

Lecture Notes in Computer Science 6527
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Jim Davies Leila Silva Adenilso Simao (Eds.)

Formal Methods:
Foundations
and Applications

13th Brazilian Symposium on Formal Methods, SBMF 2010
Natal, Brazil, November 8-11, 2010
Revised Selected Papers

13

Volume Editors

Jim Davies
Oxford University, Department of Computer Science
Oxford OX1 3QD, UK
E-mail: Jim.Davies@comlab.ox.ac.uk

Leila Silva
Universidade Federal de Sergipe
Departamento de Ciência da Computação e Estatística
CEP 49100-000, Aracaju, SE, Brazil
E-mail: lmas@ufs.br

Adenilso Simao
Avenida Trabalhador São-Carlense, 400 Centro
13566-590, São Carlos, SP, Brazil
E-mail: adenilso@icmc.usp.br

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-19828-1 e-ISBN 978-3-642-19829-8
DOI 10.1007/978-3-642-19829-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011922662

CR Subject Classification (1998): D.2.4, D.2, F.3, D.3, D.1, K.6, F.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at SBMF 2010: the 13th Brazilian
Symposium on Formal Methods, organized during the week of November 8, 2010.
The conference was held, for the second time, in the city of Natal, Rio Grande do
Norte, Brazil, co-located with ICTSS 2010, the 22nd IFIP International Confer-
ence on Testing Software and Systems, and SAST 2010, the Brazilian Workshop
on Systematic and Automated Software Testing.

The conference programme included three invited talks, given by Constance
Heitmeyer (Naval Research Lab, USA), Bill Roscoe (University of Oxford, UK)
and David Naumann (Stevens Institute of Technology, USA). It also included two
workshops: Using BOOGIE 2 in the Verification of Spec# Programs, organized
by K. Rustan M. Leino (Microsoft Research) and Rosemary Monahan (National
University of Ireland), and Workshop on B Dissemination (WOBD), chaired by
Thierry Lecomte (ClearSy, France) on behalf of the DEPLOY project.

There was also an accompanying doctoral research symposium, with presen-
tations from research students working on new developments in the theory and
practice of formal methods, and a special session on the development of the
formal methods curriculum.

Awards were made to: Wojciech Mostowski and Erik Poll, for the best paper,
“Midlet Navigation Graphs in JML”; to Alexandra Silva, for the best paper pre-
sentation; to Giselle Reis, for the best doctoral presentation; to Tiago Massoni,
for the best use of presentation technology; and to Rolf Hennicker, for the best
contribution to the discussions that followed each author’s presentation.

A total of 18 research papers were presented at the conference, selected from
55 submissions, and included in revised form in this volume. We are grateful to
the Programme Committee, and the additional reviewers, for their hard work
in evaluating submissions and suggesting improvements. The papers were pre-
sented, by their authors, in seven separate sessions; these sessions were well
attended, and we are grateful to the many participants who made additional,
thoughtful contributions between, during, and after the paper presentations.

We are grateful to the organizers of this year’s conference, the Departamento
de Informática e Matemática Aplicada of Rio Grande do Norte (UFRN) and
the Brazilian Computer Society (SBC), and also to the sponsors: CNPq, the
Brazilian Scientific and Technological Research Council; CAPES, the Brazilian
Higher Education Funding Council; The Federal University of Rio Grande do
Norte (UFRN); Miranda Computação e Comércio Ltda; SETIRN.

December 2010
Jim Davies
Leila Silva

Adenilso Simão

Organization

Programme Committee

Aline Andrade
David Aspinall
Luis Barbosa
Roberto Bigonha
Michael Butler
Andrew Butterfield
Ana Cavalcanti
Marcio Cornelio
Andrea Corradini
Jim Davies (Co-chair)
David Deharbe
Ewen Denney
Clare Dixon
Rohit Gheyi
Rolf Hennicker
Juliano Iyoda
Zhiming Liu
Gerald Luettgen
Patricia Machado
Ana de Melo

Stephan Merz
Alvaro Moreira
Anamaria Moreira
Carroll Morgan
Alexandre Mota
Arnaldo Moura
David Naumann
Daltro Jose Nunes
Jose Oliveira
Marcel Oliveira (Local Chair)
Alberto Pardo
Alexandre Petrenko
Montréal, Canada
Leila Ribeiro
Augusto Sampaio
Leila Silva (Co-chair)
Adenilso Simão (Co-chair)
Heike Wehrheim
Jim Woodcock

Additional Reviewers

Ludwig Adam
Renato Alexandre Silva
Wilkerson L. Andrade
Tigran Avanesov
Sebastian Bauer
Karine Birnfeld
Filippo Bonchi
Adilson Bonifácio
Florent Bouchy
Alexander Ditter
Arnaud Dury
Adriano Gomes
Bruno Gomes
Rolf Hennicker
Giovanny Lucero
Hugo Macedo

Charles Morisset
Regina Motz
Stan Rosenberg
Asieh Salehi Fathabadi
Paulo Salem da Silva
Luis Sierra
Volker Stolz
Ivan Tierno
Jan Tobias Muehlberg
Walter Vogler
Shuling Wang
James Welch
Mar Yah Said
Sanaz Yeganefard
Jiaqi Zhu

Table of Contents

Directed Model Checking for B: An Evaluation and New Techniques 1
Michael Leuschel and Jens Bendisposto

Midlet Navigation Graphs in JML . 17
Wojciech Mostowski and Erik Poll

Runtime Verification for Generic Classes with ConGu2 33
Pedro Crispim, Antónia Lopes, and Vasco T. Vasconcelos

A High-Level Language for Modeling Algorithms and Their
Properties . 49

Sabina Akhtar, Stephan Merz, and Martin Quinson

A Formal Environment Model for Multi-Agent Systems 64
Paulo Salem da Silva and Ana C.V. de Melo

A Modal Interface Theory with Data Constraints . 80
Sebastian S. Bauer, Rolf Hennicker, and Michel Bidoit

Synchronizing Model and Program Refactoring . 96
Tiago Massoni, Rohit Gheyi, and Paulo Borba

A Type-Theoretic Framework for Certified Model Transformations 112
Daniel Calegari, Carlos Luna, Nora Szasz, and Álvaro Tasistro

Simulating Truly Concurrent CSP . 128
Moritz Kleine and J.W. Sanders

Statistical Verification of Probabilistic Properties with Unbounded
Until . 144

H̊akan L.S. Younes, Edmund M. Clarke, and Paolo Zuliani

Reasoning about Assignments in Recursive Data Structures 161
Alejandro Tamalet and Ken Madlener

Specification of a Localization Component Driven by a Goal-Based
Approach: Some Lessons We Learned . 177

Abderrahman Matoussi, Frédéric Gervais, and Régine Laleau

A Formal Framework for Specifying and Analyzing Logs as Electronic
Evidence . 194

Eduardo Mazza, Marie-Laure Potet, and Daniel Le Métayer

VIII Table of Contents

Formal Development of a Cardiac Pacemaker: From Specification
to Code . 210

Artur O. Gomes and Marcel V.M. Oliveira

A Decision Procedure for Bisimilarity of Generalized Regular
Expressions . 226

Marcello Bonsangue, Georgiana Caltais, Eugen-Ioan Goriac,
Dorel Lucanu, Jan Rutten, and Alexandra Silva

Normalization of Linear Horn Clauses . 242
Thomas Martin Gawlitza, Helmut Seidl, and Kumar Neeraj Verma

A Graph-Based Implementation for Mechanized Refinement Calculus
of OO Programs . 258

Zhiming Liu, Charles Morisset, and Shuling Wang

Automating Refinement of Circus Programs . 274
Frank Zeyda and Ana Cavalcanti

Author Index . 291

Directed Model Checking for B:
An Evaluation and New Techniques

Michael Leuschel and Jens Bendisposto

Institut für Informatik, Universität Düsseldorf
Universitätsstr. 1, D-40225 Düsseldorf

{leuschel,bendisposto}@cs.uni-duesseldorf.de

Abstract. ProB is a model checker for high-level formalisms such as B,
Event-B, CSP and Z. ProB uses a mixed depth-first/breadth-first search
strategy, and in previous work we have argued that this can perform bet-
ter in practice than pure depth-first or breadth-first search, as employed
by low-level model checkers. In this paper we present a thorough em-
pirical evaluation of this technique, which confirms our conjecture. The
experiments were conducted on a wide variety of B and Event-B models,
including several industrial case studies. Furthermore, we have extended
ProB to be able to perform directed model checking, where each state
is associated with a priority computed by a heuristic function. We eval-
uate various heuristic functions, on a series of problems, and find some
interesting candidates for detecting deadlocks and finding specific target
states.

Keywords: Model Checking, B-Method, Tool Support, Directed Model
Checking, Search, Industrial Case Studies, spin.

1 Introduction

Many model checking tools, such as smv [21,3] and spin [11,13,2], work on
relatively low-level formalisms. Recently, however, there have also been model
checkers which work on higher-level formalisms, such as tlc [25] for TLA+, fdr

[9] for CSP and alloy [16] for a formalism of the same name (although the
latter two are strictly speaking not model checkers). Another example is ProB

[19,20] which accepts B [1].
It is relatively clear that a higher level specification formalism enables a more

convenient modelling. On the other hand, conventional wisdom would dictate
that a lower-level formalism will lead to more efficient model checking. However,
our own experience has been different. During previous teaching and research
activities, we have accumulated anecdotal evidence that using a high-level for-
malism such as B can be much more productive than using a low-level formalism
such as Promela. The study [24,23] examined the elaboration of B models for
ProB and Promela models for spin on ten different problems. Unsurprisingly,
the time required to develop the Promela models was markedly higher than for
the B models, (and some models could not be fully completed in Promela). The

J. Davies, L. Silva, and A. Simão (Eds.): SBMF 2010, LNCS 6527, pp. 1–16, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 M. Leuschel and J. Bendisposto

study also found out that in practice both model checkers ProB and spin were
comparable in model checking performance, despite ProB working on a much
higher-level input language and being much slower when looking purely at the
number of states that can be stored and processed per time unit. Other indepen-
dent experimental evaluations also report good performance of ProB compared
against SMV [15].

In [17] we first tried to analyse and understand this counter-intuitive fact. One
explanation was that pure depth-first as employed by spin and other low-level
model checkers fares very badly in the context of large state spaces. Similarly,
a pure breadth-first strategy has problems in detecting long counter examples.
We argued in [17] that ProB’s mixed depth-first/breadth-first search enabled
it to effectively find a larger class of errors. In this paper we test this conjecture
empirically on a large number of B specifications. In addition, we present a new
directed model checking algorithm for ProB: rather than randomly choosing
between doing a depth-first or breadth-first step, we associate priorities with the
pending states of the model checker. We then evaluate various ways of computing
priorities on the same specifications.

In Section 2 we present the motivation for mixed depth-first/breadth-first
search in more detail, and in Section 3 we perform a thorough empirical eval-
uation. In Section 4 we present the new directed model checking algorithm of
ProB, along with a range of heuristic functions with their empirical evaluation.
We finish with more related work and a conclusion in Section 5.

2 Combining Depth-First and Breadth-First for
Improved Model Checking

In [17] we first tried to analyse and understand the counter-intuitive behaviour
described above. Below, we recall some of the conclusions from [17]. One tricky
issue is the much finer granularity of low-level models. If one is not careful, the
number of reachable states can explode exponentially, compared to a correspond-
ing high-level model. When writing Promela models, for example, great care has
to be taken to make use of atomic (or even dstep) primitives and resetting dead
temporary variables to default values. However, restrictions of atomic make it
sometimes very difficult or impossible to hide all of the intermediate states. More
details can be found in [17].

Searching for Errors in Large State Spaces. Let us disregard the granularity issue
and let us look at simple problems, with simple datatypes, which can be easily
translated from B to Promela, so that we have a one-to-one correspondence of
the states of the models. In such a setting, one would assume that the spin model
checker for Promela will outperform ProB by several orders of magnitude. In-
deed, spin generates a specialised model checker in C which is then compiled,
whereas ProB uses an interpreter written in Prolog. Furthermore, spin has ac-
crued many optimisations over the years, such as partial order reduction [14,22]

Directed Model Checking for B: An Evaluation and New Techniques 3

and bitstate hashing [12]. However, even in this setting, this advantage of spin

does not necessarily translate into better performance for real-life scenarios, in
particular when using the model checker as a debugging tool for software systems,
i.e., trying to find errors in a very large state space.

One experiment reported on in [17] is the NastyVendingMachine. It has a very
large state space, where there is a systematic error in one of the operations of the
model (as well as a deadlock when all tickets have been withdrawn). To detect the
error, it is important to exercise this operation repeatedly. It is not important to
generate long traces of the system, but it is important to systematically execute
combinations of the individual operations. This explains why depth-first behaves
so badly on this model, as it will always try to exercise the first operation of the
model first. Note that a very large state space is a typical situation in software
verification (sometimes the state space is even infinite).

Fortunately, spin provides a breadth-first option, with which it then finds
the above error very quickly. However, for another class of problems, breadth-
first fares badly. Indeed, in a corrected non-deadlocking model of the vending
machine in [17], with again a large state space, the error occurs if the system
runs long enough: it is not very critical in which order operations are performed,
as long as the system is running long enough. This explains why for this model
breadth-first was performing badly, as it was not generating traces of the system
which were long enough to detect the error.

In order to detect both types of errors with a single model checking algorithm,
ProB has been using a mixed depth-first and breadth-first search [20]. More
precisely, at every step of the model checking, ProB randomly chooses between
a depth-first and a breadth-first step.

In summary, the motivation behind ProB’s heuristic is that many errors in
software models fall into one of the following two categories:

– Some errors are due to an error in a particular operation of the system; hence
it makes sense to perform some breadth-first exploration to exercise all the
available functionality. In the early development stages of a system model,
this kind of error is very common.

– Some errors happen when the system runs for a long time; here it is often
not so important which path is chosen, as long as the system is running
long enough. An example of such an error is when a system fails to recover
resources which are no longer used, hence leading to a deadlock in the long
run.

Thus, if the state space is very large, depth-first search can perform very badly
as it fails to systematically test combinations of the various operations of the
system. Even partial order reduction and bitstate hashing often do not help.
Similarly, breadth-first search can perform badly, failing to locate errors that
require the system to run for very long. We have argued that ProB’s combined
depth-first breadth-first search with a random component does not have these
pitfalls. In the next section, we will validate this claim empirically.

4 M. Leuschel and J. Bendisposto

3 Depth-First versus Breadth-First: An Empirical
Evaluation

We report on experiments conducted with ProB using pure depth-first, pure
breadth-first, as well as the default mixed depth-first/breadth-first approach of
ProB. We also investigate several variations of the mixed approach, varying the
probability with which a depth-first step is conducted.

3.1 The Models

We have chosen a variety of case studies for evaluating the effectiveness the
various model checking techniques. All models are either classical B models or
Rodin Event-B models. We have included several industrial specifications (some
stemming from various EU projects, such as Rodin and Deploy1), as well as
academic specifications of various intricate algorithms. There are a few artificial
benchmarks as well, testing specific aspects of the model checking algorithm. We
have also included some classical puzzles as well, in particular to test directed
model checking.

The case studies have been partitioned into four classes:

1. Models with invariant violations,
2. Models with deadlocks,
3. Models with no errors (i.e., no deadlocks or invariant violations), but where

a particular goal predicate is to be found. Indeed, in ProB the user can
define a particular goal predicate and ask the model checker to find states
which make the predicate true. The main difference with point 1 is that the
goals are often much more precise (sometimes a concrete particular state)
than the invariant violations.

4. Models with no errors, and where the full state space needs to be explored.

A description of the models can be found in the extended version of the paper
[18]. Along with the extended version of the paper [18] we have also included
the publicly available models.

3.2 The Results

The results are summarised in Tables 1–6 in the Appendix A. Due to space
restrictions, we have not included the times for the models without errors; this
information can be found in [18]. Relative times are computed with ProB using
a mixed depth-first/breadth-first strategy with one-third probability of going
depth-first. We call this the reference settings of ProB (prior to the publication
of this paper this used to be the default setting; more on that below). The
experiments were run on a MacBook Pro with a 3.06 GHz Core2 Duo processor,
and ProB 1.3.2 compiled with SICStus Prolog 4.1.2.
1 EU funded FP7 research project 214158: DEPLOY (Industrial deployment of ad-

vanced system engineering methods for high productivity and dependability).

Directed Model Checking for B: An Evaluation and New Techniques 5

Pure Depth-First. In a considerable number of cases pure depth-first is the
fastest method, e.g., for the Peterson err, Abrial Earely3 v5, Alstom axl3, and
BlocksWorld benchmarks.

However, we can see in Table 1 that for some models Depth-First fares very
badly:

– In Alstom ex7 in Table 2, pure depth-first search even fails to find the dead-
lock when given an hour of cputime. This real-life example thus supports
our claim from [17] and subsection 2 that when state space is too large to
examine fully, depth-first will sometimes not find a counter example. This
is actually a quite common case for industrial models: they are typically (at
least before abstraction) too large to handle fully.

– Another similar example is Abrial Press m13 in Table 3, where pure depth-
first is about 900 times slower than ProB in the reference settings.

– Another bad example is Puzzle8, where depth-first is more than 7 times
slower or Simpson4Slot where it is 163 times slower than ProB in the ref-
erence settings. Finally, for the artificially constructed BFTest, depth-first
search fails to find the invariant violation.

For finding goals, the geometric mean of the relative runtimes was 0.92, i.e.,
slightly better than the reference setting. Overall, pure depth-first seemed to
fare best for the deadlocking models with a geometric mean of 0.43. For finding
invariant violations, however, the geometric mean was 1.03, i.e., slightly worse
than the reference setting.

The bad performance in the Huffman benchmark is actually not relevant:
here not all states were evaluated. As such, the time to examine 10,000 states
was measured. The pure-depth first search here encountered more complicated
states, than the other approaches, explaining the additional time required for
model checking.

In conclusion, the performance of pure depth-first alone can vary quite dra-
matically, from very good to very bad. A such, pure depth first search is not a
good choice as a default setting of ProB. Note, however, that we allow the user
to override the default setting and put ProB into pure depth-first mode.

Pure Breadth-First. In most cases pure Breadth-First is worse than the ref-
erence setting; in some cases considerably so. The geometric mean was always
above 1, i.e., worse than the reference setting.

For Alstom ex7 pure breadth-first also fails to find the deadlock.
Peterson err in Table 1 gives a similar picture, Breadth-First being 134 times

slower than DF and 11 times slower than the reference settings of ProB.
Other examples where BF is not so good: Abrial Earley3 v5, DiningPhil, Syste-
mOnChip Router, Wegenetz.

There are some more examples where it performs considerably better than
pure depth-first: Puzzle8, Simpson4Slot, Abrial Press m13 and the “artificial”
benchmarks BFTest and DFTest2.

6 M. Leuschel and J. Bendisposto

In conclusion, breadth-first on its own is not appropriate, except in special cir-
cumstances. Note, a user can set ProB into breadth-first mode, but the default
is another setting (see below).

Mixed Depth-first/Breadth-first. The motivation behind ProB’s mixed
depth-first/breadth-first heuristic is that many errors in software models fall
into one of the following two categories:

– Some errors are due to an error in a particular operation of the system; hence
it makes sense to perform some breadth-first exploration to exercise all the
available functionality. In the early development stages of a model, this kind
of error is very common.

– Some errors happen when the system runs for a long time; here it is often
not so important which path is chosen, as long as the system is running
long enough. An example of such an error is when a system fails to recover
resources which are no longer used, hence leading to a deadlock in the long
run.

An interesting real-life benchmark is Alstom ex7: here both pure depth-first and
pure breadth-first fail to find the deadlock. However, the mixed strategy finds
the deadlock.

We have experimented with four different versions of the mixed strategy:
DF75, DF50, DF33, DF25. The reference setting was DF33, where there is a
33 % chance of going depth-first at each step. Best overall geometric mean is
obtained when using DF50 (which is now the new default setting of ProB).

In summary, let us look at the radar plots in Table 7 in Appendix A, where we
summarise the results for pure depth-first, pure breadth-first, the old reference
setting and the new one. We can clearly see the quite erratic performance of pure
depth-first (relative to the reference setting), and the less erratic but usually
worse performance of pure breadth-first. We can also see that the new reference
setting usually lies within the reference setting circle, smoothing out most of the
(bad) erratic behaviour of the pure depth-first approach.

4 Evaluating Directed Model Checking

Directed Model Checking uses additional information about the model or the
destination state in form of a heuristic that guides the model checker towards
a target state. This additional information can be collected using for instance
static analysis or it can be given by the modeler.

Currently the state space of ProB is stored as a Prolog fact database. Every
state can be quickly accessed using its ID or using the hash-value of its state.
The model checker also maintains a pending list of open states, using two addi-
tional Prolog predicates: retracting a Prolog fact from one of the predicates yields
the most recently added open state (for depth-first traversal) and retracting from

Directed Model Checking for B: An Evaluation and New Techniques 7

the other predicate yields the oldest open state (for breadth-first traversal). This
approach allowed us to implement a mixed depth-first / breadth-first approach
by randomly selecting either an element from the front or the end of the pending
list of open states.

We have implemented a priority queue in C++ using the STL (Standard
Template Library) multimap data structure. One can thus efficiently add new
open states with a particular weight, and then either chose the state with the
lowest or highest weight.

We now describe the various heuristic functions we have investigated, as well
as the result of the empirical investigation. In this paper we evaluate some strate-
gies to assign weights to newly encountered states. In particular we describe a
random search, a search based on the number of successor states, a search based
on the (term) size of the state as well as some custom heuristic functions written
by the modeler for a particular model. The latter approach is used for models
where a specific goal was known, e.g., puzzles.

Random Hash. The idea is simply to use the hash value of a state as the weight
for the priority queue. The hope is that the hash value distributes uniformly,
i.e., that this would provide a good way to randomize the treatment of pending
states. The hash value is computed anyway for every state, using SICStus Prolog
term hash predicate.

The purpose was to use this heuristic as a base-line: a heuristic that is worse
or not markedly better than this one is not worth the effort. We also want to
compare this heuristic with the mixed depth-first/breadth-first approach from
Section 3 and see whether there any notable differences. Indeed, the mixed depth-
first/breadth-first search does not randomize the order of the states in the list,
and this could have an influence on the model checking performance.

Results. For finding deadlocks (Table 5) and goals (Table 6) the random hash
heuristic is markedly better than the reference settings of ProB (except for the
Bosch cruise control model; but runtimes there are very low anyway). For finding
invariant violations, however, (Table 4) it is worse (its geometric mean is greater
than 1 (1.07) and in two examples it is markedly worse).

Overall, it seems to perform slightly better than our mixed DF/BF search.
We have also experimented with truly random approach, where we use a

random number generator rather than the hash value for the priority. The results
are rather similar, except for Alstom ex7 where it systematically outperforms
Random Hash.

Out Degree. The idea is to use the out degree of a state as priority, i.e., the
number of outgoing transitions. The motivation is that if we have found a state
with an out degree of 0, i.e., the highest priority, we have found a deadlock.
Intuitively, the less transitions are enabled for a state, the closer we may be to
a deadlock. In the implementation we actually do not know the out degree of
a state until it has been processed. Hence, we use the out degree of the (first)
predecessor state for the priority.

8 M. Leuschel and J. Bendisposto

Results. Indeed, for finding deadlocks this heuristic obtained the best geometric
mean of 0.5. So, this simple heuristic works surprisingly well. For finding goals,
this heuristic still obtains geometric mean of 0.63, but it is worse than the
random hash function. For finding invariant violations it does not work at all;
its geometric mean is 1.56.

A further refinement of this heuristic is to combine the out degree with the
random hash heuristic, i.e., if two states have the same out degree (which can
happen quite often) we use the hash value as heuristic to avoid a degeneration
into depth-first search. This refinement leads to a further performance improve-
ment for deadlock finding (geometric mean of 0.34 compared to 0.50), and for
goal finding. But it is markedly worse for invariant violation finding.

In conclusion, the out degree heuristic, especially when combined with random
hash, works surprisingly well for its intended purpose of finding deadlocks. In
future work, we plan to further refine this approach, by using a static flow
analysis to guide model checker into deadlocks and/or particular enablings for
events.

Term Size. The idea of this heuristic is to use the term size of the state (i.e.,
the number of constant and function symbols appearing in its representation)
as priority. The motivation for this heuristic is that the larger the state is, the
more complicated it will be to process (for checking invariants and computing
outgoing transitions). Hence, the idea is to process simpler states first, in an
attempt to maximise the number of states processed per time unit.

Results. For finding goals this heuristic has a geometric mean of 0.85, i.e., it is
better than the reference setting of ProB, but worse than random hash. For
deadlock and invariant checking, it also performs worse than random hash. In
summary, this heuristic does not seem worth pursuing further.

Effectiveness of Custom Heuristic Function: In order to experiment eas-
ily with other heuristic functions, we have added the possibility for the user
to define a custom heuristic function for a B model. Basically, this function
can be introduced in the DEFINITIONS part of a B machine by defining
HEURISTIC FUNCTION. ProB now evaluates the expression HEURISTIC FUNCTION
in every state, and uses its value as the priority of the state. Note, the expression
must return an integer value. For the BlocksWorld benchmark, we have written
the following custom heuristic function:

ongoal == {a|->b, b|->c, c|->d, d|->e};
DIFF(A,TARGET) == (card(A-TARGET) - card(TARGET /\ A));
HEURISTIC_FUNCTION == DIFF(on,ongoal);

Note the machine has a variable on is of type Objects +-> Objects and the
GOAL for the model checker is to find a state where on = ongoal is true.

In the benchmarks, we have mainly written heuristic functions which esti-
mate the distance between a target goal state and the current state. In future,

Directed Model Checking for B: An Evaluation and New Techniques 9

we plan to derive the definition of those heuristic functions automatically. A
simple distance heuristic can be derived if the goal of the model checking is to
find specific values for certain variables of the machine (such as on = ongoal).
Basically, for current state s = 〈s1, . . . , sn〉 and a target state t = 〈t1, . . . , tn〉 we
use as heuristic h(s) = Σ1≤i≤nΔ(si, ti) where

– Δ(x, target) = abs(x− target) if x integer
– Δ(x, target) = card(x − TARGET)− card(TARGET ∩A) if x a set
– Δ((x, y), (t1, t2)) = Δ(x, t1) + Δ(y, t2) for pairs,
– in all other cases: Δ(x, target) = 0 if x = target and 1 otherwise

If the value of a particular variable is not relevant, then we simply set Δ(si, ti) =
0 for that variable.

This defines a kind of Hamming distance for B states. We have applied this
(manually) in the BlocksWorld example above.

We have only evaluated this approach for finding goals. Here, it obtained
the best overall geometric mean of 0.34. For Puzzle8 and Abrial press m13,
this approach yielded by far the best solution. For RussianPostal, TrainTorch,
Blocksworld, Abrial Queue m1 it obtains the best result. There was one exper-
iment were it is markedly worse than ProB in the reference settings: Syste-
mOnChip Router. Here the heuristic did not pay off at all. Indeed, here the last
event changes all of the four variables, relevant for the model checking GOAL,
in one step. This only confirms the fact that we are working with heuristic func-
tions, which are not guaranteed to always improve the performance.

Summary of the Directed Model Checking Experiments: We have sum-
marised the main findings of our experiments in Table 8 in Appendix A. We can
conclude that:

– for invariant checking, the random hash heuristic fared best.2 This seems to
indicate that it is maybe useful to combine some more random component
into the depth-first/breadth-first techniques of Section 3, e.g., to also ran-
domly permute the operation order. Indeed, the approaches from Section 3
always process the operations in the same order, and do not shuffle the states
inside the pending list.

– for deadlock checking, the out-degree-hash heuristic is the best. It should
provide a good basis for further improved deadlock checking techniques.

– for goal finding, a custom heuristic function provides (except in one case)
by far the best result. The next step is to derive those heuristic functions
automatically.
The out-degree-hash heuristic also provides reasonably good performance
(its geometric mean is 0.41, which is better than the best mixed-depth-first
one of 0.57 for DF75).

2 However, note that DF50 had an overall geometric mean of 0.58, and was hence
better overall than random hash.

10 M. Leuschel and J. Bendisposto

5 Future and Related Work and Conclusion

Regarding directed model checking using heuristics there are a number of other
approaches such as a directed extension [10] for Java PathFinder, a tool to mod-
elcheck Java bytecode in order to find deadlocks or problems with null pointers.
Edelkamp et al. describe in [7,6,5] various methods to do directed searches for
counterexamples to LTL properties within spin. A way to use abstraction in
order to direct a model checker is described in [4].

Our experiments have confirmed the conjecture of [17], namely that a mixed
depth-first/breadth-first strategy for model checking is much more robust than
either pure depth-first or breadth-first search. Of particular interest is one indus-
trial model (from Alstom), where neither pure depth-first nor pure breadth-first
was capable of detecting the deadlock. We have presented a new model checking
algorithm for ProB, which stores the pending list of states in a priority queue.
We have presented several heuristic functions and have evaluated them on a wide
variety of B models, including several industrial case studies. The experiments
have shown that directed model checking can provide a considerable performance
improvement. We have shown how one technique, combining the out-degree with
a random component, performs very well for finding deadlocks. An adaption of
the hamming distance for B states has proven to be very effective in guiding the
model checker towards specific goal predicates.

In the future we want to develop more intelligent heuristic functions to guide
ProB, e.g., using information we get from an automatic flow analyzer. We cur-
rently investigate a method to extract information about the control flow of
software systems from Event-B models using a theorem prover. We hope that
flow analysis guided model checking will further improve upon the out-degree
heuristic for finding deadlocks and would also be helpful to find traces to states
where a particular event is enabled. The latter is particularly interesting for
test-case generation.

Acknowledgements. We would like to thank the SBMF reviewers for their feed-
back and many useful suggestions. We are also grateful to the various industrial
partners for giving us access to their B models. This research is being carried out
as part of the DFG funded research project GEPAVAS and the EU funded FP7
research project 214158: DEPLOY (Industrial deployment of advanced system
engineering methods for high productivity and dependability).

References

1. Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)
2. Ben-Ari, M.: Principles of the Spin Model Checker. Springer, Heidelberg (2008)
3. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model

checking: 1020 states and beyond. Information and Computation 98(2), 142–170
(1992)

4. Dräger, K., Finkbeiner, B., Podelski, A.: Directed model checking with distance-
preserving abstractions. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925,
pp. 19–34. Springer, Heidelberg (2006)

Directed Model Checking for B: An Evaluation and New Techniques 11

5. Edelkamp, S., Jabbar, S.: Large-scale directed model checking LTL. In: Valmari,
A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 1–18. Springer, Heidelberg (2006)

6. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed explicit-state model checking
in the validation of communication protocols. STTT 5(2-3), 247–267 (2004)

7. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Partial-order reduction and trail im-
provement in directed model checking. STTT 6(4), 277–301 (2004)

8. Fleming, P.J., Wallace, J.J.: How not to lie with statistics: the correct way to
summarize benchmark results. ACM Commun. 29(3), 218–221 (1986)

9. Formal Systems (Europe) Ltd. Failures-Divergence Refinement — FDR2 User
Manual (version 2.8.2)

10. Groce, A., Visser, W.: Heuristic model checking for Java programs. In: Bosnacki,
D., Leue, S. (eds.) SPIN 2002. LNCS, vol. 2318, pp. 242–245. Springer, Heidelberg
(2002)

11. Holzmann, G.J.: The model checker Spin. IEEE Trans. Software Eng. 23(5),
279–295 (1997)

12. Holzmann, G.J.: An analysis of bitstate hashing. Formal Methods in System De-
sign 13(3), 289–307 (1998)

13. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, Reading (2004)

14. Holzmann, G.J., Peled, D.: An improvement in formal verification. In: Hogrefe,
D., Leue, S. (eds.) FORTE. IFIP Conference Proceedings, vol. 6, pp. 197–211.
Chapman and Hall, Boca Raton (1994)

15. Hörne, T., van der Poll, J.A.: Planning as model checking: the performance of ProB
vs NuSMV. In: Botha, R., Cilliers, C. (eds.) SAICSIT Conf. ACM International
Conference Proceeding Series, vol. 338, pp. 114–123. ACM, New York (2008)

16. Jackson, D.: Alloy: A lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology 11, 256–290 (2002)

17. Leuschel, M.: The high road to formal validation. In: Börger, E., Butler, M., Bowen,
J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 4–23. Springer, Heidelberg
(2008)

18. Leuschel, M., Bendisposto, J.: Directed model checking for B: An evalua-
tion and new techniques. Technical report, STUPS, Universität Düsseldorf
(September 2010),
http://www.stups.uni-duesseldorf.de/publications_detail.php?id=312

19. Leuschel, M., Butler, M.: ProB: A model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

20. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008)

21. McMillan, K.L.: Symbolic Model Checking. PhD thesis, Boston (1993)
22. Peled, D.: Combining partial order reductions with on-the-fly model-checking. In:

Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377–390. Springer, Heidelberg
(1994)

23. Samia, M., Wiegard, H., Bendisposto, J., Leuschel, M.: High-Level versus Low-
Level Specifications: Comparing B with Promela and ProB with Spin. In: Attiogbe,
Mery (eds.) Proceedings TFM-B 2009, pp. 49–61. APCB (June 2009)

24. Wiegard, H.: A comparison of the model checker ProB with Spin. Master’s thesis,
Institut für Informatik, Universität Düsseldorf, Bachelor’s thesis (2008)

25. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In:
Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer,
Heidelberg (1999)

http://www.stups.uni-duesseldorf.de/publications_detail.php?id=312

12 M. Leuschel and J. Bendisposto

A Experimental Results

Note: we use geometric mean [8] of the relative runtimes, as the arithmetic mean
is useless for normalised results. Of course, the geometric mean itself should also
be taken with a grain of salt (various articles also attack its usefulness). Indeed,
without knowing how representative the chosen benchmarks are for the overall
population of B specifications, we can conclude little.

Thus, we also provide all numbers in the tables below, so that minimum,
maximum relative runtimes can be seen, as well as the absolute runtime of the
reference benchmark. Indeed, the relative runtimes are less reliable, when the
absolute runtime of the reference benchmark is already very low. When a given
technique failed to locate the invariant violation (respectively deadlock or target
goal), then we have marked the time with two asterisks (**). The tables for the
models without errors where the full state space has to be explored can be found
in [18].

Table 1. Relative times for checking models with invariant violations (DF/BF)

Invariant Benchmark DF DF75 DF50 DF33 (abs+rel) DF25 Rel BF
SchedulerErr 0.33 0.33 0.33 30 ms 1.00 1.00 2.67
Simpson4Slot 163.33 0.22 0.67 90 ms 1.00 0.78 2.11
Peterson err 0.08 0.08 0.22 360 ms 1.00 3.06 11.17
TravelAgency 0.16 0.27 0.10 630 ms 1.00 0.78 2.43
SecureBldg M21 err3 0.50 0.50 1.00 20 ms 1.00 1.00 1.00
Abrial Press m2 err 0.26 3.38 0.34 880 ms 1.00 1.81 1.26
SAP M Partner 0.58 1.08 1.00 120 ms 1.00 0.92 0.83
NastyVending 0.02 0.08 8.00 130 ms 1.00 2.85 1.00
NeedhamSchroeder 1.28 1.52 0.95 22620 ms 1.00 0.70 1.37
Houseset 0.05 0.06 0.22 2610 ms 1.00 2.66 ** 336.27
BFTest ** 15000.00 11592.75 0.75 80 ms 1.00 1.00 0.88
DFTest1 0.20 0.35 0.71 2360 ms 1.00 1.01 1.02
DFTest2 7.86 0.50 0.60 2930 ms 1.00 0.99 1.00
GEOMEAN 1.03 0.78 0.58 394 ms 1.00 1.24 2.35

Directed Model Checking for B: An Evaluation and New Techniques 13

Table 2. Relative times for checking models with deadlocks (DF/BF Analysis)

Deadlock Benchmark DF DF75 DF50 DF33 (abs+rel) DF25 Rel BF
Abrial Earley3 v3 0.33 0.44 0.93 270 ms 1.00 1.19 1.19
Abrial Earley3 v5 0.13 0.32 0.75 4320 ms 1.00 2.18 7.95
Abrial Earley4 v3 0.89 0.89 1.00 90 ms 1.00 1.00 1.00
Alstom axl3 0.10 0.17 0.20 51270 ms 1.00 3.51 14.61
Alstom ex7 ** 4.20 0.23 0.35 856320 ms 1.00 ** 1.21 ** 3.00
Bosch CrsCtl 1.00 1.00 1.00 3 ms 1.00 4.00 4.00
SAP MChoreography 0.50 0.50 0.50 20 ms 1.00 1.00 1.00
DiningPhil 0.13 0.26 0.36 1690 ms 1.00 2.49 6.20
CXCC0 0.50 1.00 1.00 10 ms 1.00 2.00 2.00
GEOMEAN 0.43 0.44 0.59 540 ms 1.00 1.82 3.02
AVG 0.00 0.00 0.00 0 ms 0.00 0.00 0.00

Table 3. Relative times for checking models with goals to be found (DF/BF Analysis)

Goal Benchmark DF DF75 DF50 DF33 (abs+rel) DF25 Rel BF
RussianPostal 0.95 0.14 0.73 220 ms 1.00 1.05 1.50
TrainTorch 1.14 1.17 0.69 350 ms 1.00 1.06 0.94
BlocksWorld 0.07 0.25 1.16 440 ms 1.00 1.18 1.07
Farmer 0.50 1.00 0.50 20 ms 1.00 1.00 1.00
Hanoi 0.54 0.48 1.00 500 ms 1.00 0.84 0.90
Puzzle8 7.56 2.86 0.40 59060 ms 1.00 0.11 0.71
RushHour 0.41 0.66 0.90 127020 ms 1.00 1.09 1.11
Abrial Press m13 899.78 1.64 1.26 800 ms 1.00 0.66 2.23
Abrial Queue m1 1.60 3.00 1.00 50 ms 1.00 1.60 1.40
SystemOnChip Router 0.05 0.14 0.08 2050 ms 1.00 1.04 1.45
Wegenetz 0.08 0.08 0.25 120 ms 1.00 0.17 2.58
GEOMEAN 0.92 0.57 0.58 715 ms 1.00 0.71 1.26

Table 4. Relative times for checking models with invariant violations (Heuristics)

Invariant Benchmarks DF33 (abs+rel) HashRand OutDegree OutDegHash TermSize
SchedulerErr 30 ms 1.00 0.33 3.67 10.67 2.67
Simpson4Slot 90 ms 1.00 0.89 2.22 0.78 2.22
Peterson err 360 ms 1.00 0.75 11.25 1.42 9.14
TravelAgency 630 ms 1.00 0.52 1.02 9.98 0.49
SecureBldg M21 err3 20 ms 1.00 0.50 1.00 0.50 0.50
Abrial Press m2 err 880 ms 1.00 1.45 3.38 3.19 1.25
SAP M Partner 120 ms 1.00 1.17 0.75 0.33 1.00
NeedhamSchroeder 22620 ms 1.00 1.40 **48.51 41.58 ** 46.06
Houseset 2610 ms 1.00 0.08 ** 333.53 0.16 ** 338.61
BFTest 80 ms 1.00 16.00 0.88 73.00 0.88
DFTest1 2360 ms 1.00 0.64 1.02 0.69 1.02
DFTest2 2930 ms 1.00 0.53 1.00 0.57 1.66
GEOMEAN 432 ms 1.00 0.79 2.44 1.54 1.93

14 M. Leuschel and J. Bendisposto

Table 5. Relative times for checking models with deadlocks (Heuristics Analysis)

Deadlock Benchmarks DF33 (abs+rel) HashRand OutDegree OutDegHash TermSize
Abrial Earley3 v3 270 ms 1.00 0.74 1.22 0.70 1.22
Abrial Earley3 v5 4320 ms 1.00 0.41 5.88 0.16 7.95
Abrial Earley4 v3 90 ms 1.00 0.89 1.00 0.89 1.00
Alstom axl3 51270 ms 1.00 0.82 0.09 0.16 0.08
Alstom ex7 856320 ms 1.00 0.55 ** 1.91 1.10 **1.57
Bosch CrsCtl 3 ms 1.00 8.00 1.00 1.00 4.00
SAP MChoreography 20 ms 1.00 0.50 0.50 0.50 1.00
DiningPhil 1690 ms 1.00 1.16 0.05 0.03 1.59
CXCC0 10 ms 1.00 0.25 0.25 0.25 0.25
GEOMEAN 432 ms 1.00 0.80 0.58 0.34 1.07

Table 6. Relative times for checking models with goals to be found (Heuristics)

Goal DF33 HashRand OutDegree OutDeg- TermSize CUSTOM
Benchmarks (abs+rel) Hash
RussianPostal 220 ms 1 0.45 0.77 0.36 1.18 0.45
TrainTorch 350 ms 1 0.97 0.26 1.14 0.20 0.20
BlocksWorld 440 ms 1 1.16 0.07 0.07 1.20 0.02
Farmer 20 ms 1 1.00 1.00 0.50 1.00 1.00
Hanoi 500 ms 1 0.52 0.92 0.52 0.90 0.34
Puzzle8 59060 ms 1 20.54 1.31 2.69 0.71 0.03
RushHour 127020 ms 1 0.42 0.60 0.56 1.12 0.79
Abrial Press m13 800 ms 1 0.49 2.36 2.21 2.48 0.20
Abrial Queue m1 50 ms 1 0.40 16.60 0.60 2.80 0.40
SystemOnChip... 2050 ms 1 0.10 0.05 0.04 1.50 72.42
Wegenetz 120 ms 1 0.17 0.33 0.08 0.08 0.08
GEOMEAN 715 ms 1 0.64 0.63 0.41 0.85 0.34

Directed Model Checking for B: An Evaluation and New Techniques 15

Table 7. Radar plots for invariant, deadlock and goal checking (DF/BF)

16 M. Leuschel and J. Bendisposto

Table 8. Radar plots for deadlock and goal checking (Heuristics)

Midlet Navigation Graphs in JML

Wojciech Mostowski and Erik Poll

Radboud University Nijmegen
Digital Security Group

woj@cs.ru.nl, erikpoll@cs.ru.nl

Abstract. In the context of the EU project Mobius on Proof Carry-
ing Code for Java programs (midlets) on mobile devices, we present a
way to express midlet navigation graphs in JML. Such navigation graphs
express certain security policies for a midlet. The resulting JML specifica-
tions can be automatically checked with the static checker ESC/Java2.
Our work was guided by a realistically sized case study developed as
demonstrator in the project. We discuss practical difficulties with creat-
ing efficient and meaningful JML specifications for automatic verification
with a lightweight verification tool such as ESC/Java2, and the potential
use of these specifications for PCC.

1 Introduction

Midlet navigation graph provide a way to specify security properties for Java
MIDP (Mobile Information Device Profile) applications, so-called midlets. Based
on a simpler notion of a flow graph, prescribed by the Unified Testing Criteria
(UTC) [20] to test midlets in Java Verified scheme1, Crégut proposed the notion
of navigation graphs [5] as a high-level specification formalism to describe the
behaviour of Java mobile phone applications (in most cases MIDP devices are
in fact mobile phones).

Essentially, a navigation graph is a graph, or finite automaton, which describes
the ways in which an application may navigate through various screens of the
user interface, in interaction with the user and the network. Each node in the
graph represents a different screen that is displayed, e.g. a warning message
for which the user has to press ‘OK’ or ‘Cancel’, or a menu with options for
the user to choose from. The arrows between nodes represent transitions the
application can make, often in response to some user action. The graph can be
augmented with information about sensitive midlet actions, e.g. sending an SMS
or engaging in other GSM network activity. The navigation graph then gives a
high-level specification of which potentially dangerous things a given midlet does,
and under which circumstances.

In [5] Crégut gives a formal description of navigation graphs and their seman-
tics in terms of an operational semantics of Java bytecode, more specifically the
Bicolano semantics [18]. He also presents an algorithm to extract a navigation

1 http://www.javaverified.com

J. Davies, L. Silva, and A. Simão (Eds.): SBMF 2010, LNCS 6527, pp. 17–32, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.javaverified.com

18 W. Mostowski and E. Poll

graph from bytecode. In this paper we present a way to express the semantics
of navigation graphs in terms of a specification at source code level. The formal
specification language we use for this is Java Modelling Language (JML) [14].

Our work was guided by one of the Mobius case studies, a quiz game mi-
dlet developed by industrial partner TLS2 [15]. This is the biggest case study of
the project and it exhibited some problems during the JML annotation pro-
cess and also during verification with the extended static checker for Java,
ESC/Java2 [11]. We will discuss the problems we encountered with developing
the JML specification and verifying it in detail.

The rest of this paper is organised as follows. Sect. 2 gives an introduction
to the MIDP application structure. Sect. 3 describes midlet navigation graphs
in more detail. Sect. 4 discusses the translation of the midlet navigation graphs
in JML based on the Mobius case study. Finally, Sect. 6 summarises our results
and discusses the potential for PCC.

2 MIDP Infrastructure

The notion of midlet navigation graphs relies on the infrastructure of the Java2
Micro Edition platform (J2ME)3 for small devices, such as mobile phones or
PDAs. The main building blocks of the J2ME platform of interest are the Mo-
bile Information Device Profile (MIDP) Java API and the Connected Limited
Device Configuration (CLDC) Java API. The former API deals with output to
the display and input from the user via the keypad of the device. The latter
API is mostly responsible for device’s communication with the outside world.
J2ME is often referred to as MIDP, and CLDC is usually assumed to be part
of J2ME/MIDP when mobile phones or PDAs are considered. The applications
that run on these devices are called midlets.

GUI. A navigation graph is related to the phone’s display and sensitive opera-
tions that a midlet can possibly perform. In the following we discuss the relevant
parts of the MIDP API. As a presentation aid we use UML.

Every midlet, represented by the MIDlet class, has a unique associated Disp-
lay object, which manages the display and the input devices. The static method
Display.getDisplay(MIDlet m) returns the display associated with a midlet.
The various kinds of things that can be displayed on the Display object are
instances of the subclasses of Displayable, shown in Fig. 1. Invoking the meth-
od void setCurrent(Displayable nextDisplayable) on a Display changes
what it displays, possibly after a short delay. A List presents a list of choices, i.e.
a menu, that the user can scroll through and select. A TextBox allows the user
to enter and edit text. A Form presents an arbitrary mixture of items, which can
for instance be images or (read-only or editable) text fields. Finally, an Alert
is a screen that is shown for a short period of time, either until some time-
out or a key press. Alerts can also be displayed by invoking the method void

2 http://www.tls.pl
3 http://java.sun.com/javame/index.jsp

http://www.tls.pl
http://java.sun.com/javame/index.jsp

Midlet Navigation Graphs in JML 19

Displayable

Canvas

GameCanvas

Screen

Alert Form List TextBox

Fig. 1. Class diagram: basic MIDP GUI elements

MIDlet Display
1 1

Displayable
1 1

CommandListener
1 0..1

Command
0..*1

Fig. 2. Class diagram: relation between midlets, displays, and screens

setCurrent(Alert alert, Displayable nextDisplayable), which will dis-
play the alert, and then show the nextDisplayable.

In its turn, a Displayable object may have a CommandListener associ-
ated with it, which implements a method void commandAction(Command c,
Displayable d) to handle incoming command events occurring on some Disp-
layable d. Commands are user actions, such as buttons that the user can se-
lect on the screen. Fig. 2 shows the relevant class structure. Note that control
passes back and forth between the midlet and the platform. When a midlet
calls setCurrent(...) to change the display, it hands over control to the plat-
form; when after that a user action occurs, the platform hands back control to
the midlet by a call back to commandAction(...). The behaviour of the mi-
dlet is determined by: (i) the current MIDlet and its Display, (ii) the current
Displayable shown on that Display, (iii) the Commands that the midlet pro-
vides (if any), (iv) the associated CommandListener (if any). The display and the
midlet should never change. The MIDP platform controls which Displayable is
shown, and offers a midlet API calls to change it; the midlet is in charge of the
Commands and CommandListeners and their associations to Displayables.

Sensitive Operations. The second relevant part of the MIDP infrastructure
are the APIs responsible for network communication and personal information
management. These operations are possibly security-sensitive. An unwanted or
uncontrolled network communication may result in (a) sensitive data being sent
out from the phone, or (b) unwanted network usage charges. Access to personal
information (e.g. the phone book) may result in unwanted information leakage.

The high level API structure for network communication is very simple. In
principle it only involves the Connector class that provides static methods for

20 W. Mostowski and E. Poll

ConnectionConnector

open() : Connection

MessageConnection

HttpConnection

Fig. 3. Class diagram: network connection related API

PIM

getInstance() : PIM
openPIMList() : PIMList

PIMList

items() : Enumeration<PIMItem>

PIMItem

ContactList Contact

1 0..*

Fig. 4. Class diagram: personal information related API

establishing different kinds of network connections (SMS, Internet), and a few
classes that encapsulate these different connections, like MessageConnection or
HttpConnection. Fig. 3 gives a simplified view.

For personal information management (PIM) there is one utility class PIM
that provides methods for accessing the phone book (contact list), and a few
classes that represent a single contact or the whole contact list (Fig. 4).

3 Navigation Graphs

In [5] two formalisations are given to deal with midlet navigation graphs. The first
formalisation deals with the MIDP GUI structure. We described it intuitively
using UML. In [5] a more detailed semantics is given in terms of the Bicolano
semantics [18] of Java bytecode; there the formalisation of the GUI is needed to
develop the algorithm to generate navigation graphs out of bytecode. For our
purposes the lightweight UML representation of the GUI is sufficient to represent
the GUI behaviour in JML by annotating the parts of the MIDP API dealing
with the GUI. Although we do not use the detailed formalisation of the GUI
from [5], there is a close correspondence between that formalisation and our JML
representation of the graphs. E.g., our 1 − 0..1 relation between Displayables
and CommandListeners is the relation g.list in [5], where g denotes the state
of the GUI and the whole relation maps CommandListeners to Displayables.
Similarly, the relation g.coms in [5] corresponds to our 1−0..∗ mapping between
Displayables and Commands.

The second part of the formalisation in [5] gives a formal definition of a midlet
navigation graph itself. Putting aside the complex notation, a midlet navigation
graph is essentially an oriented multigraph. The nodes of this graph are possi-
ble midlet states, i.e. different application screens. The arrows of the graph are

Midlet Navigation Graphs in JML 21

transitions between the screens caused by user actions, i.e. Commands. Finally,
in [5] the arrows (transitions) also have interpretations, as they indicate which
sensitive operations that may be performed during a given transition.

Main End

Send [SMS]

start

Fig. 5. Statechart diagram: a simple midlet navigation graph

Such a notion of a graph can also be easily represented by a UML state chart
diagram. The states of the diagram represent application screens, the arrows
represent user commands, and arrow guards can be used to mark sensitive op-
erations. A very simple example is given in Fig. 5. In this example, from the
main screen a user can choose the Send command, in which case at most one
SMS would possibly be sent over the network, or press End, in which case the
application will simply terminate. Furthermore, using the UML state stereotypes
we can indicate additional properties of screens, e.g. whether an alert screen is
displayed only for a given period of time indicated by the timeout parameter
(and hence performing a transition to another screen without user interaction).
This last aspect is not covered in [5].

4 Navigation Graphs in JML

This section gives the semantics of a navigation graph in terms of JML. In other
words, we define a mapping from navigation graphs to JML annotations. Our
effort is divided into two parts. We start with the first part, which is to specify,
in a generic way, the midlet API calls. The API specifications can then be used
when specifying a particular midlet behaviour to reflect a given midlet navigation
graph in the second part that we discuss later.

4.1 Relevant API Methods

We want our JML specifications to be easy to verify for the verification tools.
Hence we only specified those aspects that are needed for navigation graphs, and
we avoided constructs that are challenging for verification, as discussed later. Our
specifications often use so-called ghost variables [4], which are specification-only
variables, to model relevant aspects of the state of the platform (incl. the GUI).

As mentioned before, two aspects of the API need to be specified: the GUI
and security-sensitive operations. For the GUI, we need to specify the Display
class, where a ghost field current tracks what is being displayed:

22 W. Mostowski and E. Poll

public class Display {

// Display represents the manager of the display.

// There is exactly one instance of Display per MIDlet

//@ public non_null ghost MIDlet midlet;

//@ public non_null ghost Displayable current;

//@ public non_null ghost Alert preAlert;

//@ ensures \result != null && \result.midlet == m;

//@ assignable \nothing;

public /*@pure@*/ static Display getDisplay(/*@non_null@*/ MIDlet m);

//@ ensures current == nextDisplayable && preAlert == null;

//@ assignable current, preAlert;

public void setCurrent(/*@non_null@*/ Displayable nextDisplayable);

//@ ensures current == nextDisplayable && preAlert == alert;

//@ assignable current, preAlert;

public void setCurrent(/*@non_null@*/ Alert alert,

/*@non_null@*/ Displayable nextDisplayable);

}

For the second setCurrent method we made a practical simplification. This
method causes an alert screen to be displayed temporarily (either with a
time-out or with a confirmation button) before updating the display to show
nextDisplayable. This could be specified by writing a complex specification
that keeps track of the sequence of displayed screens, including these alerts.
However, verification would be much more difficult and with little added value.
Instead, we introduce a ghost field, preAlert, which records that an alert screen
is temporarily displayed. So currents tracks the displayables being shown over
time, ignoring temporary Alert displayables.

To specify the GUI behaviour, we also have to specify the Displayable class
that represents particular screens on the display and the Command class that
represents input events. To simplify things we assume that each Command object
is bound to only one Displayable. Generally, this does not have to be the case
(commands can be reused through different displayables). However, in practice
most midlets define separate commands for each screen, and requiring it makes
verification simpler, as we do not need to use sets (or some representation of sets
such as lists) to track the set of displays associated with a command, and then
use set theory in verification. As for command listeners, the platform enables
only one per screen:

public class Command {

// The (only) Displayable object this command is attached to

//@ public ghost Displayable displayable;

}

public class Displayable {

//@ public ghost CommandListener commandListener;

Midlet Navigation Graphs in JML 23

//@ ensures cmd.displayable == this; assignable cmd.displayable;

public void addCommand(/*@non_null@*/ Command cmd);

//@ ensures commandListener == l; assignable commandListener;

public void setCommandListener(/*@non_null@*/ CommandListener l);

}

Finally, the specification of CommandListener should reflect the MIDP platform
guarantees, namely that the current displayable and command are not null, and
that the invoked command is in fact associated with the given displayable4:

public interface CommandListener {

//@ requires c.displayable == d;

//@ assignable \everything;

public void commandAction(/*@non_null@*/ Command c,

/*@non_null@*/ Displayable d);

}

If we trust the platform not to behave abnormally, these assumptions are safe.
For security-sensitive API calls, that may result in say network usage or ac-

cess to private information, we want our API specification to track the number
of invocations. For this we declare suitable static ghost variables to count the
number of invocations. This allows us to express restrictions on these numbers
in a specification for midlet. For example, for the open method of the Connector
class, which establishes new network or SMS connections, we can specify

public class Connector {

//@ public static ghost int openCount;

//@ ensures Connector.openCount == \old(Connector.openCount) + 1;

//@ assignable Connector.openCount;

public static Connection open(/*@non_null@*/ String name);

}

4.2 Midlet Annotations – The Mobius Case Study

We will present the JML annotations for midlets using the Mobius demonstration
midlet. The midlet implements a simple mobile phone quiz game. The security
sensitive operations of the quiz game are using an HTTP connection to download
game questions, sending answers and scores in SMS messages, and also accessing
the Personal Information Manager (PIM), i.e. the phone book. Fig. 6 shows the
complete navigation graph of this midlet.

The application class structure is as follows. There is a singleton class Quiz-
Midlet which is the main application container. Then there are several classes to
represent different screens of the game: main menu, options screen, about screen,
the main game screen, etc. Most of these classes use the Singleton pattern, mean-
ing there will only ever be a single instance of them. These classes also implement
4 The assignable \everything clause in the spec means that classes implementing

this method are in principle free to have any side-effects.

24 W. Mostowski and E. Poll

Aboutlaunch

Main

OK About

Options
Options

Defaults

OK, Cancel
Exit

Question

Wait (load)

Continue Back

New

 [HTTP]

Wait (sms)

Select Answer

 [SMS]

Final Score

 [HTTP*]

No

Wait (load PIM)Yes Send Scores [PIM]

Cancel

Wait (Sending)

OK

Alert (sent)

 [SMS]

OK

Alert (error)

 [SMS*]

Error

error

error
error

error

Stop logo animation

Fig. 6. State diagram: navigation graph for the Mobius game

the CommandListener interface to handle user actions. The class QuizQuestion
encapsulates a single quiz question and a displayable object for this question.
Finally, there are two utility classes that handle network connections and PIM
access. The whole application consists of 13 small classes.

We start with specifying possible screens and screen transitions of our midlet.
As it turns out this is the more difficult part and also one that exhibits the
biggest problems with accurate specification of the navigation graph in JML.
Later we deal with the calls to sensitive operations.

Screen State. To specify the navigation graph accurately we need to keep track
of screen changes in our midlet. For this we use the current instance field of
the Display object associated with our midlet. A suitable invariant enforces the
limit on the set of possible screens, as follows:

public class QuizMidlet extends MIDlet {

private /*@ spec_public non_null @*/ Display display;

private /*@ spec_public non_null @*/ MainMenu mainMenu;

/*@ invariant display.current == mainMenu.list ||

display.current == About.about.alert ||

display.current == Options.opts.form ...; @*/

However, we quickly run into problems with completing this invariant, because
for every screen – i.e. Displayable – the application uses we need some program
variable (like mainMenu.list) to refer to it. Such variables do not always exist.
Some objects of type Displayable are created on the fly, and cannot be referred
to from the class QuizMidlet. For example, this is the case for the FinalScore
screen in the game, which is created locally in the MainMenu class:

Midlet Navigation Graphs in JML 25

public void quizFinished() {

int score = currentGame.getScore(); ...

FinalScore finalScore = new FinalScore(midlet, score);

finalScore.show(getDisplayable());

}

The finalScore object, the screen that displays the score, is only visible locally
in the quizFinished method and it cannot be referred to in a global midlet
invariant. There are other examples of such locally created displayables in the
midlet code.

To solve this problem we turn to static ghost variables. Although the prob-
lematic displayable objects are created locally, there is only one object of a given
kind created and possibly active at a time. So we simply store such locally cre-
ated displayable object in a static ghost variable. Since we can make the static
variable public it will be in scope for all our specifications. The fact that it is
static lets us make sure that we keep track of only the most recently (and thus
current) created displayable object of a given type, and also that access to this
ghost variable is object reference independent. For the FinalScore class the
relevant annotations are the following:

public class FinalScore implements CommandListener {

//@ public static ghost Alert displayable;

public void show(Displayable next) { ...

Alert alert = new Alert("Final Scores");

//@ set FinalScore.displayable = alert;

alert.setTimeout(Alert.FOREVER); ...

midlet.getDisplay().setCurrent(alert);

}

Then our invariant can refer to the FinalScore.displayable field:

/*@ invariant ... display.current == Options.opts.form ||

display.current == FinalScore.displayable || ... ; @*/

However, this solution brings up another problem. The visible state semantics
of invariants requires all invariants of all objects to hold in all visible states
(i.e. all pre- and post-states of all method calls) during the execution of our
midlet. This obviously does not hold in the code above. Our invariant is broken
in all the states between the state where FinalScore.displayable is set and
the state when the display is updated by invoking setCurrent. In these inter-
mediate states display.current may point to a reference that is not stored in
FinalScore.displayable anymore.

A (standard) trick we use to solve this problem is introducing a global boolean
guard, Display.displayUpdated, to switch invariants on and off at appropriate
points, as shown below.

26 W. Mostowski and E. Poll

public class Display {

//@ public static ghost boolean displayUpdated;

//@ ensures current == nextDisplayable && preAlert == null;

//@ ensures Display.displayUpdated;

//@ assignable current, preAlert, Display.displayUpdated;

public void setCurrent(/*@non_null@*/ Displayable nextDisplayable); }

/*@ invariant Display.displayUpdated ==>

display.current == Options.opts.form ||

display.current == FinalScore.displayable || ...; @*/

By setting Display.displayUpdated to false we can temporarily ‘switch off’
the invariant. The specification of setCurrent ensures that the guard is re-
established, so that the invariant has to hold after every call to setCurrent.

Screen Transitions. The invariant above suffices to limit the set of screens
of a given midlet. In the next step we need to specify when and how screen
transitions happen. In general, this is a very difficult problem: midlets are con-
current applications and screens can be changed by the J2ME environment at
any time without user interaction. A notable example of this is an incoming
call on a mobile phone, or simply midlet environment warning screens, e.g. to
confirm sensitive operations. Note that we have already skipped such screens in
the specifications above, and in the navigation graph too. The non-deterministic
character of such screens would make the graph and the specification unneces-
sarily complex. Furthermore, we are interested in verifying the application itself
rather than the whole environment it runs in.

Apart from the cases mentioned above, the midlet screen transitions are trig-
gered by user input and actions. All user actions are handled by different im-
plementations of the commandAction method. This is where we add annotations
to limit the possible screen changes. The precondition limits the set of com-
mands that can be invoked on this screen, the postcondition describes how the
FinalScore screen will change after processing the command:

//@ requires c==cmd_yes || c==cmd_no;

//@ requires next == midlet.mainMenu.list;

//@ ensures c==cmd_no ==> midlet.display.current == next;

//@ ensures c==cmd_yes ==>

midlet.display.current == SendScores.displayable;

//@ assignable ...;

public void commandAction(Command c, Displayable d) {

if (c == cmd_no) {

midlet.getDisplay().setCurrent(next); }

else if (c == cmd_yes) {

SendScores sendScores = new SendScores(midlet);

sendScores.show(score, next); }

}

Midlet Navigation Graphs in JML 27

Sensitive Operations. In the last step we limit the sensitive operations our
midlet performs. For any method that ultimately calls down to one of these
operations we need to add a contract for the associated ghost variable that, as
described at the end of Sect. 4.1, tracks the number of invocations.

//@ ensures Connector.openCount == \old(Connector.openCount);

public void commandAction(Command c, Displayable d) { ... }

Then we allow the sensitive operations to be performed by the implementations
of the commandAction that correspond to transitions in the graph:

public class SendScores {

//@ ensures c == cmd_ok ==>

MessageConnection.smsSent <= \old(MessageConnection.smsSent) + 1;

//@ assignable MessageConnection.smsSent, ...;

public void commandAction(Command c, Displayable d) {

... else if (c == cmd_ok) {

WaitAlert.getInstance().show(midlet, Consts.SENDING_RESULT);

String s = numberField.getString();

sendSMS(s); ... }

}

}

A similar approach is used to limit access to personal data (e.g. the phone book)
in the MIDP environment.

If properties are expressed in postconditions, we have to consider the issue
of non-termination. Verification would have to be done using total correctness
to ensure that, say, limits on the number of SMS sent are not broken in non-
terminating executions of a method. Still, for commandAction methods which
do not have the MessageConnection.smsSent in their assignable clause, the
contract does rule out that any SMS are sent in non-terminating executions.

5 Specification and Verification Issues

During the verification of this case study with ESC/Java2 two practical issues
surfaced. The first one has to do with singleton pattern classes, the second one
with visible state semantics of invariants.

Singleton Objects. Many classes in midlet code study and in the MIDP API
follow the singleton pattern [8], i.e. only one instance of these classes is ever cre-
ated. Knowing that a class is only ever going to have a single instance could in
principle simplify reasoning. However, specifying that a class follows the single-
ton pattern in JML, and verifying it with ESC/Java2, can be a bit clumsy. E.g.,
specifying that Options is a singleton class could be specified by an invariant

private /*@ spec_public @*/ static Options instance = null;

//@ invariant this == instance;

28 W. Mostowski and E. Poll

saying that all Options objects are equal to the static instance. However, this
invariant is typically too strong, given the visible state semantics of invariants.
If the singleton object is created by a static get-method as is done in the code,
e.g.

//@ ensures \result != null && \result == instance;

//@ assignable Options.instance;

public static Options getInstance() {

if (instance == null) instance = new Options();

return instance;

}

then the constructor call new Options() by itself does not establish the invari-
ant, as it will not hold till after the assignment to instance.

A possible solution is to make the constructor a helper:

public /*@ helper @*/ Options() {...}

effectively telling ESC/Java2 to inline calls to the constructor, but it turns out
that ESC/Java2 reasons in a rather unpredictable way when a private construc-
tor is declared as helper.

In the end we let ESC/Java2 complain about the possibly unsatisfied this
== instance invariant after a call to new Options() in getInstance() and
suppressed this warning with the @nowarn directive.

It would be nice to have a standard, e.g. following ideas from [19], simple way
of specifying singleton behaviour in JML, so that no necessary complications
and side conditions are introduced during reasoning.

Visible State Semantics of Invariants. JML uses the visible state semantics
for object invariants [13]. This means that all invariants of all objects of all types
have to hold in all visible states, which includes all post-states of constructor calls
and all pre- and post-states of method calls5.

This semantics makes verification very hard, and non-modular6: when verify-
ing a method in one class one should take into consideration breaking invariants
of other objects, of any class, that happen to be allocated. To enable modular
verification, ESC/Java [7] uses a slightly weaker and potentially unsound seman-
tics. ESC/Java2 [11] uses the same semantics, but now includes features to warn
users about potential problems [12,10].

Working on the case study, this generated several false positives, where the
code was incorrectly deemed to be correct. The root of the problem was that
when checking code that calls API methods, ESC/Java2 will assume that these
API methods preserve all invariants. When checking the implementation of these
API methods the tool would probably warn that they do not preserve invariants,

5 Except those constructors and methods designated as helper’s.
6 However, the semantics is sound, unlike more simple-minded semantics for object

invariants!

Midlet Navigation Graphs in JML 29

but as we are only ever checking the midlet code – i.e. client code of the API –
and never implementation of this API, this issue can easily go undetected.

The example below illustrates this:

public class APIClass {

//@ requires array.length == 1;

//@ ensures array[0] == v; assignable array[0];

public static void setArray(/*@ non_null @*/ int[] array, int v);

}

public class ClientClass {

private /*@ non_null @*/ int[] values = {1};

//@ invariant values[0] == 1 && values.length == 1;

public void modifyArray() { APIClass.setArray(values, 2); }

}

Checking the modifyArray method with ESC/Java2 does not show any prob-
lems. However, it is clear that a call to APIClass.setArray breaks the class
invariant for ClientClass. However, the tool assumes that the API class will
re-establish all invariants.

Running the tool on an implementation of the setArray method would prob-
ably reveal that the invariant of ClientClass might be broken, but typically
one treats the API as a black box and one does not look at implementations of
it. Unfortunately the inconsistency warning of ESC/Java2 [12,10] does not catch
these situations.

Sound and modular verification techniques that cope with class invariants do
exist [6], and are for instance used in Spec# [1]. Some verification tools, like
KeY [3], allow a very flexible invariant semantics; there it is up to the user to
choose which class (or even method) is responsible for a given invariant, but that
means soundness is up to the user too.

6 Evaluation and Discussion

An issue often overlooked in research on program verification is coming up with
interesting properties to verify. We have shown a way to specify midlet navigation
graphs by means of JML annotations. This required some generic annotation of
the MIDP API, which provides a ‘ghost state’ to talk about the relevant platform
infrastructure – ghost fields that track which Displayable is being shown, and
hence which CommandListener is active, etc. – and contracts for some API calls
that describe their effect on this ghost state. An individual midlet can then be
annotated to express conformance to a midlet navigation graph, by introducing
an invariant that restricts the possible Displayables that can be shown, and
contracts for commandActionmethods that specify the screen transitions that are
allowed. Additional restrictions on security-sensitive API calls, saying in which
states these may occurs, can be expressed if API specifications for these methods
are added to track their usage.

30 W. Mostowski and E. Poll

The translation of a midlet navigation graph to JML, which we did by hand,
could be automated, as done for state diagrams by the AutoJML tool [9]. An
alternative to coding up the midlet navigation graph in JML pre- and postcon-
ditions, as we have done, would be to use special specification constructs for
temporal properties [21] or CSP-style contraints on method sequences [16].

Our approach has been shown to work on a non-trivial (albeit still very small)
midlet, the Mobius Quiz game demonstrator, which consists of 13 classes and
1350 lines of code, which was then verified using ESC/Java2. Once the midlet
navigation graph is expressed by JML annotations, further annotations of the
midlet are needed for the verification to go through, e.g. to rule out Null-
PointerExceptions, etc. This further annotation took an effort in the order of
days.

As explained in Sect. 4.2, a technical complication is any use of dynamically
created Displayable objects in midlet code, as additional static (ghost) fields
have to be introduced to refer to these objects in specifications.

As discussed in Sect. 5, the main complication is the semantics of (ob-
ject) invariants. JML’s visible state semantics, which ESC/Java2 tries to check
(ESC/Java2 is not guaranteed to be sound in this respect), is often stronger than
we really need or want. The need for more flexible ways for dealing with invari-
ants is of course widely recognised. Spec# [1] provides one such an approach,
and alternatives are systematically compared in [6].

It is very important that the API specifications used are not too rich (i.e.
too expressive) and only specify the aspects relevant for the navigation graphs.
Otherwise the job of annotating and verifying the midlet can become much more
complicated. Also, as discussed in Sect. 5, Singleton classes occur often in the
MIDP API and in typical midlets. Specifying this in JML is a bit clumsy, and
(hence) verification with ESC/Java2 seems more complicated than it needs to
be. Better ways of dealing with this (possibly by additional primitives in JML)
could simplify matters substantially.

A major caveat in our work is that we ignore concurrency. However, the con-
currency patterns used in midlets are very simple – essentially, implementations
of commandAction sometimes start up a worker thread to hand back control to
the GUI as soon as possible – so might well be verifiable using a simple approach.

Midlet navigation graphs express safety properties of code, constraining the
possible behaviour. This means that crashing of a midlet, say with a Null-
PointerException, can never violate the policy expressed by a navigation graph.
This might allow verification to be simplified further: if we can guarantee that
code never catches say NullPointerExceptions – which could be checked using
a simple static analysis – then in the verification we could safely ignore the
possibility of NullPointerExceptions. This is supported by some verification
tools, e.g. the KeY tool [3] offers an option for such simplified reasoning.

PCC. The overall goal of the EU project Mobius, in which this research was
carried out, was to provide a Proof-Carrying Code (PCC) framework for Java on
mobile devices [2]. PCC [17] involves (i) some security policy, (ii) some untrusted
code, and (iii) a proof that this code obeys the policy that can be checked.

Midlet Navigation Graphs in JML 31

To ultimately use our approach in a PCC scenario, it has to be possible to
distinguish the JML annotations expressing the desired security policy (i.e. the
navigation graph) from any additional JML annotations that are needed for the
verification to go through. For the former we must check that these really express
the security policy we want. For the latter we do not: we don’t care what these
are, as long as the proof goes through.

It seems possible to make this distinction here. However, the JML annotations
expressing the desired security policy – the navigation graph – do have to refer
to program variables (namely the Displayables that the program uses), so we
cannot quite have these annotations – our “policy” – completely independent of
the midlet code.

Also, a malicious midlet could contain specification statements (set-state-
ments) that affect the values of the ghost state used in the API specification,
making any certification meaningless; it would have to be checked that there are
no such statements in the midlet code.

Of course, to then verify and provide PCC certificates for midlets, instead of
using ESC/Java2, one should use a sound verification approach that can provide
proofs (certificates) [2].

Acknowledgements. This work is supported by the MOBIUS project in the
Information Society Technologies programme of the European Commission and
the CHARTER project in the ARTEMIS Embedded Computing Systems Initia-
tive. We would also like to thank the anonymous reviewers for their insights.

References

1. Barnett, M., Leino, K., Schulte, W.: The Spec# programming system: An overview.
In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS
2004. LNCS, vol. 3362, pp. 151–171. Springer, Heidelberg (2005)

2. Barthe, G., Crégut, P., Grégoire, B., Jensen, T., Pichardie, D.: The MOBIUS proof
carrying code infrastructure. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de
Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382, pp. 1–24. Springer, Heidelberg
(2008)

3. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware: The KeY Approach. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

4. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: Advanced spec-
ification and verification with JML and ESC/Java2. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 342–363.
Springer, Heidelberg (2006)

5. Crégut, P.: Extracting control from data: User interfaces of MIDP applications.
In: Barthe, G., Fournet, C. (eds.) TGC 2007 and FODO 2008. LNCS, vol. 4912,
pp. 41–56. Springer, Heidelberg (2008)

6. Drossopoulou, S., Francalanza, A., Müller, P., Summers, A.: A unified framework
for verification techniques for object invariants. In: Ryan, M. (ed.) ECOOP 2008.
LNCS, vol. 5142, pp. 412–437. Springer, Heidelberg (2008)

7. Flanagan, C., Leino, K., Lillibridge, M., Nelson, G., Saxe, J., Stata, R.: Extended
static checking for Java. In: PLDI 2002, pp. 234–245. ACM, New York (2002)

32 W. Mostowski and E. Poll

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley,
Reading (1999)

9. Hubbers, E., Oostdijk, M.: Generating JML specifications from UML state dia-
grams. In: Forum on Specification & Design Languages FDL 2003, pp. 263–273.
ECSI (2003)

10. Janota, M., Grigore, R., Moskal, M.: Reachability analysis for annotated code. In:
SAVCBS, pp. 23–30. ACM, New York (2007)

11. Kiniry, J., Cok, D.: ESC/Java2: Uniting ESC/Java and JML. In: Barthe, G., Burdy,
L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS, vol. 3362,
pp. 108–128. Springer, Heidelberg (2005)

12. Kiniry, J., Morkan, A.E., Denby, B.: Soundness and completeness warnings in
ESC/Java2. In: SAVCBS 2006, pp. 19–24. ACM, New York (2006)

13. Leavens, G., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P., Kiniry,
J., Chalin, P.: JML reference manual (2003-2007), http://www.jmlspecs.org

14. Leavens, G.T., Baker, A.L., Ruby, C.: JML: A Notation for Detailed Design. Kluwer
Academic Publishers, Dordrecht (1999)

15. Mobius. Deliverable D5.1 – Selection of case studies. Mobius (2005),
http://mobius.inria.fr

16. Möller, M., Olderog, E., Rasch, H., Wehrheim, H.: Linking CSP-OZ with UML
and Java: A case study. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM 2004.
LNCS, vol. 2999, pp. 267–286. Springer, Heidelberg (2004)

17. Necula, G.C.: Proof-carrying code. In: POPL, pp. 106–119. ACM, New York (1997)
18. Pichardie, D.: Bicolano: a Java bytecode semantics in Coq. (2006),

http://mobius.inria.fr/twiki/bin/view/Bicolano

19. Pierik, C., Clarke, D., de Boer, F.S.: Creational invariants. In: ECOOP Workshop
on Formal Techniques for Java-like Programs, FTfJP 2004 (2004)

20. The Java Verified Program. Unified Testing Criteria for Java technology-based
applications for mobile devices, version 3.0 (2009)

21. Trentelman, K., Huisman, M.: Extending JML specifications with temporal logic.
In: Kirchner, H., Ringeissen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 334–348.
Springer, Heidelberg (2002)

http://www.jmlspecs.org
http://mobius.inria.fr
http://mobius.inria.fr/twiki/bin/view/Bicolano

Runtime Verification for Generic Classes with CONGU2

Pedro Crispim, Antónia Lopes, and Vasco T. Vasconcelos

LaSIGE and Faculty of Sciences, University of Lisbon,
Campo Grande, 1749–016 Lisboa, Portugal

{pedro.crispim,mal,vv}@di.fc.ul.pt

Abstract. Even though generics became quite popular in mainstream object-
oriented (OO) languages, approaches for checking at runtime the conformance
of such programs against formal specifications still lack appropriate support.
In order to overcome this limitation within CONGU, a tool-based approach we
have been developing to support runtime conformance checking of Java
programs against algebraic specifications, we recently proposed a notion of re-
finement mapping that allows to define correspondences between parametric spec-
ifications and generic classes. Based on such mappings, we also put forward a
notion of conformance between the two concepts. In this paper we present how
the new notion of conformance is supported by version 2 of the CONGU tool.

1 Introduction

The formal specification of software components is an important activity in the process
of software development, insofar as specifications are useful, on the one hand, to un-
derstand and reuse software and, on the other, to automatically verify the correctness
of components implementations. Among the several approaches that can be adopted
for automatically analysing the reliability of software components one finds runtime
verification. This approach involves the monitoring and analysis of system executions.
As the system executes, the behaviour of its components is tested for correction with
respect to the specification. Runtime monitoring has the advantage that can be used to
analyse properties for which static verification fails. Moreover, it does not require the
user expertise and effort typically required of a static verification system.

Although generics became quite popular in mainstream OO languages, existent ap-
proaches for runtime checking the conformance of generic OO programs against for-
mal specifications still lack appropriate support. This was also the case of CONGU, a
tool-based approach to runtime verification of Java implementations against algebraic
specifications [10,17]. CONGU is intensively used by our undergraduate students in the
context of a course on algorithms and data structures for checking abstract data types
(ADTs) implementations.

Given that generics became extremely useful and popular in the implementation of
ADTs in Java, in particular those that are traditionally covered in such courses, the lack
of support for generics became a major drawback. In order to overcome this limitation,
we recently proposed a notion of refinement mapping that allows to define correspon-
dences between parameterized specifications and generic classes [16]. Based on such
mappings, we also put forward a more comprehensive notion of conformance between

J. Davies, L. Silva, and A. Simão (Eds.): SBMF 2010, LNCS 6527, pp. 33–48, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

34 P. Crispim, A. Lopes, and V.T. Vasconcelos

Java programs and algebraic specifications. This work paved the way for the extension
of runtime conformance checking to a more comprehensive range of situations. In this
paper, we present a new approach to runtime conformance checking of Java implemen-
tations against specifications (applicable to parameterized specifications) and discuss
how this solution is realized in the new version of CONGU tool.

The solution for runtime checking that was developed in order to accommodate
generics is substantially different from that used before in CONGU [17]. Therein, the
strategy was to replace the original classes by proxy classes and generate further classes
annotated with monitorable contracts, written in JML [14]. The main innovative aspects
of the solution adopted in CONGU2 are the following:

– Introduction of new mechanisms that allow to deal with generics, namely to check
whether classes used to instantiate the parameters of generic classes conform to
what was specified in the parameter specifications.

– Original classes are not replaced by generated proxy classes. Instead, the solution
now relies on the instrumentation of the bytecode of original classes, overcoming
the difficulties on the generation of appropriate proxy classes for classes making
use of, e.g., public fields or inner classes.

– JML, which does not support generics (among other features introduced in Java
1.5 [9]), is no longer used. Instead, runtime checking of the specified properties at
specific execution points is now achieved directly by the generated code, relying
only on Java assertions. The compilation with jmlc of contract annotated classes
was a bottleneck in terms of performance and, with the new solution, we were able
to substantially reduce the compile time.

The remainder of the paper is organised as follows. In Section 2 we provide an overview
of the CONGU approach, namely we introduce specifications and refinement mappings
adopted in CONGU. Then, Section 3 presents the notion of conformance between spec-
ifications and Java classes and discusses the properties induced by specifications that
are monitored at runtime. The solution for the monitoring of these properties that is
realized in CONGU2 is presented in Section 4. Section 5 concludes the paper.

2 Overview of the CONGU Approach

As mentioned before, CONGU supports the runtime conformance checking of Java pro-
grams against algebraic specifications. In this section we provide an overview of the
CONGU approach, focusing on some of the aspects that are visible to users: the specifi-
cation language and the notions of specification modules and refinement mapping (see
[16] for details). This is achieved by means of an example around a simple ADT — lists
with merge.

This ADT represents lists composed of “mergeable” elements and that have an op-
eration — mergeInRange — that merges the elements of the list in a given range i . . . j
(the resulting element is placed in the position i of the list). Figure 1 shows the three
elements involved in the specification of this ADT using CONGU’s specification lan-
guage. In most aspects the language closely follows CASL [4], which is considered a
standard for algebraic specification.

Runtime Verification for Generic Classes with CONGU2 35

Fig. 1. The three elements involved in the specification of lists with merge ADT

The specification ListWM presented in Figure 1 is an example of a parameterized
specification. Its parameter is the specification Mergeable, also presented in the figure.
Each specification introduces a sort. In our example, Mergeable introduces a simple sort
named after it while ListWM introduces the parameterized sort ListMW[Mergeable].
The sort int, representing the domain of integer numbers, is primitive in the language.

Then, each specification declares three sets of operations and predicates. Operations
declared as constructors are those from which all values of the introduced sort can be
built. The other two sets include the operations and also predicates that provide funda-
mental information about the values of the sort, or are redundant, but useful, operations.
The sort of the first argument of these operations is required to be the introduced sort.
The difference between the two groups is only on the syntactical structure of the ax-
ioms that can be used to define their properties. Axioms for observers are required to be
expressed in terms of their application to constructors as first argument and variables

36 P. Crispim, A. Lopes, and V.T. Vasconcelos

as the remaining arguments; axioms for others are less restrictive, allowing them to be
expressed in terms of their application to constructors or variables as first argument and
without restriction for the remaining arguments.

Because operations can be partial, specifications also define the domain condition
of every partial operation, i.e, the situations in which the operation is required to be
defined. For instance, in ListWM, get is declared to be partial (as indicated by the
partial arrow -->?) and its domain condition defines that get(L, I) must be defined if I
is indeed an index of list L.

As shown in Figure 1, specifications are put together using specifications modules.
Specifications identified as core define the data types that need to be implemented while
the role of parameter specifications is simply to impose constraints over their admissi-
ble instantiations. Now, suppose we have a candidate implementation for module LWM
and that we would like to check its conformance against what was specified. First we
need to establish a correspondence between each core sort s of the module LWM and
a Java type T defined by one of our classes. Moreover, we need to establish a corre-
spondence between the operations and predicates of the specification that introduces s
and the methods and constructors of T . In CONGU, this correspondence is defined by
means of a refinement mapping. In order to capture the role of parameter specifications,
these mappings also allow to link parameter specifications with the type variables of
generic classes. More concretely, a refinement mapping also defines a correspondence
between each parameter sort s and a Java type variable E and also a method signature
for each operation/predicate of the specification that introduces s.

Suppose that our candidate implementation for LWM consists of the generic class
MyListWMerge and the generic interface Mergeable presented in Figure 2. The cor-
respondence between LWM and this candidate implementation is defined in the refine-
ment mapping presented in Figure 3. It maps the compound sort ListWM[Mergeable]
(Figure 1) into the generic type MyListWMerge<E extends Mergeable<E>> (Fig-
ure 2) and the operations and predicates of the former into methods and constructors
of the latter. For instance, we can see that operation add is mapped into the method
void addFirst(E e). The first argument of an operation always correspond to ob-
ject this and, hence, an operation with n arguments is mapped into a method with arity
n− 1. Only operations declared constructors whose first argument is not the sort being
specified can be mapped into class constructors. Predicates are necessarily mapped into
boolean methods. For operations that produce elements of the sort being specified, the
corresponding method can either be void or of the corresponding type. In this way,
it is possible to deal with different implementation styles, namely immutable and mu-
table implementations. In our example, the class MyListWMerge provides a mutable
implementation of lists and, hence, all operations in this situation are mapped to void

methods.
The mapping in Figure 3 also establishes a correspondence between sort Mergeable

and thetype variable E. It is defined that the operation merge corresponds to the method
signature E merge(E e). As we will explain in the next section, this refinement map-
ping is only correct if the instantiation of E in MyListWMerge<E> is limited to classes
C that have a method with signature C merge(C e) (which is indeed the case because
E has Mergeable<E> as an upper bound).

Runtime Verification for Generic Classes with CONGU2 37

Fig. 2. The interface Mergeable<E> and an excerpt of the Java class MyListWMerge<E>

After defining the refinement mapping from module LWM to our candidate imple-
mentation, CONGU instruments MyListWMerge.class so that, during the execution
of any program that uses MyListWMerge, the behaviour of this class (made precise in
the next section) is checked against what was specified in ListWM[Mergeable]. More-
over, the behaviour of the classes used for instantiating E in the creation of objects
of MyListWMerge<E> is also checked against what was specified in Mergeable. Sup-
pose, for instance, that we have a program that includes a class Color that implements
Mergeable<Color> and, another class, that creates and manipulates objects of type
MyListWMerge<Color>. In this case, the behaviour of Color is checked against what
was specified in Mergeable.

3 Runtime Conformance of Programs against Modules

In this section, we present the notion of conformance of Java programs against specifi-
cation modules that is considered in CONGU2 and discuss some key aspects of CONGU

approach to the runtime checking of this notion of conformance.

3.1 Object Properties Induced by Specifications

The conformance of a Java program against a specification module can only be defined
if a direct connection between the specifications of the module and the classes of the
Java program is provided. As discussed before, in CONGU, the correspondence between

38 P. Crispim, A. Lopes, and V.T. Vasconcelos

Fig. 3. A refinement mapping from LWM to {MyListWMerge<E>, Mergeable<E>}

specifications and classes is established through the use of refinement mappings. In the
previous section we have already mentioned some conditions required by refinement
mappings, namely those concerning the matching of method signatures with operations
and predicates. The complete set of conditions that a mapping has to meet in order to
define a refinement mapping is defined below.

A refinement mapping consists of a set V (of type variables) equipped with a pre-
order < and a refinement functionR that maps:

1. each core simple specification to a non-generic type defined by a Java class;
2. each core parameterized specification to a generic class, with the same arity;
3. each core specification that defines a sort s < s′, to a subtype of R(S′), where S′

is the specification defining s′;
4. each parameter specification to a type variable in V ;
5. each operation of a core specification to a method of the corresponding Java type

with a matching signature;
6. each operation of a parameter specification to a matching method signature.

Additionally:

7. if a parameter specification S′ defines a subsort of the sort defined in another pa-
rameter specification S, then it must be the case thatR(S′) < R(S) holds;

8. if S is a parameterized specification with parameter S′, it must be possible to ensure
that any type C that can be used to instantiate the parameter of the generic type
R(S) possesses all methods defined by R for type variable R(S′) after replacing
all instances of the type variableR(S′) by C.

Runtime Verification for Generic Classes with CONGU2 39

Let us consider again the refinement mapping presented in Figure 3. In this case, the
set V is the singleton set {E} and only the satisfaction of condition 8 requires some
reasoning. According to the definition of the class MyListWMerge, type variable E

must extend Mergeable<E>, which, in turn, declares method E merge(E e). Hence,
the instantiation of E is limited to classes C that implement Mergeable<C> and, hence,
it is ensured that C possesses a method with signature C merge(C e).

In the sequel, we assume a fixed refinement mapping R between a specification
moduleM and a Java program J . Intuitively, J is in conformity withM iff:

(i) the properties specified inM and
(ii) the algebraic properties of the notion of equality

hold in every possible execution of the program J .

More concretely, the properties of a core specification S impose constraints on the be-
havior of every object of type TS = R(S), whereas the properties of a parameter spec-
ification S used in a parameterized specification, say S′[S], impose constraints on the
behavior of every object of a type TS in J that is used to instantiate the respective type
variable of the generic type R(S′). Axioms and domain conditions impose different
type of constraints:

Axioms. Every axiom in a specification S defines, for the objects of type TS, a property
that must hold in all client visible-states.
Let us consider, for instance, the first axiom for get in ListWM[Mergeable]. Let
lwm be an object of type MyListWMerge<C>. This axiom defines that for every
non-null expression e of type C, after the execution of lwm.addFirst(e), the
expression lwm.get(0).equals(e) evaluates to true1.

Domains. Every domain condition φ of an operation op of a specification S defines
that, for every object of type TS, whenever φ holds, the invocation of R(op) must
return normally (i.e., does not throw an exception).

The constraints induced by axioms and domain conditions just presented define a notion
of conformance. CONGU, by default, uses a stronger notion that, in addition, also im-
poses restrictions on the clients of the classes TS , namely when they invoke a method
R(op): it is required that the null value is not passed as argument and the domain
condition φ holds at the time the methodR(op) is invoked.

This stronger notion of conformance is useful for checking that client code does not
call methods in situations where it is not possible assess the normal (non-exceptional)
return of a method called outside its domain condition. This is however only appro-
priate in the absence of additional information about the safe calling conditions for
such methods. For instance, if the documentation of class MyListWMerge<E> says that
void set(E e,int i) has no pre-condition and simply produces no effect on the
state of the list when i>size(), the fact that a class in our program calls this method
with an argument that violates this condition should not be identified as a problem of
conformance between the program and the specification module LWM. For this reason,
we found useful to support the two notions of conformance in CONGU2.

1 We currently assume that the interpretation of sorts does not include the null value but, we
envisage that, in the future, refinement mappings may define whether this is appropriate or not.

40 P. Crispim, A. Lopes, and V.T. Vasconcelos

3.2 Checking Object Properties

In CONGU, the strategy for runtime checking the conformance of a program against a
specification module consists in checking the properties induced by the axioms at the
end of specific methods, determined by the structure of the axioms. Let us first consider
the axioms with a left-hand side expressed in terms of the application of operations or
predicates to constructors as first argument and variables as the remaining arguments.
In this case, the property induced by the axiom is checked at the end of the method that
refines the referred constructor. All method invocations that are performed in order to
check a property make use of clones, whenever cloning is possible. Otherwise, the side
effects of these methods would affect the monitored objects (if method clone() is not
available, it is assumed that the class’s objects are immutable). For instance, the property
induced by the first axiom for get is checked at the end of void addFirst(E e)

through the execution of the following code, where eOld is a copy of e obtained at the
entry of the method.

if (eOld != null) {
E e2 = this.clone().get(0);
assert(e2 != null && e2.equals(eOld));

}

Similarly, the second axiom of the get operation is checked by the below code, where
rangeOfInt, of type Collection<Integer>, is populated with integers that cross
the boundary (either as parameters or as returned values) of some method in class
MyListWMerge.

if (eOld ! = null)
for (int i: rangeOfInt)

if (i>0 && i<this.clone().size()) {
E e2 = this.clone().get(i);
assert((i-1)>=0 && (i-1)<thisOld.clone().size());
E e3 = thisOld.clone().get(i-1);
assert(e2!=null && e3!=null && e2.equals(e3));

}

On the other hand, the properties induced by axioms that feature a variable as first
argument are checked at the end of the method that refines the corresponding opera-
tion/predicate. For instance, the last axiom for isEmpty is checked at the end of method
boolean isEmpty() by:

if (result) assert(thisOld.clone().size()==0);

where result is the return value of method isEmpty().
Equality of integers and booleans is translated into comparisons with == whereas

the equality of terms of a non-primitive sort, say s, is translated into invocation of
method equals of the class TS. Therefore, it is essential that all involved classes define
a proper implementation of equals. Namely, because equality of terms is a congruence,
equals should be defined in such a way objects are considered equal only if they are
behaviourally equivalent with respect to the methods that refine some operation of s
(i.e., calling these methods over equal objects must produce equal results).

Correctness of equals is checked at runtime as follows. At the end of the method,
if the return value is true, then it is checked that by applying the method that refines
each observer to the two objects, we obtain equal results. For instance, checking the

Runtime Verification for Generic Classes with CONGU2 41

correctness of boolean equals(Object other) in MyListWMerge includes the
below code for the get operation.

if (result)
for (int i: rangeOfInt)

if (i>=0 && i<thisOld.clone().size()
&& i<otherOld.clone().size()) {

E e1 = thisOld.clone().get(i);
E e2 = otherOld.clone().get(i);
assert(e1!=null && e2!=null && e1.equals(e2));

}

In addition, at the end of method clone(), it is checked that the returned object is equal
to the original. Additional properties such as symmetry and transitivity of equals()
can also be checked, in a similar way, at this point.

Finally, checking that client classes are well-behaved, i.e., do not invoke a method
that refines an operation when its domain condition does not hold and also do not pass
null as argument, can be easily performed at the beginning of the method. For instance,
in the case of method void set(int i,E e), this is checked by:

assert(e != null && i >= 0 && i < this.clone().size());

4 The New CONGU Tool

The new CONGU tool, which we named CONGU2, implements the runtime checking
approach conformance of Java classes against specifications described in the previous
section. As shown in Figure 4, the tool takes as input a specification module, a set
of specifications, a refinement mapping and a Java program (in bytecode form). The
program is then transformed so that, when executed under CONGU, the behavior of
each class is checked against the corresponding specification. This is achieved by inter-
cepting the calls to all methods that, according to the refinement mapping, refine some
operation, and dispatching them to property-monitoring classes generated by the tool.

As mentioned in the introduction, in the previous version of CONGU, the intercep-
tion of methods was accomplished by proxy classes that wrapped and mimicked the
original class’s interface as close as possible, capturing the client method calls and di-
verting them to classes annotated with JML contracts. These contracts were checked at
runtime with resort to JML’s Runtime Assertion Checker. In order to overcome the dif-
ficulties on the generation of appropriate proxy classes for classes making use of more
advanced features of the Java language, such as public fields or inner classes, CONGU2
intercepts client method calls through bytecode instrumentation. On the other hand,
JML is no longer used and, instead, properties to be checked are now encoded using
Java assertions. In this way, CONGU was released from several limitations imposed by
the use of JML, namely the lack of support for features introduced in Java 1.5 (generics
included), the long compilation times imposed by jmlc (namely, because of the compi-
lation of the JML models of the Java API) and the poor and unstable information about
assertion violations that hindered the connection of errors with the axioms of specifi-
cations (the CONGU solution for this problem, developed for JML 5.4 quickly became
obsolete).

42 P. Crispim, A. Lopes, and V.T. Vasconcelos

Module
Analyser

Specification
Analyser

Refinement
Analyser

Bytecode
Analyser

Module
.module

Specifications
.spc*

Original
Classes
.class*

Refinement
.rfn

Assertion
Generator

Bytecode
Manipulator

PM Classes
Generator

Instrumented
Classes
.class*

B
lackboard

Key

File Component

Data flow

Executes
immediately
before

Fig. 4. Overview of CONGU2 architecture

As shown in Figure 4, there are two main tasks in the CONGU support of runtime
checking of Java programs against specifications: the analysis of the different input
sources and the synthesis of output classes. In the analysis task, the major challenges
posed by the extension of the approach to parameterized specifications and generic
classes arise in the analysis of refinement mappings.

4.1 Analysis of Refinement Mappings

The extension of the CONGU approach to specification modules including parameter-
ized specifications introduces various challenges in what concerns the analysis of re-
finement mappings. As detailed in Section 3, refinement mappings impose restrictions
on the Java types to which they refer. Enforcement of these restrictions requires query-
ing the Java binaries of the respective classes. This achieved by taking advantage of
Java’s reflection facilities, provided by the java.lang.reflection package of the
Java API.

The process of analyzing refinement mappings comprises two phases. The first phase
focus on the Java classes that refine core specifications while the second addresses the
verification of the conditions related with parameter specifications.

Verifying that a non-generic type has the methods mentioned in the refinement is
straightforward: it involves querying for the specified method and then checking whether
the return type is the expected one. Matters complicate when generic types are at play.
Generics in Java are mostly a source code artefact. Simply put, the compiler erases the
generic type information, a mechanism known as type erasure. Thus, a once generic
type becomes a simple type, i.e., a raw type, where all uses of its generic type variables
are replaced by their respective upper bounds [11]. For this reason, built-in support
for querying classes for methods is limited to signatures defined only in terms of raw

Runtime Verification for Generic Classes with CONGU2 43

types and, hence, a new strategy for verifying that generic classes possess the methods
mentioned in the refinement is needed.

Although information about generics is not used at runtime by the JVM, this infor-
mation is still retained in the bytecode, in the form of metadata and can be queried
through Java’s reflection API. The strategy to verify that a generic class has the meth-
ods mentioned in the refinement mapping involves retrieving its methods, getting the
generic parameter types and generic return type of each one and then comparing with
what was expected (a recursive process on the structure of the types).

The second phase of the refinement analysis addresses the verification of the condi-
tions concerning the parameter specifications. Recall that, in this case, specifications
are not refined into concrete Java types and what is necessary ensuring is that the
classes that can be used to instantiate the corresponding type variable have the right
methods. For instance, in our example, in this phase it is verified that every class C

that can be used to instantiate E in MyListWMerge<E> possesses a method with sig-
nature C merge(C e). This is achieved by going through the upper bounds of E in
MyListWMerge (in our case there is a single upper bound but in general types may
have more than one). Methods whose signature depends somehow on type E (in our
case, E merge(E e)) need only to be searched on the upper bounds types that are
themselves generic and dependent of E (in our case, Mergeable<E>) while the re-
mainder methods are searched on all upper bounds types. Searching for these methods
in generic types follows the strategy described before.

Additionally, the analysis of the refinement mapping also involves ensuring that hi-
erarchy relationships established for specification sorts are maintained when refining
to Java types. This is directly accomplished again making use of Java reflection API,
which enables us to query a type for its super class and/or implemented interfaces.

4.2 Bytecode Instrumentation

For monitoring the behaviour of Java programs, CONGU relies on the interception of
method calls by client classes. In CONGU2, this is achieved with method call inter-
ception through bytecode instrumentation of a copy of the original class (the original
bytecode remains unchanged so that the program can also be executed normally). The
objective of this instrumentation is to inject bytecode instructions in the methods to for-
ward the call to a corresponding method in a property-monitoring class. From the start,
the goal was to minimise the impact on the original bytecode, avoiding any undesir-
able side effects of its faulty manipulation as much as possible, preferring to generate
Java code and rely on the compiler for type safety. Realising this new strategy posed
interesting challenges, namely:

Inner calls. How to avoid interception of intra-class method calls? Intra-class calls can
not be monitored otherwise we obtain a non-terminating program.

Calls from within superclasses. How to prevent interception of calls from within a
superclass? Such calls cannot be monitored for the reason above.

Constructors. How to intercept calls to object constructors and redirect them?
Clone and equals. What to do when these methods are not overriden in the class?

(Recall that CONGU relies on these methods and there are properties that have to
be monitored when they are invoked.)

44 P. Crispim, A. Lopes, and V.T. Vasconcelos

Answering these questions was central in overcoming the limitations of earlier ver-
sion of the CONGU tool. The chosen strategy consists in renaming to m Original each
method m that refines some operation (each method whose external calls we wish to in-
tercept), and placing in its lieu a method m with the exact same interface but dispatching
the call to a corresponding method in a property-monitoring class. Moreover, all calls
to m from within the class and inner classes are replaced by calls to m Original and all
calls to m in each superclasses are replaced also to calls by calls to m Original that are
also added to the superclasses. Although constructors are not methods, they can be for
the most part treated as such. Hence, the approach towards the interception of construc-
tor calls is identical to that employed for methods, with the safeguard that constructors
require initialisation calls, which are removed from the renamed method and inserted
in the replacement method.

More concretely, if m is a method of a class C that refines some operation, then the
bytecode instrumentation process involves the following steps:

1. Within C, rename method m to m Original;
2. Still within C, replace invocations to m by invocations to m Original;
3. In C’s superclasses, replace invocations to m by invocations to m Original and

generate a method m, with the signature of the original, which just forwards the
call to m Original;

4. Generate a replacement for method m, with signature of the original, that calls the
respective method in the property-monitoring class:

congu.properties.CPMonitoring.m(this, ...);

5. Rename and generate a replacement for method equals; if equals is not overrid-
den in C, first create a such method that delegates into the superclass;

6. Rename and generate a replacement for method clone; if C does not implement
interface Cloneable or does not override method clone by making it public, a
clone_Original method is generated that simply returns this. This method is
for the exclusive use of the monitoring process.

Implementation of this bytecode-instrumentation approach resorts to the ASM Java
bytecode engineering library [6]. ASM is a lightweight and efficient, offering a very
simple, well-documented API, full support for Java 6 and an interesting open-source
license which allows for convenient packaging within the CONGU2 tool itself.

4.3 Generation of Property-Monitoring Classes

The checking of object properties described in subsection 3.2 is performed in classes
generated by the tool, which we call property-monitoring classes (or PM-classes, for
short). For each Java type C under monitoring, there is a corresponding PM-class,
named by appending the suffix PMonitoring to the name of C. In the instrumented
bytecode, the intercepted client method calls are dispatched to methods in the respective
PM-class.

Each method under monitoring has a counterpart in its respective PM-class, in the
form of a static method with the same name, the same return type, the same argument

Runtime Verification for Generic Classes with CONGU2 45

types. In addition it features an argument callee of type C (a reference to original
method callee) and a boolean argument monitoring (signalling whether monitoring
should be performed or not). When invoked from the instrumented bytecode, this flag
is set to true; when the invocation is realised in the context of a property monitoring it
is set to false.

These static methods are responsible for the monitoring of the relevant object prop-
erties following a general pattern:

1. At the entry of the method, store all elements that, later, are needed for checking
some property (these elements are stored in variables starting with old).

2. Verify that the client is well-behaved, namely that the domain condition holds (only
applicable in the case of strong conformance) and the values passed as arguments
are non null;

3. Call the original method upon callee and keep its return value;
4. Check the properties defined by the axioms.
5. Return the original method return value.

The execution of steps 2 and 4 for method m (which are only executed if flag
monitoring is true) rely on two separate static methods: mPre and mPos. These test
callee for the object properties induced by the specification as described in 3.2 but,
instead of calling the methods of the original class, they call the method of the corre-
sponding PM-class with monitoring set to false.

More concretely, the method mPre receives the same arguments as the original one,
plus a boolean flag signalling whether to break on a violation, and returning a boolean
value, corresponding to whether or not the respective domain condition is satisfied.
Method mPos is void and takes as arguments: (i) two references to the callee (one before
application of the original method, i.e., its old value, and another after the original
method call); (ii) the arguments of the respective method in the PM-class and (iii) a
boolean flag signalling whether to break on a violation.

Figure 5 presents a sequence diagram that illustrates the flow of execution in the
concrete case of a call to method mergeInRange(int,int).

:Client :MyListWMerge :MyListWMergePMonitoring

mergeInRange(i, j)

mergeInRange(this, i, j, true)

clone_Original()

thisOld = clone(this, false)

mergeInRangePre(this, i, j, false)

mergeInRange_Original(i, j)

mergeInRangePos(this, thisOld, i, j, false)

Fig. 5. The property-monitoring process

46 P. Crispim, A. Lopes, and V.T. Vasconcelos

The monitoring process also heavily depends on an auxiliary method generated as
part of each PM-class, named conguAssert. This method is responsible for issuing
adequate error messages whenever a violation occurs. It takes as parameters the asser-
tion to evaluate, an enumerate value flagging what kind of property was violated (either
a domain condition or an axiom-induced property) and error description elements. The
method tests the assertion and throws an exception if it is false, detailing the violation
with the descriptive elements received as arguments. The error description elements
passed to this method are the file of the specification to which the property belongs, the
domain or axiom to which it pertains as written in the specification and its line. In this
way, it is possible to pinpoint the origin of the error, in terms of the specification, which
can be invaluable when developing in a specification guided manner.

In step 3, in addition to invocation of the original method, it is also checked that
if the domain condition holds, the invocation of the method returns normally. This is
achieved by surrounding the original method call with a try-catch statement. The catch
clause is only reached when the original method fails to return normally, in which case
a violation is issued if the domain condition was true. If the domain condition was
false, no constraints apply and, hence, the caught exception is re-thrown, allowing the
program to handle it as it would had it been executing normally.

It is worth noting that the properties monitored by each of PM-class do not neces-
sarily originate from a single specification. Refinement mappings do not restrict the
number of specifications that a Java type may implement, therefore the PM-class for a
given type is responsible for monitoring the properties arising from all the specifications
that have been refined to mentioned type.

All of the above holds true for both core and parameter specifications. However,
parameter specifications require another level of indirection. Let C be a generic class
with a parameter E that refines a core parameterized specification, say S[S′]. Even
though each class that is used to instantiate E in C has a corresponding PM-class, the
code generated for monitoring the properties of S that involves to call a method over an
object e of type E, cannot commit to a specific PM-class (the actual type of e is only
known at runtime and will vary from call to call).

CONGU2’s solution is to generate a dispatcher class associated to each type variable
of the refinement mapping. This class has the exact same methods of a PM-class, but,
instead of monitoring properties, only resolve to which PM-class should the call be
forwarded to, based on the actual type of object callee. In the PM-class for class C,
whenever the testing of a property requires to invoke a method of E, the call is placed
to the respective dispatcher class.

Suppose that our program manipulates an object lc of type MyListWMerge<Color>
and another lt of type MyListWMerge<Text>. Monitoring the behaviour of these
objects is performed by the MyListWMergePMonitoring class. Whenever such op-
eration involves a call to method E merge(E), we call the respective method in the
EPMonitoring dispatcher class. While monitoring lc’s behaviour, the actual type of
the callee is Color and, hence, the dispatcher forwards the invocation of merge to
ColorPMonitoring. Similarly, while monitoring lt, the calls are forwarded to class
TextPMonitoring. Notice however that when, as a result of calling mergeInRange

over lc, method E merge(E) is called (see the body of the method in Figure 2), this

Runtime Verification for Generic Classes with CONGU2 47

call is intercepted and forwarded to ColorPMonitoring in order for the properties of
this operation to be checked.

5 Conclusions

The importance of tools that support runtime conformance checking of implementa-
tions against formal specifications has long been recognised. In the last decade, many
approaches have been developed for monitoring the correctness of OO programs w.r.t.
formal specifications (e.g., [1,3,7,8,12,15]). However, despite the actual popularity of
generics in mainstream OO languages [5], current approaches still lack support such a
feature. This was also a limitation CONGU that was overcome in CONGU2.

In this paper we showed how the CONGU approach and the corresponding tool were
extended in order to support the specification of parametrized data types and their im-
plementation in terms of generic classes. The extension of the specification language
in order to support the description of generic data types was relatively simple. Given
that CONGU relies on property-driven specifications, this mainly required the adoption
of parameterized specifications available in conventional algebraic specification lan-
guages. In order to bridge the gap between parameterized specifications and generic
classes we proposed a new notion of refinement mapping around which a new notion of
conformance between specifications and OO programs was defined. To the best of our
knowledge, this issue has not yet been addressed in other contexts. Other approaches
exist that deal with the problem of the implementation of architectural specifications
including parameterized specifications as, for example [2], but the target are ML pro-
grams. Relationships between algebraic specification and OO programs that we are
aware of, namely those that address runtime conformance checking or testing, exclu-
sively consider flat and non-parameterized specifications (e.g., [1,12,18]).

CONGU2 implements the runtime monitoring of this new notion of conformance
which, in the case of generic data types, involves checking that both the class that im-
plements the data type and the Java types used to instantiate it conform with what
was specified. With CONGU2, runtime conformance checking becomes applicable to
a range of situations in which automatic support for detection of errors becomes more
relevant. Generics are known to be difficult to grasp and, hence, with generics in action,
obtaining correct implementations becomes more challenging. For us, it is particularly
important to be able to use CONGU with the generic data types that appear in the context
of a typical Algorithms and Data Structures course: we believe this course constitutes
an excellent opportunity for exposing undergraduate students to formal methods. As
discussed by Hu [13], accurate descriptions of abstract data types, agnostic w.r.t. pro-
gramming paradigms and languages, are important for teaching these concepts. From
our experience in teaching this course for several years (initially without tool support
and, more recently, using CONGU), we are convinced that, from an educational an mo-
tivational point of view, it is quite important that students experience, in their practice,
that they can take real advantage of formal descriptions. The use of a simple tool that
allows them to gain confidence that their classes correctly implement a given data type
has shown to be a good starting point. The extension of the tool to support generics will
contribute to the success and effectiveness of the CONGU approach to the introduction
to formal methods in the computer science curriculum.

48 P. Crispim, A. Lopes, and V.T. Vasconcelos

Acknowledgement

This work was partially supported by FCT through the project QUEST (PTDC/EIA-
EIA/103103/2008).

References

1. Antoy, S., Hamlet, R.: Automatically checking an implementation against its formal specifi-
cation. IEEE Transactions on Software Engineering 26(1), 55–69 (2000)

2. Aspinall, D., Sannella, D.: From specifications to code in CASL. In: Kirchner, H., Ringeis-
sen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 1–14. Springer, Heidelberg (2002)

3. Barnett, M., Schulte, W.: Runtime verification of .NET contracts. Journal of Systems and
Software 65(3), 199–208 (2003)

4. Bidoit, M., Mosses, P. (eds.): CASL User Manual. LNCS, vol. 2900. Springer, Heidelberg
(2004)

5. Bracha, G.: Generics in the Java programming language (2004),
ava.sun.com/j2se/1.5/pdf/generics-tutorial.pdf

6. Bruneton, E., Lenglet, R., Coupaye, T.: ASM: A code manipulation tool to implement adapt-
able systems. In: Proc. ACM SIGOPS France Journées Composants 2002: Systèmes à com-
posants adaptables et extensibles (2002)

7. Chen, F., Roşu, G.: Java-MOP: A monitoring oriented programming environment for Java.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 546–550. Springer,
Heidelberg (2005)

8. Cheon, Y., Leavens, G.T.: A runtime assertion checker for the Java Modeling Language
(JML). In: Proc. International Conference on Software Engineering Research and Practice
(SERP 2002), pp. 322–328. CSREA Press (2002)

9. Cok, D.R.: Adapting JML to generic types and Java 1.6. In: Proc. Specification and Verifica-
tion of Component-Based Systems Workshop (2008)

10. Contract Based System Development, http://gloss.di.fc.ul.pt/congu/
11. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd edn.

Prentice-Hall, Englewood Cliffs (2005)
12. Henkel, J., Diwan, A.: Discovering algebraic specifications from Java classes. In: Cardelli,

L. (ed.) ECOOP 2003. LNCS, vol. 2743, pp. 431–456. Springer, Heidelberg (2003)
13. Hu, C.: Just say a class defines a data type. Communications of the ACM 51(3), 19–21

(2008); see also Forum in Communications of the ACM 51(5), 9–10 (2008)
14. Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the design of JML ac-

commodates both runtime assertion checking and formal verification. Science of Computer
Programming 55(1–3), 185–208 (2005)

15. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall PTR, Englewood
Cliffs (1997)

16. Nunes, I., Lopes, A., Vasconcelos, V.T.: Bridging the gap between algebraic specification and
object-oriented generic programming. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS,
vol. 5779, pp. 115–131. Springer, Heidelberg (2009)

17. Nunes, I., Lopes, A., Vasconcelos, V., Abreu, J., Reis, L.S.: Checking the conformance of
Java classes against algebraic specifications. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006.
LNCS, vol. 4260, pp. 494–513. Springer, Heidelberg (2006)

18. Yu, B., King, L., Zhu, H., Zhou, B.: Testing Java components based on algebraic specifica-
tions. In: Proc. International Conference on Software Testing, Verification and Validation,
pp. 190–198. IEEE, Los Alamitos (2008)

ava.sun.com/j2se/1.5/pdf/generics-tutorial.pdf
http://gloss.di.fc.ul.pt/congu/

A High-Level Language for Modeling Algorithms
and Their Properties

Sabina Akhtar, Stephan Merz, and Martin Quinson

LORIA – INRIA Nancy Grand Est and Nancy University, Nancy, France
{Sabina.Akhtar,Stephan.Merz,Martin.Quinson}@loria.fr

Abstract. Designers of concurrent and distributed algorithms usually
express them using pseudo-code. In contrast, most verification techniques
are based on more mathematically-oriented formalisms such as state
transition systems. This conceptual gap contributes to hinder the use
of formal verification techniques. Leslie Lamport introduced PlusCal,
a high-level algorithmic language that has the “look and feel” of pseudo-
code, but is equipped with a precise semantics and includes a high-level
expression language based on set theory. PlusCal models can be com-
piled to TLA+ and verified using the model checker tlc.

However, in practice, the use of PlusCal requires good knowledge of
TLA+ and of the translation from PlusCal to TLA+. In particular, the
user needs to annotate the generated TLA+ model in order to define the
properties to be verified and to introduce fairness hypotheses. Moreover,
the PlusCal language enforces certain restrictions that often make it
difficult to express distributed algorithms in a natural way. We propose
a new version of PlusCal with the aim of overcoming these limitations,
and of providing a language in which algorithms and their properties can
be expressed naturally. We have implemented a compiler of our language
to TLA+, supporting the verification of algorithms by finite-state model
checking.

1 Introduction

Algorithms for concurrent and distributed systems [11] are notoriously hard to
design, due to the number of interleavings of their constituent processes that
must communicate and synchronize properly in order to achieve the desired
function. It is all too easy to overlook corner cases, and hard to generate or
reproduce particular behaviors during testing. Formal verification of such algo-
rithms is therefore essential, and model checking in particular has been applied
with great success in this context. However, there is a conceptual gap between the
languages algorithm designers use to convey their ideas and the input languages
of model checking tools. While the former emphasize high levels of abstraction
in order to present the algorithmic ideas, their semantics is not precisely defined.
Languages for model checkers come with a more precise (at least operational)
semantics but tend to make compromises in terms of the available data types
in order to enable compact state representations and the efficient computation

J. Davies, L. Silva, and A. Simão (Eds.): SBMF 2010, LNCS 6527, pp. 49–63, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

50 S. Akhtar, S. Merz, and M. Quinson

of operations such as the computation of successor (or predecessor) states. Most
model checkers, in particular symbolic ones, support only low-level data types
such as fixed-size integers and records. tlc [14], the model checker for the spec-
ification language TLA+ [8], accepts a significant fragment of TLA+, which is
based on set theory; it thus provides one of the most expressive and high-level
input languages for model checking. However, TLA+ models encode transition
systems via logical formulas, losing much of the (control) structure that is present
in code.

Recently, Lamport introduced the PlusCal algorithm language [9] (originally
called +Cal). While retaining the high level of abstraction of TLA+ expressions,
it provides familiar constructs of imperative programming languages for describ-
ing algorithms, such as processes, assignments, and control flow. The PlusCal

compiler generates a TLA+ model corresponding to the PlusCal algorithm,
which is then verified using tlc. PlusCal is a high-level language that features
set-based abstractions, non-determinism, and user-specified grain of atomicity;
it emphasizes the analysis, not the efficient execution of algorithms and aims at
bridging the gap that we described above.

Unfortunately, as we discuss in more detail in section 2, use of Lamport’s
PlusCal requires good knowledge of TLA+, and even of the translation of
PlusCal to TLA+. Aiming at a simple translation in order to make the re-
sulting TLA+ model human readable, Lamport imposed some limitations on
the language that can make it difficult or unnatural to express distributed algo-
rithms. After initial attempts to extend the original language and its compiler,
these limitations motivated us to develop a new version of PlusCal that retains
the basic ideas of Lamport’s language but overcomes the shortcomings that we
identified. At the same time, we aim at a translation that enables the use of
reduction techniques and hence more efficient verification.

2 Evaluation of PlusCal

TLA+ is a very expressive specification language that emphasizes the use of high-
level constructs such as sets and functions for expressing algorithms. A TLA+

module contains a list of declarations, assertions, and definitions. In particular,
an algorithm is specified as a formula of temporal logic that describes which
executions are permitted. PlusCal retains the logical basis and the expression
language of TLA+, but otherwise resembles a (pseudo) programming language
for multi-process programs, extended by non-deterministic constructs useful for
modeling algorithms. In our experience we found that thinking in terms of sets
is a strong point of PlusCal, as it can make the description of algorithms much
more perspicuous. However, as we explain now, we also identified a number of
shortcomings when trying to use PlusCal for modeling distributed algorithms.

Need to understand TLA+ and the compilation. PlusCal models are not fully
self-contained: the algorithm is described in the PlusCal language, but Plus-

Cal can express neither the correctness properties that should be verified nor

A High-Level Language for Modeling Algorithms and Their Properties 51

fairness assumptions assumed about the algorithm’s execution, which underly
the proof of liveness properties. Rather, the user must add these as temporal
logic formulas to the module generated by the PlusCal compiler. It is therefore
necessary to understand not only TLA+, but also the translation of PlusCal

to TLA+. An effort was made in the design of the PlusCal language to keep
the translation simple. For example, the compiler tries to preserve the names
of PlusCal variables in the TLA+ specification. However, this is not always
possible, for example if variables of the same name are declared in different
procedures. Also, local variables of processes are represented as arrays in TLA+,
and the user must be aware of this when annotating the TLA+ model.

Lack of process hierarchy and of scoping. Another serious restriction motivated
by the need for a simple translation is that PlusCal processes can only be
declared at top level, without any nesting. As we will illustrate in section 3 using
Lamport’s distributed mutual exclusion algorithm, many distributed algorithms
are more naturally expressed using hierarchies of processes.

A related issue is the lack of scoping rules in PlusCal. Although variables
may be declared locally to processes, scoping is not enforced and local variables
can in fact be accessed throughout the program. Beyond being a possible cause
of errors, the lack of a proper hierarchy of processes and of scoped local variables
makes it much more difficult to implement optimizations for verification, such
as partial-order reduction.

Restrictions in specifying atomicity. An important concern in modeling con-
current and distributed algorithms is the specification of the proper unit of
atomicity: which (blocks of) statements can be considered to be executed with-
out interleaving with statements of other processes? Whereas too coarse-grained
atomicity may hide errors that arise in the implementation due to unexpected in-
terleavings, too fine-grained atomicity introduces unnecessary details and causes
state space explosion in verification. PlusCal uses a simple but powerful idea
for expressing atomicity: the user may decorate statements with labels, and in-
terleaving is only allowed at labeled statements. However, the user is not entirely
free where labels may or may not be placed, as these are also serve for internal
purposes of compilation. Typically, more labels must be introduced than would
be necessary, hence aggravating state space explosion.

Technical limitations. Lamport’s PlusCal imposes a number of other limita-
tions, again motivated by the desire to keep the translation simple. For example,
although sets are the basic construct for representing data, PlusCal does not
contain a primitive for iterating over the elements of a set. The programmer has
to introduce an auxiliary variable for iteration and keep track of the elements
that have already been handled. Without special care, these auxiliary variables
will again lead to state space explosion during model checking. Another technical
restriction enforced in PlusCal is to disallow multiple assignments to the same
variable within an atomic step.

52 S. Akhtar, S. Merz, and M. Quinson

3 Introducing a New Version of PlusCal

We now present in some more detail the main features of our version of PlusCal

and describe its compilation to TLA+. From now on, PlusCal will denote our
version, except if explicitly stated otherwise.

3.1 Structure of an Algorithm

Figures 1 and 2 show a model of Lamport’s mutual exlusion algorithm [6] in
PlusCal. This is a basic distributed algorithm and shows some of the main
ingredients of the language.

The header section indicates the name of the algorithm and lists any TLA+

modules to be imported (“extended”). These modules contain definitions of op-
erators that are used within the algorithm. Algorithm LamportMutex imports
the modules Naturals and Sequences from the TLA+ standard library. Global
constant parameters (N and maxClock in our example) are also declared in the
header section; these will later be instantiated to obtain a finite-state instance
for verification.

The following declaration section contains declarations of global variables,
procedures, and definitions. As in TLA+, variables are untyped. A variable dec-
laration may provide an initial value. In our example, we declare a global variable
network as a two-dimensional array indexed by elements of the site Site, which
contains the identities of the processes of type Site, declared below. The variable
network represents the communication network; more precisely, network[from][to]
is a queue of messages sent from site from to site to, initially empty (〈〉 denotes
the empty sequence in TLA+). The operators send and broadcast, defined next,
model point-to-point and broadcast communication over the network. Specifi-
cally, send computes the network obtained by sending a single message between
two processes1, and broadcast computes the state of the network after site from
sends a message to all sites.

The main part of a PlusCal program consists of the process section, which
introduces the processes that participate in the algorithm. Programs can declare
any number of process types, and processes can be nested. Since we are mainly
interested in finite-state model checking, all process instances are created at
initialization time and we do not provide a mechanism for process activation
at run time. In the example, we declare that N processes of type Site will be
run, each containing one instance of process Communicator. Processes may be
declared as being fair ; for example, we assume (weak) fairness for each instance
of process Communicator. Each process contains declarations of local variables,
procedures or definitions analogously to the global declaration section. These
declarations are properly scoped and visible only within the enclosing process. In
our example, process Site declares variables clock, reqQ, and acks that represent
the value of its logical clock, the sequence of requests it has received (which will
be ordered by timestamp), and the set of acknowledgements it has received for

1 The short-hand @ denotes the current value of the array cell being assigned to.

A High-Level Language for Modeling Algorithms and Their Properties 53

1 algorithm LamportMutex
2 extends Naturals, Sequences (* standard modules *)
3 constants N, maxClock
4

5 variable network = [from ∈ Site �→ [to ∈ Site �→ 〈〉]]
6 definition send(from, to, msg) Δ=
7 [network EXCEPT ![from][to] = Append(@, msg)]
8 definition broadcast(from, msg) Δ=
9 [network EXCEPT ![from] = [to ∈ Site �→ Append(network[from][to], msg)]]

10

11 process Site[N]
12 variables
13 clock = 1, (* logical clock of this site *)
14 reqQ = 〈〉, (* queue of pending requests, ordered by clock values *)
15 acks = {} (* set of acknowledgements received for own request *)
16 definition beats(rq1, rq2) Δ=
17 ∨ rq1.clk < rq2.clk
18 ∨ rq1.clk = rq2.clk ∧ rq1.site < rq2.site
19 definition insertRequest(from, c) Δ=
20 LET entry Δ= [site �→ from, clk �→ c]
21 len Δ= Len(reqQ)
22 pos Δ= CHOOSE i ∈ 1 .. len+1 :
23 ∧ ∀ j ∈ 1 .. i-1 : beats(reqQ[j], entry)
24 ∧ i = len+1 ∨ beats(entry, reqQ[i])
25 IN SubSeq(reqQ, 1, pos-1) ◦ 〈entry〉 ◦ SubSeq(reqQ, pos, len)
26 definition removeRequest(from) Δ=
27 LET len Δ= Len(reqQ)
28 pos Δ= CHOOSE i ∈ 1 .. len : reqQ[i].site = from
29 IN SubSeq(reqQ, 1, pos-1) ◦ SubSeq(reqQ, pos+1, len)
30 definition max(x,y) Δ= IF x<y THEN y ELSE x
31

32 fair process Communicator[1]
33 begin
34 loop
35 rcv: with from ∈ {s ∈ Site : Len(network[s][super]) > 0},
36 msg = Head(network[from][super])
37 do network[from][super] := Tail(@);
38 if msg.kind = “request”
39 then reqQ := insertRequest(from, msg.clk);
40 clock := max(clock, msg.clk) + 1;
41 network := send(super, from, [kind �→ “ack”]);
42 elsif msg.kind = “ack”
43 then acks := acks ∪ {from};
44 elsif msg.kind = “free”
45 then reqQ := removeRequest(from);
46 end if;
47 end with;
48 end loop;
49 end process (* Communicator *)

Fig. 1. Lamport’s mutual-exclusion algorithm in extended PlusCal (part 1)

54 S. Akhtar, S. Merz, and M. Quinson

1 begin (* process Site *)
2 loop
3 ncrit: skip;
4 try: network := broadcast(self, [kind �→ “request”, clk �→ clock]);
5 acks := {};
6 +enter: when Len(reqQ) > 0 ∧ Head(reqQ.proc) = self ∧ acks = Sites;
7 +crit: skip;
8 +exit: network := broadcast(self, [kind �→ “free”]);
9 end loop;

10 end process (* Site *)
11 end algorithm
12

13 invariant ∀ s, t ∈ Site : Site[s]@crit ∧ Site[t]@crit ⇒ s=t
14 invariant
15 ∧ (* each queue holds at most one request per site *)
16 ∀ s ∈ Site : ∀ i ∈ 1 .. Len(reqQ[s]) : ∀ j ∈ i+1 .. Len(reqQ[s]) :
17 reqQ[s][j].site = reqQ[s][i].site
18 ∧ (* requests stay in queue until ‘‘free’’ message received *)
19 ∀ s, t ∈ Site :
20 (∃ i ∈ 1 .. Len(network[s][t]) : network[s][t][i].kind = “free”)
21 ⇒ ∃ j ∈ 1 .. Len(reqQ[t]) : reqQ[t][j].site = s
22 ∧ (* site is in critical section only if at the head of every request queue *)
23 ∀ s ∈ Site : Site[s]@crit ⇒ ∀ t ∈ Site : Head(reqQ[t]).site = s
24 temporal ∀ s ∈ Site : Site[s]@enter � Site[s]@crit
25

26 (* Finite instance for model checking *)
27 constants N = 3, maxclock = 5
28 constraint ∀ s ∈ Site : Site[s].clock ≤ maxClock

Fig. 2. Lamport’s mutual-exclusion algorithm (part 2)

its own request (if any). Elements of the request queue are records with fields
site and clock indicating the requesting site and the timestamp of the request.
The definitions beats, insertRequest, and removeRequest formalize the priorities
between two requests and the insertion and removal of a request in the priority
queue.

The code of a process is given in the code section between the keywords begin
and end process. We describe the statements of PlusCal in more detail in
Section 3.2.

The process section is optionally followed by a code section for the main
algorithm, which executes in parallel to the processes. No such code section is
required for algorithm LamportMutex.

The description of the algorithm itself is followed by the property and instance
sections, which state the properties (invariants and general temporal logic prop-
erties) to be verified. For our example, we state two invariants and one temporal
(liveness) property. The first invariant expresses mutual exclusion between all
sites by asserting that no two sites are simultaneously at label crit. The second
invariant states further safety properties of the algorithm that give more insight
in its functioning. The temporal property asserts that whenever some site s is

A High-Level Language for Modeling Algorithms and Their Properties 55

at the statement labeled enter, it will eventually access its critical section.2 Lo-
cal properties of single processes may also be stated after the code section of
processes; they are verified for every instance of the corresponding process type.

The instance section of a PlusCal program determines the finite instance
of the model that will be verified by the model checker tlc. In particular, the
user must specify concrete values for all constants that have been declared in the
header section. In our example, we instantiate the constant parameters N and
maxClock by 3 and 5. This section may also contain other declarations that are
interpreted by tlc. In particular, we define a constraint that bounds the state
space for model checking by considering only such states where no clock value
exceeds maxClock.

3.2 PlusCal Statements

The syntax of PlusCal resembles that of a standard imperative programming
language, but adds non-deterministic constructs, which are useful for modeling.
The expressions of PlusCal are just TLA+ expressions. By focusing on high-
level abstractions such as sets and functions, users are encouraged not to commit
to any particular implementation early. We have found that algorithm designers
quickly learn how to write TLA+ expressions. This section introduces the key
statements of PlusCal.

Basic statements include assignments and the skip statement, which has no
effect. Statements can be labeled (cf. the labels ncrit, try etc. in Fig. 2). Lam-
port’s PlusCal introduced the key idea that labels define the atomic unit of
execution of a PlusCal model: a group of statements appearing between two
labels is executed atomically, without interleaving by other processes. For exam-
ple, reception and processing of a message is modeled as being atomic in process
Communicator of Fig. 1. However, the compiler sometimes introduces additional
labels when translating to TLA+. For example, the first statement appearing
inside a loop or statements following a procedure call must be labeled. Our com-
piler adds any required labels, but since every label creates an additional point
of interleaving, we have added an atomic statement to PlusCal, which was not
present in Lamport’s language.

atomic B end atomic

The statements B in this form are executed (pseudo-)atomically, even if they
contain labels. tlc can be used to find deadlocks caused by statements inside
an atomic block being non-executable.

Case distinction is expressed by a standard if statement. There is also a when
statement that blocks until the specified condition becomes true. Less conven-
tionally, the statement

either B1 or . . . or Bn end either

2 The TLA+ formula P � Q asserts that every state satisfying predicate P will
eventually be followed by a state satisfying predicate Q.

56 S. Akhtar, S. Merz, and M. Quinson

can be used to express non-deterministic choice between n possible branches. In
fact, the if, when, and either constructs are just special cases of the primitive
form

branch
P1 then B1
P2 then B2
. . .
Pn then Bn

else B
end branch

inspired by Dijkstra’s guarded commands [3]. The first n branches consist of a
condition Pi and a block of statements Bi, the final else branch is optional. The
effect of a branch statement is to non-deterministically choose some i such that
Pi evaluates to true and execute the corresponding block Bi. If no Pi is true
then the else branch is executed if it is present, otherwise execution blocks (and
another process may be executed).

Non-deterministic choice over the elements of a set (rather than a fixed number
of alternatives) is expressed by the statement

with x ∈ S do B end with

which executes the statements B for some element of the set S, and blocks if S
is empty. Since the expression S may contain program variables, executing the
code of other processes may unblock a with statement.

PlusCal offers three iteration constructs. Beyond the standard while loop

while P do B end while

which is already present in Lamport’s PlusCal, we added the statement

loop B end loop

for expressing infinite loops; this simply abbreviates while true do B. More
importantly, we added a loop of the form

for x ∈ S do B end for

for iterating over the elements of a set S. (In contrast, the with statement men-
tioned above executes its body for a single, nondeterministically chosen element
of S.) The order in which the elements of S are processed is unspecified but
fixed. Exploring only one iteration order helps mitigate state space explosion,
but the correctness of the algorithm should not depend on any particular order.3

We extended PlusCal by the ability to express fairness assumptions for
algorithms inside the language rather than through TLA+ formulas that the user
must add to the generated model. Fairness assumptions are fundamental for the
3 We plan to add a compile-time option to a future version of the PlusCal compiler

that will cause the model checker to explore all possible iteration orders.

A High-Level Language for Modeling Algorithms and Their Properties 57

verification of liveness properties. We have already mentioned (weak) fairness
annotations for processes in section 3.1; these ensure that whenever a process
instance is continually executable, it will eventually proceed. A strongly fair
process is guaranteed to make progress if it is repeatedly (though not necessarily
continually) executable. PlusCal also supports fairness annotations attached to
individual statements (i.e., labels) rather than to entire processes. For example,
the leading “+” signs decorating the labels enter, crit, and exit indicate weak
fairness assumptions for the corresponding statements.

3.3 The PlusCal Compiler

The basic idea of the translation of PlusCal to TLA+ is to represent each group
of statements between two labels, and hence executed atomically, by a TLA+

action formula. (An action formula contains unprimed and primed copies of state
variables, which represent the values of these variables before and after the state
transition.) Control flow is made explicit by adding a variable containing the
values of the program counters of all process instances and of the main program
(if present). Technically, the PlusCal compiler proceeds in three phases, as
illustrated in Fig. 3.

Parser. The PlusCal parser is generated from a JavaCC grammar. Besides
analyzing the algorithm for syntactic errors, the parser also constructs a symbol
table, maintaining information about declared identifiers and checking that their
use respects the scoping rules. This phase generates an abstract syntax tree
(AST) that represents the PlusCal algorithm.

Translation to intermediate format. For clarity and modularity, we split the
compilation into two phases. The first phase makes the control flow explicit and
converts the AST to a list of labeled guarded commands (branch statements)
whose branches contain only assignments. Each branch ends with an explicit
assignment to the program counter of the entity executing the statements. For
example, the statement

λ: while P
do B

μ: . . .
end while

ν: . . .

(where there are no labels within the group of statements B) would first generate
the guarded command

λ: branch
P then B; pc[self] := μ;
¬P then pc[self] := ν;

end branch

58 S. Akhtar, S. Merz, and M. Quinson

Fig. 3. The compilation phases for the new version of PlusCal

where B denotes the guarded command corresponding to B. Any nested guarded
commands resulting from this translation are subsequently flattened. Procedure
calls and returns are handled using an explicit run-time stack.

This translation may require additional labels, in particular for translating
loops and returns from procedure calls, and the translator adds those as neces-
sary, and signals labels added in this way to the user.

Generation of TLA+ code. The final phase of compilation generates the actual
TLA+ model from the list of guarded commands obtained from the preceding
phase. A guarded command

λ: branch
P1 then x := t; y[self] := u; pc[self] := μ
. . .
Pn then . . .

end branch

is essentially translated to the TLA+ action

λ(self) Δ= ∧ pc[self] = λ
∧ ∨ ∧ P1
∧ x′ = t
∧ y′ = [y except ![self] = u]
∧ pc′ = [pc except ![self] = μ]
∧ unchanged vars \ {x, y, pc}
∨ . . .
∨ ∧ Pn

∧ . . .

A High-Level Language for Modeling Algorithms and Their Properties 59

where vars contains all state variables. Multiple assignments to the same variable
within a group of statements are handled by introducing intermediate let-bound
constants.

User-defined atomic blocks are implemented using a system-wide lock variable
that is acquired at the begin of the block and released at the end. The guards
of actions are strengthened appropriately: actions corresponding to statements
within an atomic block test whether the lock is held by the current process,
the other actions verify that the lock is free. In case some statement within an
atomic block may become non-executable during the execution of the algorithm,
tlc will signal a deadlock during verification.

After generating all actions corresponding to the individual transitions of the
PlusCal model we define the transition relation of a process as the disjunction
of the actions it may execute (including actions occurring within procedures),
and the overall next-state relation as the disjunction of the transition relations
for all process instances, and for the main code section if present. For the example
of Figs. 1 and 2 we obtain

Next Δ= ∨ ∃self ∈ Site : Site(self)
∨ ∃self ∈ Communicator : Communicator (self)

where Site and Communicator are sets containing the process identifiers of pro-
cesses of type Site and Communicator, and Site and Communicator are the
actions representing the transitions of these processes. Fairness conditions are
generated from the fairness annotations present in the PlusCal model, e.g.

Fairness Δ= ∧ ∀self ∈ Communicator : WFvars(Communicator (self))
∧ ∀self ∈ Site : ∧ WFvars(enter(self))

∧ WFvars(crit(self))
∧ WFvars(exit(self))

and the overall specification is obtained as

LamportMutex Δ= Init ∧ �[Next]vars ∧ Fairness

Finally, the properties and the instance sections of the PlusCal model are
processed in order to generate the configuration file, which defines the finite-
state instance and indicates the properties to be verified with tlc.

3.4 Comparison with Lamport’s PlusCal

The language that we have presented in this paper was inspired by Lamport’s
PlusCal, to which it remains close in spirit, but it attempts to overcome some
of the deficiencies that we have identified in section 2. We briefly comment on
what we believe are the main advantages of our language.

Self-contained models. Models written for the original PlusCal language can
express only the algorithm. All additional information, such as fairness assump-
tions, correctness properties or model checking constraints have to be manually

60 S. Akhtar, S. Merz, and M. Quinson

inserted into the TLA+ model generated by the compiler, requiring the user to
understand not only TLA+ but also the translation. We do not expect users to
understand our compiler in any detail, or even to read the generated TLA+ file.

Nested processes and scoped declarations. We allow for nested process declara-
tions, and this leads to a clearer representation of the (communication) structure
of algorithms. In our running example, we were able to declare the variables of
each site as local variables, with two threads (the main Site process and the
Communicator) accessing them. In the original PlusCal, one would either have
two top-level process types that need to communicate via global variables (which
then must be declared explicitly as arrays by the user) or insert the message-
handling code between all transitions of the Site process. In either case, the
model becomes hard to understand, contradicting the purpose of a high-level
modeling language.

Unlike the original PlusCal, our compiler enforces proper scoping of vari-
ables, procedures, and definitions, avoiding potential errors by inadvertently ac-
cessing the variables of a different process. In future work, we plan to take advan-
tage of this locality information in order to implement partial-order reductions
for optimizing model checking.

More flexibility. As discussed in Section 3.2, the basic idea in PlusCal is to
specify atomicity via labels. We managed to lift some of the restrictions on label
placement that were present in the original PlusCal language, and our compiler
will add labels when they are required. The user can now enforce atomicity of
code blocks containing labels using the new atomic statement.

We also introduced several extensions, such as the for statement for iterating
over a set, or the possibility to have several assignments to the same variable
within a group of statements. On the technical side, we strived for better modu-
larity of translation so that it becomes easier to experiment with new language
primitives.

While our PlusCal variant retains most of the “look and feel” of the original
PlusCal language, it does not guarantee backward compatibility. For example,
programs that modify variables that are not currently in scope will be rejected
by the new PlusCal compiler. The current version also does not provide macros
that exist in Lamport’s PlusCal.

There are many features that we deliberately did not implement. For example,
PlusCal does not provide primitives for message passing between processes.
Distributed algorithms use many different forms of message passing (synchronous
or not, lossy, duplicating, order preserving, . . .), and these are better defined in a
standard library of procedures or definitions than hard-wired into the language.

4 Experiments

We have tested our language and implementation by modeling several concurrent
and distributed algorithms in it and verifying them using tlc. Our experience so

A High-Level Language for Modeling Algorithms and Their Properties 61

Table 1. Number of states for some algorithms

Algorithm # proc. original PlusCal our PlusCal

Peterson 2 37 23
FastMutex 2 2679 2679
Naimi-Trehel 3 111749 53905

far has been quite satisfactory: we found that we could represent the algorithms
in a natural way and never had to touch the generated TLA+ models. Table 1
shows the number of (distinct) states generated by tlc for the original PlusCal

and the new PlusCal models of three algorithms: Peterson’s algorithm [13], a
model of which is included in the original PlusCal distribution, Lamport’s
FastMutex algorithm [7], a model of which appears in the PlusCal reference
manual [10], and the distributed mutual-exclusion algorithm due to Naimi and
Trehel [12], which is a refinement of Lamport’s algorithm shown in Figs. 1 and 2.
Models of all but the most trivial algorithms, and in particular of distributed
algorithms, tend to be much clearer in our version of PlusCal. The numbers
in Table 1 indicate that the added expressiveness does not come at the expense
of lost efficiency in verification, as the state spaces generated from the new
PlusCal models are not bigger than those for the same algorithm written in
the original PlusCal.4 In some cases, we obtain smaller numbers of states
because of lifted labeling restrictions. The running times of tlc for these small
examples never exceeded a few seconds. In future work, we believe that we can
achieve significant improvements by exploiting the information about locality in
PlusCal for implementing partial-order reductions.

The simplicity of translation to TLA+ was an important design objective
for the original PlusCal language. In particular, it is tolerable that counter-
examples generated by the model checker are displayed in terms of the generated
TLA+ model, which the user has to understand anyway. Some of our extensions,
and in particular nested processes with local variables, complicate the translation
and the interpretation of counter-examples. We intend to implement a filter for
displaying counter-examples in terms of the original PlusCal model.

5 Related Work

There are many languages for modeling concurrent and distributed algorithms.
Promela [4] is the modeling language for verification of distributed systems
using the Spin model checker. A Promela model consists of processes, channels
and variables. Promela does not support nested processes, has fixed primitives
for communication, and rather low-level representations of data (fixed-width
subsets of integers, records, and channels). It is therefore better suited to lower-
level descriptions of algorithms and protocols. On the other hand, Spin offers
more efficient verification techniques than tlc.
4 Moreover, handwritten TLA+ models of these algorithms that have comparable

“grain of atomicity” generate similar numbers of states.

62 S. Akhtar, S. Merz, and M. Quinson

LOTOS [1] (Language of Temporal Ordering Specifications) is a formalism
for specifying distributed systems, specifically related to Open Systems Inter-
connection (OSI) computer network architecture. Estelle [2] is another formal
description technique for writing specification for concurrent and distributed
information processing systems. It is based on Extended State Transistion sys-
tems and is supported by industrial-strength tools. Both languages are similar
in purpose to Promela, whereas we are aiming at obtaining higher-level de-
scriptions of algorithms, for which abstract data representations in terms of sets
and functions are more useful.

There exist many other languages that are closer to the programming languages
rather than formal specification languages. They serve as inputs to verification
tools and/or for generating executable code. For example, Mace [5] is a language
for building distributed systems. It is a C++ language extension that translates
distributed system specifications into a C++ implementation. Model checking can
be performed at a higher level using the MaceMC model checker. In contrast,
PlusCal is intended as a language that algorithm designers use to communicate
(and validate) their ideas, not for generating efficient implementations.

6 Conclusion

PlusCal is a high-level language that aims at natural expression of algorithms;
it makes formal verification easily accessible to algorithm designers. We have
identified certain limitations of the original language and have defined a new
version that tries to overcome them. In particular, we have strived at making
algorithm descriptions entirely self-contained, so that knowledge of TLA+, and
in particular of the PlusCal compiler, is no longer a prerequisite for using
PlusCal. We have also made the language more uniform, removing some lim-
itations and adding features such as nested processes, scoped declarations, and
user-defined grain of atomicity. We believe that the new version significantly
simplifies the representation of algorithms in PlusCal and that it will be more
accessible to users who are not experts in formal methods.

In future work, we are planning to address reduction techniques for mitigating
the effect of state space explosion. In particular, we plan to implement partial-
order reduction for verifying models written in PlusCal. In concurrent and
distributed systems, the execution of independent events in an arbitrary order
results in the same overall system state, and it is therefore enough to consider
only one interleaving of such events. Efficiently verifying that two events are
independent is, however, non-trivial, and adding locality to PlusCal was an
important first step in identifying sufficient conditions for two statements being
independent.

On a more technical level, it would be beneficial to translate counter-examples
produced by tlc back to the level of PlusCal programs in order to make them
easier to understand for PlusCal users. We also plan to integrate our PlusCal

language into the TLA+ toolbox that has recently been released.5

5 http://www.tlaplus.net/

http://www.tlaplus.net/

A High-Level Language for Modeling Algorithms and Their Properties 63

Acknowledgement. We are grateful to Leslie Lamport for discussions on the de-
sign of our variant of PlusCal and for his encouragement of our project.

References

1. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language LO-
TOS. Computer Networks 14 (1987)

2. Budkowski, S., Dembinski, P.: An introduction to Estelle: A specification language
for distributed systems. Comput. Netw. ISDN Syst. 14(1), 3–23 (1987)

3. Dijkstra, E.W.: Guarded commands, non-determinacy and formal derivation of
programs. Commun. ACM 18(8), 453–457 (1975)

4. Holzmann, G.: The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, Reading (2004)

5. Killian, C.E., Anderson, J.W., Braud, R., Jhala, R., Vahdat, A.: Mace: Language
Support for Building Distributed Systems. In: PLDI, pp. 179–188 (2007)

6. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

7. Lamport, L.: A fast mutual-exclusion algorithm. ACM Trans. Computer Sys-
tems 5(1), 1–11 (1987)

8. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Reading (2002)

9. Lamport, L.: Checking a multithreaded algorithm with +CAL. In: Dolev, S. (ed.)
DISC 2006. LNCS, vol. 4167, pp. 151–163. Springer, Heidelberg (2006)

10. Lamport, L.: A +CAL user’s manual (2007),
http://research.microsoft.com/en-us/um/people/lamport/tla/pluscal.html

11. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
12. Naimi, M., Trehel, M., Arnold, A.: A log(n) distributed mutual exclusion algorithm

based on path reversal. J. Parallel Distrib. Comput. 34(1), 1–13 (1996)
13. Peterson, G.L.: Myths about the mutual exclusion problem. Inf. Process.

Lett. 12(3), 115–116 (1981)
14. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In:

Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer,
Heidelberg (1999)

http://research.microsoft.com/en-us/um/people/lamport/tla/pluscal.html

A Formal Environment Model for Multi-Agent
Systems

Paulo Salem da Silva and Ana C.V. de Melo

University of São Paulo
Department of Computer Science

São Paulo, Brazil
salem@ime.usp.br, acvm@ime.usp.br

Abstract. Multi-agent systems are employed to model complex systems
which can be decomposed into several interacting pieces called agents. In
such systems, agents exist, evolve and interact within an environment.
In this paper we present a model for the specification of such environ-
ments. This Environment Model for Multi-Agent Systems (EMMAS), as
we call it, defines both structural and dynamic aspects of environments.
Structurally, EMMAS connects agents by a social network, in which the
link between agents is specified as the capability that one agent has to
act upon another. Dynamically, EMMAS provides operations that can
be composed together in order to create a number of different environ-
mental situations and to respond appropriately to agents’ actions. These
features are founded on a mathematical model that we provide and that
defines rigorously what constitutes an environment. Formality is achieved
by employing the π-calculus process algebra in order to give the seman-
tics of this model. This allows, in particular, a simple characterization
of the evolution of the environment structure. Moreover, owing to this
formal semantics, it is possible to perform formal analyses on environ-
ments thus described. For the sake of illustration, a concrete example of
environment specification using EMMAS is also given.

1 Introduction

Multi-agent systems (MAS) [13] can be used to model complex systems in which
the entities to be studied can be decomposed into several interacting pieces called
agents. Human societies, computer networks, neural tissue and cell biology are
examples of systems that can be seen from this perspective. Given a MAS,
one technique often employed to study it is simulation [2]. That is, one may
implement the several agents of interest, compose them into a MAS, and then
run simulations in order to analyse their dynamic behavior. In such works, the
analysis method of choice is usually the collection or optimization of statistics
over several runs (e.g., the mean value of a numeric variable over time). Examples
of this approach include platforms such as Swarm [5], MASON [3] and Repast
[6]. There are, however, other possibilities for analysing such simulations. The
crucial insight here is that simulations can be seen as incomplete explorations of
state-spaces, and thus can be subject to some kinds of formal analyses.

J. Davies, L. Silva, and A. Simão (Eds.): SBMF 2010, LNCS 6527, pp. 64–79, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Formal Environment Model for Multi-Agent Systems 65

A MAS can be decomposed into two aspects. The first relates to the agents.
The second deals with how such agents come together and interact among them-
selves. The elements that form this second aspect constitute the environment1

of a MAS.
That said, our overall work is concerned with how one can build a MAS to

model a complex situation suitable for both exploratory simulation and approx-
imate formal verification. To achieve this, we aim at providing three basic ele-
ments: (i) an agent model, which we have already described in [10]; (ii) a formal
specification of the environment of these agents, so that they can be composed
into a MAS; and (iii) techniques to formally analyse the resulting MAS.

In this paper we focus on the problem of defining environments. Our environ-
ments have a social network structure in which nodes are agents, and the links
between them are defined by the capabilities that agents have to act upon each
other. Furthermore, environments are more than a network structure, as they
may change dynamically, either spontaneously or as a reaction to an agent’s
actions. These design choices arise from the agent model that we consider [10].
In it, agents are described from the point of view of behavioral psychology [11],
which suggests a number of desirable features from an environment that brings
them together. For instance, great importance is placed on the possibility of
performing experiments of different kinds, and of responding to agent’s actions
in appropriate ways. As we shall see, our approach achieves this by the envi-
ronment behaviors it defines. Furthermore, interaction is mostly interestingly
treated by abstracting physical properties away and dealing only with relation-
ships, which we do by adopting a social network structure and operations to
modify it. We believe that these characteristics already differentiate our work
substantially from other existing environment description methods (see Weyns
et al. [14] for a survey).

Here we develop a simple formal framework in which to define such environ-
ments so that they can be subject to automated analyses procedures. A mathe-
matical model is provided, which we call the Environment Model for Multi-Agent
Systems (EMMAS), and its semantics is given in terms of the π-calculus process
algebra [4,7].

Process algebras are typically employed to describe concurrent systems. They
are good at succinctly describing behaviors relevant for inter-process communica-
tion. Our particular choice of π-calculus as a theoretical foundation is motivated
by a number of its distinguishing features among existing such algebras. First, it
takes communication through channels as a primitive notion, which makes it a
natural choice for representing networks. Second, it allows for dynamic modifi-
cation, which makes the creation and destruction of connections between agents
possible. Third, it provides a convenient representation for broadcast behavior

1 Notice that the term “environment” is not used consistently in the MAS literature
[14]. Sometimes, it is used to mean the conceptual entity in which the agents and
other objects exist and that allows them to interact; sometimes, it is used to mean
the computational infrastructure that supports the MAS (e.g., a simulator). We use
the term in the former sense.

66 P.S. da Silva and A.C.V. de Melo

through its replication operator. Finally, it has few operators and a simple op-
erational semantics, which is attractive for implementation.

It is worth to note that despite all of these qualities of process algebras in
general, and of π-calculus in particular, they are not usually employed in the
context of multi-agent systems simulation. One exception is the work of Wang
and Wysk [12], which uses a modified π-calculus to express a certain class of
agents and their environments. But their approach is not sufficient to deal with
our problems, and thus we develop our own method.

We purposefully treat agents as black-boxes here. This does not mean that
they have no known internal structure; it merely means that such structure is
mostly irrelevant as far as their environment is concerned. We assume, thus, that
those two aspects of a MAS are complementary, but separate, issues. However,
there must be a way to interface the agents with their environment. This is
achieved through the assumption that agents receive stimuli as input and that
they output actions.

The text is organized as follows. Section 2 introduces the basic features of the
model, and also provides their semantics. Section 3, in turn, defines a number of
convenience elements, which are not fundamental, but form a valuable specifica-
tion repertoire. The reader is supposed to be familiar with the π-calculus process
algebra, though the presented specifications are straightforward and should per-
haps be accessible to anyone with some knowledge of process algebras. Section 4
presents a concrete example of an EMMAS specification. At last, Sect. 5 summa-
rizes the main points presented and considers the new perspectives that EMMAS
brings. The present text is based on and an evolution of a longer technical report
[9], which the reader might wish to consult as well.

For the sake of readability, we have omitted π-calculus input and output
parameters when such parameters are not relevant (e.g., we write a instead of
a(x) if x is not used later).

2 Environment Model

Our Environment Model for Multi-Agent Systems (EMMAS) is a mathematical
framework that can be used to specify environments for multi-agent systems. Its
translation to the π-calculus process algebra is achieved using a translation func-
tion to map constructs of EMMAS into π-calculus expressions (i.e., a construct
C is translated to [C]π). The full definition of such a function will be given as
new constructs are introduced, and for the moment the following suffices.

Definition 1 (Translation function). The translation function []π maps
constructs of EMMAS into π-calculus expressions.

2.1 Underlying Elementary π-Calculus Events

A π-calculus specification can be divided into two parts. First, and most funda-
mentally, it is necessary to specify the set of events that are particular to that

A Formal Environment Model for Multi-Agent Systems 67

specification. Second, it is necessary to specify processes built using those events.
In this section we account for this first part.

Input and output events are all made from basic names. Hence, we first for-
mally define a set of names in order to have the corresponding events. The
definition below define such names, and Table 1 explains the events that arise.

Definition 2 (Environment Names). The environment names are defined
by the following set:

ENames = {emitna , stopn
a , beginningn

s , stablen
s , absentns ,

destroys,m
a,n , ccn, done|

a ∈ Actions, s ∈ Stimuli, m, n ∈ AgentIDs}
Moreover, the set of environment events that immediately follow from ENames
is called EEvents.

Notice that names are primitive entities, even though they are denoted here with
subscripts and superscripts, which could suggest some sort of parametrization.
This writing style is merely for readability’s sake.

Table 1. Informal description of events, divided in three categories according to their
origin and destination. The corresponding output or input events not shown merely
allow the ones described to work properly.

Event Informal description
Agent to environment

emitn
a Agent identified by n performs action a.

stopn
a Agent identified by n stops performing action a.

Environment to agent
beginningn

s Delivery of stimulus s to the agent identified by n is beginning.
stablen

s Delivery of stimulus s to the agent identified by n is stable.
endingn

s Delivery of stimulus s to the agent identified by n is ending.
absentn

s Delivery of stimulus s to the agent identified by n becomes
absent.

Environment to environment
destroys,m

a,n Requests the destruction of an action transformer that converts
action a from agent identified by n into stimulus s accepted by
the agent identified by m.

ccn Requests the creation of a new action transformer.
done Signals that an operation has terminated.

2.2 Operations

In order to exhibit dynamic behavior, the environment depends on operations
to modify its structures.

68 P.S. da Silva and A.C.V. de Melo

Definition 3 (Operation). An operation is any π-calculus expression such
that:

– its names belong to the set ENames;
– it signals its termination with the done event.

The second condition is particularly important because it will allow the sequen-
tial composition of operations, as we shall see in Sect. 3.1.

Of course such an abstract definition of operations cannot be used directly.
Nevertheless, it suffices to define the basic model for environments. Concrete
operations shall be given in Sect. 3.2.

2.3 Environment Structures

The environment is the central structure of EMMAS specifications. It defines
which agents are present, how they are initially connected, and what dynamic
behaviors exist in the environment itself. The presentation below follows a top-
down approach. We begin by defining the overall environment, and then proceed
to examine the nature of its constituent parts.

Definition 4 (Environment). An environment is a tuple 〈AG, AT, EB〉 such
that:

– AG = {ag1 . . . agl} is a set of agent profiles;
– AT = {t1 . . . tm} is a set of action transformers;
– EB = {eb1 . . . ebn} is a set of operations (Def. 3), which are called here

environment behaviors.

Moreover, let ENames = {en1, . . . , eno}. Then the corresponding π-calculus
expression for the environment is defined as:

[〈AG, AT, EB〉]π = (ν en1, . . . , eno)
([ag1]π|[ag2]π| . . . |[agl]π|
[t1]π|[t2]π | . . . |[tm]π|
[eb1]π|[eb2]π| . . . |[ebn]π |
!NewAT)

where

NewAT = ccn〈emit, stop, absent, beginning, stable, ending, destroy〉.
T (emit, stop, absent, beginning, stable, ending, destroy)

and T is given in Def. 6.

This definition merits a few comments. First, all elements are put in parallel com-
position, which allows them to interact. Notice that all names from ENames
are restricted to the environment, which ensures that events are always used
in such an interaction (i.e., events cannot be sent to outside the environment

A Formal Environment Model for Multi-Agent Systems 69

process, and therefore can only be used internally). Second, the set of action
transformers provide the network structure that connects the agents, as we shall
shortly see. Third, the environment behaviors, as the name implies, specifies
behaviors that belong to the environment itself. This is useful to model reactions
to agents’ actions, as well as to capture ways in which the environment may
evolve. This is achieved through operations provided by the specifier. Finally, the
component NewAT allows the creation of new action transformers. In order to
do so, it receives a message ccn (“create connection”), whose parameters initialize
the rest of the expression. We shall see an operation that does this in Sect. 3.2.

Environments exist in order to allow agents to interact. As we remarked ear-
lier, the internal structure of these agents, as complex as it may be, is mostly
irrelevant for their interaction model. Thus, we have abstracted it away as much
as possible. What is left are the interfaces that allow agents to interact with each
other and with the environment itself, which we call agent profiles. Hence, we
have the following definition.

Definition 5 (Agent Profile). An agent profile is a triple 〈n, S, A〉 such that:

– n ∈ AgentIDs is a unique identifier for the agent;
– A = {a1 . . . ai} ⊆ Actions is a set of actions;
– S = {s1 . . . sj} ⊆ Stimuli is a set of stimuli.

Moreover,

[〈n, S, A〉]π = ([Act(a1, n)]π|[Act(a2, n)]π| . . . |[Act(ai, n)]π)|
([Stim(s1, n)]π|[Stim(s2, n)]π| . . . |[Stim(sj , n)]π)

such that, for all a ∈ A and s ∈ S, we have:

[Act(a, n)]π =!(emitna .stopn
a)

[Stim(s, n)]π = piStim(beginningn
s , stablen

s , endingn
s , absentns)

where

piStim(beginning, stable, ending, absent) =
beginning.stable.ending.absent.piStim(beginning, stable, ending, absent)

In this definition, it is clear that agents have several components, each respon-
sible for controlling one particular action or stimulus. Act(a, n) defines that the
agent identified by n can start emitting an action a and can then stop such
emission. The replication operator ensures that this sequence can be carried out
an unbounded number of times. Stim(s, n), in turn, defines that the agent iden-
tified by n can be stimulated by s, and that this stimulation follows four steps
(i.e., absent, beginning, stable and finally ending). The recursive call ensures

70 P.S. da Silva and A.C.V. de Melo

that this stimulation sequence can start again as soon as it finishes the last step.
These definitions reflect the assumptions about the agent model we consider [10],
which, in particular, defines precise – internal – consequences for each of these
stimulation steps.

Agents interact by stimulating each other. But to have this capability, it is
first necessary to define that an agent’s action causes a stimulation in another
agent. This is done through action transformers, which specifies that if agent
ag1 performs the action a, then agent ag2 should be stimulated with s.

Definition 6 (Action Transformer). An action transformer is a tuple
〈ag1, a, s, ag2〉 such that:

– ag1 is an agent profile 〈n, S1, A1〉;
– ag2 is an agent profile 〈m, S2, A2〉;
– a is an action such that a ∈ A1;
– s is a stimulus such that s ∈ S2;

Moreover, the corresponding π-calculus expression for the action transformer is
defined as:

[〈ag1, a, s, ag2〉]π =
T (emitna , stopn

a , absentms , beginningm
s , stablem

s , endingm
s , destroys,m

a,n)

where

T (emit, stop, absent, beginning, stable, ending, destroy) =

(

Normal behavior
︷ ︸︸ ︷
emit.beginning.stable.stop.ending.absent .

T (emit, stop, absent, beginning, stable, ending, destroy))+
destroy
︸ ︷︷ ︸

To disable the action transformer

The above definition can be divided in two parts. First, there is its normal
behavior, which merely defines the correct sequence through which an action is
transformed in a stimulus. Once such a sequence is completed, a recursive call to
the process definition restarts the action transformer. Second, there is the part
that allows the transformer to be destroyed. By performing destroy, the action
transformer disappears, since this event is not followed by anything. Figure 1
shows an example of environment in which the role of action transformers can
be appreciated.

We choose to have an intermediate structure such as the action transformer
between the agents instead of allowing a direct communication because an agent’s
actions may have other effects besides stimulation. In particular, the environ-
ment can also respond to such actions in custom ways through the specified
environment behaviors.

A Formal Environment Model for Multi-Agent Systems 71

Fig. 1. An example of environment. Circles denote agent profiles ag1, ag2 and
ag3. There are three action transformers: 〈ag1, a1, s1, ag2〉, 〈ag1, a1, s2, ag3〉 and
〈ag3, a2, s3, ag1〉. Moreover, there is also an environment behavior, behavior1, that is
executed whenever agent ag1 performs action a1. Notice that the same action a1, per-
formed by agent ag1, has three simultaneous consequences. Notice further that while
two of these consequences are stimulations, another merely triggers some operation.
This shows that it is technically interesting to have actions and stimuli as different
entities, since they are not always related.

2.4 Semantics

The semantics of EMMAS is given by considering: (i) a syntactical transla-
tion of EMMAS into π-calculus expressions; and (ii) a mathematical foundation
which relates π-calculus events to the stimuli and actions of agents. The π-
calculus translation of (i), through its operational semantics, provides an over-
approximation of the desired behavior, which is then made precise using the
restrictions provided by (ii). By this method, we shall be able to build an LTS
that defines the possible states and transitions for any particular environment
specification.

For the sake of clarity, we divide this section in two parts. First we define
some preliminary structures required for building the transition system, which
is then presented.

Preliminary Definitions. Our model must have a way to effectively interact
with the agents of a MAS. Agents may trigger events that have a meaning in the
environment specification (e.g., the performance of an action). Conversely, the
environment specification may request the performance of an operation (e.g., to
stimulate an agent). It is necessary, therefore, to have a mathematical foundation
that formally defines how to accomplish this. We fulfill this requirement by
providing both a vocabulary in which a few primitives are defined and a definition
for what constitutes an environment status with respect to these primitives.

Definition 7 (Vocabulary). A vocabulary is a tuple

〈Stimuli, Actions, AgentIDs〉
such that:

– Stimuli is a finite set of stimuli;
– Actions is a finite set of actions;
– AgentIDs is a finite set of agent identifiers;

72 P.S. da Silva and A.C.V. de Melo

The sets Stimuli, Actions and AgentIDs define, respectively, all available stim-
uli, actions and agent identifiers. These are sets containing primitive, unstruc-
tured, elements.

Definition 8 (Environment Status)
An environment status is a pair

〈Stimulation, Response〉
such that:

– Stimulation : AgentIDs×Stimuli→ {Beginning, Stable, Ending, Absent};
– Response : AgentIDs×Actions→ {Emitting, NotEmitting}.

Building the Transition System. Given an environment E, we shall build
an annotated environment LTS by considering the LTS induced by [E]π, whose
states shall be annotated with our environment status (Def. 8), and whose struc-
ture shall be subject to some restrictions based on the possible values for an envi-
ronment status. Then we shall then have an LTS whose states have the following
form.

Definition 9 (State). Let E be an environment and P be a π-calculus process
obtained by applying π-calculus operational semantics rules to [E]π. Moreover,
let 〈Stimulation, Response〉 be an environment status. Then a state is defined
as the following pair:

(P, 〈Stimulation, Response〉)
By this construction, at any point of the LTS we shall be able to know both what
is the current situation of the agents (because of the added environment status)
and what are the possible changes from that point (because of the π-calculus
operational semantics).

To proceed with this construction, we need a number of definitions. Let us
begin by providing a way to observe the internal transitions of an environment,
which is a fundamental capability that we need before proceeding. Recall from
Def. 4 that an environment’s π-calculus process has a number of restrictions that
would prevent such observations (i.e., the transitions would be internal to the
process and not discernible in the LTS). It is, however, possible to characterize
these restrictions syntactically, and thus we may provide a simple method to
remove them when needed. This is accomplished by the following environment
unrestriction function unr.

Definition 10 (Environment Unrestriction Function)
Let P and Q be π-calculus processes such that

P = (ν en1, . . . , eno)Q

where {en1, . . . , eno} = ENames. Then the environment unrestriction function
is defined as unr(P) = Q.

A Formal Environment Model for Multi-Agent Systems 73

We may now define the Stimulation function present in each state as follows.

Definition 11 (Stimulation)
Let (P, 〈Stimulation, Response〉) be a state. Moreover, let → be the tran-

sition relation induced by the π-calculus operational semantics. Then, for all
s ∈ Stimuli and n ∈ AgentIDs, we have:

Stimulation(n, s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Absent if ∃P ′such that unr(P)
beginningn

s→ P ′

Beginning if ∃P ′such that unr(P)
stablen

s→ P ′

Stable if ∃P ′such that unr(P)
endingn

s→ P ′

Ending if ∃P ′such that unr(P)
absentn

s→ P ′

The Stimulation definition establishes the status of a particular stimulation
based on the order that stimulations must change (see Def. 5). For instance, if
a process is capable of receiving a beginningn

s event, it must be the case that
stimulus s is currently absent in agent identified by n. The Stimulation function,
therefore, merely gives a way of reading the π-calculus LTS in order to have this
information explicitly for every agent and stimulus in any given process.

The Response function, on the other hand, is assumed as given (e.g., by a
simulator that implements the black-box behavior of the agents). Thus, we do
not define it. However, it imposes some constraints on the LTS, which we must
specify and take in account. As we shall see shortly, these constraints turn the π-
calculus over-approximation into an exact description of the transition system’s
structure that we wish to assign to EMMAS.

Definition 12 (Transition constraints)
Let s1 = (P1, 〈Stimulation1, Response1〉) and

s2 = (P2, 〈Stimulation2, Response2〉) be states in an annotated environment
LTS 〈S, L,�〉. Moreover, let → be the transition relation induced by the π-
calculus operational semantics. Then the transition s1

l� s2 is forbidden if one
of the cases hold:
– there exists a ∈ Actions and n ∈ AgentIDs such that:
• Response1(n, a) = Emitting;
• P2 was obtained by internally producing the event stopn

a in P1.
– there exists a ∈ Actions and n ∈ AgentIDs such that:
• Response1(n, a) = NotEmitting;
• P2 was obtained by internally producing the event emitna in P1.

– there exists a ∈ Actions and n ∈ AgentIDs such that:
• Response1(n, a) = Emitting;
• Response2(n, a) = NotEmitting;

• there exists a P ′ such that unr(P1)
emitn

a→ P ′.
– there exists a ∈ Actions and n ∈ AgentIDs such that:
• Response1(n, a) = NotEmitting;
• Response2(n, a) = Emitting;

• there exists a P ′ such that unr(P1)
stopn

a→ P ′.

74 P.S. da Silva and A.C.V. de Melo

At last, we may define the annotated environment LTS as follows.

Definition 13 (Annotated Environment LTS). Let E be an environment
(Def. 4), and let → be the transition relation induced by the π-calculus opera-
tional semantics. Then an annotated environment LTS is an LTS 〈S, L,�〉 such
that:

– L = EEvents (see Def. 2);
– S and � are constructed inductively as follows:
• Initial state. ([E]π , es) ∈ S, where es = 〈Stimulation, Response〉 such

that for all a ∈ Actions, s ∈ Stimuli, and n ∈ AgentIDs we have
Stimulation(n, s) = Absent and Response(n, a) = NotEmitting.
• Other states and transitions.

If s1 = (P1, 〈Stimulation1, Response1〉) ∈ S,
then s2 = (P2, 〈Stimulation2, Response2〉) ∈ S and s1

l� s2 if and only
if:
∗ P1

l→ P2;
∗ Stimulation2 is defined w.r.t. P2 according to Def. 11;
∗ s1

l� s2 is not forbidden by Def. 12.

3 Convenience Elements and Operations

So far we have defined the bare minimum for describing environments so that
they can be formally analysed. Clearly, though, more constructs are necessary
in order to make such specifications. For example, in Def. 3 we established what
is an operation in general, but we have not presented any particular one. In the
present section, then, we provide a number of convenience elements that can be
used to build concrete EMMAS models. These, however, are merely examples of
what can be expressed with the basic model given before, designed to show its
usefulness, and the reader may well imagine many other convenience elements.

3.1 Composition Operators

In order to build complex operations on top of the basic ones, it is useful to
define composition operators. Some of these can be mapped directly to π-calculus
operators, but others require more sophistication.

Definition 14 (Sequential Composition). Let Op1 and Op2 be operations.
Then their sequential composition is also an operation and is written as:

Op1; Op2

Moreover,

[Op1; Op2]π = (ν start)[Op1]π{start/done}|start.[Op2]π

A Formal Environment Model for Multi-Agent Systems 75

The above translation aims at accounting for the intuition that Op1 must
take place before Op2. However, we cannot translate Op1; Op2 immediatly as
[Op1]π.[Op2]π , because in general π-calculus would not allow the resulting syn-
tax (e.g., (P + Q).R would not be a valid expression). Therefore, we adapt the
suggestion offered by Milner [4] (in Example 5.27), which requires every opera-
tion to signal its own termination with a done event.

Definition 15 (Sequence). Let Op be an operation and n be an integer such
that n ≥ 1. Then a sequence of n compositions of Op is defined as:

Seq(Op, n) =
{

Op; Seq(Op, n− 1) n > 1
Op n = 1

Definition 16 (Unbounded Sequence). Let Op an operation. Then an un-
bounded sequence of compositions of Op is defined as:

Forever(Op) = Op; Forever(Op)

The translation of these two kinds of sequences to π-calculus follows, of course,
from the translation of the sequential composition operator.

Definition 17 (Choice). Let Op1 and Op2 be operations. Then their composi-
tion as a choice is also an operation and is written as:

Op1 + Op2

Moreover,
[Op1 + Op2]π = [Op1]π + [Op2]π

Definition 18 (Parallel Composition). Let Op1, Op2, . . ., Opn be n opera-
tions. Then their parallel composition is also an operation and is written as:

Op1 ‖ Op2 ‖ . . . ‖ Opn

Moreover,

[Op1 ‖ Op2 ‖ . . .‖ Opn]π =(ν start)[Op1]π{start/done}|[Op2]π{start/done}| . . . |
[Opn]π{start/done}| start.start.start︸ ︷︷ ︸

n times

.done

The translation for the parallel composition is not straightforward because it is
necessary to ensure that done is sent only once in the composed operation. That
is to say, the parallel composition of n operations2 is an operation itself, and it
only terminates when each of its components terminates.

3.2 Core Operations

We can now provide a core of operations upon which others can be built.
2 We define the operator for n operations instead of just two because this avoids the

problem of establishing its associativity properties.

76 P.S. da Silva and A.C.V. de Melo

Agent Stimulation Operations. The following operations are provided to
control the stimulation of agents.
Definition 19 (Begin stimulation operation). Let ag = 〈n, S, A〉 be an
agent profile, and s ∈ S be a stimulus. Then the begin stimulation operation
is writen as:

BeginStimulation(s, ag)

Moreover,

[BeginStimulation(s, ag)]π = beginningn
s .stablen

s .done

Definition 20 (End stimulation operation). Let ag = 〈n, S, A〉 be an agent
profile, and s ∈ S be a stimulus. Then the end stimulation operation is writen
as:

EndStimulation(s, ag)

Moreover,

[EndStimulation(s, ag)]π = endingn
s .absentns .done

Definition 21 (Stimulate operation). Let ag = 〈n, S, A〉 be an agent profile,
and s ∈ S be a stimulus. Then the stimulate operation is defined as:

Stimulate(s, ag) = BeginStimulation(s, ag); EndStimulation(s, ag)

Action Transformers Operations. The following operations are provided to
manipulate action transformers.

Definition 22 (Create action transformer operation). Let ag1 =〈n, S1, A1〉
be an agent profile, ag2 = 〈m, S2, A2〉 be another agent profile, a ∈ A1 be an ac-
tion, and s ∈ S2 be a stimulus. Then the create action transformer operation is
written as:

Create(ag1, a, s, ag2)

Moreover,

[Create(ag1, a, s, ag2)]π = ccn(emitna , stopn
a , absentms , beginningm

s ,

stablem
s , endingm

s , destroys,m
a,n).done

In the above definition, notice that ccn is crafted to react with the component
NewAT given in Def. 4. Since operations will ultimately be put together with
parallel composition in the environment, it follows that the Create(ag1, a, s, ag2)
operation will be able to react with NewAT and originate a new action trans-
former.

Definition 23 (Destroy action transformer operation). Let ag1 = 〈n, S1,
A1〉 be an agent profile, ag2 = 〈m, S2, A2〉 be another agent profile, a ∈ A1 be an
action, and s ∈ S2 be a stimulus. Then the destroy action transformer operation
is writen as:

Destroy(n, a, s, m)

Moreover,
[Destroy(n, a, s, m)]π = destroys,m

a,n .done

A Formal Environment Model for Multi-Agent Systems 77

4 Example

Let us consider the following simple example. We shall specify an online social
network, in which users may register themselves and interact.3 The objective
of the specification is to test advertisement strategies through simulation. To
this end, we define an environment 〈AG, AT, EB〉 with n agents, such that each
agent agi ∈ AG is capable of performing the action buy (i.e., to buy the ad-
vertised product) and sendMsg (i.e., to send some message to another agent),
as well as receiving the stimuli gui1, gui2 (i.e., the graphical user interface of
the website can be set in two different ways), ad1, ad2 (i.e., there are two dif-
ferent possible advertisements) and msg (i.e., a message received). Formally,
agi = 〈i, {gui1, gui2, ad1, ad2, msg}, {buy, sendMsg}〉.

The action transformers among the agents allow them to send messages
to their friends. Of course, the particular topology of this network can vary,
but in essence each agent agi shall have some action transformers of the form
〈agi, sendMsg, msg, agj〉. The effect of such a message could be similar to that
of an advertisement (i.e., a product recommendation by a friend).

Finally, and most importantly, for each agent ag ∈ AG, we define the following
new environment behavior ebi ∈ EB:

(BeginStimulation(gui1, agi) + BeginStimulation(gui2, agi));
(Stimulate(ad1, agi) + Stimulate(ad2, agi))

These ebi specify four possible simulation sequences concerning each agent. For
instance, in some simulation run, agent ag1 could be stimulated by
BeginStimulation(gui1, ag1) and then by Stimulate(ad1, ag1). However, it could
be that this particular sequence would be ineffective in eliciting the agent’s buy
action, in which case another sequence could be tried. The important thing,
though, is that these trials can all be performed automatically, since they are
explicit in the environment definition. This shows how EMMAS can endow sim-
ulators with some formal verification capabilities.

5 Conclusion

In this paper we have presented a formalization for environments of MASs. We
provided a high-level description for this formalization, with a semantics given
using the π-calculus. We found necessary to perform some adjustments on the
standard behavior induced by the π-calculus’ operational semantics in order to
allow its integration with the remaining parts of the proposed approach. Further-
more, we avoided explicit temporal references in this formalization. However, it
should be possible to add an explicit notion of time to EMMAS, though this
would introduce new complications as well.

The presented environments have both structural and operational aspects.
That is to say, they represent certain structures, which can then be changed by
3 Actual examples of such networks include popular websites such as
www.facebbok.com, www.orkut.com and www.myspace.com.

78 P.S. da Silva and A.C.V. de Melo

certain operations. These operations serve to two purposes. First, they provide
a way to specify behaviors of the environments themselves (e.g., environment
responses to the actions of agents). Second, they allow the succinct specification
of several possible scenarios for an environment (e.g., several possible ways of
stimulating agents). This latter possibility is one of the great advantages offered
by the use of a process algebra as a semantic basis (e.g., an algebraic expression
a + b defines the non-deterministic possibility of either a or b), and renders our
approach particularly unique insofar as environments for MASs are concerned.
We may now formulate questions concerning the analysis of our MASs:

– Since the semantics of EMMAS is given as an LTS, it follows that now we
need criteria for selecting paths in it. With such paths, we shall be able to
perform concrete simulations.

– Concerning implementation, we believe that the π-calculus base can be par-
ticularly useful, since we could implement its few elements in order to have
our whole model on top of it. A similar approach is taken by Wang and Wysk
[12]. More generally, there are programming languages based on π-calculus,
such as the Join-Calculus [1] and Pict [8].

Finally, though EMMAS is designed to work with a particular agent model [10],
it actually imposes few restrictions on the agents, and its principles are general.
Hence, it could perhaps be adapted to work with other agent models.

Acknowledgements

The authors would like to thank Prof. Dr. Marie-Claude Gaudel (Laboratoire de
Recherche en Informatique, Université Paris-Sud 11) for her numerous comments
and suggestions during the preparation of this work.

This project benefited from the financial support of Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq).

References

1. Fournet, C., Gonthier, G.: The join calculus: A language for distributed mobile
programming. In: Barthe, G., Dybjer, P., Pinto, L., Saraiva, J. (eds.) APPSEM
2000. LNCS, vol. 2395, pp. 268–332. Springer, Heidelberg (2002)

2. Gilbert, N., Bankers, S.: Platforms and methods for agent-based modeling. Pro-
ceedings of the National Academy of Sciences of the United States 99(supplement
3) (2002)

3. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K.: MASON: A new multi-agent
simulation toolkit (2004), http://cs.gmu.edu/~eclab/projects/mason/

4. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

5. Minar, N., Burkhart, R., Langton, C., Askenazi, M.: The Swarm simulation system:
A toolkit for building multi-agent simulations (1996), working Paper 96-06-042

http://cs.gmu.edu/~eclab/projects/mason/

A Formal Environment Model for Multi-Agent Systems 79

6. North, M., Collier, N., Vos, J.R.: Experiences creating three implementations of
the Repast agent modeling toolkit. ACM Transactions on Modeling and Computer
Simulation 16(1), 1–25 (2006), http://repast.sourceforge.net/

7. Parrow, J.: An introduction to the pi-calculus. In: Bergstra, J.A.,
Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 479–543. Elsevier,
Amsterdam (2001)

8. Pierce, B.C., Turner, D.N.: Pict: A programming language based on the pi-calculus.
In: Plotkin, G., Stirling, C., Tofte, M. (eds.) Proof, Language and Interaction:
Essays in Honour of Robin Milner. MIT Press, Cambridge (1997)

9. da Silva, P.S.: An environment specification language for multi-agent systems,
Technical Report 1531 – Université Paris-Sud 11, Laboratoire de Recherche en
Informatique (2009)

10. da Silva, P.S., de Melo, A.C.V.: A simulation-oriented formalization for a psycho-
logical theory. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp.
42–56. Springer, Heidelberg (2007)

11. Skinner, B.F.: Science and Human Behavior. The Free Press, New York (1953)
12. Wang, J., Wysk, R.A.: A pi-calculus formalism for discrete event simulation. In:

WSC 2008: Proceedings of the 40th Conference on Winter Simulation, Miami,
Florida, pp. 703–711 (2008)

13. Weiss, G. (ed.): Multiagent systems: a modern approach to distributed artificial
intelligence. MIT Press, Cambridge (1999)

14. Weyns, D., Van Dyke Parunak, H., Michel, F., Holvoet, T., Ferber, J.: Envi-
ronments for multiagent systems: State-of-the-art and research challenges. In:
Weyns, D., et al. (eds.) E4MAS 2004. LNCS (LNAI), vol. 3374, pp. 1–47. Springer,
Heidelberg (2005)

http://repast.sourceforge.net/

A Modal Interface Theory with Data Constraints

Sebastian S. Bauer1, Rolf Hennicker1, and Michel Bidoit2

1 Ludwig-Maximilians-Universität München, Germany
2 Laboratoire Spécification et Vérification,

CNRS & ENS de Cachan, France

Abstract. For the design of component-based software, the behavioral
specification of component interfaces is crucial. We propose an exten-
sion of the theory of modal I/O-transition systems by Larsen et al. to
cope with both control flow and data states of reactive components at the
same time. In our framework, transitions model incoming or outgoing op-
eration calls which are constrained by pre- and postconditions expressing
the mutual assumptions and guarantees of the receiver and the sender
of a message. We define a new interface theory by adapting synchronous
composition, modal refinement and modal compatibility to the case of
modal I/O-transition systems with data constraints. We show that in this
formalism modal compatibility is preserved by refinement and modal re-
finement is preserved by composition which are basic requirements for
any interface theory.

1 Introduction

A rigorous discipline of component-based software development relies strongly on
interface specifications which describe the observable behavior of components [6].
Thereby, behavior is often understood from a control-flow oriented perspective
considering the sequences of actions a component can perform when interacting
with its environment. Of equal importance is, however, the aspect of changing
data – owned by a component – when certain actions of the component are
performed. We claim that the integrated treatment of control flow and data
change in the context of concurrent, reactive components is not yet sufficiently
understood and therefore needs further investigation.

Building on previous work on the semantics of behavior protocols for com-
ponents with data states [3] we propose an interface theory on the basis of
modal I/O-transition systems (MIOs) introduced in [9]. A particular advantage
of modal transition systems is that they distinguish between “may” and “must”
transitions which leads to a powerful refinement notion [11]: the may-transitions
determine which actions are permitted in a refinement while the must-transitions
specify which actions must be present in a refinement and hence in any imple-
mentation. In this way it is possible to provide abstract, loose specifications in
terms of may-transitions and to fix in a stepwise way the must-transitions until
an implementation, represented by a MIO with must-transitions only, is reached.
Another aspect which can be conveniently formalized with modal I/O-transition

J. Davies, L. Silva, and A. Simão (Eds.): SBMF 2010, LNCS 6527, pp. 80–95, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Modal Interface Theory with Data Constraints 81

systems concerns the compatibility of interacting components: whenever an in-
terface specification allows that a message may be issued, then the communica-
tion partner should be in a (control) state where it must be able to accept the
message [4].

In this paper we extend MIOs by taking into account the specification of data
constraints which enhance transitions with pre- and postconditions describing
the admissible data states of a component before and after the execution of
an operation. We distinguish, like in MIOs, between input, output and inter-
nal messages and, additionally, between provided, required and internal state
variables. Provided and internal state variables are local to a component and de-
scribe the data states a component can adopt. In contrast to the internal state
variables, provided state variables are visible to the user of a component. Re-
quired state variables belong also to the interface specification of a component,
however, they are not related to the data states of the component itself but to
the data states the component can observe in its environment. On this basis we
study (synchronous) composition, refinement and compatibility of modal I/O-
transition systems with data constraints (MIODs). In addition to relationships
between control states, we take special care of the relationships between data
constraints in all these cases. For instance, considering compatibility, the condi-
tion concerning control flow compatibility is extended to take into account data
states: the caller of an operation must ensure that the precondition of the opera-
tion provided by the callee is satisfied and, conversely, the callee must guarantee
that after the execution of the operation the postcondition expected by the caller
holds. Thus, the compatibility notion takes into account the mutual assumptions
and guarantees of communicating components guided by the idea that specifi-
cations provide contracts which must match when components are composed.
Our main result shows that our framework satisfies the basic requirements of
an interface theory: refinement is compositional and compatibility is preserved
by refinement. Thus modal I/O-transition systems with data constraints sup-
port reusability and independent implementability of components via interface
specifications.

Related Work. Specifications of control flow and of changing data states are often
considered separately from each other. While transition systems are a popular
formalism to specify the temporal ordering of messages, invariants and pre- and
postconditions are commonly used to specify the effects of operations w.r.t. data
states. Though approaches like CSP-OZ [8] offer means to specify both aspects,
they still lack a fully integrated treatment since their expressive power is limited
to cases where the effect of an operation on data states must be independent of
the control-flow behavior of a component. Other related approaches are based on
symbolic transition systems (STS) [7,1] but STS are mainly focussing on model
checking and not on interface theories supporting the (top down) development
of concurrent systems by refinement. Most closely related to our work is the
study of Mouelhi et al. [12] who consider an extension of the theory of interface
automata [6] to data states. Their approach does, however, not take into account
modalities of transitions and modal refinements. There is also no discrimination

82 S.S. Bauer, R. Hennicker, and M. Bidoit

of different types of state variables (provided, required and internal) which, in our
case, is a methodologically important ingredient to express the contract principle
between interface specifications. In our previous work, we have proposed in [3]
a formal semantics of behavior protocols based on model classes, but [3] does
not consider modalities and a refinement notion between specifications. On the
other hand, we have investigated in [4] various kinds of modal interface theories
with refinements but without taking into account constraints on data states.

Outline. The paper is organized as follows. In Sect. 2 we introduce modal I/O-
transition systems with data constraints (MIODs). Their refinement is consid-
ered in Sect. 3, and in Sect. 4 the composition and the compatibility of MIODs
is defined. Moreover, we show in Sect. 4 that our framework satisfies the re-
quirements of an interface theory concerning compositionality of refinement and
preservation of compatibility by refinement. In Sect. 5 we finish with some con-
cluding remarks.

Example 1. We use a hexapod robot as a running example. This insect-like, six-
leg robot exhibits a non-trivial control-flow behavior with a significant impact
of data states. When specifying such a complex subject, non-trivial synchroniza-
tion and coordination problems arise which must be addressed in a behavioral
specification. For the illustration of the formal definitions and concepts intro-
duced hereafter, we will focus here only on the locomotion aspect of the robot’s
legs. We assume a simple component architecture: The locomotion of each leg is
coordinated by a controller component, called LegC , and the leg motorization is
wrapped in another component, named Leg. �

2 Modal I/O-Transition Systems with Data Constraints

Modal I/O-transition systems (MIOs) have been introduced in [9,11] as a formal-
ism to describe the behavior of reactive, concurrent components which interact
via matching input and output actions. MIOs distinguish between “may” and
“must” transitions where the former specify which transitions are allowed in a
refinement while the latter specify which transitions are mandatory (i.e. must
be preserved) in any refinement. Formally, a MIO S is given by a tuple S =
(statesS , startS , actS , Δmay

S , Δmust
S) of a set of states statesS , the initial state

startS ∈ statesS , a set of actions actS = actinS � actout
S � actint

S being the dis-
joint union of sets of input, output and internal actions respectively, a may-
transition relation Δmay

S ⊆ statesS × actS × statesS , and a must-transition
relation Δmust

S ⊆ Δmay
S . To deal with data constraints, we want to be able to

specify pre- and postconditions for the actions on modal transitions. Hence, we
must use more involved labels than simple action names.

Operations. Instead of actions, we consider operations which may have formal pa-
rameters. An operation op is of the form opname(Par) where Par is a (possibly
empty) set of formal parameters. We write par(op) to refer to the formal param-
eters of an operation op. An I/O-operation signature O = Oprov � Oreq � Oint

A Modal Interface Theory with Data Constraints 83

consists of pairwise disjoint sets Oprov of provided operations (for inputs), Oreq

of required operations (for outputs), and Oint of internal operations. Provided
operations are offered by a component and can be invoked by the environment;
required operations are required from the environment and can be called by the
component. To indicate that op ∈ Oprov we often write ?op and to indicate that
op ∈ Oreq we often write !op.

State variables. In order to equip operations with pre- and postconditions con-
cerning the operations’ formal parameters and the data states of a component,
we must first provide a formal notation for data states. For this purpose we use
state variables of different kinds which all belong to a global set SV of state
variables. Provided state variables describe the externally visible data states,
while internal state variables describe the hidden data states of a component.
Provided and internal state variables together model the possible data states a
component can adopt. There is, however, still a third kind of state variable which
we call required state variable. Required state variables are used to refer to the
data states a component expects to be visible in its environment. Formally, an
I/O-state signature V = Vprov�Vreq�V int consists of pairwise disjoint sets Vprov ,
Vreq , and V int of provided, required and internal state variables, respectively.

Definition 1 (I/O-Signature). An I/O-signature is a pair Σ = (V ,O) con-
sisting of an I/O-state signature V and an I/O-operation signature O.

Predicates on states. We assume given a global set LV of logical variables, disjoint
from the state variables SV such that, for each operation op, par(op) ⊆ LV.
Moreover, we assume a set S(SV, LV) of state predicates ϕ and a set T (SV, LV)
of transition predicates π with associated sets var state(ϕ) ⊆ SV of state variables
and var log(ϕ) ⊆ LV of logical variables; analogously for π. State predicates refer
to single states and transition predicates to pairs of states (pre- and poststates).
For each W ⊆ SV and X ⊆ LV we define

S(W , X) = {ϕ ∈ S(SV, LV) | var state(ϕ) ⊆ W , var log(ϕ) ⊆ X},
T (W , X) = {π ∈ T (SV, LV) | var state(π) ⊆ W , var log(π) ⊆ X}.

We require that both sets, S(W , X) and T (W , X), are closed under the usual
logical connectives, like ∧,⇒, etc. We assume that state predicates ϕ ∈ S(W , X)
and transition predicates π ∈ T (W , X) are both equipped with a satisfaction
relation � ϕ and � π, resp., expressing universal validity of predicates w.r.t.
some semantic domain of states and w.r.t. a domain of valuations for the logical
variables. We will not go into further details here, but the reader may assume a
predefined data universe U such that concrete data states are functions mapping
state variables to values in U and, similarly, valuations are mappings from logical
variables to values in U . Then state predicates should be interpreted w.r.t. a sin-
gle data state and a valuation of the logical variables, while transition predicates
should be interpreted w.r.t. two data states (pre- and poststates) and a valuation
of the logical variables. Universal validity � ϕ of a state predicate ϕ ∈ S(W , X)
then means that ϕ is valid for all data states, modeled by functions σ :W → U ,

84 S.S. Bauer, R. Hennicker, and M. Bidoit

and for all valuations ρ : X → U while universal validity � π of a transition
predicate π ∈ T (W , X) means that π is valid for any two data states and any
valuation.

The above definitions are generic and sufficient for the following considera-
tions. Therefore, we do not fix a particular syntax for signatures and predicates
here, neither a particular definition of the satisfaction relation. We claim that
our notions could be easily instantiated in the context of a particular assertion
language. How this would work in the case of the Object Constraint Language
OCL is shown in [5].

Example 2. We exemplify the use of signatures in our running example. The
component Leg has the I/O-signature ΣLeg = (VLeg ,OLeg) where

Vprov
Leg = {maxStep, currStep} Oprov

Leg = {init(), lift(), swing(a), drop(), retract()}
Vreq

Leg = {} Oreq
Leg = {update(a)}

V int
Leg = {steps} Oint

Leg = {}

Leg has as provided state variables maxStep, which models the maximal step size,
and currStep for the current step size of the leg. The only internal state variable
is steps which counts the number of steps the leg has made since initialization
(provided operation init()). The provided operations also include operations for
the different kinds of leg motion, i.e. lift(), swing(a), drop(), and retract(); the
only required operation is update(a) which, after a step has made, informs the
leg controller component LegC about the actual step size. A (Vprov

Leg ∪V int
Leg)-data

state can be given, for instance, by the function σ : (Vprov
Leg ∪ V int

Leg) → U with
σ(maxStep) = 50, σ(currStep) = 0, σ(steps) = 5.

The controller LegC has the I/O-signature ΣLegC = (VLegC ,OLegC), where
Vprov

LegC = {distance}, Vreq
LegC = {maxStep, currStep}, and V int

LegC = {gone}. The
provided state variable distance stores the total distance to be walked by its (con-
nected) leg, the internal state variable gone models the distance that has already
been moved by its leg. The meaning of the required state variables maxStep and
currStep has already been explained above. The provided operations of LegC in-
clude update(a). In the following, for the specification of the behavior of LegC ,
we will only consider transitions labeled with swing(a) ∈ Oreq

LegC (which is a
provided operation of the Leg component, hence shared with LegC). �

We are now able to define which labels can occur in a modal I/O-transition
system with data constraints. Given an I/O-signature Σ = (V ,O), the set L(Σ)
of Σ- labels consists of the following expressions:

1. [ϕ]?m[π] with m ∈ Oprov a provided operation, ϕ ∈ S(Vprov , par(m)) the
precondition, π ∈ T (Vprov ∪ V int , par(m)) the postcondition,

2. [ϕ]!n[π] with n ∈ Oreq a required operation, ϕ ∈ S(Vprov∪Vreq∪V int , par(n))
the precondition, π ∈ T (Vreq , par(n)) the postcondition,

3. [ϕ]i[π] with i ∈ Oint an internal operation, ϕ ∈ S(Vprov ∪Vreq ∪V int , par(i))
the precondition, π ∈ T (Vprov ∪ V int , par(i)) the postcondition.

A Modal Interface Theory with Data Constraints 85

There are three kinds of labels concerning reception (?), sending (!) and internal
execution of an operation. In each case, labels are equipped with pre- and post-
conditions represented by state and transition predicates over particular sets of
state variables.

Input labels. A label [ϕ]?m[π] models that if a provided operation m is invoked
under the precondition ϕ then the postcondition π will hold after the execution of
m. In this case ϕ expresses the assumption (of the specified component) that the
environment will only call m when the component’s data state fulfills ϕ. Hence
ϕ must be a state predicate over the provided state variables of the component
(possibly containing the operation’s formal parameters as logical variables). In
particular, no internal state variables are allowed in ϕ, since it must be possible
for the environment to check whether the precondition ϕ is actually valid upon
operation call. The postcondition π models the change of the component’s data
state caused by the execution of the operation m and hence it is a transition pred-
icate over the provided and the internal state variables of the component (again
possibly containing the operation’s formal parameters as logical variables). In
this case π expresses the guarantee (of the specified component) that after the
execution of m the postcondition π holds (if the assumption ϕ was met)1. The
assumptions and guarantees of a component concerning input labels are part of
the contract principle behind data constraints as shown in Table 1.

Output labels. A label [ϕ]!n[π] models that a component issues a call to a required
operation n under the precondition ϕ and with postcondition π. Here ϕ describes
the condition under which the operation call is performed by a component.
Since the component has access to its own, provided and internal, state variables
and can also query its required state variables, the condition ϕ can contain all
kinds of state variables (together with the operation’s formal parameters as
logical variables). From the contract point of view the component guarantees
to issue the call to the operation n only if ϕ holds2. The postcondition π of
an output label formulates the expectations on the change of the data state
performed by the environment after the invoked operation has been executed.
Hence π must be a transition predicate over the required state variables which
expresses an assumption on the environment. The assumptions and guarantees of
a component concerning output labels accomplish the contract principle behind
data constraints as shown in Table 1.

Internal labels. Finally, a label [ϕ]i[π] stands for the execution of an internal
operation i. In this case ϕ describes the condition under which the internal
operation is executed which, like the precondition in output labels, can again
depend on all kinds of state variables. The postcondition π models the change
of the component’s data state caused by the execution of the internal operation i

1 The environment can in fact only see the observable consequences of the guarantee
π w.r.t. the provided state variables.

2 In fact, the environment can only see the observable consequences of the guarantee
ϕ w.r.t. the required state variables.

86 S.S. Bauer, R. Hennicker, and M. Bidoit

Table 1. Data constraints as contracts

Component

[ϕ]?m[π]

assume ϕ

guarantee π

[ϕ]!n[π]

guarantee ϕ

assume π

and hence, like the postcondition in input labels, must be a transition predicate
over the provided and the internal state variables.

Example 3. An example of an input label is the ΣLeg-label

[a ≤ maxStep] ?swing(a) [currStep′ = a ∧ steps ′ = steps + 1]

where maxStep and currStep are provided state variables, and steps is an in-
ternal state variable of component Leg . The primed expression currStep′ in the
postcondition indicates that we refer to the value of currStep in the poststate.
For component LegC , the expression

[a = min(distance − gone,maxStep)] !swing(a) [currStep′ ≤ a]

is a valid ΣLegC -label. This label expresses that the output swing(a) happens if
the precondition ϕ ≡ [a = min(distance − gone,maxStep)] is satisfied. Note that
ϕ involves all three kinds of state variables: the provided state variable distance,
the required state variable maxStep and the internal state variable gone. The
postcondition π ≡ [currStep′ ≤ a] involves (beside the parameter a) the required
state variable currStep. �

Definition 2 (MIOD). A modal I/O-transition system with data constraints

S = (statesS , startS , ΣS , Δmay
S , Δmust

S)

consists of a set of states statesS, the initial state startS ∈ statesS, an I/O-
signature ΣS, a may-transition relation Δmay

S ⊆ statesS ×L(ΣS)× statesS, and
a must-transition relation Δmust

S ⊆ Δmay
S . The class of all MIODs is denoted by

MIOD. The set of the (syntactically) reachable states of a MIOD S is defined by
R(S) =

⋃∞
n=0Rn(S) where R0(S) = {startS} and Rn+1(S) = {s′ | ∃(s,
, s′) ∈

Δmay
S such that s ∈ Rn(S)}.

Example 4. The MIOD SLeg specifying the behavior of the Leg component is
shown in Fig. 1. Must-transitions are drawn with solid arrows and may-transitions
with dashed arrows. Preconditions are written above or to the left of operations;

A Modal Interface Theory with Data Constraints 87

postconditions are written below or to the right of operations. Pre- and post-
conditions of the form [true] are omitted.

In the initial state 0, Leg can receive init() which has the effect of initializing
the internal state variable steps with 0. In state 1 the leg is able to receive lift(),
and then swing(a); in the latter case, the leg component assumes that the value
of the parameter a does not exceed the limit maxStep more than ten percent;
the maximal step size maxStep is a provided state variable, hence visible for the
connected leg controller. The guarantee of the leg component is then, that the
current step size is a and that the number of steps is increased by one. Next,
in state 3, the leg is put on the ground when the operation drop() is received,
and then, on reception of the operation call retract(), the leg is pulling the body
forward. Finally, an update message is sent to inform the leg controller how far
the leg has been moved forward. �

0 21

345

?init() [steps′ = 0] ?lift()

?drop()

[currStep′ = a

∧ steps′ = steps + 1]

?swing(a)

[a ≤ maxStep +maxStep/10]

!update(a)

?retract()

[a = currStep]

Fig. 1. Specification SLeg of the Leg component

3 Refinement of MIODs

The basic idea of modal refinement is that any required (must) transition in
the abstract specification must also be present in the concrete specification.
Conversely, any allowed (may) transition in the concrete specification must be
allowed by the abstract specification. Modal refinement has the following conse-
quences: A concrete specification may omit allowed transitions, but is required to
keep all must-transitions. Moreover, it is not allowed to perform more transitions
than the abstract specification admits.

Concerning the impact of data constraints, let us first consider required (i.e.
must) transitions of an abstract MIOD, say T , see Def. 3(1). Obviously, any
such transition with a precondition ϕT must also be executable in a refinement
S, whenever ϕT is valid. Hence there should be a corresponding must-transition
in S whose precondition ϕS does not require more than ϕT does. This condition is
independent of the kind of the labels. Concerning postconditions the situation is
different because postconditions are not related to the executability of transitions

88 S.S. Bauer, R. Hennicker, and M. Bidoit

but rather to the specification of admissible poststates after a transition has
fired. In this case, if the transition of T concerns input or internal labels, the
corresponding transition of the refinement S should lead to a postcondition πS

which guarantees the postcondition πT of T (expected, for instance, by a user
of a provided operation who relies on the postcondition given in the abstract
specification T , see 1(a) in Def. 3). However, if a transition of T concerns an
output label, then the postcondition πT expresses the expectation of T about
the next state of the environment. Then, a refinement S should not expect more
than the abstract specification does, i.e. πS should be at most weaker than πT ,
see 1(b) in Def. 3.

Let us now consider may-transitions of the concrete MIOD S, see Def. 3(2).
Obviously, any such transition with a precondition ϕS must be allowed by the
abstract specification T , whenever ϕS is valid. Hence, there should be a corre-
sponding may-transition in T whose precondition ϕT is at most weaker than ϕS

and this condition is again independent of the kind of the labels. As explained
above the situation is different when considering postconditions since they are
not related to the executability of transitions. Therefore, in this case, the kind of
the transitions (may or must) is irrelevant and hence the requirements 2(a)(b)
coincide with the requirements 1(a)(b) in Def. 3.

In summary, we can observe that the implication direction concerning precon-
ditions in a refinement depends on the kind of the transitions (may or must) while
the implication direction concerning postconditions in a refinement depends on
the kind of the labels (input, internal, or output).

Definition 3 (Modal Refinement of MIODs). Let S and T be two MIODs
with the same I/O-signature Σ = (V ,O). A binary relation R ⊆ statesS×statesT

is a modal refinement between the states of S and T iff for all (s, t) ∈ R

1. (from abstract to concrete) for all op ∈ O, if (t, [ϕT]op[πT], t′) ∈ Δmust
T , then

there exist s′ ∈ statesS and a transition (s, [ϕS]op[πS], s′) ∈ Δmust
S such that

(s′, t′) ∈ R, � ϕT ⇒ ϕS, and the following holds:
(a) if op ∈ Oprov ∪ Oint then � πT ⇐ πS,
(b) if op ∈ Oreq then � πT ⇒ πS .

2. (from concrete to abstract) for all op ∈ O, if (s, [ϕS]op[πS], s′) ∈ Δmay
S , then

there exist t′ ∈ statesT and a transition (t, [ϕT]op[πT], t′) ∈ Δmay
T such that

(s′, t′) ∈ R, � ϕT ⇐ ϕS, and the following holds:
(a) if op ∈ Oprov ∪ Oint then � πT ⇐ πS,
(b) if op ∈ Oreq then � πT ⇒ πS .

A state s ∈ statesS refines a state t ∈ statesT , written s ≤m t, iff there exists a
modal refinement between the states of S and T containing (s, t). S is a modal
refinement of T , written S ≤m T , iff startS ≤m startT .

In the following, we will illustrate the concepts of refinement and, later on, com-
patibility by means of our running example. We will focus here on the treatment
of data constraints by considering small excerpts of corresponding MIODs.

A Modal Interface Theory with Data Constraints 89

[currStep′ = a ∧ steps′ = steps + 1]

?swing(a)

[a ≤ maxStep +maxStep/10]

sL s′L

tL t′L

[a ≤ maxStep] ?swing(a) [currStep′ = a]

[true] ?swing(a) [currStep′ ≤ a]

TLeg
≤ m

SLeg

Fig. 2. Refinement SLeg of an abstract specification TLeg

Example 5. Fig. 2 shows excerpts of two MIODs specifying the component Leg ,
an abstract specification TLeg and the more concrete specification SLeg , see also
Fig. 1, which refines TLeg , i.e. SLeg ≤m TLeg. The abstract specification TLeg

expresses that under the precondition [a ≤ maxStep] a call to the operation
swing(a) must be accepted in any implementation such that in the state after
execution of the operation, the postcondition [currStep′ = a] is satisfied. The
proper may-transition of TLeg says that also such implementations are allowed
which accept the operation call swing(a) in states not satisfying [a ≤ maxStep],
and then the postcondition [currStep′ ≤ a] must be satisfied in the next state.

In the refinement SLeg there is only a must-transition. The refinement relation
holds since, as required by condition 1 in Def. 3, for the must-transition in TLeg

there is a corresponding must-transition in SLeg such that the precondition is
weakened (by allowing also values of the parameter a exceeding the maximal step
size at most by ten percent) and, according to 1(a) in Def. 3, the postcondition
is strengthened by requiring additionally [steps ′ = steps + 1]. Conversely, for
the direction from SLeg to TLeg, condition 2 in Def. 3 requires that the must-
transition (which is also a may-transition) in SLeg is allowed by the abstract
specification TLeg . This is indeed the case because for the transition in SLeg

there is a corresponding may-transition in TLeg such that the precondition is
weakened in TLeg and, according to 2(a) in Def. 3, the postcondition in SLeg is
stronger than the corresponding postcondition in TLeg . �

4 Composition and Compatibility of MIODs

MIODs can be composed to specify the behavior of concurrent systems of inter-
acting components with data constraints. The composition operator extends the
synchronous composition of modal I/O-transition systems [9]. Like for MIOs, we
need some syntactic restrictions under which two MIODs are composable. First,
we require that overlapping of operations only happens on complementary types
and that the same holds for state variables.

90 S.S. Bauer, R. Hennicker, and M. Bidoit

Definition 4 (Composability of I/O-Signatures). Two I/O-signatures
ΣS = (VS ,OS) and ΣT = (VT ,OT) are composable if

1. VS ∩ VT = (Vprov
S ∩ Vreq

T) ∪ (Vprov
T ∩ Vreq

S),
2. OS ∩OT = (Oprov

S ∩ Oreq
T) ∪ (Oprov

T ∩ Oreq
S).

The set VS ∩VT of shared state variables will be denoted by sh(VS ,VT) and the
set OS ∩ OT of shared operations will be denoted by sh(OS ,OT).

When two composable I/O-signatures are actually composed, the shared state
variables become internal. Likewise, the shared operations become internal rep-
resenting the synchronization of provided and required operations.

Definition 5 (Composition of I/O-Signatures). The composition of two
composable I/O-signatures ΣS = (VS ,OS) and ΣT = (VT ,OT) is the I/O-
signature ΣS ⊗ΣT = (VS ⊗ VT ,OS ⊗OT) where

(VS ⊗ VT)prov = (Vprov
S � Vprov

T) \ sh(VS ,VT),
(VS ⊗ VT)req = (Vreq

S � Vreq
T) \ sh(VS ,VT),

(VS ⊗ VT)int = V int
S � V int

T � sh(VS ,VT),

(OS ⊗OT)prov = (Oprov
S � Oprov

T) \ sh(OS ,OT),
(OS ⊗OT)req = (Oreq

S � Oreq
T) \ sh(OS ,OT),

(OS ⊗OT)int = Oint
S � Oint

T � sh(OS ,OT).

Two MIODs are composable if their signatures are composable and if the labels
occurring on their transitions satisfy certain syntactic constraints. Condition 1 in
Def. 6 is technically necessary to ensure that the composition of MIODs defined
below is well-formed. For instance, condition 1(a) requires that preconditions of
non-shared, provided operations must not include shared state variables; other-
wise the precondition of a provided operation in the composition would involve
internal state variables which is not allowed. Condition 2 in Def. 6 is needed from
an intuitive point of view. For instance, condition 2(a) requires that for shared,
provided operations preconditions of one MIOD can only talk about provided
variables which are known from the other MIOD as required variables.

Definition 6 (Composability of MIODs). Two MIODs S and T are com-
posable if their signatures ΣS = (VS ,OS) and ΣT = (VT ,OT) are composable,
if for all transitions (s, [ϕS]op[πS], s′) ∈ Δmay

S we have

1. if op /∈ sh(OS ,OT) then
(a) if op ∈ Oprov

S then ϕS ∈ S(Vprov
S \ sh(VS ,VT), par(op)),

(b) if op ∈ Oreq
S then πS ∈ T (Vreq

S \ sh(VS ,VT), par(op)),
2. if op ∈ sh(OS ,OT) then

(a) if op ∈ Oprov
S then ϕS ∈ S(Vprov

S ∩ Vreq
T , par(op)),

(b) if op ∈ Oreq
S then πS ∈ T (Vreq

S ∩ Vprov
T , par(op)),

and if the same holds symmetrically for all transitions (t, [ϕT]op[πT], t′) ∈ Δmay
T .

A Modal Interface Theory with Data Constraints 91

The composition of two MIODs S and T synchronizes transitions whose labels
refer to shared operations. For instance, a transition with label [ϕS]?op[πS] of
S is synchronized with a transition with label [ϕT]!op[πT] of T which results
in a transition with label [ϕS ∧ ϕT]op[πS ∧ πT] where the original preconditions
(postconditions resp.) are combined by logical conjunction. Transitions whose la-
bels concern shared operations which cannot be synchronized are dropped while
all other transitions are interleaved in the composition. Concerning modalities
we follow the MIO composition operator which yields a must-transition if two
must-transitions are synchronized and a may-transition otherwise.

Definition 7 (Composition of MIODs). The composition of two composable
MIODs S and T is the MIOD

S ⊗ T = (statesS × statesT , (startS , startT), ΣS ⊗ΣT , Δmay
S⊗T , Δmust

S⊗T)

where the transition relations Δmay
S⊗T and Δmust

S⊗T are defined by the following rules:

(s, [ϕS]op[πS], s′) ∈ Δγ
S , (t, [ϕT]op[πT], t′) ∈ Δγ

T

((s, t), [ϕS ∧ ϕT]op[πS ∧ πT], (s′, t′)) ∈ Δγ
S⊗T

op ∈ sh(OS ,OT),
γ ∈ {may, must}

(s, [ϕS]op[πS], s′) ∈ Δγ
S , t ∈ statesT

((s, t), [ϕS]op[πS], (s′, t)) ∈ Δγ
S⊗T

op �∈ sh(OS ,OT), γ ∈ {may, must}

(t, [ϕT]op[πT], t′) ∈ Δγ
T , s ∈ statesS

((s, t), [ϕT]op[πT], (s, t′)) ∈ Δγ
S⊗T

op �∈ sh(OS ,OT), γ ∈ {may, must}

Example 6. Assume given the MIOD SLeg of Fig. 1 and a MIOD SLegC describing
the behavior of the controller component LegC . Fig. 3 shows the result of the
synchronization of the two transitions of SLegC and SLeg concerning the shared

SLegC ⊗ SLeg

SLegC

SLeg

!swing(a)

?swing(a)

[currStep′ = a ∧ steps′ = steps + 1]

[a = min(distance − gone,maxStep)]

sC

[a ≤ maxStep +maxStep/10]

[(a = min(distance − gone,maxStep)) ∧ (a ≤ maxStep +maxStep/10)]

sC , sL

sL

s′C , s
′
L

s′L

s′C

[currStep′ = a ∧ steps′ = steps + 1]

swing(a)

[currStep′ ≤ a]

Fig. 3. MIOD composition

92 S.S. Bauer, R. Hennicker, and M. Bidoit

operation swing(a) which is an internal operation in the composition SLegC ⊗
SLeg . Similarly the shared state variable maxStep is an internal state variable in
SLegC ⊗ SLeg . �

As discussed above, if we want to compose two MIODs it is first necessary
to check composability which is a purely syntactic condition. But then it is
of course important that the two components work properly together, i.e. are
behaviorally compatible. The following compatibility notion builds upon (strong)
modal compatibility of MIOs as defined in [4]. From the control point of view
(strong) compatibility requires that in any reachable state of the product S⊗ T
of two MIODs S and T , if one MIOD may issue an output (in its current control
state) then the other MIOD is in a control state where it must be able to take
the corresponding input3. In the context of data states we have the additional
requirement that the data constraints of the two MIODs S and T must be
compatible. Since the data constraints imposed by a MIOD can be considered
as a contract (see Table 1) the two contracts according to S and T must match.
More precisely, matching means that the mutual assumptions and guarantees
of the two MIODs imply each other for any shared operation as illustrated in
Table 2. Thus, by combining the control flow and the data state aspects of
compatibility we obtain the following compatibility notion for MIODs.

Table 2. Data compatibility of MIODs

S T S ∼ T

[ϕm
S]?m[πm

S] [ϕm
T]!m[πm

T]

assume ϕm
S guarantee ϕm

T ϕm
S ⇐ ϕm

T

guarantee πm
S assume πm

T πm
S ⇒ πm

T

[ϕn
S]!n[πn

S] [ϕn
T]?m[πn

T]

guarantee ϕn
S assume ϕn

T ϕn
S ⇒ ϕn

T

assume πn
S guarantee πn

T πn
S ⇐ πn

T

Definition 8 (Compatibility of MIODs). Let S and T be two composable
MIODs. S and T are compatible, denoted by S ∼ T , if for all reachable states
(s, t) ∈ R(S ⊗ T),

1. if (s, [ϕS]op[πS], s′) ∈ Δmay
S and op ∈ (Oreq

S ∩ Oprov
T), then there exists a

must-transition (t, [ϕT]op[πT], t′) ∈ Δmust
T such that � ϕS ⇒ ϕT , and for all

may-transitions (t, [ϕT]op[πT], t′) ∈ Δmay
T it holds that � πS ⇐ πT ;

2. if (t, [ϕT]op[πT], t′) ∈ Δmay
T and op ∈ (Oreq

T ∩ Oprov
S), then there exists a

must-transition (s, [ϕS]op[πS], s′) ∈ Δmust
S such that � ϕT ⇒ ϕS, and for all

may-transitions (s, [ϕS]op[πS], s′) ∈ Δmay
S it holds that � πT ⇐ πS.

3 This concept follows a “pessimistic” approach where two components should be
compatible in any environment, in contrast to the “optimistic” approach pursued
in [6,9] which relies on the existence of a “helpful” environment.

A Modal Interface Theory with Data Constraints 93

Example 7. In SLegC ⊗ SLeg , the state (sC , sL) is a reachable state, see Fig. 3.
Compatibility holds because for the operation call swing(a) issued by SLegC

in state sC there exists a single must-transition of SLeg which guarantees the
reception of swing(a) in state sL such that the following holds (for any usual
satisfaction relation):

� (a = min(distance − gone,maxStep))⇒ (a ≤ maxStep + maxStep/10),
� (currStep′ = a ∧ steps ′ = steps + 1)⇒ (currStep′ ≤ a). �

We are now able to state our central result which says that compatibility is
preserved by refinement and that refinement is compositional (for compatible
MIODs). Thus our framework supports independent implementability.

Theorem 1 (Independent Implementability). Let S, S′, T , and T ′ be
MIODs, and assume that S, T as well as S′, T ′ are composable. If S ∼ T ,
S′ ≤m S and T ′ ≤m T , then S′ ∼ T ′ and S′ ⊗ T ′ ≤m S ⊗ T .

Proof. We first prove preservation of compatibility. Let (s′, t′) ∈ R(S′ ⊗ T ′) be
a reachable state in S′ ⊗ T ′. It follows from condition 2 of Def. 3 that there
exists a reachable state (s, t) ∈ R(S ⊗ T) such that t′ ≤m t and s′ ≤m s.
Assume that there exists a transition (s′, [ϕS′]op[πS′], ŝ′) ∈ Δmay

S′ such that op ∈
Oreq

S′ ∩Oprov
T ′ . From s′ ≤m s it follows that there exists (s, [ϕS]op[πS], ŝ) ∈ Δmay

S

such that � ϕS ⇐ ϕS′ and � πS ⇒ πS′ . From S ∼ T it follows that there exists
(t, [ϕT]op[πT], t̂) ∈ Δmust

T such that � ϕS ⇒ ϕT . Since t′ ≤m t we can conclude
that there exists (t′, [ϕT ′]op[πT ′], t̂′) ∈ Δmust

T ′ such that � ϕT ⇒ ϕT ′ . It follows
that � ϕS′ ⇒ ϕT ′ . Then, we must additionally show that for all accepting may-
transitions of T ′, the postcondition matches πS′ which is again straightforward.

For the proof of compositionality of modal refinement we define≤′m ⊆ (statesS′

× statesT ′)× (statesS × statesT) by

(s′, t′) ≤′m (s, t) iff s′ ≤m s, t′ ≤m t, (s′, t′) ∈ R(S′ ⊗ T ′) and (s, t) ∈ R(S ⊗ T).

Obviously, (startS′ , startT ′) ≤′m (startS , startT) and it remains to show that ≤′m
is a modal refinement between the states of S′⊗T ′ and the states of S⊗T . The
detailed proof can be found in [2].

Example 8. In Fig. 4, the principle of independent implementability is illustrated
in terms of our running example showing small excerpts of four MIODs. Starting
from the abstract MIODs TLegC and TLeg we first check their compatibility, i.e.
TLegC ∼ TLeg . Then we refine TLegC and TLeg independently of each other by
the MIODs SLegC and SLeg , respectively. Thm. 1 guarantees, first, that SLegC

and SLeg are compatible (as explained explicitly in Ex. 7) and secondly, that
SLegC ⊗ SLeg ≤m TLegC ⊗ TLeg holds. �

94 S.S. Bauer, R. Hennicker, and M. Bidoit

tC t′C

[currStep′ = a ∧ steps′ = steps + 1]

?swing(a)

[a ≤ maxStep +maxStep/10]

tL[currStep′ ≤ a]

!swing(a)

[a ≤ maxStep]

TLeg∼TLegC

≤ m ≤ m

SLegC ∼ SLeg

[a ≤ maxStep] ?swing(a) [currStep′ = a]

!swing(a)

[a = min(distance − gone,maxStep)]

s′CsC

t′L

s′LsL

[true] ?swing(a) [currStep′ ≤ a]

[currStep′ ≤ a]

Fig. 4. Compositional refinement of compatible components LegC and Leg

5 Conclusion

Modal I/O-transition systems (MIOs) provide a flexible framework for the spec-
ification and refinement of interacting, concurrent components. In this work we
have extended MIOs to take into account data constraints which allow to specify
the behavior of components with regard to changing data states. We have shown
that our proposal satisfies the requirements of an interface theory guaranteeing
preservation of compatibility and compositionality of refinements when moving
from abstract to more concrete specifications of interacting components.

We have tried to keep the formalism for refinement as simple as possible at
the cost of some restrictions. For instance, one would like to be able to refine
a single (abstract) must-transition with some precondition ϕ by several (con-
crete) transitions which distribute the precondition over several cases ϕi for
i = 1, . . . , n, such that ϕ ⇒ ∨

i ϕi. Similarly, one could relax the requirements
for may-transitions. Moreover, it would not be a problem to integrate state in-
variants in our framework.

In this paper we have worked on the level of specifications and their refinement
and compatibility which are clearly dependent on the syntactical representation
of the specification. We have not yet provided a formal semantics which would
allow us to define semantic notions of refinement and compatibility. A formal
semantics could be delivered in terms of the class of all correct implementations
of a specification as done for MIOs in [10] and for behavior protocols without
modalities but with data states in [3]. An implementation would then be mod-
eled by a transition system with must-transitions only and with concrete data
states given by valuations of the state variables. Concerning the interpretation of

A Modal Interface Theory with Data Constraints 95

specification transitions with pre- and postconditions, the implementation must
guarantee that single specification transitions of a component are executed in an
atomic way.

Verification techniques for refinement and compatibility are clearly an impor-
tant issue for future work. Further next steps are, from the theoretical point of
view, to extend our framework by taking into account weak versions of refine-
ment and compatibility abstracting away not only internal actions, as done for
MIOs in [10,4], but also internal state variables. From the practical point of view
we plan to integrate data constraints in our tool, the MIO Workbench [4], for
modal refinement and compatibility checking.

References

1. Barros, T., Ameur-Boulifa, R., Cansado, A., Henrio, L., Madelaine, E.: Behavioural
models for distributed Fractal components. Annales des Télécommunications
64(1-2), 25–43 (2009)

2. Bauer, S.S., Hennicker, R., Bidoit, M.: A modal interface theory with data
constraints. Technical Report 1005, Ludwig-Maximilians-Universität München,
Germany (2010)

3. Bauer, S.S., Hennicker, R., Janisch, S.: Behaviour protocols for interacting stateful
components. Electr. Notes Th. Comp. Sci. 263, 47–66 (2010)

4. Bauer, S.S., Mayer, P., Schroeder, A., Hennicker, R.: On weak modal compatibility,
refinement, and the MIO Workbench. In: Esparza, J., Majumdar, R. (eds.) TACAS
2010. LNCS, vol. 6015, pp. 175–189. Springer, Heidelberg (2010)

5. Bidoit, M., Hennicker, R., Knapp, A., Baumeister, H.: Glass-box and black-box
views on object-oriented specifications. In: Proc. SEFM 2004, Beijing, China, pp.
208–217. IEEE Comp. Society Press, Los Alamitos (2004)

6. de Alfaro, L., Henzinger, T.A.: Interface Theories for Component-Based Design.
In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp.
148–165. Springer, Heidelberg (2001)

7. Fernandes, F., Royer, J.-C.: The STSLib project: Towards a formal component
model based on STS. Electr. Notes Th. Comp. Sci. 215, 131–149 (2008)

8. Fischer, C.: CSP-OZ: a combination of Object-Z and CSP. In: Proc. FMOODS,
Canterbury, UK, pp. 423–438. Chapman and Hall, Boca Raton (1997)

9. Larsen, K.G., Nyman, U., Wasowski, A.: Modal I/O Automata for Interface and
Product Line Theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007)

10. Larsen, K.G., Nyman, U., Wasowski, A.: On Modal Refinement and Consistency.
In: Caires, L., Li, L. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 105–119. Springer,
Heidelberg (2007)

11. Larsen, K.G., Thomsen, B.: A Modal Process Logic. In: 3rd Annual Symp. Logic in
Computer Science, LICS 1988, pp. 203–210. IEEE Computer Society, Los Alamitos
(1988)

12. Mouelhi, S., Chouali, S., Mountassir, H.: Refinement of interface automata
strengthened by action semantics. Electr. Notes Theor. Comput. Sci. 253(1),
111–126 (2009)

Synchronizing Model and Program Refactoring

Tiago Massoni1, Rohit Gheyi1, and Paulo Borba2

1 Federal University of Campina Grande
{massoni,rohit}@dsc.ufcg.edu.br
2 Federal University of Pernambuco

phmb@cin.ufpe.br

Abstract. Object models provide abstract information about software
structure, but their maintenance is difficult after refactoring takes place.
In Model-Driven Development (MDD), effective transferral of model
refactoring changes to programs is problematic, especially if these pro-
grams are subject to developer manipulation. Consequently, code-driven
approaches end up being adopted. We formalize a theory of synchroniz-
ers, which are sequences of behavior-preserving program transformations.
This theory makes use of invariant-based refactoring, the key idea be-
hind synchronizers. We also establish and prove a soundness theorem for
synchronizers. By uncovering the formal requirements for correct refac-
toring synchronization, the proved properties point out issues – regarding
consistency, refactoring automation and quality – that recur in several
MDD settings that employ object models.

1 Introduction

Refactoring [1,2] improves program structure while preserving behavior. Ad-
ditional benefits can be obtained from object model [3,4] refactoring, useful
for restructuring software abstractions and invariants, by means of semantics-
preserving transformations. Synchronization of these transformations to source
code is essential [5] in Model-Driven Development (MDD) contexts [6].

However, this is an open problem in the MDD community, especially when
both models and programs are manipulated [7]. Automatic generation of artifacts
has long been known for their limitations – automation is hard to achieve [8]. In
fact, the relationship between object model and object-oriented (OO) program
constructs may be complex to deal with, and tools often fail to deal with the
desired abstraction gap. As a consequence, many projects abandon models early
in the life cycle, adhering to code-driven approaches. Methods and tools for – at
least partially – removing human interaction in the process are invaluable to the
refactoring practice. Several approaches try to deal with the relationship between
model and program transformations [9,10,11,12,13], although, to the best of our
knowledge, none has analyzed specific aspects of refactoring and synchronization
issues between object models and source code.

This article presents a formal model for synchronized refactoring of object
model and programs by means of proven primitive semantics-preserving trans-
formations. In particular, our theory is centered on a model-driven approach on

J. Davies, L. Silva, and A. Simão (Eds.): SBMF 2010, LNCS 6527, pp. 96–111, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Synchronizing Model and Program Refactoring 97

which each model transformation is associated with a synchronizer, a sequence
of program transformations, which (1) updates code declarations and (2) adapts
statements according to the modified declarations – as explained in Section 3.
This unidirectional (model to code) approach to synchronization presents a fun-
damental effect: it allows powerful program refactoring directly from abstract
information provided by object model invariants. Previous publications delin-
eate the model-driven approach to refactoring [14], and preliminary conclusions
on the use of invariants as basis for automatic refactoring [15]. Those contribu-
tions are extended in this paper with a description of synchronizers, soundness
proofs and discussion (Sections 3, 4 and 5, respectively).

We establish our theory on previous work in primitive model [16] and program
transformations [17,18]. Object models in Alloy [3] express objects, relations and
invariants equivalently to the core concepts of UML class diagrams. For pro-
grams, we consider a Java-like language [19]. These languages are explained in
Section 2. A general soundness theorem is defined and proved for synchronizers
(Section 4); in this proof, we ensure that synchronizers are program refinements
(preserving behavior) and the refactored program is consistent with the refac-
tored model. Consistency is defined in terms of syntax and semantics; only the
syntactic consistency must be adjusted for other languages – the semantic map-
ping is language independent. The need for the proved properties unveils issues
that will recur in several MDD contexts that employ object models, related to
automation and refactoring quality (Section 5).

2 Languages

In our theory, we consider object models in Alloy [3], and programs in a Java-like
language, developed for reasoning about object-oriented programming [19].

2.1 Model Refactoring

Alloy [3] presents formal type system and semantics for writing object models.
An Alloy model contains a sequence of paragraphs ; a signature defines a new
type. A signature paragraph introduces a basic type and a collection of rela-
tions, along with their types and constraints on their values. For instance, an
object model for a file system defines signatures for FSObject and Name – set
defines unconstrained relations. In Alloy version 3, one signature can extend an-
other, establishing that the extended signature is a subset of its supersignature
(File). In addition, facts are used to package model invariants. In the following
fragment, the formula states that, from all file system objects, only directories
may contain other objects. The join operator ‘.’ represents relational dereference,
and FSObject - Dir expresses all FSObjects instances that are not directories
(set difference has the conventional meaning).

sig Name {}
sig FSObject { name: set Name, contents: set FSObject }
fact { (FSObject-Dir).contents = {} }
sig File extends FSObject {}

98 T. Massoni, R. Gheyi, and P. Borba

Regarding model transformations in Alloy, a catalog of primitive transforma-
tions was proposed [16]. Algebraic laws formalize two primitive transformations;
equivalence allows application of the law in both directions. As an example of a
law, a new subsignature can be introduced or removed from an existing hierarchy
(Law 1). An empty subsignature X can be introduced if declared with a fresh
name. After this transformation, the supersignature U becomes abstract (defin-
ing no direct instances), as denoted by the invariant denoting the objects in X
are the objects in U , except those in S or T (X = U−S−T). Similarly, X can be
removed if it is not being used and no expression exp of its type exists (exp ≤ U ,
but exp �≤ S and exp �≤ T), where ≤ denotes subtyping. Some meta-variables
are useful as notation: rs represents relations, while forms represents a set of
formulas. Each box represents a template with which actual Alloy declarations
can match (ps denotes the paragraphs that are not showed in the template). Ad-
ditionally, below the templates, provisos that ensure transformation correctness
are established. (←) defines provisos for application from Left-to-Right (L-R),
while (→) defines provisos for applying the law from Right-to-Left (R-L).

Alloy Law 1 〈introduce subsignature〉
ps
sig U { rsU }
sig S extends U{ rsS }
sig T extends U{ rsT }
fact F {forms} =

ps
sig U {rsU}
sig S extends U{ rsS }
sig T extends U{ rsT }
sig X extends U{}
fact F {

forms
X = U − S − T
}

provided

(→) (1) ps does not declare any paragraph named X; (2) there is no signature in ps that extends

U ;

(←) X does not appear in ps, rsU , rsS, rsT and forms; (2) there is no expression exp, where

exp ≤ U and exp �≤ S and exp �≤ T , in ps or forms.

The equivalence respects the notion proposed for Alloy [20]. The catalog of Alloy
laws has been proven sound and complete in a theorem prover [21]. Furthermore,
these laws can be used as basis for several applications that require semantics-
preserving transformations, such as model refactorings. Since primitive laws are
simpler – dealing with a few language constructs – they can be more easily
proven sound. By construction, a composition of laws is also correct, providing
safe refactorings for object models.

2.2 Program Refactoring

The Java-like language is inspired by Banerjee and Naumann’s work [19]; it does
not consider interfaces, multithreading or library classes. A program is a set of
classes, a class table CT , which always includes a class named Main, with a main
method as the starting point of execution. A generic class declaration is defined

Synchronizing Model and Program Refactoring 99

as follows: class C extends D { T̄ f̄ ; M̄ }. , where T̄ f̄ stands for typed fields in the
class, while M̄ represents a list of methods.

Only bool and unit (the empty type) are predefined as primitive types in the
language; from these types, other primitives may be built. Furthermore, expres-
sions do not have side effects; object construction occurs only as a command.
Similarly, method calls occur in special assignments x:= e.m(ē) defining both
side effect and a return value. Methods can be defined recursively, so loops are
omitted.

We adapted to this language a complete set of laws of programming [18]. The
following law, for instance, establishes that instantiations of a class B can be
replaced by instantiations of its superclass A, as long as B is an empty class. This
replacement can occur either in the body of A’s methods or any method in the
set of class declarations CT (a class table). CT [exp′/exp] denotes a substitution.
Replacement is applicable when expressions of type A are not cast with B and
B instances are assigned only to A-typed variables. The opposite application is
constrained by a proviso: tests involving A-typed variables with B may not work
if A’s instances become B instances. fds and mts represent, respectively, fields
and methods. A primed metavariable, like mts′, is a transformed version of the
unprimed one, as defined in the where clause. A sample of other laws used in
this paper are presented in a technical report [22].

Law 1 〈new superclass〉
class A extends C {

fds
mts
}
class B extends A { }
CT

=

class A extends C {
fds
mts′

}
class B extends A { }
CT ′

where
CT ′ = CT [new A/new B]
mts′ = mts[new A/new B]
provided
(→) (1) B is not used in type casts or tests in CT or mts for expressions of type A;
(2) x := new B only appears if type(x) ≤ A;
(←) Variables of type T ≤ A are not involved in tests with type B.

In addition to equivalence laws, there are laws for class refinement that involve
internal representation changes such as addition and removal of private fields.
In these laws, simulation is established within a class by a constructor making
the coupling invariant true and every method executing on a valid state and
resulting in another valid state, as they are based on Morgan’s refinement no-
tion [23]. These laws have been proven sound and complete as well, although
within a language lacking object references [18]. In order to avoid this limitation
in work, we guarantee modular reasoning by using confinement as a requirement
for programs.

Ownership confinement [24] is a discipline for controlling aliasing in object-
oriented languages, restricting access to designated representation objects (reps),
except through their owners, to avoid representation exposure [19]. An owner
is a class that maintains representation objects stored in the fields of its

100 T. Massoni, R. Gheyi, and P. Borba

objects. Banerjee and Naumann [19] present a number of static analysis rules
for ensuring a property called by them safety, which is shown in their work to
imply confinement. The input is a class table and its division into three sets of
classes: Own and Rep, defining the possibly non-disjoint sets of owner and rep-
resentation classes, respectively, and Client with all other classes. The analysis
is modular, as only Own and Rep code is constrained (with one exception, for
new commands). They present the rules as follows:

1. Public methods declared in Own or subclasses cannot return Rep types; otherwise, references
to internal objects might leak to clients;

2. Methods inherited or declared by Own cannot have parameters of Rep types; otherwise, non-
owner subclasses might have access to Rep instances;

3. Rep classes cannot inherit any methods from non-Rep superclasses; for instance, a method
could return self to a client, which is highly undesirable;

4. For any field access e.f , if e is of type Own, it cannot access fields of type Rep, unless e is self ;
this rule must be checked only for public fields, as it is guaranteed by type safety for private
fields;

5. For assignments x:= new B in Client, B cannot be Rep or any of its subclasses; otherwise,
these clients would have direct access to Rep instances;

6. For method calls x:= e.m(ē): (1) if e is a Client object, and the call is within Own or Rep (or
subclasses), m cannot have Rep parameters (otherwise Rep instances could leak); also, (2) if
the call is within Own, m is declared in Own, and e is self , parameters and return may be Rep
type. The second case in fact weakens the confinement constraints with a condition that can
be detected by static analysis.

3 Synchronization

Given a specific consistency relationship between object models and programs,
we formalize a unidirectional approach of model-driven refactoring by applying
synchronizers.

3.1 Synchronizers

For object models, we adopt the approach of primitive transformations being
composed into refactorings. To each Alloy law from the catalog we associate a
synchronizer – set of conditional program transformations disciplined by laws
of programming – to be applied to a program, making it consistent with the
transformed object model. The mechanics of the synchronization is depicted in
Figure 1, where OM represents an object model, and P a program. The first step
is the application of a model refactoring (a) – in this case, made up of two Alloy
laws, X and Y, applied from L-R. Next, each applied law is associated with a
synchronizer (depicted as “corresponds” in Figure 1; for instance, Law X corre-
sponds to Sync X), applied to P. The sequential application of the synchronizers
in (b) results in a synchronized program.

A synchronizer carries out program refactoring by applying a sequence of law
applications, on the assumption of the consistency relationship defined in the
next section. The only preconditions for the application of synchronizers is that
the program must have confinement for a subset Own of classes and in syntactic
and semantic consistency with the previous version of the model. Therefore, the
synchronizers are especially conceived to exploit the model invariants that are
known to be met by the program; program transformations are specialized with

Synchronizing Model and Program Refactoring 101

Fig. 1. Model-driven refactoring with synchronizers

high-level assumptions about the program. In fact, we analyzed each Alloy law
and conceived synchronizers for both application directions.

A synchronizer must then exhibit the following characteristics: it rewrites pro-
grams for updating corresponding abstractions that were refactored in the object
model, and preserves program behavior. Therefore, every synchronizer fulfills a
few requirements: its application results in programs that refine the previous
version and establish consistency with the refactored model, syntactically and
semantically, as explained next. In addition, confinement is maintained.

3.2 Consistency Relationship

A desirable property of object models is abstraction; ideally, they can be imple-
mented by several structurally-distinct programs, as long as the invariants hold
during their executions. Structures in the model must be somehow implemented
in the program, offering a basis for evaluating whether the modeled constraints
are met. We call this correspondence syntactic consistency. Given a syntactic
consistency relationship, fulfillment of model invariants by the executions of a
given program is regarded as semantic consistency.

We chose a particular syntactic consistency: there must be one direct class
for each signature declared in the model (for simplicity, this specification relies
on the equality between names, although a mapping between names could be
easily established as well). Also, all supersignatures of a signature must have
corresponding superclasses of class S, indicating that more superclasses may
be declared in the program, but the modeled hierarchy is maintained. Likewise,
every relation is mapped to one field with an exactly matching type, with one ad-
ditional constraint: relations with single multiplicity (yielding a scalar value) are
mapped to single field, whereas relations with set multiplicity must be mapped to
collection-type fields. Additional classes, fields or methods can be freely declared
in the program.

102 T. Massoni, R. Gheyi, and P. Borba

Regarding semantics, an Alloy model defines valid states for a given system
– interpretations [16] – that contain mappings of signatures and relation names
to sets of object values. Object values may be single objects for sets and pairs of
objects for relations. We consider the semantics of an object model in Alloy as
the set of all valid interpretations satisfying all modeled invariants. Each of these
interpretations consists of all valid assignments of values to signatures and the
relation names. All modeled invariants – implicit or explicit [16] – are satisfied.
Invariants are implicit when they constrain the model but are not declared in
facts, such as implicit constraints from extends.

For programs, states are formalized as heaps of object values, mapping class
names to sets of objects and field names to pairs of object values (references). If
an object in a heap contains a field storing a null value, no pair of values exists
with that object as the first member. The semantics of a program is given by the
set of sequences of heaps resulting from all possible execution traces – depending
on the possible program inputs.

It would be straightforward to consider all heaps from every execution trace;
however, this approach does not truly reflect the real intentions of consistency
checking, since some heaps may be acceptably invalid at some well-defined points
of the program. We adopt a specification methodology by Barnett et al. [25],
in which every object is added a special validity field. If this field has a true
value, the invariants over its state should hold, and consistency checking is only
performed when all objects are valid. This field can only be modified through the
use of two special statements, unpack and pack. The command unpack obj
sets the field to false, while pack obj does the opposite.

Our semantic consistency regards solely valid heaps (which we call heaps of
interest). A program is in semantic consistency with a model if, and only if, it
is in syntactic consistency, and, for every valid heap from its execution, there is
a corresponding interpretation from the semantics of the model.

3.3 Examples of Synchronizers

For each applied Alloy law, two synchronizers are defined. In this paper we show
two synchronizers associated with Law 1: introduce and remove subclass. We
define synchronizers in a notation for refinement tactics, based on the Angel
language [26]. Angel constructs are appropriate for describing law applications,
with the needed arguments. Tactics may be a simple law applications, with the
law name with arguments. A law application may have two possible outcomes:
if all provisos are satisfied, then program is transformed. Otherwise, the appli-
cation of the law fails. For instance, law newSuperclass(U, X,→) applies Law
A (new superclass) to the program, with three arguments: the superclass (U),
the subclass (X) and the application direction (→: from L-R). A special atomic
tactic, skip, always succeeds, leaving the program unchanged.

In order to sequentially composing two tactics, the t1; t2 construct can be
used. Similarly, tactics combined in alternation have the form (t1|t2). First, t1 is

Synchronizing Model and Program Refactoring 103

applied to the program; if this application is successful, then the composite tactic
succeeds. Otherwise t2 is applied. Finally, if t2 fails, then the whole tactic aborts
(which is a more critical situation than failure). When the tactic contains many
choices, the first choice that succeeds is selected. In addition, the language allows
us to define pattern matching within a program, with the constraint applies to.
For instance, applies to cmd[(X)e] do t applies the t tactic to every command
in the program that includes an expression cast with X .

Introduce Subclass. Law 1(L-R) introduces a subsignature for one of the
declared signatures. This makes U abstract according to the modeled invariant
(X=U-S-T). Here we show the associated synchronizer, that accepts a consistent
program. However additional classes can be declared in the program hierarchy.

Tactic introduceSubclass(X, U : Class)
(law rename(X, X′) | skip);
law classElimination(setExtends(X, U),←);
law newSuperclass(U, X,→);

end

The trivial law rename(X, X ′) renames the X class. If it fails (for the case in
which the class is not declared), nothing happens (skip). If class X is already
present, it is freely renamed to X’, because X is considered in this case an im-
plementation detail that was not modeled. This action does not have impact on
the consistency, as renamed declarations are not in the model. Next, the syn-
chronizer introduces the new class X as a direct subclass of U, with Law class
elimination [22]. setExtends makes X a direct subclass of U . Other subsig-
natures of U will be declared as classes, although their inheritance relationship
with U may be indirect – implementation-only subclasses are allowed. Finally,
every U object creation in the entire program is replaced by X instantiations, by
Law 1 from L-R ([new X/new U]).

The synchronizer provides evidence on how model-driven refactoring can im-
prove tool support for refactoring, since the semantic properties from object
models can aid refactoring automation. In introduceSubclass, the program is
refactored to a specific configuration of U objects, making them X instances.
This information cannot be obtained solely from the source code, then introduc-
ing a plain subclass would not include the changes applied by the synchronizer.

Remove Subclass. The opposite transformation given by Law 1 removes sub-
signature X assuming the invariant (X=U-S-T); S and T become the U’s only
subsignatures. The synchronizer removes the corresponding X class, although,
differently from the model, the program class may declare fields and methods,
and may have implementation-only subclasses.

The following definition uses several auxiliary tactics, which are informally
shown in this paper; their complete definitions are described in [17].

Tactic removeSubclass(X : Class)
tactic moveUpFields(X);
tactic moveUpMethods(X);
tactic changeDeclarationsTypetoSuper(X);
applies to cmd[(X)e] do law eliminateCastExpressions(cmd[(X)e],→);

104 T. Massoni, R. Gheyi, and P. Borba

tactic eliminateTypeTests(X, ‘‘bool isX(){ result := self is X }”);
tactic eliminateNew(X);
law changeSuperfromEmptyToImmediateSuperclass(immedSubs(X),

super(X),→);
law classElimination(X,→);

end

The auxiliary tactic moveUpFields pulls up the fields declared in X to the im-
mediate superclass. If the target superclass has any other subclass declaring the
moved field, the tactic moves two or more fields with the same name to the
superclass in one step; if it is not the case, the single field is moved to the super-
class, with Law move field to superclass [22]. Next, X’s methods are pulled up as
well, with the auxiliary tactic moveUpMethods. In this case, the synchronizer
must deal with two cases: redefined and non-redefined methods:

– The redefined methods are removed from X and the corresponding method
body in the superclass is modified with an if command that adds the body
of the moved method, using Law move redefined method to superclass. Also
within the tactic, super method calls are eliminated by inlining from object
to X, top-down in the hierarchy (Law eliminate super [22]); for this, all private
fields in this hierarchy are first made public;

– The non-redefined methods must be copied to other subclasses of B, with
an empty body, so no type errors occur with the new method in B.

After removing its fields and methods, X is replaced by its superclass on decla-
rations over the program, with changeDeclarationsTypetoSuper; in this tactic,
Law change field type and analogous laws are applied. Next, In the main tactic,
casts to X are removed with another law (eliminate casts of expressions). Consec-
utively, eliminateTypeT ests removes type tests involving X, with the following
steps:

1. A boolean method isX is declared within B and its subclasses. This method
is a surrogate for the type tests that are going to be eliminated.
The method body returns the value of testing self with X and subclasses (in
this example, Z);

class B { . .
bool isX (){ result := s e l f i s X ∨ s e l f i s Z} }

2. Every occurrence of x is X must be replaced by a special statement, a
parameterized command [18]. A parameterized command of the form
test:= (result:= x is X) is then be replaced by a method call to isX.
For avoiding null pointer errors, we introduce an if statement for ensuring
that the expression being tested is not null;

i f (x=null) then t e s t := f a l s e else t e s t := x . isX ()

3. Additional changes are performed for backing up the isX test. Field type is
introduced and initializations to this field are added to X’s constructor and
every constructor in X’s subclasses;

Synchronizing Model and Program Refactoring 105

class X extends B { constr { . . ; s e l f . type := "X"} }
class Z extends X { constr { . . ; s e l f . type := "Z"} }

4. Within overriding isX implementations, expression self is X is replaced
with the equivalent expression self.type = "X";

Regarding constructors, X declares a constructor that must be replaced, as ev-
ery new X will be rewritten as new B. Hereafter, we consider a command of
type x:= newX to be a syntactic sugar for the following sequential composi-
tion: x:= new’ X; x.newX(), in which new’ is the regular instantiation of
an object, whose reference is assigned to x. It is followed by a call to newX, a
method of class X containing the actual constructor body, used for initializing
fields. After defining this replacement for every X instantiation, the synchronizer
moves newX to the superclass B (which contains the initialization for the type
field). After this, the new’ X commands can be replaced by new’ B commands
in the whole program, with Law A. An excerpt of the result can be seen next.

class B { . . string type ; . .
bool isX () { result := s e l f . type="X" ∨ s e l f i s Z }
unit newX() { { . . s e l f . type := "X"} } }

class X extends B { } . .
B x:= new ’ B; x . newX () ; . .

Finally, the extends clause of X’s subclasses, then X can be eliminated. In gen-
eral, automated refactorings only remove subclasses when they are not used any-
where in the program. In contrast, this synchronizer can prepare programs when
removal of the given subclass is desirable. It replaces all uses of this subclass by
the correspondents given by an invariant (stating that class U is abstract).

The defined synchronizers follow the correspondence in Table 1. Other laws of
modeling do not have corresponding synchronizers, as they deal with syntactic
sugar in the model, which does not affect the syntactic consistency.

Table 1. Synchronizers corresponding to Alloy laws

Alloy Law synchronizer → synchronizer ←
1.Introduce Relation introduceField removeField

2.Introduce Subsignature introduceSubclass removeSubclass

3.Introduce Signature introduceClass removeClass

4.Introduce Generalization introduceSuperclass removeSuperclass

5.Split Relation splitField removeIndirectReference

6.Remove Lone Relation fromOptionalToSetField fromSetToOptionalField

7.Remove One Relation fromSingleToSetField fromSetToSingleField

4 Soundness

A soundness theorem is established for synchronizers. The rationale behind this
theorem is the set of conditions for a sound synchronized refactoring. Given these
conditions, the compromises for automating the involved transformations can be

106 T. Massoni, R. Gheyi, and P. Borba

analyzed in depth, showing issues that will recur in several MDD contexts. Thus,
proofs for synchronizers constitutes the core of our approach. Sound synchroniz-
ers depend on the defined consistency relationship and two additional properties:
(1) they must express refinements and (2) preserve program confinement.

Theorem 1 is defined for an arbitrary object model (OM), and an arbitrary
program (P), in which the application of a law to OM results in OM ′, and a
synchronizer applied to P results in P ′. We define additional predicates from law
definitions: Refines(P’,P), in which the second argument refines the first, and
Confined(P), stating that P satisfies the static analysis confinement rules from
Section 2.2, for a subset Own of the class table. premises(OM, OM ′, P) states
the conditions before the application of a synchronizer, as defined in our technical
report [22] – an Alloy law applied to OM results in OM’, and consistency and
confinement constraints apply to OM and P.

Theorem 1. ∀ OM, OM ′, P , P ′ • premises(OM, OM ′, P ′) ⇒
syntConsistency(OM ′, P ′) ∧ Confined(P ′) ∧
Refines(P ′, P) ∧ semanticConsistency(OM ′ , P ′)

The proof of each synchronizer is split in four supporting lemmas. The theorem’s
meta-variables OM , OM ′, P and P ′ are concretized for each synchronizer.

Lemma 1. ∀OM, OM ′, P, P ′ • premises(OM, OM ′, P)⇒ syntConsistency(OM ′, P ′)
Lemma 2. ∀OM, OM ′, P, P ′ • premises(OM, OM ′, P)⇒ Confined(P ′)
Lemma 3. ∀OM, OM ′, P, P ′ • premises(OM, OM ′, P)⇒ Refines(P ′, P)
Lemma 4. ∀OM, OM ′, P, P ′ • premises(OM, OM ′, P)⇒ semanticConsistency(OM ′ , P ′)

We proved the synchronizers listed in Table 1, as detailed in [17]; for illustration,
here we present the proof for removeSubclass. Model and program definitions
for the proof are shown in our technical report [22]. Assuming premises(OM,
OM ′, P), we now prove the four previous lemmas.

Proof for Lemma 1. Since no relations are added or removed, the mapping
between relations and fields is unchanged. Regarding signatures, X is removed,
which is the only class that is removed from the program, establishing the con-
formance. The hierarchy remains unchanged. Thus syntConsistency(OM ′, P ′)
follows from the premises.

Proof for Lemma 2. By case analysis on P ′ for the six static analysis rules of
confinement from Section 2.2. For each rule, we justify its maintenance in terms
of the premises and P ′. In this case, X /∈ Rep.

1. Class B is the only one to receive new methods. If B ∈ Own, then from
premise(OM, OM ′, P) methods previously in X could never have Rep return
types;

2. No inherited methods are added, thus from premise(OM, OM ′, P) no in-
herited methods have Rep parameters;

3. Same as above, thus from premise(OM, OM ′, P), Rep classes do not inherit
methods from non-Rep classes;

4. No public fields of Own classes are used outside their declaring module, thus
from premise(OM, OM ′, P) no e.f is seen, unless e is self ;

Synchronizing Model and Program Refactoring 107

5. From premise, if x:=new X was outside Own classes, X /∈ Rep. Assuming
the command is outside Own, it is impossible to have X /∈ Rep and B ∈ Rep,
since all subclasses of Rep classes are also included. Therefore, property is
maintained;

6. From premise, e.m(..) within Own or Rep does not have Rep parameters;
no changes in parameters or Rep are made, so property is maintained.

Proof for Lemma 3. Since the synchronizer steps are exclusively defined as law
applications and class refinement [18], P refines P ′. Some of the applied laws
can be seen in [22]1.

Proof for Lemma 4. First, any interpretation can be reduced without the map-
pings to X . This is possible since values of X cannot be interpreted alone, from
the given invariant X = U − S − T . Consequently, semantics of OM ′ is the set
of interpretations from the semantics of OM , with mapping from X removed.
Likewise, for P and P ′, the valid heaps of P ′ are the valid heaps of P reduced in
mappings from the X class; this conclusion is implied from the invariant that is
assumed in the program. Also, the changed commands (type casts and tests) do
not add or remove new possible heaps; all X instances that are not B instances
are still mapped by U in the heap.

5 Discussion

In this section, the contributions and limitations of our synchronization model
are discussed, especially topics related to automation and quality of refactorings.

5.1 Invariants as Basis for Refactoring Automation

The practice of refactoring has been improved by supporting tools, avoiding
manual work and increasing trust on semantics preservation. Usually a catalog
of refactorings is offered, from which developers can choose the desired transfor-
mation for the problem in context. These automated refactorings present pre-
conditions that are checked against the code subject to refactoring, in order to
ensure correctness. While being effective to ensure safe refactorings – at least in
theory – it leads to prevention of refactoring on programs that would be eligible
if some semantic assumptions about the program behavior were considered.

Semantic assumptions about the program can be provided by object models,
then synchronizers exploit invariants to increase the applicability of some au-
tomated refactorings. Transformations based on these invariants can be applied
to programs that would not be eligible for refactoring using the current tools.
When removing a subclass, for example, the synchronizer assumes the invariant
X = U−S−T as true in every reachable program state outside a unpack/pack

1 The laws have been proven semantics preserving for a programming language without
references [18]. However, we have proven that these laws are still correct in the
presence of confinement [17].

108 T. Massoni, R. Gheyi, and P. Borba

block. In this case, the subclass X can be removed, given that U is an abstract
class.

Certainly there are several open questions. For instance, it is not clear how
invariants will be automatically identified by a refactoring tool for the application
of specific refactorings. Our intuition is that catalogs of program refactorings
could be extended with improvements based on invariants, conditionally applied
based on a set of invariants.

5.2 Quality of Refactorings

With formal synchronizers, quality factors such as cohesion and legibility still
requires some improvement in the resulting program. For instance, the succes-
sive application of removeSubclass may result in numerous implementations of
methods for eliminating type tests, which is clearly amenable to simplification.
Therefore, additional refactoring might be necessary, such as inlining these calls
and removing methods. These transformations are also formalizable as laws of
programming. Although theoretically feasible, these law applications could not
be automatically applied in the formal model, since our initial assumption is that
each synchronizer is recorded and independently applied in order, disregarding
the composed refactoring that was applied to the model.

In this scenario, we envisage developer feedback as a possible answer to this
challenge, in addition to complementary synchronizers. In this case, the appli-
cation of the model refactoring could bring additional information that is then
applied in the program refactoring, according to feedback from the developer of
a supporting tool. If the developer agrees, a complementary synchronizer, con-
taining the additional law applications, is automatically applied. The outcome of
the complementary synchronizer is an improved program, yet still conforming,
syntactically and semantically, to the refactored model.

5.3 Consistency and Synchronizers

The required consistency relationship was adjusted during the formalization of
synchronizers. Several choices have been considered and this scenario allowed
us to gather evidences on how the chosen consistency affects the final results of
model-driven program refactorings.

The rule of thumb states that, the more abstract are the models, the looser
(different possible implementations for the same object model) is the syntactic
consistency relationship. The syntactic mappings between model and program
declarations drive the freedom of implementation for modeled signatures and re-
lations. At the end, we adopted a tighter consistency relationship than initially
expected: signatures must be implemented as classes and relations as fields in
the corresponding class. Nevertheless, the required consistency relationship still
preserves some abstraction: methods and additional classes can be freely im-
plemented, and hierarchies can contain more classes than modeled. In addition,
the modeled signatures and relations must be implemented in a uniform way, so
the synchronization is still compelling for the user. As refactoring is a structural

Synchronizing Model and Program Refactoring 109

modification, the declarations in the model must be reflected in the source code
for desired transformation; otherwise, the task would be rather pointless.

In addition, the looser is the syntactic consistency, the more complex become
the program transformations needed to refactor the program. When giving more
freedom of implementation to a specific model declaration, synchronizers must
consider every implementation option for this declaration, in order to achieve
automation. In this context, synchronizers must be more elaborate, which often
clutters the program, decreasing quality. This is certainly a trade-off for any
synchronization approach.

6 Related Work

The concept of coupled transformation in Lammel’s overview [10] has a close
correspondence to our approach. Coupled transformations occur when “two or
more artifacts of potentially different types are involved, while transformation at
one end necessitates reconciling transformations at other ends such global con-
sistency is reestablished” [10], which is the scenario for model-driven refactoring.
This type of synchronization seem to fit into the “symmetric reconciliation” cat-
egory, in which two distinct transformations – for model and program – are
defined for a given consistency relationship, adapting changes according to the
specific level of abstraction for which they are defined.

Bidirectional model transformations (bx) [11,12] have the purpose of formal-
izing synchronization between changed artifacts during the software life cycle
(in this approach, model is a comprehensive concept, which includes programs).
The proposal includes an abstract definition of synchronizers, which may even
be bidirectional (updating both artifacts). Several concepts are similarly formu-
lated – such as unidirectional synchronizers – but no particular approaches of
bx are defined for object models and programs. Therefore, our results could be
confirmed in such scenario by concretizing bx.

The Harmony tool [13], for instance, is based on the concept of bx. The au-
thors introduce the concept of relational lenses, which are pairs of transformation
functions, namely get and putback, between source and target artifacts. The get
function transforms a source artifact into a target artifact. Updates can be per-
formed on the target artifacts, then an updated source artifact can be obtained
with the putback function, with information from the original source artifact
and the updated target artifact. Analogously, in our theory get is similar to the
required consistency relationship, although we avoid generation of artifacts. The
source artifact can be a program, and the target can be an object model.

Another related study is carried out by Antiewicz and Czarnecki [27], which
formally defines several synchronization alternatives between software artifacts.
Their synchronization definitions are applied with the help of formal operators.
Several elements are common with our approach, for instance developer feedback
for automation and related and independent transformations. Since we focus on
a specific type of synchronization (object models to programs), our theory is
able to reveal detailed issues about consistency and transformation.

110 T. Massoni, R. Gheyi, and P. Borba

7 Conclusions

In this paper, we formalized a synchronization theory from object model refac-
toring to object-oriented programs. The theory is backed by a formal infras-
tructure of primitive transformations proved to be semantics preserving, both
for object models and programs, and a specific consistency relationship. Syn-
chronizers are formalized as a sequence of primitive program transformations,
explicitly avoiding generation of programs from object models. The investiga-
tion unveils several issues concerning consistency, refactoring automation and
behavior preservation and quality, providing evidence over the challenges that
effective MDD methodologies will face in order to support evolution. Potential
improvements for refactoring tools are identified, since the semantic properties
from object models can aid refactoring automation. In our synchronizers the
invariants expressed in the object model offer semantic information to extend
its automatic refactoring capabilities.

The level of abstraction is a key aspect. First, useful model refactoring requires
that the main structures be maintained. Second, less restrictions to the source
code implementation imply in more transformations required to make the source
code conforming to the refactored model, which would lower the quality of the
outcome. Assumptions include reliance on the maturity of consistency checking
tool support in practice and a closed-world context in which we have access to
the full source code of a program.

The theory described in this paper is language specific, although the formal-
ization is amenable to adaptation to other object-oriented languages. In addition,
our approach supports only refactoring; dealing with generic evolution in MDD
is a challenge for future research. A potential solution might rely on primitive
transformations for standard evolution, and model invariants could be used to
transform programs accordingly.

Acknowledgment

We’d like to thank Augusto Sampaio, Alexandre Mota, Ana Cristina de Melo,
Marcel Oliveira, Juliano Iyoda, and all anonymous reviewers for the relevant
comments. This work was partially supported by CNPq grant 477336/2009-4,
and the National Institute of Science and Technology for Software Engineering
(INES2), also funded by CNPq, grant 573964/2008-4.

References

1. Fowler, M.: Refactoring—Improving the Design of Existing Code. Addison-Wesley,
Reading (1999)

2. Opdyke, W.: Refactoring Object-Oriented Frameworks. PhD thesis, UIUC (1992)
3. Jackson, D.: Software Abstractions: Logic, Language and Analysis. MIT Press,

Cambridge (2006)

2 www.ines.org.br

Synchronizing Model and Program Refactoring 111

4. Liskov,B.,Guttag,J.:ProgramDevelopmentinJava.Addison-Wesley,Reading(2001)
5. Mens, T., Tourwe, T.: A survey of software refactoring. IEEE Transactions on

Software Engineering 30, 126–139 (2004)
6. Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories: Assembling Appli-

cations with Patterns, Models, Frameworks, and Tools. Wiley, Chichester (2004)
7. France, R.B., Rumpe, B.: Model-driven development of complex software: a re-

search roadmap. In: FOSE 2007, pp. 37–54 (2007)
8. Hettel, T., Lawley, M., Raymond, K.: Model synchronisation: Definitions for round-

trip engineering. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008.
LNCS, vol. 5063, pp. 31–45. Springer, Heidelberg (2008)

9. Harrison, W., Barton, C., Raghavachari, M.: Mapping UML Designs to Java. In:
Proceedings of OOPSLA 2000, pp. 178–187 (2000)

10. Lammel, R.: Coupled software transformations. In: SET, pp. 31–35 (2004)
11. Diskin, Z.: Algebraic models for bidirectional model synchronization. In: Busch, C.,

Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301,
pp. 21–36. Springer, Heidelberg (2008)

12. Stevens, P.: A Landscape of Bidirectional Model Transformations. In: Lämmel, R.,
Visser, J., Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 408–424. Springer,
Heidelberg (2008)

13. Bohannon, A., Pierce, B., Vaughan, J.: Relational lenses: a language for updatable
views. In: PODS, pp. 338–347 (2006)

14. Massoni, T., Gheyi, R., Borba, P.: Formal model-driven program refactoring. In:
FASE-ETAPS 2008, pp. 362–376 (2008)

15. Massoni, T., Gheyi, R., Borba, P.: An approach to invariant-based program refac-
toring. In: Setra Workshop 2006, pp. 91–101 (2006)

16. Gheyi, R., Massoni, T., Borba, P.: A static semantics for alloy and its impact in
refactorings. ENTCS 184, 209–233 (2007)

17. Massoni, T.: A Model-Driven Approach to Formal Refactoring. PhD thesis, UFPE
(2008)

18. Borba, P., Sampaio, A., Cavalcanti, A., Cornélio, M.: Algebraic Reasoning for
Object-Oriented Programming. Science of Computer Programming 52, 53–100
(2004)

19. Banerjee, A., Naumann, D.A.: Ownership confinement ensures representation in-
dependence for object-oriented programs. Journal of the ACM 52, 894–960 (2005)

20. Gheyi, R., Massoni, T., Borba, P.: An abstract equivalence notion for object mod-
els. ENTCS vol.130, pp.3–21 (2005)

21. Gheyi, R., Massoni, T., Borba, P.: A Complete Set of Object Modeling Laws for
Alloy. In: Oliveira, M.V.M., Woodcock, J. (eds.) SBMF 2009. LNCS, vol. 5902, pp.
204–219. Springer, Heidelberg (2009)

22. Massoni, T., Gheyi, R., Borba, P.: Synchronizing model and program refactoring
(2010), http://www.dsc.ufcg.edu.br/~spg/uploads/massoni-tech10.pdf

23. Morgan, C.: Programming from Specifications, 2nd edn. Prentice-Hall, Englewood
Cliffs (1998)

24. Clarke, D.: Object Ownership and Containment. PhD thesis, UNSW (2001)
25. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification of

Object-Oriented Programs with Invariants. Journal of Object Technology 3, 27–56
(2004)

26. Martin, A.: Machine-Assisted Theorem-Proving for Software Engineering. PhD
thesis, Penbroke College (1994)

27. Antkiewicz, M., Czarnecki, K.: Design space of heterogeneous synchronization. In:
GTTSE, Braga, Portugal, pp. 3–46 (2008)

http://www.dsc.ufcg.edu.br/~spg/uploads/massoni-tech10.pdf

A Type-Theoretic Framework for
Certified Model Transformations

Daniel Calegari1, Carlos Luna1,2 Nora Szasz2, and Álvaro Tasistro2

1 Instituto de Computación, Universidad de la República, Uruguay
{dcalegar,cluna}@fing.edu.uy

2 Facultad de Ingenieŕıa, Universidad ORT Uruguay
{luna,szasz,tasistro}@ort.edu.uy

Abstract. We present a framework based on the Calculus of Inductive
Constructions (CIC) and its associated tool the Coq proof assistant to al-
low certification of model transformations in the context of Model-Driven
Engineering (MDE). The approached is based on a semi-automatic trans-
lation process from metamodels, models and transformations of the MDE
technical space into types, propositions and functions of the CIC techni-
cal space. We describe this translation and illustrate its use in a standard
case study.

1 Introduction

Model-Driven Engineering (MDE, [1]) is a software engineering paradigm based
on the specification of models of a system as the primary development activity.
The feasibility of the approach is based on the existence of a semi-automatic
construction process driven by model transformations, starting from abstract
models of the system and transforming them until an executable model is gener-
ated. In consequence, the quality of the whole process strongly depends on the
quality of the model transformations. The highest level of quality is achieved by
proving desired properties of the transformations. Although formal verification
techniques may be expensive, they can be helpful in guaranteeing the correctness
of critical applications where no other verification technique is acceptable. Since
the MDE approach is intended to succeed in a broad spectrum, we think it is
worth exploring how formal verification techniques could be applied within it.

As summarized in Figure 1, a model transformation takes as input a model
Ma conforming to a given source metamodel MMa and produces as output an-
other model Mb conforming to a given target metamodel MMb. The model
transformation can be defined as well as a model Mt which itself conforms to
a model transformation metamodel MMt. There are well known metamodeling
languages like the MOF [2] and KM3 [3]. In some cases, there are conditions
(called invariants) that cannot be captured by the structural rules of these lan-
guages, in which case modeling languages are supplemented with another logical
language, e.g. the Object Constraint Language (OCL) [4]. There are different
model transformation approaches, as described in [5,6]. In our case we select a

J. Davies, L. Silva, and A. Simão (Eds.): SBMF 2010, LNCS 6527, pp. 112–127, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Type-Theoretic Framework for Certified Model Transformations 113

Fig. 1. An overview of model transformation

model-to-model relational approach, which is based on specifying a transforma-
tion as a set of relations (rules) that must hold between source and target model
elements. Languages within this approach are QVT [7] and ATL [8].

There are basically two levels at which the verification of a model transfor-
mation can be exercised: the model and the metamodel levels. Model-level veri-
fication works on specific source and target models related by a transformation.
Verification techniques within this approach are mainly based on model-checking
or simply testing. This approach is in many cases a practical and valuable aid
but it cannot ensure the zero-fault level of quality since it checks a finite num-
ber of specific cases. Furthermore, there exist well-known limitations such as
the state-explosion problem within model checking. An interesting work on the
model-level verification of properties is [9] where the language Alloy is used for
writing declarative model transformations and the Alloy Analyzer tool is used
to conduct fully automated analysis of certain properties with the limitations
mentioned above.

In contrast, metamodel-level verification ensures that a model transformation
respects certain relations between model instances conforming to the source and
target metamodels. This requires the use of formal verification techniques. Works
within this approach are [10,11]. The first one is limited to the verification of
model refinement transformations whereas the second one is restricted to prove
semantic equivalence between source and target models.

We are concerned to metamodel-level verification of model transformations,
considering any kind of transformation and properties. We expect the approach
to be helpful whenever zero-fault model transformations are required.

We propose the construction of a type-theoretic framework for the certification
of model transformations, representing the schema in Figure 1. In particular, we
explore the idea of using the Calculus of Inductive Constructions (CIC) [12] as a
technical space for dealing with provably correct model transformations. Within
this framework, metamodels MMa and MMb above are represented as inductive
types. On the other hand, each transformation rule of the model transformation
Mt is represented as a logical formula (called TRule) of ∀∃ form stating that for
every model element satisfying a certain (pre-)condition, there exists a target
model element which stands in the relation specified by the transformation rule
with the source model element.

114 D. Calegari et al.

The correctness of the model transformation is stated as the following logical
formula.

∀ Ma:MMa. (Pre(Ma) → ∀ Mb:MMb. (TRules(Ma,Mb) → Post(Ma,Mb)))

where Pre is a translation of the source invariants, TRules is the conjunction of
the transformation rules, and Post is a translation of the target invariants plus
any other desired property to be proved. A proof of this formula ensures that the
transformation rules satisfy the target invariants as well as the desired properties.
We propose a semi-automatic translation process from the MDE technical space
–used by developers– to the CIC technical space –used for formal verification.

The choice of the CIC is dictated by its very considerable expressive power as
well as by the fact that it is supported by a tool of industrial strength, namely
the Coq proof assistant [13]. As one example of its applicability, Coq has been
used for the development and formal verification of a compiler of a large subset
of the C programming language [14].

The idea of using type theory in the context of MDE has been formulated be-
fore by Poernomo in [15,16]. He formulates a type theory of his own –a variant of
Martin-Löf’s constructive type theory– and outlines a method for representing
MOF models as types. Then, he follows the classical approach in type theory
where pre- and post-conditions are represented as types, and a program (trans-
formation) is derived as a function between those types. Our work differs in
the representation of metamodels as will be explained later. Another important
difference is that he performs program derivation to obtain a transformation
whereas we translate a given transformation as a formula and verify this trans-
lation with respect to certain pre- and post-conditions. Finally, we base our
proposal on an existent type theory with its corresponding supporting verifica-
tion tool, which allows us to put into practice the ideas presented, unlike the
works in [15,16].

As compared to previous work by the authors, the representation of model
transformations described here differs substantially from the one presented in
[17], as will be explained later.

The remainder of the paper is structured as follows. We first describe our
framework in Section 2. In Section 3 we give some details about the formal
representation of models and metamodels, and about model transformations in
Section 4. Then, in Section 5 we explain how properties are verified. Finally, in
Section 6 we present a short summary with concluding remarks and an outline
of further work.

2 Outline of the Approach

We use the Calculus of Inductive Constructions (CIC) as a technical space for
dealing with provably correct model transformations. In the following sections
the CIC is introduced and our framework is outlined, using a running example.

A Type-Theoretic Framework for Certified Model Transformations 115

2.1 The CIC as a Technical Space

The CIC is a type theory, i.e. in brief, a higher order logic in which the individuals
are classified into a hierarchy of types. The types work very much as in strongly
typed functional programming languages which means that, to begin with, there
are basic elementary types, recursive types defined by induction like lists and
trees (called inductive types) and function types. A (dependent) record type is a
non-recursive inductive type with a single constructor and projection functions
for each field of the type. An example of inductive type is given by the following
definition of the lists of elements of (parametric) type A, which we give in Coq
notation (data types are called “Sets” in the CIC):

Inductive list : Set :=

| nil : list

| cons : A -> list -> list.

The type is defined by its constructors, in this case nil: list A and
cons : A -> list A -> list A and it is understood that its elements are ob-
tained as finite combinations of the constructors. Well-founded recursion for
these types is available via the Fixpoint operator.

On top of this, a higher-order logic is available which serves to predicate on the
various data types. The interpretation of the propositions is constructive, i.e. a
proposition is defined by specifying what a proof of it is and a proposition is true
if and only if a proof of it has been constructed. As a consequence, elementary
predicates are also defined as inductive types, by giving the corresponding proof
constructors. The type of propositions is called Prop.

We refer to [18,12] for further details on the CIC and Coq, respectively.

2.2 The Framework at a Glance

Although our approach is language independent, we are working with the ATL
technical space. ATL (Atlas Transformation Language, [8]) is a hybrid of declar-
ative and imperative transformation language. Since we are concerned with a
model-to-model relational approach, we focused on the declarative part of ATL.
In this context, an ATL transformation specification is composed of rules that
define the correspondence between source and target model elements. In this
technical space, source and target metamodels are specified using KM3 (Kernel
MetaMetaModel, [3]) which provides a textual concrete syntax that eases the
coding of metamodels.

During software construction a developer specifies the input and output meta-
models and the transformation between them. We propose that at this point
a separation of duties is implemented for performing formal verification. We
conceive the participation of a (human, expert) verifier, who will carry out a
semi-automatic translation process from the ATL to the CIC technical space, as
outlined in Figure 2.

116 D. Calegari et al.

Fig. 2. An outline of our approach

The first step of the process is the formalization of the KM3 source and target
metamodels as inductive types (MMa and MMb). Then, every ATL transformation
rule is transformed into a logical proposition involving both the source and target
metamodels (TRules). The third step is the translation of every OCL invariant
into a logical proposition. Source invariants are taken as pre-conditions (Pre)
of the model transformation. Target invariants and the desired properties of the
transformation are taken as post-conditions (Post), which will be our proof goals.
Finally, the verification is interactively performed in Coq by proving the post-
conditions assuming that both the pre-conditions and the transformation rules
hold. Additionally, the verifier can use the full expressiveness of Coq in order to
include post-conditions that cannot be, or are not suitable to be, expressed in
OCL.

2.3 A Running Example

We will illustrate our proposal by using an example based on a simplified ver-
sion of the well-known Class to Relational model transformation [19]. Figure 3
shows both metamodels of this transformation. An UML class diagram consists
of classes which contain one or more attributes. Each attribute has a type that
is a primitive datatype. Every class, attribute and primitive data type is gene-
ralized into an abstract UML model element which contains a name and a kind
(persistent or not persistent). On the other side, a RDBMS model consists of
tables which contains one or more columns. Each column has a type, and every
RDBMS model element is generalized into an abstract RDBMS model element.

The transformation describes how persistent classes of a simple UML class
diagram are mapped to tables of a RDBMS model with the same name and
kind. Attributes of the persistent class map to columns of the table. The type
of the column is a string representation of the primitive data type associated to
the attribute.

This example is clearly not a critical application where our approach is par-
ticularly helpful. However, it is complete and simple enough to exemplify out
approach, and has been used as a standard test case for various transformation

A Type-Theoretic Framework for Certified Model Transformations 117

Fig. 3. UML metamodel and RDBMS metamodel

languages. For this reason, it will be used in the following sections in order to
exemplify the verification process steps.

3 Formalization of Metamodels and Models

In this section we show how to represent metamodels and models in the CIC.
For metamodels we show how every KM3 construction is translated into Coq no-
tation, using the UML metamodel of the example mentioned in Figure 3 above.
The whole translation has been defined and implemented as an ATL transfor-
mation. For space reasons we cannot include it here but it can be found in [20].

Data Types and Enumerations. Coq supports primitive data types like
strings, booleans and natural numbers, among others, via libraries equipped
with many useful functions. This is enough to represent ATL primitive types.
In ATL it is also possible to define enumeration types and use them to define
class attributes. Enumeration types are directly represented in Coq as inductive
types with one constructor for each enumeration literal.

Classes and Attributes. A class has attributes. An attribute has a name,
a multiplicity and a type. We represent classes using inductive types. For each
class its attributes are represented as components of the corresponding type by
means of a constructor which has its attributes as parameters. A class can be
abstract, meaning that there are no direct instances of it. This impacts on the

118 D. Calegari et al.

representation of models as explained below, but not on the inductive represen-
tation of the class. In the example above, the class UMLModelElement is defined in
Coq as follows.

Inductive UMLModelElement : Set :=

| Build_UMLModelElement (oid : nat) (name : string) (kind : string)

Notice the presence of the component named oid in the representation of the
UMLModelElement. This provides a means for identifying the actual objects that
are to be instances of the various classes, i.e. the oids implement object identity,
beyond the constructor identity provided by the CIC.

In order to manipulate the components of the classes we define projections for
each attribute. They are trivially defined using pattern matching. As an example
we show just the projection of the attribute name of the UMLModelElement class.

Definition UMLModelElement_name (o : UMLModelElement) : string :=

match o with

| (Build_UMLModelElement _ n _) => n

end.

References. A reference represents an association between classes. It has a
name, a multiplicity and a type (of the element been referenced), and it may
have an opposite reference (bidirectional association). The natural choice for
representing associations is by lists of pairs of related elements. In order to opti-
mize navigability, the references of each class can be considered as components
of the corresponding type, in the same way as attributes. This results in using
mutually inductive types for representing related classes.

In the example below, the references from a Class to its Attributes is repre-
sented as a component within the constructor of the Class type.

Inductive Class : Set :=

| Build_Class ...

(attribute : list Attribute)

Now, if for a given class and reference an opposite reference exists, the elements of
the source class must form part of those of the target class and viceversa, i.e. the
objects of both classes are not well-founded. In general, this situation might arise
whenever several classes are mutually related through cycling associations and
we can characterize it as the admissibility of circularity in the actual construction
of (thereby infinite) objects. In these cases we seem to need co-inductive types,
as pointed out in [15,17]. However, taking such an approach forces us in the
general case to introduce all the mutually connected classes as mutually defined
co-inductive types. And then some disadvantages arise, concerning both the
correctness of the representation and its ease of use. The main problem is that
there will in general be cycles of references of classes of the model for which no
actual cycle at the level of object formation is intended to occur, even when some
other reference cycles in the same model allow the circularity of object formation.

A Type-Theoretic Framework for Certified Model Transformations 119

Hence, we have in general that some of the classes involved in the represented
metamodel will not be intended to actually contain infinite structures, namely
those participating in references in which no actual cycle at the level of objects
is admissible. But even in such cases, the definition of the classes as co-inductive
allows them to contain infinite structures. This compromises the correctness of
the representation in at least two respects: first, circularity at the level of objects
cannot be prevented at syntax (type) level and secondly, the termination of
functions on these types cannot be enforced. Although these restrictions could
be imposed on the co-inductive definition of the model, that would lead to a
representation too awkward to manage in practice.

We therefore decide to use only inductive types. This is enough for the cases
in which no circularity at the level of objects is to be allowed, since the well-
foundedness of the latter is imposed by construction. More precisely, we represent
directly only unidirectional references, using mutually inductive types whenever
circularity at the level of the objects is not allowed in the metamodel. If, on the
contrary, we should have to allow for such circularity then we use the first repre-
sentation mentioned above, i.e. associations as list of pairs of related elements.
This procedure has as a particular case that of the bi-directional associations.

Deciding which references are represented in either way in an optimal way
depends on how the model elements are used in the transformation. This is a
point in which, although possible, the automation of the representation of the
metamodel might not be desirable. In the implemented translation of [20] the
references of each class are represented as components of the corresponding type,
and circularity must be manually “cut” by the human verifier.

Multiplicities. Attributes and references have multiplicities. Each multiplicity
has a lower and an upper value and multiplicity 1 is assumed if none is declared.

When representing references as components, multiplicity reflects itself in the
type of the component. This is the same as in the case of attributes. Multiplicity
0..1 is represented with the option type constructor, which has constructors
None representing no element and Some x for elements x in the original type. If
the upper multiplicity value is greater than 1, the multiplicity is represented
with a (possibly ordered) list type. Multiplicity 1 corresponds just to the type
of the component.

In the example we have the following multiplicities.

[1-1] -- name : string

[0-*] -- attribute : list Attribute

When representing associations as list of pairs of related elements, multiplicity is
enforced by explicit constraints on the number of pairs allowed for each element
of the participant classes.

Generalization and Abstract Classes. In ATL it is also possible to define
generalization relations between classes. The CIC does not have a notion of
subtyping between types, unlike [15]. We represent this notion as references
from the subtypes to it(s) supertype(s). With this representation we can easily

120 D. Calegari et al.

navigate from a subclass to a property of it superclass. Notice that when a
generalization exists, the oids are located only at the topmost supertype.

In the example, the PrimitiveDataType class has a reference to its supertype
UMLModelElement.

PrimitiveDataType : Set :=

| Build_PrimitiveDataType (super : UMLModelElement)

The whole UML metamodel in Figure 3 is defined in Coq as follows.

Inductive UMLModelElement : Set :=

| Build_UMLModelElement (oid : nat) (name : string) (kind : string).

Inductive Class : Set :=

| Build_Class (super : UMLModelElement)

(attribute : list Attribute)

with

Attribute : Set :=

| Build_Attribute (super : UMLModelElement)

(type : PrimitiveDataType)

with

PrimitiveDataType : Set :=

| Build_PrimitiveDataType (super : UMLModelElement).

Finally, a model that conforms to a metamodel is represented as a record contain-
ing the lists of instances of each non-abstract metamodel element, as suggested
in [21]. In the example a model conforming to the UML metamodel would be a
record of the following type.

Record SimpleUML : Set :=

mkSimpleUML {classAllInstances : list Class;

primitiveDataTypeAllInstances : list PrimitiveDataType;

attributeAllInstances : list Attribute

}.

In the example every element in the model is reachable from the Class instances,
so the record can in fact be reduced to just a list of classes.

4 Translation of the Model Transformation

We show next how ATL constructs can be translated into Coq notation, using
the example transformation in Section 2.3. Briefly, every ATL declarative trans-
formation rule is transformed into a logical proposition, and helper (auxiliary)
functions are translated into Coq functions. Not every ATL construct is consid-
ered since some of them (e.g. modules) are not relevant for our study. The whole
transformation of the example can be found in [20].

A Type-Theoretic Framework for Certified Model Transformations 121

Data Types. ATL’s data types are based on the OCL. They include primitive
types (boolean, integer, real, string), tuples, enumerates, collections (set, ordered
set, bag, sequence), among others. All these types can be represented in Coq as
described in section 3.

OCL Declarative Expressions. ATL uses additional OCL declarative expre-
ssions in order to structure the code. ATL’s If-Then-Else, Let (which enables
the definition of variables) and constant expressions (constant values of any sup-
ported data type) are natively supported in Coq. Finally, the collection iterative
expressions are supported in Coq with recursion operators on lists.

Helpers and Attributes. Helper/attribute call expressions as well as opera-
tion call expressions are OCL-based expressions. ATL helpers factorize code that
can be called from different points of an ATL transformation. An ATL helper is
defined by the following elements: a name, a context type, a return value type,
an ATL expression that represents the code of the ATL helper, and an optional
set of parameters, in which a parameter is identified by a pair (parameter name,
parameter type). From a functional point of view an attribute is a helper that
accepts no parameters. Both helpers and attributes are represented as functions
in the richly-typed functional programming language provided by Coq. The main
issue in this translation is that Coq imposes the condition that every recursion
be well-founded, which has to be proven in each case.

In the example there is the following helper function that transforms a
PrimitiveDataType into a string which represents the type of a column in the
database.

helper context SimpleUML!PrimitiveDataType def :

primitiveTypeToStringType : String =

if (self.name = ’INTEGER’)

then ’NUMBER’

else if (self.name = ’BOOLEAN’)

then ’BOOLEAN’

else ’VARCHAR’

endif

endif;

The Coq function resulting from its translation is as follows. Notice that the
comparison between strings (=) is performed by an auxiliary function
string_eq_bool which returns a boolean value.

Definition primitiveTypeToStringType (primitiveType : string) : string :=

match (string_eq_bool primitiveType "INTEGER") with

| true => "NUMBER"

| false => match (string_eq_bool primitiveType "BOOLEAN") with

| true => "BOOLEAN"

| false => "VARCHAR"

end

end.

122 D. Calegari et al.

Matched Rules. The matched rules constitute the core of an ATL declarative
transformation since they make it possible to specify the kind of source elements
for which target elements must be generated, and the way the generated target
elements have to be initialized. A matched rule is introduced by the following
construction.

rule rule_name {

from in_var : in_type [(condition)]

[using { var1 : var_type1 = init_exp1;

... }]

to out_var1 : out_type1 (bindings1),

...

}

The source pattern is defined after the keyword from. It enables to specify a
model element variable that corresponds to the type of source elements that
the rule has to match. When defined, the local variable section is introduced
by the keyword using. The target pattern of a matched rule is introduced by
the keyword to. It serves to specify the elements to be generated when the
source pattern of the rule is matched, and how these generated elements are
initialized (bindings). An optional condition (expressed as an ATL expression)
within the rule source pattern is used to select the subset of the source elements
that conform to the matching type.

Matched rules are generally translated into propositions of the form

∀ a:A. (a ∈ InstA ∧ Cond(a) → ∃ b:B. (b ∈ InstB ∧ Rel(a,b)))

expressing that for every object a of the type A (of the source model element
in the matched rule) in the set InstA of all instances of type A which satisfies
certain condition Cond, there exists an object b of the type B (of the target
model element in the matched rule) in the set InstB of all instances of type B,
for whom the relation Rel holds. The relation Rel is a conjunction of the bindings
defined in the matched rule. If there are no other matched rules that define the
existence of a target model element for whom the same relation Rel holds, then
the proposition must state the unique existence of the target model element.
There are also propositions describing the relation in the reverse direction (i.e.
from the target to the source elements).

The formulæ thus obtained amount to (basic) specifications of the transfor-
mation rules at a propositional level. This stands in contrast to the approach
in [17] where transformations were represented as functions about which the
relevant properties had to be proven, leading to lengthy work that can now be
avoided.

In the example we have the following matched rule that transforms an
Attribute of a class diagram into a Column of the database. The name of the
column will be the name of the attribute, and the type of the column will be the
name of the PrimitiveDataType associated to the attribute (the helper already
introduced is used in this case).

A Type-Theoretic Framework for Certified Model Transformations 123

rule AttributeToColumn{

from a : SimpleUML!Attribute ()

to c : SimpleRDBMS!Column (

name <- a.name,

type <- a.type.primitiveTypeToStringType

)

}

We represent this matched rule as follows:

Definition AttributeToColumn (c : Class) (t : Table) : Prop :=

(forall atr:Attribute, In atr (Class_attribute c) ->

exists! col:Column, In col (Table_column t) /\

RModelElement_name (Column_super col) = Attribute_name atr /\

Column_type col = primitiveTypeToStringType

(PrimitiveDataType_name (Attribute_type atr)))

/\

(forall col:Column, In col (Table_column t) ->

exists! atr:Attribute, In atr (Class_attribute c) /\

RModelElement_name (Column_super col) = Attribute_name atr /\

Column_type col = primitiveTypeToStringType

(PrimitiveDataType_name (Attribute_type atr))).

Notice that the relation is described in both directions, and also that there is
only one source and target elements for which the proposition holds.

For the sake of completeness we present the other matched rule that trans-
forms every persistent Class into a Table of the database. The name of the table
must be the same as the class, and the columns of the table will be the trans-
formation of the attributes of the class which is performed by the matched rule
AttributeToColumn.

rule ClassToTable{

from c : SimpleUML!Class (c.kind = ’Persistent’)

to t : SimpleRDBMS!Table (

name <- c.name,

cols <- c.attribute

)

}

This matched rule is represented in Coq as follows.

Definition ClassToTable (ma : SimpleUML) (mb : SimpleRDBMS) : Prop :=

(forall c:Class, In c (MClass_classAllInstances ma) /\

Class_kind c = "Persistent" ->

exists! t:Table, In t (MRelational_tableAllInstances mb) /\

Class_name c = Table_name t /\

AttributeToColumn c t)

/\

124 D. Calegari et al.

(forall t:Table, In t (MRelational_tableAllInstances mb) ->

exists! c:Class, In c (MClass_classAllInstances ma) /\

Class_kind c = "Persistent" /\

Class_name c = Table_name t /\

AttributeToColumn c t).

5 Verification of Properties

OCL invariants of both source and target metamodels are translated into propo-
sitions in the CIC. This, at a large measure, can be done automatically follow-
ing the ideas presented in [22]. The desired properties of the transformation are
specified in the CIC by the verifier using the full potential of the logic. These pro-
perties will in general establish relations between (any instances of) the source
and target metamodel connected by the transformation.

A simple property of the example transformation is that the length of the
Columns within a Table must be grater than zero. This can be written in OCL as
follows.

context Table inv:

self.column->length() > 0

In Coq, this property can be expressed as follows.

Definition TableAtLeastOneCol (model : SimpleRDBMS) : Prop :=

forall t:Table, (In t (MRelational_tableAllInstances model)) ->

length (Table_column t) > 0.

This property holds by the fact that every Attribute is transformed into a Column

and that every Class has at least one Attribute. This information is given in the
transformation rules and in the source invariants, respectively.

The invariants of the target metamodel and any other desired properties of
the transformation (Post) are interactively verified in Coq by assuming that the
invariants of the source metamodel (Pre), and the transformation rules (TRules)
hold. In this way, the correctness proposition becomes:

∀ Ma:MMa. (Pre(Ma) → ∀ Mb:MMb. (TRules(Ma,Mb) → Post(Ma,Mb)))

In the example, the Coq lemma to prove is as follows.

Definition Post (ma : SimpleUML) (mb : SimpleRDBMS) : Prop :=

TableAtLeastOneCol mb.

Definition TRules (ma : SimpleUML) (mb : SimpleRDBMS) : Prop :=

ClassToTable ma mb.

Lemma Cert_Class2Relational:

forall ma:SimpleUML, Pre ma -> forall mb:SimpleRDBMS, TRules ma mb

-> Post ma mb.

A Type-Theoretic Framework for Certified Model Transformations 125

Notice that in this case the transformations rules are only the satisfaction of
the ClassToTable rule, since every source model element involved in the trans-
formation is reached from the class elements. The postcondition is the property
TableAtLeastOneCol, defined above.

The Coq proof assistant helps building proofs using tactics (inference rules).
We refer to the Coq documentation [13] for further details. The proof of this
property can be found in [20].

There are other properties which can be proved for this transformation, for
example the following OCL invariants.

context Table inv:

Table.allInstances()->isUnique(name)

context Table inv:

self.cols->isUnique(name)

The first one states that the name of a Table is unique. This holds because every
Class is transformed into a Table and because the name of a Class is unique.
The second property states that the name of a Column is unique within a Table,
which holds because the name of an Attribute is unique within a Class.

The framework allows stating and proving more interesting properties which
involve both the source and target metamodels. In these cases the properties
cannot be expressed in OCL but can be expressed in Coq. For example, we
proved that the number of tables is equal to the number of persistent classes, in
Coq notation:

Definition ClassTableEqLen (ma : SimpleUML)

(mb : SimpleRDBMS) : Prop :=

length (filter isPersistent (MClass_classAllInstances ma)) =

length (MRelational_tableAllInstances mb).

The proof of this property is done by induction on both
MClass_classAllInstances and MRelational_tableAllInstances which are the
lists of all the instances of type Class and Table, respectively. This proof can also
be found in [20]. In a similar way, we can prove that the number of Columns within
any Table is equal to the number of Attributes of the corresponding Class.

6 Conclusions and Further Work

We have described a type-theoretic framework that allows the full formal ve-
rification of model transformations, at a metamodel level, and considering any
kind of transformations and properties. We have proposed a separation of duties
between developers and verifiers, based on a semi-automatic translation pro-
cess switching from the ATL to the CIC (Calculus of Inductive Constructions)
technical space as implemented on Coq. Within this framework, source and tar-
get metamodels (MMa and MMb) are represented as inductive types, and each

126 D. Calegari et al.

transformation rule of the model transformation Mt is represented as a logical
formula of ∀∃ form stating that for every model element satisfying a certain
(pre-)condition, there exists a target model element which stands in the relation
specified by the transformation rule with the source model element (TRule).
The correctness of the model transformation is stated by a formula.

∀ Ma:MMa. (Pre(Ma) → ∀ Mb:MMb. (TRules(Ma,Mb) → Post(Ma,Mb)))

where Pre is a translation of the source invariants, TRules is the conjunction
of the transformation rules, and Post is a translation of the target invariants
plus any other desired property to be proved. A proof of this formula ensures
that the transformation rules satisfy the target invariants as well as the desired
properties.

The translation into Coq of the KM3 metamodels can be performed fully
automatically. On the other hand, at the moment the verifiers have to deal
with: references in the metamodels that must be “cut” to avoid circularity in
an optimal way, the translation of the OCL invariants –which can at a large
measure be done automatically– and the translation of the ATL transformation
rules and helpers. Then he can proceed to perform the formal verification.

As a proof of concepts, we have applied our approach to a simplified version
of the well-known Class to Relational model transformation broadly studied in
the literature [19]. The resulting Coq code can be found in [20].

With this approach we lose full automation to gain in return strength of the
achieved results. We think the approach could be particularly helpful in proving
the existence of zero-fault model transformations within the development of
critical systems.

So far the non-automatic parts of the process of translation involved in our
proposal can in general be carried out directly enough to indeed provide increased
confidence in the outcome.

We are currently working on setting up a semantics of transformation lan-
guages in type theory which will lead to a greater automatical capability at the
level of the framework, particularly concerning the outlined method for trans-
lating transformations.

Our medium-term goals are the full development of the framework and its
integration with ATL and Coq. In the long-term we will work on simplifying
the proof process. In this direction we aim at generating auxiliary libraries with
proofs of basic properties and also work on proof patterns detection in order to
improve the facility of use of the proof assistant.

Acknowledgement

This work has been partially funded by the National Research and Innovation
Agency (ANII) of Uruguay through the “Verification of UML Based Behavioral
Model Transformations” project [20].

A Type-Theoretic Framework for Certified Model Transformations 127

References

1. Kent, S.: Model-Driven Engineering. In: Butler, M., Petre, L., Sere, K. (eds.)
IFM 2002. LNCS, vol. 2335, pp. 286–298. Springer, Heidelberg (2002)

2. OMG: Meta Object Facility (MOF) 2.0 Core Specification. Object Management
Group, Specification Version 2.0 (2003)

3. ATLAS Group: Kernel MetaMetaModel. LINA & INRIA. Manual v0.3 (2005)
4. OMG: UML 2.0 Object Constraint Language. Object Management Group, Speci-

fication Version 2.0 (2006)
5. Mens, T., Czarnecki, K., van Gorp, P.: A Taxonomy of Model Transformation.

ENTCS, vol. 152, pp. 125–142. Springer, Heidelberg (2006)
6. Czarnecki, K., Helsen, S.: Feature-Based Survey of Model Transformation Ap-

proaches. IBM Systems Journal 45(3), 621–645 (2006)
7. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation. Object Man-

agement Group, Specification Version 1.0 (2008)
8. ATLAS Group: Atlas Transformation Language. LINA & INRIA. User Guide (2009)
9. Anastasakis, K., Bordbar, B., Küster, J.M.: Analysis of Model Transformations

via Alloy. In: Proc. 4th Workshop on Model-Driven Engineering, Verification and
Validation, pp. 47–56 (2007)

10. Pons, C., Garćıa, D.: A Lightweight Approach for the Semantic Validation of Model
Refinements. ENTCS, vol. 220, pp. 43–61. Springer, Heidelberg (2008)

11. Giese, H., et al.: Towards Verified Model Transformations. In: Proc. 3rd Interna-
tional Workshop on Model Development, Validation and Verification, pp. 78–93
(2006)

12. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2004)

13. The Coq Development Team: The Coq Proof Assistant: Reference Manual (2009)
14. Leroy, X.: Formal Verification of a Realistic Compiler. Commun. ACM 52, 107–115

(2009)
15. Poernomo, I.: A Type Theoretic Framework for Formal Metamodelling. In: Reuss-

ner, R., Stafford, J.A., Ren, X.-M. (eds.) Architecting Systems with Trustworthy
Components. LNCS, vol. 3938, pp. 262–298. Springer, Heidelberg (2006)

16. Poernomo, I.: Proofs-as-Model Transformations. In: Vallecillo, A., Gray, J.,
Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp. 214–228. Springer,
Heidelberg (2008)

17. Calegari, D., Luna, C., Szasz, N., Tasistro, A.: Experiment with a Type-Theoretic
Approach to the Verification of Model Transformations. In: Proc. 2nd Chilean
Workshop on Formal Methods, pp. 29–36 (2009),
http://jcc2009.usach.cl/?page_id=631 (last visit: August 2010)

18. Coquand, T., Paulin, C.: Inductively Defined Types. In: Martin-Löf, P., Mints, G.
(eds.) COLOG 1988. LNCS, vol. 417, pp. 50–66. Springer, Heidelberg (1990)

19. Bézivin, J., Rumpe, B., Schürr, A., Tratt, L.: Model Transformations in Practice
Workshop. In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 120–127.
Springer, Heidelberg (2006)

20. Verification of UML-Based Behavioral Model Transformations Project,
http://www.fing.edu.uy/inco/grupos/coal/field.php/Proyectos/ANII09

(last visit: August 2010)
21. Steel, J., Jézéquel, J.M.: On Model Typing. SoSyM 6, 401–413 (2007)
22. Beckert, B., Keller, U., Schmitt, P.: Translating the Object Constraint Language

into First-Order Predicate Logic. In: Workshop at Federated Logic Conferences
(2002)

http://jcc2009.usach.cl/?page_id=631
http://www.fing.edu.uy/inco/grupos/coal/field.php/Proyectos/ANII09

Simulating Truly Concurrent CSP

Moritz Kleine1 and J.W. Sanders2

1 Software Engineering Group
Technische Universität Berlin, Germany

2 International Institute for Software Technology
United Nations University, Macao SAR China

Abstract. Process algebras like CSP provide a convenient intermediate-
level formalism for the design of concurrent systems by allowing
processes to be combined in parallel in such a way that the designer
abstracts synchronization mechanisms and simultaneity of events. How-
ever some purposes require potential simultaneity to be made explicit.
One approach is to produce new semantics models encapsulating that
information. The approach taken here is to use the standard models
and the CSP tool, FDR, to simulate a process in such a way to reveal
potentially-simultaneous events. The simulation is achieved by a con-
struction that splits events into start and end events and monitors the
result in a manner faithful to the original process. The method is ap-
plied to determine pairs of possibly concurrent events and to compute
maximal simultaneity in a CSP design.

1 Introduction

Process algebras, like CSP [4,9], allow synchronizing processes to be combined
in parallel with the result that the system designer need not be concerned about
exploiting simultaneity, which may arise naturally in an implementation con-
forming to the design. But sometimes, for example for purposes of simulation, it
is useful to know what potential simultaneity a design embodies, and then the
abstraction carefully built in to the process algebra must be revoked.

The purpose of this paper is to study one way to make explicit the simul-
taneity of events implicit in a CSP process. Events were designed in CSP to
be instantaneous, on the understanding that duration can then be modelled by
splitting an event into start and end events. Our approach starts by unravelling
that assumption, and proceeds by constructing a faithful, controlled simulation
of the process. The construction is shown to be faithful in the sense that the
simulated version equals the original process in the traces semantics. The ap-
proach is shown at work on three small but typical examples. It is defined for a
subset of CSPM [10] for subsequent analysis with FDR [9] or ProB [8]. Although
our approach is not limited to finite-state processes, applications here are to
finite-state processes analyzed using FDR or ProB.

Several applications of the approach are discussed. For purposes of motivation,
observe that CSP events, being instantaneous, abstract the actions or whole proce-
dures of a lower-level programming language. Of course the advantage is simplicity

J. Davies, L. Silva, and A. Simão (Eds.): SBMF 2010, LNCS 6527, pp. 128–143, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Simulating Truly Concurrent CSP 129

of reasoning about things like data values and execution of procedures. Examples
of systems that allow execution of user-defined functions when an event occurs
are CSP-OZ [1], CSP++ [2] and the Process Analysis Toolkit PAT [11]. Such sys-
tems separate execution of user-defined functions from one another (they are not
executed in parallel) or disallow user-defined functions on synchronization events.
Those assumptions limit the gains promised by concurrency.

An important consequence of the approach taken here is that sets of events
that may occur concurrently are computed statically. As a result, the approach
appears suitable for realistic simulation (in the sense that functions attached
to events may be executed concurrently but may require positive duration),
overcoming the limitations mentioned in the previous paragraph. Indeed any
event (even synchronization events) can be linked to a terminating user-defined
function, and the functions executed concurrently. A user-defined function is
started immediately after its corresponding start (non-tick) event and after its
termination the corresponding end event becomes available.

Sect. 2 provides an overview of CSP and introduces its tools required in this
paper. Sect. 3 introduces the transformation T that performs splitting of events,
then Sect. 4 shows how the transformed process can be used to compose a sys-
tem that simulates the original process while collecting concurrency information.
Sect. 5 presents properties used to prove that the construction preserves the se-
mantics of the original process. Three examples are presented in Sect. 6, though
they may be browsed earlier. Limitations, related and further work are discussed
in Sect. 7. The conclusion is presented in Sect. 8.

2 CSP

The process calculus Communicating Sequential Processes (CSP), introduced
by Hoare in the late 1970s, was largely stable by the mid 1980s [4] since when
it has been widely applied and developed. Its strength is the specification and
verification of reactive and concurrent systems in which synchronization and
communication play a key role. Its processes perform events that are both atomic
and instantaneous. The set of events that may be communicated by a process
is said to comprise its alphabet Σ. If a process offers an event with which its
environment agrees to synchronize, the event is performed. A sequence of events
that a process may perform is called a trace of the process. For (semantic)
convenience the alphabet of each process is extended to contain two further
events: τ /∈ Σ represents an internal event and � /∈ Σ represents termination.
Processes are patterns of computation observable, in the standard model, by
the sets (because of nondeterminism) of events on which they may refuse to
synchronize at any point in their evolution, as determined by the trace that has
been performed; the trace/set pair is called a failure. A process can be thought
of as a (possibly infinite) transition system.

CSP is equipped with a rich set of process operators including prefixing
(a → P), external choice (P �Q), internal choice (P �Q), sequential composi-
tion (P ;Q), abstraction or hiding (P \ A) and parallel composition (P |A| Q).

130 M. Kleine and J.W. Sanders

The process a → P offers its environment the opportunity to synchronize on a
in which case it then behaves like P . The process P �Q offers its environment
a choice between P and Q based on synchronization with their initial events.
The process P � Q behaves like either P or Q but the choice is made inter-
nally, beyond environmental influence. A third kind of choice, timeout P � Q ,
(sometimes called ‘sliding choice’) combines external and internal influences. It
is represented using internal and external choice by P � Q = (P � Q) � Q .
The process P ;Q behaves like P and, if that terminates, then behaves like Q .
The process P \ A executes the events in the set A internally, without syn-
chronization by its environment; they can be thought of as being replaced by τ
events. The parallel composition P |A| Q requires P and Q to synchronize on
each event a ∈ A, but performs other events of P or Q as determined by those
processes. STOP and SKIP are ‘atomic’ processes; the former models deadlock
by offering no events; the latter models successful termination by offering only
�. For example the following process, defined as an abstraction of components
that synchronize on a, simply offers the event a and then terminates successfully.

(a → SKIP |{a}| (b → SKIP ; a → SKIP)) \ {b}

CSP has a range of semantic models, the most basic of which are: the traces
model T ; the stable failures model F ; and the failures-divergences model FD
[9]. In the traces semantics of CSP, a process is represented by the set of all
its possible traces; the result is useful in specifying safety properties. The stable
failures semantics, by recording the refusals of a process, is useful in specifying a
system’s safety and liveness properties. In addition to traces and refusals, infinite
sequences of internal transitions (τ events), called divergences, are required. Di-
vergence can be introduced by hiding, the symbol div and by ill-formed recursion
like P = P . Thus, for example, internal and external choice are indistinguishable
in the traces model but resolved in the stable failures model, whilst divergence
is resolved in the failures-divergences model.

Conformance in CSP is expressed by refinement. Informally, P Q means
that Q conforms to P , or that Q ’s behaviors are contained in those of P . For-
mally, for any of the three semantic models M∈ {T ,F ,FD},

P MQ ⇔ M[Q] ⊆M[P]

whereM[P] denotes the semantics of process P in semantic modelM. The result
is that CSP provides a refinement calculus supporting process development from
abstract specification to implementation.

Algebraic reasoning is supported by refinement laws that correspond to
containments in the failures-divergences model. Examples are: idempotency of
internal choice, P � P = P ; distributivity of internal choice over parallel com-
position, (P |A| Q) � R = (P � R) |A| (Q � R); and resolution of nondeter-
minism, P � Q P . Using these laws, the timeout operator can also be written
P � Q = (P � STOP) � Q .

Simulating Truly Concurrent CSP 131

All three refinements are supported by the automatic refinement checker FDR
[3] which proves or refutes assertions of the form P MQ . FDR inputs processes
expressed in CSPM , which is now the de facto standard for machine-readable
CSP. CSPM expresses CSP by a small but powerful functional language, offering
constructs such as lambda and let expressions and supporting pattern matching
and currying. It also provides a number of predefined data types, including
Booleans, integers, sequences and sets, and allows user-defined data types. The
global event set is defined by the set of typed channel declarations of a CSPM

script. The {| . |}-operator can be used to compute the set of events that complete
the set of given prefixes (e.g. channels). CSPM models can also be animated and
verified by LTL model checking using ProB [8].

3 The Transformation T

In this section we present the transformation T that achieves the simulation
motivated in the Introduction. T models duration of events by splitting them.
Hidden transitions are exposed by introducing fresh events. The purpose of the
transformation is to put the transformed process T (P) into parallel with a con-
trol component that records the start and end events of every transition of the
original process P (including hidden events). The control component can then
record possible simultaneity in T and thus be used to compute possible concur-
rency in P .

Throughout this paper processes are expressed using the syntax

(x :X → P(x)) | P ;Q | P � Q | P |A| Q | P \ A | P � Q | P [M] | P � Q

for general choice, sequential composition, external choice, parallel composition,
hiding, internal choice, renaming and timeout respectively. Recall that general
choice includes the atomic processes and prefixing, by appropriate choice of X .
Renaming of event x to y in process P is written P [x ← y], or more generally
P [M] where M is a mapping from source events to target events. Recall that in-
terleaving (|||) is the special case of parallel composition without synchronization
(|∅|) in the interleaving semantics of CSP.

Let s , sh, e, eh be fresh channels relative to ΣP . The transformation T is
defined as follows.

T (x :X → P(x)) = s .x :{s .y | y ∈ X } → e.x → T (P(x))
T (P ⊗Q) = T (P)⊗ T (Q), for ⊗ = ; and ⊗ = �

T (P |A| Q) = T (P) |{s.x ,e.x |x∈A}| T (Q)
T (P \ A) = T (P)[s .x ← sh.x , e.x ← eh.x | x ∈ A]
T (P � Q) = sh.ic i → eh.ic i → (T (P) � T (Q))
T (P [M]) = T (P)[s .x ← s .y, e.x ← e.y | (x , y) ∈ M]
T (P � Q) = T (P) � (sh.to i → eh.to i → T (Q))

132 M. Kleine and J.W. Sanders

For general choice, T splits each event x into its start event s .x and end event
e.x . As special cases,

T (P) = STOP
T (SKIP) = SKIP

T (x → P) = s .x → e.x → T (P) .

T distributes over sequential composition, external choice and parallel composi-
tion, in the latter case by synchronizing on the split events instead of the original
events. For hiding, T communicates the split events over the channels sh and
eh (standing for ‘start hidden’ and ‘end hidden’, respectively). For each internal
choice, thought of as resulting from an internal transition, T introduces a fresh
hidden event labelled ic i for that transition. It is then split and communicated
over the sh and eh channels responsible for hidden events. T distributes over
renaming by lifting the renaming to the split events. Finally T distributes over
the operands of a timeout, replaces the timeout by external choice and intro-
duces a fresh timeout event labelled to i for each timeout communicated over
the channels sh and eh responsible for hidden events (recall the motivation for
the timeout operator to express the abstraction of one initial event in an external
choice; see, for example, [9]).

The alphabets of P and T (P) are disjoint, since

ΣT(P) ⊆ {|s , e, sh, eh |} .

Equality (in the traces model) with the original process P is established by hiding
the end events of the original visible transitions and all events corresponding to
hidden transitions and renaming the start events of the original transition back
to their source names. The exposition of hidden transitions disallows equality in
the failures (and in the failures-divergences) model, because in general

(P � Q) \ A �= P \ A � Q \ A

in these models, but

(P � Q) \ A =T P \ A � Q \ A .

Thus, there is no construction F using parallel composition, hiding and renaming
such that F (T (P � Q)) = P � Q . In the next section we present a construc-
tion that preserves the traces of the original process and reveals its internal
concurrency.

4 Assembling the System

The ‘control process’ to be placed in parallel with a transformed process is
defined in terms of a parameter X denoting a bag; bag union is denoted �, bag
difference −∪, and bag comprehension is written [[x0, . . . , xn]]. Initially the bag is

Simulating Truly Concurrent CSP 133

empty. Let term be a fresh event modeling the possibility to synchronize before
successful termination.

C (X) = s?x → C (X � [[x]])
� sh?x → C (X � [[x]])
� e?x → C (X −∪ [[x]])
� eh?x → C (X −∪ [[x]])
� term → SKIP (1)

As outlined in the previous section the process C (X) is to be put in parallel
with the transformed process. We define SCon = {|s , sh, e, eh, term |} to be the
alphabet on which the transformed process T (P) and the controller synchronize.
Now because term ∈ SCon but term /∈ ΣT(P), the controller C cannot terminate
while T (P) is still active. Since we aim at establishing traces-equality, the par-
allel composition must be able to terminate if P terminates successfully. Thus,
because of the Ω semantics (see [9]) and distributed termination of parallel com-
position, T (P) is sequentially composed with the process term → SKIP in the
following construction. The construction starts by transforming an input process
P to T (P) and combining the result with the control process (1) to achieve the
result Con(P) (standing for controlled).

Con(P) = (T (P) ; term → SKIP) |SCon | C ([[]]) (2)

The events s .x are renamed to x , and the events in HHr = {|sh, e, eh, term |} are
hidden using Hr (standing for hidden and renamed)

Hr(P) = P \ HHr [s .x ← x | x ∈ ΣP] (3)

resulting in a process

Ext(P) = Hr(Con(P)) (4)

(the extension of P) that we think of as simulating P but enabling it to benefit
from true concurrency. While concurrency cannot be distinguished from choice
in the interleaved semantic models T , F and FD, the transformation T allows
them to be distinguished because start and end events of two events x and y
may interleave only if x and y are concurrent in P . Thus, using the construction
given above, possible concurrency is captured by the bag X maintained by the
controller process C (X). Whenever the size of the bag exceeds one, it holds the
names of events that are performed concurrently at that point.

To ensure that a process is not ‘corrupted’ by Ext we must show that it is a
fixed point of Ext in the traces semantics:

Theorem 1. For each process P of the form given above,

P =T Ext(P) .

134 M. Kleine and J.W. Sanders

The intuition is that Ext splits each event in its argument, relabels the start
event back to the original and hides the end event and does so whilst faithfully
translating the process combinators.

A proof by structural induction is given in our technical report [6], using the
results of the next section, which enforce the intuition and enable the proof to
proceed uniformly.

The information stored in the bag held by C can be exploited in various ways.
One obvious way is to introduce guards g0, . . . , g3 as follows.

C0(X) = g0(X) & s?x → C0(X � [[x]])
� g1(X) & sh?x → C0(X � [[x]])
� g2(X) & e?x → C0(X −∪ [[x]])
� g3(X) & eh?x → C0(X −∪ [[x]])
� term → SKIP

Since the guards restrict the behavior of C0 relative to C , we have C T C0.
Modifying the extension Ext of P to use C0 yields

Ext0(P) = Hr((T (P) ; term → SKIP) |SCon | C0([[]]) .

By construction of C0 and Theorem 1 we have

P T Ext0(P) .

In the case that checking with FDR fails to establish the refinement

Ext0(P) T P ,

it provides a counterexample leading to a state violating gi .

5 Properties

In this section, t , u are sequences, the concatenation of sequences t and u is
written t � u, t � X restricts t to the elements that are contained in X and #t
denotes the length of the sequence t . Containment of an element x in a sequence
t is written x in t . The results of this section are used in proving Theorem 1.
Proofs are largely routine.

First observe the following relations between s and e events.

Proposition 1 (s-e-precedence). Each instance of an event e.x : ΣT(P) is
preceded by its corresponding instance s .x : ΣT(P):

∀ t � 〈e.x 〉 : traces(T (P)) · #(t � {s .x}) > #(t � {e.x}) .

Simulating Truly Concurrent CSP 135

Proposition 2 (e-non-refusability). After event s .x has occurred in T (P),
no event e.x can be refused until e.x has occurred:

∀(t � 〈s .x 〉� u,R) : F(T (P)) · e.x �in u ⇒ e.x /∈ R .

Traces are normally used to follow the evolution of a process using the ‘after’
operator. Here we instead use failures, so that instances of events are identified
uniquely; as a result the resolution of nondeterministic choices can be observed
directly, without introducing a τ operator. For example, evolution of the process
(a → STOP � b → STOP) to a → STOP is recorded as evolution from

{(〈 〉, { }), (〈 〉, {a}), (〈 〉, {b})} to {(〈 〉, { }), (〈 〉, {b})}.

Now instances of two events x and y are said to be possibly conflicting in P
if they are exclusive at some point (determining the instance) of P ’s evolu-
tion. For example, the events a and b are conflicting in the initial state of
a → STOP � b → STOP . The following weak definition of conflict freedom cap-
tures this intuition.

Definition 1 (Conflict freedom). Events x and y of P are conflict-free at
the point determined by (t ,R) : F(P) in P if

∀(t � 〈x 〉,R′) : F(P) · y /∈ R ⇒ y /∈ R′ .

Thus the translation T ensures:

Proposition 3 (s-e-conflict freedom). The s and e events are conflict-free
throughout T (P):

∀(t ,R), (t � 〈e.x 〉,R′) : F(T (P)) · (R ∩ {|s |}) ⊆ R′ .

If two non-conflicting events are available at some point then they may be per-
formed concurrently. This is captured by the following proposition.

Definition 2 (Possible concurrency). Let Σx = Σ \ {e.x , eh.x},
s ∈ {s , sh}, e(s) = e and e(sh) = eh. The set of all possibly concurrent events
of P is defined:

conc(P) = {(x , y) | ∃ t � 〈s .x 〉� u � 〈e(s).x 〉 : traces(T (P)), u : (Σx)∗ ·
s .y in u ∨ e(s).y in u} .

Then event y : ΣP is said to be possibly concurrent with event x : ΣP in P iff
(x , y) ∈ conc(P).

136 M. Kleine and J.W. Sanders

To expose the concurrency information recorded by the controller C we enhance
the construction presented so far. We introduce a new channel co : bag ΣP to
communicate the recorded concurrency information and modify the processes
C , Con and Ext as follows.

C1(X) = co.X → (s?x → C1(X � [[x]])
� sh?x → C1(X � [[x]])
� e?x → C1(X −∪ [[x]])
� eh?x → C1(X −∪ [[x]])
� term → SKIP)

Con1(P) = (T (P) ; term → SKIP) |SCon | C1([[]])
Ext1(P) = Hr(Con1(P))

We observe that: (a) hiding of co does not cause divergence because there are no
adjacent co events in any trace of Ext1(P); and (b) co is not in conflict with any
event in C1, so hiding of co does not introduce nondeterminism and consequently
changes neither the failures of Ext1(P) nor its traces.

Hence
C1(X) \ {|co |} = C (X)

and
Ext1(P) \ {|co |} = Ext(P) .

The controller process C never refuses any events offered by T (P) thus, again,
the following proposition holds by construction of Con.

Proposition 4. The controller process C records the concurrent events of P:

∀(x , y) : conc(P), ∃ t � 〈co.b〉 : traces(Con1(P)) · x in b ∧ y in b .

The controller C is designed to record concurrency information but not change
the behavior of the transformed process T (P). This is captured formally by the
following lemma:

Lemma 1. For any process P as above,

Ext(P) = Hr(T (P)) .

Proof. The proof follows by ‘reduction of parallel composition’. By definition of
parallel composition, P |ΣQ | Q = P if Q never refuses an event x : ΣQ .

Ext(P)

= definition of Ext

Hr(Con(P))

Simulating Truly Concurrent CSP 137

= definition of Con

Hr((T (P) ; term → SKIP) |SCon | C ([[]]))

= reduction of parallel composition: C ([[]]) never refuses x : SCon

Hr(T (P) ; term → SKIP) .

= term ∈ HHr

Hr(T (P)) .

�

The exposition of hidden transitions is important from a practical point of view
because it allows the assignment of user-defined functions to computations that
are (although present) not observable from outside the computing system, en-
abling the determination of events concurrent with those hidden transitions. On
the theoretical side, this decision restricts equality of the source process P with
its extended version Ext(P) to the traces model because hiding does not dis-
tribute over external choice if initial events are affected. Neither does hiding
distribute over parallel composition if the hidden alphabet intersects with the
synchronization set. The following lemma shows that parallel e events can safely
be removed from the synchronization sets in T so that the two sets no longer
intersect, and distributivity of hiding over parallel composition holds in T .

Lemma 2. Writing A′ = {s .x , e.x | x ∈ A} and A′′ = {s .x | x ∈ A},
Hr(T (P) |A′ | T (Q)) = Hr(T (P) |A′′ | T (Q)) .

Proof. The proof follows by s-e-precedence (1), e-non-refusability (2) and s-e-
conflict-freedom (3).

Firstly, the equality holds trivially if A = ∅; thus assume A �= ∅. By (1), any
e.x event is preceded by (a not necessarily adjacent) s .x event; thus we focus on
s events. Since the result does not affect x /∈ A, we can further restrict attention
to s .x , x : A. Thus assume s .x , x : A have occurred on both sides. By definition
of T , neither side can refuse s .y, (x , y) ∈ conc(P |A| Q). So assume both sides
have performed t : {s .x | x ∈ A}∗. By proposition 2, neither side can refuse any
of e.x , s .x ∈ t , whilst by proposition 1, any e.x , s .x �in t is refused. Furthermore,
by proposition 3, no e.x event conflicts with any of the subsequent s events.
Thus, synchronizing on e.x , x : A does not affect subsequent s events. �

Finiteness of P is not required in the proof. One might suspect that hiding of
e events might introduce divergence, but this could happen only if there were
unbounded sequences of e events. Such sequences could be introduced by a cycle
of e events but the construction of T prevents cycles of e events. Furthermore,
processes such as μP · (x → SKIP |∅| P), although infinite state, cannot perform
unbounded sequences of e events either. The s-e-precedence property asserts that
each infinite sequence of e events must be preceded by an infinite sequence of
s events. But unbounded sequences of s events would prevent the occurrence
of any e event; so whenever e events are observable there cannot have been
unbounded sequences of s events in T (P); so divergence cannot occur.

138 M. Kleine and J.W. Sanders

6 Examples

In this section the approach is applied to three examples: (a) the example used to
motivate [7]; (b) a one-place buffer from [3]; and (c) a modification of the dining
philosophers from [3]. Due to technical limitations of ProB and FDR, the typing
and naming scheme used in the example scripts (see [6]) differ slightly from the
models presented here. For example, the controller maintains a list instead of a
bag because CSPM has no support for bags built-in.

6.1 Choice versus Concurrency

Consider the processes

P = a → b → STOP � b → a → STOP
Q = a → STOP |∅| b → STOP .

Evidently P = Q , although the latter offers concurrency of a and b not allowed
by the former. That is revealed using our technique as follows.

By the definition of T ,

T (P) = s .a → e.a → s .b → e.b → STOP � s .b → e.b → s .a → e.a → STOP
T (Q) = s .a → e.a → STOP |∅| s .b → e.b → STOP .

To use FDR we define

SPEC = � x : {[[]], [[a]], [[b]]} • co.x → SPEC .

Now Ext(P) = P and Ext(Q) = Q but using Ext1 (see the explanation of
definition 2)

SPEC T Ext1(P) \ {a, b}
while

SPEC �T Ext1(Q) \ {a, b} .

The trace generated by FDR leading to the violation of the second refinement
relation, namely

〈co.[[]], co.[[b]], co.[[a, b]]〉 ,
reveals that the events a and b might occur simultaneously in Q but not in P .

The same result can be obtained using the LTL model checking capabilities
of ProB. We introduce the fresh event conc a b and define

F (P) = P [co.[[a, b]]← conc a b]

to check if
φ = G not [conc a b]

holds on F (Ext1(P)) or F (Ext1(Q)). Expectedly ProB shows

F (Ext1(P)) |= φ

F (Ext1(Q)) �|= φ .

Simulating Truly Concurrent CSP 139

6.2 One-Place Buffer

A specification of a one-place buffer is

COPY = left?x → right !x → COPY .

The implementation (SYSTEM) presented in [3] is proved to be equivalent (in
the failures-divergences model) to that specification. Since it uses parallel compo-
sition, it is of interest to check whether or not there are actually any concurrent
events in the implementation; there might be concurrent τ events at least. There
are no concurrent events in the implementation if the bag never grows beyond
size one. This property can be built into the controller by modifying it as follows.

C2(X) = #X < 2 &(s?x → C2(X � [[x]])
� sh?x → C2(X � [[x]])
� e?x → C2(X −∪ [[x]])
� eh?x → C2(X −∪ [[x]])
� term → SKIP)

Checking Hr((T (SYSTEM) ; term → SKIP) |SCon | C2([[]])) =T COPY with
FDR proves that there are no concurrent events in the implementation.

6.3 Dining Philosophers

The well-known example of the dining philosophers reveals a disadvantage of our
approach: poor performance within FDR. Indeed the size of the transition system
of the controller grows rapidly. In this example, N is the number of philosophers.
The number of events available is 3N +2N 2. The set of all lists containing event
labels and with maximum length n has

∑n
i=0(3N + 2N 2)i elements, which is

20,440 for N = 3 and n = 3 or 551,881 for N = 3 and n = 4. Reducing these
sets to create specifications like the one presented in the first example does not
solve this problem. The set of all lists with maximum length n and at most one
renamed eat event in it contains 19,756 elements for N = 3 and n = 3 and
517,420 in the case of N = 3 and n = 4. So checking the assertion that the eat
event never occurs concurrently with another eat event with N = 3 takes about
90 minutes.

7 Related and Further Work

The work reported here relates particularly to other approaches to ‘non inter-
leaving’ or ‘truly concurrent’ semantics of process algebra. In particular, it has
been influenced by the work of Kwiatkowska and Phillips [7] and Taubner and
Vogler [12]. In a sense, our approach combines the two by simulating the concur-
rency relation developed in the former, while maintaining the concurrent events
in a structure that generalizes the steps defined in the latter.

140 M. Kleine and J.W. Sanders

In [7], Kwiatkowska and Phillips have proposed a ‘failures with divergence and
conflict’ semantics for CSP. The semantics consists of a set of triples (F ,D ,C),
where F is a failure set, D a divergence set and C is a conflict relation on Σ∗,
C ⊆ Σ∗ × Σ∗, defined by induction on the syntax of CSP. Furthermore, they
distinguish possible conflict from guaranteed conflict. Analogously, they define a
concurrency relation co. Our definitions 2 and 1 (and proposition 3 in particular)
relate to their notions of possible concurrency and guaranteed conflict-freedom.
In contrast to their work, rather than define a new semantics of CSP we have
used the traces semantics T to simulate ‘truly concurrent CSP’. In our approach,
concurrency is encountered whenever the controller’s bag X grows beyond one
element with frequency one. In particular, a single event is concurrent with itself
if and only if there is a trace t such that its cardinality in the bag is greater than
one after t . In contrast, each trace is by definition concurrent with itself in the
semantics given by Kwiatkowska and Phillips.

Another important difference with that work is in refinement of concurrency
information. In their semantics, only the refinement

a → b → STOP � b → a → STOP a → STOP |∅| b → STOP

holds but not conversely. Using the modified controller C1 to incorporate con-
currency information in the traces of a process yields the opposite refinement
relation, as shown in example 6.1. Thus, in our approach, a process refines an-
other with a higher level of concurrency.

In [12], Taubner and Vogler present a non-interleaving semantics of CSP based
on the notion of ‘step’. In their semantics, a step is a finite bag of events from
Σ ∪ {�}. Traces and failures are lifted from sequences of events to sequences
of steps, and refusals are defined over sets of steps. The empty step is called
the null-step, and refusal of the null-step corresponds to divergence. A non-
divergent process may never refuse the null-step. Their semantics generalizes
the interleaving semantics of CSP in the sense that the special case of singleton
steps is exactly the interleaving semantics.

That approach, like ours, realizes possible concurrency in the sense that when-
ever a step is possible, all of its sub-steps are also possible. One distinguishing
feature of their semantics is that it lacks the commonly used τ event to model
hidden actions. While the authors present this as a theoretical advantage because
they succeed in establishing the common CSP laws in their semantics, it might
be considered a disadvantage from a practical perspective. For that reason, our
approach aims to detect any concurrent events, whether they are visible or hid-
den. The code related to an externally visible event a is likely to interfere with
the code of a hidden a that is executed concurrently. Therefore, our controller
registers even externally invisible events. Compared with their semantics, ours
appears more verbose because it records not only the steps but also the creation
of the steps (filling the bag).

On the level of traces our approach can be regarded as generalizing theirs: the
controller can be modified to ensure that it refuses new s events after an e event
until its bag is empty; that yields traces such that the state of the bag before

Simulating Truly Concurrent CSP 141

the first e after each non-empty sequence of s events are exactly the steps in
their semantics. The present approach, like the step-failures semantics, can be
used to optimize applications at runtime by predicting maximal parallelism. It
also takes into account duration of user-defined functions related to events.

The language considered here overlooks several useful derived operators, like
chaining, interleaving, interrupt, and linked parallel (a generalization of chain-
ing), which are subject to future work. Of those, interrupt is especially interest-
ing, because the interpretation of an event heavily influences its transformation
by T . The issue is whether or not a single event x that is split into two events
s .x , e.x may be aborted. If a single event can be aborted, the event can no
longer be interpreted as an action or function that transforms some state into a
well-defined successor state. Furthermore, it would violate the e-non-refusability
property (2). If a single event cannot be aborted, the transformed interrupt
must take care of unfinished events, which renders the transformation reasonably
complicated.

It is planned to realize interleaving according to the deparallelize operator
proposed by Taubner and Vogler in [12]: P ||| Q corresponds to P ��AQ where
A ⊆ Σ and ��A is an operator ensuring ∀ x , y : A · (x , y) /∈ conc(P ��AQ).

Another interesting issue is the extraction of concurrency in different ways.
The method described here uses FDR to perform this by modifying the con-
troller and checking whether or not the modified version violates the equality or
querying fresh non-conflicting events. Unfortunately, FDR does not perform very
well on such assertions because the bags grow rapidly and the functional part
of CSPM does not provide the most efficient way to model a process for analysis
with FDR. One possible solution is to implement a specialized procedure that
works on the original process P , to compute conc(P). This procedure could be
an extension of FDR’s procedure to compute the traces of P that performs the
transformation as well as synchronization with the controller internally before
computing the traces.

It might be worthwhile to try the approach with the CSP prover [5], in view
of the performance penalty caused by the controller process (see 6.3).

8 Conclusion

In this paper a construction has been given to replace each process with an equiv-
alent version explicitly realising the possibility of concurrency. The controller C
synchronizes with the transformed process. It maintains a bag X whose contents
represent the events of the original process that are possibly concurrent after the
trace that has lead to the current state. Thus it can be used in various ways to
query concurrency information of a process.

In Example 6.1 the controller process C1 of Definition 2 was used to emit the
recorded concurrency information using a fresh event. That example has also
demonstrated application of our approach with ProB.

The concurrency information can also be exploited using guards. A very simple
application has been shown in the one-place-buffer example 6.2. Limiting the bag

142 M. Kleine and J.W. Sanders

to size 1 does not violate the equality. Thus, as expected, there are no concurrent
events in the one-place buffer process.

Perhaps the most important aspect of our approach is that it allows reuse of
existing CSP tools such as FDR [9], ProB [8] and the CSP prover [5], because
it exploits semantics of CSP already implemented by those tools.

Acknowledgement

The first author acknowledges support from Deutsche Forschungsgemeinschaft
(DFG) under the VATES project, grant number JA 379/17-1. The second author
acknowledges support from the Macao Science and Technology Development
Fund under the PEARL project, grant number 041/2007/A3.

References

1. Fischer, C.: CSP-OZ: A combination of Object-Z and CSP. In: FMOODS 1997:
International Workshop on Formal Methods for Open Object-Based Distributed
Systems, pp. 423–438. Chapman and Hall, Boca Raton (1997)

2. Gardner, W.B.: Bridging CSP and C++ with Selective Formalism and Executable
Specifications. In: MEMOCODE 2003: International Conference on Formal Meth-
ods and Models for Co-Design, pp. 237–245. IEEE Computer Society, Los Alamitos
(2003)

3. Goldsmith, M., Roscoe, B., Armstrong, P.: Failures-Divergence Refinement - FDR2
User Manual (2005), http://www.fsel.com/fdr2_manual.html

4. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International,
Englewood Cliffs (1985)

5. Isobe, Y., Roggenbach, M.: A Generic Theorem Prover of CSP Refinement. In:
Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 108–123.
Springer, Heidelberg (2005)

6. Kleine,M., Sanders,J. W.: Simulating truly concurrent CSP. Technical Report 434,
UNU-IIST, P.O. Box 3058, Macau (June 2010)

7. Kwiatkowska, M., Phillips, I.: Possible and Guaranteed Concurrency in CSP. In:
Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 220–235. Springer,
Heidelberg (1995)

8. Leuschel, M., Fontaine, M.: Probing the Depths of CSP-M: A new FDR-compliant
Validation Tool. In: Liu, S., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp.
278–297. Springer, Heidelberg (2008)

9. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Englewood
Cliffs (2005)

10. Scattergood, B.: The Semantics and Implementation of Machine-readable CSP.
PhD thesis, University of Oxford (1998)

11. Sun, J., Liu, Y., Dong, J.S.: Model Checking CSP Revisited: Introducing a Process
Analysis Toolkit. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp.
307–322. Springer, Heidelberg (2008)

12. Taubner, D., Vogler, W.: Step failures semantics and a complete proof system.
Acta Inf. 27(2), 125–156 (1989)

http://www.fsel.com/fdr2_manual.html

Simulating Truly Concurrent CSP 143

Appendix: Proof of Theorem 1

The proof proceeds by induction on the construction of P . Two cases are of special
interest: Parallel composition because it is the only case that uses lemma 2 and external
choice because, as explained in Section 3, hiding of initial events of the external choice’s
operands disallows distributivity of hiding over external choice in general. See the [6]
for the whole proof.

Parallel Composition:

Ext(P |A| Q)

= Lemma 1 and T (P |A| Q)

Hr(T (P) |{s.x ,e.x |x∈A}| T (Q))

= Lemma 2

Hr(T (P) |{s.x |x∈A}| T (Q))

= distributivity of hiding and renaming over |{s.x |x∈A}|
Hr(T (P)) |A| Hr(T (Q))

= Lemma 1

Ext(P) |A| Ext(Q)

= induction hypothesis

P |A| Q .

External Choice:

Ext(P � Q)

= Lemma 1 and T (P � Q)

Hr(T (P) � T (Q))

= definition of Hr

(T (P) � T (Q)) \ HHr [s.x ← x | x ∈ ΣP ∪ ΣQ]

=T distributivity of hiding over � in T
(T (P) \ HHr � T (Q) \ HHr)[s.x ← x | x ∈ ΣP ∪ ΣQ]

= distributivity of renaming over �

T (P) \ HHr [s.x ← x | x ∈ ΣP] � T (Q) \ HHr [s.x ← x | x ∈ ΣQ]

= definition of Hr and Lemma 1

Ext(P) � Ext(Q)

= induction hypothesis

P � Q .

Statistical Verification of Probabilistic
Properties with Unbounded Until

H̊akan L.S. Younes1, Edmund M. Clarke2, and Paolo Zuliani2

1 Google Inc
2 Computer Science Department, Carnegie Mellon University, USA

Abstract. We consider statistical (sampling-based) solution methods
for verifying probabilistic properties with unbounded until. Statistical
solution methods for probabilistic verification use sample execution tra-
jectories for a system to verify properties with some level of confidence.
The main challenge with properties that are expressed using unbounded
until is to ensure termination in the face of potentially infinite sample ex-
ecution trajectories. We describe two alternative solution methods, each
one with its own merits. The first method relies on reachability analy-
sis, and is suitable primarily for large Markov chains where reachability
analysis can be performed efficiently using symbolic data structures, but
for which numerical probability computations are expensive. The second
method employs a termination probability and weighted sampling. This
method does not rely on any specific structure of the model, but er-
ror control is more challenging. We show how the choice of termination
probability—when applied to Markov chains—is tied to the subdomi-
nant eigenvalue of the transition probability matrix, which relates it to
iterative numerical solution techniques for the same problem.

1 Introduction

Probabilistic model checking deals with verification of stochastic systems, such
as a queuing system with random arrivals and departures. Temporal stochas-
tic logics, e.g., PCTL [12] and CSL [1], exist for expressing properties of such
stochastic systems. Our focus is on time-unbounded properties of stochastic sys-
tems. For a queuing system, for instance, an interesting property could be: “the
probability is at most 0.1 that the queue eventually becomes full.” In PCTL,
such properties are expressed using the formula P≤ 0.1[� U full].

We present two statistical algorithms for solving such model-checking prob-
lems that are based on unbiased sampling. Sampling is said to be unbiased if the
expectation of the sample distribution is the same as the expectation of the true
distribution. The use of unbiased sampling distinguishes our methods from most
recent efforts to devise sampling-based algorithms for time-unbounded proper-
ties, which are based on biased sampling [21,18,27,3] (see Sect. 4).

Statistical algorithms for probabilistic model checking use discrete-event sim-
ulation to generate sample trajectories, and verify some temporal formula over
each generated trajectory. This is combined with hypothesis testing or statistical

J. Davies, L. Silva, and A. Simão (Eds.): SBMF 2010, LNCS 6527, pp. 144–160, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Statistical Verification of Probabilistic Properties with Unbounded Until 145

estimation to verify probabilistic properties [26,18]. The challenge for statistical
algorithms with time-unbounded properties is to determine the truth-value of
Φ U Ψ without generating infinite sample trajectories.

The first method (see Sect 3.1) combines reachability analysis with statistical
sampling. This approach has been used in the past for program analysis [20],
and more recently for model checking [27] using biased sampling. The algorithm
is ensured termination for any finite-state homogeneous discrete-time Markov
chain, although it is potentially applicable for any model for which we can per-
form reachability. The use of reachability analysis requires that we construct the
full model, so it may seem counter to the appeal of statistical methods, which
usually avoid model construction. The real cost in probabilistic model checking,
however, lies in the numerical computation of probabilities, which we replace
with sampling. We show in Sect. 5 that the combination of reachability analysis
and statistical sampling scales better with the size of the model than standard
numerical solution methods. As a result, we can verify time-unbounded prop-
erties for larger models than possible with existing numerical algorithms. By
using unbiased sampling, we can also make strong guarantees regarding error
bounds. Other sampling-based methods, as well as iterative numerical solution
methods, do not give the same strong guarantees as they depend on heuristics
for bounding sample trajectory lengths or number of iterations.

The second method (see Sect. 3.2) is based on a Monte Carlo method devised
in the 1940s by John von Neumann and Stanislaw Ulam for computing the in-
verse of a matrix [10]. This method uses a termination probability pT that is
applied in each state along a trajectory to ensure finite sample trajectories. To
account for the change in sample distribution, we weigh satisfying trajectories
more heavily the longer the trajectory is. This way, we obtain an unbiased esti-
mator of the probability that Φ U Ψ holds over the set of trajectories that start
in some state s. The second method does not rely on reachability analysis, so
it has minimal memory requirements. It generally requires a larger number of
sample trajectories to achieve the same precision as the first method, so it can
be slower than the first method when reachability analysis is fast. It also suffers
from the same problem as iterative numerical solution methods in that accuracy
can be hard to guarantee. Still, the second method is potentially applicable for
a much larger class of models.

We limit our attention to discrete-time Markov chains. The results extend
trivially to continuous-time Markov chains and semi-Markov processes, as veri-
fication of time-unbounded properties for such models is done on an embedded
discrete-time Markov chain.

2 Probabilistic Model Checking

This section describes discrete-time Markov chains (without nondeterminism),
which is the class of models that we consider for probabilistic model checking.
We present a temporal stochastic logic (a subset of PCTL) and discuss realistic
error control for statistical model-checking algorithms.

146 H.L.S. Younes, E.M. Clarke, and P. Zuliani

2.1 Stochastic Processes and Discrete-Time Markov Chains

The terminology introduced here follows that of Stewart [22]. A stochastic process
with state space S and time domain T is a family of random variables X =
{Xt | t ∈ T }. A random variable Xt ∈ X represents the outcome of observing
the state of the stochastic process at time t.

A discrete-time Markov process is a stochastic process where T is the non-
negative integers, ZZ∗, and

Pr[Xn+1 = sn+1 | X0 = s0, . . . , Xn = sn] = Pr[Xn+1 = sn+1 | Xn = sn] (1)

holds for all n ∈ ZZ∗ and si ∈ S. If the state space is discrete as well, then we
refer to the process as a discrete-time Markov chain. We will limit our attention
to discrete-time Markov chains. The techniques we present later on can be gen-
eralized to other types of stochastic processes, but it is beyond the scope of this
paper.

Let pij(n) = Pr[Xn+1 = j | Xn = i], which denotes the probability of tran-
sitioning from state i at time n to state j at time n + 1. We call pij(n), for all
i and j in S and all n ∈ ZZ∗, the transition probabilities of the discrete-time
Markov chain. We have pij(n) ∈ [0, 1] and, for all i ∈ S,

∑
j∈S pij(n) = 1. If,

in addition to (1), we have pij(n) = pij(m) for all n and m in ZZ∗, then the
discrete-time Markov chain is called homogeneous. In a homogeneous Markov
chain, transition probabilities are independent of time. The transition probabili-
ties of a finite-state homogeneous discrete-time Markov chain can be represented
by a single |S|× |S| transition probability matrix P. For notational convenience,
we will use P to represent the collection of transition probabilities, pij(n), for
nonhomogeneous Markov chains as well.

The evolution of a discrete-time Markov chain over time is captured by a
trajectory. The trajectory of such a system is a sequence of states σ = s0 →
s1 → · · · , with si ∈ S. We denote by σ[i] the ith state, si, along the trajectory
σ, and the finite prefix of length n of σ is denoted σ↑n.

Let Path(s) denote the set of trajectories with initial state s. Following Hans-
son and Jonsson [12], we define a probability measure μ on the set Path(s), for
each s ∈ S. The measure μ is defined on the probability space 〈Ω,FΩ〉, where
Ω = Path(s), and FΩ is a σ-algebra generated by sets {σ ∈ Path(s) | σ↑n = s→
s1 → · · · → sn} of trajectories with common finite prefix of length n. The mea-
sure μ can then be defined uniquely by induction on the length of the common
prefix as follows:

μ({σ ∈ Path(s) | σ↑0 = s}) = 1 (2)

μ({σ ∈ Path(s) | σ↑n = s→ s1 → · · · → sn}) =
μ({σ ∈ Path(s) | σ↑(n− 1) = s→ · · · → sn−1}) · psn−1sn(n− 1) (3)

2.2 Temporal Stochastic Logic

We use the Probabilistic Computation Tree Logic (PCTL [12]) to specify prop-
erties of discrete-time Markov chains. We describe only a subset of PCTL that

Statistical Verification of Probabilistic Properties with Unbounded Until 147

includes unbounded until, since that is the focus of this paper. The techniques
described later in the paper can of course be combined with the techniques de-
veloped by Younes and Simmons [26] to handle a more expressive logic. The
logic permits nested probabilistic operators, although we do not discuss such
formulae here. Younes and Simmons [26] have already shown how to deal with
nested probabilistic formulae without ties to any specific type of path formula.
We could also replace PCTL with probabilistic LTL, which would avoid nested
probabilistic operators altogether. The solution methods of this paper can be
adapted for probabilistic LTL, but we do not consider that here.

Let AP be a fixed, finite set of atomic propositions. We assume a labeled
discrete-time Markov chainM = 〈S,P, L〉. S, and P as above, with the addition
of a labeling function L : S → 2AP . L(s) is the set of atomic propositions a ∈ AP
that are valid in s. PCTL formulae (for the relevant subset that we consider)
are of the form

Φ ::= a
∣∣ ¬Φ ∣∣ Φ ∧Φ

∣∣ P�� θ[Φ U Φ] ,

where θ ∈ [0, 1] and �� ∈ {≤,≥}. Additional PCTL formulae can be derived in
the usual way. For example, ⊥ ≡ a ∧ ¬a for some a ∈ AP , � ≡ ¬⊥, Φ ∨ Ψ ≡
¬(¬Φ ∧ ¬Ψ), Φ→ Ψ ≡ ¬Φ ∨Ψ, and P< θ[ϕ] ≡ ¬P≥ θ[ϕ].

The standard logic operators have their usual meaning. P�� θ[ϕ] asserts that
the probability measure over the set of trajectories satisfying the path formula ϕ
is related to θ according to ��. Path formulae are constructed using the temporal
path operator U (“until”). The path formula Φ U Ψ asserts that Ψ becomes true
at some time t ≥ 0 while Φ holds in all states prior to t. We can define mutually
inductive satisfaction relations for PCTL state and path formulae as follows:

M, s |= a if a ∈ L(s)
M, s |= ¬Φ ifM, s |�= Φ
M, s |= Φ ∧Ψ if (M, s |= Φ) ∧ (M, s |= Ψ)
M, s |= P�� θ[ϕ] if μ({σ ∈ Path(s) | M, σ |= ϕ}) �� θ

M, σ |= Φ U Ψ if ∃i.((M, σ[i] |= Ψ) ∧ ∀j < i.
(M, σ[j] |= Φ

))
The fact that {σ ∈ Path(s) | M, σ |= ϕ} is measurable can be verified from the
probability-space construction in Sect. 2.1 (cf. [1]), which makes the semantics
for PCTL well-defined.

2.3 Error Control

Statistical solution methods cannot achieve the exact precision for probabilistic
PCTL formulae that is required by the semantics given above. Following Younes
and Simmons [25], we relax the semantics of PCTL by introducing an indifference
region of half-width δ centered around any probability thresholds. The purpose
is to quantify the error that we are willing to accept by using sampling and
simulation in place of exact computations of probability measures.

148 H.L.S. Younes, E.M. Clarke, and P. Zuliani

Consider the model-checking problemM, s |= P�� θ[ϕ], and let p be the proba-
bility measure for the set of trajectories that start in s and satisfy ϕ. If |p−θ| < δ,
then the truth value of P�� θ[ϕ] is undetermined (“too close to call”) under the
relaxed semantics; otherwise, it is the same as for PCTL.

Formally, given δ > 0, we define two relations: |≈δ
� (approximate satisfaction)

and |≈δ
⊥ (approximate “unsatisfaction”). The definitions of |≈δ

� and |≈δ
⊥ coincide

with |= and |�=, respectively, except for probabilistic formulae where we instead
have:

M, s |≈δ
� P≥ θ[ϕ] if μ({σ ∈ Path(s) | M, σ |≈δ

� ϕ}) ≥ θ + δ

M, s |≈δ
⊥ P≥ θ[ϕ] if μ({σ ∈ Path(s) | M, σ |≈δ

⊥ ϕ}) ≤ θ − δ

M, s |≈δ
� P≤ θ[ϕ] if μ({σ ∈ Path(s) | M, σ |≈δ

� ϕ}) ≤ θ − δ

M, s |≈δ
⊥ P≤ θ[ϕ] if μ({σ ∈ Path(s) | M, σ |≈δ

⊥ ϕ}) ≥ θ + δ

Let M, s acceptA Φ represent the fact that Φ is accepted as true in state s of
M by a model-checking algorithm A, and M, s rejectA Φ that Φ is rejected as
false in state s of M by A. The solution methods we present aim to guarantee
the following error bounds:

Pr[M, s rejectA Φ] ≤ α ifM, s |≈δ
� Φ (4)

Pr[M, s acceptA Φ] ≤ β ifM, s |≈δ
⊥ Φ (5)

The parameters α and β allow a user to control the probability of false negatives
and false positives, respectively. For example, consider the formula P≥ 0.5[Φ U Ψ]
and let p denote the probability measure of trajectories that start in some state
s and satisfy Φ U Ψ. Let δ = 0.01. The statistical model-checking algorithms in
this paper aim to guarantee that we reject the formula as false with probability
at most α if p ≥ 0.5 + δ = 0.51, and that we accept the formula as true with
probability at most β if p ≤ 0.5 − δ = 0.49. The three parameters α, β, and δ
determine the precision of the model-checking algorithm. It is up to the user to
set these to his or her satisfaction, with the understanding that higher precision
will result in longer model-checking times.

3 Sampling-Based Verification of Unbounded Until

This section presents two methods for verifying probabilistic properties with
unbounded until, based on statistical sampling. For the model-checking problem
M, s |= P�� θ[Φ U Ψ], define the random variable X : Path(s)→ {0, 1} as follows:

X(σ) =

{
1 ifM, σ |= Φ U Ψ
0 ifM, σ |�= Φ U Ψ

. (6)

X represents a Bernoulli trial (i.e., outcomes are limited to 0 and 1). The ex-
pectation of X is

E[X] = μ({σ ∈ Path(s) | M, σ |= Φ U Ψ}) . (7)

Statistical Verification of Probabilistic Properties with Unbounded Until 149

Hence, M, s |= P�� θ[Φ U Ψ] has a positive answer if and only if E[X] �� θ.
If we could sample observations of X , then we could use statistical hypothesis

testing or estimation to verify P�� θ[Φ U Ψ]. To sample an observation of X , we
would sample a trajectory from Path(s) (e.g., using discrete-event simulation)
and verify Φ U Ψ over the sample trajectory. A single sample trajectory would
be extended incrementally until we reach a state that satisfies either Ψ (positive
observation; the path formula holds over the sample trajectory) or ¬Φ (negative
observation; the path formula does not hold over the sample trajectory). The
problem with this naive approach is that we are not guaranteed to ever reach
a state that satisfies either Ψ or ¬Φ. It works well for probabilistic properties
with time-bounded until, as demonstrated by Younes and Simmons [26], because
we can stop extending a sample trajectory if the time bound is exceeded. This
ensures termination (with probability 1) provided that the model is time diver-
gent. For unbounded until, however, there is no finite time bound to stop us
from going on indefinitely, so we can no longer guarantee termination.

Consider, for example, the model in Fig. 1(a), with a single state satisfying
some state formula Ψ. Assume that we want to verify M, s0 |= P≥ 0.15[� U Ψ]
(i.e., the probability of eventually reaching the state satisfying Ψ is at least 0.15
if we start in state s0 at time 0). Note that the state satisfying Ψ is shown as
absorbing—i.e., it has no outgoing transitions. This is to reflect that sample-
trajectory generation ends in that state. For all other states, the outgoing tran-
sition probabilities sum to 1. Any trajectory that starts in s0 and does not satisfy
� U Ψ is infinite. For this simple model, the probability measure of the set of
satisfying trajectories that start in s0 at time 0 can be computed as:

μ({σ ∈ Path(s0) :M, σ |= � U Ψ}) = 0.1 ·
∞∑

i=0

0.4i =
1
6

. (8)

Thus the stated model-checking problem has a positive answer, but a naive
sampling-based approach does not work due to the positive probability (5

6) for
the set of infinite trajectories.

Next, we describe two sampling-based solution methods that aim to avoid
infinite sample trajectories.

s0 Ψ1 0. 1

1

0. 5

0. 4

1

(a) M

s0 Ψ1 0. 1
0. 5

0. 4
(b) MR

s0 Ψ0. 9 0. 09

0. 9

0. 45

0. 36

0. 9

(c) MT (pT = 0.1)

Fig. 1. Three variations of a simple discrete-time Markov chain

150 H.L.S. Younes, E.M. Clarke, and P. Zuliani

3.1 Sampling-Based Method with Reachability Analysis

The first method uses reachability analysis to avoid infinite sample trajectories.
For an unbounded until formula Φ U Ψ to hold over a single sample trajectory σ
for modelM, it is necessary (although not sufficient) thatM, σ[i] |= Ψ for some
i ≥ 0. If after the generation of a finite prefix σ↑n it becomes evident that ¬Ψ
invariably holds along all possible extensions of σ↑n, then we can determine that
Φ U Ψ does not hold over σ without generating a complete (possibly infinite)
sample trajectory.

This condition for early termination can be expressed formally as the non-
probabilistic CTL [6] formula AG¬Ψ, or equivalently ¬EF Ψ. Hence, if we first
verify EF Ψ for a model M, which amounts to reachability analysis, then we
can terminate the generation of any sample trajectory entering a state of M
that does not satisfy EF Ψ. This pre-processing step requires that we construct
the full model, so it may seem counter to the appeal of sampling-based methods,
which usually avoid model construction. We show, however, in Sect. 5 that this
approach that combines symbolic reachability analysis and statistical sampling
can work very well in practice. It scales better with the size of the model than nu-
merical solution methods, which enables us to verify time-unbounded properties
for larger models.

Let MR be the model we get by removing all outgoing transitions from all
states inM that do not satisfy EF Ψ. We can now define the Bernoulli random
variable XR : PathR(s)→ {0, 1} as follows:

XR(σ) =

{
1 ifMR, σ |= Φ U Ψ
0 ifMR, σ |�= Φ U Ψ

. (9)

Theorem 1. Let X be the random variable defined in (6) and let XR be the ran-
dom variable defined in (9). The expectation of XR is the same as the expectation
of X: E[XR] = E[X].

This theorem is a standard result in Markov chain theory (see, e.g., [2]), and
a consequence of it is that we can use statistical hypothesis testing with obser-
vations of XR instead of X to verify P�� θ[Φ U Ψ] in M. The benefit of using
observations of XR instead of X is that certain trajectories that are infinite inM
have been made finite inMR. Since XR still represents a Bernoulli trial, the ex-
act same techniques as for formulae with time-bounded until (described in detail
by Younes and Simmons [26]) can be used to verify formulae with unbounded
until for model MR, satisfying conditions (4) and (5).

We illustrate this solution method on the discrete-time Markov chain in Fig. 1.
The original model is shown in Fig. 1(a). After performing reachability analysis,
we obtain the model in Fig. 1(b). The gray states have been made absorbing
because they do not satisfy EF Ψ. Trajectories generated from the modified
model will almost surely (with probably 1) eventually terminate.

We assume here that reachability analysis can be performed efficiently on
the model M. For Markov chains, we can ignore the actual values of transition

Statistical Verification of Probabilistic Properties with Unbounded Until 151

s0 Ψ1 −
1

3i

1

3i

Fig. 2. A nonhomogeneous discrete-time Markov chain

probabilities and use BDD-based symbolic model checking [4]. Other models
may require more advanced techniques (see, e.g., [13]). A discussion of concrete
techniques for reachability analysis is beyond the scope of this paper. Clarke
et al. [6] cover this topic in great depth.

For some nonhomogeneous Markov chains, termination may not be guaran-
teed (with probability 1) even after states have been made absorbing based
on reachability analysis. Consider the nonhomogeneous Markov chain in Fig. 2,
where i represents time. While EF Ψ holds in s0, the probability measure of
trajectories that start in s0 and never terminate is approximately 0.56. Hence,
if we applied the reachability-based approach to this model, more than half of
the sample trajectories would never terminate.

This example shows that the reachability approach is not applicable to all
Markov chains. The following theorem, however, identifies a large class of models
for which this approach is applicable. This theorem, too, is standard in Markov
chain theory (see, e.g., [2]).

Theorem 2. If M is a finite-state homogeneous discrete-time Markov chain,
then the probability measure is zero for the set of infinite trajectories of MR.

3.2 Sampling-Based Method with Termination Probability

The first solution method cannot be used if reachability analysis is ineffective as
exemplified by the model in Fig. 2. In the case of infinite-state systems, reacha-
bility analysis may not even be feasible.

To ensure finite trajectories without relying on reachability analysis, we can
introduce a termination probability pT < 1, which is used as follows. Start with
the stochastic discrete-event systemM. LetMT be the system we get if before
each transition out of a non-absorbing state in M we terminate execution pre-
maturely with probability pT. Concretely, for a discrete-time Markov chain with
transition probabilities pij(n), we construct a new discrete-time Markov chain
with transition probabilities (1−pT) ·pij(n). Figure 1(c) shows the result of this
transformation on the model in Fig. 1(a) using termination probability pT = 0.1
(we note later on that there are limitations on the choice of pT—0.1 is not an
admissible choice for all models). Each transition probability inM is multiplied
by 1−pT to obtain the corresponding transition probability inMT. For example,
0.5 becomes (1−0.1) ·0.5 = 0.45. The outgoing transition probabilities now sum
to 1 − pT for all non-absorbing states. In reality, of course, we never construct
the new Markov chain. Instead we just take the termination probability into
account when we generate sample trajectories. At each state, we terminate the
generation of the trajectory prematurely with probability pT.

152 H.L.S. Younes, E.M. Clarke, and P. Zuliani

Let |σ| denote the number of state transitions along the trajectory σ. Define
the random variable XT : PathT(s)→ [0,∞) as follows:

XT(σ) =

{
(1 − pT)−|σ| ifMT, σ |= Φ U Ψ
0 ifMT, σ |�= Φ U Ψ

. (10)

Trajectories that satisfy Φ U Ψ are finite as they must terminate in a Ψ-satisfying
state, so (10) is well-defined. Note the negative exponent, which means that
the weight of a satisfying trajectory grows exponentially in the length of the
trajectory. This construction is due to von Neumann and Ulam (see [10,11]) as
a way to compute the inverse of a matrix by the Monte Carlo method.

Theorem 3. Let X be the random variable defined in (6) and let XT be the
random variable defined in (10). The expectation of XT is the same as the ex-
pectation of X: E[XT] = E[X].

We can thus use observations of XT instead of X to solve the model-checking
problem M, s |= P�� θ[Φ U Ψ]. Unlike XR, which represents a Bernoulli trial,
the distribution of XT is unknown. Therefore we cannot use the same efficient
hypothesis-testing techniques as before. However, because E[XT] = E[X] we can
use an estimation-based approach. If we can obtain an estimate p̃ of E[XT], then
we can decide P�� θ[Φ U Ψ] by comparing p̃ to the threshold θ. While model
checking using MT requires more expensive sampling techniques than MR, we
can show that it is more generally applicable.

Theorem 4. The probability measure is zero for the set of infinite trajectories
of MT.

Note that Theorem 4 does not depend on any property ofM, so we are guaran-
teed (with probability one) finite sample trajectories for any model. For example,
Theorem 4 applies to the nonhomogeneous Markov chain in Fig. 2, as well as to
any infinite-state Markov process and even general discrete-event systems.

It remains to find a way to estimate E[XT]. Chow and Robbins [5] provide such
a method. Their method is a sequential procedure for computing a fixed-width
confidence interval for a random variable with unknown but finite variance. We
can use their procedure to obtain a confidence interval for E[XT] of width 2δ
centered around a point estimate p̃ with coverage probability at least 1−α. Let
xi be the ith observation of XT and let x̄n be the arithmetic mean of the first
n observations. Furthermore, let a1, a2, . . . be a sequence of positive constants
such that limn→∞ an = Φ−1(1− α

2), where Φ−1 is the inverse standard normal
cumulative distribution function (in practice, we can choose an to be the 1− α

2
quantile of the t-distribution with n− 1 degrees of freedom). The stopping rule
for the sequential procedure is then given by [5, Eqn. 3]:

N = inf
{

n ≥ 1 :
1
n

+
1
n

n∑
i=1

(xi − x̄n)2 ≤ δ2n

a2
n

}
(11)

Statistical Verification of Probabilistic Properties with Unbounded Until 153

We can now use p̃ = x̄N as a point estimate for E[XT], and accept P�� θ[Φ U Ψ] as
true if and only if p̃ �� θ. As shown by Younes [25], this gives us a model-checking
procedure that satisfies conditions (4) and (5) with β = α.

It should be noted that the procedure of Chow and Robbins provides asymp-
totic guarantees only, meaning that the coverage probability of the confidence
interval is guaranteed to be 1 − α in the limit as δ approaches 0. In practice,
the coverage probability can be somewhat less than 1 − α for any selected δ,
no matter how small, as has been shown for the normal distribution [9]. On the
other hand, empirical coverage tends to be greater than 1−α for Bernoulli ran-
dom variables. Further empirical studies are needed to determine the empirical
coverage for the type of random variables we have here, which are neither normal
nor Bernoulli, but this is beyond the scope of our paper.

A prerequisite for using the procedure of Chow and Robbins is that XT has
finite variance. This restriction effectively limits our choice of the termination
probability pT. For finite-state homogeneous Markov chains, we have the follow-
ing theoretical result:

Theorem 5. Let P be the transition probability matrix for M (the original
model). XT has finite variance iff pT < 1−ρ(P), where ρ(P) is the subdominant
(second-largest) eigenvalue of P.

In practice, computing the subdominant eigenvalue of a stochastic matrix is no
easier than solving the model-checking problem at hand, so choosing the right
value for pT is not trivial. In Sect. 5, we apply the algorithm to parametric models
[6] and compute ρ(P) for small models to find a pT that is likely to give finite
variance for larger variations of the same basic model. It is important to note,
however, that numerical iterative solution methods suffer from the exact same
problem as discussed in the next section.

4 Related Work

To verify the formula P�� θ[Φ U Ψ] in some state s, we can first compute the
probability measure p of the set of trajectories that start in s and satisfy Φ U Ψ,
and then compare p to θ. A numerical computation of p for any state of a Markov-
chain model amounts to the solution of a set of linear equations specified as
follows (cf. [1]). Let P be the transition probability matrix of the Markov chain
and let P′ equal P, with the exception that states satisfying ¬Φ ∨Ψ have been
made absorbing. Furthermore, let v be a binary column vector with a 1 in each
row corresponding to a state that satisfies Ψ. Then p is the solution to

p = P′ · p + v . (12)

The equation system in (12) can be written as (I − P′) · p = v and solved us-
ing Gaussian elimination, which is guaranteed to be polynomial in the size of
the state space. This approach is memory intensive, however, and also suffers
from numerical instability. For these reasons, Iterative solution methods, such
as Jacobi and Gauss-Seidel [22], are typically preferred. The leading tool for

154 H.L.S. Younes, E.M. Clarke, and P. Zuliani

probabilistic model checking, PRISM [17], relies on iterative methods to verify
properties with unbounded until. Each iteration involves a matrix–vector multi-
plication, which in the worst case is O(n2), but often O(n) (for sparse models),
where n is the size of the state space. This dependence on the size of the state
space make numerical solution methods impractical for very large models, in
which case sampling-based solution become an attractive alternative.

The number of iterations (k) required to achieve some numerical precision
ε is related to the subdominant eigenvalue (ρ) of P′ as follows [22, p. 156]:
k = log ε

log ρ . Since computing eigenvalues is no easier than solving the model-
checking problem, heuristics must be employed to bound the number of itera-
tions, but this means that no formal correctness guarantees can be made. This
is similar to the situation for the second sampling-based method we described.
The reachability-based sampling approach, in contrast, does not suffer from this
weakness as the precision of the result is independent of any property of the
model.

John von Neumann and Stanislaw Ulam, as early as the 1940s, devised a
Monte Carlo method for solving systems of linear equations of the type in (12).
It is this algorithm, first published by Forsythe and Leibler [10], that we use in
the second of our solution methods. It should come as no surprise that both the
iterative numerical solution methods, and the Monte Carlo approach that uses
a termination probability, have a dependency on the subdominant eigenvalue to
provide some prescribed precision. The method of von Neumann and Ulam is
essentially a Monte Carlo version of a numerical iterative algorithm.

Sampling-based solution methods for time-unbounded formulae have received
some attention recently [21,18,3,7], but these authors appear unaware of the
method devised by von Neumann and Ulam.

Sen et al. [21] propose a solution method that on the surface looks similar
to our second approach (the one based on the method by von Neumann and
Ulam). They use a termination probability pT in the same way as we to ensure
terminating sample trajectories. Instead of using weighted sampling with the
random variable XT, however, they use the following Bernoulli random variable:

YT(σ) =

{
1 ifMT, σ |= Φ U Ψ
0 ifMT, σ |�= Φ U Ψ

. (13)

The problem with YT is that its expectation does not match that of the random
variable X . Sen et al. recognize this problem and provide a bound on the expec-
tation E[X] expressed in terms of E[YT]. The bound depends on the size of the
model, however, and is too loose to be useful in practice.

In other work [18,27,3], it is proposed to use the results from verifying time-
bounded properties to obtain a probability estimate for unbounded properties.
These methods essentially boil down to estimating the expected value of the
following random variable:

Zk(σ) =

{
1 ifM, σ↑k |= Φ U Ψ
0 ifM, σ↑k |�= Φ U Ψ

. (14)

Statistical Verification of Probabilistic Properties with Unbounded Until 155

As with YT, Zk does not have the same expectation of X , although we do have
limk→∞ Zk = X . The expected value for Zk is estimated for a series of increasing
values for k until some convergence criterion is met. Lassaigne and Peyronnet [18]
relate the choice of k to the subdominant eigenvalue, but as with the other
theoretical results mentioned earlier that involve the subdominant eigenvalue,
this result does not help to choose k in practice. Ensuring a certain accuracy
becomes hard because each successive iteration with a different value for k is
subject to error, and different ad-hoc termination criteria are proposed by the
various authors. In the solution methods presented in this paper, we avoid this
iterative estimation approach by always setting up experiments that preserve
the expected value of the quantity of interest.

Rabih et al. [7] present a very different simulation-based approach to verifying
unbounded until properties. They develop an algorithm based on perfect simula-
tion. The approach is interesting, but impractical unless the model is monotone.
The authors do not discuss how to determine monotonicity for a model, or
whether the widely-used PRISM benchmarks satisfy this property, so it is hard
to assess the general applicability of their method.

The termination-probability approach has been used for rare-event simula-
tion (see, e.g., [19]). Improvements to the basic algorithm from the simulation
community would be valuable for model checking as well.

5 Empirical Evaluation

We use two continuous-time Markov-chain models as the basis for our empirical
evaluation, with rather different characteristics. Note that model checking of un-
bounded until for continuous-time Markov-chains reduces to model checking for
the embedded discrete-time Markov chain [1]. Thus, a continuous-time Markov
chain presents no additional challenge for the algorithms described in Sect. 3.

5.1 Modified Polling System

The first model is a variation of an n-station symmetric polling system, described
by Ibe and Trivedi [16]. In the original polling-system model, each station has a
single-message buffer and the stations are attended to by a single server in cyclic
order. When attending to a station, the server checks for a message in the buffer
of the station by polling the station, and goes on to serve the station if there is a
message. The polling and service times are exponentially distributed with rates
γ = 200 and μ = 1, respectively. Furthermore, each station has an inter-arrival
time for messages that is exponentially distributed with rate λ = 1/n.

Here, we consider a modified version of the polling-system model, where
polling stations can fail and stop accepting messages. The failure rate of a station
is κ = λ/3. After a station has failed, it can never be served again. This way,
infinite sample trajectories become a possibility for the property we consider.

We verify the following property: the probability is at least 0.4 that station 1
is served before station 2. Let s ∈ {1, . . . , n} be the station currently attended

156 H.L.S. Younes, E.M. Clarke, and P. Zuliani

to by the server, and let a ∈ {0, 1} represent the activity of the server (0 for
polling and 1 for serving). The property can then be expressed as the formula
P≥ 0.4[¬(s=2∧a=1) U s=1∧a=1]. We verify this formula in the state where the
server is about to attend to station 1 (s=1 and a=0) and all buffers are empty.
If both station 1 and station 2 fail before they are served, ¬(s=2 ∧ a=1) will
remain true and s=1 ∧ a=1 false indefinitely, and a sample trajectory for the
given model-checking problem may never terminate.

We have implemented the two sampling-based algorithms described in this pa-
per in Ymer [24]. We compare the sampling-based approaches with numerical
iterative algorithms implemented in PRISM [17]. For the experiments, we used
α = β = 0.01 and δ = 0.005 for the sampling-based algorithms, and ε = 0.005
(absolute error) for the numerical algorithms. These choices are of course some-
what arbitrary. Younes and Simmons [26] provide a thorough investigation of
how these parameter choices affect performance for sampling-based algorithms.
For example, using α = β = 10−8 increases verification time by about a factor
10. For the reachability approach, we tried both Wald’s SPRT [23] (sequential
hypothesis testing) and estimation based on the Hoeffding bound [15] that gives
a fixed sample size of N = � 1

2δ2 log 2
α� (105,967 for our choice of parameters). For

the approach based on termination probability we used Chow and Robbins’ se-
quential estimation procedure mentioned earlier and pT = 10−4 (this choice was
made after computing the subdominant eigenvalue for the transition matrices of
models with up to 12 stations). Finally, for the numerical approaches, we used
the hybrid engine in PRISM, trying both Jacobi and (backwards) Gauss-Seidel.

Figure 3 plots the verification time as a function of state-space size for the
modified polling system, when verifying the stated property using different al-
gorithms. For the sampling-based approaches, the graph shows the average time
over 20 trials. The state-space size for a model with n stations is 4n · 3n−1. A
model with 24 stations, for example, has close to 1013 states.

The sampling-based approaches scale well as the state-space size grows. Reach-
ability combined with the SPRT does best, partly because the underlying prob-
ability is close to 0.5, while the bound in the formula is 0.4, so a decision can
be reached with an average sample size of about 1,200. The estimation-based
approaches require much larger sample sizes. The termination-based approach
beats the reachability-based approach when the latter is used with a sample size
derived from the Hoeffding bound.

The numerical algorithms are much faster for small state spaces, but perfor-
mance deteriorates quickly for larger state spaces. They also use more memory
than the sampling-based approaches. For a model with 16 stations (about 1
billion states), PRISM caused serious thrashing on a computer equipped with
8GB of RAM. The reachability-based approach has a much more modest mem-
ory growth, and nothing suggests that it could not handle models much larger
than what we have tested here. The termination-based approach uses the least
amount of memory, as it does not require reachability analysis, and does not show
any noticeable growth as models get bigger. The sampling-based approaches are
trivially parallelizable, so we could get a speedup on multi-core architectures.

Statistical Verification of Probabilistic Properties with Unbounded Until 157

|S|102 104 106 108 1010 1012

t (s)

101

102

103

104

105

106 Reachability + Hoeffding
Reachability + SPRT
Termination
Gauss-Seidel
Jacobi

Fig. 3. Verification time as a function of state-space size for modified polling system

5.2 Tandem Queuing Network

The second model is a tandem queuing network due to Hermanns et al. [14]. The
network consists of two serially connected queues, each with capacity n. Messages
arrive at the first queue, get routed to the second queue, and eventually leave
the system from the second queue. The inter-arrival time for messages at the
first queue is exponentially distributed with rate λ = 4n. The processing time
at the second queue is exponentially distributed with rate κ = 4. The size of the
state space for this model is O(n2).

We verify that the probability is at most 0.03 that the second queue becomes
full before the first queue: P≤ 0.03[¬full1 U full2]. We use the same experimental
setup as for the first model, except for the choice of pT. Instead of a fixed value,
we use pT = 1

n+2 for a model with queues of size n. We do so because the
subdominant eigenvalue for this model more quickly approaches 1 as n grows.
Figure 4 plots the verification time as a function of state-space size for the

|S|101 103 105 107 109

t (s)

10−3

10−1

101

103

105 Reachability + Hoeffding
Reachability + SPRT
Termination
Gauss-Seidel
Jacobi

Fig. 4. Verification time as a function of state-space size for tandem queuing network

158 H.L.S. Younes, E.M. Clarke, and P. Zuliani

tandem queuing network, using the same algorithms as before. Again, the results
for sampling-based approaches are averages over 20 trials.

For this model, the sampling-based algorithm that uses termination probabil-
ity comes out on top. The reason is that reachability analysis is much more ex-
pensive for this model. The difference between Hoeffding and SPRT gets smaller
for larger state spaces, as the time needed to perform reachability analysis starts
to dominate the difference in sample size (446 for SPRT; 105,967 for Hoeffding).

6 Discussion

We have presented two sampling-based algorithms for probabilistic model check-
ing of time-unbounded properties. Both solution methods are based on unbiased
estimators. This avoids the convergence issues that haunt existing sampling-
based algorithms, which all use biased estimators. The first method, especially,
is valuable as it provides correctness guarantees that are independent of any
model parameters. The second method has the same weakness as popular iter-
ative numerical solution methods, in that accuracy cannot be guaranteed fully
without knowledge of the subdominant eigenvalue. Still, it allows us to analyze
models far beyond the reach of methods that require model construction (as is
the case for the first method, as well as numerical methods). Future work could
focus on extending the theoretical results of this paper. In particular, conditions
under which XT has finite variance should be established for a more general
class of systems. Techniques from the simulation community should be incorpo-
rated to reduce the variance of XT, and the empirical coverage probability for
sequential estimation should be established.

Acknowledgments. Edmund M. Clarke and Paolo Zuliani were supported in
part by the GSRC under contract no. 1041377, National Science Foundation
under award no. CNS0926181, no. CCF0541245, and no. CNS0931985, Semicon-
ductor Research Corporation under contract no. 2005TJ1366, General Motors
under contract no. GMCMUCRLNV301, Air Force under contract no. 18727S3,
and the Office of Naval Research under award no. N000141010188.

References

1. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking algo-
rithms for continuous-time Markov chains. IEEE Transactions on Software Engi-
neering 29(6), 524–541 (2003)

2. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

3. Basu, S., Ghosh, A.P., He, R.: Approximate model checking of PCTL involving
unbounded path properties. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009.
LNCS, vol. 5885, pp. 326–346. Springer, Heidelberg (2009)

Statistical Verification of Probabilistic Properties with Unbounded Until 159

4. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Information and Computation 98(2), 142–170
(1992)

5. Chow, Y.S., Robbins, H.: On the asymptotic theory of fixed-width sequential con-
fidence intervals for the mean. Annals of Mathematical Statistics 36(2), 457–462
(1965)

6. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press,
Cambridge (1999)

7. El Rabih, D., Pekergin, N.: Statistical model checking using perfect simulation. In:
Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 120–134. Springer,
Heidelberg (2009)

8. Etessami, K., Rajamani, S.K. (eds.): CAV 2005. LNCS, vol. 3576. Springer,
Heidelberg (2005)

9. Fishman, G.S.: Monte Carlo: Concepts, Algorithms, and Applications. Springer,
Heidelberg (1996)

10. Forsythe, G.E., Leibler, R.A.: Matrix inversion by a Monte Carlo method. Mathe-
matical Tables and Other Aids to Computation 4(31), 127–129 (1950)

11. Hammersley, J.M., Handscomb, D.C.: Solution of linear operator equations. In:
Monte Carlo Methods, ch. 7, pp. 85–96. Methuen & Co, New York (1964)

12. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994)

13. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for
real-time systems. Information and Computation 111(2), 193–244 (1994)

14. Hermanns, H., Meyer-Kayser, J., Siegle, M.: Multi terminal binary decision dia-
grams to represent and analyse continuous time Markov chains. In: Proc. 3rd In-
ternational Workshop on the Numerical Solution of Markov Chains, pp. 188–207,
Prensas Universitarias de Zaragoza (1999)

15. Hoeffding, W.: Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association 58(301), 13–30 (1963)

16. Ibe, O.C., Trivedi, K.S.: Stochastic Petri net models of polling systems. IEEE
Journal on Selected Areas in Communications 8(9), 1649–1657 (1990)

17. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model check-
ing with PRISM: A hybrid approach. International Journal on Software Tools for
Technology Transfer 6(2), 128–142 (2004)

18. Lassaigne, R., Peyronnet, S.: Probabilistic verification and approximation. Annals
of Pure and Applied Logic 152(1–3), 122–131 (2008)

19. L’Ecuyer, P., Demers, V., Tuffin, B.: Splitting for rare-event simulation. In: Proc.
2006 Winter Simulation Conference, pp. 137–148. IEEE, Los Alamitos (2006)

20. Monniaux, D.: An abstract monte-carlo method for the analysis of probabilistic
programs. In: Proc. 28th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 93–101. Association for Computing Machinery (2001)

21. Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic
systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
266–280. Springer, Heidelberg (2005)

22. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton
University Press, Princeton (1994)

23. Wald, A.: Sequential tests of statistical hypotheses. Annals of Mathematical Statis-
tics 16(2), 117–186 (1945)

160 H.L.S. Younes, E.M. Clarke, and P. Zuliani

24. Younes, H.L.S.: Ymer: A statistical model checker. In: Etessami, K.,
Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer,
Heidelberg (2005)

25. Younes, H.L.S.: Error control for probabilistic model checking. In: Emerson, E.A.,
Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 142–156. Springer,
Heidelberg (2005)

26. Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with
a focus on time-bounded properties. Information and Computation 204(9),
1368–1409 (2006)

27. Zapreev, I.S.: Model checking Markov chains: Techniques and tools. PhD thesis,
University of Twente (2008)

Reasoning about Assignments
in Recursive Data Structures

Alejandro Tamalet and Ken Madlener

Institute for Computing and Information Sciences (iCIS),
Radboud University Nijmegen, The Netherlands

{a.tamalet,k.madlener}@cs.ru.nl

Abstract. This paper presents a framework to reason about the effects
of assignments in recursive data structures. We define an operational
semantics for a core language based on Meyer’s ideas for a semantics
for the object-oriented language Eiffel. A series of field accesses, e.g.
f1 • f2 • . . . • fn, can be seen as a path on the heap. We provide rules
that describe how these multidot expressions are affected by an assign-
ment. Using multidot expressions to construct an abstraction of a list,
we show the correctness of a list reversal algorithm. This approach does
not require induction and the reasoning about the assignments is encap-
sulated in the mentioned rules. We also discuss how to use this approach
when working with other data structures and how it compares to the
inductive approach. The framework, rules and examples have been for-
malised and proven correct using the PVS proof assistant.

1 Introduction

In order to verify pointer programs that manipulate recursive data structures,
one generally identifies the pointer structure embedded in the heap with an
abstract model. A concrete instance is a mapping of a set of objects on the heap
connected by a field such as next to an abstract list of objects. The mapping
is called the abstraction and the abstract list is called the abstract model. An
operation performed by the program on a pointer structure on the heap has
a corresponding operation on the abstract model. For example, the operations
performed by a list reversal algorithm have the combined effect that the abstract
list is reversed at the end of the execution. The standard way to define data
abstractions is by recursion on the structure of (the data type of) the abstract
model.

Verification of pointer programs is a non-trivial task due to the possibility
of aliasing. Modifying data through one name implicitly modifies the values
associated to all aliased names. If two portions of the heap are disjoint, an
assignment in one part of the heap does not affect the other; this is called local
reasoning. Local reasoning is essential for scalability and several approaches to
obtain it have been studied, see e.g. Separation Logic [14] and Region Logic [15].

When it is not known how the heap is partitioned or when working within
a region that may contain aliases, we have to reason about how a change to

J. Davies, L. Silva, and A. Simão (Eds.): SBMF 2010, LNCS 6527, pp. 161–176, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

162 A. Tamalet and K. Madlener

(a portion of) the heap affects the corresponding abstract model. This comple-
ments local reasoning. In this paper we focus on the effects of assignments to
abstract models. We present our work in the setting of a core language, inspired
by Meyer’s ideas for a semantics for the object-oriented language Eiffel [12].

Our framework allows us to express multidot field access expressions, mul-
tidot expressions for short, of the form f1 • f2 • . . . • fn. A multidot expression
consisting of a series of next-fields describes a path from the head of a list to
one of its elements. If we instantiate it with a series of left and right-fields
we can describe the path from the root of a binary tree to any node or leaf. In
general, a multidot expression describes a path on the heap where the elements
are connected by field accesses.

The main contribution of this paper is to provide a set of rules that precisely
describe the value of a multidot expression after an assignment, and to show
how these rules can be applied for verification of programs that manipulate
recursive data structures. The given rules are categorised into separation rules,
where the assignment has no effect on the multidot expression, and interference
rules, where the assignment does have effect on the multidot expression. We have
applied these rules to show the correctness of an in-place list reversal algorithm
by mapping each element of the list to a multidot expression. We also discuss
how to apply the same principles to other recursive data structures and we
make a comparison with the standard inductive approach. Our work has been
completely carried out in the theorem prover PVS [13].

This paper is organised as follows. Section 2 gives a short introduction to PVS
and introduces the notation. Section 3 defines the language we shall work with.
In Section 4 we present the rules that describe the effects an assignment can
have on a multidot expression and in Section 5 we apply these rules to prove
the correctness of a list reversal algorithm and we discuss the applicability to
other data structures. We compare the approach described in this paper with the
standard inductive approach and we give pointers for future work in Section 6.
Related work is discussed in Section 7 and conclusions are drawn in Section 8.

2 Preliminaries

PVS is based on higher-order logic with dependent types and predicate subtyp-
ing. Subtyping based on predicates makes type checking undecidable, so when
PVS cannot infer the desired type itself, it will generate a proof obligation. Its
intuitive syntax is reminiscent of functional languages like Haskell. For reasons
of presentation, we slightly simplify the actual PVS syntax. We will briefly in-
troduce the notation used in this paper.

Formulas are terms of type bool. We shall use the standard notation for
connectives (∧,∨,⇒,¬), and for quantifiers (∀, ∃). There is a conditional term
IF ϕ THEN M ELSE N , for terms M, N of the same type.

Given the types σ, τ, σ1, . . . , σn, function types are written as [σ → τ] and
record types as [lab1 : σ1, . . . , labn : σn]. Given the record types ρ1, . . . , ρm,
labelled coproduct types are written as {lab1(ρ1), . . . , labm(ρm)}. Terms of

Reasoning about Assignments in Recursive Data Structures 163

coproduct type can be constructed with labi(M), where M : ρi, and recognised
with labi?. Standard set comprehension notation can be used to define predicate
subtypes. New types can be introduced via definitions, like

lift [σ] : TYPE = {bottom, up(down : σ)}

(bottom is the unit type and we omit its argument). The lift type constructor
adds a bottom element to an arbitrary type σ given as a parameter, written in
short as σ⊥ =̂ lift[σ].

Lists are defined as

list [σ] : TYPE = {null, cons(car : σ , cdr : list)}

There is an infix function ++ that appends two lists. It is overloaded so that
when one of its arguments is of type σ, then this argument is converted to a list.
The ith element of a list l can be accessed using nth(l, i).

3 The Model

This section describes an operational semantics of a core object-oriented lan-
guage. The focus is on the features needed to understand the properties discussed
in the next section, i.e., we do not model some typical object-oriented features
like inheritance. The interested reader can find the full PVS formalisation at
http://cs.ru.nl/~tamalet.

3.1 The Heap

In our model we consider all values to be an object or void. The set Object is
defined as an uninterpreted type that represents non-void objects. Instances of
Objectv have the possibility of being void:

Objectv : TYPE = {obj(obj : Object) , void}

A basic approach to model the heap, due to Burstall [5] and more recently
emphasised by Bornat [3], is to model it as a collection of functions of type
Object → Objectv, one for each class field (i.e. the component). This mod-
elling encodes the fact that changing to what object a field points to does not
affect other fields. This has the important consequence that whenever one field
is updated, we do not need to propagate that update to the other fields. This is
sometimes called the component-as-array model [7,9].

Our heap is a grouping of field functions, indexed by their field names:

Heap : TYPE = [Name → [Object → Objectv]]

where Name is a set representing the field names. Given a heap h and a field
name f, h(f) is the corresponding field function. This indexing allows us to reason
about field names, which is not possible when using a loose set of field functions as
in the component-as-array model. There, the names of the fields are fixed by the
names of the functions that model them. We use this to express meta-properties

http://cs.ru.nl/~tamalet

164 A. Tamalet and K. Madlener

about multidot field expressions in Section 4. The separation by syntax provided
by the component-as-array model is lost in this model, because a field update is
now an update on the heap function. With the meta-level properties presented
in the rest of this paper, we obtain a reincarnation of separation by syntax.

The above definition of the heap highlights the relationship with the compo-
nent-as-array model. However, defining the heap as a function of type [Object
→ [Name → Objectv]] may seem more intuitive. In this definition we first fix an
object and then we ask for a field name to obtain its value. As the functions
are total (required by PVS), both definitions are in fact equivalent. This means
that every field should be defined at every object. This is of course not realistic,
however, accesses to undefined fields can be handled by a preliminary static
analysis.

3.2 Expressions, Statements and Compositions

We model expressions, statements and their compositions following Meyer’s ideas
for a semantics for Eiffel [12]. A distinctive aspect of this approach is that ex-
pressions and statements are evaluated relative to an object, which is provided
together with the heap as argument.

We deal with null-pointer dereferencing in language constructs, as opposed to
avoiding it by type constraints. In our experience, the second approach leads to
cumbersome specifications because the result of each expression and statement
must be checked for definedness before composing them.

There are two syntactic categories: expressions (without side-effects) and
statements:

Expr : TYPE = {e : [Objectv⊥ , Heap⊥ → Objectv⊥] |
∀ (o : Objectv⊥ , h : Heap⊥) :
bottom_or_void?(o , h) ⇒ bottom?(e(o , h))}

Stmt : TYPE = {S : [Objectv⊥ , Heap⊥ → Heap⊥] |
∀ (o : Objectv⊥ , h : Heap⊥) :
bottom_or_void?(o , h) ⇒ bottom?(S(o , h))}

To define a semantics for Eiffel, Meyer works with partial functions [12]. In most
theorem provers, including PVS, functions have to be total. For this reason we
use lifted arguments, to represent undefinedness. The bottom_or_void?(o, h)
predicate returns true if and only if o is undefined or void or h is undefined. By
using predicate subtypes, we ensure that whenever an expression or statement
is evaluated in void or in an undefined object or state, the result is undefined.
This shifts checking for void or bottom from the specification to type correctness
obligations that PVS generates automatically.

The expression Current (called this or self in some languages) returns the
current object:

Current : Expr = λ (o : Objectv⊥ , h : Heap⊥) :
IF bottom_or_void?(o , h) THEN bottom ELSE o

Reasoning about Assignments in Recursive Data Structures 165

The operators • and ; compose expressions and statements. If x is an expression,
S an statement and r is either of them, we define:

S ; r = λ (o : Objectv⊥ , h : Heap⊥) : r(o , S(o , h))
x • r = λ (o : Objectv⊥ , h : Heap⊥) : r(x(o , h) , h)

The normal uses are state compositions S; T and field access x • y. The overloading
allows us also to write S ; x, which returns the value of evaluating x after the
statement S, and x • S, which can be thought as a qualified call of S from x.

We define in PVS an automatic conversion that translates a name f into
the expression λ (o: Objectv⊥ , h: Heap⊥): h(f)(o) whenever needed. This
allows us to express a field access directly as x • f. We also define a conversion
that translates an o : Object into obj(o) : Objectv, and one that translates an
o : Objectv into up(o) : Objectv⊥, to reduce the amount of syntax.

IF-statements are mapped to IF-expressions in the logic of PVS. For reasons
of succinctness we omit the treatment of WHILE.

3.3 Assignments

At its core, an assignment is an update of a heap-function in a particular point
(consisting of a field and an object):

update(f : Name, p : Object, h : Heap, q : Object_v) : State =
λ (g : Name)(o : Object) :
IF p = o∧f = g THEN q ELSE h(g)(o)

Our model forces us to explicitly deal with undefinedness due to dereferencing
of void. The update operation is encapsulated in an operator := that assigns an
object q to the field f of the object p in the heap h:1

:= (f : Name, q : Objectv) : Stmt =
λ (p : Objectv⊥ , h : Heap⊥) :

IF bottom_or_void?(p) ∨ bottom?(h) THEN bottom
ELSE update(f , obj(down(p)) , down(h) , q)

If the assignment is made in an undefined state or tries to assign to void, the
error is propagated. This is required by the definition of Stmt. We shall use the
above variable names throughout the rest of this paper. The next step is to define
local assignments f := e and qualified assignments e1 • f := e2. These definitions
are not relevant for the development of this paper and we therefore omit them.

An assignment affects a field access if and only if the object where the field is
evaluated is the one where the assignment was made and the field being accessed
is the one that was assigned to. This is summarised in the following two basic
separation and interference properties (both assume that o, h is not bottom or
void):

Property 1. If p �= o or f �= g, then g(o, (f := q)(p, h)) = g(o, h).

1 In the PVS formalisation we have called this function <=, because := is reserved.

166 A. Tamalet and K. Madlener

Property 2. If p = o and f = g, then g(o, (f := q)(p, h)) = q.

The proofs of these two properties amount to expanding the definition of := and
applying several case-splits. When the assignment is replaced with a qualified
assignment e1 • f := e2, then analogous properties hold, but p = o is replaced by
e1(o, h) = o.

One has to explicitly apply properties 1 and 2 as proof steps to reason about
the effect of an assignment in the presented semantics. The key condition is
p = o ∧ f = g. The latter is a syntactical comparison and thus can be done au-
tomatically. However, most of the time comparison between objects cannot be
discharged automatically, unless we have information about the layout of the
heap, see Section 6.

4 The Effect of Assignments on Multidot Expressions

In this section we look at expressions of the form

(g1 • . . . • gn)(o, (f := q)(p, h)), (1)

where the gi and f are field names, o and p are Objectv⊥and q is of type Objectv.
Because undefinedness due to dereferencing void is not an essential part of the
discussion, we shall omit it in the rest of the paper.

Properties 1 and 2 describe the result of a very simple multidot, namely
one where n is equal to 1. There, the condition which determines the result is
p = o ∧ f = g. In multidot field expressions of arbitrary length a similar condition
determines the result, but now it must be taken into account that in the path
from o to (g1 • . . . • gn)(o, (f := q)(p, h)), the field f of the object p can be
traversed more than once if there is a loop. Thus we are interested in the set of
indexes k such that:

p = (g1 • . . . • gk−1)(o, h) and f = gk .

The properties we present in this section are categorised into separation rules,
where the assignment has no effect on the multidot field expression, and interfer-
ence rules, where the assignment does have effect on the multidot field expression.
Moreover, we now have a choice to look at the heap h before the assignment, or at
the heap h′ = (f := q)(p, h) after the assignment. For the separation properties
this does not make a difference, but for the interference properties it does.

The properties we derive about multidot expressions in this section are at
the meta-level. Although it is possible to use them to reason about a particular
multidot in a program, the intended use is to reason about the effects of assign-
ments on recursive data structures. Examples that demonstrate the application
are given in Section 5.

To improve readability, the notation for multidot expressions differs from the
actual syntax used in PVS. In the last subsection we show the concrete PVS
formalisation of a property. We will use graphs representing a portion of the

Reasoning about Assignments in Recursive Data Structures 167

heap h′ to show examples of the properties. In these graphs nodes are objects
and edges are labelled with an attribute name. An edge f �� from an object
o to an object p means that f(o, h′) = p. The edge removed by the heap update
is depicted as f× �� .

4.1 Looking at the Heap Before the Assignment

The assignment in (1) may or may not modify the multidot field expression.
Graphically, what matters is whether the edge that has changed belongs to path
followed by the multidot field expression or not. A particular edge is determined
by its object of origin and the field name. Hence, the condition that determines
whether the assignment influences the multidot expression is whether or not the
following set is empty:

Kpre =̂ { k : nat | k < n ∧ p = (g1 • . . . • gk−1)(o, h) ∧ f = gk }.

We start with the case where Kpre is empty, i.e., the edge changed by the assign-
ment is not part of the multidot expression, as shown in Figure 1.

�������	
gn �� �������	

o�������	

g1

��

p�������	 f
× ��

f

���
��

��
��

gk

��

�������	

�������	 �� �������	

gk−1

��

q�������	

(a) p = (g1 • . . . • gk−1)(o, h) but f = gk.

�������	
gk=f �� �������	 gn �� �������	

o�������	

g1

��

p�������	 f
× ��

f

���
��

��
��

�������	

q�������	

(b) f = gk but p = (g1 • . . . • gk−1)(o, h).

Fig. 1. Examples where Kpre is empty

As the edge that changed was not part of the multidot expression, the assignment
does have an effect on it.

Property 3. (empty_Kpre) If Kpre is empty, then

(g1 • . . . • gn)(o, h′) = (g1 • . . . • gn)(o, h) .

Now consider the case where Kpre is not empty. Figure 2 depicts an example with
two indexes i and k in Kpre such that k < i. If there are several indexes in Kpre,
it means that there are several loops starting at p. The assignment breaks the
first edge in these loops. In the heap after the assignment, the edge that joins p
with q is determined by the least element in Kpre.

168 A. Tamalet and K. Madlener

o�������	

g1

��

p�������	
f=gk
× ��

f=gi

���
��

��
��

�������	
gk+1 �� �������	 �� �������	

gi−1

��

�������	 �� �������	

gk−1

��

q�������	
gk+1 �� �������	 gi �� �������	 gn �� �������	

Fig. 2. Example with two indexes k < i in Kpre

Property 4. (min_Kpre) If k = min(Kpre), then

(g1 • . . . • gn)(o, h′) = (gk+1 • . . . • gn)(q, h′) .

Since the assignment may also affect the path that goes from q to the final value,
the right hand side must still be evaluated in h′.

4.2 Looking at the Heap After the Assignment

Instead of looking at when the multidot expression follows the edge that changed
in h, we will now look at when it follows the new edge in h′. That is, we will
look at the set:

Kpos =̂ { k : nat | k < n ∧ p = (g1 • . . . • gk−1)(o, h′) ∧ f = gk }.
If the new edge is never traversed, the multidot expression does not change.

Property 5. (empty_Kpos) If Kpos is empty, then

(g1 • . . . • gn)(o, h′) = (g1 • . . . • gn)(o, h) .

Now assume that there is at least one index in Kpos. In Figure 3 we see an
example with two such indexes i and k with i < k. In this case the result of
the multidot expression can be described as either (gk+1 • . . . • gn)(q, h′) or as
(gi+1 • . . . • gk • gk+1 • . . . • gn)(q, h′). If we take the greatest index in Kpos, we
get the shortest path to the resulting value and since the rest of the edges are
not affected by the assignment we can describe the result in terms of h. This is
expressed in the following properties.

Property 6. (forall_Kpos) For all k in Kpos,

(g1 • . . . • gn)(o, h′) = (gk+1 • . . . • gn)(q, h′) .

Property 7. (max_Kpos) If k = max(Kpos), then

(g1 • . . . • gn)(o, h′) = (gk+1 • . . . • gn)(q, h) .

Reasoning about Assignments in Recursive Data Structures 169

o�������	

g1

��

p�������	 f
× ��

f=gi=gk

���
��

��
��

�������	 �������	

gk−1

��

�������	 �� �������	

gi−1

��

q�������	
gi+1 ��

gk+1

��

�������	

��

�������	 �������	
gn

�� �������	��

Fig. 3. Example with two indexes i < k in Kpos

4.3 PVS Formalisation

Given a list of names fs, the dot composition of the corresponding attributes is
formalised as

multidot(fs : list [Name]) : RECURSIVE Expr =
IF null?(fs) THEN Current
ELSIF null?(cdr(fs)) THEN car(fs)
ELSE car(fs) • multidot(cdr(fs))

MEASURE length(fs)

Note that because e • Current = e does not hold when e evaluates to void, we
cannot simply append Current at the end of the multidot expression.

As an example of the PVS formalisation, we show a property that combines
empty_Kpos and max_Kpos in a property at the source code level. Since it is
written as an equality between functions, it can be used as a rewrite rule.

multidot_after_assignment_pos : LEMMA

∀ (f : Name, gs : list [Name] , x , e : Expr,
o : Objectv⊥ , h : Heap⊥) :

((x • f := e ; multidot(gs))(o , h) =
LET h′ = (x • f := e)(o , h) ,

Kpos = λ (k: below[length(hs)]) :
x(o , h) = multidot(take(gs, k))(o , h′) ∧
f = nth(gs, k) IN

IF bottom?(h′) THEN bottom
ELSIF empty?(Kpos) THEN multidot(gs)(o , h)
ELSE LET k = max(Kpos) IN

IF k = length(gs) - 1 THEN e(o , h)
ELSE (e • multidot(drop(gs , k+1)))(o , h)

This property describes in terms of h all the possible outcomes of multidot(gs)
when evaluated in h′. If the assignment resulted in an error then the result is an

170 A. Tamalet and K. Madlener

error. If Kpos is empty then the multidot expression is unchanged. Otherwise, let
k be the greatest element in Kpos. The result is then as stated in max_Kpos (with a
shift of indexes due to lists starting at 0 in PVS). But again because e • Current
is not equal to e when evaluated on void, we have to make a special case for
when the multidot expression ends exactly at e. There is a similar lemma that
combines empty_Kpre and min_Kpre.

The intuitive way to prove these properties is by induction on gs. The in-
tention is to reason about the last edge of the multidot expression and use the
inductive hypothesis on the path that leads to it. The problem with this ap-
proach is that on the non-empty case we have to reason about a list of the form
cons(g, gs). Therefore, we get to reason about the first edge, not the last one.
To overcome this problem we defined a function multidot_rev that chains the
arguments in the reverse order. Then we wrote lemmas that are adapted to work
with the reversed list, and we proved them by induction on gs. Finally, the orig-
inal lemmas were proven using their reversed counterpart by instantiating gs
with reverse(gs).

5 Linearised Abstractions

In this section we look at examples of abstract models expressed in terms of
multidot field expressions. We call this style of specifying linearised, because it
is not by recursion on the structure of the abstract model. The properties derived
in the previous section provide us a set of tools to reason about the effects of an
assignment to a linearised abstraction.

5.1 Paths

The following definition abstracts a path embedded in the heap to a list l of
Objects. The ith object in l is the object on the heap that can be accessed by
requesting the first i fields describing the path.

Path(gs : list [Name] , l : list [Object])
(o : Objectv⊥ , h : Heap⊥) : bool =

length(gs) + 1 = length(l) ∧
∀ (i : below[length(l)]) :
multidot(take(gs, i))(o , h) = nth(l , i)

Due to the possibility of undefinedness, we define the abstractions as predicates
about the heap and the current object rather than as functions because in PVS
functions must be total.

With the use of the spatial separation lemmas for multidot expressions we can
prove the following separation lemma for paths (recall that h′ = (f := q)(p, h)):

Property 8. If for all i < length(l) it holds that p �= nth(l, i) or f �= nth(gs, i),
and ¬ bottom?(f(p, h)), then

Path(gs, l)(o, h′) = Path(gs, l)(o, h).

Reasoning about Assignments in Recursive Data Structures 171

Thinking again in terms of graphs, this lemma says that if an edge outside the
path is modified, then the path is not affected by the assignment. To give an
idea of how the multidot rules are applied, we sketch the proof of this lemma.

Proof sketch. We are supposed to show that the Path predicates are logically
equivalent. In expanded form, we have to show that the following predicates are
equivalent:

∀ (i1 : below[length(l)]) : (g1 • . . . • gi1)(o, h
′) = nth(l, i1) (2)

∀ (i2 : below[length(l)]) : (g1 • . . . • gi2)(o, h) = nth(l, i2) (3)

To show that (2) implies (3), we instantiate i1 with i2 and we apply empty_Kpos.
Then we have to show that Kpos is indeed empty. If this was not the case then
there would be a k such that

p = (g1 • . . . • gik)(o, h
′) = nth(l, k) and f = gk,

which is a contradicts the assumption that p is not in l. For the converse direc-
tion, we apply empty_Kpre in an analogous way. �

The interference property for paths describes how a path ending in p can be
joined with a path beginning at q:

Property 9. If p /∈ l0++q++l1 and c = car(l0 ++ p), then

Path(gs1 ++ f++ gs2 , l0 ++ p ++ q++ l1)(c , h′) =
(Path(gs1 , l0 ++ p)(c , h) ∧ Path(gs2 , q ++ l1)(q , h))

The proof uses the multidot rules empty_Kpos and max_Kpos for the implication
from left to right and it uses the rules empty_Kpre and min_Kpre from right to
left. We omit the proof sketch of this property for reasons of space.

An important point about the proofs using linearised abstractions is that the
induction is encapsulated in the rules about multidot expressions; to prove the
above properties, we did not apply induction.

5.2 Example: Verification of an In-Place List Reversal Algorithm

The Path abstraction can be specialised by Path(g, l), which instantiates the
regular Path with a list of g-fields. By requiring the last node of Path(next, l)
to point to void, we obtain an abstraction for lists on the heap:

List(l : list [Object])
(o : Objectv⊥ , h : Heap⊥) : bool =

Path(next, l)(o , h) ∧
IF cons?(l) THEN void?(next(last(l) , h))
ELSE void?(o)

172 A. Tamalet and K. Madlener

Note that List(null)(o, h) is true iff void?(o) is true, i.e. an empty list is rep-
resented by void. Similar separation and interference properties as the ones for
Path can be proved for List.

To prove the correctness of the annotated in-place list reversal algorithm listed
in Figure 4, we use standard Hoare-style reasoning. The annotations have type
Asrt : [Objectv⊥, Heap⊥ → bool] and a Hoare-triple has the following meaning
for P, Q : Asrt and S : Stmt:

{P} S {Q} =̂
∀ (o : Objectv⊥, h : Heap⊥) :
P(o, h) ⇒ Q(o, S(o, h))

As can be seen in Figure 4, the current object o and the updated heap S(o, h)
distribute over the connectives. So, the actual work to verify the correctness
of the list reversal algorithm amounts to simplifying expressions of the form
(g • List(l))(o, (e1 • f := e2)(o, h)). By expanding the definitions of dot and as-
signment, this can be brought into the form of List(l)(o′, (f := q)(p, h′)), on
which the separation and interference rules for the List abstraction can be
applied.

{ λ(o , h) : ¬bottom_or_void? (o , h) ∧ a • List(As)(o , h) }
b := void ;
WHILE (λ(o , h) : ¬void?(a(o , h))) DO
{ λ(o , h) : ¬bottom_or_void? (o , h) ∧

∃(as , bs : list [Object]) :
(a • List(as))(o , h) ∧ (b • List(bs))(o , h) ∧
disjoint?(as , bs) ∧ append(reverse(as) , bs) = reverse(As) }

tmp := a ;
a := a • next ;
tmp • next := b ;
b := tmp ;

OD
{ λ(o , h) : ¬bottom_or_void? (o , h) ∧ (b • List(reverse(As)))(o , h) }

Fig. 4. In-place list reversal

5.3 Other Data Structures

The linearised specification approach exemplified in the previous two sections
can also be applied to other recursive data structures. Consider for example
binary trees that store a value in each node:

binary_tree[σ]: TYPE = {leaf, node(v : σ , l , r : binary_tree)}

It is straightforward to define a predicate

get_node(bt : binary_tree[σ] , path : list [Name] , v : σ) : bool

Reasoning about Assignments in Recursive Data Structures 173

that says whether by traversing bt in the order specified by path, we arrive at
v. Basically get_node maps each constructor application to the corresponding
field name. We can now describe a binary tree on the heap by mapping each of
its nodes to a multidot field access:

binary_tree_abstraction(bt : binary_tree[Object])
(o : Objectv⊥ , h : Heap⊥) : bool =

∀ (x : Object, path : list [Name]) :
get_node(bt , path, x) ⇒
multidot(path)(o , h) = x

From the properties about multidot expressions presented in Section 4 one can
obtain separation and interference lemmas for binary trees.

The same ideas can be applied to other tree-like structures. First make a
linearised abstraction of the data structure: obtain the path from the root to each
of its elements and use that path to describe the pointer structure in terms of
multidot expressions. Then use the properties of Section 4 when reasoning about
assignments. Data structures with loops can also be specified, e.g., a circular list
is just a path that starts and ends in the same object.

6 Evaluation and Future Work

A natural way to define abstractions is by means of recursion on the structure
of the abstract model. We single out the work by Mehta and Nipkow that uses
this approach to verify several pointer programs [11]. The advantage of using
induction is that it is a familiar general-purpose method that is integrated in the
theorem prover. Much work has been devoted to automate proofs by induction, in
particular to heuristics to instantiate the inductive hypothesis, e.g. rippling [4]. In
the inductive approach one still has to reason about the effect of the assignments
to the data structure, whereas using the rules given in Section 4 the focus is on
when to apply each rule and in finding the extrema of the K-sets, which requires
an instantiation.

Our experience is that both approaches require a comparable amount of proof
work. However, there is still work to be done on investigating specialised version
of the assignment rules and on the integration with the theorem prover as tactics.
For example, if we know that there is no loop on a multidot expression, as is the
case in tree-like structures, then we also know that the K-sets are either empty
or have only one element. This eliminates the need to find the minima or the
maxima.

Because both approaches lead to definitions that are essentially equivalent,
the same properties hold. Hence, our approach can be seen as a complement
rather than a replacement of inductive reasoning.

Reasoning about assignments ultimately reduces to reasoning about object
equality. Therefore, this framework would benefit from knowledge about the
layout of the memory. The separation rules are used to provide local reasoning,
but they are not a primitive of the logic as the star conjunct is in Separation

174 A. Tamalet and K. Madlener

Logic [14] (see also Section 7). Hubert and Marché [9] propose a static separation
analysis and show how it can be integrated in the component-as-array modelling.
They split the heap into regions that are inferred by the separation analysis and
accordingly relabel the field names as a combination f_r of the old field name f
and a region r. This could be integrated into our model, for example by redefining
the heap as

Heap : TYPE = [Region, Name → [Object → Objectv]]

When it is inferred that two objects x and y lie in separate regions, the com-
parison between them can be avoided and the separation lemmas can be applied
automatically.

7 Related Work

A first version of some of the rules presented in Section 4 first appeared in
Tamalet’s Master’s thesis [16].

In the seminal work of Bornat [3] and also in the work by Meyer on a semantics
for Eiffel [12], pointer structures on the heap are related with abstract models
via repeated composition of field requests. This has been a source of inspiration
for this paper. Bornat and Meyer both define a sequence closure operator that
repeatedly requests a series of (the same) fields, yielding the list of objects that
is traversed on the heap. This is essentially the same as our Path abstraction of
Section 5.2. In this paper we have given a complete and formalised overview of
the effects of assignments to arbitrary multidot field expressions. A treatment of
the sequential operator in the context of Eiffel has been given in an unpublished
work by Blanco and Castro [2], restricted to the case of lists.

A perhaps more natural way to define abstractions is by the use of recursion on
the structure of the abstract model. Mehta and Nipkow [11] used this approach
to verify the correctness of several pointer programs. We have compared the
inductive approach and the linearised approach in Section 6.

Hoare and Jifeng [8] introduce a framework for the formulation of assertions
about objects and pointers based on trace model of graphs and process algebra.
They use a graphical notation very similar to the one used in this paper. However,
their model uses graph transformations to describe the changes to the state
whereas we use an operational semantics.

Our rules about an assignment followed by a multidot are meta-level proper-
ties of the language. To enable this meta-level reasoning we introduced a function
multidot that maps a list of Names to a suitable expression, which is essentially
a deep embedding of multidot expressions. The rules about multidot expressions
are a reflection of the properties 1 and 2. For an instructive paper on reflection
with examples in PVS we refer to [18].

Local Reasoning

Local reasoning is the key to scalability in formal verification of programs. The
way the heap is modelled in our framework is based on the component-as-array

Reasoning about Assignments in Recursive Data Structures 175

modelling idea of Burstall [5]. Refinements of this modelling have been used
as the core of weakest pre-condition calculus-based tools such as Krakatoa for
the verification of Java programs, and Caduceus for the verification of C pro-
grams [7,10]. A separation analysis tailored to integration with the component-
as-array modelling has been proposed by Hubert and Marché [9]. Future work
on the integration of this analysis with our work has been discussed in Section 6.

A well-studied approach to obtain local reasoning is that of Separation Logic,
proposed by Reynolds [14], which can be seen as a radical refinement of Burstall’s
idea. In Separation Logic disjointness of portions of the heap is made explicit
in the logic. Its frame rule allows one to reason about just the relevant portion
of the heap that a piece of code manipulates and later augment it with the rest
of the heap. So far, no concrete case studies on industrial software make use of
Separation Logic, but there is ongoing research on its automation, see e.g. [6,1].
An implementation of [1] has been developed inside the theorem prover HOL by
Tuerk [17].

A related line of research is Region Logic, whose goal it is to preserve the
local reasoning of Separation Logic, but without using non-standard semantics
of Hoare-triples. See [15] for recent work.

8 Conclusions

In this paper we have presented a novel approach to reason about assignments
in recursive data structures. We have shown how recursive pointer structures
can be described in terms of paths obtained by a series of field accesses. We
have provided a formal model of these paths as multidot expressions and we
have proved a set of rules that describe how an assignment can affect them.
Using these rules we have derived separation and interference lemmas for lists
and verified an in-place list reversal algorithm. A complete formalisation of the
presented work has been carried out in the PVS theorem prover. We have also
shown how to apply this approach to reason about other data structures and we
have compared it with the standard inductive approach.

Acknowledgments. The authors would like to thank Marko van Eekelen and
Sjaak Smetsers for their insightful comments on a draft version of this paper and
the anonymous reviewers for their comments.

References

1. Berdine, J., Calcagno, C., O’Hearn, P.: Smallfoot: Modular automatic asser-
tion checking with separation logic. In: de Boer, F., Bonsangue, M., Graf, S.,
de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer,
Heidelberg (2006)

2. Blanco, J., Pablo, C.: A semantics for proving class correctness (2005)
(unpublished)

176 A. Tamalet and K. Madlener

3. Bornat, R.: Proving pointer programs in Hoare logic. In: Backhouse, R.,
Oliveira, J.N. (eds.) MPC 2000. LNCS, vol. 1837, pp. 102–126. Springer, Heidelberg
(2000)

4. Bundy, A., Basin, D., Hutter, D., Ireland, A.: Rippling: meta-level guidance for
mathematical reasoning. Cambridge University Press, Cambridge (2005)

5. Burstall, R.: Some techniques for proving correctness of programs which alter data
structures. In: Machine Intelligence, vol. 7, pp. 22–50. Edinburgh University Press
(1972)

6. Distefano, D., Filipović, I.: Memory leaks detection in Java by bi-abductive in-
ference. In: Rosenblum, D., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013, pp.
278–292. Springer, Heidelberg (2010)

7. Filliâtre, J.C., Marché, C.: The Why/Krakatoa/Caduceus platform for deduc-
tive program verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 173–177. Springer, Heidelberg (2007)

8. Hoare, C.A.R., Jifeng, H.: A trace model for pointers and objects. In: Guerraoui, R.
(ed.) ECOOP 1999. LNCS, vol. 1628, pp. 1–17. Springer, Heidelberg (1999)

9. Hubert, T., Marché, C.: Separation analysis for deductive verification. In:
Damm, W., Hermanns, H. (eds.) HAV 2007: Heap Analysis and Verification, Braga,
Portugal, pp. 81–93 (2007)

10. Marché, C., Paulin-Mohring, C.: Reasoning about Java programs with aliasing and
frame conditions. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603,
pp. 179–194. Springer, Heidelberg (2005)

11. Mehta, F., Nipkow, T.: Proving pointer programs in higher-order logic. Information
and Computation 199, 200–227 (2005)

12. Meyer, B.: Towards practical proofs of class correctness. In: Bert, D., Bowen, J.P.,
King, S., Waldén, M. (eds.) ZB 2003. LNCS, vol. 2651, pp. 359–387. Springer,
Heidelberg (2003)

13. Owre, S., Shankar, N., Rushby, J., Stringer-Calvert, D.: PVS language reference
(version 2.4). Technical report, Computer Science Laboratory, SRI International
(2001)

14. Reynolds, J.: Separation logic: A logic for shared mutable data structures. In:
LICS 2002: Logic in Computer Science, pp. 55–74. IEEE Computer Society,
Los Alamitos (2002)

15. Rosenberg, S., Banerjee, A., Naumann, D.A.: Local reasoning and dynamic framing
for the composite pattern and its clients (to appear)

16. Tamalet, A.: Yet another semantics for proving class correctness. Master’s thesis,
Universidad Nacional de Rosario, Argentina (2006)

17. Tuerk, T.: A formalisation of Smallfoot in HOL. In: Berghofer, S., Nipkow, T.,
Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 469–484.
Springer, Heidelberg (2009)

18. von Henke, F.W., Pfab, S., Pfeifer, H., Rueß, H.: Case studies in meta-level theorem
proving. In: Grundy, J., Newey, M.C. (eds.) TPHOLs 1998. LNCS, vol. 1479, pp.
461–478. Springer, Heidelberg (1998)

Specification of a Localization Component
Driven by a Goal-Based Approach: Some

Lessons We Learned

Abderrahman Matoussi, Frédéric Gervais, and Régine Laleau

Université Paris-Est, LACL, IUT Sénart Fontainebleau,
Dpt Informatique, Route Hurtault, 77300 Fontainebleau, France
{abderrahman.matoussi,frederic.gervais,laleau}@u-pec.fr

Abstract. The transition from the requirements phase to the formal
specification phase is one of the most painful steps in software develop-
ment. Up to now, no well-defined process to build initial formal models
has been proposed. We have proposed a method in which initial formal
models are built incrementally, driven by a goal-based approach. This
paper aims at sharing the salient points of our experience to specify
a localization component. We discuss the benefit of using a goal-based
modeling to obtain an abstract Event-B specification.

Keywords: Requirements engineering, Formal specification, Event-B,
KAOS, Localization component.

1 Introduction

Employing formal methods for critical systems specification is steadily growing
from year to year. They have shown their ability to produce and improve such
systems for large industrial problems such as Paris metro line 14 [5] or Roissy
Val [6] using the B method [1]. With most formal methods, an initial mathe-
matical model can be often refined in multiple steps, until the final refinement
contains enough details for an implementation. Most of the time, the initial
model is built from the description obtained by the requirements analysis. This
requires a high level of competence and a lot of practice, especially as there is no
well-defined process to assist designers. Therefore, it is difficult to fully compre-
hend the correspondence between requirements and initial formal specifications.
Indeed, the validation of this initial formal specification is very difficult due to
the inability for customers to understand formal models. Moreover, it is hard
for designers to link them with the initial requirements. Unfortunately, an initial
formal model may not be a correct realization of the requirements.

We have defined a method [10] to cope with this problem using a Goal Ori-
ented Requirements Engineering (GORE) approach [3] and the Event-B formal
method [2]. The main objective is to propose a constructive approach in which
abstract Event-B models are built incrementally from GORE goal models. Ap-
plying Requirements Engineering (RE) methods at the very beginning of a design

J. Davies, L. Silva, and A. Simão (Eds.): SBMF 2010, LNCS 6527, pp. 177–193, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

178 A. Matoussi, F. Gervais, and R. Laleau

process and before using formal methods can be interesting since these meth-
ods provide a rich way of structuring and documenting the entire requirements
documents. Among them, the GORE paradigm is particularly well-suited for
requirements engineering since it is nearer to the way humans think and it is
easy to understand by all stakeholders. Moreover, it offers some benefits such as
(i) providing the rationale for requirements and explaining them to stakeholders;
(ii) identifying the responsibilities and the system boundaries.

In RE methods, two kinds of requirements are identified. Functional require-
ments specify the functions that the system-to-be must be able to perform and
non-functional requirements capture properties or constraints under which the
system-to-be must operate, such as performance, quality, security concerns. Gen-
erally existing RE methods build models where functional and non-functional
requirements are closely related. However it appears in practice that these two
kinds of requirements do not evolve over time in the same way and that func-
tional requirements are more stable than non-functional ones. This is why our
method is based on the definition of three models. The first one describes func-
tional requirements and is the base for deriving formal specifications in Event-B.
The second one describes non-functional requirements and the last one describes
the impacts of non-functional requirements on functional requirements. In this
paper, we focus on the functional requirements model and the derivation of for-
mal specifications. We have chosen the KAOS [4] GORE method to specify this
model, mainly because both KAOS and Event-B advocate the use of refinement
techniques and have the ability to model both the system and its environment.

This article describes the application of our method in the framework of a
research project, called TACOS [11]. We present here an experience with the
specification of a localization software component that used GPS, Wifi and sen-
sors technologies. The remainder of this paper is organized as follows. Section 2
overviews the KAOS concepts that we consider in our approach and the Event-
B formal method. Sections 3 presents and illustrates our proposed approach
through the specification of a localization software component. Relevant issues
and related work are discussed in Sections 4 and 5. We conclude our paper in
Section 6 with an outline of future work.

2 Background

In this section, we briefly introduce KAOS and Event-B.

2.1 KAOS Method

KAOS (Keep All Objectives Satisfied) [4] is a goal-based requirements engineer-
ing method. It provides five complementary sub-models describing the system
and its environment: a goal model, an agent model, an operation model, a be-
havior model and an object model. In this article, we focus on the goal model
where the main concept is the concept of goal. A goal is a prescriptive state-
ment of intent the system should satisfy through cooperation of its agents[4].

Specification of a Localization Component Driven by a Goal-Based Approach 179

KAOS identifies two types of goals: behavioral and soft goals. Behavioral goals
prescribe intended system behaviors declaratively whereas soft goals prescribe
preferences among alternative system behaviors. Behavior goals can be special-
ized into Achieve and Maintain goals. An Achieve goal specifies a property that
the system will achieve some time in the future, whereas a Maintain goal spec-
ifies a property that must hold at all times in the future. Functional goals can
be considered as Achieve goals.

A goal model is an AND/OR graph where higher-level goals can be refined into
lower-level sub-goals, and then, recursively, into low-level sub-goals that lead to
the satisfaction of requirements of the system-to-be. When a goal is AND-refined
into sub-goals, all of them must be satisfied for the parent goal to be satisfied.
It is possible to precise a specific tactic associated to the AND refinement: the
MILESTONE refinement tactic that consists in identifying milestone states that
must be sequentially satisfied for the parent goal to be satisfied. When a goal is
OR-refined, the satisfaction of one of them is sufficient for the satisfaction of the
parent goal. A goal which cannot be further refined is assignable to an agent. An
agent is an active system component which plays some role in goal satisfaction. A
goal assignable to an agent is called a requisite. A requisite which is placed under
the responsibility of an agent of the system to-be is a requirement, whereas a
requisite which is placed under the responsibility of an agent in the environment
of the system is called an expectation.

2.2 Event-B Method

Event-B [2], an evolution of the classical B method [1], is a formal method for
modeling discrete systems by refinement. An Event-B model can be described
in terms of two basic constructs:

– The context: it provides axiomatic properties of Event-B models. It con-
tains the static part of a model such as carrier sets, constants, axioms and
theorems. Carrier sets are similar to types but both, carrier sets and con-
stants, can be instantiated. Axioms describe properties of carrier sets and
constants. Theorems are derived properties that can be proved from the
axioms. Proof obligations associated with contexts are straightforward: the
stated theorems must be proved.

– The machine: it contains the dynamic part such as variables, invariants,
theorems, events and variants. Variables v define the state of a machine.
Possible state changes are described by means of events. Each event is com-
posed of a guard G(t, v) and an action S(t, v), where t are local variables
the event may contain. Guards state the necessary condition under which an
event may occur, and actions describe how the state variables evolve when
the event occurs. The correctness of an Event-B model is defined by an in-
variant property under which every state in the system must satisfy. Every
event in the system must be shown to preserve this invariant. To verify this
requirement, the invariant preservation proof obligation has been defined.

180 A. Matoussi, F. Gervais, and R. Laleau

It is also important to indicate that the most important feature provided by
Event-B is its ability to stepwise refine specifications. Refinement is a process
that often transforms an abstract and non-deterministic specification into a con-
crete and deterministic system that preserves the functionality of the original
specification. During the refinement, event descriptions are rewritten to take
new variables into account. This is performed by strengthening their guards and
adding substitutions on the new variables. New events that only assign the new
variables may also be introduced. Notice that the state of the abstract machine
is related to the state of the concrete machine by a gluing invariant J(v, w),
where v are the variables of the abstract machine and w the variables of the con-
crete machine. In addition to the invariant preservation, other proof obligations
(POs) are generated to ensure the correctness of the refinement with respect
to the abstract machine: (i) the guard strengthening ensures that the concrete
guard is stronger than the abstract one. In other words, it is not possible to
have the concrete version enabled whereas the abstract one would not. The term
”stronger” means that the concrete guard implies the abstract guard. (ii) the
correct refinement ensures that the concrete event transforms the concrete vari-
ables in a way which does not contradict the abstract event. Event-B is provided
with tool support in the form of an Eclipse-based IDE called Rodin [7].

3 Experience with the Specification of a Localization
Software Component

A localization system is a critical part of a land transportation system. Many
positioning systems have been proposed over the last years. GPS, one of the
most widely used positioning system, is perhaps the best-known. This system
belongs to the GNSS (Global Navigation Satellite Systems) family which also
regroups GALILEO or GLONASS. Positioning systems are often dedicated to
a particular environment; the GNSS technology, for example, generally does
not work indoors. To resolve these problems, numerous alternatives relying on
very different technologies have arisen. These last years, Wireless LAN such
as IEEE 802.11 networks have been considered by numerous location systems.
These systems use the radio signal strength to determine the physical location.
Localization systems can therefore be designed using various technologies like
wireless personal networks such as Wifi or Bluetooth [17,18], GNSS repeaters or
visual landmarks.

When elaborating a goal model, the main difficulties are first to identify goals
and then to specify links between these goals. Often, requirements engineers
need to search through preliminary documents in order to extract goals (key
properties) using a number of heuristics (asking HOW and WHY questions...)
detailed in [4]. Figure 1 shows the obtained KAOS goal model of a localization
component thanks to heuristics. For example, a HOW question about the goal
G would then lead to the goals G1, G2 and G3. This KAOS goal model contains:
(i) high-level goals; (ii) refinement links denoted by a bubble linking the parent
goal with an arrow, and the child goals with regular lines; (iii) requirements

Specification of a Localization Component Driven by a Goal-Based Approach 181

Fig. 1. KAOS goal model of a localization component

and their software responsibility agents; (iv) expectations and their environment
responsibility agents (GPS, WIFI, sensor and accelerometer).

Each goal is described informally in natural language. As we deal with func-
tional goals, we consider only Achieve goals of KAOS. An Achieve goal prescribes
intended behaviors where some target condition must sooner or later hold when-
ever some other condition holds in the current system state. An Achieve goal in
KAOS is denoted as follows where CurrentCondition is optional (said other-
wise, it can be true):

[if CurrentCondition then] sooner-or-later TargetCondition.

The approach we propose [10] starts from a KAOS goal model describing the
functional requirements of a system and derives an abstract Event-B specifica-
tion. The crux of our transformation is to express each KAOS functional goal
as an Event-B event, where: (i) the current condition of this goal is considered
as the guard; (ii) the then part encapsulates the target condition of this goal.
Afterwards, we have transformed into Event-B the different KAOS goal refine-
ment patterns (milestone, AND, OR) used to generate a KAOS goal hierarchy.
The main idea is that each level in the hierarchy of the KAOS goal graph is
represented as an Event-B model that refines the Event-B model related to the
previous level of the hierarchy. Then, we have proposed an Event-B transfor-
mation rule for each KAOS refinement pattern associated to functional goals
and we have identified for each one the systematic proof obligations. A formal
argumentation of the different identified proof obligations is detailed in [10].
In the next sections, we will use these different Event-B refinement relations
and additional custom-built proof obligations in order to transform the different
refinement levels of the goal model.

182 A. Matoussi, F. Gervais, and R. Laleau

3.1 Abstract Model

Let us start by the high-level goal G which is defined as follows:

Goal G: Achieve [LocalizeVehicle]
InformalDef: The vehicle must be localized.

We associate an Event-B model Localization, in Figure 2, to this most ab-
stract level of the hierarchy of the KAOS goal graph. In this Event-B model,
we will have an event called LocalizeVehicle that will translate the goal G;
i.e. it describes the “property” of the goal G, in terms of generalized substitu-
tions. Localizing a vehicle consists in obtaining an estimated loc which is a pair
of latitude and longitude. At this level of abstraction, it is not necessary to pre-
cise the way this information is calculated. Thus, we use the non-deterministic
generalized substitution through the symbol :∈ which specifies an unbounded
choice. So, estimated loc can take any value in the sets (LATITUDE \ {null})
and (LONGITUDE \ {null}). The null value serves just to initialize the sys-
tem through the initialization event1. Notice that at this abstraction level, the
event LocalizeVehicle can always occur. Hence, its guard is always true. Sets
in uppercase are abstract sets used to type the variables. They are described in
the Event-B context TypeSets (see in Figure 3).

MACHINE Localization
SEES TypeSets
VARIABLES

estimated loc
INVARIANTS

inv1 : estimated loc ∈ LATITUDE × LONGITUDE
EVENTS
Initialisation

begin
act1 : estimated loc := null �→ null

end
Event LocalizeVehicle =̂

begin
act1 : estimated loc :∈ (LATITUDE \ {null}) × (LONGITUDE \ {null})

end
END

Fig. 2. The abstract model

3.2 First Refinement

The goal G is refined into three sub-goals according to the milestone goal refine-
ment pattern (identifying milestone states from left to right):

1 Up to now, the initialization part, variables, invariants and contexts are manually
completed by the designer. It would be possible to derive them from domain models
in KAOS.

Specification of a Localization Component Driven by a Goal-Based Approach 183

CONTEXT TypeSets
SETS

SUBCOMPONENTS

SUBSENSORS
CONSTANTS

gps, wifi, LATITUDE, LONGITUDE
null, speed, accel

AXIOMS
axm1 : partition(SUBCOMPONENTS , {gps}, {wifi})
axm2 : LATITUDE = N ∪ {null}
axm3 : LONGITUDE = N ∪ {null}
axm4 : partition(SUBSENSORS , {speed}, {accel})

END

Fig. 3. The Event-B context TypeSets

Goal G1: Achieve [CaptureRawLocalizations]
InformalDef: Firstly, several sets of raw localization data are captured

by using different technologies.

Goal G2: Achieve [ValidateData]
InformalDef: Then, all the sets of raw localization data will be validated

and controlled.

Goal G3: Achieve [MergeData]
InformalDef: Finally, all the validated data will be merged in order to

obtain the final localization.

Similarly, we associate an Event-B refinement model Localization1, in
Figure 4, to this first level of the hierarchy of the KAOS goal graph. The sub-goals
G1, G2 and G3 are represented by three Event-B events CaptureRawLocal-
izations, ValidateData and MergeData, respectively. The first one returns
a set of couples (latitude, longitude), one for each component used for localizing
a vehicle. The second one validates the returned set of couples by choosing the
acceptable values. The final one returns the final localization calculated from the
returned values of the event MergeData.

In Event-B, often the information about such event ordering has to be embed-
ded into guards and event actions with the downside of extra model variables. For
that, we have chosen to explicitly reproduce KAOS goal ordering in an Event-B
model by proposing a syntactic extension of the Event-B refinement proof rule
in order to provide a way to refine an abstract event by a sequence of new events.
Hence, the abstract event LocalizeVehicle is refined as follows:

(CaptureRawLocalizations; ValidateData; MergeData) Refines
LocalizeVehicle

184 A. Matoussi, F. Gervais, and R. Laleau

MACHINE Localization1
REFINES Localization
SEES TypeSets
VARIABLES

subcomponents loc, validated loc, merged loc
INVARIANTS

inv1 : subcomponents loc ∈ SUBCOMPONENTS → (LATITUDE ×
LONGITUDE)

inv2 : validated loc ∈ SUBCOMPONENTS �→ (LATITUDE × LONGITUDE)
inv3 : merged loc ∈ LATITUDE × LONGITUDE
inv4 : estimated loc = merged location

EVENTS
Initialisation

begin
act2 : subcomponents loc :∈ SUBCOMPONENTS → ({null} × {null})
act3 : validated loc :∈ SUBCOMPONENTS → ({null} × {null})
act4 : merged loc := null �→ null

end
Event CaptureRawLocalizations =̂

begin
act1 : subcomponents loc :∈ SUBCOMPONENTS→((LATITUDE \{null})×

(LONGITUDE \ {null}))
end

Event ValidateData =̂
when

grd1 : subcomponents loc ∈ SUBCOMPONENTS→((LATITUDE \{null})×
(LONGITUDE \ {null}))

then
act1 : validated loc :∈ P1 (subcomponents loc)

end
Event MergeData =̂

when
grd1 : validated loc ∈ P1 (subcomponents loc)
grd2 : subcomponents loc ∈ SUBCOMPONENTS→((LATITUDE \{null})×

(LONGITUDE \ {null}))
then

act1 : merged loc :∈ (LATITUDE \ {null}) × (LONGITUDE \ {null})
end

Fig. 4. First Event-B refinement model

In addition to the feasibility proof obligation2, this kind of refinement requires
to discharge these different proof obligations:

– Two ordering constraints express the “milestone” characteristic between the
Event-B events. These two proof obligations are discharged: (i) the action of
CaptureRawLocalizations implies the guard of ValidateData (ii) the
action of ValidateData implies the guard of MergeData.

– One “guard strengthening” PO is also discharged since the first event in the
sequence (CaptureRawLocalizations) has a guard (true) that implies the
abstract guard (true).

2 It ensures that each event must also be feasible, in a sense that an appropriate new
state v′ must exist for some given current state v under the invariant I(v).

Specification of a Localization Component Driven by a Goal-Based Approach 185

– One “correct refinement” PO is also proved since the last event in the se-
quence (MergeData) has a postcondition that implies the abstract post-
condition under the gluing invariant inv4. The sequence of concrete events
transforms the concrete variables in a way which does not contradict the
abstract event.

3.3 Second Refinement

Now, we consider the second level of the hierarchy of the KAOS goal graph. In the
same way, a refinement Event-B model Localization2, in Figure 5, is created and
must refine the previous model Localization1. This second refinement Event-B
model will encapsulate two KAOS refinement patterns:

Second Refinement: Applying the AND Goal Refinement Pattern. The
goal G1 is AND-refined into two sub-goals; i.e. the conjunction of the sub-goals
is sufficient to establish the satisfaction of the parent goal. This refinement spec-
ifies the kind of technology used to obtain localization data.

Goal G1.1: Achieve [UseGPS]
InformalDef: A GPS system is used.

Goal G1.2: Achieve [UseWIFI]
InformalDef: A wireless technique is used.

The sub-goals G1.1 and G1.2 are represented by two Event-B events UseGPS
and UseWIFI by using the same transcription rules as for the event Local-
izeVehicle in the abstract model. Since the goal G1 is refined into two sub-goals
G1.1 and G1.2 according to the AND goal refinement pattern, the execution of
the corresponding new events must not necessary follows a specific order. For
that, our idea (inspired from Process Algebra [20]) is that these events (UseGPS
and UseWIFI are executed in an arbitrary order: either UseGPS;UseWIFI
or UseWIFI;UseGPS. This corresponds to the semantics of the interleave op-
erator in process algebra. Of course, we must ensure that this AND refinement
manipulate only disjoint set of variables. Hence, we have proposed syntactic ex-
tension of the Event-B refinement proof rule in order to refine an abstract event
by the interleaving of all the new events as follows:

(UseGPS ||| UseWIFI) Refines CaptureRawLocalizations

In addition to the feasibility proof obligation, the following proof obligations
must be discharged in order to prove such refinement:

– Two “guard strengthening” POs are discharged since the concrete guard of
the interleaved events (UseGPS ||| UseWIFI) implies the abstract guard
(true) of CaptureRawLocalizations. In fact, the concrete guard is always
true (if we execute UseGPS at first or if we execute UseWIFI at first).

186 A. Matoussi, F. Gervais, and R. Laleau

MACHINE Localization2
REFINES Localization1
SEES TypeSets
VARIABLES

gps loc, wifi loc, sensors loc, kept loc
INVARIANTS

inv1 : gps loc ∈ {gps}→ (LATITUDE × LONGITUDE)
inv2 : wifi loc ∈ {wifi}→ (LATITUDE × LONGITUDE)
inv3 : subcomponents loc = gps loc ∪ wifi loc
inv4 : sensors loc ∈ SUBSENSORS �→ (LATITUDE × LONGITUDE)
inv5 : kept loc ∈ SUBCOMPONENTS �→ (LATITUDE × LONGITUDE)
inv6 : validated loc = kept loc

EVENTS
Initialisation

begin
act6 : gps loc :∈ {gps}→ ({null} × {null})
act7 : wifi loc :∈ {wifi}→ ({null} × {null})
act8 : sensors loc :∈ SUBSENSORS → ({null} × {null})
act9 : kept loc :∈ SUBCOMPONENTS → ({null} × {null})

end
Event UseGPS =̂

begin
act1 : gps loc :∈ {gps}→ ((LATITUDE \ {null})× (LONGITUDE \ {null}))

end
Event UseWIFI =̂

begin
act1 : wifi loc :∈ {wifi}→ ((LATITUDE \{null})× (LONGITUDE \{null}))

end
Event CaptureRelativeLocalizations =̂

when
grd1 : subcomponents loc ∈ SUBCOMPONENTS→((LATITUDE \{null})×

(LONGITUDE \ {null}))
then

act1 : sensors loc : |(sensors loc′ ∈ SUBSENSORS �→ ((LATITUDE \
{null}) × (LONGITUDE \ {null}))) ∧ sensors loc′ = ∅

end
Event FilterData =̂

when
grd1 : sensors loc ∈ SUBSENSORS �→ ((LATITUDE \ {null}) ×

(LONGITUDE \ {null})) ∧ sensors loc = ∅
then

act1 : kept loc :∈ P1 (subcomponents loc)
end

END

Fig. 5. Second Event-B refinement model

– One “correct refinement” PO is also proved since the conjunction of the two
concrete postconditions implies the abstract postcondition under the gluing
invariant inv3. Hence, this ensures that subcomponents loc is a total func-
tion (see the postcondition of the abstract event CaptureRawLocalizations).

Specification of a Localization Component Driven by a Goal-Based Approach 187

Second Refinement: Applying the Milestone Goal Refinement Pattern
On the other hand, the goal G2 is refined into two sub-goals according to the
milestone goal refinement pattern (the order is from left to right):

Goal 2.1: Achieve [CaptureRelativeLocalizations]
InformalDef: At first, several sets of relative localization data are cap-

tured by using different technologies.

Goal 2.2: Achieve [FilterData]
InformalDef: Then, all the sets of raw localization data will be filtered.

All these subgoals are translated into new events using the same rules as for
LocalizeVehicle in the abstract Event-B model. As for the first refinement, the
abstract event ValidateData is refined by the sequence of all the new events
(CaptureRelativeLocalizations, FilterData) as follows:

(CaptureRelativeLocalizations ; FilterData) Refines ValidateData

We have also discharged the different proof obligations related to the milestone
refinement such as the ordering constraint, the “guard strengthening” and the
“correct refinement”.

3.4 Third Refinement

The goal G2.1 is OR-refined in two subgoals:

Goal G2.1.1: Achieve [UseSpeedSensor]
InformalDef: The Vehicle may use a speed sensor system.

Goal G2.1.2: Achieve [UseAccelerometer]
InformalDef: Or, it may use the accelerometer system.

Similarly, a refinement Event-B model Localization3, in Figure 6, is associated
to this third level of the hierarchy of the goal graph. All these subgoals are
transformed into new Event-B events (UseSpeedSensor, UseAccelerometer)
by using the same transcription rules as for the event LocalizeVehicle in the
abstract Event-B model. Since the satisfaction of exactly one KAOS sub-goal
implies the satisfaction of the parent goal, we propose to refine the abstract
event CaptureRelativeLocalizations as follows:

(UseSpeedSensor XOR UseAccelerometer) Refines
CaptureRelativeLocalizations

This Event-B refinement semantics is quite close to the same one proposed by
Rodin [7] if we consider that each event refines the abstract event. Hence, the

188 A. Matoussi, F. Gervais, and R. Laleau

MACHINE Localization3
REFINES Localization2
SEES TypeSets
VARIABLES

sensors loc, speed loc, accel loc
INVARIANTS

inv1 : speed loc ∈ {speed}→ (LATITUDE × LONGITUDE)
inv2 : accel loc ∈ {accel}→ (LATITUDE × LONGITUDE)
inv3 : (sensors loc = speed loc) ∨ (sensors loc = accel loc) ∨ (sensors loc =

speedloc ∪ accel loc)
EVENTS
Initialisation

begin
act10 : speed loc :∈ {speed}→ ({null} × {null})
act11 : accel loc :∈ {accel}→ ({null} × {null})

end
Event UseSpeedSensor =̂
refines CaptureRelativeLocalizations

when
grd1 : subcomponents loc ∈ SUBCOMPONENTS→((LATITUDE \{null})×

(LONGITUDE \ {null}))
grd2 : accel loc ∈ {accel}→ ({null} × {null})

then
act1 : speed loc, sensors loc : | (speed loc′ ∈ {speed} → ((LATITUDE \

{null}) × (LONGITUDE \ {null}))) ∧ sensors loc′ = speed loc′

end
Event UseAccelerometer =̂
refines CaptureRelativeLocalizations

when
grd1 : subcomponents loc ∈ SUBCOMPONENTS→((LATITUDE \{null})×

(LONGITUDE \ {null}))
grd2 : speed loc ∈ {speed}→ ({null} × {null})

then
act1 : accel loc, sensors loc : |(accel loc′ ∈ {accel}→((LATITUDE \{null})×

(LONGITUDE \ {null}))) ∧ sensors loc′ = accel loc′

end
END

Fig. 6. Third Event-B refinement model

proof obligations (“guard strengthening” and “correct refinement”) could be dis-
charged by the current version of the Rodin automatic theorem prover [7]. This
is due essentially to the gluing invariant inv3 and the individual guards of each
event. However, we require to express two additional proof obligations ensuring
that only one event (either UseSpeedSensor or UseAccelerometer) but not
both can be executed. These two proof obligations are discharged since (i) the
postcondition of UseSpeedSensor forbids the guard of UseAccelerometer
to be triggered; (ii) the postcondition of UseAccelerometer forbids the guard
of UseSpeedSensor to be triggered.

This is the last step of refinement since all the goals are either requirements
or expectations (see Figure 1).

Specification of a Localization Component Driven by a Goal-Based Approach 189

3.5 Synthesis

Regarding the proof activity linked to the use of Event-B, in addition to the clas-
sical proof obligations such as feasibility proof obligations, the resulting Event-B
specification led to a number of 16 additional custom-built proof obligations (rel-
atively simple) that have been proved totally. Most of these proof obligations
can be automatically discharged by the Rodin tool.

Unfortunately, discharging the different proof obligations is not sufficient in
order to validate the conformance of the specification to original requirements. In
fact, we can never ensure that the expression of the Event-B event corresponds
exactly to the expression of the related goal since this latter is informal. For that,
we can use an animation technique to validate the derived formal specification
against original customers’ requirements. This animation step not only indicates
deviations from original requirements right on the spot but also helps fixing
some specification errors. The reader can refer to [16] for more details. For that,
ProB [14] may be a very useful validation tool since its automated animation
facilities allow users to animate their specifications; i.e. gain confidence in their
specifications.

The obtained abstract Event-B model is then further refined towards an im-
plementation. It concerns only the Event-B events corresponding to require-
ments assigned to software agents. Otherwise, an expectation (assigned to an
external agent) is a property required on the environment and its corresponding
Event-B event will not be implemented in the software-to-be. More precisely,
in our case study, the Event-B events UseGPS, UseWIFI, UseSpeedSensor
and UseAccelerometer are not refined since they correspond to goals of type
expectation. They are implemented by hardware components (GPS, WIFI com-
ponents...) in a vehicle. Only the Event-B events FilterData and MergeData
are further refined. For example, the refinement of the Event-B event Merge-
Data leads to a software that implements the algorithm chosen to realize the
fusion (thanks to the B operation OPMerge) as shown in Figure 7. At first,
this operation recovers all the raw localization data from both GPS and WIFI
thanks to the call of operations get lat and get long. Then, the call of the op-
eration get pond serves to verify if the returned values of GPS and WIFI are
validated or no. If these values are validated, then get pond returns a weighting
value set to 1 (0 otherwise). Finally, the operation calculates the final latitude
and longitude based on the different weighting values.

An interesting result is that the link between the B operation OPMerge and
the abstract Event-B event MergeData (see Figure 4) can be ensured. While
the abstract event MergeData describes the properties that the final program
must fulfill, the B operation OPMerge describes the algorithm contained in
the program. Hence, MergeData describes the way by which we can eventually
judge that the final program OPMerge is correct: (i) the call of the operations
get lat and get long ensures the second guard of MergeData; (ii) the call of the
operation get pond ensures the first guard of MergeData; (iii) the final result of
the operation OPMerge (lat, long) satisfies the post-condition of MergeData.

190 A. Matoussi, F. Gervais, and R. Laleau

lat, long ← OPMerge =
VAR lat gps, long gps, lat wifi, long wifi, ponderation gps, ponderation wifi
IN

lat gps := get lat(gps loc)||
long gps := get long(gps loc) ||
ponderation gps := get pond(gps loc) ||
lat wifi := get lat(wifi loc)||
long wifi := get long(wifi loc) ||
ponderation wifi := get pond(wifi loc) ;

lat := ((lat gps ∗ ponderation gps) + (lat wifi ∗ ponderation wifi))
/ (ponderation gps + ponderation wifi) ||

long := ((long gps ∗ ponderation gps) + (long wifi ∗ ponderation wifi))
/ (ponderation gps + ponderation wifi)

END

Fig. 7. The B operation OPMerge

4 Lessons Learned

The first conclusion that can be drawn from this experience concerns the va-
lidity of our approach. The elaboration of the specification of the localization
component has been carried out with specialists of the domain, with no skills in
formal and GORE methods. Four observations can be stated. Firstly, the visual
dimension (boxes, arrows...) can assist people to better understand requirements.
Secondly, GORE methods help designers to structure the Event-B specification
and to choose the relevant refinement level to introduce the different Event-B
events. Thirdly, these methods aid designers to correctly build guards of each
Event-B event. For instance, at the most abstract level, the guard of Local-
izeVehicle is set to TRUE to express that the event is always feasible. The
definitive guard is built during the refinement process. Finally, the employment
of GORE encourages designers to consider both the system and its environment.

In our view, explicitly expressing the notion of ordering, interleaving and
exclusivity between events is a useful addition to the Event-B refinement se-
mantics. Up to now, encoding these notions is possible in the current state of
Event-B using extra model variables (flags) embedded into guards and event
actions. The drawback of such extra model variables is the entanglement of or-
der encoding and functional specification. This entanglement makes traceability
between requirements and specification complicated. The proposed Event-B re-
finement extension (without extra model variables) makes such Event-B models
more readable and may allow a proof obligation economy. This last benefit is
under study and must be normally confirmed by further case studies.

5 Related Work

Most of the existing work aiming at establishing links between requirements mod-
els and formal methods consider KAOS and B or VDM++. The work of [13]

Specification of a Localization Component Driven by a Goal-Based Approach 191

associates a B machine to each KAOS agent since agents are the active entities
able to perform operations. For that, all the KAOS operations that an agent has
to perform are represented by B operations. Moreover, all maintain goals un-
der the agent responsibility are translated as invariants of the corresponding B
machine. The authors of [9] provides means for transforming the security require-
ments model built with KAOS to an equivalent one in B. This abstract B model
is then refined using non-trivial B refinements that generate design specifications
conforming to the initial set of security requirements. Recently, [15] presents a
constructive verification-based approach for operationalizing requirements into
specifications expressed in an extended Event-B formalism. We can also point
out a work [12] proposing an automatically generator that transforms an extend
KAOS model into VDM++ specifications. The generator connects operations
in KAOS to those in VDM++, and entities in KAOS to objects or types in
VDM++. The generated specification contains implicit operations consisting of
pre- and post-conditions, inputs, and outputs of operations.

Nevertheless, the reconciliation presented by all of these works remains par-
tial because they don’t consider all the parts of the KAOS goal model but only
the requirements (operational goals). Consequently, the formal model does not
include any information about the non-operational goals and, more important,
the type of goal refinement. Yet, non-operational goals play an important role
for requirements completeness and pertinence and provide for example the ra-
tionale for the requirements that operationalize them. In this paper, we have
explored how to cope with this problem using an approach that transform the
whole KAOS goal model to abstract Event-B models. Our approach can be con-
sidered as complementary to existing ones. Furthermore, what we present can
be very useful in practice to systematically verify that all KAOS requirements
are represented in the Event-B model.

6 Conclusion and Further Work

This paper presents an application of our method that consists in building a
goal-oriented requirements specification to derive an Event-B specification. It
confirms that GORE methods provide a possible way of building and structur-
ing formal specifications. A number of future research steps are ongoing. We
currently develop the model to represent non-functional goals and their impacts
on functional goals [21]. It is inspired from the i* method [19] and from [23].
The complete method will be defined as an extension of SysML [22]. We have al-
ready developed a support tool [21] on the TOPCASED [8] open platform based
on Eclipse and started the development of a plug-in between this tool and the
RODIN [7] open platform.

Acknowledgment

The work in this paper is partially supported by the TACOS project [11] ANR-
06-SETI-017 founded by the french ANR (National Research Agency).

192 A. Matoussi, F. Gervais, and R. Laleau

References

1. Abrial, J.R.: The B-Book: Assigning programs to meanings. CUP (1996)
2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. CUP (2010)
3. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: 22nd

ACM International Conference on Software Engineering, Future of Software Engi-
neering Track, Limerick, Ireland, pp. 35–46 (2000)

4. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Mod-
els to Software Specifications. Wiley, Chichester (2009)

5. Behm, P., Benoit, P., Faivre, A., Meynadier, J.-M.: METEOR: A successful appli-
cation of B in a large project. In: Woodcock, J.C.P., Davies, J. (eds.) FM 1999.
LNCS, vol. 1708, pp. 369–387. Springer, Heidelberg (1999)

6. Badeau, F., Amelot, A.: Using B as a high level programming language in
an industrial project: Roissy val. In: Treharne, H., King, S.,. Henson, M.C.,
Schneider, S. (eds.) Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 334–354.
Springer, Heidelberg (2005)

7. RODIN - Rigorous Open Development Environment for Complex Systems,
http://rodin.cs.ncl.ac.uk/

8. TOPCASED, http://www.topcased.org/
9. Hassan, R., Bohner, S., El-Kassas, S., Eltoweissy, M.: Goal-Oriented, B-Based For-

mal Derivation of Security Design Specifications from Security Requirements. In:
ARES 2008, Spain, pp. 1443–1450. IEEE Computer Society Press, Los Alamitos
(2008)

10. Matoussi, A., Gervais, F., Laleau, R.: An Event-B formalization of KAOS goal re-
finement patterns. Technical Report TR-LACL-2010-1, LACL, University of Paris-
Est (2010), http://lacl.univ-paris12.fr/Rapports/TR/TR-LACL-2010-1.pdf

11. TACOS Project. ANR-06-SETIN-017, http://tacos.loria.fr
12. Nakagawa, H., Taguchi, K., Honiden, S.: Formal Specification Generator for KAOS.

In: ASE 2007, Atlanta, USA, pp. 531–532. ACM, New York (2007)
13. Ponsard, C., Dieul, E.: From Requirements Models to Formal Specifications in B.

In: REMO2V 2006, Luxembourg (June 2006)
14. Leuschel, M., Butler, M.J.: ProB: A Model Checker for B. In: Araki, K., Gnesi, S.,

Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

15. Aziz, B., Arenas, A., Bicarregui, J., Ponsard, C., Massonet, P.: From Goal-Oriented
Requirements to Event-B Specifications. In: First Nasa Formal Method Symposium
(NFM 2009), Moffett Field, California, USA (April 2009)

16. Mashkoor, A., Matoussi, A.: Towards Validation of Requirements Models. In:
Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010.
LNCS, vol. 5977, p. 404. Springer, Heidelberg (2010)

17. Hallberg, J., Nilsson, M., Synnes, K.: Positioning with bluetooth. In: 10th Int.
Conference on Telecommunications (ICT 2003), pp. 954–958 (2003)

18. Royo, J.A., Mena, E., Gallego, L.C.: Locating Users to Develop Location-Based
Services in Wireless Local Area Networks. In: UCAmI 2005, Granada, Spain, pp.
471–478 (2005)

19. Yu, E.: Towards Modeling and Reasoning Support for Early-Phase Requirements
Engineering. In: RE 1997, pp. 226–235. IEEE Computer Society, Los Alamitos
(1997)

http://rodin.cs.ncl.ac.uk/
http://www.topcased.org/
http://lacl.univ-paris12.fr/Rapports/TR/TR-LACL-2010-1.pdf
http://tacos.loria.fr

Specification of a Localization Component Driven by a Goal-Based Approach 193

20. Sangiorgi, D.: Locality and interleaving semantics in calculi for mobile processes.
Theor. Comput. Sci. 155, 39–83 (1996)

21. Gnaho, C., Semmak, F.: Une extension SysML pour l’ingénierie des exigences
dirigée par les buts. In: INFORSID 2010, Marseille, France, pp. 277–292 (May
2010)

22. Laleau, R., Semmak, F., Matoussi, A., Petit, D., Hammad, A., Tatibouet, B.: A first
attempt to combine SysML requirements diagrams and B. Innovations in Systems
and Software Engineering 1-2, 47–54 (2010)

23. Chung, L.: Non-Functional Requirements In Software Engineering. Kluwer Aca-
demic Publishers, Dordrecht (1999)

A Formal Framework for Specifying and
Analyzing Logs as Electronic Evidence

Eduardo Mazza1, Marie-Laure Potet1, and Daniel Le Métayer2

1 Verimag, Centre Équation, 2 avenue de Vignate, F-38610 Gières
{Eduardo.Mazza,Marie-Laure.Potet}@imag.fr

2 LICIT, INRIA Grenoble Rhône-Alpes
Daniel.Le-Metayer@inrialpes.fr

Abstract. The issues of logging for determining liability requires to
define, prior to a dispute, the logging system and the log analysis in
a manner that would determine the parties liable for a predetermined
misbehavior of the system. We propose a formal framework for specifying
and reasoning about decentralized logs to be used in legal disputes. In
addition, we study how previous results can be used in the incremental
analysis of larger inputs to obtain precise or approximated results. We
illustrate our approach with an example of a travel arrangement service.

1 Introduction

Due to the growing impact of the Information and Communication Technologies
on everyday life, and the increasing complexity of computer systems, the logging
of these systems raises greater challenges. Logging is a necessity for debugging
a system at development time, or after a fault, for identifying security attacks,
guaranteeing safety, and establishing liability for software providers. With re-
spect to the last one, Fred B. Schneider pointed [23] that liability determination
needs a mature discipline of forensics for computing systems and components.
It requires to change software development practices, because, in addition to
delivering systems, producers will also need to deliver instruments to show that
they behave well.

The use of log as electronic evidence for establishing contractual liability is
a challenging problem [18, 6, 12]. Actual solutions that propose formal models
to specify liability [17, 10] are more focused on the system models rather than
using logs as electronic evidences in cases of litigation. Meanwhile, other works
[4, 11, 21, 3] present a well-defined model for analysing properties in logs, but
a small effort has been made to specify the liability associated with the log
content. Existing research stops short of discussing how one might determining
whether the information found in a given log is precise enough to be used for
legal disputes.

The LISE project1 aims to address liability issues from the legal and technical
points of view. The goal is to cover the whole chain of “liability engineering”, from
1 Liability Issues in Software Engineering: http://licit.inrialpes.fr/lise/

J. Davies, L. Silva, and A. Simão (Eds.): SBMF 2010, LNCS 6527, pp. 194–209, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://licit.inrialpes.fr/lise/

A Formal Framework for Specifying and Analyzing Logs 195

liability specification (at contract negotiation time) to liability determination (at
litigation time). With the purpose of reduce legal uncertainty, the LISE approach
incorporates in B2B contracts (between services providers) an agreement about
the electronic evidence to be produced and used in case of failures. According
to this agreement, the parties commit to build these pieces of evidence, and
to rely on them for determining their share of responsibility. We assume that
certain conditions (such as, proof of authenticity and integrity) are satisfied by
complementary means.

In contrast with others frameworks that focus either in liability [17, 10] or
properties verification for logs [4, 11], we propose here an integrated frame-
work that allow us to specify liability, claims, and logs as electronic evidence
(Figure 1.a). As mentioned before we restrict ourselves in the context of liability
defined for a contractual environment. Furthermore, we exploit the central no-
tion of agents (seen as parties implied in a contractual engagement) that organize
claims, properties and distributed logs in a very tractable way. Then, we are able
to propose a general analysis procedure (Figure 1.b) allowing us to evaluate the
admissibility of a given claim instance. This procedure is focused on the notion
of properties attached to a given claim, rather than general properties describing
the behavior of the system [4, 11, 21, 3]. The fact that, in our context, claims are
defined a priori allow us to provide a simpler specification for such procedure.
We also study the incremental aspects of our procedure and propose alternative
solutions to obtain new results based on the results of a previous analysis.

(a) (b)

Fig. 1. Framework for liability specification and analysis

This paper is dedicated to the presentation of our framework for the formal
representation and analysis of logs. We explore the aspects of the LISE methodol-
ogy introduced in [15] considering the distribution and analysis of logs. Another
previous work [16] studies how different distribution of logs can be classified with
relation to their content w.r.t. the level of interest that logging agents have in
changing the events in their logs. These can be viewed as complementary results
of the present work. Section 2 introduces a motivating example and some useful
notations. Section 3 presents our general model to specify logs, log distributions
and claims. Section 4 introduces some classical operations on distributed logs, as
extraction and merge. Finally, Section 5 gives the specification of our log anal-
ysis and its use for claim admissibility together with the studies of incremental
results.

196 E. Mazza, M.-L. Potet, and D. Le Métayer

2 Case Study and Notations

In this section we present our case study and give a brief background of the B
notation used in this paper.

2.1 Case Study

Throughout this paper we will use a travel booking case study as a running
example of the different aspects of our framework.

Fig. 2. Travel booking system

In this case study (Figure 2), the client (Client) submits a request (Request)
for a hotel reservation to the travel agency (Agency). On the request arrival,
Agency performs some research to find a hotel that supplies the specifications
requested by Client (for example, price or hotel location). Having found a hotel,
Agency sends a request (Book) to the hotel (Hotel) with the specification of
dates and room. Hotel confirms the reservation sending a message (Confirm)
to Client. Client can cancel the reservation before the reservation date free
of charge. To cancel the reservation, Client shall send a message (Cancel) to
Hotel informing that s/he no longer desires the room. If Client did not cancel
the reservation within the time specified, Agency makes a debit in the client’s
account sending a message (Debit) to Bank. Finally, Bank sends a message
(Justify) to Client with the justification for the payment made with his/her
account.

From the Client’s point of view a number of things could go wrong. We
consider here two claims:

Example 1. (claim NoRoom) Let us consider the case that Client submits a
request and receives a justification from Bank, but when s/he arrives at the
hotel there is no information about the reservation in Hotel’s registry. Client
complains to Agency that s/he received a message from Bank and still there is
no room available.

A Formal Framework for Specifying and Analyzing Logs 197

Example 2. (claim LateCancel) Let us consider another claim where having can-
celed the reservation, Client is still charged by Agency. Then, Client complains
to Agency that s/he sent the message to cancel the reservation. On the other
side, Agency complains that Client did not send the message before the reser-
vation date. In this example, the time that the client sends the message can be
confused with the time that the message is received by Hotel. It is necessary to
make clear in the agreement between Agency and Client how such details will
be taken into account.

In such situations, liability can be specified in terms of well-defined properties
written in function of events recorded in the logs. Consider, for example, the
scenario in Figure 3. In this scenario Agency does not send the request of reser-
vation to Hotel, but still charges the client by sending a message to Bank. Client
receives the justification from Bank and could think that, although s/he has no
confirmation from Hotel (maybe Client does not even know that should receive
a confirmation from Hotel), the fact that s/he was charged by Agency assures
the confirmation of the reservation.

Fig. 3. Sequence diagram for possible scenario where claim NoRoom will happen

For the agreement to work it is necessary that the values found in the logs can
be trusted by all entities of the system and that it contains no error. In this pa-
per, we assume that this hypothesis is valid and the values that compose the logs
correspond exactly to what happened (no duplication, no replication, no loss).

2.2 Notation B

This formal framework is based on the B-method [1]. This methodology was cho-
sen because it allows specifications that are focused both on data and behavior.
Another important aspect for our lawyer partners is the industrial status of this
approach [5, 2] that is a positive argument in term of trust, a central notion in law.

We give here a short summary of the B notations we use in this paper. Given two
sets,A andB, the set of relations betweenA andB, the set of functions fromA toB,
and the set of partial functions from A to B are respectively denoted by A ↔ B,
A → B, and A �→ B. We note F(A) all finite subsets of A, R[U] the relational
image of U under the relation R (set of all elements that are under relation R with
an element of U), and union(A) the generalized union of A (union of all elements
of the set A). We denote by f−1 the inverse function for f and by iseq(A) the set of

198 E. Mazza, M.-L. Potet, and D. Le Métayer

injective sequences of elements of A. A sequence is delimited by the square brackets
(’[’ and ’]’) and its elements separated by commas (’,’). The notation λx.(P | E)
denotes the function that maps every x that verifies the predicate P into the value
of expression E. Finally, for readability, we sometimes omit the declaration of the
type of variables whenever we judge the type is easy to infer.

3 Logs and Claims

In this section we present how, in our framework, we specify the expected infor-
mation about the system, the logs and the claims. The proposed model is based
on exchanged messages that are used to represent the interactions between the
entities of the system. We will assume here that each message is unique. We
will also assume that we are able to identify the origin of exchanged messages.
However, our framework can be easily adapted for working without assuming
such hypothesis. This model of communication is well adapted to the domain
of B2B applications that we mentioned in the introduction, including electronic
service and resource provision.

We consider a system consisting of agents participating in some form of inter-
actions described as events, and each event is performed by one of the agents.
Particular agents may have the ability to monitor the events performed by itself
and other agents and record these events in a log2. The agents should agree that
the produced logs are liable for representing the event’s history.

3.1 System Information

The machine SystemInfo specifies a set of agents (AGENT) and a set of actions
(ACTION). Each action is associated with the agent that can execute it by the
function Interface. The information associated with the system in study is
marked in bold.

Example 3. (agents and interface) Let us write the machine SystemInfo for our
case study such that:

MACHINE SystemInfo
SETS

AGENT = {Client,Agency,Hotel,Bank};
ACTION = {Request,Book,Debit,Confirm,Justify,Cancel}

CONSTANTS Interface
PROPERTIES

Interface : ACTION → AGENT ∧
Interface = {(Request,Client), (Book,Agency), (Debit,Agency),

(Confirm,Hotel), (Justify,Bank), (Cancel,Client)}
END

2 Logs can also be produced by some mechanism that does not directly belong to the
system, such as protocol sniffers.

A Formal Framework for Specifying and Analyzing Logs 199

The actions specified for a given system may depend on the claims that need to
be evaluated. Other actions, such as confirmation of the reservation between Hotel
and Agency, were not considered here to keep the simplicity of the example.

3.2 Logs and Distribution

An event (EV ENT) is described as a tuple consisting of the type of event
(OP), the source and destination agents, and the action to be executed. A log
file (LOG FILE) is defined as a pair consisting of the set of agents that have
their events logged and the sequence of events, recorded in the order of execution.

A log architecture (LOG ARCH) represents a set of logs produced during
the execution of the system. The constant Dist describes how we have chosen
to regroup and distribute logs. Each element X ∈ Dist represents that a single
log file records the events performed by the agents in X . Notice that in this
definition the events of an agent might be recorded in more than one log file.

Logs are modeled using the machine LogModel.

MACHINE LogModel
INCLUDES SystemInfo
SETS OP = {Send, Rec}
CONSTANTS EV ENT , LOG FILE, LOG ARCH , Dist
PROPERTIES

EV ENT = OP × AGENT × AGENT × ACTION ∧
/* Log files */
LOG FILE = F(AGENT) × iseq(EV ENT) ∧
/* Definition of the chosen log distribution */
Dist ⊆ F(AGENT) ∧ Dist = {· · ·} ∧
/* Log architectures defined as a set of log files */
LOG ARCH = {logs | logs ∈ F(LOG FILE) ∧ ∀ log.(log ∈ logs ⇒
agents(log) ∈ Dist)}

END

In the rest of the paper we use the functions agents and content that maps
every log file into its agents and content respectively. The function events maps
every log file into the set of events (rather than the sequence) of the log’s content.
We abuse our notation and assume that agents and events can also be applied
to log architectures: applying agents (or events) to a log architecture log arch
is equivalent to applying agents (or events) to each log file that belongs to
log arch and make the union of the results.

Example 4. (log distribution) Let us consider the following two examples of dis-
tributions:

1. Dist = {{Client}, {Agency}, {Hotel}, {Bank}}
2. Dist = {{Client,Agency}, {Hotel}, {Bank}}

In the first example we describe a distribution where each agent is logged inde-
pendently. In the second example we assume that there is a single log file that
records the events performed by Client and Agency.

200 E. Mazza, M.-L. Potet, and D. Le Métayer

3.3 Properties and Claims

In our case study, the agents make an agreement to trust the content of logs,
in order to establish liability for a given set of claims. Then it is necessary to
express these claims in terms of log events in an unambiguous way. We assume
that liability for claims take the form: “if Prop holds, then agent defendant is
responsible”. This structure is explained in more details in [15].

The machine Claims below introduces some general definitions and allows us
to declare particular instances of properties and claims.

MACHINE Claims
INCLUDES LogModel
CONSTANTS PROP, CLAIM
PROPERTIES
/* Log Properties */
PROP = {prop | prop ∈ F(AGENT) × (LOG FILE �→ BOOL) ∧
∀(ags, log).(prop = (ags, log) ⇒ ags = agents(log))} ∧
propNoRoom ∈ PROP ∧ propLateCancel ∈ PROP ∧ . . . ∧

/* Claims */
CLAIM = {claim | claim ∈ (AGENT × AGENT × PROP) ∧
∀(plain, def, prop).(claim = (plain, def, prop) ⇒

{plain, def} ⊆ agents(prop))} ∧
NoRoom ∈ CLAIM ∧ NoRoom = (Client,Agency,propNoRoom) ∧
LateCancel ∈ CLAIM ∧ LateCancel = (Client,Agency,propLateCancel)

END

Due to the distributed nature of logs, the first element of a property explicitly
states the agents that are concerned with this property. The second element of
the property is a partial function that maps a log file to true or false depending if
the log file verifies the property. We use the notation agents(prop) and val(prop)
indicating respectively the first and second parts of a property prop. In a property
it is imposed that the domain of logs matches exactly with the agents concerned
by the property. Claims are tuples consisting of a plaintiff, a defendant, and a
property that describes the claim, with the plaintiff and the defendant belonging
to the agents of the property.

Example 5. (property propNoRoom) Now, consider the claim NoRoom described
in Section 2.1. Let propNoRoom be the property that describes the claim where
Client complains of Agency being responsible for charging him/her without
booking the reservation:

agents(propNoRoom) = {Client, Agency} ∧
val(propNoRoom) = λ log.(agents(log) = {Client, Agency} |

(Send, Client, Agency, Request) ∈ events(log) ∧
(Send, Agency, Bank, Debit) ∈ events(log) ∧
(Send, Agency, Hotel, Book) �∈ events(log)) ∧
pos((Send, Client, Agency, Request), log) <

pos((Send, Agency, Bank, Debit), log))

A Formal Framework for Specifying and Analyzing Logs 201

This definition starts limiting the agents of the property to Client and Agency.
The second part of the definition gives the conditions that verify the property.
We use the function pos(ev, log) that maps every event ev and log log such that
ev ∈ events(log), into the position of ev within the sequence content(log).

4 Log Functions

Like others frameworks dedicated to distributed systems we provide some func-
tions for manipulating distributed logs. The functions presented here are based
in the well known relation “happened-before” introduced in the early work of
Lamport [14].

4.1 Log Extraction

The function extract allow us to obtain information contained in a log file con-
cerning a certain group of agents.

Definition 1. (function extract) The partial function extract : (F(AGENT)×
LOG FILE) �→ LOG FILE maps every pair (ags, log) such that ags
⊆ agents(log), into logext with logext having the following properties:

1. agents(logext) = agents(log)
2. events(logext) = {ev | ev ∈ events(log) ∧ ∃(ag1, ag2, ac).(ag1 ∈ agents(log) ∧

ev = (Send, ag1, ag2, ac) ∨ ev = (Rec, ag2, ag1, ac))}
3. ∀(evA, evB).(evA ∈ events(logext) ∧ evB ∈ events(logext) ∧

pos(evA, logext) < pos(evB, logext) ⇒ pos(evA, log) < pos(evB, log))

The last two properties of Definition 1 respectively state that the extracted log
(2.) contains all events that represent messages sent or received by the agent in
ags and (3.) respects the order of events in log. In the rest of this paper we use
extractags(log) to denote extract(ags, log).

Example 6. (application of extract) Let us imagine the variable log ∈
LOG FILE representing the log of Client and Agency for the scenario de-
scribed in Figure 3:

log = ({Client, Agency}, [(Send, Client, Agency, Request),
(Rec, Client, Agency, Request), (Send, Agency, Bank, Debit),

(Rec, Bank, Client, Justify)])

Then, we can use extract to obtain the events performed only by Agency:

extract{Agency}(log) = ({Agency}, [(Rec, Client, Agency, Request),
(Send, Agency, Bank, Debit)]).

202 E. Mazza, M.-L. Potet, and D. Le Métayer

4.2 Log Merge

The relation merge produces, for a given log architecture, the set of logs respect-
ing the order of each log file in the architecture and the order of corresponding
Send/Rec events. Each log produced by this relation represents a scenario de-
scribing the sequence of events in the order they were performed.

Definition 2. (relation merge) The relation merge : LOG ARCH ↔
LOG FILE maps every log architecture into logs that will represent all pos-
sible total orders for this architecture. That is, for any log arch and log, such
that (log arch, log) ∈ merge, then:

1. agents(log) = agents(log arch)
2. events(log) = events(log arch)
3. ∀ logag ∈ log arch ⇒ extractagents(logag)(log) = logag

4. ∀(evB, ag1, ag2, ac).(evB ∈ events(log arch) ∧ evB = (Rec, ag1, ag2, ac) ∧
ag1 ∈ agents(log arch) ⇒ ∃(evA).(evA ∈ events(log arch) ∧
evA = (Send, ag1, ag2, ac) ∧ pos(evA, log) < pos(evB , log))

The last two properties in Definition 2 respectively state that the scenario repre-
sented by log (3.) respects the local order of each log file in log arch and (4.) for
every event of type Rec if there is a corresponding event of type Send then the
event of type Send precedes the event of type Rec in this scenario. That is, the
relation merge collects all interleaving that respect local and causal orderings.

Example 7. (application of merge) Let us, from now on, denote events omitting
the sender and receiver and using the simplified notation (Send, ac) to represent
an event of the form (Send, ag1, ag2, ac) and similar for (Rec, ac). Let us imagine
the distribution log arch composed by the logs of Client and Agency where:

logClient = ({Client}, [(Send, Request), (Rec, Justify)])
logAgency = ({Agency}, [(Rec, Request), (Send, Debit)])

Then, merge[log arch]3 produces the set {log1, log2, log3} such that:

log1 = {Client, Agency}, [(Send, Request),
(Rec, Justify), (Rec, Request), (Send, Debit)]
log2 = {Client, Agency}, [(Send, Request),

(Rec, Request), (Rec, Justify), (Send, Debit)]
log3 = {Client, Agency}, [(Send, Request),

(Rec, Request), (Send, Debit)], (Rec, Justify)

That is, the event (Rec, Justify) can be permuted with the events
(Rec, Request) and (Send, Debit) because there is no order constraint between
these events. However, we know that all these events shall come after the
event (Send, Request) and that the event (Send, Debit) comes after the event
(Rec, Request).
3 In this paper we use the notation merge[log arch] rather than merge[{log arch}]

for sake of simplicity.

A Formal Framework for Specifying and Analyzing Logs 203

5 Log Analysis

In this section, we give the general method of our log analyzer. Given the values
of the current logs and a particular claim, the aim is to establish the truthfulness
of this claim based on the content of the logs.

5.1 Log Analyzer

First, we present the definition of the operation PropAnalysis.

scen, ok ← PropAnalysis(logs, prop)=̂
PRE

logs ∈ LOG ARCH ∧ prop ∈ PROP ∧ agents(prop) ⊆ agents(logs)
THEN

scen := extractagents(prop)[merge[logs]];
ok := scen ∩ val(prop)−1[{TRUE}]

END
END

For a given set of logs logs, the operation PropAnalysis researches scenarios
that hold for a given property prop. Two results are computed: the set of possible
different scenarios (scen) zooming only on the concerned agents of the property,
and among them, the subset of these scenarios that fulfill the property (ok). The
ratio between the two sets scen and ok may inform us the level truthfulness of
the researched property for the given logs.

Now, the method for the analysis of a claim of the form (plain, def, prop)
proceeds as follows:

1. Select a set of logs in the global log architecture such that {plain, def} ⊆
agents(prop). These logs may represent the current global set of logs or only
a subset of them.

2. Execute scen, ok ← PropAnalysis(logs, prop)
3. Analyze the results in term of the admissibility of the claim and its expla-

nation. For instance:
– if ok = scen the property holds for all scenarios, which leads us to

conclude that the claim is valid and the defendant is responsible;
– if ok = ∅ the property is false for all scenarios, and leads us to conclude

that the claims should be rejected;
– otherwise, an appropriate examination of scenarios that fulfill (or not)

the property has to be conducted.

If the results are not conclusive, it could be necessary to increase the amount of
logs used in the analysis, as we explain in Section 5.2.

Example 8. (claim NoRoom analysis) Suppose we have the following current
logs representing the scenario illustrated in Figure 3:

204 E. Mazza, M.-L. Potet, and D. Le Métayer

logClient = ({Client}, [(Send, Request), (Rec, Justify)])
logAgency = ({Agency}, [(Rec, Request), (Send, Debit)])
logBank = ({Bank}, [(Rec, Debit), (Send, Justify)])
logHotel = ({Hotel}, [])

If we execute PropAnalysis for NoRoom using all these logs it is clear that
Agency is liable for Client’s damages4, because only one scenario is generated
and fulfills the property propNoRoom. However, suppose that obtaining logBank

can be an issue and that we want to verify if Agency is responsible for the
incident. Then, the property can be analyzed for a reduced architecture using
only logClient and logAgency. This setting will generate the three scenarios de-
scribed in Example 7, but for all of them propNoRoom holds, which leads to the
conclusion that the claim is valid and Agency should be responsible.

5.2 Incremental Analysis

When results are not precise enough, a deeper investigation can be conducted,
for instance, inspecting more logs or in looking for some other dysfunctions. We
focus now on an incremental approach to obtain more precise results when more
logs are later added in the analysis.

Let logs and prop be respectively the logs and the property that have been
already analyzed. Now let logs′ be a new set of logs, selected in order to ob-
tain more precise results. Here we study how scen′, ok′ ← PropAnalysis(logs∪
logs′, prop) can be incrementally computed, reusing the results obtained by
scen, ok ← PropAnalysis(logs, prop).

Incremental calculus for merge[logs∪logs′]. The following property allows
us to compute merge[logs ∪ logs′].

Property 1. (merge by parts) Let logs and logs′ be two sets of logs. We have:

merge[logs ∪ logs′] = union({merge[logs′ ∪ {log}) | log ∈ merge[logs]}]

Then, in the first step of PropAnalysis(logs∪ logs′, prop) it is possible to reuse
the result of merge[logs] to compute merge[logs∪ logs′]. However, the operation
extract does not distribute on the operator merge (see Property 2 below).

Incremental calculus for scen′ and ok′. The results of PropAnalysis(logs∪
logs′, prop) can be approximated using the previous results for scen and ok in
the following way:

4 In law, the term “damage” is associated with an award of money to be paid as
compensation for loss or injury. In this paper we refer to this term in a more general
meaning.

A Formal Framework for Specifying and Analyzing Logs 205

iscen, iok ← IncrPropAnalysis(logs′, prop, scen, ok)=̂
PRE

logs′ ∈ LOG ARCH ∧ prop ∈ PROP ∧
scen ∈ F(LOG FILE) ∧ ok ∈ F(LOG FILE) ∧
agents(prop) ⊆ agents(scen) ∧
agents(prop) ⊆ agents(ok)

THEN
iscen := extractagents(prop)[union({merge[logs′ ∪ {log}] | log ∈ scen})];
iok := extractagents(prop)[union({merge[logs′ ∪ {log}] | log ∈ ok})]

END
END

Now we can compare:

scen, ok ← PropAnalysis(logs, prop)
scen′, ok′ ← PropAnalysis(logs ∪ logs′, prop)
iscen, iok ← IncrPropAnalysis(logs′, prop, scen, ok)

The result is:

ok′ ⊆ iok ⊆ ok and scen′ ⊆ iscen ⊆ scen

This result can be concluded using the following property.

Property 2. (extraction by parts) Let log be a log, log arch a log architecture,
and ags a set of agents. We have:

extractags[merge[log arch ∪ {log})] ⊆
extractags[merge[log arch ∪ {extractags(log)})]

This property suggests that when an extraction is made before the merge some
information about the order of events may be lost and may result in a large set
of scenarios for merge. Since IncrPropAnalysis uses the results scen and ok of
PropAnalysis, some information may be lost with the extraction of the events
that only concern the agents of the property.

Application. Although we do not obtain exact results, this operation is inter-
esting because it does not retest the researched property, what can be a complex
step. Moreover in some cases we may obtain conclusive results. For instance, it
is always the case where iok = ∅ or iok = iscen.

Example 9. Suppose the claim LateCancel = (Client, Agency, propLateCancel)
such that:

agents(propLateCancel) = {Client, Agency} ∧
val(propLateCancel) = λ log.(agents(log) = {Client, Agency} |

(Send, Cancel) ∈ events(log) ∧
(Send, Debit) ∈ events(log) ∧

pos((Send, Cancel), log) < pos((Send, Debit), log))

206 E. Mazza, M.-L. Potet, and D. Le Métayer

Fig. 4. Sequence diagram for possible scenario

That is, Agency is responsible for the claim LateCancel if Client sends a message
to cancel the reservation before Agency sends the message to Bank charging the
client. Now, consider the scenario described in Figure 4 and an initial call of
PropAnalysis only with logClient and logAgency. The values for the logs can be
written as follows:

logClient = ({Client}, [(Send, Request), (Rec, Confirm), (Rec, Justify),
(Send, Cancel)])

logAgency = ({Agency}, [(Send, Request), (Send, Book), (Send, Debit)])

Then, it is not possible to verify if the claim is valid, because the result of
merge[{logClient, logAgency}] will produce 20 different scenarios where in ten of
them the position of CancelSend is before DebitSend.

Now, we call IncrPropAnalysis with the result of the previous analysis and
logBank that should contain the following value:

logBank = ({Bank}, [(Rec, Debit), (Send, Justify)])

The bank’s log adds a restriction to the previous scenarios. Now we know that
Client tries to cancel the reservation after the message (Rec, Debit). After exe-
cute IncrPropAnalysis we remain with four scenarios in iscen because we are
not sure about the position of the event (Rec, Confirm). However, we obtain
iok = ∅ and can conclude that the claim should be rejected.

6 Conclusion

This paper has presented some parts of the LISE context [15], a project with
the objective to create a formal framework to precisely define liability in IT
systems and establish liability in case of failure. Our framework provides a model
for formally specifying the aspects of liability in a contractual setting. We also
present the specification for a log analyzer that can be used to establish the
validity of claims with relation to a given distributed log architecture. Finally,
we explore the aspects of incremental analysis for this log analyzer.

A Formal Framework for Specifying and Analyzing Logs 207

6.1 Related Works

A large amount of work has been dedicated to the formal specification of con-
tracts, among them [13, 9, 8]. Such specifications are useful but they still lack
in specific issues of legal evidences and can be considered as a complementary
approach to our framework.

Works in the domain of forensics [19, 20, 22, 26] and audit [24, 7, 27] make
general references to analysis of digital information in a legal setting. However,
in general these contributions seem to be targeted towards security issues and
attack detection rather than define liability for possible claims that may rise.

The contributions presented in this paper differs from other works such as
[25] and [7]. In these works the authors make reference to liability using logs but
they are more focused in the aspects of monitorability of events and how the logs
should be produced. The management of log distributions related with liability
is an important related topic which has been covered by our prior work [16],
where we characterized the acceptability of a given distribution with respect to
a trust relationship and the neutrality of agents to log some given events.

6.2 Future Work

In this paper, we assumed that logs will not contain inconsistencies or incorrect
values. As commented before, this hypothesis is justified by the use of other
means, for instance digital signatures, that will assure characteristics such as
integrity and non-repudiation for the logs. Another possibility, to verify log in-
tegrity, is the use of redundancy in a log architecture, when the events concerning
one agent is recorded several times. However, situations where this hypothesis is
not assumed has been considered in our previous works [16].

In the future we will extend our framework to take into account parameterized
claims and properties (for instance to extend our case study with several clients
and hotels). Future work also includes the integration of our work presented in
[16] in this general framework.

Acknowledgement

This contribution is part of the LISE project (ANR-07-SESU-007) funded by
ANR.

References

[1] Abrial, J.: The B-Book. Cambridge University Press, Cambridge (1996)
[2] Badeau, F., Amelot, A.: Using B as a High Level Programming Language in

an Industrial Project: Roissy VAL. In: Treharne, H., King, S., Henson, M.C.,
Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 334–354. Springer, Heidelberg
(2005)

[3] Barringer, H., Groce, A., Havelund, K., Smith, M.H.: An Entry Point for Formal
Methods: Specification and Analysis of Event Logs. CoRR abs/1003.1682 (2010)

208 E. Mazza, M.-L. Potet, and D. Le Métayer

[4] Barringer, H., Groce, A., Havelund, K., Smith, M.H.: Formal Analysis of Log
Files. Aerospace Computing, Information, and Communication (to appear, 2010)

[5] Behm, P., Benoit, P., Faivre, A., Meynadier, J.-M.: Météor: A Successful Appli-
cation of B in a Large Project. In: Woodcock, J.C.P., Davies, J. (eds.) FM 1999.
LNCS, vol. 1708, pp. 369–387. Springer, Heidelberg (1999)

[6] Buskirk, E.V., Liu, V.T.: Digital Evidence: Challenging the Presumption of Reli-
ability. Journal of Digital Forensic Practice 1(1), 19–26 (2006)

[7] Cederquist, J.G., Corin, R., Dekker, M.A.C., Etalle, S., den Hartog, J.I., Lenzini,
G.: Audit-based Compliance Control. International Journal of Information Secu-
rity 6(2-3), 133–151 (2007)

[8] Farrell, A.D.H., Sergot, M.J., Sallé, M., Bartolini, C.: Using the Event Calculus for
Tracking the Normative State of Contracts. International Journal of Cooperative
Information Systems (IJCIS) 14(2-3), 99–129 (2005)

[9] Fenech, S., Pace, G.J., Schneider, G.: CLAN: A tool for contract analysis and
conflict discovery. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp.
90–96. Springer, Heidelberg (2009)

[10] Grossi, D., Royakkers, L.M.M., Dignum, F.: Organizational Structure and Re-
sponsibility. Artificial Intelligence and Law 15(3), 223–249 (2007)

[11] Hallal, H., Boroday, S., Petrenko, A., Ulrich, A.: A Formal Approach to Property
Testing in Causally Consistent Distributed Traces. Formal Aspects of Comput-
ing 18(1), 63–83 (2006)

[12] Insa, F.: The Admissibility of Electronic Evidence in Court (AEEC): Fighting
against High-Tech Crime - Results of a European Study. Journal of Digital Foren-
sic Practice 1(4), 285–289 (2006)

[13] Kyas, M., Prisacariu, C., Schneider, G.: Run-Time Monitoring of Electronic Con-
tracts. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA
2008. LNCS, vol. 5311, pp. 397–407. Springer, Heidelberg (2008)

[14] Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM 21(7), 558–565 (1978)

[15] Le Métayer, D., Maarek, M., Mazza, E., Potet, M.L., Viet Triem Tong, V., Crai-
peau, N., Frénot, S., Hardouin, R.: Liability in Software Engineering: Overview of
the LISE Approach and Illustration on a Case Study. In: International Conference
on Software Engineering (ICSE), pp. 135–144 (2010)

[16] Le Métayer, D., Mazza, E., Potet, M.L.: Designing Log Architecture For Legal
Evidence. In: Software Engineering And Formal Methods (SEFM). IEEE, Los
Alamitos (2010)

[17] Lima, T.D., Royakkers, L.M.M., Dignum, F.: A Logic For Reasoning About Re-
sponsibility. Logic Journal of the IGPL 18(1), 99–117 (2010)

[18] Maurer, U.M.: New Approaches to Digital Evidence. Proceedings of the
IEEE 92(6), 933–947 (2004)

[19] Peisert, S., Bishop, M., Karin, S., Marzullo, K.: Toward Models for Forensic Anal-
ysis. In: Systematic Approaches to Digital Forensic Engineering, pp. 3–15. IEEE,
Los Alamitos (2007)

[20] Rekhis, S., Krichène, J., Boudriga, N.: Cognitive-Maps Based Investigation of Dig-
ital Security Incidents. In: Systematic Approaches to Digital Forensic Engineering,
pp. 25–40 (2008)

[21] Saleh, M., Arasteh, A.R., Sakha, A., Debbabi, M.: Forensic Analysis of Logs:
Modeling and verification. Knowledge-Based Systems 20(7), 671–682 (2007)

[22] Sandler, D., Derr, K., Crosby, S.A., Wallach, D.S.: Finding the Evidence in
Tamper-Evident Logs. In: Systematic Approaches to Digital Forensic Engineering,
pp. 69–75 (2008)

A Formal Framework for Specifying and Analyzing Logs 209

[23] Schneider, F.B.: Accountability for Perfection. IEEE Security & Privacy 7(2), 3–4
(2009)

[24] Schneier, B., Kelsey, J.: Secure audit logs to support computer forensics. ACM
Transactions on Information and System Security 2(2), 159–176 (1999)

[25] Skene, J., Raimondi, F., Emmerich, W.: Service-Level Agreements for Electronic
Services. IEEE Transactions on Software Engineering 36(2), 288–304 (2010)

[26] Stirewalt, R.E.K., Dillon, L.K., Kraemer, E.: The Inference Validity Problem in
Legal Discovery. In: International Conference on Software Engineering (ICSE),
pp. 303–306. IEEE, Los Alamitos (2009)

[27] Waters, B.R., Balfanz, D., Durfee, G., Smetters, D.K.: Building an Encrypted and
Searchable Audit Log. In: Proceedings of the Network and Distributed System
Security. The Internet Society (2004)

Formal Development of a Cardiac Pacemaker:
From Specification to Code

Artur O. Gomes and Marcel V.M. Oliveira

Universidade Federal do Rio Grande do Norte, Brazil
artur.o.gomes@gmail.com, marcel@dimap.ufrn.br

Abstract. This paper presents a formal development of a cardiac pacing
system based on a Boston Scientific’s model, a pilot case study from the
Grand Challenge in Software Verification. We present a summary of our
Z model of the system, its translation into Perfect Developer, and the
code generation and execution. Further practical result and analysis are
also in the context of this paper.

Keywords: formal modelling, Z, refinement, Perfect Developer, pacemaker.

1 Introduction

The cardiac pacemaker [5], whose specification document was made available
by the Software Quality Research Laboratory [1], at McMaster University in
Canada, was proposed as one of the pilot case studies of the Grand Chal-
lenges in Software Verification [11], maintained by the Verified Software Ini-
tiative (VSI) [12]. The main objective of this project is to use formal methods
throughout the development process of real case studies, stimulating researchers
with experience in formal methods to apply their knowledge in a set of pilot
case studies, like the pacemaker, showing empirically that formal methods have
reached an acceptable level of usability even in industrial scale applications.
The pacemaker is relevant since it is a very good example of a critical system
which needs to have strong guarantees that the system will work according to
its requirements. Any failure or bug may cause serious damages to patients.

In [9], we use the Z language [25] to formally specify the pacemaker. More-
over, we discuss how we used the theorem prover ProofPower-Z [17] to prove
theorems that validate the consistency of the system. In this paper, we present
our last results in the pacemaker case study by providing a means to execute the
model: we present a translation of our Z model [9] into Perfect Developer [2].
Using this tool, we are able to verify the translated code by using its internal
theorem prover fully automatically and refining the verified specification into
programming languages like Java, C#, C++ or ADA.

Section 2 gives an overview of the pacemaker system. We will briefly present
our model of the system using Z in Section 3. Then, we discuss some options
that were considered to move into a verified code of the pacemaker in Section 4.
In Section 5, we present some fragments of the translation of the pacemaker

J. Davies, L. Silva, and A. Simão (Eds.): SBMF 2010, LNCS 6527, pp. 210–225, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Formal Development of a Cardiac Pacemaker: From Specification to Code 211

Z specification into Perfect Developer. Finally, in Section 6 we discuss the re-
sults presented in this paper, followed by conclusions and future directions in
Section 7.

2 The Pacemaker

A pacemaker is a small electronic device that is capable of dealing with some of
the human heart’s deficiencies. It is implanted into the human chest by surgery
and connected to the heart via one or two thin leads [7]. Such leads are capable
of pacing and sensing pulses from the heart and may be connected to the atrial
chamber, to the ventricular chamber or to both chambers, depending on the
heart’s needs. The pacemaker system [13] works basically in two modes: perma-
nent mode running the main operation, bradycardia therapy, sensing and pacing
pulses, and in temporary mode testing the pacemaker functionalities and emitting
reports. During the bradycardia therapy, the pacemaker will be able to deliver
pulses according to a set of parameters programmed by the cardiologist during
the implant [22]. These parameters are related to the frequency of paced pulses,
their voltages, and the type of response to sensed beats from the heart.

Among such parameters, the bradycardia operation mode, mentioned in our
formalisation as bo mode, is the parameter that describes how the therapy will
behave regarding: (1) the chambers (atrium or ventricle) in which the pacemaker
will sense pulses (chambers sensed); (2) the chambers to which the pacemaker
will deliver pulses (chambers paced); (3) how the pacemaker will react to pres-
ence or absence of intrinsic pulses from the heart (response to sensing); and (4)
whether or not, the pacemaker makes use of an accelerometer to increase the
frequency of delivered pulses according to the intensity of body motion.

Fig. 1. VOO mode

As an example, the VOO mode, illustrated in Figure 1, is the bradycardia
operation mode in which pulses are paced to the ventricle chamber (represented
by the character ’V’), pulses are not sensed by the pacemaker (represented by
the first character ’O’), and there is no response to sensing events (represented
by the last character ’O’). In such mode, the pacemaker will deliver pulses to

212 A.O. Gomes and M.V.M. Oliveira

the heart within an interval programmed by the cardiologist regardless of any
electrical activity in the heart.

In the next section we present our formalisation of the pacemaker using Z.

3 Pacemaker in Z

Our formal specification of the pacemaker is based on an informal specifica-
tion [13] of an old Boston Scientific’s pacemaker model [5]. We decided to de-
velop a model of the pacemaker, hereafter referred to as pulse generator, as a
modularised Z state PulseGenerator making strong use of the Z schema cal-
culus. It allows us to model each component of the pacemaker separately. The
components of the PulseGenerator state are modelled as Z schemas with their
variables and state invariants. The PulseGenerator [9] modularisation, as ex-
pected, helped us to keep the Z model comprehensible while moving into Perfect
Developer. Furthermore, our specification also helped us in the development of
a graphical user interface in C# because in the object oriented generated code
each Z component was refined to a C# class, making it easier to access variables
and methods from the PulseGenerator class.

Our PulseGenerator state is composed by a number of components like the
set of programmable parameters, the set of measured parameters, the battery
status component, and time. There are also many other components of the
PulseGenerator state that are not presented here for the sake of conciseness1. As
an example, we briefly present the time state component, called TimeSt, which
is responsible for storing all the information regarding time. It acts as a time
counter and also stores information regarding the last occurrences of pulses from
the heart, measured by the pacemaker.

TimeSt
time : N
a start time, v start time, a max , v max : N
a delay, v delay, a curr measurement , v curr measurement : N

In our convention, variables related to the atrial chamber are prefixed with a
and, similarly, variables related to the ventricular chamber are prefixed with v .
Hence, the variable a start time stores the initial moment of a pulse detected
in the atrium, a max stores the maximum value of the pulse and a delay stores
the value of the duration of the pulse in the atrium chamber. The measurement
of pulses coming from atrial and ventricle are defined as a curr measurement
and v curr measurement , respectively.

The other components of the PulseGenerator state are modelled in a sim-
ilar fashion. In some cases, however, state invariants are required for restrict-
ing the state components according to the informal specification. Finally, the
PulseGenerator state is modelled as the conjunction of each component.
1 The pacemaker full specification can be downloaded from
http://sites.google.com/site/pacemakerinz/pacemaker-in-z.pdf

http://sites.google.com/site/pacemakerinz/pacemaker-in-z.pdf

Formal Development of a Cardiac Pacemaker: From Specification to Code 213

PulseGenerator =̂ PacingPulse ∧ SensingPulse ∧ TimeSt
∧ MeasuredParameters ∧ Leads ∧ Accelerometer
∧ EventMarkers ∧ BatteryStatus ∧ ImplantData
∧ TelemetrySession ∧ ProgrammableParameters
∧ MagnetTest

We model the pacemaker operations as Z operations over PulseGenerator . We
illustrate our approach with the SetTimer operation below, which works as a
counter for the pacemaker, incrementing the time. In Z, ΔSt denotes a change to
the state St . We also state that θ(PulseGenerator\ (time)) = θ(PulseGenerator\
(time))′, which means that only the time variable is changed; the remaining state
variables are left unchanged.

SetTimer
ΔPulseGenerator

time ′ = time + 1
θ(PulseGenerator \ (time)) = θ(PulseGenerator \ (time))′

According to its requirements [13], the pacemaker must be capable of sens-
ing pulses from the heart by using leads connected to the heart’s chambers.
There are three relevant moments during pulse measurement. As illustrated in
Figure 2, the pacemaker must register the pulse start time, the maximal ampli-
tude of the pulse and the moment when the pulse ends.

Fig. 2. Relevant moments during pulse measurement

As an example, we present the VentricleStartTime operation [7] that reg-
isters the initial moment of a sensed pulse in the ventricle chamber. Its pre-
condition states that: (1) the current bradycardia operation mode must sense
either the ventricle chamber or both chambers (bo mode.chambers sensed ∈
{C VENTRICLE ,C DUAL}); (2) there was no previously sensed pulse in the
ventricle (r wave = 0); and (3) the measured pulse amplitude from ventricle
chamber is higher than the actual pulse (v curr measurement > r wave). If
these preconditions are satisfied, the pacemaker will update the value of r wave

214 A.O. Gomes and M.V.M. Oliveira

with the value of v curr measurement and register (v start time ′ = time) the
initial time of that pulse.

VentricleStartTime
ΔPulseGenerator

bo mode.chambers sensed ∈ {C VENTRICLE ,C DUAL}
v curr measurement > r wave ∧ r wave = 0
r wave ′ = v curr measurement ∧ v start time ′ = time
θ(PulseGenerator \ (r wave, v start time))′

= θ(PulseGenerator \ (r wave, v start time))

We modelled the detection of pulses in the heart as distinct Z operations. As
presented above, VentricleStartTime registers the initial moment of sensed pulse
in the ventricle. A second operation, VentricleMax , is responsible for storing
the maximal pulse amplitude. Finally, VentricleEnd registers the moment when
the pulse ends. We also modelled the operation VentricularMeasurement as the
disjunction of each of these operations as illustrated below. In a similar way, we
modelled operations for the atrial chamber, which can be found in [8].

VentricularMeasurement =̂ VentricleStart ∨ VentricleMax ∨ VentricleEnd

The Z operation SensingModule, defined below, is responsible for the mea-
surement of pulses coming from the heart. This operation is the disjunction
of the VentricularMeasurement operation, presented above, and the operation
AtrialMeasurement modelled similarly.

SensingModule =̂ VentricularMeasurement ∨ AtrialMeasurement

The main purpose of the pacemaker is to supply the heart needs by delivering
a therapy defined by the cardiologist. We specified the operation BradyTherapy
(bradycardia therapy) as the sequential composition of four operations given be-
low. The first one is the SetTimer presented above: the pacemaker increments its
timer. Next, the operation SensingModule, as presented above, registers the exact
moment of the pulses in the heart. Then, the pacemaker records the markers from
sensed events, by invoking the operation SensingMarkers . Finally, SetMode (set
the bradycardia operation mode), responds to the heart needs, based on the pro-
grammable parameters values defined by the cardiologist, and delivering pulses
if necessary.

BradTherapy =̂ SetTimer o
9 SensingModule o

9 SensingMarkers o
9 SetMode

In [9], we discussed some of the verification made on this formal specification
using the theorem prover ProofPower-Z. This verification included validating the
system initialisation and its consistency regarding the state invariant. The next
step, which is the subject of this paper, is to get a verified code of the pacemaker
suitable to be executed. In the next section, we discuss some of the possibilities
for moving from our Z specification into executable code.

Formal Development of a Cardiac Pacemaker: From Specification to Code 215

4 Moving into Code

Before moving from the formal specification into the verified code, we ought to
decide which methods we will use. A first way to proceed with the challenge is
to run the resulting code in an 8-bit PIC micro controller made available by the
Software Quality Research Laboratory, at the McMaster University (Canada).
That board was specifically designed to support the pacemaker functionalities.
However, due to budget restrictions we were not able to acquire that hardware
from McMaster University. Nevertheless, we still have other possible solutions to
simulate the verified code of the pacemaker. A first possible approach is to simu-
late the pacemaker on a Field Programmable Gate Array (FPGA). The strategy
is to refine the Z specification to pseudo-code using the Z Refinement Calcu-
lus [3] possibly with tool support [16], and then, use the pseudo-code to write
the program in languages like Handel-C [4] or SystemC [18], which are subsets of
C and C++ with features for describing hardware. By adopting this solution, we
would certainly spend a considerable amount of time refining the specification
and discharging proof obligations. Another approach to reach source code is to
translate our specification from Z to B using a tool like ProZ [19], an extension
of ProB. As an advantage, B has notably very good tools for refinement and
code generation such as Atelier-B and B-Toolkit, whose features are currently
lacking for the Z language. However, it is very likely that the resulting specifi-
cation would still require refinement within the B-Method. This would probably
yield the need for intervention in order to discharge the proof obligations gen-
erated, which normally takes a reasonable amount of time. Furthermore, the
modularisation of the Z specification might be compromised when translating
into B.

Our approach is to translate the Z specification into Perfect Developer, a soft-
ware produced by Escher Technologies, which provides fully automatic software
verification and code generation to languages like C, C#, and ADA. The Perfect
Developer language uses the notion of object orientation and can be easily learnt
by Z users since it has a syntax similar to the Z language. One of the similar-
ities between Z and Perfect Developer is the description of Z states in Perfect
Developer using classes. Within the class, variables, invariants and initialisation
are declared in separated sections. Moreover, schema operations in Z are trans-
lated into Perfect Developer in a similar fashion, except that preconditions and
postconditions are explicitly stated in separated sections.

The support guaranteed by Escher Technologies with quick answers and soft-
ware updates, allowing us to verify the entire specification of the pacemaker, was
yet another motivation for choosing Perfect Developer. The tool also has a very
good and automatic proof support. It automatically generates and discharges
all proofs that are necessary to verify the specification in order to guarantee the
consistency of the system. This means that Perfect Developer is able to verify,
for example, whether the state invariant is satisfied and if the preconditions of
each operation are satisfied. Some of these proofs have already been made in
ProofPower-Z in previous work, as discussed in [9], which required a consid-
erable amount of time. Hence, we have a tool that is capable of verifying our

216 A.O. Gomes and M.V.M. Oliveira

formal specification with automatic proofs and also capable of a fully automatic
refinement of that specification into a source code that meets its requirements.
It means that we can avoid errors during the refinement process resulting in a
code without errors fully automatically. In the the next section, we present the
translation of our Z specification of the pacemaker to Perfect Developer.

5 From Z to Perfect Developer

The migration from Z into Perfect Developer is relatively straightforward due to
their similarity. The main idea is to translate a Z state as a Perfect Developer
class which will be refined to a Java or a C# class. A class in Perfect Developer
has a basic structure: all the variables and its types are declared in the abstract
section; the state invariants are declared in the invariant ; in the interface we
include all components like functions, schemas and properties which will be
available (visible) to derived classes; in the build function we define which of the
variables of the state will have their initial values declared, which will be refined
to the constructor of the class in Java, for example. The Z schema operations
over the state are modelled very similarly in Perfect Developer except that they
are part of their related class. Moreover, the preconditions and postconditions
of a schema operation are separated into pre and post in Perfect Developer,
differently from Z where they are mixed in the same predicate. This normally
requires a pre-condition calculation, which we have done using ProofPower-Z.
However, despite being a complex system, the pacemaker pre-conditions were
fairly simple to calculate.

The pacemaker proved to be an interesting challenge not only because of the
complexity of its requirements, but also because of the complexity of its state
and operations, which are modelled using a large number of variables and op-
erations. In order to deal with this complexity, we adopted some methodologies
and patterns while programming. This helped us to generate a more compre-
hensible code. Furthermore, a later formalisation of these patterns fosters the
automation of such translation, which would allow a direct code generation from
Z using Perfect Developer as a means to achieve that.

One such pattern is to create schema operations to update the values of the
variables in a class, providing encapsulation of these variables. This makes it
unnecessary to redeclare the same variable as an interface of each derived class.
The pattern is as follows: for each variable included in the interface section,
we create a schema operation, prefixed by chg followed by the name of the
variable. In each schema operation, we can change only the value of that variable.
Moreover, unless the variables are included in the state invariants, there is no
precondition for the schema.

For example, for the TimeSt Z component, we create a class in Perfect Devel-
oper named TimeSt, in which we include the same variables as presented in the
Z model in the abstract section. In this case, there is no state invariant in the
TimeSt Z component; hence, it is not necessary to include the invariant section.
By omitting the invariant section, Perfect Developer will assume that there is
no state invariant in the class.

Formal Development of a Cardiac Pacemaker: From Specification to Code 217

class TimeSt ^=

abstract

var time : int;

var a_start_time, a_max, a_delay : int;

var v_start_time, v_max, v_delay : int;

var a_curr_measurement, v_curr_measurement : int;

interface

function time, a_start_time, a_max, a_delay;

function v_start_time, v_max, v_delay;

function a_curr_measurement, v_curr_measurement;

build{!time : int,

!a_start_time : int, !a_max : int, !a_delay : int,

!v_start_time : int, !v_max : int, !v_delay : int,

!a_curr_measurement : int, !v_curr_measurement : int};

schema !chg_time(x:int)

post time! = x;

...

end;

The variables declared in the abstract section that are available to derived
classes, must be included as functions in the interface section of the class. This
is the case for all variables in the class TimeSt. We do not restrict any initial value
for TimeSt variables, we only need to initiate the variables in the build function.
This concludes the translation of the TimeSt component of the PulseGenerator
into a Perfect Developer class.

A schema operation starts with the schema keyword, followed by the name
of the schema prefixed by an exclamation mark ’! ’. When the operation has
preconditions, they are included after the keyword pre. Finally, the postcondition
of the operation is included after the keyword post, with each variable that is
changed followed by an exclamation mark. For example, we have the chg time
schema presented above, in which only the variable time is updated.

Regarding the system composition, one of our main requirements whilst mov-
ing into Perfect Developer was to keep the modularisation of the system as in
the Z specification. We were able to find a way to keep this modularisation in
the translation of the PulseGenerator into Perfect Developer, by creating a new
class PulseGenerator and instances of each component like TimeSt in the ab-
stract section. In order to help us to identify which variables in PulseGenerator
are declared as an instance of a component, we declare the variable as the name
of the corresponding class, but prefixed by c . For example, we declare an in-
stance of TimeSt as var c TimeSt : TimeSt in the main class PulseGenerator .

final class PulseGenerator ^=

abstract

var c_TimeSt : TimeSt;

var c_ProgrammableParameters : ProgrammableParameters;

var c_SensingPulse : SensingPulse;

var c_PacingPulse : PacingPulse;

var c_MeasuredParameters : MeasuredParameters;

...

218 A.O. Gomes and M.V.M. Oliveira

Next, we have to declare all the variables of the class, those components
of the state, as function in the interface section. It allows us to have access
to its internal variables and schema operations. Finally, before translating the
operations of the class, we have to declare the build function, which defines the
initial values of the state. The variables declared in the build function will be
translated to the parameters in the constructor of the class in languages like C#.

final class PulseGenerator ^=

...

interface

function c_TimeSt, c_ProgrammableParameters, c_MeasuredParameters;

...

function c_SensingPulse, function c_PacingPulse;

build{!c_TimeSt : TimeSt, !c_MeasuredParameters : MeasuredParameters,

!c_ProgrammableParameters : ProgrammableParameters,

!c_SensingPulse : SensingPulse, !c_PacingPulse : PacingPulse, ...};

...

The translation of the operations of the PulseGenerator to Perfect Devel-
oper is illustrated below, where we present the translation of the SetTimer Z
operation. The syntax of an invocation of a component is a little bit different
from that used to access a variable. In the PulseGenerator class, we access the
variable time, for example, with the predicate c TimeSt .time. However, we call
an operation of the c TimeSt component as c TimeSt !chg time(...). Finally,
we translate the SetTimer operation to a new schema operation of the class
PulseGenerator that calls the operation chg time and increments the actual
time, c TimeSt .time.

final class PulseGenerator ^=

...

schema !SetTimer

post (c_TimeSt!chg_time(c_TimeSt.time + 1));

...

As discussed above, a schema operation in Z is slightly different from its
equivalent in Perfect Developer. Precondition and postcondition are separated
in pre and post sections in Perfect Developer schemas. We use boolean func-
tions to model the precondition of each schema operation in Perfect Developer.
This approach allows the reuse of the precondition function every time we need
to include the same precondition in an operation. In order to keep a compre-
hensible code, we established that a boolean function as the precondition of an
operation is named with the prefix pre. First, we present the precondition of the
VentricleStartTime operation.

function preVentricularStartTime : bool

^= (c_BO_MODE.bo_mode.chambers_sensed = CHAMBERS C_DUAL

| c_BO_MODE.bo_mode.chambers_sensed = CHAMBERS C_VENTRICLE)

& ((c_TimeSt.v_curr_measurement

> c_MeasuredParameters.c_RWave.r_wave)

& c_MeasuredParameters.c_RWave.r_wave = 0);

Formal Development of a Cardiac Pacemaker: From Specification to Code 219

In this case, the precondition is modelled as the preVentricleStartTime function.
We adapt some parts of the Z specification in the Perfect Developer syntax.

For instance, bo mode.chambers sensed ∈ {C DUAL,C VENTRICLE} was
translated to the following Perfect Developer predicate.

c BO MODE .bo mode.chambers sensed = CHAMBERS C VENTRICLE
| c BO MODE .bo mode.chambers sensed = CHAMBERS C DUAL

Using the precondition, we are able to translate the VentricleStartTime op-
eration from Z to Perfect Developer, including the preVentricleStartTime func-
tion in the pre section, updating the initial time of the ventricular sensed pulse
to the actual time (c TimeSt !chg v start time(c TimeSt .time)) and updating
the value of r wave with the value of the current measurement in ventricle
(c MeasuredParameters !set r wave(c TimeSt .v curr measurement)).

schema !VentricularStartTime

pre preVentricularStartTime

post (c_MeasuredParameters!set_r_wave(c_TimeSt.v_curr_measurement)

& c_TimeSt!chg_v_start_time(c_TimeSt.time));

During the translation, we move from logical disjunctions of schemas in Z to
guards in Perfect Developer. Those expressions are equivalent to ’if ’ and ’else’
statements in languages like C++ or Java. The basic syntax of a guard is
[precondition] : expression. It means that for each guard, if the precondition
is satisfied, a predicate expression will be the postcondition of the operation,
else, the next guard will be checked. The operation will check the precondition
of each guard until one is found to be true. If none of the guards are true, the last
guard is selected. We include closed brackets ’[]’ with no preconditions as the
last guard, which means, in Perfect Developer, that if none of the preconditions
are satisfied, the operation will be skipped. Note that there is no global precon-
ditions in the SensingModule operation: the preconditions modelled as boolean
functions like preVentricularMeasurement are included inside the brackets in
each guard in the ’post ’ section of the operation.

schema !SensingModule

post ([preVentricularMeasurement]: !VentricularMeasurement,

[preAtrialMeasurement]: !AtrialMeasurement,

[]);

Finally, Z sequential composition is translated into Perfect Developer’s then-
constructs. Besides, each schema operation is called using an exclamation mark
’! ’, as illustrated below, where we present the translation of the BradyTherapy
operation, presented in Section 3.

schema !BradyTherapy

post (!SetTimer then !SensingModule

then !SensingMarkers then !SetMode);

end;

220 A.O. Gomes and M.V.M. Oliveira

In this section, we presented a brief overview of the translation from the Z
specification of the pacemaker into Perfect Developer. Based on this translation,
we were able to automatically generate C# code and execute a simulation of the
pacemaker using a graphical user interface. In the next section, we provide an
analysis of the results we have achieved.

6 Analysis of Results

Our decision to adopt Perfect Developer was based on the similarities to the Z
language like the use of state invariants and operations as schemas. Furthermore,
the possibility to automatically generate verified code was also an attractive
factor in our choice. Throughout the development process we had a very good
support from the software vendors, who helped us to solve issues during the
translation to the new syntax and even removed some of the limitations of the
software’s free version.

The translation from Z to Perfect Developer required some adaptations of our
specification to the syntax of the latter. Some of those adaptations have been
presented in this current paper, like the use of classes to model components and
the PulseGenerator itself, and the instantiation of each component as a member
of the system state. Besides, we had to explicitly state the preconditions and
postconditions that are not separated in Z. We have also translated the remaining
operations, those related to the tests made by the pacemaker, where it generates
reports of events occurred during the therapy.

In a first version of the translation into Perfect Developer, we generated over
3360 lines of code; the PulseGerator class alone contained 1300 lines of code. The
generation resulted in over 740 proof obligations that were automatically proved
by the Perfect Developer theorem prover. Using an Intel Core2 Duo 2.4 Ghz with
3Gb DDR2 RAM machine, all proofs were discharged in less than 5 minutes. This
version reached 116% of Perfect Developers Academic license capacity, which is
based on the number of source code tokens parsed. For this reason, a specific
version was provided to us by Escher Technologies, which allowed us to conclude
the whole development.

Following a suggestion from the Perfect Developer support team, we devel-
oped a second version of the system. Based on their suggestion, we made some
modifications in the code by moving the preconditions of the schema operations
of PulseGenerator class to boolean functions, allowing their reuse in other opera-
tions. For instance, the PulseGenerator class was reduced from 1300 to 750 lines
of code. As a consequence, the number of proof obligations was also reduced
to around 560. The overall time spent for discharging proofs was 86 seconds,
since most of the proofs required less than one second to be discharged. Thus,
this change considerably reduced the size of the generated executable code to
an amount of 9585 lines of code. This version reached almost 65% of Perfect
Developers Academic license capacity.

The work presented in this paper is a significant development of the work
presented in [9]. First, we were able to verify the entire version of our Z model

Formal Development of a Cardiac Pacemaker: From Specification to Code 221

translated into Perfect Developer. We also automatically generated C# code
from the verified specification in less than five seconds. The refinement resulted
in over 9000 lines of verified C# code2. The choice of C# was due to the fact
that the interface between hand-written code and the code generated by Perfect
Developer is easier for C# than for other languages. Besides, C# provides tools
that makes it faster to develop a GUI for the pacemaker system. In Figure 3
we illustrate our graphical user interface of the pacemaker developed using C#
under Microsoft Visual C# 2010.

Fig. 3. Pacemaker GUI using C#

According to its requirements [13], the pacemaker must be able to print re-
ports of the events occurred during the therapy. We modelled those reports in Z
by creating schema operations using output variables (those followed by an excla-
mation mark ’ !’). As an example, we present the operation OutputActualTime,
which simply outputs the actual value of the time in the PulseGenerator state.
For output operations, we include the predicate Ξ PulseGenerator , instead of
ΔPulseGenerator , to assure that the operation does not change the state of the
system.
2 Available at http://sites.google.com/site/pacemakerinz/pacemaker-in-csharp.zip

222 A.O. Gomes and M.V.M. Oliveira

OutputActualTime
ΞPulseGenerator
out time! : int

out time! = time

We were not able to translate those output operations to Perfect Developer
because we cannot describe precisely what is the effect of the output operation in
the executable code. For example, there is no way to precisely define whether the
output will be an output stream or a call to the operating system. The solution
is to translate those operations directly to the executable code, in our case, C#,
by creating an instance of the PulseGenerator class in which we develop those
methods equivalent to the output operations modelled in Z. In this way, we can
have those output operations, translated into C#, printing reports directly in
the graphical user interface developed by us.

7 Conclusions

In this paper we present our recent results in the formal development of a cardiac
pacemaker, one of the challenges in software verification suggested by the Verified
Software Initiative. Here, we provide a step forward from [9], where we present
our Z model and its verification using ProofPower-Z. In this paper, we describe
the approach used to encode the cardiac pacemaker based on the previously
presented Z model.

In a later stage, some possibilities for encoding the Z model have been consid-
ered and discussed in Section 4. A first possibility is to refine the Z model using
the Z Refinement Calculus. Although this would have a mechanical support, a
large amount of time would still be needed to discharge the proof obligations.
Another possibility is to translate the code into B by using ProB and then use
a B tool like Atelier-B to refine the specification to code mechanically. This ap-
proach, however, would still need some intervention since it would require further
refinement of the B model resulting from the translation. Finally, we discussed
the possibility to translate the Z model into Perfect Developer in order to get
an automatic code generation of the verified specification.

We have analysed the tool support for the refinement of the Z specification
into code and concluded that Perfect Developer could be a good way for this
purpose, since it provides an automatic generation of verified code and has an
excellent professional support team. This approach proved to be much easier than
refining the Z specification using the Z refinement calculus, as mentioned in [9],
which lacks stable tool support yielding to a need for handcrafted refinement and
proofs. However, we do not provide a formalisation and proof of the translation
from Z into Perfect Developer, which is left as an interesting piece of future work.
Currently, we rely on the fact that the translation from Z into Perfect Developer
is fairly direct.

This case study proved to be a complex task since the informal specifica-
tion [13] does not provide enough information for a software development team

Formal Development of a Cardiac Pacemaker: From Specification to Code 223

to construct a pacemaker system without any previous knowledge on basic car-
diological information such as pacing modes, timing cycles, and event markers.
Researchers that intend to embrace the challenge need a large amount of ad-
ditional resources such as pacemaker guides [22] and books in the cardiology
domain [7]. As a consequence of the lack of a detailed specification of some com-
ponents originally presented in [13] due to commercial reasons, a small number
of functionalities of the pacemaker have not yet been modelled. For instance, we
have no specific information about the internal operations of the rate-adaptive
algorithm, which is used by the pacemaker to recognise the level of body’s move-
ment and increase the frequency of pulses delivered. Besides time, we were not
able to specify other non-functional requirements due to the lack of specification
in the original document.

There are other research groups that also have undertaken the pacemaker
case study. An informal one-day meeting was held in November 2009, during
the Second World Congress on Formal Methods in Eindhoven. Research groups
involved with the pacemaker case study, including researchers from Boston Sci-
entific, were present in this meeting. On this occasion, the research groups could
present their most recent results on the pacemaker challenge and compare their
work. Moreover, we could discuss some issues related to the challenge, such as
the lack of a detailed specification of some operations of the pacemaker, as dis-
cussed in this paper, and also the availability of possible test scenarios to be
used in order to validate the pacemaker system. Despite the widespread interest
in the challenge, few results have been published.

An approach using VDM was used by Macedo et. al in [14], where they
constructed a model based on a subset of the functionalities of the pacemaker
in VDM. They modelled 8 of the 19 bradycardia operation modes including the
corresponding programmable parameters and developed not only a sequential
model of the system, but also a concurrent and a distributed real-time model
of the pacemaker using VDM++. They constructed several test cases in order
to validate their sequential model, and re-used some of these to validate their
concurrent and also their distributed real-time model.

Event-B [15] has been used by researchers from INRIA to undertake the pace-
maker case study. This work suggests an incremental approach in which new
functionalities of the system are added to the model at each refinement step.
They validate their system using ProB with many test scenarios like absence of
intrinsic pulses from the heart and rate-adaptive pacing modes.

Finally, in [24], Tuan et. al proposed a formal model of the pacemaker based on
its behaviour including the communication with the external environment. They
created a real-time model of the pacemaker using timed extensions of CSP [20]
and used the model checker Process Analysis Toolkit (PAT) [23] in order to verify
critical properties, such as deadlock freeness and heart rate limits.

In a near future, we will investigate approaches to generate hardware proto-
types from our Perfect Developer code. Furthermore, we also intend to specify
the missing parts of the specification as soon as we receive a more detailed
information regarding those features, from Boston Scientific and the Software

224 A.O. Gomes and M.V.M. Oliveira

Quality Research Laboratory at McMaster University. Another interesting piece
of future work is to create some test scenarios to validate our system.

In the long term agenda, we intend to formalise the translation from Z to Per-
fect Developer. Besides guaranteeing the correction of the translation presented
in this paper, this formalisation can be used as a guideline in the implementation
of a tool that mechanises the translation. Moreover, a test suite could be used
in order to improve confidence of the translation. Yet another piece of interest-
ing work for the long term is to extend our model to include concurrency using
Circus [6], a combination of Z and CSP, and the derivation of the Circus specifi-
cation into code using its refinement calculus and tool support [10]. Notions of
real-time are also to be incorporated in our model in a later stage using Circus’
timed version [21].

Acknowledgments

Jim Woodcock originally proposed this challenge. David Crocker gave an very
good support and kindly reduced the limitations of the Perfect Developer free
edition. INES and CNPq partially supports the work of the authors: grants
550946/2007-1, 620132/2008-6, 573964/2008-4, and 476836/2009-3.

References

1. Software Quality Research Laboratory SQRL (2008),
http://www.cas.mcmaster.ca/sqrl/

2. Carter, G., Monahan, R., Morris, J.M.: Software Refinement With Perfect Devel-
oper. In: SEFM 2005: Proceedings of the Third IEEE International Conference on
Software Engineering and Formal Methods, Washington, DC, USA, pp. 363–373.
IEEE Computer Society, Los Alamitos (2005)

3. Cavalcanti, A., Woodcock, J.: ZRC - A Refinement Calculus for Z. Formal Aspects
of Computing 10(3), 267–289 (1998)

4. Celoxica. Handel-C language reference manual, v3.0 (2002)
5. Boston Scientific Corporation. ALTRUA Pacemaker System Guide (2008)
6. de Oliveira, M.V.M.: Formal Derivation of State-Rich Reactive Programs Using

Circus PhD thesis, Department of Computer Science, University of York (2005)
YCST-2006/02

7. Ellenbogen, K.A., Wood, M.A.: Cardiac Pacemakers and ICDs. Wiley-Blackwell
(2005)

8. Gomes, A.O., de Oliveira, M.V.M.: Pacemaker Specification in Z Using
ProofPower-Z

9. Gomes, A.O., de Oliveira, M.V.M.: Formal Specification of a Cardiac Pacing Sys-
tem. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 692–707.
Springer, Heidelberg (2009)

10. Gurgel, A.C., Castro, C.G., de Oliveira, M.V.M.: Tool Support for the Circus
Refinement Calculus. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ
2008. LNCS, vol. 5238, p. 349. Springer, Heidelberg (2008)

11. Hoare, T.: The Verifying Compiler: A Grand Challenge for Computing Research.
Journal of the ACM 50 (2003)

http://www.cas.mcmaster.ca/sqrl/

Formal Development of a Cardiac Pacemaker: From Specification to Code 225

12. Hoare, T., Leavens, G.T., Misra, J., Shankar, N.: The Verified Software Initiative:
A Manifesto (2007)

13. Software Quality Research Laboratory. Pacemaker System Specification (2007),
http://sqrl.mcmaster.ca/_SQRLDocuments/PACEMAKER.pdf

14. Macedo, H.D., Larsen, P.G., Fitzgerald, J.S.: Incremental Development of a Dis-
tributed Real-Time Model of a Cardiac Pacing System Using VDM. In: Cuéllar, J.,
Maibaum, T.S.E., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 181–197. Springer,
Heidelberg (2008)

15. Méry, D., Singh, N.K.: Pacemaker’s Functional Behaviors in Event-B. Technical
Report Version 2, Universit Henri Poincar Nancy 1 (2009)

16. Oliveira, M.V.M., Gurgel, A.C., Castro, C.G.: CRefine: Support for the Circus
Refinement Calculus. In: SEFM 2008: Proceedings of the 2008 Sixth IEEE Inter-
national Conference on Software Engineering and Formal Methods, Washington,
DC, USA, 2008, pp. 281–290. IEEE Computer Society, Los Alamitos (2008)

17. Oliveira, M., Cavalcanti, A., Woodcock, J.: Unifying Theories in ProofPower-Z.
Formal Aspects of Computing (2007)

18. Panda, P.R.: SystemC: A Modeling Platform Supporting Multiple Design Abstrac-
tions. In: ISSS 2001: Proceedings of the 14th International Symposium on Systems
Synthesis, pp. 75–80. ACM, New York (2001)

19. Plagge, D., Leuschel, M.: Validating Z Specifications using the ProB Animator and
Model Checker. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp.
480–500. Springer, Heidelberg (2007)

20. Schneider, S.: Concurrent and Real Time Systems: The CSP Approach. John Wiley
& Sons, Inc., New York (1999)

21. Sherif, A.: A Framework for Specification and Validation of Real-Time Systems
using Circus Actions. PhD thesis, Center of Informatics - Federal University of
Pernambuco, Brazil (2006)

22. Stroobandt, R., Barold, A.F.S.S.: Cardiac Pacemakers Step by Step – An Illus-
trated Guide. Blackwell Publishing Ltd, Malden (2003)

23. Sun, J., Liu, Y., Dong, J.S.: Model Checking CSP Revisited: Introducing a Pro-
cess Analysis Toolkit. In: Margaria, T., Steffen, B. (eds.) ISoLA. Communications
in Computer and Information Science, vol. 17, pp. 307–322. Springer, Heidelberg
(2008)

24. Tuan, L.A., Zheng, M.C., Tho, Q.T.: Modeling and Verification of Safety Criti-
cal Systems: A Case Study on Pacemaker. In: Fourth IEEE International Confer-
ence on Secure Software Integration and Reliability Improvement. IEEE Press, Los
Alamitos (2010)

25. Woodcock, J.C.P., Davies, J.: Using Z–Specification, Refinement, and Proof.
Prentice-Hall, Englewood Cliffs (1996)

http://sqrl.mcmaster.ca/_SQRLDocuments/PACEMAKER.pdf

A Decision Procedure for Bisimilarity of
Generalized Regular Expressions

Marcello Bonsangue1, Georgiana Caltais2,3, Eugen-Ioan Goriac2,3,
Dorel Lucanu3, Jan Rutten4,5,6, and Alexandra Silva4

1 LIACS - Leiden University, The Netherlands
marcello@liacs.nl

2 School of Computer Science - Reykjavik University, Iceland
{gcaltais10,egoriac10}@ru.is

3 Faculty of Computer Science - Alexandru Ioan Cuza University, Romania
4 Centrum voor Wiskunde en Informatica, The Netherlands

dlucanu@info.uaic.ro
5 Radboud University Nijmegen, The Netherlands

{janr,ams}@cwi.nl
6 Vrije Universiteit Amsterdam, The Netherlands

Abstract. A notion of generalized regular expressions for a large class
of systems modeled as coalgebras, and an analogue of Kleene’s theorem
and Kleene algebra, were recently proposed by a subset of the authors
of this paper. Examples of the systems covered include infinite streams,
deterministic automata and Mealy machines. In this paper, we present a
novel algorithm and a tool to decide whether two expressions are bisim-
ilar or not. The procedure is implemented in the automatic theorem
prover CIRC, by reducing coinduction to an entailment relation between
an algebraic specification and an appropriate set of equations.

1 Introduction

Regular expressions and deterministic automata (DFA’s) constitute two of the
most basic structures in computer science. Kleene’s theorem [8] gives a funda-
mental correspondence between these two structures: each regular expression
denotes a language that can be recognized by a DFA and, conversely, the lan-
guage accepted by a DFA can be specified by a regular expression. Languages
denoted by regular expressions are called regular. Two regular expressions are
(language) equivalent if they denote the same regular language. Salomaa [14] pre-
sented a sound and complete axiomatization (later refined by Kozen in [9,10])
for proving the equivalence of regular expressions.

Coalgebras arose in the last decade as a suitable mathematical framework
to study state-based systems, such as DFA’s. For a functor G : Set → Set, a
G-coalgebra or G-system is a pair (S, g), consisting of a set S of states and
a function g : S → G(S) defining the “transitions” of the states. We call the
functor G the type of the system. For instance, DFA’s can be readily modeled
as finite coalgebras of the functor G(S) = 2 × SA.

J. Davies, L. Silva, and A. Simão (Eds.): SBMF 2010, LNCS 6527, pp. 226–241, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Decision Procedure for Bisimilarity of Generalized Regular Expressions 227

For coalgebras of a large class of functors, a language of regular expressions;
a corresponding generalization of Kleene’s theorem; and a sound and complete
axiomatization for the associated notion of behavioral equivalence were intro-
duced in [2,1]. Both the language of expressions and their axiomatization were
derived, in a modular fashion, from the functor defining the type of the system.

Algebra and related tools can be successfully used for reasoning on properties
of systems. In this paper, we present a novel method for checking for the bisim-
ilarity of generalized regular expressions using the coinductive theorem prover
CIRC [4,12]. The main novelty of the method lies on the generality of the systems
it can handle. CIRC is a metalanguage application implemented in Maude [3],
and its target is to prove properties over infinite data structures. It has been
successfully used for checking the equivalence of programs, and trace equiva-
lence and strong bisimilarity of processes. The tool may be tested online and
downloaded from http://fsl.cs.uiuc.edu/index.php/Circ.

The main contributions of this paper can be summarized as follows. We
present the algebraic counterpart of the coalgebraic framework of the gener-
alized regular expressions mentioned above. This enables us to automatically
derive algebraic specifications that model the language of expressions, and to
define an appropriate equational entailment relation for checking for the be-
havioural equivalence of expressions. Furthermore, the implementation of both
the algebraic specification and the entailment relation in CIRC allows for auto-
matic reasoning on the equivalence of expressions.

Organization of the paper. Section 2 recalls the basic definitions of the language
associated to a polynomial functor. Section 3 formulates the aforementioned
language as an algebraic specification, which paves the way to implement in
CIRC a procedure to decide equivalence of expressions. The decision procedure
and the soundness of its implementation in CIRC are described in Section 4. In
Section 4.1 we show, by means of examples, how one can check for bisimilarity,
using CIRC. Section 5 contains concluding remarks and pointers for future work.

2 Regular Expressions for Polynomial Coalgebras

In this section, we briefly recall the basic definitions in [2,15].
Let Set denote the category of sets (represented by capital letters X, Y, . . .)

and functions (represented by lower case letters f, g, . . .). The notation Y X repre-
sents the family of functions from X to Y . The product of two sets X, Y is written
as X × Y and has the projections functions π1 and π2: X

π1←− X × Y
π2−→ Y .

We define X �+ Y = X � Y � {⊥,�} where � is the disjoint union of sets, with
injections X

κ1−→ X � Y
κ2←− Y . Note that the set X �+ Y is different from the

classical coproduct of X and Y (which we shall denote by X + Y), because of
the two extra elements ⊥ and �. These extra elements will later be used to
represent, respectively, underspecification and inconsistency in the specification
of some systems.

http://fsl.cs.uiuc.edu/index.php/Circ

228 M. Bonsangue et al.

For each of the operations defined above on sets, there are analogous ones on
functions. Let f : X → Y , f1 : X → Y and f2 : Z → W . We define the following
operations:

f1 × f2 : X × Z → Y × W f1 �+ f2 : X �+ Z → Y �+ W

(f1 × f2)(〈x, z〉) = 〈f1(x), f2(z)〉 (f1 �+ f2)(c) = c, c ∈ {⊥,�}
fA : XA → Y A (f1 �+ f2)(κi(x)) = κi(fi(x)), i ∈ {1, 2}
fA(g) = f ◦ g

Note that here we are using the same symbols that we defined above for the
operations on sets. It will always be clear from the context which operation is
being used.

In our definition of non-deterministic functors we will use constant sets
equipped with an information order. In particular, we will use join-semilattices.
A (bounded) join-semilattice is a set B equipped with a binary operation ∨B and
a constant ⊥B ∈ B, such that ∨B is commutative, associative and idempotent.
The element ⊥B is neutral with respect to ∨B. As usual, ∨B gives rise to a partial
ordering ≤B on the elements of B: b1 ≤B b2 ⇔ b1 ∨B b2 = b2. Every set S can be
mapped into a join-semilattice by taking B to be the set of all finite subsets of
S with union as join.

Coalgebras. A coalgebra is a pair (S, g : S → G(S)), where S is a set of states
and G : Set → Set is a functor. The functor G, together with the function g,
determines the transition structure (or dynamics) of the G-coalgebra [13].

Definition 1 (Bisimulation). Let (S, f) and (T, g) be two G-coalgebras. We
call a relation R ⊆ S × T a bisimulation [7] iff

(s, t) ∈ R ⇒ 〈f(s), g(t)〉 ∈ G(R)

where G(R) is defined as G(R) = {〈G(π1)(x), G(π2)(x)〉 | x ∈ G(R)}.
We write s ∼G t whenever there exists a bisimulation relation containing (s, t)

and we call ∼G the bisimilarity relation. We shall drop the subscript G whenever
the functor G is clear from the context.

Polynomial functors. They are functors G : Set → Set, built inductively from
the identity, and constants, using ×, �+ and (−)A:

PF � G ::= Id | B | G �+ G | G × G | GA (1)

where B is a (non-empty) finite join-semilattice and A is a finite set. Typical
examples of polynomial functors include R = B × Id, M = (B × Id)A, D =
2 × IdA and Q = (1 �+ Id)A. These functors represent, respectively, the type
of Mealy, deterministic and partial deterministic automata. R-bisimulation is
stream equality, whereas D-bisimulation coincides with language equivalence.

Next, we give the definition of the ingredient relation, which relates a poly-
nomial functor G with its ingredients, i.e. the functors used in its inductive
construction. We shall use this relation later for typing our expressions.

A Decision Procedure for Bisimilarity of Generalized Regular Expressions 229

Definition 2. Let � ⊆ PF ×PF be the least reflexive and transitive relation on
polynomial functors such that

G1 � G1 × G2, G2 � G1 × G2, G1 � G1 �+ G2, G2 � G1 �+ G2, G� GA

Here and throughout this document we use F�G as a shorthand for 〈F, G〉 ∈ �.
If F � G, then F is said to be an ingredient of G. For example, 2, Id, IdA and D

itself are all the ingredients of the deterministic automata functor D.

A language of regular expressions for polynomial coalgebras. We now
associate a language of expressions ExpG with each polynomial functor G.

Definition 3 (Expressions). Let A be a finite set, B a finite join-semilattice
and X a set of fixed-point variables. The set Exp of all expressions is given by
the following grammar, where a ∈ A, b ∈ B and x ∈ X:

ε ::= ∅ | x | ε ⊕ ε | μx.γ | b | l〈ε〉 | r〈ε〉 | l[ε] | r[ε] | a(ε) (2)

where γ is a guarded expression given by:

γ ::= ∅ | γ ⊕ γ | μx.γ | b | l〈ε〉 | r〈ε〉 | l[ε] | r[ε] | a(ε) (3)

In the expression μx.γ, μ is a binder for all the free occurrences of x in γ. Vari-
ables that are not bound are free. A closed expression is an expression without
free occurrences of fixed-point variables x. We denote the set of closed expres-
sions by Expc.

The language of expressions for polynomial coalgebras is a generalization of
the classical notion of regular expressions: ∅, ε1 ⊕ ε2 and μx.γ play similar roles
to the regular expressions denoting empty language, the union of languages and
the Kleene star. The expressions l〈ε〉, r〈ε〉, l[ε], r[ε] and a(ε) refer to the left and
right hand-side of products and coproducts, and function application, respec-
tively. Next, we present a type assignment system for associating expressions
to polynomial functors. This will allow us to associate with each functor G the
expressions ε ∈ Expc that are valid specifications of G-coalgebras.

Definition 4 (Type system). We now define a typing relation �⊆ Exp×PF×
PF that will associate an expression ε with two polynomial functors F and G,
which are related by the ingredient relation (F is an ingredient of G). We shall
write � ε : F � G for 〈ε, F, G〉 ∈ �. The rules that define � are the following:

� ∅ : F � G � b : B� G � x : G � G

� ε : G � G

� μx.ε : G � G

� ε1 : F � G � ε2 : F � G

� ε1 ⊕ ε2 : F � G

� ε : G � G

� ε : Id� G

� ε : F2 � G

� r[ε] : F1 �+ F2 � G

� ε : F � G

� a(ε) : FA � G

� ε : F1 � G

� l〈ε〉 : F1 × F2 � G

� ε : F2 � G

� r〈ε〉 : F1 × F2 � G

� ε : F1 � G

� l[ε] : F1 �+ F2 � G

230 M. Bonsangue et al.

We can now formally define the set of G-expressions: well-typed expressions
associated with a polynomial functor G.

Definition 5 (G-expressions). Let G be a polynomial functor and F an ingre-
dient of G. We define ExpF�G by:

ExpF�G = {ε ∈ Expc | � ε : F � G} .

We define the set ExpG of well-typed G-expressions by ExpG�G.

In [2], it was proved that the set of G-expressions for a given polynomial functor
G has a coalgebraic structure:

δG : ExpG → G(ExpG)

More precisely, in [2,15], which we refer to for the complete definition of δG, the
authors defined a function δF�G : ExpF�G → F(ExpG) and then set δG = δG�G.

The coalgebraic structure on the set of expressions enabled the proof of a
Kleene like theorem.

Theorem 1 (Kleene’s theorem for polynomial coalgebras). Let G be a
polynomial functor.

1. For any ε ∈ ExpG, there exists a finite G-coalgebra (S, g) and s ∈ S such that
ε ∼ s.

2. For every G-coalgebra (S, g) and s ∈ S there exists an expression εs ∈ ExpG

such that εs ∼ s.

In order to provide the reader we intuition over the notions presented above, we
illustrate them with an example.

Example 1. Let us instantiate the definition of G-expressions to the functors of
streams R = B × Id (the ingredients of this functor are B, Id and R itself).
Let X be a set of (recursion or) fixed-point variables. The set ExpR of stream
expressions is given by the set of closed and guarded expressions generated by
the following BNF grammar. For x ∈ X :

ExpR � ε ::= ∅ | ε ⊕ ε | μx.ε | x | l〈ε1〉 | r〈ε〉
ε1 ::= ∅ | b | ε1 ⊕ ε1

(4)

Intuitively, the expression l〈b〉 is used to specify that the head of the stream
is b, while r〈ε〉 specifies a stream whose tail behaves as specified by ε. For the
two element join-semilattice B = {0, 1} (with ⊥B = 0), examples of well-typed
expressions include ∅, l〈1〉 ⊕ r〈l〈∅〉〉 and μx.r〈x〉 ⊕ l〈1〉. The expressions l[1],
l〈1〉 ⊕ 1 and μx.1 are examples of non well-typed expressions for R, because the
functor R does not involve �+, the subexpressions in the sum have different type,
and recursion is not at the outermost level (1 has type B� R), respectively.

A Decision Procedure for Bisimilarity of Generalized Regular Expressions 231

By applying the definition in [2], the coalgebra structure on expressions δR

would be given by:

δR : ExpR → B × ExpR

δR(∅) = 〈0, ∅〉
δR(ε1 ⊕ ε2) = 〈b1 ∨ b2, ε

′
1 ⊕ ε′2) where 〈bi, εi〉 = δR(εi), i = 1, 2

δR(μx.ε) = δR(ε[μx.ε/x])
δR(l〈ε1〉) = 〈δB�R(ε1), ∅〉
δR(r〈ε〉) = 〈⊥B, ε〉
δB�R(∅) = ⊥B

δB�R(b) = b
δB�R(ε1 ⊕ ε′1) = δB�R(ε1) ∨ δB�R(ε′1)

The proof of Kleene’s theorem provides algorithms to go from expressions to
streams and vice-versa. We illustrate it by means of examples.

Consider the following stream:

s1 s2 s3

1 0 1

We draw the stream with an automata-like flavor. The transitions indicate the
tail of the stream represented by a state and the output value the head. In a
more traditional notation, the above automata represents the infinite stream
(1, 0, 1, 0, 1, 0, 1, . . .).

To compute expressions ε1, ε2 and ε3 equivalent to s1, s2 and s3 we associate
with each state si a variable xi and we solve the following system of 3 equations
in 3 variables:

ε1 = μx1.l〈1〉 ⊕ r〈x2〉 ε2 = μx2.l〈0〉 ⊕ r〈x3〉 ε3 = μx3.l〈1〉 ⊕ r〈x2〉
which yields the following closed expressions:

ε1 = μx1.l〈1〉⊕ r〈ε2〉 ε2 = μx2.l〈0〉⊕ r〈ε3〉 ε3 = μx3.l〈1〉⊕ r〈μx2.l〈0〉⊕ r〈x3〉〉
satisfying, by construction, ε1 ∼ s1, ε2 ∼ s2 and ε3 ∼ s3.

For the converse construction, consider the expression ε = (μx.r〈x〉) ⊕ l〈1〉.
We construct an automaton by repeatedly applying the coalgebra structure on
expressions δR, modulo ACI (associativity, commutativity and idempotency of
⊕) in order to guarantee finiteness.

Applying the definition of δR above, we have:

δR(ε) = 〈1, (μx.r〈x〉) ⊕ ∅〉 and δR((μx.r〈x〉) ⊕ ∅) = 〈0, (μx.r〈x〉) ⊕ ∅〉
which leads to the following stream (automaton):

ε (μx.r〈x〉) ⊕ ∅

1 0

232 M. Bonsangue et al.

Note that, throughout the paper, we will use streams as a basic example to
illustrate the definitions. It should be remarked that the framework is general
enough to include more complex examples, such as deterministic automata, au-
tomata on guarded strings or Mealy machines. The latter will be used as example
in Section 4.1.

3 An Algebraic View on the Coalgebra of Generalized
Regular Expressions

We now have a (theoretical) framework which, given a functor G, allows for the
uniform derivation of 1) a language ExpG for specifying behaviors of G-systems,
and 2) a coalgebraic structure on ExpG, which provides an operational semantics
to the set of expressions. In the rest of the paper, we will extend and adapt the
framework of the previous section in order to:

– enable the implementation of a tool which allows for the automatic derivation
of 1) and 2) above

– enable automatic reasoning on equivalence of specifications; the reasoning
will be performed by the coinductive prover CIRC [12], which is also the core
of our target tool.

CIRC is based on algebraic specifications and, therefore, to reach our final goal
we need two things:

– algebraic specifications that model both the language and the coalgebraic
structure of expressions associated to polynomial functors to provide to CIRC

– a decision procedure, implemented in CIRC based on an equational entailment
relation, in order to check for the bisimilarity of expressions.

We further give the basic notions the reader needs in order to get an easier
understanding of the algebraic approach. An algebraic specification is a triple
E = (S, Σ, E), where S is a set of sorts, Σ is a many-sorted signature and E is a
set of conditional equations of the form (∀X) t = t′ if (

∧
i∈I ui = vi), where t, t′,

ui, and vi (i ∈ I – a set of indexes for the conditions) are Σ-terms with variables
in X . We say that the sort of the equation is s whenever t, t′ ∈ TΣ,s(X). Here,
TΣ,s(X) denotes the set of terms of sort s of the Σ-algebra freely generated by X.
If I = {} then the equation is unconditional and may be written as (∀X) t = t′.

Let � be the equational entailment (deduction) relation defined as in [5]. We
write E � e whenever equation e is deducible from E . We extend E by adding
the freezing operation − :s → Frozen for each sort s ∈ Σ, where Frozen is a
fresh sort. By t we represent the frozen form of a Σ-term t, and by e a frozen
equation of the shape (∀X) t = t′ if c. The entailment relation � is defined over
frozen equations as in [12]. The need for the frozen operator will become clear
in Example 2: without it the congruence rule could be applied freely leading to
the derivation of untrue equations.

Fig. 1 briefly illustrates the parallel between the coalgebraic concepts pre-
sented in [15,2] and their algebraic correspondents. In what follows, we will

A Decision Procedure for Bisimilarity of Generalized Regular Expressions 233

coalgebraic algebraic

� ε : F � G EG � ε : F � G = true

ExpF � G {ε ∈ TΣ,Exp| EG � ε : F � G = true}
ExpG {ε ∈ TΣ,Exp| EG � ε : G � G = true}

F(ExpG) {σ ∈ TΣ,ExpStruct| EG � σ : F(ExpG) = true}
δF � G : ExpF � G → F(ExpG) δ () : Ingredient Exp → ExpStruct

EG � σ : F(Exp G) = true , EG � σ′ : F(Exp G) = true

〈σ, σ′〉 ∈ F(cl(Rid)) EG ∪ R �PF σ = σ′ (i)

cl(Rid) is a bisimulation EG ∪ R �PF δG � G(R) (ii)

Fig. 1. Polynomial functors - coalgebraic vs. algebraic approach

provide some explanations on the algebraic side, in order to model what we
presented coalgebraically in the previous section, analyzing the components of
Fig. 1.

The algebraic specification of a polynomial functor. For the provided
functor G, the specification EG = (S, Σ, E) is incrementally built according to
the items common to all regular expressions, extended with the items specific to
G (e.g., the semilattices, the exponentiation alphabets). As an initial step in the
construction of EG, we use the general rule for translating definitions based on
Backus-Naur grammars into algebraic specifications. Each syntactical category
and vocabulary is considered as a sort, and each production is considered as
a constructor operation or a subsort relation. For instance, according to the
grammar of generalized regular expressions in Definition 3, we have: a sort Exp
representing expressions ε, FixpVar the sort for the vocabulary of the fixed-point
variables, Alph the sort for the elements of the alphabets, and Slt the sort for
the elements of the semilattices. Moreover, we consider constructor operations
for all the productions. For example, the production ε :: = ε ⊕ ε is represented
by an operation ⊕ : Exp Exp → Exp. Using a similar mechanism, we specify:

– structured expressions σ, the counterpart of F(ExpG), defined by
σ ::= ε | 〈σ, σ〉 | k1(σ) | k2(σ) | ⊥ | � | λx.(a, F � G, σ)

we denote the sort of this kind of expressions by ExpStruct (the construction
λx.(a, F � G, σ) has as coalgebraic correspondent a function f ∈ FA(ExpG))

– polynomial functors defined by grammar (1); the associated sort is Functor

– functor ingredients given in Definition 2; the corresponding sort is Ingredient

The set ExpF � G of expressions of type F � G is algebraically represented by the
set of Σ-terms ε of sort Exp, such that EG � ε : F � G = true. The type-checking
relation in Definition 4 is given by an operation : : Exp Ingredient → Bool and
an equation for each inference rule defining this relation. For example

234 M. Bonsangue et al.

� ε1 : F � G � ε2 : F � G

� ε1 ⊕ ε2 : F � G

is represented by the equation ε1 ⊕ ε2 : F � G = ε1 : F � G ∧ ε2 : F � G. For the
sake of notation, algebraically we write ε : F � G to represent expressions of type
F � G.

The structured expressions σ ∈ F(ExpG) are given by the set of Σ-terms of
sort ExpStruct, such that EG � σ : F(Exp G) = true (here : is the extension of
the type-checking operator to structured expressions). Algebraically, we write
σ : F(ExpG) to denote that σ is an element of F(ExpG).

The function δG, which provides the coalgebraic structure of G-expressions,
has the algebraic correspondent δ ∈ Σ, a function parameterized with the functor
ingredients.

Recall from Section 2 that a relation R ⊆ ExpG � G ×ExpG � G is a bisimulation
if and only if (s, t) ∈ R ⇒ 〈δG � G(s), δG � G(t)〉 ∈ G(R). In order to enable the
algebraic framework to decide bisimilarity of G-expressions, we define a new
entailment relation for polynomial functors �PF (the definitions of G and �PF

are closely related).

Definition 6. The entailment relation �PF is the extension of � with the fol-
lowing inference rules, which allow a restricted contextual reasoning over the
frozen equations of structured expressions:

EG �PF σ1 = σ′1 EG �PF σ2 = σ′2
EG �PF 〈σ1, σ2〉 = 〈σ′1, σ′2〉

(5)

EG �PF σ = σ′

EG �PF ki(σ) = ki(σ′) (i = 1, 2)
(6)

EG �PF f(a) = g(a) , for all a ∈ A

EG �PF f = g
(7)

Let G be a polynomial functor, and R a binary relation on the set of G-
expressions. We will make use of the conventions:

– Rid = R∪ {(ε, ε) | EG � ε : G � G = true}
– cl(R) is the closure of R under transitivity, symmetry and reflexivity
– R =

⋃
e∈R{ e } (application of the freezing operator to all elements of R)

– EG ∪ R is a shorthand for (S, Σ, E ∪ { ε = ε′ | (ε, ε′) ∈ R})
– δG � G(ε = ε′) denotes the equation δG � G(ε) = δG � G(ε′)
– 〈σ, σ′〉 ∈ G(R) is a shorthand for: (σ, σ′) is an element of the set S, where

EG � G(R) = S (here, G(R) ⊆ TΣ,ExpStruct× TΣ,ExpStruct)

The following theorem and corollary correspond to the equivalences (i), and
respectively (ii), in Fig. 1. Theorem 2 formalizes the connection between the
inductive definition of G (on the coalgebraic side) and �PF (on the algebraic side),
hence enabling the definition of bisimulations in algebraic terms, in Corollary 1.

A Decision Procedure for Bisimilarity of Generalized Regular Expressions 235

Theorem 2. Consider a polynomial functor G and F an ingredient of G. If R is
a binary relation on the set of G-expressions, and σ, σ′ : F(ExpG) then 〈σ, σ′〉 ∈
F(cl(Rid)) iff EG ∪ R �PF σ = σ′ .

Proof. The proof is by induction on the structure of F. Take, for example the
direct implication “ ⇒ ”. The base case F = B holds by the reflexivity of �PF .
The case F = Id follows immediately according to an auxiliary result stating
that if (ε, ε′) ∈ cl(Rid) then EG ∪ R �PF ε = ε′ . Inductive steps hold by
the rules (5), (6) and (7), defining �PF . A similar reasoning is used for proving
“ ⇐ ”. ��
Corollary 1. Let G be a polynomial functor. If R is a binary relation on the
set of G-expressions, then cl(Rid) is a bisimulation iff EG ∪ R �PF δG � G(R) .

Proof. The result follows immediately according to the equivalences:

cl(Rid) is a bisimulation ⇔(Definition 1) (∀(ε, ε′) ∈ cl(Rid)).〈δG � G(ε), δG � G(ε′)〉 ∈
G(cl(Rid)) ⇔(Theorem 2) EG ∪ R �PF δG � G(cl(Rid)) ⇔(def.cl(Rid),�PF) EG ∪
R �PF δG � G(R) . ��

4 A Decision Procedure for Bisimilarity

In this section we describe how the coinductive theorem prover CIRC [11] can
be used to implement a decision procedure for the bisimilarity of generalized
regular expressions.

CIRC can be seen as an extension of Maude with behavioral features and its
implementation is derived from that of Full-Maude. In order to use the prover,
one needs to provide a specification (a CIRC theory) and a set of goals. A CIRC
theory B = (S, (Σ, Δ), (E, I)) consists of an algebraic specification (S, Σ, E),
a set Δ of derivatives (= Σ-contexts), and a set I of equational interpolants,
which are expressions of the form e ⇒ {ei | i ∈ I} where e and ei are equations
(for more information on equational interpolants see [6]). A derivative δ ∈ Δ is
a Σ-term containing a special variable ∗:s, where s is the sort of the variable ∗.
If e is an equation t = t′ with t and t′ of sort s, then δ[e] is δ[t/∗:s] = δ[t′/∗:s].
Let Δ[e] denote the set {δ[e] | δ ∈ Δ appropriate for e}.

CIRC implements the coinductive proof system given in [12] using a set of
reduction rules of the form (B,F ,G) ⇒ (B,F ′,G′), where B represents a specifi-
cation, F is the coinductive hypothesis (a set of frozen equations) and G is the
current set of goals. The freezing operator is defined as described in Section 3.
Here is a brief description of these rules:

[Done]: (B,F , {}) ⇒ ·
Whenever the set of goals is empty, the system terminates with success.

[Reduce]: (B,F ,G ∪ { e }) ⇒ (B,F ,G) if B ∪ F � e
If the current goal is a �-consequence of B ∪ F then e is removed from the
set of goals.

236 M. Bonsangue et al.

[Derive]: (B,F ,G ∪ { e }) ⇒ (B,F ∪ { e },G ∪ Δ[e]) if B ∪ F �� e
When the current goal e has the same sort with the special variable ∗, and it is
not a �-consequence, it is added to the specification and its derivatives to the
set of goals. In order to simplify the notation, we write δ(e) for δ(ε) = δ(ε′),
whenever e is of shape ε = ε′.

[Simplify]: (B,F ,G ∪ { θ(e) }) ⇒ (B,F ,G ∪ { θ(ei) | i ∈ I})
if e ⇒ {ei | i ∈ I} is a simplification rule from the specification
and θ : X → TΣ(Y) is a substitution.

[Fail]: (B,F ,G ∪ { e }) ⇒ failure if B ∪ F�� e ∧ e:Bool
This rule stops the reduction process with failure whenever the current goal
e is of type Bool and the corresponding normal forms are different.

It is worth noting that there is a strong connection between a CIRC proof
and the construction of a bisimulation relation. We emphasize this fact and the
importance of the freezing operator with a simple example.

Example 2. Consider the case of infinite streams. The set Bω of infinite streams
over a set B is the final coalgebra of the functor R = B × Id, with a coalgebra
structure given by hd and tl, the functions that return the head and the tail of
the stream, respectively. Our purpose is to prove that 0∞ = (00)∞. Let z and zz
represent the stream on the left hand side and, respectively, on the right hand
side. These streams are defined by the equations: hd(z) = 0, tl(z) = z, hd(zz) =
0, tl(zz) = 0:zz. In Fig. 2 we present the correlation between the CIRC proof
and the construction of the bisimulation relation. Note how CIRC collects the
elements of the bisimulation as frozen hypothesis.

CIRC proof Bisimulation construction

(add goal z = zz .)
z zz (zz)′

0 0 0

(B, {}, { z = zz }) F = {}; z ∼ zz ?

[Derive]−→
(
B, { z = zz },

{
hd(z) = hd(zz)

tl(z) = tl(zz)

})
F = {(z, zz)}; z

0−→z

zz
0−→(zz)′

[Reduce]−→ (B, { z = zz }, { z = 0:zz }) F = {(z, zz)}; z ∼ (zz)′ ?

[Derive]−→
(
B,

{
z = zz

z = 0:zz

}
,

{
hd(z) = hd(0:zz)

tl(z) = tl(0:zz)

})
F = {(z, zz), (z, (zz)′)}; z

0−→z

(zz)′ 0−→zz

[Reduce]−→
(
B,

{
z = zz

z = 0:zz

}
, {}

)
F = {(z, zz), (z, (zz)′)} �

Fig. 2. Parallel between a CIRC proof and the bisimulation construction

A Decision Procedure for Bisimilarity of Generalized Regular Expressions 237

Let us analyze what happens if the freezing operator − would not be used.
Suppose the circular coinduction algorithm would add the equation z = zz in
its unfrozen form to the hypothesis. After applying the derivatives we obtain the
goals hd(z) = hd(zz), tl(z) = tl(zz). At this point, the prover could use the freshly
added equation, and according to the congruence rule, both goals would be proven
directly, though we would still be in the process of showing that the hypothesis
holds. By following a similar reasoning, we could then also prove that 0∞ = 1∞! In
order to avoid these situations, the hypotheses are frozen (i.e., their sort is changed
from Stream to Frozen) and this stops the application of the congruence rule, forc-
ing the application of the derivatives according to their definition in the specifica-
tion. Therefore, the use of the freezing operator is vital for the soundness of circular
coinduction.

Next, we focus on using CIRC for automatically reasoning on the equivalence
of G-expressions. As we will show, the implementation of both the algebraic
specifications associated to polynomial functors and the equational entailment
relation described in Section 3, is immediate. Given a polynomial functor G, we
define a CIRC theory BG = (S, (Σ, Δ), (E, I)) as follows:

– (S, Σ, E) is EG

– Δ = {δG � G(∗:Exp)}
– I consists of the following equational interpolants:

{〈σ1, σ2〉 = 〈σ′1, σ′2〉} ⇒ {σ1 = σ′1, σ2 = σ′2} (8)
{ki(σ) = ki(σ′)} ⇒ {σ = σ′} (9)

{f = g} ⇒ {f(a) = g(a) | a ∈ A} (10)

The interpolants (8), (9) and (10) in I extend the entailment relation � from
the system above to �PF (see Definition 6) as follows:

E � e

E �PF e

E �PF {ei | i ∈ I}
E �PF e

if e ⇒ {ei | i ∈ I} in I

Theorem 3 (Soundness). Let G be a polynomial functor, and G a binary rela-
tion on the set of G-expressions. If (BG,F0 = {},G0 = G) ∗⇒ (BG,Fn,Gn = {})
using [Reduce], [Derive] and [Simplify], then G ⊆∼G.

Proof. The idea of the proof is to identify a bisimulation relation F̃ s.t. G ⊆ F̃ .
On a closer look, based on the reduction rules implemented in CIRC, it is quite
easy to see that the initial set of goals G is a �PF -consequence of BG ∪ F ,
where F is the set of hypothesis (or derived goals) collected during a proof
session. In other words, G ⊆ cl(Fid). So, if we anticipate a bit, we should show
that F̃ = cl(Fid) is a bisimulation, i.e., according to Corollary 1, BG ∪ F �PF

δG � G(F) . This is achieved by proving that BG ∪ F �PF Gi(i = 0..n) (note
that δG � G(F) ⊆ ⋃

i=0..n Gi, according to [Derive]). The demonstration is by
induction on j, where n − j is the current proof step, and by case analysis on
the CIRC reduction rules applied at each step. ��
Remark 1. The soundness of the proof system we describe in this paper does not
follow directly from Theorem 3 in [12]. This is due to the fact that we do not have

238 M. Bonsangue et al.

an experiment-based definition of bisimilarity. So, even though the mechanism
we use for proving BG ∪ F �PF δG � G(F) is similar to the one described in
[12], the current soundness proof is conceived in terms of bisimulations (and not
experiments).

Remark 2. The entailment relation �PF CIRC uses for checking for the equiv-
alence of generalized regular expressions is an instantiation of the parametric
entailment relation � from the proof system in [12]. This approach extends CIRC
to automatically reason on a large class of systems that can be modeled as
coalgebras of polynomial functors.

As already stated, our final purpose is to use CIRC as a decision procedure for the
bisimilarity of generalized regular expressions. That is, whenever provided a set
of expressions, the prover stops with an yes/no answer w.r.t. their equivalence.
In this context, an important aspect is that the sub-coalgebra generated by an
expression ε ∈ ExpG by repeatedly applying δG � G is, in general, infinite. Take
for example the polynomial functor G = B × Id associated to infinite streams,
and consider the property μx.∅ ⊕ r〈x〉 = μx.r〈x〉. In order to prove this, CIRC
builds an infinite proof sequence by repeatedly applying δG � G as follows:

δG � G(μx.∅ ⊕ r〈x〉) = δG � G(μx.r〈x〉)
↓

〈0, ∅ ⊕ (μx.∅ ⊕ r〈x〉)〉 = 〈0, μx.r〈x〉〉
δG � G(∅ ⊕ (μx.∅ ⊕ r〈x〉)) = δG � G(μx.r〈x〉)

↓
〈0, ∅ ⊕ ∅ ⊕ (μx.∅ ⊕ r〈x〉)〉 = 〈0, μx.r〈x〉〉 [. . .]

In this case, the prover would never stop. It is shown in [2,15] that the axioms for
associativity, commutativity and idempotency (ACI) guarantee finiteness of the
generated sub-coalgebra (note that these axioms have also been proven sound
w.r.t. bisimulation). ACI properties can easily be specified in CIRC as the prover
is an extension of Maude, which has a powerful matching modulo ACUI capabil-
ity. The idempotency is given by the equation ε⊕ ε = ε, and the commutativity
and associativity are specified as attributes of ⊕.

Theorem 4. Let G be a set of proof obligations over generalized regular expres-
sions. CIRC can be used as a decision procedure for the equivalences in G, that
is, it can assert whenever a goal (ε1, ε2) ∈ G is a true or false equality.

Proof. The result is a consequence of the fact that by implementing the ACI ax-
ioms in CIRC, the set of new goals obtained by repeatedly applying the derivative
δ is finite. In these circumstances, whenever CIRC stops according to the reduc-
tion rule [Done], the initial proof obligations are bisimilar. On the other hand,
whenever it terminates with [Fail], the goals are not bisimilar. ��

4.1 A CIRC-Based Tool

We have implemented a tool that, when provided with a functor G, automat-
ically generates a specification for CIRC which can then be used in order to

A Decision Procedure for Bisimilarity of Generalized Regular Expressions 239

automatically check whether two G-expressions are bisimilar. The tool is imple-
mented as a metalanguage application in Maude. It can be downloaded from
http://circidei.info.uaic.ro/functorizer/functorizer.maude.

Let us now show another example: Mealy machines, which are coalgebras
for the functor (B × Id)A. In what follows we show how CIRC can be used in
conjunction with our tool in order to act as a decision procedure when checking
for the equivalence of two expressions.

Formally, a Mealy machine is a pair (S, α) consisting of a set S of states and
a transition function α : S → (B × S)A, which for each state s ∈ S and input
a ∈ A associates an output value b and a next state s′. Typically, we write

α(s)(a) = 〈b, s′〉 ⇔ s
a|b

s′ . As an example, consider the Mealy machine
depicted in Fig. 3, where all the states are bisimilar.

s1 a|0
b|0

a|0
b|0

b|0a|0 s2 b|0a|0

Fig. 3. Mealy machine: s1 ∼ s2

We first show how to check for the
equivalence of two expressions characteriz-
ing the states s1 and s2 from the Mealy
machine in Fig. 3. These expressions, which
could be computed, using the algorithm in
Kleene’s theorem, are ε1 = a(r〈μx.a(r〈x〉) ⊕
b(∅)〉) ⊕ b(r〈μy.a(r〈y〉) ⊕ b(r〈y〉)〉) and ε2 =
μx.a(r〈x〉) ⊕ b(r〈x〉), respectively.

In order to check for the bisimilarity of ε1 and ε2 we load the tool and define
the semilattice B = {0} and the alphabet A = {a, b}:
(jslt B is 0 bottom 0 . 0 v 0 = 0 . endjslt)

(alph A is a b endalph)

We provide the functor G using the command (functor (B x Id)^A .). The com-
mand (set goal) specifies the goal we want to prove:
(set goal a(r< μ X:FixpVar . a(r< X:FixpVar >) (+) b(∅)>) (+)

b(r< μ Y:FixpVar . a(r< Y:FixpVar >) (+) b(r< Y:FixpVar >) >) =
μ X:FixpVar . a(r< X:FixpVar >) (+) b(r< X:FixpVar >) .)

In order to generate the CIRC specification we use the command (generate

coalgebra .). Next we need to load CIRC along with the resulting specification
and start the proving engine using the command (coinduction .).

As already shown, behind the scenes, CIRC builds a bisimulation relation that
includes the initial goal. The proof succeeds and the output consists of (a subset
of) this bisimulation:

Proof succeeded.
Number of derived goals: 3
Number of proving steps performed: 82
[...]
Proved properties:
[...]
a(r< μ X . a(r< X >) (+) b(∅) >) (+)
b(r< μ Y . a(r< Y >) (+) b(r< Y >) >)) =
μ X . a(r< X >) (+) b(r< X >)

http://circidei.info.uaic.ro/functorizer/functorizer.maude

240 M. Bonsangue et al.

As previously mentioned, CIRC is also able to detect when two expressions
are not equivalent. Take, for instance, the expressions μx.a(r〈a(l〈1〉) ⊕ x〉) and
a(r〈a(l〈1〉)〉) ⊕ μx.a(r〈x〉), characterizing the states s1 and s3 from the Mealy
machines in Fig. 4. After following some steps similar to the ones previously enu-
merated, the proof fails and the output message is Visible goal [...] failed

during coinduction.

s1

a|0

s2
a|1

s3

a|0

s4

a|1

s5 a|0

Fig. 4. Mealy machines: s1 ∼ s3

5 Conclusions and Future Work

One of the major contributions of this paper is that we exploited an encoding
of coalgebra into algebra, and provided a decision procedure for the bisimilar-
ity of generalized regular expressions. In order to enable the implementation of
the decision procedure, we formalized the equivalence between the coalgebraic
concepts associated to polynomial coalgebras [2,1] and their algebraic correspon-
dents. This led to the definition of algebraic specifications (EG) that model both
the language and the coalgebraic structure of expressions. Moreover, we defined
an equational deduction relation (�PF), used on the algebraic side for reasoning
on the bisimilarity of expressions.

The most important result of the parallel between the coalgebraic and al-
gebraic approaches is given in Corollary 1, which formalizes the definition of
the bisimulation relations, in algebraic terms. Actually, this result is the key for
proving the soundness of the decision procedure implemented in the automated
prover CIRC [11]. As a coinductive prover, CIRC builds a relation F closed un-
der the application of δG with respect to �PF (EG ∪ F �PF δG(F)), hence
automatically computing a bisimulation the initial proof obligations belong to.

The approach we present in this paper enables CIRC to perform a reasoning
based on bisimulations (instead of experiments [12]). This way, the prover is
extended to checking for the bisimilarity in a large class of systems that can be
modeled as G-coalgebras. Note that the constructions above are all automated
– the (non-trivial) CIRC algebraic specification describing EG, together with the
interpolants implementing �PF are generated with the Maude tool presented in
Section 4.1.

As future work, we intend to extend our proof system to Kripke polynomial
coalgebras and to exploit more of the axioms in [1] with the purpose of improving
the prover’s time performance (our experience so far shows that by adding the
axiom for the distribution of the ∅ expression through the constructors, the
prover works significantly faster).

A Decision Procedure for Bisimilarity of Generalized Regular Expressions 241

Acknowledgments. The authors are grateful for useful comments from Filippo
Bonchi and the anonymous reviewers. The work of Georgiana Caltais and Eugen-
Ioan Goriac has been partially supported by the PNII grant CNCSIS IDEI 393
and the project ‘Meta-theory of Algebraic Process Theories’ (nr. 100014021)
of the Icelandic Research Fund. The work of Dorel Lucanu has been partially
supported by the PNII grant CNCSIS IDEI 393.

References

1. Bonsangue, M.M., Rutten, J.J.M.M., Silva, A.: An algebra for Kripke polynomial
coalgebras. In: LICS, pp. 49–58. IEEE Computer Society, Los Alamitos (2009)

2. Bonsangue, M., Rutten, J., Silva, A.: A Kleene theorem for polynomial coalgebras.
In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 122–136. Springer,
Heidelberg (2009)

3. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J.,
Talcott, C.L. (eds.): All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007)

4. Goguen, J., Lin, K., Rosu, G.: Circular coinductive rewriting. In: ASE 2000: Pro-
ceedings of the 15th IEEE International Conference on Automated Software Engi-
neering, Washington, DC, USA, 2000, pp. 123–132. IEEE Computer Society, Los
Alamitos (2000)

5. Goguen, J.A.: Order-sorted algebra i: Equational deduction for multiple inheri-
tance, overloading, exceptions and partial operations. Theoretical Computer Sci-
ence 105, 217–273 (1992)

6. Goriac, E.-I., Lucanu, D., Roşu, G.: Automating Coinduction with Case Analysis.
Technical Report TR 10-05, “Al.I.Cuza” University of Iaşi, Faculty of Computer
Science (2010), http://www.infoiasi.ro/~tr/tr.pl.cgi

7. Jacobs, B.: Introduction to coalgebra. towards mathematics of states and observa-
tions (2005)

8. Kleene, S.: Representation of events in nerve nets and finite automata. Automata
Studies, 3–42 (1956)

9. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. In: LICS, pp. 214–225. IEEE Computer Society, Los Alamitos (1991)

10. Kozen, D.: Myhill-nerode relations on automatic systems and the completeness of
Kleene algebra. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010,
pp. 27–38. Springer, Heidelberg (2001)

11. Lucanu, D., Goriac, E.-I., Caltais, G., Roşu, G.: CIRC: A behavioral verification
tool based on circular coinduction. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.)
CALCO 2009. LNCS, vol. 5728, pp. 433–442. Springer, Heidelberg (2009)

12. Roşu, G., Lucanu, D.: Circular Coinduction – A Proof Theoretical Foundation.
In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp.
127–144. Springer, Heidelberg (2009)

13. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput.
Sci. 249(1), 3–80 (2000)

14. Salomaa, A.: Two complete axiom systems for the algebra of regular events. J.
ACM 13(1), 158–169 (1966)

15. Silva, A., Bonsangue, M.M., Rutten, J.J.M.M.: Non-deterministic kleene coalge-
bras. Logical Methods in Computer Science 6(3) (2010)

http://www.infoiasi.ro/~tr/tr.pl.cgi

Normalization of Linear Horn Clauses

Thomas Martin Gawlitza1, Helmut Seidl2, and Kumar Neeraj Verma2

1 CNRS/VERIMAG
Thomas.Gawlitza@imag.fr�

2 Institut für Informatik, TU München, Germany
{seidl,verma}@in.tum.de

Abstract. Nielson et al. [12] exhibit a rich class of Horn clauses which they call
H1. Least models of finite sets of H1 Horn clauses are regular tree languages.
Nielson et al. [12] describe a normalization procedure for computing least mod-
els of finite sets of H1 Horn clauses in the form of tree automata. In the present
paper, we simplify and extend this normalization procedure to a semi-procedure
that deals with finite sets of linear Horn clauses. The extended semi-procedure
does not terminate in general but does so on useful subclasses of finite sets of
linear Horn clauses. The extension in particular coincides with the normaliza-
tion procedure of Nielson et al. [12] for sets of H1 Horn clauses. In order to
demonstrate the usefulness of the extension, we show how backward reachability
analysis for constrained dynamic pushdown networks (see Bouajjani et al. [3])
can be encoded into a class of finite sets of linear Horn clauses for which our
normalization procedure terminates after at most exponentially many steps.

1 Introduction

Horn clauses are a convenient formalism for expressing analyses of concurrent
programs. Horn clauses have, e.g., successfully been applied to the analysis of cryp-
tographic protocols [1] based on the Dolev-Yao model [4]. This model represents mes-
sages as first-order terms, where an all-powerful adversary can intercept all messages
sent during the protocol’s execution, delete or replace them with other messages, and
generate new messages. Horn clauses provide a convenient mechanism for describing
an over-approximation of the set of messages that can be learned by the adversary after
arbitrary number of executions of such a protocol between different sets of participants.

Nielson et al. [12] introduced the class H1 of Horn clauses in order to model reach-
ability in the spi-calculus. They showed that finite sets of H1 Horn clauses can be con-
verted into equivalent tree automata in exponential time. Finite sets of H1 Horn clauses
thus define regular tree languages. Moreover, they showed that the satisfiability problem
for finite sets of H1 Horn clauses is DEXPTIME-hard. Independent of this work Wei-
denbach [13] showed earlier that the satisfiability problem for finite sets of H1 Horn
clauses is decidable. The sort resolution procedure of Weidenbach [13] has a double
exponential worst-case time-complexity and is therefore not optimal [7]. Based on the
work of Nielson et al. [12], Goubault-Larrecq [7] showed how to check satisfiability
of finite sets of H1 Horn clauses in exponential time by using ordered resolution with

� VERIMAG is a joint laboratory of CNRS, Université Joseph Fourier and Grenoble INP.

J. Davies, L. Silva, and A. Simão (Eds.): SBMF 2010, LNCS 6527, pp. 242–257, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Normalization of Linear Horn Clauses 243

selection. Later, Goubault-Larrecq and Parrennes [8] applied H1 Horn clauses for ana-
lyzing implementations of cryptographic protocols in C.

In order to extend the class H1, Nielsen et al. [11] introduced the Iterative Special-
ization Schema. The idea is to approximate a finite set of arbitrary Horn clauses by
means of H1 Horn clauses to detect components of predicates which are finite. This
information then is exploited to obtain an equivalent, but hopefully syntactically sim-
pler set of Horn clauses via instantiation. Using these techniques, Nielsen et al. [11]
successfully validated the non-trivial Yahalom protocol for key-distribution.

In the present paper, we extend H1 into another direction. We consider arbitrary
linear Horn clauses and present a normalization semi-procedure for computing least
models of finite sets of linear Horn clauses. Our normalization semi-procedure is a
simplification of the procedure of Nielson et al. [12], since no pre-computations are
necessary. It destructs complex heads on the fly. Moreover, it is a direct and strict ex-
tension: It always terminates on finite sets of H1 Horn clauses in at most exponentially
many steps. Although satisfiability for finite sets of linear Horn clauses is undecid-
able [6], our semi-procedure at least terminates for certain meaningful subclasses of
the class of all finite sets of linear Horn clauses. One meaningful example, where the
semi-procedure terminates after at most exponentially many steps, are the finite sets of
linear Horn clauses that can be used for encoding a backward reachability analysis for
constrained dynamic pushdown networks (see Bouajjani et al. [3]). This application in
particular demonstrates that potential applications are not restricted to the analysis of
cryptographic protocols.

Outline. The present paper is organized as follows: We present our technical contri-
bution — the normalization semi-procedure for finite sets of linear Horn clauses — in
section 2. In section 3, we introduce an application which is not related to the analy-
sis of cryptographic protocols, namely, backward reachability for constrained dynamic
pushdown networks. We conclude in section 4. Omitted proofs can be found in the
corresponding technical report.

2 Normalization of Finite Sets of Linear Horn Clauses

2.1 Basics

For a set Σ of ranked function symbols and a set X of variables, T (Σ,X) denotes the
set of terms built up from symbols in Σ and variables in X . We assume that there are
k-ary function symbols εk for all k ∈ N \ {1} in Σ. The set T (Σ, ∅) is also denoted by
T (Σ) and contains all ground terms, i.e. all terms without variables. We denote function
symbols in the following by f , g and h, nullary function symbols (also called constants)
by a, b and c, variables by x, y and z, and finally terms by s, t and u. Positions in terms
are defined as usual as sequences of strictly positive integers. For a term t, t|l is the
subterm of t at position l, and t[s]l the result of replacing that subterm by s. Given
a set P of unary predicate symbols we are able to build atoms. For a unary predicate
P ∈ P and a term t ∈ T (Σ,X), P (t) is called an atom. In order to simplify nota-
tions, we also denote the atom P (εk(t1, . . . , tk)) by P (t1, . . . , tk) for all k ∈ N \ {1}.
We identify the pair (P, εk) with the k-ary predicate P . Substitutions are functions

244 T.M. Gawlitza, H. Seidl, and K.N. Verma

σ : X → T (Σ,X). For a term, atom or literal M , the result of applying σ to M is de-
noted by Mσ. A substitution σ is called ground iff xσ is ground for all x ∈ X . We write
{x1 �→ t1, . . . , xn �→ tn} to denote a substitution σ such that xiσ = ti for 1 ≤ i ≤ n
and xσ = x for x /∈ {x1, . . . , xn}.

A clause is a finite set of positive literals A and negative literals ¬A, where A is
an atom. We also denote a clause {L1, . . . , Lk} by L1 ∨ · · · ∨ Lk, where L1, . . . , Lk

are literals. For a term t we denote the set of variables occurring in t by Vars(t).
Respectively, we denote this set by Vars(L) for a literal L and Vars(C) for a clause C.

A Horn clause is a clause that contains at most one positive literal. A Horn clause
A ∨ ¬A1 ∨ · · · ∨ ¬Ak is also written as A ⇐ A1 ∧ · · · ∧ Ak. A is the head and
A1∧· · ·∧Ak is the body of this Horn clause. Again we define Vars(A1∧· · ·∧Ak) :=
∪k

i=1Vars(Ai). If k = 0 holds, then the body is denoted by ε. A negative literal within a
Horn clause is also called query. An interpretation is a set of ground atoms. A model of
a set of clauses is an interpretation, in which all clauses are satisfied. We also consider
an interpretation as a mapping from predicates to sets of ground terms, i.e., for some
interpretation I we write t ∈ I(P) iff P (t) ∈ I holds. For every set S of Horn clauses
there exists a unique least model, which we denote by HS . HS is the set of ground
atoms which can be derived using the rule

A1σ . . . Akσ
σ is ground and A ⇐ A1 ∧ . . . ∧ Ak ∈ S

Aσ
.

Hence we can associate a derivation with every atom in HS . The size of this derivation
is the number of times the above rule is applied.

A term, atom or literal is called linear iff no variable occurs twice in it. A Horn
clause H ⇐ B is called linear iff its head H is linear. A linear Horn clause C is called
normal iff it is of the form

P (f(x1, . . . , xk)) ⇐ Q1(x1) ∧ · · · ∧ Qk(xk).

This is equivalent to the definition of Nielson et al. [12]. We denote the set of all normal
Horn clauses by N . A normal Horn clause can be considered as a transition rule in a tree
automaton. The predicates are the states of the tree automaton. Accordingly, the least
model HS of a finite set S of normal Horn clauses maps every occurring predicate to a
regular tree language. A set S of Horn clauses is called normalizable iff there exists a
finite set S′ of normal Horn clauses which is equivalent to S (up to auxiliary predicates).

Two variables x and y are connected in a clause {L1, . . . , Ln} iff x ∼= y, where ∼= is
the smallest equivalence relation such that the following holds: if x and y occur in the
same literal Li for i ∈ {1, . . . , n}, then x ∼= y. Two terms t1 and t2 are connected in a
clause C iff there exist variables x1 ∈ Vars(t1) and x2 ∈ Vars(t2) such that x1 and
x2 are connected in C. Two (occurrences of) terms are called siblings in a term or literal
iff they occur as an argument of a common father. A Horn clause H ⇐ B is called H1
iff it is linear and the following statement holds: if two variables x, y occur in H and
are connected in B, then x and y are siblings in H (cf. Nielson et al. [12]).

Only regular tree languages can be expressed using finite sets of H1 Horn clauses.
Nielson et al. [12] have shown this by specifying a normalization procedure, which,
given a finite set of H1 Horn clauses, constructs an (up to auxiliary predicates) equiv-
alent finite set of normal Horn clauses. Using finite sets of linear Horn clauses we

Normalization of Linear Horn Clauses 245

are also able to encode non-regular tree languages. The least model of the finite set
S = {P (f(x), f(y)) ⇐ P (x, y), P (a, a) ⇐ ε} of linear Horn clauses, for instance,
is given by HS = {P (a, a), P (f(a), f(a)), P (f(f(a)), f(f(a))), . . .}. Obviously, the
set HS is not regular. Therefore, it is not possible to construct an equivalent finite set
of normal Horn clauses for every finite set of linear Horn clauses. Accordingly, it is
not the case that the normalization semi-procedure we present in the present article will
terminate for every finite set of linear Horn clauses. Nevertheless there exist meaningful
examples of finite sets of linear Horn clauses that are not finite sets of H1 Horn clauses
which still define regular tree languages. Our method moreover can be considered as an
instantiation technique (cf. Nielsen et al. [11]).

We emphasize that we cannot expect an algorithm that terminates for every finite set
of linear Horn clauses, because the satisfiability problem for finite sets of linear Horn
clauses is undecidable Goubault-Larrecq [6].

2.2 The Normalization Semi-procedure

The goal of our normalization semi-procedure we are now going to present is to con-
struct an equivalent set of normal Horn clauses from a given set of linear Horn clauses.
Our normalization semi-procedure is a strict extension and at the same time a simplifi-
cation of the normalization procedure of Nielson et al. [12] for finite sets of H1 Horn
clauses. The main difference is that we introduce auxiliary predicates on demand during
the normalization process instead of doing so beforehand.

In order to describe our normalization semi-procedure, we consider sets of unary
predicates as unary predicates. Additionally, we identify the set {P} with the predi-
cate P . A predicate {P1, . . . , Pn} stands for the intersection of the success sets of the
contained predicates P1, . . . , Pn. We therefore call them intersection-predicates. Con-
ceptually an intersection predicate {P1, . . . , Pn} is defined by the Horn clause

{P1, . . . , Pn}(X) ⇐ P1(X) ∧ · · · ∧ Pn(X).

The additional power of our normalization semi-procedure relies on the fact that it intro-
duces auxiliary predicates of the form Pt, where P is a predicate and t is a term that is
built up from constants, variables, function symbols, unary predicates and a special con-
stant �. The unary predicates are used as constants. Predicates of the form Pt are called
push-predicates. An example of a push-predicate is the predicate P(f(�),Q), where f is
a unary function symbol and P , Q are predicates. In our normalization semi-procedure,
the term t describes the context in which the auxiliary predicate Pt is introduced.

We define a relation � on sets of Horn clauses. The relation � represents one step
of the saturation process. If this saturation process terminates, then the set of normal
Horn clauses that are contained in the saturated set of Horn clauses is (up to auxiliary
predicates) equivalent to the initial set of Horn clauses (soundness). For convenience we
assume w.l.o.g. that all clauses H ⇐ B in the initial set satisfy the property Vars(H) ⊆
Vars(B). This can be done w.l.o.g., because, if some variable x occurred in H but not
in B, then we could replace the clause with H ⇐ B ∧ Pall(x) where Pall is an auxiliary
predicate which accepts all terms. This property is also satisfied by all new clauses
generated by our normalization semi-procedure.

246 T.M. Gawlitza, H. Seidl, and K.N. Verma

In the following xj are mutually distinct variables. The relation � over sets of Horn
clauses is specified by an inference system. The inference rules are of the form

P1 · · ·Pm

C1 · · ·Cn

,

where P1, . . . , Pm are the premises and C1, . . . , Cn are the conclusions. The relation �
is defined as follows: S � S ∪ {C1, . . . , Cn} iff the inference rule

P1 · · ·Pm

C1 · · ·Cn

is a member of the inference system, P1, . . . , Pm ∈ S, and {C1, . . . , Cn} � S. A set
S of Horn clauses is called saturated iff �S′ : S � S′. Our inference system is defined
through the following inference rules:

P (x) ⇐ Q(x) Q(f(x1, . . . , xk)) ⇐ ∧k
i=1 Qi(xi)

(cp)
P (f(x1, . . . , xk)) ⇐ ∧k

i=1 Qi(xi)

P (t) ⇐ ∧k
i=1 Qi(xi)

(sp)
P (t[x]l) ⇐ Pt[�]l{xi 	→Qi|i=1,...,k}(x) ∧∧

i∈{1,...,k|xi /∈Vars(t|l)}Qi(xi)
Pt[�]l{xi 	→Qi|i=1,...,k}(t|l) ⇐

∧
i∈{1,...,k|xi∈Vars(t|l)}Qi(xi)

Here, l is a non-root position in t, t|l is not a variable, {x1, . . . , xk} ⊆ Vars(t),
x /∈ Vars(t), and HS∩N (Qi) �= ∅ for all i = 1, . . . , k. Recall that HS∩N (Qi) �= ∅
means that there exists a term which satisfies the predicate Qi in the least model of the
normal Horn clauses contained in S.

H ⇐ B ∧ Q(f(t1, . . . , tk)) Q(f(x1, . . . , xk)) ⇐ ∧k
i=1 Qi(xi)

(cut)
H ⇐ B ∧∧k

i=1 Qi(ti)

H ⇐ B ∧∧k
i=1 Qi(x)

(cap1)
H ⇐ B ∧ (

⋃k
i=1 Qi)(x)

Here, k > 1, and x /∈ Vars(B).

i=1,...,n︷ ︸︸ ︷
{Pi}(f(x1, . . . , xk)) ⇐ ∧k

j=1 Qi,j(xj) H ⇐ B ∧ {P1, . . . , Pn}(x)
(cap2),{P1, . . . , Pn}(f(x1, . . . , xk)) ⇐ ∧

j=1,...,k(Q1,j ∪ · · · ∪ Qn,j)(xj)

Here, n > 1, and x /∈ Vars(B).

H ⇐ B ∧ Q(x)
(elim)

H ⇐ B
Here, HS∩N (Q) �= ∅, and x /∈ Vars(H) ∪ Vars(B).

Normalization of Linear Horn Clauses 247

In order to apply the rule (elim) or the rule (sp), we have to check, whether or not
HS∩N (Q) �= ∅ holds. This means, we have to check emptiness for tree automata.
This can be done in polynomial time. During the execution of our normalization semi-
procedure, the emptiness-information can be computed on the fly. This means: For each
predicate P , we maintain the information, whether or not HS∩N (P) �= ∅ holds. When-
ever we add a normal Horn clause, we update this information.

The substantial difference between our normalization semi-procedure and the nor-
malization procedure of Nielson et al. [12] is the rule (sp). The rule (sp) dispenses with
the need of the pre-processing phase as described by Nielson et al. [12] or by Goubault-
Larrecq [7]. The pre-processing phases of Nielson et al. [12] and Goubault-Larrecq
[7] essentially decompose complex heads of Horn clauses P (t) ⇐ B through the in-
troduction of auxiliary predicates. At the end of these pre-processing phases all heads
are of the form P (x1, . . . , xk) or P (f(x1, . . . , xk)). The Horn clause P (f(x), y) ⇐
Q1(x) ∧ Q2(y), for instance, is replaced by the Horn clauses P (x, y) ⇐ Q(x) ∧
Q2(y), Q(f(x)) ⇐ Q1(x), where Q is a fresh auxiliary predicate. Note that this
step is done by the rule (sp). However, the Horn-clause P (f(x), y) ⇐ Q(x, y) —
which is not H1 — cannot be replaced by (up to auxiliary predicates) equivalent Horn-
clauses whose heads are of the form P (x1, . . . , xk) or P (f(x1, . . . , xk)) during a pre-
processing phase, since the variables x and y are connected in the body. Here, the obser-
vation is that connection between x and y will be eliminated during the normalization
process. Therefore we postpone the decomposition of complex heads until the connec-
tion between the variables in the bodies are eliminated by the normalization process.
The rule (sp) does this together with a clever naming of the introduced auxiliary pred-
icates (the push-predicates). In consequence, using our new inference rules, we can
normalize finite sets of linear Horn clauses that can neither be solved through the nor-
malization procedure of Nielson et al. [12] nor through the ordered resolution procedure
of Goubault-Larrecq [7].

Example 1. We consider the following finite set S of linear Horn clauses:

P (f(x1), x2) ⇐ P (x1, x2) (1)

P (x1, x2) ⇐ Q(x1) ∧ R(x2) (2)

Q(a) ⇐ ε (3)

R(b) ⇐ ε (4)

R(g(x)) ⇐ R(x) (5)

We have HS(P) = {(f i(a), gj(b)) | i, j ∈ N}. Our normalization semi-procedure
performs the following steps:

(cut)(1)(2) : P (f(x1), x2) ⇐ Q(x1) ∧ R(x2) (6)

(sp)(6) : P (x, x2) ⇐ P(�,R)(x) ∧ R(x2) (7)

P(�,R)(f(x1)) ⇐ Q(x1) (8)

(cut)(1)(7) : P (f(x1), x2) ⇐ P(�,R)(x1) ∧ R(x2) (9)

(sp)(9) : P(�,R)(f(x1)) ⇐ P(�,R)(x1) (10)

248 T.M. Gawlitza, H. Seidl, and K.N. Verma

Observe that the last normalization step closes an important cycle due to the naming of
the introduced auxiliary predicates. The resulting finite set S′ of linear Horn clauses is
saturated and contains the following normal Horn clauses:

P (x1, x2) ⇐ Q(x1) ∧ R(x2) Q(a) ⇐ ε

R(b) ⇐ ε R(g(x)) ⇐ R(x)
P (x, x2) ⇐ P(�,R)(x) ∧ R(x2) P(�,R)(f(x1)) ⇐ Q(x1)

P(�,R)(f(x1)) ⇐ P(�,R)(x1)

The set of these normal Horn clauses is (up to auxiliary predicates) equivalent to the
initial set of linear Horn clauses. In particular, we have

HS′∩N (P) = {(f i(a), gj(b)) | i, j ∈ N} = HS(P).

Note that this result cannot be obtained by using the instantiation techniques of Nielsen
et al. [11]. ��

The set of derivable facts is (up to auxiliary predicates) preserved by executing nor-
malization steps:

Lemma 1 (Soundness). Let S be a set of linear Horn clauses and S
∗
� S′. Then

HS′(P) = HS(P) holds for every predicate P which occurs in S.

Proof. Let us fix some sequence S = S0 � · · · � SM = S′. We set IK := SK \ SK−1
for all K = 1, . . . , M , and I := S′ \ S. We define a size function Size which maps a
derivation in S′ to an element from NM by:

Size

(
D1 · · ·Dk C

A

)
:= Size(C) +

∑k
i=1 Size(Di)

Size(C) :=
{

(δ1j , . . . , δMj) if C ∈ Ij

(0, . . . , 0) otherwise

Here, δ denotes the Kronecker-Delta, i.e., δij equals 1 if i = j and 0 otherwise.
The elements of NM are ordered lexicographically with reversed significance, i.e.,
(a1, . . . , aM) < (b1, . . . , bM) holds iff there exists some j ∈ {1, . . . , M} such that
aj < bj and ai = bi for all i > j holds. Note that the following holds: If we re-
place a subderivation of a derivation with a smaller derivation, then the derivation itself
gets smaller. Furthermore, if Size(D) = (0, . . . , 0) holds for a derivation D, then only
clauses from S are used in D.

Let D be a derivation for a ground atom P (t), where P is a predicate from S and
Size(D) > (0, . . . , 0) holds. It is sufficient to show, that there exists a derivation D for
P (t) with Size(D) < Size(D).

There must be a subderivation D′ of D, where the last inference is an application of
a Horn clause from IK for some K ∈ {1, . . . , M}.

Case 1: The normalization step from SK−1 to SK is an application of the inference
rule (cp). Let P (f(x1, . . . , xk)) ⇐ ∧k

i=1 Q(xi) be the Horn clause in IK . There

Normalization of Linear Horn Clauses 249

are Horn clauses P (x) ⇐ Q(x) and Q(f(x1, . . . , xk)) ⇐ ∧k
i=1 Q(xi) in SK−1.

Thus we have

D′ =
D1 · · ·Dk

P (f(x1, . . . , xk)) ⇐ ∧k
i=1 Q(xi)

P (f(t1, . . . , tk))
,

where the conclusion of Di is Qi(ti) for all i = 1, . . . , k. In order to get a smaller
derivation, we substitute the subderivation D′ with the following smaller derivation

D1 · · ·Dk
Q(f(x1, . . . , xk)) ⇐ ∧k

i=1 Q(xi)
Q(f(t1, . . . , tk))

P (x) ⇐ Q(x)
P (f(t1, . . . , tk))

Case 2: The normalization step from SK−1 to SK is an application of the inference
rule (sp). Thus we have {C2} ⊆ IK ⊆ {C1, C2}, where

C1 = P (t[x]l) ⇐ Pt[�]l{xi 	→Qi|i=1,...,k}(x) ∧∧
i∈{1,...,k|xi /∈Vars(t|l)}Qi(xi)

C2 = Pt[�]l{xi 	→Qi|i=1,...,k}(t|l) ⇐
∧

i∈{1,...,k|xi∈Vars(t|l)}Qi(xi).

Case 2.1: The last inference of D′ is an application of C1. Thus D′ has the form

D′′ · · · C1
P (· · ·)

,

where the conclusion of D′′ is Pt[�]l{xi 	→Qi|i=1,...,k}(t′′). The last inference of
the derivation D′′ must be some application of a Horn clause from I . Now we
replace the sub-derivation D′′ instead of the sub-derivation D′.

Case 2.2: The last inference of D′ is an application of C2.
Case 2.2.1: There is a sub-derivation of D of the form

Db1 · · ·Dbr C2
Pt[�]l{xi 	→Qi|i=1,...,k}(t|l{xi �→ ti | i = 1, . . . , k}) Da1 · · ·Das C1

P (t{xi �→ ti | i = 1, . . . , k})
,

where the conclusion of the derivation Di is Qi(ti) for all i = i, . . . , k and
moreover {a1, . . . , as}∪{b1, . . . , br} = {1, . . . , k}, a1, . . . , as, b1, . . . , br

are pair-wise distinct, xa1 , . . . , xas /∈ Vars(t|l), and xb1 , . . . , xbr ∈
Vars(t|l). Since the Horn clause C′ = P (t) ⇐ ∧k

i=1 Qi(xi) must be
a member of SK−1, we can replace the derivation D′ with the smaller
derivation

D1 · · ·Dk C′
P (t{xi �→ ti | i = 1, . . . , k}) .

Case 2.2.2: There is no sub-derivation of D of the form

Db1 · · ·Dbr C2
Pt[�]l{xi 	→Qi|i=1,...,k}(t|l{xi �→ ti | i = 1, . . . , k}) Da1 · · ·Das C1

P (t{xi �→ ti | i = 1, . . . , k})
,

250 T.M. Gawlitza, H. Seidl, and K.N. Verma

where the conclusion of the derivation Di is Qi(ti) for all i = i, . . . , k and
moreover {a1, . . . , as}∪{b1, . . . , br} = {1, . . . , k}, a1, . . . , as, b1, . . . , br

are pair-wise distinct, xa1 , . . . , xas /∈ Vars(t|l) and xb1 , . . . , xbr ∈
Vars(t|l). We choose some sub-derivation D′′ of the form

D′ · · · C
P̃ (t̃)

.

The Horn clause C must be from the set I . We replace the sub-derivation
D′′ instead of the sub-derivation D′.

The other cases, which are similar to those encountered for classes like H1, can also be
treated straightforwardly. �

Whenever the normalization procedure terminates, the normal Horn clauses which
are contained in the saturated set describe the least model completely:

Lemma 2 (Completeness). Let S be a set of linear Horn clauses and S
∗
� S, where S

is saturated. Then HS∩N (P) = HS(P) holds for every predicate P which occurs in S.

Proof. First of all, we define the size of a derivation. For that we define the measure
μ(C) of a Horn clause C as 3m + n, where m is the number of sub-terms occurring
in the head and n is the number of sub-terms occurring in the body. Then, the measure
μ(D) of a derivation D is simply the sum of the measures of the Horn clauses used
within the derivation.

For the sake of contradiction assume that t ∈ HS(P) \ HS∩N (P) holds, where P
occurs in S. Let D be a derivation for the atom P (t) of minimal measure. Within D
there exists some sub-derivation

D =
D1 · · ·Dk C

P (t)

such that C /∈ N and D1, . . . , Dk are normal derivations, i.e., only normal Horn clauses
are used within the derivations D1, . . . , Dk.

Case 1: C = P (x) ⇐ Q(x). In this case we have k = 1 and

D1 =
D′1 · · ·D′l

Q(f(x1, . . . , xl)) ⇐ Q1(x1) ∧ · · · ∧ Ql(xl)
Q(t)

.

Since S is saturated, we have C′ := P (f(x1, . . . , xl)) ⇐ Q1(x1) ∧ · · · ∧Ql(xl) ∈
S. Thus we can replace the sub-derivation D with the smaller derivation

D′1 · · ·D′l C′
P (t)

.

Thus we have constructed a smaller derivation for P (t) — contradiction.

Normalization of Linear Horn Clauses 251

Case 2: C = P (t̃) ⇐ ∧k
i=1 Qi(xi), l is a non-root position in t̃, the term t̃|l /∈ Vars

and {x1, . . . , xk} ⊆ Vars(t̃). The conclusions of D1, . . . , Dk are Q1(t1), . . . ,
Qk(tk), respectively. It holds t = t̃{xi �→ ti | i = 1, . . . , k}. Since S is saturated,
the following Horn clauses are members of S:

C1 := P (t̃[x]l) ⇐ Pt̃[�]l{xi 	→Qi|i=1,...,k}(x) ∧∧
i∈{1,...,k|xi /∈Vars(t̃|l)}Qi(xi)

C2 := Pt̃[�]l{xi 	→Qi|i=1,...,k}(t̃|l) ⇐
∧

i∈{1,...,k|xi∈Vars(t̃|l)}Qi(xi)

Here, x /∈ Vars(t̃). Let {a1, . . . , as} ∪ {b1, . . . , br} = {1, . . . , k} such that
a1, . . . , as, b1, . . . , br are pair-wise distinct, xa1 , . . . , xas /∈ Vars(t̃|l) and further-
more xb1 , . . . , xbr ∈ Vars(t̃|l). We can replace the sub-derivation D with the
smaller derivation

Db1 · · ·Dbr C2
Pt̃[�]l{xi 	→Qi|i=1,...,k}(t̃|l{xi �→ ti | i = 1, . . . , k}) Da1 · · ·Das C1

P (t)

.

Thus we have constructed a smaller derivation for P (t) — contradiction.

The other cases, which are similar to those encountered for classes like H1, can also be
treated straightforwardly. �

Lemma 1 and Lemma 2 finally imply our main theorem:

Theorem 1. Let S and S′ be sets of linear Horn clauses such that S
∗
� S′ holds and

S′ is saturated. Then HS(P) = HS′∩N (P) holds and thus HS(P) is tree regular for
every predicate P which occurs in S, i.e., the least model is tree regular. ��
Because of the above theorem, our normalization semi-procedure does not terminate, if
one applies it to a finite set of Horn clauses whose least model is not tree regular. The
least model of the finite set

S = {P (a, a) ⇐ ε, P (f(x), f(y)) ⇐ P (x, y)}
of linear Horn clauses, for instance, is HS = {P (f i(a), f i(a)) | i ∈ N} and thus not
tree regular. There are nonetheless finite sets of linear Horn clauses, whose least model
is tree regular, while our normalization semi-procedure still does not terminate. It will
for instance not terminate on the set

S′ := S ∪ {P (f(x), y) ⇐ P (x, y), P (x, f(y)) ⇐ P (x, y)}
of linear Horn clauses, since S′ is a superset of S. Nonetheless, the least model
HS′ = {P (f i(a), f j(a)) | i, j ∈ N} is tree regular.

Our normalization semi-procedure can be improved in several directions. We can,
for instance, augment our normalization semi-procedure with subsumption, i.e., in each
normalization step we can delete subsumed Horn clauses. For instance, the Horn clause
H ⇐ B ∧ Q(x) is subsumed, after we apply the rule (elim). In the present paper we

252 T.M. Gawlitza, H. Seidl, and K.N. Verma

will not discuss these improvements in detail. Instead, we remark that our normaliza-
tion semi-procedure combines the two phases of the normalization procedure given in
[12]. Using the same arguments as in [12], we deduce that for a given finite set of H1
Horn clauses, our normalization procedure terminates after at most exponentially many
normalization steps:

Corollary 1. Our normalization semi-procedure normalizes a finite set of H1 Horn
clauses in exponential time. ��

2.3 Instantiation

In this section we compare our techniques with instantiation as described by Nielsen
et al. [11]. Assume that S is a finite set of Horn clauses. Let us consider a Horn clause
C ≡ H ⇐ B ∈ S and a set {x1, . . . , xk} ⊆ Vars(B) of variables. If the set

I := {(t1, . . . , tk) | t1, . . . , tk ∈ T (Σ), HS |= B{x1 �→ t1, . . . , xk �→ tk}}
of possible values for the vector of variables (x1, . . . , xk) is finite, we are able to in-
stantiate this vector of variables with all possible values. This means we can replace the
Horn clause C by the Horn clauses C{x1 �→ t1, . . . , xk �→ tk} for all (t1, . . . , tk) ∈ I ′,
where I ′ is some finite superset of I . We obtain a finite set S′ of Horn clauses that is
equivalent to S.

Thus, in some cases we can replace a Horn Clause C that does not belong to H1 (or
to some other syntactically defined class) by a set of Horn clauses which have fewer
occurrences of variables and thus may belong to H1. We refer to Nielsen et al. [11] for
a detailed explanation of this framework.

Example 2. Consider the following finite set S of linear Horn clauses:

P (x, y) ⇐ A(x) ∧ B(y) (11)

A(a) ⇐ ε (12)

B(b) ⇐ ε (13)

B(h(x)) ⇐ B(x) (14)

Q(a) ⇐ ε (15)

Q(b) ⇐ ε (16)

P (f(x), g(y)) ⇐ P (x, y) ∧ Q(x) (17)

The Horn clause (17) is not H1, since x and y are connected in the body, but they are not
siblings in the head. However, the set HS(Q) = {a, b} is finite. Therefore, the variable
x in the Horn clause (17) can be instantiated, i.e., (17) can be replaced by

P (f(a), g(y)) ⇐ P (a, y) ∧ Q(a) (18)

P (f(b), g(y)) ⇐ P (b, y) ∧ Q(b). (19)

By doing so, a finite set S′ of Horn clauses is obtained that is equivalent to S, i.e.
HS′ = HS . Since all Horn clauses of S′ belong to the class H1, now the methods of
Nielson et al. [12] or the methods of Goubault-Larrecq [7] can be applied.

Normalization of Linear Horn Clauses 253

Since all clauses of S are linear, our normalization semi-procedure could also be
applied directly. The algorithm performs the following steps:

(cut)(17)(11) P (f(x), g(y)) ⇐ A(x) ∧ B(y) ∧ Q(x) (20)

(cap1)(20) P (f(x), g(y)) ⇐ {A, Q}(x) ∧ B(y) (21)

(cap2)(12)(15)(21) {A, Q}(a) ⇐ ε (22)

(sp)(21) P (x, g(y)) ⇐ P(�,g(B))(x) ∧ B(y) (23)

P(�,g(B))(f(x)) ⇐ {A, Q}(x) (24)

(sp)(23) P (x, y) ⇐ P(�,g(B))(x) ∧ P(P(�,g(B)) ,�)(y) (25)

P(P(�,g(B)) ,�)(g(y)) ⇐ B(y) (26)

(cut)(17)(25) P (f(x), g(y)) ⇐ P(�,g(B))(x) ∧ P(P(�,g(B)) ,�)(y) ∧ Q(x)
(27)

(cap1)(27) P (f(x), g(y)) ⇐ {P(�,g(B)), Q}(x), P(P(�,g(B)) ,�)(y) (28)

Our normalization procedure terminates, because HS∩N ({P(�,g(B)), Q}) = ∅. In fact
it always terminates, if the predicate Q is defined by finitely many Horn clauses of the
form Q(t) ⇐ ε. This is one situation where instantiation can be applied. ��
Our example shows that our normalization procedure in some cases dispenses with the
need for an instantiation pre-processing step. In example 1, we have seen that there are
cases where instantiation does not work, but our techniques can be applied. On the other
hand, there also exist examples where instantiation can be applied such that the resulting
finite set of Horn clauses is a finite set of H1 Horn clauses, but our normalization semi-
procedure does not terminate. This means that our techniques neither is subsumed by
instantiation, nor does dispense with the need of instantiation in all cases. Instead, our
normalization semi-procedure can be enhanced with instantiation in the same way as
H1 solving can be enhanced.

3 An Application: Backward Reachability Analysis for
Constrained Dynamic Pushdown Networks

Bouajjani et al. [3] introduced constrained dynamic pushdown networks (CDPNs) as a
model of recursive programs with dynamic thread creation. CDPNs extend the model-
ing power of pushdown automata [2, 5, 9], and even of PADs [10].

Assume that we are given a regular set C of bad configurations. Backward reacha-
bility analysis tries to determine the set pre∗(C) of all configurations from which bad
configurations can be reached. The system then can be considered as safe if the inter-
section of pre∗(C) with the set of initial configurations is empty. In this section, we
demonstrate that backward reachability can be described by means of finite sets of lin-
ear Horn clauses which our normalization semi-procedure normalizes in exponential
time in the worst-case.

A constrained dynamic pushdown network (CDPN for short) is a tuple M = (P, Γ,
Δ), where P is a finite set of control states, Γ is a finite set of stack symbols disjoint

254 T.M. Gawlitza, H. Seidl, and K.N. Verma

from P, and Δ is a finite set of transition rules of the following forms: either (a) Φ :
pγ ↪→ p1w1, or (b) Φ : pγ ↪→ p1w1 � p2w2, where p, p1, p2 ∈ P, γ ∈ Γ, w1, w2 ∈ Γ ∗,
and Φ is a constraint over P, i.e., a regular word language over P.

For the remainder of this section let M be a CDPN. In order to define the set of all
configurations for M , we consider a stack symbol γ ∈ Γ as a unary function symbol
and a control state p ∈ P as a 2-ary function symbol. We denote the empty stack by the
constant 0 and use the binary function symbol cons and the constant nil to construct
lists. For a unary function symbol γ and a term t we also write γt instead of γ(t). In
contrast to Bouajjani et al. [3] we define the set ProcM of all configurations for M by:

Stack ::= Γ (Stack) | 0 Children ::= cons(ProcM , Children) | nil

ProcM ::= P(Stack, Children)

We also denote the function symbol cons by the right associative infix functional sym-
bol :: and the constant nil by []. Furthermore, we abbreviate the list t1:: . . . ::tn::[]
as [t1, . . . , tn]. We denote the control state p of a process t = p(s, [t1, . . . , tn]) by
st(t). A process p(γ1 . . . γk0, [t1, . . . , tn]) consists of the control state p, the stack
γ1 . . . γk0 (γ1 is the top-most stack-element), and a list of child processes [t1, . . . , tn].
p(γδ0, [q(0, [])]), for instance, is a configuration that consists of one root process and
one child process.

The transition relation →M for a CDPN M is the smallest relation between config-
urations that fulfills the following properties:

1. If Φ : pγ ↪→ p1w1 ∈ Δ and st(t1) · · · st(tn) ∈ Φ, then

C[p(γs, [t1, . . . , tn])] →M C[p1(w1s, [t1, . . . , tn])].

2. If Φ : pγ ↪→ p1w1 � p2w2 ∈ Δ and st(t1) · · · st(tn) ∈ Φ, then

C[p(γs, [t1, . . . , tn])] →M C[p1(w1s, [p2(w2, []), t1, . . . , tn])].

Here, C denotes a one-hole-context. We omit M , whenever it is clear from the context.
Given a set of configurations C, we define the set of backward reachable config-

urations pre∗M (C) by pre∗M (C) := {t|∃t0 ∈ C : t
∗→M t0}. We want to compute

pre∗M (C) for a given regular set of configurations C. Bouajjani et al. [3] showed that
the set of backward reachable configurations is regular, if we start from a regular set of
configurations and all constraints appearing in the CDPN are stable. A constraint Φ is
called stable iff st(t′1) · · · st(t′n) ∈ Φ, whenever t1, . . . , tn, t′1, . . . , t

′
n are configurations

such that tj
∗→ t′j holds for all j = 1, . . . , n, and st(t1) · · · st(tn) ∈ Φ.

In order to do backward reachability analysis through linear Horn clauses, we first
define a mapping between the least model of a set of Horn clauses with a special 4-ary
predicate P and a regular set of configurations. In the Horn clause framework, a control
state p is a constant instead of a binary function symbol. For convenience, the states of the
finite tree automaton for the set C, are represented by (finitely many) natural numbers.

For a set S of Horn clauses that contains a 4-ary predicate P, and i ∈ N, we define
Li(S) to be the set of configurations t such that the judgment t ∈ Li(S) can be derived
from derivations D for P(i, p, s, [i1, . . . , in]) ∈ HS by the rule:

Normalization of Linear Horn Clauses 255

··· D

P(i, p, s, [i1, . . . , in]) t1 ∈ Li1(S) · · · tn ∈ Lin(S)

p(s, [t1, . . . , tn]) ∈ Li(S)

Example 3. For the set S = {P(1, p,0, [2]) ⇐ ε,P(2, q,0, L) ⇐ C(L), C([]) ⇐ ε,
C([1])⇐ε }, we have L1(S) = {p(0, [q(0, [])]), p(0, [q(0, [p(0, [q(0, [])])])]), ...}. ��

Finally we are able to describe an arbitrary regular set of configurations C by a set of
Horn clauses this way:

Lemma 3. Let C ⊆ Proc be a regular set of configurations (given as a tree automa-
ton). A set SC of normal Horn clauses that contains a 4-ary predicate P and a natural
number N ∈ N can be constructed in linear time that fulfills the following properties:
1. It holds L1(S) ∪ . . . ∪ LN (S) = C.
2. If (i, p1, s1, l1) ∈ HSC (P) and (i, p2, s2, l2) ∈ HSC (P), then p1 = p2.
3. If (i, p1, s1, [i1, . . . , in]) ∈ HSC (P), then Lij �= ∅ for all j = 1, . . . , n. ��

Example 4. For C ={#(0, []), #(0, [#(0, [])]), #(0, [#(0, []), #(0, [])]), . . .}, the set

SC ={P(xN , xP , xS , xL) ⇐ H1(xN) ∧ H#(xP) ∧ H0(xS) ∧ Plist (xL),
P(xN , xP , xS , xL) ⇐ H2(xN) ∧ H#(xP) ∧ H0(xS) ∧ H[](xL),

Plist ([]) ⇐ ε, Plist (xN ::xL) ⇐ H2(xN) ∧ Plist (xL), H0(0) ⇐ ε,

H1(1) ⇐ ε, H2(2) ⇐ ε, H#(#) ⇐ ε, H[]([]) ⇐ ε }

is a set of normal Horn clauses that fulfills the properties mentioned in lemma 3. ��

The finite set of Horn clauses constructed according to lemma 3 for P represents
the regular set C. We now add Horn clauses that describe backward reachability. Let
S1

CDPN (M) be the smallest set of Horn clauses that fulfills the following properties:

1. If Φ : p γ ↪→ p1 w1 ∈ Δ, then the following clauses are in S1
CDPN (M):

P(xN , p, γxS , xL) ⇐ P(xN , p1, w1xS , xL) ∧ QΦ(xL)

2. If Φ : p γ ↪→ p1 w1 � p2 w2 ∈ Δ, then the following clauses are in S1
CDPN (M).

P(xN , p, γxS , xL)⇐P(xN , p1, w1 xS , x′N :: xL) ∧ P(x′N , p2, w20, []) ∧ QΦ(xL)

The predicate QΦ is a predicate that holds for a list [i1, . . . , in] iff there exists tj ∈
Lij (S) for all j = 1, . . . , n such that st(t1) . . . st(tn) ∈ Φ. Consider for instance the
constraint Φ, which is defined by the regular expression (pq)∗, where p and q are control
states. The corresponding predicate QΦ can be defined by the following Horn clauses:

QΦ([]) ⇐ ε QΦ(xN :: xL) ⇐ P(xN , p, x1, x2) ∧ QΦ′(xL)
QΦ′(xN :: xL) ⇐ P(xN , q, x1, x2) ∧ QΦ(xL)

256 T.M. Gawlitza, H. Seidl, and K.N. Verma

Systematically we do this as follows. We consider the constraint Φ to be given by the
finite word automaton A = (Q, P, δ, Φ, F), where Q is the set of states, the set of
control states P is the alphabet, δ ⊆ Q × P×Q is the transition relation, the constraint
Φ is identified as the initial state, and F is the set of accepting states. The set SConstr(A)
is the smallest set of Horn clauses that fulfills the following properties:

1. QΦ′([]) ⇐ ε ∈ SConstr(A), if Φ′ ∈ F .
2. QΦ1(xN :: xL) ⇐ P(xN , p, x1, x2) ∧ QΦ2(xL) ∈ SConstr(A), if (Φ1, p, Φ2) ∈ δ.

If we denote a finite word-automaton accepting Φ by AΦ, then the set SConstr(AΦ) con-
tains the Horn clauses that define the predicate QΦ. We collect all Horn clauses which
are necessary to describe all constraints in the set S2

CDPN (M), i.e., S2
CDPN (M) is the

union of all SConstr(AΦ), where Φ is a constraint that appears in M . Finally we collect
all Horn clauses from the sets S1

CDPN (M) and S2
CDPN (M) in the set SCDPN (M), i.e.

we set SCDPN (M) := S1
CDPN (M) ∪ S2

CDPN (M).

Example 5. For a CDPN M that consists of the transition rules P∗ : p a ↪→ p � q a,
P∗ : q a ↪→ #, and #∗ : p a ↪→ #, we get

S1
CDPN (M) = { P(xN , p, a xS , xL) ⇐ P(xN , p, xS , x′N :: xL) ∧ P(x′N , q, a0, []),

P(xN , q, a xS , xL) ⇐ P(xN , #, xS , xL),
P(xN , p, a xS , xL) ⇐ P(xN , #, xS , xL) ∧ Q#∗(xL) }

S2
CDPN (M) = { Q#∗([]) ⇐ ε, Q#∗(xN :: xL) ⇐ P(xN , #, x1, x2) ∧ Q#∗(xL) }

For obvious reasons it is not necessary to define the predicate QP∗ . ��
For the remainder of the section let C ⊆ Proc be a regular set of configurations and
SC be a set of normal Horn clauses that fulfills properties 2 and 3 of lemma 3 such that
L1(SC)∪ . . .∪LN (SC) = C holds for some N ∈ N. SC ∪SCDPN (M) represents the
pre∗M -image of C precisely under the assumption that all constraints are stable:

Lemma 4. pre∗M (Li(SC)) ⊆ Li(SC∪SCDPN (M)) for all i. Equality holds, whenever
all constraints are stable. ��
The set SC∪SCDPN (M) of Horn clauses only consists of linear Horn clauses. Actually,
our normalization semi-procedure computes the least model of SC ∪ SCDPN (M) in
at most exponentially many steps. We emphasize that the set SC ∪ SCDPN (M) of
linear Horn clauses cannot be transformed into an equivalent finite set of H1 Horn
clauses by instantiation. This is impossible, because the third argument and the fourth
argument of the predicate P are not always finite, i.e., the sets {t3 | (t1, t2, t3, t4) ∈
HSC∪SCDPN (M)(P)} and {t4 | (t1, t2, t3, t4) ∈ HSC∪SCDPN (M)(P)} can be infinite.
The first argument of P can be instantiated, since it is finite.

4 Conclusion

We extended the normalization procedure of Nielson et al. [12] for H1 Horn clauses
to a normalization semi-procedure for linear Horn clauses. As a nontrivial application,

Normalization of Linear Horn Clauses 257

we demonstrated how to solve backward reachability for CDPNs by means of our nor-
malization procedure. We have implemented our algorithm in OCAML. The system
can be downloaded from http://www2.in.tum.de/∼seidl/downloads/H/
Our system also provides support for the Magic set transformation which helps to nar-
row down the least model to those facts which are necessary to answer the query as
well as special support for dealing with ground terms. Preliminary experiments with
cryptographic protocols and dynamic pushdown networks seem promising. As future
work, we want to try our tool on more realistic examples, and also enhance it with
instantiation based on automatic finiteness analysis.

References

[1] Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In: CSFW,
pp. 82–96. IEEE Computer Society, Los Alamitos (2001)

[2] Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Ap-
plication to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997.
LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

[3] Bouajjani, A., Müller-Olm, M., Touili, T.: Regular symbolic analysis of dynamic networks
of pushdown systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653,
pp. 473–487. Springer, Heidelberg (2005)

[4] Dolev, D., Yao, A.C.-C.: On the security of public key protocols. IEEE Transactions on
Information Theory 29(2), 198–207 (1983)

[5] Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking push-
down systems. Electr. Notes Theor. Comput. Sci. 9 (1997)

[6] Goubault-Larrecq, J.: Personal communication (2003)
[7] Goubault-Larrecq, J.: Deciding H1 by resolution. Inf. Process. Lett. 95(3), 401–408 (2005)
[8] Goubault-Larrecq, J., Parrennes, F.: Cryptographic protocol analysis on real C code. In:

Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 363–379. Springer, Heidelberg (2005)
ISBN 3-540-24297-X

[9] Lugiez, D., Schnoebelen, P.: The regular viewpoint on pa-processes. Theor. Comput.
Sci. 274(1-2), 89–115 (2002)

[10] Mayr, R.: Decidability and Complexity of Model Checking Problems for Infinite-State Sys-
tems. PhD thesis, Technische Universität München (1998)

[11] Nielsen, C.R., Nielson, F., Nielson, H.R.: Iterative Specialisation of Horn Clauses. In:
Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 131–145. Springer, Heidelberg
(2008)

[12] Nielson, F., Nielson, H.R., Seidl, H.: Normalizable Horn clauses, strongly recognizable
relations and Spi. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477,
pp. 20–35. Springer, Heidelberg (2002)

[13] Weidenbach, C.: Towards an automatic analysis of security protocols in first-order logic. In:
Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 314–328. Springer, Heidel-
berg (1999) ISBN 3-540-66222-7

A Graph-Based Implementation for Mechanized
Refinement Calculus of OO Programs

Zhiming Liu1, Charles Morisset2, and Shuling Wang1,3

1 UNU-IIST, P.O. Box 3058, Macau S.A.R., China
2 Royal Holloway, University of London

Information Security Group
Egham, Surrey TW20 0EX, U.K.

3 State Key Lab. of Computer Science
Institute of Software, Chinese Academy of Sciences

Abstract. This paper extends the mechanization of the refinement cal-
culus done by von Wright in HOL, representing the state of a program
as a graph instead of a tuple, in order to deal with object-orientation.
The state graph structure is implemented in Isabelle, together with def-
initions and lemmas, to help the manipulation of states. We then show
how proof obligations are automatically generated from the rCOS tool
and can be loaded in Isabelle to be proved. We illustrate our approach by
generating the proof obligations for a simple example, including object
access and method invocation.

Keywords: Isabelle, Proof obligations, rCOS, Theorem proving.

1 Introduction

Software verification is about demonstrating that an implementation (executable
code) of the software meets its specification (formal description of the behavior)
and several techniques are available in order to achieve this goal. Testing and
model checking usually aim to verify if a property holds on a subset of instances
of a program, or on a model of the program, respectively, while theorem proving
aims to build the proof of correctness, that is, the semantics of the implementa-
tion logically implies the specification. For all these techniques, there are several
challenges to address:

i) An increasing number of software is written using the oo approach, and
therefore the execution states of a program are complex, due to the complex
relations among objects, aliasing, dynamic binding, and polymorphism. This
makes it hard to understand and reason about the behavior of the program.

ii) When a tool is provided to help the development of software, it should
offer an environment where the user can specify, analyze, implement and verify
a program. Therefore, the different verification techniques need to be integrated
within the tool.

iii) In general, it is not possible to automatically verify if an implementation
satisfies a specification, therefore the tool is required to guide the user through
the different steps of the verification process.

J. Davies, L. Silva, and A. Simão (Eds.): SBMF 2010, LNCS 6527, pp. 258–273, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Graph-Based Implementation for OO Refinement 259

The refinement for Component and Object Systems (rCOS) [10,16] method
provides an interesting framework to address these challenges. Firstly, rCOS
has a formal semantics based on an extension of the Unifying Theories of Pro-
gramming (UTP) [11] to include the concepts of components and objects. The
graph-based operational semantics [12] has recently been defined for oo pro-
grams. Secondly, the rCOS tool (available at http://rcos.iist.unu.edu) provides
a UML-like multi-view and multi-notational modeling and design platform. In
particular, two verification processes are already implemented: the automated
generation of test cases to check the robustness of a component [15], and the
automated generation of CSP processes to verify the compatibility between the
sequence diagram and the state diagram of a contract [7]. Lastly, rCOS extends
the refinement calculus [1,17], which is a program construction method, where
a non-deterministic specification is incrementally refined to deterministic code,
using pre-defined rules. This approach creates several refinement steps, which
fill the gap between the specification and the implementation, therefore reduces
the proof complexity, by replacing a single complex proof by many simpler ones.

Related Work. The mechanization of the refinement calculus was firstly done
in [24], which has been extended to include pointers [2] and also object-oriented
programs [4,20]. In particular, a refinement calculus has been defined for Eiffel
contracts [19], and encoded in PVS [18]. Although this approach addresses a
similar issue than the one exposed here, the authors encode the calculus using a
shallow embedding, that is, a class in Eiffel is encoded as a type in PVS, a routine
in Eiffel is encoded as a function in PVS, etc. Proofs of refinement are then done
over PVS programs rather than PVS terms, and so require the understanding of
the underlying semantics of PVS. We use here a deep embedding, following [24],
and the proofs of refinement are done, roughly speaking, over the abstract syntax
tree of the original program, and so only require to know how to write a proof
in Isabelle/Isar. The Program Refinement Tool [3] provides a deep embedding
of a refinement calculus, and even if it does not support OO programs natively,
it could be extended with an existing formalization which does [22]. However,
rCOS also provides a semantics for components, and even if we do not address in
this paper the issue of verification of component protocols, this work is part of a
larger framework where other verification techniques exist [21]. In other words,
the work presented here is not a standalone tool, but adds up to a collection of
tools that helps a developer to specify, implement and verify an application.

On the other hand, different memory models for object-oriented programs
have been encoded in theorem provers [9,23,13]. However, the memory in these
approaches is either modelled as a function from addresses or pointers to values or
using records to represent objects. Although such a modelling is very expressive,
and has been shown to be adapted to automated demonstration, we propose here
a representation of the memory by a directed and labeled graph, that is intuitive
than a representation by a function or set of records. The graph structure helps
in the formulation of properties and carrying out interactive proofs.

260 Z. Liu, C. Morisset, and S. Wang

Contribution. The main contribution of this paper is twofold. The first one is
the implementation in Isabelle of rCOS using a graph to represent the state of a
program. It is an extension of the mechanization of the refinement calculus done
by von Wright in HOL [24]. The other one is the automated generation of proof
obligations for refinement steps in rCOS. Concretely, we have implemented in the
rCOS tool a plug-in which is able to take the bodies of two methods defined with
the rCOS language, translate each body into a predicate transformer in Isabelle
and generate automatically an Isabelle lemma stating that the first predicate
transformer refines the second one (the proof still has to be done by the user).
This process is linked with the definition of refinement steps within the tool.
The most technical part of this work is the translation from rCOS designs to
Isabelle statements.

Organization. Section 2 introduces the rCOS language. Section 3 recalls the
previous mechanization of the refinement calculus. Section 4 presents the graph-
based representation of the memory and its implementation in Isabelle/HOL.
Section 5 extends the mechanization of refinement calculus to object-orientation.
Section 6 presents an example to illustrate our approach. Finally, Section 7
concludes and presents the future work.

2 rCOS

The rCOS method consists of two parts: a component/object-oriented language,
with a formal semantics, and a modeling tool, enforcing a use-case based method-
ology for software development, providing tool support and static analysis. We
give here a brief description of the language, and we refer to [5,6] for further
details.

2.1 Language

The rCOS language is an extension of UTP [11], to include object-oriented and
component features. The essential theme of UTP that helps rCOS is that the
semantics of a program P (or a statement) in any programming language can be
defined as a predicate, called a design. The most general form of a design is a pair
of pre- and post-conditions [1,17], denoted as p(x) � R(x,x’), of the observable x
of the program. Its meaning is defined by the predicate p(x) ∧ ok⇒ R(x,x’) ∧ ok’,
which asserts that if the program executes from a state where the initial value
x satisfies p(x), the program will terminate in a state where the final value x’
satisfies the relation R(x,x’) with the initial value x. Observables include program
variables and parameters of methods or procedures. The Boolean variables ok
and ok’ represent observations of termination of the execution preceding the
execution of P (i.e. ok is true) and the termination of the execution of P (i.e.
ok’ is true), respectively. Non-deterministic choice is defined as d1 � d2, where d1

and d2 are designs.
The language also includes traditional imperative statements, and a design

can be: skip and chaos, an assignment p := e, where p is a navigation path,

A Graph-Based Implementation for OO Refinement 261

and e is an expression; a conditional statement d1 � b � d2, where d1 and d2

are designs and b is a boolean expression; a sequence d1; d2, where d1 and d2 are
designs; a loop do b d, where d is a design and b is a boolean expression; a local
variable declaration and un-declaration var T x = e ; end x, where T is a type.

Objects are created through the command C.new (p), where C is a class type
and p is a navigation path. It creates a new object of type C whose attributes
have the initial values as declared in C, and attaches the new object to p. A
method invocation has the form e.m(ve, re), where m is a method and e, ve, re
are expressions. Intuitively, it first records the value of the actual value parameter
ve in the formal value parameter of m, and then executes the body of m. At the
end it returns the value of the formal return parameter to the actual return
parameter re.

The rCOS language includes the notion of components, which provide or re-
quire contracts. A contract includes an interface (a set of field and method dec-
larations), the specification of each method and a protocol stating the allowed
sequences of method calls (for instance, for a buffer, the method put must be
called before the method get). A component provides a contract through a class,
which is the usual notion of class, where each method has to be defined using a
design. Note that the design of a method does not have to be executable in gen-
eral, only if the user wants to generate Java code, since executable rCOS designs
are quite similar to Java programs. For instance, all the following examples are
correct rCOS programs.

class A {
int x;
public m(int v) { x := v }

}

class B1 {
A a;
public foo() {
[true |− a.x’ = 2 ∨ a.x’ = 3] }

}

class B2 {
A a;
public foo() {
[true |− a.x’ = 1] ;
a.x := a.x + 1 }

}
class B3 {

A a;
public foo() {

a.m(1) ; a.x := a.x + 1 }
}

The method B1::foo is abstract and non-deterministic: it just specifies, under the
true precondition, that the value of the field x of the field a should be either
equal to 2 or to 3. The method B2::foo mixes abstract pre/post-conditions with
a concrete assignment while B3::foo is completely concrete and could be directly
translated to Java. In this example, we can see that B1::foo is refined by B2::foo,
which is refined by B3::foo. We detail in the following section the mechanization
of the notion of refinement.

3 Mechanized Refinement

The refinement calculus [1,17] is a program construction method, where a non-
deterministic specification is incrementally refined to deterministic code, using

262 Z. Liu, C. Morisset, and S. Wang

pre-defined rules. This calculus has been fully implemented with a theorem
prover, HOL, in [24,8] and then extended, in particular in [14], which intro-
duces, among others, procedures and recursive functions. The implementation
is actually the definition of a predicate transformer semantics, i.e. the weakest
precondition. For any design d and any predicate q over states, the function
d q is defined as the weakest precondition that should be true on states before
executing d such that q holds after executing d. Therefore, a design is usually
considered as a predicate transformer, since it takes a predicate (q) as input and
returns another predicate (the weakest precondition of q). We recall here the
definitions of assignment and refinement from [24]. We use State to represent
the type of program states. We introduce first the types of predicates over states
and the type of predicate transformers.

types State pred = State ⇒ bool
State predT = State pred ⇒State pred

The assign predicate transformer takes a function e, which takes a state and
returns the state where the corresponding assignment is done. The weakest pre-
condition of a predicate q is calculated by checking q on a state where the
assignment has been done.

definition assign :: (State ⇒ State) ⇒ (State predT) where
assign e q ≡ λu. q (e u)

A design c1 is refined by a design c2 if, and only if, the weakest precondition of
c1 implies the one of c2 for any state.

definition implies :: (State pred) ⇒ (State pred) ⇒ bool where
implies p q ≡ ∀ u. (p u) ⇒ (q u)

definition refines :: (State predT) ⇒ (State predT) ⇒bool (infixl ref 40) where
c1 ref c2 ≡ ∀ q. (implies (c1 q) (c2 q))

In addition to the definition of the semantics, helpful theorems are introduced
in [24]. For instance the one stating that the loop do g c refines the loop do g d

if the design c refines the design d.

theorem do ref : d ref c ⇒ (do g d) ref (do g c)

Although the previous definitions do not directly depend on the structure of the
state, the latter is defined as a tuple [24], where each element of the tuple is the
value of a variable of the program. For instance, if a program has two variables x
and y, set respectively to 1 and 3, the state of such a program is the pair (1, 3).
The names of the variables are therefore lost in the translation, and any operation
concerning x has to be translated as an operation concerning the first element
of the pair. As a result, dealing with local variables and method calls implies
to extend and narrow the state, respectively. Moreover, this approach does not
directly handle references and therefore such a representation for states cannot
be applied for oo programs. The usual way to tackle this issue is to represent
oo states as records or as a function from pointers to values [2,19,4,20]. A new
approach uses graphs instead [12], and we present it in the next section.

A Graph-Based Implementation for OO Refinement 263

4 Graph Representation

In [12], the state of a program is represented as a directed labeled graph. We recall
here the definition of such a graph and give its implementation in Isabelle/HOL,
together with basic operations to manipulate state graphs.

4.1 State Graph

A state graph describes the values of variables, together with a family of objects
and their relations. Due to the existence of nested local variables and method in-
vocations, we also need to describe scopes in state graphs. A scope is represented
as a node in a state graph, called scope node. Two scope nodes are adjacent iff
the scopes they represent are directly nested. They are connected by an edge la-
beled by $, the one corresponding to the inner scope as the source and the other
one as the target of the edge respectively. In particular, the top scope node with
no incoming $ edge represents the current scope, and is thus the current root of
the state graph. For instance, in Fig. 1(a), r is the root of the graph.

The outgoing edges of a scope node, except for the $ edge, represent the
variables defined in the corresponding scope. A non-scope node in a state graph
represents an object or a primitive datum, called object node and value node,
respectively. An object node is labeled by the runtime type of the object, while
a value node is labeled by the primitive value. An outgoing edge from an object
node is labeled by a field name of the source object and refers to the target object
representing the value of this field. There is no outgoing edge from a value node.

Let A be the set of names of variables (including the special variable this
which refers to the current object) and fields, and A+ = A ∪ {$}. Let C be the
set of classes and W the set of constant values. The formal definition of a state
graph is then given as follows.

Definition 1 (State Graph). A state graph is a rooted, directed and labeled
graph G = 〈V, E, T, F, r〉, where

– V = R ∪N ∪ L is the set of nodes, where R is the set of scope nodes, N is
the set of object nodes and L is the set of value nodes,

– E ⊆ V ×A+ × V is the set of edges,
– T : N → C is a mapping from object nodes to types,
– F : L→W is a mapping from value nodes to values,
– r ∈ R is the root of the graph and it has no incoming edges,
– starting from r, the $-edges, if there are any, form a path such that except

for r each node on the path has only one incoming edge.

All the nodes on the $-path are scope nodes, the top of which is the root of
the state graph. When a new scope is entered, a new node together with a $-
edge from it to the current root are pushed onto the $-path; and when a scope is
exited, the top node of the $-path is popped out, together with all edges outgoing
from it. As an illustration, Figure 1 (a) shows the state graph after the command
a.b.x :=1; var int c=2; is executed. Moreover, Figure 1 (b) shows a state graph
with recursive objects, where the types and values of nodes are ignored.

264 Z. Liu, C. Morisset, and S. Wang

a

b

x

$

C

B
A

2

r

c

1

a

b

x

r

v

c

Fig. 1. (a): a state graph; (b): a state graph with recursive objects

4.2 Graph Implementation

A state graph requires the sets of scope nodes, object nodes and value nodes to
be disjoint. We therefore define the datatype vertex as the union of four disjoint
types: onode for object nodes, snode for scope nodes, vnode for value nodes, and
⊥ for the undefined vertex, the latter being introduced mainly for the definition
of graph operations.

datatype vertex = N onode | R snode | L vnode | ⊥
A state graph is defined as the cartesian product of four elements:

types
edgefun = vertex ⇒ label ⇒ vertex
onodefun = onode ⇒ctype
vnodefun = vnode ⇒val
graph = edgefun ∗ onodefun ∗ vnodefun ∗ snode list

The first element of a graph is the function edgefun, which given a vertex a
and a label x, returns the vertex b if (a, x, b) is in the set of edges, ⊥ otherwise
(note that ⊥ is different from the node corresponding to null). Such a definition
automatically ensures the determinism for edges. The second (resp. the third)
element of a graph corresponds to the function T (resp. the function F). The
last element is a list of scope nodes, where the head of the list stands for the
current root, the second element stands for the previous one, and so on. This
representation of scope nodes allows us not to implement $-edges.

In order to ensure that there is no edge starting with the undefined vertex ⊥,
we introduce the following property.

definition isGoodFunction:: graph ⇒bool where
isGoodFunction g ≡ ∀ x. (getEdgeFun g) ⊥ x = ⊥
where getEdgeFun g is used to get the first component of g.

Moreover, we need some properties concerning the list of scope nodes. Indeed
the snode list is well-formed (and in this case the graph satisfies isCorrectSnode,
which we do not detail here due to lack of space) if, and only if,: (1) the scope
nodes cannot be undefined; (2) all the scope nodes are unique; (3) from each
scope node, there must exist at least one outgoing edge; (4) a scope node can
never be the target of an edge. Thus, a graph g is well-formed, denoted by
wfGraph g if, and only if, it satisfies isGoodFunction and isCorrectSnode.

A Graph-Based Implementation for OO Refinement 265

4.3 Graph Operations

This section gives the implementation of some basic graph operations. Due to
space limitation we only present a subset of definitions below, more can be found
at http://isg.rhul.ac.uk/morisset/sbmf/graph utl.thy.

First, the function swingEdge swings an edge with the given source and label
to point to a new vertex by updating the edgefun of the graph. It will return
the original graph when the edge to be swung does not exist, or when the new
target is undefined.
definition swingEdge:: vertex ⇒ label ⇒ vertex ⇒ graph ⇒ graph where
swingEdge n x m g ≡ (if ((getEdgeFun g) n x) = ⊥ then g

else if m = ⊥ then g
else let new EF = ((λ v. λl . (if (v = n & l = x) then m

else ((getEdgeFun g) v l))) in (new EF, snd g))

We then introduce the type path as a list of labels, hence representing navigation
paths. For implementation optimisation reasons, the path is actually stored as
the reverse list of labels: for instance, the rCOS expression a.b.x is defined as the
list [’’x’’, ’’b’’, ’’a’’]. Given a path p and a graph g, the function getOwner

returns the vertex that the tail of the path p refers to in the graph. Formally,
it returns ⊥ if the path is empty, the corresponding scope node of the variable
if the path is limited to one element (using the function getSnodeOfVar) and
otherwise, recursively gets the owner of the tail of the path, from which it gets
the next vertex associated with the head of the tail.
consts getOwner :: path ⇒graph ⇒ vertex
primrec getOwner [] g = ⊥

getOwner (x#t) g = (if t = [] then (R (getSnodeOfVar x g))
else ((getEdgeFun g) (getOwner t g) (hd t)))

Starting from the source getOwner p g and the label hd p, we can reach the
target vertex that the path p refers to in g, which is exactly the definition of the
function getVertexPath. This operation corresponds to the general evaluation of
path expressions in a program state.
definition getVertexPath :: path ⇒ graph ⇒ vertex where
getVertexPath p g ≡ (if p = [] then ⊥

else ((getEdgeFun g) (getOwner p g) (hd p)))

Finally, the function swingPath swings the last edge of a path in the graph to
point to a new vertex. In other words, it sets a new value to a path in a state
graph, and therefore, can be used for implementing assignments in rCOS. As
defined below, it uses getOwner and hd p to find the source and the label of the
last edge respectively, and then swings the edge by using swingEdge directly.
When the path is empty, swingPath returns the original graph.
definition swingPath :: path ⇒ vertex ⇒ graph ⇒ graph where
swingPath p n g ≡ (if p = [] then g else swingEdge (getOwner p g) (hd p) n g)

This function has been proved to preserve the well-formedness, i.e. for any
graph g, any path p and any non-scope node vertex n, if g is well-formed then
(swingPath p n g) is also well-formed.

266 Z. Liu, C. Morisset, and S. Wang

Furthermore, we prove that a path after being swung to a vertex will actually
point to the vertex. Before stating the fact, we define a path p to be well-formed
w.r.t. g, denoted by wfPath p g, if, and only if, the vertex of p exists in g, and the
owner of p appears exactly once as a source in the list of edges along the path,
the latest of which is exactly the property isGoodPath p g. For instances, in the
state graph in Figure 1 (b), the paths v.a, v.a.b.c and v.a.b.x satisfy isGoodPath,
while v.a.b.c.a and v.a.b.c.a.b.x do not. We discuss in the conclusion about the
limitations caused by this constraint.

Finally, the theorem swingPathChangeVertex is proved under three assump-
tions: g is well-formed; p is well-formed w.r.t. g; and n is not the undefined
vertex. In particular, with the assumption isGoodPath, we can prove a key fact
that the owner of the path p is not changed after it is swung.

theorem swingPathChangeVertex :
wfGraph g ⇒wfPath p g ⇒n 	= ⊥ ⇒getVertexPath p (swingPath p n g) = n

We will introduce functions for implementing local variable (un-)declaration.
Adding edges representing variables in a graph is done by the function addVarList,
which given a function f of type labelVerF (mapping variables to their initial
values) and a graph g, adds edges labeled with variables lp in the domain of f
to the current root of g and lets them point to the associated vertices f lp.

definition addVarList:: labelVerF ⇒ graph ⇒ graph where
addVarList f g ≡ case (getSnodeList g) of [] ⇒ g

| a#p ⇒((λ vp. λ lp . (if (vp = (R a) & (∃ v. v 	= ⊥ & f lp = v)) then (f lp)
else ((getEdgeFun g) vp lp))), snd g)

Moreover, we define a function createSnode which pushes a new scope node into
the scope node list of a graph. The function Vars then combines the operations of
creating a scope node and adding edges, and therefore implements local variable
declaration.

definition Vars:: labelExpF ⇒graph ⇒ graph where
Vars f g ≡ addVarList (expToNode f (createSnode g)) (createSnode g)

where labelExpF maps variables to their initial expressions, and expToNode trans-
lates a function of type labelExpF to the corresponding one of type labelVerF, by
changing in the range the expressions to their values in the graph. Finally, we in-
troduce a function removeSnode which removes the top root from the scope node
list, and in consequence all edges outgoing from the scope node. It implements
local variable un-declaration.

definition removeSnode :: graph ⇒graph where
removeSnode g ≡ case (getSnodeList g) of [] ⇒ g

| t#q ⇒(λ v. λ l . (if (v = R t) then ⊥ else (getEdgeFun g) v l),
getOnodeFun g, getVnodeFun g, q)”

where the functions getOnodeFun and getVnodeFun are used to get the second and
third components of a graph respectively.

A Graph-Based Implementation for OO Refinement 267

We are now in position to introduce the function addObject which creates a
new vertex (object) in a graph. Given a path l, a class type s and a graph g, this
function first gets a fresh object node of type s not in g, done by getNodeFromType;
then swings the path l to refer to the new vertex by using swingPath; and fi-
nally, attaches the attributes of class s to the new node and initialises them,
which is implemented by the function addAttrs. In the definition, the function
getAttrsOfCtype is used to extract the attribute information from class s.

definition addObject:: path ⇒ctype ⇒ graph ⇒ graph where
addObject l s g ≡ let v = (N (getNodeFromType s g)) in addAttrs v

(expToNode (getAttrsOfCtype s) g) (swingPath l v g)

The functions removeSnode, Vars and addObject are proved to preserve the graph
well-formedness, and furthermore, the last two are proved to ensure that vari-
ables or attributes are initialised with the correct values.

5 Refinement of rCOS Designs

The graph-based representation of the memory presented in the previous section
allows us to extend the mechanization of the refinement calculus presented in
Section 3 to deal with object-orientation. Since we only consider well-formed
graphs and paths, we integrate these conditions into the weakest precondition
of each command. The complete definition of the refinement calculus for all
constructs can be found at http://isg.rhul.ac.uk/morisset/sbmf/rcos.thy.

5.1 Primitive Designs

Pre/post-condition. The definition of the non-deterministic assignment is
changed to include the well-formedness checks.

definition

nondass :: (graph ⇒ graph pred) ⇒ path list ⇒ (graph pred) ⇒ (graph pred) where

nondass P l q ≡ (λv. (wfGraph v) & (wfPathl l v) & (∀ v1. P v v1 ⇒ q v1))

where wfPathl l v is true if, and only if, every path in l satisfies wfPath. This list
of paths corresponds to all the paths appearing in the post-condition. A pre/post-
condition is then an assertion followed by a non-deterministic assignment.

definition pp :: (graph pred) ⇒ (graph ⇒ graph pred) ⇒ path list ⇒
(graph predT) where

pp p r l ≡ assert p ; nondass r l

where assert is the standard definition for the assertion. For instance, the
pre/post-condition [true |− a.b.x’=2] is translated into the following statement

pp (true) (λ g. λ g1.((getIntOfPath a.b.x g1) = 2)) [a.b.x]

268 Z. Liu, C. Morisset, and S. Wang

where, for the sake of readability, we write a path as in code, e.g. a.b.x stands
for the path [’’x’’,’’b’’,’’a’’].

Assignment. The definition of the assignment is changed as follows.

definition assign :: path ⇒ exp ⇒ (graph pred) ⇒ (graph pred) where
assign p e q ≡ λu. wfGraph u & wfPath p u & wfExp e u &

q (swingPath p (getNodeExp e u) u)

where the path p is assigned to the expression e, which is required to be well-
formed. The function getNodeExp returns the value of an expression, which is
defined using getVertexPath when the expression to be evaluated is a path, oth-
erwise itself when it is a constant value.

Local Declaration and Un-declaration. The commands begin and end de-
clare/initialize new local variables and terminate them, respectively.

definition begin :: labelExpF ⇒(graph pred) ⇒ (graph pred) where
begin f q ≡ λu. wfGraph u & wflabelExpF f u & q (Vars f u)

definition end :: (graph pred) ⇒ (graph pred) where
end q ≡ λu. wfGraph u & q (removeSnode u)

where f is a well-formed function of type labelExpF, which means that for each
local variable, it is initialised by a well-formed expression in f.

The command locdec defines the block for local declaration and un-
declaration, where f is the same as above and c is the body of the block.

definition locdec :: labelExpF ⇒(graph predT) ⇒(graph predT) where
locdec f c ≡ begin f; c; end

Method Invocation. The command method implements a method invocation
with the help of the command locdec.

definition method :: (label ∗ exp) list ⇒ (graph predT) ⇒(graph predT) where
method l c ≡ locdec (getLabelExpF l) c

where l is of type (label * exp) list, each pair consisting of a formal value
parameter and the corresponding actual value parameter of the method, and c is
the method body followed by the assignment from the formal return parameter to
the actual return parameter. In the method command, the function getLabelExpF

translates a list of pairs of type label * exp to the corresponding mapping of
type labelExpF (i.e. label ⇒exp). For instance, the method call a.m(1) in the
example of Section 2 is translated as:

method [(this, Path this.a), (v, Val (Zint 1))] ;assign this.x Path v

When the method is called, the variable this is initialised by this.a (the caller),
and v by 1. Note that with this approach, recursive method calls are not directly
handled, and require the definition of a fix-point, which we do not consider here.

A Graph-Based Implementation for OO Refinement 269

Object Creation. The command object implements object creation s.new (p):

definition object :: path ⇒ ctype ⇒ (graph pred) ⇒ (graph pred) where
object p s q ≡ λu. wfGraph u & wfPath p u & wflabelExpF (getAttrsOfCtype s) u

& q (addObject p s u)

5.2 Composite Designs

With the predicate transformer semantics, the definitions of the composite de-
signs, like the sequential composition, the loop or the conditional statement,
do not depend on the representation of the memory state. Hence, we can di-
rectly re-use the definitions and theorems from [24]. For instance, the sequential
composition c; d is refined by e; f if c is refined by e and d is refined by f

and c is monotonic, and in fact, we have proved that all basic commands (i.e.
nondass, pp, assign, begin and end) are monotonic, and the compound constructs
locdec, method, cond, do, seq preserve monotonicity with respect to their sub-
components. Moreover, the other constructs such as the conditional cond and the
loop do preserve refinement with respect to their subcomponents. By applying
these theorems, we can refine a program by repeatedly refining its subcompo-
nents, and then prove that the new generated program is a refinement of the old
one.

6 Application

We describe in this section how to use the mechanization of the refinement
calculus within the rCOS tool.

6.1 Tool Refinement

Refining a model is, by definition, a dynamic process: a new model is generated
from a previous one, by applying some refinement rules. The main challenge is
then to be able to consider both models at the same time, in order to generate
the corresponding proof obligations. When the refinement concerns only method
bodies, the rCOS tool provides a simple way to define a refinement operation.
Firstly, a class is created, and stereotyped with a specific kind of refinement, for
instance refining automatically every [true |− x’=e] by x := e. The most general
refinement is the manual refinement, where the user provides an operation, its
old design (mainly for sanity checks), and the refining design. In a second step,
the user can, at any time, apply such a refinement by right-clicking on the
corresponding class and selecting the “refine” operation, and the tool will then
transform the model accordingly.

6.2 Provided Lemmas

In addition to the theorems introduced in [24], we provide lemmas corresponding
to refinement steps. For instance, the lemma stating that for any path p and any
integer expression n, [true |− p’=n] is refined by p := n is defined as:

270 Z. Liu, C. Morisset, and S. Wang

lemma ref pp assign :
pp (true) (λ g. λ g1.((getNatOfPath g1 p) = n)) [p] ref
(assign p (Val (Zint n)))

The proof of this lemma, together with the proofs of other useful lemmas, can
be found at http://isg.rhul.ac.uk/morisset/sbmf/rcos lib.thy.

Another example is the Expert Pattern, which is an essential rule for oo

functionality decomposition by delegating responsibilities through method calls
to the objects, called the experts, that have the information to carry out the
responsibilities. For instance, defining a setter for a field is a special case of the
Expert Pattern, and therefore a refinement. In this case, we have proved, with
the theorem EPIsRefOne, that the method bar() { p.x := n } is refined by the
method bar() { p.m() } where m () {this.x := n} is a method of p, for any non-
empty path p and constant n; a similar theorem EPIsRefTwo is provided, when the
setter takes the value as an argument, that is, the method bar() { p.x := n } is
refined by the method bar() { p.m(n) } where m (T v) {this.x := v} is a method
of p, for any primitive type T and parameter v.

6.3 Example

Let us consider the examples given in Section 2. The user first defines the classes
A and B1 and then introduces a manual refinement, concerning the operation
foo, where the old design is dold = [true|−a.x’=2 ∨ a.x’=3] and the new design is
dnew ={a.m(1) ; a.x := a.x + 1}. When applying the refinement, the class B3 is
obtained. However, proving directly that dold is refined by dnew might be com-
plex, as several steps of refinement are involved. The user can either decompose
the refinement proof in Isabelle or directly in the rCOS tool. Indeed, the latter
allows one to easily compose refinement steps. In this example, the user can intro-
duce the manual refinement r1 of [true|−a.x’=2 ∨ a.x’=3] to [true|−a.x’=2]; the
automatic refinement r2 of pre/post-conditions to assignments; the the manual
refinement r3 of a.x := 2 to a.x:=1; a.x := a.x+1; the expert-pattern refinement
r4 on a.x := 1.

The proof obligations for each step can be generated automatically. For in-
stance, the proof obligation corresponding to r3 is the following statement:

assign this .a.x (Val (Zint 2)) ref
(assign this .a.x (Val (Zint 1));

(assign this .a.x (Plus (Path this.a.x) (Val (Zint 1)))))

The refinement r1 strengthens the post-condition of the design, so the proof
is quite straight-forward. The proofs of r2, r3 and r4 directly follow from the
lemmas described in the previous subsection. Finally, using the fact that the re-
finement relation is transitive, we can prove that dold = [true|−a.x’=2 ∨ a.x’=3]
is refined by dnew ={a.m(1) ; a.x := a.x + 1}. The complete proofs can be found
at http://isg.rhul.ac.uk/morisset/sbmf/example.thy. Except the proofs of r1
and r3, all the other proofs could be derived automatically, since automatic

A Graph-Based Implementation for OO Refinement 271

transformations are used, meaning we can directly use the lemmas associated
with these transformations. Such an automatic association is, as we say in the
conclusion, a future work.

7 Conclusion

The approach presented in this paper allows a user of the rCOS tool to auto-
matically generate proof obligations of design refinement. The generated state-
ments are defined using the predicate transformer semantics mechanized in [24]
extended here to support object-oriented programs, thanks to a graph-based
representation of the memory. A library of lemmas and theorems is available
to the user in order to help her to prove the generated statements, concerning
for instance the graph operations or the refinement calculus. There are two ma-
jor strengths to this approach. The first one is the seamless integration within
the rCOS tool, hence making the process transparent for the user, who can
design a software using UML, with the proof obligations being automatically
generated. Of course, these obligations still have to be discharged, but using a
more generic back-end, like Why [9], would generate proof statements both for
interactive theorem provers and automated demonstrators. However, since we
are using higher-order terms, automated demonstration might not be very effi-
cient, therefore we need to keep providing lemmas corresponding to refinement
steps, especially the ones concerning oo concepts. This issue poses the one of
the scalability, since large programs usually involve a large number of refinement
rules and a statement containing a large number of rules can only be proven in
a reasonable amount of time and space if each rule has been proven for the
general case. The proof would then only be a succession of application of simple
rules, which is the main strength of the refinement calculus. We therefore believe
that the effort should be made to provide the developer with a large number
of rules already proven rather than trying to automatically prove a complex
transformation.

The other strength of this approach is the definition of the graph-based seman-
tics. Although using a graph is not strictly more expressive than using records
or a function from pointers to values, that is, it does not allow one to express
more programs, the properties of a state can be expressed in a different, more
abstract and intuitive way. In particular, the graph model helps the formulation
and understanding of properties in the first place and on the other hand provides
intuition for construction of their proofs to be checked by the theorem prover. In
practice, the function getEdgeFun of a graph is conceptually close to a function
from pointers to values: each object node is a pointer and each value node is a
value. In other words, a graph can be seen as an extensional definition of a usual
function from pointers to value. However we believe that a more abstract view of
the memory helps reasoning about the state of the program. For instance, stat-
ing that a path p is alias-free in a state g is simply done by stating that there is
no path p2 different from p such that getVertexPath p g = getVertexPath p2 g.

Several limitations need however to be addressed, for instance the assumption
isGoodPath in the theorem swingPathChangeVertex or in the weakest precondition

272 Z. Liu, C. Morisset, and S. Wang

of the statements, which may be too strong. Intuitively, this theorem still holds
without it but the proof is more complex, since in general we lose the fact that
the owner of the path is the same before and after swinging, as we showed on
the examples. A possible lead to address this issue is to consider that any path
which does not satisfy isGoodPath can be “reduced” to a path which does. For
instance, on Figure 1 (b), the path v.a.b.c.a points to the same object that v.a
points to, but v.a satisfies isGoodPath.

Moreover, more designs need to be implemented in the translation process, for
instance recursive method calls. However, we can extensively reuse [8,14], defined
for imperative programs, by extending them to object-oriented programs. The
method call does not currently support dynamic binding, but it could be done
by looking up the actual type of the caller from the second element onodefun of
the graph to fix the called method body.

In general, the next step is to integrate this mechanism within model trans-
formations, which is an on-going work in the rCOS tool [21]. The principal
challenge in this work is for the tool to handled¡ several models at the same
time: before, during and after refinement. Such modifications are easy to han-
dle when changing the design of a single method, but more complicated when
for instance changing or deleting classes. The idea is then to establish a corre-
spondence between the modifications done in the tool and the refinement rules
involved. Moreover, a better interaction with Isabelle could help the user in the
decomposition of the refinement steps. For instance, by using similar techniques
than those used in automated demonstration, the tool could use the feedback
from the theorem prover to ask the user to introduce more steps. We then could
have a system where the user introduces a refinement rule, the tool tries to
prove it automatically, if it cannot, it asks the user for an intermediary step,
tries again, and so on until the whole rule is proved.

Acknowledgment. This work has been supported by the project GAVES of
the Macao S&TD Fund, the 973 program 2009CB320702, STCSM 08510700300,
and the projects NSFC-60721061, NSFC-60970031, NSFC-90718041 and NSFC-
60736017. The authors would like to thank Volker Stolz for his useful remarks.

References

1. Back, R.-J.: On the Correctness of Refinement Steps in Program Development.
PhD thesis, Helsinki, Finland, Report A–1978–4 (1978)

2. Back, R.-J., Fan, X., Preoteasa, V.: Reasoning about pointers in refinement cal-
culus. Technical Report 543, TUCS - Turku Centre for Computer Science, Turku,
Finland (July 2003)

3. Carrington, D., Hayes, I., Nickson, R., Watson, G., Welsh, J.: A tool for developing
correct programs by refinement. In: Proc. BCS 7th Refinement Workshop. Springer,
Heidelberg (1996)

4. Cavalcanti, A., Naumann, D.A.: A weakest precondition semantics for refinement of
object-oriented programs. IEEE Transactions on Software Engineering 26, 713–728
(2000)

A Graph-Based Implementation for OO Refinement 273

5. Chen, Z., Liu, Z., Ravn, A.P., Stolz, V., Zhan, N.: Refinement and verification in
component-based model driven design. Science of Computer Programming 74(4),
168–196 (2009); UNU-IIST TR 388

6. Chen, Z., Liu, Z., Stolz, V.: The rCOS tool. In: Modelling and Analysis in VDM:
Proceedings of the Fourth VDM/Overture Workshop, number CS-TR-1099 in
Technical Report Series. Newcastle University (May 2008)

7. Chen, Z., Morisset, C., Stolz, V.: Specification and validation of behavioural pro-
tocols in the rCOS modeler. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS,
vol. 5961, pp. 387–401. Springer, Heidelberg (2010)

8. Depasse, C.: Constructing Isabelle proofs in a proof refinement calculus. Research
Report, UCL (2001)

9. Filliâtre, J.-C.: Why: a multi-language multi-prover verification tool. Research Re-
port 1366, LRI, Université Paris Sud (2003)

10. He, J., Liu, Z., Li, X.: rCOS: A refinement calculus of object systems. Theor.
Comput. Sci. 365(1-2), 109–142 (2006); UNU-IIST TR 322

11. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall,
Englewood Cliffs (1998)

12. Ke, W., Liu, Z., Wang, S., Zhao, L.: A graph-based operational semantics of oo
programs. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885,
pp. 347–366. Springer, Heidelberg (2009)

13. Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, virtual
machine, and compiler. ACM Trans. Program. Lang. Syst. 28(4), 619–695 (2006)

14. Laibinis, L.: Mechanised Formal Reasoning About Modular Programs. PhD thesis,
Abo Akademi (2000)

15. Lei, B., Liu, Z., Morisset, C., Li, X.: State based robustness testing for components.
In: FACS 2008. ENTCS, vol. 260, pp. 173–188. Elsevier, Amsterdam (2008)

16. Liu, Z., Morisset, C., Stolz, V.: rCOS: theory and tools for component-based model
driven development. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS, vol. 5961,
pp. 62–80. Springer, Heidelberg (2010)

17. Morgan, C.: Programming from specifications, 2nd edn. Prentice Hall International,
Englewood Cliffs (1994)

18. Paige, R., Ostroff, J., Brooke, P.: Formalising eiffel references and expanded types
in pvs. In: Proc. International Workshop on Aliasing, Confinement, and Ownership
in Object-Oriented Programming (2003)

19. Paige, R.F., Ostroff, J.S.: ERC – An object-oriented refinement calculus for Eiffel.
Form. Asp. Comput. 16(1), 51–79 (2004)

20. Sekerinski, E.: A type-theoretic basis for an object-oriented refinement calculus.
In: Formal Methods and Object Technology. Springer, Heidelberg (1996)

21. Stolz, V.: An integrated multi-view model evolution framework. Innovations in
Systems and Software Engineering (2009)

22. Utting, M.: An object-oriented refinement calculus with modular reasoning (1992)
23. van den Berg, J., Jacobs, B.: The loop compiler for java and jml. In: Margaria, T.,

Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 299–312. Springer, Heidelberg
(2001)

24. von Wright, J.: Program refinement by theorem prover. In: BCS FACS Sixth Refine-
ment Workshop – Theory and Practise of Formal Software Development. Springer,
Heidelberg (1994)

Automating Refinement of Circus Programs

Frank Zeyda and Ana Cavalcanti

University of York, Heslington, York, YO10 5DD, U.K.
{zeyda,ana}@cs.york.ac.uk

Abstract. In previous work, we have presented a mechanisation of Cir-
cus for the theorem prover ProofPower-Z. Circus is a refinement language
for state-rich reactive systems that combines Z and CSP. In this paper,
we present techniques to automate the discharge of proof obligations typ-
ically generated by the Circus refinement laws. They eliminate most of the
proofs that are imposed by the fact that the encoding has to be precise
about typing and well-definedness issues, and leave just those that are
expected in a pen-and-paper refinement. This allows us to concentrate
on the proof of properties that are significant for the problem at hand,
while benefiting from the increased assurance and efficiency afforded by
the use of a theorem prover as well as high-level tactic languages for
refinement. Our case study is a refinement strategy for verification of
control systems; we present the result of several experiments.

Keywords: theorem proving, tactics, ArcAngelC , ProofPower.

1 Introduction

Circus [4] is a process algebra that captures state as well as behavioural aspects
of a system. Its key concept is that of a Circus process, which, like a CSP [15]
process, communicates with the environment via channels, but also aggregates
local state that can be internally accessed and modified. A Circus process spec-
ification contains a Z schema that specifies its state, and a list of dependent
local actions used by the process, of which a designated action, the main action,
defines the process behaviour. Actions may be specified using a mixture of CSP
constructs, Z operation schemas [16], and guarded commands of Dijkstra and
Morgan [5,8]. Processes can also be combined using CSP constructs.

A notable feature of the Circus language is its formal semantics and associated
refinement calculus [4]. This permits the derivation or verification of executable
programs. The flexibility of the language to handle both sequential behaviour
and parallelism in a unified way makes it especially suitable for the description
and formal derivation of state-rich concurrent systems [9].

A semantic embedding of Circus for ProofPower-Z, a theorem prover based
on HOL that also supports Z, was first presented in [12]. We have extended
that encoding to handle types and Circus programs (rather than the Circus se-
mantics [19]). We have also developed a ProofPower implementation of
ArcAngelC [18]. This is a refinement-tactic language to formulate strategies to
automate the derivation and verification of programs from Circus specifications.

J. Davies, L. Silva, and A. Simão (Eds.): SBMF 2010, LNCS 6527, pp. 274–290, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Automating Refinement of Circus Programs 275

A general issue with the mechanisation is the large number of provisos raised
by the application of refinement laws. They are mostly conditions that we would
not deal with in a pen-and-paper proof. For example, the associativity law
a1 ; (a2 ; a3) ≡ (a1 ; a2) ; a3 for actions does not require any provisos to
be discharged when applied in a pen-and-paper proof. This is not so in its en-
coding in the semantic embedding of Circus, which is given below.

� ∀ a1, a2, a3 : CIRCUS ACTION |
α a1 = α a2 ∧ α a2 = α a3 • a1 ;C (a2 ;C a3) ≡ (a1 ;C a2) ;C a3

First, we have to introduce the provisos that a1, a2 and a3 belong to the set
CIRCUS ACTION , the semantic domain for actions. Secondly, two provisos
are needed to ensure that all actions have the same alphabet. The α operator
gives the alphabet of an action: the variables on which it operates.

These provisos establish well-formedness constraints that are typically taken
for granted given the syntactic and type correctness of the actions. A mechanised
model, however, forces us to make them explicit to establish the necessary assump-
tions for provability of the laws. Each Circus operator, like sequential composition
of actions above, is encoded by a semantic function [12], and these functions are
total on CIRCUS ACTION , but only partial with respect to the corresponding
maximal set. This gives rise to non-trivial constraints, since CIRCUS ACTION ,
in our model, is not a type in the sense of being maximal.

In a deep semantic embedding, it is possible to formalise well-formedness
as a property of the program syntax. (The difference between a shallow and
deep embedding is that the latter also formalises the syntax of the embedded
language.) We can then prove that (syntactic) well-formedness implies mem-
bership to the aforementioned (semantic) domains. Additionally, a collection
of laws may be used to deduce well-formedness of compound expressions from
the well-formedness of its components, or conversely, deduce well-formedness of
components from the well-formedness of the expression as a whole.

There are, however, important reasons for not pursuing a deep approach in
our mechanisation of the UTP and Circus to encode alphabetised predicates. The
most crucial one is that the language of the UTP is not static: in higher-level
theories new operators may be introduced that effectively become part of the
syntax. In a deep embedding such extensions would be difficult to handle.

In combination with our implementation of ArcAngelC and more complex re-
finement tactics, the problem of provisos is exacerbated by the fact that tactic
application relies on so-called ‘model theorems’, monotonicity of operators, and
reflexivity and transitivity of refinement. Those theorems are frequently applied
as part of many of the core tactics and suffer from the same problem of in-
troducing conceptually superfluous provisos. Executing the tactics, the provisos
quickly accumulate and result in theorems that become unmanageable.

Our contribution is a novel treatment of the notion of well-formedness at
the semantic level. It allows us to eliminate most of the inherent provisos in law
applications with minimal incisions to the embedding. To take advantage of that,
we have made changes to the implementation of ArcAngelC as given in [18]; we

276 F. Zeyda and A. Cavalcanti

also discuss those alterations here. We evaluate our new technique by encoding
tactics that perform part of a refinement strategy for control laws [3].

Section 2 introduces the relevant preliminary material: core aspects of our
semantic embedding of Circus, ArcAngelC , and its implementation. Section 3
explains our solution to managing well-definedness, and Section 4 discusses the
accompanying extensions to the ArcAngelC implementation. Section 5 reports
on a case study, and in Section 6 we present our conclusions and future work.

2 Preliminaries

In this section, we first present relevant details of our mechanisation of Circus.
The mathematical notation we use is standard Z [16], but the ideas in Section 3
and Section 4 also exploit the higher-order support afforded by ProofPower being
based on HOL. We secondly briefly introduce ArcAngelC and its implementation.

2.1 Mechanisation of Circus

The mechanisation of Circus is based on its denotational semantic model [12],
which is formulated in terms of the Unifying Theories of Programming (UTP) [6].
The UTP is a general framework in which the semantics of a variety of modelling
and programming languages can be uniformly expressed. It is founded on a
relational calculus like Tarski’s, but presented in a predicative style.

In the UTP, relations represent computational behaviours. To encode them,
we use alphabetised predicates, which are predicates equipped with an alphabet
of variables. The predicate x ′ = x + 1 ∨ x ′ = x − 1, for example, encodes the
computation that either increments or decrements the value of x ; its alphabet
includes x and x ′. We use undecorated names to denote initial observations of
the value of a variable, and dashed names to denote subsequent ones. In the
UTP theory for Circus, alphabetised predicates describe actions and processes.

In our mechanisation, an alphabetised predicate is a pair.

ALPHA PREDICATE =̂ {bs : BINDINGS ; u : UNIVERSE | bs ⊆ BindingsU u}
Its first component is a set of bindings (records) describing the valuations of the
variables of the alphabet that render it true. The second component records the
types of the alphabet variables. BINDINGS is the type of all binding sets, and
UNIVERSE consists of all partial functions from VAR to TYPE , where VAR
is the semantic domain for variables, and TYPE (=̂ P1 VALUE) contains all
non-empty sets of values. The condition bs ⊆ BindingsU u effectively establishes
that the bindings of a predicate have to be well typed. (The function BindingsU
constructs the complete set of bindings according to a given typing universe.)

Alphabetised predicates are embedded shallowly in the mechanisation: we
characterise their semantics, but do not formalise the syntax of the UTP and
the Circus language. Instead we provide a collection of semantic functions that
correspond to the various syntactic constructs.

We define in [19] operators that provide the logical connectives, equality, sub-
stitution, including all Circus constructs, and importantly refinement. The latter
allows us to state that some (concrete) program P behaves according to its

Automating Refinement of Circus Programs 277

(abstract) specification S . Formally, this is expressed by S # P , and given the
mechanisation we can, by aid of a collection of refinement laws, prove whether
a given refinement holds. To automate this process, we have implemented a
bespoke tactic language ArcAngelC ; it is explained in the next section.

2.2 ArcAngelC

ArcAngelC is a tactic language for the derivation of Circus programs from speci-
fications [10]. (Hereafter, we will use the word ‘program’ synonymously for both
specifications and programs.) A salient feature of ArcAngelC is first that it sup-
ports backtracking through angelic choice, namely from failure of tactic applica-
tions. This it inherits from its kin Angel [7], which is more generally concerned
with proving arbitrary goals. Secondly, it has a formal semantics that has been
specified in the Z notation, and permits the reasoning about tactics.

Basic literal tactics provided by the ArcAngelC are skip, which leaves the
program unchanged, fail, which always fails, and abort, whose application is
not guaranteed to terminate. To apply refinement laws, the tactic law name(args)
takes the name of the law and a list of arguments. Compound tactics may be
declared using the Tactic name (args) =̂ body end construct.

We further have the binary tacticals t1 ; t2 for sequence and t1 | t2 for al-
ternation. Sequence executes the tactics one after another, and alternation first
attempts to apply t1, and if that fails, applies t2. Other tactics are ! t which
acts like a cut on the backtracking search of finding a successful path of tactic
execution, and applies to p do t which guards the application of a tactic t by
successful matching of the program against a pattern p. Finally, recursive tactics
are supported via the fixed-point operator μX • t(X).

To apply tactics to the operands of a Circus action or process construct, a set
of structural combinators is provided. They are boxed versions of the respective
Circus operators. For example, the combinator t1 � t2 applies to actions of the
form a1 � a2. Its behaviour is to apply t1 to a1 and t2 to a2. The application is
justified by the monotonicity of Circus operators with respect to refinement.

We have implemented ArcAngelC in ProofPower [18]. The fundamental design
of the implementation supports tactics as theorem-generating functions that ap-
ply to program expressions A and return lists of refinement theorems Γ � A # B .
The construction of refinement theorems is necessarily sound because of the LCF
approach that prevents invalid theorems from being derived. More specifically,
ProofPower-Z uses the type system of the prover’s implementation language (ML)
to differentiate between (unproved) conjecture and (proved) theorems.

3 Managing Well-Definedness

Most of the laws of our Circus semantic encoding specify well-definedness provisos
for their applicability. The provisos ensure that relational expressions, such as
p1 # p2, as well as operator applications, like p1 �C p2, are well-defined, that
is, the underlying semantic functions are applied inside their domain.

278 F. Zeyda and A. Cavalcanti

As already said, these well-definedness constraints give rise to proof obliga-
tions that accumulate through the application of ArcAngelC tactics. Sources for
the provisos are model theorems automatically applied in the mechanics of the
ArcAngelC implementation, monotonicity theorems applied when invoking struc-
tural combinators, and user-defined laws. In practice, even after applying just the
first three of the seven phases of the refinement tactic NB for control laws [13],
the resulting theorem already includes more than 130 assumptions. Thereafter
it becomes unmanageable, slowing down or even bringing to a stall further ap-
plication of tactics. To tackle this problem we have pursued a combination of
two approaches. They are explained separately in the following sections.

3.1 Reducing Constraints in the Semantic Encoding

To tame the complexity of generated assumptions, we have used a novel treat-
ment of typing . This reduced the number of provisos but has retained soundness.

By way of illustration, the semantic function for ∧ is defined as follows.

(∧P) : WF ALPHA PREDICATE PAIR → ALPHA PREDICATE

∀ p1, p2 : ALPHA PREDICATE |
(p1, p2) ∈ WF ALPHA PREDICATE PAIR • p1 ∧P p2 = (tB , tU)

Here, membership of (p1, p2) to WF ALPHA PREDICATE PAIR encapsulates
an additional constraint for the compatibility of the universes of p1 and p2. The
terms tB and tU respectively abbreviate the binding set and universe of the
result; their particular shape is not relevant here and for brevity is omitted.

Opposed to this, in HOL, the types of variables are part of their identity,
meaning that in a term like n ≥ 1 ∧ n = false (that may result from conjoining
Γ1 � n ≥ 1 and Γ2 � n = false), we are effectively talking about two different
variables n distinguished by their types. We adopt a similar approach by moving
type information from the universe directly into the entities representing names,
which are now bindings of the following schema type.

VAR =̂ [name : STRING; dashes : N; subscript : SUBSCRIPT ; type : TYPE]

The type STRING represents character sequences, and SUBSCRIPT is a free
type for representing a possible subscript. Importantly, the type component
records the type of the variable, and TYPE is equated with the non-empty sub-
sets of VALUE , that is, TYPE =̂ P1 VALUE . In comparison, in the previous
model, VAR only recorded a unique identifier (name), dashes, and a subscript.

This implies that the previous notion of ‘universe’ is subsumed by the con-
ventional notion of an alphabet, which now implicitly carry type information.
The encoding we obtain is in fact very similar to that originally developed by
Oliveira [12], but with the added benefit of concisely capturing type information.
The constraint bs ⊆ BindingsU u is notably redundant now in the definition of
ALPHA PREDICATE . We can also drop additional constraints in definitions
that require compatibility of types. Thus, the definition of ∧P becomes

Automating Refinement of Circus Programs 279

(∧P) : ALPHA PREDICATE × ALPHA PREDICATE → . . .

∀ p1, p2 : ALPHA PREDICATE • p1 ∧P p2 = (tB , tA)

Most other definitions of our encoding can be simplified in a similar manner.
The notion of compatibility becomes obsolete since the common variables of
alphabetised predicates necessarily have the same type.

This enhancement also displayed benefits in terms of modularising proofs.
First, reasoning about alphabets (which are sets) is logically simpler than rea-
soning about universes (which are functions). Secondly, it is now possible to
introduce a notion of well-typed expressions independently of the universe con-
text; this makes provisos related to evaluation of expressions simpler.

We, however, still have many provisos like p ∈ ALPHA PREDICATE or
p ∈ CIRCUS ACTIONS . The following section explains how we deal with them.

3.2 A Semantic Formalisation of Well-Formedness

Our approach to capture well-formedness at the semantic level gives us the same
benefits as a syntactic characterisation of well-formedness in a deep embedding,
and importantly does not compromise soundness. To formalise well-formedness,
we introduce a generic HOL function wd of type ′a →BOOL where ′a is a type
variable. (Hereafter we use the term ‘well-defined’ in favour of ‘well-formed’.)
Initially we do not specify any properties of wd , but for each semantic operator
op we add an axiomatic constraint of the following form.

� wd(op(x1, . . . , xn)) ⇔ wd x1 ∧ . . . ∧ wd xn ∧ (x1, . . . , xn) ∈ dom op

The proposition wd(op(x1, . . . , xn)) entails that op is applied in its domain,
and that all arguments are well-defined. Domain membership enables us to
extract properties of the arguments; for instance wd(p1 ∧P p2) implies that
p1 ∈ ALPHA PREDICATE . Moreover, for complex program terms, the prop-
erty of well-defined arguments allows us to extract well-definedness of any sub-
term. For example, wd(p1 ∧P (p2 ∧P p3)) implies wd p1, wd p2 and wd p3.

A potential risk with this approach is due to the definition of wd not being
obviously conservative. Generally in logic, conservative extensions maintain con-
sistency of the extended theory, and in many case this can be established by the
mere shape of the defining axiom. What we are doing, however, in defining wd
is in fact treating some Z function application op(x1, . . . , xn) as if it revealed in-
formation whether the function was applied in its domain. It is not immediately
evident if and under what conditions such a treatment is sound.

To prove consistency, we provide a model which fulfils the defining axioms. The
essence of our model is the identification of values outside the domain and range
of each operator with undefinedness, and axioms that constrain applications of
operators outside their domains to be closed under this set. This is possible
because the underlying HOL logic is based on total functions, and therefore any
term denotes a value. Specifically, f (x) denotes a value even when x �∈ dom f ,
and constraining this value by an axiom such as � f (c) = v for particular c and

280 F. Zeyda and A. Cavalcanti

v neither impinges on f ’s domain nor produces unsoundness if c �∈ dom f . This
is a property of the embedding of Z partial functions into HOL.

To illustrate the conceptual idea of the model, we consider, for example, the
set ALPHA PREDICATE . To capture undefinedness for functions encoding al-
phabetised predicate operators, we introduce the following set.

⊥ALPHA PREDICATE =̂ U \ ALPHA PREDICATE

It is simply the complement of ALPHA PREDICATE with respect to its corre-
sponding maximal type. In ProofPower-Z, U acts as the carrier set of a generic
type which is inferred by the type checker, and which is always maximal. Here,
it would be the set P ((P VAR) × P (VAR ↔ VALUE)).

For ∧P , for example, we have the supplementary axiom below.

� ∀ p1, p2 : U | (p1, p2) �∈ dom(∧P) • p1 ∧P p2 ∈ ⊥ALPHA PREDICATE

It does not affect (relative) consistency because none of the original definitions
impose any constraints on function applications outside their domains.

Finally, we can give a conservative definition for wd if applied to elements of
type ALPHA PREDICATE : wd p ⇔ p �∈ ⊥ALPHA PREDICATE . The definition
provably satisfies the axiom for wd(p1 ∧P p2) as it has been specified before,
and thereby establishes the correctness of the model, which itself is sound.

This model in a way simulates a treatment of undefinedness. It is correct if
the types are ‘large enough’ so that we can always find a witness that serves to
distinguish defined from undefined function applications.

There are cases where a collection of semantic types T1, T2, . . . have the same
maximal type Tmax . For example, the semantic domain CIRCUS ACTION for
actions is a subset of ALPHA PREDICATE . In those cases, a single set ⊥T is
defined as Tmax \ ⋃

Ti to ensure that ⊥T is disjoint from all sets Ti . In such
a situation, the union

⋃
Ti needs to be a proper subset of Tmax , so that there

is some x ∈ Tmax for which ∀ i • x �∈ Ti . This implies that ⊥T �= ∅, which is
crucial to prove that the model satisfies the axioms for wd .

Accordingly, there are functions in our encoding to which we cannot apply
wd . These are first the operators involving the ProofPower-Z B type, which is
maximal. Since refinement is defined by a function with range B, we cannot
specify wd(p1 # p2) ⇔ wd p1 ∧ wd p2 ∧ (p1, p2) ∈ dom (#). The impact of
this restriction is on provisos that involve refinements themselves. The extension
of our technique to handle such cases is left as future work.

Additionally, the domains of the functions that encode the various opera-
tors on values is VALUE , which is also maximal. This prevents us from spec-
ifying a well-definedness axiom, for example, for Eval(b, e), which evaluates
an expression under a binding and yields an element of VALUE . To handle
expressions, we axiomatise wd slightly differently; we define wd inductively
over the free type EXPRESSION that encodes the syntax of expressions. (Un-
like alphabetised predicates, they are embedded deeply.) We introduce a set
WT EXPRESSION containing the expressions that are well-defined, that is
{e : EXPRESSION | wd e}. Since, the functions that encode Circus operators

Automating Refinement of Circus Programs 281

involving expressions are parameterised in terms of WT EXPRESSION , their
domains are not maximal, and so we can give wd axioms for them.

We do not actually define our model for wd in ProofPower-Z, as it would
unnecessarily complicate the various definitions of operators. The main point
is that we can introduce wd capturing the well-formedness of terms purely in
semantic terms, and given the above caveats this definition is sound.

It is now possible to specify laws that either exploit or prove wd theorems. In
particular, the associativity law for conjunction is now expressible as below.

∀ p1, p2, p3 : U | wd((p1 ∧P p2) ∧P p3) •
(p1 ∧P p2) ∧P p3 ≡ p1 ∧P (p2 ∧P p3) ∧ wd(p1 ∧P (p2 ∧P p3))

This directly mirrors the intuition that if the left-hand side p1 ∧P (p2 ∧P p3) is
well-defined, the equivalence holds and also the right-hand side (p1 ∧P p2) ∧P p3
is well-defined. Its only non-trivial proviso is the assumption of well-definedness
of the initial program. We mechanically proved the above law without much
effort by utilising its original version and rewriting applications of wd .

This illustrates how wd can provide a framework in which we can handle the
emerging proof obligations for typing with theorems that establish that well-
formedness is preserved. We work in a setting similar to that of pen-and-paper
refinement proofs, where we normally assume that the initial program is well-
formed, as are the programs of each law. If additionally the arguments of param-
eterised laws are well-formed, we conclude that all programs in the derivation
chain must be well-formed. In summary, we work under assumptions that mean
that we do not need to worry about issues of well-formedness.

In the following section we explain how the implementation of ArcAngelC has
been amended to make use of theorems that possess this shape.

4 Extensions to the ArcAngelC Implementation

We present here how we have extended the ArcAngel implementation to take
advantage of the wd function.

4.1 Extended Refinement Theorems

Refinement theorems in our implementation of ArcAngelC had to be of the form
Γ � A # B , where Γ is a list of proof obligations, and A and B are program
expressions. To integrate well-definedness constraints, we have generalised the
permissible shape of such theorems to Γ,wd A � A # B ∧ wd B . We call them
extended refinement theorems. Their conclusions are conjunctions in which the
first conjunct provides the actual refinement, and the second conjunct establishes
well-definedness of the result B of the program transformation. We also have an
assumption that asserts well-definedness of the initial program A.

The implementation has been adapted to handle these kinds of theorems.
Importantly, the ArcAngelC mechanics has been adjusted as to only retain the wd
theorem of the initial program, and, as much as possible, discard intermediate wd

282 F. Zeyda and A. Cavalcanti

provisos via incremental proofs. We also importantly preserve the general shape
of an extended refinement theorem during tactic applications. To illustrate this,
we consider the application of a refinement law. In the previous encoding these
laws were typically of the form

� ∀ v1 : T1; . . . ; vn : Tn | P [v1, . . . , vn] • A[v1, . . . , vn] # B [v1, . . . , vn]

with type provisos v1 : T1, v2 : T2, and so on. The notation A[v1, . . . , vn] is used
to emphasise that the variables vi are free in A. We now rephrase such laws as

� ∀ v1 : U; . . . ; vn : U | wd A[v1, . . . , vn] ∧
P [v1, . . . , vn] • A[v1, . . . , vn] # B [v1, . . . , vn] ∧ wd B [v1, . . . , vn] .

Here, U is the carrier set of a type that is dynamically inferred by the type
checker. It is maximal, and so only incurs trivial proof obligations. This new
version of the law can be proved from the former by rewriting the wd function on
both sides and extracting the type provisos. For example, if A is v1 ∧P v2 we have
that wd(v1 ∧P v2) implies that both v1 and v2 belong to ALPHA PREDICATE .

We observe that all type provisos have been absorbed into just one assertion
wd A[v1, . . . , vn] that establishes well-definedness of the left-hand program. If we
apply the new law to an extended refinement theorem Γ,wd X � X # Y ∧ wd Y ,
the right-hand program Y is matched against the left-hand program A of the
law to instantiate the quantified variables. We then obtain an instantiation
P ′,wd Y � Y # Y ′ ∧ wd Y ′ after moving antecedents to the hypotheses.

The original extended refinement theorem and the instantiated law give rise
to the following four theorems (after eliminating the conjunction in the conclu-
sions): (1) Γ,wd X � X # Y ; (2) Γ,wd X � wd Y ; (3) P ′,wd Y � Y # Y ′;
(4) P ′,wd Y � wd Y ′. We use (1), (3) and (4) to obtain

(5) Γ,P ′,wd X ,wd Y � X # Y ′ ∧ wd Y ′

by transitivity of refinement using (1) and (3), and conjunction using (4). The
transitivity model theorem is now recast as

� wd p1 ∧ wd p2 ∧ wd p3 • p1 # p2 ∧ p2 # p3 ⇒ p1 # p3 .

It is formulated in terms of wd theorems rather than type provisos.
The intermediate theorem (5) contains the surplus assumption wd Y , and our

goal is to eliminate it. This can be achieved by the cut rule together with (2). The
cut rule states that from Γ1 � P and Γ2,P � Q we can derive Γ1, Γ2 � Q . All this
requires no real proof effort and can be done with the application of rules. (Rules
are theorem-generating functions in ProofPower, and their evaluation usually
requires less effort.) We then obtain the extended refinement theorem

(6) Γ,P ′,wd X � X # Y ′ ∧ wd Y ′

with the desired shape. Apart from the wd assertion for the initial program and
provisos Γ, it only introduces the relevant proof obligations P ′ of the law.

All this takes place as part of the mechanics of the implementation of law ap-
plications. It relies, however, on the model and law theorems having the correct

Automating Refinement of Circus Programs 283

shape. For instance, if the law does not have the wd term of the transformed
program in its consequent, the elimination of the proviso in (5) fails. The imple-
mentation is, nonetheless, sufficiently robust to handle such cases; this merely
shows in the accumulation of provisos that could not be removed.

The examples used so far do not illustrate how provisos in the recast laws
reduce those of the former laws beyond typing conditions. For example, as-
signment is encoded by the semantic function AssignC (a,ns , es) where a is
the alphabet, and ns and es are sequences of variables and expressions. Here,
wd AssignC (a,ns , es) does not merely constrain a to be of type ALPHABET , ns
to be of type seq VAR, and es to be of type WT EXPRESSION , but states the
stronger (a,ns , es) ∈ domAssignC , which, by definition of AssignC , moreover
implies that the sequences ns and es have the same length. Conditions like these
would formerly have to be explicitly specified in the antecedent of the law. The
simplification becomes even more apparent when the left and right-hand pro-
grams of the law are more complex. Despite, experience so far shows that in cer-
tain cases we still need to specify non-trivial type provisos, namely when in a law
A # B we cannot prove wd B from wd A, but this is not very often the case.

The next section discusses an approach to the treatment of provisos similar to
the one above, but in the context of monotonicity theorems. It ensures that the
application of structural combinators does not introduce further assumptions.

4.2 Structural Combinators

The ArcAngelC implementation requires, for each combinator, two monotonicity
theorems: one for equivalence and one for refinement. These theorems are used
when applying the respective combinator tactic. They also give rise to provisos
that accumulate. In general, the monotonicity theorems are of the form

� ∀ a1 : T1; . . . ; ak : Tk ; p1, . . . , pn : T ; p′1, . . . , p
′
n : T |

P [a1, . . . , ak , p1, . . . , pn] ∧ P ′[a1, . . . , ak , p′1, . . . , p′n] •
p1 # p′1 ∧ p2 # p′2 ∧ . . . ∧ pn # p′n ⇒

op(a1, . . . , ak , p1, . . . , pn) # op(a1, . . . , ak , p′1, . . . , p
′
n)

where op(a1, . . . , ak , p1, . . . , pn) is an (n+k)-ary operator with fixed arguments
a1, . . . , ak and monotonic arguments p1, . . . , pn . For example, a conditional is a
programming operator whose condition is a fixed argument, and whose programs
are monotonic arguments. For action operators, T is CIRCUS ACTION . The
provisos P and P ′ establish that the application of op is well-defined on both
sides of the concluding refinement. They imply that (a1, . . . , ak , p1, . . . , pn) and
(a1, . . . , ak , p′1, . . . , p′n) both belong to domop.

Using the wd function, we generally express these theorems now as

� ∀ a1 : U; . . . ; ak : U; p1, . . . , pn : U; p′1, . . . , p
′
n : U |

wd(op(a1, . . . , ak , p1, . . . , pn)) ∧ p′1 ∈ T ∧ . . . ∧ p′n ∈ T •
p1 # p′1 ∧ p2 # p′2 ∧ . . . ∧ pn # p′n ⇒

op(a1, . . . , ak , p1, . . . , pn) # op(a1, . . . , ak , p′1, . . . , p
′
n) ∧

wd(op(a1, . . . , ak , p′1, . . . , p
′
n)) .

284 F. Zeyda and A. Cavalcanti

This shape is similar to that of rephrased laws, but additionally includes the
provisos p′i ∈ T for all i ∈ {1, . . . ,n}. We explain below how they are discarded
during the application of the tactic. We use � , the structural combinator for in-
ternal choice, as an example. The approach applies to all unary, binary and n-ary
combinators of the ArcAngelC program model. An exception is the combinator
μ for recursion, which we address separately.

The combinator � for Circus internal choice has the following monotonicity
theorem in our original implementation. (There are no fixed arguments.)

� ∀ p1, p2, p′1, p
′
2 : CIRCUS ACTION | α p1 = α p2 •

p1 # p′1 ∧ p2 # p′2 ⇒ p1 �C p2 # p′1 �C p′2

Besides the type provisos, we require with α p1 = α p2 that p1 and p2 have
the same alphabet. This is crucial for the well-definedness of p1 �C p2. The
refinements in the antecedent imply that α p1 = α p′1 and α p2 = α p′2, hence
we can conclude that α p′1 = α p′2 holds too. This ensures well-definedness of
p′1 �C p′2. Accordingly, the new monotonicity theorem is as follows.

� ∀ p1, p2 : U; p′1, p
′
2 : U | wd(p1 �C p2) ∧

p′1 ∈ CIRCUS ACTION ∧
p′2 ∈ CIRCUS ACTION •

p1 # p′1 ∧ p2 # p′2 ⇒ p1 �C p2 # p′1 �C p′2 ∧ wd(p′1 �C p′2)

We observe that we cannot rid ourselves of all type provisos: membership of p′1
and p′2 to CIRCUS ACTION stays, because refinement of p1 and p2 does not
necessarily preserve membership to CIRCUS ACTION . We can, however, use a
proof tactic to remove these provisos in the resulting theorem by proving them
from the residual assumptions and again using the cut rule as follows.

When a structural combinator is applied, the first step is to dissect the op-
erator application and apply the combinator tactics to the program operands.
Here, for example, applying t1 � t2 to A �C B applies t1 to A and t2 to B .
This results in the refinement theorems Γ1,wd A � A # A′ ∧ wd A′ and
Γ2,wd B � B # B ′ ∧ wd B ′. We then conjoin these theorems to obtain
Γ1, Γ2,wd A,wd B � A # A′ ∧ B # B ′ whose conclusion has now the right
shape to apply the monotonicity theorem in a forward-chaining manner, that is,
using modus ponens to obtain the conclusion of the theorem. This yields

Γ1, Γ2,A′ ∈ CIRCUS ACTION ,B ′ ∈ CIRCUS ACTION ,
wd A,wd B ,wd(A �C B) � A �C B # A′ �C B ′ ∧ wd(A′ �C B ′) .

From the application of wd to the original program, in our example A�C B , it fol-
lows, by the definition of wd , that the operands are well-defined; in our example,
wd A and wd B hold, so both can be easily eliminated as before. For the elim-
ination of the assumptions related to the restrictions on the components of the
new program, that is, A′ ∈ CIRCUS ACTION and B ′ ∈ CIRCUS ACTION
in the example above, we exploit the wd theorems of the individual program re-
finements. They are in the case above Γ1,wd A � wd A′ and Γ2,wd B � wd B ′.

Automating Refinement of Circus Programs 285

A proof tactic uses these theorems by rewriting wd A′. In the example above,
for a binary structural combinator, there are two terms wd A′ and wd B ′. In
the case of a unary combinator, there is only one, and so on. If A′ is an applica-
tion opC (A′′) of a Circus operator opC , then wd A′ yields that A′′ ∈ dom opC .
A simple law can then be used to infer that opC (A′′) ∈ ran op. Since, the
range of Circus operators is usually CIRCUS ACTION , we obtain a proof for
A′ ∈ CIRCUS ACTION . Considering such results for all terms wd A′, wd B ′,
and so on, is usually enough to establish well-definedness of the new program.

We observe that this reasoning does not depend on the structural combi-
nator per se. The assumptions are that the provisos are exclusively of the form
p′i ∈ CIRCUS ACTION , that there exists a wd axiom for every Circus operator,
and that all Circus operators have domains CIRCUS ACTION .

In our example, this permits us to eliminate the two other provisos too.

Γ1, Γ2,wd(A �C B) � A �C B # A′ �C B ′ ∧ wd(A′ �C B ′)

The result contains only the genuine proof obligations, so no overhead is incurred
by using the monotonicity rule in the mechanisation of the combinator.

The crucial point here is that in the case of structural combinators some real
proof effort is needed to eliminate the surplus provisos. Our implementation of
ArcAngelC is in fact an instantiation of a framework that we have developed for
angelic languages for refinement tactics. It supports ArcAngelC and its prede-
cessor ArcAngel [11] for Morgan’s refinement calculus, and can be extended for
other languages of the same nature. To manage structural combinators, we have
extended the framework to support the dynamic configuration of tactics used
to discharge provisos emerging from their application. For all ArcAngelC com-
binators, the tactics we define are sufficient. The provided flexibility, however,
permits the inclusion of custom tactics that may be needed for other languages.

There are cases in which elimination of the assumptions fails, namely, if the
arguments of the operator are not of the form opC (. . .) where opC is some Circus
operator. Experience, however, shows that this does not happen very often.

More specific extensions have been necessary to handle the structural combi-
nator μ for recursion, which, unlike the other combinators, is supplied with a
function on alphabetised predicates, usually given as a λ-expression. The proof
steps for removing provisos are more involved, and in fact it was not possible
to remove all of them due to the fact that pointwise refinement of a function
does not preserve monotonicity of the function. Precisely, from monotonicity
of f (∀ x , y ∈ dom f • x # y ⇒ f (x) # f (y)), and the pointwise property
∀ x ∈ dom f • f (x) # f ′(x) we cannot conclude that f ′ is monotonic too. In
pen-and-paper proofs, we justify monotonicity assumptions by the particular
shape of actions only using monotonic constructs. In a shallow embedding, cap-
turing this is more difficult because we cannot give a general theorem stating
that Circus actions are monotonic. Solving this problem is part of ongoing work.

The next section comments on experiences in the context of a case study.

286 F. Zeyda and A. Cavalcanti

5 Practical Experiences

The primary motivation for the treatment of well-definedness in the last two
sections is the automation of complex refinement strategies using our tools and
the semantic embedding of Circus. As a case study, we have automated part of
the refinement strategy for control laws described in [2,3].

The work in [2,3] describes first how a formal account of (a subset of) the
Simulink notation can be given by translating the diagrams into Circus specifica-
tions. (Simulink is a de facto industry standard for the design of control systems.)
It then presents a strategy for refinement that gradually transforms the diagram
specification into a Circus model of a given Ada program, and thereby verifies
the correctness of the Ada implementation. For the encoding of the ArcAngelC
tactics, we refer to the work in [13]. The tactics we mechanise are mostly literal
translations of those in [13], including the various Circus laws they rely upon.

The refinement strategy is structured into four phases, and so far we only
automated the first phase NB. This is itself subdivided into 7 steps, NBStep1
to NBStep7, which are assembled into one compound tactic NBMain. The tactic
deals with the normalisation of Circus processes representing blocks (or subsys-
tems) that are realised sequentially in code. Their model is given by a single
centralised process with two parallel actions. The tactic attempts to remove the
parallelism between these actions. A more detailed account of the refinement
strategy is omitted as it would take us too far from the agenda of the paper.

Our example specification is part of the model for the PID controller in [3].
In particular, we have applied the tactics to the model of a differentiator. It
is a simple example, which, however, as we discuss below, already reveals the
importance and effectiveness of our treatment of well-formedness.

Having encoded the tactics and laws, we have verified by inspection, that all
assumptions that remain after the application of the tactics are genuine proof
obligations. As explained in Section 4.2, particular kinds of provisos, namely
those resulting from μ , at present cannot be discharged automatically. We
verified, however, that these are the only residual provisos, apart from the well-
definedness assumption of the initial program of the refinement.

This initial analysis has uncovered some glitches in the recast theories and
implementation that have been subsequently fixed. One of them was a missing
wd axiom for one of the Circus operators which resulted in a simplification tactic
failing. As already mentioned, the implementation has been designed to robustly
deal with such cases, hence no error is raised when individual simplifications of
provisos do not succeed. (In some cases this leads to a partial proof encoded
as a ‘reduced’ proviso, and in other cases the proviso remains unchanged.) We
have increased the efficiency of simplification tactics by incorporating guarding
conditions that ensure they are only applied to assumptions of the correct shape,
and furthermore only involve a predictably small number of proof steps.

We have also compared the efficiency of our technique to that of the stan-
dard explicit treatment of provisos. Since our extensions to the ArcAngelC im-
plementation are fully backward compatible, it is possible to revert to the old
shape of laws and model theorems and execute the same tactics under the same

Automating Refinement of Circus Programs 287

Phase POs Before POs Current Run-time Before Run-time Current

NBStep1 1 1 0.0 sec 0.1 sec
NBStep2 44 4 2.3 sec 1.1 sec
NBStep3 101 8 9.1 sec 2.4 sec
NBStep4 163 15 17.9 sec 3.9 sec

NBStep5 6 198 18 19.9 sec 4.7 sec
NBStep7 243 24 21.1 sec 5.9 sec

Fig. 1. Comparison of the number of generated provisos for NB

conditions. Table 1 summarises the results obtained for the tactics NBStep1 to
NBStep7 of the refinement strategy. (NBStep5 and NBStep6 have been merged
into one tactic). Each row entails the invocation of the preceding tactics too; for
instance, the second row refers to the execution of both NBStep1 and NBStep2.
We report on the number of remaining provisos as well as the execution time of
the tactics measured by the timing facilities of Poly/ML.

The results show that assumptions are reduced by approximately 90%. This
remains fairly constant across tactics, and invariant with the growth in size. We
may expect a similar reduction in runtime, but it is offset by the effort required
to discharge the provisos. Despite, we see that overall this effort is recovered, and
the gain increases with the complexity of the generated refinement theorems. For
example, after NBStep2 we only have a small speed-up, and for NBStep1 even a
slight loss. The speed-up, however, becomes larger in the next two phases.

To check if this trend continues with more complex examples, we have slightly
amended the Diff process. This has resulted in larger ProofPower-Z terms and
the need for more elementary steps to transform the program. In this case,
the original implementation takes 61 sec to execute phases NBStep1 to NB-
Step5 6 and generates a theorem with 259 assumptions. In comparison, the new
technique requires 7.2 sec producing 24 assumptions, giving a further speed-up
increase to 8.5. After once more elaborating the complexity of the example spec-
ification, the former approach requires 154.4 sec and produces 301 assumptions
whereas the new ArcAngelC implementation only takes 10.9 sec. Although we still
have a similar 90% reduction in assumptions, the speed-up has now increased
to 14.1.

The above suggests that with growing complexity of the ArcAngelC tactics
and Circus specifications, the speed-up may further increase, even so non-linearly.
Reasons for this may be that certain operations on theorems are slowed down
in a non-proportional way when theorems become larger. It should be pointed
out that the system we compare with already includes the simplification to the
mechanisation reducing type provisos that we discussed in Section 3.1.

Our results increase confidence that, with the new technique and tool support,
it is possible now to apply the entire refinement strategy and obtain a result
within a reasonable amount of time.

288 F. Zeyda and A. Cavalcanti

6 Conclusions

We have presented a treatment of well-formedness in a shallow embedding of
Circus that considerably simplifies the provisos generated in the application of
refinement (and other) laws. Although it was described in the context of our
Circus mechanisation, the techniques and results obtained generalise to other
language embeddings in other tools that raise similar issues.

We have introduced the wd function to capture well-formedness of terms as
if they were syntactic rather than semantic entities. We have then identified
constraints to establish that this axiomatisation, though non-conservative, is
sound. We have thus avoided the added complexity of a deep embedding while
reaping some of its benefits in relation to properties that are inherently syntactic.

The underlying model for wd is actually a strict treatment of undefined values.
We, however, do not make its model explicit and content ourselves with its
mere existence. Since the logic of HOL does not accommodate undefinedness,
limitations arise in that we cannot, for instance, utilise wd on boolean functions
because the type B is not ‘big enough’ to provide enough values to represent the
undefined case. This is a trade off that we have to accept.

The wd function crucially paves the way for the efficient application of more
complex refinement tactics as it enabled us to recast the implementation of
ArcAngelC in such a way that, apart from genuine proof obligations, only one
additional proviso is generated — to establish the well-definedness of the initial
program. This keeps the complexity of emerging refinement theorems at bay,
and thereby creates opportunities for the use of our mechanisation of Circus and
tools for automatic refinement in the context of real industrial systems.

In [17], von Wright presents a tool for stepwise refinement in a simple sequen-
tial command language. Its semantics is characterised in terms of wp predicate
transformers, which are shallowly embedded into HOL. Well-definedness condi-
tions loosely correspond to establishing the monotonicity of predicate transform-
ers, however the semantic domain is not a priori restricted to those.

The implication of von Wright’s and similar approaches are that we required
more relaxed definitions of operators, and also accept limitations on what laws
can be generally established for the semantic entities. In the UTP, we often rely
on proving properties from healthiness conditions rather than by induction over
some syntax, which makes our approach more suitable here.

Other related work is the refinement editor Refine and Gabriel [14] which sup-
ports the specification and interactive application of ArcAngel tactics to derive
programs in Morgan’s calculus. These tools notably offer facilities to interac-
tively apply tactics and laws. Otherwise, Refine and Gabriel were developed in
view of a specific language, and are essentially rewrite systems.

More recent work has been done on developing Saoith́ın [1], a proof assistant
specifically designed for the UTP. Its advantages are that it essentially operates
at the level of syntax, and naturally some of the semantic issues we reported on
do not arise. It also provides proof strategies that are optimised for proofs in

Automating Refinement of Circus Programs 289

the UTP. On the other hand, it does not specify a model for its deductive sys-
tem and calculus, and this imposes limitations on proving consistency of theory
extensions. An interesting line of work could be to try and combine Saoith́ın
with our tools to see if we can reap individual benefits of both of them.

Future work will first consist of mechanising the entire refinement strategy
for control laws in [13]. Secondly, further work is required to provide proof au-
tomation in relation to the well-definedness of the initial program. To obtain
unqualified theorems, those assumptions need to be discharged. It is still an
open issue how provisos in such theorems are best proved, and whether some of
the wd theorems that we discard as we go along should be cached for later use.

Acknowledgements. This work has been funded by EPSRC as part of the Pro-
gramming from Control Laws research grant EP/E025366/1.

References

1. Butterfield, A.: Saoith́ın Proof Assistant,
http://www.scss.tcd.ie/Andrew.Butterfield/Saoithin/

2. Cavalcanti, A., Clayton, P., O’Halloran, C.: Control Law Diagrams in Circus. In:
FM 2005: Formal Methods. LNCS, vol. 3582, pp. 253–268. Springer, Heidelberg
(2005)

3. Cavalcanti, A., Clayton, P., O’Halloran, C.: From Control Law Diagrams to Ada
via Circus. Technical report, University of York, York, U.K. (April 2008)

4. Cavalcanti, A., Sampaio, A., Woodcock, J.: A Refinement Strategy for Circus. For-
mal Aspects of Computing 15(2-3), 146–181 (2003)

5. Dijkstra, E.: A Discipline of Programming. Prentice Hall Series in Automatic Com-
putation. Prentice Hall, Englewood Cliffs (1976)

6. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice Hall Series
in Computer Science. Prentice Hall, Englewood Cliffs (1998)

7. Martin, A., Gardiner, P., Woodcock, J.: A Tactic Calculus - Abridged Version.
Formal Aspects of Computing 8(4), 479–489 (1996)

8. Morgan, C.: Programming from Specifications. Prentice Hall International Series
in Computer Science. Prentice Hall, Englewood Cliffs (1998)

9. Oliveira, M.: Formal Derivation of State-Rich Reactive Programs using Circus. PhD
thesis, Department of Computer Science, University of York (2005)

10. Oliveira, M., Cavalcanti, A.: ArcAngelC: a refinement tactic language for Circus.
Electronic Notes in Theoretical Computer Science 214, 203–229 (2008)

11. Oliveira, M., Cavalcanti, A., Woodcock, J.: ArcAngel: a Tactic Language for Re-
finement. Formal Aspects of Computing 15(1), 28–47 (2003)

12. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for Circus. Formal
Aspects of Computing, Online First (December 2007)

13. Oliveira, M., Cavalcanti, A., Zeyda, F.: A Tactic Language for Refinement of State-
Rich Concurrent Specifications (to appear)

14. Oliveira, M., Xavier, M., Cavalcanti, A.: Refine and Gabriel: Support for Refine-
ment and Tactics. In: Proceedings of the Second Int. Conference on Software Engi-
neering and Formal Methods, pp. 310–319. IEEE Computer Society, Los Alamitos
(2004)

http://www.scss.tcd.ie/Andrew.Butterfield/Saoithin/

290 F. Zeyda and A. Cavalcanti

15. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall Series in
Computer Science. Prentice Hall, Englewood Cliffs (1997)

16. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice-Hall International
Series In Computer Science. Prentice Hall PTR, Englewood Cliffs (1992)

17. von Wright, J.: Program Refinement by Theorem Prover. In: BCS FACS Sixth
Refinement Workshop – Theory and Practise of Formal Software Development,
London, U.K. Springer, Heidelberg (1994)

18. Zeyda, F., Cavalcanti, A.: Supporting ArcAngel in ProofPower. Electronic Notes in
Theoretical Computer Science 259, 225–243 (2009)

19. Zeyda, F., Cavalcanti, A.: Mechanical Reasoning about Families of UTP Theories.
Science of Computer Programming (March 2010),
doi:dx.doi.org/10.1016/j.scico.2010.02.010

Author Index

Akhtar, Sabina 49

Bauer, Sebastian S. 80
Bendisposto, Jens 1
Bidoit, Michel 80
Bonsangue, Marcello 226
Borba, Paulo 96

Calegari, Daniel 112
Caltais, Georgiana 226
Cavalcanti, Ana 274
Clarke, Edmund M. 144
Crispim, Pedro 33

da Silva, Paulo Salem 64
de Melo, Ana C.V. 64

Gawlitza, Thomas Martin 242
Gervais, Frédéric 177
Gheyi, Rohit 96
Gomes, Artur O. 210
Goriac, Eugen-Ioan 226

Hennicker, Rolf 80

Kleine, Moritz 128

Laleau, Régine 177
Le Métayer, Daniel 194
Leuschel, Michael 1
Liu, Zhiming 258
Lopes, Antónia 33
Lucanu, Dorel 226
Luna, Carlos 112

Madlener, Ken 161
Massoni, Tiago 96
Matoussi, Abderrahman 177
Mazza, Eduardo 194
Merz, Stephan 49
Morisset, Charles 258
Mostowski, Wojciech 17

Oliveira, Marcel V.M. 210

Poll, Erik 17
Potet, Marie-Laure 194

Quinson, Martin 49

Rutten, Jan 226

Sanders, J.W. 128
Seidl, Helmut 242
Silva, Alexandra 226
Szasz, Nora 112

Tamalet, Alejandro 161
Tasistro, Álvaro 112

Vasconcelos, Vasco T. 33
Verma, Kumar Neeraj 242

Wang, Shuling 258

Younes, H̊akan L.S. 144

Zeyda, Frank 274
Zuliani, Paolo 144

	Title Page
	Preface
	Organization
	Table of Contents
	Directed Model Checking for B: An Evaluation and New Techniques
	Introduction
	Combining Depth-First and Breadth-First for Improved Model Checking
	Depth-First versus Breadth-First: An Empirical Evaluation
	The Models
	The Results

	Evaluating Directed Model Checking
	Future and Related Work and Conclusion
	References

	Midlet Navigation Graphs in JML
	Introduction
	MIDP Infrastructure
	Navigation Graphs
	Navigation Graphs in JML
	Relevant API Methods
	Midlet Annotations – The Mobius Case Study

	Specification and Verification Issues
	Evaluation and Discussion
	References

	Runtime Verification for Generic Classes with CONGU2
	Introduction
	Overview of the ConGu Approach
	Runtime Conformance of Programs against Modules
	Object Properties Induced by Specifications
	Checking Object Properties

	The New ConGu Tool
	Analysis of Refinement Mappings
	Bytecode Instrumentation
	Generation of Property-Monitoring Classes

	Conclusions
	References

	A High-Level Language for Modeling Algorithms and Their Properties
	Introduction
	Evaluation of PlusCal
	Introducing a New Version of PlusCal
	Structure of an Algorithm
	PlusCal Statements
	The PlusCal Compiler
	Comparison with Lamport's PlusCal

	Experiments
	Related Work
	Conclusion
	References

	A Formal Environment Model for Multi-Agent Systems
	Introduction
	Environment Model
	Underlying Elementary π-Calculus Events
	Operations
	Environment Structures
	Semantics

	Convenience Elements and Operations
	Composition Operators
	Core Operations

	Example
	Conclusion
	References

	A Modal Interface Theory with Data Constraints
	Introduction
	Modal I/O-Transition Systems with Data Constraints
	Refinement of MIODs
	Composition and Compatibility of MIODs
	Conclusion
	References

	Synchronizing Model and Program Refactoring
	Introduction
	Languages
	Model Refactoring
	Program Refactoring

	Synchronization
	Synchronizers
	Consistency Relationship
	Examples of Synchronizers

	Soundness
	Discussion
	Invariants as Basis for Refactoring Automation
	Quality of Refactorings
	Consistency and Synchronizers

	Related Work
	Conclusions
	References

	A Type-Theoretic Framework for Certified Model Transformations
	Introduction
	Outline of the Approach
	The CIC as a Technical Space
	The Framework at a Glance
	A Running Example

	Formalization of Metamodels and Models
	Translation of the Model Transformation
	Verification of Properties
	Conclusions and Further Work
	References

	Simulating Truly Concurrent CSP
	Introduction
	CSP
	The Transformation T
	Assembling the System
	Properties
	Examples
	Choice versus Concurrency
	One-Place Buffer
	Dining Philosophers

	Related and Further Work
	Conclusion
	References

	Statistical Verification of Probabilistic Properties with Unbounded Until
	Introduction
	Probabilistic Model Checking
	Stochastic Processes and Discrete-Time Markov Chains
	Temporal Stochastic Logic
	Error Control

	Sampling-Based Verification of Unbounded Until
	Sampling-Based Method with Reachability Analysis
	Sampling-Based Method with Termination Probability

	Related Work
	Empirical Evaluation
	Modified Polling System
	Tandem Queuing Network

	Discussion
	References

	Reasoning about Assignments in Recursive Data Structures
	Introduction
	Preliminaries
	The Model
	The Heap
	Expressions, Statements and Compositions
	Assignments

	The Effect of Assignments on Multidot Expressions
	Looking at the Heap Before the Assignment
	Looking at the Heap After the Assignment
	PVS Formalisation

	Linearised Abstractions
	Paths
	Example: Verification of an In-Place List Reversal Algorithm
	Other Data Structures

	Evaluation and Future Work
	Related Work
	Conclusions
	References

	Specification of a Localization Component Driven by a Goal-Based Approach: Some Lessons We Learned
	Introduction
	Background
	KAOS Method
	Event-B Method

	Experience with the Specification of a Localization Software Component
	Abstract Model
	First Refinement
	Second Refinement
	Third Refinement
	Synthesis

	Lessons Learned
	Related Work
	Conclusion and Further Work
	References

	A Formal Framework for Specifying and Analyzing Logs as Electronic Evidence
	Introduction
	Case Study and Notations
	Case Study
	Notation B

	Logs and Claims
	System Information
	Logs and Distribution
	Properties and Claims

	Log Functions
	Log Extraction
	Log Merge

	Log Analysis
	Log Analyzer
	Incremental Analysis

	Conclusion
	Related Works
	Future Work

	References

	Formal Development of a Cardiac Pacemaker: From Specification to Code
	Introduction
	The Pacemaker
	Pacemaker in Z
	Moving into Code
	From Z to Perfect Developer
	Analysis of Results
	Conclusions
	References

	A Decision Procedure for Bisimilarity of Generalized Regular Expressions
	Introduction
	Regular Expressions for Polynomial Coalgebras
	An Algebraic View on the Coalgebra of Generalized Regular Expressions
	A Decision Procedure for Bisimilarity
	A CIRC-Based Tool

	Conclusions and Future Work
	References

	Normalization of Linear Horn Clauses
	Introduction
	Normalization of Finite Sets of Linear Horn Clauses
	Basics
	The Normalization Semi-procedure
	Instantiation

	An Application: Backward Reachability Analysis for Constrained Dynamic Pushdown Networks
	Conclusion
	References

	A Graph-Based Implementation for Mechanized Refinement Calculus of OO Programs
	Introduction
	rCOS
	Language

	Mechanized Refinement
	Graph Representation
	State Graph
	Graph Implementation
	Graph Operations

	Refinement of rCOS Designs
	Primitive Designs
	Composite Designs

	Application
	Tool Refinement
	Provided Lemmas
	Example

	Conclusion
	References

	Automating Refinement of $Circus$ Programs
	Introduction
	Preliminaries
	Mechanisation of $Circus$
	ArcAngelC

	Managing Well-Definedness
	Reducing Constraints in the Semantic Encoding
	A Semantic Formalisation of Well-Formedness

	ExtensionstotheArcAngelC Implementation
	Extended Refinement Theorems
	Structural Combinators

	Practical Experiences
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

