Deallocate A, B

Store C

(d)

Fig. 1. Loop structures for a single contraction on a two-level memory hierarchy.
(a)Loop structure if Ny ≤ Nx(b) Loop structure if Nx ≤ Ny(c) Simplified loop struc-
ture for discussion (d) Example code for the contraction C = A×B.

dimensions x, y, and z be Nx, Ny, and Nz, respectively. It can be shown that
to minimize the data movement costs, the smallest array is retained in memory,
with the other two arrays being streamed. This results in a memory cost of [33]:

Nx ×Ny + min(Nx, Ny) + 1 ≤Mβ (4.1)

We approximate Equation 4.1 by replacing the left hand side with Nx×Ny. For
values of Mβ encountered in practice, the value of the min term in the worst case
(Nx = Ny =

√
Mβ) is much smaller than the memory size, and can be ignored.

The loop structures for the cases where one of the arrays fits in the memory
are shown in Figure 1, where X, Y, Z represent any of the three tensors. Note that
none of the tensors are surrounded by loops that do not index it. This ensures
that there is no redundant data movement for any of the arrays, achieving the
minimum possible data movement cost, i.e. we read each input array and write
the output array exactly once [33]. The position of a tensor in the loop structure
identifies both data movement and memory management steps. Viewing the loop
structure as a loop nest tree, a tensor label, denoted by an allocate statement for
a tensor, identifies its position in the loop nest tree. The memory allocation and
read statements (if the array is read) are inserted into the structure before the
code corresponding to the nested statements are generated. After the processing
of all nested statements, the deallocation and write statement (if it is an output
array) are generated. While the optimal choice of loop structure that minimizes
the memory usage is given by Figure 1(a) or Figure 1(b), the difference in practice
is a small reduction in memory overhead, not the dominant memory overhead or
data movement cost. We, therefore, consider the simplified structure shown in
Figure 1(c) for further analysis. Figure 1(d) illustrates the insertion of memory
allocation and data movement statements for the abstract structure shown in
Figure 1(c) for the contraction C = A×B.

No Arrays Fit in Memory: For a two-level memory hierarchy, say the α↔ β
levels, it has been shown that the optimal loop structure involves the data

Practical Loop Transformations for Tensor Contraction Expressions 271

transfer for the output array being higher in the loop structure than that for
the other two arrays. Recalling that tiles sizes along X and Y dimensions are Ti

and Tj , respectively, the data movement and memory costs are now given by:

Dataαβ = Λαβ ×
(

Ni ×Nj + Ni ×Nj ×Nk ×
(

1
Ti

+
1
Tj

))
(4.2)

Memoryβ = Ti × Tj + Ti + Tj < Mβ (4.3)

Minimizing the data movement under the memory constraint results in Ti =
Tj = T ≈ √

Mβ . Intuitively, optimized mapping of a tensor contraction to
a two-level memory hierarchy requires maximizing the tile size for the output
array with a small amount of data for the input arrays brought in at a time.

4.1 Multi-level Memory Hierarchies

We now focus on extending the existing work to the systems where data move-
ment is required across more than two levels in the memory hierarchy. Specifi-
cally, consider a memory hierarchy consisting of three levels, namely α, β, and
γ. The total data movement cost is the sum of costs of the two α ↔ β and
β ↔ γ data transfers. We shall assume in this discussion that levels cannot be
bypassed, with data movement always occurring between adjacent levels. We also
assume that the memories get faster and smaller as we move along the memory
hierarchies, with α being the slowest level with infinite capacity.

First, if one of the tensors fits into γ, minimal data movement can be achieved
by placing the array in γ, or reading directly into γ, and streaming the other
two arrays through all levels of memory hierarchy using the loop structure shown
in Figure 1. Each tensor label in such a schedule corresponds to data transfer
across all memory hierarchy levels.

Consider the data movement order with all αβ transfers grouped to nest the
βγ transfers, with Cαβ being the outermost data placement and the data transfer
for the A and B arrays at the same loop nesting. As explained earlier, we ignore
the nesting between A and B given the limited memory usage improvement with
no change in data movement cost. The costs for this data placement are given by:

Dataαβ = Λαβ

(
Ni ×Nj + Ni ×Nj ×Nk

(
1
Ti

+
1
Tj

))
(4.4)

Dataβγ = Λβγ ×Ni ×Nj ×Nk

(
1
T ′

i

+
1
T ′

j

+
qk

Tk

)
(4.5)

Memoryβ = Ti × Tj + Ti × Tk + Tj × Tk (4.6)

Memoryγ = T ′
i × T ′

j + T ′
i × T ′

k + T ′
j × T ′

k (4.7)

Here, T ′
i , T ′

j, and T ′
k are the tile sizes at the γ level, and qk is 1 if Tk = Nk, 2

otherwise. This is because when Tk = Nk, the values of C could be written to the
output without having to be loaded and accumulated. The tile sizes for the data
movement placement can be determined by solving this non-linear constrained
optimization problem. However, the solution requires additional information on
the problem size, which is not always available to a compiler. Thus, here our focus

272 W. Ma, S. Krishnamoorthy, and G. Agrawal

is on deriving prescriptive solutions that do not require precise information on the
problem size. Where the problem size is needed, we reduced the determination to
a quick runtime decision. In the process, we demonstrate the tile sizes for optimal
data movement in a single-level memory hierarchy need not match those of a
multi-level memory hierarchy.

Note that the data transfer cost at the βγ level depends on the tile size Tk

determined for the αβ data transfer. The optimal data transfer for the single-
level memory hierarchy, when no array fits in β, involves Ti = Tj =

√
Mβ and

Tk = 1. Even under the assumption that Λαβ is much higher than Λβγ , for large
values of Nk, the data transfer cost is dominated by Dataαβ +ΛβγNi×Nj×Nk.
We thus consider another alternative, with Ti = Tj = Tk =

√
Mβ/3. This

corresponds to equal amounts of all three arrays being stored in memory at any
time, a less than optimal choice for a two-level memory hierarchy. The total data
movement cost (with T ′

i = T ′
j =

√
Mγ) is given by:

Ni ×Nj ×
[
Λαβ ×

(
1 + Nk × 2

√
3√

Mβ

)
+ ΛβγNk ×

(
2√
Mγ

+
2
√

3√
Mβ

)]
(4.8)

Comparing this cost with Equations 4.4 and 4.5, we observe that equal tile sizes
are better when:

2√
Mβ

Λαβ + 2Λβγ ≥ 2
√

3√
Mβ

(Λαβ + Λβγ) =⇒ Mβ ≥
(

(
√

3− 1)Λαβ

Λβγ
+
√

3
)

(4.9)

This condition is evaluated with qk = 2 in the above determination. It can be
quickly evaluated at install time to choose the best tile size. Intuitively, the data
transfer between the αβ memory levels is increased to significantly reduce the
cost of transfer between the βγ levels, keeping it relatively small. While glob-
ally optimizing the objective function yields the best solution, the prescriptive
solution is independent of the problem size while achieving similar ends.

When one of the arrays fits in β, the optimal single-level solution involves
fitting the array in β and streaming the other arrays. When it fits within (Mβ/3),
both schemes result in similar cost functions and the tile sizes chosen for the
single-level optimal solution are chosen. However, for the smallest array size
between (Mβ/3) and Mβ, we have a choice between the two tiling alternatives.
With the streaming scheme, without loss of generality, we assume the smallest
matrix is A, then by keeping the smallest matrix in β, the tile sizes are Ti = Ni,
Tk = Nk, and Tj ≤ Mβ−NiNk

Ni+Nk
. The data movement at the αβ level will be

Λαβ(NiNk + NjNk + NiNj) (4.10)

This tiling decision at the αβ level results in tensors of sizes Tj , TjNk, and TjNi

residing in β, which need to be scheduled for data movement across βγ. Since
NiNk is larger than (Mβ/3), we assume it does not fit in γ. However, because of
possibly smaller Tj, TjNk, or TjNi might fit γ. In this case, streaming is done
in a way similar to β level. Suppose the smallest tile at β level is from B, which
is of the size TjTk, then the total data movement at βγ is

Λβγ

(
NjNk + NiNj +

NiNkNj

Tj

)
= ΛβγNj(Nk + Ni)

(
1 +

NiNk

Mβ −NiNk

)
(4.11)

Practical Loop Transformations for Tensor Contraction Expressions 273

When none of the data tiles fit in γ, a tiling solution analogous to the single-level
tiling presented in Section 4 is employed. This results in the total data movement
cost at βγ being:

Λβγ

(
NjNk√

Mγ

+
NiNj√

Mγ

+
NiNkNj

Tj

)
= ΛβγNj(Ni + Nk)

(
2√
Mγ

+
NiNk

Mβ −NiNk

)

(4.12)
The total data movement cost is computed from the αβ cost (given by
Equation 4.12) together with the βγ cost. The latter is determined using ei-
ther of the Equations 4.11 and 4.12, based on the problem size. By comparing
this overhead with the data movement using equal tile sizes, whose cost is given
by the Equation 4.8, the tiling decision could be made at runtime. The decision
could also be made at installation time for different matrix shapes, which impact
the (Ni + Nk) term.

5 Fusion for Tensor Contraction Sequences

In this section, we describe our approach to determining fused loop structures
for multi-level memory hierarchies. We begin with an analytical approach to
identify profitable loop fusions for tensor contractions. Intuitively, we observe
that loop fusion can result in substantial performance gains only if the overall
execution time is bound by data movement, and not computation. Consider a
series of loops, which correspond to the following series of tensor contraction
expressions.

I1(d, c2, . . . , cn) = I0(d, c1, . . . , cn)×B0(d, c1, . . . , cn)

I2(d, c3, . . . , cn) = I1(d, c2, . . . , cn)×B1(d, c2, . . . , cn)

. . .

In(d) = In−1(d, cn)×Bn−1(d, cn)

The tensors B0, . . ., Bn−1 and I0 are the input tensors and In is the output
tensor. I1, . . ., In−1 are the intermediate tensors. Data movement costs for such
intermediate tensors can potentially be eliminated through fusion. cj corresponds
to the indices contracted in the production of Ij . The various d indices are never
contracted out and contribute to the indices in In. Ii(d) represents the set of
indices Ii contributes to the final output. Ii(cj) denotes the indices in Ii that are
a subset of the contracted indices in contraction j. Ii denotes both the tensor
produced by contraction i and set of all indices that constitute that tensor.
The reference shall be clear from the context. |Ij(d)|, and similar usage, denotes
the total size of the indices in tensor Ij that contribute to the final output.
The relationship between the indices is defined as:

1 ≤ i ≤ n :Ii(d) = Ii−1(d) ∪Bi−1(d)

1 ≤ i ≤ n,1 ≤ j ≤ i : Ii(cj) = ∅
1 ≤ i ≤ n,i + 1 ≤ j ≤ n : Ii(cj) = Ii−1(cj) ∪Bi−1(cj)

0 ≤ i ≤ n− 1 :Ii(ci+1) ≡ Bi(ci+1)

274 W. Ma, S. Krishnamoorthy, and G. Agrawal

The fusion of the loops corresponding to the above tensor expressions is beneficial
only if the data movement cost for the intermediate tensors (I1 through In−1)
dominates, or is at least comparable to, the data movement cost for the input
and the output tensors and the computation cost.

Consider the fusion of the first two contractions. The computation cost of
the first contraction is Cflop

(
|I0(d)| ×∏n

j=1 |I0(cj)| × |B0(d)| ×∏n
j=2 |B0(cj)|

)
.

The minimum data movement cost for I1 that would be eliminated through loop
fusion for the αβ levels is given by: 2 × Λαβ ×

(
|I1(d)| ×∏n

j=2 |I1(cj)|
)
, the

cost of reading and writing the tensor once for each of the contractions. Under
the requirement that this is greater than the fraction, 0 < frac ≤ 1, of the
computation cost of the two relevant contractions, we have:

2× Λαβ ≥ frac× Cflop × |I0(c1)|

leading to
|I0(c1)| ≤ 2× Λαβ

frac× Cflop
(5.1)

For the second contraction, the computation cost is given by
Cflop ×

(
|I1(d)| ×∏n

j=2 |I1(cj)| × |B1(d)| ×∏n
j=3 |B1(cj)|

)
. If we want the exe-

cution to be dominated by the movement of I1, the condition now becomes

2Λαβ ≥ frac×Cflop

n∏
j=3

|B1(cj)||B1(d)| =⇒
n∏

j=3

|B1(cj)||B1(d)| ≤ 2× Λαβ

frac× Cflop

(5.2)

Therefore, for a contraction to be fused with both its previous and the next
contraction, the input Bi has to satisfy both of the following requirements:

|Ii(ci+1)| ≤ 2× Λαβ

frac×Cflop

n∏
j=i+2

|Bi(cj)| × |Bi(d)| ≤ 2× Λαβ

frac×Cflop
(5.3)

Combining the above two expressions, together with the fact that Ii(ci+1) =

Bi(ci+1), the size of Bi should be less than
(

2×Λαβ

frac×Cflop

)2
. In current systems,

this number is typically much smaller than the memory size. We therefore assume
that the B tensors in all contractions in the sequence considered, except the first
and last contraction, fit in memory.

The above evaluation does not preclude the B arrays in the first or last con-
traction in a fusable list, B0 and Bn−1 in the above example, from being too
large to fit in memory. In these cases, fusion eliminates the data movement cost
to read and write the intermediate tensor. On the other hand, fusion requires this
contraction to share the available memory with other contractions, potentially
increasing the cost incurred due to duplicated data movement.

Consider B0 being large, with qM (0 ≤ q ≤ 1, Mβ is the memory limit of
level β) being the amount of memory required for fused execution of contractions

Practical Loop Transformations for Tensor Contraction Expressions 275

S1=Ii∩ Ii+1∩ Ii+2

S2=Ii ∩ Ii+1, S3 = Ii+2

S4 = Ii

for sx ∈ S1 do
{Allocate Ii+1[sx]};
for sy ∈ S2 − S1 do
{Allocate Ii[sy]};
for sz ∈ S4 − S2 do
{Produce Ii[sz]};

end for
{Update Ii+1[sy]};

end for
for sw ∈ S3 − S1 do
{Allocate Ii+2[sw]};
{Produce Ii+2[sw]};

end for
end for

Algorithm 1. Sample loop structure with allocation for Ii, Ii+1, and Ii+2

producing tensors I2 through In in the running example. Comparing the two
alternatives discussed above, fusing the first contraction is beneficial when the
condition below is true:

2|I1||I0(c1)|√
Mβ

+ 2|I1| ≥ 2|I1||I0(c1)|√
(1− q)Mβ

=⇒ |I0(c1)|√
Mβ

+ 1 ≥ |I0(c1)|√
Mβ

√
1− q

=⇒
√

1− q

1−√1− q
≥ |I0(c1)|√

Mβ

(5.4)

As shown in equation 5.1, |I0(c1)| is small, usually much smaller than the memory
available. The expression on the left hand side of last inequality above is greater
than 1 for values of q ≤ 0.7. Thus fusion is beneficial despite duplicated data
movement for one of the arrays even when up to 70% of the memory is consumed
by the remaining contractions. Note that this condition can be quickly verified
at runtime once the problem size is known.

5.1 Two-Level Memory Hierarchy

Based on the discussion above, we assume that for a given sequence of tensor
contractions to be fused, the non-intermediate arrays in all contractions, except
for the first and last contraction, must fit in the memory. For simplicity, we
further assume that all such arrays together fit in the available memory. Based
on this assumption, we will first present a solution to the problem of identify-
ing a loop structure, with placement of data movement statements for all the
intermediate arrays and one of the input arrays in the first contraction and the
output array in the last contraction, assuming the remaining arrays fit in mem-
ory. This will later be extended to support the scenario in which the first or the
last contraction require redundant data movement.

276 W. Ma, S. Krishnamoorthy, and G. Agrawal

We simplify our presentation by assuming that all dimensions are similar in
size. Consider a contraction list, referred to as a fusable list, in which all contrac-
tions are fusable according to the analysis presented in the previous subsection.
We now determine the actual fusion chain and locations of the data allocation
and movement statements. Let the fusable list be I0, . . ., In. For any three ten-
sors Ii, Ii+1, and Ii+2, a sample loop structure is as shown in Algorithm 1, where
the intersection operation denotes the intersection of indices of two tensors. The
key observation here is that the loop nest producing Ii+1 must be enclosed by a
memory allocation for Ii, since the loop nest consumes Ii. However, the alloca-
tion statements for tensors Ii and Ii+2 need not enclose each other, since they
do not have an immediate producer-consumer relationship. The data movement
statements can be in arbitrary order as long as this condition is satisfied.

In this sample loop structure, the total memory cost is given by mem(Ii+1)+
max(mem(Ii), mem(Ii+2)). Since the unfused loop nest for each contraction,
with one of the arrays fitting in memory, does not incur any redundant data
movement, we consider only loop nests with no redundant data movement. The
total memory cost can be determined through the recurrence relation shown
below:

f(i, j) = 0 , if j < i

=
j

min
k=i

|Ik|
|Commoni,j | + max(f(i, k − 1), f(k + 1, j)) , otherwise

Commoni,j = ∩j
k=iIk

The recurrence is evaluated as f(1, n) to compute the values of all f(i, j) through
dynamic programming. Commoni,j denotes all the loops that are common to
tensor contractions i through j. The procedure to determine the loop structure
first involves computing the memory required by arbitrary sub-chains of the
“fusable list” memoized in a matrix. The function computes the data movement
cost, in terms of volume, of executing a given chain of tensor contractions, ig-
noring the data movement for the first input and the last output. If the entire
chain can be fused with the memory available, the data movement cost is evalu-
ated to be zero. If not, various choices of splitting the chain into sub-chains are
considered, and the choice that minimizes the data movement cost is determined
recursively. For each split the array at the split incurs the data movement cost
equal to twice its size, to write it as output from the first sub-chain and read
it back in the next sub-chain. Note that the algorithms shown only compute
the memory and data movement costs. Determining the actual loop structure
including the loop nesting to obtain the memory cost and splits to achieve the
data movement cost can be determined by keeping track of the choices made
while minimizing the cost function. The procedure is similar to that employed
in the dynamic programming solution to matrix-chain multiplication [9].

When either the first or the last contraction involves large tensors necessi-
tating duplicated data movement, we determine the optimal fusion structures
for the fusable list excluding the contractions requiring such duplicated data
movement. Let us consider the case with I0, B0, and I1 being too large to fit in

Practical Loop Transformations for Tensor Contraction Expressions 277

memory. As discussed in Section 5.1, the loops in the second contraction con-
suming the output of the first contraction should be enclosed by the memory
allocation statement for the output tensor of the first contraction. In the running
example, the allocation statement for I1 must enclose the production of I2. Posi-
tions in the loop structure determined for contractions 2 through n that satisfy
this requirement are determined. If the memory consumed by all live tensors at
any of these positions is small enough to enable profitable fusion, as expressed
by the condition 5.4, the first contraction is fused. This procedure is repeated
for the last contraction in the list when it incurs duplicated data movement.

5.2 Multi-level Memory Hierarchies

In the previous section, we presented the steps to determine the fusion structure
that minimizes the data movement cost given a memory constraint. Here we
show how the procedure naturally extends to handle multi-level memory hier-
archies. We have considered fusion as a transformation that combines the loop
corresponding to the producer and consumer such that the data movement cost
for the associated intermediate tensor is eliminated. Effective fusion of a se-
quence of contractions for data movement between the βγ levels implies that all
contractions in the chain can be executed without intervening βγ data transfer,
with sufficient space in γ to fit all necessary intermediates. A sub-chain can be
fused at the γ level if the memory required by it, as computed by this expression,
is less than Mγ . Given the memory cost for each sub-chain at γ, the memory cost
at the β level is calculated using the following modified recurrence expression:

f(i, j) = 0 , if j < i

=
|Ii|+ |Ij |
|Ii ∩ Ij | if memoryγ(i, j) ≤Mγ

=
j

min
k=i

|Ik|
|Commoni,j | + max(f(i, k − 1), f(k + 1, j)) , otherwise

Commoni,j = ∩j
k=iIk

This expression takes into account the fact that when a sub-chain is fused at
the γ level, only the first and last tensor in that sub-chain consume memory
at the β level. The total data movement cost for fusion in the presence of a
multi-level memory hierarchy is computed using a modified version of procedure
employed for a two-level memory hierarchy. If the memory required at the β level
to execute a sub-chain is less than Mβ , the corresponding data movement cost
is determined. The data movement cost for a sub-chain fusable at the γ level is
given as the cost to transfer the first and last tensor in the chain between the βγ
levels. We assume that despite fusion of some of the loops, the dimensions of the
remaining loops are large enough for tiling all dimensions at the γ level. When
a sub-chain involves a single contraction, due to the need for redundant data
movement, its total data movement cost is computed as discussed in Section 4.1.

278 W. Ma, S. Krishnamoorthy, and G. Agrawal

Expression A (Small Input):
C[h1,h2,h3,h4,h5,h6] = A[h1,h2,h3,h7] × B[h4,h5,h6,h7]
I[h1,h2,h3,h4,h5,h8] = B2[h8,h6] × C[h1,h2,h3,h4,h5,h6
Expression B (Large Common Index):
C[h6,h5,h4,h3,h2,h1] = A[h7,h5,h4,h3,h2,h1] × B[h7,h6]
I[h8,h2,h1] = B2[h8,h6,h5,h4,h3] × C[h6,h5,h4,h3,h2,h1]
Expression C (Large Input):
C[h8, h7, h6,h5,h4,h3,h2,h1] = A[h9, h4,h3,h2,h1]×B[h9, h8, h7,h6,h5]
I[h10,h7,h6,h5,h4,h3,h2,h1] = B2[h10,h8]× C[h8, h7, h6,h5,h4,h3,h2,h1]
Expression D (Long Chain):
M1[h1,h2,h3,h4,h5,h7] = M0[h1,h2,h3,h4,h5,h6] × B1[h6,h7]
M2[h1,h2,h3,h4,h5,h8] = M1[h1,h2,h3,h4,h5,h7] × B2[h5,h8]
M3[h1,h2,h3,h9,h7,h8] = M2[h1,h2,h3,h4,h5,h8] × B3[h4,h9]
M4[h1,h2,h10,h9,h7,h8] = M3[h1,h2,h3,h9,h7,h8] × B4[h3,h10]
M5[h1,h11,h10,h9,h7,h8] = M4[h1,h2,h10,h9,h7,h8]× B5[h2,h11]
Expression E (Fewer Dimensions and Large Dimension Size):
C[h1,h2,h3,h4] = B[h3,h5] × A[h1,h2,h4,h5]
I [h1,h2,h3,h6] = B2[h6,h4] × C[h1,h2,h3,h4]

Fig. 2. Tensor contraction expressions used as benchmarks

6 Experimental Evaluation

We evaluate our methods by executing tensor contractions on a system with
an explicitly managed, multi-level, memory hierarchy. Particularly, the system
consisted of the following three levels in the memory hierarchy: disk, global
memory, and the local or device memory. The global memory corresponds to the
use of global arrays [27] on the cluster. The device memory is the memory on
the GPU, which had a similar size as the local memory on each node. Since all
processing is done on the GPU, processor cache is not an important component
of the memory hierarchy. Within the GPU, the programmable cache or the
shared memory reflects another level in the hierarchy, but did not turn out to be
important for our target class of applications. In particular, the shared memory
in the GPUs we used was too small to enable fusion. The impact of tiling on
kernels such as matrix-matrix multiplication has been extensively evaluated in
a variety of contexts [25,31,16,8]. While the tile sizes are derived as discussed
earlier, we focus on demonstrating the impact of our approach to fusion.

The specific configuration used was a cluster environment where each com-
puting node has two quad-core Intel Xeon X5560 CPUs, running at 2.80 GHz.
Every pair of nodes shares a Tesla 1070 GPU box, which means every node
has two GPUs available as accelerators. For simplicity, in our experiments, we
launch two processes on each node, so that every process can use one GPU for
acceleration. Our analytical models assume that there is a 32 GB global memory
and 1 GB local memory for the application’s data structures. In all the experi-
ments, the input data and the final output are stored on the disk. Input files are

Practical Loop Transformations for Tensor Contraction Expressions 279

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 A B C D E

T
im

e(
se

co
nd

s)

Expression

LM-GM transfer
Computation

Fig. 3. Execution time with (left) and
without (right) fusion at global memory
level

 0

 500

 1000

 1500

 2000

 2500

 3000

A B C D

T
im

e(
se

co
nd

s)

Expression

with fusion
without fusion

Fig. 4. Disk I/O time with (left) and
without (right) fusion at disk level

first loaded into the global memory, then moved to the local memory. Storage
of output file follows the reverse order. Communication between disk and global
memory is collective, whereas, the data movement between the global memory
and the local memory is one-sided (each processor transfers data independently).

Our evaluation was based on five candidate sets of contractions, chosen to
reflect the nature of the contractions in quantum chemistry. These benchmark
expressions are listed in Figure 2. For each expression, we evaluate the benefit of
fusion at both the global memory level and the disk level. Fusion at the global
memory level implies that the intermediate data resides in the device memory,
whereas fusion at the disk level implies that the intermediate data is kept in the
global memory. As a baseline, we also created a non-fused version which refers
to the case when all intermediate results are copied to the disk and need to be
loaded for the next contraction. Our approach predicts that fusion is beneficial
at the disk level for all five expressions, while fusion at the global memory level
is beneficial for expressions A, B, C, and D.

6.1 Effectiveness on Different Expressions

We comparison the fused and non-fused versions in terms of computation cost,
the transfer time between global and local memory levels, and disk I/O cost. In
all the charts, LM-GM implies data transfer time between the local memory and the
global memory. In Figures 3, 5, and 7), the left bar in each bar cluster denotes the
time with fusion, and the right bar denotes the time without fusion. Computation
time reported here includes time spent in floating point operations and data
movement between local memory and the GPU device memory. Therefore, in
some cases, the computation time reported is shorter in the version with fusion.
The disk I/O times, which could be much higher than the other components,
are shown in Figures 4, 6, and 8.

Expression A – Fusion with small input matrices: The Expression A
involves two contractions, where all input matrices fit in local memory. Data
transfers for the matrices C and I are the dominating factors in this computation,

280 W. Ma, S. Krishnamoorthy, and G. Agrawal

and fusion eliminates the overhead of moving C. The first cluster of bars in
Figure 3 and Figure 4 show the benefit achieved by fusion at the disk and global
memory levels, respectively. The experiments were done with the dimension size
40, on four computing nodes. We can see that the fusion at the GM level reduces
the sum of computation and the local memory transfer time by about 40%. On
the other hand, fusion at disk to global memory level is playing an even more
important role, since the execution is dominated by this part. From Figure 4,
we can see that fusion results in speedup of about 2.4.

Expression B – Fusion with large common index in the last contrac-
tion: In this expression, the input B2 in the second contraction is large, so
tiling is done on the dimensions h5, h4, h3, and h2. Though it introduced repli-
cated accumulation for I, the overhead is still much smaller than the overhead
of communication for C and B2. Fusion turns out to be beneficial as it removes
communication for C. The performance with and without fusion at the two lev-
els is shown in the second clusters from the left in Figures 3 and 4. We have
experimented with the size of each dimension being 40. For the sum of compu-
tation and local memory transfer times, fusion resulted in a 45% reduction. At
the disk level, the speedup by fusion is about 3.7, because the large amount of
time spent in writing C is avoided.

Expression C – Fusion for large inputs in the first contraction: As stated
in Section 5.1, when the two input matrices in the first contraction are large
enough to exceed the memory limit at a certain level of memory, fusion is still
beneficial because the intermediate result is still the dominant part. Expression
C represents this case, under the assumption that the matrix C is very large and
does not fit in the local memory. Therefore, tiling has to be performed on the
non-common index of the input matrices A and B.

We experimented with the dimension size being 16. From the third bar cluster
in Figure 3, we can see that fusion saved 75% of the sum of computation and
the local memory transfer times. Again, the benefit of fusion at the disk level
is more significant. By fusion, the total disk I/O has a speedup of about 2.5 by
removing matrix C, the dominating factor in the non-fused version.

Expression D – Fusion for a list of five contractions: The expression
D was particularly chosen to test the fusion algorithm we had presented for
a fusion chain. Every contraction here has one small input (B1, B2, B3, B4,
and B5), which could reside in the local memory. Fusion of all five contractions
requires memory size N5, where N is the size of one dimension. Therefore, in
the case where the size of the local memory is 1 GB, we cannot fuse all the five
contractions at global memory level when tile size is 40 or more. According to
our fusion algorithm, in the fused version at the global memory level, if the tile
size is smaller than 40, we fuse all the five contractions. However, when tile size
is larger, we break the fusion chain and fuse the two shorter chains separately.

The performance for this expression with the dimension size 40 is shown
as the fourth bar cluster in Figures 3 and 4. Moreover, as we have analyzed

Practical Loop Transformations for Tensor Contraction Expressions 281

 0

 20

 40

 60

 80

 100

 120

 32 34 36 38 40 42 44 46 48

T
im

e(
se

co
nd

s)

Expression

LM-GM transfer
Computation

Fig. 5. Execution time with (left) and
without (right) fusion at global memory
level for expression D - different dimen-
sion sizes

 0

 1

 2

 3

 4

 5

 6

32 34 36 38 40 42 44 46 48

T
im

e(
se

co
nd

s)

Dimension size

Disk I/O with fusion
Disk I/O without fusion

Fig. 6. Disk I/O time with and without
fusion at disk level for expression D - dif-
ferent dimension sizes

above, this expression exhibits interesting behavior as problem size is changed.
Therefore, we analyzed the performance with varying dimension sizes, and the
results are shown in Figures 5 and 6. For dimension size smaller than 40, the
speedup of fusion is about 2∼2.5, and drops to 1.4∼1.7 when N ≥ 40. At the
disk level, fusion of five contractions is always feasible with problem sizes we
have experimented with, resulting in a speedup of 4∼5 due to fusion.

Expression E – A case for which fusion does not have significant ben-
efits: Our fusion condition predicts that fusion does not have significant benefit
under certain conditions. The right most bar cluster in Figure 3 shows the per-
formance with and without fusion at global memory level for the Expression E.
We used a dimension size of 256. The execution time here is dominated by the
computation time. Speedup by fusion is only about 1.02∼1.09, which is consis-
tent with our prediction. This shows that our models are capable of correctly
predicting when fusion is not be beneficial, or result in small improvements.

6.2 Scalability Study

We studied the benefit of our optimizations as the number of nodes in the cluster
increases. We only present detailed results from the Expression A – the results
from other cases are similar. Figures 7 and 8 show the performance on a relatively
large problem size (N = 48), with different numbers of nodes. For the sum of
computation and local memory transfer times, the speedup is about 1.8∼2.3.
At disk level, the speedup due to fusion ranges between 2.3 and 2.5. It can be
seen that the computation time decreases with increasing number of nodes, i.e.,
the computation is being parallelized effectively. However, the communication
time becomes relatively large, as data may be retrieved from different parts of
the global memory. Thus, fusion becomes increasingly important at larger node
counts. At the disk level, the I/O time is relatively independent of the number
of nodes, resulting in relatively stable performance improvement from fusion.

282 W. Ma, S. Krishnamoorthy, and G. Agrawal

 0

 10

 20

 30

 40

 50

 60

 70

 4 8 16 32 48

T
im

e(
se

co
nd

s)

Number of nodes

LM-GM transfer
Computation

Fig. 7. Execution time with (left) and
without (right) fusion at global memory
for expression A on different numbers of
nodes

 0

 1

 2

 3

 4

 5

 6

4 8 16 32 48

T
im

e
(*

10
00

 s
ec

on
ds

)

Number of nodes

Disk I/O with fusion
Disk I/O without fusion

Fig. 8. Disk I/O time with and without
fusion for expression A on different num-
bers of nodes

7 Related Work

The previous work on optimizing tensor contractions focused on efficient explo-
ration of the search space of memory hierarchy transformations [33,14]. Sahoo
et al. pruned the search space while combining permutation, loop fusion, tiling,
and placement of disk I/O operations [33]. Gao et al. extended this work fur-
ther to minimize disk I/O costs [14]. This work only considered data movement
across one level of memory hierarchy. In comparison, our work is the first in of-
fering solutions with data movement across more than two levels. We have also
presented more efficient algorithms for determining candidates for loop fusion.

Outside the specific context of tensor contractions, there is a very large volume
of work on optimizing for memory hierarchies [23,24]. Most of this work has
focused on improving the utilization of a processor cache, which is not explicitly
programmer controlled. One key difference between the work in this area and
our work is in the metrics used for transformations. Cache transformations are
based on metrics like reuse distance [12] or stack distance [7]. In comparison, we
target programmer controlled memory hierarchy levels, and applications where
we primarily see capacity misses. Also, because we are focusing on a limited class
of applications, it is possible to develop a more accurate cost model. Darte has
studied the general complexity of loop fusion [10] and has presented an approach
for optimized memory allocation [11].

Significant work has been done on optimizing out-of-core programs. Particu-
larly, Brown et al. have used compiler analysis to optimize prefetching of data in
out-of-core programs [6]. Kandemir et al. have considered several compiler op-
timizations for out-of-core parallel programs [18] and other I/O intensive appli-
cations [17], building on earlier work at Syracuse/Northwestern and Rice [5,36].
The key difference in our work is the consideration of data movement across
more than two levels of programmer controlled memory hierarchy.

Prior to interest in accelerating computations using GPUs, several researchers
have studied deeper memory hierarchies. Mitchell et al. considered multi-level

Practical Loop Transformations for Tensor Contraction Expressions 283

caches, and further included considerations for instruction-level parallelism and
TLB in their work [25]. For multi-level caches, they observed that single-level
tiling is sufficient. We have considered a different architecture, and our conclu-
sions are different. Rivera and Tseng examined loop transformations for multi-
level caches, and finding that all performance gains can be achieved by simply
focusing on L1 cache [32]. Clearly, as we have considered architectures with a dif-
ferent type of multi-level memory hierarchy, our conclusions are different. More
recent work has considered multi-level tiling, but specific to stencil computa-
tions [30]. We perform tiling for a different class of applications. Qaseem et al.
have used complex modeling and a direct search to find transformation param-
eters [28]. Ren et al. presented an auto-tuning framework for software-managed
memory hierarchies [29]. We, in comparison, employ an analytical approach.

With recent interest in GPUs, there has been some work on optimizing data
movements from main memory to device memory [35,34,22]. However, we are
not aware of any extensive code restructuring framework to optimize these costs.
Within the context of GPUs, another research direction involves optimization
of shared memory use in GPUs, which are also a form of application-controlled
cache. In this area, Baskaran et al. have provided an approach for automati-
cally arranging shared memory on NVIDIA GPU by using the polyhedral model
for affine loops [4]. Moazeni et al. have adapted approaches for register alloca-
tion, particularly those based on graph coloring, to manage shared memory on
GPU [26]. A very similar problem is optimization for scratch-pad memory in
embedded systems. Diouf et al. used integer linear programming to solve the
problem [13]. Li et al proposed interval coloring approach for arranging scratch-
pad memory, utilizing the observation that live ranges of two arrays should not
interfere or one should not contain the other [20]. Udayakumaran et al. address
the scratch-pad memory allocation in a dynamic way, using a greedy heuristic
as the cost model [37]. None of these efforts have considered multi-level data
movement. Most of these efforts are also not suitable for applications like tensor
contractions, where only a fraction of a single array can fit in the memory.

8 Conclusions

Emerging high-end architectures are bringing new challenges for compilers and
code generation systems. Particularly, deeper, explicitly controlled memory hi-
erarchies are becoming common and need to be optimized for. This paper has
considered tiling, loop fusion, and placement of data movement operations for
tensor contractions, which is an important class of scientific applications, for
systems with more than two levels in the memory hierarchy. We have developed
practical techniques focusing on the dominant cost factors. Experimental evalu-
ation has shown that loop fusion for multiple levels improves performance and
our methods can correctly predict cases where loop fusion is not advantageous.
In addition to being effective, we believe these low complexity approaches serve
to reduce the search space and provide effective starting points for empirical
search in the “neighborhood” of the candidate loop structures chosen.

284 W. Ma, S. Krishnamoorthy, and G. Agrawal

References

1. Ahmed, N., Mateev, N., Pingali, K.: Synthesizing transformations for locality en-
hancement of imperfectly-nested loop nests. International Journal of Parallel Pro-
gramming 29(5), 493–544 (2001)

2. Aprà, E., Rendell, A.P., Harrison, R.J., Tipparaju, V., deJong, W.A., Xantheas,
S.S.: Liquid water: obtaining the right answer for the right reasons. In: SC (2009)

3. Bartlett, R.J., Musiäl, M.: Coupled-cluster Theory in Quantum Chemistry. Rev.
Mod. Phys. 79(1), 291–352 (2007)

4. Baskaran, M.M., Bondhugula, U., Krishnamoorthy, S., Ramanujam, J., Rountev,
A., Sadayappan, P.: Automatic data movement and computation mapping for
multi-level parallel architectures with explicitly managed memories. In: PPoPP,
pp. 1–10 (2008)

5. Bordawekar, R., Choudhary, A., Kennedy, K., Koelbel, C., Paleczny, M.: A model
and compilation strategy for out-of-core data parallel programs. In: PPoPP, pp.
1–10 (July 1995)

6. Brown, A.D., Mowry, T.C., Krieger, O.: Compiler-based i/o prefetching for out-of-
core applications. ACM Trans. Comput. Syst. 19(2), 111–170 (2001)

7. Cascaval, C., Padua, D.A.: Estimating cache misses and locality using stack dis-
tances. In: ICS, pp. 150–159 (2003)

8. Coleman, S., McKinley, K.S.: Tile size selection using cache organization and data
layout. In: PLDI, pp. 279–290 (1995)

9. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to algorithms. MIT
Press, Cambridge (2001)

10. Darte, A.: On the complexity of loop fusion. Parallel Computing 26(9), 1175–1193
(2000)

11. Darte, A., Schreiber, R., Villard, G.: Lattice-based memory allocation. IEEE Trans.
Computers 54(10), 1242–1257 (2005)

12. Ding, C., Zhong, Y.: Predicting whole-program locality through reuse distance
analysis. In: PLDI, pp. 245–257. ACM, New York (2003)

13. Diouf, B., Ozturk, O., Cohen, A.: Optimizing local memory allocation and assign-
ment through a decoupled approach. In: Gao, G.R., Pollock, L.L., Cavazos, J., Li,
X. (eds.) LCPC 2009. LNCS, vol. 5898, pp. 408–415. Springer, Heidelberg (2010)

14. Gao, X., Krishnamoorthy, S., Sahoo, S.K., Lam, C.-C., Baumgartner, G., Ra-
manujam, J., Sadayappan, P.: Efficient search-space pruning for integrated fusion
and tiling transformations. Concurrency and Computation: Practice and Experi-
ence 19(18), 2425–2443 (2007)

15. Hirata, S.: Tensor contraction engine: Abstraction and automated parallel imple-
mentation of configuration-interaction, coupled-cluster, and many-body perturba-
tion theories. Journal of Physical Chemistry A 107(46), 9887–9897 (2003)

16. Hsu, C.-h., Kremer, U.: A quantitative analysis of tile size selection algorithms. J.
Supercomput. 27(3), 279–294 (2004)

17. Kandemir, M., Choudhary, A., Choudhary, A.: Compiler optimizations for i/o in-
tensive computations. In: Proceedings of International Conference on Parallel Pro-
cessing (September 1999)

18. Kandemir, M., Choudhary, A., Ramanujam, J., Bordawekar, R.: Compilation tech-
niques for out-of-core parallel computations. Parallel Computing 24(3-4), 597–628
(1998)

19. Kelly, W., Pugh, W.: Finding legal reordering transformations using mappings. In:
Pingali, K.K., Gelernter, D., Padua, D.A., Banerjee, U., Nicolau, A. (eds.) LCPC
1994. LNCS, vol. 892. Springer, Heidelberg (1995)

Practical Loop Transformations for Tensor Contraction Expressions 285

20. Li, L., Nguyen, Q.H., Xue, J.: Scratchpad allocation for data aggregates in super-
perfect graphs. In: LCTES 2007: Proceedings of Conference on Languages, Com-
pilers, and Tools for Embedded Systems, pp. 207–216 (2007)

21. Lim, A.W., Cheong, G.I., Lam, M.S.: An affine partitioning algorithm to max-
imize parallelism and minimize communication. In: International Conference on
Supercomputing, pp. 228–237 (1999)

22. Ma, W., Agrawal, G.: A Translation System for Enabling Data Mining Applications
on GPUs. In: Proceedings of International Conference on Supercomputing (ICS)
(June 2009)

23. McKinley, K.S., Carr, S., Tseng, C.-W.: Improving data locality with loop trans-
formations. ACM Transactions on Programming Languages and Systems 18(4),
424–453 (1996)

24. McKinley, K.S., Temam, O.: Quantifying loop nest locality using spec’95 and the
perfect benchmarks. ACM Trans. Comput. Syst. 17(4), 288–336 (1999)

25. Mitchell, N., Högstedt, K., Carter, L., Ferrante, J.: Quantifying the multi-level
nature of tiling interactions. International Journal of Parallel Programming 26(6),
641–670 (1998)

26. Moazeni, M., Bui, A., Sarrafzadeh, M.: A Memory Optimization Technique for
Software-Managed Scratchpad Memory in GPUs (July 2009),
http://www.sasp-conference.org/index.html

27. Nieplocha, J., Harrison, R.J., Littlefield, R.J.: Global arrays: A nonuniform memory
access programming model for high-performance computers. Journal of Supercom-
puting 10(2), 169–189 (1996)

28. Qasem, A., Kennedy, K., Mellor-Crummey, J.M.: Automatic tuning of whole appli-
cations using direct search and a performance-based transformation system. The
Journal of Supercomputing 36(2), 183–196 (2006)

29. Ren, M., Park, J.Y., Houston, M., Aiken, A., Dally, W.J.: A tuning framework for
software-managed memory hierarchies. In: PACT, pp. 280–291 (2008)

30. Renganarayana, L., Harthikote-matha, M., Dewri, R., Rajopadhye, S.: Towards
optimal multi-level tiling for stencil computations. In: IPDPS (2007)

31. Renganarayana, L., Rajopadhye, S.: Positivity, posynomials and tile size selection.
In: SC, pp. 1–12 (2008)

32. Rivera, G., wen Tseng, C.: Locality Optimizations for Multi-level Caches. In: Pro-
ceedings of the SC 1999 (November 1999)

33. Sahoo, S.K., Krishnamoorthy, S., Panuganti, R., Sadayappan, P.: Integrated loop
optimizations for data locality enhancement of tensor contraction expressions. In:
SC, p. 13. IEEE Computer Society, Los Alamitos (2005)

34. Sundaram, N., Raghunathan, A., Chakradhar, S.: A framework for efficient and
scalable execution of domain-specific templates on GPUs. In: IPDPS (2009)

35. Tarditi, D., Puri, S., Oglesby, J.: Accelerator: using data parallelism to program
gpus for general-purpose uses. In: ASPLOS, pp. 325–335 (2006)

36. Thakur, R., Bordawekar, R., Choudhary, A.: Compilation of out-of-core data par-
allel programs for distributed memory machines. In: Second Annual Workshop on
Input/Output in Parallel Computer Systems (IPPS), pp. 54–72 (April 1994)

37. Udayakumaran, S., Dominguez, A., Barua, R.: Dynamic allocation for scratch-pad
memory using compile-time decisions. ACM Trans. Embed. Comput. Syst. 5(2),
472–511 (2006)

38. Yi, Q., Kennedy, K., Adve, V.: Transforming complex loop nests for locality. J.
Supercomput. 27(3), 219–264 (2004)

http://www.sasp-conference.org/index.html

A Static Task Partitioning Approach for
Heterogeneous Systems Using OpenCL

Dominik Grewe and Michael F.P. O’Boyle

School of Informatics, The University of Edinburgh, UK
dominik.grewe@ed.ac.uk, mob@inf.ed.ac.uk

Abstract. Heterogeneous multi-core platforms are increasingly preva-
lent due to their perceived superior performance over homogeneous sys-
tems. The best performance, however, can only be achieved if tasks are
accurately mapped to the right processors. OpenCL programs can be
partitioned to take advantage of all the available processors in a system.
However, finding the best partitioning for any heterogeneous system is
difficult and depends on the hardware and software implementation.

We propose a portable partitioning scheme for OpenCL programs on
heterogeneous CPU-GPU systems. We develop a purely static approach
based on predictive modelling and program features. When evaluated
over a suite of 47 benchmarks, our model achieves a speedup of 1.57 over
a state-of-the-art dynamic run-time approach, a speedup of 3.02 over a
purely multi-core approach and 1.55 over the performance achieved by
using just the GPU.

Keywords: Heterogeneous programming, task partitioning, OpenCL,
parallel programming, static code analysis.

1 Introduction

Heterogeneous computing systems promise to deliver high performance at rela-
tively low energy costs [15,18]. By having processing units with different char-
acteristics, computation can be mapped to specialised devices that perform a
specific type of task more efficiently than other devices. In embedded systems
this has been the case for many years with specialised DSP units for instance
[15]. This trend has spread to the desktop, where the high-end relies on accelera-
tor devices for increased performance. With the rise of GPGPU (general-purpose
computing on GPUs), heterogeneous computing has become increasingly preva-
lent and attractive for more mainstream programming [20,24,27].

The most widely adapted framework for heterogeneous computing is OpenCL
[16], an open standard for parallel programming of heterogeneous systems sup-
ported by many hardware vendors such as AMD, NVIDIA, Intel and IBM.
OpenCL can be used for programming multiple different devices, e.g. CPUs and
GPUs, from within a single framework. It is, however, fairly low-level, requiring
the programmer to tune a program for specific platforms in order to get the op-
timal performance. This, in particular, includes the mapping of tasks to devices,

J. Knoop (Ed.): CC 2011, LNCS 6601, pp. 286–305, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Static Task Partitioning Approach 287

i.e. what part of the computation is performed on which device. As processors
in a heterogeneous system are often based on entirely different architectures,
the right mapping can be crucial in achieving good performance as shown in
section 3. Heterogeneous platforms continue to evolve with increased numbers of
cores and more powerful accelerators, the consequence being that the best par-
titioning will also change. Furthermore as OpenCL is a relatively new API, it is
likely that each new implementation release will change the relative performance
between different types of cores again affecting the best partitioning. Finally, it
is likely that OpenCL will increasingly be used as a target language for high-level
compilers (e.g. CAPS HMPP [11] or PGI [28]), making automatic mapping of
tasks desirable. Ideally, we would like an approach that can adapt to architec-
ture and implementation evolution without requiring repeated compiler-expert
intervention.

GPUs are specifically suited for data-parallelism, because they comprise of
groups of processing cores that work in a SIMD manner. Data-parallel tasks
can often be easily split into smaller sub-tasks and distributed across multi-
ple devices. Finding the best partitioning to achieve the best performance on
a particular systems is non-trivial, however. Several efforts have been made to
automate this process: Qilin [20] relies on extensive off-line profiling to create a
performance model for each task on each device. This information is used to cal-
culate a good partitioning across the devices. However, the initial profiling phase
can be prohibitive in many situations. Ravi et al. [24] develop a purely dynamic
approach that divides a task into chunks that are distributed across processors
in a task-farm manner. While this eliminates profiling, it incurs communication
and other overheads.

The approach to partitioning data-parallel OpenCL tasks described in this
paper is a purely static approach. There is no profiling of the target program
and the run-time overhead of dynamic schemes is avoided. In our method static
analysis is used to extract code features from OpenCL programs. Given this in-
formation, our system determines the best partitioning across the processors in
a system and divides the task into as many chunks as there are processors with
each processor receiving the appropriate chunk. Deriving the optimal partition-
ing from a program’s features is a difficult problem and depends heavily on the
characteristics of the system. We therefore rely on machine-learning techniques
to automatically build a model that maps code features to partitions. Because
the process is entirely automatic, it is easily portable across different systems
and implementations. When either change, we simply rerun the learning proce-
dure without human intervention in building the model. We focus on CPU-GPU
systems as this is arguably the most common form of heterogeneous systems in
the desktop and high-performance computing domain.

The contributions of this paper are as follows:

– We develop a machine-learning based compiler model that accurately pre-
dicts the best partitioning of a task given only static code features.

– We show that our approach works well across a number of applications and
outperforms existing approaches.

288 D. Grewe and M.F.P. O’Boyle

Fig. 1. OpenCL in a heterogeneous environment. The user schedules task to command
queues of which there is one for each device. The OpenCL run-time then breaks data-
parallel task into chunks and sends them to the processing elements in the device.

The rest of this paper is structured as follows. Section 2 gives a brief introduction
to OpenCL mapping and is followed in section 3 by a short example illustrating
the performance impact of mapping decisions. Section 4 describes how we auto-
matically build a partitioning model which is then evaluated in sections 5 and 6.
Section 7 describes related work and is followed by some concluding remarks.

2 The OpenCL Programming Framework

Recent advances in the programmability of graphics cards have sparked a huge
interest in what is now called general-purpose computing on graphics process-
ing units or GPGPU. Several proprietary solutions like Brook [7] or NVIDIA
CUDA [22] have been proposed, out of which the latter has arguably the great-
est following. OpenCL is an attempt to develop an open alternative to these
frameworks and is now being supported by most major hardware manufacturers.
Furthermore, OpenCL not only targets GPUs, but entire heterogeneous systems
including GPUs, CPUs and the Cell architecture.

Due to its success, OpenCL’s programming model is similar to CUDA, fo-
cusing on data-parallelism. Data-parallel tasks are suitable for GPUs, in which
groups of processing cores work in a SIMD fashion. In OpenCL, a data-parallel
task is expressed as a kernel that describes the computation of a single work-
item1. During program execution, a user-specified number of work-items is
launched to execute in parallel. These work-items are organized in a multi-
dimensional grid and subsets of work-items are grouped together to form work-
groups, which allow work-items to interact. Each work-item can query its position
in the grid by calling certain built-in functions from within the kernel code.
1 A work-item is equivalent to a thread in CUDA.

A Static Task Partitioning Approach 289

Despite OpenCL’s focus on data-parallelism, task-parallelism is also sup-
ported in the framework to allow execution on multiple devices, e.g. multiple
GPUs or CPUs and GPUs.2 For each device, the user can create a command
queue to which (data-parallel) tasks can be submitted (see figure 1). This not
only allows the user to execute different tasks in parallel, but also enables decom-
position of data-parallel tasks into sub-tasks that are distributed across multiple
devices. Because OpenCL supports a variety of processing devices, all this can be
achieved with just a single implementation of each task. Using CUDA a separate
implementation for other devices, such as CPUs, would be needed.

OpenCL’s memory model reflects the memory hierarchy on graphics cards.
There is a global memory that is accessible by all work-items. There is also a
small local memory for each work-group that can only be accessed by work-items
from that particular work-group. Additionally, there is a constant memory which
is read-only and can be used to store look-up tables, etc. This memory model
is general enough to be mapped to many devices. Some processing devices, for
example GPUs, have a global memory that is separate from the computer’s main
memory. In this case, any data needs to be copied to the device and back to main
memory before and after task execution, and can be a considerable overhead.

3 Motivation

Determining the right mapping for a task is crucial to achieve good performance
on heterogeneous architectures. This section illustrates this point by examining
the performance of three OpenCL programs, each of which needs a different
partitioning to achieve its best performance.

Figure 2 shows the speedup of three OpenCL programs with different mapping
over single-core execution on a CPU. The specification of our system is provided
in section 5.1. The x-axis shows how much of the program’s workload is executed
on each device, i.e. the leftmost bar shows the speedup of GPU-only execution,
one bar to the right shows the execution with 90% of work on the GPU and 10%
on the CPUs and so on.

For the coulombic potential program (figure 2a), a GPU-only execution
achieves by far the best performance. Scheduling an amount of work as small
as 10% to the CPUs leads to a slow-down of more than 5 times and this value
increases if more work is mapped to the CPUs. For these types of programs it
is absolutely vital to know ahead of time what the optimal mapping is, because
a small mistake is going to be very costly.

The matrix-vector multiplication program exhibits an entirely different
behaviour (see figure 2b). The highest speedup is observed when 90% of the work
is scheduled to the CPUs and only 10% to the GPU. The amount of computa-
tion per data item is fairly small and therefore the overhead of transferring data
between main memory and the GPU’s memory is not worthwhile for large parts
of the computation. The convolution program in figure 2c shows yet another

2 In OpenCL all CPU cores (even across multiple chips) are viewed as a single device.

290 D. Grewe and M.F.P. O’Boyle

0

100

200

300

400

GPU-only

50/50
CPU-only

S
pe

ed
up

work partitioning

(a) coulombic potential

0

2

4

6

8

GPU-only

50/50
CPU-only

S
pe

ed
up

work partitioning

(b) matrix-vector mult.

0
4
8

12
16

GPU-only

50/50
CPU-only

S
pe

ed
up

work partitioning

(c) convolution

Fig. 2. The speedup over single-core performance of three OpenCL programs with dif-
ferent partitions. The significant variations demonstrate the need for program-specific
mappings.

different behaviour: A roughly even partitioning of work between CPUs and
GPU leads to the best speedup. Unlike the other cases, neither a GPU-only nor
a CPU-only execution would achieve good performance.

As these programs have shown, a partitioning scheme that takes program
characteristics into account is necessary to achieve good performance on hetero-
geneous systems. Different programs need different mappings and for some of
them making a small mistake means that large potential speedups are missed.
As OpenCL is a fairly new framework, compilers are likely to improve in the
near future. The CPU implementation, in particular, seems to have much room
for improvement.

The next section describes our static partitioning approach based on static
program code structure and machine-learning. By using machine-learning meth-
ods, our approach is portable across systems as well as implementations; a highly
desirable property as program performance is likely to change across heteroge-
neous architectures and as OpenCL tools mature.

4 Partitioning Data-Parallel Tasks

Our approach uses machine-learning to predict the optimal partitioning for an
OpenCL program solely based on compiler analysis of the program structure.
The static analysis characterises a program as a fixed vector of real values,
commonly known as features. We wish to learn a function f that maps a vector of
program code features c to the optimal partitioning of this program, i.e. f(c) = p
where p is as near as possible to the optimal partitioning.

In order to map a task to the hardware without executing it, we need to anal-
yse the code and extract code features. This section describes the static analysis
framework used to extract code features at compile time. It also describes how
a machine-learning based model is built and then used to predict the optimal
partitioning for any OpenCL program. Instead of relying on a single prediction
model, we use hierarchical classification [5] where a hierarchy of models is eval-
uated to find the answer. As the models used are instances of support vector
machines (SVMs) [8], we will also provide a brief introduction to SVMs.

A Static Task Partitioning Approach 291

4.1 Static Code Feature Extraction

Our partitioning method is entirely based on static code features eliminating
the need for expensive off-line profiling [20] and also avoiding the pitfalls of
dynamic techniques [24]. However, the features need to carry enough information
to characterize the behaviour of OpenCL programs. In the following paragraphs
we explain the feature extraction framework and describe the program code
features used in the partitioning scheme.

The compiler analysis is implemented in Clang [1], a C-language front-end
for LLVM. The OpenCL program is read in by Clang which builds an abstract
syntax tree. The analysis is based on a traversal of this tree, extracting code fea-
tures such as the number of floating point instructions or the number of memory
accesses in the program. Because many programs contain loops, we perform a
value analysis to determine loop bounds (if possible). The value analysis is also
used to analyze memory access patterns, which have a significant impact on
performance on GPUs [26].

Memory accesses are called coalesced if adjacent work-items access adjacent
memory locations. In this case multiple memory transfers can be coalesced into
a single access increasing the overall memory bandwidth. This needs to be taken
into account when mapping programs as it has a considerable impact on perfor-
mance.

The full list of static code features is shown in table 1. As indicated in the
table, features describing absolute values are normalized. By multiplying the
value by the number of work-items we compute the total number of operations
for this program execution. Since a machine-learning model will not be able to
relate two similar programs that have been executed with different input sizes,
the total number of operations is divided by the data transfer size, to compute
the number of operations per data item. In other words the normalized features
are computed as

operations in program code× number of work-items
data transfer size

Before the features are passed to our model, we apply principal component anal-
ysis (PCA) [5] to reduce the dimensionality of the feature space and normalize
the data (see section 4.2 for details).

Our features describe both the computation and the memory operations of
the kernel. First, it is important to describe the type and amount of compu-
tations (features 1-5). Some math operations, such as sine and cosine, can be
mapped to special function units on some GPUs but may need to be emulated
on CPUs, for example. Barriers (feature 6) may also cause different costs on
different architectures.

Second, memory operations (features 7-10) are important to consider. De-
pending on the architecture and type of memory the cost of memory accesses
may vary. Accessing local memory on GPUs, for example, is cheap because it is
mapped to small on-chip memory. On CPUs, however, local and global memory
both get mapped to the same memory space.

292 D. Grewe and M.F.P. O’Boyle

Table 1. List of static code features used to characterize OpenCL programs and the
corresponding values of the three example programs

Static Code Feature cp mvm conv
1 int operations (norm.) 31.6 0.6 28.8
2 int4 operations (norm.) 0 0 0
3 float operations (norm.) 1593.5 0.5 4.25
4 float4 operations (norm.) 0 0 0
5 intrinsic math operations (norm.) 249.9 0 0
6 barriers (norm.) 0 0.012 0.031
7 memory accesses (norm.) 0.125 0.5 2.6
8 percentage of local memory accesses 0 0.04 0.88
9 percentage of coalesced memory accesses 1 0.996 0

10 compute-memory ratio 15004 2.1 105.9
11 data transfer size 134249726 67141632 134217796
12 computation per data transfer 1875 1.6 35.7
13 number of work-items 2097152 4096 4194304

GPUs have a physically separate memory space and any data used during
program execution needs to be copied to the GPU. The cost of data transfers
between the memories is thus important. Features 11 and 12 capture the amount
of memory to be transferred and how it compares to the amount of computation
performed on the data. Lastly, feature 13 captures the overall size of the problem.

Examples. Table 1 shows the feature vectors for the example benchmarks in-
troduced in section 3. The “computation to data transfer” ratio (feature 12),
for example, is 1875 for the coulombic potential program, which is signifi-
cantly higher than the value for convolution (35.7) and matrix-vector multi-
plication (1.6). The number of compute operations (features 1-5) and the
ratio between compute- and memory-operations (feature 10) is also higher for
coulombic potential compared to the others.

These differences in input features reflect the different behaviours shown
in figure 2. The optimal performance for the coulombic potential bench-
mark is achieved with GPU-only execution, because of the large number of
compute-operations and the relatively small data transfer overhead. For the
matrix-vector multiplication, on the other hand, very few operations are
performed for each data item and the data transfer costs undo any potential
speedups the GPU may offer. The feature values of the convolution bench-
mark are in-between the values of the other two programs. This explains why a
more balanced work distribution is beneficial.

4.2 Building the Predictor

Building a machine-learning based model involves the collection of training data
which is used to fit the model to the problem at hand. In our case, the training
data consists of static code features of other OpenCL programs and the optimal

A Static Task Partitioning Approach 293

partitioning of the corresponding program. This enables us to create a model
that maps program code features to the program’s optimal partitioning. Rather
than relying on an individual predictor, we combine several models to form a
hierarchical classification model [5].

Collecting Training Data. The training data for our model is divided into
static code features (as described in section 4.1) and the optimal partitioning
for the corresponding OpenCL program. The former will be the input for our
model, whereas the latter is the output (or target) of our model.

Each program is run with varying partitionings, namely all work on the CPU,
90% of work on the CPU and the remaining 10% on the GPU, 80% on the CPU
and 20% on the GPU and so on. The partitioning with the shortest run-time is
selected as an estimate of the optimal work partitioning for the program.

Two-Level Predictor. As was shown in section 3 OpenCL programs can be
loosely divided into three categories, namely programs that achieve the best
performance when

(1) executed on GPU only
(2) executed on CPUs only
(3) partitioned and distributed over GPU and CPUs

Getting the partitioning right is especially vital for programs in category 1. Not
mapping all the work on the GPU leads to significant slowdowns (see Fig. 2a).
Similarly (even though less drastic) for programs in category 2: If it is not worth
copying the data back and forth to the GPU, one needs to make sure that the
work is mapped to the CPU and any data transfer overhead is avoided.

We therefore develop a prediction mechanism utilizing a hierarchy of predic-
tors. This approach is known as hierarchical classification [5]. In the first level,
programs from categories 1 and 2 are filtered out and mapped to the GPU or
the CPUs, respectively. The remaining programs are mapped according to a
third predictor in level 2 (see Fig. 3). The kernel features are reduced to two and
eleven principal components using PCA for the first- and second-level predictors,
respectively.

Formally, we are mapping input features to one out of 11 classes, where class
0 represents GPU-only execution and class 10 CPU-only execution. Let gpu
and cpu be the first-level predictors and mix the second-level predictor. The
hierarchical model can be described as

prediction(x) =

⎧⎨
⎩

0 if gpu(x) and ¬cpu(x)
10 if cpu(x) and ¬gpu(x)

mix(x) otherwise

Level 1 predictors. Focusing only on the extremes of the partitioning spectrum,
the models in the first stage of the prediction are simple, but highly accurate

294 D. Grewe and M.F.P. O’Boyle

Fig. 3. Overview of our prediction approach. Programs that should be entirely mapped
to the GPU or to the CPUs are filtered out in the first level, while the second level
handles programs that cannot be classified in level 1.

(see section 6.2). One model predicts whether or not a program should be ex-
ecuted on the GPU only (category 1), while the other determines if a task is
entirely mapped to CPUs (category 2). These “one-vs-all” classifiers [25] are im-
plemented as binary classifiers based on a support vector machine (SVM) with
a linear kernel (see section 4.4).

Level 2 predictor. If the first level of predictors does not lead to a conclusion, the
program is passed on to another predictor. This one is more complex, because it
needs to map a program to one out of the 11 classes determined during training.
Again, we use an SVM-based model, but this time a radial basis function [5]
kernel is deployed to account for the increased complexity of this problem.

Whereas for the stage-1 models we use all of the available training data, we
only use data from category 3 programs to train our model in the second level.
This allows for the predictor to focus on programs whose optimal partitioning
is likely to be neither CPU- nor GPU-only.

4.3 Deployment

At compile time, the program code is analyzed and code features are extracted.
Because our model’s input features incorporate the task’s input size, the predic-
tion cannot be made just yet. However, at run-time the input size is known and
together with the previously extracted code features is passed to the model. The
model’s output is the optimal partitioning for this program and input size which
is used to partition the program between multiple devices. In OpenCL this can

A Static Task Partitioning Approach 295

be easily done by setting a few variables. Although the prediction is done at
run-time, the overhead is negligible as it only takes in the order of microseconds
to evaluate our models; the cost of which is included in our later results.

Examples. Passing the features for the coulombic potential program as shown
in figure 2a into our first-level predictors, we get a positive classification from
the “GPU-only” predictor and a negative one from the “CPU-only” model. We
therefore immediately map all of the computation to the GPU without evalu-
ating the second level predictor. This leads to the optimal performance for this
program.

For the matrix-vector multiplicationprogram, it is the other way around,
i.e. we map the computation to the CPU only. Looking at figure 2b shows that
while this is not the optimal partitioning we still achieve 98% of the optimum.

With the convolution program, both first-level predictors say “no” and we
move on to the second level predictor. Given the input features this model pre-
dicts that we should map 60% of the work to the GPU and the remaining 40%
to the CPUs. According to figure 2c this leads to the optimal performance.

4.4 Support Vector Machines

Support Vector Machines (SVMs) [5] belong to the class of supervised learning
methods and can be used for both classification and regression. The idea behind
SVMs is to map the input feature space into a higher-dimensional space and
then find hyperplanes that separate the training points from different classes.
In the original feature space a linear separation may not be possible, but in a
higher-dimensional space it is often easier to find such a separation. A new input
feature vector is projected to the higher-dimensional space and a prediction is
made depending on which side of the hyperplanes the projection is located.
The projection into a higher-dimensional space is done using kernel functions.
These include linear kernels or radial basis function kernels. Depending on the
nature of the problem, some kernels perform better than others. A more detailed
description of SVMs can be found in [5].

5 Methodology

5.1 Experimental Setup

All experiments were carried out on a heterogeneous computer comprising two
quad-core CPUs with Intel HyperThreading and an ATI Radeon HD 5970 GPU.
Table 2 shows more detailed information on our system as well as the software
used. When the GPU was used, one CPU core was dedicated to managing the
GPU. This has shown to be beneficial and is in line with observations made by
Luk et al. [20]. Each experiment was repeated 20 times and the average execution
time was recorded.

296 D. Grewe and M.F.P. O’Boyle

Table 2. Experimental Setup

CPU GPU

Architecture 2x Intel Xeon E5530 ATI Radeon HD 5970
Core Clock 2.4 GHz 725 MHz
Core Count 8 (16 w/ HyperThreading) 1600
Memory Size 24 GB 1 GB

Compiler GCC 4.4.1 w/ ”-O3”
OS Ubuntu 9.10 64-bit

OpenCL ATI Stream SDK v2.01

In total we used 47 different OpenCL programs, collected from various bench-
mark suites: SHOC [9], Parboil3 [23], NVIDIA CUDA SDK [22] and ATI Stream
SDK [2]. By varying the programs’ input sizes, we conducted a total of 220 exper-
iments. We used the standard approach of cross-validation which has the critical
property that when evaluating the model on a certain program, no training data
from this program was used to build the model.

5.2 Evaluation Methodology

We compare our approach to an “oracle”, which provides an estimate of the
upper bound performance. To find the oracle we tried all 11 partitions on the
target program and selected the one with the lowest execution time. It may
be possible that a partition that is not a multiple of 10% gives an even better
speedup and thus our oracle is only an approximation.

We further evaluate two default strategies: “CPU-only” and “GPU-only” sim-
ply map the entire work to the CPUs or to the GPU, respectively. These are
two very primitive methods that serve as a lower bound in the sense that any
partitioning scheme should (on average) beat them to prove itself useful.

The fourth method we compare our approach against is a dynamic mapping
scheme similar to what is presented by Ravi et al. [24], where the work of a
kernel is broken into a certain number of chunks. Initially, one chunk is sent to
the GPU and one to the CPUs. When either of them finishes, a new chunk is
requested until the work is complete. We searched for the best number of chunks
to divide the work into and found that using 8 chunks leads to the best overall
performance on the set of kernels used in this paper, providing the right balance
between scheduling overhead and flexibility.

The performance of each mapping technique is evaluated by computing the
speedup over single-core execution. To collect the single-core run-times we used
the same OpenCL code, but instructed the OpenCL run-time to only use one
CPU core. This may underestimate the performance of a sequential version as it

3 The Parboil benchmark suite only contains CUDA programs. We therefore translated
the benchmarks from CUDA to OpenCL. The OpenCL source code can be found at
http://homepages.inf.ed.ac.uk/s0898672/opencl/benchmarks.html

http://homepages.inf.ed.ac.uk/s0898672/opencl/benchmarks.html

A Static Task Partitioning Approach 297

is likely to be faster than the parallel OpenCL code on a single core. However,
as this value is used solely as a baseline to compare speedups of the competing
techniques, it is appropriate for our purposes.

6 Results

In this section we show the performance of various mapping techniques. We
compare our new approach with two static default strategies, namely “CPU-
only” and “GPU-only”, as well as with the dynamic scheduling method described
in section 5.2. The performance achievable with an optimal partitioning is also
presented to compare the approaches to the maximal available speedups. This is
followed by an evaluation of the accuracy of the various predictors in our model.

6.1 Speedup Over Single-Core Performance

We compare the run-times achieved with different partitioning schemes to the
run-time on a single CPU core. Because of the large number of experiments we
divided our programs according to the three categories described in section 4.2:
Figure 4 shows programs where a “GPU-only” mapping achieves more than 90%
of the optimal performance, whereas figure 5 shows programs where “CPU-only”
achieves more than 80% of the optimum. The remaining programs are shown
in figure 6. This not only helps understanding the results but also improves
readability, as programs from different categories often have huge differences in
speedup.

GPU-friendly benchmarks. Figure 4 shows the performance of the various tech-
niques on OpenCL programs of category 1, i.e. programs that achieve the best
speedups when executed on the GPU only. Unsurprisingly, the static “GPU-
only” policy achieves near-optimal performance (compare to the right-most “or-
acle” bars). On these benchmarks this leads to an average speedup of 112
over single-core performance. Similarly obvious is that the “CPU-only” method
clearly loses on these benchmarks, only achieving an average speedup of 8. The
results for the dynamic approach are slightly better: Because the GPU is much
faster than the CPUs on these programs, the majority of work will be scheduled
to the GPU. However, some of the work is always scheduled to the CPUs which
leads to significant slow-downs for most of the benchmarks when compared to
the maximum performance. Overall, the dynamic scheduler achieves a speedup
of 49. Our prediction approach, on the other hand, classifies almost all programs
correctly and therefore achieves almost the same performance as the “oracle”
scheduler with 113 times of the single-core performance.

In our model, the majority of programs is filtered out by the first-level “GPU-
only” predictor. Only very few are passed through to the next level. For those
cases, the second-level predictor makes the right decision to schedule the work to
the GPU. More detailed information on the accuracy of our model’s predictors
will be shown in section 6.2.

298 D. Grewe and M.F.P. O’Boyle

 0

 100

 200

 300

 400

 500

 600

st_AES_enc

st_AES_dec

st_boxFil_hLocal

st_m
onCar_vega

st_nbody

sh_fft_ifft1D

sh_m
d_accel

sh_scan_scan

sh_sgem
m

_NT

nv_sdk_m
atM

ul

pb_cp_cuenergy

pb_m
ri-fhd_FH

pb_m
ri-q_Q

geo m
ean

S
pe

ed
up

 o
ve

r
si

ng
le

-c
or

e
CPU-only
GPU-only

dynamic
predictive model

oracle

Fig. 4. Performance of those applications where the best speedup is achieved using
only the GPU. Our predictive model leads to near-optimal performance compared to
the oracle and a speedup of 2.3 over the dynamic scheme.

CPU-friendly benchmarks. The performance of the different partitioning schemes
on category 2 programs is shown in figure 5. This time around the static “CPU-
only” policy achieves near-optimal performance. The average speedup equates
to 6.12, only marginally below the upper bound of 6.36. Unsurprisingly the
“GPU-only” method is worst for all programs, most of the time because shipping
the data between main memory and GPU memory is not feasible. The average
speedup of “GPU-only” is 1.05, i.e. no significant improvement over single-core
execution can be observed. Again, the dynamic mapping method only comes
second to last. The overhead of having many chunks and sending data to the
GPU is simply too big to achieve good performance on these programs and leads
to a speedup of only 2.15. Our prediction method comes close to the optimal
performance. With an average speedup of 4.81 it is slower than the “CPU-
only” policy on the CPU-friendly benchmarks, but significantly better than the
dynamic scheme. This again shows our model’s high accuracy for partitioning
OpenCL programs. Just like for the GPU-friendly programs, most of the CPU-
friendly programs are filtered out in stage 1 of our prediction process. The few
other programs are accurately mapped by the second-level predictor. For more
detailed information on the predictors’ accuracies see section 6.2.

Remaining benchmarks. Performance results for all the remaining benchmarks
are shown in figure 6. To improve readability, we have grouped the programs
according to the maximum available speedup, i.e. programs in figure 6a achieve
a larger speedup than programs in figure 6b.

Both non-adaptive policies, “CPU-only” and “GPU-only”, do not do very
well on most of these benchmarks, because the optimal performance is achieved
when the work is distributed across both devices. On average, the “GPU-only”
mapping achieves higher speedups (6.26 compared to 4.59), because the “CPU-
only” policy misses out on potentially high speedups as shown in figure 6a. The

A Static Task Partitioning Approach 299

 0

 2

 4

 6

 8

 10

 12

st_hist_histogram
256

st_histAtom
_global

nv_blackscholes

nv_m
atVecM

ul_unc0

nv_m
atVecM

ul_unc1

nv_m
atVecM

ul_c0

nv_m
atVecM

ul_c1

nv_m
atVecM

ul_c2

geo m
ean

S
pe

ed
up

 o
ve

r
si

ng
le

-c
or

e
CPU-only
GPU-only

dynamic
predictive model

oracle

Fig. 5. Performance of those applications where using only the CPU leads to almost
optimal speedup. Our predictive model achieves a speedup of 2.2 over the dynamic
scheme.

dynamic scheme does reasonably well and achieves near-optimal performance
for some benchmarks and an average speedup of 8.00. However, all schemes are
outperformed by our prediction approach which achieves a speedup of 9.31 on
average. Hence, even though the dynamic scheme shows its potential on these
kind of programs, it is still outperformed by our prediction approach due to
reduced scheduling overhead and more accurate work distribution.

Summary. As was shown in this section, a fixed partitioning that is agnostic
to program characteristics is unsuitable for heterogeneous environments. The
“CPU-only” and “GPU-only” methods only apply to a limited set of bench-
marks and cannot adapt to different programs. Different programs need different
mappings, highlighting the need for adaptive techniques.

For the majority of programs, a partitioning of the work between CPUs
and GPU is beneficial. While the dynamic partitioning method described in
section 5.2 is designed to handle these cases, it is often unable to achieve good
performance due to scheduling overhead and the inability to account for cases
where a mixed execution is harmful. Our approach, in contrast, explicitly handles
all cases and minimises overhead by making a static decision based on program
code features.

Figure 7 shows the geometric mean over all benchmarks for the techniques
presented in this paper. The “CPU-only” scheme is by far the worst technique
because it does not adapt to programs and misses out on large speedups with
GPU-friendly programs. Although the “GPU-only” mapping does not adapt
to programs either, it achieves a better overall speedup because it correctly
maps the programs that show high performance improvements over single-core
execution. With an average speedup of 9.21 it is even marginally better than
the dynamic method which achieves only 9.13 times the performance of single-
core execution. This again is because the potential of GPU-friendly programs

300 D. Grewe and M.F.P. O’Boyle

 0

 20

 40

 60

 80

 100

 120

 140

st_blackscholes

st_boxFilt_v

st_boxFilt_h

st_DCT

st_m
andelbrot

st_m
atM

ul

st_m
atM

ul_local

st_m
atM

ul_local2

sh_fft_fft1D

sh_scan_uniform

sh_sgem
m

_NN

nv_conv_col

nv_conv_row

S
pe

ed
up

 o
ve

r
si

ng
le

-c
or

e
CPU-only
GPU-only

dynamic
predictive model

oracle

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

st_binSearch

st_boxFil

st_boxFil_hSAT0

st_boxFilt_hSAT

st_boxFilt_vSAT

st_histAtom
_local

st_m
ersTwist_gauss

sh_m
d_bound

sh_m
d_velo

sh_m
d_coord

nv_dotProd

pa_m
ri-fhd_rhoPhi

pa_m
ri-q_phiM

ag

geo m
ean

S
pe

ed
up

 o
ve

r
si

ng
le

-c
or

e

CPU-only
GPU-only

dynamic
predictive model

oracle

(b)

Fig. 6. Performance of those applications where a mix of both CPU- and GPU-
execution leads to the best performance. Our predictive model achieves a speedup
of 1.2 over the dynamic scheme and clearly outperforms both the CPU-only and GPU-
only mapping.

is not realised. Our approach presented in this paper, on the other hand, leads
to significantly higher speedups. With an average speedup of 14.30, we achieve
more than 80% of the upper bound which equates to a speedup of 1.6 over the
dynamic scheduler.

6.2 Prediction Accuracy

Let us take a closer look at the individual predictors in our model. Table 3 shows
the number of applications that achieve the best performance with GPU-only

A Static Task Partitioning Approach 301

 0

 5

 10

 15

 20

CPU only GPU only dynamic predictive
model

oracle

S
pe

ed
up

4.73

9.21 9.13

14.30

17.74

speedup over single-core

Fig. 7. The average speedup (geometric mean) over all benchmarks. Our predictive
modelling approach clearly outperforms all other competing techniques.

and CPU-only execution respectively. The job of our two first-level predictors
is to filter out these applications and to pass on the rest. Therefore, the table
shows the numbers broken down according to the predictions in the first level of
our model.

Out of the 220 program-input pairs we examined, 61 should be entirely
mapped to the GPU. 52 of those programs are identified by our first-level pre-
dictor and thus mapped to the GPU straightaway. The remaining 9 inputs are
misclassified. However, they are passed on to the second-level predictor, which
correctly maps them entirely to the GPU. 10 inputs are incorrectly classified
as GPU-only and therefore mapped to the GPU although it is not optimal.
However, in half of the cases this still leads to more than 90% of the optimal
performance. Overall, the GPU-only classifier has an accuracy of 91%.

19 of the 23 program-input pairs that should be entirely mapped to CPUs are
correctly classified by our second predictor in the first level of our model. For
the 10 misclassified inputs we still achieve an average performance of 78% of the
optimum. Overall, the CPU-only classifier achieves an accuracy of 95%.

As expected, the second-level predictor has a lower accuracy than its coun-
terparts in level 1. This is because its solving a much harder problem: instead of
making a binary decision, one out of 11 classes needs to be predicted. However,

Table 3. The accuracy of the binary classifiers in the first level our predictor. The
“GPU-only” model achieves an accuracy of 91% while the “CPU-only” model even
achieves a 95% accuracy.

GPU ¬ GPU
GPU predicted 52 10

¬ GPU predicted 9 149

CPU ¬ CPU
CPU predicted 19 6
¬ CPU predicted 4 191

302 D. Grewe and M.F.P. O’Boyle

being off by just one or two classes often still leads to good performance, on
average a performance of 80% is still achieved. Our level 2 predictor is within
these bounds for 65% of all programs.

Looking at the model as a whole, we achieve an accuracy of 52%, i.e. in 52%
of all program-input pairs we exactly predict the optimal mapping. This leads
to an average 85% of the optimal performance, compared to only 58% of the
dynamic partitioning method.

7 Related Work

The mapping or scheduling of tasks to heterogeneous systems is an extensively
studied subject. In early publications, heterogeneous systems were often based
on single-core CPUs running at different speeds. In 1977, for example, Ibarra
et al. [13] described some of the first strategies for scheduling independent
tasks to heterogeneous architectures. Given a function for each architecture
that describes the run-time of a task on this processing unit they propose dif-
ferent heuristics to minimize the overall finishing time. In addition to those
and other static techniques [6], several dynamic methods have been proposed
[21,29,17].

On heterogeneous multi-core architecture consisting of multi-core CPUs and
GPUs task mapping becomes more complex, because the devices are based on
entirely different architectures. The tasks considered are also often data-parallel
which means they can be split to use multiple devices concurrently.

In the Harmony [10] framework programs are represented as a sequence of
kernels. Whenever a kernel is available for execution it is dynamically scheduled
to a device based on the suitability of the device for this kernel. The suitability
is computed with a multivariate regression model that is built at run-time based
on previous runs of the kernels. Harmony does not consider partitioning work
and thus only schedules entire tasks.

Qilin [20] also relies on a regression model to predict kernel run-times. In
contrast to Harmony [10] which builds the model on-line, Qilin uses off-line
profiling to create a regression model at compile time. Each kernel version is
executed with different inputs and a linear model is fit to the observed run-times.
Rather than scheduling individual kernels, a single data-parallel task is split into
sub-tasks which are each executed on one device. Qilin requires extensive off-
line profiling which may be prohibitive in some situations. Our approach, on the
other hand, does not require any profiling and is entirely based on static code
features.

Merge [19] is a framework for developing map-reduce applications, i.e. pro-
grams comprised of data-parallel maps and reductions, on heterogeneous plat-
forms. At run-time user-provided constraints are used to dynamically map
sub-tasks to devices, favoring a more specific implementation over a more gen-
eral implementation. In contrast to our scheme, they rely on the user to provide
information on the suitability of a kernel for the devices.

A Static Task Partitioning Approach 303

Ravi et al. [24] also propose a dynamic scheduling technique for map-reduce
programs. Tasks are split into chunks that are then distributed across the devices
similar to a master-slave model: When a device finishes processing a chunk of
work, it requests a new one from a list of remaining work items. While the
general idea of this model is straightforward, choosing the right chunk size has
a non-negligible effect on performance as Ravi et al. show. However, they leave
it for future work to predict the optimal chunk size. While purely dynamic
approaches neither require user intervention nor profiling, they do not take any
kernel characteristics into account which often leads to poor performance as
shown in this paper.

Jiménez et al. [14] consider scheduling in multi-programmed heterogeneous
environments. At run-time each program will be executed on all devices and
the performance is collected. This information is then used to decide which
processor a program will be executed on. A similar idea is proposed by Gregg
et al. [12]. Based on the contention of devices and historical performance data
they dynamically schedule programs to devices. Both methods do not consider
partitioning tasks.

StarPU [4] is a framework for programming on heterogeneous systems. The
user provides multiple versions of each task and the run-time schedules them
to the devices. Various scheduling techniques are presented, including greedy
scheduling and performance-based scheduling. The performance estimations are
either provided by the user or based on history information collected by the
run-time [3].

Apart from Gregg et al. [12], none of the above approaches use OpenCL.
While some use code generation from domain-specific high-level language rep-
resentations, most of them rely on the user to provide separate kernel version
for CPUs and GPUs. We circumvent this problem by using OpenCL which only
requires a single kernel code version for both CPUs and GPUs.

8 Conclusion

This paper has developed a new approach for partitioning and mapping OpenCL
programs on heterogeneous CPU-GPU systems. Given a data-parallel task, our
technique predicts the optimal partitioning based on the task’s code features.
Our model relies on machine-learning techniques, which makes it easily portable
across architectures and OpenCL implementations. This is a desirable property
as both hardware and software implementations are going to evolve.

When evaluated over 47 benchmark kernels, each with multiple input sizes,
we achieve an average speedup of 14.3 over single-core execution. Compared to
a state-of-the-art dynamic partitioning approach this equates to a performance
boost of 1.57 times. Our approach also clearly outperforms the default strategies
of using only the multi-core CPUs or only the GPU, which lead to a speedup of
4.73 and 9.21 over single-core execution, respectively.

Future work will investigate the use of our partitioning and mapping technique
for multi-kernel OpenCL programs. Furthermore, guided dynamic schemes will

304 D. Grewe and M.F.P. O’Boyle

be explored that use kernel-specific information to improve the scheduling. This
can be particularly useful in situations where a static, machine-learning based
model has a low confidence of making the optimal decision, e.g. due to lack of
training data.

References

1. Clang: a C language family frontend for LLVM (2010), http://clang.llvm.org/
2. AMD/ATI. ATI Stream SDK (2009), http://www.amd.com/stream/
3. Augonnet, C., Thibault, S., Namyst, R.: Automatic Calibration of Performance

Models on Heterogeneous Multicore Architectures. In: Lin, H.-X., Alexander, M.,
Forsell, M., Knüpfer, A., Prodan, R., Sousa, L., Streit, A. (eds.) Euro-Par 2009.
LNCS, vol. 6043, pp. 56–65. Springer, Heidelberg (2010)

4. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: starPU: A unified
platform for task scheduling on heterogeneous multicore architectures. In: Sips,
H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 863–874.
Springer, Heidelberg (2009)

5. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag New York, Inc., Secaucus (2006)

6. Braun, T.D., Siegel, H.J., Beck, N., Bölöni, L., Maheswaran, M., Reuther, A.I.,
Robertson, J.P., Theys, M.D., Yao, B., Hensgen, D.A., Freund, R.F.: A compari-
son study of static mapping heuristics for a class of meta-tasks on heterogeneous
computing systems. In: Heterogeneous Computing Workshop (1999)

7. Buck, I., Foley, T., Horn, D.R., Sugerman, J., Fatahalian, K., Houston, M., Han-
rahan, P.: Brook for GPUs: stream computing on graphics hardware. ACM Trans.
Graph. 23(3) (2004)

8. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001),
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

9. Danalis, A., Marin, G., McCurdy, C., Meredith, J.S., Roth, P.C., Spafford, K., Tip-
paraju, V., Vetter, J.S.: The scalable heterogeneous computing (SHOC) benchmark
suite. In: GPGPU (2010)

10. Diamos, G.F., Yalamanchili, S.: Harmony: an execution model and runtime for
heterogeneous many core systems. In: HPDC (2008)

11. Dolbeau, R., Bihan, S., Bodin, F.: HMPP: A hybrid multi-core parallel program-
ming environment. In: Workshop on General Purpose Processing Using GPUs
(2007)

12. Gregg, C., Brantley, J., Hazelwood, K.: Contention-aware scheduling of parallel
code for heterogeneous systems. Technical report, Department of Computer Sci-
ence, University of Virginia (2010)

13. Ibarra, O.H., Kim, C.E.: Heuristic algorithms for scheduling independent tasks on
nonidentical processors. J. ACM 24(2) (1977)

14. Jiménez, V.J., Vilanova, L., Gelado, I., Gil, M., Fursin, G., Navarro, N.: Predictive
runtime code scheduling for heterogeneous architectures. In: Seznec, A., Emer, J.,
O’Boyle, M., Martonosi, M., Ungerer, T. (eds.) HiPEAC 2009. LNCS, vol. 5409,
pp. 19–33. Springer, Heidelberg (2009)

15. Khokhar, A.A., Prasanna, V.K., Shaaban, M.E., Wang, C.-L.: Heterogeneous com-
puting: Challenges and opportunities. IEEE Computer 26(6) (1993)

16. Khronos. OpenCL: The open standard for parallel programming of heterogeneous
systems (October 2010), http://www.khronos.org/opencl/

http://clang.llvm.org/
http://www.amd.com/stream/
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.khronos.org/opencl/

A Static Task Partitioning Approach 305

17. Kim, J.-K., Shivle, S., Siegel, H.J., Maciejewski, A.A., Braun, T.D., Schneider,
M., Tideman, S., Chitta, R., Dilmaghani, R.B., Joshi, R., Kaul, A., Sharma, A.,
Sripada, S., Vangari, P., Yellampalli, S.S.: Dynamic mapping in a heterogeneous
environment with tasks having priorities and multiple deadlines. In: IPDPS (2003)

18. Kumar, R., Tullsen, D.M., Jouppi, N.P., Ranganathan, P.: Heterogeneous chip
multiprocessors. IEEE Computer 38(11) (2005)

19. Linderman, M.D., Collins, J.D., Wang, H., Meng, T.H.Y.: Merge: a programming
model for heterogeneous multi-core systems. In: ASPLOS (2008)

20. Luk, C.-k., Hong, S., Kim, H.: Qilin: Exploiting parallelism on heterogeneous mul-
tiprocessors with adaptive mapping. In: MICRO (2009)

21. Maheswaran, M., Siegel, H.J.: A dynamic matching and scheduling algorithm for
heterogeneous computing systems. In: Heterogeneous Computing Workshop (1998)

22. NVIDIA Corp. NVIDIA CUDA (2010), http://developer.nvidia.com/object/
cuda.html

23. University of Illinois at Urbana-Champaign. Parboil benchmark suite (2010),
http://impact.crhc.illinois.edu/parboil.php

24. Ravi, V.T., Ma, W., Chiu, D., Agrawal, G.: Compiler and runtime support for
enabling generalized reduction computations on heterogeneous parallel configura-
tions. In: ICS (2010)

25. Rifkin, R.M., Klautau, A.: In defense of one-vs-all classification. Journal of Machine
Learning Research (2004)

26. Ryoo, S., Rodrigues, C.I., Baghsorkhi, S.S., Stone, S.S., Kirk, D.B., Hwu, W.-m.W.:
Optimization principles and application performance evaluation of a multithreaded
GPU using CUDA. In: PPoPP (2008)

27. Venkatasubramanian, S., Vuduc, R.W.: Tuned and wildly asynchronous stencil
kernels for hybrid CPU/GPU systems. In: ICS (2009)

28. Wolfe, M.: Implementing the PGI accelerator model. In: GPGPU (2010)
29. Yarmolenko, V., Duato, J., Panda, D.K., Sadayappan, P.: Characterization and

enhancement of dynamic mapping heuristics for heterogeneous systems. In: ICPP
Workshops (2000)

http://developer.nvidia.com/object/cuda.html
http://developer.nvidia.com/object/cuda.html
http://impact.crhc.illinois.edu/parboil.php

Author Index

Agrawal, Gagan 266
Axelsen, Holger Bock 144

Bersch, Thomas 42
Bigonha, Mariza A.S. 2
Brunthaler, Stefan 164
Buchwald, Sebastian 42
Budimlić, Zoran 246

Chen, Yuting 62

d’Amorim, Marcelo 124
Demsky, Brian 198

Eom, Yong hun 198

Franchetti, Franz 225

Grewe, Dominik 286
Guillon, Christophe 2

Hendren, Laurie 22
Henretty, Tom 225

Jenista, James C. 198
Joyner, Mackale 246

Krishnamoorthy, Sriram 266

Lameed, Nurudeen 22
Lhoták, Ondřej 82, 179

Ma, Wenjing 266

Naeem, Nomair A. 82

O’Boyle, Michael F.P. 286
Odersky, Martin 1

Pearce, David J. 104
Pouchet, Louis-Noël 225

Quintão Pereira, Fernando Magno 2,
124

Ramanujam, J. 225
Rimsa, Andrei 124
Rodriguez, Jonathan 179

Sadayappan, P. 225
Sarkar, Vivek 246
Sol, Rodrigo 2
Stock, Kevin 225
Sun, Qiang 62

Zhao, Jianjun 62
Zwinkau, Andreas 42

	Title Page
	Foreword
	Preface
	Organization
	Table of Contents
	Invited Talk
	Future-Proofing Collections: From Mutable to Persistent to Parallel

	JIT Compilation and Code Generation
	Dynamic Elimination of Overflow Tests in a Trace Compiler
	Introduction
	TraceMonkey in a Nutshell
	Flow Sensitive Range Analysis
	Construction of the Constraint Graph
	Range Propagation
	Complexity Analysis

	Experimental Results
	Related Work
	Conclusion
	References

	Staged Static Techniques to Efficiently Implement Array Copy Semantics in a MATLAB JIT Compiler
	Introduction
	Background
	Quick Check
	Necessary Copy Analysis
	if-else Statement
	Loops

	Copy Placement Analysis
	Copy Placement Analysis Details
	Using the Analyses

	Experimental Results
	Dynamic Counts of Array Updates and Copies
	The Overhead of Dynamic Checks
	Impact of Our Analyses

	Related Work
	Conclusions and Future Work
	References

	SSA-Based Register Allocation with PBQP
	Introduction
	Related Work
	Register Allocation on SSA Form
	PBQP-Based Register Allocation

	PBQP
	PBQP in General
	PBQP Construction
	Solving PBQP Instances
	Adapting the PBQP Solver for SSA-Based Register Allocation

	Register Constraints
	Restricting Operands
	Relaxing Constraints
	Obtaining a Coloring Order

	Evaluation
	Early vs. Late Decision
	Effects of RM
	Speed Evaluation
	Quality Evaluation

	Future Work
	Conclusion
	References

	Program Analysis
	Probabilistic Points-to Analysis for Java
	Introduction
	Example
	Probabilistic Points-to Analysis for Java
	Probabilistic Points-to Graph
	Intraprocedural Analysis
	Interprocedural Analysis

	Implementation
	Experiments
	Precision of Points-to Analysis
	Precision of Probabilities
	Analysis Performance
	Threats to Validity

	Related Work
	Conclusions
	References

	Faster Alias Set Analysis Using Summaries
	Introduction
	Alias Set Analysis
	Intermediate Representation and Control Flow Graph
	Intra-procedural Alias Set Analysis
	Inter-procedural Alias Set Analysis

	Callee Summaries
	Computing Callee Summaries
	Using Callee Summaries

	Caller Summaries
	Experiments
	Shadow Statistics
	Efficiency
	Client Analysis Precision
	Fine-Grained Precision Metrics

	Related Work
	Summary
	References

	JPure: A Modular Purity System for Java
	Introduction
	A Simple Purity System
	Overview
	Modular Checking
	Problem 1 — Iterator
	Problem 2 — Append

	Our Improved Purity System
	Freshness and Locality
	Understanding Locality
	Locality Invariants
	The Law of Locality

	Implementation
	Intermediate Language
	Overview
	Abstract Semantics
	Dataflow Equations
	Purity Checking
	Purity Inference

	Experimental Results
	Discussion

	Related Work
	Conclusion
	References

	Tainted Flow Analysis on e-SSA-Form Programs
	Introduction
	Examples of Tainted Flow Attacks
	Cross-Site Scripting
	SQL Injection Attacks

	Formal Definition and Previous Solution
	The Proposed Solution
	E-SSA Form Is the Linchpin of Fast Tainted Flow Analysis
	Tainted Analysis as Graph Reachability
	Addressing Aliasing with HSSA
	A Solution Quadratic in Time and Space

	Experiments
	An Example of a Real-World Bug

	Related Work
	Conclusion
	References

	Reversible Computing and Interpreters
	Clean Translation of an Imperative Reversible Programming Language
	Introduction
	Languages
	Source Language: Janus
	Target Language: PISA

	Motivation
	Translation
	Overall Program Structure
	Procedure Definitions and Procedure Calls
	Reversible Assignments
	Control Flow Operators
	Expression Evaluation

	Implementation
	Related Work
	Conclusion and Future Work
	References

	Interpreter Instruction Scheduling
	Motivation
	Background
	Implementation
	Scheduling in the Presence of Repeating Sub-sequences
	Compilation of the Interpreter

	Evaluation
	Related Work
	Conclusion
	References

	Parallelism and High-Performance Computing
	Actor-Based Parallel Dataflow Analysis
	Introduction
	Related Work
	Baseline Sequential Algorithm: E-IFDS
	The Actor Model
	Actor-Based Parallel Algorithm: IFDS-A
	Implementation
	The Variable Type Analysis
	Scheduling Actor Executions

	Evaluation
	Available Parallelism
	Performance

	Conclusions
	References

	Using Disjoint Reachability for Parallelization
	Introduction
	Basic Approach
	Contributions

	Example
	Intraprocedural Analysis

	Analysis Abstractions
	Program Representation
	Reachability Graph Elements
	Reachability Annotations

	Intraprocedural Analysis
	Method Entry
	Copy Statement
	Load Statement
	Object Allocation Statement
	Store Statement
	Element Load and Store Statements
	Return Statement
	Control Flow Join Points
	Global Pruning
	Static Fields

	Interprocedural Analysis
	Compute Callee Context Subgraph
	Out-of-Context Reachability
	Merge Graphs
	Predicates
	Specializing the Graph
	Splice in Subgraph
	Merging Heap Nodes
	Global Pruning

	Evaluation
	Benchmarks
	Disjoint Reachability Analysis Results
	Parallelization Speedups

	Related Work
	Shape Analysis
	Alias and Pointer Analysis
	Other Analyses and Type Systems

	Conclusion
	References
	Appendix
	Semantics for Intraprocedural Analysis
	Termination
	Soundness of the Core Intraprocedural Analysis
	Interprocedural Analysis

	Data Layout Transformation for Stencil Computationson Short-Vector SIMD Architectures
	Introduction
	Background and Overview of Approach
	Illustrative Example
	Stream Alignment Conflict

	Data Layout Transformation
	Dimension-Lifted Transposition
	Stencil Computations on Transformed Layout

	Framework for Stream Alignment Conflict
	Program Representation
	Candidate Vector Loops
	Detection of Stream Alignment Conflict

	Experimental Evaluation
	Hardware
	Stencil Codes
	Results

	Related Work
	Conclusions
	References

	Subregion Analysis and Bounds Check Elimination for High Level Arrays
	Introduction
	Points, Regions and Arrays
	Region Analysis
	Intraprocedural Region Analysis
	Interprocedural Region Analysis
	Rectangular Region Algebra
	Interprocedural Linearized Array Bounds Analysis

	Bounds Check Elimination
	Array Views
	Experimental Results
	Related Work
	Conclusions
	References

	Task and Data Distribution
	Practical Loop Transformations for Tensor Contraction Expressions on Multi-level Memory Hierarchies
	Introduction
	Background
	Problem Statement and Notation
	Single Contraction Optimization
	Multi-level Memory Hierarchies

	Fusion for Tensor Contraction Sequences
	Two-Level Memory Hierarchy
	Multi-level Memory Hierarchies

	Experimental Evaluation
	Effectiveness on Different Expressions
	Scalability Study

	Related Work
	Conclusions
	References

	A Static Task Partitioning Approach for Heterogeneous Systems Using OpenCL
	Introduction
	The OpenCL Programming Framework
	Motivation
	Partitioning Data-Parallel Tasks
	Static Code Feature Extraction
	Building the Predictor
	Deployment
	Support Vector Machines

	Methodology
	Experimental Setup
	Evaluation Methodology

	Results
	Speedup Over Single-Core Performance
	Prediction Accuracy

	Related Work
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

