

Lecture Notes in Computer Science 6603
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA

Dimitra Giannakopoulou
Fernando Orejas (Eds.)

Fundamental Approaches
to Software Engineering

14th International Conference, FASE 2011
Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2011
Saarbrücken, Germany, March 26–April 3, 2011
Proceedings

13

Volume Editors

Dimitra Giannakopoulou
Carnegie Mellon University/NASA Ames Research Center
Moffett Field, CA 94035, USA
E-mail: dimitra.giannakopoulou@nasa.gov

Fernando Orejas
Universitat Politècnica de Catalunya
08034 Barcelona, Spain
E-mail: orejas@lsi.upc.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-19810-6 e-ISBN 978-3-642-19811-3
DOI 10.1007/978-3-642-19811-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011922619

CR Subject Classification (1998): D.2.4, D.2, F.3, D.3, C.2, H.4, C.2.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

ETAPS 2011 was the 14th instance of the European Joint Conferences on The-
ory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new conferences.
This year it comprised the usual five sister conferences (CC, ESOP, FASE, FOS-
SACS, TACAS), 16 satellite workshops (ACCAT, BYTECODE, COCV, DICE,
FESCA, GaLoP, GT-VMT, HAS, IWIGP, LDTA, PLACES, QAPL, ROCKS,
SVARM, TERMGRAPH, and WGT), one associated event (TOSCA), and seven
invited lectures (excluding those specific to the satellite events).

The five main conferences received 463 submissions this year (including 26
tool demonstration papers), 130 of which were accepted (2 tool demos), giving
an overall acceptance rate of 28%. Congratulations therefore to all the authors
who made it to the final programme! I hope that most of the other authors
will still have found a way of participating in this exciting event, and that you
will all continue submitting to ETAPS and contributing to make of it the best
conference on software science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2011 was organised by the Universität des Saarlandes in cooperation
with:

� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST)

VI Foreword

It also had support from the following sponsors, which we gratefully thank:
DFG Deutsche Forschungsgemeinschaft; AbsInt Angewandte Infor-

matik GmbH; Microsoft Research; Robert Bosch GmbH; IDS Scheer

AG / Software AG; T-Systems Enterprise Services GmbH; IBM Re-

search; gwSaar Gesellschaft für Wirtschaftsförderung Saar mbH;

Springer-Verlag GmbH; and Elsevier B.V.

The organising team comprised:

General Chair: Reinhard Wilhelm
Organising Committee: Bernd Finkbeiner, Holger Hermanns (chair),

Reinhard Wilhelm, Stefanie Haupert-Betz,
Christa Schäfer

Satellite Events: Bernd Finkbeiner
Website: Hernán Baró Graf

Overall planning for ETAPS conferences is the responsibility of its Steering Com-
mittee, whose current membership is:

Vladimiro Sassone (Southampton, Chair), Parosh Abdulla (Uppsala), Gilles
Barthe (IMDEA-Software), Lars Birkedal (Copenhagen), Michael O’Boyle (Ed-
inburgh), Giuseppe Castagna (CNRS Paris), Marsha Chechik (Toronto), Sophia
Drossopoulou (Imperial College London), Bernd Finkbeiner (Saarbrücken) Cor-
mac Flanagan (Santa Cruz), Dimitra Giannakopoulou (CMU/NASA Ames),
Andrew D. Gordon (MSR Cambridge), Rajiv Gupta (UC Riverside), Chris Han-
kin (Imperial College London), Holger Hermanns (Saarbrücken), Mike Hinchey
(Lero, the Irish Software Engineering Research Centre), Martin Hofmann (LMU
Munich), Joost-Pieter Katoen (Aachen), Paul Klint (Amsterdam), Jens Knoop
(Vienna), Barbara König (Duisburg), Shriram Krishnamurthi (Brown), Juan de
Lara (Madrid), Kim Larsen (Aalborg), Rustan Leino (MSR Redmond), Gerald
Luettgen (Bamberg), Rupak Majumdar (Los Angeles), Tiziana Margaria (Pots-
dam), Ugo Montanari (Pisa), Luke Ong (Oxford), Fernando Orejas (Barcelona),
Catuscia Palamidessi (INRIA Paris), George Papadopoulos (Cyprus), David
Rosenblum (UCL), Don Sannella (Edinburgh), João Saraiva (Minho), Helmut
Seidl (TU Munich), Tarmo Uustalu (Tallinn), and Andrea Zisman (London).

I would like to express my sincere gratitude to all of these people and or-
ganisations, the Programme Committee Chairs and members of the ETAPS
conferences, the organisers of the satellite events, the speakers themselves, the
many reviewers, all the participants, and Springer for agreeing to publish the
ETAPS proceedings in the ARCoSS subline.

Finally, I would like to thank the Organising Chair of ETAPS 2011, Holger
Hermanns and his Organising Committee, for arranging for us to have ETAPS
in the most beautiful surroundings of Saarbrücken.

January 2011 Vladimiro Sassone
ETAPS SC Chair

Preface

FASE (Fundamental Approaches to Software Engineering) is concerned with
the foundations on which software engineering is built. Its focus is on novel tech-
niques and the way in which they contribute to making software engineering a
more mature and soundly based discipline. This year, we particularly encouraged
contributions that combine the development of conceptual and methodological
advances with their formal foundations and tool support. We welcomed contri-
butions on all such fundamental approaches, including:

– Software engineering as an engineering discipline, including its interaction
with and impact on society

– Requirements engineering: capture, consistency, and change management of
software requirements

– Software architectures: description and analysis of the architecture of indi-
vidual systems or classes of applications

– Specification, design, and implementation of particular classes of systems:
adaptive, collaborative, embedded, distributed, mobile, pervasive, or service-
oriented applications

– Software quality: validation and verification of software using theorem prov-
ing, model-checking, testing, analysis, refinement methods, metrics or visu-
alization techniques

– Model-driven development and model-transformation: design and semantics
of semi-formal visual languages, consistency and transformation of models

– Software processes: support for iterative, agile, and open source development
– Software evolution: re-factoring, reverse and re-engineering, configuration

management and architectural change, or aspect-orientation

We solicited two types of contributions: research papers and tool demonstration
papers. We received submissions from 31 countries around the world: 116 ab-
stracts followed by 99 full papers, of which 2 were tool papers. The selection
process was rigorous. Each paper received at least three reviews. We obtained
external reviews for papers that lacked expertise within the Program Commit-
tee. We also had four reviews for all papers that did not receive high bids and
for papers that had Program Committee authors so as to ensure high quality in
accepted papers. Moreover, the Program Committee had extensive online dis-
cussions in order to decide on the papers to be accepted for the conference.

The Program Committee accepted 29 research papers, corresponding to a
29% acceptance rate among the full submissions. We believe that the accepted
papers made a scientifically strong and exciting program, which triggered inter-
esting discussions and exchange of ideas among the ETAPS participants. The
accepted papers cover several aspects of software engineering, including model-
ing, specification, verification, testing, quality of service, code development, and
model-based development.

VIII Preface

Finally, FASE 2011 was honored to host an invited talk by Marta Kwiatkowska,
titled “Automated Learning of Probabilistic Assumptions for Compositional
Reasoning.” We feel that this talk will inspire the software engineering commu-
nity towards two key trends in formal reasoning of realistic systems. Probabilistic
reasoning is often the only meaningful approach in the presence of uncertainty,
and compositionality is essential for scalability.

We would like to thank all authors who submitted their work to FASE. With-
out their excellent contributions we would not have managed to prepare a strong
program. We also thank the Program Committee members and external review-
ers for their high-quality reviews and their effort and time in making the selection
process run smoothly and on time. Finally, we wish to express our gratitude to
the Organizing and Steering Committees for their excellent support.

The logistics of our job as Program Chairs were facilitated by the EasyChair
system.

January 2011 Dimitra Giannakopoulou
Fernando Orejas

Organization

Program Chairs

Dimitra Giannakopoulou Carnegie Mellon University/NASA Ames (USA)
Fernando Orejas Universitat Politècnica de Catalunya (Spain)

Program Committee

Josh Berdine Microsoft Research Cambridge (UK)
Marsha Chechik University of Toronto (Canada)
Shin-Chi Cheung Hong Kong University of Science and Technology

(China)
Juan De Lara Universidad Autónoma de Madrid (Spain)
Claudia Ermel Technische Universität Berlin (Germany)
José Luiz Fiadeiro University of Leicester (UK)
Alex Groce Oregon State University (USA)
Klaus Havelund NASA / JPL (USA)
Reiko Heckel University of Leicester (UK)
Mats Heimdahl University of Minnesota (USA)
Paola Inverardi Università dell’Aquila (Italy)
Valerie Issarny INRIA Paris-Rocquencourt (France)
Joost-Pieter Katoen RWTH Aachen University (Germany)
Jeff Magee Imperial College London (UK)
Tom Maibaum McMaster University (Canada)
Tiziana Margaria Universität Potsdam (Germany)
Leonardo Mariani University of Milano Bicocca (Italy)
Laurent Mounier VERIMAG (France)
Corina Păsăreanu Carnegie Mellon / NASA Ames (USA)
Gabriele Taentzer Philipps-Universität Marburg (Germany)
Daniel Varró Budapest University of Technology and Economics

(Hungary)
Kapil Vaswani Microsoft Research India (India)
Willem Visser Stellenbosch University (South Africa)
Martin Wirsing Ludwig-Maximilians-Universität München

(Germany)
Andrea Zisman City University London (UK)

X Preface

External Reviewers

Marco Autili
Thorsten Arendt
Cyrille Valentin Artho
Mayur Bapodra
Howard Barringer
Shoham Ben-David
Enrico Biermann
Gábor Bergmann
Laura Bocchi
Henrik Bohnenkamp
Artur Boronat
Benjamin Braatz
Jacques Carette
Robert Clarisó
Roy Crole
Davide Di Ruscio
Zinovy Diskin
Hartmut Ehrig
Ylies Falcone
Karsten Gabriel
Ulrike Golas
László Gönczy
Andreas Griesmayer
Radu Grosu
Lars Grunske
Esther Guerra
Gabor Guta

Jonathan Heinen
Frank Hermann
Ábel Hegedüs
Ákos Horváth
Stefan Jurack
Pierre Kelsen
Tamim Khan
Imre Kocsis
Leen Lambers
Yngve Lamo
Antónia Lopes
Wendy MacCaull
Rodrigo Machado
Katharina Mehner
Tony Modica
Muhammad Naeem
Shiva Nejati
Thomas Noll
Frank Ortmeier
Jun Pang
Patrizio Pelliccione
Gergely Pinter
Fawad Qayum
István Ráth
Giles Reger
Stephan Reiff-Marganiec
Julia Rubin

Neha Rungta
Oliver Rüthing
Mehrdad Sabetzadeh
Rick Salay
Helen Schonenberg
Shalini Shamasunder
Jocelyn Simmonds
Élodie-Jane Sims
Scott Smolka
Romina Spalazzese
Matt Staats
Bernhard Steffen
Volker Stolz
Mark Timmer
Massimo Tivoli
Emilio Tuosto
Tarmo Uustalu
Frits Vaandrager
Gergely Varró
Arnaud Venet
Xinming Wang
Gordon Wilfong
Chang Xu
Rongjie Yan
Hongyu Zhang

Table of Contents

Invited Talk

The Dependability of Complex Socio-technical Systems 1
Ross Anderson

Automated Learning of Probabilistic Assumptions for Compositional
Reasoning . 2

Lu Feng, Marta Kwiatkowska, and David Parker

Verification

An Interface Theory for Service-Oriented Design . 18
José Luiz Fiadeiro and Antónia Lopes

rt-Inconsistency: A New Property for Real-Time Requirements 34
Amalinda Post, Jochen Hoenicke, and Andreas Podelski

Automatic Flow Analysis for Event-B . 50
Jens Bendisposto and Michael Leuschel

Semantic Quality Attributes for Big-Step Modelling Languages 65
Shahram Esmaeilsabzali and Nancy A. Day

Specification and Modelling

Formalizing and Operationalizing Industrial Standards 81
Dominik Dietrich, Lutz Schröder, and Ewaryst Schulz

Modelling Non-linear Crowd Dynamics in Bio-PEPA 96
Mieke Massink, Diego Latella, Andrea Bracciali, and Jane Hillston

Reachability and Model Checking

Smart Reduction . 111
Pepijn Crouzen and Frédéric Lang

Uniform Monte-Carlo Model Checking . 127
Johan Oudinet, Alain Denise, Marie-Claude Gaudel,
Richard Lassaigne, and Sylvain Peyronnet

Model Checking Büchi Pushdown Systems . 141
Juncao Li, Fei Xie, Thomas Ball, and Vladimir Levin

XII Table of Contents

Model Driven Engineering

Modeling with Plausibility Checking: Inspecting Favorable and Critical
Signs for Consistency between Control Flow and Functional Behavior . . . 156

Claudia Ermel, Jürgen Gall, Leen Lambers, and Gabriele Taentzer

Models within Models: Taming Model Complexity Using the Sub-model
Lattice . 171

Pierre Kelsen, Qin Ma, and Christian Glodt

Type-Safe Evolution of Spreadsheets . 186
Jácome Cunha, Joost Visser, Tiago Alves, and João Saraiva

A Formal Resolution Strategy for Operation-Based Conflicts in Model
Versioning Using Graph Modifications . 202

Hartmut Ehrig, Claudia Ermel, and Gabriele Taentzer

Software Development for QoS

A Step-Wise Approach for Integrating QoS throughout Software
Development . 217

Stéphanie Gatti, Emilie Balland, and Charles Consel

Systematic Development of UMLsec Design Models Based on Security
Requirements . 232

Denis Hatebur, Maritta Heisel, Jan Jürjens, and Holger Schmidt

Testing: Theory and New Trends

Theoretical Aspects of Compositional Symbolic Execution 247
Dries Vanoverberghe and Frank Piessens

Testing Container Classes: Random or Systematic? 262
Rohan Sharma, Milos Gligoric, Andrea Arcuri, Gordon Fraser, and
Darko Marinov

Seamless Testing for Models and Code . 278
Andreas Holzer, Visar Januzaj, Stefan Kugele, Boris Langer,
Christian Schallhart, Michael Tautschnig, and Helmut Veith

Testing in Practice

Retrofitting Unit Tests for Parameterized Unit Testing 294
Suresh Thummalapenta, Madhuri R. Marri, Tao Xie,
Nikolai Tillmann, and Jonathan de Halleux

Table of Contents XIII

Evolving a Test Oracle in Black-Box Testing . 310
Farn Wang, Jung-Hsuan Wu, Chung-Hao Huang, and
Kai-Hsiang Chang

Automated Driver Generation for Analysis of Web Applications 326
Oksana Tkachuk and Sreeranga Rajan

On Model-Based Regression Testing of Web-Services Using Dependency
Analysis of Visual Contracts . 341

Tamim Ahmed Khan and Reiko Heckel

Code Development and Analysis

Incremental Clone Detection and Elimination for Erlang Programs 356
Huiqing Li and Simon Thompson

Analyzing Software Updates: Should You Build a Dynamic Updating
Infrastructure? . 371

Bashar Gharaibeh, Hridesh Rajan, and J. Morris Chang

Flow-Augmented Call Graph: A New Foundation for Taming API
Complexity . 386

Qirun Zhang, Wujie Zheng, and Michael R. Lyu

Search-Based Design Defects Detection by Example 401
Marouane Kessentini, Houari Sahraoui, Mounir Boukadoum, and
Manuel Wimmer

Empirical Studies

An Empirical Study on Evolution of API Documentation 416
Lin Shi, Hao Zhong, Tao Xie, and Mingshu Li

An Empirical Study of Long-Lived Code Clones . 432
Dongxiang Cai and Miryung Kim

Where the Truth Lies: AOP and Its Impact on Software Modularity 447
Adam Przyby�lek

Author Index . 463

The Dependability of Complex Socio-technical
Systems

Ross Anderson

Computer Laboratory, University of Cambridge, United Kingdom
Ross.Anderson@cl.cam.ac.uk

Abstract. The story of software engineering has been one of learning to
cope with ever greater scale and complexity. We’re now building systems
with hundreds of millions of users, who belong to millions of firms and
dozens of countries; the firms can be competitors and the countries might
even be at war.

Rather than having a central planner, we have to arrange things so
that the desired behaviour emerges as a result of the self-interested action
of many uncoordinated principals. Mechanism design and game theory
are becoming as important to the system engineer as more conventional
knowledge such as data structures and algorithms. This holds not just for
systems no-one really controls, such as the Internet; it extends through
systems controlled by small groups of firms, such as the future smart
grid, to systems controlled by a single firm, such as Facebook. Once you
have hundreds of millions of users, you have to set rules rather than
micromanage outcomes.

Other social sciences have a role to play too, especially the behavioural
sciences; HCI testing has to be supplemented by a more principled un-
derstanding of psychology. And as software comes to pervade just about
every aspect of society, software engineers cannot avoid engaging with
policy. This has significant implications for academics: for how we edu-
cate our students, and for choosing research topics that are most likely
to have some impact.

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, p. 1, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Automated Learning of Probabilistic
Assumptions for Compositional Reasoning

Lu Feng, Marta Kwiatkowska, and David Parker

Oxford University Computing Laboratory, Parks Road, Oxford, OX1 3QD, UK

Abstract. Probabilistic verification techniques have been applied to the
formal modelling and analysis of a wide range of systems, from commu-
nication protocols such as Bluetooth, to nanoscale computing devices,
to biological cellular processes. In order to tackle the inherent challenge
of scalability, compositional approaches to verification are sorely needed.
An example is assume-guarantee reasoning, where each component of
a system is analysed independently, using assumptions about the other
components that it interacts with. We discuss recent developments in the
area of automated compositional verification techniques for probabilistic
systems. In particular, we describe techniques to automatically generate
probabilistic assumptions that can be used as the basis for compositional
reasoning. We do so using algorithmic learning techniques, which have
already proved to be successful for the generation of assumptions for
compositional verification of non-probabilistic systems. We also present
recent improvements and extensions to this work and survey some of the
promising potential directions for further research in this area.

1 Introduction

Formal verification is an approach to establishing mathematically rigorous
guarantees about the correctness of real-life systems. Particularly successful are
fully-automated techniques such as model checking [14], which is based on the
systematic construction and analysis of a finite-state model capturing the possi-
ble states of the system and the transitions between states that can occur over
time. Desired properties of the system are formally specified, typically using
temporal logic, and checked against the constructed model.

Many real-life systems, however, exhibit stochastic behaviour, which analy-
sis techniques must also take into account. For example, components of a sys-
tem may be prone to failures or messages transmitted between devices may be
subjected to delays or be lost. Furthermore, randomisation is a popular tool,
for example as a symmetry breaker in wireless communication protocols, or in
probabilistic security protocols for anonymity or contract-signing.

Probabilistic verification is a set of techniques for formal modelling and anal-
ysis of such systems. Probabilistic model checking, for instance, involves the con-
struction of a finite-state model augmented with probabilistic information, such
as a Markov chain or probabilistic automaton. This is then checked against prop-
erties specified in probabilistic extensions of temporal logic, such as PCTL [25,5].

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 2–17, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Automated Learning of Probabilistic Assumptions 3

This permits quantitative notions of correctness to be checked, e.g. “the prob-
ability of an airbag failing to deploy within 0.02 seconds is at most 0.0001”. It
also provides other classes of properties, such as performance or reliability, e.g.
“the expected time for a successful transmission of a data packet”.

As with any formal verification technique, one of the principal challenges for
probabilistic model checking is scalability: the complexity of real-life systems
quickly leads to models that are orders of magnitude larger than current veri-
fication techniques can support. A promising direction to combat this problem
is to adopt compositional reasoning methods, which split the work required to
verify a system into smaller sub-tasks, based on a decomposition of the system
model. A popular approach is the assume-guarantee paradigm, in which individ-
ual system components are verified under assumptions about their environment.
Once it has been verified that the other system components do indeed satisfy
these assumptions, proof rules can be used to combine individual verification
results, establishing correctness properties of the overall system.

In this paper, we discuss some recent developments in the area of auto-
mated compositional verification techniques for probabilistic systems, focusing
on assume-guarantee verification techniques [29,21] for probabilistic automata
[35,36], a natural model for compositional reasoning. When aiming to develop
fully automated verification techniques, an important question that arises is
how to devise suitable assumptions about system components. In the context
of non-probabilistic systems, a breakthrough in the practical applicability of
assume-guarantee verification came about through the adoption of algorithmic
learning techniques to generate assumptions [15,32]. In recent work [20], we
showed how learning could also be successfully used to generate the probabilistic
assumptions needed for the compositional verification of probabilistic systems.
We give an overview of this approach and discuss the relationship with the non-
probabilistic case. We also present some recent improvements and extensions to
the work and discuss directions for future research.

Paper structure. The rest of the paper is structured as follows. Section 2 gives
a summary of probabilistic model checking and probabilistic assume-guarantee
reasoning. Section 3 describes learning-based generation of assumptions for non-
probabilistic systems, and Section 4 discusses how this can be adapted to the
probabilistic case. Section 5 presents experimental results for some further recent
developments. Section 6 concludes and identifies areas of future work.

2 Probabilistic Verification

2.1 Modelling and Verification of Probabilistic Systems

We begin by giving a brief overview of automated verification techniques for
probabilistic systems, in particular probabilistic model checking. Then, in the
next section, we discuss some of the challenges in adding compositional reasoning
to these techniques and describe one particular approach to this: a probabilistic
assume-guarantee framework.

4 L. Feng, M. Kwiatkowska, and D. Parker

Probabilistic models. There are a variety of different types of models in com-
mon use for probabilistic verification. The simplest are discrete-time Markov
chains (DTMCs), whose behaviour is entirely probabilistic: every transition in
the model is associated with a probability indicating the likelihood of that tran-
sition occurring. In many situations, though, it is also important to model non-
deterministic behaviour. In particular, and crucially for the work described here,
this provides a way to capture the behaviour of several parallel components.

Probabilistic automata (PAs) [35,36], and the closely related model of Markov
decision processes (MDPs), are common formalisms for modelling systems that
exhibit both probabilistic and nondeterministic behaviour. We focus here on
PAs, which subsume MDPs and are particularly well suited for compositional
reasoning about probabilistic systems [35]. In each state of a PA, several possible
actions can be taken and the choice between them is assumed to be resolved in a
nondeterministic fashion. Once one of these actions has been selected, the sub-
sequent behaviour is specified by the probability of making a transition to each
other state, as for a discrete-time Markov chain. The actions also serve another
role: synchronisation. PAs can be composed in parallel, to model the concurrent
behaviour of multiple probabilistic processes. In this case, synchronisation be-
tween components occurs by taking actions with the same label simultaneously.

Another important aspect that distinguishes probabilistic models is the notion
of time used. For DTMCs, PAs and MDPs, time is assumed to proceed in dis-
crete steps. In some cases, a more fine-grained model of time may be needed. One
possibility is to use continuous-time Markov chains (CTMCs), an extension of
DTMCs in which real-valued delays occur between each transition, modelled by
exponential distributions. Other, more complex models, which incorporate prob-
abilistic, nondeterministic and real-time behaviour, include probabilistic timed
automata (PTAs), continuous-time Markov decision processes (CTMDPs) and
interactive Markov chains (IMCs). In this paper, we focus entirely on PAs and
thus a discrete model of time. Note, though, that several of the techniques for
verifying PTAs reduce the problem to one of analysing a finite state PA; thus,
the techniques described in this paper are still potentially applicable.

Probabilistic model checking. The typical approach to specifying properties
to be verified on probabilistic systems is to use extensions of temporal logic. The
basic idea is to add operators that place a bound on the probability of some
event’s occurrence. So, whereas in a non-probabilistic setting we might use an
LTL formula such as �¬fail asserting that, along all executions of the model,
fail never occurs, in the probabilistic case we might instead use 〈�¬fail 〉�0.98.
Informally, this means the probability of fail never occurring is at least 0.98.

In fact, for models such as probabilistic automata, which exhibit both non-
deterministic and probabilistic behaviour, formalising these properties requires
care. This is because it is only possible to define the probability of an event’s
occurrence in the absence of any nondeterminism. The standard approach is
to use the notion of adversaries (also called strategies, schedulers or policies),
which represent one possible way of resolving all nondeterminism in a PA. For
an adversary σ, we denote by Prσ

M (G) the probability of event G when the

Automated Learning of Probabilistic Assumptions 5

nondeterminism in M is resolved by σ, and we say that a PA M satisfies a
property 〈G〉�pG , denoted M |= 〈G〉�pG , if Prσ

M (G) � pG for all adversaries σ.
Equivalently, M satisfies 〈G〉�pG when Prmin

M (G) � pG, where Prmin
M (G) denotes

the minimum probability, over all adversaries, of G.
A useful class of properties for PAs are probabilistic safety properties. These

take the form 〈G〉�pG , as described above, where G is a safety property (a set of
“good” model traces, defined by a set of “bad” prefixes, finite traces for which
any extension is not a “good” trace). More precisely, we assume here that the
“bad” traces form a regular language and, for efficiency, we represent this using a
deterministic finite automaton (DFA), denoted Gerr , rather than, say, temporal
logic. Probabilistic safety properties can capture a wide range of useful properties
of probabilistic automata, including for example:
– “event A always occurs before event B with probability at least 0.9”
– “the probability of a system failure occurring is at most 0.02”
– “the probability of terminating within k time-units is at least 0.75”

Many other classes of properties are also in common use for probabilistic veri-
fication. First, we can generalise 〈G〉�pG to 〈φ〉∼p where ∼∈ {<, �, �, >} and
φ is any ω-regular language (subsuming, for example, the temporal logic LTL).
We can also consider branching-time probabilistic temporal logics such as PCTL
or PCTL* [25,5], as opposed to the linear-time properties considered so far. Yet
another possibility is to augment the PA with costs or rewards and consider, for
example, the expected total cumulated reward or the expected long-run average
reward. Finally, we mention multi-objective properties, which can be used to
express trade-offs between multiple quantitative (e.g. probabilistic linear-time)
properties across the set of adversaries of a PA. Multi-objective probabilistic
model checking (see e.g. [18,21]) is a key ingredient in the implementation of the
probabilistic assume-guarantee framework discussed in this paper.

Algorithmically, probabilistic model checking for PAs reduces in most cases
to a combination of graph-based algorithms and numerical computation [16,1].
For the latter, either approximate iterative calculations (e.g. value iteration) can
be used or a reduction to linear programming (LP). Prior to this, it is often nec-
essary to construct a product PA for analysis. For example, for the probabilistic
safety properties described above, we would construct the synchronous product
of the PA to be verified and the DFA representing the safety property [29]. Tool
support for verifying PAs (or MDPs) is also available: several probabilistic model
checkers have been developed and are widely used. The most popular of these is
PRISM [26]; others include LiQuor [13], RAPTURE [27] and ProbDiVinE [4].

Example 1. In Figure 1, we show a simple example (taken from [29]) comprising
two components, each modelled as a PA. Component M1 represents a controller
that powers down devices. When it identifies a problem (modelled by the action
detect), it sends two messages, represented by actions warn and shutdown, re-
spectively. However, with probability 0.2 it will fail to issue the warn message
first. The second component, M2 represents a device to be powered down by
M1. It expects to receive two messages, warn and shutdown. If the first of these
is absent, it will only shut down correctly 90% of the time.

6 L. Feng, M. Kwiatkowska, and D. Parker

Fig. 1. Example, from [29]: two PAs M1, M2 and the DFA Gerr for a safety property
G; we have that M1 ‖M2 satisfies probabilistic safety property 〈G〉�0.98

We consider the parallel composition M1 ‖M2 of the two devices and check
a simple probabilistic safety property: “with probability 0.98, action fail never
occurs”. Formally, this is captured as 〈G〉�0.98, where G is the safety property
“action fail never occurs”, represented by the DFA Gerr also shown in Figure 1
(this is over the alphabet {fail}, so any trace apart from the empty string is
accepted as an error trace). It can be seem that the maximum probability of fail
occurring in M1 ‖M2 is 0.2 · 0.1 = 0.02. So, we have that M1 ‖M2 |= 〈G〉�0.98.

2.2 Compositional Reasoning for Probabilistic Systems

Verification techniques for probabilistic systems can be expensive, both in terms
of their time and space requirements, making scalability an important challenge.
A promising way to address this is to perform verification in a compositional
manner, decomposing the problem into sub-tasks which analyse each component
separately. However, devising compositional analysis techniques for probabilistic
systems requires considerable care, particularly for models such as probabilistic
automata that exhibit both probabilistic and nondeterministic behaviour [35].

Assume-guarantee reasoning. In the case of non-probabilistic models, a pop-
ular approach to compositional verification is the use of assume-guarantee reason-
ing. This is based on checking assume-guarantee triples of the form 〈A〉Mi 〈G〉,
with the meaning “whenever component Mi is part of a system satisfying the as-
sumption A, then the system is guaranteed to satisfy property G”. Proof rules can
then be established that combine properties of individual components to show cor-
rectness properties of the overall system.

To give a concrete example, we adopt the framework used in [15,32]. Com-
ponents Mi and assumption A are labelled transition systems and G is a safety
property. Then, 〈A〉Mi 〈G〉 has the meaning that A ‖Mi |= G. We also say that
a component Mj satisfies an assumption A if all traces of Mj are included in A,
denoted Mj � A. For components M1 and M2, the following proof rule holds:

M1 � A

〈A〉 M2 〈G〉
M1 ‖M2 |=G

Thus, verifying property G on the combined system M1 ‖M2 reduces to two
separate (and hopefully simpler) checks, one on M1 and one on A ‖M2.

Automated Learning of Probabilistic Assumptions 7

Assume-guarantee for probabilistic systems. There are several ways that
we could attempt to adapt the above assume-guarantee framework to probabilis-
tic automata. A key step is to formalise the notion of an assumption A about
a (probabilistic) component Mi. The two most important requirements are: (i)
that it is compositional, allowing proof rules such as the one above to be con-
structed; and (ii) that the premises of the proof rule can be checked efficiently.

Unfortunately, the most natural probabilistic extension of the trace inclusion
preorder � used above, namely trace distribution inclusion [35] is not composi-
tional [34]. One way to address this limitation is to restrict the ways in which
components can be composed in parallel; examples include the switched prob-
abilistic I/O automata model of [12] and the synchronous parallel composition
of probabilistic Reactive Modules used in [2]. Another is to characterise variants
of the trace distribution inclusion preorder that are compositional, e.g. [35,30].
However, none of these preorders can be checked efficiently, limiting their appli-
cability to automated compositional verification.

Other candidates for ways to formalise the relationship between a component
PA and its assumption include the notions of (strong and weak) probabilistic
simulation and bisimulation [35,36]. There are a number of variants, most of
which are compositional. Unfortunately, for the weak variants, efficient methods
to check the relations are not yet known and, for the strong variants, although
relatively efficient algorithms exist, the relations are usually too coarse to yield
suitably small assumptions. Other work in this area includes [17], which uses a
notion of probabilistic contracts to reason compositionally about systems with
both stochastic and nondeterministic behaviour. Automating the techniques in
an implementation has not yet been attempted.

In this paper, we focus on the probabilistic assume-guarantee framework
of [29]. This makes no restrictions on the PAs that can be analysed, nor the
way that they are composed in parallel; instead it opts to use a less expres-
sive form for assumptions, namely probabilistic safety properties. An assume-
guarantee triple now takes the form 〈A〉�pA Mi 〈G〉�pG where Mi is a PA and
〈A〉�pA , 〈G〉�pG are two probabilistic safety properties; the former is a probabilis-
tic assumption, the latter a property to be checked. This is interpreted as follows:
〈A〉�pA Mi 〈G〉�pG is true if, for all adversaries σ of Mi such that Prσ

Mi
(A) � pA

holds, Prσ
Mi

(G) � pG also holds. Crucially, verifying whether this is true reduces
to a multi-objective model checking problem [18,29], which can be carried out
efficiently by solving an LP problem. The proof rule used earlier now becomes:

M1 |= 〈A〉�pA

〈A〉�pA M2 〈G〉�pG

M1 ‖M2 |= 〈G〉�pG

(ASym)

thus reducing the problem of checking property 〈G〉�pG on M1 ‖M2 to two
smaller sub-problems: (i) verifying a probabilistic safety property on M1; and
(ii) checking an assume-guarantee triple for M2.

In [29], this proof rule, along with several others, are proved and then used to
perform compositional verification on a set of large case studies. This includes

8 L. Feng, M. Kwiatkowska, and D. Parker

Fig. 2. DFAs for two learning-generated assumptions to verify the system from Figure 1
compositionally with rule (ASym); A (right) is a valid assumption, A1 (left) is not

cases where non-compositional verification is either slower or infeasible. In re-
cent work [21], this framework is extended to permit the use of more expressive
assumptions (and properties): quantitative multi-objective properties, essentially
Boolean combinations of probabilistic safety, ω-regular and expected total re-
ward properties. An example of an expressible assumption is “with probability
1, component Mi always eventually sends a message and the expected time to
do so is at most 10 time-units.” Again, the framework is implemented through
multi-objective model checking and applied to several case studies.

Example 2. Recall the PAs M1, M2 and probabilistic safety property 〈G〉�0.98
from Example 1, for which we stated that M1 ‖M2 |= 〈G〉�0.98. This property
can also be checked in a compositional manner using the rule (ASym). We use an
assumption about the behaviour of M1 which can be stated informally as “with
probability at least 0.8, warn occurs before shutdown”. This takes the form of
a probabilistic safety property 〈A〉�0.8 where the DFA for A is shown on the
right-hand side of Figure 2. To perform compositional verification, we perform
two separate checks, M1 |= 〈A〉�0.8 and 〈A〉�0.8 M2 〈G〉�0.98, both of which hold.

3 Learning Assumptions for Compositional Verification

The ideas behind assume-guarantee verification for non-probabilistic systems
have a long history [28]. Making these techniques work in practice, however, is
a challenge. In particular, deciding how to break down a system into its compo-
nents and devising suitable assumptions about the behaviour of those compo-
nents initially proved difficult to automate. A breakthrough in this area came
with the observation of [15] that learning techniques, such as Angluin’s L* algo-
rithm [3], could be used to automate the process of generating assumptions. In
this section, we give a short description of L* and its application to automatic
compositional verification of non-probabilistic systems.

The L* algorithm. L* [3] is a learning algorithm for generating a minimal
DFA that accepts an unknown regular language L. It uses the active learning
model, interacting with a teacher to which it can pose queries. There are two
kinds of these: membership queries, asking whether a particular word t is con-
tained in L; and equivalence queries, asking whether a conjectured automaton

Automated Learning of Probabilistic Assumptions 9

A accepts exactly L. Initially, L* poses a series of membership queries to the
teacher, maintaining results in an observation table. After some time (more pre-
cisely, when the table is closed and consistent ; see [3] for details), L* generates
a conjecture A and submits this as an equivalence query. If the answer to this
query is “no”, the teacher must provide a counterexample c, in either positive
form (c ∈ L\L(A)) or negative form (c ∈ L(A)\L). The algorithm then resumes
submission of membership queries until the next conjecture can be generated.

The total number of queries required by L* is polynomial in the size of the
minimal DFA required to represent the language L being learnt. Furthermore,
the number of equivalence queries is bounded by the number of states in the
automaton since at most one new state is added at each iteration.

Learning assumptions with L*. In [15], it was shown how L* could be
adapted to the problem of automatically generating assumptions for assume-
guarantee verification of labelled transition systems. This is done by phrasing
the problem in a language-theoretic setting: the assumption A to be generated is
a labelled transition system, whose set of (finite) traces forms a regular language.

The approach works by using the notion of the weakest assumption [22] as
the target language L. Intuitively, assuming the non-probabilistic proof rule
from Section 2.2, the weakest assumption is the set of all possible traces of
a process that, when put in parallel with M2, do not violate the property G.
Thus, the membership query used by the teacher checks, for a trace t, whether
t ‖M2 |= G, where t denotes a transition system comprising the single trace t.
Both this and the required equivalence queries can be executed automatically
by a model checker. An important observation, however, is that, in practice, this
is not usually the language actually learnt. The algorithm works in such a way
that conjectured assumptions generated as L* progresses may be sufficient to
either prove or refute the property G, allowing the procedure to terminate early.

A variety of subsequent improvements and extensions to the basic technique
of [15] were proposed (see e.g. [32] for details) and the approach was success-
fully applied to several large case studies. It tends to perform particularly well
when the size of a generated assumption and the size of its alphabet remain
small. The work has sparked a significant amount of interest in the area in re-
cent years. There have been several attempts to improve performance, including
symbolic implementations [31] and optimisations to the use of L* [9]. Others
have also devised alternative learning-based methods, for example by reformu-
lating the assumption generation problem as one of computing the smallest finite
automaton separating two regular languages [23,11], or using the CDNF learning
algorithm to generate implicit representations of assumptions [10].

4 Learning Probabilistic Assumptions

As mentioned in Section 2.2, there are several different possibilities for the type
of assumption used to perform probabilistic assume-guarantee verification. We
focus on the use of probabilistic safety properties, as in [29]. Although these

10 L. Feng, M. Kwiatkowska, and D. Parker

have limited expressivity, an advantage is that the generation of such assump-
tions can be automated by adapting the L*-based techniques developed for non-
probabilistic compositional verification [15,32].

This approach was proposed in [20] and shown to be applicable on several
large case studies. In this section, we give a high-level overview of the approach
and describe the key underlying ideas; for the technical details, the reader is
referred to [20]. The basic setting is as outlined in Section 2.2: we consider the
assume-guarantee proof rule (ASym) from [29], applied to check that the parallel
composition of two PAs M1 and M2 satisfies a property 〈G〉�pG . To do this, we
need an assumption 〈A〉�pA , which will be generated automatically.

Probabilistic and non-probabilistic assumptions. The first key point to
make is that, although we are required to learn a probabilistic assumption, i.e. a
probabilistic safety property 〈A〉�pA , we can essentially reduce this task to the
problem of learning a non-probabilistic assumption, i.e. the corresponding safety
property A. The reasoning behind this is as follows.

We need the probabilistic assumption 〈A〉�pA to be such that both premises
of the proof rule (ASym) hold: (i) M1 |= 〈A〉�pA ; and (ii) 〈A〉�pA M2 〈G〉�pG .
However, if (i) holds for a particular value of pA, then it also holds for any lower
value of pA. Conversely, if (ii) holds for some pA, it then must hold for any
higher value. Thus, given a safety property A, we can determine an appropriate
probability bound pA (if one exists) by finding the lowest value of pA (if any)
such that (ii) holds and checking it against (i). Alternatively, we can find the
highest value of pA such that (i) holds (this is just Prmin

M1
(A) in fact) and seeing

if this suffices for (ii). A benefit of the latter is that, even if M1 ‖M2 |= 〈G〉�pG

cannot be shown to be true with this particular assumption, we still obtain a
lower bound on Prmin

M1‖M2
(G). Furthermore, with an additional simple check, an

upper bound can also be generated (see [20] for details).

Adapting the L* algorithm. Next, we describe how we adapt the L*-based
approach of [15,32] for generating non-probabilistic assumptions to our setting.
The underlying idea beind the use of L* in [15,32] is the notion of weakest
assumption: this will always exist and, if the property G being verified is true, will
permit a compositional verification. It is used as the target language for L* and
forms the basis of the membership and equivalence queries. In practice, however,
this language is often not the one that is finally generated since intermediate
conjectured assumptions may suffice, either to show that the property is true or
that it is false.

An important difference in the probabilistic assume-guarantee framework of
[29] is that it is incomplete, meaning that, even if the property 〈G〉�pG holds,
there may be no probabilistic assumption 〈A〉�pA for which the rule (ASym)
can be used to prove the property correct. So, there can be no equivalent notion
of weakest assumption to be used as a target language. However, we can adopt
a similar approach whereby we use L* to generate a sequence of conjectured
assumptions A and, for each one, potentially show that 〈G〉�pG is either true or
false. Furthermore, as described above, each assumption A yields a lower and

Automated Learning of Probabilistic Assumptions 11

t ‖M2 |= 〈G〉≥pG
?

trace t

L* algorithm Teacher

cex.c

conj.A

yes/no

Membership query

(analyse conjecture A) M1 ‖M2 �|= 〈G〉≥pG

Try to find pA such

(i) M1 |= 〈A〉≥pA

(+ counterexample)

no
yes

done?

Bounds:
Prmin

M1 ‖M2
(G) ∈ [l, u]

M1 ‖M2 |= 〈G〉≥pG

(+ assump.〈A〉≥pA
)

(ii) 〈A〉≥pA
M2 〈G〉≥pG

Check:

that 〈A〉≥pA
satisfies:

Property true:

〈G〉≥pG

M1, M2

Update
table

Membership
query

Update
table

Generate
conjecture

Inputs:

Outputs:

Property false:

(analyse trace t)

Equivalence query

Fig. 3. Overview of probabilistic assumption generation [20], using an adaption of L*:
generates assumption 〈A〉�pA for verification of M1 ‖M2 |= 〈G〉�pG using rule (ASym)

an upper bound on Prmin
M1‖M2

(G). We can retain these values as the learning
algorithm progresses, keeping the highest lower bound and lowest upper bound
discovered to report back to the user.1 This means that, even if the algorithm
terminates early (without concluding that 〈G〉�pG is true or false), it produces
useful quantitative information about the property of interest.

In order to produce conjectures, L* needs answers to membership queries
about whether certain traces t should be in the language being generated. For
this, we use the following check: t ‖M2 |= 〈G〉�pG , which can be seen as an ana-
logue of the corresponding one for the non-probabilistic case. Intuitively, the idea
is that if, under a single possible behaviour t of M1, M2 satisfies the property,
then t should be included in the assumption A. There may be situations where
this scheme leads to an assumption that cannot be used to verify the property.
This is because it is possible that there are multiple traces which do not violate
property 〈G〉�pG individually but, when combined, cause 〈G〉�pG to be false. In
practice, though, this approach seems to work well in most cases.

A final aspect of L* that needs discussion is counterexamples. In [15,32], when
the response to an equivalence query is “no”, a counterexample in the form of
a trace is returned to L*. In our case, there are two differences in this respect.
Firstly, a counterexample may constitute multiple traces; this is because the
results of the model checking queries executed by the teacher yield probabilistic
counterexamples [24], which comprise multiple paths (again, see [20] for precise
details). Secondly, situations may arise where no such counterexample can be
generated (recall that there is no guarantee that an assumption can eventually
be created). In this case, since no trace can be returned to L*, we terminate the
learning algorithm, returning the current tightest bounds on Prmin

M1‖M2
(G) that

have been computed so far.

1 Note that the sequence of assumptions generated is not monotonic, e.g. it does not
yield a sequence of increasing lower bounds on Prmin

M1‖M2
(G).

12 L. Feng, M. Kwiatkowska, and D. Parker

The learning loop. We summarise in Figure 3 the overall structure of the
L*-based algorithm for generating probabilistic assumptions. The left-hand side
shows the basic L* algorithm. This interacts, through queries, with the teacher,
shown on the right-hand side. The teacher responds to queries as described
above. Notice that the equivalence query, which analyses a particular conjectured
assumption A, has four possible outcomes: the first two are when A can be used
to show either that M1 ‖M2 |= 〈G〉�pG or M1 ‖M2 �|= 〈G〉�pG ; the third is when
a counterexample (comprising one or more traces) is passed back to L*; and the
fourth is when no counterexample can be generated so the algorithm returns the
tightest bounds computed so far for Prmin

M1‖M2
(G).

Example 3. Figure 2 shows the two successive conjunction assumptions gener-
ated by the learning loop, when applied to the PAs and property of Example 1.
The first conjecture A1 does not permit (ASym) to be applied but a counterex-
ample can be found. L* then generates the conjecture A, which we know from
Example 2 does allow compositional verification that M1 ‖M2 |= 〈G〉�pG .

5 Experimental Results

The approach outlined in the previous section was successfully used in [20] to
automatically generate probabilistic assumptions for several large case studies.
Furthermore, these assumptions were much smaller than the corresponding com-
ponents that they represented, leading to gains in performance. In this section,
we present some recent extensions and improvements to that work.

5.1 A New Case Study: Mars Exploration Rovers

First, we present an application of the techniques to a new case study, based on
a module from the flight software for JPL’s Mars Exploration Rovers (MER).
Compositional verification of a non-probabilistic model of this system was per-
formed previously in [33]. The module studied is a resource arbiter, which con-
trols access to various shared resources between a set of user threads, each of
which performs a different application on the rover.

The arbiter also enforces priorities between resources, granting and rescinding
access rights to users as required. For example, it is considered that communica-
tion is more important than driving; so, if a communication request is received
while the rover is driving, the arbiter will rescind permission to use the drive
motors in order to grant permission for use of the rover’s antennas.

Our model adds the possibility of faulty behaviour. When the arbiter sends
a rescind message to a user thread, there is a small chance of the message
being lost in transmission. We also add information about the likelihood of a
user thread requesting a given type of resource in each cycle of the system’s
execution. We are interested in a mutual exclusion property which checks that
permission for communication and driving is not granted simultaneously by the
arbiter. More precisely, we verify a probabilistic safety property relating to “the
minimum probability that mutual exclusion is not violated within k cycles of

Automated Learning of Probabilistic Assumptions 13

Case study
[parameters]

Component Compositional Compositional Non-
sizes (L*) (NL*) comp.

|M2⊗Gerr | |M1| |Aerr | MQ EQ Time |Aerr | MQ EQ Time Time

client-
server1

[N]

3 81 16 5 99 3 6.8 6 223 4 7.7 0.02
5 613 36 7 465 5 21.6 8 884 5 26.1 0.04
7 4,733 64 9 1,295 7 484.6 10 1,975 5 405.9 0.08

client-
serverN

[N]

3 229 16 5 99 3 6.6 6 192 3 7.4 0.04
4 1,121 25 6 236 4 26.1 7 507 4 33.1 0.12
5 5,397 36 7 465 5 191.1 8 957 5 201.9 0.28

consensus
[N R K]

2 3 20 391 3,217 6 149 5 24.2 7 161 3 14.9 108.1
2 4 4 573 431,649 12 2,117 8 413.2 12 1,372 5 103.4 2.59
3 3 20 8,843 38,193 11 471 6 438.9 15 1,231 5 411.3 >24h

sensor
network

[N]

1 42 72 3 17 2 3.5 4 31 2 3.9 0.03
2 42 1,184 3 17 2 3.7 4 31 2 4.0 0.25
3 42 10,662 3 17 2 4.6 4 31 2 4.8 2.01

mer
[N R]

2 2 961 85 4 113 3 9.0 7 1,107 5 28.9 0.09
2 5 5,776 427,363 4 113 3 31.8 7 1,257 5 154.4 1.96
3 2 16,759 171 4 173 3 210.5 – – – mem-out 0.42

Fig. 4. Performance comparison of the L*- and NL*-based methods for rule (ASym)

system execution”. The model comprises N user threads U1, . . . , UN and the
arbiter ARB which controls R shared resources (in the full system model, N is
11 and R is 15). We perform compositional verification using the rule (ASym),
decomposing the system into two parts: M1 = U1‖U2‖ · · · ‖UN and M2 = ARB.

5.2 A Comparison of Learning Methods: L* versus NL*

Next, we investigate the use of an alternative learning algorithm to generate
probabilistic assumptions. Whereas L* learns a minimal DFA for a regular lan-
guage, the algorithm NL* [7] learns a minimal residual finite-state automaton
(RFSA). RFSAs are a subclass of nondeterministic finite automata. For the same
regular language L, the minimal RFSA that accepts L can be exponentially more
succinct than the corresponding minimal DFA. In fact, for the purposes of prob-
abilistic model checking, the RFSA needs to be determinised anyway [1]. How-
ever, the hope is that the smaller size of the RFSA may lead to a faster learning
procedure. NL* works in a similar fashion to L*, making it straightforward to
substitute into the learning loop shown in Figure 3.

We added NL* to our existing implementation from [20], which is based on an
extension of PRISM [26] and the libalf [6] learning library. We then compared
the performance of the two learning algorithms on a set of five case studies.
The first four are taken from [20]: client-server benchmark models from [32]
incorporating failures in one or all clients (client-server1 and client-serverN),
Aspnes & Herlihy’s randomised consensus algorithm (consensus) and a sensor
network exhibiting message losses (sensor network). The fifth example is the
MER model from above (mer). Experiments were run on a 1.86GHz PC with
2GB RAM and we imposed a time-out of 24 hours.

Figure 4 compares the performance of the L*-based and NL*-based methods
to generate probabilistic assumptions for the rule (ASym). The “Component
sizes” columns give the state space of the two components, M1 and M2, in
each model; for M2, this also includes the automaton for the safety property

14 L. Feng, M. Kwiatkowska, and D. Parker

Case study Component sizes (ASym) (ASym-N) Non-comp.
[parameters] |M2⊗Gerr | |M1| |Aerr | Time (s) |Aerr | Time (s) Time (s)

client-serverN
[N]

6 25,801 49 – mem-out 8 40.9 0.7
7 123,053 64 – mem-out 24 164.7 1.7

mer
[N R]

3 5 224,974 1,949,541 – mem-out 4 29.8 48.2
4 5 7,949,992 6,485,603 – mem-out 4 122.9 mem-out
5 5 265,559,722 17,579,131 – mem-out 4 3,903.4 mem-out

Fig. 5. Performance comparison of the rule (ASym) and the rule (ASym-N)

G being checked. For each method, we report the size of the learnt assumption
Aerr (DFA or RFSA), the number of membership queries (MQ) and equivalence
queries (EQ) needed, and the total time (in seconds) for learning. We also give
the time for non-compositional verification using PRISM.

With the exception of one model, both algorithms successfully generated a
correct (and small) assumption in all cases. The results show that the L*-based
method is faster than NL* in most cases. However, on several of the larger
models, NL* has better performance due to a smaller number of equivalence
queries. NL* needs more membership queries, but these are less costly. We do
not compare the execution time of our prototype tool with the (highly-optimised)
PRISM in detail. But, it is worth noting that, for two of the consensus models,
compositional verification is actually faster than non-compositional verification.

5.3 Learning Multiple Assumptions: Rule (ASym-N)

Lastly, in this section, we consider an extension of the probabilistic assumption
generation scheme of Section 4, adapting it to the proof rule (ASym-N) of [29].
This is motivated by the observation that, for several of the case studies in
the previous section, scalability is limited because one of the two components
comprises several sub-components. As the number of sub-components increases,
model checking becomes infeasible due to the size of the state space. The (ASym)
proof rule allows decomposition of the system into more than 2 components:

〈true〉 M1 〈A1〉�p1

〈A1〉�p1 M2 〈A2〉�p2

. . .
〈An−1〉�pn−1 Mn 〈G〉�pG

〈true〉 M1 ‖ . . . ‖Mn 〈G〉�pG

(ASym-N)

For the earlier MER case study, for instance, we can now decompose the system
into N +1 components: the N user threads U1, U2, . . . , UN and the arbiter ARB.

Adapting our probabilistic assumption generation process to (ASym-N) works
by learning assumptions for the rule in a recursive fashion, with each step requir-
ing a separate instantiation of the learning algorithm for (ASym), as is done for
the non-probabilistic version of a similar rule in [32]. Experimental results are
presented in Figure 5 for two of the case studies from Section 5.2. The results

Automated Learning of Probabilistic Assumptions 15

demonstrate that, using the rule (ASym-N), we can successfully learn small as-
sumptions and perform compositional verification in several cases where the rule
(ASym) runs out of memory. Furthermore, in two instances, (ASym-N) permits
verification of models which cannot be checked in a non-compositional fashion.

6 Conclusions and Future Work

We have discussed recent progress in the development of automated composi-
tional verification techniques for probabilistic systems, focusing on the assume-
guarantee framework of [29,21] for probabilistic automata. We also described
how the verification process can be automated further using learning-based gen-
eration of the assumptions needed to apply assume-guarantee proof rules and
described some recent improvements and extensions to this work.

There are a variety of possible directions for future research in this area.
One is to extend our techniques for learning probabilistic assumptions to the
assume-guarantee framework in [21], which additionally includes ω-regular and
expected reward properties. Here, the ω-regular language learning algorithms of
[19,8] may provide a useful starting point. There are also possibilities to enhance
the underlying compositional verification framework. This includes developing
efficient techniques to work with richer classes of probabilistic assumption and
extending the approach to handle more expressive types of probabilistic models,
such as those that incorporate continuous-time behaviour.

Acknowledgments. The authors are part supported by ERC Advanced Grant
VERIWARE, EU FP7 project CONNECT and EPSRC grant EP/F001096/1.

References

1. de Alfaro, L.: Formal Verification of Probabilistic Systems. Ph.D. thesis, Stanford
University (1997)

2. de Alfaro, L., Henzinger, T.A., Jhala, R.: Compositional methods for probabilistic
systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154,
p. 351. Springer, Heidelberg (2001)

3. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2), 87–106 (1987)

4. Barnat, J., Brim, L., Cerna, I., Ceska, M., Tumova, J.: ProbDiVinE-MC: Multi-core
LTL model checker for probabilistic systems. In: Proc. QEST 2008 (2008)

5. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: FSTTCS 1995. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg
(1995)

6. Bollig, B., Katoen, J.-P., Kern, C., Leucker, M., Neider, D., Piegdon, D.R.: libalf:
The automata learning framework. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV
2010. LNCS, vol. 6174, pp. 360–364. Springer, Heidelberg (2010)

7. Bollig, B., Habermehl, P., Kern, C., Leucker, M.: Angluin-style learning of NFA.
In: Proc. IJCAI 2009, pp. 1004–1009. Morgan Kaufmann Publishers Inc., San Fran-
cisco (2009)

16 L. Feng, M. Kwiatkowska, and D. Parker

8. Chaki, S., Gurfinkel, A.: Automated assume-guarantee reasoning for omega-regular
systems and specifications. In: Proc. NFM 2010, pp. 57–66 (2010)

9. Chaki, S., Strichman, O.: Optimized L*-based assume-guarantee reasoning. In:
Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 276–291.
Springer, Heidelberg (2007)

10. Chen, Y.-F., Clarke, E.M., Farzan, A., Tsai, M.-H., Tsay, Y.-K., Wang, B.-Y.:
Automated assume-guarantee reasoning through implicit learning. In: Touili, T.,
Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 511–526. Springer,
Heidelberg (2010)

11. Chen, Y.-F., Farzan, A., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Learning minimal
separating dFA’s for compositional verification. In: Kowalewski, S., Philippou, A.
(eds.) TACAS 2009. LNCS, vol. 5505, pp. 31–45. Springer, Heidelberg (2009)

12. Cheung, L., Lynch, N.A., Segala, R., Vaandrager, F.W.: Switched probabilistic I/O
automata. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 494–510.
Springer, Heidelberg (2005)

13. Ciesinski, F., Baier, C.: Liquor: A tool for qualitative and quantitative linear time
analysis of reactive systems. In: Proc. QEST 2006, pp. 131–132. IEEE CS Press,
Los Alamitos (2006)

14. Clarke, E., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Cambridge
(2000)

15. Cobleigh, J., Giannakopoulou, D., Pasareanu, C.: Learning assumptions for com-
positional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

16. Courcoubetis, C., Yannakakis, M.: Markov decision processes and regular events.
IEEE Transactions on Automatic Control 43(10), 1399–1418 (1998)

17. Delahaye, B., Caillaud, B., Legay, A.: Probabilistic contracts: A compositional
reasoning methodology for the design of stochastic systems. In: Proc. ACSD 2010,
pp. 223–232. IEEE CS Press, Los Alamitos (2010)

18. Etessami, K., Kwiatkowska, M., Vardi, M., Yannakakis, M.: Multi-objective model
checking of Markov decision processes. LMCS 4(4), 1–21 (2008)

19. Farzan, A., Chen, Y.-F., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Extending auto-
mated compositional verification to the full class of omega-regular languages. In:
Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 2–17.
Springer, Heidelberg (2008)

20. Feng, L., Kwiatkowska, M., Parker, D.: Compositional verification of probabilistic
systems using learning. In: Proc. 7th International Conference on Quantitative
Evaluation of Systems (QEST 2010), pp. 133–142. IEEE CS Press, Los Alamitos
(2010)

21. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Quantitative multi-
objective verification for probabilistic systems. In: Abdulla, P.A. (ed.) TACAS
2011. LNCS, vol. 6605, pp. 112–127. Springer, Heidelberg (2011)

22. Giannakopoulou, D., Pasareanu, C., Barringer, H.: Component verification with
automatically generated assumptions. ASE 12(3), 297–320 (2005)

23. Gupta, A., McMillan, K., Fu, Z.: Automated assumption generation for composi-
tional verification. Formal Methods in System Design 32(3), 285–301 (2008)

24. Han, T., Katoen, J.P., Damman, B.: Counterexample generation in probabilistic
model checking. IEEE Transactions on Software Engineering 35(2), 241–257 (2009)

25. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994)

Automated Learning of Probabilistic Assumptions 17

26. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-
matic verification of probabilistic systems. In: Hermanns, H. (ed.) TACAS 2006.
LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

27. Jeannet, B., D’Argenio, P., Larsen, K.: Rapture: A tool for verifying Markov deci-
sion processes. In: Proc. CONCUR 2002 Tools Day, pp. 84–98 (2002)

28. Jones, C.: Tentative steps towards a development method for interfering programs.
ACM Transactions on Programming Languages and Systems 5(4), 596–619 (1983)

29. Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Assume-guarantee verification
for probabilistic systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS,
vol. 6015, pp. 23–37. Springer, Heidelberg (2010)

30. Lynch, N., Segala, R., Vaandrager, F.: Observing branching structure through
probabilistic contexts. SIAM Journal on Computing 37(4) (2007)

31. Nam, W., Madhusudan, P., Alur, R.: Automatic symbolic compositional verifica-
tion by learning assumptions. FMSD 32(3), 207–234 (2008)

32. Pasareanu, C., Giannakopoulou, D., Bobaru, M., Cobleigh, J., Barringer, H.:
Learning to divide and conquer: Applying the L* algorithm to automate assume-
guarantee reasoning. Formal Methods in System Design 32(3), 175–205 (2008)

33. Pasareanu, C., Giannakopoulou, D.: Towards a compositional SPIN. In: Valmari,
A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 234–251. Springer, Heidelberg (2006)

34. Segala, R.: A compositional trace-based semantics for probabilistic automata. In:
Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 234–248. Springer,
Heidelberg (1995)

35. Segala, R.: Modelling and Verification of Randomized Distributed Real Time Sys-
tems. Ph.D. thesis, Massachusetts Institute of Technology (1995)

36. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic
Journal of Computing 2(2), 250–273 (1995)

An Interface Theory for Service-Oriented Design

José Luiz Fiadeiro1 and Antónia Lopes2

1 Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, UK

jose@mcs.le.ac.uk
2 Faculty of Sciences, University of Lisbon
Campo Grande, 1749–016 Lisboa, Portugal

mal@di.fc.ul.pt

Abstract. We revisit the notions of interface and component algebra proposed
by de Alfaro and Henzinger in [7] for component-based design and put forward
elements of a corresponding interface theory for service-oriented design. We view
services as a layer that can be added over a component infrastructure and propose
a notion of service interface for a component algebra that is an asynchronous
version of relational nets adapted to SCA (the Service Component Architecture
developed by the Open Service-Oriented Architecture collaboration).

1 Services vs. Components, Informally

In [7], de Alfaro and Henzinger put forward a number of important insights, backed
up by mathematical models, that led to an abstract characterisation of essential aspects
of component-based software design (CBD), namely in the distinction between the no-
tions of component and interface, and the way they relate to each other. In this paper,
we take stock on the work that we developed in the FET-GC2 integrated project SEN-
SORIA [21] towards a language and mathematical model for service-oriented modelling
[12], and investigate what abstractions can be put forward for service-oriented comput-
ing (SOC) that relate to the notions of interface and component algebra proposed in
[7]. Our ultimate goal is similar to that of [7]: to characterise the fundamental struc-
tures that support SOC independently of the specific formalisms (Petri-nets, automata,
process calculi, inter alia) that may be adopted to provide models for languages or tools.

A question that, in this context, cannot be avoided, concerns the difference between
component-based and service-oriented design. The view that we adopt herein is that, on
the one hand, services offer a layer of activity that can be superposed over a component
infrastructure (what is sometimes referred to as a ‘service overlay’) and, on the other
hand, the nature of the interactions between processes that is needed to support such
a service overlay is intrinsically asynchronous and conversational, which requires a
notion of component algebra that is different from the ones investigated in [7] for CBD.

The difference between components and services, as we see it, can be explained
in terms of two different notions of ‘composition’, requiring two different notions of
interface. In CBD, composition is integration-oriented — “the idea of component-based
development is to industrialise the software development process by producing software
applications by assembling prefabricated software components” [8]. In other words,

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 18–33, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

An Interface Theory for Service-Oriented Design 19

CBD addresses what, in [10] we have called ‘physiological complexity’ — the ability
to build a complex system by integrating a number of independently developed parts.
Hence, interfaces for component-based design must describe the means through which
software elements can be plugged together to build a product and the assumptions made
by each element on the environment in which it will be deployed. Interfaces in the sense
of [7] – such as assume/guarantee interfaces – fall into this category: they specify the
combinations of input values that components implementing an interface must accept
from their environment (assumptions) and the combinations of output values that the
environment can expect from them (guarantees).

In contrast, services respond to the necessity for separating “need from the need-
fulfilment mechanism” [8] and address what in [10] we have called ‘social complexity’:
the ability of software elements to engage with other parties to pursue a given business
goal. For example, we can design a seller application that may need to use an external
supplier service if the local stock is low (the need); the discovery and selection of, and
binding to, a specific supplier (the need-fulfilment mechanism) are not part of the design
of the seller but performed, at run time, by the underlying middleware (service-oriented
architecture) according to quality-of-service constraints. In this context, service inter-
faces must describe the properties that are provided (so that services can be discovered)
as well as those that may be required from external services (so that the middleware can
select a proper provider). The latter are not assumptions on the environment as in CBD
— in a sense, a service creates the environment that it needs to deliver what it promises.

In the context of modelling and specifying services, one can find two different kinds
of approaches — choreography and orchestration — which are also reflected in the lan-
guages and standards that have been proposed for Web services, namely WS-CDL for
choreography and WS-BPEL for orchestration. In a nutshell, choreography is
concerned with the specification and realizability of a ‘conversation’ among a (fixed)
number of peers that communicate with each other to deliver a service, whereas orches-
tration is concerned with the definition of a (possibly distributed) business process (or
workflow) that may use external services discovered and bound to the process at run
time in order to deliver a service.

Whereas the majority of formal frameworks that have been developed for SOC ad-
dress choreography (see [20] for an overview), the approach that we take in this paper
is orchestration-oriented. More precisely, we propose to model the workflow through
which a service is orchestrated as being executed by a network of processes that inter-
act asynchronously and offer interaction-points to which clients and external services
(executed by their own networks) can bind. Hence, the questions that we propose to
answer are What is a suitable notion of interface for such asynchronous networks of
processes that deliver a service?, and What notion of interface composition is suitable
for the loose coupling of the business processes that orchestrate the interfaces?

The rest of this paper is technical and formal. In Section 2, we present a ‘component
algebra’ that is a variation on relational nets [7] adapted to the Service Component Ar-
chitecture [17]. This leads us to the characterisation of services as an ‘interface algebra’
(again in the sense of [7]), which we develop in Section 3. In Section 4, we compare
our framework with formal models that have been proposed in the last few years for
orchestration, namely [1,3,13].

20 J.L. Fiadeiro and A. Lopes

2 A Service Component Algebra

As already mentioned, we adopt the view that services are delivered by systems of
components as in SCA [17]:

“SCA provides the means to compose assets, which have been implemented using a va-
riety of technologies using SOA. The SCA composition becomes a service, which can
be accessed and reused in a uniform manner. In addition, the composite service itself
can be composed with other services [...] SCA service components can be built with a
variety of technologies such as EJBs, Spring beans and CORBA components, and with
programming languages including Java, PHP and C++ [...] SCA components can also
be connected by a variety of bindings such as WSDL/SOAP web services, JavaTM Mes-
sage Service (JMS) for message-oriented middleware systems and J2EETM Connector
Architecture (JCA)”.

In the terminology of [7], we can see components in the sense of SCA as implement-
ing processes that are connected by channels. However, there is a major difference
in the way processes are connected. In [7], and indeed many models used for service
choreography and orchestration (e.g., [1,6,18]), communication is synchronous (based
in I/O connections). In order to capture the forms of loose coupling that SOAs support,
communication should be asynchronous: in most business scenarios, the traditional syn-
chronous call-and-return style of interaction is simply not appropriate. This leads us to
propose a model that is closer to communicating finite-state machines [4] (also adopted
in [2]) than, say, I/O automata [15]. We call our (service) component algebra asyn-
chronous relational nets (ARNs) to be consistent with [7].

In an asynchronous communication model, interactions are based on the exchange
of messages that are transmitted through channels (wires in the terminology of SCA).
For simplicity, we ignore the data that messages may carry. We organise messages in
sets that we call ports. More specifically, every process consists of a (finite) collection
of mutually disjoint ports, i.e. each message that a process can exchange belongs to
exactly one of its ports. Ports are communication abstractions that are convenient for
organising networks of processes as formalised below.

Every message belonging to a port has an associated polarity: − if it is an outgoing
message (published at the port) and + if it is incoming (delivered at the port). This is
the notation proposed in [4] and also adopted in [1].

Definition 1 (Ports and message polarity). A port is a set of messages. Every port M
has a partition M−∪M+. The messages in M− are said to have polarity − , and those
in M+ have polarity + .

The actions of sending (publishing) or receiving (being delivered) a message m are
denoted by m! and m¡, respectively. In the literature, one typically finds m? for the
latter. In our model, we use m? for the action of processing the message and m¿ for the
action of discarding the message: processes should not refuse the delivery of messages
but they should be able to discard them.

Definition 2 (Actions). Let M be a port and m∈M .

An Interface Theory for Service-Oriented Design 21

– If m∈M−, the set of actions associated with m is Am = {m!} and, if m∈M+,
Am = {m¡, m?, m¿}

– The set of actions associated with M is AM =
⋃

m∈M Am.

In [7], predicates are used as a means of describing properties of input/output behaviour,
i.e. establishing relations (or the lack thereof) between inputs and outputs of processes,
leading to several classes of relational nets depending on when they are considered to
be ‘well-formed’. In the context of our asynchronous communication model, behaviour
is observed in terms of the actions that are performed, for which the natural formalism
to use is temporal logic (e.g., [14]). For simplicity, we use linear temporal logic, i.e. we
observe traces of actions. In order not to constrain the environment in which processes
execute and communicate, we take traces to be infinite and we allow several actions to
occur ‘simultaneously’, i.e. the granularity of observations may not be so fine that we
can always tell which of two actions occurred first.

Definition 3 (LTL). Let A be a set (of actions). We use a classical linear temporal
logic where every a∈A is an atomic formula and formulas are interpreted over infinite
traces λ∈(2A)ω

. For every collection Φ of formulas, we define:

– ΛΦ = {λ∈(2A)ω:∀φ∈Φ(λ |= φ)}
– ΠΦ = {π∈(2A)∗: ∃λ∈ΛΦ(π≺λ)} where π≺λ means that π is a prefix of λ. Given

π∈(2A)∗ and B⊆A, we denote by (π·B) the trace obtained by extending π with B.

We say that a collection Φ of formulas entails φ — Φ |= φ — iff ΛΦ⊆Λφ. We say that a
collection Φ of formulas is consistent iff ΛΦ �= ∅.

The fact that, at any given point i, it is possible that λ(i) is empty means that we are
using an open semantics, i.e. we are considering transitions during which the ARN is
idle. This means that we can use the logic to reason about global properties of net-
works of processes, which is convenient for giving semantics to the composition of
ARNs. Infinite traces are important because, even if the execution of individual pro-
cesses in a service session is, in typical business applications, finite, the ARN may bind
to other ARNs at run time as a result of the discovery of required services. Unbounded
behaviour may indeed arise in SOC because of the intrinsic dynamics of the configu-
rations that execute business applications, i.e. it is the configuration that is unbounded,
not the behaviour of the processes and channels that execute in the configuration.

In this paper, we work with descriptions (sets of formulas) over different sets of
actions, which requires that we are able to map between the corresponding languages:

Proposition and Definition 4 (Translation). Let σ:A→B be a function. Given an LTL
formula φ over A, we define its translation σ(φ) as the formula over B that is obtained
by replacing every action a∈A by σ(a). The following properties hold:

– For every λ∈2Bω
, λ |= σ(φ) iff σ−1(λ) |= φ where σ−1(λ)(i) is σ−1(λ(i)).

– Any set Φ of LTL formulas over A is consistent if σ(Φ) is consistent.
– For every set Φ of LTL formulas over A and formula ψ also over A, if Φ |= ψ then

σ(Φ) |= σ(ψ).

Furthermore, if σ is an injection, the implications above are equivalences.

22 J.L. Fiadeiro and A. Lopes

Proof. The first property is easily proved by structural induction, from which the other
two follow. The properties of injections are proved in the same way on the direct image.

Notice that, in the case of injections, the translations induce conservative extensions,
i.e. σ(Φ) is a conservative translation of Φ. We are particularly interested in translations
that, given a set A and a symbol p, prefix the elements of A with ‘p.’. We denote these
translations by (p.). Note that prefixing defines a bijection between A and its image.

Definition 5 (Process). A process consists of:

– A finite set γ of mutually disjoint ports.
– A consistent set Φ of LTL formulas over

⋃
M∈γ AM .

Fig. 1 presents an example of a process Seller with two ports. In the port depicted on the
left, which we designate by Lsl, it receives the message buy and sends messages price
and fwd details . The other port, depicted on the right and called Rsl, has incoming
message details and outgoing message product. Among other properties, we can see
that Seller ensures to eventually sending the messages product and price in reaction
to the delivery of buy. As explained below, the grouping of messages in ports implies
that, whilst price is sent over the channel that transmits buy, product is sent over a
different channel.

Seller

product
details

buy
price

fwd_details

⃞(buy¡ ◇(price! ◇product!))

⃞(details¡ ◇fwd_details!)
...

Fig. 1. Example of a process with two ports

Interactions in ARNs are established through channels. Channels transmit messages
both ways, i.e. they are bidirectional, which is consistent with [4]. Notice that, in some
formalisms (e.g., [2]), channels are unidirectional, which is not so convenient for cap-
turing typical forms of conversation that, like in SCA, are two-way: a request sent by
the sender through a wire has a reply sent by the receiver through the same wire (chan-
nel). This means that channels are agnostic in what concerns the polarity of messages:
these are only meaningful within ports.

Definition 6 (Channel). A channel consists of:

– A set M of messages.
– A consistent set Φ of LTL formulas over AM = {m!, m¡ : m ∈ M}.

Notice that in [2] as well as other asynchronous communication models adopted for
choreography, when sent, messages are inserted in the queue of the consumer. In the
context of loose coupling that is of interest for SOC, channels (wires) may have a be-
haviour of their own that one may wish to describe or, in the context of interfaces, spec-
ify. Therefore, for generality, we take channels as first-class entities that are responsible
for delivering messages.

An Interface Theory for Service-Oriented Design 23

Channels connect processes through ports that assign opposite polarities to mes-
sages. Formally, the connections are established through what we call attachments:

Definition 7 (Connection). Let M1 and M2 be ports and 〈M, Φ〉 a channel. A connec-
tion between M1 and M2 via 〈M, Φ〉 consists of a pair of bijections μi:M→Mi such
that μ−1

i (M+
i) = μ−1

j (M−
j), {i, j}={1, 2}. Each bijection μi is called the attachment

of 〈M, Φ〉 to Mi. We denote the connection by 〈M1
μ1←− M μ2−→ M2, Φ〉.

Proposition 8. Every connection 〈M1
μ1←− M μ2−→ M2, Φ〉 defines an injection 〈μ1, μ2〉

from AM to AM1∪AM2 as follows: for every m∈M and {i, j}={1, 2}, if μi(m)∈M−
i

then 〈μ1, μ2〉(m!) = μi(m)! and 〈μ1, μ2〉(m¡) = μj(m)¡.

Definition 9 (Asynchronous relational net). An asynchronous relational net (ARN) α
consists of:

– A simple finite graph 〈P, C〉 where P is a set of nodes and C is a set of edges. Note
that each edge is an unordered pair {p, q} of nodes.

– A labelling function that assigns a process to every node and a connection to every
edge such that:
• If p:〈γ, Φ〉 and q:〈γ′, Φ′〉 then {p, q} is labelled with a connection of the form
〈Mp

μp←− M μq−→ Mq, Φ
′′〉 where Mp∈γ and Mq∈γ′.

• For every {p, q}:〈Mp
μp←− M μq−→ Mq, Φ〉 and {p, q′}:〈M ′

p
μ′

p←− M ′ μ′
q′−→ M ′

q′ , Φ′〉, if
q �= q′ then Mp �= M ′

p.

We also define the following sets:

– Ap = p.(
⋃

M∈γp
AM) is the language associated with p,

– Aα =
⋃

p∈P Ap is the language associated with α,
– Ac =〈p. ◦μp, q. ◦μq〉(AM) is the language associated with γc:〈Mp

μp←− M μq−→ Mq〉.
– Φα is the union of the following sets of formulas

• For every p:〈γ, Φ〉, the prefix-translation Φp of Φ by (p.).
• For every c:〈Mp

μp←− M μq−→ Mq, Φ〉, the translation Φc=〈p. ◦ μp, q. ◦ μq〉(Φ)
– Λα = {λ∈2Aα

ω: ∀p∈P (λ|Ap∈ΛΦp) ∧ ∀c∈C(λ|Ac∈ΛΦc)}
The set of infinite traces that are projected to models of all processes and channels.

– Πα = {π∈2Aα
∗: ∀p∈P (π|Ap∈ΠΦp) ∧ ∀c∈C(π|Ac∈ΠΦc)}

The set of finite traces that are projected to prefixes of models of all processes and
channels.

We often refer to the ARN through the quadruple 〈P, C, γ, Φ〉 where γ returns the set of
ports of the processes that label the nodes and the pair of attachments of the connections
that label the edges, and Φ returns the corresponding descriptions. The fact that the
graph is simple — undirected, without self-loops or multiple edges — means that all
interactions between two given processes are supported by a single channel and that no
process can interact with itself. The graph is undirected because, as already mentioned,
channels are bidirectional. Furthermore, different channels cannot share ports.

Notice that nodes and edges denote instances of processes and channels, respectively.
Different nodes (resp. edges) can be labelled with the same process (resp. channel).
Therefore, in order to reason about the properties of the ARN as a whole we need to

24 J.L. Fiadeiro and A. Lopes

translate the descriptions of the processes and channels involved to a language in which
we can distinguish between the corresponding instances. The set Φα consists precisely
of the translations of all the descriptions of the processes and channels using the nodes
as prefixes for the actions that they execute. Notice that, by Prop. 4, these translations
are conservative, i.e. neither processes nor channels gain additional properties because
of the translations. However, by taking the union of all such descriptions, new proper-
ties may emerge, i.e. Φα is not necessarily a conservative extension of the individual
descriptions.

A process in isolation, such as Seller (see Fig. 1), defines an ARN. Fig. 2 presents
another ARN that also involves Seller. In this ARN, the port Rsl of Seller is connected
with the port Msp of process Supplier, which consists of the incoming message request
and the outgoing message invoice. The channel that connects Rsl and Msp is described
to be reliable with respect to product: it ensures to delivering product, which Sup-
plier receives under the name request. Formally, this ARN consists of a graph with
two nodes sl:Seller and sp:Supplier and one edge {sl, sp}:wss, where wss is the
connection

〈Rsl
μsl←− {m, n} μsp−→ Msp, {�(m! ⊃ �m¡)}〉

with μsl={m �→ product, n �→ details}, μsp={m �→ request, n �→ invoice}.
The set ΦSELLERWITHSUPPLIER consists of the translation of all properties of its processes

and connections. Hence, it includes:

– �(sl.buy¡ ⊃ �(sl.price! ∧ �sl.product!))
– �(sl.details¡ ⊃ �sl.fwd details!)
– �(sp.request¡ ⊃ �sp.invoice!)
– �(sl.product! ⊃ �sp.request¡)

Notice that the last formula, which is the translation of the description of the channel,
relates the languages of Seller and Supplier: the publication of product by Seller leads
to the delivery of request to Supplier. In this context, product and request are just
local names of the ‘same’ message as perceived by the two processes being connected.
The ability to operate with local names is essential for SOC because, in the context of
run-time discovery and binding, it is not possible to rely on a shared name space. This
is why it is important that channels are first-class entities, i.e., that communication is
established explicitly by correlating the actions that represent the local view that each
party has of a message exchange.

⃞(request¡ ◇invoice!)
...

request

invoice

SELLERWITHSUPPLIER

⃞(product! ◇request¡)

SupplierSeller

product

details

⃞(buy¡ ◇(price! ◇product!))

⃞(details¡ ◇fwd_details!)
...

buy
price

fwd_details

Fig. 2. An example of an ARN with two processes connected through a channel

An Interface Theory for Service-Oriented Design 25

In [7], joint consistency of the descriptions of the processes and the connections, i.e.,
of Φα, would be required for the ARN to be well defined. However, consistency does
not ensure that the processes will always be able to make progress while interacting
through the channels, which is why we prefer instead to use the following property as a
criterion for well-formedness:

Definition 10 (Progress-enabled ARN). We say that an ARN α is progress-enabled iff
∀π∈Πα∃A⊆Aα(π·A)∈Πα.

It is not difficult to see that any ARN α with a single process, such as Seller, is
progress-enabled. This is because the process is isolated. In general, not every port
of every process is necessarily connected to a port of another process. Such ports pro-
vide the points through which the ARN can interact with other ARNs. For example,
SELLERWITHSUPPLIER has a single interaction point, which in Fig. 2 is represented
by projecting the corresponding port to the external box.

Definition 11 (Interaction-point). An interaction-point of an ARN α = 〈P, C, γ, Φ〉
is a pair 〈p, M〉 such that p∈P , M∈γp and there is no edge {p, q}∈C labelled with a
connection that involves M . We denote by Iα the collection of interaction-points of α.

Interaction-points are used in the notion of composition that we define for ARNs, which
also subsumes the notion of interconnect of [7]:

Proposition and Definition 12 (Composition of ARNs). Let α1 = 〈P1, C1, γ1, Φ1〉
and α2 = 〈P2, C2, γ2, Φ2〉 be ARNs such that P1 and P2 are disjoint, and a family wi =

〈M i
1

μi
1←− M μi

2−→ M i
2, Ψ

i〉 (i = 1 . . . n) of connections for interaction-points 〈pi
1, M

i
1〉 of

α1 and 〈pi
2, M

i
2〉 of α2 such that pi

1 �= pj
1 if i �= j and pi

2 �= pj
2 if i �= j. The composition

α1

�i=1...n

〈pi
1,Mi

1〉,wi,〈pi
2,Mi

2〉
α2

is the ARN defined as follows:

– Its graph is 〈P1 ∪ P2, C1 ∪ C2 ∪
⋃

i=1...n{pi
1, p

i
2}〉

– Its labelling function coincides with that of α1 and α2 on the corresponding sub-
graphs, and assigns to the new edges {pi

1, p
i
2} the label wi.

Proof. We need to prove that the composition does define an ARN. This is because we
are adding to the sum of the graphs edges between interaction-points that do not share
interaction-points, the resulting graph is simple. It is easy to check that the labels are
well defined.

Fig. 2 can also be used to illustrate the composition of ARNs: SELLERWITHSUPPLIER

is the composition of the two single-process ARNs defined by Seller and Supplier via
the connection wss.

Given that we are interested in ARNs that are progress-enabled, it would be useful
to have criteria for determining when a composition of progress-enabled ARNs is still
progress-enabled. For this purpose, an important property of an ARN relative to its
set of interaction-points is that it does not constrain the actions that do not ‘belong’

26 J.L. Fiadeiro and A. Lopes

to the ARN. Naturally, this needs to be understood in terms of a computational and
communication model in which it is clear what dependencies exist between the different
parties. As already mentioned, we take it to be the responsibility of processes to publish
and process messages, and of channels to deliver them. This requires that processes are
able to buffer incoming messages, i.e., to be ‘delivery-enabled’, and that channels are
able to buffer published messages, i.e., to be ‘publication-enabled’.

Definition 13 (Delivery-enabled). Let α=〈P, C, γ, Φ〉 be an ARN, 〈p, M〉∈Iα one of
its interaction-points, and D〈p,M〉={p.m¡: m∈M+}. We say that α is delivery-enabled
in relation to 〈p, M〉 if, for every (π·A)∈Πα and B⊆D〈p,M〉, (π·B∪(A\D〈p,M〉))∈Πα.

The property requires that any prefix can be extended by any set of messages delivered
at one of its interaction-points. Considering again the ARN defined by Seller, if its
description is limited to the formulas shown in Fig. 1, then it is not difficult to conclude
that the ARN is delivery-enabled for both its interaction-points — the constraints put
on the delivery of buy and details are both satisfiable.

Definition 14 (Publication-enabled). Let h=〈M,Φ〉 be a channel and Eh = {m! :
m ∈ M}. We say that h is publication-enabled iff, for every (π·A)∈ΠΦ and B⊆Eh,
we have π·(B∪(A\Eh)) ∈ ΠΦ.

The requirement here is that any prefix can be extended by the publication of a set
of messages, i.e. the channel should not prevent processes from publishing messages.
For example, the channel used in the connection wss is clearly publication-enabled: the
extension of any prefix (π·A) in ΠΦwss

with the publication of m (if it was not already
in A) is still a prefix of an infinite trace that satisfies �(m! ⊃ �m¡) by executing m¡ at
a later stage.

Theorem 15. Let α = (α1

�i=1...n

〈pi
1,Mi

1〉,wi,〈pi
2,Mi

2〉
α2) be a composition of progress-

enabled ARNs where, for each i = 1 . . . n, wi = 〈M i
1

μi
1←− M μi

2−→ M i
2, Ψ

i〉. If, for each
i=1. . . n, α1 is delivery-enabled in relation to 〈pi

1,M
i
1〉, α2 is delivery-enabled in rela-

tion to 〈pi
2,M

i
2〉 and hi=〈M i,Φi〉 is publication-enabled, then α is progress-enabled.

We can use this theorem to prove that the ARN presented in Fig. 2 is progress-enabled.
Because, as already argued, the channel used in this composition is publication-enabled
and Seller is delivery-enabled, it would remain to prove that so is Supplier, which is
similar to the case of Seller.

Proposition 16. Let α = (α1

�i=1...n

〈pi
1,Mi

1〉,wi,〈pi
2,Mi

2〉
α2) be a composition.

– Let 〈p′1, M ′
1〉 be an interaction-point of α1 different from all 〈pi

1, M
i
1〉. If α1 is

delivery-enabled in relation to 〈p′1, M ′
1〉, so is α.

– Let 〈p′2, M ′
2〉 be an interaction-point of α2 different from all 〈pi

2, M
i
2〉. If α2 is

delivery-enabled in relation to 〈p′2, M ′
2〉, so is α.

An Interface Theory for Service-Oriented Design 27

3 A Service Interface Algebra

In this section, we put forward a notion of interface for software components described
in terms of ARNs and a notion of interface composition that is suitable for service-
oriented design. As discussed in Section 1, this means that interfaces need to specify
the services that customers can expect from ARNs as well as the dependencies that the
ARNs may have on external services for providing the services that they offer.

In our model, a service interface identifies a number of ports through which services
are provided and ports through which services are required (hence the importance of
ports for correlating messages that belong together from a business point of view).
Temporal formulae are used for specifying the properties offered or required.

Ports for required services include messages as sent or received by the external ser-
vice. Therefore, to complete the interface we need to be able to express requirements
on the channel through which communication with the external service will take place,
if and when required. In order to express those properties, we need to have actions on
both sides of the channel, for which we introduce the notion of dual port.

Definition 17 (Dual port). Given a port M , we denote by Mop the port defined by
Mop+ = M− and Mop− = M+.

Notice that (Mop)op=Mop.

Definition 18 (Service interface). A service interface i consists of:

– A set I (of interface-points) partitioned into two sets I→ and I← the members of
which are called the provides- and requires-points, respectively.

– For every interface-point r, a port Mr.
– For every point r∈I→, a consistent set of LTL formulas Φr over AMr .
– For every point r∈I←:

• a consistent set of LTL formulas Φr over AMr making αr = 〈{r}, ∅, Mr, Φr〉
delivery-enabled (see Def. 13),

• a consistent set of LTL formulas ΨMr over {m!, m¡: m∈Mr} making
〈Mr, ΨMr〉 a publication-enabled channel (see Def. 14).

We identify an interface with the tuple 〈I→, I←, M, Φ, Ψ〉 where Mr:r∈I , Φr:r∈I ,
Ψr:r∈I← are the indexed families that identify the ports and specifications of each
point of the interface. Notice that different points may have the same port, i.e., ports are
types.

The sets of formulas at each interface-point specify the protocols that services require
from external services (in the case of requires-points) and offer to clients (in the case of
provides-ports). For example, Fig. 3 presents a service interface with one provides and
one requires-point (we use a graphical notation similar to that of SCA). On the left, we
have an interaction point p through which the service is provided and, on the right side,
the interaction point r through which an external service is required. According to what
is specified, the service offers, in reaction to the delivery of the message buy, to reply by
publishing the message price followed eventually by fwd details . On the other hand,
the required service is asked to react to the delivery of product by publishing details.

28 J.L. Fiadeiro and A. Lopes

⃞(buy¡
 ◇(price! ◇fwd_details!))

buy
price

fwd_details
⃞(product¡ ◇details!)

product
details⃞(details! ◇details¡)

⃞(product! ◇product¡)

ISELLER

product
details

Fig. 3. An example of a service interface

The connection with the external service is required to ensure that the transmission of
both messages is reliable.

Notice that the properties specified of the interface-points play a role that is differ-
ent from the assumption/guarantee (A/G) specifications that have been proposed (since
[16]) for networks of processes and also used in [19] for web services. The aim of A/G
is to ensure compositionality of specifications of processes by making explicit assump-
tions about the way they interact with their environment. The purpose of the interfaces
that we propose is, instead, to specify the protocols offered to clients of the service
and the protocols that the external services that the service may need to discover and
bind to are required to follow. This becomes clear in the definition of the notion of im-
plementation of a service interface, which we call an orchestration. Compositionality
is then proved (Theo. 22) under the assumptions made on the requires-points, namely
delivery and publication enabledness, which concern precisely the way processes and
channels interfere with their environments. That is, our interfaces do address the inter-
ference between service execution and their environment, but the formulas associated
with requires-points are not assumptions and those of provides-ports are not guarantees
in the traditional sense of A/G specifications.

Definition 19 (Orchestration). An orchestration of a service interface
〈I→,I←,M,Φ,Ψ〉 consists of:

– An ARN α = 〈P, C, γ, Φ〉 where P and I are disjoint, which is progress-enabled
and delivery-enabled in relation to all its interaction-points.

– A one-to-one correspondence ρ between I and Iα; we will write r ρ−→p to indicate
that ρ(r) = 〈p, Mp〉 for some port Mp.

– For every r∈I→, a polarity-preserving bijection ρr:Mr→Mp where r ρ−→p.
– For every r∈I←, a polarity-preserving bijection ρr:Mop

r →Mp where r ρ−→p.

Let α∗ = (α
�
ρ(r),wr,〈r,Mr〉 αr)r∈I← with wr = 〈Mp

ρr←− Mr
id−→ Mr, Ψr〉, r ρ−→p. We re-

quire that, for every r∈I→, (p. ◦ρr)−1(Λα∗)⊆ΛΦr — equivalently, Φα∗ |= p.(ρr(Φr)).
A service interface that can be orchestrated is said to be consistent.

The condition requires that every model of the ARN composed with the requires-points
and channels be also a model of the specifications of the provides-points. That is, no
matter what the external services that bind to the requires-points do and how the chan-
nels transmit messages (as long as they satisfy the corresponding specifications), the

An Interface Theory for Service-Oriented Design 29

ARN will be able to operate and deliver the properties specified in the provides-points.
Notice that, by Theo. 15 the composition is progress-enabled.

Also note that provides-points are mapped to interaction-points of the ARN preserv-
ing the polarity of the messages, but requires-points reverse the polarity. This is because
every requires-point r∈I← represents the external service that is required whereas r ρ−→p
identifies the interaction-point through which that external service, once discovered,
will bind to the orchestration. The ARNs αr represent those external services.

Consider again the ARN defined by Seller as in Fig. 1. It is not difficult to see that,
together with the correspondences p �→ 〈Seller, Lsl〉 and r �→ 〈Seller, Rsl〉, Seller
defines an orchestration for the service interface ISELLER. Indeed, according to the
definition above, Seller∗ is the composition

Seller
�

〈sl,Rsl〉,wr,〈r,Rop
sl 〉

〈{r}, ∅, Rop
sl , {�(product¡ ⊃ �details!)}〉

Hence, the set ΦSeller∗ includes the following properties:

1. �(sl.buy¡ ⊃ �(sl.price! ∧ �sl.product!)) (from Seller)
2. �(sl.details¡ ⊃ �sl.fwd details!) (from Seller)
3. �(r.product¡ ⊃ �r.details!) (from the specification Φr of the requires-point)
4. �(r.details! ⊃ �sl.details¡) (from the specification Ψr of the required channel)
5. �(sl.product! ⊃ �r.product¡) (from Ψr)

It is not difficult to conclude that �(p.buy¡ ⊃ �(sl.price! ∧ �sl.fwd details!))) is a
logical consequence of ΦSeller∗ . We just have to produce a chain of implications using
(1), (5), (3), (4) and (2), in this order.

Definition 20 (Match). A match between two interfaces i = 〈I→, I←, M i, Φi, Ψ i〉
and j = 〈J→, J←, M j, Φj , Ψ j〉 is a family of triples 〈rm, sm, δm〉, m = 1 . . . n,
where rm∈I←, sm∈J→ and δm:M i

rm→M j
sm is a polarity-preserving bijection such

that Φj
sm |= δm(Φi

rm). Two interfaces are said to be compatible if their sets of interface-
points are disjoint and admit a match.

That is, a match maps certain requires-points of one of the interfaces to provides-points
of the other in such a way that the required properties are entailed by the provided ones.
Notice that, because the identity of the interface-points is immaterial, requiring that
the sets of points of the interfaces be disjoint is not restrictive at all. We typically use
δm:rm→sm to refer to a match.

Definition 21 (Composition of interfaces). Given a match δm:rm→sm between com-
patible interfaces i = 〈I→, I←, M i, Φi, Ψ i〉 and j = 〈J→, J←, M j, Φj , Ψ j〉, their
composition (i ‖δm:rm→sm j) = 〈K→, K←, M, Φ, Ψ〉 is defined as follows:

– K→ = I→ ∪ (J→ \ {sm : m = 1 . . . n}).
– K← = J← ∪ (I← \ {rm : m = 1 . . . n}).
– 〈M, Φ, Ψ〉 coincides with 〈M i, Φi, Ψ i〉 and 〈M j, Φj , Ψ j〉 on the corresponding

points.

30 J.L. Fiadeiro and A. Lopes

Notice that the composition of interfaces is not commutative: one of the interfaces plays
the role of client and the other of supplier of services.

We can now prove compositionality, i.e., that the composition of the orchestrations
of compatible interfaces is an orchestration of the composition of the interfaces.

Theorem 22 (Composition of orchestrations). Let i = 〈I→, I←, M i, Φi, Ψ i〉 and
j = 〈J→, J←, M j , Φj , Ψ j〉 be compatible interfaces, δm:rm→sm a match between
them, and 〈α, ρ〉 and 〈β, σ〉 orchestrations of i and j, respectively, with disjoint graphs.

(
α

�m=1...n

〈pm,Mpm〉,wm,〈qm,Mqm 〉 β
)

where wm = 〈Mpm
ρrm←−− Mrm

σsm ◦ δm

−−−−−−→ Mqm , Ψ i
Mrm 〉, ρ(rm)=〈pm, Mpm〉 and

σ(sm) = 〈qm, Mqm〉 defines an orchestration of (i ‖δm:rm→sm j) through the mapping
κ that coincides with ρ on I and with σ on J .

Compositionality is one of the key properties required in [7] for a suitable notion of
interface. From the software engineering point of view, it means that there is indeed a
separation between interfaces and their implementations in the sense that, at the design
level, composition can be performed at the interface level independently of the way the
interfaces will be implemented. In particular, one can guarantee that the composition
of compatible interfaces can indeed be orchestrated, which is captured by the following
corollary (the theorem provides a concrete way of deriving that orchestration from those
of the component interfaces):

Corollary 23 (Preservation of consistency). The composition of two compatible and
consistent interfaces is consistent.

4 Related Work and Concluding Remarks

In this paper, we took inspiration from the work reported in [7] on a theory of interfaces
for component-based design to propose a formalisation of ‘services’ as interfaces for an
algebra of asynchronous components. That is, we exposed and provided mathematical
support for the view that services are, at a certain level of abstraction, a way of using
software components — what is sometimes called a ‘service-overlay’ — and not so
much a way of constructing software, which is consistent with the way services are
being perceived in businesses [8] and supported by architectures such as SCA [17].

This view differs from the more traditional component-based approach in which
components expose methods in their interfaces and bind tightly to each other (based
on I/O-relations) to construct software applications. In our approach, components ex-
pose conversational, stateful interfaces through which they can discover and bind, on
the fly, to external services or expose services that can be discovered by business ap-
plications. Having in mind that one of the essential features of SOC is loose-binding,
we proposed a component algebra that is asynchronous — essentially, an asynchronous
version of relational nets as defined in [7].

As mentioned in Section 1, most formal frameworks that have been proposed for
SOC address choreography, i.e., the specification of a global conversation among a

An Interface Theory for Service-Oriented Design 31

fixed number of peers and the way it can be realised in terms of the local behaviour gen-
erated by implementations of the peers. A summary of different choreography models
that have been proposed in the literature can be found in [20]. Among those, we would
like to distinguish the class of automata-based models proposed in [2,5,13], which are
asynchronous. Such choreography models are inherently different from ours in the
sense that they study different problems: the adoption of automata reflects the need
to study the properties and realisability of conversation protocols captured as words of
a language of message exchange. It would be tempting to draw a parallel between their
notion of composite service — a network of machines — and our ARNs, but they are
actually poles apart: our aim has not been to model the conversations that characterise
the global behaviour of the peers that deliver a service, but to model the network of
processes executed by an individual peer and how that network orchestrates a service
interface for that peer — that is, our approach is orchestration-based. Therefore, we do
not make direct usage of automata, although a reification of our processes could natu-
rally be given in terms of automata. Our usage of temporal logic for describing ARNs,
as a counterpart to the use of first-order logic in [7] for describing I/O communication,
has the advantage of being more abstract than a specific choice of an automata-based
model (or, for that matter, a Petri-net model [18]). This has also allowed us to adopt a
more general model of asynchronous communication in which channels are first-class
entities (reflecting the importance that they have in SOC). We are currently studying
decidability and other structural properties of our model and the extent to which we can
use model-checking or other techniques to support analysis.

Another notion of web service interface has been proposed in [3]. This work presents
a specific language, not a general approach like we did in this paper, but there are some
fundamental differences between them, for example in the fact that their underlying
model of interaction is synchronous (method invocation), which is not suitable for loose
coupling. The underlying approach is, like ours, orchestration-based but, once again,
more specific than ours in that orchestrations are modelled through a specific class of
automata supporting a restricted language of temporal logic specifications. Another fun-
damental difference is that, whereas in [3] the orchestration of a service is provided by
an automaton, ours is provided by a network of processes (as in SCA), which provides
a better model for capturing the dynamic aspects of SOC that arise from run-time dis-
covery and binding: our notion of composition is not for integration (as in CBD) but for
dynamic interconnection of processes. This is also reflected in the notion of interface:
the interfaces used in [3] are meant for design-time composition, the client being stati-
cally bound to the invoked service (which is the same for all invocations); the interfaces
that we proposed address a different form of composition in which the provider (the
“need-fulfilment mechanism”) is procured at run time and, therefore, can differ from
one invocation to the next, as formalised in [11] in a more general algebraic setting.

Being based on a specific language, [3] explores a number of important issues related
to compatibility and consistency that arise naturally in service design when one con-
siders semantically-rich interactions, e.g., when messages carry data or are correlated
according to given business protocols. A similar orchestration-based approach has been
presented in [1], which is also synchronous and based on finite-state machines, and also
addresses notions of compatibility and composition of conversation protocols (though,

32 J.L. Fiadeiro and A. Lopes

interestingly, based on branching time). We are studying an extension of our frame-
work that can support such richer models of interaction (and the compatibility issues
that they raise), for which we are using, as a starting point, the model that we adopted
in the language SRML [12], which has the advantage of being asynchronous.

Although we consider that the main contribution of this paper is to put forward a no-
tion of interface that can bring service-oriented design to the ‘standards’ of component-
based design, there are still aspects of the theory of component interfaces developed in
[7] that need to be transposed to services. For example, an important ingredient of that
theory is a notion of compositional refinement that applies to interfaces (for top-down
design) and a notion of compositional abstraction for implementations (orchestrations
in the case of services), that can support bottom-up verification.

Other lines for further work concern extensions to deal with time, which is critical
for service-level agreements, and to address the run-time discovery, selection and bind-
ing processes that are intrinsic to SOC. We plan to use, as a starting point, the algebraic
semantics that we developed for SRML [11]. Important challenges that arise here relate
to the unbounded nature of the configurations (ARNs) that execute business applica-
tions in a service-oriented setting, which is quite different from the complexity of the
processes and communication channels that execute in those configurations.

Acknowledgments

We would like to thank Nir Piterman and Emilio Tuosto for many helpful comments
and suggestions.

References

1. Benatallah, B., Casati, F., Toumani, F.: Representing, analysing and managing web service
protocols. Data Knowl. Eng. 58(3), 327–357 (2006)

2. Betin-Can, A., Bultan, T., Fu, X.: Design for verification for asynchronously communicating
web services. In: Ellis and Hagino [9], pp. 750–759

3. Beyer, D., Chakrabarti, A., Henzinger, T.A.: Web service interfaces. In: Ellis and Hagino [9],
pp. 148–159

4. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2), 323–342
(1983)

5. Bultan, T., Fu, X., Hull, R., Su, J.: Conversation specification: a new approach to design and
analysis of e-service composition. In: WWW, pp. 403–410 (2003)

6. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred programming for
web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 2–17. Springer,
Heidelberg (2007)

7. de Alfaro, L., Henzinger, T.A.: Interface theories for component-based design. In: Henzinger,
T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 148–165. Springer, Heidel-
berg (2001)

8. Elfatatry, A.: Dealing with change: components versus services. Commun. ACM 50(8),
35–39 (2007)

9. Ellis, A., Hagino, T. (eds.): Proceedings of the 14th international conference on World Wide
Web, WWW 2005, Chiba, Japan, May 10-14. ACM, New York (2005)

An Interface Theory for Service-Oriented Design 33

10. Fiadeiro, J.L.: Designing for software’s social complexity. IEEE Computer 40(1), 34–39
(2007)

11. Fiadeiro, J.L., Lopes, A., Bocchi, L.: An abstract model of service discovery and binding.
Formal Asp. Comput. (to appear)

12. Fiadeiro, J.L., Lopes, A., Bocchi, L., Abreu, J.: The Sensoria reference modelling language.
In: Wirsing and Hoelzl

13. Fu, X., Bultan, T., Su, J.: Conversation protocols: a formalism for specification and verifica-
tion of reactive electronic services. Theor. Comput. Sci. 328(1-2), 19–37 (2004)

14. Goldblatt, R.: Logics of time and computation. CSLI, Stanford (1987)
15. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
16. Misra, J., Chandy, K.M.: Proofs of networks of processes. IEEE Trans. Software Eng. 7(4),

417–426 (1981)
17. OSOA. Service component architecture: Building systems using a service oriented architec-

ture (2005), White paper, http://www.osoa.org
18. Reisig, W.: Towards a theory of services. In: Kaschek, R., Kop, C., Steinberger, C., Fliedl,

G. (eds.) UNISCON 2008. LNBIP, vol. 5, pp. 271–281. Springer, Heidelberg (2008)
19. Solanki, M., Cau, A., Zedan, H.: Introducing compositionality in web service descriptions.

In: FTDCS, pp. 14–20. IEEE Computer Society, Los Alamitos (2004)
20. Su, J., Bultan, T., Fu, X., Zhao, X.: Towards a theory of web service choreographies. In: Du-

mas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 1–16. Springer, Heidelberg
(2008)

21. Wirsing, M., Hoelzl, M. (eds.): Rigorous Software Engineering for Service-Oriented
Systems. LNCS, vol. 6582. Springer, Heidelberg (2011)

http://www.osoa.org

rt-Inconsistency: A New Property for Real-Time
Requirements

Amalinda Post1, Jochen Hoenicke2, and Andreas Podelski2

1 Robert Bosch GmbH, Stuttgart, Germany
Amalinda.Post@de.bosch.com

2 University of Freiburg, Germany
{hoenicke,podelski}@informatik.uni-freiburg.de

Abstract. We introduce rt-inconsistency, a property of real-time re-
quirements. The property reflects that the requirements specify appar-
ently inconsistent timing constraints. We present an algorithm to check
rt-inconsistency automatically. The algorithm works via a stepwise re-
duction to real-time model checking. We implement the algorithm using
an existing module for the reduction and the UPPAAL tool for the real-
time model checking. As a case study, we apply our prototype imple-
mentation to existing real-time requirements for automotive projects at
BOSCH. The case study demonstrates the relevance of rt-inconsistency
for detecting errors in industrial real-time requirements specifications.

1 Introduction

The specification of requirements allows us to differentiate a correct from an in-
correct system. Often, however, it is difficult to get the requirements specification
itself right. In the case of real-time requirements, this difficulty is exacerbated
by the presence of subtle dependencies between timing constraints.

A basic problem with getting the requirements right is the lack of unambigu-
ous properties that allow us to differentiate a good from a bad set of require-
ments. The IEEE Standard 830-1998 of “Recommended Practice for Software
Requirements Specifications” defines eight properties, called correctness, unam-
biguity, completeness, consistency, ranking for importance, verifiability, modi-
fiability, and traceability [9]. The meaning of these properties is, however, not
formally defined. To identify unambiguous properties for requirements remains
an active research topic; see, e.g., [3,5,10,12].

In this paper, we propose a formal property of real-time requirements. The
property reflects that the requirements specify apparently inconsistent timing
constraints. Its violation may thus identify an (otherwise not identifiable) error
in a requirements specification. We call the new property rt-inconsistency (for
lack of a better name).

Errors in a requirement specification are often identified as inconsistency (the
specification is unsatisfiable by any system, e.g., because it contains two contra-
dicting requirements) or incompleteness (the specification lacks a requirement,

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 34–49, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

rt-Inconsistency: A New Property for Real-Time Requirements 35

e.g., because one among several possible cases is not covered) [3]. The new prop-
erty lies between inconsistency and incompleteness because the error can be
repaired either by removing a requirement (as in the case of inconsistency) or
by adding requirements (as in the case of incompleteness).

We demonstrate the relevance of the new property of real-time requirements
specifications by a practical case study in an industrial setting. We took six exist-
ing sets of real-time requirements for automotive projects at BOSCH. Each of the
six sets had undergone a thorough review. Yet, three out of the six sets of require-
ments contained an error identifiable through rt-inconsistency. The errors were
acknowledged and subsequently repaired by the responsible engineers at BOSCH.
In one of the three cases, this required a major revision of the requirements. The
errors could not have been caught using the property of inconsistency; i.e., each
of the six sets was consistent, as we could verify formally. We do not know of
any existing property of requirement specifications that would have allowed us
to catch these errors.

In the standard industrial praxis, requirements specifications must be checked
manually, e.g., by peer reviews [12]. Yet, since requirements affect each other and
cannot be analyzed in isolation, this is an considerable effort. Automatic checks
are desirable already for small sets of requirements [6,7,13].

In this paper, we show that we can check the rt-inconsistency of a set of real-
time requirements automatically. We present an algorithm and its theoretical
foundation. The algorithm works via a stepwise reduction of the rt-inconsistency
of a set of real-time requirements to a certain property of one specific real-time
system (that we derive from the set of real-time requirements). I.e., it reduces a
property of properties of real-time systems to a property of a real-time system.

The reduction allows us to reduce rt-inconsistency checking to real-time model
checking. As a theoretical consequence of the reduction, the algorithm inherits
the theoretical exponential worst-case complexity. Practically, the reduction al-
lows us to capitalize on the advances of real-time model checking and the indus-
trial strength of existing tools such as UPPAAL [2].

To implement the algorithm, we build upon pre-existing modules from [8] for
deriving the real-time system from the set of given real-time requirements and
the UPPAAL tool [2] for checking the real-time system. The implementation has
allowed us to perform the above-mentioned case study with existing industrial
examples. The primary goal was to demonstrate the practical relevance of the
new property of real-time requirements. The second goal of the case study was to
evaluate the practical potential of our algorithm for checking the property auto-
matically. The results of our experiments are encouraging in this direction. They
indicate that checking rt-inconsistency automatically is feasible in principle.

Roadmap. We will next illustrate rt-inconsistency informally with an example.
Section 2 introduces rt-inconsistency formally, together with the formalization of
real-time requirements. Section 3 presents the algorithm, with (1) the notion of
automaton used for the intermediate step of the reduction, (2) the construction
of such an automaton from requirements, and (3) its transformation to a timed
automaton. Section 4 presents the case study.

36 A. Post, J. Hoenicke, and A. Podelski

IRTest

IRLamps

IRTest=0 IRTest=1 &
IRLamps=0

IRTest=0 &
IRLamps=0

4 6 8 10 12 1420 time

1

0

1

0

Fig. 1. Witness for the rt-inconsistency of the set of requirements {Req1,Req2}. The
timing conflict appears immediately after the time point t = 14.

Example of rt-inconsistency. Consider the two informal real-time require-
ments below.

– Req1: “If the system’s diagnostic request IRTest is set, then it is never the
case that the infrared lamps stay turned off for more than 10 seconds.”

– Req2: “If the system’s diagnostic request IRTest is set, then it is never the
case that the infrared lamps will be on in the next 6 seconds.”

The set of the two requirements is consistent (one can find systems that satisfy
both requirements). However, a closer inspection of the requirements shows that
circumstances may arise where the two requirements are in conflict. Consider the
trace depicted in Figure 1. At time point t = 4 the diagnostic request IRTest is
set. By Req1, the infrared lamps must be turned on within the next 10 seconds. In
the (right-open) time interval [4, 10) IRTest stays. It disappears at the time point
t = 10. By Req2, the infrared lamps are turned off for at least 6 seconds (and,
thus, during the whole time interval [10, 16]). I.e., for any possible continuation
of the trace after t = 14, the two requirements clash: by Req1, the infrared lamps
are turned on, and by Req2, they are turned off for further two seconds; i.e., the
requirements claim contradicting valuations for the infrared lamps. The set of
the two requirements, while consistent, is rt-inconsistent!

One way to resolve the rt-inconsistency is to delete Req2 or to change it to
the weaker requirement Req′2.

– Req′2: “If the system’s diagnostic request IRTest is set and it was not set in
the last 10 seconds, then it is never the case that the infrared lamps will be
on in the next 6 seconds.”

Another way to resolve the rt-inconsistency is to add both, the requirements
Req3 and Req4 to the set containing Req1 and Req2.

– Req3: “Once the system’s diagnostic request IRTest is set, IRTest stays
active for at most 3 seconds.”

– Req4: “Once the system’s diagnostic request IRTest disappears, IRTest is
absent for at least 10 seconds.”

rt-Inconsistency: A New Property for Real-Time Requirements 37

2 Defining rt-Inconsistency

To find rt-inconsistencies we need to interpret requirements on both the infinite
time axis R≥0 and on finite time intervals [0, t] from zero to some time point t.
A convenient way to obtain a suitable formalization of requirements is to borrow
the notation of the Duration Calculus [14,15]. Before we introduce the formal
syntax of our class of real-time requirements, we will derive the formalization
of the example requirement Req1 from Section 1. We first restate Req1 in a less
ambiguous form.

– Req1: If the system’s diagnostic request IRTest is set at a time when the
infrared lamps are turned off, then it is never the case that the infrared
lamps stay turned off for more than 10 seconds.

We introduce the predicates IRTest and IRLampsOn (with their obvious mean-
ing) and reformulate Req1 as follows.

– Req1: For any run of the system, it must not be the case that there are time
points t1, t2, and t3, t1 < t2 < t3 such that IRTest is true between t1 and
t2, and IRLampsOn is false between t1 and t3, and the length of the interval
[t2, t3] is greater than 10 seconds.

Equivalently, for any run of the system, it must not be possible to split the time
axis into four consecutive phases where:

1. the first phase (from time point 0 to t1) does not underlie any constraint,
2. the second phase (from time point t1 to t2) underlies the constraint that

IRTest is true and IRLampsOn is false,
3. the third phase (from time point t2 to t3) underlies the constraint that

IRLampsOn is false and the constraint that its length (the difference between
t3 and t2) is greater than 10.

4. the fourth phase (from time point t3 until infinity) does not underlie any
constraint.

In formal syntax, the requirement Req1 is expressed as the formula ϕ1 below.
Here the symbol “¬ ” denotes negation, the symbol “ ; ” separates two phases, the
phase “�P �” refers to a nonzero-length period of time during which the predicate
P is satisfied, adding the conjunct“� > k” to a phase means that its length is
strictly greater than the constant k, and the constant phase “true” refers to a
period of time during which the behavior does not underlie any constraint (and
which is possibly of zero length).

ϕ1 = ¬(true ; �IRTest ∧ ¬IRLampsOn� ; �¬IRLampsOn� ∧ � > 10 ; true)

The formalization of three other requirements from Section 1 is given below.

ϕ2 = ¬(true ; �IRTest� ; true ∧ � < 6 ; �IRLampsOn� ; true)

ϕ3 = ¬(true ; �IRTest� ∧ � > 3 ; true)
ϕ4 = ¬(true ; �IRTest� ; �¬IRTest� ∧ � < 10 ; �IRTest� ; true)

38 A. Post, J. Hoenicke, and A. Podelski

Syntax. Formally, the syntax of phases π and requirements ϕ is defined by
the BNF below. The predicate symbol P refers to a fixed set Preds of predicate
symbols (for observations whose truth values change over time). The correctness
of the algorithm presented in this paper (more precisely, the soundness of the
answer “rt-consistent”) relies on the fact that we have only strict inequalities
(� > k and � < k) in the definition of phases π. The extension to non-strict
inequalities (� ≥ k and � ≤ k) would complicate the algorithm unnecessarily,
i.e., without being motivated by practical examples.

phase π ::= true | �P � | π ∧ � > k | π ∧ � < k
requirement ϕ ::= ¬ (π1 ; . . . ; πn ; true)

A set of requirements denotes their conjunction. We overload the metavariable
ϕ for requirements and sets of requirements.

Interpretation I. Avoiding the confusion about the different meanings of other
terms in the literature, we use the term interpretation to refer to a mapping that
assigns to each time point t on the time axis (i.e., each t ∈ R≥0) an observation,
i.e., a valuation of the family of given predicates P .

I : R≥0 → {true, false}Preds , I(t)(P) ∈ {true, false}

We use “segment of I from b to e” and write “(I, [b, e])” for the restriction of
the function I to the interval [b, e] between the (“begin”) time point b and the
(“end”) time point e.

We use “prefix of I until t” for the special case of the segment of I from 0 to
t, i.e., for the restricted function (I, [0, t]). Given two interpretations I and I′

we say that the prefix of I until t coincides with the prefix of I ′ until t if the
(restricted) functions are equal, i.e., (I, [0, t]) = (I′, [0, t]).

Satisfaction of a requirement by an interpretation, I |= ϕ. We first define the
satisfaction of a requirement by a segment of an interpretation, (I, [b, e]) |= ϕ.

(I, [b, e]) |= �P � if I(P)(t) is true for t ∈ [b, e] and b �= e

(I, [b, e]) |= � > k if (e − b) > k

(I, [b, e]) |= π1 ; π2 if (I, [b, m]) |= π1 and (I, [m, e]) |= π2 for some m ∈ [b, e]

We can then define the satisfaction of a requirement by a (‘full’) interpretation.

I |= ϕ if (I, [0, t]) |= ϕ for all t

That is, an interpretation I satisfies the requirement ϕ if every prefix of I does
(i.e., if for every time point t, the prefix of I until t satisfies ϕ).

Safety. A requirement ϕ, which we have defined to be a negated formula of
the form ϕ = ¬ (π1 ; . . . ; πn ; true), expresses that “something bad may
not happen”, where “bad” refers to the possibility of splitting the time axis

rt-Inconsistency: A New Property for Real-Time Requirements 39

into n + 1 intervals satisfying the phases π1, . . . , πn, and true, respectively.
The requirement ϕ expresses a so-called safety property (which means that “if
an execution violates ϕ, then there is a prefix of the execution such that any
execution with this prefix violates ϕ”). The syntactic restriction that the last
phase is true is crucial here.

rt-inconsistency. The satisfaction of a requirement is defined not only for a ‘full’
interpretation on the infinite time axis (“I |= ϕ”) but also for the prefix of an
interpretation until a time point t (“(I, [0, t]) |= ϕ”). We need both satisfaction
relations in our definition of rt-inconsistency.

Definition 1. [rt-inconsistency] A set of requirements ϕ is rt-inconsistent if
there exists a prefix (I, [0, t]) of an interpretation I until a time point t that
satisfies ϕ but no extension of the prefix to a full interpretation does (i.e., on
the whole time axis), formally:

(I, [0, t]) |= ϕ

I ′ �|= ϕ if (I ′, [0, t]) = (I, [0, t])

i.e., the full interpretation I ′ does not satisfy ϕ whenever its prefix until t coin-
cides with the prefix of the interpretation I until t.

Remark 1. In essence, a set of requirements ϕ is rt-inconsistent if it does not
exclude the existence of a prefix of an interpretation which leads to a conflict.
The conflict prevents the possibility of the extension of the prefix to a full inter-
pretation. More precisely, in the setting of Definition 1 (of an interpretation I,
a time point t, and the prefix (I, [0, t]) satisfying ϕ), the rt-inconsistency is due
to one of two reasons.

1. No extension of the prefix (I, [0, t]) to any time point t′ after t is possible
without violating ϕ (i.e., (I, [0, t′]) �|= ϕ for all t′ > t).
In other words: The conflict inherent in ϕ hits directly after t. The conflict
does not hit at any time point in the closed interval [0, t] but it does hit
when time leaves the interval, i.e., at any time point t′ after t. No passing of
time after t is possible without a conflict.

2. There are (uncountably many) time points t′ after t such that the extension
of the prefix (I, [0, t]) to t′ is possible without violating ϕ, but there exists
a time point t0 after all those time points t′ such that the extension of the
prefix (I, [0, t]) to t0 violates ϕ (i.e., (I, [0, t0]) �|= ϕ for some t0 > t).
In other words: The conflict inherent in ϕ strikes after the time point t0 after
t. The conflict does not hit at t or at any other time point in the right-open
interval [0, t0) but it does hit at the time point t0. No passing of time into t0
is possible without a conflict.

Remark 2. It is easy to find examples that show, respectively, that neither does
the rt-consistency imply the absence of deadlocks for every system that satisfies
the real-time requirement ϕ, nor does the rt-inconsistency imply the presence of
deadlocks in every system that satisfies ϕ.

40 A. Post, J. Hoenicke, and A. Podelski

Remark 3. Although the idea of using rt-inconsistency to detect flaws in real-time
requirements is new (and in particular no algorithm for deciding rt-inconsistency
was given before), the property has already appeared in a different form in [1].
There, however, the concern is the completeness of proof methods for the treat-
ment of real time in standard linear temporal logic. The goal in [1] is a method
to prove that a system specification S satisfies a requirement ϕ. Here, S is an
“old-fashioned” program where updates of a program variable now over the reals
are used to model the progress of time. If ϕ is a liveness property, then one may
need to add to S a fairness assumption NZ for the scheduler that updates now .
Still, a proof method may be incomplete (i.e., it may be incapable of showing
the correctness of S together with NZ wrt. the requirement ϕ). The complete-
ness of a proof method may hold only for correctness problems where the pair
(S,NZ) is machine-closed. Machine-closure of S for NZ is essentially the same
as rt-consistency of S. The formal definitions are not directly comparable (since
machine-closure is formalized using sequences of pairs of states and time points,
as opposed to continuous interpretations I).

3 Checking rt-Inconsistency

In this section, we present an algorithm (see Algorithm 1) to check whether a set
of requirements ϕ is rt-inconsistent. To simplify the presentation, we assume that
ϕ is consistent (we have implemented the check for consistency, not presented
here, and use it in a preliminary step in our experiments).

As already explained in the introduction, we reduce the problem of checking
the rt-inconsistency of ϕ to the problem of checking a certain temporal property
(existence of deadlocks) of a real-time system, formally a timed automaton S. We
construct S from ϕ. More precisely, we first construct a certain kind of automa-
ton A, a so-called phase event automaton (PEA), from ϕ and then transform A
into a timed automaton S such that ϕ, A, and S are related in a sense that we
will make formal.

Fig. 2 presents the intermediate results of the different steps of the application
of Algorithm 1 to the rt-inconsistent set of the requirements ϕ1 and ϕ2 from Sec-
tion 2 (formalizing Req1 and Req2 from Section 1). Algorithm 1 transforms the
requirements ϕ1 and ϕ2 into the phase event automata A1 and A2 in Figure 2a
resp. Figure 2b. It forms their parallel product A = A1||A2 which is given in
Figure 2c. It then transforms A into the timed automaton S given in Figure 2d.
After that it checks whether S contains a deadlock. In this example, it finds a
deadlock and returns the answer “ϕ is rt-inconsistent”, together with a witness
given in Figure 3 (a run of S leading to a deadlock). The first witness depicted
in Figure 3(where IRTest toggles too quickly) suggests adding the requirement
ϕ4. The second witness (where IRTest stays on too long) suggests adding the
requirement ϕ3.

rt-Inconsistency: A New Property for Real-Time Requirements 41

c1<10

IRLampsOn′

c1<10

TRUE

c1<10

IRLampsOn′

c1<10

c1:=0

p1
¬IRLampsOn∧

IRTest
c1≤10

p0
IRLampsOn
∨¬IRTest

p2
¬IRLampsOn∧

¬IRTest
c1≤10

(a) phase event automaton A1

c2<6

TRUE

c2≥6

TRUE

TRUE

c2:=0

TRUE

p1
¬IRLampsOn∧

IRTest

p2
¬IRLampsOn∧

¬IRTest
c2≤6

p0
¬IRTest

(b) phase event automaton A2

c1<10∧
c2≥6

c1<10

c1<10∧
c2<6

c1<10

c1<10
c2:=0 IRLampsOn′

c1:=0

c1<10

TRUE

c1<10

c2≥6∧
IRLampsOn′

p2, p0
¬IRLampsOn∧

¬IRTest
c1≤10

p1, p1
¬IRLampsOn∧

IRTest
c1≤10

p2, p2
¬IRLampsOn∧

¬IRTest
c1≤10∧c2≤6

p0, p0
¬IRTest

(c) phase event automaton A = A1||A2

timer:=0

TRUE

timer>0
timer:=0

c1<10
c2≥6

timer>0
timer:=0

c1<10
timer>0
timer:=0

c1<10
timer>0
timer:=0

c1:=0
timer:=0

c2≥6
timer>0
timer:=0

timer>0
timer:=0
c1:=0

c1<10
timer>0
c2:=0

timer:=0

p0, p0

p2, p2
c1≤10
c2≤6

p2, p0
c1≤10

p1, p1
c1≤10

init

(d) timed automaton S

Fig. 2. Algorithm 1 of Section 3 applied to the set of the requirements ϕ1 and ϕ2

from Section 2 (formalizing Req1 and Req2 from Section 1) constructs the phase event
automata A1 and A2, forms their parallel product A = A1||A2 and transforms A into
the timed automaton S.
ϕ1 = ¬(true ; �IRTest ∧ ¬IRLampsOn
 ; �¬IRLampsOn
 ∧ � > 10 ; true)
ϕ2 = ¬(true ; �IRTest
 ; true ∧ � < 6 ; �IRLampsOn
 ; true)

42 A. Post, J. Hoenicke, and A. Podelski

duration
=2

duration
=3

duration
=6

duration
=3

duration
=2

duration
=4

p2, p2
c1≤10
c2≤6

p1, p1
c1≤10

p2, p2
c1≤10
c2≤6

p1, p1
c1≤10

deadlock

p2, p2
c1≤10
c2≤6

p1, p1
c1≤10

deadlock

Fig. 3. Algorithm 1 of Section 3 applied to the set of the requirements ϕ1 and ϕ2 from
Section 2 returns a run of S leading to a deadlock as a witness for the answer “ϕ is
rt-inconsistent”, e.g. one of the depicted runs. The depicted witnesses suggest adding
ϕ3 respectively ϕ4.

Algorithm 1. Check rt-inconsistency of set of requirements ϕ = {ϕ1, . . . , ϕn}
for all i = 1, . . . , n do

Ai := req2pea(ϕi) {transform requirement to phase event automaton}
end for
A := A1‖ . . . ‖An {form the parallel product of phase event automata}
S := pea2ta(A) {transform phase event automaton to timed automaton}

{call timed model checker for existence of deadlocks}
if (S is deadlock-free) then

return “ϕ is rt-consistent”
else

return “ϕ is rt-inconsistent” {return path to deadlock in timed automaton}
end if

3.1 Phase Event Automata

We will use phase event automata as a means to define sets of interpretations I
(i.e., mappings from time points to observations, i.e., to valuations of predicates).
Syntactically, a phase event automaton resembles a timed automaton in that it
has the same notion of clocks ; semantically, there are differences such as in the
minimal duration between transitions. Below, for a set of variables X , we use
X ′ for the set of their primed versions (which stand, as usual, for the value of
the corresponding variable in a successor state after a transition). We use L(X)
to denote a set of formulae with free variables in X .

A phase event automaton (PEA) is a tuple A = (P, V, C, E, s, I, P 0) where

– P is the set of locations p (phases),
– C is the set of clocks c,
– V is the Boolean variables P (observation predicates),
– E is a set of transitions of the form (p, g, X, p′) where p and p′ specify

the from- and to-locations, the guard g is a formula in the unprimed clock
variables and in the unprimed and primed Boolean variables (i.e., g specifies
also the updates of Boolean variables), and X is the set of clocks that are
reset to 0, i.e., E ⊆ P × L(C ∪ V ∪ V ′) × 2C × P ,

rt-Inconsistency: A New Property for Real-Time Requirements 43

– the mapping s assigns each location p its state invariant which is stated as
a formula in the Boolean variables, i.e., s : P → L(V),

– the mapping I assigns each location p its clock invariant which is stated as
a formula in the clocks, more precisely a conjunction of inequalities c ≤ k or
c < k with c ∈ C and k ∈ R≥0, i.e., I : P → L(C),

– P 0 is the set of initial locations, i.e., P 0 ⊆ P .

We use runs to describe the operational semantics of a PEA. A run r is a
(finite or infinite) sequence of quadruples (p, β, γ, t) consisting of a location p,
a valuation of the Boolean variables β : V → {true, false}, a valuation of the
clocks γ : C → R≥0, and a non-zero duration t (the amount of time spent in the
location p), i.e., t > 0.

Given the PEA A of the form above, r is a run of A if it starts in an initial
location with clock values 0, and for each quadruple (p, β, γ, t) in r, the valuation
of variables β satisfies the state invariant of location p (i.e., β |= s(p)), the
clock valuation γ satisfies the clock invariant at location p during the whole
duration t (i.e., γ+t |= I(p)), and for each pair of consecutive quadruples (p, β, γ)
and (p′, β′, γ′), the valuations satisfy the guard and the update constraint of a
transition in E of the form (p, g, X, p′), i.e., (β, β′, γ+ t) |= g (where β′ is applied
to the primed variables in g) and γ′(c) is 0 if c in X and γ + t otherwise.

The duration of a run r is the sum of the durations t in its quadruples. An
infinite run r is non-Zeno if its duration is infinite. An unextendable run of A is
a finite run r of A which is not prefix of any non-Zeno run of A.

Interpretations accepted by A, L(A). A run r matches an interpretation I if
for almost all time points t, the value of I coincides with the valuation β in
the quadruple of r that corresponds to t if one adds up the durations of all
quadruples in r preceding it. We omit the cumbersome formal definition (which
is analogous for finite runs and prefixes of an interpretation).

An interpretation I is accepted by A, formally I ∈ L(A), if there is a non-
Zeno run r of A that matches I. The next lemma implies that every run r of A
gives rise to an interpretation I accepted by A.

Lemma 1. For every non-Zeno run r of a phase event automaton A there exists
an interpretation I such that r matches I.

The prefix of the interpretation I until the time point t is accepted by A, formally
(I, [0, t]) ∈ L(A), if there is a run r of A with duration t that matches (I, [0, t]).

A phase event automaton A represents a requirement ϕ if it accepts exactly the
interpretations that satisfy ϕ, i.e., I ∈ L(A) if and only I |= ϕ. Given two PEAs
A1 and A2 representing the requirements ϕ1 resp. ϕ2, their parallel product
A1||A2 (defined in the canonical way) represents their conjunction ϕ1 ∧ ϕ2.

3.2 Characterizing rt-Inconsistency via Phase Event Automata

We will use the algorithm of [8,11] which, given a requirement ϕ, constructs a
phase event automaton A that represents ϕ. In this section, we show that the

44 A. Post, J. Hoenicke, and A. Podelski

properties of the algorithm that are stated in Lemmas 2 and 3 (and proven in [8])
suffice to characterize the rt-inconsistency of ϕ. From now on, we refer to the
construction of A from ϕ by the algorithm of [11].

Lemma 2. The phase automaton A constructed from ϕ is deterministic; i.e.,
if A accepts the prefix of the interpretation until the time point t, then there is
exactly one run r of A that matches I for duration t.

Lemma 3. The prefix of the interpretation I until the time point t satisfies the
requirement ϕ if and only if it is accepted by the phase automaton A constructed
from ϕ; i.e., (I, [0, t]) |= ϕ if and only if (I, [0, t]) ∈ L(A).

The “⇐” direction of Lemma 3 relies on the restriction to strict inequalities in
the definition of the syntax of ϕ in Section 2. The restriction entails that the
PEA constructed from ϕ contains only non-strict clock invariants “c ≤ k”.

Theorem 1. The set of requirements ϕ is rt-inconsistent if and only if the phase
event automaton A constructed from ϕ contains an unextendable run.

Proof. “⇒” If ϕ is rt-inconsistent and I is an interpretation as in Definition 1,
then the prefix of I until the time point t satisfies ϕ and thus, by Lemma 3, it is
accepted by A. Hence, by the definition of acceptance, there is a run r in A that
matches I for duration t. We are done if we show that r is unextendable. Assume,
for a proof by contraction, that there is a non-Zeno run r′ of A that extends r.
By Lemma 1, r′ matches an interpretation I ′. Hence, again by the definition of
acceptance, A accepts I ′ and also the prefix of I ′ until t′, for every time point
t′. By Lemma 3, the prefix of I ′ until t′ satisfies ϕ, for every time point t′. Thus,
by the definition of the satisfaction relation, the full interpretation I ′ satisfies
ϕ. Since the prefix of I until the time point t coincides with the one of I ′, we
have found an interpretation I′ as in Definition 1, i.e., one which cannot exist.

“⇐” If r is an unextendable run of A for, say, the duration t, then, by
Lemma 3, there is an interpretation I such that the prefix of I until t matches
r. By Lemma 3, the prefix of the interpretation I until the time point t satisfies
the requirement ϕ. We are done if we show that there exists no interpretation
I ′ that satisfies ϕ and whose prefix until t coincides with the one of I. Assume,
for a proof by contraction, that such an I ′ exists. Then, since A represents ϕ,
A accepts ϕ. By the definition of acceptance, there exists a non-Zeno run r′ of
A that matches I′. By Lemma 2, A is deterministic, i.e., r′ coincides with r for
the duration t, or: r is a prefix of r′. Thus, we have found a non-Zeno run of
A which has r as a prefix, which cannot exist by the assumption that r is an
unextendable run of A. ��

3.3 Characterizing rt-Inconsistency via Timed Automata

From phase event automata to timed automata. Algorithm 2 transforms a phase
event automaton to a timed automaton. The transformation extends a similar
one in [8] which preserves reachability but not unextendability. The transfor-
mation introduces a special clock timer in order to capture the fact that, in a

rt-Inconsistency: A New Property for Real-Time Requirements 45

Algorithm 2. Transform phase event automaton A to timed automaton S

if A has more than one initial location p0i then
add a new initial location, with an transition to every p0i

end if
normalize transitions such that each guard is a conjunct of literals
for all transitions (p, g,X, p′) of A do

if s(p) ∧ g ∧ (s(p′))′ is unsatisfiable then
remove this transition

end if
end for
remove unreachable locations
remove all literals from the guards except clock constraints
set all state invariants to true
for all transitions (p, g,X, p′) of A do

g := g ∧ timer > 0
X := X ∪ {timer}
for all constraints c ≤ k in I(p′) where c /∈ X do

g := g ∧ c < k
end for

end for

phase event automaton, every location getting active has to stay active for a
non-zero period of time. The clock timer is reset when the location is entered,
and every outgoing transition must satisfy the guard that specifies timer > 0. To
prevent introducing artificial deadlocks, the new transformation strengthens the
guard of the outgoing transition with the strict inequality c < k derived from
the non-strict inequality c ≤ k in the clock invariant of the target location (thus,
after a transition, there is always some time left to stay in the target location).

Lemma 4. Every run of the phase event automaton A corresponds to a run of
the timed automaton S constructed from A (with the same sequence of locations
and clock valuations), and vice versa.

Deadlock. Following [2], a timed automaton S contains a deadlock if there is a
reachable state (p, γ) such that for all durations d > 0 there is no action successor
of (p, γ + d). In particular, the self-loop is not enabled. We will next character-
ize rt-inconsistency in terms of deadlocks, and thus obtain the correctness of
Algorithm 1.

Theorem 2 (Correctness). The timed automaton S constructed from the set
of requirements ϕ via the phase event automaton A and Algorithm 2 contains a
deadlock if and only if the set of requirements ϕ is rt-inconsistent.

Proof. “⇒” By Lemma 4, a run to a deadlock state (p, γ) in S corresponds to an
unextendable run in A to the same location p with the same clock valuation γ
without any further transition being possible (the successor would be reachable
in S as well). By Theorem 1, ϕ is rt-inconsistent.

46 A. Post, J. Hoenicke, and A. Podelski

“⇐” We assume that S is deadlock-free and show that ϕ is not rt-inconsistent.
By Theorem 1 it suffices to show that, for every finite run r of A, there is a non-
Zeno run r′ of A that extends r.

By Lemma 4, a finite run r of A corresponds to a run in the timed automata
S leading to some state (p, γ). We extend r by staying in p until the bound of its
invariant is reached (the clock invariants in S are non-strict by the construction).
If p has no bound, r′ can be chosen as the non-Zeno run which stays in p forever.
Otherwise, since S contains no deadlock, there must be an action successor from
p, at a different location whose time bound is not yet reached. The infinite
iteration of this reasoning leads to an infinite run in the timed automaton and,
again by Lemma 4, to an infinite run r′ in the PEA A. We need to show that r′

is non-Zeno.
Assume that there exists a time point, say, t, such that r′ never reaches t. If b

is the smallest among the bounds of all clocks in the invariant of some location in
S, then each location can be visited at most t/b times in r′ (since the location is
active until the clock reaches the bound and then the clock must be reset before
the location can be visited again). Since there are only finitely many locations
in S, r′ is a finite run. This is in contradiction to our construction of r′. Hence
there is no such time point t and r′ is a non-Zeno run. ��

4 Using rt-Inconsistency in a Case Study

The goal of our experimental study is to evaluate the practical relevance of
rt-inconsistency. The primary question we need to investigate is whether the
property is useful to improve a requirement specification, namely by providing a
criterion that helps to differentiate good from bad, or desirable from undesirable
requirement specifications. According to our preliminary results, this is indeed
the case; see Table 1.

Table 1 refers to six examples from different automotive projects at BOSCH.
Each example is a set of real-time requirements for a single software component.
The specifics of the components are not relevant; hence we do not present them
and just number the examples from 1 to 6 (first column). The second column
refers to the number of requirements in the example. Each requirement specifica-
tion had previously undergone a thorough albeit informal review. We formalized
the requirements (i.e., we translated them to formal requirements as defined in
Section 2) in a somewhat lengthy process of iterations with feedback from the
responsible requirement engineers. We had the final formalization reviewed by a
requirements engineer.

As Table 1 shows, three out of the six examples have an error that is identi-
fiable as rt-inconsistency. I.e., for Components 1, 2, and 3, the rt-inconsistency
identifies an actual flaw in the requirement specification that needed to be re-
paired. As the last column shows, major changes were needed to correct the
requirement specification. E.g., for Component 3, two of the existing require-
ments were deleted, five were changed, and seven new requirements were added.
If positive, the rt-inconsistency test returns a run of the time automaton that

rt-Inconsistency: A New Property for Real-Time Requirements 47

Table 1. Checking rt-inconsistency for existing examples of sets of real-time require-
ments for software components in automotive projects at BOSCH using a prototypical
implementation (Fig. 3) of the algorithm presented in Section 2, on a PC Windows XP
system with 2GHz Intel Core 2 Duo processor and 1GB RAM, whereas only one core
was used. The examples are numbered from 1 to 6. The columns refer to: the size of the
input in the number of requirements, the number of nodes resp. the (much higher!) num-
ber of transitions of the timed automaton (TA) obtained by the automatic translation
of the set of requirements (via the translation to a phase event automaton), the time
used for the automatic translation, the time used by the timed model checker UPPAAL

for checking the existence of deadlocks in the timed automaton (where n/a here means
out-of-memory when loading the input), the outcome of the rt-inconsistency check, and
the cost of the correction of an rt-inconsistency (in the number of requirements that
were newly added (A), changed (C), and deleted (D), respectively).

reqs TA nodes TA transitions {reqs} �→TA UPPAAL rt-consistent? correction

1 9 900 69183 34s 37s no A:3, C:4
2 10 2520 418365 322s 28min 49s no A:4, C:4
3 10 895 36541 9.4s 1h 16min no A:7, D:2, C:5
4 13 28 310 1s < 1s yes —
5 16 27 729 6s < 1s yes —
6 17 1614 318267 160s n/a n/a n/a

is helpful for analyzing the error; yet, debugging the requirement specification
demands the help of a requirements engineer with domain knowledge and takes
a considerable amount of time (about half a day to one day per example for
debugging and fixing). Most of the detected flaws based on conflicts similar to
the conflict described in the example of Section 1.

The requirement specifications for Component 4 and Component 5 are ex-
amples for rt-consistency. Without these examples one might wonder if rt-
inconsistency implies a high degree of specificity (obtainable only through a
large number of precise requirements) which cannot be found in realistic exam-
ples. The examples, requirement specifications that are rt-consistent as is (i.e.,
not after a revision), indicate that this is not the case. For safety-critical sys-
tems (e.g., in the automotive domain), the high degree of specificity enforced by
rt-consistency seems appropriate.

In order to evaluate the practical relevance of rt-inconsistency, the second
question we need to investigate is whether the property can be checked on real-
istic examples automatically. For the purpose of proof of concept, we have im-
plemented the algorithm presented in Section 3; see Figure 4. Our prototypical,
non-optimized implementation relies on existing tool kits [8,2] for implementing
three procedures called by the algorithm: the translation of a set of requirements
to a phase event automata (req2pea), the translation of a phase event automaton
into a timed automaton (pea2ta), the check for the existence of deadlocks in a
timed automaton. The results of our experiments (see Table 1) show that in five
out of six examples, the algorithm is able to automatically prove resp. disprove
rt-inconsistency. The examples are relatively small but they are realistic (and

48 A. Post, J. Hoenicke, and A. Podelski

{reqs} translation
{reqs} �→ PEA

translation
PEA �→ TA

TA
deadlock-

free?

“rt-consistent”

“rt-inconsistent”
run to deadlock in TA

PEA Toolkit [8] Algorithm 2 UPPAAL [2]
yes

no

Fig. 4. Prototype implementation of Algorithm 1 for checking rt-inconsistency of a set
of requirements, with modules using tools for phase event automata (PEA) resp. timed
automata (TA)

apparently so complex that a manual review is no longer sufficient). The results
indicate that checking rt-inconsistency automatically is feasible in principle.

As one could expect by the theoretical complexity of the algorithm, the check
does not succeed for every input (and, as often with the automatic analysis
tools, the size of the input does not necessarily correlate with the difficulty of its
analysis for the tool). In the sixth example, UPPAAL runs out of memory when
loading the timed automaton generated from the phase event automaton in this
example. We still need to analyze the cause (which is not solely the size of the
input), but it is clear that UPPAAL is not optimized for the timed automata
generated in this setting; in the examples of Table 1, the number of transitions
is two orders of magnitude larger than the number of nodes.

An experimental study is incomplete (and somewhat unsatisfying) if it does
not expose deficiencies of the evaluated concepts (and opportunities for improve-
ment). The sixth example shows that the state explosion problem occurs not only
in theory, but also in practice.

Furthermore, the case study shows that the state explosion is not directly
related to the number of requirements: although Component 4 and Compo-
nent 5 consist of more requirements than the first three components the num-
ber of nodes and transitions of A is much smaller for Component 4 and 5.
This is due to the fact that not all requirements blow up the state space ex-
ponentially. There are also requirements that solely constrain the state space
and thus reduce the number of states, e.g., a requirement like “If IRTest
holds, then Diagnosis.Running holds as well” forbids every state in which holds
IRTest ∧ ¬Diagnosis.Running.

5 Conclusion and Future Work

We have introduced rt-inconsistency, a new property of requirements for real-
time systems. We have shown that it has an interesting practical potential for
unambiguously identifying subtle timing errors in a requirements specification.
We have presented an algorithm to check rt-inconsistency automatically. We
have implemented the algorithm to demonstrate its feasibility in principle, by
applying it to prove the absence resp. presence of rt-inconsistency in a number
of existing requirement specifications in automotive projects. Our experiments

rt-Inconsistency: A New Property for Real-Time Requirements 49

discovered previously unknown errors in some of those specifications, errors
which got subsequently repaired.

As already mentioned, one line of future work is to adapt heuristics and opti-
mizations from real time model checking to checking rt-inconsistency. Another,
more speculative line of research are methods to automatically correct (or help
to correct) an rt-inconsistent set of requirements, possibly using algorithms from
real-time synthesis [4].

References

1. Abadi, M., Lamport, L.: An old-fashioned recipe for real time. In: Huizing, C., de
Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600,
pp. 1–27. Springer, Heidelberg (1992)

2. Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL (2004)
3. Dahlstedt, A.G., Persson, A.: Requirements interdependencies - moulding the state

of research into a research agenda. In: REFSQ, pp. 71–80 (2003)
4. Ehlers, R., Mattmüller, R., Peter, H.-J.: Combining symbolic representations for

solving timed games. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010.
LNCS, vol. 6246, pp. 107–121. Springer, Heidelberg (2010)

5. Hayes, J.H.: Building a requirement fault taxonomy: Experiences from a NASA
verification and validation research project. In: ISSRE (2003)

6. Heimdahl, M.P.E., Leveson, N.G.: Completeness and consistency analysis of state-
based requirements. IEEE Trans. on SW Engineering, 3–14 (1995)

7. Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G.: Automated consistency checking
of requirements specifications. ACM Trans. on SW Eng. and Methodology 5(3),
231–261 (1996)

8. Hoenicke, J.: Combination of Processes, Data, and Time. PhD thesis, University
of Oldenburg (July 2006)

9. IEEE. Recommended Practice for Software Requirements Specifications (1998)
10. Leveson, N.G.: System safety in computer-controlled automotive systems. In: SAE

World Conference (2000)
11. Meyer, R., Faber, J., Hoenicke, J., Rybalchenko, A.: Model checking duration cal-

culus: a practical approach. Formal Asp. Comput. 20(4-5), 481–505 (2008)
12. Walia, G.S., Carver, J.C.: A systematic literature review to identify and classify

software requirement errors. Inf. Softw. Technol. 51(7), 1087–1109 (2009)
13. Yu, L., Su, S., Luo, S., Su, Y.: Completeness and consistency analysis on require-

ments of distributed event-driven systems. In: TASE (2008)
14. Zhou, C., Hansen, M.R.: Duration Calculus: A Formal Approach to Real-Time

Systems. Springer, Heidelberg (2004)
15. Zhou, C., Hoare, C., Ravn, A.: A calculus of durations. In: IPL (1991)

Automatic Flow Analysis for Event-B�

Jens Bendisposto and Michael Leuschel

Institut für Informatik, Heinrich-Heine Universität Düsseldorf
Universitätsstr. 1, D-40225 Düsseldorf

{bendisposto,leuschel}@cs.uni-duesseldorf.de

Abstract. In Event-B a system is developed using refinement. The lan-
guage is based on a relatively small core; in particular there is only a very
small number of substitutions. This results in much simpler proof obli-
gations, that can be handled by automatic tools. However, the downside
is that, in case of software development, structural information is not
explicitly available but hidden in the chain of refinements. This paper
discusses a method to uncover these implicit algorithmic structures and
use them in a model checker. Other applications are code generation,
model comprehension, and test-case generation.

Keywords: Event-B, Model Checking, Theorem Proving, Tool Integra-
tion.

1 Introduction

Some specification formalisms only have limited ways to express ordering of
events. In particular Event-B [1] lacks a notion of sequential composition, or
other ways to explicitly describe the ordering of events. If we specify software
or systems that include software in Event-B, we often have some implicit algo-
rithmic structure.1 Unfortunately this information is implicit only and therefore
not directly usable by tools nor directly visible to users. This paper discusses a
method to uncover this implicit algorithmic structure. This information can be
useful for analyzing or comprehending models and for automatic code genera-
tion. In this paper we also show how to use this information to improve model
checking.

The paper is structured as follows: After introducing some Event-B notions
in section 2, we discuss in section 3 the dependency relation between events.
Section 4 shows how to compute the so-called enabling predicates, and sections 5
and 6 demonstrate the exploitation of these predicates for model checking. In
sections 7 and 8 we show how we can construct a flow from the enabling pred-
icates, revealing the implicit algorithmic structure of the model. Finally, we
discuss applications and restrictions of the method and some related work.

� This research is being carried out as part of the DFG funded research project
GEPAVAS.

1 To order events in Event-B the usual method is to introduce abstract program
counters.

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 50–64, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Automatic Flow Analysis for Event-B 51

2 Preliminaries

We follow the style of [1] of expressing variables and substitution in formulas. In
particular, let v = v1, . . . , vn be a sequence of n distinct variables, t = t1, . . . , tn
a sequence of n formulas and F a formula. Then F [t/v] is obtained from F by
replacing simultaneously all free occurrences of each vi by ti. We let F (v) denote
a formula, whose free variables are among v1, . . . , vn. Once the formula F (v) has
been introduced, we denote by F (t) the formula F [t/v] with v replaced by t.

In Event-B a state consists of a set of variables that are modified by events.
The values of the variables are constrained by invariants I(v). Each event is
composed of a guard G(t, v) and an action S(t, v), where t are parameters of the
event. We will only consider events of the form

evt =̂ any t
when G(t, v)
then vi1 , . . . , vik

:= E1(v, t), . . . , Ek(v, t) end

for some ij ∈ i1, . . . , in. Note that t can be empty and G(t, v) can be true.
Also note that k can be 0, in which case we write the action part as skip.

All assignments of an action S(t, v) occur simultaneously. Variables vj1 , . . . , vjl

that do not appear on the left-hand side of an assignment of an action are not
changed by the action. The effect of an assignment can be described by a before-
after predicate:

S(v, t, v′) =̂ v′i1 = E1(v, t) ∧ . . . v′ik
= Ek(v, t) ∧ v′j1 = vj1 ∧ . . . v′jl

= vjl

A before-after predicate describes the relationship between the state just be-
fore an assignment has occurred, x, and the state just after the assignment has
occurred, x′.

Note that Event-B also allows non-deterministic actions of the form x :∈
E(t, v) or x :| Q(t, v, x′). Without loss of generality, we assume that those
are rewritten to the above form using new parameters, one for every non-
deterministic action which denotes the chosen element. For instance, we rewrite

any max when max > 10 then x :∈ 1..max end

into

any max, choice when max > 10 ∧ choice : 1..max then x := choice end

3 Dependency between Events

We are interested in how events influence each other. The motivations are mul-
tiple: either we may try to understand the dynamic behavior of our model, we
may wish to generate code by determining the control flow or we may wish to
improve the performance of model checking.

Suppose we have an event g with action x, y := (x + 1), 0. There are various
ways it can influence another event:

52 J. Bendisposto and M. Leuschel

1. it can disable another event. E.g., the event h with guard y > 0 will for sure
be disabled after executing g.

2. it can enable another event. E.g., the event h′ with guard y = 0 would for
sure be enabled after executing g.

3. it can be independent of another event. For example, the enabling of the
event h′′ with guard z > 0 would not be modified by executing g, i.e., it will
be enabled after g if and only if it was enabled before. (Note that, depending
on the action part of h′′, the effect of h′′ could have been modified.)

In cases 1 and 2 the enabling or disabling may depend on the current state of
the model. Take for example the event h′′′ with guard y = 0 ∧ x > 1. Then h′′′

would be enabled after g if x > 0 holds in the state before executing g, and
disabled otherwise. The predicate x > 0 is what we call an enabling predicate,
and which we define as follows:

Definition 1 (Enabling predicate). The predicate P is called enabling pred-
icate for an event h after an event g, denoted by g �P (v,t,s) h, if and only if the
following holds

I(v) ∧ G(v, t) ∧ S(v, t, v′) ⇒ (P (v, t, s) ⇔ H(v′, s))

where I(v) is the invariant of the machine, G(v, t) is the guard of g with pa-
rameters t and S(v, t, v′) the before-after predicate of its action part, and where
H(v, s) is the guard of h with parameters s.

In the absence of non-deterministic actions, an equivalent definition can be ob-
tained using the weakest precondition notation:

I(v) ∧ G(v, t) ⇒ (P (v, t, s) ⇔ [S(t, v)]H(v, s))

where [S]P denotes the weakest precondition which ensures that after executing
the action S the predicate P holds.

Note that it is important for us that the action part S(t, v) of an event does not
contain any non-determinism (i.e., that all non-determinism has been lifted to
the parameters t; see Section 2). Indeed, in the absence of non-determinism, the
negation of an enabling predicate is a disabling predicate, i.e., it guarantees that
the event h is disabled after g if it holds (together with the invariant) before
executing g. However, if we have non-determinism the situation is different.
There may even exist no solution for P (v, t, s) in Def. 1, as the following example
shows.

Example 1. Take x :∈ {1, 2} as the action part of an event g with no parameters
and the guard true and x = 1 as the guard of h. Then [S(t, v)]H(v) ≡ false
as there is no way to guarantee that h is enabled after g. Indeed, there is no
predicate over x that is equivalent to x′ = 1 in the context Def. 1 : the before after
predicate S(v, t, v′) is x′ ∈ {1, 2} and does not link x and x′. Similarly, there is no
way to guarantee that h is disabled after g. In particular, ¬[S(t, v)]H(v) ≡ true
is not a disabling predicate.

Automatic Flow Analysis for Event-B 53

Note that if I(v) ∧ G(v) ∧ [S(t, v)]H(v, s) is inconsistent, then any predicate
P (v, t, s) is an enabling predicate, i.e., in particular P (v, t, s) ≡ false.

How can we compute enabling predicates? Obviously, [S(t, v)]H(v) always
satisfies the definition of an enabling predicate. What we can do, is simplify it
in the context of I(v) ∧ G(v).2 We will explain later in Sect. 4 how we compute
enabling predicates and discuss the requirements for a simplifier.

Example 2. Take for instance a model of a for loop that iterates over an array
and increments each value by one. Assuming the array is modeled as a function
f : 0..n → IN and we have a global counter i : 0..(n + 1), we can model the for
loop (at a certain refinement level) using two events terminate and loop.

terminate =̂ when i > n then skip end

loop =̂ when i ≤ n then f(i) := f(i) + 1||i := i + 1 end

We can now try to find enabling predicates for each possible combination of
events. Table 1 shows the proof obligations from Def. 1 and simplified predicates
P which satisfy it.

Table 1. Enable Predicates for a simple model

Event Pairs (first �P second) Enable Predicate Definition (wp notation) Simplified P
terminate �P terminate i > n =⇒ (P ⇐⇒ i > n) true
loop �P loop i ≤ n =⇒ (P ⇐⇒ (i + 1) ≤ n) (i + 1) ≤ n
loop �P terminate i ≤ n =⇒ (P ⇐⇒ (i + 1) > n) (i + 1) > n
terminate �P loop i > n =⇒ (P ⇐⇒ i ≤ n) false

The directed graph on the left in Figure 1 is a graphical representation of
Table 1. Every event is represented by a node and for every enabling predicate
first �P second from Table 1 there is an edge between the corresponding nodes.

The right picture shows the same graph if we take independence of events
into account, i.e., if an event g cannot change the guard of another event h, we
do not insert an edge between g and h. In particular, as terminate does not
modify any variables, it cannot modify the truth value of any guard. On first
sight it seems as if we may have also lost some information, namely that after
the execution of terminate the event loop is certainly disabled. We will return
to this issue later and show that for the purpose of reducing model checking and
other application, this is actually not relevant.

In Event-B models of software components independence between events oc-
curs very often, e.g., if an abstract program counter is used to activate a specific
subset of the events at a certain point in the computation. We can formally
define independence as follows.
2 This is similar to equivalence preserving rewriting steps within sequent calculus

proofs, where I(v),G(v) are the hypotheses and [S(t, v)]H(v) is the goal of the
sequent.

54 J. Bendisposto and M. Leuschel

terminate loop

(i+1) > n

false

(i+1) ≤ ntrue
terminate loop

(i+1) > n

(i+1) ≤ n

Fig. 1. Graph Representations of Dependence for a Simple Model

Definition 2 (Independence of events). Let g and h be events. We say that
h is independent from g — denoted by g �� h — if the guard of h is invariant
under the substitution of g, i.e., iff the following holds:

I(v) ∧ G(v, t) ∧ S(v, t, v′) =⇒ (H(v, s) ⇐⇒ H(v′, s))

Our first observation is that an event g can only influence the enabledness of an
event h (we do not require g �= h) if g modifies some variables that are read in
the guard of h. We denote the set of variables used in the guard of h by read(h)
and the set of variables modified by g by write(g). If write(g) and read(h) are
disjoint, then h is trivially independent from g:

Lemma 1. For any two events h and g we have that read(h) ∩ write(g) = ∅
⇒ g �� h.

This happens in our loop example, because write(terminate) = ∅, and hence
all events (including terminate itself) are independent from terminate.

However, read(h) ∩ write(g) = ∅ is sufficient for independence of events
but not necessary. Take for instance the events from Figure 2. Event g clearly
modifies variables that are read by h and therefore read(h) ∩ write(g) �= ∅ but
g can not enable or disable h.

event g event h

begin when

x := x + 1 x + y > 5

y := y - 1 then

end end

Fig. 2. Independent events

The trivial independence can be decided by simple static analysis, i.e., by
checking if read(h) ∩ write(g) = ∅. Non trivial independence is in general un-
decidable. In practice, it is a good idea to try to prove that two events are
independent in the sense of Def. 2, as it will result in a graph representation
with fewer edges. However, it is not crucial for our method that we detect all
independent events.

As we have seen in the right side of Fig. 1, the information we gain about
enabling and independence can be represented as a directed graph, now formally
defined as follows.

Automatic Flow Analysis for Event-B 55

Definition 3 (Enable Graph). An Enable Graph for an Event-B model is
a directed edge labeled graph G = (V, E, L). The vertices V of the graph are
the events of the model. Two events can be linked by an edge if they are not
independent, i.e., (g �→ h) �∈ E ⇒ g �� h. Each existing edge g �→ h is labeled
with the enabling predicate, i.e., g �L(g �→h) h.

Above we define a family of enable graphs, depending on how precise our in-
formation about independence is. Below, we often talk about the enable graph
for a model, where we assume a fixed procedure for computing independence
information.

Aside. There is another representation of the graph that is sometimes more
convenient for human readers. We can represent the graph as a forest where each
tree has one event as its root and only the successor nodes as leafs. The alternate
representation is shown in Figure 3 for a small example.

a

c

b a
P

Q

true false

b c

trueQ

b

a c

falsep

c

Fig. 3. Representations of the Enable Graph

4 Computing the Enabling Predicates

As mentioned before the weakest precondition [S(t, v)]H(v, t, s) obviously satis-
fies the property of enabling predicates. We can use the syntax tree library of the
Rodin tool to calculate the weakest precondition. However, these candidates for
enabling predicates need to be simplified, otherwise they are as complicated as
the original guard and we will gain no benefit from them. Therefore we simplify
the candidate, in the context of the invariant I(v) and the guard of the preceding
event G(v, t).

Consider the model shown in Figure 4. The weakest precondition for g pre-
ceding h is [x := x+2]x = 1 which yields x = −1. This contradicts the invariant
x > 0 and thus h can never be executed after g took place. In the context of the
invariant, x = −1 is equivalent to false.

The simplification of the predicates is an important step in our method, deriv-
ing an enabling predicate P (v, t, s) from the weakest precondition [S(t, v)]H(v, s).
Recall, that we simplify the predicate [S(t, v)]H(v, s) in the context of the in-
variant I(v) (and the guard G(v, t))

I(v) ∧ G(v, t) ⇒ (P (v, t, s) ⇔ [S(t, v)]H(v, s))

A very important requirement in our setting is that the simplifier never increases
the number of conjuncts. We have to keep the input for our enable and flow graph

56 J. Bendisposto and M. Leuschel

invariant x > 0

event g event h

begin when x = 1

x := x + 2 end

end

Fig. 4. Simplification

constructions small to prevent exponential blowup. Our simplifier shall find out
if a conjunct is equivalent to true or false. In the first case the conjunct can be
removed from the predicate in the second case the whole predicate is equivalent
to false.

We have implemented a prototype simplifier in Prolog that uses a relatively
simple approach. This prototype was used to carry out our case studies. The
method does not rely on this implementation, we can replace it by more powerful
simplification tools in the future.

5 Using the Enable Graph for Model Checking

The enable graph contains valuable information for a model checker. In this
section we describe how it can be used within ProB. When checking the con-
sistency of an Event-B model, ProB traverses the state space of the model
starting from the initialization and checks the model’s invariant for each state it
encounters. The cost for checking a state is the sum of the cost of evaluating the
invariant for the state and the calculation of the successors. Finding successor
states requires to find solutions for the guards of each event. A solution means
that the event is applicable and we can find some parameter values. ProB then
applies the actions to the current state using the parameter values resulting in
some successor states. In some cases the enable graph can be used to predict
the outcome of the guard evaluation. The special case of an enabling predicate
P = false is very important. It means that no matter how we invoke g we can
omit the evaluation of the guard of h because it will be false after observing g.
In other words it is a proof that the property h is disabled holds in any state
that is reachable using g.

When encountering a new state s via event e, we look up e in the enable
graph. We can safely skip evaluation of the guards of all events f that have an
edge (e,f) which is labeled with false in the Enabled Graph. We can even go
a step further if we have multiple ways to reach s. When considering an event
to calculate successor states we can arbitrary choose one of the incoming events
and use the information from the enable graph. For instance, if we have four
events a, b, c and d and we know that a disables c and b disables d. Furthermore
we encounter a state s via a but do not yet calculate the successors. Later we
encounter s again, this time via b. When calculating the successors we can skip
both, c and d.

Automatic Flow Analysis for Event-B 57

The reason is that we have a proof for c is disabled because the state was
reachable using event a and a proof that d is disabled because the state was
reachable using event b. Thus the conjunction c and d are disabled is also true.

Because we use the invariant when simplifying the enabling predicate (see
Section 4), the invariant must hold in the previous state in order to use the flow
information. However we believe this is reasonable because most of the time we
are hunting bugs and thus we stop at a state that violates the invariant. The
implementation must take this into account and in case of an invariant violation
it must not use the information gained by flow analysis. Also it needs to check
not only the invariant but also the theorems if they are used in the simplifier.

6 Enable Graph Case Study

In this section, we will apply the concept to a model of the extended GCD
algorithm taken from [7] using our prototype. The model consists of a refinement
chain, where the last model consists of two loops. The first loop builds a stack
of divisions. The second loop calculates the result from this stack. The last
refinement level contains five events excluding the initialization. The events up
and dn are the loop bodies, the events upini, dnini initialize the loops and gcd
is the end of the computation. The event init is the INITIALISATION of the
model.

Table 2. Read and write sets

event read(event) write(event)
init ∅ {a, b, d, u, v, up, f, s, t, q, r, uk, vk, dn, dk}
upini {up} {up, f, s, t, q, r}
up {up, r, f, dn} {f, s, t, r, q}
gcd {up, f, dn} {d, u, v}
dnini {up, dn, r, f} {dn, dk, uk, vk}
dn {dn, f} {uk, vk, f}

The first step is to extract the read and write sets for each event; the result is
shown in Table 2. Then we construct the enable graph. We calculate the weakest
precondition for each pair of independent events and simplified them. Both steps
were done manually but they were not very difficult. For instance, the most
complicated weakest precondition was [Sup]Gdnini. In the presentation below
we left out all parts of the guard and substitution that do not contain shared
identifiers, e.g., the guard contains up = TRUE but the substitution does not
modify up. The next step is calculating the weakest precondition mechanically,
finally we simplify the relational override using the rule (r �− a �→ b)(a) = b.

[Sup]Gdnini = [f := f + 1, r �− {f + 1 �→ f(t) mod r(f)}] (r(f) = 0)
= (r �− {f + 1 �→ t(f) mod r(f)})(f + 1) = 0

= t(f) mod r(f) = 0

58 J. Bendisposto and M. Leuschel

gcd

init

true

false

false

false

false

upini

false

dn=false &
a mod b != 0 dn = true

dn=false &
a mod b = 0

false

up

t(f) mod r(f) != 0

false

t(f) mod r(f) = 0

false

false dnini false

f > 0

false

f-1 = 0

false
dn

f-1 > 0

f = 0

Fig. 5. Enable graph of the extended GCD example

The other simplification were much easier, for example, replacing dn = TRUE∧
dn = FALSE by false. The constructed graph is shown in Figure 5.

The enable graph can be used by the model checker to reduce the number of
guard evaluations. Let us examine one particular run of the algorithm for fixed
input numbers. The run will start with init and upini then contain a certain
number of up events, say n. This will be followed by dnini and then exactly n
dn events and will finish with one gcd event. In all, the calculation takes 2n + 4
steps. After each step, the model checker needs to evaluate 5 event guards (one
for each event, except for the guard of the initialization which does not need to
be evaluated) yielding 10n+20 guard evaluations in total. Using the information
of the enable graph we only need a total of 4n+4 guard evaluations. For example,
after observing up, we only need to check the guards of up and dnini: they are
the only outgoing edges of up in Fig. 5 which are not labelled by false.

7 Flow Construction

Beside the direct use in ProB, the enable graph can be used to construct a
flow. A flow is an abstraction of the model’s state space where an abstract state

Automatic Flow Analysis for Event-B 59

represents a set of concrete states. Each abstract state is characterized by a set
of events, representing all those concrete states where those (and only those)
events are enabled.

A flow describes the implicit algorithmic structure of an Event-B model. This
information is valuable for a number of different applications, such as code gen-
eration, test-case generation, model comprehension and also model checking. In
Section 8 we illustrate how we can gain and exploit knowledge about a model
using the flow graph. We also briefly discuss how to generate code based on the
flow.

The flow graph is a graph where the vertices are labeled with sets of events,
i.e., the set of enabled events. The edges are labeled with an event and a predicate
composed from the enable predicates for this event. The construction of the flow
graph takes the enable graph as its input. Starting from the state where only the
initialization event is enabled the algorithm unfolds the enable graph. We will
describe the unfolding in a simple example, an algorithm is shown in Figure 7
and 8.

Figure 6 shows a simple flow graph construction. On the left side the enable
graph for the events init, a and b are shown. The graph reveals that b always
disables itself while it does not change the enabledness of a. The event a keeps
itself enabled if and only if P holds and it enables b if and only if Q holds. The
init event enables a and disables b.

a

ba

P Q

b

b

false {a}

{}

{b}

{a,b}

(a,¬P∧¬Q)

(a,¬P∧Q)

(a,P∧Q)

(a,P∧¬Q)

(a,P∧¬Q)
∨

(b,true)

(a,¬P∧Q)

(a,¬P∧¬Q)
(b,true)

init

a b

falsetrue

{init}

(init,true)

Fig. 6. Simple Flow Graph Construction

We start the unfolding in the state labeled with {init}. In this case we do
not have a choice but to execute init. From the enable graph on the left hand
side we know that after init occurs a is the only enabled event. Therefore we
have to execute a. We know that if P is true then a will be enabled afterwards
and analogously if Q holds then b will be enabled. Combining all combination
of P and Q and their negations, we get the new states {}, {b} and {a, b}. If we
continue, we finally get the graph shown on the right hand side. If more than
one event is enabled, we add edges for each event separately. We can combine
edges by disjunction of the predicates. In our case we did that for the transition
from {a, b} to {a} which can be used by either executing b or a.

60 J. Bendisposto and M. Leuschel

The algorithm in Figure 8 calculates for a given event e the successors in the
flow graph by combining all possible configurations. The algorithm also uses a
list of independent events that are enabled in the current state and therefore
they are also enabled in any new state. The algorithm in Figure 7 produces the
flow graph starting form the state {init}.

Generating the Flow Graph can be infeasible because the graph can blow up
exponentially in the numbers of events. However, in cases where constructing
the flow graph is feasible, we gain a lot of information about the algorithmic
structure and we can generate code if the model is deterministic enough. We
will discuss applicability and restrictions of the methods in section 9.

todo := {{init}}
done := ∅
flow := ∅
while todo �= emptyset do

choose node from todo
foreach e ∈ node do

keep := node ∩ independent(e)
atoms := expand(e, keep)
todo := (todo ∪ ran(atoms))
flow := flow ∪ {node �→ atoms}

od
done := done ∪ {node}
todo := todo − done

od

Fig. 7. Algorithm for constructing a Flow Graph

Given: enable graph as EG : (Events × Events) �→ Predicate
def expand(e, keep) =

true pred := {f �→ true|(e �→ f) ∈ dom(EG) ∧ EG(e �→ f) = true}
maybe pred := {f �→ p|(e �→ f) ∈ dom(EG) ∧ EG(e �→ f) = p ∧ p �= false}
result := ∅
foreach s ⊆ node do

targets := dom(true pred)∪ dom(s) ∪ keep
predicate :=

∧
ran(s) ∧ ¬(

∨
ran(s �− maybe pred)

result := result ∪ {predicate �→ targets}
od

return result
end def

Fig. 8. Algorithm for expanding the Enable Graph (i.e., computing successor configu-
rations)

Automatic Flow Analysis for Event-B 61

8 Flow Graph Case Study

If we apply the flow construction to the example graph shown in figure 5 we get
the flow graph shown in Figure 10. Compared to the structured model developed
by Hallerstede in [7] shown in 9 we see a very similar shape.

up

upini

dn

dnini gcd

Fig. 9. Structural model from [7]

However, the automatic flow analysis helped us to discover an interesting
property. The flow graph contains a state that corresponds to concrete states
where no event is enabled, i.e., states where the system deadlocks. Thus the
model contains a potential deadlock. Inspection showed that the deadlock ac-
tually does not occur. The reason why the flow graph contains the deadlock
state is a guard that is too strong. The guards of dn and gcd only cover f ≥ 0.
The invariant implicitly prevents the system from deadlocking by restricting the
values of f .

{dnini}{init}

{}

{upini}

{up} {dn}

{gcd}

true

a mod b ≠ 0

a mod b = 0

t(f) mod r(f) ≠ 0

t(f)
 m

od r(f
) =

 0

true

f > 0

f = 0

f < 0

f-1 > 0

f -1 = 0

f -1 < 0

Fig. 10. Example for a relation between abstract and concrete states

In Figure 10 we can see that it is possible to automatically generate sequential
code from a flow graph. The events up and dn can be translated into while loops
and upini and dnini are if − then− else statements. In the particular case the
termination of the computation was encoded into the gcd event.

62 J. Bendisposto and M. Leuschel

9 Applicability and Restrictions

An important question is when to apply a method and maybe even more impor-
tant when not to apply it. It is clear that flow analysis is probably not applicable
if the model does not contain an algorithmic structure. In the worst case for flow
construction, any combination of events can be enabled in some state, leading
to 2card(Events) states, where card(Events) is the number of events. However
in case of software developments it is very likely that eventually the model will
contain events that are clustered, i.e, at each point during the computation a
hopefully small set of events is enabled. We conjecture that the more concrete a
model is, the better are results from simplification.

Constructing the enable graph is relatively efficient; it requires to calculate
O(card(Events)2) enabling predicates. In case of software specifications gener-
ating the enable graph and using the information gained for guard reduction
is probably worth trying. We can also influence the graph interactively. For in-
stance, suppose the enable graph contains an edge labeled with card(x) > 0.
Suppose we know that after the first event x = ∅ but the simplifier was too
weak to figure it out, i.e., the empty set is written down in a difficult way, let’s
say x := S∩T where S and T are disjoint. By specifying (and proving) a theorem
that helps the simplifier, e.g., x = ∅, we can interactively improve the graph.
We believe that expressing these theorems does not only improve the graph but
also our understanding of a model because we explicitly formalize properties of
the model that are not obvious (at least not for the automatic simplifier).

Constructing the flow graph is much more fragile; it can blow up very fast. It
is crucial to inspect the enable graph and try to reduce the size of the predicates
as much as possible. However our experience is that Event-B models of software
at a sufficient low level of refinement typically have some notion of an abstract
program counter that implicitly control the flow in a model. These abstract
program counters are not very complicated and therefore it is likely that they
are exploited by the simplifier.

10 Related and Future Work

Inferring Flow Information. Model checking itself explores the state space of a
model, and as such infers very fine-grained flow information. For Event-B, the
ProB model checker [9,10] can be used for that purpose. However, it is quite rare
that the complete state space of a model can be explored. When it is possible,
the state space can be very large and flow information difficult to extract. Still,
the work in [11] provides various algorithms to visualize the state space in a
condensed form. The signature merge algorithm from [11] merges all states with
the same signature, and as such will produce a picture very similar to the flow
graph. However, the arcs are not labelled by predicates and the construction
requires prior traversal of the state space.

Specifying Flow Information. There is quite a lot of related work, where flow
information is provided explicitly by the modeler (rather than being deduced au-

Automatic Flow Analysis for Event-B 63

tomatically, as in our paper). For example, several works use CSP to specify the
sequencing of operations of B machines [14,3,5] or of Z specifications [6,12,13,2].

In the context of Event-B, there are mainly three other approaches that are
related to our flow analysis. Hallerstede introduced in [7] a new approach to
support refinement in Event-B that contains information about the structure
of a component. Also Butler showed in [4] how structural information can be
kept during refinement of a component. Both approaches have the advantage to
incorporate the information about structure into the method, resulting in better
precision. However both methods require the developer to use the methods from
the beginning while automatic flow analysis can be applied to existing projects.
In particular automatic flow analysis can actually be used to discover proper-
ties of a model such as liveness and feasibility of events. Hallerstede’s structural
refinement approach does not fully replace our automatic flow analysis. Both
methods overlap to some extent, but we think that they can be combined, such
that the automatic flow analysis uses structural information to ease the gener-
ation of the flow graph. In return, our method can suggest candidates for the
intermediate predicates used during structural refinement.

The third approach is yet unpublished but implemented as a plug-in for
Rodin [8]. It allows the developer to express flow properties for a model and
to verify them using proofs.

Future Work. The next step is to fully integrate our method into the next release
of ProB, and use it to improve the model checking procedure and help the user
in analyzing or comprehending models. We also plan to use the technique to
develop a new algorithm for test-case generation. In [15] we have introduced a
first test-case generation algorithm for Event-B, tailored towards event coverage.
One issue is that quite often it is very difficult to cover certain events. Here the
flow analysis will hopefully help guide the model checker towards enabling those
difficult events. We will also evaluate simplification tools that could be used
within ProB to calculate good enabling predicates.

Conclusion. In summary, we have developed techniques to infer algorithmic
structure from a formal specification. From an Event-B model, we have derived
the enable graph, which contains information about independence and depen-
dence of events. This graph can be used for model comprehension and to improve
model checking. We have described a more sophisticated flow analysis, which
derives a flow graph from an Event-B model. It can again be used for model
comprehension, model checking but also for code generation.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Basin, D.A., Olderog, E.-R., Sevinç, P.E.: Specifying and analyzing security au-
tomata using csp-oz. In: Bao, F., Miller, S. (eds.) ASIACCS, pp. 70–81. ACM,
New York (2007)

64 J. Bendisposto and M. Leuschel

3. Butler, M.: csp2B: A practical approach to combining CSP and B. Formal Aspects
of Computing 12, 182–198 (2000)

4. Butler, M.: Decomposition structures for event-B. In: Leuschel, M., Wehrheim, H.
(eds.) IFM 2009. LNCS, vol. 5423, pp. 20–38. Springer, Heidelberg (2009)

5. Butler, M., Leuschel, M.: Combining CSP and B for specification and property
verification. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS,
vol. 3582, pp. 221–236. Springer, Heidelberg (2005)

6. Fischer, C.: Combining object-z and CSP. In: Wolisz, A., Schieferdecker,
I., Rennoch, A. (eds.) FBT, GMD-Studien, vol. 315, pp. 119–128. GMD-
Forschungszentrum Informationstechnik GmbH (1997)

7. Hallerstede, S.: Structured Event-B Models and Proofs. In: Frappier, M., Glässer,
U., Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010. LNCS, vol. 5977, pp.
273–286. Springer, Heidelberg (2010)

8. Iliasov, A.: Flows Plug-In for Rodin,
http://wiki.event-b.org/index.php/Flows#Flows_plugin

9. Leuschel, M., Butler, M.: ProB: A model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

10. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008)

11. Leuschel, M., Turner, E.: Visualizing larger states spaces in ProB. In: Treharne,
H., King, S., Henson, M., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 6–23.
Springer, Heidelberg (2005)

12. Mahony, B.P., Dong, J.S.: Blending object-z and timed csp: An introduction to
tcoz. In: ICSE, pp. 95–104 (1998)

13. Smith, G., Derrick, J.: Specification, refinement and verification of concurrent
systems-an integration of object-z and csp. Formal Methods in System De-
sign 18(3), 249–284 (2001)

14. Treharne, H., Schneider, S.: How to drive a B machine. In: Bowen, J.P., Dunne, S.,
Galloway, A., King, S. (eds.) B 2000, ZUM 2000, and ZB 2000. LNCS, vol. 1878,
pp. 188–208. Springer, Heidelberg (2000)

15. Wieczorek, S., Kozyura, V., Roth, A., Leuschel, M., Bendisposto, J., Plagge,
D., Schieferdecker, I.: Applying Model Checking to Generate Model-Based In-
tegration Tests from Choreography Models. In: Núñez, M., Baker, P., Merayo,
M.G. (eds.) TESTCOM/FATES 2009. LNCS, vol. 5826, pp. 179–194. Springer,
Heidelberg (2009)

http://wiki.event-b.org/index.php/Flows#Flows_plugin

Semantic Quality Attributes for Big-Step Modelling
Languages

Shahram Esmaeilsabzali and Nancy A. Day

Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario, Canada, N2L 3G1
�����������	�
���������������

Abstract. A semantic quality attribute of a modelling language is a desired se-
mantic characteristic that is common to all models specified in that language.
A modeller can enjoy the luxury of not having to model the invariants of the
behaviour that are implicitly enforced by the semantic quality attributes. In this
paper, we introduce three semantic quality attributes for the family of big-step
modelling languages (BSMLs). In a BSML, a model’s reaction to an environmen-
tal input is a sequence of small steps, each of which can consist of the execution
of a set of transitions from multiple concurrent components. Each of our three
semantic quality attributes specifies a desired property about how the sequence
of small steps form a big step. We systematically enumerate the range of BSML
semantics that satisfy each semantic quality attribute.

1 Introduction

Often when modelling a software system, there are many alternative languages that
could be used. To narrow the range of alternatives, a modeller needs to answer the
question of why language A, and not language B, is a more appropriate choice in a cer-
tain context. In this paper, we consider this question for the class of Big-Step Modelling
Languages (BSMLs) [7, 8] from a semantic point of view.

BSMLs are a class of state-transition modelling languages that are suitable for mod-
eling systems that interact with their environments continuously. In a BSML model, the
reaction of a system to an environmental input is modelled as a big step that consists
of a sequence of small steps, each of which can be the execution of a set of transitions
from multiple concurrent components.1 Examples of BSMLs are statecharts [10, 18],
its variants [2], Software Cost Reduction (SCR) [11, 12], and the un-clocked variants of
synchronous languages [9], such as Esterel [4] and Argos [17]. The variety of seman-
tics for events, variables, and control states introduce a range of semantics for BSMLs.
Previously, we deconstructed the semantics of this family of languages into a set of
high-level, orthogonal variation points, which we call semantic aspects, and enumer-
ated the common semantic options of each semantic aspect [7, 8].

A BSML provides a modeller with the convenience of describing the reaction of a
system to an environmental input as the execution of a set of transitions, facilitating the

1 The terms macro step and micro step are related to our big step�small step terminology. We use
our own terminology to avoid connotation with a fixed semantics associated with these terms.

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 65–80, 2011.
c� Springer-Verlag Berlin Heidelberg 2011

66 S. Esmaeilsabzali and N.A. Day

decomposition of a model into concurrent components. However, it also introduces the
complexity of dealing with the semantic intricacies related to the ordering of these tran-
sitions, making it diÆcult at times to recognize the global properties of these models.

A semantic quality attribute of a modelling language is a desired semantic character-
istic that is common to all models specified in that language. Thus, a modeller can enjoy
the luxury of not having to model the invariants of the behaviour that are enforced by
the semantic quality attribute. Our first contribution in this paper is to introduce three
semantic quality attributes for BSMLs. Two BSMLs can be compared and distinguished
based on their semantic quality attributes. Each semantic quality attribute exempts mod-
ellers from worrying about some of the complications of ordering in the sequence of
the small steps of a big step. The priority consistency attribute guarantees that higher
priority transitions are chosen over lower priority transitions. The non-cancelling at-
tribute guarantees that if a transition becomes executable during a big step, it remains
executable, unless it is executed. The determinacy attribute guarantees that all possible
orders of small steps in a big step have the same result.

Each of our semantic quality attributes for BSMLs is a cross-cutting concern over
our semantic aspects for BSMLs. Our second contribution in this paper is to specify
the subsets of BSML semantics that satisfy each of the semantic quality attributes. For
each semantic quality attribute, we identify necessary and suÆcient constraints over
the choices of the semantic options in our deconstruction that result in a BSML se-
mantics that has the semantic quality attribute. In previous work [7, 8], we analyzed
the advantages and disadvantages of each of the semantic options individually, to pro-
vide rationales to choose one over another. The analysis of the semantic quality at-
tributes in this paper reveals interrelationships among seemingly independent semantic
options. It also provides rationales for language design decisions that otherwise would
have seemed ad hoc. For example, the specification of non-cancelling BSML semantics
highlights the role of concurrency in small-step execution, while the specification of
priority-consistent and determinate BSML semantics highlights the role of limiting the
number of transitions that each concurrent component of a model can execute in a big
step. A language designer or a modeller can either (i) use the semantic quality attributes
to narrow the range of semantic options for a language, or (ii) gain insights about a
language’s attributes after choosing its semantic options.

Compared to related work, we introduce three novel semantic quality attributes for a
broader range of modelling languages than considered previously. A notable example of
introducing semantic quality attributes is Huizing and Gerth’s work on the semantics of
BSMLs that support only events. They introduced three semantic quality attributes for
the semantics of events, therefore they only needed to deal with one semantic aspect and
not cross-cutting concerns. Similar semantic properties to our semantic quality attributes
have been considered in primitive formalisms [5, 14, 15, 16, 19], which are models of
computations rather than practical languages. These e�orts characterize a class of mod-
els that satisfy a property whereas we determine the set of BSML semantics that satisfy
each semantic quality attribute. For example, our non-cancelling semantic quality at-
tribute is similar to persistence for program schemata [15] and for Petri Nets [16].

The remainder of the paper is organized as follows. Section 2 presents an overview
of the common syntax and semantics of BSMLs, together with an overview of BSML

Semantic Quality Attributes for Big-Step Modelling Languages 67

semantic aspects and semantic options. Section 3 formally presents the semantic quality
attributes together with the specification of the subsets of BSML semantics that satisfy
each of the semantic quality attributes. Section 4 discusses related work. Section 5
concludes the paper.

2 Background: Big-Step Modelling Languages (BSMLs)

In this section, we present an overview of our deconstruction of the semantics of
BSMLs. Section 2.1 presents the common syntax of BSMLs. Section 2.2 presents the
common semantics of BSMLs, with Section 2.3 describing its semantic variation points
through our deconstruction into semantic aspects and their semantic options. In our
framework, an existing BSML is modelled by translating its syntax into the normal
form syntax and its semantics into a set of semantic options. Our previous work con-
tains a more comprehensive and a formal treatment of these concepts [6, 7, 8].

2.1 BSML Syntax

We use a normal form syntax to model the syntax of many BSMLs. In our normal
form syntax, a BSML model is a graphical, hierarchical, extended finite state machine,
consisting of: (i) a hierarchy tree of control states, and (ii) a set of transitions between
these control states. In this section, we adopt a few syntactic definitions from Pnueli
and Shalev’s work [18].

Control states. A control state is a named artifact that a modeller uses to represent a
noteworthy moment in the execution of a model. A control state has a type, which is
one of And, Or, or Basic. The set of control states of a model form a hierarchy tree.
The leaves of the hierarchy tree of a model, and only they, are Basic control states.
In a hierarchy tree, an And or an Or control state has a set of child control states. A
control state is a descendant of another control state if it is its child through transitivity.
Similarly, the parent and ancestor relations are defined. Two control states overlap if
they are the same or one is an ancestor of the other. The children of an And control state
are separated by dashed lines graphically. One of the children of an Or control state is
its default control state, which is signified by an arrow without a source. Fig. 1 is an
example BSML model that we use for illustration. The model specifies the behaviour
of a system that controls the safety of an entrance to an industrial area. The system
is either in the Automatic or in the Manual control state. The children of control state
Automatic are Or control states Temp, Lock, and Fan. The default control state of Temp
is Low, which is a Basic control state. Control state Of f is one of the descendants of
the Automatic control state. The least common ancestor of a set of control states is
the lowest (closest to the leaves) control state in the hierarchy tree such that each of the
control states is its descendant; e.g., the least common ancestor of Locked and Unlocked
is Lock. Two control states are orthogonal if neither is an ancestor of the other and their
least common ancestor is an And control state; e.g., Locked and Of f are orthogonal.

Transitions. Each transition, t, has a source control state, src(t), and a destination
control state, dest(t), together with the following four optional elements: (i) a guard
condition (GC), gc(t), which is a boolean expression over a set of variables, enclosed
by a “[]”; (ii) a triggering condition, trig(t), which is the conjunction of a set of events

68 S. Esmaeilsabzali and N.A. Day

Manual

Fan

Automatic

Low

High

On

Temp

Of f
t1 :high

�heat

�hot :� true

t2 : low

�hot :� f alse

Locked

Unlocked

t9 : automatic

t5 : req l

�lock

Lock

�cool t4 : (req u � �heat)
[hot � f alse]�unlock

�danger

t3 : (req u � heat)

t8 : manual

t7 : cool � f an o f f

t6 : heat � f an on

Fig. 1. Example: Industrial entrance control system

and negation of events; (iii) a set of variable assignments, asn(t), which is prefixed by
a “�”, with at most one assignment to each variable; and (iv) a set of generated events,
gen(t), which is prefixed by a “�”. For example, in the model in Fig. 1, t4 is a transition,
with src(t4) � Locked, dest(t4) � Unlocked, gc(t4) � (hot � f alse), asn(t4) � �,
trig(t4) � (req u � �heat), and gen(t4) � �unlock�. When a set is a singleton, we drop
its curly brackets; e.g., asn(t1) � hot :� true. The scope of a transition is the least
common ancestor of its source and destination control states. The arena of a transition
is the lowest Or control state that is an ancestor of its source and destination control
states. The root of the hierarchy tree of a model, which is not always explicitly shown,
is an Or control state so that the arena of each transition is defined. For example, in the
model in Fig. 1, the scope of t4 is Lock and the arena of t8 is the root Or control state
not shown in the figure. Two transitions are orthogonal if their source control states are
orthogonal, as well as, their destination control states; e.g., t4 and t6. A transition, t, is
an interrupt for another transition, t�, if the sources of the transitions are orthogonal
and one of the following conditions holds: (i) the destination of t� is orthogonal with
the source of t, and the destination of t is not orthogonal with the sources of either
transitions; or (ii) the destination of neither transition is orthogonal with the sources of
the two transitions, but the destination of t is a descendant of the destination of t�. For
example, in the model in Fig. 1, t8 is an interrupt for t6, according to condition (i).

2.2 Common Semantics of BSMLs

A BSML model describes the continuous interaction of a system with its environment.
A BSML model reacts to an environmental input through a big step, which consists of
an alternating sequence of snapshots and small steps, with each small step consisting of
the execution of a set of transitions. An environmental input consists of a set of events
and assignments from the environment that are used throughout a big step. In the model
in Fig. 1, events high, low, req u, req l, manual, and automatic are environmental input
events. A snapshot is a collection of snapshot elements, each of which maintains
information about an aspect of computing a big step. There is a snapshot element that
maintains the set of current control states of a model: If a model resides in an And

Semantic Quality Attributes for Big-Step Modelling Languages 69

control state, it resides in all of its children; if a model resides in an Or control state,
it resides in one of its children, by default in its default control state. The execution of
a small step causes a set of control states in the snapshot element to be exited and a
set of control states to be entered. These sets are computed based on the scopes of the
transitions in a small step. There are other snapshot elements for variables, events, etc.

...

I

el1

el2

eln

el1

el2

eln

sp0

el1

el2

eln

el1

el2

eln

spkspk�1

� � �

el1

el2

eln

spk�2

potential(sp
k)

�

�

T

sp1

�k

�k � potential(spk�1)

�k�1�1

�1 � potential(sp0) �k�1 � potential(spk�2)

Fig. 2. Big step T � �I� sp0� �1� sp1� � � � � �k � spk�

Fig. 2 depicts the structure of a big step, which relates a source snapshot, sp0, and
an environmental input, I, with a destination snapshot, spk. The e�ect of receiving I,
which is captured in snapshot sp0, generates a sequence of small steps until there are
no more small steps to be executed. Function potential specifies the set of all poten-
tial small steps at a snapshot, one of which is non-deterministically chosen as the next
small step. Each big step or small step has a source snapshot and a destination snap-
shot. Formally, we represent a big step, T , as a tuple, T � �I� sp0� �1� sp1� � � � � �k� spk�.
We use the accessor functions, length, smallsteps, and trans, to access the number of
small steps of a big step, the set of sets of transitions representing the small steps of
the big step, and the set of all transitions executed by the small steps of the big step,
respectively. We use “.” to access an element of a tuple. As an example, for a big step,
T , T�spi, where 1 	 i 	 length(T), is the destination snapshot of its i th small step. For a
BSML model M, we denote all its possible big steps as bigsteps(M). This set includes
all possible big steps in response to all environmental inputs at all possible snapshots.
In our examples, we refer to a big step via its constituent sequence of sets of transitions.

2.3 BSML Semantic Variations

Fig. 3a, adapted from [7], describes our deconstruction of the semantics of BSMLs into
six stages that each corresponds to a semantic variation point that a�ects how a big step
is created. We call these variation points semantic aspects, and the possible variations
of each its semantic options. Table 3b, which we will refer to throughout the rest of
the paper, lists our semantic aspects and their semantic options, together with a brief
description of each. We use the Sans Serif and the S���� C�� fonts to refer to the name
of a semantic aspect and a semantic option, respectively.

A big step is created by iterating through the stages of the flowchart in Fig. 3a. One
iteration of the flowchart corresponds to one small step. For each transition, t, stage
1 determines whether trig(t) is true with respect to the statuses of events, according

70 S. Esmaeilsabzali and N.A. Day

Maximal Big Step?

3

End of Big−step:

Environmental Outputs
Deliver

of Transitions

Choose One High−Priority Set

Evaluate Variables in the RHS

of Assignments

Environmental Inputs

Start of Big−step:
Receive

No

4

5

6

Determine the Maximal, Consistent
Sets of Enabled Transitions

Determine Transitions Enabled

Determine Transitions Enabled

2

1

Yes

by Events

by Variables

(Maximality)

(Priority)

(RHS Variable)

(Concurrency and Preemption)
(Event)

(GC Variable)

(a) Semantic variation points in the operation of a big step

Aspect�Option Description

Event Specifies the extent that a generated event is present in a big step:

R�������� In all snapshots of the big step after it is generated.
N��	 S��

 S	�� In the destination snapshot of the small step that it is generated in.
N��	 B�� S	�� In all snapshots of the next big step after the big step it is generated in.

GC Variable
Specifies the snapshot from which values of variables for checking the
guard condition of a transition are obtained:

GC B�� S	�� Obtains the value of a variable from the beginning of the big step.
GC S��

 S	�� Obtains the value of a variable from the source snapshot of the small step.

Maximality Specifies when a sequence of small steps concludes as a big step:

T�� O��

Once a transition, t, is executed during a big step, no other transition whose
arena overlaps with the arena of t can be executed.

T�� M��� No constraints on the sequence of small steps.

Concurrency Specifies the number of transitions that can be taken in a small step:

S���
� Exactly one transition per small step.
M��� More than one transition possible per small step.

Preemption Specifies whether interrupting transitions can execute in a small step:

P�����	��� Two transitions, one an interrupt for the other, cannot be taken together.
N��-P�����	��� Two transitions, one an interrupt for the other, can be taken together.

Priority Specifies if a transition has a higher priority than another:

N���	���
For a pair of transitions, t and t�, t is assigned a higher priority than t� by
conjoining trig(t�) with the negation of a positive event in trig(t).

S����-C��
� The lower the scope of a transition, the higher its priority is.
S����-P����	 The higher the scope of a transition, the higher its priority is.
N� P�����	� Neither S���� C��
� nor S���� P����	 is chosen.

RHS Variable
Specifies the snapshot from which values of variables for evaluating the
right-hand side (RHS) of an assignment are obtained:

RHS B�� S	�� Obtains the value of a variable from the beginning of the big step.
RHS S��

 S	�� Obtains the value of a variable from the source snapshot of the small step.

(b) Semantic aspects (in Sans Serif font) and their options (in S��

 C�� font)

Fig. 3. Semantic variations in the operation of a big step

Semantic Quality Attributes for Big-Step Modelling Languages 71

to the Event semantic aspect. The three semantic options of this semantic aspect each
determines a di�erent extent of a big step (the current big step or the next one) that a
generated event is considered as present. Stage 2 determines whether gc(t) is true with
respect to the values of variables, according to the GC Variable semantic aspect. The
first semantic option for this semantic aspect uses the values of variables from the begin-
ning of the big step, whereas the second option uses the up-to–date values of variables
from the source snapshot of the small step. Stages 1 and 2, together with the current
set of control states of a model, determine the enabledness of individual transitions.
Stage 3 checks whether the current big step is maximal, according to the Maximality
semantic aspect, in which case, the big step ends. The first semantic option for this se-
mantic aspect requires that if a transition, t, has been executed in a big step, no other
transition whose arena overlaps with t’s can be executed. As an example, according to
the first semantic option, in the model in Fig. 1, if t9 is executed, t5 cannot be executed
because the arena of t5 overlaps with the arena of t9. The second semantic option places
no constraint over the maximality of a big step: A big step can continue as long as there
are enabled transitions that can be executed.

If the big step is not maximal, stage 4 determines the sets of transitions that can be
taken together. Each such set is complete in that no transition can be added to it with-
out violating the two related semantic sub-aspects of the Concurrency and Preemption
semantic aspect. The Concurrency sub-aspect specifies the number of transitions pos-
sible in a small step, with two possible semantic options: one vs. many. When the latter
semantic option is chosen, two transitions can be included in the same small step if they
are orthogonal. The Preemption sub-aspect determines whether a pair of transitions
where one is an interrupt for another can be taken together or not. Among the sets of
transitions produced by stage 4, the sets that have the highest priority, according to the
Priority semantic aspect, are chosen by stage 5; the result is the set of potential small
steps at the current snapshot. The options for priority semantics include using the nega-
tion of events to assign a transition, t, a higher priority than a transition, t�, by including
one of the positive events in trig(t) as a negated event in trig(t�). For example, in the
model in Fig 1, t3 has a higher priority than t4, denoted by pri(t3) � pri(t4), because
trig(t3) includes heat while trig(t4) includes �heat. Additionally, if the N� P������	
semantic option is not chosen, one of the two hierarchical priority semantic options is
used to compare the priority of two transitions based on their scopes. Stage 6 evaluates
the right-hand side (RHS) of an assignment, according to the RHS Variable semantic
aspect, when executing one of the potential small steps. Similar semantic options as the
ones for the GC Variable semantic aspect are possible for the RHS Variable semantic
aspect, but are used to evaluate the RHS of assignments instead of their GCs.

We use the following notation to describe the semantic quality attributes. The set of
enabled transitions of a model at a snapshot, sp, denoted by enabled(sp), is the set of
all transitions such that, for each transition, its source control state is in the current set
of control states and it passes stages 1 and 2 of flowchart in Fig. 3a. Similarly, the set
of executable transitions at snapshot sp, denoted by executable(sp), is the set of all
transitions that belong to a potential small step at sp. Formally,
t � executable(sp) �
� � potential(sp) � t � �. By definition, t � executable(sp) � t � enabled(sp), but not
vice versa, because of the Maximality and Priority semantic aspects.

72 S. Esmaeilsabzali and N.A. Day

In this paper, we consider BSML semantics in which the executability of each small
step relies only on its source snapshot [6]. A few of the semantic variations that are not
considered here lend themselves to a di�erent set of semantic quality attributes, as will
be briefly discussed in Section 4.

3 Semantic Quality Attributes for BSMLs

In this section, we formally describe three semantic quality attributes for BSMLs. For
each semantic quality attribute, we enumerate all combinations of the semantic options
in Table 3b that each results in a semantics that satisfies the semantic quality attribute.

3.1 Priority Consistency

In a priority-consistent BSML semantics, higher priority transitions are chosen to ex-
ecute over lower priority transitions. A model cannot have two big steps, T1 and T2,
where T1 includes transitions that are all of lower or incomparable priority than T2’s. A
priority semantic option enforces a priority semantics only in the individual small steps
of a big step, but not in the whole big step. A priority-consistent BSML semantics is
useful since it exempts a modeller from worrying about a high-priority transition be-
ing executed in some big steps but not others. We call a semantics that is not priority
consistent, priority inconsistent.

Example 1. The two models in Fig. 4 are used to demonstrate examples of priority-
inconsistent behaviour. Both models are considered when they reside in their default
control states, environmental input event i is present, and, for the first model, when
x � 0. In the model in Fig. 4(a), we consider a BSML semantics that subscribes to
the M�
	 concurrency semantics, the T��� M�
	 maximality semantics, the S���-
P���
� priority semantics, and the GC S���� S��� GC variable semantics. Two big
steps are possible: T1 � ��t1� t4�� t2� t6� and T2 � ��t1� t4�� t3� t5�. This behaviour is priority
inconsistent since pri(t6) � pri(t5): the scope of t6 is the parent of the scope of t5, and
T1 executes t6 but T2 executes t5. For the model in Fig. 4(b), the same semantic options
as for the model in Fig. 4(a) are considered, plus the R����
��� event semantics. Two
big steps are possible: T �

1 � ��t1� t2�� t5� and T �
2 � ��t1� t3�� t4�. This behaviour is priority

inconsistent since pri(t5)� pri(t4) according to the N������
 semantics: trig(t5) includes
b while trig(t4) includes �b, and T �

1 executes t5 but T �
2 executes t4. If the N��� B��

S��� event semantics had been chosen, which requires a generated event to be present
only in the next big step, two priority-consistent big steps would have been possible:
T �

1 � ��t1� t2�� and T �
2 � ��t1� t3��, followed by big steps �t5� and �t4�, respectively.

Definition 1. A BSML semantics is priority consistent if for all BSML models, M,

T1� T2 � bigsteps(M) �(T1�I � T2�I) � (T1�sp0 � T2�sp0) � trans(T1) � trans(T2)�

where

�1 � �2 � �(�1 � �2) � �(�2 � �1)� and
�1 � �2 � (t1 � �1 �t2 � �2 �pri(t1)� pri(t2)) � �(t2 � �2 �t1 � �1 �pri(t2)� pri(t1))�

Semantic Quality Attributes for Big-Step Modelling Languages 73

A12

A1

A11

t1: i�a
B12

B1

B11

B22

B2

B21

t2: i�b

t3: i�cA2

A21 A22

t5: [x � 2]

A

A3
t6: [x � 1]

t4: i [x � 0]

t1: i [x � 0]

B

(b)

(a)

t2: [x � 0]

t3: [x � 0]

�x :� 1

�x :� 2

B3

B31 B32

t4: (a � �b)

t5: b

Fig. 4. Examples of priority-inconsistent behaviour

Intuitively, �1 � �2 if it is not the case that �1 has a transition that has a higher priority
than a transition in �2 without �2 having such a transition, and also not vice versa.

Priority-Consistent Semantics. Proposition 1 specifies the BSML semantics that are
priority consistent. We use the name of a semantic option as a proposition to specify all
BSML semantics that subscribe to it.

Proposition 1. A BSML semantics is priority-consistent if and only if its constituent
semantic options satisfy predicate P � P1 � P2, where

P1 � �N� P������	 � T��� O
�� and P2 � N��� B�� S����

Proof Idea. Predicate P1 is a necessary condition for a BSML semantics to be priority-
consistent. This can be proven by contradiction. If P1 is not true in a priority-consistent
BSML semantics, a counter example model with a priority-inconsistent behaviour can
be constructed. For example, for any BSML that subscribes to the S���-P���
�

B

C

D

E
A

t1

t2

t3

Fig. 5. A counter example

priority semantics and the T��� M�
	 maximality se-
mantics, the model in Fig. 5 is such a counter exam-
ple model: when the model resides in its default control
states, two big steps, T1 � �t1� t3� and T2 � �t2�, are pos-
sible, but trans(T1) � trans(T2) because pri(t3)� pri(t2).
Predicate P2 is a necessary condition for a priority-
consistent BSML semantics, because for a BSML se-
mantics that subscribes to an event semantics other than the N��� B�� S��� seman-
tics, regardless of its other semantic options, there is a counter example model with
a priority-inconsistent behaviour. For example, the model in Fig. 4(b), in Example 1,
would have a priority-inconsistent behaviour even if the S�
��� concurrency and�or the
N��� S���� S��� event semantic options are chosen. Predicates P1 and P2 are also suf-
ficient conditions for priority-consistent BSML semantics, according to a hierarchical
and the N������
 priority semantics, respectively. This can be proven by showing that
if P is true in a BSML semantics, a high-priority transition is either executable and

74 S. Esmaeilsabzali and N.A. Day

taken during a big step, or it cannot become executable during that big step. If a BSML
semantics subscribes to the S���-P���
� (S���-C����) priority semantics, a transition
that has a higher (lower) scope than an already executed transition cannot become ex-
ecutable because of the T��� O
� maximality semantics. Similarly, for the N������

priority semantics, if a high-priority transition is not enabled due to the absence of an
event, it cannot possibly become enabled in that big step, because the statuses of events
do not change. As such, a BSML semantics is priority consistent if and only if P. �

3.2 Non-cancelling

In a non-cancelling BSML semantics, once a transition of a model becomes executable
in a big step, it remains executable during the big step, unless, it is taken by the next
small step, it cannot be taken any more because of the maximality constraints, or its
scope is the same as or a descendant of the scope of a transition executed in the next
small step. A non-cancelling BSML semantics is useful since it exempts a modeller
from worrying about an enabled transition of interest mistakenly becoming disabled.
We call a BSML semantics that is not non-cancelling, cancelling.

Example 2. We consider the model in Fig. 1 when it is in its initial control states and
when events req u and high are received from the environment. We choose the T���
M�
	 maximality semantics. Initially, t4 is executable. If t1 is executed in the first small
step, making heat present and hot � true, t4 would not be enabled any more, although
the big step is not maximal and the scope of t4 does not overlap with t1’s. This is a
cancelling behaviour, which can be averted by executing t1 and t4 together.

Definition 2. A BSML semantics is non-cancelling if for all BSML models, M,

T � bigsteps(M) �
i (1 	 i 	 length(T)) �
t � executable(spi�1) �
(t � �i) � (t � executable(spi)) � (t� � �i�tookone(t�� t) � dominated(t�� t))�

where tookone(t�� t) is true, if by executing t�, t cannot be taken because of the T��� O
�

maximality semantics of the BSML; and dominated(t�� t) is true, if the scope of t is the
same as or a descendent of the scope of t�; e.g., src(t) � dest(t�).

The rationale for including the third disjunct in Definition 2 is twofold; when predi-
cate tookone(t�� t) is true, t is not a transition of interest any more; and when predicate
dominated(t�� t) is true, the execution of t� has entered and�or exited the scope of t. As
such, whichever predicate is true, it is natural to consider the enabledness of t afresh.

Achieving a non-cancelling BSML semantics not only relies on enabledness and
concurrency semantics but also on hierarchical semantics, as the next example shows.

Example 3. We consider a modified version of the model in Fig. 4(a) in which gc(t2)�
gc(t3)� true. We consider this new model when it resides in control states A12 and A22,
and x � 2. If a BSML semantics that subscribes to the S�
��� concurrency, the S���-
P���
� priority, and the GC S���� S��� GC variable semantic options is chosen, initially
both t5 and t2 are executable, but if t2 is executed, t5 becomes unexecutable because t6
becomes enabled and pri(t6) � pri(t5). If the M�
	 concurrency semantics had been
chosen, instead of the S�
��� concurrency semantics, the above cancelling behaviour
would have been averted because t2 and t5 would have been executed together.

Semantic Quality Attributes for Big-Step Modelling Languages 75

Non-Cancelling Semantics. A non-cancelling semantics can be achieved by one of
the following two approaches: (i) once a transition becomes executable, the execution
of other transitions does not a�ect its executability; or (ii) once a transition becomes
executable, it is immediately executed, precluding the possibility of becoming unexe-
cutable. For example, by choosing the N��� B�� S��� event semantics together with the
N� P������	 semantics, a non-cancelling semantics via approach (i) can be achieved.
By choosing the N��� S���� S��� semantics together with a concurrency semantics that
ensures that an executable transition is executed immediately, a non-cancelling seman-
tics via approach (ii) can be achieved. Formally,

Proposition 2. A BSML semantics is non-cancelling if and only if its constituent se-
mantic options satisfy predicate N � N1 � N2 � N3, where

N1 � (T��� M�
	 � �N� P������) � Maximizer�
N2 � N��� S���� S��� � Maximizer�
N3 � GC S���� S��� � Maximizer� and
Maximizer � M�
	 � [(T��� M�
	 � N� P������) � N�
-P���������]�

Proof Idea. Predicate N is a suÆcient condition for a non-cancelling BSML seman-
tics because it characterizes only non-cancelling BSML semantics. When N1, N2, and
N3 are all satisfied through their antecedents being false, a non-cancelling semantics
according to approach (i) above is achieved, otherwise a non-cancelling semantics ac-
cording to approach (ii) can be achieved. When the antecedents of N1, N2, and N3 are
all false, it can be proven that if an executable transition that is not executed in the im-
mediate small step becomes unexecutable, it is because of the maximality semantics,
and not because it is not enabled or does not have a high priority any more. When the
antecedents of at least one of N1, N2, or N3 is true, predicate Maximizer requires the
M�
	 concurrency semantics to ensure that as many as possible enabled transitions are
executed immediately. The second conjunct of the Maximizer predicate ensures that
when the T��� M�
	 semantics is chosen, a pair of executable transitions that have
the same priority and one is an interrupt for the other are taken together in the same
small step, according to the N�
-P��������� semantics; otherwise, the execution of the
lower-scope transition can disable the higher-scope transition. To prove that predicate N
is also a necessary condition for any non-cancelling BSML semantics, it can be shown
that N characterizes all possible non-cancelling BSML semantics. This can be proven,
via proofs by contradiction, to show that: (a) approaches (i) and (ii) above are the only
ways to achieve a non-cancelling semantics; and (b) predicate N does not over-constrain
the choices of semantic options. �

3.3 Determinacy

In a determinate BSML semantics, if two big steps of a model in response to the same
environmental input execute the same (multi) set of transitions in di�erent orders, their
destination snapshots are equivalent. An equivalence relation, denoted by “�”, can be
defined with respect to any subset of the snapshot elements. We consider determinacy
for both events and variables. A determinate BSML semantics is useful since it exempts
a modeller from worrying about the e�ect of an out-of–order execution of the transitions
in a big step. We call a BSML semantics that is not determinate, non-determinate.

76 S. Esmaeilsabzali and N.A. Day

Definition 3. A BSML semantics is determinate if for all BSML models, M,

T1� T2 � bigsteps(M) � [(T1�I � T2�I) � (T1�sp0 � T2�sp0) �
(
�

�1�smallsteps(T1) �1 �
�

�2�smallsteps(T2) �2)] � T1�splength(T1) � T2�splength(T2)�

where “�” is the sum operator for multisets.

To have determinacy, a BSML must create only single assignment models.

Definition 4. A big step, T , is single assignment if there are no two transitions in the
big step that assign values to the same variable. A BSML model, M, is single assignment
if all big steps T � bigsteps(M) are single assignment.

A crude way to achieve single assignment models is to require the T��� O
� maximality
semantics and that at most one transition of a model assigns a value to each variable.

Example 4. The model in Fig. 6 controls the operation of a chemical plant.2 The en-
vironmental input events inc one and inc two indicate that the amount of a chemical
substance in the plant needs to be incremented by one or two units, respectively. We
consider the model when: it resides in its default control states, inc� inc1� inc2�0, and
the environmental input events inc one and inc two are received together. The model
is single-assignment only if environmental input event reset is received neither with
inc one nor with inc two. If a BSML semantics subscribes to the M�
	, the T��� M�
	,
the R����
���, the GC S���� S���, and the RHS S���� S��� semantic options, two big
steps are possible: T1 � �t1� t5� �t2� t7�� t3� t4� and T2 � �t3� t5� �t4� t7�� t1� t2�. T1 assigns
the value one to inc while T2 assigns value two, which is a non-determinate behaviour
because T1 and T2 execute the same set of transitions. If the RHS B�� S��� semantic op-
tion had been chosen, instead of the RHS S���� S��� semantic option, the assignment
to inc by t5 would have read the values of inc1 and inc2 from the beginning of the big
step, and thus a determinate behaviour would have been achieved.

A

A12

A31

A2A1

A11

t4: done

A13

t6: reset

A21 A22

t5: start

A3

t2: done reset
t8:

process

A31

��done� process�

t7:

t1: [inc1 � 0] inc one
�inc1 :� 1�start

t3: [inc2 � 0] inc two
�inc2 :� 2�start

�inc :� inc1�inc2

��inc1 :� 0� inc2 :� 0�

Fig. 6. An example of a non-determinate behaviour

Determinate Semantics. First, we present a lemma that explains why the first semantics
in Example 4 is not determinate, but would have been so if the T��� O
� semantic
option had been chosen. We then specify the class of all determinate BSML semantics.

2 This model is adapted from the sequence-chart model in the motivating example in [1].

Semantic Quality Attributes for Big-Step Modelling Languages 77

Lemma 1. In a BSML semantics that subscribes to the T��� O
� and M�
	 seman-
tic options, starting from the same snapshot, if two big steps, T1 and T2, of a single-
assignment model consist of the same sets of transitions, then they are the same.

Proof Sketch. This claim can be proven inductively by traversing over the sequence of
small steps of T1 and T2. Starting from snapshots T1�sp0 and T2�sp0, their first small
steps, T1��1 and T2��1, should be the same. If not, let us assume that there exists a
transition, t, such that t � (T1��1 � T2��1). However, such a t cannot exist: Transition t
can only be not taken by T2��1 if it is replaced by a t� � T2��1 such that t and t� cannot
be taken together according to the Concurrency and Preemption semantics. But if that
is true, T2 can never execute t because the T��� O
� maximality semantics precludes
the possibility of such a t being taken after t� had been taken. Thus, it should be the
case that T1��1 � T2��1. Similarly, it should be the case that all T1��i’s and T2��i’s,
1 � i 	 length(T1), are the same. Therefore, T1 and T2 are the same. �

Proposition 3. A BSML semantics is determinate if and only if its constituent semantic
options satisfy predicate D � D1 � D2, where

D1 � RHS B�� S��� � (RHS S���� S��� � (T��� O
� � M�
))� and
D2 � (R����
��� � N��� B�� S���) � (N��� S���� S��� � (T��� O
� � M�
))�

Proof Idea. Predicate D is a suÆcient condition for a BSML semantics to be determi-
nate. Predicate D1 deals with determinacy for variables, while predicate D2 deals with
determinacy for events. The first disjunct of D1 achieves determinacy for variables be-
cause of the single-assignment assumption and the fact that early assignments do not
a�ect the later ones. Similarly, the first disjunct of D2 achieves determinacy for events
because the R����
��� and N��� B�� S��� semantics both accumulate all of the gener-
ated events of a big step. The second disjuncts of D1 and D2 are valid characterization
of determinate BSML semantics because of Lemma 1. Predicate D is also a necessary
condition for a determinate BSML semantics. If D1 does not hold for a determinate
BSML semantics, then it means that it subscribes to the RHS S���� S��� assignment
semantics but not to both the T��� O
� maximality semantics and the M�
	 concur-
rency semantics. If the BSML semantics does not subscribe to the T��� O
� maximality
semantics, then the model in Example 4 shows a non-determinate behaviour for such a
BSML semantics, which is a contradiction. If the BSML semantics does not subscribe
to the M�
	 concurrency semantics, but subscribes to the T��� O
�, a counter exam-
ple model can be constructed, as follows. We consider the following three orthogonal
enabled transitions in a model, t1 : �a :� 1, t2 : �b :� 1, and t3 : �c :� a�b, when
a � b � 0. Based on the order of the execution of t1, t2, and t3, the value of c is either
zero, one, or two, which is a non-determinate behaviour. Similarly, it can be proven that
D2 is a necessary condition for a determinate BSML semantics. Thus, D is necessary
and suÆcient condition for a BSML semantics to be determinate. �

4 Related Work

Huizing and Gerth identified the three semantic criteria of responsiveness, modularity,
and causality for the S�
��� concurrency semantics, the T��� O
� maximality seman-
tics, and events semantics [13] only. Their modularity criterion requires that a generated

78 S. Esmaeilsabzali and N.A. Day

event by a model is treated the same as an event received from the environment. The
two semantics in their framework that are modular, namely, semantics A and D, can be
shown to be also non-cancelling. Semantics A corresponds to the N��� B�� S��� event
lifeline semantics; semantics D corresponds to the W���� event lifeline semantics. In
the W���� event lifeline semantics, which we informally considered in our deconstruc-
tion [7, 8], a generated event is present throughout the big step in which it is generated.

Pnueli and Shalev introduced a globally consistent event semantics [18], which is
the same as the R����
��� semantics except that if the absence of an event has made
a transition enabled in a small step, the event is not generated later. Global consistency
and priority consistency with respect to the N������
 priority semantics are comparable.
The di�erence is that the former is defined at the level of individual big steps whereas
the latter is defined at the level of all big steps that have the same source snapshot.

Synchronous languages are used to model�program reactive systems that are meant
to behave deterministically [9]. We have categorized the un-clocked variations of syn-
chronous languages, such as Esterel [4] and Argos [17], as BSMLs that support the
W���� event lifeline semantics [7, 8]. A model is deterministic if its reaction to an
environmental input as a big step always results in a unique destination snapshot. De-
terminism is related to determinacy: A deterministic semantics is by definition determi-
nate, but not vice versa. A determinate semantics does not preclude the possibility of
a model reacting to a single environmental input via two big steps with di�erent sets
of transitions. In the presence of variables, determinism can be considered only as a
property of a model but not of a semantics, because, as opposed to events, variables can
have infinite ranges, making it impossible to handle determinism at the level of the de-
scription of a semantics. In the absence of variables, however, deterministic semantics
for Esterel [3, 20] and Argos [17] have been developed.

Similar concepts as our semantic quality attributes have been considered in di�erent
models of computation, but at the level of models instead of semantics. For example,
in Petri nets, the notion of persistence [16], which requires a transition to remain en-
abled until it is taken, is similar to our non-cancelling semantic quality attribute. In
asynchronous circuits, the notions of semi-modularity and quasi semi-modularity are
similar to our non-cancelling semantic quality attribute, and the notion of speed inde-
pendence is analogous to our determinacy semantic quality attribute [5, 19]. Janicki and
Koutny introduce the notion of disabling in the context of a relational model of concur-
rency [14], which is similar to our priority consistency semantic quality attribute. Lastly,
the notions of persistence and determinacy3 for program schemata [15] are analogous
to our non-cancelling and determinacy semantic quality attributes, respectively. In gen-
eral, compared to the aforementioned concepts, (i) our semantic quality attributes are
defined for semantics, rather than individual models; and (ii) they are aimed at practical
requirements modelling languages, instead of models of computation.

5 Conclusion and Future Work

In this paper, we introduced three semantic quality attributes, namely, non-cancelling,
priority consistency, and determinacy, for the family of big-step modelling languages

3 We have adopted the name of our semantic quality attribute from this work.

Semantic Quality Attributes for Big-Step Modelling Languages 79

(BSMLs). When a BSML supports a semantic quality attribute, modellers are exempt
from worrying about certain complications of the ordering of transitions in a model. We
formally specified the subsets of BSML semantics that satisfy each semantic quality at-
tribute. Next, we plan to identify combinations of meaningful syntactic well-formedness
constraints and semantic options that achieve a semantic quality attribute. For example,
if the syntax of a BSML is restricted to simple transitions, where a transition, t, is simple
if parent(src(t)) � parent(dest(t)), then predicate N1 in Proposition 2 can be dropped.

References

1. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. IEEE Trans-
actions on Software Engineering 29(7), 623–633 (2003)

2. von der Beeck, M.: A comparison of Statecharts variants. In: Langmaack, H., de Roever,
W.-P., Vytopil, J. (eds.) FTRTFT 1994 and ProCoS 1994. LNCS, vol. 863, pp. 128–148.
Springer, Heidelberg (1994)

3. Berry, G.: The constructive semantics of pure Esterel draft version 3 (1999),
���������������������������������

4. Berry, G., Gonthier, G.: The Esterel synchronous programming language: Design, semantics,
implementation. Science of Computer Programming 19(2), 87–152 (1992)

5. Brzozowski, J.A., Zhang, H.: Delay-insensitivity and semi-modularity. Formal Methods in
System Design 16(2), 191–218 (2000)

6. Esmaeilsabzali, S., Day, N.A.: Prescriptive semantics for big-step modelling languages. In:
Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013, pp. 158–172. Springer,
Heidelberg (2010)

7. Esmaeilsabzali, S., Day, N.A., Atlee, J.M., Niu, J.: Semantic criteria for choosing a language
for big-step models. In: RE 2010, pp. 181–190. IEEE Computer Society Press, Los Alamitos
(2009)

8. Esmaeilsabzali, S., Day, N.A., Atlee, J.M., Niu, J.: Deconstructing the semantics of big-step
modelling languages. Requirements Engineering 15(2), 235–265 (2010)

9. Halbwachs, N.: Synchronous Programming of Reactive Systems. Kluwer, Dordrecht (1993)
10. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Computer Pro-

gramming 8(3), 231–274 (1987)
11. Heitmeyer, C., Je�ords, R., Labaw, B.: Automated consistency checking of requirements

specifications. ACM Transactions on Software Engineering and Methodology 5(3), 231–261
(1996)

12. Heninger, K.L., Kallander, J., Parnas, D.L., Shore, J.E.: Software requirements for the A-7E
aircraft. Tech. Rep. 3876, United States Naval Research Laboratory (1978)

13. Huizing, C., Gerth, R.: Semantics of reactive systems in abstract time. In: Huizing, C., de
Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, pp. 291–
314. Springer, Heidelberg (1992)

14. Janicki, R., Koutny, M.: Structure of concurrency. Theoretical Computer Science 112(1),
5–52 (1993)

15. Karp, R.M., Miller, R.E.: Parallel program schemata. Journal of Computer and System Sci-
ences 3(2), 147–195 (1969)

16. Landweber, L.H., Robertson, E.L.: Properties of conflict-free and persistent Petri nets. Jour-
nal of the ACM 25(3), 352–364 (1978)

http://www-sop.inria.fr/esterel.org/

80 S. Esmaeilsabzali and N.A. Day

17. Maraninchi, F., Rémond, Y.: Argos: an automaton-based synchronous language. Computer
Languages 27(1�3), 61–92 (2001)

18. Pnueli, A., Shalev, M.: What is in a step: On the semantics of statecharts. In: Ito, T., Meyer,
A.R. (eds.) TACS 1991. LNCS, vol. 526, pp. 244–264. Springer, Heidelberg (1991)

19. Silver, S.J., Brzozowski, J.A.: True concurrency in models of asynchronous circuit behavior.
Formal Methods in System Design 22(3), 183–203 (2003)

20. Tardieu, O.: A deterministic logical semantics for pure Esterel. ACM Transactions on Pro-
gramming Languages and Systems 29(2), 1–26 (2007)

Formalizing and Operationalizing Industrial Standards�

Dominik Dietrich, Lutz Schröder, and Ewaryst Schulz

DFKI Bremen, Germany
{firstname.lastname}@dfki.de

Abstract. Industrial standards establish technical criteria for various engineering
artifacts, materials, or services, with a view to ensuring their functionality, safety,
and reliability. We develop a methodology and tools to systematically formalize
such standards, in particular their domain specific calculation methods, in order to
support the automatic verification of functional properties for concrete physical
artifacts. We approach this problem in the setting of the Bremen heterogeneous
tool set HETS, which allows for the integrated use of a wide range of generic
and custom-made logics. Specifically, we (i) design a domain specific language
for the formalization of industrial standards; (ii) formulate a semantics of this
language in terms of a translation into the higher-order specification language
HASCASL, and (iii) integrate computer algebra systems (CAS) with the HETS

framework via a generic CAS-Interface in order to execute explicit and implicit
calculations specified in the standard. This enables a wide variety of added-value
services based on formal reasoning, including verification of parameterized de-
signs and simplification of standards for particular configurations. We illustrate
our approach using the European standard EN 1591, which concerns calculation
methods for gasketed flange connections that assure the impermeability and me-
chanical strength of the flange-bolt-gasket system.

1 Introduction

Industrial standards are documents that establish uniform engineering or technical cri-
teria of an item, material, component, system, or service, and are designed to ensure its
safety and reliability. To that end, they introduce a precise nomenclature for a limited
domain and provide an explicit set of requirements that the item at hand has to satisfy,
together with methods to check these requirements. E.g., the European standard EN
1591 [18] defines design rules for gasketed flange connections (see Fig. 1) that guar-
antee impermeability and mechanical strength of the flange-bolt-gasket system in the
form of numerical constraints as well as explicit calculation methods to compute or ap-
proximate physical quantities. Performing these calculations in order to verify the target
properties for a concrete object can be highly time-consuming and costly; hence, several
ad hoc software solutions have been developed to support such calculations (e.g., [4]).

We develop a methodology and tools to systematically formalize such standards, in
particular their domain specific computation strategies, to support the automatic verifi-
cation of the requirements for a concrete physical object. We are particularly interested

� Work performed as part of the project FormalSafe funded by the German Federal Ministry of
Education and Research (FKZ 01IW07002).

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 81–95, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

82 D. Dietrich, L. Schröder, and E. Schulz

Fig. 1. A flange-bolt-gasket system

in standards giving a guarantee for some functional properties of the system by provid-
ing a calculation method. It suffices then to satisfy the criteria of this method in order
to ensure these functional properties.

Instead of developing a new system from scratch, our approach consists of designing
a new specification language for industrial standards and embedding this language in
the institution-based heterogeneous tool integration framework HETS [14], which pro-
vides sound and general semantic principles for the integration and translation between
different specification languages/logics. This not only allows the reuse of the existing
generic machinery provided by the HETS framework, but also gives us direct access to
all systems that have already been integrated into the framework, such as the theorem
prover Isabelle [15].

The structure of this paper is as follows: Sec. 2 introduces the standard EN 1591.
Sec. 3 gives a short overview of relevant parts of the HETS system. The specification
language EnCL used to formalize industrial standards is described in Sec. 4 where we
also illustrate the architecture of our verification framework for EnCL specifications.
We conclude the paper in Sec. 5.

Related work. While there is scattered work on ontological approaches to engineering
artifacts, in particular CAD objects (e.g., [1,6]), there is to the best of our knowledge
only little existing work on actually formalizing the content of industrial standards,
in particular as regards calculation methods. In [12], a more global viewpoint on our
overall research goals is given, while the technical results are more oriented towards
the representation of CAD geometry. A knowledge-based approach ensuring the safety
of pressure equipment is presented in [5]; the formalization in this approach requires
more effort than in our framework due to the granularity of the ontology in question.
Our approach to formalizing calculations in a logical framework is to some extent
related to biform theories [7], the main differences being that we refrain from explicit
manipulation of syntax (which instead is left to the CAS operating in the background)

Formalizing and Operationalizing Industrial Standards 83

Fig. 2. Some typical definitions from the EN 1591

and moreover work with a loose coupling of algorithmic and axiomatic content via the
HETS framework, rather than join the two types of information in mixed theories.

2 Industrial Standards

Fig. 3. A control flow diagram from the EN 1591

We proceed to give an overview
of the calculation method of the
European standard EN 1591.
A calculation method is a
set of equations, constraints,
value tables and instructions.
These instructions comprise it-
erative approximations of a
given quantity up to a target ac-
curacy and specify the compu-
tation of all data relevant for
the checking of the constraints
from a set of initial data, which
needs to be provided by the
user. Figure 3 gives a rough
overview of the control flow of
the calculation method with an
inner and an outer loop. Fig-
ure 4 gives a glimpse of how
the corresponding instructions
look like. It is rather uncom-
mon in mechanical engineer-
ing to specify information other
than mathematical formulas such as equations and inequalities in a formal way, but we
can easily represent this instruction as a repeat-until command.

Further notable features of the calculational structure of the standard are:

– Most definitions of constants in the standard are given explicitly by equations (see
Fig. 2) and in rare cases by value tables corresponding to conditional definitions.

84 D. Dietrich, L. Schröder, and E. Schulz

– Constants are sometimes used in the document before they are defined.
– Constants are interpreted as real numbers, and the defining terms contain real con-

stants (π), roots (n
√), elementary functions such as sin and cos , and other func-

tions, e.g., absolute value, min and max , to name only a few.
– The standard contains implicit definitions which can be expressed as optimization

problems. This renders the evaluation of the calculation method more challenging.

Effective width of gasket:
bGe = min(bGi, bGt) (38)

[. . .] First approximation: bGi = bGt

More specific value:
bGi =

√
φ(hG0) (40)

hG0 = ψ(bGe) (41)

[. . .] Continue evaluating equations (38) to (41) until the value of bGe does not change any
more w.r.t. a precision of 0.1%.

Fig. 4. Iterative Approximation in the EN 1591

3 The Heterogeneous Tool Set

The strategy we pursue to provide formal modelling support for industrial standards
and more generally for numerical calculations in engineering is to embed a suitable
domain-specific language, to be described in Sec. 4, into the Bremen Heterogeneous
Tool Set (HETS) [14], which integrates a wide range of logics, programming languages,
and tools that enable formal reasoning at various levels of granularity. This includes,
e.g., ontology languages, equipped with efficient decision procedures, and first-order
languages, for which some degree of automated proof support is available, as well as
higher-order languages and interactive provers. HETS follows a multi-lateral philosophy
where logics and tools are connected via a network of translations, instead of embedding
everything into a central interchange logic. The unifying semantic bracket underlying
these translation mechanisms and acting as an abstraction barrier in the implementation
framework is the theory of institutions; we shall not repeat the formal definitions of the
concepts of this theory here, but will provide some intuitions concerning its core points.

Our approach will specifically focus on three items in the HETS network:

– the above-mentioned domain-specific language for engineering calculations, EnCL
(Engineering Calculation Language), which has an intermediate character between
a logic and programming language;

– a computer algebra system (CAS) as an execution engine for EnCL; and
– the higher-order wide-spectrum language HASCASL [16], which serves to make

the formal semantics of calculations explicit and to enable advanced reasoning on
standards, calculations and concrete engineering designs.

Formalizing and Operationalizing Industrial Standards 85

The heterogeneous logical approach involves various translations between these nodes,
in particular the following:

– a translation (a so-called theoroidal comorphism, a concept discussed in some more
detail below) from EnCL to HASCASL which identifies EnCL as sublogic of HAS-
CASL;

– a converse translation from the relevant sublogic of HASCASL to EnCL, which
enables the use of the CAS as a lemma oracle for HASCASL; and

– the translation from EnCL into the input language of the CAS.

Fig. 5 shows the structure of the HETS logic graph including the above-mentioned fea-
tures. In the present work, we focus on using the last translation, whose implementation
in HETS is already available; implementation of the other two translations is under way.

Fig. 5. The HETS logic graph

We now give a brief and informal overview over the concepts of institution and
institution comorphism to pave the ground for the description of the respective features
in the following sections.

To begin, an institution is an abstract logic, construed in a broad sense. It consists of

– a category of signatures Σ and signature morphisms σ : Σ1 → Σ2 that spec-
ify languages of individual theories in the given logic, typically to be thought of
as consisting of structured collections of symbols, and their translations, typically
renamings and extensions of the set of symbols;

– for each signature Σ, a class of Σ-models interpreting its symbols and a set of
Σ-sentences formed using these symbols, together with a satisfaction relation |=
between models M and sentences φ;

– for each signature morphism σ : Σ1 → Σ2, a sentence translation map σ that
applies the corresponding symbol renaming to Σ1-sentences and a model reduction

86 D. Dietrich, L. Schröder, and E. Schulz

that reduces Σ2-models M to Σ1-models M |σ, typically by interpreting a Σ1-
symbol s in the same way as M interprets σ(s).

Moreover, one requires the satisfaction condition to hold which essentially states that
satisfaction is invariant under signature morphisms, i.e. M |σ |= φ iff M |= σ(φ).

One of the generic notions built on top of this structure is that of a theory T = (Σ, Φ)
consisting of a signature Σ and a set Φ of Σ-formulas. The formulas in Φ are standardly
regarded as axioms. HETS offers the additional facility to mark formulas in the theory as
implied, i.e. as logical consequences of the axioms; this gives rise to proof obligations
which can be discharged using proof tools associated to the current logic node. A further
source of proof obligations are theory morphisms, specified as views in HETS; here, a
theory morphism (Σ1, Φ1) → (Σ2, Φ2) is a signature morphism σ : Σ1 → Σ2 that
transforms all axioms of Φ1 into logical consequences of Φ2.

EnCL
Specification
Language

Evaluator

HasCASL
Higher Order Logic

CAS Interface
(Assignment Store)

The HETS System

Fig. 6. Architecture of the EnCL Framework

A further logic-independent feature is the ability to build specifications in a modular
way by naming, translating, combining, parameterizing and instantiating specifications.
These mechanisms are collectively referred to by the term structured specification. We
will briefly explain some of these mechanisms when they appear in our examples later.

The primary mechanisms used to relate institutions in HETS are comorphisms which
formalize the notion of logic translation. A comorphism between institutions I and J
consists of

– a translation Φ of signatures in I to signatures in J ; and
– for each signature Σ in I , a translation α of Σ-sentences into Φ(Σ)-sentences and

a reduction β of Φ(Σ)-models to Σ-models,

again subject to a satisfaction condition, in this case that β(M) |= φ iff M |= α(φ).
Below, we will explain how EnCL is cast as an institution, and hence integrated as a
logic node in HETS, and how the various translations work.

Formalizing and Operationalizing Industrial Standards 87

4 A Domain-Specific Language for Engineering Calculations

Next, we describe the specification language EnCL, which is primarily designed to rep-
resent the calculation method of industrial standards but can be used for engineering
calculations in general. Our design goals for EnCL are (1) staying close to the infor-
mal original description of the standard to minimize the formalization effort and to be
readable for engineers and (2) having a precise semantics which allow the formal treat-
ment of the specifications particularly formal verification. Before going into the details
we describe briefly the architecture of the EnCL framework for operationalizing indus-
trial standards. EnCL specifications are formalizations of a calculation method, which,
given an appropriate set of input values, can be executed. This happens through an eval-
uator component (see Fig. 6) which communicates with a computer algebra system to
evaluate EnCL terms and generates verification conditions that are sent to formal proof
assistants for proving.

<Assignment> ::= c := <Term> | f(x1, ..., xn) := <Term>

<Case> ::= case <Boolterm> : <Program>

<Cases> ::= <Case>+ end
<Sequence> ::= sequence <Program> end
<Loop> ::= repeat <Program> until <Boolterm>

<Command> ::= <Assignment> | <Cases> | <Sequence> | <Loop>

<Program> ::= <Command>+

<Range> ::= vars v in <Set>
<Spec> ::= (<Command> | <Range>)+

Fig. 7. Syntax of EnCL

4.1 Syntax

The EnCL language consists of two layers, one for the definition of the constants used
in the calculation and the other for the specification of the calculation method itself.
Fig. 7 gives an extended BNF-like grammar of the EnCL language omitting the details
of the very standard term-language which is inspired by input languages of computer
algebra systems such as Reduce [10], Maple [13] and Mathematica1. Following our ob-
servations of Sec. 2 the language provides simple assignments, conditional statements
and unbound conditional iteration.

Given a signature Σ of predefined constants, functions (see Sec. 2 for some exam-
ples) and predicates (essentially comparison operators) we define the following lan-
guage constructs:

Terms are built as usual over Σ and user defined symbols, i.e., constants and functions.
We support also special functions which are binders such as maximize(t, x) defined
as the value x′ maximizing the term t considered as a function depending on the vari-
able x. This is because we do not support lambda abstraction as this concept is mostly

1 http://reference.wolfram.com/mathematica/guide/Mathematica.html

88 D. Dietrich, L. Schröder, and E. Schulz

unused in the mechanical engineering community. We also make a difference between
Boolean valued terms and numerical terms and do not allow constants to be assigned to
a Boolean value because we do not need it in our current setting.

Assignments of user defined symbols, which are constants c or function patterns
f(x1, ..., xn), to terms t.

Conditionals. We support conditionals on the command-level, i.e., not inside terms.
We will distinguish later between conditionals in programs and conditional assignments
which contain only assignments after being flattened, i.e., conditionals which contain
only conditional assignments and assignments.

Sequences allow the marking of a sequence of commands, typically assignments, ex-
plicitly as a program sequence instead of treating them as assignments. This is important
for the evaluation of a specification as described in the next section.

Loops may contain the convergence predicate in the exit condition beside the prede-
fined comparison operators. Let t be a term which is meant to converge inside a repeat
loop and e an expression denoting the acceptable tolerance of t .

convergence(e, t) is defined to be true if and only if the difference of the value of t
before the current loop evaluation and afterwards is in the interval [−|e|, |e|].

Fig. 8 shows an excerpt of the specification of the EN 1591. The assignments from
Fig. 2 are mainly kept unchanged with the exception that WF is represented as a func-
tion with two arguments. This was necessary because further in the standard WF is
really used as a function, i.e., the arguments kM and ΨZ are used as variables and not
as constants.

library ENCL/EN1591
logic ENCL
spec EN1591[FLANGEPARAMETER] = . . .

W F(k M’, Psi Z’) := Pi / 4 ∗ (f F ∗ 2 ∗ b F ∗ e F ˆ2
∗ (1 − Psi Z’ˆ2 + 2 ∗ Psi opt ∗ Psi Z’)
+ f E ∗ d E ∗ e Dˆ2 ∗ c M ∗ j M ∗ k M’) %(eq74)%

e D := e 1 ∗ (1 + (beta − 1) ∗ l H / fthrt((beta / 3)ˆ4
∗ (d 1 ∗ e 1)ˆ2 + l H ˆ4)) %(eq75)%

f E := min(f F, f S) %(eq76)%
delta Q := P ∗ d E / f E ∗ 2 ∗ e D ∗ cos(phi S) %(eq77.1)%
delta R := F R / f E ∗ Pi ∗ d E ∗ e D ∗ cos(phi S) %(eq77.2)%

Fig. 8. EnCL specification of the standard EN 1591

4.2 Semantics

There are two notions of semantics to be distinguished here. First, we want to repre-
sent the background theory of the objects dealt with in EnCL specifications, i.e., real
numbers and real functions, and second we want to give a meaning to a EnCL speci-
fication as a whole in order to talk about the execution and the correctness of a EnCL
specification.

Formalizing and Operationalizing Industrial Standards 89

Theory of Real Functions

The reason why we need a formalization of the theory of real functions is that we
want to prove the correctness of computations which are specified in a EnCL specifi-
cation and carried out by the evaluator component of our framework. The expressions
in the computations refer to elementary real functions such as cos ; hence we need to
do the proofs in the context of a theory specifying those functions. Rather than for-
malize the required portion of analysis from scratch, which is itself a time-consuming
endeavor [3], we base our approach on formal tools that provide a library containing an
appropriate theory in our case Isabelle/HOL [15] and MetiTarski [2]. We focus on the
Isabelle/HOL system because HETS already provides an interface to Isabelle and the
interactive setting in Isabelle seems better suited for first experiments, in particular the
Approximation theory2 developed by Hoelzl providing proof support for inequali-
ties over the reals [11]. In a later stage of the project where we aim at full automation of
the correctness proofs, however, we plan to integrate MetiTarski. Both systems formal-
ize elementary functions such as sine and cosine by Taylor series (e.g. in Isabelle/HOL
in the Transscendental theory3).

Evaluation

The EnCL specification language contains as sub-language the language of assign-
ments, i.e., specifications which consist only of assignments and conditional assign-
ments as defined in Sec. 4.1. We will call commands of this sub-language simply
assignments. A specification can hence be divided into a program skeleton containing
only non-assignments, e.g., repeat-loops and sequences, and assignments. We require
that for the assignments (1) there is at most one assignment for each constant and (2)
there is no cyclic dependency between two constants, i.e., the dependency graph for the
assignments has no cycles. We split the evaluation according to the divided specification
into the evaluation of the program skeleton and an assignment store. This assignment
store supports requests to evaluate a term containing constants which are defined by
some assignments in the store. The result is a fully evaluated expression, where all
defined constants were recursively substituted by their assigned value in the current en-
vironment. Typically, a specification splits into a small program containing only a few
assignments (see Fig. 9 for an example) and a big assignment store. Fortunately many
computer algebra systems support exactly the feature of full evaluation required from
an assignment store and can hence be used as such in our framework. Currently we
support the computer algebra systems Reduce, Maple and Mathematica.

Verification

Within our framework, the evaluator component interprets EnCL programs and uses an
external assignment store with which it communicates via a generic interface, the CAS-
Interface. The complicated parts of the evaluation, namely the evaluation and compu-
tation of the terms, are outsourced to the CAS, and are in general not guaranteed to be
carried out correctly. There are many examples for erroneous computations in CAS [11]

2 http://isabelle.in.tum.de/dist/library/HOL/Decision Procs/Approximation.html
3 http://isabelle.in.tum.de/dist/library/HOL/Transcendental.html

90 D. Dietrich, L. Schröder, and E. Schulz

spec EN1591[FLANGEPARAMETER] = . . .
repeat

. repeat
. b Gi := sqrt(e G / Pi ∗ d Ge ∗ E Gm

/ (h G0 ∗ Z F / E F0 + h G0 ∗ Z F / E F0)
+ (F G / Pi ∗ d Ge ∗ Q maxy)ˆ2)

until convergence(1.0e−3, b Ge)
until convergence(1.0e−3, F G) and F G0req <= F G %(eq54)%

Fig. 9. EnCL program skeleton of the standard EN 1591

which justify our prudence in this respect even if most of the computations give correct
results.

We verify a computation as follows (see Sec. 4.4 for an example). Before we start
the evaluation we mark all constants in the assignment store. A marked constant stands
for the fact that its value has changed. We have two rules for marking and unmarking
constants:

1. When the evaluator is at the position of an assignment, all constants affected by this
assignment are marked.

2. When we generate a verification condition for an assignment, the assigned constant
is unmarked.

We trigger the generation of verification conditions when the evaluator is at one of the
following three positions: (1) at an assignment, (2) at an until condition of a repeat loop
or (3) at a case condition. Depending on the position of the evaluator we generate a
verification condition for the assignment in the first case and for the condition in the
other cases. In addition we generate in all three cases verification conditions for the as-
signments of all marked constants which affect the value of the expression in question,
namely the assignment in case (1) and the condition in case (2) and (3). This method
guarantees that we do not produce obvious copies of already generated verification con-
ditions. For verification condition generation purposes we can treat a condition Φ which
is a Boolean term exactly as we treat assignments: we consider Φ as the assignment
b := Φ with an auxiliary constant b, therefore we will only describe the generation of
verification conditions for the assignment case. Given an assignment y := t(x1, ..., xn)
depending on the constants x1, ..., xn we generate the verification condition as follows.
For each xi we request its value vi from the assignment store. We then request the
value w for the expression t(x1, ..., xn). The condition that the result is correct w.r.t.
the current environment is now expressed as the equation t(v1, ..., vn) = w. If we can
prove this equation in the context of the background theory, then we have proved the
correctness of the computation of y.

In addition to the verification of isolated assignments we want to formally specify the
evaluation semantics described in the previous paragraph, in order to support the full
formal verification of a run of the calculation method. For this purpose we specify the
semantics in HASCASL and keep it parametric over the background theory of the term
language. This allows us to test different prover back-ends in parallel with different
instantiations of the background theory.

Formalizing and Operationalizing Industrial Standards 91

Numerical Expressions and Uncertainty Propagation

An important issue for the CAS-Interface are numbers with a bounded precision. Con-
sider, e.g., that we want to accept a certain tolerance in the input values and we provide
as input to the computation instead of a value an interval, representing the bounds for
the value. On the other hand the assignment store could also be limited concerning the
precision of the result and give us only a numerical approximation instead of an exact
representation of the result. In order to treat such imprecise values correctly we need
the assignment store to support uncertainty propagation. Current computer algebra sys-
tems provide here only limited support. Mathematica uses significance arithmetic as
built-in support for uncertainty propagation [17] whereas the intpakX package [9] pro-
vides support for interval arithmetic in Maple which unfortunately does not apply to
computations from other packages such as Optimization.

In the presence of uncertain values we have to review the generation of verification
conditions. An uncertain value v in the assignment store is an interval, i.e., lower and
upper bound (v = [v, v]) for the actual value, and we have to generate instead of an
equation two inequalities with a common precondition expressing the bounds for the
input values. Replacing the inequalities by interval-membership, the verification condi-
tion from the previous paragraph becomes

∀x1, ..., xn.(
n∧

i=1

xi ∈ vi) ⇒ t(x1, ..., xn) ∈ w

4.3 EnCL as an Institution

As indicated in Sec. 3, we need to define an institution for EnCL in order to integrate
EnCL into the HETS network. This is not an entirely straightforward enterprise as EnCL
mixes logical features with traits that are more typical of a programming language. A
definition which leads to a relatively smooth integration with the existing logic graph is
the following.

– Signatures in EnCL are just collections of function symbols with associated arities,
including nullary functions, i.e. constants. These are understood as functions on the
space of real numbers.

– A model of a signature is just an environment, i.e. an assignment of an n-ary func-
tion on the reals to every n-ary function symbol in the signature. Intuitively (al-
though not formally), there is the slight twist here that environments are variable:
executing a program will typically modify the environment.

– EnCL has two types of sentences:
• The syntax described in Sec. 4.1 yields programs, which form one type of

EnCL-sentences.
• A second type of sentences called answers captures the results of actually run-

ning a EnCL program. These sentences are not typically expected to be input
by the user (although this is technically possible, e.g., in order to simplify the
answers manually), but are instead generated as lemmas after running a EnCL
program using the back-end CAS. The syntactic format for answers are pairs
(p, η) consisting of a program p and an environment η, to be understood intu-
itively as the statement ‘correct evaluation of p yields the environment η’.

92 D. Dietrich, L. Schröder, and E. Schulz

– Corresponding to the two types of sentences, there are two cases in the definition
of satisfaction:
• A model satisfies a program p if p terminates successfully when run in the

corresponding environment (e.g., when the desired factorizations or minima
exist).

• A model η satisfies an answer (φ, η′) if correct execution of p in the environ-
ment η terminates successfully and yields η′.

This definition is designed in such a way that the translation of calculation goals in
EnCL programs (such as minimization of a function) into existential formulas is sound.
Formally, we have the following comorphism from a sublogic of HASCASL to EnCL,
which serves the purpose of making EnCL available as a calculational tool in specifica-
tion development. To begin, the relevant sublogic of HASCASL is the one given by all
theories that

– extend the standard HASCASL theory of the real numbers;
– introduce no additional signature except constants of types that occur as input or

result types in EnCL statements, i.e. n-ary real functions for n ≥ 0;
– introduce formulas only in a limited syntax mirroring the abilities of EnCL. Specif-

ically, sentences can be of the form (1) ∃x. φ(x), or (2) φ(c), where φ corresponds
to the semantics of a CAS calculation and, e.g., states that x is the set of zeros of
a given polynomial, the minimum of a given function, the factorization of a given
number etc., and c is a constant. Moreover, all formulas are marked as implied, i.e.
no new axioms are introduced. Formulas of type (1) represent goals, and as such
are meant to be input by the user, while formulas of type (2) represent answers
from the CAS, typically generated automatically as exported lemmas as described
in Sec. 4.2.

Theories in this sublogic are translated into EnCL along a comorphism which sup-
presses the explicit theory of the reals (which is implicit in EnCL) and otherwise be-
haves as follows.

– Signatures remain unchanged, except that the explicit type information present in
the original HASCASL signature is erased.

– Existential formulas of the form (1) are replaced by assignments x := e where
e is the CAS statement corresponding to φ, e.g., a factorization or minimization
statement. Formulas of the form (2) are trivially reinterpreted as answers in the
sense of the definition of EnCL sentences.

– Model reduction trivially reinterprets EnCL Models as HASCASL models.

It is easy to check that this does indeed constitute a comorphism, i.e. fulfills the satis-
faction condition. Note that this is independent from the fact that the CAS itself may be
buggy – in a manner of speaking, EnCL is an abstraction of the workings of the CAS
which presupposes correctness.

Remark 1. One could extend the definition of the relevant sublogic of HASCASL so as
to exploit the full programming power of EnCL. As this does not really yield additional
insights conceptually, details are omitted.

Formalizing and Operationalizing Industrial Standards 93

Conversely, we have a translation of EnCL into HASCASL which makes the semantics
of EnCL programs explicit and hence enables full formal reasoning over entire calcu-
lations. It takes the shape of a so-called theoroidal comorphism where we associate to
each EnCL signature not just a HASCASL signature (as in a plain comorphism) but
a HASCASL theory, which imports a HASCASL specification of the EnCL semantics.
The former is just a straightforward encoding of the transformations on environments
effected by the various EnCL constructs. A EnCL program then induces a partial func-
tion p representing its semantics, and as a EnCL sentence is translated into a definedness
assertion amounting to the statement that p terminates when run from the specified state.
A EnCL answer (p, η) is just reinterpreted as the obvious formula stating that running p
yields η. As indicated above, this translation enables fine-grained reasoning over EnCL
calculations, including, besides the verification of individual results of the CAS, the
verification of entire EnCL programs.

spec POLYFACTOR =
. z0 := z4 + z3 + 20 %(coef0)% . z1 := z2 + 3 ∗ z4 + 4 %(coef1)%
. z2 := 3 ∗ z3 − 30 %(coef2)% . z3 := 5 ∗ z4 + 10 %(coef3)%
. z4 := 15 %(coef4)%
sequence

. z := factor(xˆ5 − z4 ∗ xˆ4 + z3 ∗ xˆ3 − z2 ∗ xˆ2 + z1 ∗ x − z0)
end %(program)%

end

Fig. 10. EnCL specification for polynomial factorization

4.4 Example

To illustrate the work-flow of a calculation in the EnCL framework, we process the spec-
ification shown in Fig. 10 step-by-step. The static analysis splits the specification into
an assignment store with five assignments, coef0, ...,coef4, and a program consisting of
the single assignment in the sequence block. The evaluator moves the assignment store
to a computer algebra system via the CAS-Interface and puts the instruction pointer at
the single assignment of the program. At the beginning all assignments in the assign-
ment store are marked. The assignment for z depends on the constants x and z0 to z4,
but there are only assignments for z0 to z4 in the assignment store from which we can
generate verification conditions. Hence we order the corresponding assignments w.r.t.
the dependency graph and generate the verification conditions for them. This produces
only trivial verification conditions such as 15 + 85 + 20 = 120. The constants z0 to z4
are now unmarked. In the next step, the evaluator stores the current assignment in the
assignment store and generates the verification condition for this assignment,

factor(xˆ5 − 15 ∗ xˆ4 + 85 ∗ xˆ3 − 225 ∗ xˆ2 + 274 ∗ x − 120)
= (x − 5) ∗ (x − 4) ∗ (x − 3) ∗ (x − 2) ∗ (x − 1)

This verification condition is translated to Isabelle and proved by a short Isar-proof in
three steps Fig. 11. The background theory is based on the Isabelle formalization of the
reals where we added a definition for the (nearly dummy) factor operator requiring only
that factorizing a term does not change its value.

94 D. Dietrich, L. Schröder, and E. Schulz

theory factor imports Real
begin constdefs factor :: "real => real" "factor(x) == x"
theorem factor1 : "!! x. factor(xˆ5-15*xˆ4+85*xˆ3-225*xˆ2+
274*x-120) = (x-5)*(x-4)*(x-3)*(x-2)*(x-1)"
(is "!! x. factor (?a x) = (?b x)")
proof -

fix x::real
have "(x-5)*(x-4)*(x-3)*(x-2)*(x-1) =
x*x*x*x*x-(x*x*x*x)*15+(x*x*x)*85-(x*x)*225+274*x-120"
by (simp add: ring_simps)
also have "... = xˆ5-15*xˆ4+85*xˆ3-225*xˆ2+274*x-120"
by (simp add: Groebner_Basis.class_semiring.semiring_rules)
also have "... = factor (?a x)" by (simp add: factor_def)
finally show "factor (?a x) = (?b x)" by simp

qed

Fig. 11. Isabelle proof for the validity of the polynomial factorization

5 Conclusion

We have developed a methodology to formalize industrial standards and a method to
execute such formalizations based on the HETS framework. Specifically, we have de-
signed a domain specific language EnCL for engineering calculations which allows for
the formulation of a given calculation method that stays close to the original formu-
lation in the standard. The integration of this language into the heterogeneous logic
framework HETS enables us to relate these specifications to theories available in HAS-
CASL, such as ontological summaries of CAD designs [8] or abstract geometric repre-
sentations of CAD objects [12], in order to automate the parameter extraction for the
concrete computation. We have also integrated a computer algebra system (CAS) inter-
face into HETS and instantiated it with several state-of-the-art CAS. This allows us to
outsource the calculational part of EnCL specifications, which is a rather natural choice
to handle the computations in the presence of implicit definitions, such as references to
the argument value which minimizes a function in a given range. A key point here was
to cast a mainly procedural input language for a CAS as an institution.

Potential benefits of the formal approach beyond the applications presented here
include

– statement and proof of formal consequences of the prescriptions of the standard,
e.g., explicit formulas for maximum calculations;

– partial instantiations of the standard to particular situations and ensuing simplifica-
tion of the calculation procedures (e.g., when some parameters become 0, a fairly
typical situation);

– full formal verification of designs.

Formalizing and Operationalizing Industrial Standards 95

Acknowledgements

The work reported here was supported by the FormalSafe project conducted by DFKI
Bremen and funded by the German Federal Ministry of Education and Research (FKZ
01IW07002). We gratefully acknowledge useful discussions with Till Mossakowski.

References

1. Abdul-Ghafour, S., Ghodous, P., Shariat, B., Perna, E.: A common design-features ontology
for product data semantics interoperability. In: IEEE/WIC/ACM International Conference on
Web Intelligence, WI 2007, pp. 443–446. IEEE Computer Society, Los Alamitos (2007)

2. Akbarpour, B., Paulson, L.C.: Metitarski: An automatic theorem prover for real-valued spe-
cial functions. J. Autom. Reasoning 44(3), 175–205 (2010)

3. Barendregt, H., Wiedijk, F.: The challenge of computer mathematics. Phil. Trans. R. Soc.
A 363(1835), 2351–2375 (2005)

4. Bullack, H.-J.: Flanschberechnungen nach EN 1591. Kamprath interaktiv, 1st edn. (2006)
5. Camossi, E., Giannini, F., Monti, M., Brogotto, P., Pittiglio, P., Ansaldi, S.: Ontology Driven

Certification of Pressure Equipments. Process safety progress 27(4), 313–322 (2008)
6. Colombo, G., Mosca, A., Sartori, F.: Towards the design of intelligent cad systems: An on-

tological approach. Advanced Engineering Informatics 21(2), 153–168 (2007)
7. Farmer, W.M.: Biform theories in chiron. In: Kauers, M., Kerber, M., Miner, R., Windsteiger,

W. (eds.) MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 66–79. Springer, Hei-
delberg (2007)

8. Franke, M., Klein, P., Schröder, L.: Ontological semantics of standards and plm repositories
in the product development phase. In: Proc. 20th CIRP Design Conference 2010. Springer,
Heidelberg (to appear, 2011)

9. Grimmer, M., Petras, K., Revol, N.: Multiple precision interval packages: Comparing differ-
ent approaches. In: Alt, R., Frommer, A., Kearfott, R.B., Luther, W. (eds.) Dagstuhl Seminar
2003. LNCS, vol. 2991, pp. 64–90. Springer, Heidelberg (2004)

10. Hearn, A.C.: REDUCE User’s Manual, Version 3.8. RAND (2005)
11. Hölzl, J.: Proving real-valued inequalities by computation in Isabelle/HOL. Diploma thesis,

Institut für Informatik, Technische Universität München (April 2009)
12. Kohlhase, M., Lemburg, J., Schröder, L., Schulz, E.: Formal management of cad/cam pro-

cesses. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 223–238.
Springer, Heidelberg (2009)

13. Maplesoft. Maple 10 User Manual (2005)
14. Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set. In: Grumberg, O.,

Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg (2007)
15. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-Order

Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)
16. Schröder, L., Mossakowski, T.: HasCASL: Integrated higher-order specification and program

development. Theoret. Comput. Sci. 410, 1217–1260 (2009)
17. Sofroniou, M., Spaletta, G.: Precise numerical computation. J. Logic Algebraic Program-

ming 64(1), 113–134 (2005)
18. Technical Committee CEN/TC 74. EN 1591 – Flanges and their joints – Design rules for

gasketed circular flange connections (2001)

Modelling Non-linear Crowd Dynamics in
Bio-PEPA

Mieke Massink1, Diego Latella1, Andrea Bracciali1,3, and Jane Hillston2

1 Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’, CNR, Italy
2 School of Informatics, University of Edinburgh, U.K.

3 Department of Computing Science and Mathematics, University of Stirling, U.K.

Abstract. Emergent phenomena occur due to the pattern of non-linear
and distributed local interactions between the elements of a system over
time. Surprisingly, agent based crowd models, in which the movement
of each individual follows a limited set of simple rules, often re-produce
quite closely the emergent behaviour of crowds that can be observed in re-
ality. An example of such phenomena is the spontaneous self-organisation
of drinking parties in the squares of cities in Spain, also known as “El
Botellón” [20]. We revisit this case study providing an elegant stochas-
tic process algebraic model in Bio-PEPA amenable to several forms of
analyses, among which simulation and fluid flow analysis. We show that
a fluid flow approximation, i.e. a deterministic reading of the average
behaviour of the system, can provide an alternative and efficient way
to study the same emergent behaviour as that explored in [20] where
simulation was used instead. Besides empirical evidence, also an analyt-
ical justification is provided for the good correspondence found between
simulation results and the fluid flow approximation.

Keywords: Fluid flow, process algebra, crowd dynamics, self-organisation.

1 Introduction

In modern society the formation of crowds, intended as large concentrations of
people, is a phenomenon that occurs frequently. Well known examples are crowds
at large entertainment events in cities or other open-air facilities such as sport
stadiums, but also crowds at large airports and train stations. Fortunately, such
crowds usually occur and dissolve without serious problems. However, in some
cases accidents happen with possibly major consequences such as loss of lives
and a large number of injuries [22]. The recent drama at the open-air festival in
Germany is sadly adding to the list of such events [16].

There is an ever stronger interest in being able to prevent such disasters
and there exists an extensive literature on numerous approaches to the study
of crowd formation, crowd management and emergency egress [21]. Simulation
models play an important role in these approaches. In particular, agent based
modelling has become popular in recent years because it may provide valuable
information about the dynamics of systems that contain non-linear elements,

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 96–110, 2011.
� Springer-Verlag Berlin Heidelberg 2011

Modelling Non-linear Crowd Dynamics in Bio-PEPA 97

chaos and random cause and effect. Several works in this area, e.g. work by
Still [22], show that a crowd of people in which each individual follows a limited
number of simple rules produces quite closely the emergent behaviour that can
be observed in real human crowds. Emergent phenomena are known to occur due
to the pattern of non-linear and distributed local interactions between the large
number of elements of a system over time. His work and that of others have led
to the development of several professional tools, based on agent simulation, for
the realistic analysis and prediction of crowd behaviour in emergency situations.
Such analyses may help to detect architectural or organisational problems that
may potentially cause loss of lives in the event of emergency situations.

However, for very large crowds, analysis via detailed simulation may become
costly and time-consuming since each execution of the model produces only a
single trajectory through the state space whereas many executions are needed
to reach statistically relevant conclusions. Such high costs may be justified when
a final verification of a system is required, but often become prohibitive in sit-
uations in which a quick analysis is required to compare the consequences of
different design options or when a large number of slightly different scenarios
need to be analysed, i.e. when one may be interested in approximated, but effi-
cient, analyses.

In a completely different field of research, namely that of the analysis of bio-
chemical reactions, it has been shown that under certain conditions, such as the
presence of a sufficiently large population, a deterministic continuous interpreta-
tion of models composed of many similar small independent components provide
a good approximation of the average transient behaviour of the overall model.
In the context of stochastic process algebras this insight has led to the develop-
ment of an alternative formal fluid flow semantics for PEPA first and later for
Bio-PEPA, a variant of PEPA originally devised for modelling biochemical pro-
cesses. Such semantics are based on the generation of sets of ordinary differential
equations (ODE) [12,4,7]. An application of PEPA with this alternative seman-
tics in the context of emergency egress has been presented in [17,3]; it has been
shown that the approach is an efficient and scalable alternative to simulation
when average behaviour is of interest. It is not suitable to analyse, for example,
exceptional or oscillatory behaviour. Good correspondence with results from the
literature on evacuation times and node profiles—the average number of people
present in a particular part of the building over time during egress—has been
achieved. In that work only linear differential equations have been considered.

In this paper we revisit the case of self-organisation of crowds in a city as
described by Rowe and Gomez in [20]. The work was inspired by a typical social
phenomenon observed in Spanish cities, on summer nights, called “El Botellón”,
when crowds of youngsters wander between city squares in search of a party. Such
self-organising parties sometimes lead to heavy drinking and noisy behaviour
until late at night. It turned out to be hard to predict when and where a large
party would take place. The aim of the work by Rowe and Gomez was to gain
insight into the general principles due to which parties self-organise, abstracting
from specific details of individual cases. We show that with Bio-PEPA a fluid

98 M. Massink et al.

flow approximation can provide an alternative way to study the same emergent
behaviour as that explored in [20] where simulation was used instead. This case
differs from that of emergency egress mentioned before because of the presence of
non-linear aspects where the behaviour of the individual agents depends directly
on other, similar agents present in the same environment. In [20] the movement of
a crowd in a city is studied under various assumptions about the likelihood that
people remain in a square. Agents follow two basic rules. The first rule defines
when agents remain in a square, which depends on the “chat-probability”, i.e.
the likelihood to meet someone in the square to chat with. The second rule
defines how agents move between squares.

Rowe and Gomez, by developing an analytical model, determined a threshold
of the chat-probability below which people are freely moving through the city
and above which large crowds start to form. They validated their theory by the
simulation of a multi-agent model for a ring topology of 4 squares and up to
80 agents. Both the theory and the simulation results show that for a value of
the chat probability c = n/N , where n is the number of squares and N the
number of agents, a clear phase-transition can be observed between a steady-
state situation in which agents are evenly distributed over the squares (when c
is below the threshold) and a situation in which agents spontaneously gather in
one or a few squares (when c is a above the threshold).

In this paper, we approach the modelling of crowds by adopting the Bio-PEPA
stochastic process algebra [8]. Bio-PEPA embeds a notion of spatial location,
intended to model compartments, suitable to describe the city topology and lo-
cate agents within it. Moreover, some aspects of the agent behaviour can be
expressed as a function of the current state of the system, such as the number of
people present in a square, an abstraction of the act of sensing the environment,
common to standard agent models. Such a function may contain non-linear el-
ements, which makes Bio-PEPA also particularly interesting for the analysis of
some forms of emergent behaviour, as we will see in later sections. The fluid flow
results obtained with the Bio-PEPA model correspond surprisingly well to the
simulation results obtained with the the same model and to those published by
Rowe and Gomez [20]. Informally speaking, for models where the rates can be
expressed as functions of the average density of the population, under certain
conditions, this phenomenon is well known (assuming that the populations are
sufficiently large), see e.g. Kurtz [14] and in the context of mean field analysis
Le Boudec et al. [2]. However, the rate functions in the crowds model addressed
in this paper cannot be expressed this way. We provide an alternative analytical
explanation for the observed correspondence which is partially based on recent
work by Hayden and Bradley [11] on PEPA.

The outline of the paper is as follows. Section 2 recalls the crowd model used
in the case study by Rowe and Gomez [20]. Section 3 briefly presents Bio-PEPA
and its analysis environment. Section 4 describes the Bio-PEPA model of the
collective behaviour of crowds in a city followed by a selection of the analyses
results in Section 5. Section 6 provides insight in the close correspondence be-
tween the simulation results and fluid flow approximation for this case. Finally,

Modelling Non-linear Crowd Dynamics in Bio-PEPA 99

in Section 7 conclusions are presented and future research is outlined. A prelimi-
nary version of our results has been discussed at the PASTA 2010 workshop [19],
whereas further results and details can be found in [18].

2 Rowe and Gomez Model of Crowd Dynamics

In this section we briefly recall the model of movement of crowds between
squares in a city as presented by Rowe and Gomez in [20]. Assume a city
with n squares represented as a graph with vertices {1, 2, . . . , n}. People are
simulated by “agents” that are following a simple set of rules. The number
of agents in square i, with i ∈ {0, 1, . . . , n}, at time t, with t representing
discrete time steps, is represented by pi(t). The state of the system at t is
given by the number of agents present in each square modelled by the vec-
tor p(t) = (p1(t), p2(t), . . . , pn(t)). The total number of agents N at any time t
is constant: N =

∑n
i=1 pi(t).

Agents are located in squares. The rules guiding agents’ behaviour are the
following. The probability that an agent decides to remain in a square depends on
how many other agents are present in the same square. If square i contains pi > 0
agents, the probability that an agent leaves the square is given by (1 − c)pi−1.
The parameter c (representing the chat probability, 0 ≤ c ≤ 1) is the probability
that an agent finds another one to talk to and thus remains in the square.
Note that when there is only one agent in the square, it decides to leave with
probability 1, since there is nobody else to talk to. If an agent decides to move, it
moves with equal probability to any neighbouring square reachable by a street.
Considering an analytical model of the above discrete behaviour the expected
number of agents that will leave square i at a given time step t is given by the
function:

fi(t) = pi(t)(1 − c)pi(t)−1

This models the part of the population in square i that does not find anyone to
talk to in that square1. The probability that an agent, which decided to leave
square j, moves to the adjacent square i is given by the matrix Aij :

Aij = conij/dj

where dj is the degree of vertex j, i.e. the number of streets departing from
square j, and conij denotes that square i is connected to square j:

conij =
{

1 if i is connected to j
0 otherwise

Clearly, conij = conji and we assume that adjacent squares are connected by at
most one street. The expected distribution of agents over squares at time t + 1
can now be defined as:

p(t + 1) = p(t) − f(t) + Af(t)
1 Note that in this analytical model the number of agents pi(t) in square i is now

approximated by a real number: the expected number of agents in square i at time t.

100 M. Massink et al.

Clearly, from this formula it follows that a steady-state behaviour is reached
when f(t) = Af(t). In other words, when the number of people entering a square
is equal to the number leaving the square. Rowe and Gomez show that there
are two possibilities for such a stable state. In one case the agents freely move
between squares and their distribution is proportional to the number of streets
connected to each square. In the second case agents gather in large groups in a
small number of squares corresponding to emergent self-organisation of parties.
Which of the two situations will occur depends critically on the value of the
chat probability c. When all squares have the same number of neighbouring
squares a phase shift occurs at about c = n/N where n is the number of squares
and N the number of agents. For c < n/N people freely move between squares
whereas for c > n/N agents self-organise into large groups. Simulation of the
model confirms in an empirical way that this estimate for c is quite accurate
when the population is large enough where large means about 60 agents or more
in a 4-square topology.

For topologies where each square has the same number of streets the critical
value of c can be estimated in an analytical way. For less regular topologies and
when different squares have different chat probabilities and not all directions
leaving from a square are equally likely to be taken by people it is very difficult
to identify such critical values in an analytical way. Usually, in such cases sim-
ulation is used to analyse the models. However, when a large number of agents
is involved, simulation may be extremely time consuming.

3 Bio-PEPA and Fluid Flow Analysis

In this section we briefly describe Bio-PEPA [7,8,6], a language that has recently
been developed for the modelling and analysis of biochemical systems. The main
components of a Bio-PEPA system are the “species” components, describing
the behaviour of individual entities, and the model component, describing the
interactions between the various species. The initial amounts of each type of
entity or species are given in the model component.

The syntax of the Bio-PEPA components is defined as:

S ::=(α, κ) op S | S +S | C with op=↓ | ↑ | ⊕ | " | # P ::= P ��
L P | S(x)

where S is a species component and P is a model component. In the prefix
term (α, κ) op S, κ is the stoichiometry coefficient of species S in action α.
This arises from the original formulation of the process algebra for modelling
biochemical reactions, where the stoichiometric coefficient captures how many
molecules of a species are required for a reaction. However it may be interpreted
more generally as the multiples of an entity involved in an occurring action.
The default value of κ is 1 in which case we simply write α instead of (α, κ).
The prefix combinator “op” represents the role of S in the action, or conversely
the impact that the action has on the species. Specifically, ↓ indicates a reactant
which will be consumed in the action, ↑ a product which is produced as a result of
the action, ⊕ an activator, " an inhibitor and # a generic modifier, all of which

Modelling Non-linear Crowd Dynamics in Bio-PEPA 101

play a role in an action without being produced or consumed and have a defined
meaning in the biochemical context. The operator “+” expresses the choice
between possible actions, and the constant C is defined by an equation C=S.
The process P ��

L Q denotes synchronisation between components P and Q, the
set L determines those actions on which the components P and Q are forced
to synchronise, with ��∗ denoting a synchronisation on all common actions. In
S(x), the parameter x ∈ IR represents the initial amount of the species.

A Bio-PEPA system with locations consists of a set of species components,
also called sequential processes, a model component, and a context (locations,
functional/kinetics rates, parameters, etc.). The prefix term (α, κ) op S@l is
used to specify that the action is performed by S in location l. The notation
α[I → J]#S is a shorthand for the pair of reactions (α, 1)↓S@I and (α, 1)↑S@J
that synchronise on action α2. This shorthand is very convenient when modelling
agents migrating from one location to another as we will see in the next section.
Bio-PEPA is given an operational semantics [8] which is based on Continuous
Time Markov Chains (CTMCs).

The Bio-PEPA language is supported by a suite of software tools which
automatically process Bio-PEPA models and generate internal representations
suitable for different types of analysis [8,5]. These tools include mappings from
Bio-PEPA to differential equations (supporting a fluid flow approximation),
stochastic simulation models [10], CTMCs with levels [7] and PRISM models [15].

A Bio-PEPA model describes a number of sequential components each of
which represents a number of entities in a distinct state. The result of an action
is to increase the number of some entities and decrease the number of others.
Thus the total state of the system at any time can be represented as a vector
with entries capturing the counts of each species component (i.e. an aggregated
CTMC). This gives rise to a discrete state system which undergoes discrete
events. The idea of fluid flow analysis is to approximate these discrete jumps by
continuous flows between the states of the system.

4 Modelling Crowd Movement with Bio-PEPA

Let us consider the same small ring topology with 4 squares, A, B, C and D,
as in Rowe and Gomez, allowing bi-directional movement between squares. The
excerpt from the Bio-PEPA specification below defines this topology. The default
compartment top contains all other compartments. The next line defines square
A. Definitions for the other squares are similar and have been omitted. In this
context size is used to denote a capacity in terms of number of agents.

location top : size = 1000, type = compartment ;
location sqA in top : size = normal square, type = compartment ;

The size of the squares, defined by parameter normal square = 100, is defined
in such a way that all agents, 60 in this case, would fit in any single square and
2 The concrete syntax for writing this in the Bio-PEPA tool set differs somewhat.

102 M. Massink et al.

does not impose any further constraints. The Bio-PEPA specification, which
we will henceforth refer to as the ‘crowd model’, has two further parameters.
The parameter c defines the chat-probability and the parameter d the degree or
number of streets connected to a square. In the considered topology d = 2 for
each square. The actions modelling agents moving from square X to square Y will
be denoted by fXtY . The associated functional rate (indicated by the keyword
“kineticLawOf”) is defined in analogy to [20] (see Section 2). Since the only
information on the probability distribution available is the expected number of
agents leaving a square per time unit, this same information can also be modelled
as the rate parameter of an exponential distribution. If one also considers the
uniform distribution of people over the outgoing streets of the square then this
rate needs to be divided by its degree d when agents leaving through a particular
street are considered.

So the general rate with which agents leave square X via a particular street
is:

(P@sqX ∗ (1 − c)(P@sqX−1))/d

This leads to the following functional rates for the crowd model, one for each
direction of movement. Only the one for fAtB is shown, the others being similar:

kineticLawOf fAtB : (P@sqA ∗ (1 − c)(P@sqA−1))/d;

The sequential component P below specifies the possible movements of a typical
agent between squares. For example, fAtB[sqA → sqB]#P means that an agent
present in square A moves to square B according to the functional rate defined
for the action fAtB.

P = fAtB [sqA → sqB] � P + fBtA[sqB → sqA] � P+
fAtC [sqA → sqC] � P + fCtA[sqC → sqA] � P+
fBtD [sqB → sqD] � P + fDtB [sqD → sqB] � P+
fCtD [sqC → sqD] � P + fDtC [sqD → sqC] � P ;

Finally, the model component defines the initial conditions of an experiment,
i.e. in which squares the agents are located initially, and the relative synchro-
nisation pattern. Initially, there are 60 agents in square A. This is expressed
by P@sqA[60] in the composition shown below. All other squares are initially
empty (i.e. P@sqX [0] for X ∈ {B, C, D}). The fact that moving agents need to
synchronise follows from the defintion of the shorthand operator →.

(P@sqA[60] ��∗ P@sqB[0]) ��∗ (P@sqC[0] ��∗ P@sqD[0])

The total number of agents P@sqA + P@sqB + P@sqC + P@sqD is invariant and
amounts to 60 in this specific case.

5 Selected Results for a Model with Four Squares

This section presents a selection3 of the analysis results for the model with
four squares. The figures report both analysis via Gillespie stochastic simulation
3 Further results can be found in [18].

Modelling Non-linear Crowd Dynamics in Bio-PEPA 103

0 50 100 150 200
Time

0

10

20

30

40

50

60
P

op
ul

at
io

n
in

 s
qu

ar
e

P@sqA
P@sqB
P@sqC
P@sqD

(a) Simulation results for c=0.005

0 50 100 150 200
Time

0

10

20

30

40

50

60

P
op

ul
at

io
n

in
 s

qu
ar

e

P@sqA
P@sqB
P@sqC
P@sqD

(b) Fluid flow results for c=0.005

0 50 100 150 200
Time

0

10

20

30

40

50

60

P
op

ul
at

io
n

in
 s

qu
ar

e

P@sqA
P@sqB
P@sqC
P@sqD

(c) Simulation results for c=0.10

0 50 100 150 200
Time

0

10

20

30

40

50

60

P
op

ul
at

io
n

in
 s

qu
ar

e

P@sqA
P@sqB
P@sqC
P@sqD

(d) Fluid flow results for c=0.10.

Fig. 1. Results for four squares with 60 agents in A initially

(G) [10], averaged over 10 independent runs, and fluid flow analysis based on
the adaptive numeric solution of sets of ODEs based on the adaptive step-size
5th order Dormand-Prince ODE solver [9].4

Fig. 1(a) and Fig. 1(b) show stochastic simulation and fluid flow results for
a model with 60 agents initially in square A and for c = 0.005, which is below
the analytically estimated threshold of c = n/N = 4/60 = 0.06666. The results
show that a dynamic equilibrium is reached, i.e. all agents distribute evenly over
the four squares. This confirms the discrete event simulation results reported by
Rowe and Gomez. Fig. 1(c) shows the results of stochastic simulation for the
same model, but for c = 0.10, a value above the threshold. Corresponding fluid
flow results for the same value of c are shown in Fig. 1(d). The figures show that
the population settles rather quickly in a steady state in which almost all agents
remain in square A. This is the second type of steady state observed also by
Rowe and Gomez. Interestingly, the fluid flow analyses of the same model, for
both values of c (Fig. 1(b) and Fig. 1(d)) show very good correspondence to the
respective simulation results (Fig 1(a) and Fig. 1(c), resp.).

Since these results show that both types of steady state emerge in this stochas-
tic version of the crowd model and for both types of analysis, the question

4 All analyses have been performed with the Bio-PEPA Eclipse Plug-in tool [5] on a
Macintosh PowerPC G5.

104 M. Massink et al.

0.05 0.1 0.15 0.2
chat probability

0

10

20

30

40

50

60
S

te
ad

y
S

ta
te

 P
op

ul
at

io
n

P@sqA
P@sqB
P@sqC
P@sqD

(a) Fluid flow results about “Steady state”
population levels in each square

0 50 100 150 200
Time

0

10

20

30

40

50

60

P
op

ul
at

io
n

in
 s

qu
ar

es

P@sqA c=0.05

P@sqB c=0.05

P@sqA c=0.051

P@sqA c=0.052

P@sqA c=0.053

P@sqA c=0.056

P@sqA c=0.065
P@sqA c= 0.1

P@sqB c=0.056
P@sqB c=0.065 P@sqB c=0.1

(b) Fluid flow results for square A (and
partially B) for varying chat probabilities

Fig. 2. Results at t=200 for varying chat probabilities

naturally arises whether fluid flow could be used as an efficient technique to
investigate the behaviour of the model for various values of the chat-probability
c, in particular those close to the critical threshold. Fig. 2(a) shows the expected
number of agents in the squares at t = 200, starting with 60 agents in square
A initially, for different chat probabilities ranging from 0.01 to 0.2 with steps
of 0.01 (except between 0.05 and 0.065 where the steps are 0.001) in a fluid
flow analysis. The figure shows clearly that for a chat probability below 0.05 in
the steady state the population is evenly distributed over the four squares. For
c > 0.05 the situation changes sharply. For these higher values of c the agent
population tends to concentrate in square A, the square from which they all
started. All other squares remain essentially empty. The results in Fig. 2(a) il-
lustrate a clear case of spontaneous self-organisation or emergent behaviour. The
results in Fig. 2(a) closely correspond to those obtained by Rowe and Gomez [20]
by discrete event simulation. The ease and computational efficiency with which
these results can be produced by means of fluid flow analysis opens up a promis-
ing perspective on how process algebraic fluid flow analysis could be used as
an alternative, efficient, scalable and formal approach to investigate emergent
behaviour in the vicinity of critical parameter values for this class of models.

An impression of how the distribution of agents over the four squares evolves
for values of c that are close to the threshold of c = 0.05 is shown in Fig. 2(b). For
c = 0.05 and c = 0.051 the agents still distribute uniformly over the four squares,
though this takes a bit more time than for lower values of c. For c = 0.052 this
situation is changing, and for c = 0.053 and higher clearly a different steady
state is reached in which most agents group in the single square A. Note that
for c = 0.052 a stable state has not yet been reached at time t = 200. However,
this does not influence the overall picture. The theory on the stability of fixed-
points predicts that the steady state behaviour for values of c > n/N = 4/60 =
0.066666 is unstable (see [20]). Instability in this case means extreme sensitivity
to the initial values of the number of agents in each square. This phenomenon
is illustrated by the results in Fig. 3 where single simulation runs are shown for
the same model and the same initial conditions, i.e. 30 agents per square and

Modelling Non-linear Crowd Dynamics in Bio-PEPA 105

0 50 100 150 200
Time

0

20

40

60

80

100

120

P
op
ul
at
io
n

P@sqA
P@sqB
P@sqC
P@sqD

(a) Simulation results for c=0.1

0 50 100 150 200
Time

0

20

40

60

80

100

120

P
op
ul
at
io
n

P@sqA
P@sqB
P@sqC
P@sqD

(b) Simulation results for c=0.1

Fig. 3. Two single simulation runs for the same model with initially 30 agents in each
square

c = 0.1. In every run the agents may all gather in one of the squares without
leaving again. However, no prediction is possible on which square this will be
except that they are all equally likely in this particular topology. Scalability
of the fluid flow analysis is well illustrated by comparing the time of a single
simulation run for 600,000 agents over 500 time units in a 3 by 3 grid topology,
taking approx. 27 min., and a fluid flow analysis of that model taking 20 ms.5

6 Analytical Assessment of the Fluid Flow Approximation

The results in the previous sections show a very good correspondence between
the results obtained via fluid flow approximation and those obtained, on the
one hand, with Gillespie’s stochastic simulation algorithm applied on exactly
the same Bio-PEPA specification and, on the other hand, with discrete event
simulation results found by Rowe and Gomez [20]. In this section we provide a
justification for this correspondence from an analytical perspective.

There exist several theories that address the relation between the interpre-
tation of the model as a large set of individual, independently behaving and
interacting agents, as is the case for simulation, and a continuous determinis-
tic interpretation of the same model as occurs with a fluid flow approximation.
Perhaps the most well-known is the theory by Kurtz [14]. Informally speaking,
Kurtz shows an exact relation (in the limit when the population goes to infinity)
between the two above mentioned interpretations when the rate-functions can
be expressed in terms of the average density of the population. A similar require-
ment needs to be satisfied in the context of the theory of mean field analysis,
for example in recent work by Le Boudec et al. [2]. Unfortunately, in the crowd
model the rate-functions cannot be expressed in terms of the density of the pop-
ulation because the exponent of the factor (1 − c)(pX−1) requires the absolute
number pX of agents present in square X .

5 These timing results have been obtained with the Bio-PEPA plugin tool for Eclipse
Helios on a MacPro4,1.

106 M. Massink et al.

A third approach, by Hayden and Bradley [11], has recently been applied to
assess the quality of the fluid approximation for (grouped) PEPA models. In
that approach the Chapman-Kolmogorov forward equations (C-K) are derived
from a typical central state of the aggregated CTMC6 associated with a PEPA
model. These equations are then used in the moment generating function from
which, by partial differentiation, ordinary differential equations are obtained
for the expected value over time of each sequential component in the PEPA
model. In this section we adapt the approach to the Bio-PEPA crowds model
which is characterised by non-linear rate functions. Let pA, pB, pC and pD

(pA, pB, pC , pD)

(pA + 1, pB − 1, pC , pD) (pA, pB, pC − 1, pD + 1)

(pA − 1, pB + 1, pC , pD) (pA, pB, pC + 1, pD − 1)

(pA + 1, pB, pC − 1, pD)

(pA − 1, pB, pC + 1, pD) (pA, pB + 1, pC , pD − 1)

(pA, pB − 1, pC , pD + 1)

fBtA fCtD
fAtB

fDtC

fBtD

fDtB

fCtA

fAtC

fBtA

fAtB fDtC

fCtD

fBtD

fDtB

fAtC
fCtA

Fig. 4. A central state of the crowds model

denote the number of agents in square A, B, C and D, respectively. A central
state of the aggregated CTMC of the crowds model is shown in Fig. 4. Let
prob(pA,pB ,pC ,pD)(t) denote the transient probability of being in the aggregated
CTMC state with pX agents in square X , for X in {A, B, C, D} at time t. From
the crowd model in Sect. 4 we obtain the following C-K, governing the evolution
of the state probabilities over time of the underlying aggregated CTMC:

d prob(pA,pB,pC,pD)(t)

dt
= ((pA + 1) · (1 − c)pA)/2 · prob(pA+1,pB−1,pC ,pD)(t)

+((pB + 1) · (1 − c)pB)/2 · prob(pA−1,pB+1,pC ,pD)(t)
+((pC + 1) · (1 − c)pC)/2 · prob(pA,pB ,pC+1,pD−1)(t)
+((pD + 1) · (1 − c)pD)/2 · prob(pA,pB ,pC−1,pD+1)(t)
+((pA + 1) · (1 − c)pA)/2 · prob(pA+1,pB ,pC−1,pD)(t)
+((pC + 1) · (1 − c)pC)/2 · prob(pA−1,pB ,pC+1,pD)(t)
+((pB + 1) · (1 − c)pB)/2 · prob(pA,pB+1,pC ,pD−1)(t)
+((pD + 1) · (1 − c)pD)/2 · prob(pA,pB−1,pC ,pD+1)(t)
−((pA) · (1 − c)pA−1) · prob(pA,pB ,pC ,pD)(t)
−((pB) · (1 − c)pB−1) · prob(pA,pB ,pC ,pD)(t)
−((pC) · (1 − c)pC−1) · prob(pA,pB ,pC ,pD)(t)
−((pD) · (1 − c)pD−1) · prob(pA,pB ,pC ,pD)(t)

Each of the eight first summands appears only when the state (pA, pB, pC , pD)
has the corresponding incoming transitions in the aggregated state space.

6 For a formal definition see for example [11].

Modelling Non-linear Crowd Dynamics in Bio-PEPA 107

Let us now consider, following the approach outlined in [11], how an ODE for
the function PA(t) can be obtained. First note that the expected value of PA(t)
is given by:

E [PA(t)] =
∑

(pA,pB ,pC ,pD)

pA · prob(pA,pB ,pC ,pD)(t)

So this leads to the following derivation:

d E[PA(t)]
dt = {By def. of expected value}

d
∑

(pA,pB,pC,pD) pA·prob(pA,pB,pC ,pD)(t)
dt = {By distribution of differentiation}∑

(pA,pB ,pC ,pD) pA · d prob(pA,pB,pC ,pD)(t)
dt = {By definition of C-K equations}

∑
(pA,pB ,pC ,pD)[((pA − 1) · pA · (1 − c)(pA−1))/2 · prob(pA,pB ,pC ,pD)(t)

+((pA + 1) · pB · (1 − c)(pB))/2 · prob(pA,pB ,pC ,pD)(t)
+(pA · pC · (1 − c)(pC−1))/2 · prob(pA,pB ,pC ,pD)(t)
+(pA · pD · (1 − c)(pD−1))/2 · prob(pA,pB ,pC ,pD)(t)
+((pA − 1) · pA · (1 − c)(pA−1))/2 · prob(pA,pB ,pC ,pD)(t)
+((pA + 1) · pC · (1 − c)(pC−1))/2 · prob(pA,pB ,pC ,pD)(t)
+(pA · pB · (1 − c)(pB−1))/2 · prob(pA,pB ,pC ,pD)(t)
+(pA · pD · (1 − c)(pD−1))/2 · prob(pA,pB ,pC ,pD)(t)
−(pA · pA · (1 − c)(pA−1)) · prob(pA,pB ,pC ,pD)(t)
−(pA · pB · (1 − c)(pB−1)) · prob(pA,pB ,pC ,pD)(t)
−(pA · pC · (1 − c)(pC−1)) · prob(pA,pB ,pC ,pD)(t)
−(pA · pD · (1 − c)(pD−1)) · prob(pA,pB ,pC ,pD)(t)]

If (PA(t), PB(t), PC(t), PD(t)) is the state of the aggregated CTMC at time t,
then by cancelling terms in the above equation one obtains:∑

(pA,pB ,pC ,pD)[−pA · (1 − c)(pA−1) · prob(pA,pB ,pC ,pD)(t)
+(pB · (1 − c)(pB−1) · prob(pA,pB ,pC ,pD)(t))/2
+(pC · (1 − c)(pC−1) · prob(pA,pB ,pC ,pD)(t))/2

This yields in terms of expectations the following ODE for E[PA(t)]:

dE[PA(t)]
dt = −E[PA(t) · (1 − c)(PA(t)−1)]

+(E[PB(t) · (1 − c)(PB(t)−1)])/2
+(E[PC(t) · (1 − c)(PC(t)−1)])/2

If at this point, as shown in [11], the functions (1 − c)(X−1) were just constant
rates, then expectation would just distribute over multiplication and one would
obtain an equation in terms of expectations of populations. However, in our
case the rate is a more complicated function and, in general, expectation does
not distribute over an arbitrary function, i.e. E[φ(X)] �= φ(E[X]). This means
that exact equality cannot be obtained this way. As an alternative we consider
whether E[PA(t)](1 − c)(E[PA(t)]−1) could be expected to approximate E[PA(t) ·

108 M. Massink et al.

0 10 20 30 40 50 60

x

0

10

20

30

40

y

y=x*(1-0.005)^(x)
y=x*(1-0.01)^(x)
y=x*(1-0.02)^(x)
y=x*(1-0.03)^(x)
y=x*(1-0.04)^(x)
y=x*(1-0.05)^(x)
y=x*(1-0.06)^(x)
y=x*(1-0.07)^(x)
y=x*(1-0.08)^(x)
y=x*(1-0.09)^(x)
y=x*(1-0.1)^(x)

Fig. 5. Function x(1 − c)x for up to 60 agents and different chat probabilities

(1−c)(PA(t)−1)]. To address this question we recall Jensen’s work [13] from which
it is known that for strictly convex functions φ the following inequality holds:

E[φ(X)] ≥ φ(E[X])

with equality when φ is linear or when it is a constant. The reverse inequality
holds in case φ is strictly concave. So this requires a closer investigation of the
particular function at hand. In Fig. 5 graphs are shown of the function φ(x) =
x(1 − c)x for values of x ∈ [0 . . . 60] and for various values of chat probability c.
It can be observed that for very small values of c the function is almost linear
for the number of agents considered. For larger values of c the function is mostly
concave and tends to an almost constant value. This implies that, informally
speaking, any hypothetical probability distribution of the values of x would be
mapped on an increasingly “shrinking” version of the distribution of φ(x). This
means that E[PA(t)](1 − c)(E[PA(t)]−1) approximates E[PA(t) · (1 − c)(PA(t)−1)]
indeed rather well.

Distributing expectation over the function the following ODE for the expected
value of PA(t) is obtained:

dE[PA(t)]
dt ≈ −E[PA(t)](1 − c)(E[PA(t)]−1)

+(E[PB(t)](1 − c)(E[PB(t)]−1))/2
+(E[PC(t)](1 − c)(E[PC(t)]−1))/2

This ODE is identical to the one generated by the Bio-PEPA toolset which
follows the approach described by Ciocchetta and Hillston in [7]. The derivation
is provided in [18]. In a similar way the ODEs for the other stochastic variables
can be obtained. This explains why the results obtained in this paper for fluid
flow and for stochastic simulation also in this non-linear setting correspond so
closely.

7 Conclusions and Further Work

The modelling and analysis of crowd dynamics appears to be an active and open
research topic. We have explored the application of the stochastic process algebra

Modelling Non-linear Crowd Dynamics in Bio-PEPA 109

Bio-PEPA to model a simple but interesting non-linear case study concerning
the emergent self-organisation of parties in the squares of a city. Bio-PEPA is
based on a modular, high-level language providing notions of locality and con-
text dependency. These features make Bio-PEPA also a promising candidate
for the modelling of a class of possibly non-linear systems that goes beyond
the bio-molecular applications it was originally designed for [3,8,1]. In this case
study fluid flow approximation provides a computationally efficient analysis of
the number of people, on average, that are present in the various squares when
time evolves. The results are shown to correspond well to those found in the liter-
ature where they were obtained by means of more elaborate and time-consuming
discrete event simulation. Also, an analytical approach to explain this good cor-
respondence for a model the rates of which cannot be expressed as functions of
the average population density, has been provided. Although the simple topol-
ogy addressed in this paper, chosen for reasons of validation of the approach,
can be analysed analytically, more complex topologies and more realistic models,
addressing issues such as the influence of the presence of friends on people’s be-
haviour and the attractiveness of squares, may easily turn out to be too complex
to be studied analytically. Fluid flow approximation with Bio-PEPA has proved
to be a suitable choice in this case. Preliminary results about more complex
models can be found in [18].

Future work is developing along a few main directions. We are interested in
developing further linguistic abstractions to describe more precisely the dynam-
ics of systems with a large number of mobile agents displaced in a, possibly
open, physical environment. We are furthermore interested in conducting more
fundamental research on the fluid flow approach and its relationship to emergent
non-linear behaviour, in particular its relation to mean field analysis [2].

Acknowledgments. The authors would like to thank Stephen Gilmore, Maria
Luisa Guerriero, Allan Clark and Adam Duguid (University of Edinburgh) for
their support with the Bio-PEPA plug-in, Richard Hayden and Jeremy Bradley
(Imperial College London) for discussions on approximations and Michael Har-
rison and Nigel Thomas for the case study. This research has been partially
funded by the CNR project RSTL-XXL and by the EU-IP project ASCENS (nr.
257414). Jane Hillston has been supported by the EPSRC ARF EP/c543696/01.

References

1. Akman, O.E., Ciocchetta, F., Degasperi, A., Guerriero, M.L.: Modelling biological
clocks with bio-PEPA: Stochasticity and robustness for the neurospora crassa cir-
cadian network. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688,
pp. 52–67. Springer, Heidelberg (2009)

2. Benäım, M., Le Boudec, J.: A class of mean field interaction models for computer
and communication systems. Performance Evaluation 65(11-12), 823–838 (2008)

3. Bracciali, A., Hillston, J., Latella, D., Massink, M.: Reconciling population and
agent models for crowd dynamics. In: Proceedings of 3rd International Workshop
on Logics, Agents, and Mobility, LAM 2010 (to appear, 2010)

110 M. Massink et al.

4. Calder, M., Gilmore, S., Hillston, J.: Automatically deriving odes from process
algebra models of signalling pathways. In: Plotkin, G. (ed.) Proceedings of Com-
putational Methods in Systems Biology (CMSB 2005), pp. 204–215 (2005)

5. Ciocchetta, F., Duguid, A., Gilmore, S., Guerriero, M.L., Hillston, J.: The Bio-
PEPA Tool Suite. In: Proc. of the 6th Int. Conf. on Quantitative Evaluation of
SysTems (QEST 2009), pp. 309–310 (2009)

6. Ciocchetta, F., Guerriero, M.L.: Modelling biological compartments in Bio-PEPA.
ENTCS 227, 77–95 (2009)

7. Ciocchetta, F., Hillston, J.: Bio-PEPA: An extension of the process algebra pepa
for biochemical networks. ENTCS 194(3), 103–117 (2008)

8. Ciocchetta, F., Hillston, J.: Bio-PEPA: A framework for the modelling and analysis
of biological systems. TCS 410(33-34), 3065–3084 (2009)

9. Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. Journal
of Computational and Applied Mathematics 6(1), 19–26 (1980)

10. Gillepie, D.T.: Exact stochastic simulation of coupled chemical reactions. The Jour-
nal of Physical Chemistry 81(25), 2340–2361 (1977)

11. Hayden, R.A., Bradley, J.T.: A fluid analysis framework for a Markovian process
algebra. TCS 411(22-24), 2260–2297 (2010)

12. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of QEST
2005, pp. 33–43. IEEE Computer Society Press, Los Alamitos (2005)

13. Jensen, J.L.W.V.: Sur les fonctions convexes et les inégalités entre les valeurs
moyennes. Acta Mathematica 30(1), 175–193 (1906)

14. Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure Markov
processes. Journal of Applied Probability 7(1), 49–58 (1970)

15. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic model checking
for performance and reliability analysis. ACM SIGMETRICS Performance Evalu-
ation Review (2009)

16. Love-parade: Stampede at german love parade festival kills 19,
http://www.bbc.co.uk/news/world-europe-10751899, (accessed on August 10,
2010)

17. Massink, M., Latella, D., Bracciali, A., Harrison, M.: A scalable fluid flow process
algebraic approach to emergency egress analysis. In: Proceedings of the 8th Inter-
national Conference on Software Engineering and Formal Methods (SEFM 2010),
pp. 169–180. IEEE, Los Alamitos (2010)

18. Massink, M., Latella, D., Bracciali, A., Hillston, J.: A combined process algebraic,
agent and fluid flow approach to emergent crowd behaviour. Tech. Rep. 2010-TR-
025, CNR-ISTI (2010)

19. Massink, M., Latella, D., Bracciali, A., Hillston, J.: Modelling crowd dynamics in
Bio-PEPA – extended abstract. In: Participant Proceedings of the 9th Workshop
on Process Algebra and Stochastically Timed Activities, PASTA 2010 (2010)

20. Rowe, J.E., Gomez, R.: El Botellón: Modeling the movement of crowds in a city.
Complex Systems 14, 363–370 (2003)

21. Santos, G., Aguirre, B.E.: A critical review of emergency evacuation simulation
models. In: Proceedings of the NIST Workshop on Building Occupant Movement
during Fire Emergencies, June 10-11, 2004, pp. 27–52. NIST/BFRL Publications
Online, Gaithersburg, MD, USA (2005)

22. Still, G.K.: Crowd dynamics (2000), Ph. D. Thesis, University of Warwick, U.K..

http://www.bbc.co.uk/news/world-europe-10751899

Smart Reduction

Pepijn Crouzen1 and Frédéric Lang2

1 Computer Science, Saarland University, Saarbrücken, Germany
crouzen@cs.uni-saarland.de

2
Vasy project team, Inria Grenoble Rhône-Alpes/Lig, Montbonnot, France

Frederic.Lang@inria.fr

Abstract. Compositional aggregation is a technique to palliate state
explosion — the phenomenon that the behaviour graph of a parallel com-
position of asynchronous processes grows exponentially with the number
of processes — which is the main drawback of explicit-state verification.
It consists in building the behaviour graph by incrementally composing
and minimizing parts of the composition modulo an equivalence rela-
tion. Heuristics have been proposed for finding an appropriate compo-
sition order that keeps the size of the largest intermediate graph small
enough. Yet the underlying composition models are not general enough
for systems involving elaborate forms of synchronization, such as mul-
tiway and/or nondeterministic synchronizations. We overcome this by
proposing a generalization of compositional aggregation that applies to
an expressive composition model based on synchronization vectors, sub-
suming many composition operators. Unlike some algebraic composition
models, this model enables any composition order to be used. We also
present an implementation of this approach within the Cadp verification
toolbox in the form of a new operator called smart reduction, as well as
experimental results assessing the efficiency of smart reduction.

1 Introduction

Explicit-state verification is a way of ascertaining whether a system fulfills
its specification, by systematically exploring its behaviour graph. The main
limitation of explicit-state verification is the exponential growth of the be-
haviour graph, known as state explosion. For systems consisting of asynchronous
processes executing in parallel, compositional aggregation [11] (also known
as incremental reachability analysis [29], compositional state space minimiza-
tion [32,20,25], and compositional reachability analysis [9,19]) is a way to palliate
state explosion by incrementally aggregating (i.e., composing and then minimiz-
ing modulo an equivalence relation) parts of the system. Compositional aggrega-
tion was applied successfully to systems from various domains [8,22,15,31,5,4,6].

Due to their modular nature, software systems are appropriate for composi-
tional modeling and verification. Examples of studies include software reuse [12],
unit testing [30], web service performance [13], middleware specification [28],
software deployment protocols [31], multi-processor multi-threaded architectu-
res [10], and software decomposition [7], in which processes usually represent

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 111–126, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

112 P. Crouzen and F. Lang

software components, such as servers, packages, threads, objects or functions.
These applications often involve the (possibly automatic) translation of (archi-
tectural) software description languages such as Uml, statecharts, or Bpel, each
of which provides its own composition model, to a formal model.

The efficiency of compositional aggregation depends on the order in which
the concurrent processes are aggregated. In practice, the order is often specified
by the designer of a concurrent system, either explicitly, or implicitly through
the order and hierarchy of the concurrent processes. Since it is not possible
to know precisely whether an order will be more or less efficient than another
without trying them and comparing the results, the user generally has to rely
on intuition. This task is difficult for large and/or not hierarchical compositions,
and impractical for compositional models that are automatically generated from
a higher-level description.

Heuristics to automatically determine efficient aggregation orders, based on
the process interactions, have been proposed in [29] for concurrent finite state
machines communicating via named channels. More recently, such heuristics have
been refined and implemented in a prototype tool for processes synchronizing on
their common alphabets [11]. In both works, the processes to be composed are
selected using two metrics: an estimate of the proportion of internal transitions
in the composition (the higher, the more the composition graph being expected
to be reducible), and an estimate of the proportion of transitions that interleave.
A limitation of the above works lies in the limited forms of synchronizations en-
abled by their composition models, which are generally insufficient to capture
the semantics of the composition models of state-of-the-art software description
languages: The composition model used in [29] does not enable multiway syn-
chronization (more than two processes synchronizing all together), and neither of
the composition models used in [29,11] enables nondeterministic synchronization
(a process synchronizing with one or another on a given label).

This paper presents a refinement of the compositional aggregation techniques
of [29,11], called smart reduction. Smart reduction uses an expressive composi-
tion model named networks of Ltss (Labeled Transition Systems) [26], inspired
by synchronization vectors in the style of Mec [1] and Fc2 [3], which has two
major advantages. The first advantage is that it makes the compositional aggre-
gation technique more general: networks of Ltss subsume not only the models
used in [29,11], but also many other concurrent operators. They include the
parallel composition, label hiding, label renaming and label cutting (sometimes
also called label restriction) found in process algebras (e.g., Ccs [27], Csp [23],
Lotos [24], μCrl [21], etc.). They also include more general parallel compo-
sition such as that of E-Lotos/Lotos NT [18], which enables n among m
synchronization (any n processes synchronizing together among a set of m) and
synchronization by interfaces (all processes sharing a label in their interface syn-
chronizing together on that label). The latter operators have been shown to be
expressive enough to reflect the graphical structure of process networks [18],
such as those found in graphical software description languages. In particular,
synchronization by interfaces was adopted in the Fiacre intermediate model for

Smart Reduction 113

avionic systems [2]. The second advantage is that networks enable any aggrega-
tion order, which is not in general the case in process algebraic models, where
some composition orders, possibly including the optimal order, may not be rep-
resentable using the available algebraic operators. This paper also presents the
implementation of smart reduction in the Cadp toolbox [17], and experimental
results that assess the effectiveness of smart reduction on several case studies.

Paper overview. Networks of Ltss are defined in Section 2. Compositional aggre-
gation of networks is described and illustrated in Section 3. Metrics for selecting
a good aggregation order are presented in Section 4. The implementation within
Cadp is described in Section 5. Experimentation on existing case studies is re-
ported in Section 6. Finally, concluding remarks are given in Section 7.

2 Networks of LTSs

The network of LTSs model (or networks for short) was introduced in [26] as an
intermediate model to represent compositions of Ltss using various operators.
We first give a few background definitions before defining the model formally.

Background. Given two integers n and m, we write n..m for the set of integers
ranging from n to m. If n > m then n..m denotes the empty set. A vector v
of size n is a set of n elements indexed by 1..n. For i ∈ 1..n, we write v[i] for
the element of v at index i. We write () for the vector of size 0, (e1) for the
vector v of size 1 such that v[1] = e1, and more generally (e1, . . . , en) for the
vector v of size n such that (∀i ∈ 1..n) v[i] = ei. Given v1, a vector of size n1,
and v2, a vector of size n2, v1 ⊕ v2 denotes the vector of size n1 + n2 obtained
by concatenation of v1 and v2, defined by (∀i ∈ 1..n1) (v1 ⊕ v2)[i] = v1[i] and
(∀i ∈ n1 + 1..n1 + n2) (v1 ⊕ v2)[i] = v2[i − n1]. The expression e :: v denotes
adjunction of e to the head of v and is defined as (e) ⊕ v. Given an ordered
subset of 1..n I, such that I = {i1, . . . , im} with i1 < . . . < im (0 ≤ m ≤ n),
v|I denotes the projection of v on to the set of indexes I, defined as the vector
of size m such that (∀j ∈ 1..m) v|I [j] = v[ij]. We write as I the set 1..n \ I.
For any set S, we write |S| for the number of elements of S. An Lts (Labeled
Transition System) is a tuple (Σ, A,−→, s0), where Σ is a set of states, A is a
set of labels, −→ ⊆ Σ × A × Σ is the (labeled) transition relation, and s0 ∈ Σ
is the initial state.

Networks of LTSs. A network of LTSs N of size n is a pair (S, V) where:

– S is a vector of Ltss (called individual LTSs) of size n. We write respectively
−→i, Σi, and s0

i for the transition relation, the set of states, and the initial
state of S[i]. For a label b, we also write b−→i for the largest subset of −→i

containing only transitions labeled by b.
– V is a finite set of synchronization rules. Each synchronization rule has the

form (t, a), where a is a label and t is a vector of size n, called a synchroniza-
tion vector, whose elements are labels and occurrences of a special symbol •
that does not occur as a label in any individual Lts.

114 P. Crouzen and F. Lang

To a network N can be associated a (global) Lts lts(N) which is the paral-
lel composition of its individual Ltss. Each rule (t, a) ∈ V defines transitions
labeled by a, obtained either by synchronization (if several indices i are such
that t[i] �= •) or by interleaving (otherwise) of individual Lts transitions. For-
mally, lts(N) is defined as the Lts (Σ, A,−→, s0), where Σ = Σ1 × . . . × Σn,
A = {a | (t, a) ∈ V }, s0 = (s0

1, . . . , s
0
n), and −→ is the smallest transition relation

satisfying:

(t, a) ∈ V ∧(∀i ∈ 1..n) (t[i] = •∧s′[i] = s[i])∨(t[i] �= •∧s[i]
t[i]−→i s′[i]) ⇒ s a−→ s′

If t[i] �= •, we say that S[i] is active for the rule (t, a), otherwise we say that
S[i] is inactive. We write A(t) for the set of individual Lts indexes active for a
rule, defined as {i | i ∈ 1..n ∧ t[i] �= •}. We say that a rule (t, a) or a synchro-
nization vector t is controlled by Lts S[i] if i ∈ A(t). In other words, a rule or
a synchronization vector is controlled by all the Ltss that it synchronizes.

Example 1. Let a, b, c, and d be labels, and P1, P2, and P3 be the processes
defined as follows, where the initial states are those numbered 0:

0

1 2

3

a

c

b

c

4

0

5

1 2

3

c

b

b

a

a

c

c

c

4

0

5

1 2

3

b

b

a

a

d d

P1 P2 P3

Consider the network N = ((P1, P2, P3), V123), where V123 is the set of rules
{((a, a, •), a), ((a, •, a), a), ((b, b, b), b), ((c, c, •), τ), ((•, •, d), d)}. The first two
synchronization rules express that a transition labeled by a in P1 synchronizes
with a transition labeled by a nondeterministically either in P2 or in P3. The
third synchronization rule expresses a multiway synchronization on b between
P1, P2, and P3. The fourth synchronization rule expresses that synchronization
on c between P1 and P2 yields a transition labeled by τ , thus is internal. The
fifth synchronization rule expresses that transitions labeled by d in P3 execute
in full interleaving. The global Lts of this network is given in Figure 1.

A large set of operators can be translated to networks: An Lts P translates to
a network of the form ((P), V) where V contains a rule of the form ((a), a) for
each label a of P . Hiding of labels in an expression E0 translates to the network
of E0 in which each rule (t, a) with a a label to be hidden is replaced by (t, τ).

Smart Reduction 115

0

1 2

3 4 5

6 7

8 9 10

11 12

13

14

a a

d

b d

d b

d

a a

τ τ

τ

τ

τ τ

τ

4

0

5

1

6

2

3

a

a

b

a

d

b d

Fig. 1. Global Lts of the network of Example 1, unreduced (left) and minimized mod-
ulo branching bisimulation (right)

Renaming of labels in an expression E0 translates to the network of E0 in which
each rule (t, a) with a a label to be renamed into a′ is replaced by (t, a′). Cutting
of labels in an expression E0 translates to the network of E0 in which each rule
(t, a) with a a label to be cut is merely suppressed. Parallel composition of a set of
expressions E1, . . . , En translates to the network obtained by concatenating the
vectors of Ltss of E1, . . . , En and joining their synchronization rules as follows:
for each subset {Ei1 , . . . , Eim} of {E1, . . . , En} that may synchronize all together
on label a, the resulting set of synchronization rules contains as many different
rules of the form (t1 ⊕ · · ·⊕ tn, a) as possible, such that for each i ∈ {i1, . . . , im}
the network of Ei has a rule of the form (ti, a) and for each i ∈ 1..n\{i1, . . . , im},
ti is a vector of • whose size is the size of the network of Ei. This translation
also holds for m = 1, corresponding to labels that do not synchronize.

Example 2. Let Pi (i ∈ 1..3) be Ltss with labels a and b. Each Pi translates into
((Pi), {((a), a), ((b), b)}). Hiding a in P1 translates into ((P1), {((a), τ), ((b), b)}),
renaming a to c in P1 translates into ((P1), {((a), c), ((b), b)}), cutting a in P1
translates into ((P1), {((b), b)}), and synchronizing P1 and P2 on a determinis-
tically translates into the network with vector of Ltss (P1, P2) and set of rules
{((a, a), a), ((b, •), b), ((•, b), b)}. The set of rules for synchronizing P1 and P2
on a nondeterministically is {((a, a), a), ((a, •), a), ((•, a), a), ((b, •), b), ((•, b), b)}.
Lastly, the set of rules for 2 among 3 synchronization on a between P1, P2, and P3
is {((a, a, •), a), ((a, •, a), a), ((•, a, a), a), ((b, •, •), b), ((•, b, •), b), ((•, •, b), b)}.

Rules of the form (t, a) may define synchronizations between distinct la-
bels, which is useful, notably to represent combinations of synchronizations
and renamings. For instance, the (pseudo-language) expression “(rename a →
c in P1) || (rename b → c in P2)” (where || represents synchronization on all
visible labels) produces the synchronization rule ((a, b), c).

116 P. Crouzen and F. Lang

Many equivalence relations on Ltss exist, each preserving particular classes of
properties. For instance, two Ltss that are trace equivalent have the same set
of traces. Equivalences can be used to ease the cost of explicit-state verification.
For instance, the traces of an Lts P can be obtained by generating a smaller Lts

P ′, which is trace equivalent to P . We are then interested in the smallest Lts

equivalent to P . Replacing an Lts by its smallest representative with respect to
an equivalence relation is called minimizing the Lts modulo this relation.

We are especially interested in equivalence relations that interact well with
algebraic operations like parallel composition, renaming, hiding, and cutting.
We say an equivalence relation R is a congruence with respect to networks if
the equivalence of two Ltss P and P ′ implies the equivalence of any network N
to a network N ′ obtained by replacing P by P ′. Strong bisimulation and trace
equivalence are congruences for networks. Branching bisimulation, observation
equivalence, safety equivalence, and weak trace equivalence, are also congru-
ences for networks provided that the synchronization rules satisfy the following
standard constraints regarding the internal transitions of individual Ltss [26]:

– No synchronization: (t, a) ∈ V ∧ t[i] = τ =⇒ A(t) = {i}
– No renaming: (t, a) ∈ V ∧ t[i] = τ =⇒ a = τ

– No cut: τ−→i �= ∅ =⇒ (∃(t, τ) ∈ V) t[i] = τ

We assume that all networks in this paper satisfy these constraints.

3 Compositional Aggregation of Networks

Generating the global Lts of a network all at once may face state explosion. To
overcome this, the Lts can be generated incrementally, by alternating composi-
tions of well-chosen subsets of the individual Ltss and minimizations modulo an
equivalence relation. We call aggregation a composition followed by a minimiza-
tion of the result, and compositional aggregation this incremental technique.

Formally, we consider a relation R that is a congruence for networks and
write minR(P) for the minimization modulo R of the Lts P . A compositional
aggregation strategy to generate modulo R the Lts corresponding to a network
of Ltss N = (S, V) of size n is defined by the following iterative algorithm:

1. Replace in N each S[i] (i ∈ 1..n) by minR(S[i]).
2. Select a set I containing at least two of the individual Ltss of N . A strategy

for selection will be addressed in the next section.
3. Replace N by a new network agg(N, I) — defined below — corresponding

to N in which the Ltss in I have been replaced by their aggregation.
4. If N still contains more than two Ltss, then continue in step 2. Otherwise

return minR(lts(N)).

By abuse of language, since I denotes the set of Ltss to be aggregated, we call I
an aggregation. We represent I as a subset of 1..n, corresponding to the indexes
of the Ltss to be aggregated. We assume a function α(t, a) that associates to

Smart Reduction 117

agg(N, I) = (minR(lts(proj (N, I))) ::S|I , Vagg)
where proj (N, I) = (S|I , Vproj)

Vagg = { (a ::t|I , a) | (t, a) ∈ V ∧ A(t) ⊆ I } ∪

{ (α(t, a) ::t|I , a) | (t, a) ∈ V ∧ ∅ ⊂ (I ∩ A(t)) ⊂ A(t) } ∪

{ (• ::t|I , a) | (t, a) ∈ V ∧ (I ∩ A(t)) = ∅ }

and Vproj = { (t|I , a) | (t, a) ∈ V ∧ A(t) ⊆ I } ∪
{ (t|I , α(t, a)) | (t, a) ∈ V ∧ ∅ ⊂ (I ∩ A(t)) ⊂ A(t) }

Fig. 2. Definition of agg(N, I)

each (t, a) ∈ V a unique label distinct from all others and define agg(N, I)
in Figure 2, where minR(lts(proj (N, I))) corresponds to the aggregation of the
Ltss inside I and S|I corresponds to the Ltss outside I, which are kept non-
aggregated. The synchronization rules Vproj of the auxiliary network proj (N, I)
are obtained by projection of V on to I, whereas the synchronization rules Vagg

are obtained by synchronization of the labels in Vproj with the projection of V
on to I. The rules of Vproj and Vagg are organized in three subsets:

– The first subset — rules of the form (t|I , a) in Vproj and (a ::t|I , a) in Vagg —
represents the synchronization rules that are completely controlled by Ltss
inside I. In this case, t|I is a vector of •, which expresses that transitions of
minR(lts(proj (N, I))) obtained by synchronization of Ltss inside I do not
need to synchronize with Ltss outside I.

– The second subset — rules of the form (t|I , α(t, a)) in Vproj and (α(t, a) ::
t|I , a) in Vagg — represents the synchronization rules that are controlled
by Ltss both inside I and outside I. This expresses that transitions of
minR(lts(proj (N, I))) obtained by synchronization of Ltss inside I still need
to synchronize with Ltss outside I. The special label α(t, a) is an interme-
diate label used for this synchronization. Note that in general, a cannot be
used instead of α(t, a) because (1) a can be the internal label τ (even though
t synchronizes only visible labels), which cannot be synchronized, and (2)
in general there can be several rules with the same label a (in particular
when nondeterministic synchronization is involved) and using a could create
unexpected synchronizations.

– The third subset — rules of the form (• ::t|I , a) in Vagg — represents the syn-
chronization rules that are completely controlled by Ltss outside I. These
rules do not impose synchronization constraints on Ltss inside I, thus ex-
plaining why Vproj has no rule in the third subset.

If P1, . . . , Pm are individual Ltss of N and if I is the set of their indexes, then
we may write comp(P1, . . . , Pm) for lts(proj (N, I)).

Since R is a congruence, lts(agg(N, I)) is equivalent modulo R to lts(N).
Therefore, lts(N) remains invariantly R-equivalent to the input until the end of
the algorithm, thus guaranteeing the correctness of compositional aggregation.
Moreover, the size of agg(N, I) is the size of N plus 1 minus the size of I (which

118 P. Crouzen and F. Lang

is at least 2). Since N is substituted by agg(N, I) at each step, this guarantees
that the size of N decreases and therefore that the algorithm terminates.

Example 3. We write minb(P) for minimization of P modulo branching bisimu-
lation. The global Lts of the network of Example 1, whose Ltss P1, P2, and P3
are already minimal, can be generated modulo branching bisimulation by first
composing P1 and P2, then P3 as follows. First, build N12 = proj (N, {1, 2}) =
((P1, P2), V12) for the aggregation of P1 and P2, where V12 is the set of rules
{((a, a), a), ((a, •),x1), ((b, b),x2), ((c, c), τ)}, x1 is the label α((a, •, a), a), and
x2 is the label α((b, b, b), b). Compute the intermediate Lts P12 = minb(lts(N12))
(see below). Second, build N(12)3 = agg(N, {1, 2}) = ((P12, P3), V(12)3), where
V(12)3 is the set {((a, •), a), ((x1, a), a), ((x2, b), b), ((τ, •), τ), ((•, d), d)}. Return
minb(lts(N(12)3)) (see lts(N(12)3) below and minb(lts(N(12)3)) in Figure 1, right),
which is branching equivalent to lts(N123) (see Figure 1, left). Note that both
Ltss lts(N12) and lts(N(12)3) are smaller than lts(N123).

0

1 2

3 4

5 6

7 8

9 10

11

a x1

x2 x2

x1 a x1

τ τ

τ τ

τ

4

0

51

2

3

a

a

x1

x1

x2x2

x1

4

0

5

1

6

2

7

3
b

a

d

a

a

d

a

b

lts(N12) minb(lts(N12)) lts(N(12)3)

Other aggregation orders are possible, yielding different intermediate graphs.
Figure 3 gives the sizes of those intermediate graphs corresponding to the dif-
ferent aggregation orders. The largest intermediate graph size of each order is
indicated in bold type. This table shows that the aggregation order described
above (order 1) is optimal in terms of largest intermediate graph (12 transitions).

Note that N has the same meaning as the Lotos composition of processes
“hide c in (P1 |[a, b, c]| (P2 |[b]| P3))”. Yet using Lotos operators instead of net-
works, it would not be possible to aggregate P1, P2, and P3 following the optimal
order (P1, P2) then P3, because there do not exist Lotos operators (or composi-
tions of operators) op1 and op2, such that the above term can be written in the
form “op2(op1(P1, P2), P3)”. For instance, “hide c in ((P1 |[a, b, c]| P2) |[b]| P3)”
does not work, because we lose synchronization on a between P1 and P3. More
generally, the problem happens when the model contains nondeterministic syn-
chronizations, which can make parallel composition non-associative. Similar ex-
amples can be built in other process algebras such as, e.g., Csp (by combining
renaming and synchronization on common alphabet).

Smart Reduction 119

Order 1 : (P1, P2) then P3 states transitions
comp(P1, P2) 12 12

minb(comp(P1, P2)) 6 7
comp(minb(comp(P1, P2)), P3) 8 8

minb(comp(minb(comp(P1, P2)), P3)) 7 7
Order 2 : (P1, P3) then P2 states transitions

comp(P1, P3) 19 23
minb(comp(P1, P3)) 17 22

comp(minb(comp(P1, P3)), P2) 15 17
minb(comp(minb(comp(P1, P3)), P2)) 7 7

Order 3 : (P2, P3) then P1 states transitions
comp(P2, P3) 18 34

minb(comp(P2, P3)) 18 34
comp(minb(comp(P2, P3)), P1) 15 17

minb(comp(minb(comp(P2, P3)), P1)) 7 7
Order 4 : (P1, P2, P3) states transitions

comp(P1, P2, P3) 15 17
minb(comp(P1, P2, P3)) 7 7

Fig. 3. Sizes of intermediate graphs for all aggregation orders

4 Smart Reduction

The most difficult issue in compositional aggregation concerns step 2 of the algo-
rithm, namely to select, if possible automatically, an aggregation I that avoids
state explosion. In this section, we present smart reduction, which corresponds to
compositional aggregation using a heuristic based on metrics evaluated against
possible aggregations.

Our metrics use an estimate of the number of global transitions in I generated
by synchronization vector t, written ET (I, t) and defined below:

ET (I, t) def=

⎧⎨
⎩

0 if I ∩ A(t) = ∅∏
|Σi| ×

∏
| t[i]−→i | otherwise

i∈I\A(t) i∈I∩A(t)

Informally, ET (I, t) counts, for vector t, the number of transitions going out
of every product state of I, including unreachable states. This count equals 0
if t is not controlled by Ltss inside I (first line). Otherwise, proj (N, I) has a
rule of the form (t|I , b). This rule generates a transition in a state of proj (N, I)
without condition on the states of the individual Ltss S[i] such that i ∈ I \A(t)
— thus justifying the first product in the definition of ET (I, t) — and provided
the states of the individual Ltss S[i] such that i ∈ I ∩ A(t) have a transition
labeled t[i] — thus justifying the second product. In general, the exact number
of global transitions in I generated by synchronization vector t is below this
count since some states may be unreachable.

120 P. Crouzen and F. Lang

We now define our metrics on networks. The hiding metric is defined by
HM (I) def= HR(I)/|I|, where HR(I) (the hiding rate) is defined in Figure 4
(left). Informally, HR(I) represents an estimate of the proportion of transitions
in proj (N, I) that are internal. Those transitions are necessarily created by rules
completely controlled by Ltss inside I. The addition of 1 in its divisor avoids
division by 0 in pathological cases. The divisor |I| of HM (I) aims at favouring
smaller aggregations, which are likely to yield smaller intermediate Ltss.

Using HM (I) is justified in the context of weak equivalence relations (e.g.,
branching bisimulation), because internal transitions are often eliminated by
the corresponding minimizations. Although to a lesser extent, it is also justified
in the context of strong bisimulation, because hiding enables abstracting away
from labels that otherwise would differentiate the behaviour of equivalent states.
However, in both cases, HM (I) is not sufficient to avoid intermediate explosion
due to the aggregation of loosely synchronized Ltss. To palliate this, the hiding
metric will be combined with the interleaving metric IM (I) def= (1 − IR(I))/|I|,
where the interleaving rate IR(I) is defined in Figure 4 (right). In this definition,
t@i denotes the synchronization vector of size n defined by (t@i)[i] = t[i] and
(∀j ∈ 1..n \ {i}) (t@i)[j] = •. The value IR(I) is therefore the quotient between
an estimate of the number of global transitions of I and the number of global
transitions that I would have if all individual Ltss were fully interleaving. For
an aggregation I of fully interleaving individual Ltss, we thus have IR(I) very
close to 1. It is a refinement of the interleaving count defined in [11], which
uses the proportion of fully interleaving (i.e., non-synchronized) individual Lts

transitions out of the total number of individual Lts transitions. We believe
that IR(I) is more accurate, because it also measures the partial interleaving
of synchronized transitions with the remainder of the aggregation. Taking into
account both the hiding rate and the interleaving rate, we use here the combined
metric CM (I) def= HM (I) + IM (I).

HR(I) def=

∑
ET (I, t)

(t,τ)∈V ∧A(t)⊆I

1 +
∑

ET (I, t)
(t,a)∈V

IR(I) def=

∑
ET (I, t)

(t,a)∈V

1 +
∑ ∑

ET (I, t@i)
(t,a)∈V i∈I∩A(t)

Fig. 4. Hiding rate and interleaving rate of an aggregation I

Smart reduction selects the aggregation to which the metrics gives the highest
value (high proportion of internal transitions and low interleaving). To avoid the
combinatorial explosion of the number of aggregations, we proceed as in [11] and
only consider: (1) aggregations whose size is bounded by a constant (definable by
the user), and (2) aggregations that are connected. An aggregation is connected if
for each pair of distinct Ltss Pi, Pj in the aggregation, Pi and Pj are connected,
which is defined recursively as follows: either there is a synchronization rule
(t, a) such that {i, j} ⊆ A(t) (i.e., Pi and Pj are synchronized) or, recursively,
the aggregation contains a third (distinct) Lts Pk connected to both Pi and Pj .

Smart Reduction 121

Example 4. The metrics evaluate as follows on the network of Examples 1 and 3:

I {1, 2} {1, 3} {2, 3} {1, 2, 3}
HM (I) 0.211 0 0 0.129
IM (I) 0.357 0.227 0.124 0.249
CM (I) 0.568 0.227 0.124 0.378

As expected, the combined metric gives the highest value to {1, 2}, therefore
designating it as the best aggregation in the first step. Note that, more generally
in this example, a comparison between the graph sizes in Figure 3 and the values
in the above table shows that one aggregation is more efficient than the others
whenever the combined metrics gives it a higher value.

5 Implementation

Smart reduction has been implemented in Cadp (Construction and Analysis
of Distributed Processes)1 [17], a widely disseminated toolbox for the design of
communication protocols and distributed systems. Cadp offers a large set of fea-
tures, ranging from step-by-step simulation to massively parallel model-checking.
It is the only toolbox to offer compilers for several input formalisms (Lotos,
Lotos NT, networks of automata, etc.) into Ltss, equivalence checking tools
(minimization and comparisons modulo bisimulation relations), model-checkers
for various temporal logics and μ-calculus, several verification techniques com-
bined together (enumerative verification, on-the-fly verification, compositional
aggregation, partial order reduction, distributed model checking, etc.), and a
number of other tools providing advanced functionalities such as visual check-
ing, performance evaluation, etc. The tools Svl and Exp.Open 2.0 have been
extended to support smart reduction.

The tool SVL. Svl (Script Verification Language) [16] is both a scripting lan-
guage that enables advanced verification scenarios to be described at a high-level
of abstraction, and an associated compiler that enables automatic execution of
the Svl scripts. Smart reduction is available as a new Svl operator, which can
be parameterized by an equivalence relation. For example, the following script
describes the smart branching reduction of the Lotos behaviour corresponding
to the network of Example 1:

% DEFAULT LOTOS FILE="processes.lotos"
% DEFAULT SMART LIMIT=3
"composition.bcg" = smart branching reduction of

hide c in (P1 |[a, b, c]| (P2 |[b]| P3));

The file “processes.lotos” is where the three processes P1, P2 and P3 are
specified, and “composition.bcg” is the name of the file where the Lts re-
sulting from their aggregation is to be stored, represented in a compact graph
1 http://vasy.inria.fr/cadp

122 P. Crouzen and F. Lang

format called Bcg (Binary Coded Graph). The (optional) line of the form “%
DEFAULT SMART LIMIT=3” defines as 3 the maximal number of Ltss aggregated
at each step. Otherwise, a default value of 4 is used in our implementation. This
script aggregates the three processes in the order determined automatically by
the tool, which in this case is the optimal order, P1 and P2, then P3.

The tool EXP.OPEN 2.0. Exp.Open 2.0 [26] is a conservative extension of
the former version 1.0, developed in 1995 by L. Mounier (Univ. Joseph Fourier,
Grenoble, France). It takes as input an expression consisting of Ltss composed
together using the parallel composition, label hiding, label renaming, and label
cutting operators of the process algebras Lotos [24], Ccs [27], Csp [23], and
μCrl [21], as well as the generalized parallel composition operator of E-Lotos

and Lotos NT [18], and synchronization vectors in the style of Mec [1] and
Fc2 [3]. This expression is compiled into a network. In standard usage, the
network is compiled into an implicit representation in C of the global Lts (ini-
tial state, transition function, etc.), which can be linked to various applica-
tion programs available in Cadp for simulation or verification purposes, follow-
ing the Open/Cæsar architecture [14]. In the framework of smart reduction,
Exp.Open is invoked by Svl for computing the metrics, generating the networks
proj (N, I) and agg(N, I), and generating the corresponding global Ltss.

6 Experimental Results

We have applied smart branching reduction to a set of case-studies and compared
it with two other compositional aggregation strategies already implemented in
Svl, namely root leaf reduction, which consists in aggregating all individual
Ltss at once, and node reduction, which consists in aggregating the individual
Ltss one after the other in a syntactical order given by the term describing
the composition. The results are given in Figure 5, which provides for each
strategy the largest number of transitions in the generated intermediate Ltss.
The strategy named “Smart (HM)” (resp. “Smart (IM)”) corresponds to the
hiding (resp. interleaving) metric, whereas “Smart (CM)” corresponds to the
combined metric. The smallest number of each line is written in bold type.

These experiments show that smart reduction is very often better than, and
generally comparably efficient to, root leaf reduction and node reduction. Notable
exceptions are the CFS and DFT IL experiments, for which root leaf reduction
is noticeably more efficient. One reason is that Exp.Open uses partial order
reductions and composing all individual Ltss at once may enable partial order
reductions that cannot be applied to partial aggregations.

Although both hiding and interleaving metrics used separately may, in a few
cases, yield slighty better results than the combined metric, we did not see cases
where the combined metric is far worse than all other strategies, like the hiding
metric is for TN and the interleaving metric for CFS. In that sense, combining
both hiding and interleaving metrics seems to make the heuristic more robust.

Smart Reduction 123

Experiment Node Root leaf Smart (HM) Smart (IM) Smart (CM)
ABP 1 380 328 210 104 104

ABP 2 2, 540 2, 200 1, 354 504 504

Cache 1, 925 1, 925 1,848 1, 925 1, 925
CFS 2, 193, 750 486,990 1, 366, 968 96, 040, 412 5, 113, 256
DES 22, 544 3,508 3,508 14, 205 14, 205
DFT CAS 95, 392 99, 133 336 346 346
DFT HCPS 4, 730 79, 509 425 435 435
DFT IL 29, 808 316 2, 658 1, 456 2, 658
DFT MDCS 635, 235 117, 772 536 5, 305 346

DFT NDPS 17, 011 1, 857 393 449 346

DLE 1 15, 234 7, 660 7,709 10, 424 9, 883
DLE 2 8, 169 2, 809 2, 150 1, 852 2, 150
DLE 3 253, 272 217, 800 181, 320 231, 616 175, 072

DLE 4 33, 920 29, 584 25, 008 8, 896 26, 864
DLE 5 1, 796, 616 1, 796, 616 1,403, 936 1, 716, 136 1, 433, 640
DLE 6 35, 328 35, 328 5,328 5, 328 5,328

DLE 7 612, 637 486, 491 369, 810 583, 289 577, 775
HAVi async 145, 321 22, 703 21, 645 21, 862 21, 809
HAVi sync 19, 339 5, 021 4,743 4, 743 4,743

NFP 199, 728 1, 986, 768 104, 960 89, 696 89, 696

ODP 158, 318 158, 318 87, 936 39, 841 87, 936
RelRel 1 28, 068 9, 228 9, 282 5, 574 5,574

RelRel 2 11, 610, 235 5, 341,821 5,341, 821 5, 341, 821 5,341, 821

SD 1 21, 870 3,482 19, 679 4, 690 19, 679
SD 2 6, 561 11, 997 3, 624 2, 297 3, 192
SD 3 1, 944 32, 168 1, 380 896 1, 164
SD 4 633,130 1, 208, 592 975, 872 789, 886 975, 872
TN 54, 906, 000 746, 880 69, 547, 712 749, 312 709, 504

Fig. 5. Experimental results

7 Conclusion

We have presented smart reduction, an automated compositional aggregation
strategy used to generate modulo an equivalence relation the Lts of a system
made of processes composed in parallel, which generalizes previous work [29,11].
It uses a heuristic based on a metric for evaluating the potential for an aggre-
gation to avoid state explosion. The metric applies to the expressive network
model, used internally by the Exp.Open tool, thus enabling the application of
smart reduction to a large variety of operators (including synchronization vec-
tors and operators from Lotos, Lotos NT, E-Lotos, Ccs, Csp, and μCrl),
while avoiding the language restrictions that could otherwise make the opti-
mal order unavailable. We have provided an implementation and experimenta-
tion of smart reduction in the framework of the Cadp toolbox. The resulting

124 P. Crouzen and F. Lang

strategy yields good results, often better than systematic strategies such as node
reduction (aggregating Ltss one after the other in an order given by the term
describing the composition) and root leaf reduction (aggregating all Ltss at
once). Most importantly, the metric that combines both the hiding and the in-
terleaving metrics is robust in the sense that (for the test cases considered) it
never leads to extremely bad orders. Smart reduction is well-integrated in the
framework of the Svl scripting language of Cadp, thus making it very easy to
use. Smart reduction allows users of Cadp to enjoy the benefits of compositional
aggregation without having to guess or experimentally find a good composition
order. Moreover, it enables the automatic verification of software systems that
rely on elaborate forms of compositions, by combining automatic translations to
compositional models and automatic compositional aggregation. Crucially, such
verification can be used by software engineers or architects who have no back-
ground in formal methods. In future, we would like to have the metric integrate
information about the amount of partial order reduction that can be expected
in each aggregation, so as to provide even better aggregation strategies.

Acknowledgements. The authors are grateful to Christine McKinty, Gwen
Salaün, Damien Thivolle, and Verena Wolf for their useful comments on this
paper.

References

1. Arnold, A.: MEC: A System for Constructing and Analysing Transition Systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, Springer, Heidelberg (1990)

2. Berthomieu, B., Bodeveix, J.-P., Farail, P., Filali, M., Garavel, H., Gaufillet, P.,
Lang, F., Vernadat, F.: FIACRE: an Intermediate Language for Model Verification
in the TOPCASED Environment. In: Proc. of ERTS (2008)

3. Bouali, A., Ressouche, A., Roy, V., de Simone, R.: The Fc2Tools set: a Toolset for
the Verification of Concurrent Systems. In: Alur, R., Henzinger, T.A. (eds.) CAV
1996. LNCS, vol. 1102, Springer, Heidelberg (1996)

4. Boudali, H., Crouzen, P., Stoelinga, M.: Compositional Semantics for Dynamic
Fault Trees in Terms of Interactive Markov Chains. In: Namjoshi, K.S., Yoneda,
T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 441–456.
Springer, Heidelberg (2007)

5. Boudali, H., Crouzen, P., Stoelinga, M.: Dynamic fault tree analysis using in-
put/output interactive Markov chains. In: Proc. of Dependable Systems and Net-
works. IEEE, Los Alamitos (2007)

6. Boudali, H., Crouzen, P., Haverkort, B.R., Kuntz, M., Stoelinga, M.: Architec-
tural dependability evaluation with Arcade. In: Proc. of Dependable Systems and
Networks. IEEE, Los Alamitos (2008)

7. Boudali, H., Sözer, H., Stoelinga, M.: Architectural Availability Analysis of Soft-
ware Decomposition for Local Recovery. In: Proc. of Secure Software Integration
and Reliability Improvement (2009)

8. Chehaibar, G., Garavel, H., Mounier, L., Tawbi, N., Zulian, F.: Specification and
Verification of the PowerScale Bus Arbitration Protocol: An Industrial Experiment
with LOTOS. In: Proc. of FORTE/PSTV. Chapman and Hall, Boca Raton (1996)

Smart Reduction 125

9. Cheung, S.C., Kramer, J.: Enhancing Compositional Reachability Analysis with
Context Constraints. In: Proc. of ACM SIGSOFT International Symposium on
the Foundations of Software Engineering. ACM Press, New York (1993)

10. Coste, N., Garavel, H., Hermanns, H., Hersemeule, R., Thonnart, Y., Zidouni, M.:
Quantitative Evaluation in Embedded System Design: Validation of Multiprocessor
Multithreaded Architectures. In: Proc. of DATE (2008)

11. Crouzen, P., Hermanns, H.: Aggregation Ordering for Massively Parallel Compo-
sitional Models. In: Proc. of ACSD. IEEE, Los Alamitos (2010)

12. Cubo, J., Salaün, G., Canal, C., Pimentel, E., Poizat, P.: A Model-Based Approach
to the Verification and Adaptation of WF/.NET Components. ENTCS 215 (2008)

13. Foster, H., Uchitel, S., Magee, J., Kramer, J.: LTSA-WS: a tool for model-based
verification of web service compositions and choreography. In: Proc. of ICSE (2006)

14. Garavel, H.: OPEN/CAESAR: An Open Software Architecture for Verification,
Simulation, and Testing. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, p. 68.
Springer, Heidelberg (1998)

15. Garavel, H., Hermanns, H.: On Combining Functional Verification and Perfor-
mance Evaluation Using CADP. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME
2002. LNCS, vol. 2391, p. 410. Springer, Heidelberg (2002)

16. Garavel, H., Lang, F.: SVL: a Scripting Language for Compositional Verification.
In: Proc. of FORTE. Kluwer, Dordrecht (2001)

17. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2006: A Toolbox for the
Construction and Analysis of Distributed Processes. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 158–163. Springer, Heidelberg (2007)

18. Garavel, H., Sighireanu, M.: A Graphical Parallel Composition Operator for Pro-
cess Algebras. In: Proc. of FORTE/PSTV. Kluwer, Dordrecht (1999)

19. Giannakopoulou, D., Kramer, J., Cheung, S.C.: Analysing the behaviour of dis-
tributed systems using TRACTA. Journal of Automated Software Engineer-
ing 6(1), 7–35 (1999)

20. Graf, S., Steffen, B., Lüttgen, G.: Compositional Minimization of Finite State
Systems using Interface Specifications. Formal Aspects of Computation 8(5),
607–616 (1996)

21. Groote, J.F., Ponse, A.: The Syntax and Semantics of μCRL. In: Proc. of ACP.
Workshops in Computing Series (1995)

22. Hermanns, H., Katoen, J.-P.: Automated Compositional Markov Chain Generation
for a Plain-Old Telephone System. Science of Computer Programming 36, 97–127
(2000)

23. Hoare, C.A.R.: Communicating Sequential Processes. Communications of the
ACM 21(8), 666–677 (1978)

24. ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, International
Organization for Standardization, Genève (1989)

25. Krimm, J.-P., Mounier, L.: Compositional State Space Generation from LOTOS
Programs. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, Springer, Hei-
delberg (1997)

26. Lang, F.: Exp.Open 2.0: A Flexible Tool Integrating Partial Order, Compositional,
and On-The-Fly Verification Methods. In: Romijn, J.M.T., Smith, G.P., van de Pol,
J. (eds.) IFM 2005. LNCS, vol. 3771, pp. 70–88. Springer, Heidelberg (2005)

126 P. Crouzen and F. Lang

27. Milner, R.: A Calculus of Communicating Systems. In: Milner, R. (ed.) A Calculus
of Communication Systems. LNCS, vol. 92, Springer, Heidelberg (1980)

28. Rosa, N.S., Cunha, P.R.F.: A LOTOS Framework for Middleware Specification. In:
Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS,
vol. 4229, pp. 136–142. Springer, Heidelberg (2006)

29. Tai, K.C., Koppol, V.: Hierarchy-Based Incremental Reachability Analysis of Com-
munication Protocols. In: Proc. of Network Protocols. IEEE, Los Alamitos (1993)

30. Scollo, G., Zecchini, S.: Architectural Unit Testing. ENTCS 111 (2005)
31. Tronel, F., Lang, F., Garavel, H.: Compositional Verification Using CADP of the

ScalAgent Deployment Protocol for Software Components. In: Najm, E., Nest-
mann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 244–260.
Springer, Heidelberg (2003)

32. Valmari, A.: Compositional State Space Generation. In: Rozenberg, G. (ed.) APN
1993. LNCS, vol. 674, Springer, Heidelberg (1993)

Uniform Monte-Carlo Model Checking

Johan Oudinet1,2, Alain Denise1,2,3, Marie-Claude Gaudel1,2,
Richard Lassaigne4,5, and Sylvain Peyronnet1,2,3

1 Univ Paris-Sud, Laboratoire LRI, UMR8623, Orsay, F-91405
2 CNRS, Orsay, F-91405

3 INRIA Saclay - Île-de-France, F-91893 Orsay Cedex
4 Univ. Paris VII, Equipe de Logique Mathématique, UMR7056

5 CNRS, Paris-Centre, F-75000

Abstract. Grosu and Smolka have proposed a randomised Monte-Carlo
algorithm for LTL model-checking. Their method is based on random ex-
ploration of the intersection of the model and of the Büchi automaton
that represents the property to be checked. The targets of this explo-
ration are so-called lassos, i.e. elementary paths followed by elemen-
tary circuits. During this exploration outgoing transitions are chosen
uniformly at random.

Grosu and Smolka note that, depending on the topology, the uniform
choice of outgoing transitions may lead to very low probabilities of some
lassos. In such cases, very big numbers of random walks are required to
reach an acceptable coverage of lassos, and thus a good probability either
of satisfaction of the property or of discovery of a counter-example. In
this paper, we propose an alternative sampling strategy for lassos in the
line of the uniform exploration of models presented in some previous
work.

The problem of finding all elementary cycles in a directed graph is
known to be difficult: there is no hope for a polynomial time algorithm.
Therefore, we consider a well-known sub-class of directed graphs, namely
the reducible flow graphs, which correspond to well-structured programs
and most control-command systems.

We propose an efficient algorithm for counting and generating uni-
formly lassos in reducible flowgraphs. This algorithm has been imple-
mented and experimented on a pathological example. We compare the
lasso coverages obtained with our new uniform method and with uniform
choice among the outgoing transitions.

1 Introduction

Random exploration of large models is one of the ways of fighting the state ex-
plosion problem. In [11], Grosu and Smolka have proposed a randomized Monte-
Carlo algorithm for LTL model-checking together with an implementation called
MC2. Given a finite model M and an LTL formula Φ, their algorithm performs
random walks ending by a cycle, (the resulting paths are called lassos) in the
Büchi automaton B = BM ×B¬ Φ to decide whether L(B) = ∅ with a probabil-
ity which depends on the number of performed random walks. More precisely,

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 127–140, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

128 J. Oudinet et al.

their algorithm samples lassos in the automaton B until an accepting lasso is
found or a fixed bound on the number of sampled lassos is reached. If MC2 find
an accepting lasso, it means that the target property is false (by construction
of B, an accepting lasso is a counterexample to the property). On the contrary,
if the algorithm stops without finding an accepting lasso, then the probability
that the formula is true is high. The advantage of a tool such as MC2 is that it
is fast, memory-efficient, and scalable.

Random exploration of a model is a classical approach in simulation [3] and
testing (see for instance [26,6]) and more recently in model-checking [21,8,20,1].
A usual way to explore a model at random is to use isotropic random walks:
given the states of the model and their successors, an isotropic random walk
is a succession of states where at each step, the next state is drawn uniformly
at random among the successors, or, as in [11] the next transition is drawn
uniformly at random among the outgoing transitions. This approach is easy to
implement and only requires local knowledge of the model.

However, as noted in [21] and [19], isotropic exploration may lead to bad
coverage of the model in case of irregular topology of the underlying transition
graph. Moreover, for the same reason, it is generally not possible to get any
estimation of the coverage obtained after one or several random walks: it would
require some complex global analysis of the topology of the model.

Not surprisingly, it is also the case when trying to cover lassos: Figure 1
from [11], shows a Büchi automaton with q + 1 lassos: l0, l1, . . . , lq where li
is the lasso s0s1 . . . sis0. With an isotropic random walk, lq has probability 1/2q

to be traversed.

s0 s1 s2 sq−1 sq

Fig. 1. A pathological example for Büchi automata

In this paper, we propose an alternative sampling strategy for lassos in the line
of the uniform exploration of models presented in [7,17] and [10]. In the example
above, the low probability of lq comes from the choice done by the random walk
at each state. It has to choose between a state that leads to a single lasso and a
state that leads to an exponential number of lassos. In the case of an isotropic
random walk, those two states have the same probability. If the number of lassos
that start from each state is known, the choice of the successors can be guided to
balance the probability of lassos so as to get a uniform distribution and to avoid

Uniform Monte-Carlo Model Checking 129

lassos with a too small probability. Coming back to Figure 1, with a uniform
distribution on lassos, lq has probability 1/q to be traversed instead of 1/2q.

However, the problem of counting and finding all elementary cycles in a di-
rected graph is known to be difficult. We briefly recall in Section 2 why there is
no hope of polynomial time algorithms for this problem. Therefore, we consider
a well-known sub-class of directed graphs, namely the reducible flow graphs [12],
which correspond to well-structured programs and most control-command sys-
tems. In Section 3, we show that the set of lassos in such graphs is exactly the set
of paths that start from the initial state and that end just after the first back edge
encountered during a depth-first search. Then on the basis of the methods for
counting and generating paths uniformly at random, presented in [7,17] and [10],
we give an algorithm for counting the number of lassos in a reducible flow-
graph and uniformly generating random lassos in reducible flowgraphs. Section 4
presents how this algorithm can be used for LTL model-checking. Section 5 re-
ports how this algorithm has been implemented and how it has been exper-
imented on an example similar to the pathological example in Figure 1. We
compare the lasso coverages obtained with our new uniform method and with
uniform choice among the successors or the outgoing transitions.

2 Counting and Generating Lassos in Directed Graphs

A lasso in a graph is a finite path followed by an elementary, or simple, cycle.
There are two enumeration problems for elementary cycles in a graph. The first
one is counting and the second one is finding all such cycles. These two prob-
lems are hard to compute: let FP be the class of functions computable by a
Turing machine running in polynomial time and �CY CLE(G) be the number of
elementary cycles in a graph G; one can prove that �CY CLE(G) ∈ FP implies
P = NP by reducing the Hamiltonian circuit problem to decide if the number
of elementary cycles in a graph is large.

For the problem of finding all elementary cycles in a directed graph there is no
hope for a polynomial time algorithm. For example, the number of elementary
cycles in a complete directed graph grow faster than the exponential of the
number of vertices. Several algorithms were designed for the finding problem. In
the algorithms of Tiernan [23] and Weinblatt [25] time exponential in the size of
the graph may elapse between the output of a cycle and the next. However, one
can obtain enumeration algorithms with a polynomial delay between the output
of two consecutive cycles.

Let G be a graph with n vertices, e edges and c elementary cycles. Tarjan [22]
presented a variation of Tiernan’s algorithm in which at most O(n.e) time elapses
between the output of two cycles in sequence, giving a bound of O(n.e(c+1)) for
the running time of the algorithm. To our knowledge, the best algorithm for the
finding problem is Johnson’s [14], in which time consumed between the output
of two consecutive cycles as well as before the first and after the last cycle never
exceeds the size of the graph, resulting in bounds O((n+ e).(c+1)) for time and
O(n + e) for space.

130 J. Oudinet et al.

Because of the complexity of these problems in general graphs, we consider
in this paper a well-known sub-class of directed graphs, namely the reducible
flow graphs [12]. Control graphs of well-structured programs are reducible. Most
data-flow analysis algorithms assume that the analysed programs satisfy this
property, plus the fact that there is a unique final vertex reachable from any
other vertex. Similarly, well-structured control-command systems correspond to
reducible dataflow graphs. But in their case, any vertex is considered as final: this
makes it possible the generalisation of data-flow analysis and slicing techniques
to such systems [15]. Informally, the requirement on reducible graphs is that any
cycle has a unique entry vertex.

It means that a large class of critical systems correspond to such flowgraphs.
However, arbitrary multi-threaded programs don’t. But in many cases where
there are some constraints on synchronisations, for instance in cycle-driven sys-
tems, reducibility is satisfied.

The precise definition of reducibility is given below, as well as a method for
counting and uniformly generating lassos in such graphs.

3 Uniform Random Generation of Lassos in Reducible
Flowgraphs

A flowgraph G = (V, E) is a graph where any vertex of G is reachable from a
particular vertex of the graph called the source (we denote this vertex by s in
the following). From a flowgraph G one can extract a spanning subgraph (e.g.
a directed rooted tree whose vertex set is also V) with s as root. This spanning
subgraph is known as directed rooted spanning tree (DRST). In the specific case
where a depth-first search on the flowgraph and its DRST lead to the same order
over the set of vertices, we call the DRST a depth-first search tree (DFST). The
set of back edges is denotes by BE . Given a DFST of G, we call back edge any
edge of G that goes from a vertex to one of its ancestors in the DFST. And
we say that a vertex u dominates a vertex v if every path from s to v in G
crosses u.

Here we focus on reducible flowgraphs. The intuition for reducible flowgraphs
is that any loop of such a flowgraph has a unique entry, that is a unique edge
from a vertex exterior to the loop to a vertex in the loop. This notion has been
extensively studied (see for instance [12]). The following proposition summarizes
equivalent definitions of reducible flowgraphs.

Proposition 1. All the following items are equivalent:

1. G = (V, E, s) is a reducible flowgraph.
2. Every DFS on G starting at s determines the same back edge set.
3. The directed acyclic graph (DAG) dag(G) = (V, E − BE , s) is unique.
4. For every (u, v) ∈ BE, v dominates u.
5. Every cycle of G has a vertex which dominates the other vertices of the cycle.

We now recall the precise definition of lassos:

Uniform Monte-Carlo Model Checking 131

Definition 1 (lassos). Given a flowgraph G = (V, E, s), a path in G is a final
sequence of vertices s0, s1, . . . , sn such that s0 = s and ∀0 ≤ i < n (si, si+1) ∈
E. An elementary path is a path such that the vertices are pairwise distinct. A
lasso is a path such that s0, . . . , sn−1 is an elementary path and sn = si for some
0 ≤ i < n.

We can now state our first result on lassos in reducible flowgraphs.

Proposition 2. Any lasso of a reducible flowgraph ends with a back edge, and
any back edge is the last edge of a lasso.

Proof. Suppose a traversal starting from the source vertex goes through a lasso
and finds a back edge before the end of the lasso. Since the graph is a reducible
flowgraph this means that we have a domination, thus we see two times the
same vertex in the lasso, which is a contradiction with the fact that a lasso is
elementary (remember a lasso is an elementary path).

Suppose now that the traversal never sees a back edge. Then no vertex has
been seen twice, thus the traversal is not a lasso.

Using this proposition, we can now design a simple algorithm for

– counting the number of lassos in a reducible flowgraph,
– uniformly generating random lassos in a reducible flowgraph.

Here uniformly means equiprobably. In other word any lasso has the same prob-
ability to be generated as the others.

Following the previous proposition, the set of lassos is exactly the set of paths
that start from the source and that end just after the first back edge encountered.
At first, we change the problem of generating lassos into a problem of generating
paths of a given size n, by slightly changing the graph: we add a new vertex s0
with a loop, that is an edge from itself to itself, and edge from s0 to s. And
we give n a value that is an upper bound of the length of the lassos in the new
graph. A straightforward such value is the depth of the depth-first search tree
plus one.

Now for any vertex u, let us denote fu(k) the number of paths of length k
starting from vertex u and finish just after the first back edge encountered. The
edge (s0, s0) is not considered as a back edge because it does not finish a lasso
in the initial graph G. The number of lassos is given by fs0(n). And we have the
following recurrence:

– fs0(1) = 0.
– fu(1) = number of back edges from u if u �= s0.
– fu(k) =

∑
(u,v)∈E′ fv(k − 1) for k > 1 where E′ is the set of edges of the

graph, except the back edges.

The principle of the generation process is simple: starting from s, draw a path
step by step. At each step, the process consists in choosing a successor of the
current vertex and going to it. The problem is to proceed in such a way that

132 J. Oudinet et al.

only (and all) lassos of length n can be generated, and that they are equiproba-
bly distributed. This is done by choosing successors with suitable probabilities.
Suppose that, at one given step of the generation, we are on state u, which has
k successors denoted v1, v2, . . . , vk. In addition, suppose that m > 0 transitions
remain to be crossed in order to get a lasso of length n. Then the condition
for uniformity is that the probability of choosing state vi (1 ≤ i ≤ k) equals
fvi(m − 1)/fu(m). In other words, the probability to go to any successor of
u must be proportional to the number of lassos of suitable length from this
successor.

Computing the numbers fu(i) for any 0 ≤ i ≤ n and any state u of the graph
can be done by using the recurrence rules above.

Table 1 presents the recurrence rules which correspond to the automaton of
Figure 2.

s0 1 2 3 4

Fig. 2. An example of a Büchi automaton, from [11]. We have added the vertex s0 and
its incident edges, according to our procedure for generating lassos of length ≤ n for
any given n.

Table 1. Recurrences for the fi(k)

fs0(1) = f2(1) = 0
f1(1) = f3(1) = f4(1) = 1

fs0(k) = fs0(k − 1) + f1(k − 1) (k > 1)
f1(k) = f2(k − 1) (k > 1)
f2(k) = f3(k − 1) + f4(k − 1) (k > 1)
f3(k) = f4(k − 1) (k > 1)
f4(k) = 0 (k > 1)

Now a primitive generation scheme is as follows:

– Preprocessing stage: Compute a table of the fu(i)’s for all 0 ≤ i ≤ n and
any state u.

– Generation stage: Draw the lassos according to the scheme seen above.

Note that the preprocessing stage must be done only once, whatever the num-
ber of lassos to be generated. Easy computations show that the memory space
requirement is O(n × |V |) integer numbers, where |V | denotes the number of
vertices in G. The number of arithmetic operations needed for the preprocessing
stage is in the worst case in O(nd|V |), where d stands for the maximum number
of transitions from a state; and the generation stage is O(nd) [13]. However,

Uniform Monte-Carlo Model Checking 133

the memory required is too large for very long lassos. In [18] we presented an
improved version, named Dichopile, which avoids to have the whole table in
memory, leading to a space requirement in O(|V | log n), at the price of a time
requirement in O(nd|V | log n).

4 Application to LTL Model-Checking

This section shows how to use this generation algorithm (and its variants, see [18])
for LTL randomised model-checking. We note M and Φ the considered model and
LTL formula. We propose a randomised method to check whether M |= Φ. We
call BM a Büchi automaton corresponding to M : the transitions are labeled, the
underlying graph is assumed to be reducible, and all the states are accepting (but
this condition can be relaxed). We call B¬ Φ the Büchi automaton corresponding
to the negation of Φ. The problem is to check that L(B) = ∅ where B = BM ×
B¬ Φ.

It is possible to avoid the construction of the product B = BM × B¬ Φ. The
idea is to exploit the fact that this product is the result of a total synchronisation
between BM and B¬ Φ: as explained in [4], the behaviours of B are exactly those
behaviours of BM accepted by B¬ Φ. It means that a lasso in B corresponds to
a lasso in BM (but not the reverse). Therefore, it is possible to draw lassos
from BM and, using B¬ Φ as an observer, to reject those lassos that are not in
B. It is well-known that such rejections preserve uniformity in the considered
subset [16].

4.1 Drawing Lassos in B

There is a pre-processing phase that contains the one described in Section 3,
namely:

(pre-DFS) the collection of the set BE of back edges via a DFS in BM , and
computing n, the depth of the DFS + 1;

(pre-vector) the construction of the vector of the |V | values fu(1), i.e. the
numbers of lassos of length 1 starting for every vertex u;

The two steps above are only needed once for each model. They are independent
of the properties to be checked. The third step below is dependent on the
property:

(pre-construction of the negation automaton) the construction of the
Büchi automaton B¬ Φ.

Lassos are drawn from BM using the Dichopile algorithm [18] and then observed
with B¬ Φ to check whether they are lassos of B. Moreover, it is also checked
whether an acceptance state of B¬ Φ is traversed during the cycle. The observa-
tion may yield three possible results:

– the lasso is not a lasso in BM × B¬ Φ;
– the lasso is an accepting lasso in BM × B¬ Φ;
– the lasso is a non-accepting lasso in BM × B¬ Φ.

134 J. Oudinet et al.

Observation of lassos
The principle of the observation algorithm is: given a lasso of BM , and the
B¬ Φ automaton, the algorithm explores B¬ Φ guided by the lasso: since B¬ Φ

is generally non deterministic, the algorithm performs a traversal of a tree made
of prefixes of the lasso.

When progressing in B¬ Φ along paths of this tree, the algorithm notes
whether the state where the cycle of the lasso starts and comes back has been
traversed; when it has been done, it notes whether an accepting state of the
automaton is met.

The algorithm terminates either when it reaches the end of the lasso or when
it fails to reach it: it is blocked after having explored all the strict prefixes of
the lasso present in B¬ Φ. The first case means that the lasso is also a lasso of
BM ×B¬ Φ; then if an accepting state of B¬ Φ has been seen in the cycle of the
lasso, it is an accepting lasso. Otherwise it is a non-accepting lasso. The second
case means that the lasso is not a lasso in BM × B¬ Φ.

As soon as an accepting lasso is found, the drawing is stopped.

4.2 Complexities

Given a formula Φ and a model M , let |Φ| the length of formula Φ, |V | the
number of states of BM and |E| its number of transitions, the complexities of
the pre-processing treatments are the following:

(pre-DFS) this DFS is performed in BM ; it is O(|E|) in time and O(|V |) in
space in the worst case;

(pre-vector) the construction of the vector of the fu(1) is Θ(|V |) in time and
space;

(pre-construction of the negation automaton) the construction of B¬ Φ

is O(2|Φ|. log |Φ|) in time and space in the worst case [24].

The drawing of one lasso of length n in BM using the Dichopile algorithm is
O(n.d.|V |. log n) in time and O(|V |. log n) in space; then its observation is a
DFS of maximum depth n in a graph whose size can reach O(2|Φ|). Let dB¬ Φ the
maximal out-degree of B¬ Φ, the worst case time complexity is min(dn

B¬ Φ
, 2|Φ|),

and the space complexity is O(n).
The main motivation for randomised model-checking is gain in space. With

this respect, using isotropic random walks as in [11] is quite satisfactory since a
local knowledge of the model is sufficient. However, it may lead to bad coverage of
the model. For instance, [11] reports the case of the Needham-Schroeder protocol
where a counter-exemple has a very low probability to be covered by isotropic
random walk. The solution presented here avoids this problem, since it ensures
a uniform drawing of lassos, but it requires more memory: Θ(|V |) for the pre-
processing and O(|V |. log n) for the generation.

We can also compare the complexity of our approach to the complexity of
practical algorithm for the model checking of LTL. The NDFS algorithm [5] has
a space complexity of O(r log |V |) for the main (randomly accessed) memory,

Uniform Monte-Carlo Model Checking 135

where r is the number of reachable states. This complexity is obtained thanks
to the use of hash tables. Information accessed in a more structured way (e.g.
sequentially) are stored on an external memory and retrieved using prediction
and cache to lower the access cost.

In this case, uniform sampling of lassos, with a space complexity of
O(|V | log n) is close to the O(r log |V |) of the classic NDFS algorithm, without
being exhaustive. Nevertheless, a randomized search has no bias in the sequence
of nodes it traverses (as is NDFS), and may lead faster to a counterexample in
practice.

4.3 Probabilities

Let lassosB the number of lassos in B, and lassosBM the number of lassos in
BM , i. e. lassosBM = fs(n), we have lassosB ≤ fs(n). The probability for a lasso
to be rejected by the observation is lassosB/fs(n), where the value of lassosB

is dependent on the considered LTL formula. Thus, the average time complexity
for drawing N lassos in B is the complexity of the pre-processing, which is
O(|E|) + O(2|Φ|)) plus N × fs(n)/lassosB [16] times the complexity of drawing
one lasso in BM and observing it, which is O(n log n|V |) + min(dn

B¬ Φ
, 2|Φ|).

Since the drawing in BM is uniform, and fs(n) is the number of lassos the
probability to draw any lasso in BM is 1/fs(n). Since there are less lassos in B,
and rejection preserves uniformity [16], the probability to draw any lasso in B is
1/lassosB which is greater or equal to 1/fs(n). It is true for any lasso in B, the
accepting or the non accepting ones. Thus there is no accepting lasso with too
low probability as it was the case in the Needham-Schroeder example in [11].

Moreover, the probability ρ that M |= Φ after N drawings of non-accepting
lassos is greater than:

1 − (
1 − 1/fs(n)

)N

Increasing N may lead to high probabilities. Conversely, the choice of N may be
determined by a target probability ρ:

N ≥ log(1 − ρ)
log(1 − 1/fs(n))

(1)

Remark: A natural improvement of the method is to use the fact that during
the preliminary DFS some lassos of BM are discovered, namely one by back edge.
These lassos can be checked as above for early discovery of accepting lassos in
BM × B¬φ. However, it is difficult to state general results on the gain in time
and space, since this gain is highly dependent on the topology of the graph.

5 Experimental Results

In this section, we report results about first experiments, which use the algorithm
presented in Section 4 to verify if an LTL property holds on some models. We

136 J. Oudinet et al.

first chose a model in which it is difficult to find a counter-example with isotropic
random walks. The idea is to evaluate the cost-effectiveness of our algorithm:
does it find a counter-example in a reasonable amount of time and memory? How
many lassos have to be checked before we get a high probability that M |= Φ? [2].

5.1 Implementation and Methodology

This algorithm has been implemented using the RUKIA library1. This C++
library proposes several algorithms to generate uniformly at random paths in
automata. In particular, the Dichopile algorithm that is mentioned in Section 3.
We also use several tools that we mention here: The Boost Graph Library (BGL)
for classical graph algorithms like the depth-first search algorithm; The GNU
Multiple Precision (GMP) and Boost.Random libraries for generating random
numbers; The LTL2BA software [9] to build a Büchi automaton from a LTL
formula.

We did all our experiments on a dedicated server whose hardware is composed
of an Intel Xeon 2.80GHz processor with 16GB memory. Each experiment was
performed 5 times. The two extreme values are discarded and the three remaining
values are averaged.

5.2 Description of the Model and the Formula

Figure 3 shows BM , the Büchi automaton of the model. It has q states and every
state, except sq, has two transitions labeled by the action a: stay in the current
state or move to the next state. The state sq can only do the action ¬a.

s1 s2 s3 sq−1 sq
a

a

a

a a

a

a ¬a

Fig. 3. The Büchi automaton, BM , of the model. Its transitions are labeled by a or
¬a, to indicate if the action a occurs or not.

The property that we want to check on this model is: “an action a should
occur infinitely often”. In LTL, this property can be expressed as

φ = GFa,

where the operator G means “for all” and the operator F means “in the future”.
It is clear that M �|= Φ because if sq is reached, then no a will occur. Hence,

there is a behavior in M where the action a will not occur infinitely often. How-
ever, it is difficult for an isotropic random walk to find the lasso that traverses
sq. In the next section, we measure the difficulty to find this lasso with our
algorithm.
1 http://rukia.lri.fr

http://rukia.lri.fr

Uniform Monte-Carlo Model Checking 137

5.3 LTL Model-Checking with Uniform Generation of Lassos

The first step of the algorithm is to build a Büchi automaton that represents
the formula ¬φ (here, ¬φ = FG¬a). We used the tool LTL2BA and got the
automaton in Figure 4.

s0 s1
¬a

1 ¬a

Fig. 4. The Büchi automaton, B¬φ, of the formula ¬φ. The label 1 means that both a
and ¬a are accepted.

Then, we can apply our algorithm to generate lassos in BM until we find an
accepting lasso in BM ∩B¬φ, by observing the lasso of BM with the automaton
B¬φ. Table 2 shows the time needed to our algorithm to find the counter-example
in two versions of the automaton in Figure 3, one with q = 100 states and the
other with q = 1000 states. We also tried to find this counter-example with
isotropic random walks. It did not work, even after the generation of 2 billions
lassos. Thus, using uniform generation of lassos provides a better detection power
of counter-examples.

Table 2. M �|= Φ: elapsed time, used memory and numbers of lassos generated in BM

by the algorithm of Section 4 to find the counter-example of Section 5.2

states Time (s) Mem (MiB) Nb lassos

100 0.38 49 70
1000 546 50 680

As we know the probability to find the counter-example in B with both
isotropic random walks and uniform random generation (i.e., 1/2q for an isotropic
random walk and 1/q for a uniform random generation), we can compute the
number of lassos required to achieve a target probability ρ. Table 3 describes
those numbers for some target probabilities and for the two previous versions of
the automaton in Figure 3.

Note: In general, the minimal probability to find a counter example is unknown.
In the case of uniform random generation of lassos, we have a lower bound of
this probability. Thus, the maximal number of lassos to be generated for a given
probability can always be determined with Formula 1, which it is not possible
with isotropic random walks.

138 J. Oudinet et al.

Table 3. M |= Φ: numbers N of lassos to be generated with isotropic random walks
(resp. uniform random generation) in order to ensure a probability ρ that M |= Φ. The
symbol ∞ means a huge number, which cannot be computed with a calculator.

N

states ρ isotropic uniform

100 0.9 1030 227
0.99 ∞ 454

0.999 ∞ 681
1000 0.9 ∞ 2300

0.99 ∞ 4599
10000 0.9 ∞ 23022

6 Conclusion

We have presented a randomised approach to LTL model checking that ensures
a uniform distribution on the lassos in the product B = BM × B¬ Φ. Thus,
there is no accepting lasso with too low probability to be traversed, whatever
the topology of the underlying graph.

As presented here, the proposed algorithm still needs an exhaustive traversal
of the state graph during the pre-processing stage. This could seriously limit
its applicability. A first improvement of the method would be to use on the fly
techniques to avoid the storage in memory of the whole model during the DFS. A
second improvement would be to avoid the complete storage of the vector, parts
of it being computed during the generation stage, when needed. However, it will
somewhat increase the time complexity of drawing. Another possibility would be
approximate lasso counting, thus approximate uniformity, under the condition
that the approximation error can be taken into account in the estimation of the
satisfaction probability, which is an open issue.

First experiments, on examples known to be pathological, show that the
method leads to a much better detection power of counter-examples, and that
the drawing time is acceptable. In Section 5, we report a case with long counter-
examples difficult to reach by isotropic random walks. A counter-example is
discovered after a reasonable number of drawings, where isotropic exploration
would require prohibitive numbers of them. The method needs to be validated on
some more realistic example. We plan to embed it in an existing model-checker
in order to check LTL properties on available case studies.

The method is applicable to models where the underlying graph is a reducible
flow graph: we give a method for counting lassos and drawing them at random in
this class of graphs, after recalling that it is a hard problem in general. Reducible
data flow graphs correspond to well-structured programs and control-command
systems (i.e., the steam boiler [2]). A perspective of improvement would be to
alleviate the requirement of reducibility. It seems feasible: for instance, some
data flow analysis algorithms have been generalised to communicating automata

Uniform Monte-Carlo Model Checking 139

in [15]. Similarly, we plan to study the properties and numbers of lassos in
product of reducible automata, in order to consider multi-threaded programs.

References

1. Abed, N., Tripakis, S., Vincent, J.-M.: Resource-aware verification using random-
ized exploration of large state spaces. In: Havelund, K., Majumdar, R. (eds.) SPIN
2008. LNCS, vol. 5156, pp. 214–231. Springer, Heidelberg (2008)

2. Abrial, J.-R., Börger, E., Langmaack, H. (eds.): Formal Methods for Industrial
Applications, Specifying and Programming the Steam Boiler Control (the book
grow out of a Dagstuhl Seminar). LNCS, vol. 1165. Springer, Heidelberg (1996)

3. Aldous, D.: An introduction to covering problems for random walks on graphs. J.
Theoret. Probab. 4, 197–211 (1991)

4. Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Schnoe-
belen, P.: Systems and Software Verification. In: Model-Checking Techniques and
Tools, Springer, Heidelberg (2001)

5. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-efficient algo-
rithms for the verification of temporal properties. Formal methods in system de-
sign 1(2), 275–288 (1992)

6. Denise, A., Gaudel, M.-C., Gouraud, S.-D.: A generic method for statistical test-
ing. In: 15th International Symposium on Software Reliability Engineering (ISSRE
2004), pp. 25–34. IEEE Computer Society, Los Alamitos (2004)

7. Denise, A., Gaudel, M.-C., Gouraud, S.-D., Lassaigne, R., Peyronnet, S.: Uniform
random sampling of traces in very large models. In: 1st International ACM Work-
shop on Random Testing, pp. 10–19 (July 2006)

8. Dwyer, M.B., Elbaum, S.G., Person, S., Purandare, R.: Parallel randomized state-
space search. In: 29th International Conference on Software Engineering (ICSE
2007), pp. 3–12 (2007)

9. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001)

10. Gaudel, M.-C., Denise, A., Gouraud, S.-D., Lassaigne, R., Oudinet, J., Peyronnet,
S.: Coverage-biased random exploration of large models. In: 4th ETAPS Work-
shop on Model Based Testing. Electronic Notes in Theoretical Computer Science,
vol. 220(1,10), pp. 3–14 (2008) (invited lecture)

11. Grosu, R., Smolka, S.A.: Monte Carlo model checking. In: Halbwachs, N., Zuck,
L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 271–286. Springer, Heidelberg
(2005)

12. Hecht, M.S., Ullman, J.D.: Characterizations of reducible flow graphs. J.
ACM 21(3), 367–375 (1974)

13. Hickey, T., Cohen, J.: Uniform random generation of strings in a context-free lan-
guage. SIAM J. Comput. 12(4), 645–655 (1983)

14. Johnson, D.B.: Finding all the elementary circuits of a directed graph. SIAM J.
Comput. 4(1), 77–84 (1975)

15. Labbé, S., Gallois, J.-P.: Slicing communicating automata specifications: polyno-
mial algorithms for model reduction. Formal Asp. Comput. 20(6), 563–595 (2008)

16. Devroye, L.: Non-Uniform Random Variate Generation. Springer, Heidelberg
(1986)

140 J. Oudinet et al.

17. Oudinet, J.: Uniform random walks in very large models. In: RT 2007: Proceedings
of the 2nd International Workshop on Random Testing, pp. 26–29. ACM Press,
New York (2007)

18. Oudinet, J., Denise, A., Gaudel, M.-C.: A new dichotomic algorithm for the uniform
random generation of words in regular languages. In: Conference on random and
exhaustive generation of combinatorial objects (GASCom), Montreal, Canada, p.
10 (September 2010)

19. Pelánek, R., Hanžl, T., Černá, I., Brim, L.: Enhancing random walk state space
exploration. In: Proc. of Formal Methods for Industrial Critical Systems (FMICS
2005), Lisbon, Portugal, pp. 98–105. ACM Press, New York (2005)

20. Rungta, N., Mercer, E.G.: Generating counter-examples through randomized
guided search. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595,
pp. 39–57. Springer, Heidelberg (2007)

21. Sivaraj, H., Gopalakrishnan, G.: Random walk based heuristic algorithms for dis-
tributed memory model checking. In: Proc. of Parallel and Distributed Model
Checking (PDMC 2003). Electr. Notes Theor. Comput. Sci., vol. 89(1) (2003)

22. Tarjan, R.E.: Enumeration of the elementary circuits of a directed graph. SIAM J.
Comput. 2(3), 211–216 (1973)

23. Tiernan, J.C.: An efficient search algorithm to find the elementary circuits of a
graph. Commun. ACM 13(12), 722–726 (1970)

24. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996)

25. Weinblatt, H.: A new search algorithm for finding the simple cycles of a finite
directed graph. J. ACM 19(1), 43–56 (1972)

26. West, C.H.: Protocol validation in complex systems. In: SIGCOMM 1989: Sym-
posium proceedings on Communications architectures & protocols, pp. 303–312.
ACM, New York (1989)

Model Checking Büchi Pushdown Systems

Juncao Li1, Fei Xie1, Thomas Ball2, and Vladimir Levin2

1 Department of Computer Science, Portland State University
Portland, OR 97207, USA

{juncao,xie}@cs.pdx.edu
2 Microsoft Corporation

Redmond, WA 98052, USA
{tball,vladlev}@microsoft.com

Abstract. We develop an approach to model checking Linear Temporal Logic
(LTL) properties of Büchi Pushdown Systems (BPDS). Such BPDS models are
suitable for Hardware/Software (HW/SW) co-verification. Since a BPDS repre-
sents the asynchronous transitions between hardware and software, some tran-
sition orders are unnecessary to be explored in verification. We design an algo-
rithm to reduce BPDS transition rules, so that these transition orders will not be
explored by model checkers. Our reduction algorithm is applied at compile time;
therefore, it is also suitable to runtime techniques such as co-simulation. As a
proof of concept, we have implemented our approach in our co-verification tool,
CoVer. CoVer not only verifies LTL properties on the BPDS models represented
by Boolean programs, but also accepts assumptions in LTL formulae. The eval-
uation demonstrates that our reduction algorithm can reduce the verification cost
by 80% in time usage and 35% in memory usage on average.

1 Introduction

Hardware/Software (HW/SW) co-verification, verifying hardware and software to-
gether, is essential to establishing the correctness of complex computer systems. In pre-
vious work, we proposed a Büchi Pushdown System (BPDS) as a formal representation
for co-verification [1]: a Büchi Automaton (BA) represents a hardware device model
and a Labeled Pushdown System (LPDS) represents a model of the system software;
the interactions between hardware and software take place through the synchronization
of the BA and LPDS. This is different from a BPDS model used in software verifica-
tion [2], where BA only monitors the state transitions of the Pushdown System (PDS)
(see Related Work). We also designed an algorithm for checking safety properties of
BPDS [1,3]. However, besides the verification of safety properties, the verification of
liveness properties is also highly desirable. For example, a driver and its device should
not hang on an I/O operation; a reset command from a driver should eventually reset
the device.

We present an approach to LTL model checking of BPDS and design a reduction
algorithm to reduce the verification cost. Given an LTL formula ϕ to be checked on
a BPDS BP, we constructed a BA Bϕ from ¬ϕ to monitor the state transitions of
BP. The model checking process computes if Bϕ has an accepting run on BP. Since
a BPDS has two asynchronous components, i.e., a BA and an LPDS, we design our

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 141–155, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

142 J. Li et al.

model checking algorithm in such a way that the fairness between them are guaranteed.
We also design an algorithm to reduce the BPDS transition rules based on the concept
of static partial order reduction [4]. Our reduction algorithm is applied at compile time
when constructing a BPDS model rather than during model checking; therefore, the
algorithm is also suitable to runtime techniques such as co-simulation [5]. Different
from other partial order reduction techniques [4,6], our approach can reduce many vis-
ible transitions without affecting the LTL−X properties1 to be verified, which is very
effective in reducing the co-verification cost.

As a proof of concept, we have implemented our approach in our co-verification
tool, CoVer. CoVer not only verifies LTL properties on the BPDS models represented
by Boolean programs [7], but also accepts assumptions in LTL formulae. These assump-
tions are very helpful in practice to constrain the verification and rule out false positives.
We have also designed an evaluation template to generate BPDS models with various
complexities. The evaluation demonstrates that our reduction algorithm can reduce the
verification cost by 80% in time usage and 35% in memory usage on average.

The rest of this paper is organized as follows. Section 2 reviews related work. Sec-
tion 3 introduces the background of this paper. Section 4 presents our LTL model
checking algorithm for BPDS. Section 5 elaborates on our reduction algorithm. Sec-
tion 6 presents the implementation details of CoVer and illustrates an example of BPDS
represented by Boolean programs. Section 7 presents the evaluation results. Section 8
concludes and discusses future work.

2 Related Work

Bouajjani, et al. [8] presented a procedure to compute backward reachability (a.k.a.,
pre∗) of PDS and apply this procedure to linear/branching-time property verification.
This approach was improved by Schwoon [2], which results in a tool, Moped, for check-
ing LTL properties of PDS. An LTL formula is first negated and then represented as a
BA, which is combined with the PDS to monitor its state transitions; therefore, the
model checking problem is to compute if the BA has an accepting run. The goal of the
previous research was to verify software only; however, our goal is co-verification.

Cook, et al. [9] presented an approach to termination checking of system code
through proofs. The approach has two phases: first constructing the termination ar-
gument which is a set of ranking functions and then proving that one of the ranking
functions decreases between the pre- and post-states of all finite transition sequences in
the program. When checking the termination of a device driver, its hardware behavior is
necessary to be modeled; otherwise, the verification may report a false positive or miss
a real bug (see examples in Section 6).

Device Driver Tester (DDT) [5] is a symbolic simulation engine for testing closed-
source binary device drivers against undesired behaviors, such as race conditions, mem-
ory errors, resource leaks, etc. Given driver’s binary code, it is first reverse-engineered
and then simulated with symbolic hardware, a shallow hardware model that mimics
simple device behaviors such as interrupts. When simulating the interactions between
device and driver, DDT employs a reduction method that allows interrupts only after

1 LTL−X is the subset of the logic LTL without the next time operator.

Model Checking Büchi Pushdown Systems 143

each kernel API call by the driver to operate the hardware device. While the reduction
method of DDT was not formally justified, such kind of reduction can be formalized as
the static partial reduction approach discussed in this paper.

Our previous work [3] of co-verification implemented an automatic reachability anal-
ysis algorithm for BPDS models specified using the C language. The concept of static
partial order reduction is applied to reduce the complexity of the BPDS model only for
reachability analysis. However, no algorithm was designed for either co-verification of
liveness properties or its complexity reduction.

3 Background

3.1 Büchi Automaton (BA)

A BAB [10] is a non-deterministic finite state automaton accepting infinite input strings.
Formally, B = (Σ, Q, δ, q0, F), where Σ is the input alphabet, Q is the finite set of
states, δ ⊆ (Q × Σ × Q) is the set of state transitions, q0 ∈ Q is the initial state, and
F ⊆ Q is the set of final states. B accepts an infinite input string if and only if (iff) it
has a run over the string that visits at least one of the final states infinitely often. A run
of B on an infinite string s is a sequence of states visited by B when taking s as the
input. We use q

σ→ q′ to denote a transition from state q to q′ with the input symbol σ.

3.2 Labeled Pushdown System (LPDS)

An LPDS P [1] is a tuple (I, G, Γ, Δ, 〈g0, ω0〉), where I is the input alphabet, G is a
finite set of global states, Γ is a finite stack alphabet, Δ ⊆ (G × Γ) × I × (G × Γ ∗)
is a finite set of transition rules, and 〈g0, ω0〉 is the initial configuration. An LPDS

transition rule is written as 〈g, γ〉 τ
↪→ 〈g′, w〉 ∈ Δ, where τ ∈ I . A configuration of

P is a pair 〈g, ω〉 ∈ G × Γ ∗. The set of all configurations is denoted as Conf(P).
The head of a configuration c = 〈g, γv〉 (γ ∈ Γ, v ∈ Γ ∗) is 〈g, γ〉 and denoted as

head(c). Similarly the head of a rule r = 〈g, γ〉 τ
↪→ 〈g′, ω〉 is 〈g, γ〉 and denoted as

head(r). Given the same rule r, for every v ∈ Γ ∗, the immediate successor relation is
denoted as 〈g, γv〉 τ⇒ 〈g′, ωv〉, where we say this state transition follows the LPDS rule
r. The reachability relation, ⇒∗, is the reflexive and transitive closure of the immediate
successor relation. A path of P on an infinite input string, τ0τ1 . . . τi . . ., is written
as c0

τ0⇒ c1
τ1⇒ . . . ci

τi⇒ . . ., where the path is also referred to as a trace of P if
c0 = 〈g0, ω0〉 is the initial configuration.

3.3 Büchi Pushdown System (BPDS)

A BPDS BP, as defined in [1], is the Cartesian product of a BA B and an LPDS P ,
where the input alphabet of B is the power set of the set of propositions that may hold on
a configuration of P ; the input alphabet of P is the power set of the set of propositions
that may hold on a state of B; and two labeling functions are defined as follows:

144 J. Li et al.

– LP2B : (G × Γ) → Σ, associates the head of an LPDS configuration with the
set of propositions that hold on it. Given a configuration c ∈ Conf(P), we write
LP2B(c) instead of LP2B(head(c)) for simplicity.

– LB2P : Q → I , associates a state of B with the set of propositions that hold on it.

There are three definitions that help the presentation of BPDS:

Enabledness. A BA transition t = q
σ→ q′ ∈ δ is enabled by an LPDS configuration

c (resp. an LPDS rule r = c
τ
↪→ c′ ∈ Δ) iff σ ⊆ LP2B(c); otherwise t is disabled by

c (resp. r). The LPDS rule r is enabled by the BA state q (resp. the BA transition t) iff
τ ⊆ LB2P(q); otherwise, r is disabled by q (resp. t).

Indistinguishability. Given a BA transition t = q
σ→ q′ ∈ δ, an LPDS rule r = c

τ
↪→

c′ ∈ Δ is indistinguishable to t iff σ ⊆ LP2B(c)∩LP2B(c′), i.e., t is enabled by both c
and c′. On the other hand, t is indistinguishable to r iff τ ⊆ LB2P(q) ∩ LB2P(q′), i.e.,
r is enabled by both q and q′.
Independence. Given a BA transition t and an LPDS rule r, if they are indistinguishable
to each other, t and r are independent; otherwise if either t or r is not indistinguishable
to the other but they still enable each other, t and r are dependent. The independence
relation is symmetric.

A BPDS BP = ((G × Q), Γ, Δ′, 〈(g0, q0), ω0〉, F ′) is constructed by taking the
Cartesian product of B and P . A configuration of BP is denoted as 〈(g, q), ω〉 ∈ (G ×
Q) × Γ ∗. The set of all configurations is denoted as Conf(BP). 〈(g0, q0), ω0〉 is the
initial configuration. For all g ∈ G and γ ∈ Γ , 〈(g, q), γ〉 ∈ F ′ if q ∈ F . If we
strictly follow the idea of Cartesian product, a BPDS rule in Δ′ is constructed from
a BA transition in δ and an LPDS rule in Δ; therefore, both BA and LPDS have to
transition simultaneously so that BPDS can make a transition. In order to model the
asynchronous executions between BA and LPDS, we also need to introduce self-loops
to BA and LPDS respectively. The set of BPDS rules, Δ′, is constructed as follows:
given a BA transition t = q

σ→ q′ ∈ δ and an LPDS rule r = 〈g, γ〉 τ
↪→ 〈g′, ω〉 ∈ Δ that

enable each other,

– if r and t are dependent, add 〈(g, q), γ〉 ↪→BP 〈(g′, q′), ω〉 to Δ′, i.e., B and P
transition together.

– otherwise, add three rules to Δ′: (1) B transitions and P self-loops, i.e., 〈(g, q), γ〉
↪→BP 〈(g, q′), γ〉; (2) P transitions and B self-loops, i.e., 〈(g, q), γ〉 ↪→BP 〈(g′, q),
ω〉; and (3) B and P transition together, i.e., 〈(g, q), γ〉 ↪→BP 〈(g′, q′), ω〉.

The head of a configuration c = 〈(g, q), γv〉 (γ ∈ Γ, v ∈ Γ ∗) is 〈(g, q), γ〉 and denoted

as head(c). Similarly the head of a rule r = 〈(g, q), γ〉 τ
↪→ 〈(g′, q′), ω〉 is 〈(g, q), γ〉 and

denoted as head(r). Given the same rule r, for every v ∈ Γ ∗, the immediate successor
relation in BPDS is denoted as 〈(g, q), γv〉 ⇒BP 〈(g′, q′), ωv〉, where we say this state
transition follows the BPDS rule r. The reachability relation, ⇒∗

BP , is the reflexive and
transitive closure of the immediate successor relation. A path of BP is a sequence of
BPDS configurations, π = c0 ⇒BP c1 . . . ⇒BP ci ⇒BP . . ., where π satisfies both
the Büchi constraint and the BPDS loop constraint. Büchi constraint requires that if π is
infinitely long, it should have infinite many occurrences of BPDS configurations from
the set { c | head(c) ∈ F ′ }. Given that

Model Checking Büchi Pushdown Systems 145

– the projection of π on B, denoted as πB , is a sequence of state transitions of B, and
– the projection of π on P , denoted as πP , is a path of P ,2

BPDS loop constraint requires that if π is infinite, both πB and πP should also be
infinite. Since self-loop transitions are introduced to B and P when constructing BPDS,
we define BPDS loop constraint as a fairness constraint to guarantee that neither B
nor P can self-loop infinitely on these self-loop transitions. The BPDS path π is also
referred to as a trace of BP if c0 is the initial configuration.

4 Model Checking Algorithms for BPDS

4.1 Model Checking Problem

Our goal is to verify LTL properties on BPDS. Given a BPDS BP, an LTL formula ϕ,
and a labeling function Lϕ : Conf(BP) → 2At(ϕ) that associates a BPDS configura-
tion to a set of propositions that are true of it (At(ϕ) is the set of atomic propositions in
ϕ), there exists a BA Bϕ = (2At(ϕ), Qϕ, δϕ, qϕ0, Fϕ) that accepts the language L(¬ϕ);
therefore we can synthesize a transition system, B2P , from BP and Bϕ, where concep-
tually, Bϕ monitors the state transitions of BP.

We construct B2P = (G × Q × Qϕ, Γ , ΔB2P , 〈(g0, q0, qϕ0), ω0〉, FB2P), where
G×Q×Qϕ is the finite set of global states, Γ is the stack alphabet, ΔB2P is the finite set
of transition rules, 〈(g0, q0, qϕ0), ω0〉 is the initial configuration, and FB2P = F ′ × Fϕ.
The transition relation ΔB2P is constructed such that (c, qϕ) ↪→B2P (c′, q′ϕ) ∈ ΔB2P
iff c ↪→BP c′ ∈ Δ′, qϕ

σ→ q′ϕ ∈ δϕ, and σ ⊆ Lϕ(c). The set of all configurations is de-
noted as Conf(B2P) ⊆ G×Q×Qϕ×Γ ∗. For the purpose of simplicity, we also write
B2P = (P, Γ, ΔB2P , FB2P), where P = G × Q × Qϕ. The head of a configuration
c = 〈p, γv〉 (γ ∈ Γ, v ∈ Γ ∗) is 〈p, γ〉 and denoted as head(c). Similarly the head of a
rule r = 〈p, γ〉 ↪→B2P 〈p′, ω〉 is 〈p, γ〉 and denoted as head(r). The immediate succes-
sor relation and reachability relation are denoted respectively as ⇒B2P and ⇒∗

B2P . A
path of B2P is written as c0 ⇒B2P c1 ⇒B2P . . ., where the path is also referred to as
a trace of B2P if c0 is the initial configuration.

Definition 1. An accepting run of B2P is an infinite trace π such that (1) π has in-
finitely many occurrences of configurations from the set { c | head(c) ∈ FB2P }, i.e.,
the Büchi acceptance condition is satisfied; and (2) both πB and πP are infinite, i.e.,
the BPDS loop constraint is satisfied.

Definition 2. Given a BPDS BP and an LTL formula ϕ, the model checking problem
is to compute if the B2P model constructed from BP and ϕ has an accepting run.

4.2 Model Checking Algorithm

We define a binary relation ⇒r
B2P between two configurations of B2P as: c ⇒r

B2P c′,
iff ∃〈p, γ〉 ∈ FB2P such that c ⇒∗

B2P 〈p, γv〉 ⇒+
B2P c′, where v ∈ Γ ∗. A head 〈p, γ〉

is repeating if ∃v ∈ Γ ∗ such that 〈p, γ〉 ⇒r
B2P 〈p, γv〉. The set of repeating heads is

denoted as Rep(B2P). We refer to the path that demonstrates a repeating head as a
repeating path.

2 πB and πP do not contain any self-loop transitions introduced when constructing the BPDS.

146 J. Li et al.

Proposition 1. Given the initial configuration c0, B2P has an accepting run iff (1)
∃c0 ⇒∗

B2P c′ such that head(c′) ∈ Rep(B2P); and (2) a repeating path πs of head(c′)
satisfies the condition that |πB

s | �= 0 and |πP
s | �= 0. (see [11] for proof)

Our LTL model checking algorithm for BPDS has two phases. First, computing a spe-
cial set of repeating heads, R ⊆ Rep(B2P), where the repeating paths of the heads
satisfy the BPDS loop constraint. Second, checking if there exists a path of B2P that
leads from the initial configuration to a configuration c such that head(c) ∈ R.

In the first phase, we compute R. We construct a head reachability graph G = ((P ×
Γ), E), where the set of nodes are the heads of B2P , the set of edges E ⊆ (P × Γ) ×
{0, 1}3 × (P × Γ) denotes the reachability relation between the heads. Given a rule
r ∈ ΔB2P , we define three labeling functions: (1) FB2P(r) = 1 if head(r) ∈ FB2P
and FB2P(r) = 0 if otherwise; (2) RB(r) = 1 if r is constructed using a BA transition
from δ and RB(r) = 0 if otherwise; and (3) RP(r) = 1 if r is constructed using an
LPDS rule from Δ and RP(r) = 0 if otherwise. An edge (〈p, γ〉, (b1, b2, b3), 〈p′, γ′〉)
belongs to E iff ∃r = 〈p, γ〉 ↪→B2P 〈p′′, v1γ

′v2〉 and ∃π = 〈p′′, v1〉 ⇒∗
B2P 〈p′, ε〉,

where p, p′, p′′ ∈ P , γ, γ′ ∈ Γ , v1, v2 ∈ Γ ∗, ε denotes the empty string, and:

– b1 = 1, iff FB2P(r) = 1 or 〈p′′, v1〉 ⇒r
B2P 〈p′, ε〉;

– b2 = 1, iff RB(r) = 1 or |πB| �= 0;
– b3 = 1, iff RP(r) = 1 or |πP | �= 0;

This definition is based on the idea of backward reachability computation. Given the
head 〈p′, ε〉 reachable from 〈p′′, v1〉, if there exits a rule to indicate that 〈p′′, v1γ

′〉 is
reachable from 〈p, γ〉, then we know that the head 〈p′, γ′〉 (a.k.a., 〈p′, εγ′〉) is reachable
from the head 〈p, γ〉. During such a computation process, we use the three labels defined
above to record the information whether a path between the heads contains a final state
in FB2P and satisfies the BPDS loop constraint.

The set R can be computed by exploiting the fact that a head 〈p, γ〉 is repeating
and the repeating path satisfies the BPDS loop constraint iff 〈p, γ〉 is part of a Strongly
Connected Component (SCC) of G and this SCC has internal edges labeled by (1, ∗, ∗),
(∗, 1, ∗), and (∗, ∗, 1), where ∗ represents 0 or 1. Algorithm REPHEADS takes B2P as
the input and computes the set R. REPHEADS first utilizes the backward reachability
analysis algorithm of [2], a.k.a., pre∗, to compute the edges E of G. Given ΔB2P ,
pre∗ finds a set of rules trans ⊆ ΔB2P such that trans has rules all in the form
of 〈p, γ〉 ↪→B2P 〈p′, ε〉, also written as (p, γ, p′) for simplicity. With the three labels
defined above, we can further write a rule in trans as (p, [γ, b1, b2, b3], p′). Given such
a rule, the algorithm between line 7 and 19 computes the reachability relation between
heads. Specifically, when we see a rule 〈p1, γ1〉 ↪→B2P 〈p, γ〉 at line 11 or line 13, we
know 〈p′, ε〉 is reachable from 〈p1, γ1〉, so we add a new rule to trans; when we see a
rule 〈p1, γ1〉 ↪→B2P 〈p, γγ2〉 at line 15, we know 〈p′, γ2〉 is reachable from 〈p1, γ1〉, so
we add a new rule to Δlabel, where a rule in Δlabel describes the reachability relation
between two heads through more than one transitions; and rel stores the processed rules
from trans. Meanwhile, we also use the labels to record the information whether a final

Model Checking Büchi Pushdown Systems 147

REPHEADS(B2P = (P, Γ, ΔB2P , FB2P)B2P = (P, Γ, ΔB2P , FB2P)B2P = (P, Γ, ΔB2P , FB2P))
1: rel ← ∅, trans ← ∅, Δlabel ← ∅
2:
3: {First, compute the head reachability graph of B2P using pre∗}
4: for all r = 〈p, γ〉 ↪→B2P 〈p′, ε〉 ∈ ΔB2P do
5: {Add the labeled rule r (written in a simplified form) to trans}
6: trans ← trans

⋃{(p, [γ, FB2P(r), RB(r),RP (r)], p′)}
7: while trans �= ∅ do
8: pop t = (p, [γ, b1, b2, b3], p′) from trans;
9: if t /∈ rel then

10: rel ← rel
⋃{t};

11: for all r = 〈p1, γ1〉 ↪→B2P 〈p, γ〉 ∈ ΔB2P do
12: trans ← trans

⋃ {(p1, [γ1, b1

∨
FB2P(r), b2

∨
RB(r), b3

∨
RP(r)], p′)}

13: for all 〈p1, γ1〉 ↪
l−→B2P 〈p, γ〉 ∈ Δlabel, where l = (b′1, b′2, b′3) do

14: trans ← trans
⋃ {(p1, [γ1, b1

∨
b′1, b2

∨
b′2, b3

∨
b′3], p′)}

15: for all r = 〈p1, γ1〉 ↪→B2P 〈p, γγ2〉 ∈ ΔB2P do

16: Δlabel ← Δlabel

⋃{〈p1, γ1〉 ↪
l−→B2P 〈p′, γ2〉}, where

l = (b1

∨
FB2P (r), b2

∨
RB(r), b3

∨
RP(r))

17: {Match the new rule with the rules that have been processed}
18: for all (p′, [γ2, b

′
1, b

′
2, b

′
3], p′′) ∈ rel do

19: trans ← trans
⋃{(p1, [γ1, b1

∨
b′1

∨
FB2P (r),

b2

∨
b′2

∨
RB(r), b3

∨
b′3

∨
RP (r)], p′′)}

20: R ← ∅, E ← ∅
21: {Direct reachability between two heads, i.e., indicated by a rule of B2P}
22: for all r = 〈p, γ〉 ↪→B2P 〈p′, γ′v〉 ∈ ΔB2P , where v ∈ Γ ∗ do
23: E ← E

⋃{(〈p, γ〉, (FB2P (r),RB(r), RP(r)), 〈p′, γ′〉)}
24: {Indirect reachability between two heads, i.e., computed by pre∗}
25: for all 〈p, γ〉 l

↪→B2P 〈p′, γ′〉 ∈ Δlabel do
26: E ← E

⋃{(〈p, γ〉, l, 〈p′, γ′〉)}
27:
28: {Second, find R in G}
29: Find strongly connected components, SCC, in G = ((P × Γ), E)
30: for all C ∈ SCC do
31: if C has edges labeled by (1, ∗, ∗), (∗, 1, ∗), and (∗, ∗, 1), where ∗ represents 0 or 1 then
32: {C contains repeating heads whose repeating paths satisfy the BPDS loop constraint}
33: R ← R

⋃{the heads in C}
34: return R

state is found and the BPDS loop constraint is satisfied on the path between two heads.
Second, the algorithm detects all the SCCs in G and checks if one of the SCCs con-
tains repeating heads (required by the label (1, ∗, ∗)) and satisfies the BPDS constraint
(required by the two labels (∗, 1, ∗) and (∗, ∗, 1)).

Theorem 1. Algorithm REPHEADS takes O(|P |2|ΔB2P |) time and O(|P ||ΔB2P |)
space. (see [11] for proof)

In the second phase, after R is computed, we compute post∗({c0})
⋂

R, i.e., given the
initial configuration c0, ∃c0 ⇒∗ c′ such that head(c′) ∈ R. The forward reachability
algorithms, a.k.a., post∗, for PDS-equivalent models have been well studied. We use the

148 J. Li et al.

forward reachability algorithm [2] with a complexity of O((|P |+|ΔB2P |)3). Therefore,
the LTL model checking of BPDS has the complexity of O((|P | + |ΔB2P |)3).

5 Reduction

We present how to utilize the concept of static partial order reduction in the LTL−X

checking of BPDS. As illustrated in Figure 1, our reduction is based on the observation
that when B and P transition asynchronously, one can run while the other one self-
loops. Figure 1(a) is a complete state transition graph. There are three types of transition
edges: (1) a horizontal edge represents a transition when B transitions and P self-loops;

c0,0

cm,n

c1,0 c2,0 cm,0

cm,1

cm,2

c0,1

c0,2

c0,n c1,n c2,n
(a) Complete transition graph

c0,0

cm,n

c1,0 c2,0 cm,0

cm,1

cm,2

c0,1

c0,2

c0,n c1,n c2,n
(b) Reduce hori./diag. edges

Fig. 1. An example of reducing state transition edges

(2) a vertical edge rep-
resents a transition when
P transitions and B self-
loops; and (3) a diagonal
edge represents a transition
when B and P transition
together. If the graph sat-
isfies certain requirements
(see below), we can re-
duce many state transi-
tions while preserving the
LTL−X property to be
checked as illustrated in

Figure 1(b). The reduced BPDS is denoted as BPr, where only the BPDS rules are
reduced.

Definition 3. Given a BPDS rule r, V isProp(r) denotes the set of propositional vari-
ables whose value is affected by r. If V isProp(r) = ∅, r is said to be invisible.

Definition 4. Given a labeling function L, two infinite paths π1 = s0 → s1 → . . . and
π2 = q0 → q1 → . . . are stuttering equivalent, denoted as π1 ∼st π2, if there are two
infinite sequences of positive integers 0 = i0 < i1 < i2 < . . . and 0 = j0 < j1 < j2 <
. . . such that for every k ≥ 0, L(sik

) = L(sik+1) = . . . = L(sik+1−1) = L(qjk
) =

L(qjk+1) = . . . = L(qjk+1−1) [6].

It is already known that any LTL−X property is invariant under stuttering [6]; therefore,
given a trace π of BP, we want to guarantee that there always exists a trace of BPr

stuttering equivalent to π.
Given t = q

σ−→ q′ ∈ δ and a ∈ 2At(ϕ), for every r = 〈(g, q), γ〉 ↪→BP 〈(g, q′), γ〉 ∈
Δ′, if V isProp(r) = a �= ∅, t is said to be horizontally visible. Intuitively, horizontal
visibility describes the situation when propositional variables are evaluated only based
on the states of BA. This can help reduce many visible BPDS rules without affecting
the LTL−X properties to be verified, since such a horizontal transition can be shifted on
a BPDS trace to construct another stuttering equivalence trace. Given a BA transition t
and an LPDS rule r, Algorithm REDUCIBLERULES decides whether the corresponding
diagonal/horizontal BPDS rules are reducible candidates. We should assume that t and

Model Checking Büchi Pushdown Systems 149

REDUCIBLERULES(t ∈ δ, r ∈ Δt ∈ δ, r ∈ Δt ∈ δ, r ∈ Δ)
Require: t and r are independent.

1: ReduceDiag ← FALSE, ReduceHori ← FALSE
2: Let t = q → q′, r = 〈g, γ〉 τ

↪→ 〈g′, ω〉
3: r1 = 〈(g, q), γ〉 ↪→BP 〈(g, q′), γ〉 {Horizontal BPDS rules, see Figure 1(a)}
4: r2 = 〈(g, q), γ〉 ↪→BP 〈(g′, q), ω〉 {Vertical BPDS rules, see Figure 1(a)}
5: r3 = 〈(g, q), γ〉 ↪→BP 〈(g′, q′), ω〉 {Diagonal BPDS rules, see Figure 1(a)}
6: if V isProp(r1) = ∅ and V isProp(r2) = ∅ and V isProp(r3) = ∅ then
7: {If r1, r2, and r3 are all invisible}
8: ReduceDiag ← TRUE, ReduceHori ← TRUE
9: else

10: if V isProp(r1) = V isProp(r3) or V isProp(r2) = V isProp(r3) or
V isProp(r1) = ∅ or V isProp(r2) = ∅ then

11: ReduceDiag ← TRUE
12: if r1 is invisible or t is horizontally visible then
13: ReduceHori ← TRUE
14: return (ReduceDiag, ReduceHori)

r are independent; otherwise, since B and P must transition together when t and r are
dependent, no BPDS rule can be reduced. In this algorithm, at line 8, if there is no
visible BPDS rules, both the horizontal rule r1 and the diagonal rule r3 are reducible
candidates; at line 11, r3 is a reducible candidate if it is replaceable by horizontal and
vertical rules; at line 13, r1 is a reducible candidate if it is either invisible or constructed
from a BA transition (i.e., t) that is horizontally visible.

Definition 5. We define three sets of heads, SensitiveSet, V isibleSet, and LoopSet
on Conf(P), as follows:

– SensitiveSet = { head(〈g0, ω0〉) }
⋃ { head(c′) | ∃r = c

τ
↪→ c′ ∈ Δ, ∃t ∈ δ, r

and t are dependent }, where 〈g0, ω0〉 is the initial configuration of P;
– V isibleSet = { head(〈g′, ω〉) | ∃r = 〈(g, q), γ〉 ↪→BP 〈(g′, q′), ω〉 ∈ Δ′ visible

to ϕ; and r is irreducible according to Algorithm REDUCIBLERULES };
– LoopSet = { h | for every SCC C in GP , pick a head h from C }, where GP is the

head reachability graph of P and there is no preference on how h is selected.

SensitiveSet is introduced to preserve the reachability [3]; the concept of V isibleSet
is similar to that of SensitiveSet, i.e., preserving the reachability of BPDS paths right
after a visible transition that is not reduced according REDUCIBLERULES; LoopSet,
similar to the concept of cycle closing condition [4], is introduced to satisfy the BPDS
loop constraint when a loop of P is involved in the accepting run.

Algorithm BPDSRULESVIASPOR applies the reduction following the idea illus-
trated in Figure 1(b), where the horizontal/diagonal edges are reduced. At line 6, since
the LPDS rule r and the BA transition t are dependent, B and P must transition to-
gether; at line 9, we construct a vertical rule to represent the asynchronous situation
when P transitions and B self-loops. Since BPDSRULESVIASPOR follows the reduc-
tion idea of Figure 1(b), all vertical BPDS rules are preserved; at line 10, we invoke
REDUCIBLERULES, to decide if the horizontal/diagonal BPDS rules are reducible can-
didates; at line 13, we construct a diagonal BPDS rule if necessary; at line 16, we

150 J. Li et al.

BPDSRULESVIASPOR(δ × Δδ × Δδ × Δ)
1: Δsync ← ∅, Δvert ← ∅, Δhori ← ∅, Δdiag ← ∅
2: for all r = 〈g, γ〉 τ

↪→ 〈g′, ω〉 ∈ Δ do
3: for all t = q

σ→ q′ ∈ δ and σ ⊆ LP2B(〈g, γ〉) and τ ⊆ LB2P(q) do
4: if r and t are dependent then
5: {B and P must transition together}
6: Δsync ← Δsync

⋃{〈(g, q), γ〉 ↪→BP 〈(g′, q′), ω〉}
7: else
8: {P transitions and B self-loops}
9: Δvert ← Δvert

⋃{〈(g, q), γ〉 ↪→BP 〈(g′, q), ω〉}
10: (ReduceDiag,ReduceHori) ← REDUCIBLERULES(t,r)
11: if ReduceDiag = FALSE then
12: {B and P transition together}
13: Δdiag ← Δdiag

⋃{〈(g, q), γ〉 ↪→BP 〈(g′, q′), ω〉}
14: if ReduceHori = FALSE or

〈g, γ〉 ∈ SensitiveSet
⋃

V isibleSet
⋃

LoopSet then
15: {B transitions and P self-loops}
16: Δhori ← Δhori

⋃{〈(g, q), γ〉 ↪→BP 〈(g, q′), γ〉}
17: Δ′

r ← Δsync

⋃
Δvert

⋃
Δhori

⋃
Δdiag

18: return Δ′
r

construct a horizontal BPDS rule if necessary. Note that even if REDUCIBLERULES

returns TRUE for ReduceHori, we still have to preserve this horizontal BPDS rule if
head(r) belongs to SensitiveSet, V isibleSet, or LoopSet.

Theorem 2. Algorithm BPDSRULESVIASPOR preserves all LTL−X properties to be
verified on BP. (see [11] for proof.)

Complexity analysis. In BPDSRULESVIASPOR, let nsync be the number of BPDS
rules that are generated from dependent BA transitions and LPDS rules (at line 6),
nv be the number of BPDS rules related to visible transition rules (i.e., when RE-
DUCIBLERULES returns FALSE for ReduceDiag or ReduceHori), nsvl be the num-
ber of BPDS rules associated to SensitiveSet, V isibleSet, and LoopSet (at line 16
when ReduceHori is TRUE). We have |Δhori

⋃
Δdiag| = nv + nsvl and |Δsync| =

nsync. As illustrated in Figure 1, asynchronous transitions can be organized as triples
where each one includes a vertical transition, a horizontal transition, and a diagonal
transition, so we have |Δvert| = |δ×Δ|−nsync

3 . The number of rules generated by

BPDSRULESVIASPOR is |Δ′
r
| = nsync + |δ×Δ|−nsync

3 + nv + nsvl = 2
3nsync +

|δ×Δ|
3 +nv +nsvl. The number of transition rules reduced is |Δ′|− |Δ′

r| = 2
3 |δ×Δ|−

nv − 2
3nsync − nsvl. Therefore, our reduction is effective when the following criteria

have small sizes: (1) BPDS rules visible to ϕ; (2) dependent transitions of B and P ; and
(3) loops in P .

6 Implementation

As a proof of concept, we have realized the LTL checking algorithm for BPDS as well
as the static partial order reduction algorithm in our co-verification tool, CoVer. The im-
plementation is based on the Moped model checker [2]. We specify the LPDS P using

Model Checking Büchi Pushdown Systems 151

Boolean programs and the BA B using Boolean programs with the semantic extension
of relative atomicity [3], i.e., hardware transitions are modeled as atomic to software.
In this section, we first present an example of a BPDS model specified in Boolean pro-
grams. Second, we illustrate how we specify LTL properties on such a BPDS model.
Third, we elaborate on how CoVer generates a reduced BPDS model for the verification
of an LTL−X formula.

6.1 Specification of the BA B and LPDS P
We specify B and P using an approach similar to that described in [3], where the state
transitions of B are described by atomic functions. Figure 2 demonstrates such an exam-
ple. The states ofB are represented by global variables. All the functions that are labeled

void main() begin
decl v0,v1,v2 := 1,1,1;
reset();
// wait for the reset to complete
v1,v0 := status();
while(!v1|v0) do v1,v0 := status(); od
// wait for the counter to increase
v2,v1,v0 := rd reg();
while(!v2) do v2,v1,v0 := rd reg(); od
// if the return value is valid
if (v1|v0) then

error: skip;
fi
exit: return;

end

// represent hardware registers
decl c0, c1, c2, r, s;

atomic void inc reg()
begin

if (!c0) then c0 := 1;
elsif (!c1) then c1,c0 := 1,0;
elsif (!c2) then

c2,c1,c0 := 1,0,0; fi
end

atomic void reset()
begin reset cmd: r := 1; end

atomic bool<3> rd reg()
begin return c2,c1,c0; end

atomic bool<2> status()
begin return s,r; end

// hardware instrumentation function
void HWInstr() begin

while(∗) do HWModel(); od
end

// asynchronous hardware model
atomic void HWModel() begin
if (r) then
reset act: c2,c1,c0,r,s := 0,0,0,0,1;

elsif(s) then inc reg(); fi
end

Fig. 2. An example of B and P both specified in Boolean programs

by the keyword atomic describe the state transitions of B. Such kind of functions are
also referred to as transaction functions. The function main models the behavior of P ,
where main has three steps: (1) resets the state of B by invoking the function reset;
(2) waits for the reset to complete; (3) waits for the counter of B to increase above 4, i.e.,
v2==1. When a transaction function, such as reset or rd reg, is invoked from P , it
represents a dependent (a.k.a., synchronous) transition between B and P . On the other
hand, the transaction function HWModel represents independent (a.k.a., asynchronous)
transitions of B with respect to P . In this example, since the dependent transitions of B
and P are already specified as direct function calls, the rest of the Cartesian product is to
instrument P with the independent transitions of B, i.e., add function call to HWInstr
after each statement in main.

6.2 Specification of LTL Properties

Without loss of generality, we specify LTL properties on the statement labels. For exam-
ple, we write an LTL formula, F exit, which asserts that the function main always ter-
minates. This property is asserted on a very common scenario: when software waits for
hardware to respond, the waiting thread should not hang. Verification of this property
requires relatively accurate hardware models. As illustrated in Figure 2, the transaction
function HWModel describes a hardware model that responds to software reset imme-
diately; thus, the first while-loop in main will not loop for ever. Since the hardware

152 J. Li et al.

will start to increment its register after reset, the second while-loop will also termi-
nate. Therefore, F exit holds. Note that the non-deterministic while-loop in HWInstr
will repeatedly call HWModel, which is guaranteed by the BPDS loop constraint and
the fairness between hardware state transitions (i.e., transitions specified by HWModel
should not be starved by self-loop transitions introduced when constructing a BPDS).

There may exist a hardware design that cannot guarantee immediate responses to
software reset commands. Therefore, delays should be represented in the hardware
model. Figure 3 illustrates a transaction function HWModelSlow which describes a
hardware design that cannot guarantee immediate responses to reset commands.

atomic void HWModelSlow() begin
if (r) then

if (∗) then reset act: c2,c1,c0,r,s := 0,0,0,0,1; fi
elsif(s) then inc reg(); fi

end

Fig. 3. Hardware does not respond to reset
immediately

The property F exit fails on the BPDS model
that uses HWModelSlow for hardware, since
the hardware can delay the reset operation
infinitely. In practice, design engineers may
want to assume that: hardware can delay
the reset operation; therefore, software should
wait for reset completion; however hardware
should not delay the reset operation for ever.
CoVer accepts such assumptions as LTL for-

mulae. Under the assumption G (reset cmd → (F reset act)), F exit will hold on the
BPDS model. Such kind of assumptions are also considered as the Büchi constraint
specified on the hardware model.

As another example, we write an LTL formula, G !error, asserting that the labeled
statement in main is not reachable. Verification of G !error fails on the BPDS model in
Figure 2. Since hardware is asynchronous with software when incrementing the register,
it is impossible for software to control how fast the register is incremented. Therefore,
when software breaks from the second while-loop, the hardware register may have al-
ready been incremented to 5, i.e., (v2==1)&&(v1==0)&&(v0==1).

6.3 Reduction during the Cartesian Product

In order to make the Cartesian product of B and P , we need to add function call to
HWInstr after every software statement. As discussed in Section 5, certain BPDS
transitions are unnecessary to be generated for such a product, i.e., it is unnecessary to
call HWInstr after every software statement to verify an LTL−X property. We define
the concrete counterparts corresponding to the concepts defined on Conf(P):

Software synchronization points [3]. Corresponding to SensitiveSet, software syn-
chronization points are defined as a set of program locations where the program state-
ments right before these locations may be dependent with some of the hardware state
transitions. In general, there are three types of software synchronization points: (1) the
point where the program is initialized; (2) those points right after software reads/writes
hardware interface registers; and (3) those points where hardware interrupts may affect
the verification results. We may understand the third type in such a way that the effect
of interrupts (by executing interrupt service routines) may influence certain program
statements, e.g., the statements that access global variables.

Model Checking Büchi Pushdown Systems 153

Software visible points. Corresponding to V isibleSet, we define software visible
points as a set of program locations right after the program statements whose labels
are used in the LTL property. For example, in Figure 2 the program location right after
the statement error can be a software visible point. However, the location right after
the statement reset act cannot be a software visible point, since this statement is in a
transaction function for B.

Software loop points. Corresponding to LoopSet, we define software loop points as
a set of program locations involved in program loops. The precise detection of those
loops needs to explore the program’s state graph, which is inefficient. Therefore, we
try to identify a super set LoopSet′ ⊇ LoopSet using heuristics. A program location is
included into the super set if it is at (1) the point right before the first statement of a while
loop; (2) the point right before a backward goto statement; or (3) the entry of a recursive
function, which can be detected by analyzing the call graph between functions.

As for implementation, CoVer first automatically detects the software synchroniza-
tion points, visible points, and loop points in the Boolean program of P and then inserts
the function calls to HWInstr only at those detected points. Note that some transi-
tions described by HWModel (called via HWInstr) may be visible when a statement

decl c0,c1,c2,r,s; // hardware registers
decl g; // software global variable
void main() begin

decl v0,v1,v2 := 1,1,1;
reset();
v1,v0 := status();
while(!v1|v0) do v1,v0 := status(); od

// call the first level
level<1>();

v2,v1,v0 := rd reg();
while(!v2) do v2,v1,v0 := rd reg(); od
if (v1|v0) then error: skip; fi
exit: return;

end

void level<i>()
begin

decl v0,v1,v2,v3,v4,v5;
v2,v1,v0 := rd reg();
v5,v4,v3 := rd reg();
v2,v1,v0 :=
gcd<i>(v5,v4,v3,

v2,v1,v0);

if(*) then reset(); fi

if(g) then
g := (v3 != v0);
<stmt>;

fi
end

Fig. 4. The BPDS template BPDS<N> for evaluation

label in HWModel is used in
the LTL formula, e.g., F !re-
set act. However, such BA tran-
sitions are horizontally visible,
since reset act is not af-
fected by any transition of P .
This is why function calls to
HWInstr can be reduced with-
out affecting the LTL−X proper-
ties even if HWModel describes
visible transitions. Compared to
the trivial approach that inserts
HWInstr after every software
statement, our reduction can sig-
nificantly reduce the complexity

of the verification model, since the number of the instrumentation points are usually
very small in common applications.

7 Evaluation

We have designed a synthetic BPDS template BPDS<N> for N > 0 to evaluate our
algorithms. As illustrated in Figure 4, this template is similar to the BPDS in Figure 2.
The major difference is between the models of P . BPDS<N> has two function templates
level<N> and gcd<N> for P , where each of the function templates has N instances.
For 0 < i ≤ N , level<i> calls gcd<i> which is the ith instance of gcd<N>
that computes the greatest common divisor (implementation of gcd<N> is omitted).

154 J. Li et al.

Table 1. LTL checking of BPDS<N>

N (sec/MB)
LTL Property 500 1000 2000

No Reduction Reduction No Reduction Reduction No Reduction Reduction

F exit 177.9/49.1 55.6/27.8 606.8/98.1 100.9/55.6 1951.5/196.3 231.5/111.2
G(reset cmd → (F reset act)) 100.8/51.1 19.2/31.6 439.0/102.1 37.2/63.2 1742.1/204.3 115.0/126.5

F level N 165.3/49.1 52.9/27.8 524.1/98.1 99.8/55.6 1934.1/196.3 230.7/111.2
G !level N 94.8/43.4 10.7/25.0 404.0/86.2 22.3/49.9 1728.9/172.5 84.5/99.9
G !error 96.6/42.4 10.1/24.8 402.6/84.8 21.2/49.2 1719.9/169.8 81.5/98.5

For 0 < j < N , the instance of <stmt> in the body of the function level<j> is re-
placed by a call to level<j+1>. The instance of <stmt> in the body of level<N>
is replaced by skip. The design of BPDS<N> mimics the common scenarios in co-
verification: since hardware and software are mostly asynchronous, there are many soft-
ware statements independent with hardware transitions.

Our evaluation runs on a Lenovo ThinkPad notebook with Dual Core 2.66GHz CPU
and 4GB memory. Table 1 presents the statistics of verifying five LTL formulae on
the BPDS models generated from BPDS<N>, where some of the LTL formulae are
discussed in Section 6. The statistics suggests that our reduction algorithm can reduce
the verification cost by 80% in time usage and 35% in memory usage on average.

Table 2 presents the statistics for the verification of BPDS models generated from
BPDS Slow<N>, a template that differs from BPDS<N> only in the hardware model.
BPDS Slow<N> uses the hardware model illustrated in Figure 3. As discussed in
Section 6, the verification of the property A1 or A2 will fail on the BPDS models
generated from BPDS Slow<N>, since the hardware cannot guarantee an immediate
response to the software reset command. However, by assuming A2, the verification
of A1 should pass. Obviously, the verification of this property, denoted as ϕ (includ-
ing both A1 and A2), costs more time and memory compared to other properties, be-
cause ϕ is more complex than other properties. Nevertheless, we can infer from the
two tables that our reduction algorithm is very effective in reducing the verification
cost. For example, without the reduction, verification of the property ϕ gets a spaceout
failure for N = 2000, i.e., CoVer fails to allocate more memory from the Operating
System.

Table 2. LTL checking of BPDS Slow<N> using the hardware model of Figure 3

N (sec/MB)
LTL Property 500 1000 2000

No Reduction Reduction No Reduction Reduction No Reduction Reduction

A1:F exit 186.5/49.1 38.1/27.8 576.4/98.1 98.5/55.6 1913.5/196.3 207.1/111.2
A2:G(reset cmd → (F reset act)) 143.1/61.0 28.3/35.5 587.1/122.0 64.3/71.0 1778.7/203.5 164.1/142.0
A1 using A2 as the assumption 1264.0/223.4 255.8/109.5 3750.3/446.7 565.6/218.9 N/A/spaceout 1260.8/437.7

F level N 181.9/49.1 42.2/27.8 588.6/98.1 90.8/55.6 1908.4/196.3 198.6/111.2
G !level N 96.7/43.4 12.1/25.0 414.6/86.2 26.9/49.9 1679.7/172.5 91.5/99.9
G !error 95.0/42.5 11.5/24.8 414.2/84.8 25.3/49.2 1672.6/169.8 88.9/98.5

Model Checking Büchi Pushdown Systems 155

8 Conclusion and Future Work

We have developed an approach to LTL model checking of BPDS and designed a re-
duction algorithm to reduce the verification cost. As a proof of concept, we have im-
plemented our approach in our co-verification tool, CoVer. CoVer not only verifies LTL
properties on the BPDS models represented by Boolean programs, but also accepts as-
sumptions in LTL formulae. The evaluation demonstrates that our reduction algorithm
is very effective in reducing the verification cost.

Although illustrated using Boolean programs, our approach can also be applied with
other programming languages such as C. In other words, the BA and LPDS can be
described using the C language, and the Cartesian product can be made through instru-
menting the software LPDS model with the hardware BA model (as used in [3]). How-
ever, one challenge to this approach is to support the efficient abstraction/refinement,
since most loops need to be fully unrolled in liveness property checking. There are two
options for future work: (1) implement an aggressive abstraction/refinement algorithm
for loop computation in tools such as SLAM [7] (may be insufficient when a ranking
function is required); or (2) utilize termination checking tools such as Terminator [9]
which analyzes loops by checking termination arguments (i.e., ranking functions).

Acknowledgement. This research received financial support from National Science
Foundation of the United States (Grant #: 0916968).

References

1. Li, J., Xie, F., Ball, T., Levin, V., McGarvey, C.: An automata-theoretic approach to hard-
ware/software co-verification. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS,
vol. 6013, pp. 248–262. Springer, Heidelberg (2010)

2. Schwoon, S.: Model-Checking Pushdown Systems. PhD thesis, Technische Universität
München, Institut für Informatik (2002)

3. Li, J., Xie, F., Ball, T., Levin, V.: Efficient Reachability Analysis of Büchi Pushdown Systems
for Hardware/Software Co-verification. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 339–353. Springer, Heidelberg (2010)

4. Kurshan, R.P., Levin, V., Minea, M., Peled, D., Yenigün, H.: Static partial order reduction.
In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, p. 345. Springer, Heidelberg (1998)

5. Kuznetsov, V., Chipounov, V., Candea, G.: Testing closed-source binary device drivers with
DDT. In: USENIX Annual Technical Conference (2010)

6. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press, Cambridge (1999)
7. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., Ondrusek, B.,

Rajamani, S.K., Ustuner, A.: Thorough static analysis of device drivers. In: EuroSys (2006)
8. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Applica-

tion to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS,
vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

9. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In: PLDI
(2006)

10. Kurshan, R.P.: Computer-Aided Verification of Coordinating Processes: The Automata-
Theoretic Approach. Princeton University Press, Princeton (1994)

11. Li, J.: An Automata-Theoretic Approach to Hardware/Software Co-verification. PhD thesis,
Portland State University (2010)

Modeling with Plausibility Checking: Inspecting
Favorable and Critical Signs for Consistency

between Control Flow and Functional Behavior

Claudia Ermel1, Jürgen Gall1, Leen Lambers2, and Gabriele Taentzer3

1 Technische Universität Berlin, Germany
claudia.ermel@tu-berlin.de, jgall@cs.tu-berlin.de

2 Hasso-Plattner-Institut für Softwaresystemtechnik GmbH, Potsdam, Germany
leen.lambers@hpi.uni-potsdam.de

3 Philipps-Universität Marburg, Germany
taentzer@informatik.uni-marburg.de

Abstract. UML activity diagrams are a wide-spread modelling tech-
nique to capture behavioral aspects of system models. Usually, pre- and
post-conditions of activities are described in natural language and are
not formally integrated with the static domain model. Hence, early con-
sistency validation of activity models is difficult due to their semi-formal
nature. In this paper, we use integrated behavior models that integrate
activity diagrams with object rules defining sets of actions in simple ac-
tivities. We formalize integrated behavior models using typed, attributed
graph transformation. It provides a basis for plausibility checking by
static conflict and causality detection between specific object rules, tak-
ing into account their occurrence within the control flow. This analysis
leads to favorable as well as critical signs for consistency of the integrated
behavior model. Our approach is supported by ActiGra, an Eclipse

plug-in for editing, simulating and analyzing integrated behavior models.
It visualizes favorable and critical signs for consistency in a convenient
way and uses the well-known graph transformation tool AGG for rule
application as well as static conflict and causality detection. We validate
our approach by modeling a conference scheduling system.

Keywords: graph transformation, activity model, plausibility, conflict
and causality detection, object rule, AGG.

1 Introduction

In model-driven software engineering, models are key artifacts which serve as ba-
sis for automatic code generation. Moreover, they can be used for analyzing the
system behavior prior to implementing the system. In particular, it is interesting
to know whether integrated parts of a model are consistent. For behavioral mod-
els, this means to find out whether the modeled system actions are executable
in general or under certain conditions only. For example, an action in a model
run might prevent one of the next actions to occur because the preconditions

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 156–170, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Behavior Modeling with Plausibility Checking 157

of this next action are not satisfied any more. This situation is usually called a
conflict. Correspondingly, it is interesting to know which actions do depend on
other actions, i.e. an action may be performed only if another action has occurred
before. We call such situations causalities. The aim of this paper is to come up
with a plausibility checking approach regarding the consistency of the control
flow and the functional behavior given by actions bundled in object rules. Ob-
ject rules define a pre-condition (which object pattern should be present) and a
post-condition (what are the local changes). Intuitively, consistency means that
for a given initial state there is at least one model run that can be completed
successfully.

We combine activity models defining the control flow and object rules in an
integrated behavior model, where an object rule is assigned to each simple activ-
ity in the activity model. Given a system state typed over a given class model,
the behavior of an integrated behavior model can be executed by applying the
specified actions in the pre-defined order. The new plausibility check allows us to
analyze an integrated behavior model for favorable and critical signs concerning
consistency. Favorable signs are e.g. situations where object rules are triggered
by other object rules that precede them in the control flow. On the other hand,
critical signs are e.g. situations where an object rule causes a conflict with a
second object rule that should be applied after the first one along the control
flow, or where an object rule depends causally on the effects of a second object
rule which is scheduled by the control flow to be applied after the first one. An
early feedback to the modeler indicating this kind of information in a natural
way in the behavioral model is desirable to better understand the model.

In [10], sufficient consistency criteria for the executability of integrated be-
havior models have been developed. However, especially for an infinite set of
potential runs (in case of loops), this technique may lead to difficulties. More-
over, it is based on sufficient criteria leading to false negatives. In this paper,
we follow a different approach, focusing on plausibility reasoning on integrated
behavior models and convenient visualization of the static analysis results. This
approach is complementary to [10], since we opt for back-annotating light-weight
static analysis results allowing for plausibility reasoning, also in case of lacking
consistency analysis results from [10]1.

This light-weight technique seems to be very appropriate to allow for early
plausibility reasoning during development steps of integrated behavior models.
We visualize the results of our plausibility checks in an integrated development
environment called ActiGra

2. Potential inconsistencies and reasons for consis-
tency are directly visualized within integrated behavior models, e.g. as colored
arcs between activity nodes and by detailed conflict and causality views.

Structure of the paper: Section 2 presents our running example. In Section 3, we
introduce our approach to integrated behavior modeling and review the under-
lying formal concepts for static analysis based on graph transformation as far as

1 In [4], we explain in more detail how plausibility reasoning is related to the sufficient
criteria in [10].

2 http://tfs.cs.tu-berlin.de/actigra

158 C. Ermel et al.

needed. Different forms of plausibility checking are presented in Section 4, where
we validate our approach checking a model of a conference scheduling system.
A section on related approaches (Section 5) and conclusions including directions
for future work (Section 6) close the paper.

2 Case Study: A Conference Scheduling System

This case study3 models planning tasks for conferences. Its class model is shown
in Figure 1 (a). A Conference contains Persons, Presentations, Sessions and
Slots. A Person gives one or more Presentations and may chair arbitrary many
Sessions. Note that a session chair may give one or more presentations in the
session he or she chairs. A Presentation is in at most one Session and scheduled
in at most one Slot. Slots are linked as a list by next arcs and used by Sessions.

Fig. 1. Class and instance model for the Conference Scheduling System

Figure 1 (b) shows a sample object model of an initial session plan before
presentations are scheduled into time slots4. This object model conforms to the
class model. The obvious task is to find a valid assignment for situations like
the one in Figure 1 (b) assigning the presentations to available time slots such
that the following conditions are satisfied: (1) there are no simultaneous presen-
tations given by the same presenter, (2) no presenter is chairing another session
running simultaneously, (3) nobody chairs two sessions simultaneously, and (4)
3 Taken from the tool contest on Graph-Based Tools 2008 [17].
4 Due to space limitations, we do not show name attributes here.

Behavior Modeling with Plausibility Checking 159

the presentations in one session are given not in parallel but in consecutive time
slots. Moreover, it should be possible to generate arbitrary conference plans like
the one in Figure 1 (b). This is useful to test the assignment procedure.

3 Integrating Activity Models with Object Rules

Our approach to behavior modeling integrates activity models with object rules,
i. e. the application order of object rules is controlled by activity models. An
object rule defines pre- and post-conditions of activities by sets of actions to be
performed on object models. An object rule describes the behavior of a simple
activity and is defined over a given class model. The reader is supposed to be
familiar with object-oriented modelling using e.g. the UML [16]. Therefore, we
present our approach to integrated behavior modeling from the perspective of
its graph transformation-based semantics. In the following, we formalize class
models by type graphs and object rules by graph transformation rules to be able
to use the graph transformation theory [2] for plausibility checking.

3.1 Graphs and Graph Transformation

Graphs are often used as abstract representation of diagrams. When formalizing
object-oriented modeling, graphs occur at two levels: the type level (defined
based on class models) and the instance level (given by all valid object models).
This idea is described by the concept of typed graphs, where a fixed type graph TG
serves as an abstract representation of the class model. Types can be structured
by an inheritance relation, as shown e.g. in the type graph for our Conference
Scheduling model in Figure 1. Instance graphs of a type graph have a structure-
preserving mapping to the type graph. The sample session plan in Figure 1 is
an instance graph of the Conference Scheduling type graph.

Graph transformation is the rule-based modification of graphs. Rules are ex-
pressed by two graphs (L, R), where L is the left-hand side of the rule and R is
the right-hand side. Rule graphs may contain variables for attributes. The left-
hand side L represents the pre-conditions of the rule, while the right-hand side
R describes the post-conditions. L∩R (the graph part that is not changed) and
the union L ∪ R should form a graph again, i.e., they must be compatible with
source, target and type settings, in order to apply the rule. Graph L \ (L ∩ R)
defines the part that is to be deleted, and graph R \ (L ∩R) defines the part to
be created. Furthermore, the application of a graph rule may be restricted by
so-called negative application conditions (NACs) which prohibit the existence of
certain graph patterns in the current instance graph. Note that we indicate graph
elements common to L and R or common to L and a NAC by equal numbers.

Figure 2 shows graph rule initial-schedule modeling the scheduling of the first
presentation of some session to a slot. The numerous conditions for this schedul-
ing step stated in Section 2 are modelled by 8 NACs. The NAC shown in Figure 2
means that the rule must not be applied if the presenter holds already another
presentation in the same slot5.
5 For the complete case study with all rules and NACs see [1].

160 C. Ermel et al.

Fig. 2. Graph rule initial-schedule

A direct graph transformation G
r,m �� H between two instance graphs G

and H is defined by first finding a match m of the left-hand side L of rule r
in the current instance graph G such that m is structure-preserving and type-
compatible and satisfies the NACs (i.e. the forbidden graph patterns are not
found in G). We use injective matches only. Attribute variables used in graph
object o ∈ L are bound to concrete attribute values of graph object m(o) in G.
The resulting graph H is constructed by (1) deleting all graph items from G that
are in L but not also in R; (2) adding all those new graph items that are in R
but not also in L; (3) setting attribute values of preserved and created elements.

A reason for non-determinism of graph transformation systems is the potential
existence of several matches for one rule. If two rules are applicable to the same
instance graph, they might be applicable in any order with the same result
(parallel independence). If this is not the case, then we say that the corresponding
rules are in conflict, since one rule may disable the other rule. If two rules are
applicable one after the other to the same graph, it might be possible to switch
their application order without changing the result (sequential independence).
Conversely, it might be the case that one rule may trigger the application of
another rule or may be irreversible after the application of another rule. In this
case, this sequence of two rules is said to be causally dependent. See [13] for a
formal description of conflict and causality characterizations6.

The static analysis of potential conflicts and causalities between rules is sup-
ported in AGG7, a tool for specifying, executing and analysing graph transfor-
mation systems. This analysis is based on critical pair analysis (CPA) [2,8] and
critical sequence analysis (CSA) [13], respectively. Intuitively, each critical pair
or sequence describes which rule elements need to overlap in order to cause a
specific conflict or causality when applying the corresponding rules.

3.2 Integrated Behavior Models

As in [11], we define well-structured activity models as consisting of a start ac-
tivity s, an activity block B, and an end activity e such that there is a transition
between s and B and another one between B and e. An activity block can
be a simple activity, a sequence of blocks, a fork-join structure, decision-merge
structure, and loop. In addition, we allow complex activities which stand for
nested well-structured activity models. In this hierarchy, we forbid nesting cy-
cles. Activity blocks are connected by transitions (directed arcs). Decisions have
6 The different types of conflicts and causalities are reviewed also in [4].
7 AGG: http://tfs.cs.tu-berlin.de/agg

http://tfs.cs.tu-berlin.de/agg

Behavior Modeling with Plausibility Checking 161

an explicit if -guard and implicit else-guard which equals the negated if -guard,
and loops have a loop-guard with corresponding implicit else-guard.

In our formalization, an integrated behavior model is a well-structured activity
model A together with a type graph such that each simple activity a occurring in
A is equipped with a typed graph transformation rule ra and each if or loop guard
is either user-defined or equipped with a typed guard pattern. We have simple
and application-checking guard patterns: a simple guard pattern is a graph that
has to be found; an application-checking guard pattern is allowed for a transition
entering a loop or decision followed by a simple activity in the loop-body or if-
branch, respectively, and checks the applicability of this activity; it is formalized
by a graph constraint [7] and visualized by the symbol [∗]. User-defined guards
are evaluated by the user at run time to true or false. An initial state for an
integrated behavior model is given by a typed instance graph.

Example 1. Let us assume the system state shown in Figure 1 as initial state of
our integrated behavior model. The activity diagram ScheduleControl is shown
in the left part of Figure 3 (please disregard the colors for now). Its first step
performs the initial scheduling of sessions and presentations into time slots by
applying rule initial-schedule (see Figure 2) as long as possible.

Fig. 3. Activity model ScheduleControl and rule scheduleAfter

As second step, two loops are executed taking care of grouping the remaining
presentations of a session into consecutive time slots, i.e. a presentation is sched-
uled in a free time slot either directly before or after a slot where there is already
a scheduled presentation of the same session. Rule scheduleAfter is shown in the
right part of Figure 3. Rule scheduleBefore looks quite similar, only the direc-
tion of the next edge between the two slots is reversed. Both rules basically have
the same NACs as rule initialSchedule ensuring the required conditions for the
schedule (see [1]). The NAC shown here ensures that the session chair does not
hold a presentation in the time slot intended for the current scheduling.

As in [11] we define a control flow relation on integrated behavior models.8

Intuitively, two activities or guards (a, b) are control flow-related whenever b

8 In contrast to [11], we include guards into the control flow relation.

162 C. Ermel et al.

is performed or checked after a. Moreover, we define an against-control flow
relation which contains all pairs of activities or guards that are reverse to the
control flow relation.

The control flow relation CFRA of an activity model A contains all pairs (x, y)
where x and y are activities or guards such that (1)-(4) holds: (1) (x, y) ∈ CFRA

if there is a transition from activity x to activity y. (2) (x, y) ∈ CFRA if activity
x has an outgoing transition with guard y. (3) (x, y) ∈ CFRA if activity y has
an incoming transition with guard x. (4) If (x, y) ∈ CFRA and (y, z) ∈ CFRA,
then also (x, z) ∈ CFRA. The against-control flow relation ACFRA of an activity
model A contains all pairs (x, y) such that (y, x) is in CFRA.

3.3 Simulation of Integrated Behavior Models

The semantics Sem(A) of an integrated behavior model A consisting of a start
activity s, an activity block B, and an end activity e is the set of sequences SB,
where each sequence consists of rules alternated with graph constraints (stem-
ming from guard patterns), generated by the main activity block B (for a formal
definition of the semantics see [11]).9 For a block being a simple activity a in-
scribed by rule ra, SB = {ra}. For a sequence block B = X → Y , we construct
SB = SX seq SY , i.e. the set of sequences being concatenations of a sequence in
SX and a sequence in SY . For decision blocks we construct the union of sequences
of both branches (preceded by the if guard pattern and the negated guard pat-
tern, respectively, in case that the if guard is not user-defined); for loop blocks we
construct sequences containing the body of the loop i times (0 ≤ i ≤ n) (where
each body sequence is preceded by the loop guard pattern and the repetition
of body sequences is concluded with the negated guard pattern in case that the
loop guard is not user-defined). In contrast to [11], we restrict fork-join-blocks
to one simple activity in each branch and build a parallel rule from all branch
rules [13,2].10 We plan to omit this restriction however, when integrating object
flow [11] into our approach, since then it would be possible to build unique con-
current rules for each fork-join-branch. For B being a complex activity inscribed
by the name of the integrated behavior model X , SB = Sem(X).

Given s ∈ Sem(A) a sequence of rules alternated with graph constraints
and a start graph S, representing an initial state for A. We then say that each
graph transformation sequence starting with S, applying each rule to the current
instance graph and evaluating each graph constraint to true for the current
instance graph in the order of occurrence in s, represents a complete simulation
run of A. An integrated behavior model A is consistent with respect to a start
graph S, representing an initial state for A, if there is a sequence s ∈ Sem(A)
leading to a complete simulation run. In particular, if A contains user-defined
guards, usually more than one complete simulation run should exist.
9 Note that Sem(A) does not depend on the initial state of A. Moreover, we have a

slightly more general semantics compared to [11], since we do not only have rules in
the sequences of SB , but also graph constraints.

10 This fork-join semantics is slightly more severe than in [11], which allows all inter-
leavings of rules from different branches no matter if they lead to the same result.

Behavior Modeling with Plausibility Checking 163

In ActiGra we can execute simulation runs on selected activity models. Cho-
sen activities are highlighted and the completion of simulation runs is indicated.
User-defined guards are evaluated interactively. If a simulation run cannot be
completed, an error message tells the user which activity could not be executed.

4 Plausibility Checks for Integrated Behavior Models

We now consider how to check plausibility regarding consistency of the con-
trol flow and the functional behavior given by actions bundled in object rules.
Thereby, we proceed as follows: We characterize desired properties for an inte-
grated behavior model and its initial state to be consistent. We determine the
favorable as well as critical signs11 for these properties to hold, show, how
the checks are supported by ActiGra and illustrate by our case study which
conclusions can be drawn by the modeler to validate our approach.

For the plausibility checks we wish to detect potential conflicts and causalities
[4] between rules and guards occurring in the sequences of Sem(A). Since in
A simple activities, fork/joins as well as simple guard patterns correspond to
rules12 we just call them rules for simplicity reasons. Thereby, we disregard rules
stemming from simple activities belonging to some fork/join block, since they
do not occur as such in Sem(A). Instead, the corresponding parallel rule for the
fork/join is analyzed. As an exception to this convention, the plausibility check
in Section 4.5 inspects consistency of fork/joins and analyzes also the enclosed
simple activities.

4.1 Inspecting Initialization

If for some sequence in Sem(A) the first rule is applicable, then the correspond-
ing sequence can lead to a complete simulation run. Otherwise, the correspond-
ing sequence leads to an incomplete run. Given an integrated behavior model
A with initial state S, the first plausibility check computes automatically for
which sequences in Sem(A), the first rule is applicable to S. The modeler then
may inspect the simulation run(s) that should complete for correct initialization

11 In most cases, these favorable and critical signs merely describe potential reasons
for the property to be fulfilled or not, respectively. For example, some critical pair
describes which kind of rule overlap may be responsible for a critical conflict. By
inspecting this overlap, the modeler may realize that the potential critical conflict
may actually occur and adapt the model to avoid it. On the other hand, he may
realize that it does not occur since the overlap corresponds to an invalid system
state, intermediate rules deactivate the conflict, etc.

12 For each simple guard pattern we can derive a guard rule (without side-effects)
for the guarded branch and a negated guard rule for the alternative branch (as
described in [11]). Application-checking guard patterns are evaluated for simulation
but disregarded by the plausibility checks, since they are not independent guards
but check for the application of succeeding rules only.

164 C. Ermel et al.

(desired property). We identify the favorable signs as the set of possible initializa-
tions: FaIA = {r|r is first rule of sequence in Sem(A) and r is applicable to S}.
We identify the critical signs as the set of impossible initializations:

CrIA ={r|r is first rule of a sequence in Sem(A) and r is not applicable to S}.
ActiGra visualizes the result of this plausibility check by highlighting the ele-
ments of FaIA in green. Rules belonging to CrIA are highlighted in red13.

Example 2. Let us assume the system state in Figure 1 (b) as initial state.
Figure 3 shows the initialization check result for activity model ScheduleControl.
We have FaIScheduleControl ={initialSchedule} and CrIScheduleControl ={schedule
After , scheduleBefore}. Thus, complete simulation runs on our initial state never
start with scheduleAfter or scheduleBefore, but always with initialSchedule.

4.2 Inspecting Trigger Causalities along Control Flow Direction

If rule a may trigger rule b and b is performed after a, then it may be ad-
vantageous for the completion of a corresponding simulation run. If for some
rule b no rule a is performed before b that may trigger b, this may lead
to an incomplete simulation run and the modeler may decide to add some
triggering rule or adapt the post-condition of some previous rule in order to
create a trigger for b. Alternatively, the initial state could be adapted such
that b is applicable to the start graph. Given an integrated behavior model
A with initial state S, this plausibility check computes automatically for each
rule a in A, which predecessor rules may trigger a. The modeler may inspect
each rule a for enough predecessor rules to trigger a then (desired property).
We identify the favorable signs as the set of potential trigger causalities for
some rule a along control flow: FaTrAlA(a) = {(b, a)|(b, a) ∈CFRA such that
b may trigger a}. We say that FaTrAlA = {FaTrAlA(a) |a is a rule in A} is the
set of potential trigger causalities in A along control flow. We identify the critical
signs as the set of non-triggered rules along control flow that are not applica-
ble to the initial state: CrNonTrAlA = {a|a is rule in A such that FaTrAlA(a)
= ∅ and a is not applicable to S}.

ActiGra visualizes the result of this plausibility check by displaying dashed
green arrows from b to a selected rule a for each pair of rules (b, a) in FaTrAlA(a).
If no rule is selected, then all pairs in FaTrAlA are displayed by dashed green
arrows. Clicking on such an arrow from b to a opens a detail view, showing
the reason(s) why b may trigger a as discovered by CSA. Conversely, ActiGra

highlights each rule belonging to CrNonTrAlA in red.

Example 3. Consider activity model GenConfPlans in (Figure 4) for generating
conference plans, assuming an empty initial state. The set of potential trigger
causalities along control flow for createSession is given by FaTrAlGenConfPlans

(createSession) = {(createPerson + createPaper , createSession), (createPerson,
createSession)}. Here, we learn that we need at least one execution of a loop

13 Concerning fork/join blocks in FaIA or CrIA,ActiGra colors the fork bar.

Behavior Modeling with Plausibility Checking 165

Fig. 4. Potential trigger causalities along control flow in activity model GenConfPlans

containing rule createPerson (a rule with an empty left-hand side) to ensure a
complete simulation run containing createSession.

4.3 Inspecting Conflicts along Control Flow Direction

If rule a may disable rule b, and b is performed after a, then this may lead to
an incomplete simulation run. On the other hand, if for some rule a no rule b
performed before a exists that may disable rule a, then the application of a is
not impeded. Given an integrated behavior model A with initial state S, this
plausibility check computes automatically for each rule a in A, which successor
rules b in A may be disabled by a. The modeler then may inspect each rule a in
A for the absence of rules performed before a disabling rule a (desired property).
We identify the critical signs as the set of potential conflicts along control flow
caused by rule a: CrDisAlA(a) = {(a, b)|a, b are rules in A, (a, b) ∈CFRA and a
may disable b}. We say that CrDisAlA = {CrDisAlA(a) |a is a rule in A} is the
set of potential conflicts along control flow in A. We identify the favorable signs
as the set of non-disabled rules along control flow: FaNonDisAlA = {a|a in A
and � ∃(b, a) ∈CrDisAlA }.

ActiGra visualizes the result of this plausibility check by displaying faint red
arrows from a to b for each pair of rules (a, b) in CrDisAlA. If rule a is selected, a
bold red arrow from a to b for each pair of rules (a, b) in CrDisAlA(a) is shown.
Clicking on such an arrow opens a detail view, showing the reason(s) why a may
disable b as discovered by CPA. Each rule a in A belonging to FaNonDisAlA is
highlighted in green.

Example 4. Consider activity model SchedulingControl in Figure 5 (a). Here, the
set of potential conflicts along control flow caused by rule initialSchedule is given by
CrDisAlSchedulingControl(initialSchedule) = {(initialSchedule, initialSchedule),
(initialSchedule, scheduleAfter), (initialSchedule, scheduleBefore)}14. This gives
the modeler a hint that in fact a scheduling might not terminate successfully in
the case that rule initialSchedule creates a situation where not all remaining pre-
sentations can be scheduled in a way satisfying all conditions. The detail view of
14 Note that one pair in this set may indicate more than one conflict potentially occurring

between the corresponding rules.

166 C. Ermel et al.

Fig. 5. (a) Potential conflicts along control flow caused by rule initialSchedule;
(b) Detail view of potential conflict of rule initialSchedule with rule scheduleAfter

potential conflicts for pair (initialSchedule, scheduleAfter) in Figure 5 (b) shows
e.g. a potential produce-forbid conflict where rule initialSchedule (Figure 2) pro-
duces an edge from 2:Pres to 0:Slot, and rule scheduleAfter then must not schedule
4:Pres to 0:Slot because of the NAC shown in Figure 3.

4.4 Inspecting Trigger Causalities against Control Flow Direction

If rule a may trigger rule b and b is performed before a, then it might be the case
that their order should be switched in order to obtain a complete simulation
run. Given an integrated behavior model A with initial state S, this plausibility
check automatically computes for each rule a in A, which successor rules of a
may trigger a. The modeler then may inspect for each rule a in A that no rule
performed after a exists that needs to be switched to a position before a in order
to trigger its application (desired property). We identify the critical signs as
the set of potential causalities against control flow triggered by a: CrTrAgA(a)
= {(a, b)|a, b rules in A and (a, b) ∈ ACFRA such that a may trigger b}. We say
that CrTrAgA = {CrTrAgA(a) |a is a rule in A} is the set of potential trigger
causalities against control flow in A. We identify the favorable signs as the set
of rules not triggered against control flow: FaNoTrAgA = {a|a is rule in A and
�(b, a) ∈CrTrAgA }.

ActiGra visualizes the result of this plausibility check by displaying a dashed
red arrow from a selected rule a to b for each pair of rules (a, b) in CrTrAgA(a).
If no rule in particular is selected, then all pairs in CrTrAgA are displayed by
dashed red arrows. Clicking on such an arrow from a to b opens a detail view,
showing the reason(s) why a may trigger b as discovered by CSA. Conversely,
each rule belonging to FaNoTrAgA is highlighted in green.

Example 5. In activity diagram GenConfPlans in Figure 6, we get the set of
potential causalities against control flow CrTrAgGenConfPlans (createSession) =
{(createSession,Person2Pres)}. The causality (createSession, Person2Pres)

Behavior Modeling with Plausibility Checking 167

Fig. 6. Trigger causality against control flow (createSession, Person2Pres)

indicates that rule Person2Pres might be modelled too early in the control flow
since rule createSession is needed to trigger rule Person2Pres completely.

4.5 Inspecting Causalities in Fork/Joins

We may not only consider the consistent sequential composition of rules as be-
fore, but consider also the parallel application of rules as specified by fork/join
activities. Whenever a rule pair (a, b) belonging to the same fork/join may be
causally dependent, then it is not possible to change their application order in
any situation without changing the result. However, the parallel application of
rules (a, b) implies that their application order should not matter.

Given an integrated behavior model A with initial state S, this plausibil-
ity check computes automatically for each fork/join in A, if potential causali-
ties between the enclosed simple activities exist. The modeler may inspect each
fork/join for its parallel execution not to be disturbed then (desired property).

We need some more elaborated considerations for this case, since we wish
to analyze simple activities within a fork/join block that are normally disre-
garded as they only occur in the form of the corresponding parallel rule in
Sem(A). In particular, we define a fork/join relation FJRA consisting of all
rule pairs (a, b) belonging to the same fork/join block. We identify the criti-
cal signs as the set of potential causalities between different fork/join branches:
CrFJCaA = {(a, b)|(a, b) ∈FJRA and (a, b) causally dependent}.15 We identify
the favorable signs as the set of fork/join structures with independent branches:
FaFJNoCaA = {fj |fj is fork/join in A and (a, b) �∈ CrFJCaA for each (a, b) with
a,b in different branches of fj}.

ActiGra visualizes the result of this plausibility check by displaying in each
fork/join block a dashed red arrow from a to b for each (a, b) ∈ CrFJCaA. The
detail view shows the reason(s) why (a, b) are causally dependent and why this
dependency might disturb parallel execution. On the other hand, each fork/join
in FaFJNoCaA is highlighted by green fork and join bars.

15 Here, we do not only regard trigger causalities between a and b, but also causalities
making the application of rule a irreversible as described in [13].

168 C. Ermel et al.

Fig. 7. Potential causality between different fork/join branches and its detail view

Example 6. The set of potential causalities between different fork/join branches
depicted in Figure 7 is given by {(createPerson, Person2Pres)}. We may have
a dependency (shown in the detail view) if rule createPerson creates a Person
node that is used by rule Person2Pres to link it to a Presentation node.

5 Related Work

Our approach complements existing approaches that give a denotational seman-
tics to activity diagrams by formal models. This semantics is used for validation
purposes thereafter. For example, Eshuis [5] proposes a denotational semantics
for a restricted class of activity models by means of labeled transition systems.
Model checking is used to check properties. Störrle [18] defines a denotational
semantics for the control flow of UML 2.0 activity models including procedure
calls by means of Petri nets. The standard Petri net theory provides an analysis
of properties like reachability or deadlock freeness. Both works stick to simple
activities not further refined. In [3], business process models and web services are
equipped with a combined graph transformation semantics and consistency can
be validated by the model checker GROOVE. In contrast, we take integrated
behavior models and check for potential conflict and causality inconsistencies
between activity-specifying rules directly. Thus, our technique is not a “push-
button” technique which checks a temporal formula specifying a desired prop-
erty, but offers additional views on activity models where users can conveniently
investigate intended and unintended conflicts and causalities between activities.

Fujaba [6], VMTS16 and GReAT17 are graph transformation tools for speci-
fying and applying graph transformation rules along a control flow specified by
activity models. However, controlled rule applications are not further validated
concerning conflict and causality inconsistencies within these tools. Conflicts
and causalities of pairs of rule-specified activities have been considered in var-
ious application contexts such as use case integration [8], feature modeling [9],
model inconsistency detection [15], and aspect-oriented modeling [14]. Although
sometimes embedded in explicit control flow, it has not been taken into account
for inconsistency analysis.

16 Visual Modeling and Transformation System: http://vmts.aut.bme.hu/
17 Graph Rewriting and Transformation:

http://www.isis.vanderbilt.edu/tools/great

http://vmts.aut.bme.hu/
http://www.isis.vanderbilt.edu/tools/great

Behavior Modeling with Plausibility Checking 169

6 Conclusions and Future Work

Activity models are a wide-spread modeling technique to specify behavioral as-
pects of (software) systems. Here, we consider activity models where activities are
integrated with object rules which describe pre- and post-conditions of activities
based on a structural model. These integrated behavior models are formalized
on the basis of graph transformation. The integrated specification of object
rules within a control flow offers the possibility to find out potential conflict and
causality inconsistencies. Actually, we can check if the order of rule applications
specified by the control flow is plausible w.r.t. inherent potential conflicts and
causalities of object rules. The Eclipse plug-in ActiGra prototypically imple-
ments these plausibility checks and visualizes potential conflicts and causalities
in different views. Please note that our approach to plausibility reasoning can
easily be adapted to any other approach where modeling techniques describing
the control flow of operations, are integrated with operational rules like e.g. the
integration of live sequence charts with object rules in [12].

A further refinement step in activity-based behavior modeling would be the
specification of object flow between activities. Additionally specified object flow
between two activities would further determine their inter-relation. In this case,
previously determined potential conflicts and causalities might not occur any-
more. Thus, the plausibility checks would become more exact with additionally
specified object flow. A first formalization of integrated behavior models with
object flow based on graph transformation is presented in [11]. An extension of
plausibility checks to this kind of activity models is left for future work. More-
over, we plan to implement and visualize the sufficient criteria for consistency
[10] in ActiGra. To conclude, integrated behavior models head towards a better
integration of structural and behavioral modeling of (software) systems. Plausi-
bility checks provide light-weight static analysis checks supporting the developer
in constructing consistent models. Additionally, they allow modelers to reason
about the necessity of sequencing activities.

References

1. Biermann, E., Ermel, C., Lambers, L., Prange, U., Taentzer, G.: Introduction to
AGG and EMF Tiger by modeling a conference scheduling system. Int. Journal on
Software Tools for Technology Transfer 12(3-4), 245–261 (2010)

2. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theor. Comp. Science. Springer, Heidel-
berg (2006)

3. Engels, G., Güldali, B., Soltenborn, C., Wehrheim, H.: Assuring consistency of
business process models and web services using visual contracts. In: Schürr, A.,
Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp. 17–31. Springer,
Heidelberg (2008)

4. Ermel, C., Gall, J., Lambers, L., Taentzer, G.: Modeling with plausibility checking:
Inspecting favorable and critical signs for consistency between control flow and
functional behavior. Tech. Rep. 2011/2, TU Berlin (2011),
http://www.eecs.tu-berlin.de/menue/forschung/forschungsberichte/

http://www.eecs.tu-berlin.de/menue/forschung/forschungsberichte/

170 C. Ermel et al.

5. Eshuis, R., Wieringa, R.: Tool support for verifying UML activity diagrams. IEEE
Transactions on Software Engineering 7(30) (2004)

6. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A new Graph
Rewrite Language based on the Unified Modeling Language. In: Ehrig, H., Engels,
G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 296–
309. Springer, Heidelberg (2000)

7. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems
relative to nested conditions. Mathematical Structures in Computer Science 19,
1–52 (2009)

8. Hausmann, J.H., Heckel, R., Taentzer, G.: Detection of conflicting functional re-
quirements in a use case-driven approach: a static analysis technique based on
graph transformation. In: Proc. ICSE, pp. 105–115. ACM, New York (2002)

9. Jayaraman, P.K., Whittle, J., Elkhodary, A.M., Gomaa, H.: Model composition
in product lines and feature interaction detection using critical pair analysis. In:
Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS,
vol. 4735, pp. 151–165. Springer, Heidelberg (2007)

10. Jurack, S., Lambers, L., Mehner, K., Taentzer, G.: Sufficient Criteria for Consis-
tent Behavior Modeling with Refined Activity Diagrams. In: Czarnecki, K. (ed.)
MODELS 2008. LNCS, vol. 5301, pp. 341–355. Springer, Heidelberg (2008)

11. Jurack, S., Lambers, L., Mehner, K., Taentzer, G., Wierse, G.: Object Flow Def-
inition for Refined Activity Diagrams. In: Chechik, M., Wirsing, M. (eds.) FASE
2009. LNCS, vol. 5503, pp. 49–63. Springer, Heidelberg (2009)

12. Lambers, L., Mariani, L., Ehrig, H., Pezze, M.: A Formal Framework for Developing
Adaptable Service-Based Applications. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE
2008. LNCS, vol. 4961, pp. 392–406. Springer, Heidelberg (2008)

13. Lambers, L.: Certifying Rule-Based Models using Graph Transformation. Ph.D.
thesis, Technische Universität Berlin (2009)

14. Mehner, K., Monga, M., Taentzer, G.: Analysis of aspect-oriented model weaving.
In: Rashid, A., Ossher, H. (eds.) Transactions on AOSD V. LNCS, vol. 5490, pp.
235–263. Springer, Heidelberg (2009)

15. Mens, T., Straeten, R.V.D., D’Hondt, M.: Detecting and resolving model inconsis-
tencies using transformation dependency analysis. In: Wang, J., Whittle, J., Harel,
D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 200–214. Springer, Hei-
delberg (2006)

16. Object Management Group. Unified Modeling Language: Superstructure – Version
2.3 (2010), http://www.omg.org/spec/UML/2.3/ formal/07-02-05

17. Rensink, A., Van Gorp, P. (eds.): Int. Journal on Software Tools for Technology
Transfer, Section on Graph Transf. Tool Contest 2008, vol. 12(3-4). Springer, Hei-
delberg (2010)

18. Störrle, H.: Semantics of UML 2.0 activity diagrams. In: VLHCC 2004. IEEE, Los
Alamitos (2004)

http://www.omg.org/spec/UML/2.3/

Models within Models: Taming Model
Complexity Using the Sub-model Lattice

Pierre Kelsen, Qin Ma, and Christian Glodt

Laboratory for Advanced Software Systems
University of Luxembourg

6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg

{Pierre.Kelsen, Qin.Ma, Christian.Glodt}@uni.lu

Abstract. Model-driven software development aims at easing the pro-
cess of software development by using models as primary artifacts. Al-
though less complex than the real systems they are based on, models tend
to be complex nevertheless, thus making the task of comprehending them
non-trivial in many cases. In this paper we propose a technique for model
comprehension based on decomposing models into sub-models that con-
form to the same metamodel as the original model. The main contri-
butions of this paper are: a mathematical description of the structure
of these sub-models as a lattice, a linear-time algorithm for construct-
ing this decomposition and finally an application of our decomposition
technique to model comprehension.

1 Introduction

In model-driven software development models are the primary artifacts. Typi-
cally several models are used to describe the different concerns of a system. One
of the main motivations for using models is the problem of dealing with the
complexity of real systems: because models represent abstractions of a system,
they are typically less complex than the systems they represent.

Nevertheless models for real systems can be complex themselves and thus
may require aids for facilitating human comprehension. The problem of under-
standing complex models is at the heart of this paper. We propose a method for
decomposing models that is based on subdividing models into smaller sub-models
with the property that these sub-models conform to the same metamodel as the
original model. This property allows to view the sub-models using the same tools
as the original model and to understand the meaning of the sub-models using
the same semantic mapping (if one has been defined).

An example of a concrete application scenario is the following: when trying
to understand a large model, one starts with a subset of concepts that one
is interested in (such as the concept of Class in the UML metamodel). Our
method allows to construct a small sub-model of the initial model that contains
all entities of interest and that conforms to the original metamodel (in the case of
UML this would be MOF). The latter condition ensures that the sub-model can

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 171–185, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

172 P. Kelsen, Q. Ma, and C. Glodt

be viewed in the same way as the original model and that it has a well-defined
semantics. The smaller size (compared to the original model) should facilitate
comprehension.

The main contributions of this paper are the following: (a) we present the
mathematical structure of these sub-models as a lattice, with the original model
at the top and the empty sub-model at the bottom; (b) we present a linear
time algorithm for building a decomposition hierarchy for a model from which
the sub-model lattice can be constructed in a straightforward manner; (c) we
present a method for the user to comprehend models in the context of model
pruning.

One salient feature of our technique is its generic nature: it applies to any
model (even outside the realm of model-driven software development). This is
also one of the main features differentiating it from existing work in model de-
composition. We review here related work from model slicing, metamodel prun-
ing and model abstraction.

The idea behind model slicing is to generalize the work on program slicing
to the domains of models by computing parts of models that contain modeling
elements of interest. An example of this line of work is [4] where model slicing
of UML class diagrams is investigated. Another example is [2] which considers
the problem of slicing the UML metamodel into metamodels corresponding to
the different diagram types in UML. The main differences between our work and
research on model slicing is, first, the restriction of model slicing to a particular
modeling language, e.g. UML class diagrams, and, second, the focus on a single
model rather than the mathematical structure of sub-models of interest.

In a similar line of work some authors have investigated the possibility of
pruning metamodels in order to make them more manageable. The idea is to
remove elements from a metamodel to obtain a minimal set of modeling elements
containing a given subset of elements of interest. Such an approach is described
in [8]. This work differs from our work in several respects: first, just like model
slicing it focuses on a single model rather than considering the collection of
relevant sub-models in its totality; second, it is less generic in the sense that
it restricts its attention to Ecore metamodels (and the pruning algorithm they
present is very dependent on the structure of Ecore), and lastly their goal is not
just to get a conformant sub-model but rather to find a sub-metamodel that is
a supertype of the original model. This added constraint is due to main use of
the sub-metamodel in model transformation testing.

The general idea of simplifying models (which can be seen as a generalization
of model slicing and pruning) has also been investigated in the area of model
abstraction (see [3] for an overview). In the area of simulation model abstraction
is a method for reducing the complexity of a simulation model while maintaining
the validity of the simulation results with respect to the question that the simu-
lation is being used to address. Work in this area differs from ours in two ways:
first, model abstraction techniques generally transform models and do not nec-
essarily result in sub-models; second, conformance of the resulting model with a
metamodel is not the main concern but rather validity of simulation results.

Models within Models 173

The remainder of this paper is structured as follows: in the next section we
present formal definitions for models, metamodels and model conformance. In
section 3 we describe an algorithm for decomposing a model into sub-models
conformant to the same metamodel as the original model. We also present the
mathematical structure of these models, namely the lattice of sub-models. In
section 4 we outline the application to model comprehension and we present
concluding remarks in the final section.

2 Models and MetaModels

In this section we present formal definitions of models, metamodels, and model
conformance. The following notational conventions will be used:
1. For any tuple p, we use fst(p) to denote its first element, and snd(p) to denote

its second element.
2. For any set s, we use �s to denote its cardinality.
3. We use ≤ to denote the inheritance based subtyping relation.

2.1 Metamodels

A metamodel defines (the abstract syntax of) a language for expressing models.
It consists of a finite set of metaclasses and a finite set of relations between meta-
classes - either associations or inheritance relations. Moreover, a set of constraints
may be specified in the contexts of metaclasses as additional well-formedness
rules.

Definition 1 (Metamodel). A metamodel � = (�,�,�,�) is a tuple:
– � is the set of metaclasses, and � ∈ � ranges over it.
– � ⊆ (� × μ) × (� × μ × �) represents the (directed) associations between

metaclasses and � ∈ � ranges over it. The two �’s give the types of the
two association ends. The two μ’s, where μ ∈ Int × {Int ∪ {∞}}, give the
corresponding multiplicities. We refer to the first end of the association as
the source, and the second as the target. Associations are navigable from
source to target, and the navigation is represented by referring to the given
role name that is attached to the target end selected from the vocabulary �

of role names.
– � ⊆ � × � denotes the inheritance relation among metaclasses and 	 ∈ �

ranges over it. For a given 	 ∈ �, fst() inherits from (i.e., is a subtype of)
snd().

– � ⊆ � ×
 gives the set of constraints applied to the metamodel and � ∈ �

ranges over it.
 is the set of the expressions and � ∈
 ranges over it. A
constraint � = (�, �) makes the context metaclass � more precise by restrict-
ing it with an assertion, i.e., the boolean typed expression �. For example, a
constraint can further restrict the multiplicities or types of association ends
that are related to the context metaclass.

Let ∈ � range over the set of role names mentioned above. We require that role
names in a metamodel are distinct. As a consequence, it is always possible to
retrieve the association that corresponds to a given role name, written asso().

174 P. Kelsen, Q. Ma, and C. Glodt

2.2 Models

A model is expressed in a metamodel. It is built by instantiating the constructs,
i.e., metaclasses and associations, of the metamodel.

Definition 2 (Model). A model is defined by a tuple M = (�, N, A, τ) where:

– � is the metamodel in which the model is expressed.
– N is the set of metaclass instantiations of the metamodel �, and n ∈ N

ranges over it. They are often simply referred to as instances when there is
no possible confusion.

– A ⊆ N× (N×�) is the set of association instantiations of the metamodel �,
and a ∈ A ranges over it. They are often referred to as links.

– τ is the typing function: (N → �) ∪ (A → �). It records the type informa-
tion of the instances and links in the model, i.e., from which metaclasses or
associations of the metamodel � they are instantiated.

2.3 Model Conformance

Not all models following the definitions above are valid, or “conform to” the
metamodel: typing, multiplicity, and constraints need all to be respected.

Definition 3 (Model conformance). We say a model M = (�, N, A, τ) con-
forms to its metamodel � or is valid when the following conditions are met:

1. type compatible:

∀a ∈ A, τ(fst(a)) ≤ fst(fst(τ(a))) and τ(fst(snd(a))) ≤ fst(snd(τ(a)))

Namely, the types of the link ends must be compatible with (being subtypes
of) the types as specified in the corresponding association ends.

2. multiplicity compatible: ∀n ∈ N, � ∈ �,
if τ(n) ≤ fst(fst(�)),
then �{a | a ∈ A and τ(a) = � and fst(a) = n} ∈ snd(snd(�));
if τ(n) ≤ fst(snd(�)),
then �{a | a ∈ A and τ(a) = � and fst(snd(a)) = n} ∈ snd(fst(�)).
Namely, the number of link ends should conform to the specified multiplicity
in the corresponding association end.

3. constraints hold: ∀� ∈ �, ∀n ∈ N where n is an instance of the context
metaclass, i.e., τ(n) ≤ fst(�), the boolean expression snd(�) should evaluate
to true in model M for the contextual instance n.

3 Model Decomposition

3.1 Criteria

Model decomposition starts from a model that conforms to a metamodel, and
decomposes it into smaller parts. Our model decomposition technique is de-
signed using the following as main criterion: the derived parts should be valid
models conforming to the original metamodel. Achieving this goal has two main
advantages:

Models within Models 175

1. the derived parts, being themselves valid models, can be comprehended on
their own according to the familiar abstract syntax and semantics (if defined)
of the modeling language;

2. the derived parts can be wrapped up into modules and reused in the con-
struction of other system models, following our modular model composition
paradigm [6].

The decomposed smaller parts of a model are called its sub-models, formally
defined below.

Definition 4 (Sub-model). We say a model M′ = (�, N′, A′, τ ′) is a sub-model
of another model M = (�, N, A, τ) if and only if:

1. N′ ⊆ N;
2. A′ ⊆ A;
3. τ ′ is a restriction of τ to N′ and A′.

In order to make the sub-model M′ also conform to �, we will propose three
conditions - one for the metamodel (Condition 3 below, regarding the nature
of the constraints) and two conditions for the sub-model (Conditions 1 and 2).
Altogether these three conditions will be sufficient to ensure conformance of the
sub-model.

The starting point of our investigation is the definition of conformance (Def-
inition 3). Three conditions must be met in order for sub-model M′ to conform
to metamodel �.

The first condition for conformance, type compatibility, follows directly from
the fact that M′ is a sub-model of M and M conforms to �. The second con-
dition for conformance, which we call the multiplicity condition, concerns the
multiplicities on the association ends in the metamodel �. First the number of
links ending at an instance of M′ must agree with the source cardinality of the
corresponding association in the metamodel and second the number of links leav-
ing an instance of M′ must agree with the target cardinality of the corresponding
association.

To ensure the multiplicity condition for links ending at an instance of the
sub-model, we will introduce the notion of fragmentable links, whose type (i.e.,
the corresponding association) has an un-constrained (i.e., being 0) lower bound
for the source cardinality.

Definition 5 (Fragmentable link). Given a model M = (�, N, A, τ), a link
a ∈ A is fragmentable if snd(fst(τ(a))) = (0,), where represents any integer
whose value is irrelevant for this definition.

Fragmentable incoming links of M to instances in M′ are safe to exclude but this
is not the case for non-fragmentable links, which should all be included. We thus
obtain the first condition on sub-model M′:

Condition 1. ∀a ∈ A where a is non-fragmentable, fst(snd(a)) ∈ N′ implies
fst(a) ∈ N′ and a ∈ A′.

176 P. Kelsen, Q. Ma, and C. Glodt

Let us now consider the multiplicity condition for links leaving an instance of
M′. To ensure this condition we shall require that M′ includes all the links of M
that leave an instance of M′. In other words, there are in fact no links leaving
M′. This is formally expressed in the following condition on the sub-model:

Condition 2. ∀a ∈ A, fst(a) ∈ N′ implies fst(snd(a)) ∈ N′ and a ∈ A′.

Conditions 1 and 2 together imply the multiplicity condition in the conformance
definition.

The third condition in the conformance definition, which we call the constraint
condition, requires that all metamodel constraints are satisfied in sub-model M′.
To ensure this condition, we impose a restriction on the nature of the constraints.
To this end, we introduce the notion of forward constraint.

Definition 6 (Forward constraint). A constraint � is forward if for any
model M and any instance n of M, the instances and links referenced by con-
straint � with contextual instance n are reachable from n in M (viewed as a
directed graph).

We will only consider forward constraints in this paper. This is expressed in the
following condition over the metamodel �:

Condition 3. All constraints in metamodel � are forward constraints.

Note that we have formalized a core part of the EssentialOCL [7] in the compan-
ion technical report [5], which in principal excludes AllInstances, called CoreOCL
and we prove in [5] that all CoreOCL constraints are forward.

It is not difficult to see that both Conditions 2 and 3 imply the constraint
condition in the conformance definition. Indeed Condition 2 implies that all
instances and links reachable from an instance n in model M are also reachable
in M′ if M′ does indeed contain n. Condition 3 then implies that a constraint
that is satisfied on contextual instance n in M is also satisfied in the sub-model
M′ since it references the same instances and links in both models.

We thus obtain the following result:

Theorem 1. Given a metamodel �, a model M, and a sub-model M′ of M,
suppose that:

1. model M conforms to �;
2. model M′ satisfies Condition 1 and 2;
3. metamodel � satisfies Condition 3;

then model M′ also conforms to the metamodel �.

Proof. The result follows from the discussion above.

Models within Models 177

3.2 Algorithm

From hereon we shall assume that the metamodel under consideration satisfies
Condition 3. In this subsection we describe an algorithm that finds, for a given
model M, a decomposition of M such that any sub-model of M that satisfies
both Condition 1 and 2 can be derived from the decomposition by uniting some
components of the decomposition.

We reach the goal in two steps: (1) ensure Condition 1 and 2 with respect
to only non-fragmentable links; (2) ensure again Condition 2 with respect to
fragmentable links. (Condition 1 does not need to be re-assured because it only
involves non-fragmentable links.) Details of each step are discussed below.

Treating instances as vertices and links as edges, models are just graphs. For
illustration purpose, consider an example model as presented in Figure 1 where
all fragmentable links are indicated by two short parallel lines crossing the links.

Fig. 1. An example model

Let G be the graph derived by removing the fragmentable links from M. Be-
cause all the links in G are non-fragmentable, for a sub-graph of G to satisfy
both Condition 1 and 2, an instance is included in the sub-graph if and only
if all its ancestor and descendant instances are also included, and so are the
links among these instances in G. These instances, from the point of view of
graph theory, constitute a weakly connected component (wcc) of graph G (i.e.,
a connected component if we ignore edge directions). The first step of the model
decomposition computes all such wcc’s of G, which disjointly cover all the in-
stances in model M, then puts back the fragmentable links. We collapse all the
nodes that belong to one wcc into one node, (referred to as a wcc-node in con-
trast to the original nodes), and refer to the result as graph W . After the first
step, the corresponding graph W of the example model contains six wcc-nodes
inter-connected by fragmentable links, as shown in Figure 2.

The instances and links that are collapsed into one wcc-node in W constitute
a sub-model of M satisfying both Condition 1 and 2, but only with respect to
non-fragmentable links, because wcc’s are computed in the context of G where
fragmentable links are removed. The second step of the model decomposition
starts from graph W and tries to satisfy Condition 2 with respect to fragmentable
links, i.e., following outgoing fragmentable links. More specifically, we compute
all the strongly connected components (scc’s) in W (see [10] for a definition of
strongly connected components) and collapse all the nodes that belong to one

178 P. Kelsen, Q. Ma, and C. Glodt

Fig. 2. The corresponding W graph of the example model after step 1

Fig. 3. The corresponding D graph of the example model after step 2

scc into one node, (referred to as an scc-node), and refer to the result as graph D.
After the second step, the corresponding graph D of the example model looks
like in Figure 3. The three wcc-nodes wcc4, wcc5 and wcc6 of graph W are
collapsed into one scc-node scc4 because they lie on a (directed) cycle.

Note that we only collapse nodes of a strongly connected component in the
second step instead of any reachable nodes following outgoing fragmentable links
in W , because we do not want to loose any potential sub-model of M satisfying
both Condition 1 and 2 on the way. More precisely, a set of nodes is collapsed
only if for every sub-model M′ of M satisfying both Condition 1 and 2, it is
either completely contained in M′ or disjoint with M′, i.e., no such M′ can tell
the nodes in the set apart.

The computational complexity of the above algorithm is dominated by the
complexity of computing weakly and strongly connected components in the
model graph. Computing weakly connected components amounts to computing
connected components if we ignore the direction of the edges. We can compute
connected components and strongly connected components in linear time using
depth-first search [10]. Thus the overall complexity is linear in the size of the
model graph.

3.3 Correctness

Graph D obtained at the end of the algorithm is a DAG (Directed Acyclic Graph)
with all the edges being fragmentable links. Graph D represents a decomposition

Models within Models 179

of the original model M where all the instances and links that are collapsed into
an scc-node in D constitute a component in the decomposition. We call graph D
the decomposition hierarchy of model M.

To relate the decomposition hierarchy to the sub-models, we introduce the
concept of an antichain-node. An antichain-node is derived by collapsing a (pos-
sibly empty) antichain of scc-nodes (i.e., a set of scc-nodes that are neither de-
scendants nor ancestors of one another, the concept of antichain being borrowed
from order theory) plus their descendants (briefly an antichain plus descendants)
in the decomposition hierarchy. To demonstrate the correctness of the algorithm,
we prove the following theorem:

Theorem 2. Given a model M=(�, N, A, τ) and a sub-model M′ = (�, N′, A′, τ)
of M, M′ satisfies both Condition 1 and 2 if and only if there exists a correspond-
ing antichain-node of the decomposition hierarchy of M where M′ consists of the
instances and links collapsed in this antichain-node.

Proof. We first demonstrate that if M′ consists of the set of instances and links
that are collapsed in an antichain-node of the decomposition hierarchy of M,
then M′ satisfies both Condition 1 and 2.

– Check M′ against Condition 1: given a non-fragmentable link a ∈ A, if
fst(snd(a)) ∈ N′, we have fst(a) ∈ N′ because of the wcc computation in
the first step of the model decomposition algorithm.

– Check M′ against Condition 2: given a non-fragmentable link a ∈ A, if fst(a) ∈
N′, we have fst(snd(a)) ∈ N′ because of the wcc computation in the first step
of the model decomposition algorithm. Given a fragmentable link a ∈ A, if
fst(a) ∈ N′, we have fst(snd(a)) ∈ N′ because of the scc computation in the
second step of the model decomposition algorithm and because we take all
the descendants into account.

We now demonstrate the other direction of the theorem, namely, if M′ satisfies
both Condition 1 and 2, then there exists an antichain-node of the decomposition
hierarchy of M, such that M′ consists of the set of instances and links that are
collapsed in this antichain-node.

We refer to the set of scc-nodes in the decomposition hierarchy where each
includes at least one instance of M′ by S.

1. All the instances that are collapsed in an scc-node in S belong to M′. Given
an scc-node s ∈ S, there must exist an instance n collapsed in s and n ∈ N′

in order for s to be included in S. Let n′ be another instance collapsed
in s. Following the algorithm in Section 3.2 to compute the decomposition
hierarchy, n and n′ are aggregated into one scc-node either in the first or the
second step.
(a) If they are aggregated in the first step, that means the two instances are

weakly connected by non-fragmentable links, and because M′ satisfies
Condition 1 and 2, n′ should also be in M′.

(b) If they are aggregated in the second step but not in the first step, that
means n and n′ are aggregated in two separate wcc-nodes in the first step,

180 P. Kelsen, Q. Ma, and C. Glodt

called w and w′, which are strongly connected by a path of fragmentable
links. Referring to the other wcc-nodes on the path by w1, . . . , wk, there
exists a set of instances n0 ∈ w, n′0 ∈ w′, and ni, n

′
i ∈ wi for 1 ≤ i ≤ k,

such that there are fragmentable links from n0 to n1, from n′i to ni+1
(∀i.1 ≤ i < k) and from n′k to n′0. Since M′ satisfies Condition 2 if
the source vertex of these fragmentable links belongs to M′, so does the
target vertex. Because the following pairs of instances: n and n0, ni and
n′i (∀i.1 ≤ i ≤ k), and n′0 and n′, are respectively collapsed in a wcc-node,
if one vertex in a pair belongs to M′ then the other vertex in the pair
must belong to M′ as well following Condition 1 and 2. From the above
discussion and by applying mathematical induction, n belonging to M′

implies that n′ belongs to M′ as well.
2. S constitutes an antichain plus descendant. We partition S into two subsets:

S1 contains all the scc-nodes in S that do not have another scc-node also in
S as ancestor; S2 contains the rest, i.e., S2 = S \ S1. Clearly S1 constitutes
an antichain, and any scc-node in S2 is a descendant of an scc-node in S1
because otherwise the former scc-node should belong to S1 instead of S2.
Moreover, S2 contains all the descendants of scc-nodes in S1. Given a child
s2 of an scc-node s1 ∈ S1, the fragmentable link from s1 to s2 connects an
instance n1 collapsed in s1 to an instance n2 collapsed in s2. Because s1 ∈ S1,
following the demonstrated item 1 above, we have n1 ∈ N′. Because of the
out-going fragmentable link from n1 to n2 and since M′ satisfies Condition 2,
we also have n2 ∈ N′. Therefore we have s2 ∈ S. Furthermore, s2 �∈ S1
because it has s1 ∈ S as its ancestor. Hence we have s2 ∈ S2. Inductively we
conclude that any descendant of s1 belongs to S2 and hence S constitutes
an antichain plus descendant.

3. Collapse all the scc-nodes in S into an antichain-node called A. We demon-
strate that M′ consists of the instances and links collapsed in A.
(a) Any instance of M′ is collapsed in A because of the selection criteria of

S, and any instance collapsed in A is an instance of M′ following the
demonstrated item 1 above. In other words, M′ and A contain the same
set of instances from M.

(b) Because both M′ and A span all the links in M that connect instances
in them, M′ and A also have the same set of links from M.

3.4 The Lattice of Sub-models

Recall that a lattice is a partially-ordered set in which every pair of elements has
a least upper bound and a greatest lower bound. Thanks to Theorem 2, we can
now refer to a sub-model M′ of model M that satisfies both Condition 1 and 2 by
the corresponding antichain-node A in the decomposition hierarchy of M. Given
a model M, all the sub-models that satisfy both Condition 1 and 2 constitute a
lattice ordered by the relation “is a sub-model of”, referred to as the sub-model
lattice of M. Let A1 and A2 denote two such sub-models. The least upper bound
(A1 ∨ A2) and the greatest lower bound (A1 ∧ A2) of A1 and A2 are computed
in the following way:

Models within Models 181

Fig. 4. The sub-model lattice of the example model in Figure 1 whose decomposition
hierarchy is given in Figure 2

– A1∨A2 is the antichain-node obtained by collapsing the scc-nodes of A1 and
A2;

– A1 ∧A2 is the antichain-node obtained by collapsing the common scc-nodes
of A1 and A2.

The top of the sub-model lattice is M itself, and the bottom is the empty
sub-model.

For the example model discussed in Section 3.2 whose decomposition hierar-
chy is given in Figure 3, six possible antichain-nodes can be derived from the
decomposition hierarchy, denoted by the set of scc-nodes that are collapsed.
They are ordered in a lattice as shown in Figure 4.

3.5 Implementation

We have implemented the model decomposition technique [1]. The implemen-
tation takes a model of any metamodel that follows Definition 1 as input, and
computes the decomposition hierarchy of it from which the sub-model lattice
can be constructed by enumerating all the antichain-nodes of the decomposition
hierarchy. Note that in the worst case where the decomposition hierarchy con-
tains no edges, the size of the sub-model lattice equals the size of the power-set
of the decomposition hierarchy, which is exponential.

4 Application: Pruning Based Model Comprehension

In this section, we demonstrate the power of our generic model decomposition
technique by reporting one of its applications in a pruning-based model com-
prehension method. A typical comprehension question one would like to have
answered for a large model is:

182 P. Kelsen, Q. Ma, and C. Glodt

Given a set of instances of interest in the model, how does one
construct a substantially smaller sub-model that is relevant for
the comprehension of these instances?

Model readers, when confronted with such a problem, would typically start
from the interesting instances and browse through the whole model attempting
to manually identify the relevant parts. Even with the best model documentation
and the support of model browsing tools, such a task may still be too complicated
to solve by hand, especially when the complexity of the original model is high.
Moreover, guaranteeing by construction that the identified parts (together with
the interesting instances) indeed constitute a valid model further complicates
the problem.

Our model decomposition technique can be exploited to provide a linear time
automated solution to the problem above. The idea is to simply take the union
of all the scc-nodes, each of which contains at least one interesting instance, and
their descendant scc-nodes in the decomposition hierarchy of the original model.
We have implemented the idea in a Ecore [9] model comprehension tool [1] based
on the implementation of the model decomposition technique.

To assess the applicability of the tool, a case study has been carried out.
We have chosen the Ecore model of BPMN (Business Process Modeling No-
tation) [11] bpmn.ecore as an example, and one of BPMN’s main concepts –
Gateway – for comprehension. Gateways are modeling elements in BPMN used
to control how sequence flows interact as they converge and diverge within a busi-
ness process. Five types of gateways are identified in order to cater to different
types of sequence flow control semantics: exclusive, inclusive, parallel, complex,
and event-based.

Inputs to the comprehension tool for the case study are the following:

– The BPMN Ecore model containing 134 classes (EClass instances), 252 prop-
erties (EReference instances), and 220 attributes (EAttribute instances). Al-
together, it results in a very large class diagram that does not fit on a single
page if one wants to be able to read the contents properly. Figure 5 shows
the bird’s eye view of this huge diagram.

– a set of interesting instances capturing the key notions of the design of gate-
ways in BPMN: Gateway, ExclusiveGateway, InclusiveGateway, ParallelGate-
way, ComplexGateway, and EventBasedGateway.

After applying the tool, the result BPMN sub-model that contains all the selected
interesting instances has only 17 classes, 7 properties, and 21 attributes. We
observe that all the other independent concepts of BPMN such as Activity, Event,
Connector, and Artifact, are pruned out. The class diagram view of the pruned
BPMN model is shown in Figure 6. Note that it corresponds well to the class
diagram that is sketched in the chapter for describing gateways in the BPMN 2.0
specification [11]. We have also verified that the pruned BPMN model is indeed
an Ecore instance by validating it against ecore.ecore in EMF [9].

Models within Models 183

Fig. 5. Bird’s Eye View of the Class diagram of the BPMN Ecore model

Fig. 6. Pruned class diagram for understanding the Gateway concept in BPMN

5 Conclusion and Future Work

The lattice of sub-models described in this paper should have applications be-
yond the application for model comprehension described in this paper. We foresee
potential applications in the areas of model testing, debugging, and model reuse.

Given a software that takes models of a metamodel as input (e.g., a model
transformation), an important part in testing the software is test case generation.
Our model decomposition technique could help with the generation of new test

184 P. Kelsen, Q. Ma, and C. Glodt

cases by using one existing test case as the seed. New test cases of various
complexity degree could be automatically generated following the sub-model
lattice of the seed test case.

Moreover, our model decomposition can also help with the debugging activity
when a failure of the software is observed on a test case. The idea is that we will
find a sub-model of the original test case which is responsible for triggering the
bug. Although both the reduced test case and the original one are relevant, the
smaller test case is easier to understand and investigate.

A major obstacle to the massive model reuse in model-based software engi-
neering is the cost of building a repository of reusable model components. A more
effective alternative to creating those reusable model components from scratch is
to discover them from existing system models. Sub-models of a system extracted
by following our model decomposition technique are all guaranteed to be valid
models hence can be wrapped up into modules and reused in the construction
of other systems following our modular model composition paradigm [6].

Our model decomposition technique, described in this paper can be further
improved: indeed it is currently based on three sufficient conditions that are
not necessary. A consequence of this is that not all conformant sub-models are
captured in the lattice of sub-models. A finer analysis of the constraints in the
metamodel could result in weakening the three conditions and thus provide a
more complete collection of conformant sub-models.

Acknowledgment. We would like to thank the anonymous referees for making
numerous comments that helped us in improving the presentation of this paper.

References

1. Democles tool, http://democles.lassy.uni.lu/
2. Bae, J.H., Lee, K., Chae, H.S.: Modularization of the UML metamodel using model

slicing. In: Fifth International Conference on Information Technology: New Gen-
erations, pp. 1253–1254 (2008)

3. Frantz, F.K.: A taxonomy of model abstraction techniques. In: Winter Simulation
Conference, pp. 1413–1420 (1995)

4. Kagdi, H., Maletic, J.I., Sutton, A.: Context-free slicing of UML class models. In:
ICSM 2005: Proceedings of the 21st IEEE International Conference on Software
Maintenance, pp. 635–638. IEEE Computer Society, Washington, DC, USA (2005)

5. Kelsen, P., Ma, Q.: A generic model decomposition technique. Technical Report
TR-LASSY-10-06, Laboratory for Advanced Software Systems, University of Lux-
embourg (2010),
http://democles.lassy.uni.lu/documentation/TR_LASSY_10_06.pdf

6. Kelsen, P., Ma, Q.: A modular model composition technique. In: Rosenblum, D.S.,
Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013, pp. 173–187. Springer, Heidelberg
(2010)

7. OMG. Object Constraint Language version 2.2 (February 2010)

http://democles.lassy.uni.lu/
http://democles.lassy.uni.lu/documentation/TR_LASSY_10_06.pdf

Models within Models 185

8. Sen, S., Moha, N., Baudry, B., Jézéquel, J.-M.: Meta-model pruning. In: Schürr, A.,
Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 32–46. Springer, Heidelberg
(2009)

9. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley Professional, Reading (2008)

10. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Com-
put. 1(2), 146–160 (1972)

11. White, S.A., Miers, D.: BPMN Modeling and Reference Guide. Future Strategies
Inc. (2008)

Type-Safe Evolution of Spreadsheets

Jácome Cunha1,2,	, Joost Visser3, Tiago Alves1,3,		, and João Saraiva1

1 Universidade do Minho, Portugal
{jacome,jas}@di.uminho.pt

2 ESTGF, Instituto Politécnico do Porto, Portugal
3 Software Improvement Group, The Netherlands

{j.visser,t.alves}@sig.eu

Abstract. Spreadsheets are notoriously error-prone. To help avoid the introduc-
tion of errors when changing spreadsheets, models that capture the structure
and interdependencies of spreadsheets at a conceptual level have been proposed.
Thus, spreadsheet evolution can be made safe within the confines of a model.
As in any other model/instance setting, evolution may not only require changes
at the instance level but also at the model level. When model changes are re-
quired, the safety of instance evolution can not be guarded by the model alone.

We have designed an appropriate representation of spreadsheet models, in-
cluding the fundamental notions of formulæand references. For these models and
their instances, we have designed coupled transformation rules that cover specific
spreadsheet evolution steps, such as the insertion of columns in all occurrences
of a repeated block of cells. Each model-level transformation rule is coupled with
instance level migration rules from the source to the target model and vice versa.
These coupled rules can be composed to create compound transformations at
the model level inducing compound transformations at the instance level. This
approach guarantees safe evolution of spreadsheets even when models change.

1 Introduction

Spreadsheets are widely used by non-professional programmers, the so-called end users,
to develop business applications. Spreadsheet systems offer end users a high level of
flexibility, making it easier to get started working with them. This freedom, however,
comes with a price: spreadsheets are error prone as shown by numerous studies which
report that up to 90% of real-world spreadsheets contain errors [19,21,22].

As programming systems, spreadsheets lack the support provided by modern pro-
gramming languages/environments, like for example, higher-level abstractions and
powerful type and modular systems. As a result, they are prone to errors. In order
to improve end-users productivity, several techniques have been recently proposed,
which guide end users to safely/correctly edit spreadsheets, like, for example, the use
of spreadsheet templates [2], ClassSheets [8,11], and the inclusion of visual objects to
provide editing assistance in spreadsheets [10]. All these approaches propose a form of

� Supported by Fundação para a Ciência e a Tecnologia, grant no. SFRH/BD/30231/2006.
�� Supported by Fundação para a Ciência e a Tecnologia, grant no. SFRH/BD/30215/2006.

Work supported by the SSaaPP project, FCT contract no. PTDC/EIA-CCO/108613/2008.

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 186–201, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

SFRH/BD/30231/2006
SFRH/BD/30215/2006
PTDC/EIA-CCO/108613/2008

Type-Safe Evolution of Spreadsheets 187

end user model-driven software development: a spreadsheet business model is defined,
from which then a customized spreadsheet application is generated guaranteeing the
consistency of the spreadsheet data with the underlying model. In a recent empirical
study we have shown that the use of model-based spreadsheets do improve end-users
productivity [7].

Despite of its huge benefits, model-driven software development is sometimes dif-
ficult to realize in practice due to two main reasons: first, as some studies suggest,
defining the business model of a spreadsheet can be a complex task for end users [1].
As a result, they are unable to follow this spreadsheet development discipline. Second,
things get even more complex when the spreadsheet model needs to be updated due to
new requirements of the business model. End users need not only to evolve the model,
but also to migrate the spreadsheet data so that it remains consistent with the model.
To address the first problem, in [8] we have proposed a technique to derive the spread-
sheet’s business model, represented as a ClassSheet model, from the spreadsheet data.
In this paper we address the second problem, that is, the co-evolution of the spreadsheet
model and the spreadsheet data (i.e., the instance of the model). Co-evolution of models
and instances are supported by the two-level coupled transformation framework [4].

In this paper we present an appropriate representation of a spreadsheet model, based
on the ClassSheet business model, including the fundamental notions of formulæ, ref-
erences, and expandable blocks of cells. For this model and its instance, we design
coupled transformation rules that cover specific spreadsheet evolution steps, such as
extraction of a block of cells into a separate sheet or insertion of columns in all occur-
rences of a repeated block of cells. Each model-level transformation rule is coupled with
instance level migration rules from the source to the target model and vice versa. More-
over, these coupled rules can be composed to create compound transformations at the
model level that induce compound transformations at the instance level. We have im-
plemented this technique in the HAEXCEL framework (available from the first author’s
web page: http://www.di.uminho.pt/˜jacome): a set of HASKELL-based li-
braries and tools to manipulate spreadsheets. With this approach, spreadsheet evolution
can be made type-safe, also when model changes are involved.

The rest of this paper is organized as follows. In Section 2 we discuss spreadsheet
refactoring as our motivating example. In Section 3 we describe the framework to model
and manipulate spreadsheets. Section 4 defines the rules to perform the evolution of
spreadsheets. Section 5 discusses related work and Section 6 concludes the paper.

2 Motivating Example: Spreadsheet Refactoring

Suppose a researcher’s yearly budget for travel and accommodation expenses is kept in
the spreadsheet shown in Figure 1 taken from [11].

Note that throughout the years, cost and quantity are registered for three types of
expenses: travel, hotel and local transportation. Formulas are used to calculate the total
expense for each type in each year as well as the total expense in each year. Finally a
grand total is calculated over all years, both per type of expense and overall.

At the end of 2010, this spreadsheet needs to be modified to accommodate 2011 data.
A novice spreadsheet user would typically take four steps to perform the necessary task:

http://www.di.uminho.pt/~jacome

188 J. Cunha et al.

Fig. 1. Budget spreadsheet instance

insert three new columns; copy all the labels; copy all the formulas (at least two); update
all the necessary formulas in the last column. A more advanced user would shortcut
these steps by copy-inserting the 3-column block of 2010 and changing the label “2010”
to “2011” in the copied block. If the insertion is done behind the last year, the range of
the multi-year totals columns must be extended to include the new year. If the insertion
is done in between the last and one-but-last year, the spreadsheet system automatically
extends the formulas for the multi-year totals. Apart from these two strategies, a mixed
strategy may be employed. In any case, a conceptually unitary modification (add year)
needs to be executed by an error-prone combination of steps.

Erwig et al. have introduced ClassSheets as models of spreadsheets that allow spread-
sheet modifications to be performed at the right conceptual level. For example, the
ClassSheet in Figure 2 provides a model of our budget spreadsheet.

Fig. 2. Budget spreadsheet model

In this model, the repetition of a block of columns for each year is captured by gray
column labeled with the ellipsis. The horizontal repetition is marked in a analogous
way. This makes it possible (i) to check whether the spreadsheet after modification still
instantiates the same model, and (ii) to offer the user an unitary operation. Apart from
(horizontal) block repetitions that support the extension with more years, this model
features (vertical) row repetitions that support the extension with new expense types.

Unfortunately, situations may occur in which the model itself needs to be modified.
For example, if the researcher needs to report expenses before and after tax, additional
columns need to be inserted in the block of each year. Figure 3 shows the new spread-
sheet as well as the new model that it instantiates.

Note that a modification of the year block in the model (inserting various columns)
captures modifications to all repetitions of the block throughout the instance.

In this paper, we will demonstrate that modifications to spreadsheet models can be
supported by an appropriate combinator language, and that these model modifications
can be propagated automatically to the spreadsheets that instantiate the models. In case
of the budget example, the model modification is captured by the following expression:

Type-Safe Evolution of Spreadsheets 189

(a) New budget model (b) New budget instance

Fig. 3. New spreadsheet and the model that it instantiates

addTax = once (inside "Year" (before "Total" (
insertCol "Tax Tariff" � insertCol "After tax")))

The actual column insertions are done by the innermost sequence of two insertCol
steps. The before and inside combinators specify the location constraints of applying
these steps. The once combinator traverses the spreadsheet model to search for a single
location where these constraints are satisfied and the insertions can be performed.

Application of the addTax transformation to the initial model (Figure 2) will yield:
firstly, the modified model (Figure 3a), secondly a spreadsheet migration function that
can be applied to instances of the initial model (e.g. Figure 1) to produce instances of the
modified model (e.g. Figure 3b), and thirdly an inverse spreadsheet migration function
to backport instances of the modified model to instances of the initial model.

In the remainder of this paper, we will explain the machinery required for this type of
coupled transformation of spreadsheet instances and models. As models, we will use a
variation on ClassSheets where references are modeled by projection functions. Model
transformations propagate references by composing instance-level transformations with
these projection functions.

3 A Framework for Evolution of Spreadsheets in HASKELL

Data refinement theory provides an algebraic framework for calculating with data types
and corresponding values [16,17,18]. It consists of type-level coupled with value-level
transformations. The type-level transformations deal with the evolution of the model
and the value-level transformations deal with the instances of the model (e.g. values).
Figure 4 depicts the general scenario of a transformation in this framework.

A

to
��

� A′

from

��
A, A′ data type and transformed data type
to witness function of type A → A′ (injective)
from witness function of type A′ → A (surjective)

Fig. 4. Coupled transformation of data type A into data type A′

Each transformation is coupled with witness functions to and from, which are re-
sponsible for converting values of type A into type A′ and back.

The 2LT framework is an HASKELL implementation of this theory [3,4,5,6]. It pro-
vides the basic combinators to define and compose transformations for data types and
witness functions. Since 2LT is statically typed, transformations are guaranteed to be
type-safe ensuring consistency of data types and data instances.

190 J. Cunha et al.

3.1 ClassSheets and Spreadsheets in HASKELL

The 2LT was originally designed to work with algebraic data types. However, this repre-
sentation is not expressive enough to represent ClassSheet specifications or their spread-
sheet instances. To overcome this issue, we extended the 2LT representation so it could
support ClassSheet models, by introducing the following Generalized Algebraic Data
Type1 (GADT) [12,20]:

data Type a where
...
V alue :: V alue → Type V alue -- plain value

-- references
Ref :: Type b → PF (a → RefCell) → PF (a → b) → Type a → Type a
RefCell :: Type RefCell -- reference cell
Formula :: Formula → Type Formula -- formulas

LabelB :: String → Type LabelB -- block label
· = · :: Type a → Type b → Type (a, b) -- attributes
· � · :: Type a → Type b → Type (a, b) -- block horizontal composition
· ˆ · :: Type a → Type b → Type (a, b) -- block vertical composition
EmptyB :: Type EmptyB -- empty block
· :: String → Type HorH -- horizontal class label
| · :: String → Type V erV -- vertical class label
| · :: String → Type Square -- square class label
LabRel :: String → Type LabS -- relation class

· : · :: Type a → Type b → Type (a, b) -- labeled class
· : (·)↓ :: Type a → Type b → Type (a, [b]) -- labeled expandable class
· ˆ · :: Type a → Type b → Type (a, b) -- class vertical composition

SheetC :: Type a → Type (SheetC a) -- sheet class
·→ :: Type a → Type [a] -- sheet expandable class
· � · :: Type a → Type b → Type (a, b) -- sheet horizontal composition
EmptyS :: Type EmptyS -- empty sheet

The comments should clarify what the constructors represent. The values of type Type a
are representations of type a. For example, if t is of type Type V alue, then t represents
the type V alue. The following types are needed to construct values of type Type a:

data EmptyBlock -- empty block
data EmptySheet -- empty sheet
type LabelB = String -- label
data RefCell = RefCell1 -- referenced cell
type LabS = String -- square label
type HorH = String -- horizontal label
type V erV = String -- vertical label
data SheetC a = SheetCC a -- sheet class
data SheetCE a = SheetCEC a -- expandable sheet class
data V alue = V Int Int | V String String | V Bool Bool | V Double Double -- values
data Formula1 = FValue V alue | FRef | FFormula String [Formula1] -- formula

1 “It allows to assign more precise types to data constructors by restricting the variables of the
datatype in the constructors’ result types.”

Type-Safe Evolution of Spreadsheets 191

Once more, the comments should clarify what each type represents.
To explain this representation we will use as an example a reduced version of the

budget model presented in Figure 1. For this reduced model only three columns were
defined: quantity, cost per unit and total cost (product of quantity by cost per unit).

purchase =
| Price List : Quantity � Price � Totalˆ
| PriceList : (quantity = 0 � price = 0 � total = FFormula × [FRef ,FRef])↓

This ClassSheet specifies a class called Price List composed by two parts vertically
composed as indicated by the ˆ operator. The first part is defined in the first row and
defines the labels for three columns: Quantity , Price and Total . The second row de-
fines the rest of the class containing the definition of the three columns. The first two
columns have as default value 0 and the third is defined by a formula (explained latter
on). Note that this part is vertical expandable, that is, it can be vertically repeated. In
a spreadsheet instance this corresponds to the possibility of adding new rows. Figure 5
represents a spreadsheet instance of this model.

Fig. 5. Spreadsheet instance of the purchase ClassSheet

Note that in the definition of Type a the constructors combining parts of the spread-
sheet (e.g. sheets) return a pair. Thus, a spreadsheet instance is written as nested pairs
of values. The spreadsheet illustrated in Figure 5 is encoded in HASKELL as follows:

((Quantity , (Price,Total)),
[(2 , (1500 ,FormulaFF × [FRef , FRef])),
(5 , (45 ,FormulaFF × [FRef , FRef]))])

The HASKELL type checker statically ensures that the pairs are well formed and are
constructed in the correct order.

3.2 Specifying Formulas

Having defined a GADT to represent ClassSheet models, we need now a mechanism to
define spreadsheet formulas. The safer way to specify formulas is making them strongly
typed. Figure 6 depicts the scenario of a transformation with references. A reference
from a cell s to the a cell t is defined using a pair of projections, source and target.
These projections are statically-typed functions traversing the data type A to identify
the cell defining the reference (s), and the cell to which the reference is pointing to (t).
In this approach, not only the references are statically typed, but also always guaranteed
to exist, that is, one can not create a reference from/to a cell that does not exist.

The projections defining the reference and the referenced type, in the transformed
type A′, are obtained by post-composing the projections with the witness function from .

192 J. Cunha et al.

s

A

to
��

target ��

source
��

T �� A′

from

��

source′
��

target′��t

source Projection over type A identifying the reference
target Projection over type A identifying the referenced cell

source′ = source ◦ from
target′ = target ◦ from

Fig. 6. Coupled transformation of data type A into data type A′ with references

When source′ and target′ are normalized they work on A′ directly rather than via
A. The formula specification, as previously shown, is specified directly in the GADT.
However, the references are defined separately by defining projections over the data
type. This is required to allow any reference to access any part of the GADT.

Using the spreadsheet illustrated in Figure 5, an instance of a reference from the
formula total to price is defined as follows (remember that the second argument of Ref
is the source (reference cell) and that the third is the target (referenced cell)):

purchaseWithReference =
Ref Int (fhead ◦ head ◦ (π2 ◦ π2)� ◦ π2) (head ◦ (π1 ◦ π2)� ◦ π2) purchase

The source function refers to the first FRef in the HASKELL encoding shown after
Figure 5. The target projection defines the cell it is pointing to, that is, it defines a
reference to the the value 1500 in column Price . Since the use of GADTs requires
the definition of models combining elements in a pairwise fashion, it is necessary to
descend into the structure using π1 and π2. The operator ·	 applies a function to all the
element of a list and fhead gets the first reference in a list of references.

Note that our reference type has enough information about the cells and so we do not
need value-level functions, that is, we do not need to specify the projection functions
themselves, just their types. In the cases we reference a list of values, for example,
constructed by the class expandable operator, we need be specific about the element
within the list we are referencing. For these cases, we use the type-level constructors
head (first element of a list) and tail (all but first) to get the intended value in the list.

3.3 Rewriting Systems

At this point we are now able to represent ClassSheet models, including formulas. In
this section we discuss the definition of the witness functions from and to. Once again
we rely on the definition of a GADT:

data PF a where
id :: PF (a → a) -- identity function
π1 :: PF ((a, b) → a) -- left projection of a pair
π2 :: PF ((a, b) → b) -- right projection of a pair
pnt :: a → PF (One → a) -- constant
· � · :: PF (a → b) → PF (a → c) → PF (a → (b, c)) -- split of functions
· × · :: PF (a → b) → PF (c → d) → PF ((a, c) → (b, d)) -- product of functions

Type-Safe Evolution of Spreadsheets 193

· ◦ · :: Type b → PF (b → c) → PF (a → b) → PF (a → c) -- composing func.
·� :: PF (a → b) → PF ([a] → [b]) -- map of functions
head :: PF ([a] → a) -- head of a list
tail :: PF ([a] → [a]) -- tail of a list
fhead :: PF (Formula1 → RefCell) -- head of the arguments of a formula
ftail :: PF (Formula1 → Formula1) -- tail of the arguments of a formula

This GADT represents the types of the functions used in the transformations. For ex-
ample, π1 represents the type of the function that projects the first part of a pair. The
comments should clarify which function each constructor represents. Given these rep-
resentations of types and functions, we can turn to the encoding of refinements. Each
refinement is encoded as a two-level rewriting rule:

type Rule = ∀ a . Type a → Maybe (View (Type a))

data View a where View :: Rep a b → Type b → View (Type a)

data Rep a b = Rep {to = PF (a → b), from = PF (b → a)}
Although the refinement is from a type a to a type b, this can not be directly encoded
since the type b is only known when the transformation completes, so the type b is
represented as a view of the type a. A view expresses that a type a can be represented
as a type b, denoted as Rep a b, if there are functions to :: a → b and from :: b → a
that allow data conversion between one and the other. The following code implements
a rule to transform a list into a map (represented by · ⇀ ·):
listmap :: Rule
listmap ([a]) = Just (View (Rep {to = seq2index , from = tolist }) (Int ⇀ a))
listmap = mzero

The witness functions have the following signature (their code here is not important):

tolist :: (Int ⇀ a) → [a] seq2index :: [a] → Int ⇀ a

This rule receives the type of a list of a, [a], and returns a view over the type map of
integers to a, Int ⇀ a. The witness functions are returned in the representation Rep. If
other argument than a list is received, then the rule fails returning mzero. All the rules
contemplate this case and so we will not show it in the definition of other rules.

Given this encoding of individual rewrite rules, a complete rewrite system can be
constructed via the following constructors:

nop :: Rule -- identity
� ::Rule → Rule → Rule -- sequential composition
� ::Rule → Rule → Rule -- left-biased choice
many :: Rule → Rule -- repetition
once :: Rule → Rule -- arbitrary depth rule application

Details on the implementation of these combinators can be found elsewhere [4].

4 Spreadsheets Evolution

In this section we define rules to perform spreadsheet evolution. These rules can be
divided in three main categories: Combinators, used as helper rules, Semantic rules,
intended to change the model itself (e.g. add a new column), and Layout rules, designed
to change the visual arrangement of the spreadsheet (e.g. swap two columns).

194 J. Cunha et al.

4.1 Combinators

The other types of rules are defined to work on a specific part of the data type. The
combinators defined next are then used to apply those rules in the desired places.

Pull Up All the References: To avoid having references in different levels of the mod-
els, all the rules pull all the references to the topmost level of the model. To pull a
reference is a particular place we use the following rule (we show just its first case):

pullUpRef :: Rule
pullUpRef ((Ref tb fRef tRef ta) � b2) = do

return (View idrep (Ref tb (fRef ◦ π1) (tRef ◦ π1) (ta � b2)))

The representation idrep has the id function in both directions. If part of the model (in
this case the left part of a horizontal composition) of a given type has a reference, it is
pulled to the top level. This is achieved by composing the existing projections with the
necessary functions, in this case π1. This rule has two cases (left and right hand side)
for each binary constructor (e.g. horizontal/vertical composition).

To pull up all the references in all levels of a model we use the rule pullUpAllRefs =
many (once pullUpRef). The once operator applies the pullUpRef rule somewhere
in the type and the many ensures that this is applied everywhere in the whole model.

Apply After and Friends: The combinator after finds the correct place to apply the
argument rule (second argument) by comparing the given string (first argument) with
the existing labels in the model. When it finds the intended place, it applies the rule to
it. This works because our rules always do their task on the right-hand side of a type.

after :: String → Rule → Rule
after label r (label ′ � a) | label ≡ label ′ = do

View s l ′ ← r label ′

return (View (Rep {to = to s × id, from = from s × id}) (l ′ � a))

Note that this definition is only part of the complete version since it only contemplates
the case for horizontal composition of blocks (· � ·).

Other combinators were also developed, namely, before , bellow , above , inside and
at . Their implementations are not shown since they are similar to the after combinator.

4.2 Semantic Rules

In this section we present rules that change the semantics of the model, for example,
adding columns.

Insert a Block: One of the most fundamental rules is the insertion of a new block into
a spreadsheet, formally defined as following:

Block

id�(pnt a)
		

� Block � Block
π1

Type-Safe Evolution of Spreadsheets 195

This diagram means that a horizontal composition of two blocks refines a block when
witnessed by two functions, to and from . The to function, id�(pnt a), is a split: it
injects the existing block in the first part of the result without modifications (id) and
injects the given block instance a into the second part of the result. The from function
is π1 since it is the one that allows the recovery of the existent block. The HASKELL

version of the rule is presented next.

insertBlock :: Type a → a → Rule
insertBlock ta a tx | isBlock ta ∧ isBlock tx = do

let rep = Rep {to = (id�(pnt a)), from = π1}
View s t ← pullUpAllRefs (tx � ta)
return (View (comprep rep s) t)

The function comprep composes two representations. This rule receives the type of the
new block ta , its default instance a, and returns a Rule. The returned rule is itself a
function that receives the block to modify tx and returns a view of the new type. The
first step is to verify if the given types are block using the function isBlock . The second
step is to create the representation rep with the witness functions given in the above
diagram. Then the references are pulled up in result type tx � ta. This returns a new
representation s and a new type t (in fact, the type is the same t = tx � ta). The result
view has as representation the composition of the two previous representations, rep and
s , and the corresponding type t .

Rules to insert classes and sheets were also defined, but since these rules are similar
to the rule for inserting blocks, we omit them for brevity.

Insert a Column: To insert a column in a spreadsheet, that is, a cell with a label lbl
and the cell bellow with a default value df and vertically expandable, we first need to
create a new class representing it: clas =| lbl : lbl ˆ(lbl = df ↓). The label is used to
create the default value (lbl , []). Note that, since we want to create an expandable class,
the second part of the pair must be a list. The final step is to apply insertSheet :

insertCol :: String → VFormula → Rule
insertCol l f @(FFormula name fs) tx | isSheet tx = do

let clas =| lbl : lblˆ(lbl = df ↓)
((insertSheet clas (lbl , [])) � pullUpAllRefs) tx

Note the use of the rule pullUpAllRefs as explained before. The case shown in the
above definition is for a formula as default value and it is similar to the value case. The
case with a reference is more interesting and is shown next:

insertCol l FRef tx | isSheet tx = do

let clas =| lbl : Ref ⊥ ⊥ ⊥ (lblˆ((lbl = RefCell)↓))
((insertSheet clas (lbl , [])) � pullUpAllRefs) tx

Recall that our references are always local, that is, they can only exist with the type they
are associated with. So, it is not possible to insert a column that references a part of the
existing spreadsheet. To overcome this, we first create the reference with undefined
functions and auxiliary type (⊥) and then we set these values to the intended ones.

setFormula :: Type b → PF (a → RefCell) → PF (a → b) → Rule
setFormula tb fRef tRef (Ref t) = return (View idrep (Ref tb fRef tRef t))

196 J. Cunha et al.

This rule receives the auxiliary type (Type b), the two functions representing the refer-
ence projections and adds them to the type. A complete rule to insert a column with a
reference is defined as follows:

insertFormula =
(once (insertCol "After Tax" FRef)) � (setFormula auxType fromRef toRef)

Following the original idea described in Section 2, we want to introduce a new column
with the tax tariff. In this case, we want to insert a column in an existing block and thus
our previous rule will not work. For these cases we write a new rule:

insertColIn :: String → VFormula → Rule
insertColIn l (FValue v) tx | isBlock tx = do

let block = lblˆ(lbl = v)
((insertBlock block (lbl , v)) � pullUpAllRefs) tx

This rule is similar to the previous one but it creates a block (not a class) and inserts it
also after a block. The reasoning is analogous to the one in insertCol .

To add the two columns "Tax tariff" and "After tax" we can use the rule
insertColIn , but applying it directly to our running example will fail since it expects a
block and we have a spreadsheet. We can use the combinator once to achieve the desired
result. This combinator tries to apply a given rule somewhere in a type, stopping after it
succeeds once. Although this combinator already existed in the 2LT framework, we ex-
tended it to work for spreadsheet models. Assuming that the column "Tax tariff"
was already inserted, we can run the following functions:

ghci〉let formula = FFormula × [FRef ,FRef]
ghci〉once (after "Tax tarif" (once (insertColIn "After Tax" formula))) budget
...
("Cost" � "Tax tariff" � "After tax"ˆ("after tax" = formula) � "Total")ˆ
("cost" = 0 � "tax tarif" = 0 � "total" = totalFormula)
...

Note that above result is not quite right. The block inserted is a vertical composition
and is inserted in a horizontal composition. The correct would be to have its top and
bottom part on the top and bottom part of the result, as defined below:

("Cost" � "Tax tariff" � "After tax" � "Total")ˆ
("cost" = 0 � "tax tarif" = 0 � "after tax" = formula � "total" =

totalFormula)

To correct these cases, we designed a layout rule, normalize , explained in Section 4.3.

Make it Expandable: It is possible to make a block in a class expandable. For this, we
created the rule expandBlock :

expandBlock :: String → Rule
expandBlock str (label : clas) | compLabel label str = do

let rep = Rep {to = id × tolist, from = id × head}
return (View rep (label : (clas)↓))

It receives the label of the class to make expandable and updates the class to allow
repetition. The result type constructor is · : (·)↓; the to function wraps the existing

Type-Safe Evolution of Spreadsheets 197

block into a list, tolist ; and the from function takes the head of it, head. We developed
a similar rule to make a class expandable. This corresponds to promote a class c to c→.
We do not show its implementation here since it is quite similar to this one.

Split: It is quite common to move a column in a spreadsheet from on place to another.
The rule split copies a column to another place and substitutes the original column
values by references to the new column (similar to create a pointer). The rule to move
part of the spreadsheet is presented in Section 4.3. The first step of split is to get the
column that we want to copy:

getColumn :: String → Rule
getColumn h t (l ′ˆb1) | h ≡ l ′ = return (View idrep t)

If the corresponding label is found, the vertical composition is returned. Note that, as in
other rules, this rule is intended to be applied using the combinator once . As we said, we
aim to write local rules that can be used at any level using the developed combinators.

The rule creates in a second step a new a class containing the retrieved block:

do View s c′ ← getBlock str c

let nsh =| str : (c′)↓

The last step is to transform the original column that was copied into references to the
new column. The rule makeReferences :: String → Rule receives the label of the
column that was copied (the same as the new column) and creates the references. We
do not shown the rest of the implementation because it is quite complex and will not
help in the understanding of the paper.

Let us consider the following part of our example:

budget =
... ("Cost" � "Tax tariff" � "After tax" � "Total")ˆ

("cost" = 0 � "tax tarif" = 0 � "after tax" = formula � "total" =
totalFormula) ...

If we apply the split rule (with the help of once) to it we get the following new model:

ghci〉once (split "Tax tariff") budget
...
("Cost" � "Tax tariff" � "After tax" � "Total")ˆ
("cost" = 0 � "tax tarif" = 0 � RefCell � "total" = totalFormula)
�

(| "Tax tariff" : (("Tax tariff"ˆ"tax tarif" = 0))↓)

4.3 Layout Rules

In this section we describe rules focused on the layout of spreadsheets, that is, rules that
do not add/remove information to/from the model.

Change Orientation: The rule toVertical changes the orientation of a block from hor-
izontal to vertical.

198 J. Cunha et al.

toVertical :: Rule
toVertical (a � b) = return (View idrep (aˆb))

Note that, since our value-level representation of these compositions are pairs, the to
and the from functions are simply the identity function. The needed information is
kept in the type-level with the different constructors. A rule to do the inverse was also
designed but since it is quite similar to this one, we do not show it here.

Normalize Blocks: When applying some transformations, the resulting types may not
have the correct shape. A common example is to have as result the following type:

A � BˆC � Dˆ
E � F

Most of the times, the correct result is the following:

A � B � Dˆ
E � C � F

The rule normalize tries to match these cases and correct them. The types are the ones
presented above and the witness functions are combinations of π1 and π2.

normalize1 :: Rule
normalize1 (a � bˆc � dˆe � f) =

let tof = id × π1 × id ◦ π1�π1 ◦ π2�π2 ◦ π1 ◦ π2 × π2

fromf = π1 ◦ π1�π1 ◦ π2 × π1 ◦ π2�π2 ◦ π2 ◦ π1�id × π2 ◦ π2

return (View (Rep {to = tof , from = fromf }) (a � b � dˆe � c � f))

Although the migration functions seem complex, they just rearrange the order of the
pair so they have the correct order.

Shift: It is quite common to move parts of the spreadsheet across it. We designed a rule
to shift parts of the spreadsheet in the four possible directions. We show here part of the
shitRight rule, which, as suggested by its name, shifts a piece of the spreadsheet to the
right. In this case, a block is moved and an empty block is left in its place.

shitRight :: Type a → Rule
shitRight ta b1 | isBlock b1 = do

Eq ← teq ta b1
let rep = Rep {to = pnt (⊥ :: EmptyBlock)�id, from = π2}
return (View rep (EmptyBlock � b1))

The function teq verifies if two types are equal. This rule receives a type and a block, but
we can easily write a wrapper function to receive a label in the same style of insertCol .

Another interesting case of this rules occurs when the user tries to move a block (or
a sheet) that has a reference.

shitRight ta (Ref tb frRef toRef b1) | isBlock b1 = do
Eq ← teq ta b1
let rep = Rep {to = pnt (⊥ :: EmptyBlock)�id, from = π2}
return (View rep (Ref tb (frRef ◦ π2) (toRef ◦ π2) (EmptyBlock � b1))

As we can see in the above code, the existing reference projections must be composed
with the selector π2 to allow to retrieve the existing block b1 . Only after this it is
possible to apply the defined selection reference functions.

Type-Safe Evolution of Spreadsheets 199

Move Blocks: A more complex task is to move a part of the spreadsheet to another
place. We present next a rule to move a block.

moveBlock :: String → Rule
moveBlock str c = do View s c′ ← getBlock str c

let nsh =| str : c′

View r sh ← once (removeRedundant str) (c � nsh)
return (View (comprep s r) sh)

After getting the intended block and creating a new class with it, we need to remove the
old block using removeRedundant .

removeRedundant :: String → Rule
removeRedundant s (s ′) | s ≡ s ′ = return (View rep EmptyBlock)

where rep = Rep {to = pnt (⊥ :: EmptyBlock), from = pnt s ′}
This rule will remove the block with the given label leaving an empty block in its place.

5 Related Work

Ko et al. [13] summarize and classify the research challenges of the end user software
engineering area. These include requirements gathering, design, specification, reuse,
testing and debugging. However, besides the importance of Lehman’s laws of software
evolution [14], very little is stated with respect to spreadsheet evolution. Spreadsheets
evolution poses challenges not only in the evolution of the underlying model, but also
in migration of the spreadsheet values and used formulæ. Nevertheless, many of the un-
derlaying transformations used for spreadsheet transformations are shared with works
for spreadsheet generation and other program transformation techniques.

Engels et al. [15] propose a first attempt to solve the problem of spreadsheet evolu-
tion. ClassSheets are used to specify the spreadsheet model and transformation rules are
defined to enable model evolution. These model transformations are propagated to the
model instances (spreadsheets) through a second set of rules which updates the spread-
sheet values. They present a set of rules and a prototype tool to support these changes.
In this paper we present a more advanced way to evolve spreadsheets models and in-
stances in a different way: first, we use strategic programming with two-level coupled
transformation. This enables type-safe transformations, offering guarantee that in any
step semantics are preserved. Also, the use of 2LT not only gives for free the data mi-
gration but also it allows back portability, that is, it allows the migration of data from
the new model back to the old model.

Vermolen and Visser [23] proposed a different approach for coupled evolution of
data model and data. From a data model definition, they generate a domain specific lan-
guage (DSL) which supports the basic transformations and allows data model and data
evolution. The interpreter for the DSL is automatically generated making this approach
operational. This approach could also be used for spreadsheet evolution. However, there
are a few important differences. While their approach is tailored for forward evolution,
our approach supports reverse engineering, that is, it supports automatic transformation
and migration from the new model to the old model.

200 J. Cunha et al.

6 Conclusions

In this paper, we have presented an approach for disciplined model-driven evolution
of spreadsheets. The approach takes as starting point the observation that spreadsheets
can be seen as instances of a spreadsheet model capturing the business logic of the
spreadsheet. We have extended the calculus for coupled transformations of the 2LT
platform to this spreadsheet model. An important novel aspect of this extension is the
treatment of references. In particular, we have made the following contributions:

– We have provided a model of spreadsheets in the form of a GADT with embedded
point-free function representations. This model is reminiscent of the ClassSheet.

– We have defined a coupled transformation system in which transformations at the
level of spreadsheet models are coupled with corresponding transformations at the
level of spreadsheet data/instances. This system combines strategy combinators
known from strategic programming with spreadsheet-specific transformation rules.

– We have illustrated our approach with a number of specific spreadsheet refactorings
to perform the evolution of spreadsheets.

The rules here presented are implemented in the HAEXCEL framework consisting of a
set of libraries providing functionality to load (from different formats), transform, in-
fer spreadsheet models (e.g. ClassSheet), and, now, perform the co-evolution of such
models their (spreadsheet) instances. HAEXCEL includes an add-on for OpenOffice.
Currently, we are integrating the rules presented in this paper, in a spreadsheet program-
ming environment where end users can interact both with the model and the data [9].

References

1. Abraham, R., Erwig, M.: Inferring templates from spreadsheets. In: Proc. of the 28th Int.
Conference on Software Engineering, pp. 182–191. ACM, New York (2006)

2. Abraham, R., Erwig, M., Kollmansberger, S., Seifert, E.: Visual specifications of correct
spreadsheets. In: Proc. of the 2005 IEEE Symposium on Visual Languages and Human-
Centric Computing, pp. 189–196. IEEE Computer Society, Washington, DC, USA (2005)

3. Alves, T., Silva, P., Visser, J.: Constraint-aware Schema Transformation. In: The Ninth Inter-
national Workshop on Rule-Based Programming (2008)

4. Cunha, A., Oliveira, J.N., Visser, J.: Type-safe two-level data transformation. In: Misra, J.,
Nipkow, T., Karakostas, G. (eds.) FM 2006. LNCS, vol. 4085, pp. 284–299. Springer, Hei-
delberg (2006)

5. Cunha, A., Visser, J.: Strongly typed rewriting for coupled software transformation. Elec-
tronic Notes on Theoretical Computer Science 174, 17–34 (2007)

6. Cunha, A., Visser, J.: Transformation of structure-shy programs: Applied to XPath queries
and strategic functions. In: Ramalingam, G., Visser, E. (eds.) Proceedings of the 2007 ACM
SIGPLAN Workshop on Partial Evaluation and Semantics-based Program Manipulation
2007, Nice, France, January 15-16, pp. 11–20. ACM, New York (2007)

7. Cunha, J., Beckwith, L., Fernandes, J.P., Saraiva, J.: An empirical study on the influence of
different spreadsheet models on end-users performance. Tech. Rep. DI-CCTC-10-10, CCTC,
Departamento de Informática, Universidade do Minho (2010)

Type-Safe Evolution of Spreadsheets 201

8. Cunha, J., Erwig, M., Saraiva, J.: Automatically inferring classsheet models from spread-
sheets. In: Proc. of the 2010 IEEE Symposium on Visual Languages and Human-Centric
Computing, pp. 93–100. IEEE Computer Society, Washington, DC, USA (2010)

9. Cunha, J., Fernandes, J.P., Mendes, J., Saraiva, J.: Embedding spreadsheet models in spread-
sheet systems (2011) (submitted for publication)

10. Cunha, J., Saraiva, J., Visser, J.: Discovery-based edit assistance for spreadsheets. In: Proc.
of the 2009 IEEE Symposium on Visual Languages and Human-Centric Computing, pp.
233–237. IEEE Computer Society, Washington, DC, USA (2009)

11. Engels, G., Erwig, M.: ClassSheets: Automatic generation of spreadsheet applications from
object-oriented specifications. In: Proceedings of the 20th IEEE/ACM International Confer-
ence on Automated Software Engineering, pp. 124–133. ACM, New York (2005)

12. Hinze, R., Löh, A., Oliveira, B.: “Scrap Your Boilerplate” Reloaded. In: Hagiya, M., Wadler,
P. (eds.) FLOPS 2006. LNCS, vol. 3945, pp. 13–29. Springer, Heidelberg (2006)

13. Ko, A., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., Scaffidi, C.,
Lawrence, J., Lieberman, H., Myers, B., Rosson, M., Rothermel, G., Shaw, M., Wiedenbeck,
S.: The state of the art in end-user software engineering. J. ACM Computing Surveys (2009)

14. Lehman, M.M.: Laws of software evolution revisited. In: Montangero, C. (ed.) EWSPT 1996.
LNCS, vol. 1149, pp. 108–124. Springer, Heidelberg (1996)

15. Luckey, M., Erwig, M., Engels, G.: Systematic evolution of typed (model-based) spreadsheet
applications (submitted for publication)

16. Morgan, C., Gardiner, P.H.B.: Data refinement by calculation. Acta Informatica 27, 481–503
(1990)

17. Oliveira, J.N.: A reification calculus for model-oriented software specification. Formal As-
pects of Computing 2(1), 1–23 (1990)

18. Oliveira, J.N.: Transforming data by calculation. In: Lämmel, R., Visser, J., Saraiva, J. (eds.)
GTTSE 2007. LNCS, vol. 5235, pp. 134–195. Springer, Heidelberg (2008)

19. Panko, R.R.: Spreadsheet errors: What we know. What we think we can do. In: Proceedings
of the Spreadsheet Risk Symposium, European Spreadsheet Risks Interest Group (July 2000)

20. Peyton Jones, S., Washburn, G., Weirich, S.: Wobbly types: type inference for generalised
algebraic data types. Tech. Rep. MS-CIS-05-26, Univ. of Pennsylvania (July 2004)

21. Powell, S.G., Baker, K.R.: The Art of Modeling with Spreadsheets. John Wiley & Sons, Inc.,
New York (2003)

22. Rajalingham, K., Chadwick, D., Knight, B.: Classification of spreadsheet errors. In: Euro-
pean Spreadsheet Risks Interest Group, EuSpRIG (2001)

23. Vermolen, S.D., Visser, E.: Heterogeneous coupled evolution of software languages. In:
Czarnecki, K., Ober, I., Bruel, J.M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS,
vol. 5301, pp. 630–644. Springer, Heidelberg (2008)

A Formal Resolution Strategy for
Operation-Based Conflicts in Model Versioning

Using Graph Modifications

Hartmut Ehrig1, Claudia Ermel1, and Gabriele Taentzer2

1 Technische Universität Berlin, Germany
claudia.ermel@tu-berlin.de, ehrig@cs.tu-berlin.de

2 Philipps-Universität Marburg, Germany
taentzer@informatik.uni-marburg.de

Abstract. In model-driven engineering, models are primary artifacts
and can evolve heavily during their life cycle. Hence, versioning of
models is a key technique which has to be offered by an integrated devel-
opment environment for model-driven engineering. In contrast to text-
based versioning systems, our approach takes abstract syntax structures
in model states and operational features into account. Considering the
abstract syntax of models as graphs, we define a model revision by a span
G ← D → H , called graph modification, where G and H are the old and
new versions, respectively, and D the common subgraph that remains
unchanged. Based on notions of behavioural equivalence and parallel in-
dependence of graph modifications, we are able to show a Local-Church-
Rosser Theorem for graph modifications. The main goal of the paper is
to handle conflicts of graph modifications which may occur in the case
of parallel dependent graph modifications. The main result is a general
merge construction for graph modifications that resolves all conflicts si-
multaneously in the sense that for delete-insert conflicts insertion has
priority over deletion.

Keywords: graph modification, graph transformation, model version-
ing, conflict resolution.

1 Introduction

Visual models are primary artifacts in model-driven engineering. Like source
code, models may heavily evolve during their life cycle and should put under
version control to allow for concurrent modifications of one and the same model
by multiple modelers at the same time. When concurrent modifications are al-
lowed, contradicting and inconsistent changes might occur leading to versioning
conflicts. Traditional version control systems for code usually work on file-level
and perform conflict detection by line-oriented text comparison. When applied
to the textual serialization of visual models, the result is unsatisfactory because
the information stemming from abstract syntax structures might be destroyed
and associated syntactic and semantic information might get lost.

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 202–216, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Conflict Resolution for Model Versioning Based on Graph Modifications 203

Since the abstract syntax of visual models can be well described by graphs,
we consider graph modifications to reason about model evolution. Graph mod-
ifications formalize the differences of two graphs before and after a change as a
span of injective graph morphisms G ←− D −→ H where D is the unchanged
part, and we assume wlog. that D → G and D → H are inclusions. An ap-
proach to conflict detection based on graph modifications is described in [10].
We distinguish operation-based conflicts where deletion actions are in conflict
with insertion actions and state-based conflicts where the tentative merge re-
sult of two graph modifications is not well-formed wrt. a set of language-specific
constraints.

In this paper, we enhance the concepts of [10] by the resolution of operation-
based conflicts of graph modifications. First of all, we define behavioural
equivalence and parallel independence of graph modifications based on pushout
constructions in analogy to algebraic graph transformations [3] and show a Lo-
cal Church-Rosser Theorem for parallel independent graph modifications. Then
we present a merge construction for conflict-free graph modifications and show
that the merged graph modification is behavioural equivalent to the parallel
composition of the given graph modifications.

The main new idea of this paper is a general merge construction for graph
modifications which coincides with the conflict-free merge construction if the
graph modifications are parallel independent. Our general merge construction
can be applied to conflicting graph modifications in particular. We establish a
precise relationship between the behaviour of the given modifications and the
merged modification concerning deletion, preservation and creation of edges and
nodes. In our main result, we show in which way different conflicts of the given
graph modifications are resolved by the merge construction which gives insertion
priority over deletion in case of delete-insert conflicts. Note, however, that in
general the merge construction has to be processed further by hand, if other
choices of conflict resolution are preferred for specific cases. Our running example
is a model versioning scenario for statecharts where all conflicts are resolved by
the general merge construction.

Structure of the paper: In Section 2, we present the basic concepts of algebraic
graph modifications, including behavioural equivalence and a Local Church-
Rosser Theorem. A general merge construction is presented and analysed in
Section 3, where also the main result concerning conflict resolution is given1 Re-
lated work is discussed in Section 4, and a conclusion including directions for
future work is given in Section 5.

2 Graph Modifications: Independence and Behavioural
Equivalence

Graph modifications formalize the differences of two graphs before and after
a change as a span of injective graph morphisms G ← D → H where D is
1 The long version of the paper containing full proofs is published as technical

report [4].

204 H. Ehrig, C. Ermel, and G. Taentzer

the unchanged part. This formalization suits well to model differencing where
identities of model elements are preserved for each element preserved. We recall
the definition of graph modifications from [10] here:

Definition 1 (Graph modification). Given two graphs G and H, a graph
modification G

D=⇒ H is a span of injective morphisms G
g←− D

h−→ H.

Graph D characterizes an intermediate graph where all deletion actions have
been performed but nothing has been added yet. Wlog. we can assume that g
and h are inclusions, i.e. that D is a subgraph of G and of H . G is called original
graph and H is called changed or result graph.

Example 1 (Graph modifications). Consider the following model versioning sce-
nario for statecharts. The abstract syntax of the statechart in Figure 1 (a) is
defined by the typed, attributed graph in Figure 1 (b). The node type is given
in the top compartment of a node. The name of each node of type State is writ-
ten in the attribute compartment below the type name. We model hierarchical
statecharts by using containment edges. For instance, in Figure 1 (b), there are
containment edges from superstate S0 to its substates S1 and S22. Note that
for simplicity of the presentation we abstract from transition events, guards and
actions, as well as from other statechart features, but our technique can also
be applied to general statecharts. Furthermore, from now on we use a compact
notation of the abstract syntax of statecharts, where we draw states as nodes
(rounded rectangles with their names as node ids) and transitions as directed
arcs between state nodes. The compact notation of the statechart in Figure 1
(a) is shown in Figure 1 (c).

Fig. 1. Sample statechart: concrete syntax (a), abstract syntax graph (b), and compact
notation (c)

In our model versioning scenario, two users check out the statechart shown
in Figure 1 and change it in two different ways. User 1 performs a refactoring
operation on it. She moves state S3 up in the state hierarchy (cf. Figure 2). User
2 deletes state S3 together with its adjacent transition to state S4.

Obviously, conflicts occur when these users try to check in their changes: state
S3 is deleted by user 2 but is moved to another container by user 1.
2 In contrast to UML state machines, we distinguish edges that present containment

links by composition decorators.

Conflict Resolution for Model Versioning Based on Graph Modifications 205

Fig. 2. Graph modifications m1 (refactoring) and m2 (deletion)

In this section, we study relations between different graph modifications based
on category theory. Due to this general formal setting, we can use different kinds
of graphs like labelled, typed or typed attributed graphs (see [3] for more de-
tails). At first, we consider the sequential and parallel composition of two graph
modifications. Our intention is that graph modifications are closed under compo-
sition. Given the sequential composition of two graph modififcations G

D1=⇒ H1

and H1
D2=⇒ H2, the resulting modification obviously has G as original and H2 as

changed graph. But how does their intermediate graph D should look like? The
idea is to construct D as intersection graph of D1 and D2 embedded in H1. This
is exactly realized by a pullback construction. The parallel composition of two
graph modifications means to perform both of them independently of each other
by componentwise disjoint union. This corresponds to coproduct constructions
G1 + G2, D1 + D2 and H1 + H2 on original, intermediate and changed graphs.

Definition 2 (Composition of graph modifications). Given two graph mod-
ifications G

D1=⇒ H1 = (G ← D1 → H1) and H1
D2=⇒ H2 = (H1 ← D2 → H2),

the sequential composition of G
D1=⇒ H1 and H1

D2=⇒ H2, written (G ← D1 →
H1) ∗ (H1 ← D2 → H2) is given by G

D=⇒ H2 = (G ← D → H2) via the pullback
construction G D1�� �� H1 D2�� �� H2.

D

�������
���������

(PB)

The parallel composition of G1
D1=⇒ H1 and G2

D2=⇒ H2 is given by coproduct con-
struction: G1 + G2

D1+D2=⇒ H1 + H2 = (G1 + G2 ← D1 + D2 → H1 + H2).

The differences between the original and the intermediate graph as well as be-
tween the intermediate and the changed graph define the behaviour of a graph
modification. The same behaviour can be observed in graphs with more or less
context. Therefore, we define the behavioural equivalence of two graph modifi-
cations as follows: Starting with two modifications mi = (Gi

Di=⇒ Hi) (i = 1, 2),
we look for a third graph modification G

D=⇒ H modeling the same changes
with so little context that it can be embedded in m1 and m2. A behaviourally
equivalent embedding of graph modifications can be characterized best by two

206 H. Ehrig, C. Ermel, and G. Taentzer

pushouts as shown in Definition 3, since the construction of a pushout ensures
that Gi are exactly the union graphs of G and Di overlapping in D. Analogously,
Hi are exactly the union graphs of H and Di overlapping in D3.

Definition 3 (Behavioural Equivalence of Graph Modifications)

Two graph modifications Gi
Di=⇒ Hi (i = 1, 2) are

called behaviourally equivalent if there is a span
(G ← D → H) and PO-span morphisms from
(G ← D → H) to (Gi ← Di → Hi), (i = 1, 2),
i.e. we get four pushouts in the diagram to the right.

G1
(PO)

D1�� ��

(PO)

H1

G

��

�� (PO)

D

��

��

�� ��

(PO)

H

��

��
G2 D2�� �� H2

Example 2. Figure 3 shows two behaviourally equivalent graph modifications
where the upper one is the refactoring modification m1 from Figure 2. The span
(G ← D → H) shows the same changes as in m1 and m2, but in less context.

Fig. 3. Graph modifications m1 and m2 are behaviourally equivalent

We want to consider graph modifications to be parallel independent if they
do not interfere with each other, i.e. one modification does not delete a graph
element the other one needs to perform its changes. While nodes can always be
added to a graph independent of its form, this is not true for edges. An edge can
only be added if it has a source and a target node. Thus parallel independence
means more concretely that one modification does not delete a node that is
3 In the framework of algebraic graph transformations [3], we may also consider graph

modification G
D=⇒ H as a graph rule r which is applied to two different graphs G1

and G2. Since the same rule is applied, graph transformations Gi
r=⇒ Hi (i = 1, 2)

would be behaviourally equivalent.

Conflict Resolution for Model Versioning Based on Graph Modifications 207

supposed to be the source or target node of an edge to be added by the other
modification. Moreover, both graph modifications could delete the same graph
elements. It is debatable whether the common deletion of elements can still be
considered as parallel independent or not. Since we consider parallel independent
modifications to be performable in any order, common deletions are not allowed.
Once modification m1 has deleted a graph element, it cannot be deleted again
by modification m2

4.
This kind of parallel independence is characterized by Definition 4 as follows:

At first, we compute the intersection D of D1 and D2 in G by constructing a
pullback. Since common deletions are not allowed, there has to be at least one
modification for each graph element which preserves it. Thus, D1 glued with D2
via D has to lead to G, which corresponds to pushout (1). Next, considering
D included in D1 included in H1 we look for some kind of graph difference.
We want to identify those graph elements of H1 that are not already in D1
and have to be added by D3 such that both overlap in D, i.e. H1 becomes the
pushout object of D → D1 and D → D3. In this case, D3 with D → D3 →
H1 is called pushout complement of D → D1 → H1 (see [3] for pushout and
pushout complement constructions). Analogously, D4 is the difference of H2 and
D2 modulo D. Finally, both differences D3 and D4 are glued via D resulting in
H . According to Proposition 1, both modifications may occur in any order, such
that Definition 4 reflects precisely our intention of parallel independence.

Definition 4 (Parallel Independence of Graph Modifications)

Two graph modifications (G ← Di → Hi), (i = 1, 2)
are called parallel independent if we have the four
pushouts in the diagram to the right, where (1) can
be constructed as pullback, (2) and (3) as pushout-
complements and (4) as pushout.

G
(1)

D1�� ��

(2)

H1

D2

��

�� (3)

D

��

��

�� ��

(4)

D3

��

��
H2 D4�� �� H

Proposition 1 (Local Church-Rosser for Graph Modifications).

Given parallel independent graph modifications G
Di=⇒ Hi

(i = 1, 2). Then, there exists H and graph modifications
H1

D3=⇒ H, H2
D4=⇒ H which are behaviourally equivalent

to G
D2=⇒ H2, G

D1=⇒ H1, respectively.

G
D1 ��

D2 ��

H1

D3
��

H2
D4

�� H

Proof. Given parallel independent graph modifications G
Di=⇒ Hi (i = 1, 2), we

have pushouts (1)− (4) by Definition 4 leading to H1
D3=⇒ H and H2

D4=⇒ H with
behavioural equivalence according to Definition 3. ��
Example 3. Figure 4 shows two parallel independent graph modifications where
m1 = (G ← D1 → H1) is the refactoring modification from Figure 2, and
m2 = (G ← D2 → H2) deletes the transition from S2 to S4 and adds a new
state named S5. We have four pushouts, thus both graph modifications may be
performed in any order, yielding in both cases the same result H .
4 However, we will see that modifications with common deletions still can be merged.

208 H. Ehrig, C. Ermel, and G. Taentzer

Fig. 4. Parallel independent graph modifications

In the case that two graph modifications are parallel independent, they are
called conflict-free and can be merged to one merged graph modification that
realizes both original graph modifications simultaneously. Note that the merge
construction in Definition 5 corresponds to the construction in [10].

Definition 5 (Merging Conflict-Free Graph Modifications). Given par-
allel independent graph modifications G

Di=⇒ Hi (i = 1, 2). Then, graph modifica-
tion G

D=⇒ H given by G ← D → H defined by the diagonals of pushouts (1), (4)
in Definition 4 is called merged graph modification of G

Di=⇒ Hi (i = 1, 2).

In [4], we show that in case of parallel independence of G
Di=⇒ Hi (i = 1, 2), the

merged graph modification G
D=⇒ H is behaviourally equivalent to the parallel

composition G+G
D1+D2=⇒ H1 +H2 of the original graph modifications G

Di=⇒ Hi

(i = 1, 2). This result confirms our intuition that the merged graph modification
G

D=⇒ H realizes both graph modifications simultaneously. Moreover, it is equal
to the sequential compositions of G

D1=⇒ H1
D3=⇒ H and G

D2=⇒ H2
D4=⇒ H in

Definition 4.

Example 4. The merged graph modification of the two parallel independent
graph modifications m1 = (G ← D1 → H1) and m2 = (G ← D2 → H2) in
Figure 4 is given by m = (G ← D → H). Obviously, m realizes both graph
modifications m1 and m2 simultaneously and is shown in [4] to be behaviourally
equivalent to their parallel composition G + G

D1+D2=⇒ H1 + H2 and equal to the
sequential compositions G

D1=⇒ H1
D3=⇒ H and G

D2=⇒ H2
D4=⇒ H .

Conflict Resolution for Model Versioning Based on Graph Modifications 209

3 Conflict Resolution

If two graph modifications have conflicts, a merge construction according to
Definition 5 is not possible any more. In this section, we propose a general merge
construction that resolves conflicts by giving insertion priority over deletion in
case of delete-insert conflicts. The result is a merged graph modification where
the changes of both original graph modifications are realized as far as possible.
We state the properties of the general merge construction and show that the
merge construction for the conflict-free case is a special case of the general merge
construction.

Definition 6 (Conflicts of Graph Modifications)

1. Two modifications mi = G
Di=⇒ Hi (i = 1, 2) are conflict-free if they are

parallel independent (i.e. we have four pushouts according to Definition 4).
2. They are in conflict if they are not parallel independent.
3. They are in delete-delete conflict if ∃x ∈ (G\D1) ∩ (G\D2).
4. (m1, m2) are in delete-insert conflict if

∃ edge e ∈ H2\D2 with s(e) ∈ D2 ∩ (G\D1)
or t(e) ∈ D2 ∩ (G\D1).

Example 5. Consider the graph modifications m1 = G ← D1 → H1 and m2 =
G ← D2 → H2 in Figure 2. (m2, m1) are in delete-insert conflict because m2
deletes node S3 which is needed by m1 for the insertion of an edge. Moreover,
m1 and m2 are in delete-delete conflict because the edge from S1 to S3 is deleted
by both m1 and m2. (m1, m2) are not in delete-insert conflict.

If two modifications m1 and m2 are in conflict, then at least one conflict oc-
curs which can be of the following kinds: (1) both modifications delete the same
graph element, (2) m1 deletes a node which shall be source or target of a new
edge inserted by m2, and (3) m2 deletes a node which shall be source or target
of a new edge inserted by m3. Of course, several conflicts may occur simultane-
ously. In fact, all three conflict situations may occur independently of each other.
For example, (m1, m2) may be in delete-delete conflict, but not in delete-insert
conflict, or vice versa. 5

Theorem 1 characterizes the kinds of conflicts that parallel dependent graph
modifications may have.

Theorem 1 (Characterization of Conflicts of Graph Modifications).

Given mi = (G Di=⇒ Hi) (i = 1, 2), then (m1, m2) are in conflict iff

1. (m1, m2) are in delete-delete conflict, or
2. (m1, m2) are in delete-insert conflict, or
3. (m2, m1) are in delete-insert conflict.

5 In the worst case, we may have all kinds of conflicts simultaneously.

210 H. Ehrig, C. Ermel, and G. Taentzer

Proof Idea. Parallel independence of (m1, m2) is equiv-
alent to the fact that (PB1) is also pushout, and the
pushout complements (POC1) and (POC2) exist, such
that pushout (PO3) can be constructed. By negation,
statements 1. - 3. are equivalent to 4. - 6., respectively:

G
(PB1)

D1�� ��

(POC1)

H1

D2

��

�� (POC2)

D

��

��

�� ��

(PO3)

D3

��

��
H2 D4�� �� H

4. (PB1) is not a pushout, i.e. D1 → G ← D2 is not jointly surjective.
5. The dangling condition for D → D2 → H2 is not satisfied.
6. The dangling condition for D → D1 → H1 is not satisfied.

The dangling condition mentioned in statements 5. - 6. is the one known from
DPO graph transformation [3]. It is satisfied by inclusions D → Di → Hi (i =
1, 2), if ∀e ∈ Hi\Di : (s(e) ∈ Di =⇒ s(e) ∈ D) ∧ (t(e) ∈ Di =⇒ t(e) ∈ D).
s(e) and t(e) are called dangling points. If the dangling condition is satisfied by
D → Di → Hi, the pushout complement (POCi) can be constructed. ��

For delete-insert conflicts, our preferred resolution strategy is to preserve the
nodes in the merged graph modification that are needed to realize the insertion
of edges. If deletion is preferred instead, it has to be done manually after the
automatic construction of the merged graph modification, supported by visual
conflict indication. Ideally, deletion is done such that predefined meta-model
constraints are fulfilled afterwards (see conclusion).

In the following, we define a general merge construction yielding the desired
merged graph modification for two given graph modifications with conflicts.
In the special case that we have parallel independent graph modifications, it
coincides with the conflict-free merge construction in Definition 5.

For the general merge construction, we need so-called initial pushouts. In a
nutshell, an initial pushout over a graph morphism f : D → G extracts a minimal
graph morphism b : B → C where the context C contains all non-mapped parts
of G, and the boundary B consists of those nodes in D that are used for edge
insertion (see [3]).

Definition 7 (Initial pushout). Let f : D → G be a graph morphism, an ini-
tial pushout over f consists of graph morphisms g: C → G, b: B → C, and
injective d: B → D such that f and g are a pushout over b and d.
For every other pushout over f consisting of
c′: C′ → G, b′: B′ → C′, and injective d′: B′ →
D, there are unique graph morphisms b: B → B′

and c: C → C′ such that c′◦c = g and d′◦b = d.
Moreover, it is required that (c, b′) is a pushout
over (b, b).

B′
b′

��

=
d′

��

C′

=
c′

��

B
d ��

b ��b

��

(IPO)

C
g��

c

��

D
f

�� G

Note that for graph morphisms, there is a canonical construction for initial
pushouts [3].

Example 6 (Initial pushout). In the upper right corner of our sample merge con-
struction diagram in Figure 5 below, the initial pushout IPO1 over the morphism

Conflict Resolution for Model Versioning Based on Graph Modifications 211

D1 → H1 of graph modification m1 in Figure 2 is shown. Obviously, the mor-
phism B1 → C1 contains in a minimal context the insertion of the containment
edge from S0 to S3.

Now, we are ready to present our general merge construction for graph mod-
ifications (see Definition 8). Analogously, to the merging of conflict-free graph
modifications we start with constructing the intersection D of the intermediate
graphs D1 and D2. In case of delete-insert conflicts where a node is supposed to
be deleted by one modification and used as source or target by the other mod-
ification, D is too small, i.e. does not contain such nodes. Therefore, we look
for a construction which enlarges D to the intermediate graph for the merged
modification where insertion is prior to deletion: At first, we identify all these
insertions in modifications 1 and 2. This is done by initial pushout construc-
tion (as described above) leading to Bi → Ci(i = 1, 2). By constructing first
the intersection D∗

i of Bi and D in Di and thereafter the union Di of Bi and
D via D∗

i , graph D is extended by exactly those graph elements in Bi needed
for insertion later on resulting in Di. After having constructed these extended
intermediate graphs D1 and D2, they have to be glued to result in the inter-
mediate graph D of the merged graph modification. Thereafter, the insertions
identified by Bi → Ci(i = 1, 2) can be transferred to Di → Xi(i = 1, 2) first and
to D → Xi(i = 1, 2) thereafter. Finally, they are combined by gluing X1 and
X2 via D yielding result graph H . Since D is D extended by graph elements
which are not to be deleted, D can be embedded into G and thus, can function
as intermediate graph for the merged graph modification G ← D → H .

Definition 8 (Merged Graph Modification in General). Given two graph
modifications G ← D1 → H1 and G ← D2 → H2. We construct their merged
graph modification G ← D → H in 6 steps, leading to the following general
merge construction diagram:

G
(PB1)

D1�� id ��

(1)

D1 ��

(PO1)

H1

D2

��

id �� (2)

D

��

��

�� ��

(PO3)

D1

��

��

��

(PO4)

X1

��

��
D2

�� (PO2)

D2

��

�� ��

(PO5)

D ��

�� (PO6)

X1

��
H2 X2�� �� X2

�� H

1. Construct D by pullback (PB1) of D1 → G ← D2.
2. Construct initial pushouts (IPOi) over Di → Hi for i = 1, 2:

Bi

(3) ��
��

��
(IPOi)

Di

��
(POi)

Di

��

��

Ci
�� ��Hi Xi

��

D∗
i

��������

����
���

��
(PO)

Bi
��

(3)

�����
���

� Di

��

D��
(4)

�����
��

��

Di

212 H. Ehrig, C. Ermel, and G. Taentzer

3. Construct D∗
i as a pullback of Bi → Di ← D and Di as pushout of Bi ←

D∗
i → D with induced morphism Di → Di with Bi → Di → Di = Bi → Di

(3) and D → Di → Di = D → Di (4) for (i = 1, 2).
4. Construct pushout Di → Xi ← Ci of Di ← Bi → Ci (i = 1, 2), leading

by (3) to induced morphism Xi → Hi and pushout (POi) (i = 1, 2) by
pushout decomposition. Moreover, (4) implies commutativity of (1) and (2)
for (i = 1, 2).

5. Now we are able to construct pushouts (PO3), (PO4), (PO5) and (PO6) one
after the other.

6. Finally, we obtain the merged graph mod-
ification (G ← D → H), where D → H
is defined by composition in (PO6), and
D → G is uniquely defined as induced mor-
phism using pushout (PO3).

D1

�������� ��

(PO3)

D1
��

D

��						

��������

(=) ��

(=)
��

D �� G

D2

��						 �� D2

��

Remark 1. If the modifications mi = (G ← Di → Hi) (i = 1, 2) are parallel
independent, then the pullback (PB1) is a pushout and D1 = D = D2 = D.
In this case, the general merged modification m = (G ← D → H) is equal up
to isomorphism to the merged graph modification in the conflict-free case in
Definition 5. If mi = (G ← Di → Hi) (i = 1, 2) are in delete-delete conflict,
then the merged graph modification deletes the items that are deleted by both
m1 and m2 since these items are not in D and hence not in D.

Example 7. We construct the merged graph modification for graph modifications
m1 = G ← D1 → H1 and m2 = G ← D2 → H2 in Figure 2. The construction
diagram is shown in Figure 5.

According to step 3 in Definition 8, D1 has to be constructed as pushout of
B1 ← D∗

1 → D. D∗
1 is the pullback of B1 → D1 ← D, hence D∗

1 consists just of
the single node S0 . Since B1 contains two single nodes, S0 and S3 , we get as
result of step 3 graph D1 which is similar to D but contains additionally node S3.
Since (m1, m2) are not in delete-insert conflict, D2 = D. All remaining squares
are constructed as pushouts.

Note that the resulting merged graph modification G ← D → H preserves
node S3 because this node is deleted in m2 although it is used for inserting a
new edge in m1 (resolution of the delete-insert conflict). The edge from S1 to S3

is deleted by the merged graph modification as it is deleted by both m1 and m2
(resolution of the delete-delete conflict). All graph objects created by either m1
or m2 are created also by the merged graph modification. Note that square (2)
is a pushout in this example since (m1, m2) are not in delete-insert conflict.

The following theorem states that the modification resulting from the general
merge construction specifies the intended semantics resolving delete-insert con-
flicts by preferring insertion over deletion:

Theorem 2 (Behaviour Compatibility of the General Merge Construc-
tion). Given graph modifications mi = G

Di=⇒ Hi (i = 1, 2) with merged graph

Conflict Resolution for Model Versioning Based on Graph Modifications 213

Fig. 5. General merge construction for conflicting graph modifications m1 and m2

modification m = G
D=⇒ H = (G ← D → H) in the sense of Definition 8. We

use the following terminology for m (and similarly for for m1, m2):

x ∈ G preserved by m ⇐⇒ x ∈ D,
x ∈ G deleted by m ⇐⇒ x ∈ G\D,
x ∈ H created by m ⇐⇒ x ∈ H\D.

Then, m is behaviour compatible with m1 and m2 in the following sense:

1. Preservation: x ∈ G preserved by m1 and m2 =⇒ x ∈ G preserved by m
=⇒ x ∈ G preserved by m1 or m2

2. Deletion: x ∈ G deleted by m1 and m2 =⇒ x ∈ G deleted by m
=⇒ x ∈ G deleted by m1 or m2

3. Preservation and Deletion: x ∈ G preserved by m1 and x ∈ G deleted by m2
=⇒ x ∈ G preserved by m, if x ∈ D1

6

x ∈ G deleted by m, if x /∈ D1
7

(similar for m1, m2, D1 replaced by m2, m1, D2)
6 In this case, x is a node needed as source or target for an edge inserted by m1.
7 In this case, x is not needed for edge insertion by m1.

214 H. Ehrig, C. Ermel, and G. Taentzer

4. Creation: x ∈ H1 created by m1 or x ∈ H2 created by m2
⇐⇒ x ∈ H created by m

Proof Idea. The preservation, deletion and creation results follow fromthe pushout
properties of D, the pushout complement properties of D1, D2 and the fact that D1
is pullback in the diagrams (PO1) and (PO4) (and analogously for D2).

Theorem 3 characterizes the three forms of conflict resolution which may occur.

Theorem 3 (ConflictResolutionbyGeneralMergeConstruction).Given
graph modifications mi = G

Di=⇒ Hi (i = 1, 2) that are in conflict. The merge
construction m = (G ← D → H) resolves the conflicts in the following way:

1. If (m1, m2) are in delete-delete conflict, with both m1 and m2 deleting x ∈ G,
then x is deleted by m.

2. If (m1, m2) are in delete-insert conflict, there is an edge e2 created by m2 with
x = s(e2) or x = t(e2) preserved by m2, but deleted by m1. Then x is preserved
by m.

3. If (m2, m1) are in delete-insert conflict, there is an edge e1 created by m1 with
x = s(e1) or x = t(e1) preserved by m1, but deleted by m2. Then x is preserved
by m.

Proof Idea. The resolution of delete-delete conflicts follows from the deletion prop-
erty, and the resolution of delete-insert conflicts follows from the preservation-
deletion property of the general merge construction in Theorem 2.

4 Related Work

First of all, we have to clarify that model merging differs from merging of model
modifications. Model merging as presented e.g. in [7,9] is concerned with a set
of models and their inter-relations expressed by binary relations. In contrast,
merging of model modifications takes change operations into account. Merg-
ing of model modifications usually means that non-conflicting parts are merged
automatically, while conflicts have to be resolved manually. In the literature,
different resolution strategies which allow at least semi-automatic resolution are
proposed. A survey on model versioning approaches and especially on conflict
resolution strategies is given in [1].

A category-theoretical approach formalizing model versioning is given in [8].
Similar to our approach, modifications are considered as spans of morphisms
to describe a partial mapping of models. Merging of model changes is defined
by pushout constructions. However, conflict resolution is not yet covered by
this approach in a formal way. A category theory-based approach for model
versioning in-the-large is given in [2]. However, this approach is not concerned
with formalizing conflict resolution strategies. A set-theoretic definition of EMF
model merging is presented in [12], but conflicts are solved by the user and not
automatically.

Conflict Resolution for Model Versioning Based on Graph Modifications 215

In [5] the applied operations are identified first and grouped into parallel in-
dependent subsequences then. Conflicts can be resolved by either (1) discarding
complete subsequences, (2) combining conflicting operations in an appropriate
way, or (3) modifying one or both operations. The choice of conflict resolution is
made by the modeler. These conflict resolution strategies have not been formal-
ized. The intended semantics is not directly investigated but the focus is laid
on the advantage of identifying compound change operations instead of elemen-
tary ones. In contrast, we propose a semi-automatic procedure where at first, an
automatic merge construction step gives insertion priority over deletion in case
of delete-insert conflicts. If other choices are preferred, the user may perform
deletions manually in a succeeding step.

Automatic merge results may not always solve conflicts adequately, especially
state-based conflicts or inconsistencies may still exist or arise by the merge con-
struction. Resolution strategies such as resolution rules presented in [6] are in-
tended to solve state-based conflicts or inconsistencies. They can be applied in
follow-up graph transformations after the general conflict resolution procedure
produced a tentative merge result.

5 Conclusions and Future Work

In this paper, we have formalized a conflict resolution strategy for operation-
based conflicts based on graph modifications. Our main result is a general merge
construction for conflicting graph modifications. The merge construction realizes
a resolution strategy giving insertion priority over deletion in case of delete-insert
conflicts to get a merged graph modification result containing as much informa-
tion as possible. We establish a precise relationship between the behaviour of
the given graph modifications and the merged modification concerning deletion,
preservation and creation of graph items. In particular, our general merge con-
struction coincides with the conflict-free merge construction if the graph mod-
ifications are parallel independent. We show how different kinds of conflicts of
given graph modifications are resolved by our automatic resolution strategy. It
is up to an additional manual graph modification step to perform deletions that
are preferred over insertions.

In [10], we presented two kinds of conflicts which can be detected based on
graph modification: operation-based and state-based conflicts. Hence, in future
work, our strategy for solving operation-based conflicts shall be extended by
resolving also state-based conflicts. Here, repair actions should be provided to
be applied manually by the modeler. Their applications would lead to additional
graph modifications optimizing the merged graph modification obtained so far.
For the specification of repair actions in this setting, the work by Mens et al. in
[6] could be taken into account.

With regard to tool support, our graph transformation environment Agg [11]
supports conflict analysis for graph rules and graph modifications. We plan
to implement also the check of behavioural equivalence and the general merge

216 H. Ehrig, C. Ermel, and G. Taentzer

construction for graph modifications in near future. This proof-of-concept im-
plementation could function as blueprint for implementing our new resolution
strategy in emerging model versioning tools.

References

1. Altmanninger, K., Seidl, M., Wimmer, M.: A survey on model versioning ap-
proaches. IJWIS 5(3), 271–304 (2009)

2. Diskin, Z., Czarnecki, K., Antkiewicz, M.: Model-versioning-in-the-large: Algebraic
foundations and the tile notation. In: Proc. of Workshop on Comparison and Ver-
sioning of Software Models (CVSM 2009), pp. 7–12. IEEE Computer Society, Los
Alamitos (2009)

3. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. In: EATCS Monographs in Theor. Comp. Science. Springer, Hei-
delberg (2006)

4. Ehrig, H., Ermel, C., Taentzer, G.: A formal resolution strategy for operation-based
conflicts in model versioning using graph modifications: Extended version. Tech.
rep., TU Berlin (to appear, 2011)

5. Küster, J.M., Gerth, C., Engels, G.: Dependent and conflicting change operations
of process models. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA
2009. LNCS, vol. 5562, pp. 158–173. Springer, Heidelberg (2009)

6. Mens, T., van der Straeten, R., D’Hondt, M.: Detecting and resolving model in-
consistencies using transformation dependency analysis. In: Wang, J., Whittle, J.,
Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 200–214. Springer,
Heidelberg (2006)

7. Pottinger, R., Bernstein, P.A.: Merging models based on given correspondences. In:
Aberer, K., Koubarakis, M., Kalogeraki, V. (eds.) VLDB 2003. LNCS, vol. 2944,
pp. 826–873. Springer, Heidelberg (2004)

8. Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A category-theoretical approach to
the formalisation of version control in MDE. In: Chechik, M., Wirsing, M. (eds.)
FASE 2009. LNCS, vol. 5503, pp. 64–78. Springer, Heidelberg (2009)

9. Sabetzadeh, M., Nejati, S., Liaskos, S., Easterbrook, S.M., Chechik, M.: Consis-
tency checking of conceptual models via model merging. In: Proc. IEEE Int. Conf.
on Requirements Engineering, pp. 221–230. IEEE, Los Alamitos (2007)

10. Taentzer, G., Ermel, C., Langer, P., Wimmer, M.: Conflict detection for model
versioning based on graph modifications. In: Ehrig, H., Rensink, A., Rozenberg, G.,
Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 171–186. Springer, Heidelberg
(2010)

11. TFS-Group, TU Berlin: AGG (2009), http://tfs.cs.tu-berlin.de/agg
12. Westfechtel, B.: A formal approach to three-way merging of EMF models. In:

Proc. Workshop on Model Comparison in Practice (IWMCP), pp. 31–41. ACM,
New York (2010)

http://tfs.cs.tu-berlin.de/agg

A Step-Wise Approach for Integrating QoS
throughout Software Development

Stéphanie Gatti, Emilie Balland, and Charles Consel

Thales Airborne Systems / University of Bordeaux / INRIA, France
first-name.last-name@inria.fr

Abstract. When developing real-time systems such as avionics soft-
ware, it is critical to ensure the performance of these systems. In
general, deterministic Quality of Service (QoS) is guaranteed by the exe-
cution platform, independently of a particular application. For example,
in the avionics domain, the ARINC 664 standard defines a data net-
work that provides deterministic QoS guarantees. However, this strategy
falls short of addressing how the QoS requirements of an application get
transformed through all development phases and artifacts. Existing ap-
proaches provide support for QoS concerns that only cover part of the
development process, preventing traceability.

In this paper, we propose a declarative approach for specifying QoS re-
quirements that covers the complete software development process, from
the requirements analysis to the deployment. This step-wise approach is
dedicated to control-loop systems such as avionics software. The domain-
specific trait of this approach enables the stakeholders to be guided and
ensures QoS requirements traceability via a tool-based methodology.

Keywords: Quality of Service, Domain-Specific Design Language, Tool-
Based Development Methodology, Generative Programming.

1 Introduction

Non-functional requirements are used to express the quality to be expected
from a system. For real-time systems such as avionics, it is critical to guarantee
this quality, in particular time-related performance properties. For example, the
avionics standard ARINC 653 defines a Real-Time Operating System (RTOS)
providing deterministic scheduling [3] and thus ensuring execution fairness be-
tween applications. Another example is the ARINC 664 that defines Avionics Full
DupleX switched Ethernet (AFDX), a network providing deterministic Quality
of Service (QoS) for data communication [4]. In this domain, deterministic QoS
is generally ensured at the execution platform level (e.g., operating systems, dis-
tributed systems technologies, hardware specificities), independently of a partic-
ular application. When addressing the QoS requirements of a given application,
these platform-specific guarantees are not sufficient.

There exist numerous specification languages to declare QoS requirements
at the architectural level [1]. Initially, these languages were mostly contempla-
tive. Several recent approaches also provide support to manage specific aspects

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 217–231, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

218 S. Gatti, E. Balland, and C. Consel

(e.g., coherence checking [10], prediction [20], monitoring [17]). These approaches
are generally dedicated to a particular development stage, leading to a loss of
traceability (i.e., the ability to trace all the requirements throughout the devel-
opment process). In the avionics certification processes [11,12,5], traceability is
mandatory for both functional and non-functional requirements. The functional
traceability is usually ensured by systematic development methodologies such as
the V-model that guides stakeholders from the requirements analysis to the sys-
tem deployment. Similarly, QoS should be fully integrated into the development
process as it is a crosscutting concern [19].

In this paper, we propose a step-wise QoS approach integrated through all
development phases and development artifacts. This approach is dedicated to
control-loop systems. Control-loop systems are systems that sense the external
environment, compute data, and eventually control the environment accordingly.
This kind of systems can be found in a range of domains, including avionics,
robotics, and pervasive computing. For example, in the avionics domain, a flight
management application is a control-loop system that (1) senses the environment
for location and other navigation information, (2) computes the trajectory and
(3) modifies the wings configuration accordingly. The contributions of this paper
can be summarized as follows.
A step-wise QoS approach dedicated to control-loop systems. We propose a
step-wise approach that systematically processes QoS requirements throughout
software development. This integrated approach is dedicated to control-loop sys-
tems, allowing to rely on a particular architectural pattern and thus enhancing
the design and programming support level for non-functional aspects. In this pa-
per, we focus on time-related performance but the approach could be generalized
to other non-functional properties (e.g., CPU or memory consumption).
Requirements Traceability. In the avionics domain, the traceability of both func-
tional and non-functional requirements is critical [11]. In our approach, the trace-
ability is ensured by the systematic propagation of constraints derived from the
QoS declarations and applied to each development step.
A tool-based methodology. Our approach has been integrated into DiaSuite, a
tool-based development methodology dedicated to control-loop systems [8]. Dia-
Suite is based on a dedicated design language that we have enriched with time-
related performance properties. This non-functional extension has been used to
offer verification and programming support at each development stage.
Experiments in the avionics domain. Our approach has been applied to the de-
velopment of various avionics applications, including a flight management system
and a collision avoidance system. These experiments have demonstrated that our
step-wise approach can effectively guide the avionics certification process.

2 Background and Working Example

This section presents a working example used throughout this paper. This pre-
sentation is done in the context of the DiaSuite development methodology [8].

Integrating QoS throughout Software Development 219

We choose a control-loop system from the avionics domain: a simplified version
of an aircraft guidance application, controlling the trajectory of an aircraft by
correcting the configurations of ailerons.

2.1 Overview of the DiaSuite Approach

The DiaSuite approach is a tool-based methodology dedicated to control-loop
systems. DiaSuite provides support for each development stage (from design to
deployment) as depicted in Figure 1.

Development
Stage

Tool-based
Support

Architecture Design Implementation Test

DiaSpec Language Programming
Framework Generator

Pervasive Computing
2D Simulator

Deployment

 Back-ends
(e.g., RMI, SIP)

Fig. 1. The DiaSuite tool-based development process

During the design stage, the DiaSpec language allows to design an application
using an architectural pattern dedicated to control-loop systems. This specific
architectural pattern comprises four layers of components: (1) sensors obtain
raw data from the environment; (2) contexts process data and provide high-
level information; (3) controllers use this information to control actuators; (4)
actuators impact the environment. The sensors and actuators are the two facets
of entities corresponding to devices, whether hardware or software, deployed in
an environment.

This specification guides the developer throughout the development process.
The DiaSpec compiler generates a Java programming framework dedicated to
the application. This framework precisely guides the programmer during the
implementation stage by providing high-level operations for entity discovery and
component interactions. Based on these declarations, a simulator dedicated to
pervasive computing environments is used to test and simulate the system. Then,
the DiaSuite back-ends enable the deployment of an application by targeting a
specific distributed systems technology such as RMI, SIP or Web Services.

2.2 Aircraft Guidance Application

The aircraft guidance application uses two sensors for computing the actual
aircraft trajectory: the inertial reference unit, providing the localization, and
the air data unit, supplying such measurements as the airspeed and the angle
of attack. The synchronization of both information sources allows to compute
the actual aircraft trajectory. This trajectory is then compared to the flight
plan entered by the pilot and used for controlling and correcting ailerons by the
automatic pilot, if necessary.

Following the DiaSuite development methodology, the first step identifies the
devices involved in the aircraft guidance application using a domain-specific tax-
onomy of entities, as can be found in the aeronautics literature. In this example,

220 S. Gatti, E. Balland, and C. Consel

AutomaticPilot

ActualTrajectory

AirDataUnit
airData

Guidance
Controller

controlAilerons

TrajectoryCorrection

Sensor Layer

Context Layer

Controller Layer

Actuator Layer

FlightPlanDataBase
plannedTrajectory

InertialReferenceUnit
localization

Fig. 2. A data-flow view of the aircraft guidance application

we have identified four entities: the inertial reference unit, the air data unit, the
flight plan database and the automatic pilot. The second step of the methodol-
ogy consists of designing the application using DiaSpec. The system description
is illustrated in Figure 2, making explicit the four component layers of DiaSpec.

In the example, the InertialReferenceUnit sensor provides the current local-
ization of the aircraft.The AirDataUnit sensor supplies several air data such as the
airspeed and the angle of attack. All these data are sent to the ActualTrajectory
context that is responsible for computing the current trajectory of the aircraft.
This information is then sent to the TrajectoryCorrection context component.
When receiving a new trajectory, the TrajectoryCorrectioncomponent gets the
planned trajectory (from the flight plan initially entered by the pilot) from the
FlightPlanDatabase component. By comparing these information sources, it
computes trajectory corrections that are sent to the GuidanceControllercompo-
nent, responsible for controlling ailerons through the AutomaticPilot actuator.

The avionics certification process requires this trajectory readjustment to be
time-bounded. In the next section, we show how the DiaSuite approach, en-
riched with time-related properties, can guide the development of such critical
applications.

3 QoS throughout Software Development

This section presents how QoS requirements can be systematically processed
throughout software development.

3.1 Requirements Analysis and Functional Specification

In software development methodologies, the requirements analysis stage identi-
fies the users’ needs. Then, the functional specification stage identifies the main
functionalities to be fulfilled by the application to satisfy the users’ requirements.
In the avionics domain, each of these functionalities is generally associated to
a functional chain [26], representing a chain of computations, from sensors to
actuators.

Integrating QoS throughout Software Development 221

The aircraft guidance system has a unique functional chain, whose execu-
tion should take less than 3 seconds, according to our expert at Thales Airborne
Systems. In avionics, such time constraints, directly associated to a specific func-
tional chain, is referred to as Worst Case Execution Time (WCET)1. If the design
process involves refinement steps such as the identification of functional chain
segments, the WCETs can be further refined. For example, we can identify a
functional chain segment corresponding to the computation of the actual tra-
jectory (from the sensors feeding the ActualTrajectory context). This chain
segment can be reused in other applications, e.g., displaying the actual trajec-
tory on the navigation display unit. According to our expert, this chain segment
must not take more than 2 seconds to execute.

3.2 Architecture Design

During the architecture design stage, the functional chains are decomposed into
connected components. The architect can then refine the WCET of the functional
chain on time-related constraints at the component level.

In the DiaSuite architectural pattern, the data flow between two components
can be realized using two interaction modes: by pulling data (one-to-one syn-
chronous interaction mode with a return value) or by pushing data to event sub-
scribers (asynchronous publish/subscribe interaction mode). Pull interactions
are typically addressed by a response time requirement as is done in Web Ser-
vices [17]. Push interactions raise a need to synchronize two or more input events
of a component. This need is addressed by introducing a freshness requirement
on the input event values. This requirement is in the spirit of synchronization
skew in the multimedia domain [18]. In addition to the freshness constraint, we
define the bounded synchronization-time constraint that authorizes desynchro-
nization during a bounded time, avoiding diverging synchronization strategies.

ActualTrajectory

AirDataUnit
airData

Guidance
Controller

AutomaticPilot
controlAilerons

TrajectoryCorrection

from plannedTrajectory {
 require response in 100 ms;
}

require WCET of 3 s

require WCET of 2 s;
from (localization, airData) {
 require freshness of 1 s;
 require synchronization before 1 s;
}

FlightPlanDataBase
plannedTrajectory

InertialReferenceUnit
localization

Fig. 3. Architecture of the working example, enriched with QoS contracts

Figure 3 shows the QoS contracts associated to each component in the flight
guidance application. The WCETs associated to the functional chain of the
1 This usage of WCET is only loosely related to the notion of WCET as documented

in the literature for hard real-time systems.

222 S. Gatti, E. Balland, and C. Consel

aircraft guidance and to the trajectory computing chain segment are mapped
to the GuidanceController and ActualTrajectory components, respectively.
The WCET of the functional chain of the aircraft guidance is refined into (1)
a freshness constraint of 1 second between localization and airData with an
equal bounded synchronization-time constraint (since the WCET is not com-
patible with a longer desynchronization time); and (2) a response time of 100
milliseconds of FlightPlanDataBase. The WCET associated to the functional
chain of the aircraft guidance is translated into a QoS contract, attached to
GuidanceController as controllers are generally dedicated to a given functional
chain.

The QoS contracts are introduced as an extension of DiaSpec. Figure 4 shows
an extract from the DiaSpec specification.

context ActualTrajectory as Trajectory {
source localization from InertialReferenceUnit;
source airData from AirDataUnit;
qos {

from (localization , airData) {
require freshness of 1 s;
require synchronization before 1 s;

}
}

}

Fig. 4. DiaSpec declaration of the ActualTrajectory component

The ActualTrajectory component is declared with the context keyword,
and returns values of type Trajectory. This component processes two sources
of information: localization and airData. These sources are declared using
the source keyword that takes a source name and a class of entities. Then,
the QoS contract declared using the qos keyword defines freshness and synchro-
nization constraints between localization and airData. This domain-specific
approach guides the stakeholders when adding QoS requirements by automati-
cally enforcing the conformance between the QoS contracts and the functional
constraints.

3.3 Implementation

The DiaSuite approach includes a compiler that generates a dedicated program-
ming framework from a DiaSpec description. Our approach enriches this process
by generating runtime-monitoring support from QoS declarations. At the imple-
mentation level, QoS requirements on components become runtime verifications
that rely on the communication methods of the generated programming frame-
work. Monitoring mechanisms are encapsulated into component containers that
ensure that the response time and the freshness requirements are respected.
The approach based on containers allows a separation of concerns between func-
tional and non-functional requirements because a container is only in charge of

Integrating QoS throughout Software Development 223

intercepting calls for monitoring requirements, and forwarding the calls to the
functional component. If a QoS contract is violated, the container throws specific
exceptions ResponseTimeException or SynchronizationException. The treat-
ment of such exceptions is left to the developer. It may involve any number of
actions, including logging or reconfiguration [17]. DiaSuite provides declarative
support at the architectural level to design exceptional treatments [21], prevent-
ing the application to be bloated and entangled with error-handling code.

The code corresponding to the response time requirement is straightforward.
It is based on a timer that calculates the elapsed time between the request and
the response. The more elaborate part concerns the synchronization defined by
the automaton depicted in Figure 5. Suppose we want to synchronize data1 and
data2 values. When receiving the first data (S2 and S4 states), the container
activates the t and t’ timers for measuring respectively synchronization time
and freshness (t,t’:=0). While synchronization time is not reached (t<=ts), the
container waits for fresh data. If the other data is received before the freshness
time has elapsed, the container pushes both data to the functional component
(S5 final state). Otherwise, if the freshness is not respected (t’>tf) ,the data
is rejected. This is not considered as an error state since we authorize desyn-
chronization for a finite period. Thereby the container waits for new values (S3
state). If the synchronization time has elapsed (t>ts), the synchronization is
aborted and a SynchronizationException is thrown (error state).

S1

S2

t' > tf;
data1 rejected

data1 received;
t,t':=0

S5

S4

data2 received

data1 received

t > ts

data2 received;
t,t':=0

S3

data1 received;
t':=0

t' > tf;
data2 rejected

data2 received;
t':=0 t > ts

t > ts

S5

Fig. 5. Synchronization automaton

3.4 Deployment

Our approach offers support for predicting the performance of an application
by injecting deployment parameters, such as distributed systems technologies,
platform and hardware characteristics. By taking advantage of their QoS charac-
teristics (e.g., the guaranteed deterministic timing of the AFDX network [4]), it
is possible to refine the time-related requirements generated from the QoS dec-
larations, and thus to compare several deployment configurations. In particular,
it allows technologies to be selected according to their time-related properties.

This prediction tool takes numerical constraints generated from the QoS dec-
larations as input. Then, an external constraint solver [9] checks whether a con-
figuration respects the WCET of the functional chain and predicts constraints

224 S. Gatti, E. Balland, and C. Consel

to the other architectural elements. In the next section, we detail how these
numerical constraints are generated and propagated throughout the software
development process.

4 QoS Requirements Traceability

The requirements traceability is the guarantee for each requirement to be traced
back to its origin (i.e., a QoS declaration), by following its propagation in the
software development process. By generating numerical constraints from the QoS
declarations, our step-wise approach allows the traceability of QoS requirements
during software development. This approach is summarized in Figure 6.

Performance
Evaluation

Informal QoS
requirements

Requirement
Analysis

WCET on
functional chains

Functional
Specification

QoS contracts on
components

Architecture
Design

Monitoring
containers

Implementation Test

Mapping of the
WCET

in the architecture

QoS extension of
Diaspec

Monitoring
support

generation

Reuse of the
monitoring

support

QoS Requirements Traceability Verifier

QoS deployment
specifications

Deployment

Prediction tool

Fig. 6. Development process of Figure 1 extended with QoS concerns

At each development step, QoS declarations are translated into numerical
constraints that are fed to the verifier of requirements traceability. This verifier
propagates these numerical constraints between the development stages, and
checks whether no new constraint invalidates constraints from preceding stages.
In this section, we detail how these numerical constraints are generated and
propagated.

4.1 From Functional Specification to Architecture Design

From functional specification to architecture design, requirements on functional
chains (or chain segments) are refined into requirements on components. By
generating numerical constraints, it is possible to ensure that the refinement
does not invalidate requirements from the previous stage. Doing so amounts
to checking whether the constraint system is still satisfied. The generation of
these numerical constraints is inspired by the Defour et al.’s work [10] and relies
on the DiaSuite architectural pattern. It consists of automatically translating
the QoS contracts presented in Section 3 into numerical equations specifying
time relationships between the components. For example, let us detail how these
equations are generated for the aircraft guidance application.
WCET on functional chains and chain segments. The functional chain that
controls the trajectory has a WCET of 3 seconds, represented by the con-
tract attached to GuidanceController. This leads to the following numerical
constraints:

Integrating QoS throughout Software Development 225

T_wcet_GuidanceController <= 3;
T_wcet_GuidanceController =

T_provide_GuidanceController +
T_com(GuidanceController,AutomaticPilot);

The first equation represents the WCET associated to GuidanceController.
The second equation refines this functional chain into a sequence of two func-
tions: one for computing orders (the GuidanceController chain segment), and
one for communicating these orders to the automatic pilot. Thus, the global
time is the sum of the T_provide_GuidanceController time and the commu-
nication time between GuidanceController and AutomaticPilot (denoted by
the T_com function). The T_provide_GuidanceController time corresponds to
the chain segment between the moment when the InertialReferenceUnit or
AirDataUnit sensor sends a value and the moment when GuidanceController
issues orders to AutomaticPilot.

Similarly, the T_provide_GuidanceController time can also be refined into
the time of GuidanceController to compute orders, the communication time
between TrajectoryCorrection and GuidanceController, and the global time
associated to the chain segment of TrajectoryCorrection:

T_provide_GuidanceController =
T_provide_TrajectoryCorrection +
T_com(TrajectoryCorrection,GuidanceController) +
T_compute_GuidanceController;

Response Time. The time associated to TrajectoryCorrection can be refined
with respect to its relation with ActualTrajectory and FlightPlanDataBase:

T_provide_TrajectoryCorrection =
T_provide_ActualTrajectory +
T_com(ActualTrajectory,TrajectoryCorrection) +
2 * T_com(FlightPlanDataBase,TrajectoryCorrection)+
T_provide_FlightPlanDataBase +
T_compute_TrajectoryCorrection;

Between the ActualTrajectory and TrajectoryCorrection contexts, the com-
munication mode is of type publish/subscribe and thus can be decomposed into
T_provide_ActualTrajectory corresponding to the chain segment for comput-
ing the trajectory and T_com(ActualTrajectory,TrajectoryCorrection) cor-
responding to the communication time between these two contexts. Because the
plannedTrajectory source of the FlightPlanDataBase is accessed by pulling
the value in a synchronous manner, it is decomposed into the time to compute
the data (T_provide_FlightPlanDataBase) and the communication round-trip
(2 * T_com(FlightPlanDataBase,TrajectoryCorrection)) between the two
components, assuming the size of the request and the response fit within a MTU
(Maximum Transmission Unit).
Freshness and Bounded Synchronization Time. The QoS contract associated to
ActualTrajectory specifies freshness and bounded synchronization time

226 S. Gatti, E. Balland, and C. Consel

between InertialReferenceUnit and AirDataUnit. In the worst case, the syn-
chronization takes the sum of the bounded synchronization time and the maxi-
mum time for receiving an event from InertialReferenceUnit or AirDataUnit.
This leads to the generation of the following constraints:

T_provide_ActualTrajectory <= 2;
T_synchronization <= 1;
T_provide_ActualTrajectory =
max(
T_provide_airData + T_com(AirDataUnit,ActualTrajectory),
T_provide_localization + T_com(InertialReferenceUnit,ActualTrajectory)) +
T_synchronization +
T_compute_ActualTrajectory;

The refinement of the numerical constraints and the checking of coherence at
each step ensures the coherence between all non-functional requirements. Each
numerical constraint is defined using Prolog IV [9], a constraint logic program-
ming language over real numbers, coupled with a real interval arithmetic solver
for checking the coherence of each refinement step.

4.2 From Architecture Design to Implementation

Monitoring support is generated from the non-functional specifications. Each
non-functional container is in charge of monitoring the time-related constraints
associated to a given functional component. Since QoS declarations at the design
level are used to generate the monitoring support, the traceability is automati-
cally ensured between the design and implementation stages. Moreover, as this
support is embedded into the programming framework, it is completely trans-
parent to the developer. Doing so prevents the developer from introducing errors
in the monitoring code. Specifically the DiaSuite exception mechanism allows to
separate the detection mechanism that is generated from the treatment code
that is implemented by the developer.

4.3 From Implementation to Deployment

During the deployment stage, the prediction tool is based on the numerical con-
straints generated from the QoS-extended DiaSpec specification, ensuring the
traceability of the requirements. In the avionics domain, the execution plat-
forms offer deterministic QoS characteristics (e.g., the deterministic timing of
the AFDX network). Such information allows to refine the time-related con-
straints generated from a QoS declaration and to compare the performance of
several deployment configurations.

In the generated constraints, there are several numerical variables that de-
pend on the deployment. The T_com_<component_name> variables depend on
the communication mode. If the application is deployed on a non-distributed
platform, the communication time can be considered as null between applicative
components, simplifying the numerical constraints. If the application executes

Integrating QoS throughout Software Development 227

on a distributed platform, the communication time between the applicative com-
ponents depends on the distributed systems technologies. In avionics, the most
commonly used network is the AFDX. The communication constraints can be
refined according to the AFDX bandwidth and the associated Bandwidth Allo-
cation Gap (BAG). Concerning the communication between applicative compo-
nents and devices, different sort of communication technologies can be used, such
as a serial link (e.g., ARINC429, RS422) that leads to different communication
times. The T_compute_<component_name> variables depend on the complexity
of the algorithm and the execution platform (e.g., CPU frequency and memory
access time). Finally, the T_provide_<data_sensed> variables depend on sensor
technologies (e.g., mechanical or LASER probes for air data).

For example, assume we enrich the system with a new functionality for dis-
playing the trajectory on the navigation display. We want to reuse the chain
segment computing the actual trajectory but with stronger QoS requirements,
leading to the constraint T_provide_ActualTrajectory <= 0.8. From all these
constraints, the prediction tool infers the following value range for the Air Data
Unit: 0 <= T_provide_airData <= 0.8. This constraint is propagated to the
stakeholders in charge of selecting the technologies for the execution platform.
In this situation, they will choose LASER probes whose performance is conform
with this constraint.

5 Towards Certification of Avionics Systems

Our approach has been applied to the design of several avionics applications,
including the flight management system, the aircraft guidance system, and the
traffic collision avoidance system. These experiments have shown that the Dia-
Suite methodology is well-suited for the development of avionics control-loop
systems. In this section, we discuss how our integrated QoS approach guides the
avionics certification process.

In avionics, aircrafts have to respect the Certification Specification (CS) stan-
dard to obtain the airworthiness certificate. CS proposes the classification of the
failure conditions: conditions impacting the aircraft and/or its occupants. They
depend on the flight phases (e.g., landing) and the environmental conditions.
Failure conditions are associated with a Design Assurance Level, indicating their
degree of criticality and safety objectives. To reach safety objectives, aeronau-
tical standards specify constraints on the development process (e.g., distribute
the development stages across several teams) and the testing process (e.g., struc-
tural and black-boxes tests). These constraints cover all the levels of a system,
including the software and hardware layers. Both functional and non-functional
requirements [22] have to be guaranteed, including performance concerns.

Modern avionics platforms such as the Integrated Modular Avionics (IMA)
allow to host several functions on the same platform [25]. The IMA approach
introduces different stakeholders in the development process. The system inte-
grator is the leading authority (generally, the airframer). The role of this stake-
holder is to integrate all IMA systems: the software applications, provided by the

228 S. Gatti, E. Balland, and C. Consel

function suppliers, and the hardware systems, provided by the platform suppliers.
The integrator and suppliers play different roles in the certification process [12].
The system integrator specifies general constraints about all the systems at the
aircraft level. For example, this stakeholder defines the Worst Case Communi-
cation Time (WCCT) of the network, ensured by the AFDX technology [4], and
the WCET of the applications. These WCET requirements are passed on to the
function suppliers. To fulfill them, in turn, function suppliers produce specific
requirements for platform suppliers regarding issues such as time slots, CPU
power, memory capacity and throughput. To do so, the platform suppliers have
to provide the function suppliers with all the characteristics of this platform, in-
cluding WCET for core software services (e.g., drivers and health monitoring).

From the high-level WCET constraints delivered by the system integrator, our
approach guides the function suppliers in systematically specifying and refining
all the non-functional requirements during the development of the application.
Function suppliers can also use the generated monitoring support for validating
the performance of their application. Furthermore, the prediction tool can be
helpful in determining an interval of timing on each deployment technologies
and passing these constraints on to the platform suppliers. The platform suppli-
ers are now responsible for giving applications the means to access input data
from the sources, and send output data to the actuators. Regarding constraints
issued by all the function suppliers, the platform supplier can use the prediction
tool for proposing a platform configuration that matches all their needs. Fi-
nally, the system integrator can use the generated monitoring support for both
controlling the applications in flight, and performing aircraft maintenance. In
doing so, information about the non-functional behavior of the application can
be logged in flight and the pilot can be alerted in case of unexpected behaviors.
The monitoring support can also be used on-ground for correcting errors. As this
support is entirely generated, it is sufficient to test and certify the generator for
guaranteeing the correctness of all future generated monitoring containers.

Requirements traceability is key to obtain avionics certification. Because the
role separation proposed by the IMA platforms leads to the collaboration of sev-
eral companies, requirements traceability has become significantly more
challenging. The tool-based approach proposed in this paper can facilitate this
certification process by offering support for propagating automatically QoS re-
quirements between the stakeholders.

6 Related Work

Among existing QoS specifications languages, some of them focus on performance
properties and already offer design and programming support. For example, in
the spirit of our approach, Defour et al. generate numerical constraints from
time-based requirements specified with the QoSCL language [10]. These con-
straints are not only used to check the requirements compatibility according to
the architecture, but also to predict the QoS from the number of instances of each
component. AlTurki et al. propose a real-time rewriting model backing a timing

Integrating QoS throughout Software Development 229

specification language [2]. It allows them to verify various real-time properties
using the Maude rewriting engine. Krogmann et al. have set up a quantitative
performance prediction tool into the Palladio Component Model [20], allowing
architects to choose between different architectural designs. They define many
types of performance requirements that would be interesting for us to take into
account for critical systems (e.g., CPU). Bertolino et al. [6] also propose an-
other performance-based prediction approach that focuses on the assembling of
existing components. In contrast to our work, the above approaches are general-
purpose and are limited to the design phases of the development process.

Other approaches are domain-specific, for example dedicated to the specifica-
tion of real-time systems. As a result, they can offer better design and program-
ming support. For example, Fredriksson et al. propose a framework for leveraging
non-functional requirements (e.g., time and memory consumption) to build con-
trol systems components [15] and thus to predict the functional/non-functional
behavior of the composed system. Doose et al. formalize real-time systems as
a set of functionalities linked within timed communications and then verify
the time-coherency of the whole system using model-checking techniques [13].
Carcenac et al. also validate real-time systems according to the incremental spec-
ification of non-functional requirements [7]. Yet, these approaches only focus on
the validation of the systems.

In contrast, the approach of Robert et al. enables generating monitoring sup-
port from non-functional requirements, represented as exceptional transitions
in timed-automata [24]. In the same spirit, Duclos et al. [14] have proposed to
specify QoS requirements as aspects in the architectural models for providing
separation of concerns, monitoring these requirements at runtime. The approach
of Genssler et al. enables generating scheduling support based on QoS declara-
tions [16].

The above QoS approaches are dedicated to real-time systems and offer
support at design time (e.g., prediction) and/or at runtime (e.g., monitoring).
However, they are mostly dedicated to specific development stages and do not
consider the traceability of non-functional concerns through the software devel-
opment process.

To conclude, specifying non-functional requirements only at the architecture
level is not sufficient. As observed by Koziolek et al. [19], it is crucial to clearly
identify the stakeholders and the workflow between the functional development
and the non-functional layer. Towards this end, we propose a unified approach
that integrates QoS into the complete development process.

7 Conclusion

In this paper we have presented a step-wise approach integrating QoS concerns
through all phases of software development. This approach dedicated to control-
loop systems extends the DiaSuite tool-based methodology by offering support
for specifying, validating and monitoring time-related requirements. We have
shown that this domain-specific approach allows to guide the stakeholders in

230 S. Gatti, E. Balland, and C. Consel

systematically refining non-functional requirements and ensures requirements
traceability by generating numerical constraints. We have illustrated our ap-
proach in the avionics domain where such QoS requirements are critical.

We are currently working on a deeper evaluation of this approach with the de-
velopment of an autopilot application coupled to the FlightGear simulator [23].
This work will allow to leverage DiaSpec’s architectural support of error han-
dling [21] for treating the violation of a QoS contract at runtime. In particular,
we plan to show how the error handling support provided by DiaSpec can be used
to implement logging and reconfiguration treatments. This evaluation would also
help in refining the specification language (e.g., time constraints depending on
input parameters). Future work concerns the integration of this methodology
into the avionics certification process. In particular, we will need to certify our
tools and their associated development approach.

References

1. Aagedal, J.Ø.: Quality of service support in development of distributed systems.
PhD thesis, University of Oslo (2001)

2. AlTurki, M., Dhurjati, D., Yu, D., Chander, A., Inamura, H.: Formal specification
and analysis of timing properties in software systems. In: Chechik, M., Wirsing,
M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 262–277. Springer, Heidelberg (2009)

3. ARINC 653, system partitioning and scheduling. Aeronautical Radio, Inc. (2003)
4. ARINC 664, AFDX: Avionics Full DupleX switched ethernet. Aeronautical Radio,

Inc. (2005)
5. ARP4754, certification considerations for highly-integrated or complex aircraft sys-

tems, SAE (1996)
6. Bertolino, A., Mirandola, R.: CB-SPE tool: putting component-based performance

engineering into practice. In: Crnković, I., Stafford, J.A., Schmidt, H.W., Wallnau,
K. (eds.) CBSE 2004. LNCS, vol. 3054, pp. 233–248. Springer, Heidelberg (2004)

7. Carcenac, F., Boniol, F.: A formal framework for verifying distributed embedded
systems based on abstraction methods. International Journal on Software Tools for
Technology Transfer 8(6), 471–484 (2006)

8. Cassou, D., Bertran, B., Loriant, N., Consel, C.: A generative programming ap-
proach to developing pervasive computing systems. In: Proceedings of the 8th In-
ternational Conference on Generative Programming and Component Engineering,
pp. 137–146. ACM, New York (2009)

9. Colmerauer, A.: Specifications of Prolog IV (1996)
10. Defour, O., Jézéquel, J.-M., Plouzeau, N.: Extra-functional contract support in

components. In: Crnković, I., Stafford, J.A., Schmidt, H.W., Wallnau, K. (eds.)
CBSE 2004. LNCS, vol. 3054, pp. 217–232. Springer, Heidelberg (2004)

11. DO-178B, software considerations in airborne systems and equipment certification,
RTCA, Inc. (1992)

12. DO-297, Integrated Modular Avionics (IMA) development guidance and certifica-
tion considerations, RTCA, Inc. (2005)

13. Doose, D., Mammeri, Z.: Polyhedra-based approach for incremental validation of
real-time systems. In: Yang, L.T., Amamiya, M., Liu, Z., Guo, M., Rammig, F.J.
(eds.) EUC 2005. LNCS, vol. 3824, pp. 184–193. Springer, Heidelberg (2005)

Integrating QoS throughout Software Development 231

14. Duclos, F., Estublier, J., Morat, P.: Describing and using non-functional aspects in
component-based applications. In: Proceedings of the 1st International Conference
on Aspect-Oriented Software Development, pp. 65–75. ACM, New York (2002)

15. Fredriksson, J., Tivoli, M., Crnkovic, I.: A component-based development frame-
work for supporting functional and non-functional analysis in control system de-
sign. In: Proceedings of the 20th IEEE/ACM International Conference on Auto-
mated Software Engineering, pp. 368–371. ACM, New York (2005)

16. Genssler, T., Christoph, A., Winter, M., Nierstrasz, O., Ducasse, S., Wuyts, R.,
Arévalo, G., Schönhage, B., Müller, P.O., Stich, C.: Components for embedded
software: the PECOS approach. In: Proceedings of the Conference on Compilers,
Architectures and Synthesis for Embedded Systems, pp. 19–26. ACM, New York
(2002)

17. Halima, R.B., Drira, K., Jmaiel, M.: A QoS-oriented reconfigurable middleware for
self-healing web services. In: Proceedings of the 6th IEEE International Conference
on Web Services, pp. 104–111. IEEE, Los Alamitos (2008)

18. Jha, S., Seneviratne, A.: Synchronization skew: a QoS measurement study. In:
Proceedings of the Conference on Local Computer Networks, pp. 77–78 (1999)

19. Koziolek, H., Happe, J.: A QoS driven development process model for component-
based software systems. In: Gorton, I., Heineman, G.T., Crnković, I., Schmidt,
H.W., Stafford, J.A., Ren, X.-M., Wallnau, K. (eds.) CBSE 2006. LNCS, vol. 4063,
pp. 336–343. Springer, Heidelberg (2006)

20. Krogmann, K., Schweda, C.M., Buckl, S., Kuperberg, M., Martens, A., Matthes,
F.: Improved feedback for architectural performance prediction using software car-
tography visualizations. In: Mirandola, R., Gorton, I., Hofmeister, C. (eds.) QoSA
2009. LNCS, vol. 5581, pp. 52–69. Springer, Heidelberg (2009)

21. Mercadal, J., Enard, Q., Consel, C., Loriant, N.: A domain-specific approach to
architecturing error handling in pervasive computing. In: Proceedings of the 25th
International Conference on Systems, Programming, Languages, and Applications:
Software for Humanity. ACM, New York (2010)

22. Paulitsch, M., Ruess, H., Sorea, M.: Non-functional avionics requirements. In: Pro-
ceedings of the 3rd International Symposium On Leveraging Applications of Formal
Methods, Verification and Validation, pp. 369–384. Springer, Heidelberg (2009)

23. Perry, A.R.: The FlightGear flight simulator. In: Proceedings of the USENIX An-
nual Technical Conference (2004)

24. Robert, T., Fabre, J.-C., Roy, M.: On-line monitoring of real time applications for
early error detection. In: Proceedings of the 14th IEEE Pacific Rim International
Symposium on Dependable Computing, pp. 24–31. IEEE, Los Alamitos (2008)

25. Watkins, C.B., Walter, R.: Transitioning from federated avionics architectures to
Integrated Modular Avionics. In: Proceedings of the 26th IEEE/AIAA Digital
Avionics Systems Conference, p. 2. IEEE, Los Alamitos (2007)

26. Windsor, J., Hjortnaes, K.: Time and space partitioning in spacecraft avionics. In:
Proceedings of the 3rd IEEE International Conference on Space Mission Challenges
for Information Technology, pp. 13–20. IEEE, Los Alamitos (2009)

Systematic Development of UMLsec Design
Models Based on Security Requirements

Denis Hatebur1,4, Maritta Heisel1, Jan Jürjens2,3, and Holger Schmidt2

1 Software Engineering, Department of Computer Science and Applied Cognitive
Science, Faculty of Engineering, University Duisburg-Essen, Germany

{denis.hatebur,maritta.heisel}@uni-due.de
2 Software Engineering, Department of Computer Science, TU Dortmund, Germany

{jan.jurjens,holger.schmidt}@cs.tu-dortmund.de
3 Fraunhofer Institut für Software- und Systemtechnik, Germany

4 Institut für technische Systeme GmbH, Germany

Abstract. Developing security-critical systems in a way that makes sure
that the developed systems actually enforce the desired security require-
ments is difficult, as can be seen by many security vulnerabilities arising
in practice on a regular basis. Part of the difficulty is the transition from
the security requirements analysis to the design, which is highly non-
trivial and error-prone, leaving the risk of introducing vulnerabilities.
Unfortunately, existing approaches bridging this gap largely only pro-
vide informal guidelines for the transition from security requirements to
secure design.

We present a method to systematically develop structural and behav-
ioral UMLsec design models based on security requirements. Each step of
our method is supported by model generation rules expressed as pre- and
postconditions using the formal specification language OCL. Moreover,
we present a concept for a CASE tool based on the model generation
rules. Thus, applying our method to generate UMLsec design models
supported by this tool and based on previously captured and analyzed
security requirements becomes systematic, less error-prone, and a more
routine engineering activity.

We illustrate our method by the example of a patient monitoring
system.

1 Introduction

When building secure systems, it is instrumental to take security requirements
into account right from the beginning of the development process to reach the
best possible match between the expressed requirements and the developed soft-
ware product, and to eliminate any source of error as early as possible. Knowing
that building secure systems is a highly sensitive process, it is important to ac-
complish the transition from security requirements to secure design correctly,
i.e., without introducing vulnerabilities.

In fact, there already exist a number of approaches to security requirements
analysis (see [3] for an overview) and secure design (e.g., [10, 9]). Although this
can be considered a positive development, the different approaches are mostly
not integrated with each other. In particular, existing approaches on bridging
the gap between security requirements analysis and design only provide informal

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 232–246, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Systematic Development of UMLsec Design Models 233

guidelines for the transition from security requirements to design. Carrying out
the transition manually according to these guidelines is highly non-trivial and
error-prone, which leaves the risk of inadvertently introducing vulnerabilities.
Ultimately, this would lead to the security requirements not being enforced in
the system design (and later its implementation).

We present a method to systematically develop structural and behavioral de-
sign models based on security requirements. We use a security requirement anal-
ysis method [6, 13] inspired by Jackson [8] that uses the UML (Unified Modeling
Language)1 profile UML4PF [5] to capture, structure, and analyze security re-
quirements. We extend this approach by a detailed procedure for developing
UMLsec [9] design models from previously captured and analyzed security re-
quirements. Our method is supported by model generation rules expressed as
pre- and postconditions using the formal specification language OCL (Object
Constraint Language)2. We present a concept for a CASE tool based on the
model generation rules. Since our rules are specified in a formal and analyzable
way, the implementation of this tool can be checked automatically for correctness
with respect to the model generation rules. Consequently, applying our method
to generate UMLsec design models supported by our tool and based on pre-
viously captured and analyzed security requirements becomes systematic, less
error-prone, and a more routine engineering activity. We illustrate our method
by the example of a patient monitoring system.

The rest of the paper is organized as follows: Section 2 introduces our security
requirements engineering approach. We give a brief introduction into UMLsec in
Sect. 3, which we use in Sect. 4 to systematically develop UMLsec design models
based on previously captured and analyzed security requirements. We consider
related work in Sect. 5. In Sect. 6, we give a summary and directions for future
research.

2 Environment Description and Security Requirements
Analysis

We propose a requirements engineering approach inspired by Jackson [8]. We
illustrate this approach using the example of a patient monitoring system, which
displays the vital signs of patients to physicians and nurses, and controls an
infusion flow according to previously configured rules. In this setting, the dis-
play data and the configuration rules are transmitted over an insecure wireless
network. We use this case study as a running example throughout this paper.

Security requirements can only be guaranteed for a certain context. Therefore,
it is important to describe the environment, since software (called machine) is
built to improve something in its environment. A context diagram represents
the environment in which the machine will operate. Figure 1 shows the con-
text diagram of the PatientMonitoringSystem (PMS) case study in UML notation
with stereotypes defined in the UML profile UML4PF [5]. This profile is avail-
able online via http://swe.uni-due.de/en/research/tool/. Stereotypes give
a specific meaning to the elements of a UML diagram they are attached to, and
they are represented by labels surrounded by double angle brackets.
1 http://www.omg.org/spec/UML/2.3/Superstructure/PDF/
2 http://www.omg.org/docs/formal/06-05-01.pdf

http://swe.uni-due.de/en/research/tool/
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/
http://www.omg.org/docs/formal/06-05-01.pdf

234 D. Hatebur et al.

Fig. 1. Context Diagram of Patient Monitoring System

The machine is stereotyped �machine�, and in our example in Fig. 1 it is
represented by the class PatientMonitoringSystem. A context diagram structures
the environment using domains and interfaces. Domains describe entities in the
environment. Jackson distinguishes the domain types biddable domains that are
usually people, causal domains that comply with some physical laws, and lexical
domains that are data representations. The domain types are modeled by the
stereotypes �BiddableDomain� and �CausalDomain� being subclasses of the
stereotype �Domain�. A lexical domain (�LexicalDomain�) is modeled as a
special case of a causal domain. To describe the problem context in more detail,
connection domains may be necessary. Connection domains establish a connec-
tion between other domains by means of technical devices. They are modeled
as classes with the stereotype �ConnectionDomain�. Connection domains are,
e.g., video cameras, sensors, or networks. A special type of connection domain
is the display domain [2] for representing a display providing information. Dis-
play domains are modeled as classes with the stereotype �DisplayDomain�.
The context diagram in Fig. 1 shows the biddable domains Patient and Physi-
ciansAndNurses, and the causal domains O2Sensor, HeartbeatSensor, InfusionPump,
and Terminal. These causal domains are also connection domains, and the Termi-
nal is a display domain.

Interfaces connect domains, and they contain shared phenomena. Shared phe-
nomena may be events, operation calls, messages, and the like. They are observ-
able by at least two domains, but controlled by only one domain, as indicated
by an exclamation mark. These interfaces are represented as associations, and
the name of the associations contain the phenomena and the domain control-
ling the phenomena. For example, in Fig. 1 the notation HS!{Heartbeat} means
that the phenomenon Heartbeat is controlled by the domain HeartbeatSensor.

Developers must elicit, examine, and describe the relevant properties of each
domain. These descriptions form the domain knowledge. The domain knowledge
consists of assumptions and facts. Assumptions are conditions that are needed,
so that the requirements are accomplishable. Usually, they describe required user
behavior. For example, it must be assumed that a user ensures not to be observed
by a malicious user when entering a password. Facts describe fixed properties of
the problem environment, regardless of how the machine is built.

Systematic Development of UMLsec Design Models 235

Table 1. Functional Requirements of Patient Monitoring System

No Requirement �refersTo� �constrains�
R1 The vital signs should be displayed, and an

alarm should be raised if the vital signs ex-
ceed the limits.

Patient, Configu-
ration

Terminal

R2 Physicians and nurses can change the con-
figuration.

PhysiciansAnd-
Nurses

Configuration

R3 The infusion flow is controlled according to
the configured doses for the current vital
signs.

Patient, Configu-
ration

InfusionPump

Table 2. Security Requirements of Patient Monitoring System

No Security Statement �com-
ple-
ments�

�refersTo� �con-
strains�/
Mechanism

1 Configuration should be
protected from modification for
Patient against Attacker or
PhysiciansAndNurses should be
informed.

R2 Configuration is asset,
Terminal and WLAN
know asset, Patient is
stakeholder, against
Attacker

Terminal-
Display/
MAC of SSL

2 Alarm and Vital Signs should be
protected from modification for
Patient against Attacker or
PhysiciansAndNurses should be
informed.

R1 Alarm and Vital Signs
are assets, Terminal
and WLAN know
asset, Patient is
stakeholder, against
Attacker

Terminal-
Display/
MAC of SSL

3 Configuration, Alarm, and Vital
Signs should be protected from
disclosure for Patient against
Attacker.

R1, R2 Configuration, Alarm,
and Vital Signs are
assets, Patient is
stakeholder, against
Attacker

WLAN/
encryption
of SSL

4 The Shared Keys should be
distributed to Terminal and
PMS (for Patient) and Attacker
should not be able to access
Shared Keys.

R1, R2 Shared Keys are
assets, Patient is
stakeholder, against
Attacker

WLAN/
key
exchange of
SSL (KE)

Domain knowledge and requirements are special statements. A statement is
modeled as a class with a stereotype. In this stereotype, a unique identifier and
the statement text are contained as stereotype attributes. When a requirement
is stated, this means that something in the world should be changed by integrat-
ing the machine to be developed into it. Therefore, each requirement constrains
at least one domain. This is expressed by a dependency from the requirement
to a domain with the stereotype �constrains�. A requirement may refer to
several domains in the environment of the machine. For example, security re-
quirements have to refer to an attacker of a certain strength. These references are
expressed by a dependency from the requirement to a domain with the stereo-
type �refersTo�. The domains referred are also given in the requirements
description. Table 1 lists the functional requirements of the PMS case study.

236 D. Hatebur et al.

Table 3. Security Domain Knowledge of Patient Monitoring System

No Security Statement �com-
ple-
ments�

�refersTo� �constrains�/
Mechanism

1 The KE keys should be
distributed to Terminal and
PMS for Patient, and Attacker
should not be able to access
Shared Keys.

R1, R2 KE keys are
assets, Patient is
stakeholder,
against Attacker

WLAN/
manual import in
physically protected
area

2 Infusion Flow and
PatientMonitoringSystem
should be protected from
modification for Patient
against Attacker or Patient
should know.

R1, R2,
R3

Infusion Flow and
Patient-
Monitoring-
System are
assets, Patient is
stakeholder,
against Attacker

Infusion Pump,
PatientMonitoring-
System/
physical protection
(e.g., EMF) and
protection by Patient

3 Infusion Flow and
PatientMonitoringSystem
should be protected from
disclosure for Patient against
Attacker.

R1, R2,
R3

Infusion Flow and
Patient-
Monitoring-
System are
assets, Patient is
stakeholder,
against Attacker

Infusion Pump,
PatientMonitoring-
System/
physical protection
(e.g., EMF) and
protection by Patient

4 Terminal should be protected
from modification for Patient
against Attacker or
PhysiciansAndNurses should
know.

R1, R2 Terminal is asset,
Patient is
stakeholder,
against Attacker

Terminal/
physical protection
(e.g., EMF) and
protection by
PhysiciansAndNurses

5 Terminal should be protected
from disclosure for Patient
against Attacker.

R1, R2 Terminal is asset,
Patient is
stakeholder,
against Attacker

Terminal/
physical protection
(e.g., EMF) and
protection by
PhysiciansAndNurses

Security requirements are associated with functional requirements, which we
express using the stereotype �complements�. For the functional requirements
listed in Tab. 1, we initially identified some security requirements, as shown in
Tab. 2 in rows 1-3, expressed as proposed in [5]. The required integrity (rows 1
and 2) supports the safety of the system and the required confidentiality (row 3)
is necessary for privacy reasons. We decide on generic mechanisms that repre-
sent solutions of these requirements. To implement these mechanisms, additional
domains have to be introduced, and additional requirements have to be fulfilled.

We choose the security mechanism MAC (Message Authentication Code) for
integrity and symmetric encryption for confidentiality. For the mechanisms MAC
and encryption, a Shared Key known by the Terminal and by the PMS is necessary.
As required in Tab. 2 in row 4, this Shared Key must be distributed to the Terminal
and to the PMS. The integrity and confidentiality of the Shared Key must be
preserved. This will be implemented using a key exchange protocol. For the key
exchange, additional secrets (KE keys) are necessary.

Systematic Development of UMLsec Design Models 237

The KE keys should be distributed manually as described in Tab. 3 in row 1.
Integrity and confidentiality of the Infusion Flow and the PatientMonitoringSystem
should be ensured by physical protection (e.g., by reducing electromagnetic field
(EMF) radiation and by protection against EMF radiation) and protection by
Patient (e.g., Patient prevents physical access to the Infusion Flow) (Tab. 3 in rows 2
and 3). Integrity and confidentiality of the Terminal should be ensured by physical
protection (e.g., by reducing electromagnetic field radiation and by protection
against EMF radiation) and protection by PhysiciansAndNurses (Tab. 3 in rows 4
and 5).

For reasons of space, we do not depict the UML diagrams equipped with the
mentioned stereotypes capturing these security requirements and the security
domain knowledge. Instead, we present an overview of the security requirements
and the security domain knowledge in Tabs. 2 and 3. These statements are the
starting point for developing the design of the machine, which we achieve using
UMLsec.

3 UMLsec

UMLsec constitutes a UML profile to develop and analyze security models.
UMLsec offers new UML language elements, i.e., stereotypes, tags, and con-
straints, to specify typical security requirements such as secrecy, integrity, and
authenticity, and attacker models. Examples for pre-defined UMLsec stereotypes
are �critical� to label security-critical parts of UML diagrams, �secure
dependency� to ensure that dependent parts of models preserve the security
requirements relevant for the parts they depend on, �secure links� to in-
troduce attacker models, and �data security� to analyze behavior models
with respect to confidentiality and integrity requirements. The aforementioned
stereotypes are used in the next section for creating UMLsec design models based
on results from security requirements engineering. A detailed explanation and a
formal foundation of the tags and stereotypes defined in UMLsec can be found
in [9].

Based on UMLsec models and the semantics defined for the different UMLsec
language elements, possible security vulnerabilities can be identified at a very
early stage of software development. One can thus verify that the desired secu-
rity requirements, if fulfilled, enforce a given security policy. This verification is
supported by a tool suite, which is available online via http://www.umlsec.de/.

4 From Security Requirements to UMLsec Design
Models

In this section, we connect the security requirements engineering approach pre-
sented in Sect. 2 with secure design based on UMLsec. We first present a pro-
cedure to generate UMLsec diagrams describing the environment in Sect. 4.1.
Second, we introduce a procedure to generate UMLsec diagrams describing se-
curity mechanisms in Sect. 4.2. These procedures are supported by model gen-
eration rules, which we express using the formal specification language OCL.
More precisely, the model generation rules consist of OCL pre- and postcondi-
tions. They can be considered as patterns that describe how existing security

http://www.umlsec.de/

238 D. Hatebur et al.

measures and cryptographic protocols can be developed based on results from
security requirements engineering.

We finally present in Sect. 4.3 work in progress on the construction of a tool
that realizes the aforementioned procedures to develop UMLsec design models
based on security requirements.

4.1 UMLsec Deployment Diagrams for Environment Descriptions

According to our security requirements engineering approach as illustrated in
Sect. 2, describing the operational environment of a secure software system is
of great importance. In fact, the environment description is also necessary for
secure design: security-critical design decisions should lead to the fulfillment
of the security requirements in the given environment. However, in a different
environment, the same design decisions might lead to an insecure system.

In the following, we present a procedure to develop deployment diagrams en-
riched with UMLsec elements from context diagrams and security requirements.
For each step, an operation name with parameters is provided. These operations
represent model generation rules.

1. Create a UML package named adequately that contains a deployment dia-
gram (it is required that such a diagram does not yet exist and that exactly
one context diagram exists).
createDeploymentDiagram(diagramName: String)

2. Add the �secure links� stereotype to the package and assign a certain
type of attacker (e.g., default or insider as described in [9, Chapter 4.1]) to
the {adversary} tag. Decide which attacker type is appropriate based on
threats modeled in the context diagram and domain knowledge collected dur-
ing security requirements engineering. For example, default attackers cannot
execute attacks in a LAN environment, but insider attackers can. Hence, if
the context diagram describes an attack in a LAN environment, the attacker
is of type insider.
addSecureLinksStereotype(inDiagram: String, adv: String)

3. Each domain contained in the context diagram (it is required that exactly
one context diagram exists and that the deployment diagram exists) that is
not a biddable domain is represented as a node in the deployment diagram.
createNodes(inDiagram: String)

4. Moreover, each domain that is part of another domain in the context diagram
is represented either as a nested node or class.
createNestedNodes(domainNames: String[]) or createNestedClasses(
domainNames: String[])

5. Each connection between the aforementioned domains is represented as a
communication path and a dependency:
(a) We create a communication path stereotyped according to the com-

munication type as described in Tab. 4. Note that only one of the
UMLsec stereotypes is allowed for each communication path. Moreover,
the defined mapping for context diagram stereotypes also applies to sub-
stereotypes. For example, �wireless� is a sub-stereotype of �net-
work connection�, and therefore, �wireless� can be mapped to
�Internet�, �LAN�, and �encrypted�, too.

Systematic Development of UMLsec Design Models 239

Table 4. From Context Diagrams to UMLsec Deployment Diagrams

Context Diagram UMLsec Deployment Diagram

�physical� �wire� (physical protection against default adversary
is assumed)

�ui� not considered since biddable domains are not part of
deployment diagrams

�remote call� see �network connection�
�network -
connection�

�Internet�, �LAN�, �encrypted� depending on
the domain knowledge collected during security require-
ments engineering

Fig. 2. UMLsec Deployment Diagram Representing the Target State of Patient Moni-
toring System

We create communication paths for all relevant associations, and we also
associate a communication type where no decision is necessary (cre-
ateCommunicationPaths(inDiagram: String)). For all network con-
nections (retrievable with getNetworkConnections(): String[]), the
developer has to choose between �Internet�, �LAN�, or �Encryp-
ted� (setCommunicationPathType(inDiagram: String, assName:
String, type: String)).

(b) We create a dependency stereotyped according to the control direction
of the interfaces in the security requirement diagram and according to
the following rules:
– The domain controlling the interface is translated into the target of

the dependency.
– If more than one observing domains exist, the same number of de-

pendencies must be introduced.
– If a confidentiality statement constraining the connection domain of

the corresponding connection in the security requirement diagram
exists, then the dependency is stereotyped �secrecy�.

– If an integrity statement referring to the connection domain of the
corresponding connection in the security requirement diagram exists,
then the dependency is stereotyped �integrity�.

createDependencies(inDiagram: String)

240 D. Hatebur et al.

createDep loymentDiagram (’ PMS Deployment ’) ;
a d dSecu r eL i n k s S t e r e o t yp e (’ PMS Deployment ’ , ’ d e f a u l t ’) ;
c r ea teNodes (’ PMS Deployment ’) ;
c r e a t eN e s t e dC l a s s e s ({ ’ Con f i g u r a t i o n ’}) ;
g e tNetwo rkConnec t i on s () ; −− r e t u r n s { ’PMS!{Alarm , V i t a l S i g n s } ,T!{ c o n f i g } ’}
createCommunicat ionPaths (’ PMS Deployment ’) ;
setCommunicationPathType (’ PMS Deployment ’ , ’PMS!{Alarm , V i t a l S i g n s } ,

T!{ c o n f i g } ’ , ’ enc r yp ted ’) ;
c r e a t eDep end en c i e s (’ PMS Deployment ’) ;

Listing 1.1. Generating a UMLsec Deployment Diagram

1 createCommunicat ionPath s (inDiagram : S t r i n g)
2 PRE Package . a l l I n s t a n c e s () −>s e l e c t (name=diagramName)
3 −>s i z e ()=1 and
4 Package . a l l I n s t a n c e s () −>s e l e c t (g e tApp l i e dS t e r e o t y p e s ()
5 . name −>i n c l u d e s (’ ContextDiagram ’)) −>s i z e ()=1 and
6 Package . a l l I n s t a n c e s () −>s e l e c t (g e tApp l i e dS t e r e o t y p e s ()
7 . name −>i n c l u d e s (’ ContextDiagram ’)) . c l i en tDependency
8 . t a r g e t −>s e l e c t (oc l I sTypeOf (A s s o c i a t i o n)) . oc lAsType (A s s o c i a t i o n)
9 −>s e l e c t (not endType . g e tApp l i e dS t e r e o t y p e s () . name

10 −>i n c l u d e s (’ BiddableDomain ’)
11) . g e tApp l i e dS t e r e o t y p e s () −>f o r A l l (r e l a s s s t |
12 not r e l a s s s t . name −>i n c l u d e s (’ u i ’) and
13 not r e l a s s s t . g e n e r a l . name −>i n c l u d e s (’ u i ’) and
14 −− s i m i l a r f o r ’ event ’ , ’ c a l l r e t u r n ’ , ’ stream ’ , ’ shared memory ’
15)
16 POST Package . a l l I n s t a n c e s () −>s e l e c t (name=inDiagram) . ownedElement
17 −>s e l e c t (oc l I sTypeOf (CommunicationPath))

. oc lAsType (CommunicationPath
18 . endType . name =
19 Package . a l l I n s t a n c e s () −>s e l e c t (g e tApp l i e dS t e r e o t y p e s ()
20 . name −>i n c l u d e s (’ ContextDiagram ’)) . c l i en tDependency
21 . t a r g e t −>s e l e c t (oc l I sTypeOf (A s s o c i a t i o n)) . oc lAsType (A s s o c i a t i o n)
22 −>s e l e c t (not endType . g e tApp l i e dS t e r e o t y p e s () . name
23 −>i n c l u d e s (’ BiddableDomain ’)) . endType . name and
24 Package . a l l I n s t a n c e s () −>s e l e c t (g e tApp l i e dS t e r e o t y p e s ()
25 . name −>i n c l u d e s (’ ContextDiagram ’)) . c l i en tDependency
26 . t a r g e t −>s e l e c t (oc l I sTypeOf (A s s o c i a t i o n)) . oc lAsType (A s s o c i a t i o n)
27 −>s e l e c t (not endType . g e tApp l i e dS t e r e o t y p e s () . name
28 −>i n c l u d e s (’ BiddableDomain ’)) −>f o r A l l (r e l a s s |
29 Package . a l l I n s t a n c e s () −>s e l e c t (name=inDiagram) . ownedElement
30 −>s e l e c t (oc l I sTypeOf (CommunicationPath))

. oc lAsType (CommunicationPath)
31 −>e x i s t s (cp |
32 cp . name = r e l a s s . name and
33 cp . endType . name = r e l a s s . endType . name and
34 (cp . g e tApp l i e dS t e r e o t y p e s () . name −>i n c l u d e s (’ p h y s i c a l ’) i mp l i e s
35 r e l a s s . g e tApp l i e dS t e r e o t y p e s () . name −>i n c l u d e s (’ wi re ’)) and
36 (cp . g e tApp l i e dS t e r e o t y p e s () . g e n e r a l . name −>i n c l u d e s (’ p h y s i c a l ’)

imp l i e s
37 r e l a s s . g e tApp l i e dS t e r e o t y p e s () . name −>i n c l u d e s (’ wi re ’))
38)
39)

Listing 1.2. createCommunicationPaths(inDiagram: String)

The result of applying this method to the context diagram of the patient moni-
toring system shown in Fig. 1 is presented in Fig. 2. This UMLsec deployment
diagram can be created following the command sequence depicted in Listing 1.1.

We now present the OCL specification of the model generation rule for step 5.
Listing 1.2 contains the specification for step 5, generating the communication
paths and stereotypes for those associations that can be derived directly. The
first two formulas of the precondition of the model generation rule create-
CommunicationPaths(inDiagram: String) state that there does not exist a

Systematic Development of UMLsec Design Models 241

package named equal to the parameter diagramName (lines 2-3 in Listing 1.2),
and that there exists a package that contains a diagram stereotyped �Context-
Diagram� (lines 4-5). The third formula of the precondition expresses that
associations between transformed domains do not contain any of the �ui�,
�event�,�call return�,�stream�,�shared memory�, stereotypes and
subtypes (lines 6-15). If these conditions are fulfilled, then the postcondition can
be guaranteed, i.e., names of nodes connected by each communication path are
the same as the names of domains connected by an association in the context dia-
gram (lines 16-29), and there exists for each relevant association contained in the
context diagram a corresponding and equally named communication path in the
deployment diagram that connects nodes with names equal to the names of the
domains connected by the association. These communication paths are stereo-
typed �wire� if the corresponding associations are stereotyped �physical�
or a subtype (lines 30-39).

4.2 UMLsec Class and Sequence Diagrams for Security Mechanism
Descriptions

In the following, we show how to specify security mechanisms by developing
UMLsec diagrams based on security requirements. For each communication path
contained in the UMLsec deployment diagram developed as shown in Sect. 4.1
that is not stereotyped �wire�, we select an appropriate security mechanism
according to the results of the problem analysis, e.g., MAC for integrity, sym-
metric encryption for security, and a protocol for key exchange, see Tab. 2).
A security mechanism specification commonly consists of a structural and a be-
havioral description, which we specify based on the UMLsec �data security�
stereotype. To create security mechanism specifications, we developed a number
of model generation rules, for example:

– Securing data transmissions using MAC: createMACSecuredTransmission(
senderNodeName: String, receiverNodeName: String, newPackage: String)

– Symmetrically encrypted data transmissions: createSymmetricallyEncryp-

tedTransmission(senderNodeName: String, receiverNodeName: String,

newPackage: String)

– Key exchange protocol: createKeyExchangeProtocol(initiatorNodeName:
String, responderNodeName: String, newPackage: String)

Model generation rules can be regarded as patterns for security mechanism spec-
ifications. Each of the aforementioned model generation rules describes the con-
struction of a package stereotyped �data security� containing structural and
behavioral descriptions of the mechanism expressed as class and sequence dia-
grams. Moreover, the package contains a UMLsec deployment diagram developed
as shown in Sect. 4.1.

We explain in detail the model generation rule createKeyExchangeProto-
col(initiatorNodeName: String, responderNodeName: String, newPack-
age: String) shown in Listing 1.3. We use this protocol to realize the secu-
rity requirement given in Table 2, row 4, of the patient monitoring system. We
use the protocol that secures data transmissions using MACs for the security re-
quirements in rows 1 and 2, and we use the protocol for symmetrically encrypted
data transmissions for the security requirement in row 3.

242 D. Hatebur et al.

1 c r ea teKeyExchangePro toco l (i n i t i a to rNodeName : St r i ng , responderNodeName :
St r i ng , newPackage : S t r i n g) ;

2 PRE Node . a l l I n s t a n c e s () −>s e l e c t (name=in i t i a to rNodeName) −>s i z e ()=1 and
3 Node . a l l I n s t a n c e s () −>s e l e c t (name=responderNodeName) −>s i z e ()=1 and
4 l e t cp t yp e s : Bag (S t r i n g) =
5 CommunicationPath . a l l I n s t a n c e s ()−>s e l e c t (cp |
6 cp . endType−>i n c l u d e s (Node . a l l I n s t a n c e s ()

−>s e l e c t (name=in i t i a to rNodeName)−>asSequence ()−> f i r s t ())
and

7 cp . endType−>i n c l u d e s (Node . a l l I n s t a n c e s ()
−>s e l e c t (name=responderNodeName)−>asSequence ()−> f i r s t ())

8) . g e tApp l i e dS t e r e o t y p e s () . name
9 i n

10 cp types−>i n c l u d e s (’ enc ryp ted ’) or cp types−>i n c l u d e s (’ I n t e r n e t ’)
or cp types−>i n c l u d e s (’LAN’) and

11 Package . a l l I n s t a n c e s () −>s e l e c t (name=newPackage) −>s i z e ()=0
12

13 POST Package . a l l I n s t a n c e s () −>s e l e c t (name=newPackage) −>s i z e ()=1 and
14 −− . . . S t e r e o t yp e wi th a t t r i b u t e s e x i s t s
15 C l a s s . a l l I n s t a n c e s () −>s e l e c t (name=in i t i a to rNodeName)

−>s e l e c t (oc l I sTypeOf (C l a s s)) −>s i z e ()=1 and
16 C l a s s . a l l I n s t a n c e s () −>s e l e c t (name=responderNodeName)

−>s e l e c t (oc l I sTypeOf (C l a s s)) −>s i z e ()=1 and
17 −− . . . d ependenc i e s wi th s e c r e c y and i n t e g r i t y between i n i t i a t o r

and r e s p ond e r (both d i r e c t i o n) c r e a t ed . . .
18 C l a s s . a l l I n s t a n c e s () −>s e l e c t (name=in i t i a to rNodeName)

−>s e l e c t (oc l I sTypeOf (C l a s s)) . ownedAtt r i bu te
19 −>s e l e c t (name=’ i n v (K T) ’) . t ype −>s e l e c t (name = ’ Keys ’) −> s i z e ()

= 1 and
20 −− . . . o t h e r a t t r i b u t e s e x i s t . . .
21 C l a s s . a l l I n s t a n c e s () −>s e l e c t (name=in i t i a to rNodeName)

−>s e l e c t (oc l I sTypeOf (C l a s s)) . ownedOperat ion
22 −>s e l e c t (name=’ resp ’)
23 −>s e l e c t (member−>f o r A l l (oc l I sTypeOf (Parameter))) . member −>f o r A l l (

par |
24 par−>s e l e c t (name−>i n c l u d e s (’ sh rd ’)) −>one (

oc lAsType (Parameter) . t ype . name−>i n c l u d e s (’ Data ’)) xo r
25 par−>s e l e c t (name−>i n c l u d e s (’ ce r t ’)) −>one (

oc lAsType (Parameter) . t ype . name−>i n c l u d e s (’ Data ’))
26) and
27 −− . . . o t h e r o p e r a t i o n s e x i s t
28 −− . . . s t e r e o t y p e and tag s f o r i n i t i a t o r and r e s p ond e r c l a s s e x i s t
29 l e t i n t e r a : Bag (I n t e r a c t i o n) =
30 Package . a l l I n s t a n c e s () −>s e l e c t (name=newPackage) . ownedElement

−>s e l e c t (oc l I sTypeOf (C o l l a b o r a t i o n))
31 . ownedElement −>s e l e c t (oc l I sTypeOf (I n t e r a c t i o n))

. oc lAsType (I n t e r a c t i o n)
32 i n
33 i n t e r a . ownedElement −>s e l e c t (oc l I sTypeOf (L i f e l i n e))

. oc lAsType (L i f e l i n e) . name −>i n c l u d e s (i n i t i a to rNodeName) and
34 i n t e r a . ownedElement −>s e l e c t (oc l I sTypeOf (L i f e l i n e))

. oc lAsType (L i f e l i n e) . name −>i n c l u d e s (responderNodeName) and
35 i n t e r a . ownedElement −>s e l e c t (oc l I sTypeOf (Message))

. oc lAsType (Message) . name
−>i n c l u d e s (’ i n i t (N i , K T , Sign (i n v (K T) ,T : : K T)) ’) and

36 i n t e r a . ownedElement −>s e l e c t (oc l I sTypeOf (Message))
. oc lAsType (Message) . name
−>i n c l u d e s (’ r e s p ({ Sign (i n v (K P i) , k j : : N ’ : : K’ T)} K ’ T ,
Sign (i n v (K CA) , P i : : K P i)) ’) and

37 i n t e r a . ownedElement −>s e l e c t (oc l I sTypeOf (Message))
. oc lAsType (Message) . name −>i n c l u d e s (’ xchd ({ s i } k) ’) and

38 −− . . . c o n d i t i o n s i n sequence d iagram e x i s t

Listing 1.3. createKeyExchangeProtocol(initiatorNodeName: String, responderNode
Name: String, newPackage: String)

The precondition of the model generation rule for key exchange protocols
states that nodes named initiatorNodeName and responderNodeName exist
(lines 2-3 in Listing 1.3). The communication path between these nodes (line 8)

Systematic Development of UMLsec Design Models 243

«data security»
PMS KeyExchProt

«critical»
Terminal

 S_: Data
 s_: Data
 N_: Data
 K_T: Keys
 inv(K_T): Keys
 K_CA: Keys
 i: Integer

 + resp(shrd, cert)

«critical»
PatientMonitoringSystem

 K_P: Keys
 inv(K_P): Keys
 K_CA: Keys
 k_: Keys
 j: Integer

 + init(n, k, cert)
 + xchd(mstr)

 «critical»
 secrecy = {inv(K_P),k_}
 integrity = {K_P,inv(K_P),K_CA,k_,j}

 «critical»
 secrecy = {s_,inv(K_T)}
 integrity = {s_,N_,K_T,inv(K_T),K_CA,i}
 authenticity = (k,P_i)

«primitiveType»
Data

«primitiveType»
Keys

«primitiveType»
Expressions

 «data security»
 adversary = default

«send, secrecy, integrity»

«send, secrecy, integrity»

Fig. 3. Class Diagram of Key Exchange Protocol for Patient Monitoring System

should have the stereotype �encrypted�, �Internet�, or �LAN� (lines 9-
10). Additionally, a package named newPackage must not exist (line 11). If these
conditions are fulfilled, then the postcondition can be guaranteed. The first part
of the postcondition describes the construction of a class diagram, and the sec-
ond part specifies the construction of a sequence diagram. The following class
diagram elements are created as shown in the example in Fig. 3:

– exactly one package named newPackage (line 13)
– stereotype �data security� and tags (adversary) for this package
– classes for initiator and responder named initiatorNodeName and respon-

derNodeName (lines 15-16)
– dependencies with �secrecy� and �integrity� between initiator and

responder (both directions)
– attributes for initiator and responder classes (lines 18-20)
– methods with parameters for initiator and responder class (lines 21-27)
– stereotype �critical� and corresponding tags (e.g., secrecy) for initiator

and responder classes

The following sequence diagram elements are created as shown in the example
in Fig. 4:

– lifelines for initiator and for responder in an interaction being part of a
collaboration that is part of the created package (lines 29-34)

– messages in sequence diagram (lines 35-37)
– conditions in sequence diagram

A detailed description of this protocol pattern is given in [9, Chapter 5.2].
Figure 3 shows the class diagram and Fig. 4 the sequence diagram developed

for the patient monitoring system according to this model generation rule. They
are created with createKeyExchangeProtocol(’Terminal’, ’PatientMoni-
toringSystem’, ’KeyExchProt’). In the created model, the tag {secrecy} of
the �critical� class Terminal contains the secret s , which represents an array
of secrets to be exchanged in different rounds of this protocol. It also contains the

244 D. Hatebur et al.

Fig. 4. Sequence Diagram of Key Exchange Protocol for Patient Monitoring System

private key inv(K T) of the Terminal. Next to these assets, the {integrity} tag
additionally contains the nonces N used for the protocol, the public key K T of
the Terminal, the public key K CA of the certification authority, and the round it-
erator i. These tag values are reasonable because the security domain knowledge
in Tab. 3, rows 2 and 3 states that the PatientMonitoringSystem with its contained
data is kept confidential and its integrity is preserved. The tag {authenticity}
expresses that the PatientMonitoringSystem P i is authenticated with respect to
the Terminal. This is ensured by the domain knowledge in Tab. 3, row 1. The
tag {secrecy} of the �critical� class PatientMonitoringSystem contains the
session keys k and the private key inv(K P) of the PatientMonitoringSystem. The
{integrity} tag consists of assets similar to the ones of the same tag of the
Terminal. The tag {authenticity} is not used, since two-sided authentication
is not necessary. Integrity and confidentiality of the data stored in the Patient-
MonitoringSystem (private key inv(K P), the public key K P, the public key K CA
of the certification authority, and the round iterator j) is covered by the domain
knowledge in Tab. 3, rows 4 and 5.

The sequence diagram in Fig. 4 specifies three messages and two guards, and
it considers the ith protocol run of the Terminal, and the jth protocol run of
the PatientMonitoringSystem. The sequence counters i and j are part of the Termi-
nal and the PatientMonitoringSystem, respectively. The init(. . .) message sent from
the Terminal to the PatientMonitoringSystem initiates the protocol. If the guard
at the lifeline of the PatientMonitoringSystem is true, i.e., the key K T contained in
the signature matches the one transmitted in the clear, then the PatientMonitor-
ingSystem sends the message resp(. . .) to the Terminal. If the guard at the lifeline
of the Terminal is true, i.e., the certificate is actually for S and the correct nonce
is returned, then the Terminal sends xchd(. . .) to the PatientMonitoringSystem. If
the protocol is executed successfully, i.e., the two guards are evaluated to true,
then both parties share the secret s i.

The key exchange protocol only fulfills the corresponding security require-
ments if integrity, confidentiality, and authenticity of the keys are ensured. Ac-
cording to our pattern system for security requirements engineering [5], applying
the key exchange mechanism leads to dependent statements about integrity, con-
fidentiality, and authenticity of the keys as stated in Tab. 3.

Systematic Development of UMLsec Design Models 245

4.3 Tool Design

We are currently constructing a graphical wizard-based tool that supports a
software engineer in interactively generating UMLsec design models. The tool
will implement the model generation rules presented in the previous subsections
to generate UMLsec deployment, class, and sequence diagrams. A graphical user
interface allows users to choose the parameters, and it ensures that these pa-
rameters fulfill the preconditions. For example, users can choose the value of
the second parameter of the model generation rule setCommunicationPath-
Type(inDiagram: String, assName: String, type: String) based on the
return values of the rule getNetworkConnections(). Our tool will automati-
cally construct the corresponding parts of the UMLsec model as described in
the postcondition. Since our model generation rules are specified with OCL in
a formal and analyzable way, our tool implementation can be checked automat-
ically for correctness with respect to our specification based on an appropriate
API such as the Eclipse implementation for EMF-based models3. In addition
to realizing the OCL specification, the tool will support workflows adequate to
generate the desired UMLsec models, e.g., as depicted in Listing 1.1.

In summary, we presented in this section a novel integrated and formal ap-
proach connecting security requirements analysis and secure design.

5 Related Work

The approach presented in this paper can be compared on the one hand-side to
other work bridging the gap between security requirements engineering secure
design, and on the other hand-side to work on transforming UML models based
on rules expressed in OCL.

Relatively little work has been done on the first category of related work, i.e.,
bridging the gap between security requirements analysis and design. Recently,
an approach [12] to connect the security requirements analysis method Secure
Tropos by Mouratidis et al. [4] and UMLsec [9] is published. A further approach
[7] connects UMLsec with security requirements analysis based on heuristics. In
contrast to our work, these approaches only provide informal guidelines for the
transition from security requirements to design. Consequently, they do not allow
to verify the correctness of this transition step.

The second category of related work considers the transformation of UML
models based on OCL transformation contracts [1, 11]. We basically use parts of
this work, e.g., the specification of transformation operations using OCL pre- and
postconditions. Additionally, our model generation rules can be seen as patterns,
since they describe the generation of completely new model elements according
to generic security mechanisms, e.g., cryptographic keys.

6 Conclusions and Future Work

We presented in this paper a novel method to bridge the gap between security
requirements analysis and secure design. We complemented our method by for-
mal model generation rules expressed in OCL. Thus, the construction of UMLsec
design models based on results from security requirements engineering becomes
3 Eclipse Modeling Framework (EMF):http://www.eclipse.org/modeling/emf/

http://www.eclipse.org/modeling/emf/

246 D. Hatebur et al.

more feasible, systematic, less error-prone, and a more routine engineering ac-
tivity. We illustrated our approach using the sample development of a patient
monitoring system.

In the future, we would like to elaborate more on the connection between
the presented security requirements engineering approach and UMLsec. For ex-
ample, we intend to develop a notion of correctness for the step from security
requirements engineering to secure design based on the approach presented in
this paper.

References

[1] Cariou, E., Marvie, R., Seinturier, L., Duchien, L.: OCL for the specification of
model transformation contracts. In: Baar, T., Strohmeier, A., Moreira, A., Mellor,
S.J. (eds.) UML 2004. LNCS, vol. 3273, Springer, Heidelberg (2004)

[2] Côté, I., Hatebur, D., Heisel, M., Schmidt, H., Wentzlaff, I.: A systematic ac-
count of problem frames. In: Proceedings of the European Conference on Pattern
Languages of Programs (EuroPLoP), pp. 749–767. Universitätsverlag Konstanz
(2008)

[3] Fabian, B., Gürses, S., Heisel, M., Santen, T., Schmidt, H.: A comparison of
security requirements engineering methods. Requirements Engineering – Special
Issue on Security Requirements Engineering 15(1), 7–40 (2010)

[4] Giorgini, P., Mouratidis, H.: Secure tropos: A security-oriented extension of the
tropos methodology. International Journal of Software Engineering and Knowl-
edge Engineering 17(2), 285–309 (2007)

[5] Hatebur, D., Heisel, M.: A UML profile for requirements analysis of dependable
software. In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS, vol. 6351, pp. 317–331.
Springer, Heidelberg (2010)

[6] Hatebur, D., Heisel, M., Schmidt, H.: Analysis and component-based realization of
security requirements. In: Proceedings of the International Conference on Avail-
ability, Reliability and Security (AReS), pp. 195–203. IEEE Computer Society
Press, Los Alamitos (2008)

[7] Houmb, S.H., Islam, S., Knauss, E., Jürjens, J., Schneider, K.: Eliciting security
requirements and tracing them to design: An integration of common criteria,
heuristics, and UMLsec. Requirements Engineering – Special Issue on Security
Requirements Engineering 15(1), 63–93 (2010)

[8] Jackson, M.: Problem Frames. Analyzing and structuring software development
problems. Addison-Wesley, Reading (2001)

[9] Jürjens, J.: Secure Systems Development with UML. Springer, Heidelberg (2005)
[10] Lodderstedt, T., Basin, D.A., Doser, J.: SecureUML: A UML-based modeling lan-

guage for model-driven security. In: Proceedings of the International Conference
on the Unified Modeling Language (UML), London, UK, pp. 426–441. Springer,
Heidelberg (2002)

[11] Millan, T., Sabatier, L., Le Thi, T.-T., Bazex, P., Percebois, C.: An OCL exten-
sion for checking and transforming uml models. In: Proceedings of the WSEAS
International Conference on Software Engineering, Parallel and distributed Sys-
tems (SEPADS), Stevens Point, Wisconsin, USA, pp. 144–149. World Scientific
and Engineering Academy and Society (WSEAS), Singapore (2009)

[12] Mouratidis, H., Jürjens, J.: From goal-driven security requirements engineering
to secure design. International Journal of Intelligent Systems – Special issue on
Goal-Driven Requirements Engineering 25(8), 813–840 (2010)

[13] Schmidt, H.: A Pattern- and Component-Based Method to Develop Secure Soft-
ware. Deutscher Wissenschafts-Verlag (DWV) Baden-Baden (April 2010)

Theoretical Aspects of Compositional Symbolic
Execution

Dries Vanoverberghe	 and Frank Piessens

Dries.Vanoverberghe, Frank.Piessens@cs.kuleuven.be

Abstract. Given a program and an assertion in that program, determining if the
assertion can fail is one of the key applications of program analysis. Symbolic
execution is a well-known technique for finding such assertion violations that
can enjoy the following two interesting properties. First, symbolic execution can
be precise: if it reports that an assertion can fail, then there is an execution of
the program that will make the assertion fail. Second, it can be progressing: if
there is an execution that makes the assertion fail, it will eventually be found.
A symbolic execution algorithm that is both precise and progressing is a semi-
decision procedure.

Recently, compositional symbolic execution has been proposed. It improves
scalability by analyzing each execution path of each method only once. However,
proving precision and progress is more challenging for these compositional algo-
rithms. This paper investigates under what conditions a compositional algorithm
is precise and progressing (and hence a semi-decision procedure).

Keywords: Compositional, symbolic execution, precision, progress.

1 Introduction

Given a program and an assertion in that program, determining whether the assertion
can fail is one of the key applications of program analysis. There are two complemen-
tary approaches.

One can try to determine whether the assertion is valid, i.e. is satisfied in all execu-
tions of the program. This can be done using techniques such as type systems, abstract
interpretation, or program verification. Such techniques are typically expected to be
sound: if they report an assertion as valid, there will indeed be no execution that vio-
lates the assertion. However, these techniques suffer from false positives: they may fail
to establish the validity of an assertion even if there is no execution that violates the
assertion.

Alternatively one can look for counterexamples by trying to determine inputs to the
program that will make the assertion fail. One important technique for this approach
is symbolic execution [1], a well-known analysis technique to explore the execution
traces of a program. The program is executed symbolically using logical symbols for
program inputs, and at each conditional the reachability of both branches is checked

� Dries Vanoverberghe is a research assistant of the Fund for Scientific Research - Flanders
(FWO).

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 247–261, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

248 D. Vanoverberghe and F. Piessens

using an SMT solver. When reaching the assertion, the analysis determines if it can
find values for the symbolic inputs that falsify the assertion. Such a technique can not
prove the validity of an assertion, but it has the advantage of avoiding false positives
(a property that we will call precision). Obviously, sound and precise approaches are
complementary. This paper focuses on precise algorithms, and more specifically on
precise symbolic execution.

Thanks to many improvements to SMT solvers, symbolic execution has become an
important technique, both in research prototypes [2,3,4,5,6,7,8,9,10] as well as in indus-
trial strength tools [3,4]. Recently, compositional symbolic execution [11,12] attempts
to further improve the scalability of symbolic execution. With compositional symbolic
execution, each execution path of a method is only analyzed once. The results of this
analysis are stored in a so-called summary of the method, and are reused by all callers
of the method.

Traditional whole-program (non-compositional) symbolic execution has two inter-
esting properties that are not necessarily maintained in the compositional case. First, as
discussed above, symbolic execution can be precise: if it reports that an assertion can
fail, then there is an execution of the program that will make the assertion fail. Proving
precision for whole-program symbolic execution is relatively easy: one has to prove that
symbolic execution correctly abstracts concrete executions, and that the SMT solver is
sound and complete (which it can be for the class of constraints it needs to solve).
Second, symbolic execution can make progress or be progressing: if there is an execu-
tion that makes the assertion fail, it will eventually be found. Therefore, there are no
classes of programs where the analysis fails fundamentally. Again, making a symbolic
execution algorithm progressing is relatively straightforward, for instance by making
the algorithm explore the tree of possible paths through the program in a breadth-
first manner. Since this tree is finitely-branching, a breadth-first exploration ensures
that any node of the tree will eventually be visited. A symbolic execution algorithm
that is both precise and progressing is a semi-decision procedure for the existence of
counterexamples.1

Although compositional symbolic execution is inspired by standard symbolic execu-
tion, the proofs of these important properties become much more challenging. In fact,
some of the algorithms proposed recently are not necessarily semi-decision procedures.
This paper develops proof techniques for showing precision and progress of composi-
tional symbolic execution algorithms.

More specifically, this paper makes the following contributions:

– We formally model the existing compositional symbolic execution, based on a
small but powerful programming language.

– We show that any compositional symbolic execution algorithm based on this formal
model is precise.

– We give sufficient conditions for an algorithm to be progressing, and therefore be a
semi-decision procedure.

1 Note that precision is a soundness property, and progress is a completeness property, but we
avoid the terms soundness and completeness on purpose to avoid confusion with soundness
and completeness of verification algorithms or theorem provers.

Theoretical Aspects of Compositional Symbolic Execution 249

For the purpose of investigating precision and progress, the assertion in the program
is not relevant. What matters is whether the symbolic execution algorithm correctly
enumerates all the reachable program states. Hence, for the rest of this paper, we will
consider symbolic execution algorithms to be algorithms that enumerate reachable pro-
gram states. Such an algorithm is precise if any program state that it enumerates is
also reachable by the program. It is progressing if any program state reachable by the
program is eventually enumerated.

The rest of this paper is structured as follows. First, in Section 2 we show by means of
examples that precision and progress are hard to achieve for compositional algorithms.
Then we introduce a small but powerful programming language in Section 3. Section 4
presents compositional symbolic execution and creates a formal model of it based on
transition systems. Next, we show that this algorithm is precise and progressing (Sec-
tion 5). Finally, we discuss related work in Section 6 and conclude in Section 7.

2 Motivation

Traditional symbolic execution [1] explores paths through the program by case split-
ting whenever the execution reaches a branch. Since loops are also just branches that
are encountered multiple times, this implies that loops are lazilly unrolled, potentially
an infinite amount of times2. When a method call is reached, the target method is sym-
bolically executed using the given arguments. Therefore, if the program calls a given
method several times, the execution paths in that method will be re-analyzed for each
call. The key idea of compositional algorithms is to avoid this repeated analysis. Instead,
execution paths are explored for each method independently. The results of this explo-
ration are stored in a method summary. Method calls are no longer inlined: a method
call is analyzed in one single step and the result is computed based on the summary
of the target method. Compositional symbolic execution has been shown [11,12,13] to
improve performance, but maintaining precision and progress is challenging.

2.1 Precision

Compositional symbolic execution creates two potential causes of imprecision. First,
when there is insufficient information about the calling context of a method, then one
might conclude that unreachable program locations are reachable. For example, the
highlighted statement in the method P2 in Figure 1 is unreachable in the current pro-
gram because the method P1 only calls P2 with argument x != 0. However, if one
would analyze P2 independently of P1 , the analysis might conclude that the high-
lighted statement is reachable. In other words, since reachability is a whole-program
property, we need to maintain some whole-program state even in a compositional anal-
ysis. The example algorithm we discuss later will do so by maintaining an invocation
graph.

2 Developer provided or automatically synthesized invariants can be used to create sound an-
alyzers for particular classes of programs. This paper considers the general case where such
invariants are not present or cannot be inferred.

250 D. Vanoverberghe and F. Piessens

Second, when a method returns and the analysis loses information about the re-
lation between the arguments of the method and the return value, then the analysis
might incorrectly conclude that a program location is reachable. For example, the high-
lighted statement in the method P1 in Figure 1 is unreachable. When the analysis over-
approximates the result of P2 by the relation result == 0∨result == 1∨result ==
−1, then the highlighted location is reachable. To maintain precision, method sum-
maries should not introduce such approximations.

int P1 (int x) {
if(x != 0){

int r2 = P2 (x);
if(x > 0 && r2 != 1) return −1;

}
return 0;

}

int P2 (int u) {
if(u == 0) return 0;
else if(u > 0) return 1;
else return − 1;

}

Fig. 1. Example program for precision

2.2 Progress

Non-compositional symbolic execution builds one global execution tree where leaf
nodes represent either final program states, unreachable program states, or program
states that require further analysis. Given a fair strategy to select such leaf nodes for
further analysis, it is easy to show that the depth of the highest unexplored node keeps
increasing and hence that any finite execution path will eventually be completely ana-
lyzed. This implies progress for non-compositional symbolic execution.

For compositional symbolic execution, the situation is more complex due to two
reasons. First, as we discussed above, in order for method summaries to be precise,
they must depend on the calling context. Hence, the discovery of a new call site for a
method may increase the number of reachable points in the method and unreachable
leaf nodes need to be reanalyzed taking into account the new calling context.

Secondly, when analyzing a method call, a compositional analysis relies on the sum-
mary of the target method for computing the return value. However, method summaries
change over time when the analysis discovers new returns. As a consequence, nodes
that were deemed unreachable based on the summary of the method must be reana-
lyzed when that method summary is updated.

The progress argument for non-compositional symbolic execution relies essentially
on the fact that unreachable leaf nodes remain unreachable for the rest of the analysis.
With compositional symbolic execution, this premise is no longer satisfied. Further-
more, it is impossible to guarantee that any finite execution path within the execution
tree of a single method will eventually be completely analyzed. The program in Figure 2
provides an example of this phenomenon.

First, we explain the program: The two highlighted statements are both unreachable,
and therefore the method M1 returns 0 for any input. To understand this, two invariants
are important: First, the method M1 only calls the method M2 with parameters u = v
with u > 0. Second, if the parameters u and v of M2 are greater than zero, then M2
returns the minimum of u and v.

Theoretical Aspects of Compositional Symbolic Execution 251

int M1 (int x) {
while (x > 0) {

int y = M2 (x, x);
if(y < 0) return −1;
x−−;

}
return 0;

}

int M2 (int u, int v) {
int w = 0;
while (u > 0) {

if(v <= 0) return − w;
u−−; v−−; w++;

}
return w;

}
Fig. 2. Example program for progress

Figures 3(a) and 3 show the execution trees of M1 and M2 . Each circle represents a
case split in the program, and the corresponding condition is written in the upper-right
corner. From a circle, the arc to the left (right) means that the condition is false (true).
Squares are final nodes, and imply that the method returns with the return value written
inside the square. Triangle denotes unreachable nodes.

X>0

M2(X,X)<0
0

X‐1>0

M2(X‐1,X‐1)<0
0

f1 u1,1

u1,2

(a) Execution tree of M1

U>0

V<=0
0

U‐1>0

V‐1<=0
1

f2 u2,1

u2,2

(b) Execution tree of M2

Fig. 3. Execution trees

Let ui,j be the analysis step that checks the j-th unreachable node of Mi , and fi

the sequence of analysis steps that explores the reachable part of the execution tree of
Mi . The sequence f1 causes a new invocation from M1 to M2 and therefore resets the
unreachable nodes in M2 . The sequence f2 causes a new return and therefore resets the
unreachable nodes in M1 . Let ui,2.. be the sequence ui,2, . . . , ui,n where ui,n checks
the deepest unreachable node of Mi . Suppose we analyze according to the fair sched-
ule f1, f2, [u2,1, f1, u2,2.., u1,1, f2, u1,2..]∗. Then the highlighted nodes in the execution
trees, that are only at depth 3 in the tree will be of status needs-further-analysis an infi-
nite number of times. Hence, the depth of the analysis never stays larger than 3, and the
given schedule is a counter example for the traditional proof of progress.

This shows that progress for compositional symbolic execution can not be proved by
mimicking the proof for the non-compositional case on a per-method basis. In Section 5,
we will propose an alternative technique to prove progress for compositional symbolic
execution.

3 Programming Language

In this section, we introduce a small intermediate language that is particularly well-
suited for presenting compositional symbolic execution. It only retains the structure

252 D. Vanoverberghe and F. Piessens

of the program that is essential: the structure of the control flow graph per procedure,
and the calls and returns between procedures. The language focuses on sequential pro-
grams. Besides this restriction, all relevant more complicated language features can be
translated to this core (e.g. parameters, return values or loops, . . .). For brevity, we also
assume that the program does not contain (mutually) recursive methods. Although the
algorithm in 4 depends on this simplification, our prototype implementation supports
recursion by inferring ranks, but the details are beyond the scope of this paper.

A program p is a tuple 〈Mp,Gp,m0
p 〉 where Mp is a set of methods, Gp is a set of

global variables and m0
p ∈ Mp is a distinguished entry method. Each method definition

m for the program p is a tuple 〈Lm, Nm, λm, n0
m〉 where Lm is a finite set of local

variables disjoint from the global variables Gp, Nm is a finite set of program locations,
n0

m ∈ Nm is a distinguished entry node and λm : Nm → Commandsm,p maps each
node to a command. The sets of local variables and nodes of different methods are
disjoint.

A command c for the method m of the program p is either:

– An assignment assign x, e, n where x ∈ Lm∪Gp, e is a side-effect free expression
over Lm ∪ Gp and constants, and n ∈ Nm is a program location. This command
updates the value of the variable x, and continues in location n.

– A conditional if e, nt, nf where e is a side-effect free expression over Lm ∪ Gp,
and nt, nf ∈ Nm are program locations. If the expression e evaluates to true (false)
the execution continues in location nt (nf).

– A call call mt, n where mt ∈ Mp is the target method and n ∈ Nm is a program
location. This command invokes the method mt and continues in location n.

– A return ret returns from the current method.

For each variable v, D(v) represents the value domain of the variable. A valuation σV is
a partial function that maps each variables v ∈ V to a value val ∈ D(v). Each domain
has a default element D0(v), and the default valuation σd

V for a set of variables V maps
each variable v ∈ V to D0(v).

An execution state s ∈ Sp for the program p is tuple 〈σG, f〉 where

– σG is the current valuation for Gp

– f ∈ F ∗
p is a sequence of frames for p (sequences are either empty (nil) or a con-

catenation h; t′ of a head h and a tail t′)

A frame f ∈ Fp for the program p is a tuple 〈m, nm, σLm〉 where

– m ∈ Mp is the current method.
– n ∈ Nm is the current program location.
– σLm is the current valuation for Lm

The operational semantics →⊆ S × S, gives an interpretation to the commands (More
details can be found in a technical report [14]), and →∗ is its reflexive transitive closure.
The execution of a program p starts in the initial state s0

p = 〈σ0
Gp

, f0
m0

p
〉 with f0

m0
p

the

initial frame for m0
p , and σ0

Gp
the input valuation for the global variables Gp. The initial

frame for a method m is f0
m = 〈m, n0

m, σd
Lm

〉.
A state s is reachable from a state s′ if and only if s →∗ s′. A state s is reachable in

a program pr (denoted as |= reach(pr, s)) if and only if s is reachable from the initial
state s0

pr of the program.

Theoretical Aspects of Compositional Symbolic Execution 253

4 Compositional Symbolic Execution

In this section, we model the essence of existing compositional symbolic execution al-
gorithms in order to formally study their precision and progress properties. Symbolic
execution [1] is a technique to explore the execution paths of a program under all possi-
ble inputs. Instead of using a concrete input, the execution of the program is started with
symbols representing arbitrary values. As a result, the values in the symbolic execution
state are symbolic expressions that depend on the input symbols. Symbolic interpreta-
tion lifts the interpretations of commands to symbolic states.

For each execution path, symbolic execution constructs a path condition, a constraint
in function of the input symbols that characterizes when an input follows that path.
At a branch with condition C, the result of concrete execution is statically unknown:
Either C is true and execution continues with the true-branch, or C is false and the
false-branch is taken. Therefore, symbolic execution splits the set of inputs in two new
sets: one where C is added to the path condition and one where the negation of C is
added to the path condition. To check reachability, i.e. whether there is an execution
that follows a path, a constraint solver checks satisfiability of the path condition. As a
result, symbolic execution explores a prefix of the (potentially infinite) execution tree of
the program. The resulting prefix is a partition of the global input space of the program.

The difference between compositional [11,12] and traditional symbolic execution is
in the treatment of method calls and returns. In traditional symbolic execution, a call
adds a new symbolic frame for the target method and continues execution until a return
command pops this frame. Therefore, when a method is called twice, a path through
the method is computed twice, even if it is guaranteed to follow the same path. Com-
positional symbolic execution explores the execution trees of each method in isolation.
This results in a partition for each method (also called the summary). When a call is
encountered, compositional symbolic execution uses the summary of the target method
to compute the effect on the symbolic state.

To show that compositional symbolic execution is a semi-decision procedure, it is
convenient to model the algorithm as a transition system a ⇒ a′ (and ⇒∗ its reflexive
transitive closure) which starts in an initial analysis state a0. Non-terminating runs of
the algorithm can be truncated after any number of transitions. In addition, the predicate
�a reach(p, s) denotes that the analysis concludes the reachability of the state s in the
program p in an analysis state a.

Such a transition system is precise if and only if the conclusion in any reachable
analysis state is sound3:

Definition 1 (Precision). For each program pr, concrete state s, and analysis state a
such that a0

pr ⇒∗ a, �a reach(pr, s) implies |= reach(pr, s).

Obviously, compositional symbolic execution is not complete4 in any reachable analysis
state and due to undecidability this is even impossible. However, the analysis incremen-
tally discovers more and more reachable states. This incremental nature is captured by
monotonicity:

3 Sound as a bugfinder, i.e. any state which is concluded reachable is truly reachable.
4 Complete as a bugfinder.

254 D. Vanoverberghe and F. Piessens

Definition 2 (Monotonicity). For each program pr, concrete state s, and analysis
states a, a′ such that a ⇒ a′, if �a reach(pr, s) then �a′

reach(pr, s).

For a monotonous analysis, progress is the next best thing with respect to completeness:
for any reachable concrete state, eventually there is an analysis state that concludes
reachability for that concrete state:

Definition 3 (Progress). For each program pr and each concrete state s, if
|= reach(pr, s) then for all analysis states a′ such that a0

pr ⇒∗ a′ there exists an
analysis state a such that a′ ⇒∗ a and �a reach(pr, s). In other words, for each reach-
able concrete state s, there always eventually is an analysis state that concludes s is
reachable.

When an analysis is precise, monotonous and progressing, it is a semi-decision
procedure.

4.1 Overview

The analysis state maintains a summary per method, which is a set of leaf nodes of the
current prefix of the execution tree of the method. A leaf node 〈stat, ν, pc〉 contains:

– A status stat, which is either unknown, finished or unreachable,
– A symbolic execution state ν,
– A path condition pc.

The path condition defines the inputs (i.e. the values of the global variables) that will
drive the execution of the method along this path. The symbolic execution state repre-
sents the state of execution after executing the path. The status indicates whether (a) the
path is a complete path through the method, i.e. the method returns after this path (fin-
ished status) (b) the path is unreachable (unreachable status) (c) further exploration of
continuations of this path are needed (unknown status). Symbolic execution states are
defined like concrete execution states, except that all valuations are symbol valuations
i.e. any variable has a symbolic expression instead of a concrete value.

The summaries only maintain per-method information. As we have shown in Sec-
tion 2, it is necessary to maintain some whole program information in order to be pre-
cise. In particular, it is important to precisely track reachable method invocations and
returns.

Initially, only the main method is reachable. As the analysis progresses, any call
that is discovered is stored in an invocation graph. This graph is represented as a set of
invocations, where each invocation is a tuple 〈ms, mt, ςG, pc〉. The methods ms and mt

are the source and target methods, and ςG and pc are the symbolic values of the global
variables and the path condition at the moment of the invocation. Reachability checking
will use the information in the call graph to decide whole-program reachability.

To support discovery of new returns efficiently, the return values of method calls
can be modeled using logic function symbols[12]. The symbolic execution of a call is
defined in terms of these function symbols. The interpretations of the function symbols
are constructed using the current summary. As the analysis progresses, they become
precise for more and more inputs. We discuss this in more detail in Section 4.2.

Theoretical Aspects of Compositional Symbolic Execution 255

In addition, the analysis tracks all reachable program states it has enumerated. For
this purpose, the analysis state contains a set of leaf nodes that succeeded the reach-
ability check for each method. Based on this information, reachability conclusion is
defined. If a leaf node 〈stat, ν, pc〉 is in the reachable set of the method m in a given
analysis state a, then any concretization of its symbolic state ν with global variables sat-
isfying pc is concluded reachable in m. A state s is concluded reachable in an analysis
state a (denoted �a reach(pr, s)) if and only if either

– s is concluded reachable in the entry method m0
pr in a or

– there is a state s′ such that �a reach(pr, s′) and s′ calls m and s is reachable in m.

Usually, one is only interested whether a point in a program is reachable (e.g. a location
n in a method m). Therefore, implementations often store reachable program points
instead of leaf nodes or avoid the reachability set completely by reporting an error when
reaching a distinguished error-location. However, reachability conclusion of arbitrary
states is essential for inductive invariants that enable the precision and progress proofs.

Finally, an analysis state can be defined as a tuple 〈sum, invs, rs〉 where

– sum is a function that maps each method m to a set of leaf nodes (its summary).
– invs is a set of invocations.
– rs is a function that maps each method to a set of reachable leaf nodes.

In the initial analysis state a0
p , the invocation graph and the sets of reachable leaf nodes

are empty. Each summary starts with a symbolic execution state at the entry of the
method, where the value of all global variables contains a new symbol.

The high level overview of one step of the compositional symbolic execution algo-
rithm is shown in Figure 4. During each step, the algorithm chooses a method m and
an leaf node ε ∈ suma(m) with unknown status. Then, the algorithm checks whether
there exists an input σ0

Gp
such that the execution enters the method m and the global

variables satisfy the path condition pcε of ε (Check(a, m, ε.pc)). If there is no such
input, the status of the ε is changed to unreachable. Otherwise, ε is added to the set
of reachable leaf nodes of m, and symbolic execution continues with the interpretation
(SyInt(a, m, ε)) of the symbolic state νε of ε. When symbolic interpretation finishes,
it returns a set of new equivalence leaf nodes, and the current leaf node ε is replaced by
the new leaf nodes (ReplaceLeaf). All method calls in this algorithm are guaranteed
to terminate, and therefore one step of the algorithm always terminates.

We now zoom in on some aspects of the algorithm that are of importance for preci-
sion and progress.

4.2 Symbolic Interpretation

In this section, we informally discuss the inference rules for symbolic interpretation
(SyInt). Full details are included in a technical report [14].

As pointed out in the previous section, the analysis uses uninterpreted function sym-
bols to support discovery of new returns as the analysis progresses. The algorithm mod-
els the effect of the method m on the global variable v as an uninterpreted function
symbol rvm,v . When a method m is called with global variables ςGp , then the function
application rvm,v(ςGp) models the value for the global variable v after executing m.

256 D. Vanoverberghe and F. Piessens

AnalysisState Step(AnalysisState a) {
(m, ε) = Choose(a);
if(Check(a, m, ε.pc)) {

a′ = AddReachable(a,m, ε);
(a′′, π) = SyInt(a′, m, ε);
return ReplaceLeaf(a′′, m, ε, π);

} else {
return MarkUnreach(a,m, ε);

}
}

Fig. 4. High level algorithm of symbolic execution

In addition, the method summaries are partial: there is no information about unex-
plored paths through a method. To deal with this, the algorithm models the set of global
variable valuations that follow a finished path as an uninterpreted predicate rcm.

During reachability checking, the algorithm computes the interpretation for the un-
interpreted symbols using the method summaries (Figure 5) and replaces them using
substitution.

interps(sum) =
⋃

m∈Mp
interp(m, {ε|ε ∈ sum(m), statε = fin})

interp(m,π) = rcm �→ interprc(m, π) ∪ (
⋃

v∈Gp
rvm,v �→ interprv(m, v, π))

interprc(m, π) =
∨

〈fin,ν,pc〉∈π pc

interprv(m, v, ∅) = D0(v)
interprv(m, v, 〈fin, ν, pc〉 ∪ π) = ite pc ςGν (v) interprv(m, v, π)

Fig. 5. Interpretation of uninterpreted function symbols

For precision, it is essential that the interpretation of the uninterpreted symbols is
precise: Whenever the return condition rcm(σGp) is true, the execution of the method
m starting with global variables σGp eventually reaches a return command, and each
global variable v must equal rvm,v(σGp).

The treatment of assignment and branches is similar to the treatment in non-com-
positional symbolic execution: For an assignment, symbolic interpretation performs the
same operation but on symbolic expressions instead of concrete values. For branches,
symbolic interpretation creates a new leaf node for each branch and conjoins the branch
condition or its negation to the path condition.

The rule call creates a new leaf node where the return condition is added to the path
condition, and the return values are used to update the global variables. As mentioned
in Section 2, some leaf nodes can become reachable by performing a call, and progress
requires that all such leaf nodes are reconsidered. The algorithm conservatively recon-
siders all unreachable leaf nodes of methods that are transitively reachable in the invo-
cation graph by marking them as unknown (using the function rec(a, m), defined more
precisely in Appendix). In practice, more intelligent re-evaluation strategies can take
the context into account in order to minimize the number of affected nodes, but this is
beyond the scope of the formal model.

Theoretical Aspects of Compositional Symbolic Execution 257

The return rule marks the unknown leaf node as finished, and thereby the interpre-
tations of the current method change. In addition, the return rule marks all unreachable
leaf nodes that depend on the return condition as unknown again (using the function
rer(a, m), also defined in Appendix). This is again essential to maintain progress.

For precision, the symbolic interpretation algorithm must maintain precision of the
leaf nodes, i.e. if an input is a member of a leaf node, then the execution starting with
that input eventually reaches the concretization of the symbolic state (the symbolic state
after replacing the input symbols with the concrete input). In addition, all invocations
〈ms, mt, ςG, pc〉 in the invocation graph must be precise: If an input satisfies the con-
dition pc, then the execution of ms starting with that input reaches a call to the method
mt and the global variables are the concretization of ςG.

For progress, it is essential that symbolic interpretation maintains totality of the sum-
maries. A reachable concrete state s is on the frontier if all predecessors in the execution
to s are concluded reachable, but s is not concluded reachable. The summaries are total
if any concrete state s on the frontier is a concretization of some unknown leaf node ε in
the summary of some method m. Informally, this is a kind of completeness guarantee
for symbolic interpretation. For any concrete state on the frontier, the analysis can make
the “right” choice. Totality implies that leaf nodes may not be marked unreachable if
Check succeeds in the current analysis state. For this reason, the call and return rules
need to reconsider some unreachable leaf nodes.

4.3 Reachability Checking

Finally, to check reachability (Check(a, m, pc)), the algorithm globalizes the path con-
dition pc based on the invocation graph inva, substitutes the symbols ς0

Gp
by their in-

terpretation interps(suma), and uses an SMT-solver to check the satisfiability of the
resulting constraints. The globalization globp(a, m, pc) globalizes the constraint pc in
the context of m using the invocation graph invsa and is defined inductively as follows:

– If m = m0
p then globp(a, m, pc) = pc

– If m �= m0
p then globp(a, m, pc) =∨

〈ms,m,ςG,pc′〉∈invsa
globp(a, ms, pc′ ∧ pc[

⋃
v∈Gp

ς0
Gp

(v) → ςGp(v)])

In the absence of recursion, the invocation graph is cycle free, and the inductive defini-
tion is well-founded.

For precision, it is important that Check(a, m, pc) only returns true when there is
a reachable state s where the execution enters m and the global variables satisfy pc
(precision of Check). This follows from precision of the leaf nodes, the precision of the
interpretations and the soundness of the SMT-solver as a satisfiability checker.

The contrary is not the case: If there is an execution that enters m where the global
variables satisfy pc, Check(a, m, pc) need not return true because this execution might
follow an unexplored path through some method. For progress, it is only necessary that
Check(a, m, pc) holds if the execution that enters m where the global variables satisfy
pc only uses concrete states that are concluded reachable (Restricted completeness).
This requires completeness of the SMT-solver as a satisfiability checker.

258 D. Vanoverberghe and F. Piessens

4.4 Implementation

To show that our framework captures the essence of compositional symbolic execution,
we have implemented one instantiation of the framework for the intermediate language
of the .NET platform [15]. For bytecode manipulation, we use the Mono.Cecil [16]
library and as constraint solver we use Z3 [17]. Our implementation achieves similar
speedups as other compositional symbolic execution tools [12,11].

5 Properties

In this section, we show that the algorithm of Section 4 is precise, and we show that it
is also progressing as long as the choices are fair. We only give a rough outline of the
proof, since a more detailed exposition does not fit in the page limits. More details can
be found in a technical report [14].

First, we show that compositional symbolic execution is precise.

Theorem 1 (Precision). The algorithm is precise.

Proof. To show precision, it suffices to show by induction over ⇒∗ that the following
properties are satisfied for each reachable analysis state a:

– Each leaf node ε of the summary suma(m) of each method m is precise.
– Each finished leaf node ε of the summary suma(m) of each method m is returning

from m.
– All invocations inv ∈ invsa are precise, and the invocation graph is cycle free.
– The interpretations are precise.
– Check(a, m, pc) is precise for each method m and condition pc.
– Each leaf node ε in rsa is precise, and Check(a, m, pcε) succeeds (where m is

active method of the symbolic state of ε).

Then, we show that compositional symbolic execution is monotonous.

Theorem 2 (Monotonicity). For each program pr, concrete state s, and analysis states
a, a′ such that a ⇒ a′, if �a reach(pr, s) then �a′

reach(pr, s).

Proof. Follows from the fact that (a) ⇒ never removes reachable leaf nodes (rsa ⊆
rsa′). (b) ⇒ never removes invocations (invsa ⊆ invsa′).

Since the search tree of the algorithm is potentially infinite, monotonicity is not suffi-
cient to find all reachable states: The algorithm might get stuck exploring only a sub-
space of the program. Fortunately, this can not happen if the analysis is fair, i.e. if each
unknown node is eventually chosen by the algorithm.

Definition 4 (Fairness). An application strategy of the compositional symbolic execu-
tion algorithm is fair if and only if for any analysis state a such that a0

pr ⇒∗ a, for any
unknown node ε ∈ suma(m) , the algorithm always eventually chooses 〈m, ε〉.
Next, the progress argument relies on the validity of the following properties in each
reachable analysis state a (which can again be proven by induction over ⇒∗):

Theoretical Aspects of Compositional Symbolic Execution 259

– The summaries suma are total.
– Check(a, m, pc) is restricted complete for any method m and constraint pc.

Finally, we show that compositional symbolic execution algorithm is progressing if it is
fair. The proof shows a slightly stronger property, namely that there always eventually
is an analysis state where all concrete states on the execution trace that reaches s are
concluded reachable. This is essential since it gives a stronger induction hypothesis:
we assume that all but the last concrete state s is concluded reachable and we show
that the analysis always eventually reaches an analysis state where s is also concluded
reachable. This hypothesis is necessary since a state might only be reachable from one
invocation that has not yet been discovered, whereas its predecessor is already reachable
based on another invocation. Together with totality of the summaries and restricted
completeness of reachability checking, this allows a compact and intuitive proof for
progress.

Theorem 3 (Progress). If the compositional symbolic execution algorithm is fair, then
it is progressing.

Proof. By induction on →∗.

Base step. If s is the initial state, then �a reach(pr, s) holds after applying the only
possible analysis step.

Induction step. If s0
pr →∗ s′ and s′ →∗ s and there always eventually is a reachable

analysis state a′ such that all concrete states from s0
pr to s′ are concluded reachable

in a′, then we must show that there always eventually is a reachable analysis state
a such that �a reach(pr, s). If �a′

reach(pr, s) already holds, then the proof is
trivial.
1. First, we show that there exists an unknown node ε ∈ suma′(m) such that

Check(a′, m, pcε) = true and s is a concretization of ε. This means that if
we choose 〈m, ε〉, then the state s will become reachable in the next analysis
state. This follows from the fact that the summaries are total, and restricted
completeness of check.

2. By fairness, there always eventually exists a reachable analysis state a′′ such
that 〈m, ε〉 has not been chosen yet, and is chosen in the next analysis step.
Since 〈m, ε〉 has not been chosen, it must still be in the summary of m (ε ∈
suma′′(m)). Because invocations are never removed (invsa ⊆ invsa′′), the
method Check is monotonous and Check(a′′, m, pcε) = true. Therefore, if
〈m, ε〉 is chosen in a′′ ⇒ a, then �a reach(pr, s).

6 Related Work

Compositional symbolic execution was first introduced in the context of SMART [11],
as an extension of the automatic testing tool DART [18]. The authors informally argue
that SMART is sound and complete (as a bugfinder) relatively to DART. In addition,
DART is always sound (precise) and it is complete when it terminates [18]. The preci-
sion proofs depends critically on the dynamic aspect of SMART and DART. This paper

260 D. Vanoverberghe and F. Piessens

only depends on the precision of the interpretation rules. When the interpretation rules
are imprecise in SMART or DART, it either causes incompleteness or non-termination.
In addition, the progress property is stronger than completeness upon termination.

With demand-driven compositional symbolic execution [12], the dependency on the
inner-most first search order of SMART is lifted. To achieve this, function summaries
are encoded in the SMT-solver. In addition, the algorithm allows the SMT solver to
construct inputs that follow unexplored paths through some methods. Such inputs may
not reach their actual target but they always explore some new part of the program. This
may be useful to alleviate the imperfectness of SMT solvers. We did not incorporate
this in our framework, but the results can easily be extended. The authors claim relative
completeness (as a bugfinder), and termination for programs with finite amounts of
paths. The progress property in this paper is less algorithm specific and therefore more
clear. In addition, it lifts the need for a termination argument. In the absence of fairness,
demand-driven compositional symbolic execution does not satisfy the stronger progress
property.

Finally, the system SMASH [13] combines the aspect of compositional analysis with
may-must alternation. SMASH significantly outperforms both may-only, must-only and
non-compositional may-must analysis. The analysis in this paper is a must analysis. As
part of the soundness argument, the authors show that the must analysis of SMASH
is precise. In addition, they show that the may analysis of SMASH is sound. Unfor-
tunately, the combination of a sound may analysis with a precise must analysis is not
necessarily a semi-decision procedure.

7 Conclusion

This paper creates a formal framework for compositional symbolic execution, based on
a small but powerful calculus. We have modeled compositional symbolic execution as
a transition system and formalized the meaning of precision and progress. In addition,
we have proven that the algorithm is precise, and makes progress if the choices are fair.
Finally, we have shown preliminary results of an implementation of the algorithm that
is precise and progressing, and hence is a semi-decision procedure.

References

1. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394 (1976)
2. Tillmann, N., de Halleux, J.: Pex-white box test generation for.net. In: Proc. of Tests and

Proofs 2008, pp. 134–153. Springer, Berlin (2008)
3. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: Exe: automatically gener-

ating inputs of death. In: Proc. of CCS 2006, pp. 322–335 (2006)
4. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In: NDSS. The

Internet Society, SanDiego (2008)
5. Nori, A.V., Rajamani, S.K., Tetali, S., Thakur, A.V.: The YOGI project: Software property

checking via static analysis and testing. In: Kowalewski, S., Philippou, A. (eds.) TACAS
2009. LNCS, vol. 5505, pp. 178–181. Springer, Heidelberg (2009)

6. Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., Barham, P.: Vigi-
lante: end-to-end containment of internet worms. SIGOPS Oper. Syst. Rev. 39(5), 133–147
(2005)

Theoretical Aspects of Compositional Symbolic Execution 261

7. Brumley, D., Hartwig, C., Kang, M.G., Liang, Z., Newsome, J., Poosankam, P., Song, D.:
BitScope: Automatically dissecting malicious binaries. Technical Report CS-07-133, School
of Computer Science, Carnegie Mellon University (March 2007)

8. Anand, S., Pasareanu, C.S., Visser, W.: JPF–SE: A symbolic execution extension to Java
Pathfinder. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 134–138.
Springer, Heidelberg (2007)

9. Molnar, D.A., Wagner, D.: Catchconv: Symbolic execution and run-time type inference
for integer conversion errors. Technical Report 2007-23, University of California Berkeley
(February 2007)

10. Person, S., Dwyer, M.B., Elbaum, S., Pǎsǎreanu, C.S.: Differential symbolic execution. In:
Proc. of SIGSOFT 2008/FSE-16 (2008)

11. Godefroid, P.: Compositional dynamic test generation. In: Proc. of POPL 2007, pp. 47–54
(2007)

12. Anand, S., Godefroid, P., Tillmann, N.: Demand-driven compositional symbolic execution.
In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 367–381.
Springer, Heidelberg (2008)

13. Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.D.: Compositional may-must program
analysis: unleashing the power of alternation. SIGPLAN Not. 45(1), 43–56 (2010)

14. Vanoverberghe, D., Piessens, F.: Precise and progressing compositional symbolic execution:
Extended version (2010),
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW582.abs.
html

15. European Computer Machinery Association: Standard ECMA-335: Common Language In-
frastructure. 4th edn. (June 2006)

16. Evain, J.: Cecil, http://www.mono-project.com/Cecil
17. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof,

J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008),
http://dx.doi.org/10.1007/978-3-540-78800-3_24

18. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing. SIGPLAN
Not. 40(6), 213–223 (2005)

http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW582.abs.html
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW582.abs.html
http://www.mono-project.com/Cecil
http://dx.doi.org/10.1007/978-3-540-78800-3_24

Testing Container Classes: Random or Systematic?

Rohan Sharma1, Milos Gligoric1, Andrea Arcuri2,
Gordon Fraser3, and Darko Marinov1

1 University of Illinois, Urbana, IL-61801, USA
{sharma27, gliga, marinov}@illinois.edu

2 Simula Research Laboratory, Lysaker-P.O. Box 134, Norway
arcuri@simula.no

3 Saarland University, Saarbruecken-66123, Germany
fraser@cs.uni-saarland.de

Abstract. Container classes such as lists, sets, or maps are elementary data struc-
tures common to many programming languages. Since they are a part of stan-
dard libraries, they are important to test, which led to research on advanced
testing techniques targeting such containers and research on comparing testing
techniques using such containers. However, these techniques have not been thor-
oughly compared to simpler techniques such as random testing. We present the
results of a larger case study in which we compare random testing with shape ab-
straction, a systematic technique that showed the best results in a previous study.
Our experiments show that random testing is about as effective as shape abstrac-
tion for testing these containers, which raises the question whether containers are
well suited as a benchmark for comparing advanced testing techniques.

1 Introduction

Automation of test generation is an important and still open issue, regularly leading to
new techniques and refinements of existing techniques. The empirical evidence on re-
search in this area often focuses on container classes [4, 5, 6, 7, 10, 12, 14, 17, 19, 22,
23, 26, 27, 29, 30, 31, 33, 34]—containers are an important part of many standard li-
braries, and bugs in these containers could significantly affect applications, so directing
testing efforts to these containers is worthwhile. Testing containers is not only impor-
tant but also challenging to achieve with some advanced testing technique such as those
based on symbolic execution [30].

Automating testing for containers is convenient because they usually do not inter-
act with the environment and can be tested without construction of complex input
data [21]. Any results achieved on containers for one language easily carry over to
other languages, as the data structures are generic and implemented for many different
languages. However, precisely these aspects of containers also mean that simple tech-
niques such as random testing could be able to achieve good results. Unfortunately, the
literature offers little evidence on how more advanced techniques compare to random
testing. In fact, excluding comparisons with search algorithms, we are aware of only one
study that compared random testing to systematic techniques, by Visser, Pasareanu, and
Pelanek [30]; we will refer to this study as the VPP study.

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 262–277, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Testing Container Classes: Random or Systematic? 263

The VPP study proposed several advanced techniques for test input generation for
Java container classes and compared these techniques against one another and with
random testing on four container classes. The comparison metrics were basic block
coverage and a simplified version of predicate coverage [11] that measures how many
combinations of program predicates are covered (which differs from the traditional con-
dition or MCDC coverages [3]). The results showed that among the advanced tech-
niques the best was shape abstraction (described in detail in Section 4.2). The results in
the VPP study also showed that shape abstraction was the same as random testing for
basic block coverage but even better than random testing for predicate coverage.

In this paper, we perform a larger set of experiments to compare random testing and
shape abstraction, which remains the best technique in systematic test generation for
containers. Our study substantially extends on VPP in several important aspects:

Number of containers: We use a total of 13 different container classes in our eval-
uation, four from VPP and nine more that were used previously in various other
studies [17, 25].

Types of containers: We consider containers implemented with both pointer-based,
linked structures and array-based structures, whereas VPP (and several other stud-
ies) used only containers implemented with pointer-based structures.

Metrics: We use mutation score [3], in addition to predicate coverage, for com-
parison of techniques. To the best of our knowledge, this is the first study
that relates predicate coverage and mutation scores. We also measure predi-
cate coverage more thoroughly than the VPP study which considered only a
few manually selected program points whereas we use a semi automated tool
to consider all branches. To make it easier for other researchers to experiment
with predicate coverage, we made our instrumented code publicly available at
http://mir.cs.illinois.edu/coverage.

Statistical Analysis: We perform a rigorous statistical analysis of the results, as op-
posed to VPP which had no statistical analysis.

Results: The experiments show that although random testing is much faster than shape
abstraction, random testing still achieved comparable predicate coverage and mu-
tation scores to those achieved by shape abstraction. Specifically, random testing
was better for four containers, shape abstraction was better for five containers, and
the results were inconclusive for four containers. In contrast, the VPP study found
shape abstraction better than or equal to random testing for all four containers con-
sidered. Our experiments also raise the concern that containers should not be used
as a de facto benchmark for comparing advanced testing techniques because ran-
dom testing can work very well for containers.

Bugs: While the goal of our study was to compare random testing and shape abstrac-
tion but not necessarily look for bugs, we still found three real bugs in two con-
tainers used in previous studies [17, 25]. All three bugs were found by random
testing, were missed by the advanced techniques used in previous studies, and were
confirmed by the original authors of the respective container code.

One relevant aspect in which our study evaluates less than the VPP study is that we
test only two basic methods/operations for each container (namely, add and remove),

http://mir.cs.illinois.edu/coverage

264 R. Sharma et al.

Table 1. Sample recent papers that use containers among subjects in the case studies

Authors Year Reference #Subjects #Containers %Containers

Tonella 2004 [27] 6 5 83%
Visser et al. 2004 [29] 1 1 100%
Xie et al. 2004 [33] 11 9 81%
Xie et al. 2005 [34] 7 7 100%
Visser et al. 2006 [30] 4 4 100%
Wappler and Wegener 2006 [31] 4 4 100%
d’Amorim et al. 2006 [14] 16 12 75%
Inkumsah and Xie 2008 [19] 13 10 77%
Arcuri and Yao 2008 [10] 7 7 100%
Andrews et al. 2008 [4] 2 1 50%
Arcuri 2009 [6] 1 1 100%
Ribeiro et al. 2009 [22] 2 2 100%
Ribeiro et al. 2010 [23] 2 2 100%
Baresi et al. 2010 [12] 15 9 60%
Arcuri 2010 [7] 6 6 100%
Andrews et al. 2010 [5] 34 34 100%
Staats and Pasareanu 2010 [26] 6 4 66%
Galeotti et al. 2010 [17] 6 6 100%

whereas the VPP study tested a larger number of methods/operations for two of their
four containers.

2 Related Work

A number of studies compared advanced techniques for test generation or test selec-
tion with random testing [14, 15, 16, 18, 32], but these studies did not provide conclu-
sive answers either way (sometimes random testing looked better and sometimes worse
than more advanced techniques), and they did not focus on containers. Several recent
techniques use random generation for object-oriented unit tests [1, 13, 21] but target
shallower exploration of larger codebases and can generate complex test data inputs,
while testing containers focuses on deeper exploration of smaller codebases and typ-
ically requires only simple data inputs. In this paper we focus on test generation for
containers.

While clearly not all testing studies use only containers for evaluation [21], contain-
ers are still widely used in many recent studies on testing. Table 1 shows a sample of 18
papers that either propose techniques specifically for testing containers or use containers
as subject code to evaluate new or existing testing techniques. As can be seen, containers
are a large percentage of subjects used for evaluations, even when the number of sub-
jects is not very high. Our evaluation uses 13 containers. While several of these studies
evaluate effectiveness of random testing in various scenarios [5, 6, 7, 10, 14, 30, 33],
only the VPP study [30] directly compares random testing and advanced systematic
techniques (not based on search). In terms of metrics used, branch coverage is the most

Testing Container Classes: Random or Systematic? 265

public class TreeSet {
int size;
TreeSetEntry root;

public TreeSet() { ... }
public boolean add(int aKey) { ... }
public boolean remove(int aKey) { ... }
...

}

class TreeSetEntry {
int key;
boolean color;
TreeSetEntry left;
TreeSetEntry right;
TreeSetEntry parent;

}
(a) Parts of the TreeSet class

public class TreeSetTest {
public void test1() { // length 1

TreeSet s = new TreeSet();
s.add(5);

}
public void test2() { // length 1

TreeSet s = new TreeSet();
s.remove(5);

}
public void test3() { // length 2

TreeSet s = new TreeSet();
s.add(5);
s.remove(21);

}
...

}
(b) Example tests for TreeSet

Fig. 1. This is a typical example of a container class, where testing focuses on a few selected
methods (add and remove in this case). A test case starts with the default constructor for the
container, which creates an empty instance. Then, on this container the add and remove methods
are repeatedly called. The length of the test case is the number of such calls.

represented. The only exceptions are predicate coverage used in the VPP study [30],
statement coverage [5], MCDC [26], and an unspecified “structural coverage” [22, 23].
We use not only predicate coverage, which subsumes branch coverage, but also mu-
tation score. Only a few of these studies use statistical analyses [5, 6, 7, 10]. We also
present a statistical analysis of our experimental results.

3 Example

We next describe an example that illustrates the problem of test generation for contain-
ers. Figure 1(a) shows partial code for the TreeSet container class that we obtained
from a previous study by Galeotti et al. [17]. This class implements a set of integer
values using red-black trees. Each TreeSet object has a number of nodes and a pointer
to the root node. Each TreeSetEntry node stores a value, a color (which can be red
or black), and pointers to the left and right children and a parent. The methods for the
TreeSet class include those to create the empty set, add an element to the set, and
remove an element from the set.

Figure 1(b) shows an example of automatically generated tests for the TreeSet

class. Each test creates an empty set and has a sequence of add and remove operations.
The tests are written in the JUnit format [2], but note that these tests have no assertions,
i.e., they do not assert that the methods should return certain values. The assumption in
this automated generation of test inputs is that outside oracles are used to validate the
execution; in the simplest case, one can use a generic oracle that requires each test to ter-
minate regularly, i.e., without throwing an uncaught exception. The goal of generation,
hence, is to produce tests that achieve high coverage for some testing criteria.

266 R. Sharma et al.

While the goal of our experiments was to compare the coverage obtained by random
testing and shape abstraction, we still found some bugs. For example, using random
testing, we found two bugs in the TreeSet code from [17]. These bugs resulted in
NullPointerExceptions. Note that they were missed by the advanced testing tech-
niques [17] because these techniques did not generate appropriate test inputs.

4 Test Generation for Container Classes

Our aim is to provide more empirical evidence on how random testing compares to
shape abstraction in the context of testing containers. To this extent, we generate test
suites with the goal to maximize predicate coverage, and also use mutation score for
comparison of techniques.

A test suite S consists of n test cases, S = {t1, . . . ,tn}. In general there are different
ways to represent and encode a test case. Because we focus on container classes, we
use a simple representation that is common in the literature (e.g., [30]): A test case is
a sequence of operations such as add and remove on a container instance created with
its default constructor. For the input data, we only consider integer values bounded in
[1,R], where R is a fixed constant. The length l(t) of a test case t is the number of
operations. We do not consider the default constructor in the length. For a test suite S,
we define its length as l(S) =

∑
t∈S l(t).

4.1 Random Testing

Random testing (RT) is a fast testing technique, in which test cases are simply sampled
at random from the input domain. Although RT is often considered a naive testing
strategy [20], it can be very effective in many testing scenarios [9, 15]. When the test
cases have a variable length representation, there can be different ways to sample test
cases at random [9]. However, in this paper we fix the length and number of test cases
in each sampled test suite.

Based on the problem definition from Section 4, we analyze the following strategy
to generate test suites S. First fix a number n of test cases for S and generate n test
cases t with a fixed length l(t) = k. The generated test suite S will have length l(S) =
n × l(t) = nk. In a random test case, each operation is uniformly chosen (i.e., add or
remove), and the input data is uniformly chosen in [1,R], where R is a constant.

Generating and running a small test suite of n test cases is quite fast for container
classes. When the goal is to maximize predicate coverage, an option would be to run
RT z times and then output the test suite with highest coverage out of the z runs. How
to choose z? This depends on the available testing budget (i.e., for how long a software
tester is willing to wait to obtain test data). We can consider two options: (1) run RT
for a predefined number of runs z, or (2) run RT several times and stop it after some
amount of time (e.g., one second). In practical contexts, option (2) would be preferable
and easier to apply. However, option (1) is easier to apply in empirical analyses, because
it does not have to deal with the actual execution time (e.g., side effects of implementa-
tion/code details, unpredictable delays due to other processes running in parallel, etc.).
In this paper, we use only option (1), although we still report indicative times to give a
better picture of the techniques’ performance.

Testing Container Classes: Random or Systematic? 267

1 // inputs: container C, length limit L, values bound R
2 void SA() {
3 Queue<MethodSequence> ToExplore = empty queue;
4 ToExplore.enqueue(empty sequence);
5 Set<AbstractState> Explored = empty set;
6 for (int i = 1; i <= L; i++) {
7 Queue<MethodSequence> NextToExplore = empty queue;
8 foreach (MethodSequence s: ToExplore) {
9 for (Operation op: {”add”, ”remove”, . . .}) {

10 int[] p = randomPermutationOfRange(1, R);
11 for (int v: p) {
12 MethodSequence s’ = append(s, op(v));
13 Container c = create empty C and execute sequence s’;
14 if (execution covered a new predicate combination)
15 print(s’); // a new test is generated
16 AbstractState a = abstract(c);
17 if (a �∈ Explored) {
18 Explored = Explored ∪ {a};
19 NextToExplore.enqueue(s’); } } }
20 }
21 ToExplore = NextToExplore; }
22 }

Fig. 2. Pseudo-code for shape abstraction (SA) exploration

Once we obtain a test suite of length nk, many method calls might be redundant.
Manually verifying the behavior of each operation (e.g., writing assert statements)
would likely be too tedious/difficult if no automated oracle is available. Therefore, an
approach to deal with this problem is to minimize the output test suite S generated by
RT, but with the constraint of maintaining the same coverage of the original test suite.
We use the following simple minimization algorithm [7]: Remove one method call at
a time and re-execute the test case; if the coverage decreases, then re-introduce that
method call in the test case. Given a total of nk method calls, this minimization algo-
rithm would require the execution of nk test cases. However, in cases in which we want
to make fair comparisons against other techniques, we might want the total length to be
at least m function calls. When we minimize a test suite, we can simply stop once the
size has reached m.

4.2 Shape Abstraction

The VPP study introduced (explicit execution with abstract matching based on) shape
abstraction (SA) as a technique for test generation of containers. Unlike RT that pro-
duces random sequences of method calls, SA attempts to find that certain sequences are
equivalent and hence need not be generated. The original exposition of SA [30] was
based on explicit-state model checking, and SA was one of six techniques in the same
general framework. We provide a new exposition that directly describes the exploration,
focuses solely on SA, and allowed us to obtain a faster implementation of SA without
relying on a model checker.

Figure 2 shows the pseudo-code for SA. It takes as input the container code with
operations (such as add and remove), the maximum length of sequences of the

268 R. Sharma et al.

operations, and the bounds for the values for those operations. It produces as the output
tests (i.e., method sequences) whose execution increases predicate coverage. SA per-
forms a breadth-first search (up to length L) with randomized choices of values (from
1 to R). Line 10 randomly permutes the values to be explored. SA maintains a queue
ToExplore of method sequences that still need to be explored and a set Explored of
abstract states that were already encountered.

The key novelty of SA was to compute abstract states using shape abstraction, i.e.,
ignoring the concrete values in the containers and taking into account only the shape in
which the container nodes are connected. For example, two red-black TreeSet objects
that have the same shape of nodes (i.e., the same underlying connection starting from
the root node and following the left and right pointers) would map into the same
abstract state even if they had different values in those nodes. As a concrete example,
consider two balanced trees that each have three nodes and the same red-black colors,
one tree with the values 2 in the root, 1 in the left child, and 3 in the right child, and the
other tree with the values 4 in the root, 2 in the left child, and 6 in the right child. SA
would map these two trees into the same abstract shape.

SA starts the exploration with a queue that has only the empty sequence and with
the empty set of abstract states. For each sequence s in the queue (line 8), it randomly
chooses an operation and value to apply (lines 9 and 10), extends the sequence to s′, ex-
ecutes this sequence1, prints the sequence if it covered some new predicate combination
(lines 14 and 15), and checks if the exploration encountered a new abstract state that
should be explored in the future (line 17). Notice that the sequence s′ is included in the
output test suite whenever its execution increases predicate coverage, even if s′ results
in an abstract shape that has been already explored and thus s′ will not be extended.

5 Case Study

5.1 Subject Containers

Table 2 shows some basic statistics for the 13 subject containers used in our study. For
each subject we list a brief identifier, the reference from which we directly obtained
the source code, the number of lines of code, the number of mutants generated by the
Javalanche mutation tool, and the parameter values for shape abstraction. While we ob-
tained the code directly from three studies [17, 25, 30], all the containers were used
previously in many other studies and were originally taken from various sources in-
cluding Java libraries, textbook implementations done by students, and open source.
We included some examples of different implementations of the same containers to see
if there are differences in the results.

5.2 Predicate Coverage

Following the VPP study [30], our experiments use a simplified version of the pred-
icate coverage testing criterion. The full predicate coverage, proposed by Ball [11],

1 The original exposition in VPP [30] assumed a stateful model checker whereas we present SA
based on re-execution of method sequences, which does not allow reusing a container from
the previous exploration as it may have been modified.

Testing Container Classes: Random or Systematic? 269

Table 2. Statistics of the subject containers used in our evaluation. For shape abstraction, we set
the same value for the length of sequence (L) and the bound for method values (R).

Container Id Reference LOC Mutants L = R

AvlTree C1 [17] 160 335 20
BinomialHeap C2 [30] 225 289 33
BinTree C3 [30] 94 126 13
FibHeap C4 [30] 245 285 13
FibonacciHeap C5 [25] 319 295 15
HeapArray C6 [25] 75 122 25
IntAVLTreeMap C7 [25] 160 199 20
IntRedBlackTree C8 [25] 228 279 22
LinkedList C9 [17] 176 335 3
NodeCachingLinkedList C10 [17] 172 159 6
SinglyLinkedList C11 [17] 76 167 5
TreeMap C12 [30] 404 651 21
TreeSet C13 [17] 248 360 22

is a strong criterion that measures how many combinations of all program predicates
are covered at all program points. The predicates are taken from conditional statements
and program assertions. For TreeSet, for example, the predicates include t == null,
aKey == t.key, t.left != null, and many others. Unlike the traditional branch,
condition, or MCDC coverages [3] that consider values of predicates only near where
they are used in the code, predicate coverage considers values of predicates at all pro-
gram points, including far from where they are used in the code. Predicate coverage re-
quires using proper variables in scope; for instance, the remove method has a variable
TreeSetEntry p, and predicate coverage would evaluate p.left != null (and all
other predicates) although there is no such condition in that method.

To make the measurement tractable, the VPP study used only some program
predicates, and we follow the same approach. However, unlike the VPP study that
evaluated predicate coverage at some manually selected branches, we use semi-
automated instrumentation to evaluate predicate coverage at all branches. Our in-
strumentation is not fully automatic as we manually select the variables for pred-
icates. Describing the predicates and variables we used would be hard, so to en-
able comparative studies, we made our instrumented code publicly available at
http://mir.cs.illinois.edu/coverage.

5.3 Mutation Analysis

Mutation analysis [3] is the process of systematically seeding syntactic changes into a
program to determine whether the test cases can detect the resulting semantic program
mutants. Undetected (“live”) mutants can guide the tester in improving a test suite,
while detected (“killed”) mutants are used to quantify the effectiveness of a test suite in
terms of its mutation score that is calculated as the ratio of killed mutants to all mutants.

With appropriate mutation operators, mutation analysis subsumes several traditional
coverage criteria such as branch coverage [3]. We are not aware of any study on

http://mir.cs.illinois.edu/coverage

270 R. Sharma et al.

relationship of mutation analysis and predicate coverage. But an important difference
to code coverage is that mutation analysis does not simply check whether some piece of
the code has been executed: To (strongly) kill a mutant means to propagate the infected
state to an observable output.

We consider output as follows. Given a test case that calls methods on an instance
of a container class, we record the state of the container after execution on the original
program, and compare it with the state of the container after execution on a mutant
program. If there are observable differences in the state, this mutant is considered killed
by the test case.

We have implemented this mechanism as an extension to the Javalanche [24] muta-
tion system: Each test case is instrumented automatically with additional instructions
that record and compare the state of a container at the end of a test case. To compare
states with each other, we simply use the toString method, which is commonly over-
ridden by the container classes. In addition, we make sure that all potential instance-
specific substrings (e.g., @ followed by a hexadecimal number) are removed from this
output to prevent false positives.

5.4 Experimental Design

For each of the 13 containers, we compare random testing (RT) against shape abstrac-
tion (SA). We first run SA, and as shown in Figure 2, it takes two parameters: L is the
length of method sequence, and R is the bound for method values. Following the VPP
study, we set L = R, and we choose the smallest value for L such that (1) the predicate
coverage remains constant across 10 different random seeds for L and (2) this predicate
coverage is the same for 10 seeds for L − 1. The values for L and R are shown in
Table 2. We then run the SA experiments for 100 seeds with these bounds.

We run RT as follows. We use 2,000 iterations. For each iteration, a test suite of size
n = 5 is generated, where each test case has length k = 200, so the total length of a
test suite is equal to 1,000. Integer inputs are randomly chosen in [1,R], where R = 20.
After these 2,000 iterations, the test suite with maximum predicate coverage is selected.
If several test suites have the same maximum coverage, one test suite is selected at
random. This test suite is then minimized, setting the lower bound m for its total length
to be the average (across 100 seeds) test suite length obtained with SA on the same
container class. (This is the reason why we run SA first.) With successful minimization,
this implies that the resulting test suite lengths will be, on average, about the same for
both RT and SA. (Note that, in theory, a minimization could even increase predicate
coverage while reducing the length of the test case/suite.) Because RT is affected by
chance, to obtain enough data to reach reliable conclusions, for each of the 13 containers
we ran RT for 100 seeds.

Notice that running RT for more than 2,000 iterations would likely lead to better
results because we select from all the iterations one test suite with the highest predicate
coverage. For example, we could run RT for the same amount of time that SA takes.
However, the problem with doing that would have been the fairness of the comparisons.
If two testing techniques (such as RT and SA) are run for the same amount of time,
then the worse quality (e.g., measured with predicate coverage) of one technique could
be just due to some inefficiencies in the technique’s implementation. If a technique has

Testing Container Classes: Random or Systematic? 271

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

Containers

A
ve

ra
ge

 P
re

di
ca

te
 C

ov
er

ag
e

%

70
80

90
10

0

RT
SA

Fig. 3. Average predicate coverage for both random testing (RT) and shape abstraction (SA)

better quality, to increase confidence in the validity of such results, the technique should
be also faster. On our machines, running RT for 2,000 iterations takes on average a few
seconds, whereas SA is roughly seven times slower. In other words, RT consumes less
computational resources, and thus its better quality (if any) would have strong validity.

5.5 Results for Predicate Coverage and Mutation Score

Figure 3 shows, for each container, the average predicate coverage divided by the max-
imum coverage obtained for that container. Specifically, for each container, we first cal-
culated the highest coverage M out of the 200 test suites (100 generated by RT and 100
generated by SA). Then, we divided by M the average predicate coverage for RT (100
test suites) and for SA (100 test suites). The reason for using M is twofold: (1) many
predicate combinations could be simply infeasible, and we cannot know how many are
feasible, and (2) the number of predicate combinations in various containers is very
different, and plotting them without normalizing the data would have led to graphs that
are difficult to compare.

Figure 4 presents the results for the mutation analysis, where the average number
of killed mutants is reported for each container and testing technique. In contrast to
the results for predicate coverage, we did not normalize the data for mutation score.
The low mutation score for containers (C1, C3, C4, C9, C10, C11) is partly due to our
test generation focusing only on the methods for add and remove operations, whereas
many mutants of these containers are also contained in other methods; likely, extending
test generation to include other methods would increase the mutation score. In addi-
tion, there is always a number of equivalent mutants which cannot be killed. Because
detecting equivalent mutants is an undecidable problem, we included these equivalent
mutants in the total number of mutants that was used to calculate the mutation scores.

To analyze these data by taking into account the random components of the tech-
niques, we followed a rigorous statistical procedure [8]. For both comparisons based on

272 R. Sharma et al.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

Containers

A
ve

ra
ge

 M
ut

at
io

n
S

co
re

 %

0
20

40
60

80
10

0
RT
SA

Fig. 4. Average mutation score for both random testing (RT) and shape abstraction (SA)

predicate coverage and based on mutation score, for each container, when we compare
RT against SA, we used a Mann-Whitney U-test to assess whether the effectiveness of
these two techniques is statistically different. The resulting p-values of these statistical
tests indicate the probability of Type I error, i.e., the probability of wrongly stating that
there is a difference in quality when actually there is no difference.

To assess the magnitude of the difference in a standardized way (i.e., the so called
effect size), we use the Vargha-Delaney Â12 statistic [28] to compare the quality of RT
against SA. In our context, this effect size is an estimate of the probability that a run of
RT would give better result than a run of SA. If there is no difference, then we would
expect Â12 = 0.5. On one hand, if we obtain Â12 = 1, this would mean that in all
the 100 runs of RT we obtained better results than in all the 100 runs of SA. On the
other hand, if Â12 = 0, then it would mean that SA was always better than RT. Table 3
reports the obtained p-values (for the Mann-Whitney U-test) and the Â12 measures (for
the Vargha-Delaney statistic).

5.6 Random Testing vs. Shape Abstraction

The experiments show that RT and SA are about equally effective for these 13 contain-
ers and the two metrics. For predicate coverage, Â12 > 0.5 for five cases, Â12 < 0.5
for six cases, and Â12 = 0.5 for two cases. For mutation score, Â12 > 0.5 for six cases,
and Â12 < 0.5 for seven cases. Considering the relative behavior of RT against SA, the
results for predicate coverage are largely similar to those for mutation score. However,
in three of the 13 cases the technique that gives higher predicate coverage does not also
give higher mutation score.

Consider first C1. For predicate coverage, the difference is very small (Â12 close
to 0.5), and the p-value is rather high, which we can interpret as RT and SA basically
behaving similarly. For mutation score, however, the difference is still small (Â12 close
to 0.5), but the p-value is rather low, which we can interpret as RT being better than SA
for mutation score and thus for C1 overall.

Testing Container Classes: Random or Systematic? 273

Table 3. Results of the statistical analysis. The last column shows if random testing is better (RT),
shape abstraction is better (SA), both are about equal (≈), or the results are inconclusive (<>).

Container Id P redicate Coverage M utation Score Better
p-value Â12 p-value Â12 Quality

AvlTree C1 0.512 0.487 0.059 0.564 RT
BinomialHeap C2 0.001 0.555 0.001 1.000 RT
BinTree C3 0.001 0.420 0.158 0.490 SA
FibHeap C4 0.001 1.000 0.001 0.191 <>
FibonacciHeap C5 0.001 1.000 0.001 0.005 <>
HeapArray C6 0.013 0.530 0.001 0.821 RT
IntAVLTreeMap C7 0.001 0.279 0.006 0.388 SA
IntRedBlackTree C8 0.001 0.064 0.001 0.086 SA
LinkedList C9 1.000 0.500 0.514 0.524 ≈
NodeCachingLinkedList C10 0.000 0.785 0.001 0.937 RT
SinglyLinkedList C11 1.000 0.500 0.322 0.505 ≈
TreeMap C12 0.001 0.144 0.001 0.069 SA
TreeSet C13 0.001 0.076 0.001 0.052 SA

Consider then C4 and C5. They are particularly interesting as RT is always better
than SA for predicate coverage, but quite the opposite holds for mutation score. On
average, SA achieves 1.38% and 6.24% higher mutation scores for C4 and C5, respec-
tively. Looking at the difference in the sets of mutants killed by SA and RT for these
two containers revealed that every single mutant killed by a SA test suite was also killed
by at least one of the RT suites. This indicates that RT has a greater variance in mutation
score even if it is relatively stable for predicate coverage, which is not surprising as our
RT minimization focuses on predicate coverage and not all mutants are directly related
to predicates.

Note that C4 and C5 are one example of different implementations of the same data
structure. Recall that we intentionally included such implementations among our sub-
jects to evaluate whether the differences between RT and SA depend on the details of
the implementations. We find that they largely do not. For example, C4 and C5 behave
the same way: RT is better for predicate coverage and SA for mutation coverage. All
of C8, C12, and C13 are based on red-black trees, and for all three SA is better than
RT (for both predicate coverage and mutation score). C9 and C11 are very similar list
implementations, and RT and SA are approximately the same for both. In contrast, C10
is a more complex list implementation, and we find that RT is better than SA (which is
consistent with the differences seen for C9 and C11, although those differences are too
small to conclude that RT is better). Interestingly, for C1 and C7, which are both based
on AVL balanced trees, RT is better than SA for C1, but SA is better than RT for C7.

Recall also that our subjects include not only pointer-based, linked structures (as in
the VPP study) but also a container implemented with an array-based structure, namely
C6. The results for C6 show that RT is clearly better than SA for this case, but we cannot
generalize to all array-based structures.

To summarize, in the context of our study, we cannot identify a superiority of one of
the two testing techniques with respect to either predicate coverage or mutation score.

274 R. Sharma et al.

However, there is indication that SA performs better for tree-like structures that require
complex shapes for coverage (C3, C7, C8, C12, C13), whereas RT performs better for
structures that require longer sequences for coverage (C1, C2, C6, C10).

5.7 Bugs

While the goal of our study was to compare RT and SA but not necessarily look for
bugs, we still found three real bugs in two containers used in previous studies [17, 25].
Specifically, we found two bugs in the TreeSet code from TACO [17] and one bug
in the HeapArray code from one of our previous studies [25]. The first two bugs led
to NullPointerExpections, while the third bug led to an infinite loop. We found
all three bugs using RT, and all three bugs were missed by the advanced techniques
used in previous studies because those techniques focused on more thorough testing
with shorter tests and failed to generate longer tests necessary to reveal these bugs. We
reported all three bugs to the original authors of the respective container code, and the
authors confirmed them as real bugs and corrected them. The first two bugs were due to
a copy-paste mistake, and the third bug was an error of omission.

We also found three bugs that we introduced by mistake in the testing infrastructure
that exercised the container code. Specifically, we found one bug in FibHeap that re-
sulted in an infinite loop because the test driver was removing a node that did not exist
in the structure, and two bugs in AvlTree that resulted in NullPointerExpections
because our semi-automated instrumentation for measuring predicate coverage changed
the original code. We corrected all these bugs, and all our experiments reported above
were run with the corrected code.

6 Threats to Validity

Threats to internal validity might come from how the empirical study was carried out.
To reduce the probability of having faults in our testing tools, we tested them and in-
spected surprising results. Furthermore, randomized algorithms are affected by chance.
To cope with this problem, we ran each experiment 100 times, and we followed rigorous
statistical procedures to evaluate their results.

Threats to construct validity are on how the quality of a testing technique is defined.
We measured not only predicate coverage but also mutation score.

Threats to external validity regard the generalization to other types of software,
which is common for any empirical analysis. However, in this paper we specifically
target container classes and the implementation instances that are commonly used as a
benchmark in the literature. The fact that random testing is very efficient in generating
effective test cases for container classes will likely not hold for many other types of
software. Note that shape abstraction does not apply to all types of software.

7 Conclusion

Containers are important and challenging to test, and many advanced testing techniques
were developed for containers. However, there has not been much comparison of these

Testing Container Classes: Random or Systematic? 275

advanced testing techniques with simpler techniques such as random testing. We pre-
sented a larger case study that compared random testing with shape abstraction, a state-
of-the-art systematic technique. Our experiments showed that random testing achieves
comparable results as shape abstraction, but random testing uses much less computation
resources than shape abstraction. We hope that our results provide motivation for future
testing studies to (1) compare newly proposed advanced techniques to random testing
and/or (2) evaluate newly proposed advanced techniques not (only) on containers but
(also) on other code where random testing does not perform well.

Acknowledgments. We thank Marcelo Frias, Juan Pablo Galeotti, Corina Pasareanu,
and Willem Visser for providing clarifications about their studies and code used in their
experiments. We also thank David Schuler and Andreas Zeller for help with Javalanche.
Andrea Arcuri is funded by the Norwegian Research Council. Gordon Fraser is funded
by the Cluster of Excellence on Multimodal Computing and Interaction at Saarland
University, Germany. This material is based upon work partially supported by the US
National Science Foundation under Grant No. CCF-0746856.

References

1. Jtest, http://www.parasoft.com/jsp/products/jtest.jsp
2. JUnit, http://junit.sourceforge.net/
3. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University Press, Cam-

bridge (2008)
4. Andrews, J.H., Groce, A., Weston, M., Xu, R.G.: Random test run length and effectiveness.

In: International Conference on Automated Software Engineering (ASE), pp. 19–28 (2008)
5. Andrews, J.H., Menzies, T., Li, F.C.: Genetic algorithms for randomized unit testing. IEEE

Transactions on Software Engineering (TSE) 99 (2010) (preprints)
6. Arcuri, A.: Insight knowledge in search based software testing. In: Genetic and Evolutionary

Computation Conference (GECCO), pp. 1649–1656 (2009)
7. Arcuri, A.: Longer is better: On the role of test sequence length in software testing. In:

International Conference on Software Testing, Verification and Validation (ICST), pp. 469–
478 (2010)

8. Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess randomized algo-
rithms in software engineering. In: International Conference on Software Engineering, ICSE
(to appear, 2011)

9. Arcuri, A., Iqbal, M.Z., Briand, L.: Formal analysis of the effectiveness and predictability
of random testing. In: International Symposium on Software Testing and Analysis (ISSTA),
pp. 219–229 (2010)

10. Arcuri, A., Yao, X.: Search based software testing of object-oriented containers. Information
Sciences 178(15), 3075–3095 (2008)

11. Ball, T.: A theory of predicate-complete test coverage and generation. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2004. LNCS, vol. 3657, pp.
1–22. Springer, Heidelberg (2005)

12. Baresi, L., Lanzi, P.L., Miraz, M.: TestFul: An evolutionary test approach for Java. In: Inter-
national Conference on Software Testing, Verification and Validation (ICST), pp. 185–194
(2010)

http://www.parasoft.com/jsp/products/jtest.jsp
http://junit.sourceforge.net/

276 R. Sharma et al.

13. Csallner, C., Smaragdakis, Y., Xie, T.: DSD-Crasher: A hybrid analysis tool for bug finding.
ACM Transactions on Software Engineering and Methodology (TOSEM) 17(8) (2008)

14. d’Amorim, M., Pacheco, C., Xie, T., Marinov, D., Ernst, M.D.: An empirical comparison
of automated generation and classification techniques for object-oriented unit testing. In:
International Conference on Automated Software Engineering (ASE), pp. 59–68 (2006)

15. Duran, J.W., Ntafos, S.C.: An evaluation of random testing. IEEE Transactions on Software
Engineering (TSE) 10(4), 438–444 (1984)

16. Frankl, P.G., Weiss, S.N.: An experimental comparison of the effectiveness of branch testing
and data flow testing. IEEE Transactions on Software Engineering (TSE) 19(8), 774–787
(1993)

17. Galeotti, J., Rosner, N., López Pombo, C., Frias, M.: Analysis of invariants for efficient
bounded verification. In: International Symposium on Software Testing and Analysis (IS-
STA), pp. 25–36 (2010)

18. Hamlet, D., Taylor, R.: Partition testing does not inspire confidence. IEEE Transactions on
Software Engineering (TSE) 16(12), 1402–1411 (1990)

19. Inkumsah, K., Xie, T.: Improving structural testing of object-oriented programs via integrat-
ing evolutionary testing and symbolic execution. In: International Conference on Automated
Software Engineering (ASE), pp. 297–306 (2008)

20. Myers, G.: The Art of Software Testing. Wiley, New York (1979)
21. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test generation.

In: International Conference on Software Engineering (ICSE), pp. 75–84 (2007)
22. Ribeiro, J.C.B., Zenha-Rela, M.A., de Vega, F.F.: Test case evaluation and input domain

reduction strategies for the evolutionary testing of object-oriented software. Information and
Software Technology 51(11), 1534–1548 (2009)

23. Ribeiro, J.C.B., Zenha-Rela, M.A., de Vega, F.F.: Enabling object reuse on genetic
programming-based approaches to object-oriented evolutionary testing. In: Esparcia-
Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS,
vol. 6021, pp. 220–231. Springer, Heidelberg (2010)

24. Schuler, D., Zeller, A.: Javalanche: Efficient mutation testing for Java. In: Symposium on
The Foundations of Software Engineering (FSE), pp. 297–298 (2009)

25. Sharma, R., Gligoric, M., Jagannath, V., Marinov, D.: A comparison of constraint-based and
sequence-based generation of complex input data structures. In: Workshop on Constraints in
Software Testing, Verification and Analysis (CSTVA 2010), pp. 337–342 (2010)

26. Staats, M., Pasareanu, C.: Parallel symbolic execution for structural test generation. In: In-
ternational Symposium on Software Testing and Analysis (ISSTA), pp. 183–194 (2010)

27. Tonella, P.: Evolutionary testing of classes. In: International Symposium on Software Testing
and Analysis (ISSTA), pp. 119–128 (2004)

28. Vargha, A., Delaney, H.D.: A critique and improvement of the CL common language effect
size statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics 25(2),
101–132 (2000)

29. Visser, W., Pasareanu, C.S., Khurshid, S.: Test input generation with Java PathFinder. In:
International Symposium on Software Testing and Analysis (ISSTA), pp. 97–107 (2004)

30. Visser, W., Pasareanu, C.S., Pelànek, R.: Test input generation for Java containers using
state matching. In: International Symposium on Software Testing and Analysis (ISSTA), pp.
37–48 (2006)

31. Wappler, S., Wegener, J.: Evolutionary unit testing of object-oriented software using
strongly-typed genetic programming. In: Genetic and Evolutionary Computation Confer-
ence (GECCO), pp. 1925–1932 (2006)

Testing Container Classes: Random or Systematic? 277

32. Weyuker, E.J., Jeng, B.: Analyzing partition testing strategies. IEEE Transactions on Soft-
ware Engineering (TSE) 17(7), 703–711 (1991)

33. Xie, T., Marinov, D., Notkin, D.: Rostra: A framework for detecting redundant object-
oriented unit tests. In: International Conference on Automated Software Engineering (ASE),
pp. 196–205 (2004)

34. Xie, T., Marinov, D., Schulte, W., Notkin, D.: Symstra: A framework for generating object-
oriented unit tests using symbolic execution. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS
2005. LNCS, vol. 3440, pp. 365–381. Springer, Heidelberg (2005)

Seamless Testing for Models and Code�

Andreas Holzer1, Visar Januzaj2, Stefan Kugele3, Boris Langer4,
Christian Schallhart5, Michael Tautschnig1, and Helmut Veith1

1 Vienna University of Technology, Austria
{holzer, tautschnig, veith}@forsyte.at

2 TU Darmstadt, Germany
januzaj@forsyte.de

3 TU München, Germany
kugele@in.tum.de

4 Diehl Aerospace GmbH, Germany
boris.langer@diehl-aerospace.de

5 Oxford University Computing Laboratory, UK
christian.schallhart@comlab.ox.ac.uk

Abstract. This paper describes an approach to model-based testing
where a test suite is generated from a model and automatically con-
cretized to drive an implementation. Motivated by an industrial project
involving DO-178B compliant avionics software, where the models are
UML activity diagrams and the implementation is ANSI C, we devel-
oped a seamless testing environment based on our test specification lan-
guage FQL. We demonstrate how to apply FQL to activity diagrams
in such a way that FQL test specifications easily translate from UML
to C code. Our approach does not require any additional glue or auxil-
iary code but is fully automatic except for straightforward source code
annotations that link source and model. In this way, we can check for
modeled but unimplemented behavior and vice versa, and we can also
evaluate the degree of abstraction between model and implementation.

1 Introduction

In most industries, testing is the predominant approach to check the correctness
of a system under development. The main challenge in testing is to establish
an efficient procedure for the selection of useful test cases. Manual testing, ap-
propriately done, requires both expertise and significant effort, and is therefore
often either too imprecise or too expensive. Test automation, on the other hand,
needs to incorporate domain knowledge to guide the selection of test cases. We
are therefore seeing a long term trend towards model-based testing techniques
where engineers provide models from which the test cases are derived.
� Supported by BMWI grant 20H0804B in the frame of LuFo IV-2 project INTECO,

by DFG grant FORTAS - Formal Timing Analysis Suite for Real Time Programs
(VE 455/1-1), and by the European Research Council under the European Com-
munity’s Seventh Framework Programme (FP7/2007–2013) / ERC grant agreement
no. 246858.

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 278–293, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Seamless Testing for Models and Code 279

The usefulness of a set of test cases, a test suite, is naturally correlated to
its impact on the system requirements. Thus, development guidelines such as
DO-178B [1] insist that the test suite has to cover all system requirements.
Model-based testing therefore needs formalisms which allow us to translate in-
formal textual requirements into models. The modeling language typically in-
volves UML-style automata concepts for control-centric software, or pre- and
postcondition descriptions for data-centric computations. While the translation
of requirements into models is done by a human, the subsequent steps lend
themselves to automation. In particular, the translation of requirements into
models enables us to formalize and operationalize the hitherto informal notion
of “requirement coverage”: Coverage can be measured relative to model entities,
e.g., as coverage of model states. Requirement coverage is thus becoming an
algorithmic question.

Requirements

Modeling

Model

Test Generation

Abstract Test Suite

Test Concretization

Concrete Test Suite

Test Evaluation

Test Results

Sy
st

em
U

nd
er

T
es

t

Fig. 1. Model-based testing process

In a typical model-based testing tool
chain, abstract test cases are generated
at model level, and then concretized
and evaluated on the system under test
(SUT). The concretization step – i.e., the
translation of abstract test cases to con-
crete ones – is the most difficult one, as
it requires formal models that carry suffi-
cient semantic information for a seamless
translation on the one hand, and a suit-
able testing mechanism for the system un-
der test on the other hand. This mecha-
nism will typically either adapt the SUT
to the model level by providing a match-
ing high-level API or by employing test
scripts that drive the SUT; it may also
combine both methods. In the evaluation
step, the achieved source code coverage
is observed and failures in the program
behavior are checked for. Figure 1 summarizes this basic model-based testing
work flow.

Despite its success in both academia and industrial practice, model-based
testing has not realized its full potential yet:

– Requirement coverage on the model is often lacking a precise definition, and
only implicitly defined by existing tool chains. Most available tool chains
only support specific hard-coded coverage criteria, such as node or transi-
tion coverage. We need a more flexible requirement specification formalism
along with tool support to help the test engineer develop the test suite in-
crementally, to tailor test specifications for relevant goals and to deal with
incomplete implementations and/or evolving requirements.

– Test concretization is typically based on manually crafted test scripts. Besides
being error-prone, inflexible, and expensive, the manually crafted adaption

280 A. Holzer et al.

code may introduce hard-to-detect errors and jeopardizes the formal trace-
ability of requirements.

In this paper, we describe a seamless framework for model-based testing which
addresses these issues:

(a) Versatile Coverage Specifications. In Section 2, we demonstrate on the exam-
ple of UML activity diagrams that our test specification language FQL [2]
(which was previously used for ANSI C source code) is a versatile, simple,
and precise formalism to specify model-level coverage criteria.

(b) Automated Test Generation. In Section 3.1, we show how to use our test input
generator FShell [3,4] to automatically compute model-level test cases in
accordance with the coverage specifications.

(c) Automated Test Concretization. In Section 3.2, we use the model-level test
cases as patterns for concrete test cases. Driven by these patterns, FShell

automatically computes test inputs for the implementation. Thus, we replace
hand-written test scripts by a highly automated seamless procedure.

(d) Improved Traceability. Our concretization mechanism is tied to a traceabil-
ity relation between models and implementation which is based on simple
(but necessarily manual) FQL-based annotations. Section 3.3 shows how to
compute model/implementation inconsistencies using this relation.

(e) Applicability in DO-178B Processes. We study the applicability of our testing
approach to DO-178B compatible system development processes in Section 4.

We developed a plug-in for TOPCASED [5] that implements our methodology
for models given as activity diagrams and systems under test written in ANSI C.

2 Seamless Test Specifications in FQL

We first review the concepts of FQL, a coverage specification language origi-
nally designed for coverage criteria in imperative programming languages such
as ANSI C. For a detailed and complete description of FQL cf. [2]. In Section 2.2
we adapt FQL to support model-based testing and exemplify this step on UML
activity diagrams.

2.1 FQL in a Nutshell

In FQL, programs are represented by control flow automata (CFA) [6], which
are essentially control flow graphs, bearing the statement labels on their edges
instead of their nodes. Figure 2 shows an ANSI C function that returns the
maximum value of two given parameters, and below, its CFA. A condition, e.g.,
x >= y at Line 4, is modeled by two edges, one for each evaluation of the condi-
tion: Edge (4, 5) assumes that x >= y holds whereas edge (4, 7) assumes x < y.
The nodes, edges, and paths in a CFA form the potential test targets, e.g., if we
want a test suite that covers all statements, we need to reach each CFA node
via some test input, while for condition coverage, we need to reach each edge
representing the outcome of a condition (edges (4, 5) and (4, 7) in our example).

Seamless Testing for Models and Code 281

1 int max(int x, int y) {
2 int tmp;

4 if (x >= y)
5 tmp = x;
6 else
7 L: tmp = y;

9 return tmp;
10 }

1

4

5 7

9

10

int x, y, tmp

[x >= y] [x < y]

tmp := x L: tmp := y

return tmp

Fig. 2. Sample C function
and corresponding CFA

To specify test targets in FQL, we use filter
functions. Each filter function calculates a sub-
graph of a given CFA, e.g., the filter function ID

computes the identity function. There are also fil-
ter functions referring to code structures needed
by standard coverage criteria, such as basic block
coverage or condition coverage: @BASICBLOCKENTRY
yields all basic block entries and @CONDITIONEDGE

yields all evaluations of conditions. In the example
above, ID yields the CFA itself, @BASICBLOCKENTRY
yields the subgraph containing all nodes of the
CFA and the CFA edges (1, 4), (5, 9), (7, 9), and
(9, 10), whereas @CONDITIONEDGE yields the sub-
graph containing the nodes 4, 5, and 7 and the
CFA edges (4, 5) and (4, 7). The filter function
@LABEL(L) refers to the CFA edge that represents
the source code annotated with code label L, e.g.,
CFA edge (7, 9) in the example above. We can
also refer to the entry and exit edges of the func-
tion max, i.e., the edges (1, 4) and (9, 10), respec-
tively, by using the expressions @ENTRY(max) and
@EXIT(max), respectively. Filter functions encapsu-
late the programming language dependent part of
FQL; all further aspects, as described below, are
independent of the programming language.

Using the operators NODES, EDGES, and PATHS, we select the nodes, edges, or
paths in the subgraph identified by filter functions. For example, NODES(ID) refers
to the CFA nodes 1, 4, 5, 7, 9, and 10, and the expression EDGES(@LABEL(L)) refers
to the singleton set containing the CFA edge (7, 9). The operator PATHS(F, k)

takes a filter function F and a positive integer bound k as parameters and yields
the set of paths in the subgraph identified by F which pass no CFA edge more
than k times. In the example above, PATHS(ID, 1) denotes the two sequences
〈(1, 4), (4, 5), (5, 9), (9, 10)〉 and 〈(1, 4), (4, 7), (7, 9), (9, 10)〉.

To build patterns from these node, edge, and path sets, we recombine these
sets into patterns with the standard regular expression operators, i.e., ‘.’, ‘+’, and
‘*’, denoting concatenation, alternative, and the Kleene star. In the following we
refer to these patterns as path patterns. For example, let Q denote the expression
EDGES(ID)*.EDGES(@CONDITIONEDGE).EDGES(ID)*, then, evaluated on the CFA in
Figure 2, Q specifies the paths that enter a condition edge after finitely many
CFA edges, i.e., either edge (4, 5) or (4, 7), and, finally, reach the program exit
after finitely many further steps. Since EDGES is used in most cases, FQL allows
to omit it, i.e., the pattern above can be abbreviated as ID*.@CONDITIONEDGE.ID*.
Moreover, the sets constructed with NODES, EDGES, and PATHS may be further qual-
ified with predicates, e.g., the path pattern ID*.{x > 10}.@LABEL(L).ID* requires
that code label L is reached at least once when variable x is greater than 10.

282 A. Holzer et al.

Due to the Kleene star operator in the example expression Q, its language con-
tains infinitely many words, given as finite sequence of predicates, CFA nodes,
and CFA edges (here, we consider a path as a sequence of edges). However, when
testing, we need a finite set of test targets, and therefore, FQL distinguishes be-
tween path patterns and coverage patterns: Both are regular expressions built
from predicates, the operators NODES, EDGES, PATHS, and the concatenation and
alternative operators ‘.’ and ‘+’. However, only path patterns are allowed to
use the Kleene star ‘*’, while coverage patterns are allowed to encapsulate path
patterns. Such path patterns are stated in quotes and match an execution frag-
ment that satisfies one of the words in the language of the path pattern. For
example, in contrast to the infinite language of Q, the language of the cov-
erage pattern "EDGES(ID)*".EDGES(@CONDITIONEDGE)."EDGES(ID)*" contains only
two words: One that requests a program execution that passes after finitely
many steps the edge (4, 5) and proceeds with finitely many further steps to the
program exit, as well as the analogous word with edge (4, 7) instead of (4, 5).

An FQL query has the general form cover C passing P , where C is a cover-
age pattern and P is a path pattern. It requires a test suite which (i) contains for
each word in C at least one matching test case, and (ii), contains only test cases
matched by P . For example, to achieve condition coverage with the constraint
that each test case reaches code label L while x > 10 holds, we use the query

cover "ID*".@CONDITIONEDGE."ID*" passing ID*.{x > 10}.@LABEL(L).ID*
The passing clause is optional and defaults to passing ID* upon omission.

2.2 FQL for UML Models

select first
element

print
element

select next
element

[list is not empty]

[element is null]

[element is
not null]

Fig. 3. Model M: Printing a list

The graphical representation of transition-
based UML modeling formalisms like UML
activity diagrams or UML state machines [7]
lend themselves to an interpretation as con-
trol flow automata. Since these diagrams use
a different semantics for their nodes and edges
than FQL for its CFA, we have to define new
filter functions. As stated above, filter func-
tions are the interface of FQL to different pro-
gramming and modeling formalisms, hence,
apart from filter functions, the definitions of
path and coverage patterns remain unchanged. Using UML activity diagrams,
we exemplify the application of FQL to UML models: Figure 3 shows an exam-
ple diagram M, where the behaviors of the action nodes and guards are given
informally, i.e., as plain text. The diagram describes the printing functionality
for elements of a linked list. Guarded by the assertion that the input list is not
empty, the head of the list is selected and printed, then its successor is processed,
and so forth, until every element of the list has been printed. M contains all node
types currently supported by our TOPCASED plug-in: Action (), decision
and merge (), initial (), and activity final nodes ().

Seamless Testing for Models and Code 283

Table 1. Coverage criteria for model-based testing stated as FQL queries

Coverage Criterion FQL Query

All-states Coverage "ID*".NODES(ID)."ID*"

All-transitions Coverage "ID*".ID."ID*"

All-transition-pairs Coverage "ID*".ID.ID."ID*"

We consider an activity diagram as a finite automaton whose transitions can
be labeled with guards and whose activity nodes are labeled with operations de-
scribing the behavior of the node. Guards and operations can be plain text, as in
the example, or be formal with an exact semantics like UML OCL expressions.
The operation of a call-behavior node is given as an associated subdiagram. The
semantics of the operators NODES, EDGES, and PATHS does not change and, there-
fore, we can express standard coverage criteria for model-based testing immedi-
ately as FQL specifications. Table 1 gives FQL queries for all-states coverage,
all-transitions coverage, and all-transition-pairs coverage (cf. [8]). The simplest
criterion, all-states coverage, requires every node in the model to be covered by
a test case. All-transitions coverage requests a test suite that covers every tran-
sition in the model. Finally, all-transition-pairs coverage requires a test case for
each pair of consecutive transitions in the model. Besides standard coverage cri-
teria, we are also able to express coverage criteria specific to the model for which
we want to generate tests. This enables us, e.g., to prioritize test generation with
respect to most critical features of the system being developed. Furthermore, the
test designer can specify semantic information present in the model as text only,
in the FQL query. For example, the query

cover "ID*".ID."ID*" passing ID*.NODES(@ACTION(print element)).ID*

requires transition coverage for the model in Figure 3 where the action print
element is reached at least once encoding the informally specified constraint
that only nonempty lists are possible as inputs.

Transitions in an activity diagram are always labeled with a guard (defaulting
to true, if blank). For simple conditions, i.e., no Boolean combinations of predi-
cates, we consider the guarded transition as a CFA edge labeled with an assume
statement as introduced in Section 2.1. More complex guards, however, result in
condition graphs which contain nodes and edges for all involved primitive con-
ditions. For example, an expression PATHS(@GUARDS, 1) denotes all paths in the
condition graphs resulting from guards. Note, as UML OCL constraints do not
contain loops, the bound 1 is sufficient to refer to all possible paths inside the con-
dition graph resulting from such a guard. So, to specify a test suite that simulta-
neously achieves path coverage for all guard conditions and covers all nodes in the
activity diagram, we state the FQL query cover "ID*".(NODES(@ACTIVITYNODES)

+ PATHS(@GUARDS, 1))."ID*". Thus, we are able to refer to elements of the graph-
ical representation of an activity diagram as well as to structural elements of the
guards within the same formalism, i.e., an FQL query. In Section 3.1, we show
how we generate test cases for FQL specifications stated on activity diagrams.

284 A. Holzer et al.

3 Test Process

We present our test process following its steps test generation (Section 3.1),
test concretization (Section 3.2), and test evaluation (Section 3.3) as depicted in
Figure 1 and use the example diagram M given in Figure 3 for illustration.

3.1 Test Generation

Via a generation query Qg we specify the coverage we want to achieve at model
level. For example, the query cover PATHS(ID, 1) requires a test suite where
all loops in M are either skipped or traversed once. We realize the generation
of model-level tests by translating M into a C program M′ and Qg into an
FQL specification Q′

g. Then, we use FShell to generate a test suite for M′

that achieves the coverage required by Q′
g.

Listing 1 shows the C code generated from M. Each diagram node corre-
sponds to a code label and a call to a logging mechanism, e.g., the code labeled
with PL ENTRY corresponds to the initial node in Figure 3. When program exe-
cution reaches this code, we log the unique identifier PL ENTRY ID of the initial
node. Flows between two nodes are realized via goto statements. In case of a
decision node, a switch structure realizes the branching control flow. We use
exactly one C function per activity diagram and realize calls to subdiagrams as
function invocations (there are none in this example). The function ‘decision ’,
which is declared but not defined, controls the flow. On evaluating Q′

g on M′,
FShell generates the definition of the function ‘decision’ as a representation
of the computed test suite: For the running example, the generated definition is
shown in Listing 2. We use the global variable fshell2 tc selector to choose one
of the generated test cases, such that ‘decision ’ returns the sequence of decisions
necessary to guide the execution through the selected test case. After compiling
and linking M′ together with the generated function ‘decision ’, the execution of
the resulting program produces a log which identifies the model elements passed
during execution. Thereby, we obtain a model-level test case Ci

M as a sequence
of model elements. Figure 4 depicts the model-level test suite SM = {C1

M, C2
M}

generated for the query Qg = Q′
g = cover @PATHS(ID, 1). After inspecting SM,

the test engineer either releases the suite or adjusts Qg to enhance the suite until
achieving requirements coverage on the model.

A model with an executable semantics can improve the test generation step
by encoding the formal semantics of the model elements into the generated C
program, such that the generated test cases are more meaningful and spurious
test cases can be avoided. We can encode guards with a formal semantics into the
generated C code with FShell’s support for assumptions: FShell supports a C
function CPROVER assume with a semantics analogous to a guard, i.e., FShell

considers only those program executions which do not violate any assumption.

3.2 Test Concretization

In order to concretize model-level test cases, such as those shown in Figure 4,
we need to relate model entities with source code elements. This relation yields

Seamless Testing for Models and Code 285

1// FShell generates this function
2extern int decision();

4void diagram M() {
5// initial
6 PL ENTRY: log(PL ENTRY ID);
7 goto PL 1;
8// ” list is not empty” has no code

10// select first element
11 PL 1: log(PL 1 ID); goto PL 2;
12// merge node
13 PL 2: log(PL 2 ID); goto PL 3;
14// decision node
15 PL 3: log(PL 3 ID);
16 switch (decision()) {
17 // element is not null
18 case 0: goto PL 4;
19 // element is null
20 default: goto PL EXIT;
21 }
22// print element
23 PL 4: log(PL 4 ID); goto PL 5;
24// select next element
25 PL 5: log(PL 5 ID); goto PL 2;
26// activity final
27 PL EXIT: log(PL EXIT ID);
28 }

30 int main() {
31 diagram M();
32 return (0);
33 }
Listing 1. Generated C program M′

1extern unsigned fshell2 tc selector ;
2 int decision(){
3 static unsigned idx = 0;
4 int retval1 [1] = { 8192 };
5 int retval2 [2] = { 0,524288 };
6 switch (fshell2 tc selector) {
7 case 0: return retval1[idx++];
8 case 1: return retval2[idx++];
9 }

10 }
Listing 2. Generated C function
decision

Model-level test case C1
M:

enter print list

select first element

leave print list

@ENTRY(print list)

@LABEL(A1)

@EXIT(print list)

Model-level test case C2
M:

enter print list

select first element

print element

select next element

leave print list

@ENTRY(print list)

@LABEL(A1)

@LABEL(A2)

@LABEL(A3)

@EXIT(print list)

Fig. 4. Model-level test suite SM =
{C1

M, C2
M} with links to source code (see

Section 3.2)

additional traceability information between model and implementation, which
we exploit in the test evaluation described in Section 3.3.

Continuing the example, we use the hand-coded program in Listing 3 as imple-
mentation of the model shown in Figure 3 and, already annotated, in Figure 5:
To establish links between model and source code, we rely on FQL’s expres-
siveness in referring to specific implementation elements, and use annotations
consisting of two parts: (i) Labels added to the relevant source code locations,
and (ii) matching annotations at activity diagram nodes. As shown in Figure 5,
we associate model elements with FQL filter expressions and thereby refer to
the SUT via the corresponding labels. For example, we link the action select first
element with the filter function expression @LABEL(A1) which identifies the as-
signment labeled with A1 in Listing 3. Entry and exit nodes of activity diagrams
are annotated with @ENTRY(print list) and @EXIT(print list), respectively.

286 A. Holzer et al.

1void print list (struct list ∗ p list) {
2 struct list element∗ cur elem;
3 assert (p list != 0 &&
4 p list −>head != 0);
5 A1: cur elem = p list−>head;
6 while (cur elem != 0) {
7 A2: if (cur elem−>allocated != 0)
8 printf (”ALLOCATED\n”);
9 else

10 printf (”FREE\n”);
11 A3: cur elem = cur elem−>next;
12 }
13 }
Listing 3. Realization of print list

select first
element

print
element

select next
element

[list is not empty]

[element is null]

[element is
not null]

@ENTRY(print list)

@LABEL(A1)

@LABEL(A3)

@LABEL(A2)

@EXIT(print list)

Fig. 5. Printing elements of a linked list
with additional FQL annotations

Building upon this mapping, we automatically translate the model-level paths
of SM into sequences of code labels. From each such sequence, a passing clause Pi

c

for the implementation is computed such that every matching execution of the
implementation concretizes the corresponding model-level test case Ci

M. For a
precise description of the desired executions, the code label sequences must be
augmented with restrictions on the permitted statements between points of code
prescribed by the model-level path. Consider, e.g., the model-level test case C1

M:
After select first element (i) no other action node must be reached and (ii) func-
tion print list must not be left and/or re-entered before reaching leave print list.
These properties are best described using FQL’s set-theoretic operations set-
complement, “NOT”, and set-union, “|”. We use FShell’s C-style macro feature
and derive from the model M a suitable definition of a macro m nodes to denote
the set of all model-level entities. For our running example m nodes is defined to be
@LABEL(A1)|@LABEL(A2)|@LABEL(A3) | @ENTRY(print list)|@EXIT(print list). We
then use this macro to describe the desired restriction as "NOT(m nodes)*". For
example, C1

M concretizes to P1
c :

P1
c = passing @ENTRY(print list) . "NOT(m nodes)*" . @LABEL(A1)

. "NOT(m nodes)*" . @EXIT(print list)

To compute the concrete (implementation level) test suite SI , we use a con-
cretization query Qc, e.g., Qc = cover "ID*".@CONDITIONEDGE."ID*". We com-
pute for each passing clause Pi

c a concrete test suite Si
I by evaluating Qi

c, which
combines Qc and Pi

c. Thus, FShell produces for each model-level test case Ci
M

with Si
I a test suite which covers as many test goals of Qc as possible such that

its test cases only follow Pi
c. For Qc = cover "ID*".@CONDITIONEDGE."ID*" this

results in covering all branches along the path prescribed by Pi
c. In our example,

for the model-level test case C1
M we obtain:

Q1
c = cover "ID*".@CONDITIONEDGE."ID*" passing @ENTRY(print list)

. "NOT(m nodes)*". @LABEL(A1) . "NOT(m nodes)*" . @EXIT(print list)

We pass the source code of the SUT, macro definitions, and Qi
c to FShell to

compute Si
I . Depending on the relationship between model and implementation,

Seamless Testing for Models and Code 287

each generated suite Si
I may contain none, one, or several concrete test cases, i.e.,

Si
I = {Ci,1

I , . . . , Ci,ki

I }, where ki ≥ 0 denotes the size of Si
I . The final executable

test suite SI is the union
⋃

i Si
I of all individual test suites Si

I . For our example
and Q1

c , FShell finds all test goals to be infeasible, i.e., S1
I = ∅. For Q2

c , however,
FShell will return two test inputs:

S2
I = {C2,1

I , C2,2
I } = { ∗ p list ={.head = {.allocated = 0, .next = NULL}},

∗ p list ={.head = {.allocated = 1, .next = NULL}}}
All model level test cases should concretize to singleton sets; we study the reasons
for the deviations occurring in our running example in the next section.

3.3 Test Evaluation

Finally, we analyze the implementation-level test suite SI to identify mismatches
in the relationship between model and implementation and execute the test
cases in SI to find errors in the implementation. We categorize the potentially
occurring deviations into the deficiencies (D1) to (D4), as discussed below.
Depending on the quality assurance and certification constraints to be obeyed,
some of these deficiencies are perfectly acceptable while others require an update
of implementation, model, or both.

Concretization Deficiencies. First, we consider the deficiencies which are identi-
fiable from the structure of SI and its constituent suites Si

I = {Ci,1
I , . . . , Ci,ki

I }.
Please recall the mapping between model and implementation, as established
by our annotations: Each implementation construct is ideally labeled with the
corresponding node from the model and vice versa. If this is the case, each
model-level test case Ci

M yields a test suite Si
I with exactly one test case Ci,1

I .
Otherwise, we observe one of the following two deficiencies.

– Implementation Poverty (D1): There is a test suite Si
I with |Si

I | = 0.

Poverty occurs when a model-level test case Ci
M does not yield any concrete test

case. Then either incomplete implementations are tested, or the model over-
approximates the implementation behavior. For our example and the model-
level test suite shown in Figure 4, the first query Q1

c yields an empty test suite
S1
I , i. e., we observe (D1). Our model cannot formally describe control condi-

tions and thus the model-level test case generation does not consider the fact
that print list processes only nonempty lists. This precondition is enforced in
Listing 3, where we assert p list −>head != 0, such that cur elem is initialized at
label A1 with a non-zero value. Therefore, the condition of the while loop cannot
evaluate to false and the loop body is entered at least once.

– Implementation Liberty (D2): There is a test suite Si
I of size |Si

I | > 1.

Liberty occurs, if the activities visited by Ci
M are uncoverable with a single

concrete test case. This happens whenever the model is more abstract than the
implementation, where the precise meaning of “more abstract” depends on the
coverage criteria employed; mostly, it means that some model activities neces-
sitate non-trivial control flow in the implementation. Depending on the quality

288 A. Holzer et al.

constraints, this can be perfectly acceptable. However, in critical systems, such as
DO-178B compliant software, undocumented code is not allowed (cf. [1], §6.3.4)
and liberty indicates a violation thereof.

print
“FREE”

print “AL-
LOCATED”

[element is allocated] [element is not allocated]

@LABEL(A4) @LABEL(A5)

Fig. 6. Activity diagram of if structure

In our example, as discussed in
Section 3.2, S2

I contains two con-
crete test cases, revealing liberty in
the action print element. Both test
cases contain a list with a single el-
ement where its field allocated is ei-
ther initialized with 0 or 1. The rea-
son for this implementation liberty
is the unmodeled if−then−else

construct in the while loop of List-
ing 3. We choose to correct this situation by replacing the action print element
with a call behavior action that is associated with the diagram shown in Fig-
ure 6. We also label both, the source code and the respective model entities, to
relate them with each other (we do not show the new labels in the listing).

Evaluation Deficiencies. The remaining two deficiencies are discovered by ana-
lyzing the concrete test suite SI—once by checking whether it achieves coverage
on the implementation, and once by running it. FShell provides support for au-
tomatically constructing a test harness from SI . This driver for the SUT enables
execution and proper evaluation.

The check for coverage is controlled by the evaluation query Qe: This query
is determined by the applicable certification standard, which demands to satisfy
a certain structural coverage at implementation level with a test suite achieving
requirements coverage at model level, i.e., Qe amounts to an adequacy criterion
for the generated test suite. For example, DO-178B Design Assurance Level C
requires statement coverage, i.e., Qe would be cover "ID*".NODES(ID)."ID*".

– Implementation Anarchy (D3): The test suite SI does not satisfy the eval-
uation query Qe on the implementation.

Anarchy relative to Qe occurs when the implementation is not fully modeled,
requiring—depending on the applicable certification standard—either correc-
tions in the model and/or implementation, or a rationale explaining the omission,
e.g., if third-party code is involved. Given the expressiveness of FQL, such omis-
sions can be formally documented by adjusting Qe to require only coverage of
code fragments which are relevant to this development process.

– Implementation Error (D4): The implementation exhibits erroneous behav-
ior on executing the test suite SI .

The last deficiency, implementation error, occurs upon assertion violations and
unexpected program outputs, and requires in all likelihood a correction to bring
implementation and model into mutual correspondence. While checking asser-
tions does not require any further provisions, error detection necessities test

Seamless Testing for Models and Code 289

oracles for monitoring the program output. If the model lacks an executable
semantics, as in our example, oracles could only be obtained from additional an-
notations given by the user (editing the automatically generated SUT driver is
possible, but undesirable). For models with an executable semantics, the guards
translate to assertions, which serve as test oracles in the generated SUT driver.

Seamless Traceability. Note that if implementation poverty, liberty, and anarchy
(D1-3) do not occur in a testing process, then model and source code implement
essentially the same control flow. Moreover, the annotations used in model and
implementation precisely document the relationship between them and enable
the mutual traceability of requirements and program features.

4 Prototype Evaluation

In our joint project INTECO, we used our TOPCASED plug-in to apply our
approach to a memory manager which is part of a helicopter pilot assistance
and mission planing system. This memory manager is implemented in 526 lines
of ANSI C code1 and should avoid memory fragmentation caused by dynamic
allocations. To do so, it provides an API that enables the programmer to gather
individual chunks of memory in a statically acquired memory area. We stud-
ied the feasibility of our approach using UML activity diagrams describing the
behavior of API functions. The derived requirements for the memory manager
yielded 21 activity diagrams, 17 of them are implemented as C functions, two
are part of these functions, and the remaining two are macros. Amongst these
diagrams, there were at most 13 action nodes, two decision nodes, and one loop
in an activity. Albeit small in size, our prototypical case study is based on an
industrial avionics software component, demonstrating the capability of our tool
chain to deal with real-world C code.

The initial concretization revealed several errors in design and coding: The
order of the action nodes of one activity diagram was not correctly reflected in the
C code of the implementation. Thus, both, implementation anarchy (D3) and
poverty (D1) occurred: Some code remained unreachable in the paths prescribed
by the abstract test cases, resulting in (D3), and one further test case was
impossible to concretize, leading to (D1). We did not observe implementation
liberty, which was an important aspect as DO-178B compatible development
requires full traceability between derived low level requirements (which were
here modeled using activity diagrams) and implementation. During execution,
no further implementation errors (D4) were found. Unfortunately, we cannot
publish the model and source code studied here, as it is covered by a non-
disclosure agreement. But as soon as possible, we will publish our TOPCASED
plugin under an open source license on the web2.

1 Source lines of code (SLOC), measured with David A. Wheeler’s SLOCCount tool.
2 http://code.forsyte.de/fshell

290 A. Holzer et al.

5 Related Work

The basic principles behind model-based testing were described by Chow in
1978 [9], the term model-based testing was coined and further refined by Dalal
et al. [10]. Their work includes automated test input generation and focuses on
boundary value testing.

Most existing formalisms for test specifications focus on the description of
test data, e.g., TTCN-3 [11] and the UML 2.0 Testing Profile [12], but none
of them allows to describe structural coverage criteria. Friske et al. [13] have
presented coverage specifications using OCL constraints. Although OCL pro-
vides the necessary operations to speak about UML models, it has not been
intended for coverage specifications, and henceforth, complex coverage specifi-
cations might be hard to express and read. At the time of publication, no tool
support for the framework in [13] has been reported. Hessel et al. [14] present a
specification language for model-level coverage criteria that uses parameterized
observer automata. Test suites for coverage criteria specified in this language
can be generated with Uppaal Cover [15].

The approach of [16] is similar to our work but targeted at Java programs:
Their focus lies on automatic test execution, observation of traces, and test input
generation. The latter is, however, performed using program specific generators.
In [17], the generation of test inputs for Simulink models is realized via a trans-
lation of models to C code. This code is subsequently processed by a tool which
is—like FShell—built upon CBMC [18]. The AGEDIS project [19] also aims
at automating model-based testing. Their test execution directives are the nec-
essary adapters to translate model-level tests to executable code. In AGEDIS
it is assumed that these directives are part of the input provided by the user.
The UniTesK tool chain [20] calls adapters mediators, which have to be created
(semi-)manually with some wizards. Compared to the T-VEC R© tools [21], we
focus on UML activity diagrams instead of Simulink models and we support
automated test generation for informal models.

One of the most advanced testing tool chains is Spec Explorer [22]. It combines
model-based testing with various techniques for automated test case generation.
Spec Explorer works on Spec# models and .Net code and uses AsmL [23] as
formal foundation. Spec Explorer analyzes a simulation relation between model
and implementation and uses a mapping as coarse as functions (which is trivial
in our case, because we have a single activity diagram per C function). Spec
Explorer includes techniques for test case selection—however, they are not as
fine grained as FQL. Building upon Spec Explorer, Kicillof et al. [24] describe an
approach that combines model-level black-box testing with parametrized white-
box unit testing. They generate unit tests for an extended version of activity
diagrams and concretize these tests via white-box test case generation. Their
work aims at generating high implementation coverage, while we focus on a DO-
178B compatible processes, i.e., we only measure the achieved implementation
coverage and check for possible deficiencies.

Black-box approaches, such as input/output conformance (ioco) testing as
performed in the TorX framework [25], require a different kind of mapping, which

Seamless Testing for Models and Code 291

focuses on interface descriptions. But even in such cases, FShell is applicable,
albeit we could use a fraction only of its power.

There exist several approaches that cover specifically the test input generation
part for UML models: In the tradition of automata-theoretic methods, the most
common [26] approaches employ UML state machines [27,28] and interaction
diagrams [29], respectively. Test case generation based on activity diagrams for
Java programs was introduced by Chen et al. in [30,31,32]: They propose in [30] a
method to generate random test cases, and introduce in [31] a coverage-directed
approach using the model checker NuSMV [33]. While their first, random-based
approach, is unlikely to achieve good coverage, their second approach suffers
from the state space explosion problem and appears to be unscalable. Kundu
and Samanta [34] present an extension of [31,32] which is aimed at concurrent
Java applications and uses much more abstract models leading to test cases
which are apparently not executable without additional processing.

6 Conclusion

Many certification standards are demanding tests generated from requirement-
derived models, and ask for seamless traceability of low-level requirements. In
this paper, we provide a solution to both challenges: First, exploiting the expres-
siveness and adaptability of FQL, we specify model-level test suites and generate
them with FShell. Second, relying on annotations of model and source, we con-
cretize the model-level test suites to the implementation. As this step does not
involve adaption code but only annotations, it enables us to assess the relation
between model and source in a precise manner. Although our example and case
study consider low level models, our approach is not limited to that: High-level
models can refer to function calls instead of code labels, or both of them.

Our prototype demonstrates that our approach is applicable to industrial
projects and does indeed find deficiencies in these examples. We are currently
working on a larger case study with industrial collaborators. Future research
goals include automatic generation of source code stubs and test oracles.

Acknowledgments

We want to thank the anonymous reviewers for their useful remarks.

References

1. RTCA DO-178B. Software considerations in airborne systems and equipment cer-
tification (1992)

2. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: How did you specify your
test suite. In: ASE, pp. 407–416 (2010)

3. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: FShell: systematic test case
generation for dynamic analysis and measurement. In: Gupta, A., Malik, S. (eds.)
CAV 2008. LNCS, vol. 5123, pp. 209–213. Springer, Heidelberg (2008)

292 A. Holzer et al.

4. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: Query-driven program testing.
In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 151–166.
Springer, Heidelberg (2009)

5. Farail, P., Gaufillet, P., Canals, A., Le Camus, C., Sciamma, D., Michel, P., Crégut,
X., Pantel, M.: The TOPCASED project: a toolkit in open source for critical
aeronautic systems design. In: ERTS, pp. 54–59 (2006)

6. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL,
pp. 58–70 (2002)

7. OMG. UML 2.0 Superstructure Specification. Technical Report ptc/04-10-02, Ob-
ject Management Group (2004)

8. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Mor-
gan Kaufmann Publishers Inc., San Francisco (2006)

9. Chow, T.: Testing software design modeled by finite-state machines. IEEE Trans-
actions on Software Engineering SE-4(3), 178–187 (1978)

10. Dalal, S.R., Jain, A., Karunanithi, N., Leaton, J.M., Lott, C.M., Patton, G.C.,
Horowitz, B.M.: Model-based testing in practice. In: ICSE, pp. 285–294 (1999)

11. Din, G.: TTCN-3. In: Model-Based Testing of Reactive Systems, pp. 465–496
(2004)

12. Schieferdecker, I., Dai, Z.R., Grabowski, J., Rennoch, A.: The UML 2.0 testing
profile and its relation to TTCN-3. In: Hogrefe, D., Wiles, A. (eds.) TestCom
2003. LNCS, vol. 2644, pp. 79–94. Springer, Heidelberg (2003)

13. Friske, M., Schlingloff, B.-H., Weißleder, S.: Composition of model-based test cov-
erage criteria. In: MBEES, pp. 87–94 (2008)

14. Blom, J., Hessel, A., Jonsson, B., Pettersson, P.: Specifying and generating test
cases using observer automata. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004.
LNCS, vol. 3395, pp. 125–139. Springer, Heidelberg (2005)

15. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.:
Testing real-time systems using UPPAAL. In: FORTEST, pp. 77–117 (2008)

16. Artho, C., Drusinsky, D., Goldberg, A., Havelund, K., Lowry, M.R., Pasareanu,
C.S., Rosu, G., Visser, W.: Experiments with test case generation and runtime
analysis. In: Börger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003. LNCS,
vol. 2589, pp. 87–107. Springer, Heidelberg (2003)

17. Brillout, A., He, N., Mazzucchi, M., Kroening, D., Purandare, M., Rüummer, P.,
Weissenbacher, G.: Mutation-based test case generation for simulink models. In:
de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.) FMCO 2009.
LNCS, vol. 6286, pp. 208–227. Springer, Heidelberg (2010)

18. Clarke, E.M., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C Programs.
In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

19. Hartman, A., Nagin, K.: Model driven testing - AGEDIS architecture interfaces
and tools. In: First European Conference on Model Driven Software Engineering,
pp. 1–11 (2003)

20. Kuliamin, V.V., Petrenko, E.K., Kossatchev, E.S., Bourdonov, I.B.: Unitesk: Model
based testing in industrial practice. In: First European Conference on Model Driven
Software Engineering, pp. 55–63 (2003)

21. T-VEC (January 2011), http://www.t-vec.com/
22. Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann, N., Nachmanson,

L.: Model-based testing of object-oriented reactive systems with spec explorer. In:
FORTEST, pp. 39–76 (2008)

http://www.t-vec.com/

Seamless Testing for Models and Code 293

23. Barnett, M., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N., Veanes,
M.: Towards a tool environment for model-based testing with ASML. In: Petrenko,
A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 252–266. Springer, Heidel-
berg (2004)

24. Kicillof, N., Grieskamp, W., Tillmann, N., Braberman, V.A.: Achieving both model
and code coverage with automated gray-box testing. In: A-MOST, pp. 1–11 (2007)

25. Tretmans, J., Brinksma, E.: TorX: Automated model-based tesing. In: First Euro-
pean Conference on Model-Driven Software Engineering, pp. 31–43 (2003)

26. Dias Neto, A.C., Subramanyan, R., Vieira, M., Travassos, G.H.: A survey on model-
based testing approaches: a systematic review. In: WEASEL Tech., pp. 31–36
(2007)

27. Weißleder, S., Schlingloff, B.H.: Deriving input partitions from UML models for
automatic test generation. In: Giese, H. (ed.) MODELS 2008. LNCS, vol. 5002,
pp. 151–163. Springer, Heidelberg (2008)

28. Chevalley, P., Thévenod-Fosse, P.: Automated generation of statistical test cases
from UML state diagrams. In: COMPSAC, pp. 205–214 (2001)

29. Nayak, A., Samanta, D.: Model-based test cases synthesis using UML interaction
diagrams. SIGSOFT Softw. Eng. Notes 34(2), 1–10 (2009)

30. Chen, M., Qiu, X., Li, X.: Automatic test case generation for UML activity dia-
grams. In: AST, pp. 2–8 (2006)

31. Chen, M., Mishra, P., Kalita, D.: Coverage-driven automatic test generation for
UML activity diagrams. In: GLSVLSI, pp. 139–142 (2008)

32. Chen, M., Qiu, X., Xu, W., Wang, L., Zhao, J., Li, X.: UML activity diagram-based
automatic test case generation for java programs. The Computer Journal 52(5),
545–556 (2009)

33. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new Symbolic
Model Verifier. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633,
pp. 495–499. Springer, Heidelberg (1999)

34. Kundu, D., Samanta, D.: A novel approach to generate test cases from UML ac-
tivity diagrams. Journal of Object Technology 8(3), 65–83 (2009)

Retrofitting Unit Tests for Parameterized Unit Testing

Suresh Thummalapenta1, Madhuri R. Marri1, Tao Xie1,
Nikolai Tillmann2, and Jonathan de Halleux2

1 Department of Computer Science, North Carolina State University, Raleigh, USA
{sthumma,mrmarri,txie}@ncsu.edu

2 Microsoft Research, One Microsoft Way, Redmond, USA
{nikolait, jhalleux}@microsoft.com

Abstract. Recent advances in software testing introduced parameterized unit
tests (PUT), which accept parameters, unlike conventional unit tests (CUT),
which do not accept parameters. PUTs are more beneficial than CUTs with re-
gards to fault-detection capability, since PUTs help describe the behaviors of
methods under test for all test arguments. In general, existing applications often
include manually written CUTs. With the existence of these CUTs, natural ques-
tions that arise are whether these CUTs can be retrofitted as PUTs to leverage
the benefits of PUTs, and what are the cost and benefits involved in retrofitting
CUTs as PUTs. To address these questions, in this paper, we conduct an empirical
study to investigate whether existing CUTs can be retrofitted as PUTs with feasi-
ble effort and achieve the benefits of PUTs in terms of additional fault-detection
capability and code coverage. We also propose a methodology, called test gen-
eralization, that helps in systematically retrofitting existing CUTs as PUTs. Our
results on three real-world open-source applications (≈ 4.6 KLOC) show that the
retrofitted PUTs detect 19 new defects that are not detected by existing CUTs,
and also increase branch coverage by 4% on average (with maximum increase of
52% for one class under test and 10% for one application under analysis) with
feasible effort.1

1 Introduction

Unit tests are widely adopted in software industry for ensuring high quality of production
code. Unit testing helps detect defects at an early stage, reducing the effort required
in fixing those defects. Recent advances in unit testing introduced parameterized unit
tests (PUT) [23], which accept parameters, unlike conventional unit tests (CUT), which
do not accept parameters. Existing state-of-the-art test-generation approaches such as
Dynamic Symbolic Execution (DSE) [15, 10, 20, 22] can be used in combination with
PUTs to automatically generate CUTs by instantiating the parameters. In particular, DSE
systematically explores the code under test exercised by a PUT and generates CUTs
that achieve high structural coverage such as branch coverage of the code under test.
Section 2 presents more details on how CUTs can be generated from PUTs via DSE.

In general, PUTs are more beneficial than CUTs. The primary reason is that PUTs
help describe the behaviors of methods under test for all test arguments. With PUTs,
test data can be automatically generated using DSE-based approaches, thereby helping

1 The first and second authors have made equal contributions.

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 294–309, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Retrofitting Unit Tests for Parameterized Unit Testing 295

address the following two issues with CUTs. First, developers may not be able to write
test data (in CUTs) that exercise all important behaviors of methods under test, thereby
resulting in unit tests with low fault-detection capability. Second, developers may write
different test data that exercise the same behavior of methods under test, thereby re-
sulting in redundant unit tests [24]. These redundant unit tests increase only the testing
time and do not increase the fault-detection capability. Consider the three CUTs shown
in Figure 1 for testing the Push method of an integer stack class IntStack. These
three CUTs exercise the Push method with different test data in different test scenarios.
For example, CUT1 and CUT2 exercise Push with different argument values, when the
stack is empty, while CUT3 exercises Push, when the stack is not empty. Consider that
there is a defect (Push) that can be detected by passing a negative value as an argument
to Push. These three tests cannot detect the preceding defect, since these tests do not
pass a negative integer value as an argument. Furthermore, CUT2 is a redundant unit
test with respect to CUT1, since IntStack has the same behavior for all non-negative
integers passed as arguments to Push. Since test data is automatically generated by
DSE-based approaches that tend to exercise all feasible paths in the methods under test,
the fault-detection capability of PUTs is often higher than that of CUTs. Furthermore,
a single PUT can represent multiple CUTs, thereby reducing the size of test code and
improve the maintainability of the test code. For example, the PUT shown in Figure 2
tests the same or more behaviors of the method under test as the three CUTs shown in
Figure 1.

01:public void CUT1() {
02: int elem = 1;
03: IntStack stk = new IntStack();
04: stk.Push(elem);
05: Assert.AreEqual(1, stk.Count()); }
06:public void CUT2() {
07: int elem = 30;
08: IntStack stk = new IntStack();
09: stk.Push(elem);
10: Assert.AreEqual(1, stk.Count()); }
11:public void CUT3() {
12: int elem1 = 1, elem2 = 30;
13: IntStack stk = new IntStack();
14: stk.Push(elem1);
15: stk.Push(elem2);
16: Assert.AreEqual(2, stk.Count()); }

Fig. 1. Three CUTs test an integer stack that
does not accept negative integers

01:public void PUT(int[] elem) {
02: IntStack stk = new IntStack();
03: foreach (int i in elem) {
04: stk.Push(i); }
05: Assert.AreEqual(elem.Length,

stk.Count()); }

Fig. 2. A single PUT replacing the three CUTs

In general, existing applications of-
ten include manually written CUTs [9].
With the existence of these CUTs, nat-
ural questions that arise are whether
these CUTs can be retrofitted as PUTs
to leverage the benefits of PUTs, and
what are the cost and benefits involved
in retrofitting CUTs as PUTs. Here, cost
includes the effort required in retrofitting
CUTs as PUTs, and benefits include the
additional fault-detection capability and
code coverage achieved via retrofitting.
However, to the best of our knowl-
edge, there exists no empirical study
that shows cost and benefits involved in
retrofitting existing CUTs as PUTs. To
address this issue, in this paper, we con-
duct an empirical study to investigate
whether existing CUTs can be retrofitted
as PUTs with feasible effort and such
retrofitting achieves benefits in terms of
fault-detection capability and code cov-
erage. We also propose a methodology, called test generalization, that includes a sys-
tematic procedure for manually retrofitting CUTs as PUTs.

296 S. Thummalapenta et al.

In particular, our empirical study helps address the following two fundamental ques-
tions. First, is it cost-effective to retrofit existing CUTs as PUTs (using test generaliza-
tion) with regards to the benefits of test generalization? Second, can developers other
than the original developers who wrote the code under test (who do not have sufficient
knowledge of the code under test) use our methodology to retrofit CUTs as PUTs? Such
other developers could be those who take over legacy applications or those who try to
augment the test suites for the code not written by them. The primary reason for investi-
gating the second question is that, in general, developers who wrote code under test may
not face challenges in writing test oracles (in PUTs) that need to describe the expected
behavior for all test arguments; however, these other developers often do not have suf-
ficient knowledge of code under test and may face challenges in writing test oracles in
PUTs. Therefore, in this paper, we study whether our test-generalization methodology
could help these other developers in addressing the challenge of test-oracle generaliza-
tion (generalizing test oracles in existing CUTs). In particular, to address this issue, the
first and second authors (of this paper) who do not have sufficient knowledge of our
applications under analysis follow our methodology to retrofit existing CUTs as PUTs.
Our results show that test generalization helps these other developers in achieving ad-
ditional benefits in terms of fault-detection capability and code coverage with feasible
effort.

In summary, this paper makes the following major contributions:

– The first empirical study that investigates cost and benefits involved in retrofitting
existing CUTs as PUTs for leveraging the benefits of PUTs.

– A methodology, called test generalization, that helps developers to write PUTs with
feasible effort by leveraging existing CUTs.

– Our empirical results on three real-world applications (≈ 4.6 KLOC) show that test
generalization helps detect 19 new defects that are not detected by existing CUTs,
showing the benefits in terms of fault-detection capability with feasible effort. A
few of these defects are complex to be detected using manually written CUTs.
Furthermore, test generalization increases branch coverage by 4% on average (with
a maximum increase of 52% for one class under test and 10% for one application
under analysis).

2 Background

We use Pex [4] as an example state-of-the-art DSE-based test generation tool for gener-
ating CUTs using PUTs. Pex is a white-box test generation tool for .NET programs. Pex
accepts PUTs and symbolically executes the PUTs and the code under test to generate
a set of CUTs that can achieve high code coverage of the code under test. Since these
generated CUTs are targeted for some common testing frameworks such as NUnit [7],
it is possible to debug and analyze failing CUTs. Initially, Pex explores the code under
test with random or default values and collects constraints along the execution path. Pex
next systematically negates parts of the collected constraints and uses a constraint solver
to generate concrete values that guide program execution through alternate paths. Pex
has been applied on industrial code bases and detected serious new defects in a software
component, which had already been extensively tested previously [22].

Retrofitting Unit Tests for Parameterized Unit Testing 297

3 Test Generalization Methodology

We next present our test generalization methodology that assists developers in achieving
test generalization. Although we explain our methodology using Pex, our methodology
is independent of Pex and can be used with other DSE-based test generation tools [20].
Our methodology is based on the following two requirements.

– R1: the PUT generalized from a passing CUT should not result in false-positive
failing CUTs being generated from the PUT.

– R2: the PUT generalized from a CUT should help achieve the same or higher struc-
tural coverage than the CUT and should help detect the same or more defects than
the CUT.

We next describe more details on these
two requirements. R1 ensures that test
generalization does not introduce false
positives. In particular, a CUT gener-
ated from a PUT can fail for two rea-
sons: a defect in the method under test
(MT) or a defect in the PUT. Failing
CUTs for the second reason are con-
sidered as false positives. These fail-
ing CUTs are generated when gener-
alized PUTs do not satisfy either nec-
essary preconditions of the MT or as-
sumptions on the input domain of the
parameters required for passing the test
oracle in the PUTs. On the other hand,
R2 ensures that test generalization does
not introduce false negatives. The ra-
tionale is that PUTs provide a generic
representation of CUTs, and should be
able to guide a DSE-based approach in
generating CUTs that exercise the same
or more paths in the MT than CUTs,
and thereby should have the same or
higher fault-detection capability.

We next provide an overview of how
a developer generalizes existing CUTs
to PUTs by using our methodology to
satisfy the preceding requirements and then explain each step in detail using illustrative
examples from the NUnit framework [7].

3.1 Overview

Our test generalization algorithm includes five major steps: (S1) Parameterize, (S2)
Generalize Test Oracle, (S3) Add Assumption, (S4) Add Factory Method, and (S5) Add

298 S. Thummalapenta et al.

Mock Object. In our methodology, Steps S1 and S2 are mandatory, whereas Steps S3,
S4, and S5 are optional and are used when R1 or R2 is not satisfied. Indeed, recent
work [21, 16] (as discussed in subsequent sections) could help further alleviate effort
required in Steps S3, S4, and S5. We next explain our methodology in detail.

For an MT, the developer uses our algorithm to generalize the set of CUTs of that
MT, one CUT at a time. First, the developer identifies concrete values and local vari-
ables in the CUT and promotes them as parameters for a PUT (Line 7). Second, the
developer generalizes the assertions in the CUT to generalized test oracles in the PUT
(Line 8). After generalizing test oracles, the developer applies Pex to generate CUTs
(referred to as gCUTS) from PUTs (Line 9). When any of the generated CUTs fails
(Line 11), the developer checks whether the reason for the failing CUT(s) is due to ille-
gal values generated by Pex for the parameters (Line 12), i.e., whether the failing CUTs
are false-positive CUTs. To avoid these false-positive CUTs and thereby to satisfy R1,
the developer adds assumptions on the parameters to guide Pex to generate legal input
values (Line 13). The developer then applies Pex again and continues this process of
adding assumptions till either no generated CUTs fail or the generated CUTs fail due to
defects in the MT.

//MSS=MemorySettingsStorage
00:public class SettingsGroup{
01: MSS storage; ...
02: public SettingsGroup(MSS storage){
03: this.storage = storage; }
05: public void SaveSetting(string sn, object sv) {
06: object ov = storage.GetSetting(sn);
07: //Avoid change if there is no real change
08: if(ov != null) {
09: if(ov is string && sv is string &&

(string)ov==(string)sv ||
10: ov is int&&sv is int&&(int)ov==(int)sv ||
11: ov is bool&&sv is bool&&(bool)ov==(bool)sv ||
12: ov is Enum&&sv is Enum&&ov.Equals(sv))
13: return;
14: }
15: storage.SaveSetting(sn, sv);
16: if (Changed != null)
17: Changed(this, new SettingsEventArgs(sn));
18: }}

Fig. 3. The SettingsGroup class of NUnit
with the SaveSetting method under test

00://tg is of type SettingsGroup
01:[Test]
02:public void TestSettingsGroup() {
03: tg.SaveSetting("X",5);
04: tg.SaveSetting("NAME","Tom");
05: Assert.AreEqual(5,tg.GetSetting("X"));
06: Assert.AreEqual("Tom",tg.GetSetting("NAME"));
07:}

Fig. 4. A CUT to test the SaveSetting method

After satisfying R1, the developer
checks whether R2 is also satisfied,
i.e., the structural coverage achieved
by generated CUTs is at least as much
as the coverage achieved by the ex-
isting CUTs. If R2 is satisfied, then
the developer proceeds to the next
CUT. On the other hand, if R2 is not
satisfied, then there could be two is-
sues: (1) Pex was not able to cre-
ate desired object states for a non-
primitive parameter [21], and (2) the
MT includes interactions with ex-
ternal environments [16]. Although
DSE-based test-generation tools such
as Pex are effective in generating
CUTs from PUTs whose parame-
ters are of primitive types, Pex or
any other DSE-based tool faces chal-
lenges in cases such as generating de-
sirable objects for non-primitive pa-
rameters. To address these two issues,
the developer writes factory methods
(Line 21) and mock objects [16] (Line 24), respectively, to assist Pex. More details on
these two steps are described in subsequent sections.

The developer repeats the last three steps till the requirements R1 and R2 are met, as
shown in Loop 10-29. Often, multiple CUTs can be generalized to a single PUT. There-
fore, to avoid generalizing an existing CUT that is already generated by a previously

Retrofitting Unit Tests for Parameterized Unit Testing 299

generalized PUT, the developer checks whether the existing CUT to be generalized be-
longs to already generated CUTs (referred to as gAllCUTs) (Lines 3 − 5). If so, the
developer ignores the existing CUT; otherwise, the developer generalizes the existing
CUT. We next illustrate each step of our methodology using an MT and a CUT from
the NUnit framework shown in Figures 3 and 4, respectively.

3.2 Example

MT and CUTs. Figure 3 shows an MT SaveSetting from the SettingsGroup class
of the NUnit framework. The SaveSetting method accepts a setting name sn and a
setting value sv, and stores the setting in a storage (represented by the member vari-
able storage). The setting value can be of type int, bool, string, or enum. Before
storing the value, SaveSetting checks whether the same value already exists for that
setting in the storage. If the same value already exists for that setting, SaveSetting
returns without making any changes to the storage.

Figure 4 shows a CUT for testing the SaveSetting method. The CUT saves two
setting values (of types int and string) and verifies whether the values are set prop-
erly using the GetSetting method. The CUT verifies the expected behavior of the
SaveSetting method for the setting values of only types int and string. This CUT
is the only test for verifying SaveSetting and includes two major issues. First, the
CUT does not verify the behavior for the types bool and enum. Second, the CUT does
not cover the true branch in Statement 8 of Figure 3. The reason is that the CUT does
not invoke the SaveSetting method more than once with the same setting name. This
CUT achieves 10% branch coverage2 of the SaveSetting method. We next explain
how the developer generalizes the CUT to a PUT and addresses these two major issues
via our test generalization.

S1 - Parameterize. For the CUT shown in Figure 4, the developer promotes the
string “Tom” and the int 5 as a single parameter of type object for the PUT. The
advantage of replacing concrete values with symbolic values (in the form of parameters)
is that Pex generates concrete values based on the constraints encountered in different
paths in the MT. Since SaveSetting accepts the parameter of type object (shown
in Figure 5), Pex automatically identifies the possible types for the object type such
as int or bool from the MT and generates concrete values for those types, thereby
satisfying R2. In addition to promoting concrete values as parameters of PUTs, the de-
veloper promotes other local variables such as the receiver object (tg) of SaveSetting
as parameters. Promoting such receiver objects as parameters can help generate differ-
ent object states (for those receiver objects) that can help cover additional paths in the
MT. Figure 5 shows the PUT generalized from the CUT shown in Figure 4.

S2 - Generalize Test Oracle. The developer next generalizes test oracles in the CUT.
In the CUT, a setting is stored in the storage using SaveSetting and is verified using
GetSetting. By analyzing the CUT, the developer generalizes the test oracle of the

2 We use NCover (http://www.ncover.com/) to measure branch coverage. NCover uses
.NET byte code instead of source code for measuring branch coverage.

http://www.ncover.com/

300 S. Thummalapenta et al.

CUT by replacing the constant value with the relevant parameter of the PUT. The test
oracle for the PUT is shown in Line 4 of Figure 5.

In practice, generalizing a test oracle is a complex task, since determining the ex-
pected output values for all the generated inputs is not trivial. Therefore, to assist de-
velopers in generalizing test oracles, we proposed 15 PUT patterns, which developers
can use to analyze the existing CUTs and generalize test oracles. More details of the
patterns are available in Pex documentation [6].

S3 - Add Assumption. A challenge faced during test generalization is that Pex or any
DSE-based approach requires guidance in generating legal values for the parameters of
PUTs. These legal values are the values that satisfy preconditions of the MT and help
set up test scenarios to pass test assertions (i.e., test oracles). These assumptions help
avoid generating false-positive CUTs, thereby satisfying R1. For example, without any
assumptions, Pex by default generates illegal null values for non-primitive parameters
such as st of the PUT shown in Figure 5. To guide Pex in generating legal values, the
developer adds sufficient assumptions to the PUT. In the PUT, the developer annotates
each parameter with the tag PexAssumeUnderTest3, which describes that the param-
eter should not be null and the type of generated objects should be the same as the
parameter type. The developer adds further assumptions to PUTs based on the behavior
exercised by the CUT and the feedback received from Pex. Recently, there is a growing
interest towards a new methodology, called Code Contracts [5], where developers can
explicitly describe assumptions of the code under test. We expect that effort required
for Step S3 can be further reduced when the code under test includes contracts.

//PAUT: PexAssumeUnderTest
00:[PexMethod]
01:public void TestSave([PAUT]SettingsGroup st,
02: [PAUT] string sn, [PAUT] object sv) {
03: st.SaveSetting(sn, sv);
04: PexAssert.AreEqual(sv,st.GetSetting(sn));}

Fig. 5. A PUT for the CUT shown in Figure 4

//MSS: MemorySettingsStorage (class)
//PAUT: PexAssumeUnderTest (Pex attribute)
00:[PexFactoryMethod(typeof(MSS))]
01:public static MSS Create([PAUT]string[]
02: sn, [PAUT]object[] sv) {
03: PexAssume.IsTrue(sn.Length == sv.Length);
04: PexAssume.IsTrue(sn.Length > 0);
05: MSS mss = new MSS();
06: for(int count=0;count<sn.Length;count++){
07: mss.SaveSetting(sn[count], sv[count]);
08: }
09: return mss;}

Fig. 6. An example factory method for the
MemorySettingsStorage class

S4 - Add Factory Method. In gen-
eral, Pex (or any other existing DSE-
based approaches) faces challenges
in generating CUTs from PUTs that
include parameters of non-primitive
types, since these parameters require
method-call sequences (that create
and mutate objects of non-primitive
types) to generate desirable object
states [21]. These desirable object
states are the states that are required
to exercise new paths or branches in
the MT, thereby to satisfy R2. For
example, a desirable object state to
cover the true branch of Statement 8
in Figure 3 is that the storage object
should already include a value for the
setting name sn. Recent techniques in
object-oriented testing [21, 13] could

3 PexAssumeUnderTest is a custom attribute provided by Pex, shown as “PAUT” for sim-
plicity in Figures 5, 6, and 9.

Retrofitting Unit Tests for Parameterized Unit Testing 301

Table 1.

(a) Names.

Subject
Applications

NUnit
DSA
QuickGraph

(b) Characteristics of subject applications.

Downloads Code Under Test
#C #M #KLOC Avg.CC Max.CC

193, 563 9 87 1.4 1.48 14.0
3239 27 259 2.4 2.09 16.0
7969 56 463 6.2 1.79 16.0

(c) Existing CUTs.

Existing Test Code
#C #CUTs #KLOC

9 49 0.9
20 337 2.5

9 21 1.2

help reduce effort required for this step. However, since Pex does not include these
techniques yet, the developer can assist Pex by writing method-call sequences inside
factory methods, supported by Pex. Figure 6 shows an example factory method for the
MemorySettingsStorage class.

S5 - Add Mock Object. Pex (or any other existing DSE-based approaches) also faces
challenges in handling PUTs or MT that interacts with an external environment such as
a file system. To address this challenge related to the interactions with the environment,
developers write mock objects for assisting Pex [16]. These mock objects help test
features in isolation especially when PUTs or MT interact with environments such as a
file system. Recent work [16] on mock objects can further help reduce effort in writing
mock objects.

Generalized PUT. Figure 5 shows the final PUT after the developer follows our
methodology. The PUT accepts three parameters: an instance of SettingsGroup, the
name of the setting, and its value. The SaveSetting method can be used to save ei-
ther an int value or a string value (the method accepts both types for its arguments).
Therefore, the CUT requires two method calls shown in Statements 3 and 4 of Fig-
ure 4 to verify whether SaveSetting correctly handles these types. On the other hand,
only one method call is sufficient in the PUT, since the two constant setting values
are promoted to a PUT parameter of type object. Pex automatically explores the MT
and generates CUTs that cover both int and string types. Indeed, the SaveSetting
method also accepts bool and enum types. The existing CUTs did not include test
data for verifying these two types. Our generalized PUT automatically handles these
additional types, highlighting additional advantage of test generalization in reducing
the test code substantially without reducing the behavior exercised by existing CUTs.
When we applied Pex on the PUT shown in Figure 5, Pex generated 8 CUTs from the
PUT. These CUTs test the SaveSetting method with different setting values of types
such as int, string, or other non-primitive object types. Furthermore, the CUT used
for generalization achieved branch coverage of 10%, whereas the CUTs generated from
the generalized PUT achieved branch coverage of 90%, showing the benefits achieved
through our test generalization methodology.

4 Empirical Study

We conducted an empirical study using three real-world applications to show the bene-
fits of retrofitting CUTs as PUTs. In our empirical study, we show the cost and benefits

302 S. Thummalapenta et al.

of PUTs over existing CUTs using three metrics: branch coverage, the number of de-
tected defects, and the time taken for test generalization. In particular, we address the
following three research questions in our empirical study:

– RQ1: Branch Coverage. How much higher percentage of branch coverage is
achieved by retrofitted PUTs compared to existing CUTs? Since PUTs are a gen-
eralized form of CUTs, this research question helps address whether PUTs can
achieve additional branch coverage compared to CUTs. We focus on branch cover-
age, since detecting defects via violating test assertions in unit tests can be mapped
to covering implicit checking branches for those test assertions.

– RQ2: Defect Detection. How many new defects (that are not detected by existing
CUTs) are detected by PUTs and vice-versa? This research question helps address
whether PUTs have higher fault-detection capabilities compared to CUTs.

– RQ3: Generalization Effort. How much effort is required for generalizing CUTs
to PUTs? This research question helps show that the effort required for generaliza-
tion is worthwhile, considering the generalization benefits.

We first present the details of subject applications and next describe our setup for our
empirical study. Finally, we present the results of our empirical study. The detailed
results of our empirical study are available at our project website https://sites.
google.com/site/asergrp/projects/putstudy.

4.1 Subject Applications

We use three popular open source applications (as shown by their download counts in
their hosting web sites) in our study: NUnit [7], DSA [11], and Quickgraph [12]. Table
1(a) shows the names of three subject applications. While we used all namespaces and
classes for DSA and QuickGraph in our study, for NUnit, we used nine classes from its
Util namespace, which is one of the core components of the framework. Table 1(b)
shows the characteristics of the three subject applications. Column “Downloads” shows
the number of downloads of the application (as listed in its hosting web site in January
2011). Column “Code Under Test” shows details of the code under test (of the appli-
cation) in terms of the number of classes (“#C”), number of methods (“#M”), number
of lines of code (“#KLOC”), and the average and maximum cyclometic complexity
(“Avg.CC” and “Max.CC”, respectively) of the code under test. Similarly, Table 1(c)
shows the statistics of existing CUTs for these subject applications.

4.2 Study Setup

We next describe the setup of our study conducted by the first and second authors of this
paper for addressing the preceding research questions. The authors were PhD (fourth
year) and master (second year) students, respectively, with the same experience of two
years with PUTs and Pex at the time of conducting the study. Before joining their grad-
uate program, the authors had three and five years of programming experience, respec-
tively, in software industry. Each of the authors conducted test generalization for half
of CUTs across all the three subjects. The authors do not have prior knowledge of the

https://sites.google.com/site/asergrp/projects/putstudy
https://sites.google.com/site/asergrp/projects/putstudy

Retrofitting Unit Tests for Parameterized Unit Testing 303

Table 2. Branch coverage achieved by the existing CUTs, CUTs + RTs, and CUTs generated by
Pex using the retrofitted PUTs

Subject Branch Coverage Overall Max.
Inc. Inc.

CUTs CUTs+RTs(#) PUTs

NUnit 78% 78%(144) 88% 10% 52%
DSA 91% 91%(615) 92% 1% 1%
QuickGraph 87% 88%(3628) 89% 2% 11%

subject applications and conducted the study as third-party testers. We expect that our
test-generalization results could be much better, if the test generalization is performed
by the developers of these subject applications. The reason is that these developers can
incorporate their application knowledge during test generalization to write more effec-
tive PUTs.

To address the preceding research questions, the authors used three categories of
CUTs. The first category of CUTs is the set of existing CUTs available with subject
applications. The second category of CUTs is the set of CUTs generated from PUTs.
To generate this second category of CUTs, the authors generalized existing CUTs to
PUTs and applied Pex on those PUTs. Among all three subject applications, the au-
thors retrofitted 407 CUTs (4.6 KLOC) as 224 PUTs (4.0 KLOC). The authors also
measured the time taken for generalizing all CUTs to compute the generalization effort
for addressing RQ3. The measured time includes the amount of time taken for perform-
ing all steps described in our methodology and also applying Pex to generate CUTs
from PUTs. The authors wrote 10 factory methods and 1 mock object during test gener-
alization. The third category of CUTs is the set of existing CUTs + new CUTs (hereby
referred to as RTs) that were generated using an automatic random test-generation tool,
called Randoop [18]. The authors used the default timeout parameter of 180 seconds.
The rationale behind using the default timeout is that running Randoop for longer time
often generates a large number of tests that are difficult to be compiled. This third
category (CUTs + RTs) helps show that the benefits of test generalization cannot be
achieved by simply generating additional tests using tools such as Randoop. To address
RQ1, the authors measured branch coverage using a coverage measurement tool, called
NCover4. To address RQ2 and RQ3, the authors measured the number of failing tests
and computed the code metrics (LOC) using the CLOC5 tool, respectively. The authors
did not compare the execution time of CUTs for all three categories, since the time
taken for executing CUTs of all categories is negligible (< 20 sec).

4.3 RQ1: Branch Coverage

We next describe our empirical results for addressing RQ1. Table 2 shows the branch
coverage achieved by executing the existing CUTs, CUTs + RTs, and the CUTs gen-
erated by Pex using the retrofitted PUTs. The values in brackets (#) for CUTs + RTs

4 http://www.ncover.com/
5 http://cloc.sourceforge.net/

304 S. Thummalapenta et al.

indicate the number of RTs, i.e., the tests generated by Randoop. Column “Overall
Inc.” shows the overall increase in the branch coverage from the existing CUTs to
the retrofitted PUTs. Column “Max. Inc.” shows the maximum increase for a class or
namespace in the respective subject applications.

01:public void RemoveSetting(string sn) {
02: int dot = settingName.IndexOf(’.’);
03: if (dot < 0)
04: key.DeleteValue(settingName, false);
05: else {
06: using(RegistryKey subKey = key.OpenSubKey(

sn.Substring(0,dot),true)) {
07: if (subKey != null)
08: subKey.DeleteValue(sn.Substring(dot+1));}
09:}}

Fig. 7. RemoveSetting method whose coverage
is increased by 60% due to test generalization

Column “Overall Inc.” shows that
the branch coverage is increased by
10%, 1%, and 2% for NUnit, DSA,
and QuickGraph, respectively. Fur-
thermore, Column “Max Inc.” shows
that the maximum branch coverage
for a class or a namespace is in-
creased by 52%, 1%, and 11% for
NUnit, DSA, and QuickGraph, re-
spectively. One major reason for not
achieving an increase in the coverage for DSA is that the existing CUTs already
achieved high branch coverage and PUTs help achieve only a little higher coverage
than existing CUTs.

To show that the increase in the branch coverage achieved by PUTs is not trivial
to achieve, we compare the results of PUTs with CUTs + RTs. The increase in the
branch coverage achieved by CUTs + RTs compared to CUTs alone is 0%, 0%, and
1% for NUnit, DSA, and QuickGraph, respectively. This comparison shows that the
improvement in the branch coverage achieved by PUTs is not trivial to achieve, since
the branches that are not covered by the existing CUTs are generally quite difficult to
cover (as shown in the results of CUTs + RTs).

4.4 RQ2: Defects

//To test Remove item not present
01:public void RemoveCUT() {
02: Heap<int> actual = new Heap<int>{

2, 78, 1, 0, 56};
03: Assert.IsFalse(actual.Remove(99));}

Fig. 8. Existing CUT to test the Remove method
of Heap

01:public void RemoveItemPUT (
[PAUT]List<int> in, int item) {

02: Heap<int> ac = new Heap<int>(in);
03: if (input.Contains(item)) {
04: }
05: else {
06: PexAssert.IsFalse(ac.Remove(randomPick));
07: PexAssert.AreEqual(in.Count, ac.Count);
08: CollectionAssert.AreEquivalent(ac, in);}
09: }

Fig. 9. A generalized PUT of the CUT shown in
Fig. 8

To address RQ2, we identify the num-
ber of defects detected by PUTs. We
did not find any failing CUTs among
existing CUTs of the subject applica-
tions. Therefore, we consider the de-
fects detected by failing tests among
the CUTs generated from PUTs as new
defects not detected by existing CUTs.
In addition to the defects detected by
PUTs, we also inspect the failing tests
among the RTs to compare the fault-
detection capabilities of PUTs and RTs.

In summary, our PUTs found 15 new
defects in DSA and 4 new defects in
NUnit. After our inspection, we re-
ported the failing tests on their host-
ing websites6. On the other hand, RTs

6 Reported bugs can be found at the DSA CodePlex website with defect IDs from 8846 to 8858
and the NUnit SourceForge website with defect IDs 2872749, 2872752, and 2872753.

Retrofitting Unit Tests for Parameterized Unit Testing 305

include 90, 25, and 738 failing tests for DSA, NUnit, and QuickGraph, respectively.
Since RTs are generated automatically using Randoop, RTs do not include test oracles.
Therefore, an RT is considered as a failing test, if the execution of the RT results in
an uncaught exception being thrown. In our inspection of these failing tests in RTs, we
found that only 18 failing tests for DSA are related to 4 real defects in DSA, since the
same defect is detected by multiple failing tests. These 4 defects are also detected by our
PUTs. The remaining failing tests are due to two major issues. First, exceptions raised
by RTs are expected. In our methodology, we address this issue by adding annotations
to PUTs regarding expected exceptions. We add these additional annotations based on
expected exceptions in CUTs. Second, illegal test data such as null values are passed
as arguments to methods invoked in RTs. In our methodology, we address this issue of
illegal test data by adding assumptions to PUTs in Step S1. This issue of illegal test data
in RTs shows the significance of Step S1 in our methodology.

To further show the significance of generalized PUTs, we applied Pex on these ap-
plications without using these PUTs and by using PexWizard. PexWizard is a tool pro-
vided with Pex and this tool automatically generates PUTs (without test oracles) for
each public method in the application under test. We found that the generated CUTs
include 23, 170, and 17 failing tests for DSA, NUnit, and QuickGraph, respectively.
However, similar to Randoop, only 2 tests are related to 2 real defects (also detected by
our generalized PUTs) in DSA, and the remaining failing tests are due to the preceding
two issues faced by Randoop.

We next explain an example defect detected in the Heap class of the DSA appli-
cation by CUTs generated from generalized PUTs. The details of remaining defects
can be found at our project website. The Heap class is a heap implementation in the
DataStructure namespace. This class includes methods to add, remove, and heapify
the elements in the heap. The Remove method of the class takes an item to be removed
as a parameter and returns true when the item to be removed is in the heap, and returns
false otherwise. Figure 8 shows the existing CUT that checks whether the Remove

method returns false when an item that is not in the heap is passed as the parameter.
On execution, this CUT passed, exposing no defect in the code under test, and there
are no other CUTs (in the existing test suite) that exercise the behavior of the method.
However, from our generalized PUT shown in Figure 9, a few of the generated CUTs
failed, exposing a defect in the Remove method. The test data for the failing tests had
the following common characteristics: the heap size is less than 4 (the input parameter
of the PUT is of size less than 4), the item to be removed is 0 (the item parameter of
the PUT), and the item 0 was not already added to the heap (the generated value for
input did not contain the item 0).

When we inspected the causes of the failing tests, we found that in the constructor
of the Heap class, a default array of size 4 (of type int) is created to store the items.
In C#, an integer array is by default assigned values zero to the elements of the array.
Therefore, there is always an item 0 in the heap unless an input list of size greater than
or equal to 4 is passed as the parameter. Therefore, on calling the Remove method to
remove the item 0, even when there is no such item in the heap, the method returns
true indicating that the item has been successfully removed and causing the assertion
statement to fail (Statement 6 of the PUT). However, this defect was not detected by the

306 S. Thummalapenta et al.

CUT shown in Figure 8 since the unit test assigns the heap with 5 elements (Statement
2) and therefore the defect-exposing scenario of heap size ≤ 4 is not exercised. These 19
new defects that were not detected by the existing CUTs show that PUTs are an effective
means for rigorous testing of the code under test. Furthermore, as described earlier, it is
also difficult to write new CUTs (manually) that test corner cases as exercised by CUTs
generated from PUTs.

4.5 RQ3: Generalization Effort

We next address RQ3 regarding the manual effort required for the generalization of
CUTs to PUTs. The first two authors conducted comparable amount of generalization
by equally splitting the existing CUTs of all three subject applications for generaliza-
tion. The cumulative effort of both the authors in conducting the study is 2.8, 13.8, and
1.5 hours for subject applications NUnit, DSA, and QuickGraph, respectively. Our mea-
sured timings are primarily dependent on four factors: the expertise with PUTs and the
Pex tool, prior knowledge of the subject applications, number of CUTs and the number
of generalized PUTs, and the complexity of a CUT or a generalized PUT. Although the
authors have experience with PUTs and using Pex, the authors do not have the prior
knowledge of these subject applications and conducted the study as third-party testers.
Therefore, we expect that the developers of these subject applications, despite unfamil-
iar with PUTs or Pex, may take similar amount of effort. Overall, our results show that
the effort of test generalization is worthwhile considering the benefits that can be gained
through generalization.

5 Threats to Validity

The threats to external validity primarily include the degree to which the subject pro-
grams, defects, and CUTs are representative of true practice. The subject applications
used in our empirical study range from small-scale to medium-scale applications that
are widely used as shown by their number of downloads. We tried to alleviate the threats
related to detected defects by inspecting the source code and by reporting the defects to
the developers of the application under test. These threats could further be reduced by
conducting more studies with wider types of subjects in our future work. The threats to
internal validity are due to manual process involved in generalizing CUTs to PUTs and
only two human subjects involved in the study. Our study results can be biased based
on our experience and knowledge of the subject applications. These threats can be re-
duced by conducting more case studies with more subject applications and additional
human subjects. The results in our study can also vary based on other factors such as
test-generation capability of Pex.

6 Related Work

Pex [22] accepts PUTs and uses dynamic symbolic execution to generate test inputs.
Although we use the Pex terminology in describing our generalization procedure, our

Retrofitting Unit Tests for Parameterized Unit Testing 307

procedure is independent of Pex and can be applied with other testing tools that ac-
cept unit tests with parameters such as JUnitFactory [1] for Java testing. Other existing
tools such as Parasoft Jtest [2] and CodeProAnalytiX [3] adopt the design-by-contract
approach [17] and allow developers to specify method preconditions, postconditions,
and class invariants for the unit under test and carry out symbolic execution or random
testing to generate test inputs. More recently, Saff et al. [19] propose theory-based test-
ing and generalize six Java applications to show that the proposed theory-based testing
is more effective compared to traditional example-based testing. A theory is a partial
specification of a program behavior and is a generic form of unit tests where assertions
should hold for all inputs that satisfy the assumptions specified in the unit tests. A the-
ory is similar to a PUT and Saff et al.’s approach uses these defined theories and applies
the constraint solving mechanism based on path coverage to generate test inputs similar
to Pex. In contrast to our study, their study does not provide a systematic procedure of
writing generalized PUTs or show empirical evidence of benefits of PUTs as shown in
our study.

There are existing approaches [8, 18, 14] that automatically generate required
method-call sequences that achieve different object states. However, in practice, each
approach has its own limitations. For example, Pacheco et al.’s approach [18] gener-
ates method-call sequences randomly by incorporating feedback from already generated
method-call sequences. However, such a random approach can still face challenges in
generating desirable method-call sequences, since often there is little chance of generat-
ing required sequences at random. In our test generalization, we manually write factory
methods to assist Pex in generating desirable object states for non-primitive data types,
when Pex’s existing sequence-generation strategy faces challenges.

In our previous work [16], we presented an empirical study to analyze the use of
parameterized mock objects in unit testing with PUTs. We showed that using a mock
object can ease the process of unit testing and identified challenges faced in testing code
when there are multiple APIs that need to be mocked. In our current study, we also use
mock objects in our testing with PUTs. However, our previous study showed the benefits
of mock objects in unit testing, while our current study shows the use of mock objects
to help achieve test generalization. In our other previous work with PUTs [25], we
propose mutation analysis to help developers in identifying likely locations in PUTs that
can be improved to make more general PUTs. In contrast, our current study suggests a
systematic procedure of retrofitting CUTs for parameterized unit testing.

7 Conclusion

Recent advances in software testing introduced parameterized unit tests (PUTs) [23],
which are a generalized form of conventional unit tests (CUTs). With PUTs, devel-
opers do not need to provide test data (for PUTs), which are generated automatically
using state-of-the-art test-generation approaches such as dynamic symbolic execution.
Since many existing applications often include manually written CUTs, in this paper,
we present an empirical study to investigate whether existing CUTs can be retrofitted
as PUTs to leverage the benefits of PUTs. We also proposed a methodology, called
test generalization, for systematically retrofitting CUTs as PUTs. Our empirical results

308 S. Thummalapenta et al.

show that test generalization helped detect 19 new defects and also helped achieve ad-
ditional branch coverage of the code under test. In future work, we plan to automate our
methodology to further reduce the manual effort required for test generalization. Fur-
thermore, given the results of our current study, we plan to conduct further empirical
study to compare the cost and benefits involved in writing PUTs directly, and writing
CUTs first and generalizing those CUTs as PUTs using our methodology.

Acknowledgments

This work is supported in part by NSF grants CCF-0725190, CCF-0845272, CCF-
0915400, CNS-0958235, ARO grant W911NF-08-1-0443, and ARO grant W911NF-
08-1-0105 managed by NCSU SOSI.

References

1. Agitar JUnit Factory (2008),
http://www.agitar.com/developers/junit_factory.html

2. Parasoft Jtest (2008),
http://www.parasoft.com/jsp/products/home.jsp?product=Jtest

3. CodePro AnalytiX (2009), http://www.eclipse-plugins.info/eclipse/
plugin_details.jsp?id=943

4. Pex - automated white box testing for .NET (2009),
http://research.microsoft.com/Pex/

5. Code Contracts (2010), http://research.microsoft.com/en-us/projects/
contracts/

6. Pex Documentation (2010),
http://research.microsoft.com/Pex/documentation.aspx

7. Cansdale, J., Feldman, G., Poole, C., Two, M.: NUnit (2002),
http://nunit.com/index.php

8. Csallner, C., Smaragdakis, Y.: JCrasher: an automatic robustness tester for Java. Softw. Pract.
Exper. 34(11) (2004)

9. Daniel, B., Jagannath, V., Dig, D., Marinov, D.: ReAssert: Suggesting repairs for broken unit
tests. In: Proc. ASE, pp. 433–444 (2009)

10. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed Automated Random Testing. In: Proc.
PLDI, pp. 213–223 (2005)

11. Granville, B., Tongo, L.D.: Data structures and algorithms (2006),
http://dsa.codeplex.com/

12. de Halleux, J.: Quickgraph, graph data structures and algorithms for .NET (2006),
http://quickgraph.codeplex.com/

13. Jaygarl, H., Kim, S., Xie, T., Chang, C.K.: OCAT: Object capture-based automated testing.
In: Proc. ISSTA, pp. 159–170 (2010)

14. Khurshid, S., Pasareanu, C.S., Visser, W.: Generalized symbolic execution for model check-
ing and testing. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp.
553–568. Springer, Heidelberg (2003)

15. King, J.C.: Symbolic execution and program testing. Communications of the ACM 19(7),
385–394 (1976)

http://www.agitar.com/developers/junit_factory.html
http://www.parasoft.com/jsp/products/home.jsp?product=Jtest
http://www.eclipse-plugins.info/eclipse/plugin_details.jsp?id=943
http://www.eclipse-plugins.info/eclipse/plugin_details.jsp?id=943
http://research.microsoft.com/Pex/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/Pex/documentation.aspx
http://nunit.com/index.php
http://dsa.codeplex.com/
http://quickgraph.codeplex.com/

Retrofitting Unit Tests for Parameterized Unit Testing 309

16. Marri, M.R., Xie, T., Tillmann, N., de Halleux, J., Schulte, W.: An empirical study of testing
file-system-dependent software with mock objects. In: Proc. AST, Business and Industry
Case Studies, pp. 149–153 (2009)

17. Meyer, B.: Object-Oriented Software Construction. Prentice Hall PTR, Englewood Cliffs
(2000)

18. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test generation.
In: Proc. ICSE. pp. 75–84 (2007)

19. Saff, D., Boshernitsan, M., Ernst, M.D.: Theories in practice: Easy-to-write specifications
that catch bugs. Tech. Rep. MIT-CSAIL-TR-2008-002, MIT Computer Science and Ar-
tificial Intelligence Laboratory (2008), http://www.cs.washington.edu/homes/
mernst/pubs/testing-theories-tr002-abstract.html

20. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In: Proc.
ESEC/FSE, pp. 263–272 (2005)

21. Thummalapenta, S., Xie, T., Tillmann, N., de Halleux, P., Schulte, W.: MSeqGen: Object-
oriented unit-test generation via mining source code. In: Proc. ESEC/FSE, pp. 193–202
(2009)

22. Tillmann, N., de Halleux, J.: Pex–white box test generation for .NET. In: Beckert, B., Hähnle,
R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg (2008)

23. Tillmann, N., Schulte, W.: Parameterized Unit Tests. In: Proc. ESEC/FSE, pp. 253–262
(2005)

24. Xie, T., Marinov, D., Notkin, D.: Rostra: A framework for detecting redundant object-
oriented unit tests. In: Proc. ASE, pp. 196–205 (2004)

25. Xie, T., Tillmann, N., de Halleux, P., Schulte, W.: Mutation analysis of parameterized unit
tests. In: Proc. Mutation, pp. 177–181 (2009)

http://www.cs.washington.edu/homes/mernst/pubs/testing-theories-tr002-abstract.html
http://www.cs.washington.edu/homes/mernst/pubs/testing-theories-tr002-abstract.html

Evolving a Test Oracle in Black-Box Testing

Farn Wang1,2, Jung-Hsuan Wu1, Chung-Hao Huang1,2, and Kai-Hsiang Chang1

1 Dept. of Electrical Engineering, 2 Graduate Institute of Electronic Engineering
National Taiwan University, Taiwan, ROC

farn@cc.ee.ntu.edu.tw

Abstract. Software testing is an important and expensive activity to
the software industry, with testing accounting for over 50% of the cost
of software. To ease this problem, test automation is very critical to the
process of software testing. One important issue in this automation is to
automatically determine whether a program under test (PUT) responds
the correct(expected) output for an arbitrary input. In this paper, we
model PUTs in black-box way, i.e. processing and responding a list of
numbers, and design input/output list relation language(IOLRL) to for-
mally describe the relations between the input and output lists. Given
several labelled test cases(test verdicts are set), we use genetic program-
ming to evolve the most distinguishing relations of these test cases in
IOLRL and encode the test cases into bit patterns to build a classifier
with support vector machine as the constructed test oracle. This classi-
fier can be used to automatically verify if a program output list is the
expected one in processing a program input list. The main contribution
of this work are the designed IOLRL and the approach to construct test
oracle with evolve relations in IOLRL. The experiments show the con-
structed test oracle has good performance even when few labelled test
cases are supplied.

Keywords: test oracle, input/output list relation language, genetic pro-
gramming, support vector machine, black-box testing.

1 Introduction

Software testing is an important and expensive activity to the software industry,
with testing accounting for over 50% of the cost of software [6]. To ease this
situation, test automation is very critical to the process of software testing [4,5].
One important issue in the test automation is an automated test oracle. A test
oracle is a mechanism to determine whether an output is the expected output
of a program under test (PUT) against an input. Once the test oracle can be
automated, the correctness of program outputs can be verified without human
intervention. Therefore the efficiency of software testing process can be enhanced.

In this paper, we investigate the problem of test oracle automation in black-
box approach. The behavior of a PUT is modelled to process a list of numbers and
respond a list of numbers. We design input/output list relation language(IOLRL)
to describe the relations between the input and output lists and propose an

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 310–325, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Evolving a Test Oracle in Black-Box Testing 311

approach to construct a test oracle with labelled test cases by incorporating the
techniques of genetic programming and support vector machine. With genetic
programming, relations in IOLRL are evolved to describe the behaviors of a
PUT and used to encode the labelled test cases into bit patterns. With these bit
patterns, an SVM classifier can be trained and used to verify if an output list is
the expected one of a PUT in processing an input list. Hence an automated test
oracle is constructed.

The remainder of this paper is structured as follows: Section 2 reviews the
related work. Section 3 reviews the background materials of software testing,
genetic programming and support vector machine. Section 4 introduces the in-
put/output list relation language(IOLRL). Section 5 presents the procedures
of our proposed approach. Section 6 reports the experiments. Section 7 is the
conclusion.

2 Related Work

In the literature, there have been several researches addressing on the issue of
test oracle automation. Brown, et al, [1] use white-box approach to automati-
cally generate a test oracle from formally specified requirements. Peters, et al, [8]
constructs a test oracle from program documentations. Chen, et al, [3] constructs
a test oracle with metamorphic testing which needs to identify the PUT prop-
erties first. In contrast to these approaches, out approach is black-box based
and constructs test oracle from test cases which are generally easier for users to
supply.

The approach proposed by Vanmali, et al, [10] also construct a test oracle
from test cases with neural network technique. Compare to their approach, our
approach emphasizes on the relation of the input and output data of a PUT and
automatically figures out the relations to infer the PUT’s behavior with these
data. The experiments in section 6 shows that our approach performs better
with fewer supplied test cases. In some cases with large amount of supplied test
cases, our approach can also performs better.

3 Background

In this section, we first introduce the model of a PUT in this paper and review
the definitions of test oracle and test case. Then the background knowledge about
genetic programming and support vector machine are introduced.

3.1 Definitions

The considered PUTs in this paper are abstracted into programs that take se-
quences of integers as their input and respond sequences of integers as their
output. We also assume the behaviors of such PUTs can only be observed from
the input lists and output lists. Therefore we have the following definitions. For
convenience, we use N to denote the non-negative numbers and Z to denote the
integer numbers.

312 F. Wang et al.

Definition 1. (Input list) An input list I : N → (N → Z) is a finite sequence
such that each element of I is a finite sequence of integers. �

Two input lists I, I ′ are equal if I(i)(j) = I ′(i)(j), 0 ≤ i, j.

Definition 2. (Output list) An output list O : N → (N → Z) is a finite
sequence such that each element of O is a finite sequence of integers. �

Two output lists O, O′ are equal if O(i)(j) = O′(i)(j), 0 ≤ i, j.

Definition 3. (PUT) A program under test (PUT) π : (N → (N → Z)) →
(N → (N → Z)) is a partial function that maps an input list to an output list.

�

Note that we restrict the size of sequences of input and output lists to be finite.
This restriction is natural since computer systems are always restricted to finite
sets in practice [8]. We use example 1 to explain the formal modelling of the
considered PUT.

Example 1. Consider a list-processing program that searches for an integer out
of a sequence of numbers. If the sequence contains this integer, the index of this
integer in the sequence will be returned, otherwise −1 will be returned. With
the above formal notation, let I = {{3, 10, 36, 5}, {5}} be an input list of this
program. If this program responds O = {{3}}, then {I → O} is one of the
mappings of this program.

Definition 4. (Test oracle) A test oracle of a PUT is a total function ω :
(N → (N → Z), N → (N → Z)) → {pass, fail}. Given an input list I and
an output list O, ω(I, O) = pass if O is the correct output of this PUT in
processing I. Otherwise ω(I, O) = fail. Ideally, the mapping of a test oracle is
always correct. �

Intuitively, a test case is a description to describe the output list of a PUT
in processing an input list. This test case is also labelled with a verdict bit to
indicate whether the described output list is the correct response. We formally
define a test case as follows.

Definition 5. (Test case) A test case t = (I, O, v) is a triple where

– I is an input list,
– O is an output list, and
– v ∈ {pass, fail} is a verdict bit to label this test case. v = pass indicates O

is a correct response against I. Otherwise O is not a correct response.

For convenience, we denote tI the input list of t, tO the output list of t and tv

the verdict bit of t. �
For example, with the PUT illustrated in example 1, a test case ({{3, 10, 36, 5},
{5}}, {{−1}}, fail) describes ”−1” is not the expected output list in the search-
ing for 5 out of the sequence {3, 10, 36, 5}. Another test case ({{3, 10, 36, 5},
{5}}, {{3}}, pass) describes ”3” is expected in the searching for 5.

Evolving a Test Oracle in Black-Box Testing 313

3.2 Genetic Programming

Genetic programming (GP) [7, 12, 9] is an evolutionary computation (EC) tech-
nique that automatically solves problems without requiring the user to know or
specify the form or structure of the solution in advance. It follows the Darwin’s
theory that transforms populations of individuals into new populations of in-
dividuals generation by generation. GP, like nature, is a random process, and
it can never guarantee results. GP’s essential randomness, however, can lead it
to escape traps which deterministic methods may be captured by. Like nature,
GP has been very successful at evolving novel and unexpected ways of solving
problems [9].

GP starts with a population of randomly generated individuals. Each indi-
vidual is scored with a fitness function. Then, these individuals will reproduce
itself, crossover with another individual and mutate into a new population. In-
dividuals with higher scores will perform these operations more frequently. Then
the average fitness value of the new evolved population will, almost certainly,
be better than the average of the previous population. The individuals in the
new population are evaluated again according to the fitness function. Operations
such as reproduction, crossover and mutation are again applied to this new pop-
ulation. After sufficient generations, the best individual in the last population
would be an excellent solution to the posed problem.

The key components of GP are as follows:

– A syntax to represent individuals. In GP, individuals are usually expressed
as syntax trees.

– A fitness function to evaluate how well each individual can survive in the
environment.

– A method to initialize a population. The full, grow and ramped half-and-half
methods are common in this regard. In both the full and grow methods, the
initial individuals, i.e. syntax trees, are generated so that they do not exceed
a user specified maximum depth and the tree nodes are randomly taken.
The difference is the syntax trees generated by the full method are complete
and the syntax trees generated by the grow method are not necessary to be
complete. In the ramped half-and-half method, it simply generates half of
the population by the full method and half of the population by the grow
method to help ensure the generated trees having a variety of sizes and
shapes.

– A genetic operator to probabilistically select better individuals based on
fitness. The most commonly employed method is tournament selection. In
tournament selection, a number of individuals are chosen at random from
the population. Then these chosen individuals are compared with each other
and the top n are chosen to be the parents (n is decided according to the
number of parents it needed in the successive genetic operator). Note that
the number of randomly chosen individuals should not be too large in order
to keep the diversity of individuals in each generation.

– Genetic operators to generate offspring individuals from the parent individ-
uals. The common used operator are subtree crossover, subtree mutation and

314 F. Wang et al.

reproduction. Given two parent individuals, subtree crossover randomly se-
lects a node in each parent individual and swaps the entire subtrees. Given a
parent individual, the subtree mutation randomly selects a node and substi-
tutes the subtree rooted there with a randomly generated subtree. Given a
parent individual, the reproduction operator simply inserts a copy of it into
the next generation.

– A termination criterion to stop evolving new population. Usually the termi-
nation criterion is a number specified by user to determine the maximum
generation to evolve.

Due to the page limit, we refer the interesting readers to [7,12,9] for the details
of these components.

The syntax should have an important property call Sufficiency which means
it is possible to express a solution to the problem using the syntax. Unfortu-
nately, sufficiency can be guaranteed only for those problems where theory, or
experience with other methods, tells us that a solution can be obtained with the
syntax [9]. When a syntax is insufficiency, GP can only develop individuals that
approximate the desired one. However, in many cases such an approximation
can be very close and good enough for the user’s purpose.

For GP to work effectively, most non-terminal nodes in a syntax tree are also
required to have another important closure property [7] which can be further
broken down into the type consistency and evaluation safety properties. Since
the crossover operator can mix and join syntax nodes arbitrarily, it is neces-
sary that any subtree can be used in any of the argument positions for every
non-terminal node. Therefore it is common to require all the non-terminal nodes
to be type consistent, i.e. they all return values of the same type, and each of
their arguments also have this type. An alternative to require the type consis-
tency is to extend the crossover and mutation operators to explicitly make use
of the type information so that the offsprings they produce do not contain illegal
type mismatches. The other component of closure is evaluation safety. Evalua-
tion safety is required because individuals may fail in an execution. In order to
preserve the evaluation safety property, modifications of normal behaviors are
common. An alternative is to reduce the fitness of individuals that have such
errors. In section 5, we will describe how to handle the closure and evaluation
safety properties in our application.

3.3 Support Vector Machine

The support vector machine (SVM) [11, 13] is a technique motivated by statis-
tical learning theory and has been extensively used to solve many classification
problems. It is a method to learn functions from a set of labelled training data
points. The idea is to separate two classes of the labelled training data points
with a decision boundary which maximizes the margin between them. In this
paper, we will only consider a binary classification task with a set of n labelled
training data points: (xi, yi), where xi ∈ RN and yi ∈ {+1,−1} indicates its cor-
responding class. The SVM technique tries to separate the training data points

Evolving a Test Oracle in Black-Box Testing 315

with a hyperplane xi
T w + b = 0 with the maximum margin where w ∈ RN is

normal to the hyperplane and b ∈ R is a bias. The margin of such hyperplane is
defined by the sum of the shortest distance from the hyperplane to the closest
positive training data points and the closest negative training data points. Due
to the page limit, we refer the interesting readers to [11, 13] for the details.

One of the advantages of SVM is that the learning task is insensitive to the
relative numbers of training data points in positive and negative classes. Another
advantage is SVM can achieve a lower false alarm rate. Most learning algorithm
based on Empirical Risk Minimization will tend to classify only the positive class
correctly to minimize the error over data set. Since SVM aims at minimizing a
bound on the generalization error of a model in high dimensional space, so called
Structural Risk Minimization, rather than minimizing the error over data set,
the training data points that are far behind the hyperplane will not change the
support vectors. Therefore, SVM can achieve a lower false alarm rate.

4 Input/Output List Relation Language(IOLRL)

In this section, we present the input/output list relation language (IOLRL) to
formally describe the relations between the input and output lists of test cases.
The syntax of the language IOLRL in BNF form is as follows:

< Rule > := < Rule >< BOP >< Rule >
| ¬ (< Rule >)
| ∃ < qvar > (< Rule >)
| ∀ < qvar > (< Rule >)
| < Elem >< ROP >< Elem >
| < Elem >< InOP >< Elems >;

< Elems > := < List > [< nv >];
< Elem > := < Math > (< List > [< nv >])

| < List > [< nv >][< nv >]
| < nv > + < nv >
| < nv > − < nv >
| < nv >;

< Math > := max | min | average | sum;
< BOP > := ∧ | ∨;
< ROP > := = | �= | ≤ | > | < | ≥;
< InOP > := ∈ ;
< qvar > := < var > ;
< nv > := < num > | < var >;
< num > := 0 | 1 | 2 | . . . ;
< var > := i | j | . . . ;
< List > := InputList | OutputList;

Note that for simplicity, the syntax rule < num > is limited from 0 to 9 and the
syntax rule < var > is limited to i and j in the demonstration experiments in
section 6.

316 F. Wang et al.

The syntax of IOLRL are self-explained of its semantics. We use three example
relations to explain the IOLRL semantics.

– ∃i(∀j(OutputList[0][j] ∈ InputList[i])). This relation describes there exists
a sequence InputList[i] such that every element of the sequence OutputList[0]
appears in InputList[i].

– ∀i(OutputList[0][i] ≤ OutputList[0][i + 1]). This relation describes the ele-
ments in the sequence OutputList[0] are in non-decreasing order.

– sum(InputList[0]) ∈ OutputList[0]. This relation describes the summation
of the sequence InputList[0] is in the sequence OutputList[0].

For convenience, we denote R the set of relations described in IOLRL. For a
relation in R, we use it to test if the input/output lists of a test case satisfy this
relation. Therefore we have the following definition.

Definition 6. (Evaluation) Given a test case t and a relation r ∈ R, an
evaluation ηr : (N → (N → Z), N → (N → Z)) → {0, 1} is a function such that{

ηr(tI , tO) = 1 if t satisfies r
ηr(tI , tO) = 0 if t does not satisfy r �

We introduce IOLRL and the evaluation in this paper for two main reasons.

1. We assume that an encoding with emphasis on the relation between the
input and output lists can enhance the performance of the constructed test
oracle.

2. Since we use SVM to construct the test oracle and the training data points
processed by SVM are numbers, we need an encoding mechanism from a test
case into numbers. The evaluation of test cases for each relation provides such
transformation.

5 Implementation

This work is implemented with the auxiliaries of the genetic programming library
GPC++ [14] and the SVM library libsvm [2]. Given a set of labelled test cases
as the training data and a PUT, the basic idea is to use GP to evolve several
relations to well separate the pass and fail test cases. Here the individuals of
GP are relations in IOLRL syntax. Then with the evolved relations, we train
an SVM model based on the evaluations and labelling of these test cases. This
trained SVM model is thus our constructed test oracle.

Figure 1 is the flowchart to construct a test oracle. We first explain the pro-
cedures as follows and the detail procedures in the next.

Step 1. Create an initial population with n relations by the ramped half-and
half method. The maximum tree depth is arbitrarily set to 8.

Step 2. Evaluate each labelled test case with the n relations.

Evolving a Test Oracle in Black-Box Testing 317

Step 3. Increase gen by 1. If gen does not exceed the user-defined maximum
generation, calculate the fitness for each relation and go to step 4. Otherwise,
go to step 5.

Step 4. Repeat to generate new offspring relations until n relations are gener-
ated. By setting the probability to 90% of performing crossover operation,
Approximately 90% of the new population are generated with crossover op-
erator. The rest of the population are generated with reproduction operator.
Go to step 2. Note that 90% of crossover rate is set here because this is a
typical setting [9]. We also simply eliminate the mutation operator because
the probability to apply a mutation operator is relatively small (typically
1% rate).

Step 5. Train an SVM model as the constructed test oracle according to the
evaluation of the training data. The used SVM kernel is radial basis function
(RBF).

Create n relations
with the ramped

half-and-half method

yes

no

Train an SVM model
according to the

evaluation of each
training test cases

gen := 0

gen := gen + 1

Select 1 relation with
tournament selection to

perform reproduction

Select 2 relations with
tournament selection to

perform subtree crossover

Calculate the
fitness for each

relation

Start

End

no

yes

yes

no

Toss a coin with 90%
probability to decide

whether to perform the
crossover operation

gen > maximum
generation?

The number of
relations in new
population < n

Fig. 1. The flowchart of the proposed method

Intuitively, a good relation should be able to distinguish test cases that are
labelled to different verdicts and should not be able to distinguish test cases that
are labelled to the same verdict. Therefore for those test cases that are labelled
to pass, all the evaluations of these test cases should be either 0 or 1. And for
those test cases that are labelled to fail, all the evaluations should be in the
opposite side. The procedure to calculate the fitness of a relation in step 3 is
described as follows. Note that the less returned number of this procedure means
the better of the relation.

318 F. Wang et al.

relation fitness
input A list of test cases T and a relation r.
output A real number.
1: Let m and v be the mean and variance of {ηr(tI , tO)|tv = pass and t ∈ T }.
2: Let m′ and v′ be the mean and variance of {ηr(tI , tO)|tv = fail and t ∈ T }.
3: Return v + v′ − |m − m′|.
To preserve the type consistency property in the generated relations, we im-

plement the GP as strongly typed GP [9]. Therefore in an IOLRL syntax tree,
every terminal symbol has a type and every non-terminal symbol has types for
each of its arguments and a type for its return value. The process that generated
the initial random individuals and the crossover operator are implemented under
the type constraints. In our experiment, each left-hand-side symbol of IOLRL
grammar rules has its own type. The procedure to create an individual in step
1 can only randomly pick a symbol of the demanded type to expand a syntax
tree. The crossover operation in step 4 can only swap subtrees that return the
same type.

As for the evaluation safety property, we can see that a generated relation may
not be able to be evaluated. For example, ∀i(∃i(OutputList[0][j] < 9)) is unable
to be evaluated for any test case. Therefore for those relations that are unable
to be evaluated, their fitness are set to the worst value among the population.

Since we construct a test oracle with SVM in step 5 and the input of SVM
is a set of labelled numeric points, we need to prepare an input for SVM from
the evolved relations and training data.bbvv Therefore we have the following
procedure. Then the training procedure of SVM is inferred to [2].

prepare training data
input A list of relations R and a list of test cases T .
output a set of training data points.
1: Let D be an empty set.
2: for i = 1 to |T | do
3: Let t be the ith relation of T .
4: Let M be a zero vector of size |R|.
5: for j = 1 to |R| do
6: Let r be the jth relation of R.
7: mj = ηr(tI , tO). /* mj is the jth element of M . */
8: end for
9: if tv is pass then label = 1 else label = −1 end if

10: D = D ∪ (M, label).
11: end for
12: Return D.

6 Experiment

We use the following three benchmarks(PUTs) to demonstrate our technique.

Evolving a Test Oracle in Black-Box Testing 319

– Binary search. The binary search program takes a numeric sequence and
a number as its input and should respond the index of the number in the
sequence. If the number is not in the sequence, −1 is responded. An example
test case is ({{1, 4, 5, 6, 7, 7}, {0}}, {{−1}}, pass).

– Quick sort. The quick sort program takes a numeric sequence as its input
and should respond the sequence in non-decreasing order. An example test
case of this program is ({{4, 5, 6, 8, 9, 4, 7, 10, 21}}, {{4, 4, 5, 6, 7, 8, 9, 10, 21}},
pass).

– Set intersection. The set intersection program takes 2 numeric sequences
as its input and should respond a sequence of the intersected numbers. In
order to perform the operation efficiently, set intersection programs gen-
erally require the input sequences to be ordered and therefore the inter-
sected sequence is also ordered. The benchmark here requires that the input
and output sequences are in non-decreasing order. An example test case is
({{1, 5, 7, 8, 9}, {1, 5, 9}}, {{1, 5, 9}}, pass).

For each benchmark, we generate a data set with the following strategies.

– The half of the data set are test cases with pass verdict and the others are
with fail verdict.

– For each test case, the numbers in the input list are generated at random
between 1 to 50 and the size of the sequences in the input list are decided
at random between 1 to 20.

– For test cases with pass verdict, the output lists are computed according to
the correct behavior of the benchmark.

– For test cases with fail verdict, the output lists are generated with the
following types of fault at uniform distribution.
• Binary search. The output can be a random number other than the

index of the searched number, the searched number itself rather than
the index, and a sequence of randomly generated numbers.

• Quick sort. The output can be a sequence of randomly generated num-
bers with different/the same size of the sequence in the input list, and an
ordered sequence of randomly generated numbers other than the correct
sequence.

• Set intersection. The output can be a sequence of randomly generated
numbers with random size/minimal size of sequences in the input list,
and an unordered sequence of intersected numbers.

Note that the domain of randomly generated numbers and the size of sequences
are limited for simplicity.

The experiments are conducted in two parts. The first part presents the per-
formance data of our approach with different parameters and the next part
presents the comparison data of the neural network approach in [10] and our
approach with GP evolved/user specified relations.

6.1 Performance Study

Since our approach only require a set of labelled test cases to construct a test
oracle, users may want to know how many test cases are sufficient and how to

320 F. Wang et al.

setup the GP parameters with better performance. In this section, we present
the experimental studies of training data size and GP population size. The per-
formance of constructed test oracle is measured with prediction accuracy and
time cost. The prediction accuracy is the percentage of correctly labelled test
cases of a testing data set with the constructed test oracle. The time cost is the
used time to evolve the relations and train the test oracle. The experimental data
are collected on Intel Pentium CPU T4200@2.00 GHz with 3G RAM, running
Ubuntu 8.04.

To objectively demonstrate the performance with different population size, we
have collected the performance data for each benchmark with 4 different training
data sets of size 50. For each benchmark, the prediction accuracy is tested with
a testing data set of size 3000. Each experiment is run for 10 times and the
average performance data is reported. As we can see in Figure 2, Figure 3 and
Figure 4, the prediction accuracy climbs fast and is better with larger population
size. The impact of population size is significant because greater diversity in the
population can result in higher chance to evolve good relations. The time cost is
summarized in Table 1, Table 2 and Table 3. The tables indicate our approach
constructs a test oracle in reasonable time with good accuracy.

To objectively demonstrate the effect of different training data size, we have
collected the performance data for each benchmark with 4 different populations.
Each population consists of 400 relations and the maximal generation is 50. For
each benchmark, the prediction accuracy is tested with a testing data set of 3000

80.00%
90.00%

100.00%

cy

30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

population 25

population 50

population 100

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

population 25

population 50

population 100

population 200
0.00%

10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 25

population 50

population 100

population 200
0.00%

10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 25

population 50

population 100

population 200
0.00%

10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 25

population 50

population 100

population 200

80.00%
90.00%

100.00%

cy

30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

population 25

population 50

population 100

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

population 25

population 50

population 100

population 200
0.00%

10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 25

population 50

population 100

population 200
0.00%

10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 25

population 50

population 100

population 200
0.00%

10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 25

population 50

population 100

population 200

data set 1 data set 2

80.00%
90.00%

100.00%

cy

30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

population 25

population 50

population 100

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

population 25

population 50

population 100

population 200
0.00%

10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 25

population 50

population 100

population 200
0.00%

10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 25

population 50

population 100

population 200
0.00%

10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 25

population 50

population 100

population 200

80.00%
90.00%

100.00%

cy

30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

population 25

population 50

population 100

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

population 25

population 50

population 100

population 200
0.00%

10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 25

population 50

population 100

population 200
0.00%

10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 25

population 50

population 100

population 200
0.00%

10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 25

population 50

population 100

population 200

data set 3 data set 4

Fig. 2. Prediction accuracy with different population size for binary search benchmark

Evolving a Test Oracle in Black-Box Testing 321

80.00%
90.00%

100.00%
cy

30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%
Pr

ed
ic

ti
on

 a
cc

ur
ac

y

population 100

population 200

population 400

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

population 100

population 200

population 400

population 800
0.00%

10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 100

population 200

population 400

population 800
0.00%

10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 100

population 200

population 400

population 800
0.00%

10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 100

population 200

population 400

population 800

80.00%
90.00%

100.00%

cy

30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

population 100

population 200

population 400

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

population 100

population 200

population 400

population 800
0.00%

10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 100

population 200

population 400

population 800
0.00%

10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 100

population 200

population 400

population 800
0.00%

10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 100

population 200

population 400

population 800

data set 1 data set 2

80.00%
90.00%

100.00%

cy

30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

population 100

population 200

population 400

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

population 100

population 200

population 400

population 800
0.00%

10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 100

population 200

population 400

population 800
0.00%

10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 100

population 200

population 400

population 800
0.00%

10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 100

population 200

population 400

population 800

80.00%
90.00%

100.00%

cy
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

population 100

population 200

population 400

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

population 100

population 200

population 400

population 800
0.00%

10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 100

population 200

population 400

population 800
0.00%

10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 100

population 200

population 400

population 800
0.00%

10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 100

population 200

population 400

population 800

data set 3 data set 4

Fig. 3. Prediction accuracy with different population size for quick sort benchmark

0.8
0.9

1

cy

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

population 100

population 200

population 400

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

population 100

population 200

population 400

population 800
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 100

population 200

population 400

population 800
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 100

population 200

population 400

population 800
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 100

population 200

population 400

population 800

0.8
0.9

1

cy

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

population 100

population 200

population 400

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

population 100

population 200

population 400

population 800
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 100

population 200

population 400

population 800
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 100

population 200

population 400

population 800
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 100

population 200

population 400

population 800

data set 1 data set 2

0.8
0.9

1

cy

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

population 100

population 200

population 400

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

population 100

population 200

population 400

population 800
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 100

population 200

population 400

population 800
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 100

population 200

population 400

population 800
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 100

population 200

population 400

population 800

0.8
0.9

1

cy

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

population 100

population 200

population 400

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

population 100

population 200

population 400

population 800
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 100

population 200

population 400

population 800
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 100

population 200

population 400

population 800
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
ti

on
 a

cc
ur

ac
y

Generation

population 100

population 200

population 400

population 800

data set 3 data set 4

Fig. 4. Prediction accuracy with different population size for set intersection bench-
mark

322 F. Wang et al.

Table 1. Performance data of binary search benchmark

Population
size 25 50 100 200

data set 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
accuracy(%) 71.1 67.6 76.5 70.8 83.9 69.1 84.9 76.2 84.7 91.2 92.0 84.4 91.6 91.4 92.1 91.2
time cost(s) 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.3 1.4 0.6 1.0 0.8 3.2 1.9 3.5 2.6

Table 2. Performance data of quick sort benchmark

Population
size 100 200 400 800

data set 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
accuracy(%) 65.7 71.4 54.9 57.1 70.8 84.0 69.1 61.1 71.1 78.7 86.1 71.8 94.3 96.7 90.9 92.3
time cost(s) 0.5 2.2 1.4 4.4 3.1 4.4 1.7 4.2 7.9 13.2 7.2 21.6 33.5 41.9 64.3 43.9

Table 3. Performance data of set intersection benchmark

Population
size 100 200 400 800

data set 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
accuracy(%) 60.3 64.0 62.0 58.4 68.9 64.8 57.7 66.1 74.3 71.2 69.5 72.5 83.0 79.5 79.0 78.6
time cost(s) 7.9 8.5 2.1 2.1 5.5 10.3 5.3 19.1 43.6 67.3 18.1 20.7 138.6 183.3 58.9 287.5

test cases. Each experiment is run for 10 times and the average performance data
is reported. As we can see in Table 4, the training data size does not effect the
prediction accuracy very much.

The parameter studies of the population size and training data size have
demonstrated the key point of our approach is to have well-evolved relations to
describe the behaviors of benchmarks rather than lots of training data. This is
especially useful in applications that are lack of training data.

6.2 Compare with Manually Specified Relations and Neural
Network Approaches

In the perfect condition of our approach, the GP evolved relations can com-
pletely distinguish the test cases of pass and fail verdicts. Therefore we show
the prediction accuracy of our approach by replacing the GP evolved relations
with manually specified relations in IOLRL. The manually specified relations de-
scribe the expected behaviors of the three benchmarks. For those test cases that
are labelled pass, they will be evaluated to be true with these relations, and vice
versa. Therefore, they can completely distinguish the pass and fail test cases.
This experiment is to show the sufficiency of IOLRL as the input/output list
relation specification language for the three benchmarks and the performance of
the constructed test oracle by SVM. We also compare the performance data to
our original approach to show the effectiveness of the GP procedures. At last,
we compare with the neural network based approach proposed by [10].

Evolving a Test Oracle in Black-Box Testing 323

Table 4. Prediction accuracy with different training data size

Benchmark population Training data size
10 20 50 100 200 400 800 1600

Binary
search

1 86.1 89.7 79.1 87.8 92.1 91.5 91.5 91.7
2 90.8 91.9 91.0 92.1 91.6 92.3 92.2 91.9
3 91.8 91.8 92.2 91.9 92.3 92.0 92.0 92.3
4 89.0 89.8 91.8 91.7 91.8 91.9 91.9 92.0

Quick
sort

1 60.0 56.7 63.3 63.7 60.8 82.2 69.5 65.5
2 63.5 61.2 59.1 61.9 57.5 58.7 75.4 70.7
3 59.3 64.2 52.3 63.7 62.4 61.4 83.2 73.9
4 62.9 66.2 68.4 55.6 68.9 59.9 65.4 69.2

Set
intersection

1 54.7 61.3 54.8 56.7 58.9 56.7 57.6 58.9
2 53.9 58.3 57.0 59.9 64.3 57.9 59.2 61.8
3 57.8 53.6 57.1 65.3 59.9 58.2 53.3 64.1
4 53.6 59.1 52.8 57.2 55.3 57.5 57.5 54.0

Table 5. Comparison of prediction accuracy with 50 training data

Benchmark data
set Our approach

Our approach
with manually

specified relations
NN approach

NN approach
with 400

training data

Binary
search

1 91.6

99.90

77.13 95.47
2 91.4 79.71 94.35
3 92.1 75.39 94.72
4 91.2 75.85 94.80

Quick
sort

1 94.3

99.90

58.98 65.57
2 96.7 56.23 66.33
3 90.9 55.32 64.86
4 92.3 56.00 67.01

Set
intersection

1 83.0

98.44

75.93 86.19
2 79.0 79.5 84.63
3 79.5 79.0 86.51
4 83.0 78.6 88.14

The manually specified relations are listed as follows.

– Binary search

∀i(InputList[0][i] ≤ InputList[0][i + 1])
∧ (OutputList[0][0] < 0) ∨ (InputList[0][OutputList[0][0]]=InputList[1][0])
∧ (OutputList[0][0] ≥ 0) ∨ (¬(InputList[1][0] ∈ InputList[0])

– Quick sort

∀i(OutputList[0][i] ≤ OutputList[0][i + 1])
∧ ∀i(InputList[0][i] ∈ OutputList[0])
∧ ∀i(OutputList[0][i] ∈ InputList[0])

324 F. Wang et al.

– Set intersection

∀i(OutputList[0][i] ∈ InputList[0] ∧ OutputList[0][i] ∈ InputList[1])
∧ ∀i(InputList[0][i] ∈ OutputList[0] ∨ ¬(InputList[0][i] ∈ InputList[1]))
∧ ∀i(InputList[1][i] ∈ OutputList[0] ∨ ¬(InputList[1][i] ∈ InputList[0]))
∧ ∀i(OutputList[0][i] ≤ OutputList[0][i + 1])
∧ ∀i(InputList[0][i] ≤ InputList[0][i + 1])
∧ ∀i(InputList[1][i] ≤ InputList[1][i + 1])

The comparison data is shown in Table 5. 800 population size and 50 maximal
generation are set in our approach. The experimental data shows that our ap-
proach performs better than neural network approach with small training data
size and evenly with larger training data size. It also shows that the IOLRL can
well-described the behaviors of the three benchmarks and the evolved relations
can approximate the performance of the manually specified relations.

7 Conclusion

In this paper, we model PUTs in black-box manner and design IOLRL to for-
mally describe the relations between the input and output list of PUTs. We
use genetic programming to evolve relations in IOLRL that can well separate
pass and fail test cases. With these relations and some labelled test cases, we
build an SVM model as a test oracle. The advantage of our approach is only
few test cases are needed to construct a test oracle. This is because we increase
the variable dimensions of the test cases by supplying large set of GP popula-
tion to evaluate the test cases. The potential problem is our designed IOLRL is
not sufficient to effectively describe the I/O relations that can well separate the
pass and fail test cases. However the experiments show the designed IOLRL is
sufficient for the three benchmarks. The performance gap between the evolved
relations and the manually specified relations can be compensated with better
configurations of the GP procedure. In summary, this paper proposes a novel
approach to evolve a test oracle with test cases and the experimental data shows
our constructed test oracle performs well.

References

1. Brown, D.B., Roggio, R.F., Cross II, J.H., McCreary, C.L.: An automated oracle
for software testing. IEEE Transactions on Reliability 41(2), 272–280 (1992)

2. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001),
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

3. Chen, T.Y., Ho, J.W.K., Liu, H., Xie, X.: An innovative approach for testing bioin-
formatics programs using metamorphic testing. BMC Bioinformatics 10 (2009)

4. Dustin, E., Rashka, J., Paul, J.: Automated software testing: introduction, man-
agement, and performance. Addison-Wesley Longman Publishing Co., Inc., Boston
(1999)

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Evolving a Test Oracle in Black-Box Testing 325

5. Edvardsson, J.: A survey on automatic test data generation. In: Proceedings of the
Second Conference on Computer Science and Engineering in Linköping, October
1999. ECSEL, pp. 21–28 (1999)

6. Jones, E.L., Chatmon, C.L.: A perspective on teaching software testing. In: Pro-
ceedings of the seventh annual consortium for computing in small colleges central
plains conference on The journal of computing in small colleges, USA, pp. 92–100.
Consortium for Computing Sciences in Colleges (2001)

7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

8. Peters, D.K., Parnas, D.L.: Using test oracles generated from program documen-
tation. IEEE Transactions on Software Engineering 24(3), 161–173 (1998)

9. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic pro-
gramming (2008), Published via, http://lulu.com, and freely available at
http://www.gp-field-guide.org.uk (With contributions by J. R. Koza)

10. Vanmali, M., Last, M., Kandel, A.: Using a neural network in the software testing
process. Int. J. Intell. Syst. 17(1), 45–62 (2002)

11. Vapnik, V.N.: Statistical Learning Theory. Wiley Interscience, Hoboken (1998)
12. Walker, M.: Introduction to genetic programming (2001)
13. Wang, Y.-C.F., Casasent, D.: A hierarchical classifier using new support vector

machine. In: ICDAR, pp. 851–855. IEEE Computer Society Press, Los Alamitos
(2005)

14. Weinbrenner, T.: Genetic programming techniques applied to measurement data.
Diploma Thesis (February 1997)

http://lulu.com
http://www.gp-field-guide.org.uk

Automated Driver Generation for Analysis of
Web Applications

Oksana Tkachuk and Sreeranga Rajan

Fujitsu Laboratories of America,
Sunnyvale, CA USA

{oksana,sree.rajan}@us.fujitsu.com

Abstract. With web applications in high demand, one cannot underes-
timate the importance of their quality assurance process. Web applica-
tions are open event-driven systems that take sequences of user events
and produce changes in the user interface or the underlying applica-
tion. Web applications are difficult to test because the set of possible
sequences of user inputs allowed by the interface of a web application
can be very large. Software model checking techniques can be effective
for validating such applications but they only work for closed systems. In
this paper, we present an approach for closing web applications with a
driver that contains two parts: (1) the application-specific Page Tran-
sition Graph (PTG), which encodes the application’s possible pages,
user and server events, their corresponding event-handlers, and user data
and (2) the application-independent PTG-based driver, which generates
test sequences that can be executed with analysis tools such as Java
PathFinder (JPF). The first part can be automatically extracted from
the implementation of a web application and the second part is written
once and reused across multiple web applications belonging to the same
framework. We implemented our approach in a driver generator that au-
tomatically extracts PTG models from implementation of JSP-based web
applications, checks the extracted PTGs for navigation inconsistencies,
and enables JPF analysis. We evaluated our approach on ten open-source
and industrial web applications and present the detected errors.

1 Introduction

Web applications are open event-driven systems that take sequences of user
events (e.g., button clicks in a browser window) and produce changes in the
user interface (e.g., transition to a different page) or the underlying application
(e.g., the shopping cart becomes empty). Web applications are difficult to test
because the set of possible user event sequences allowed by the interface of a
web application can be very large.

Current approaches to testing web applications often rely on constraining the
analysis based on a formal model (e.g., UML in [13], WebML in [3], state ma-
chines in [1,7,9,14]). Some approaches rely on user specifications (e.g., [3,7]) or
models extracted using run-time (e.g., [8,11,13]) or static analysis (e.g., [9,10]).

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 326–340, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Automated Driver Generation for Analysis of Web Applications 327

All approaches have their strengths and weaknesses. User specifications can cap-
ture the behavior that may be difficult to extract automatically but require
manual work. Run-time crawling techniques are designed to visit web pages au-
tomatically. However, without user guidance (e.g., specification of user input
data), crawlers may not be able to visit all possible pages of the application and
the extracted models may miss some behavior. Static analysis techniques work
well for specific domains and extracting specific features. For example, the ap-
proach in [10] extracts control flow graphs for web applications written in PLT
Scheme and checks their navigation properties with a specialized model checker.

At Fujitsu, we have successfully used Java PathFinder (JPF) [2] to check busi-
ness logic properties of web applications [12]. Our previous approach relied on
user specifications describing (1) sequences of user events using regular expres-
sions and (2) mappings from user events to the underlying application’s event
handlers that process them. Using these specifications, we automatically gener-
ated drivers that set up the event-handling code of the application under test,
generated and ran test sequences with JPF. However, using this approach, the
interface of the web application (e.g., its pages, buttons, and links) is abstracted
away, since JPF cannot handle non-Java components and the generated drivers
test the event-handling code of the application directly. In addition, the neces-
sity to specify use case scenarios hindered the usability of the approach within
the Fujitsu’s testing teams.

To address the above limitations, we needed (1) to encode possible use case
scenarios and event-handler registration information in a model, with an option
to represent this model in Java, so JPF could handle it and (2) to increase
usability by extracting this model automatically. In this paper, we present an
approach to closing web applications with a driver that contains two parts: (1)
the application-independent Page Transition Graph (PTG), which encodes the
application’s possible pages, user and server events, their corresponding event-
handlers, and user data and (2) the application-independent PTG-based driver,
which generates test sequences that can be executed with analysis tools such
as JPF. By splitting the driver into two parts, we enable automation: (1) using
framework-specific knowledge, the PTG can be automatically extracted from
implementation of web applications and (2) the PTG-based driver is written once
and reused across multiple web applications belonging to the same framework.

We implemented our driver generator and evaluated it on ten open-source and
industrial JSP-based web applications. For each application, the driver generator
(1) extracts and visualizes its PTG, (2) checks the extracted PTG for navigation
errors and (3) generates and executes test sequences with JPF. To the best
of our knowledge, this is the first driver generator that automatically extracts
both navigation and event-handling aspects of the web applications and enables
checking web applications with JPF.

This paper is organized as follows. The next section describes the PTG model
and its usage for analysis of general web applications. Section 3 describes au-
tomated PTG extraction for JSP-based web applications, using Struts1 as an

1 http://struts.apache.org/

http://struts.apache.org/

328 O. Tkachuk and S. Rajan

Fig. 1. PTG Class Diagram

example framework. Section 4 describes implementation of the PTG extractor.
Section 5 presents experiments for ten open-source and industrial examples,
including a discussion on the detected errors and limitations of the current ap-
proach. Section 6 describes the related work and Section 7 concludes.

2 Approach

In this section, we describe the PTG model, which is general enough to be
applicable to various types of event-driven applications (e.g, GUIs). The goal
of the PTG is to encode the navigation information and enable the registration
of the application event handlers and generation of sequences of user events to
drive the event-handling code of the web application under test. The PTG model
is a graph with nodes corresponding to possible pages of the web application
and transitions corresponding to possible user and server events, along with
information about the event-handlers, event data, and possible pre-conditions
for those events that require it. Equivalently, the PTG can be represented by a
finite state machine.

Figure 1 shows a UML class diagram of the main elements of the PTG model
designed based on our previous experience with model checking J2EE and GUI
applications using JPF. A populated PTG encodes application-specific information
about the application’s set of available pages. Some pages can be marked as
initial. Each Page contains a set of events attached to it. Each Event represents
a possible transition to another page. In this paper, we concentrate on user
events such as clicks on links and buttons and server events such as automatic
redirection from one page to another. Some events may not be always enabled
(e.g., buttons and links may become disabled depending on some condition).
To reflect this possibility, Event declares a field enabled. Button click events are
usually handled by the registered event handlers, therefore, events may have a
set of EventHandlers associated with them. Some events may require user data,
when filling out a form or writing into a text box. To reflect this possibility,
an event may have a set of EventData, filled with DataItems, attached to it. The
EventData is designed to hold keys and values, which correspond to the names

Automated Driver Generation for Analysis of Web Applications 329

public class EnvDriver {
public static HttpServletRequest req;
public static HttpServletResponse res;
public static AbstractPTG ptg;
public static void main(String [] args){
init(); //get populated ptg
Page initPage =ptg.getInitPage();
processPage(initPage);

}
public void processPage(Page p){
List eList=p.getEvents();
int nEvents =eList.size();
// nondeterministic choice over events
int eIndex=Verify.random(nEvents -1);
Event e=eList.get(eIndex);
if(e.isEnabled())
processEvent(e);

}

public void processEvent(Event e){
List dList=e.getEventData();
int nData=dList.size();
// nondeterministic choice over data
int dIndex =Verify.random(nData -1);
EventData ed=dList.get(dIndex);
req=new HttpServletRequestImpl();
processEventData(ed, req);
processEventHandling(e, req);

}
public Page processEventHandling(
Event e, HttpServletRequest req){
for(EventHandler h:e.getHandlers()){
res=h.perform (req , res);
nextPage =e.getNextPage(res);
processPage(nextPage);

}
}

Fig. 2. PTG-Based JPF Driver (excerpts)

of the text fields (e.g., userid and password on a login form and the user values
entered in those fields).

2.1 PTG Analysis

The PTG model offers two levels of information: (1) navigation and (2) navi-
gation with event-handling. The navigation level, containing information about
possible page transitions, can be used to perform analysis with respect to naviga-
tion properties. This analysis does not require the business tier of the application
under test to be part of the model, thus, it can be scalable and fast.

One can check various reachability properties (e.g., Page A is reachable from
page B). However, such checks require selecting specific page names from a list of
application pages. To simplify this step even further, we designed several checks
that look for possible violations without user specifications. In Section 5, we
present our experience with the following types of possible errors:

– Unreachable pages: pages unreachable from the initial page
– Ghost pages: referenced pages that do not exist
– Undefined transitions: transitions whose references do not match any of the

available definitions (e.g., due to a typo)

2.2 PTG-Based Analysis

To check the business tier of the application under test, we developed a reusable
application-independent driver that, given a populated application-specific PTG,
traverses the PTG and generates and executes sequences of user events. Figure 2
shows a driver, tuned to J2EE event-handling APIs. The driver implements the
following methods: processPage() calls processEvent() for each enabled event
available on that page; processEvent() creates an HttpServletRequest object,
populates it with event data, using processEventData(), and executes the event
handling code; processEventHandling() calls the event handling method of the

330 O. Tkachuk and S. Rajan

event handler and returns a next page depending on the result. The algorithm
recursively calls processPage() on the next page, thus traversing the PTG using
Depth First Search (DFS). This algorithm can be augmented with conditions to
vary the flavor of traversal (e.g., a bound can be used to limit the length of each
generated sequence).

The implementation of the driver, along with the populated PTG, implemen-
tation of the web application under test, and database stubs (developed in our
previous work [12]) are fed to JPF. One can use JPF’s listener framework to
implement listeners that support property specification based on temporal logic
(e.g. ”the cart becomes empty after checkout”) or, in the absence of specifica-
tions, check for run-time errors or coverage. In section 5, we report the number
of generated test sequences and coverage in terms of PTG nodes and transitions
traversed by the driver.

One key feature of the driver is its ability to encode a nondeterministic choice
over a set of events attached to a page or a set of data available for population
of HttpServletRequest. To encode the nondeterministic choice, we use JPF’s
modeling primitive Verify.random(n), which forces JPF to systematically explore
all possible values from a set of integers from 0 to n. Another feature of the
driver is its extensible APIs. One can override certain methods to customize the
driver according to the desired traversal algorithm (e.g., keeping track of visited
transitions to avoid loops), the underlying analysis framework (e.g., to execute
with the Java JVM by changing nondeterministic choices to for-loops), and the
framework used to encode the event-handling APIs (e.g., Struts, as presented in
the next section).

3 PTG Extraction

Driver generation in general is a hard problem. By concentrating on specific
frameworks, we can achieve a high degree of automation. In this section, we
present an automated PTG extraction technique for Java-based web applications
that encode their page transitions in JSP and XML files. As an example of such
a domain, we use Struts-based applications. The choice of the Struts framework
was motivated by a request from Fujitsu’s development teams that use Struts to
speed up the development time. In this section, we describe the Struts framework,
give a small example and present the PTG extraction technique.

3.1 Struts Framework

Struts2 is an open-source framework based on the Model-View-Controller (MVC)
design pattern. The view portion is commonly represented by JSP files, which
combine static information (e.g., HTML, XML) with dynamic information (e.g.,
Java as part of JSP scriptlet).

2 There are two editions of Struts: Struts1 and Struts2. In this section, we describe
Struts1; Struts2 is handled similarly.

Automated Driver Generation for Analysis of Web Applications 331

The controller is represented by the Struts servlet controller, which intercepts
incoming user requests and sends them to appropriate event-handlers, according
to action mappings information specified in the XML descriptor file usually called
struts-config.xml. In Struts, the request handling classes are subclassed from
the Action class in the org.apache.struts.action package. Their event-handling
method is called execute(). Actions encapsulate calls to business logic classes,
interpret the outcome, and dispatch control to the appropriate view component
to create the response. Form population is supported by the ActionForm class,
which makes it easy to store and validate user data.

3.2 Example

To demonstrate our technique, we use a small registration example that allows
users to register and login to their accounts, followed by a logout. This is a sim-
plified version of the original application3. To simplify presentation, we removed
several pages and events from the original application. In Section 5, we present
experiments for both versions of this example.

The registration example encodes its page transitions using two XML files
(web.xml and struts-config.xml) and six JSP pages: index.jsp (the initial page,
marked in the web.xml configuration file), welcome.jsp, userlogin.jsp, login-
success.jsp, userRegister.jsp, and registerSuccess.jsp. The event-handling
part of the example contains four Action classes and two ActionForms.

The PTG extraction approach has two major steps: (1) parsing JSP/XML/-
Java files, mining relevant information from them, and storing the information in
the convenient form, commonly referred to as the Abstract Syntax Tree (AST)
and (2) building PTG based on the previously mined information. Next, we
describe these steps.

3.3 Extracting PTG-Related Data

The parsing step mines information from (1) JSP files, (2) XML configuration
files, and (3) class files that encode Actions and ActionForms.

Analyzing JSP. The first step parses all JSP files of the application. Each
JSP page corresponds to a Page node in the AST. Each JSP file is scanned for
information about possible user and server events, encoded statically in JSP.
Figure 3 (left) shows examples of such encodings on the pages of the registration
example: index.jsp redirects to welcome, the welcome.jsp page contains links
back to itself, to userRegister.jsp, and userlogin.jsp, the userlogin.jsp page
contains a reference to the /userlogin action, and loginsuccess.jsp contains a
redirect to another page.

To find references to possible user and server events, the parsers need to know
the types of encoding to track. Figure 4 shows examples of such encodings: link
and form JSP/HTML tags and attributes, redirect tags and scriptlet keywords to

3 http://www.roseindia.net/struts/hibernate-spring/project.zip

http://www.roseindia.net/struts/hibernate-spring/project.zip

332 O. Tkachuk and S. Rajan

//from index.jsp
<logic:redirect forward=welcome
//from welcome.jsp
<html:link page="/Welcome.do">

Home</html:link>
<html:link page="/pages/user/userRegister.jsp">

Register</html:link>
<html:link page="/pages/user/userlogin.jsp">

Login</html:link>
//from userlogin.jsp
<html:form action="/userlogin" method="post">
//from loginsuccess.jsp
if(userid==null)

response.sendRedirect("../userlogin.jsp)

//from struts-config.xml
<action mappings>
<action path="/Welcome"

forward="/pages/Welcome.jsp"/>
</action>
<action path="/userlogin"

name="UserLoginForm"
type="UserLoginAction">
<forward name="success"

path="loginsuccess.jsp"/>
<forward name="failure"

path="userlogin.jsp"/>
</action>
</action-mappings>

Fig. 3. Example JSP tags and XML definitions (excerpts)

//links
LINK_TAG = <html:link;<c:url;<s:url
LINK_TAG_ATTRIB = href
//forms (actions)
FORM_TAG = <html:form;<s:form

//redirects
REDIRECT_TAG = <logic:redirect;<jsp:forward
REDIRECT_SCRIPTLET = response.sendRedirect
//includes
INCLUDE_TAG = <jsp:include;<jsp:param
INCLUDE_SCRIPTLET = include

Fig. 4. JSP Parser Configuration File

track redirect and inclusion relationships (i.e., one JSP page can include another
and display forms and links available on the included page). These encodings allow
parsers to find references to possible user and server events and store them as part
of the AST Events. Each AST Event stores information about its path, which can
be a reference to the next JSP page or an action, defined in the XML configuration
files. When the path refers to a URL or a file not related to PTG (e.g., an image),
the parsers filter out such events based on the naming conventions.

Analyzing XML. XML configuration files contain various definitions needed at
deployment time. For example, web.xml contains information about the naming
conventions and initial pages, whereas struts-config.xml contains action defini-
tions. As an example, we describe the definition of the /userlogin action, shown
in Figure 3 (right), referenced on the userlogin.jsp page: (1) this is the form
submission event, taking UserLoginForm, (2) it is handled by the event-handler
of type UserLoginAction, (3) the outcome of this event depends on whether the
event handling code returns ”success” or ”failure”. In case of ”success”, the next
page is loginsuccess.jsp; in case of ”failure”, the next page is userlogin.jsp.
Note that in this particular case, the path of each outcome references a JSP
page. In general, it may reference another definition, available in the given or
another XML configuration file.

The XML parsers parse and store all of the XML information as part of the
AST Definitions. Definitions describing form submission events require addi-
tional data, used to populate ActionForm objects. This information can be mined
from several sources, including ActionForm classes themselves.

Analyzing Java Classes. This step finds and loads all ActionForm classes of the
application. For each application form, e.g., UserLoginForm, it loads its class file

Automated Driver Generation for Analysis of Web Applications 333

Fig. 5. Example PTG (Visualization)

and, using reflection APIs, finds all of its fields, e.g., userid and password. Using
naming conventions, each field can be set through a field-specific setter method.
For example, setUserid(String) sets the userid field and setPassword(String)

sets the password field. Thus, after discovering field names, we are able to gen-
erate code that sets these fields to values that represent user values entered into
the corresponding text fields. To generate user values, this step relies on values
specified in a file (e.g., based on symbolic execution that supports strings [4]). In
the absence of specifications, this steps generates default values (e.g., common
corner cases such as empty, non-empty strings).

3.4 PTG Construction

After the parsing step, the PTG construction step takes the AST, containing
the information about all JSP pages, their possible user and server events, and
available XML definitions, and populates the PTG. For each AST Page, the
algorithm creates a PTG Page. Then, for each reference to the user or server
event available on each AST page, the algorithm tries to resolve the reference,
based on the encoded path of the event. If the path references a JSP page, then
a lookup mechanism is invoked to find that page. If the page is not found, a
new ghost page is created and set as a destination page of the event. If the path

does not reference a JSP page, then it is looked up under the definitions. If the
definition is not found, the next page of the event is set to the special Undefined
ghost page, otherwise, the definition is used to resolve the possible destination
pages of the event. Each definition updates the event according to its domain-
specific encoding, e.g., the Action definitions from struts-config.xml generate
EventHandlers according to the type information and calculate destination pages
according to the information encoded in forwards. This part of the algorithm
is recursive, since a definition may reference other definitions. After the event
construction is finished, the event is added to its source page.

334 O. Tkachuk and S. Rajan

By construction, our approach extracts an overapproximation of the page
transitions, with respect to static JSP and XML encodings specified to the tool.
Currently, the tool treats all transitions as possible and does not keep track of
conditions under which some transitions may become enabled or disabled. We
note that the model of Event includes the enabled field and isEnabled() method,
used by the PTG-based driver. It is currently the limitation of the JSP parser,
which does not extract conditions that may affect enabledness of some events at
run-time.

Even with overapproximations, the extracted PTG is useful for visualization
and detecting potential errors. Figure 5 shows visualization of the page transition
portion of the PTG extracted for the registration example, which shows one
(white) ghost page. It is calculated when processing response.sendRedirect()

event on the loginsuccess.jsp page. This event refers to the "../userlogin.jsp"

page, which does not exist; the correct path is userlogin.jsp. Evaluating this
potential error, we find that this transition has a condition associated with it:
if(userid==null). Under normal usage, this error is not exercised, however, it is
still possible to see the error at run-time. When accessing the loginsuccess.jsp

page directly, the server throws an exception with ”the requested resource not
available” message. Such errors often appear after refactoring or due to typos
and are difficult to find using traditional testing techniques.

Note that, the PTG analysis with respect to navigation properties requires
no extensions for Struts domain. To perform the PTG-based analysis of Struts-
based applications, the generic driver, presented in section 2.2, needs to be ex-
tended to handle domain-specific event-handling APIs, for example the method
processEventHandling() needs to be overridden:
public Screen processEventHandling(Event event , HttpServletRequest req){

List handlers = event. getEventHandlers();
for(Action action : handlers){

forward = action.execute (...,form , req , res);
nextPage = getNextPage(event , forward); ...

}

4 Implementation

We implemented the PTG extractor with the following modules:

Parsers: The JSP parser is automatically generated by JavaCC, based on the
grammar capable of parsing JSP/HTML/XML tags, scriptlet blocks, and vari-
ous types of comments. The JSP parser extracts information based on the tags
specified in a separate file (similar to one in Figure 4). One can add additional
tags, based on the domain-specific encodings. XML parsers are based on the Di-
gester framework4. We currently support parsing of web.xml, and configuration
files used by Struts, Struts2, and Tiles5 frameworks.

Generators: Given the AST, generators populate the PTG data structure. We
implemented the PTG data structure using the Eclipse Modeling Framework
4 http://commons.apache.org/digester/
5 http://tiles.apache.org/framework/index.html

http://commons.apache.org/digester/
http://tiles.apache.org/framework/index.html

Automated Driver Generation for Analysis of Web Applications 335

(EMF)6. EMF supports model specification using Java interfaces. Given Java
interfaces, EMF automatically generates their implementation and provides ad-
ditional facilities, such as writing the model in XML and loading it from XML
to Java. The PTG APIs can be used as a library.

Printers: Given the populated PTG, printers generate its various representa-
tions. Currently, we support PTG generation in Java, used by the PTG-based
JPF driver, XML, used to populate page and event names for property specifi-
cations, and the Dot7 representation, used for visualization.

Checkers: We implemented various checkers, which take a populated PTG
and collect features that may signal possible errors (e.g., unreachable and ghost
pages and undefined transitions). The checkers print their output in XML.

The PTG generator has an extensible architecture: one can plug in their
own implementation of parsers and code generators. The entire codebase is
around 10K LOC, of which 4K LOC belongs to the auto-generated code (i.e., the
EMF-generated PTG code and the JavaCC parser). The PTG generator is fully
automated: one only needs to specify the application directory of the example
under test.

5 Experience

We evaluated our driver generator on a collection of ten examples. Before setting
up the experiments, we had the following research questions:

PTG Quality: What is the quality of the PTG generator? Does it miss any
transitions? Does it generate spurious transitions? Does it enable error detection?
What is the level of coverage achieved by the PTG-based driver at run-time?

Human/Tool Cost: What is the level of automation? What is the level of
manual work?

5.1 Case Studies

To perform evaluation, we downloaded several open-source Struts-based exam-
ples: the simplified and the original registration example, described in section 3.2,
cookbook, artimus and polls from sourceforge8, petstore9, personalblog10, and
cart11. In addition, we were given two Fujitsu’s internal applications: a sample
Project Management application, called in this paper FujitsuPM , and a sam-
ple Document Management application, called FujitsuDM . All examples can
be deployed using the Tomcat server.
6 http://www.eclipse.org/emf
7 http://www.graphviz.org/
8 http://sourceforge.net/projects/struts/files
9 http://www.jwebhosting.net/servlets/jpetstore5/index.html

10 http://suif.stanford.edu/~livshits/work/securibench/download.html
11 http://www.roseindia.net/shoppingcart/cart1.1.zip

http://www.eclipse.org/emf
http://www.graphviz.org/
http://sourceforge.net/projects/struts/files
http://www.jwebhosting.net/servlets/jpetstore5/index.html
http://suif.stanford.edu/~livshits/work/securibench/download.html
http://www.roseindia.net/shoppingcart/cart1.1.zip

336 O. Tkachuk and S. Rajan

Table 1. Examples Static Data

ID AppName Frameworks LOC Cl (All/Act/Form) JSP/XML

1 simregister Struts 615 15/4/2 6/2
2 register Struts 709 34/5/3 12/2
3 cookbook Struts, Tiles 681 18/1/0 17/4
4 artimus Struts, Tiles 799 16/1/1 20/3
5 petstore Struts 1,705 26/5/5 21/2
6 personalblog Struts, Tiles 807 24/11/5 23/3
7 polls Struts, Tiles 8,980 48/13/0 35/3
8 cart Struts, Tiles 3,873 57/16/11 49/3
9 FujitsuPM Struts2 9,876 67/9/0 25/3

10 FujitsuDM Struts, Tiles 18,277 129/17/9 29/3

Table 1 shows static information about the case studies. The Frameworks col-
umn describes the types of frameworks used by the front end of each application.
The LOC column gives the number of lines of code; the Cl column gives the num-
ber of all classes, followed by the number of Action classes, followed by the number
of ActionForm classes. The JSP/XML column gives the number of application’s
JSP pages and XML configuration files relative to the PTG population.

5.2 Experiment

For each case study, we performed the following steps:

1. PTG Extraction: we ran the PTG extractor with the default values used for
population of the forms. This step generates PTG and prints it using the
following representations: Java (used by JPF), XML, and Dot.

2. PTG Analysis: we enabled PTG checkers looking for various possible viola-
tions and features. We present our finding for the following features described
in section 2.1: unreachable pages, ghost pages and undefined transitions.
Checking these features requires no user specifications.

3. PTG-based Analysis: We ran the driver using the traversal algorithm that
avoids loops by keeping track of visited transitions. We used the Java repre-
sentation of PTG, generated in the first step. We measured page and tran-
sition coverage achieved by the driver.

All experiments were run on a Linux machine, with 2G RAM and 2.66 GHz
processor. Table 2 shows the collected data. The PTG column shows the size of
the extracted PTG in terms of pages/nodes and events/transitions. The Time
column shows the time, in min:sec format, the PTG extractor takes to parse
JSP/XML/Java files and build a PTG for each example. The Errors column
presents possible errors found in each PTG: pages unreachable from the initial
page, followed by ghost pages, followed by the number of undefined transitions.
The next columns present data for generation of test sequences based on run-
ning the PTG-based driver with JPF. The Sts/Mem/Time column gives the
number of end states as reported by JPF, which corresponds to the number of

Automated Driver Generation for Analysis of Web Applications 337

Table 2. Examples Experiment Data

ID AppName PTG (n/tr) Time Errors Sts/Mem/Time Cov(n/tr)
1 simregister 7/13 00:02 0/1/0 48/54/00:03 7/13
2 register 13/25 00:03 2/1/0 192/75/00:04 11/25
3 cookbook 17/18 00:03 5/0/0 15/56/00:02 12/17
4 artimus 20/29 00:03 9/0/0 256/70/00:11 10/21
5 petstore 22/87 00:04 2/1/8 7,671/106/01:30 20/85
6 personalblog 24/83 00:03 3/1/3 11,618/122/01:17 21/61
7 polls 36/113 00:07 5/1/1 10,081/106/02:04 28/76
8 cart 55/165 00:08 31/6/3 6,345/105/01:11 24/75
9 FujitsuPM 27/71 00:05 11/3/11 1,945/76/00:26 16/57

10 FujitsuDM 30/97 00:07 7/1/3 7,452/107/01:03 22/73

explored paths, and JPF resources in terms of the memory used (in MB) and
time. The last, Cov, column gives the run-time coverage over the PTG nodes
and transitions as explored by JPF.

The data show that many PTG models contain unreachable pages, ghost
pages, and undefined transitions. For example, the FujitsuPM PTG contains
11 unreachable pages, all going to the special Undefined ghost page, two other
ghost pages and 11 undefined transitions. We reported these results to the de-
velopment team of the application. The team was surprised but confirmed that
all errors were real and, possibly, appeared in the sample application after the
code refactoring. The team members requested a tool demo and were pleased
with the speed of the PTG extractor and the ease of its use. Currently, the tool
is being evaluated for possible integration into their testing environment.

The last four columns of Table 2 show the data for the run-time execution of
the PTG-based driver, as executed by JPF. The last column shows coverage in
terms of the driver’s ability to visit pages and execute events. The numbers show
that the driver misses some pages and transitions. Manual evaluation shows that
most of the missed pages are due to their unreachability from the initial page.
The cart example shows particularly large amount of unreachable pages. Inspect-
ing the example, we found that the graph contained 2 components, possibly cor-
responding to the user and the administrator modules. The administrator pages
were not reachable from the default initial page of the application. Such issues can
be corrected by specifying additional initial pages to the PTG generator.

The driver also misses some transitions due to the limited data values, used
to populate ActionForms. Since the data population is done fully automatically,
using default corner-case values, it is possible for the driver to miss some out-
comes of the execute() event-handling code. Despite such limitation, the end
states number reported by JPF shows that the PTG-based driver is capable of
executing hundreds of test sequences within seconds.

5.3 Discussion

In this section, we address our research questions.

338 O. Tkachuk and S. Rajan

PTG Quality: We manually evaluated the extracted PTGs and found no miss-
ing transitions with respect to the encodings specified to the tool. We also man-
ually evaluated all reported errors and found no false warnings, except for the
Undefined ghost page, which is used by the model to visualize the destination
page of the undefined transitions. Most reported ghost pages show up on rare
executions outside of normal use case scenarios. However, these errors are repro-
ducible at run-time, when accessing some pages directly, without going to the
initial page first (as explained in section 3.4, using the simregister example).

Even with possible overapproximations, we believe, the PTG model is useful.
It enables automatic checking of possible navigation errors and enables validation
of the application under test using the PTG-based driver. While the PTG model
may encode more executions than possible at run-time, it can serve as a starting
navigation and event-handling model of the application PTG, which can be
manually edited with conditions to restrict some of the overapproximations.

Human/Tool Cost: Our experiment consists of three fully automated steps.
Steps 2 and 3 can be enhanced with user-supplied properties. However, even
without user specifications, our technique is capable of finding suspicious features
such as unreachable and ghost pages or undefined transitions. We found several
such violations in many case studies. These violations would have been hard to
find with traditional testing approaches (e.g., testing or run-time crawling would
not uncover unreachable pages).

Threats to Validity: The set of case studies is limited yet representative. Case
studies were picked by people not involved with the development of the PTG
generation approach. The examples were picked based on their accessibility and
the frameworks used for their implementation.

6 Related Work

Many approaches to testing web applications require users to specify require-
ments (e.g., [7,10]). User specifications can capture behavior based on high-level
requirements, not system implementation, which may be faulty. However, they
require manual work, which could also be prone to errors. The PTG model ex-
tracted in our approach can serve as a starting point for specifications in such
approaches.

Run-time analysis can be used to extract the model, while executing the
application under test. For example, Memon et al. [11] extract an Event Flow
Graph (EFG) while executing a GUI application. The extracted EFG is used to
generate sequences of events and feed them back to the GUI application under
test. Haydar [8] presents an approach to extract a finite automata model from
execution traces. Without user guidance (e.g., specification of user input data),
run-time approaches may not be able to visit all possible pages of the application
and the extracted models may miss some behavior. To avoid such issues, some
approaches require user guidance (e.g., [1,13]).

Static analysis techniques work well for specific domains and extracting spe-
cific features. For example, Kubo et al. [9] present an automated technique for

Automated Driver Generation for Analysis of Web Applications 339

extracting page transitions from Struts applications. Unlike in our work, this
approach extracts and model checks, with SPIN, page transitions only, whereas
in our work, we also extract the information about the event-handling classes
and event data, which can be used to drive the underlying event-handling code
of the application under test with analysis tools such as JPF. Yuen et al. present
web automata [14], a behavioral model for MVC-based applications, similar to
PTG. They propose to extend struts-config.xml into another XML file that
represents an automaton, which can be used to check reachability requirements.
However, they do not present automation for their approach.

Recent work on interface discovery for web applications [5,6] uses static anal-
ysis [6] and symbolic execution [5] to analyze Java servlets to calculate pos-
sible data inputs, represented by sets of input parameters (e.g., username and
password) and their possible values. This analysis is designed specifically for
servlets, which usually check user input. In contrast, our analysis focuses on gen-
erating sequences of user events allowed by the application’s interface. In spite
of differences, their approach is complementary and can be used to enhance the
PTG EventData with interesting user values.

7 Conclusions and Future Work

In this paper, we presented a driver generation approach for analysis of JSP-
based web applications that (1) using the application implementation, automat-
ically extracts a Page Transition Graph (PTG) that encodes page transitions,
possible user and server events, their corresponding event-handlers and user data
(2) visualizes and checks the PTG for presence of ghost pages, undefined tran-
sitions, and unreachable pages and (3) generates and executes test sequences
with JPF. We evaluated the tool on ten Java applications, including two large
industrial applications. We uncovered multiple navigation errors in many case
studies, including sample applications from the Fujitsu development teams.

The landscape of frameworks used to develop applications is always changing.
In this paper, we used the Struts framework as an example for domain-specific
automation support, however, our tools can be extended to handle other frame-
works and approaches. We are interested in (1) extending the JSP parsers with
parsing of event conditions to prune possible spurious transitions, (2) evaluation
of symbolic execution [4] as a technique to enhance generation of event data,
(3) extending the driver to run with HttpUnit12, and (4) combining our static
approach for PTG extraction with a dynamic approach (e.g., crawling).

Acknowledgments

We are deeply grateful to the JPF team, especially Willem Visser and Peter
Mehlitz, for their constant support with JPF.

12 http://httpunit.sourceforge.net/

http://httpunit.sourceforge.net/

340 O. Tkachuk and S. Rajan

References

1. Andrews, A.A., Offutt, J., Alexander, R.T.: Testing web applications by modeling
with fsms. Software and Systems Modeling 4, 326–345 (2005)

2. Brat, G., Havelund, K., Park, S., Visser, W.: Java PathFinder – a second gener-
ation of a Java model-checker. In: Proceedings of the Workshop on Advances in
Verification (July 2000)

3. Deutsch, A., Sui, L., Vianu, V., Zhou, D.: A system for specification and verification
of interactive, data-driven web applications. In: SIGMOD 2006: Proceedings of
the 2006 ACM SIGMOD International Conference on Management of Data, pp.
772–774. ACM, New York (2006)

4. Ghosh, I., Rajan, S., Shannon, D., Khurshid, S.: Efficient symbolic execution of
strings for validating web applications. In: Proceedings of the International Work-
shop on Defects in Large Software Systems (July 2009)

5. Halfond, W.G., Anand, S., Orso, A.: Precise interface identification to improve
testing and analysis of web applications. In: ISSTA 2009: Proceedings of the Eigh-
teenth International Symposium on Software Testing and Analysis, pp. 285–296.
ACM, New York (2009)

6. Halfond, W.G.J., Orso, A.: Improving test case generation for web applications
using automated interface discovery. In: ESEC-FSE 2007: Proceedings of the the
6th Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software Engineering, pp. 145–154.
ACM, New York (2007)

7. Hallé, S., Ettema, T., Bunch, C., Bultan, T.: Eliminating navigation errors in
web applications via model checking and runtime enforcement of navigation state
machines. In: ASE, pp. 235–244 (2010)

8. Haydar, M.: Formal framework for automated analysis and verification of web-
based applications. In: ASE 2004: Proceedings of the 19th IEEE International
Conference on Automated software Engineering, pp. 410–413. IEEE Computer
Society, Washington, DC, USA (2004)

9. Kubo, A., Washizaki, H., Fukazawa, Y.: Automatic extraction and verification
of page transitions in a web application. In: APSEC 2007: Proceedings of the
14th Asia-Pacific Software Engineering Conference, pp. 350–357. IEEE Computer
Society, Washington, DC, USA (2007)

10. Licata, D.R., Krishnamurthi, S.: Verifying interactive web programs. In: Proceed-
ings of the 19th IEEE International Conference on Automated Software Engineer-
ing, pp. 164–173. IEEE Computer Society, Washington, DC, USA (2004)

11. Memon, A., Banerjee, I., Nagarajan, A.: Gui ripping: Reverse engineering of graph-
ical user interfaces for testing. In: WCRE 2003: Proceedings of the 10th Working
Conference on Reverse Engineering, p. 260. IEEE Computer Society, Washington,
DC, USA (2003)

12. Rajan, S.P., Tkachuk, O., Prasad, M.R., Ghosh, I., Goel, N., Uehara, T.: Weave:
Web applications validation environment. In: ICSE Companion. Software Engi-
neering in Practice, vol. 2, pp. 101–111 (2009)

13. Ricca, F., Tonella, P.: Analysis and testing of web applications. In: ICSE 2001:
Proceedings of the 23rd International Conference on Software Engineering, pp.
25–34. IEEE Computer Society Press, Washington, DC, USA (2001)

14. Yuen, S., Kato, K., Kato, D., Agusa, K.: Web automata: A behavioral model of web
applications based on the mvc model. Information and Media Technologies 1(1),
66–79 (2006)

On Model-Based Regression Testing of Web-Services
Using Dependency Analysis of Visual Contracts

Tamim Ahmed Khan and Reiko Heckel

Department of Computer Sciences, Leicester University, UK
������� �	
��������	������

Abstract. Regression testing verifies if systems under evolution retain their ex-
isting functionality. Based on large test sets accumulated over time, this is a costly
process, especially if testing is manual or the system to be tested is remote or only
available for testing during a limited period. Often, changes made to a system are
local, arising from fixing bugs or specific additions or changes to the functional-
ity. Rerunning the entire test set in such cases is wasteful. Instead, we would like
to be able to identify the parts of the system that were a�ected by the changes
and select only those test cases for rerun which test functionality that could have
been a�ected.

This paper proposes a model-based approach to this problem, where service
interfaces are described by visual contracts, i.e., pre and post conditions expressed
as graph transformation rules. The analysis of conflicts and dependencies be-
tween these rules allows us to assess the impact of a change of the signature,
contract, or implementation of an operation on other operations, and thus to de-
cide which of the test cases is required for re-execution. Apart from discussing
the conceptual foundations and justifications of the approach, we illustrate and
evaluate it on a case study of a bug tracking service in several versions.

1 Introduction

Service-oriented systems pose new challenges to client-side testing [1]. Problems arise
from the lack of access to and control over the implementation (let alone the code),
which prohibit the use of white box techniques and may limit (due to the cost for using
a service or the limited time available) the number of tests that can be executed [2].

Evolution in software systems is inevitable to keep them abreast with the changing
needs of businesses. To assess and assure that there is no deviation of the existing func-
tionality, regression testing uses a comprehensive set of test cases to reevaluate every
new version. Such regression test suites are accumulated over time and can be large and
costly to run [3]. In many cases, however, the impact of a particular evolution step is
limited to a small part of the system, especially if maintenance is concerned with minor
corrections or additions. In such cases it would be beneficial to select only those test
cases for rerun which exercise parts of the system directly or indirectly a�ected by the
changes.

Following the classification in [4], a test case in a regression test suite can be ob-
solete (OB) if it is no longer applicable to the new version, reusable (RU) if it is still
applicable and required (RQ) if it tests functionality a�ected by the changes. Given

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 341–355, 2011.
c� Springer-Verlag Berlin Heidelberg 2011

342 T.A. Khan and R. Heckel

two consecutive versions of the system V1 and V2 together with information about the
changes from one to the other, the problem is therefore to classify a set of test cases
executable over V1 into the three categories in such a way that any faults detected in
V2 by executing RU are also detected running RQ only. In this paper we will provide a
classification and argue for its correctness in the above sense both conceptually (based
on a formalisation of the problem in terms of graph transformation systems) and by an
evaluation through a small but non-trivial case study of a service in three versions.

Since code is not available, our treatment of the problem is based on model-based
service descriptions at the level of interfaces. In this way we also abstract from details
of the programming language, supporting the platform-independent nature of services.
Semantic information at the interface level is expressed by means of typed graph trans-
formation systems [5] presented as visual contracts [6]. This has the advantage of using
a visual specification in line with mainstream software modelling languages such as the
UML, while at the same time retaining a formal semantics and mathematical theory.
Based in particular on the theory of conflicts, causality and concurrency of graph trans-
formations we analyse data dependencies between and within test cases based on which
we determine the impact of change and thus the set of required test cases.

We perform an evaluation of our method based on three versions of a Bug Tracking
service adapted from an open source application in C#. Defining and classifying test
cases for the three versions, we are interested in both the number of test cases saved
by the classification and its continued ability to find all the faults. We use error seeding
techniques to assess the quality of both the complete and reduced test sets.

The paper is organised as follows. Section 2 introduces the basic concepts of our
approach, including the specification of visual contracts by graph transformation rules
and the use of trace theory to provide an observational semantics appropriate for testing.
Section 3 presents our evolution scenario and describes and applies our methodology.
The evaluation is reported on in Section 4 while related work is discussed in Section 5
before we conclude the paper.

2 Visual Contracts and Trace Semantics

In model-based testing of services we are potentially concerned with three layers of ab-
straction: those of implementation, interface model, and observable behaviour. While
the implementation is hidden, we will require information about changes, such as for
which operations from the interface the implementation has been modified. The inter-
face model details operation signatures and accompanying data types as well as describ-
ing the semantics of operations in terms of pre- and post conditions. Such descriptions
may be available in diagrammatic form at design time, but also in machine-readable
form at run time. The observable behaviour is expressed in terms of sequences of mes-
sages representing invocations to service operations, e.g., as part of a test case being
executed. In order to define precise criteria for distinguishing di�erent categories of
test cases, we have to study the relation between interface models and observations.

Visual Contracts. We represent service interface models by typed graph transformation
systems (TGTS). A TGTS � � (TG� S ig� R) consists of a type graph TG modelling

On Model-Based Regression Testing of Web-Services 343

the public data types available at the interface, a set of rule signatures S ig provid-
ing operation names with parameter declarations p(x1 : s1� � � � � xn : sn). Here xi : si

represents a formal parameter xi of type si. A set of rules R is associated to these
signatures, describing the behaviour of the corresponding operations as visual con-
tracts [7,8], i.e., pre- and post conditions L � R shown as object diagrams. We write
p(x1 : s1� � � � � xn : sn) : L � R � � if there is a rule L � R associated with an operation
signature p(x1 : s1� � � � � xn : sn).

Example 1 (Bug Tracker service). In order to illustrate the use of these models we
present a case study of a Bug Tracker service, to be used as a running example through-
out this paper. Three consecutive versions of the service have been derived from an
open source desktop application1 by replacing its GUI by a service interface. Such a
service could be useful, for example, in order to allow automatic bug reports through
applications detecting faults or in order to integrate bug tracking data into higher level
functions.

In its basic version, bug tracking serves the communication between developers,
users, testing team, etc. Once a bug has been added by the user who discovered it,
its status can be updated by the developers and testers until the issue is resolved. In
addition to the interface provided to the user, we have also created an administrative
interface to add, update, or delete projects and users. Both interfaces are listed in Fig. 1.

Fig. 1. Bug Tracking interfaces for Admin and User

A conceptual data model for the service, limited to the data visible to its clients, is
presented in Fig. 2(a). Beside a top level class BugTracker, we find User and Project
data as well as Bug and Status information. A selection of rules representing visual
contracts are shown in Fig. 2(b). For example the addBug rule describes how a bug

1 Available at ������������������	����	��	��

http://btsys.sourceforge.net/

344 T.A. Khan and R. Heckel

Fig. 2. Type graph and rules

report is added to the database, assuming an existing project and adding Bug and Status
objects.

Observational Semantics. Graph transformation systems come with an execution se-
mantics, i.e., we can simulate the implementation at the interface level by means of
rule applications. Given a graph G representing a state of the system and an operation
p(x1 : s1� � � � � xn : sn) : L � R � �, we can attempt an invocation p(a1� � � � � an),
substituting formal parameters xi in p(x1 : s1� � � � � xn : sn) by actual data values ai

found in G0. If there exists a match m : L � G embedding L into G such that
m(xi) � ai, i.e., m is compatible with the instantiation of parameters, the rule can be

applied resulting in a transformation step G
p�m
�� H. The observation or label of this

step, Æ(G
p�m
�� H) � p(a1� � � � � an) is given by the rule name with actual parameters,

while the state and the actual rule remain hidden. The set of all possible observations
for the (implicit) signature S ig is denoted by O whereas the set of all possible sequences
provided by Kleene closure of O is denoted by O�.

Assuming a start state represented by graph G0, selecting rules and matches we can

produce a transformation sequence � � G0
p1 �m1
�� G1

p2 �m2
�� � � �

pn �mn
�� Gn. The set of all these

sequences is �er(�) and the observation function Æ extends to such sequences, i.e.,
Æ : �er(�) � O�. That means, Æ(�) is the sequence of labels obtained as observations
of the steps of �.

Example 2 (transformation sequence and observation). Consider the bug tracking sys-
tem whose interface is shown in Fig. 1 and the type graph and rules are shown in
Fig. 2 with a start state having only one project and one user as represented by graph

G0 in Fig. 3. Transformation sequence G0
addPro j�m1
�� G1

addUser�m2
�� G2

assignPro j�m3
�� G3

shown in Fig. 3 creates a new project and user and assigns the project to the user.

On Model-Based Regression Testing of Web-Services 345

Fig. 3. Transformation sequence

The corresponding sequence of observations is 2 � addPro j(“FPS Repl��� “RND��);
2 � addUser(“D��� “Fim��� “ f im��� “d f im1��); assignPro j(2� 2) where return values are
2 in both addPro j(� � �) and addUser(� � �).

In order to ensure that labels carry enough information for observations to reflect faith-
fully the behaviour at the interface level, we have to make a number of assumptions.
First, we assume that all objects can be uniquely identified by their collection of at-
tributes, and that these attributes are always fully defined in the states of the system.
This is of course a requirement for the initial state, but also for the rules specifying the
operations, which have to preserve these properties. Second, operation signatures need
to carry enough parameters to identify uniquely the match of a transformation. This is
satisfied, for example, if each signature lists id attributes for all elements of its rule’s
left-and right-hand side as parameters, thus specifying completely the embedding of the
rule into graphs G and H. In most practical cases, however, parameters will only need
to identify some anchor elements, which will then determine the other elements in the
match and co-match. For example, as stated in the cardinality of 1 on the status_info
association, a Status object will always refer to a unique Bug, so identifying the Status
we implicitly know the Bug as well. These conditions are formalised in [9] in terms of
morphisms of attributed graphs. If they are satisfied, the observation function Æ is called
faithful.

Conflicts and Dependencies. In order to understand if two observations can be part
of the same invocation sequence, or if they can occur in that sequence in a given or-
der, we have to analyse causal dependencies and conflicts between transformations and
represent them at the level of labels. At the model level, we say that

– a competing transformation G
p2 �m2
�� H2 disables G

p1�m1
�� H1 if the match for p1 is

destroyed by the application of p2;

– a consecutive transformation G1
p2�m2
�� G2 requires G0

p1 �m1
�� G1 if the application of

p1 creates elements required for the application of p2.

These relations are essentially those of asymmetric event structures [10]. The asym-
metry arises from the interplay of deletion and preservation, which is typical to all
computational models distinguishing read and write access to resources.

346 T.A. Khan and R. Heckel

If two steps are not in conflict or dependent, they are independent. Two independent
consecutive steps can be swapped. The standard model of concurrency for graph trans-
formation systems, based on the so called shift-equivalence �sh� Der(�) 	 Der(�),
abstracts from the order in which independent steps are applied, considering all deriva-
tions equivalent that represent serialisations of the same concurrent process. The quo-
tient Der(�)��sh defines the set of concurrent derivations in the system.

In order derive a concurrent observational semantics, following [9] we lift the dis-
ables and requires relations to the level of labels. For two labels l1� l2 and transforma-
tions �1 and �2 such that li � Æ(�i), we write

– l1
 l2 if �2 disables �1;
– l1 � l2 if �2 requires �1;

If l1� l2 are unrelated by
 and �, they are independent, written l1 � l2.
In order to calculate conflicts and dependencies at the level of labels we make use

of the critical-pair analysis technique using AGG [11]. Critical-pair analysis provides
us with the minimal set of graphs, such that all possible overlapping situations between
the left- and the right-hand sides of the rules are recorded. It captures potential conflicts
and dependencies between rules, rather than (labels representing) transformation steps.
Therefore, the result is an over-approximation of the actual dependencies at the level of
the labels, specifically where more complex conditions on data values are used. Since
we are working at the level of signatures, we represent the overlapping of rules as a
relation between the parameters identifying those overlapping graph elements.

Example 3 (conflicts and dependencies on labels). For a small set of labels we have
illustrated these relations in Table 1. An entry in a row labelled by l1 and a column
labelled by l2 represents the relation between l1 and l2. Each cell can contain either
or both of
 or �, be empty or, in case the labels are completely unrelated in either
direction, contain �.

Referring to Table 1, addBug(� � �) depends on addPro j(� � �) since we require
a project identified by project_id in order to add a bug and therefore 1 �

addPro j(“ABC��� “ERP��) � 101 � addBug(1� “U ��� “V ��). Similarly delPro j(1)

assignPro j(1� 2) as delPro j(� � �) would disable the execution of assignPro j(� � �). Fi-
nally, 11 � addIssue(1� 2� D� E) � viewPro j(1) are independent.

Note that, for future reference, we have included on a gray background relations
with some labels to be added in the second version of the service. For the third version,
where the addBug operation is refined, new dependencies between existing operations
are underlined and the output of a label is shown by putting the output value before the
body of the label with an equal sign e.g. “11 � addIssue(1� 2� D� E)��. In the same way
we highlight new parameters added to the existing signatures.

Having lifted information about conflicts and dependencies to labels, we can use this
information in two di�erent ways, for filtering out invalid sequences and for defining
equivalence classes. If the observation function Æ is faithful, we are able to determine if
a sequence of labels s is a valid observation.

– If l1� l2 � s such that l1
 l2, then l1 precedes l2.
– If l1� l2 � O such that l1 � l2 then l1 precedes l2 in every sequence s containing l2.

On Model-Based Regression Testing of Web-Services 347

Table 1. Asymmetric conflicts and dependencies

First�Sec 1�addProj 2�addUser assignProj 101�addBug ... delProj 11�addIssue updtIssSt delIssStdelIssue
(���) (“ABC”,“ERP”) (“A”,“B”,“t”,“abc”) (1, 2) (1,2,“U”,“V”,2) ... (1) (1,2,“D”,“E”) (1, 11, 22, “XYZ”) (11, 22) (11)

1�addProj � � ... � �

(“ABC”,“ERP”)

2�addUser � � ... �

(“A”,“B”,“t”,“abc”)

assignProj � � ... �

(1, 2)

101�addBug2 � � ... � �

(1,2,“U”,“V”,2)

updateBugSt ... �

(“ABC”,“ERP”, 1)

delBugSt ... � �

(“ABC”,“ERP”, 1)

delBug � � ... �

(“ABC”,“ERP”, 1)

unassignProj � � ...
(“ABC”,“ERP”, 1)

unassignBug ... �

(“ABC”,“ERP”, 1)

delUser � � ...
viewUser � ... �

updtProj ...
(1,“DEF”,“ERP”)

updateUsr ...
(“ABC”,“ERP”, 1)

viewProj (1) � ... �

delProj (1) � � � ... � �

11�addIssue3 � � ... � � ��

(1,2,“D”,“E”)

updtIssSt ... � �

(1, 11, 2, “XYZ”)

delIssSt ... � � � � �

(11, 22)

delIssue (11) ... � � ��

In particular, l1
 l2 and l2
 l1 implies that there is no sequence containing both
labels. We denote the set of sequences satisfying these conditions by OÆ � O�. Given a
finite approximation of dependency and conflict relations, this feature could be used to
filter out test cases that are not executable according to the model.

Moreover, we can partition sequences of labels into equivalence classes, called
traces, by considering them equivalent if they di�er only for the order of independent
labels. The set Traces(�) is the quotient of OÆ under this equivalence. These traces are
a generalisation of the classical notion [12] taking into account asymmetric dependen-
cies. Since all sequences in a trace represent the same concurrent behaviour, we can
avoid running more than one test from each trace, thus potentially reducing the size of
our test suite. However, in this paper we are concerned with the evolution of observable
behaviour, not its reduction with respect to a single version of the system.

Example 4 (example of traces through example). With labels as given in Table. 1, a
trace [1 � addPro j(“X��� “Y��); 2 � addUser(“A��� “B��� “t��� “m��); assignPro j(1� 2);
viewPro j(1)] contains these additional sequences.

2 Label updated a�ecting dependencies.
3 Label updated without a�ecting dependencies.

348 T.A. Khan and R. Heckel

1�addPro j(“X��
� “Y ��); 2�addUser(“A��

� “B��
� “t��� “m��); assignPro j(1� 2); viewPro j(1)

1�addPro j(“X��

� “Y ��); 2�addUser(“A��

� “B��

� “t��� “m��); viewPro j(1); assignPro j(1� 2)
1�addPro j(“X��

� “Y ��); viewPro j(1); 2�addUser(“A��
� “B��

� “t��� “m��); assignPro j(1� 2)

In order to study the e�ect of evolution of the service on the observable behaviour, we
have to consider the changes to dependencies and conflicts on labels. For example, if
operations are extended by new features, this will result in more specific pre and post
conditions and therefore create new dependencies. But if we introduce new conflicts
or dependencies, we will potentially make illegal existing sequences or di�erentiate
between sequences that previously have been equivalent. Where we want to preserve
observable behaviour, dependencies and conflicts have to be reflected, i.e., each depen-
dency or conflict in the new version has to be matched by a corresponding one in the
old version. This condition for preservation of behaviour at the level of observations
has been studied in detail in [9]. In the following section we are going to use it to justify
our classification of test cases.

3 Model-Based Evolution

In this section, we first present an evolution scenario in two steps. Then we use the
scenario to illustrate our approach to regression test suite reduction.

Evolution Scenarios. In the first evolution step, the Bug Tracker service is extended in
order to record Issues with the projects, i.e., concerns raised by users that may not be
faults yet indicate deviations from their actual needs. The additional rules and extended
type graph are shown in Fig. 4.

In the second evolution step we include a feature to record, among other details, a
priority level while adding a bug. That means, the signature of addBug(� � �) is changed
as well as its specification by the rule. Not surprisingly therefore, the modified operation
will have additional dependencies, such as addUser(� � �) � addBug(� � �). A minor up-
date to addIssue(� � �) means that the description of the status is preset to “First Report”

Fig. 4. BugTracker, evolution to Version 2

On Model-Based Regression Testing of Web-Services 349

Fig. 5. BugTracker, evolution to Version 3

when the issue is initially reported. There is no change to the signature in this case, and
the dependencies and conflicts are not a�ected. The new version of the changed rule
along with the type graph are shown in Fig. 5.

Classification of Test Cases. Given a regression test suite RTS for one version S UT of
the system under test, we are going to provide a classification of test cases with respect
to an evolution of S UT into S UT � that will distinguish

– obsolete test cases OB, that are no longer executable in S UT �, either because sig-
natures have changed or because additional preconditions in the model prevent the
the execution of operations;

– reusable test cases RU, that are still executable in S UT �;
– required test cases RQ, that are still executable and test new or modified function-

ality in S UT �.

We will refer to the three versions of our model as V1� V2 and V3.
Traces may become obsolete because of changes in the operation signatures. In this

case, O O� are labels that are valid for S UT , but invalid in S UT �, e.g., due to missing
or incorrectly typed parameters where O� represents the set of labels according to the
new version. All traces containing these labels are obsolete as well. In addition, traces
could become obsolete because of new dependencies or conflicts emerging in S UT �.
The total set of obsolete traces is OÆ O

�Æ. To see if a sequence s is obsolete in S UT �

we have to check (1) if there are any new dependencies l1 � l2 between labels l2 in s
and labels l1 not preceding l2 in s and (2) if there are new conflicts l1
 l2 between l2
in s and l1 occurring in s after l2. If this is not the case, the sequence remains valid and
reusable RU.

In the evolution step V1 � V2, all conflicts and dependencies are reflected be-
cause, while new rules were added, existing rules have not been changed. Hence
all traces are preserved and therefore OB � �. For V2 � V3, both signature
and dependencies have evolved. In particular, addBug(pro jId� bug_desc� status_desc)
is obsolete, so all traces containing labels based on this operation are obso-
lete as well. Instead there are new labels based on the extended signature
addBug(pro jId� userId� priority� bug_desc� status_desc). We notice that there are new

350 T.A. Khan and R. Heckel

dependencies shown underlined in Table. 1 which render some of the traces obsolete
e.g. addPro j(� � �); addBug(� � �); viewPro j(� � �) was possible in V2 but not in V3 owing
to additional dependency addUser(� � �) � addBug(� � �).

Test cases in RQ, which exercise operations that may have changed or are a�ected
by changes to other operations, are classified as required. Denote by M � O � O� the
set of labels such that either their specification or implementation has changed. The set
of labels directly and indirectly a�ected includes M and all labels l2 such that a label l1
is a�ected and l1 � l2 or l1
 l2. The set of required test cases is therefore given by the
set of all reusable ones RU which contain at least one a�ected label.

In evolution V1 � V2, RQ � � since there are no modifications to existing op-
erations. New test cases will be required to validate the newly added operations, but
this is out of the scope of regression testing. Considering V2 � V3, we find that
�addIssue(� � �)� � � �� have been modified and therefore any traces involving their labels
are required. Traces containing addPro ject(� � �) and addUser(� � �) are required as well
because they have dependency relation with addIssue(� � �).

4 Evaluation

In this section we evaluate, on a small but real example, both the correctness of our
method and the reduction in the set of test cases obtained. That means, we will answer
the questions: Do the smaller sets of required test cases RQ find the same faults as the
larger sets of reusable test cases RU? What is the di�erence in size between RQ and
RU and what would be the smallest test set able to find the faults seeded?

For each evolution step the evaluation is performed in four steps that are outlined
below and explained in more detail throughout the section.

1. Generation of test cases.
2. Validation of the quality of the entire test suite.
3. Classification of test cases into OB, RU, and RQ.
4. Validation of the quality and required size of RQ by comparing the results of exe-

cuting RQ and RU.

We generated test cases manually, based on the information in the model, but without
applying a formal notion of coverage. The completeness of the test set is evaluated
instead trough fault seeding, i.e., deliberate introduction of faults to be detected by
the execution of test cases. The percentage of the seeded faults detected provides a
statistical measure of the capability of the test set to find similar errors in the system,
i.e., a measure of confidence in our test suite [13]. In order to decide which faults to
introduce we identified suitable fault types, and then developed rules for seeding them
automatically. After applying the rules to the code of the system, we execute the entire
test suite to assess its quality. In an iterative process we add test cases until all of the
seeded errors were detected.

After applying to the resulting test set the classification described in Section 3,
we validate the completeness of RQ against RU by seeding errors into the classes of
our service implementation that were modified in the recent evolution step. We then
run the tests in both RQ and RU, comparing their results. The evaluation is based on

On Model-Based Regression Testing of Web-Services 351

Fig. 6. Fault seeding with L-Care

implementations in C# of the the three versions of the Bug Tracker service. The pro-
gramming environment Pex4 has been used for automated unit testing of individual
classes. Pex is able to generate test cases based on analysing the source code, with the
aim of detecting faults that could lead to runtime errors such as inappropriate exception
handling. In our report below we do not include these tests because unit testing is part
of the coding at the provider’s site while we are concerned with service-level accep-
tance testing by the client. Therefore, test cases we have generated are concerned with
deviations from the public specification of the service interface. We have generated 66
test cases for version V1, 83 test cases for version V2 and 101 test cases for version V3.

Faults are classified by [14], into domain and computation faults. A domain fault
results from control flow errors, where programs follow the wrong path, while a com-
putation fault occurs when the programme delivers incorrect results while following a
correct path (usually due to errors in assignments or invocations). More specifically,
we have followed the fault types discussed in [15], which also supports calculating a
measure of confidence in a test suite. Rules for seeding faults according to these types
are implemented in the source code transformation tool L-Care5, which allows to de-
fine markers based on XPath queries as shown in Fig. 6(a) on an XML representation

4 ��������	�	������
������������	���������	�����	��
5 A product of ������� �����	�������
	��������

http://research.microsoft.com/en-us/projects/pex/
http://www.atxtechnologies.co.uk/

352 T.A. Khan and R. Heckel

Table 2. Distribution of seeded faults

Fault Type # of Seeded Faults Code Examples
V1 V1 V2 Correct Statement Mutant Statement

Wrong declaration 6 8 9 new object[6] new object[0]
Wrong assignment 23 34 35 args[0] � DateTime.Now; args[0] � “ ”;
Wrong proc. handling 27 32 35 throw ex ��throw ex
Control faults 22 27 29 if (conn.Open �� ...) if (conn.Open !� ...)
I�O faults 27 32 35 conn.Open() conn.Close()
Total 105 133 143

of the code. A sketch of this XML in tree form is shown in Fig. 6(b). Examples of the
original and the fault-seeded code are shown in Fig. 6 (c) and (d) respectively. Table. 2
shows the total number of faults seeded for each version as well as a breakdown into
the di�erent types along with typical representatives.

We tested all the three versions, extending our test suites until all the seeded faults
were detected. Our test cases classification was based on computing a conservative
(over-)approximation of the actual dependencies and conflicts between labels using the
AGG tool [11]. . Disregarding the data content, we keep track only of the fact that two
parameters in two labels are instantiated with the same value. This reduction is safe
because it leads to more, rather than less dependencies and conflicts between concrete
labels, and thus to more test cases in RQ. In the last step of the evaluation we seed
faults in the modified classes of V2 and V3 only and execute the two sets of required
test cases RQ to determine if all of the seeded faults are discovered and how many test
cases are actually required to discover them. We have seeded 28 and 18 faults in V2
and V3, respectively, the smaller numbers owing to the size of the changed classes in
comparison to the entire code base. The results are reported in Table. 3.

Table 3. Test case classification and success rate

V1� V2 V2� V3
Test cases produced successful produced successful
Obsolete (OB) 0 0 12 0
Reusable (RU) 66 0 45 12
Required (RQ) 0 0 26 12
New (NT) – 17 – 18

We record the number of test cases in each category produced by our classification as
well as the number of test cases actually successful in finding faults. Of step V1 � V2
we recall that OB � RQ � � because none of the existing operations were modified.
Unsurprising, therefore, none of the remaining test cases in RU found any fault, but 17
new test cases NT had to be produced to detect faults seeded into newly added oper-
ations. With the second evolution step, 26 out of 45 existing test cases were classified
as required RQ, of which 12 where successful in finding faults. Again, 18 new test
cases where added to cover features not addressed by existing test cases. That means,
our reduction in the size of test suites has not resulted in missing any faults, i.e., the

On Model-Based Regression Testing of Web-Services 353

numbers of faults discovered using RU and RQ are the same. The reduction in size is
significant, but probably still not optimal, because a smaller set of 12 rather than 26 test
cases would have been suÆcient. This is despite an exhaustive error seeding strategy,
which produced faults of the designated types wherever this was possible in the code.
The reason could be in over approximation of dependencies and conflicts which, like in
many static analysis approaches, leads us to err on the captious side.

To conclude the evaluation, let us discuss a possible threat to the validity of these
results. When using the the set of reusable test cases RU as a benchmark for the required
ones RQ, the assessment depends on the quality of the original test suite, which was
evaluated by fault seeding. But fault seeding will only deliver relevant results for the
types of faults actually sown, while unexpected or unusual faults are not considered.
Our approach here was to use approaches to fault classification from the literature, but
in order to gather relevant statistics about the costs savings possible we would require
data on error distributions from real projects.

5 Related Work

Several techniques [16,17,18] have been using model level information for regression
testing. Extended finite state machine (EFSM) are considered in [16], where interaction
patterns between functional elements represented by transitions are used for test set
reduction. Two tests are considered equivalent if they represent the same interaction
pattern. Therefore, whenever a transition is added or deleted, the e�ect of the model on
the transition, the e�ect of the transition on the model and any side e�ects are tested
for. That means test cases are selected with respect to elementary modifications of the
state machine model .

EFSM are also considered in [17] where a set of elementary modifications EM is
identified. Two types of dependencies, data dependencies DD and control dependencies
CD are discussed. A state dependence graph SDG represents DD and CD visually and
a change in the SDG leads to a regression testing requirement to verify the e�ect of the
modification.

The technique presented in [18] uses UML use case and class diagrams with op-
erations described by pre and post conditions in OCL. A unique sequence diagram is
associated with a use case to specify all possible object interactions realising the use
case. Changes in the model are identified by comparing their XMI representations.

An approach to regression testing of web services suggested by [2] makes use of
unit tests based on JUnit. Test cases are produced by the developer, who generates QoS
assertions and XML-encoded test suites and monitors I�O data of previous test logs to
see if the behaviour is changed.

[19] constructs a global control flow graph CFG and defines special call nodes for
each remote service invocation. A CFG containing a call node, referred to as non-
terminal graph, is converted to a terminal graph by inserting the CFG corresponding
to that call node. Whenever an operation is modified, the previous and the resulting call
graphs are compared to find the di�erences and all downstream edges are marked as
“dangerous” once a modified node is marked.

We make use of semantic information in service interfaces and lift dependencies and
conflicts derived to the level of observable actions as they would be seen by a user

354 T.A. Khan and R. Heckel

of the service. Apart from di�erences in the models used (visual contracts instead of
state machines, sequence diagrams or OCL) we employ (asymmetric) dependencies
as well as conflicts to characterise admissible sequences of observations. The use of
asymmetric relations is due to our richer notion of model, which accounts for data
transformation rather than automata-like protocols the order or frequency of method
invocations. Dependency information used, e.g., in [16,17] is instead derived from state
machines. Pre and post conditions on application data are also used with [18]. While
conceptually close, our visual contracts are more easily usable than a textual encoding
in OCL and provide a formal operational semantics with a well-established theory of
concurrency as a basis for verifying formally the correctness of our approach.

6 Conclusion and Outlook

In this paper we have presented a method to reduce the size of a regression test suite
based on an analysis of the dependencies and conflicts between visual contracts specify-
ing the preconditions and e�ects of operations. The method is applicable to all software
systems that have interfaces specified in this way, but is particularly relevant for services
because of the lack of access to implementation code and the potential cost involved in
running a large number of tests through a remote and potentially payable provider. The
method is backed up conceptually and formally by a related paper [9] providing an ob-
servational view of the concurrent behaviour of graph transformation systems. In the
present paper we have evaluated the approach through the development of a case study
showing that (1) the reduced test sets could find all the faults detected by the larger sets
while (2) being significantly smaller.

As future work we are aiming to automate the generation of dependencies and con-
flicts on labels, formalising the over approximation required to represent finitely a rela-
tion on an infinite set of labels. We are also working on coverage criteria for test suites
based on contract dependencies as well as on a solution to reduce test suites by omitting
(the generation of) equivalent test sequences.

References

1. Canfora, G., Penta, M.D.: Testing services and service-centric systems: Challenges and op-
portunities. IT Professional 8, 10–17 (2006)

2. Penta, M., Bruno, M., Esposito, G., Mazza, V., Canfora, G.: Web services regression testing.
Test and Analysis of Web Services, 205–234 (2007)

3. Rothermel, G., Harrold, M.J.: Analyzing regression test selection techniques. IEEE Transac-
tions on Software Engineering 22 (1996)

4. Leung, H., White, L.: Insights into regression testing [software testing]. In: Proc. Conference
on Software Maintenance, pp. 60–69 (October 1989)

5. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transforma-
tion. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg
(2006)

6. Heckel, R.: Graph transformation in a nutshell. In: Electr. Notes Theor. Comput. Sci., pp.
187–198. Elsevier, Amsterdam (2006)

On Model-Based Regression Testing of Web-Services 355

7. Lohmann, M., Sauer, S., Engels, G.: Executable visual contracts. In: VLHCC 2005: Proceed-
ings of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing, pp.
63–70. IEEE Computer Society, Washington, DC, USA (2005)

8. Lohmann, M., Mariani, L., Heckel, R.: A model-driven approach to discovery, testing and
monitoring of web services. Test and Analysis of Web Services, 173–204 (2007)

9. Khan, T., Machado, R., Heckel, R.: On the observable behavior of graph transformation
systems. Technical Report CS-10-003, Department of Computer Sciences (August 2010),
������� �����	��������	���	����������	�!���	��"�

10. Baldan, P., Corradini, A., Montanari, U.: Contextual petri nets, asymmetric event structures,
and processes. Information and Computation 171(1), 1–49 (2001)

11. AGG: AGG - Attributed Graph Grammar System Environment (2007),
������������������	��
��"	����

12. Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific Publishing Co., Inc., River
Edge (1995)

13. Pfleeger, S.L.: Software Engineering: Theory and Practice. Prentice Hall PTR, Upper Saddle
River (2001)

14. Howden, W.: Reliability of the path analysis testing strategy. IEEE Transactions on Software
Engineering SE-2(3), 208–215 (1976)

15. Pasquini, A., Agostino, E.D.: Fault seeding for software reliability model validation. Control
Engineering Practice 3(7), 993–999 (1995)

16. Korel, B., Tahat, L., Vaysburg, B.: Model based regression test reduction using dependence
analysis. In: Proc. Conference on Software Maintenance, pp. 214–223 (2002)

17. Chen, Y., Probert, R.L., Ural, H.: Model-based regression test suite generation using depen-
dence analysis. In: A-MOST 2007: Proc. of the 3rd Intl. Workshop on Advances in Model-
based Testing, pp. 54–62. ACM, New York (2007)

18. Briand, L.C., Labiche, Y., He, S.: Automating regression test selection based on UML de-
signs. Inf. Softw. Technol. 51(1), 16–30 (2009)

19. Ruth, M., Oh, S., Loup, A., Horton, B., Gallet, O., Mata, M., Tu, S.: Towards automatic
regression test selection for web services. In: COMPSAC 2007: Proceedings of the 31st
Annual International Computer Software and Applications Conference, pp. 729–736. IEEE
Computer Society, Washington, DC, USA (2007)

http://www.cs.le.ac.uk/people/tak12/observable.pdf
http://tfs.cs.tu-berlin.de/agg

Incremental Clone Detection and Elimination for
Erlang Programs

Huiqing Li and Simon Thompson

School of Computing, University of Kent, UK
{H.Li, S.J.Thompson}@kent.ac.uk

Abstract. A well-known bad code smell in refactoring and software
maintenance is the existence of code clones, which are code fragments
that are identical or similar to one another. This paper describes an
approach to incrementally detecting ‘similar’ code based on the no-
tion of least-general common abstraction, or anti-unification, as well as
a framework for user-controlled incremental elimination of code clones
within the context of Erlang programs. The clone detection algorithm
proposed in this paper achieves 100% precision, high recall rate, and is
user-customisable regarding the granularity of the clone classes reported.
By detecting and eliminating clones in an incremental way, we make it
possible for the tool to be used in an interactive way even with large
codebases. Both the clone detection and elimination functionalities are
integrated with Wrangler, a tool for interactive refactoring of Erlang
programs. We evaluate the approach with various case studies.

Keywords: Software maintenance, Refactoring, Code clone detection,
Erlang, Program analysis, Program transformation, Erlang, Wrangler.

1 Introduction

Duplicated code, or the existence of code clones, is one of the well-known bad
‘code smells’ when refactoring and software maintenance is concerned. The term
‘duplicated code’, in general, refers to program fragments that are identical or
similar to one another; the exact meaning of ‘similar code’ might be substantially
different between different application contexts.

The most obvious reason for code duplication is the reuse of existing code,
typically by a sequence of copy, paste and modify actions. Duplicated code in-
troduced in this way often indicates program design problems such as a lack of
encapsulation or abstraction. This kind of design problem can be corrected by
refactoring out the existing clones at a later stage, but could also be avoided
by first refactoring then reuse the existing code. In the last decade, substan-
tial research effort has been put into the detection and removal of clones from
software systems; however, few such practical tools are available for functional
programming languages. The work reported here is of particular value both
to the working programmer and the project manager of a larger programming
project, in that it allows clone detection to contribute to the ’dashboard’ reports
from incremental nightly builds, for instance.

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 356–370, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Incremental Clone Detection and Elimination for Erlang Programs 357

This paper describes an approach to incrementally detecting ‘similar code’ in
Erlang programs based on the notion of least-general common abstraction, or
anti-unification [1,2], as well as a mechanism for incremental automatic clone
elimination under the user’s control. We take Erlang as the target language due
to our research context. While the implementation discussed in this paper is
specific to Erlang’s syntax and static semantics rules; the methodology used by
the approach is applicable to other functional programming languages as well.

In general, we say two expressions or expression sequences, A and B, are similar
if there exists a non-trivial least-general common abstraction, or anti-unifier, C,
and two substitutions σA and σB which take C to A and B respectively. By ‘non-
trivial’ we mainly mean that the size of the least-general common abstraction
should be above some threshold, but other conditions, such as the complexity of
the substitution, can also be specified.

The approach presented in this paper is able, for example, to spot that the
two expressions (X+3)+4 and 4+(5-(3*X)) are similar as they are both instances
of the expression Y+Z, and so both instances of the function

add(Y,Z) -> Y+Z.

When support for clone elimination is one of the major purposes served by a
clone detection tool, accuracy and efficiency of the tool are essential for it to be
usable in practice.

To achieve a 100% precision rate, i.e., only genuine clones are reported, our
approach uses as the representation of an Erlang program the Abstract Syntax
Tree (AST) for the parsed program annotated with static semantic information.
Syntactic and static semantic information together make it possible that only
those genuine, and syntactically well-formed, clones are reported to the user.

Scalability and efficiency, the major challenges faced by AST and/or semantics
based clone detection approaches, are achieved by an incremental two-phase
clone detection technique. The first phase uses a more efficient, but less accurate,
syntactic technique to identify candidates which might be clones; the initial result
is then assessed by means of an AST and static semantics based analysis during
the second phase to give only genuine clones. When part of the codebase has
been changed, the original clone detection result is no longer up-to-date, due
to either the change of locations or the textual change of code. To keep the
clone report up-to-date, instead of re-running the clone detection from scratch,
the incremental clone detection algorithm reuses and updates the data collected
from the previous run of the clone detection, and only processes clones related
to the code that has been modified, added or deleted.

Our clone detection tool reports clone classes. As shown in the lower window
of Fig. 1, each clone class is a set of code fragments in which any two of the code
fragments are identical or similar to each other. Each clone class is associated
with the least-general abstraction in the format of a function abstraction named
new fun. Variable names of the form NewVar i are generated by the clone de-
tector. For each member of a clone class, the clone detector also generates an
application instance of new fun, which is the function call that arises from uni-
fying the class member with the function definition represented by new fun.

358 H. Li and S. Thompson

Fig. 1. A snapshot showing similar code detection with Wrangler

One aim of clone detection is to identify them so that they can be eliminated.
The general approach to removing a cloned code fragment in the functional
programming paradigm is to replace it with a function call to the least-general
common abstraction of the clone class to which the code fragment belongs. In
theory, it is possible to eliminate all clones found fully automatically without
control from the user, however in practice, this is not a desirable way for various
reasons. Instead of eliminating clones fully automatically, our framework allows
the user to eliminate clones in an incremental way. We automate things that
should be automated, while allowing the user to have control over the clone
elimination process when it is necessary.

A non-incremental similar code detection and elimination framework was first
added to Wrangler in 2009 [3]. The contribution of this paper is to provide:

– an incremental algorithm which works substantially more efficiently than the
original standalone algorithm for larger projects in analyses;

– a framework that gives the user fine control of the granularity of the clones
reported and a clear vision of the code after eliminating a specific clone;

– a method for tracking the evolution of clones during software lifetime, and
– a mechanism for clone detection to be included in the standard workflow and

reporting of projects subject to continuous integration or regular builds.

Incremental Clone Detection and Elimination for Erlang Programs 359

The remainder of the paper is organised as follows. Section 2 gives an overview
of Erlang and the refactoring tool Wrangler. Section 3 introduces some terminol-
ogy to be used in this paper; Section 4 describes the incremental clone detection
algorithm. The elimination of code clones is discussed in Section 5, and an eval-
uation of the tool is given in Section 6. Section 7 gives an overview of related
work, and Section 8 concludes the paper and briefly discusses future work.

2 Erlang and Wrangler

Erlang [4] is a strict, impure, dynamically typed functional programming lan-
guage with support for higher-order functions, pattern matching, concurrency,
communication, distribution, fault-tolerance, and dynamic code loading. Erlang
allows static scoping of variables, in other words, matching a variable to its bind-
ing only requires analysis of the program text, however some variable scoping
rules in Erlang are rather different from other functional programming languages.

An Erlang program typically consists of a number of modules, each of which
defines a collection of functions. Only functions exported explicitly through the
export directive may be called from other modules. In Erlang, a function name
can be defined with different arities, and the same function name with different
arities can represent entirely different functions computationally.

Wrangler [5] is a tool that supports interactive refactoring of Erlang pro-
grams. It is integrated with (X)Emacs, as shown in Fig. 1, and as well as with
Eclipse through ErlIDE. Wrangler is implemented in Erlang, and downloadable
from http://www.cs.kent.ac.uk/projects/wrangler/Home.html.

3 Terminology

Anti-unification and Unification. Anti-unification, first proposed in 1970 by
Plotkin [1] and Reynolds [2], applies the process of generalisation to pairs, or
sets, of terms. The resulting term captures all the commonalities of the input
terms. Given terms E1, ..., En, we say that E is a generalisation of E1, ..., En if
there exist substitutions σi for each Ei, 1 ≤ i ≤ n, such that Ei = Eσi. E is
a least-general common generalisation of E1, ..., En if for each E′ which is also
a common generalisation of E1, ..., En, there exists a substitution θ such that
E = E′θ; it is not difficult to see that these are unique (up to renaming of
variables) and so we call any of them the least-general common generalisation.
The least-general common generalisation of E1, ..., En is called the anti-unifier
of E1, ..., En, and the process of finding the anti-unifier is called anti-unification.

To apply anti-unification techniques to ASTs of Erlang programs, restrictions
as to which kinds of subtrees can be replaced by a variable, and which cannot,
need to be taken into account. For instance, objects of certain syntactic cate-
gories, such as operators, guard expressions, record names, cannot be abstracted
and passed in as the values of function parameters, and therefore should not be
replaced by a variable. Furthermore, an AST subtree which exports some of its
locally declared variables should not be replaced by a variable either; whereas it

http://www.cs.kent.ac.uk/projects/wrangler/Home.html

360 H. Li and S. Thompson

is fine to substitute the function name in a function application with a variable
because higher order functions are supported by Erlang.

Unification, on the other hand, is the process of finding substitutions of terms
for variables to make expressions identical [6]. The unification technique forms
the basis of the clone elimination process.

Similarity Score. Anti-unification provides a concrete way of measuring the
structural similarity between terms by showing how both terms can be made
equal. In order to measure the similarity between terms in a quantitative way,
we defined the similarity score between terms.

Let E be the anti-unifier of sub-trees E1, ..., En, the similarity score of E1, ...,
En is computed by the following formula: min{SE/SE1, ..., SE/SEn}, where SE ,
SE1 ... SEn represent the number of nodes in E, E1... En respectively. The sim-
ilarity score allows the user to specify how similar two sub-trees should be to be
considered as clones. Given a similarity score as the threshold, we say that a set
of sub-trees are similar if their similarity score is above the threshold.

Clone Classes. A clone class is a set of code fragments in which any two
of the code fragments are identical or similar to each other. In the context of
this paper, each member of a clone class is a sequence of Erlang expressions. We
say a clone class C is maximal if there does not exist a clone class C′ such that
|C| ≤ |C′|, and for each class member, Ei say, of C, there exists a clone member,
Ej say, of C′, such that Ei is a proper sub-sequence of Ej . Only those maximal
clone classes are reported by our clone detection tool.

4 The Clone Detection Algorithm

The similar code detector takes a project (that is, a set of Erlang modules), and
a set of parameters as input, performs clone detection, and reports the clone
classes found. The tool is integrated with an IDE (Emacs or Eclipse), but it can
also be run from the command line. Five parameters need to be specified; if no
value is supplied a suitable default value is used. The parameters are:

– the minimum number of expressions included in a clone which is a sequence
of expressions, denoted by Emin;

– the minimum number of lexical tokens included in a clone, denoted by Tmin;
– the maximum number of new parameters of the least-general common ab-

straction function, denoted by Pmax;
– the minimum number of class members of a clone class, denoted by Fmin;
– the similarity score threshold, denoted by SimiScore.

With these parameters, the user can have a fine control of the granularity of the
clone classes reported. For example, to make the tool only report identical code
fragments, the user just need to set the value of Pmax to 0.

As shown in Fig. 1, each clone class is reported by giving the number of
instances of the cloned code, the least-general common generalisation in the

Incremental Clone Detection and Elimination for Erlang Programs 361

Fig. 2. An Overview of the Incremental Clone Detection Process

format of a function abstraction named new fun, each clone instance’s start
and end locations, as well as the application instance of new fun, which is the
function call that arises from unifying the class member with function definition
represented by new fun. Scalability is tackled from two aspects:

– A two-phase clone detection technique is used. The first phase carries out
a quick, semantics-unaware clone detection over a generalised version of the
program, and reports initial clone candidates; the second phase examines
the initial clone candidates in the context of the original program by means
of anti-unification, getting rid of false positives;

– Incremental update of information collected from the various stages of the
previous run of the clone detection tool when program code has been changed.

An overview of the algorithm is shown in Fig. 2. Next, we first describe the
initial clone detection algorithm, then the incremental part.

4.1 The Initial Detection Algorithm

The initial clone detection algorithm is an extended and adapted version of
the standalone algorithm presented in [3]. While both follow the same steps,
the algorithm presented here is designed to make incremental clone detection
possible, and provides better usability. We explain it in more detail now.

362 H. Li and S. Thompson

Parse Program, annotate and serialise AST. Erlang files are lexed and
parsed into ASTs. In order to reflect the original program text, the Erlang pre-
processor is bypassed to avoid macro expansion, file inclusion, conditional com-
pilation, etc. Both line and column numbers of identifiers are kept in the ASTs
generated, since location information is used to map between different represen-
tations of the same piece of code in the source. Binding information of variables
and function names, which is needed during the anti unification process, is an-
notated to the AST in terms of defining and use locations.

Location information is needed by the clone detector, but absolute locations
are sensitive to changes, i.e. a change made to a particular place of a file could
possibly affect all the locations following it. With incremental clone detection
in mind, we choose to use relative locations to identify program entities, while
recording each function’s actual starting line in the file. With relative locations,
every function starts from line 1 at column 1. The benefit of this is that we can
ensure pure location change does not affect the initial clone candidate result,
and all new clone candidates introduced are due to structural change.

The AAST representation of each function is then traversed, and expression
sequences are collected. In this way, each function is mapped into a list of ex-
pression sequences. The AAST representation of each expression statement is
stored in an ETS (Erlang Term Storage) table for use by the later stages of the
algorithm and the incremental clone detection. To reduce the time spending on
AAST traversal while trying to locate a specific syntax phrase in the AAST,
and also to reduce the time on AAST updating when incremental clone detec-
tion is concerned, each object in the ETS table represents the AAST of a single
expression statement, instead of the AAST of a whole Erlang file.

Generalise and Hash Expressions. This step takes an expression sequence
generated from the previous step a time, each expression statement in the se-
quence is first structurally generalised, then pretty-printed and hashed into an
integer value. Only expression statements that share the same generalised form
get the same hash value. Therefore, we map each expression sequence into a
sequence of integers.

The aim of structural generalisation is to capture as much structural simi-
larity between expressions as possible while keeping each expression’s original
structural skeleton. This process traverses each expression statement subtree in
a top-down order, and replaces certain kinds of subtrees with a single node repre-
senting a placeholder. A subtree is replaced by a placeholder only if syntactically
it is legal to replace that subtree with a node representing a variable, and the
subtree does not represent a pattern, a match expression or a compound expres-
sion such as a receive expression, a try...catch expression, etc.

Initial Clone Detection using a Generalised Suffix Tree. This step turns
each integer sequence generated from the previous step into a string, and builds a
generalised suffix tree on the strings generated. Cloned strings are then collected

Incremental Clone Detection and Elimination for Erlang Programs 363

Fig. 3. A generalised suffix tree for two strings ABAB$ and BAB$

from the suffix tree, and each group of cloned strings is then mapped back to a
group of expression sequences which share the same generalised representation.

Suffix tree analysis [7] is the technique used by most text or token-based clone
detection approaches because of its speed [8,9]. A suffix tree is a representation of
a single string as a tree where every suffix is represented by a path from the root
to a leaf. The edges are labelled with the substrings, and paths with common
prefixes share an edge. A generalised suffix tree is a suffix tree that represents
the suffix of a set of strings. Fig. 3 shows an example of the generalised suffix tree
representation of two strings ABAB$ and BAB$. The numbers in the leaf nodes are
string number and starting position of the suffix in the string. We use generalised
suffix tree instead of the standard suffix tree as in [3] for two reasons:

– The standard suffix tree algorithm accepts only a single string as input. To
build a suffix tree over a collection of strings, we will have to concatenate all
the strings into a single one, and then build a suffix tree over the concatenated
string. As a result, clone strings might actually come from two or more
separated strings, and therefore need to be further processed;

– With generalised suffix tree, a string can be removed from, or inserted into,
the tree easily, which is exactly what we need for incremental clone detection.

Examine Clone Candidates using Anti-unification. The previous step re-
turns a collection of clone classes whose class members are structurally similar,
but do not necessarily share a non-trivial anti-unifier; even so it helps to re-
duce the amount of comparisons needed significantly. This step examines the
initial clone class candidates one by one using anti-unification and returns those
genuine clone classes. More details follow.

Generation of clone classes from clone candidates. For each clone class candi-
date, C say, the clone detector takes a class member, A say, and tries pairwise
anti-unification with each of the other class members. The anti-unification result
is then analysed and processed to derived clone classes that satisfy all the pa-
rameters specified by the user. In order to achieve a high recall rate, when two
expression sequences do not anti-unify as a whole, their sub-sequences are also
examined. If the whole clone class candidate does not form a real clone class,
another class member is selected from the remaining members of C, and the

364 H. Li and S. Thompson

process is repeated until no more new clone classes can be found. As a result, it
is possible to derive none, one, or more clone classes from a single clone candi-
date. For example, from a clone class candidate with three expression sequences
like {E11E12E13, E21E22E23, E31E32E33}, it is entirely possible to derive three
clone classes like: {E11E12, E21E22, E31E32}, {E11E12E13, E21E22E23} and
{E21E22E23, E31E32E33}.
Generation of anti-unifier. The anti unifier generator takes a clone class and the
substitutions inferred during the anti-unification process as input, generalises
the expression sequence represented by the first clone class instance over those
sub-expressions which are not common to all of the clone instances by replac-
ing those sub-expressions with new variables automatically generated by the
clone detector. To ensure that only the minimum number of new parameters are
generated, the anti-unifier generator needs to check the static semantics of the
sub-expressions to be generalised over, and their corresponding sub-expressions
in remaining class instances, so that sub-expressions with the same static seman-
tics and same substitutions are represented by the same new variable. Variables
declared by a cloned code fragment in a clone class might be used by the code
following it, and the union of these variables should be returned by the anti-
unifier so that those variables are still visible to the code following it when the
cloned fragment is replaced by an application instance of the anti-unifier.

Generation of application instances. Given the anti-unifier of a clone class and
a particular instance of the clone class, the application instance is generated
through the unification of the anti-unifier, represented as a function definition
named new fun, and the class instance. The application instance gives the user a
clear vision of what a cloned code fragment will be replaced with by clone elim-
ination, and therefore helps the user decide whether this clone instance should
be eliminated or not. For example, if some of the parameters of the application
instance are too complex, the user might want to refactor the code first, then
eliminate the clone.

Formatting. Final clone classes are sorted and displayed in three different or-
ders: by the number of duplications, by the size of clone class instances, and by
the ranking score of each clone class. The ranking score of a clone class is calcu-
lated based on three parameters: the number of parameters of the anti-unifier, the
number of terms returned by anti unifier, and size of the anti-unifier body. Given
a clone class anti unifier, suppose the above three parameters are represented by
P , V and L respectively, the ranking score is calculated as: L/(L + P + V).

4.2 The Incremental Detection Algorithm

A change made to a file could affect the existing clone results in two differ-
ent ways. A structural change could introduce new clone classes, or invalidate
some existing clone classes; a location change on the other hand could make
the location information of some clone class members out-of-date. Obviously, a

Incremental Clone Detection and Elimination for Erlang Programs 365

structural change to one part of the file is generally accompanied by location
changes to the code following it in the file.

To incrementally update the clone result after changes have been made to
the program source, our algorithm reuses and updates the intermediate results
returned from the previous run of the clone detection as shown on right-hand
side of the diagram in Fig. 2.

The algorithm takes a function as a unit to track the changes made to the
program source. For a function that is removed, added, or structurally changed,
we have no other choices but to remove/add/update the entities associated with
it; whereas for a function with only a location change, only its absolute starting
location is updated. Taking a function, instead of a file as the unit for tracking
changes, we are able to reuse existing results as much as possible. Next we explain
in more detail the various intermediate results that are reused and updated
during the incremental clone detection phase.

The AAST Table. The AAST table stores the AAST representation of each
expression statement. Each entry of the table is a tuple. The first element of the
tuple, which serves as the key, is of the format: {ModuleName, FunctionName,
Arity, ExprIndex}, where ModuleName, FunctionName, and Arity together
identify a function, and ExprIndex is used to identify an expression statement
of this function; the second element of the tuple is the AAST representation of
the expression statement, together with the absolute starting line number of the
function to which the expression belongs. The AAST updater checks which part
of the program has been changed since the last run of the clone detection, and
updates the AAST table accordingly. For a function that is deleted, added or
modified structurally, the entries associated with that function in the AAST ta-
ble are also deleted, added, or updated. Only the starting line number is updated
if a function only has its location changed.

The Binding Information Table. This table stores the binding structure
information for variables of each function. Each entry of the table is a tuple with
the first element identifying a function, and the second element representing the
binding structure in terms of defining and use locations. This table is updated
only if a function has been deleted, added or structurally modified.

The Expression Hash Table. This table stores the mapping from an expres-
sion statement to its hash value, therefore from an expression sequence to a
sequence of hash values, as well some meta-information about the expression,
including the number of lexical tokens, location information, and a boolean flag
indicating whether the expression is new. Each expression statement in this table
is also identified by a tuple, whose first element is an integer uniquely identify-
ing the expression sequence to which the expression statement belongs, and the
second element is a four-element tuple {ModuleName, FunctionName, Arity,
ExprIndex} identifying the particular expression.

The Generalised Suffix Tree. The reuse of the generalised suffix tree allows
us to avoid re-building the suffix tree for the whole program from scratch. The
generalised suffix tree is updated by removing those strings deleted/changed from

366 H. Li and S. Thompson

it, and by adding the new strings into it. To avoid the re-calculation of clones
from the suffix tree, we annotate each internal node with the clone information
represented by that node, which is also updated accordingly.

The Clone Table. This table stores the mapping between each initial clone
candidate and the clone classes derived from it. Each entry is a tuple whose first
element is the clone candidate, and second element is the clone classes derived
from it. A clone candidate is only processed if it does not belong to this table,
and the result is then added to the table. By tracking changes of the clone table,
we are able to track the evolution of clones during software development.

5 Support for Clone Elimination

Working within the functional programming paradigm, the general approach
to removing a cloned code fragment is to replace it with an application of a
function whose definition represents an abstraction of the cloned code fragment.
In theory, it is possible to eliminate all clones found fully automatically, however,
our experience [10] shows that this is undesirable for the following reasons:

– Some cloned code fragments logically do not represent a clearly defined func-
tionality; or a cloned code fragment might contain code that logically belongs
to the code before, or after, it in the program source.

– The least-general common abstraction generated by the clone detector has to
be given a proper name to reflect its functionality; and the parameters of the
least-general common abstraction might need to be renamed or re-ordered.

– In the case that a clone class contains code fragments from multiple modules,
a proper module has to be selected as the host module of the least-general
common abstraction to avoid introducing bad modularity smells.

– Fully automatic clone detection could introduce too many changes to the
code base in one go, and makes it harder for the user to follow.

Our clone elimination framework tries to automate things that should be auto-
mated, while allowing the user to have control over the clone elimination process
when it is necessary. With this framework, the following steps can be followed
to eliminate some, or all, cloned code fragments from a given clone class.

1. Copy and paste the anti-unifier of the clone class into an Erlang module;
2. rename variable names if necessary;
3. re-order the function parameters if necessary;
4. rename the function to some suitable name;
5. apply ‘fold expressions against a function definition’ to the new function.

Renaming, reordering of function parameters and folding expressions against a
function definition are all refactorings supported by Wrangler. Folding is the
refactoring which actually removes code clones. It searches for, and highlights,
clone instances of the function clause selected, and replaces those clone instances
which the user chooses to eliminate with application instances of the function

Incremental Clone Detection and Elimination for Erlang Programs 367

selected. This refactoring carries out its own clone instance search, and can
therefore be applied independently of the clone detection process.

Given a clone report containing a list of clone classes, the user has a number of
decisions to make as to which clone classes, or even which instances of a specific
clone class, to eliminate. We believe that by showing the least-general common
abstraction of each clone class and the application instance associated with each
clone class instance, we make this process much easier.

6 Experimental Evaluation

The tool has been applied to various Erlang application code and testing code.
In this paper, we take three codebases to evaluate the efficiency and accuracy
of the approach. The first codebase is Wrangler itself; the second codebase is
an Erlang test suite written with Erlang’s Common Test framework from a
mobile industry; and the third codebase includes the application and testing
code of both the Erlang compiler and the Erlang stdlib. The experiments were
conducted on a laptop with Intel(R) 2.27 GHz processor, 4.00 GB RAM, and
running Windows 7. The tool is evaluated in two criteria: runtime efficiency and
the number of clones detected. To contrast the performance, we run both the
incremental and the standalone clone detection for each codebase and version.

The default parameter setting for the tool, i.e. 5 for Emin, 40 for Tmin, 4 for
Pmax, 2 for Fmin and 0.8 for SimiScore, was used throughout the experiments.
The experimental results are shown in Table 1. The first column of the table
shows the codebases and their versions we used. For both Wrangler and the
Erlang compiler/stdlib, the version numbers are the release numbers, therefore

Table 1. Incremental vs. Standalone Clone Detection

Wrangler KLOC
Files Incremental Standalone

Changed Time Clones Time Clones

0.8.7 42.5 70/70 15 18 15 18
0.8.8 44.2 59/80 10 21 15 21
0.8.9 47.4 44/83 8 26 16 26
0.9.0 48.0 9/84 2 26 16 26
0.9.1 48.1 3/84 3 26 17 26

Test Suite
V0 24.0 26/26 560 371 560 371
V1 23.9 3/26 90 361 550 361
V2 23.9 1/26 54 357 550 357
V3 23.8 2/26 90 346 550 346
V4 23.7 2/26 80 338 540 338

Erlang
R13B-03 244.3 306/306 94 78 94 78
R13B-04 245.5 71/311 36 79 97 79
R14A 250.8 108/327 40 82 95 82
R14B 251.9 39/321 28 81 94 81

368 H. Li and S. Thompson

the amount of changes made between two consecutive versions could be large;
for the test suite, we use the original test suite as version V0, and each version
following represents the codebase after some clones have been eliminated. The
second column shows the size of each version of codebase in terms of the number
of lines of code. The third column shows the number of files that are changed
since the previous version out of the total number of files. The time is measured
in seconds, and the clones are measured by the number of clone classes reported.

It is obvious from this table that the processing time can be reduced signif-
icantly especially when the amount of changes made between two consecutive
versions is small. The tool performance is affected by both the size of the code
and the number/size of the initial clone candidates detected. Table 1 shows that
the processing time for the test suite is considerably long compared to the other
two codebases. This is due to the large amount of clones, and clone candidates,
detected. For example, the clone report for the test suite V0 says that the longest
clone consists of 86 lines of code, and is duplicated twice; and the most frequently
cloned code consists of 5 lines of code, and is duplicated 83 times.

The precision of the tool should be 100% due to the use of static semantics
aware analysis during the clone candidate examination phase, and this has been
verified through various case studies during the development of the tool. Any
false positives reported simply imply a bug in the tool implementation. As to the
recall rate, given a set of parameter settings, our tool in theory should be able
find all those classes whose members do not textually overlap; but because it is
practically impossible to examine this manually with large codebases, and there
are no other clone detection tools for Erlang which we can use for comparison,
at this stage we cannot give a concrete recall rate for the results reported here.

Compared to other clone detection tools, our tool takes precision and usability
of the tool as the top priority. A recent study [11] has shown that up to 75% of
clones detected by state-of-the-art tools are false positives, and this has hindered
the adoption of clone detection techniques by software developers, no matter how
fast the tool is and how large of a code base the tool can work with, as inspection
of false positives is a waste of developer time.

7 Related Work

A survey by Roy et. al. provides a qualitative comparison and evaluation of the
current state-of-the-art in clone detection techniques and tools [12]. Overall there
are text-based approaches [13,14], token-based approaches [8,15], AST-based ap-
proaches [16,17,18,19] and program dependency graph based approaches [20].
AST-based approaches in general are more accurate, and could report more
clones than text-based and/or token-based approaches, but various techniques
are needed to make them scalable. A comparison and evaluation of these tech-
niques in terms of recall and precision as well as space and time requirements
has been conducted by Bellon et. al., and the results are reported in [21].

Closely related work to ours is by Bulychev et al. [19] who also use the notion
of anti-unification to perform clone detection in ASTs. Our approach is differ-
ent from Bulychev et al.’s in several aspects. First, we use a different approach,

Incremental Clone Detection and Elimination for Erlang Programs 369

which is faster but reports more false positives, to get the initial clone candi-
dates; second, their approach reports only clone pairs, while our approach reports
clone classes as well as their anti-unifiers; third, Bulychev et al.’s approach is
programming language independent, and the quality of the algorithm depends
on whether the occurrence of the same variable (in the same scope) refers to
one leaf in the AST; whereas our tool is for Erlang programs, though the idea
also applies to other languages, and static semantics information is taken into
account to disallow inconsistent substitutions.

In [22], Brown and Thompson describe an AST-based clone detection and
elimination tool for Haskell programs. While their approach works on small
Haskell programs, scalability is still the problem for the authors to address.

ClemanX [23] is an incremental tree-based clone detection tool developed by
Nguyen et al. Their approach measures the similarity between code fragments
based on the characteristic vectors of structural features, and solves the task of
incrementally detecting similar code as an incremental distance-based clustering
problem. In [24], Göde and Koschke describe a token-based incremental clone
detection technique, which makes use of the technique of generalised suffix trees.

8 Conclusions and Future Work

We have presented an incremental clone detection and elimination technique
which can be used interactively during a clone inspection and elimination pro-
cess, but also of particular value both to the working programmer and the project
manager of a larger programming project, in that it allows clone detection to
contribute to the ’dashboard’ reports from nightly builds, for instance.

For a tool to be used in an interactive way, performance and efficiency are es-
pecially important. This goal is achieved by our tool to incrementally update the
clone report after changes have been made to the program. Being able to specify
various parameter settings to the clone detector, the user has more control of the
granularity of the clones reported. Using the AST as the internal representation
of Erlang programs, and being static semantics aware, the clone detection tool
achieves 100% accuracy, which is essential when clone elimination is concerned.
To support clone elimination, our tool reports not only the common abstraction
of a clone class, but also the application instance of each clone class member.
The tool has been used in various industry case studies [10], during which its
usability has been improved, and usefulness has been demonstrated.

As future work, we plan to extend the tool to detect expression sequences
which are similar up to a single insertion or detection of an expression, or sim-
ilar up to a number of expression-level edits. Our overall approach is language-
independent, and we also plan to apply our techniques to clone detection and
elimination to test languages such as TTCN-3.

This research is supported by EU FP7 collaborative project ProTest (http://
www.protest-project.eu/), grant number 215868.

http://www.protest-project.eu/
http://www.protest-project.eu/

370 H. Li and S. Thompson

References

1. Plotkin, G.D.: A Note on Inductive Generalization. Machine Intelligence 5 (1970)
2. Reynolds, J.C.: Transformational systems and the algebraic structure of atomic

formulas. Machine Intelligence 5, 135–151 (1970)
3. Li, H., Thompson, S.: Similar Code Detection and Elimination for Erlang Pro-

grams. In: Practical Aspects of Declarative languages 2010, pp. 104–118 (2010)
4. Cesarini, F., Thompson, S.: Erlang Programming. O’Reilly Media, Inc., Sebastopol

(2009)
5. Li, H., et al.: Refactoring with Wrangler, updated. In: ACM SIGPLAN Erlang

Workshop 2008, Victoria, British Columbia, Canada (2008)
6. Baader, F., Siekmann, J.H.: Unification Theory. In: Handbook of logic in artificial

intelligence and logic programming, pp. 41–125 (1994)
7. Ukkonen, E.: On-Line Construction of Suffix Trees. Algorithmica 14(3) (1995)
8. Baker, B.S.: On Finding Duplication and Near-Duplication in Large Software Sys-

tems. In: Wills, L., et al. (eds.) WCRE, Los Alamitos, California (1995)
9. Kamiya, T., Kusumoto, S., Inoue, K.: CCFinder: A Multi-Linguistic Token-based

Code Clone Detection System for Large Scale Source Code. IEEE Computer Soci-
ety Trans. Software Engineering 28(7), 654–670 (2002)

10. Li, H., et al.: Improving your Test Code with Wrangler. Technical Report 4-09,
School of Computing, University of Kent (2009)

11. Tiarks, R., Koschke, R., Falke, R.: An Assessment of Type-3 Clones as Detected
by State-of-the-art Tools. In: SCAM 2009, Los Alamitos, CA, USA (2009)

12. Roy, C.K., et al.: Comparison and Evaluation of Code Clone Detection Techniques
and Tools: A Qualitative Approach. Sci. Comput. Program. 74(7) (2009)

13. Baker, B.S.: A Program for Identifying Duplicated Code. Computing Science and
Statistics 24, 49–57 (1992)

14. Ducasse, S., Rieger, M., Demeyer, S.: A Language Independent Approach for De-
tecting Duplicated Code. In: Proceedings ICSM 1999, pp. 109–118. IEEE, Los
Alamitos (1999)

15. Li, Z., Lu, S., Myagmar, S.: CP-Miner: Finding Copy-Paste and Related Bugs in
Large-Scale Software Code. IEEE Trans. Softw. Eng. 32(3), 176–192 (2006)

16. Baxter, I.D., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone Detection Using
Abstract Syntax Trees. In: ICSM 1998, Washington, DC, USA (1998)

17. Evans, W., Fraser, C., Ma, F.: Clone Detection via Structural Abastraction. In:
The 14th Working Conference on Reserse Engineering, pp. 150–159 (2008)

18. Jiang, L., Misherghi, G., Su, Z., Glondu, S.: DECKARD: Scalable and Accurate
Tree-Based Detection of Code Clones. In: ICSE 2007, pp. 96–105 (2007)

19. Bulychev, P., Minea, M.: Duplicate Code Detection using Anti-unification. In:
Spring Young Researchers Colloquium on Software Engineering, pp. 51–54 (2008)

20. Komondoor, R., Horwitz, S.: Tool Demonstration: Finding Duplicated Code Using
Program Dependences. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028, p. 383.
Springer, Heidelberg (2001)

21. Bellon, S., Koschke, R., Society, I.C., Antoniol, G., Krinke, J., Society, I.C., Merlo,
E.: Comparison and Evaluation of Clone Detection Tools. IEEE TSE 33 (2007)

22. Brown, C., Thompson, S.: Clone Detection and Elimination for Haskell. In: PEPM
2010: Partial Evaluation and Program Manipulation, pp. 111–120 (2010)

23. Nguyen, T.T., Nguyen, H.A., Al-Kofahi, J.M., Pham, N.H., Nguyen, T.N.: Scalable
and Incremental Clone Detection for Evolving Software. In: ICSM 2009 (2009)

24. Göde, N., Koschke, R.: Incremental Clone Detection. In: Proceedings of the 2009
European Conference on Software Maintenance and Reengineering (2009)

Analyzing Software Updates: Should You Build a
Dynamic Updating Infrastructure?

Bashar Gharaibeh, Hridesh Rajan, and J. Morris Chang

Iowa State University

Abstract. The ability to adapt software systems to fix bugs, add/change features
without restarting is becoming important for many domains including but not lim-
ited to finance, social networking, control systems, etc. Fortunately, many ideas
have begun to emerge under the umbrella term “dyanamic updating" to solve
this problem. Dynamic updating is critical to address certain software evolution
needs. Dynamic updating literature evaluates such systems in terms of coverage
(i.e. what type of code changes are supported) and performance. However, we do
not have a technique to analyze whether certain updating solution, based on its
costs and benefits, is suitable for an application.

In this paper, we present a quantitative analysis model to fill this gap. Our
model is parameterized and it can be instantiated with application-specific val-
uation functions. Given the software evolution history of the application under
consideration, our model allows rigorous comparisons of the value of different
software updating schemes (e.g. online vs. offline). We illustrate our model using
two case studies inspired from the the evolution history of Xerces XML parser
library and Apache httpd web server. Other case studies and evaluation exam-
ples are presented in our technical report [Gharaibeh, Rajan and Chang 09]. The
proposed analysis scheme can serve system architects in evaluating their current
updating scheme. For example, to audit the system’s value during previous de-
velopment cycles and whether a different updating scheme will generate higher
value.

1 Introduction

Software evolution and maintenance is a fact of life [3, 15]. Enhancements, security,
and bug fixes are routinely made to a software system during its usable lifetime. Long
running software systems such as web and application servers, financial software, crit-
ical control systems often need to balance evolution and availability requirements.
For such systems, downtime due to software update is unacceptable and often very
costly [14, 17, 26].

Dynamic software updating has attracted significant interest in the last few years
[6, 20, 24]. This is due to the benefits software updating can provide to long running ap-
plications. The interest in dynamic updating is clear from a plethora of research efforts
and a specialized workshop (i.e. HotSwUp). Such interest is only expected to continue
with the industrial trends toward software as long-running services in service-oriented
architectures.

However, adopting any dynamic updating scheme requires deep understanding about
its cost and benefits beyond the stated software engineering benefits. To date, dynamic

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 371–385, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

372 B. Gharaibeh, H. Rajan, and J.M. Chang

updating literature evaluates such systems in terms of coverage (i.e. what type of code
changes are supported) and performance. For example, Chen et al. [6] evaluated their
system over a set of server applications. The evaluation was in terms of average server’s
response time before and during the update process.

What is missing is a formal quantitative analysis that allows us to study such a system
in comparison to current static update practices or other dynamic updating systems. We
need to answer the question of whether the benefits of dynamic updating justifies its
cost (performance or regular fees). In theory, being online 24/7 is a priceless advantage.
However, this may not apply to all systems. Given the real history of bugs in a particular
software, does the loss of system value due to these bugs justifies the investment in
dynamic updating? The answer depends on many factors related to system operations
and bugs severity.

The contribution of this work is a quantitative value model that allows us to study
the gain from updating systems. Our model is based on Net option-value (NOV) analy-
sis [29]. NOV has been devised to price options in a financial market and has also been
used to study the cost and benefit of modularity in designs [2, 16, 28]. Our value model
allows us to study the relation between updating system’s operational parameters (e.g.
cost and timing) and value provided to users. To the best of our knowledge, this is the
first attempt to quantitatively formulate and evaluate the costs/benefits of offline and
dynamic updating in software systems.

The proposed model can be used in different scenarios. For example, it can be used
to audit the system’s value during previous development cycles. By using information
about added features and their revenue, developers can compare the current update prac-
tice and whether a different update strategy would provide higher value. It can also be
used to quantitatively compare different dynamic updating schemes. Given the charac-
teristics of two updating schemes such as types of supported updates and performance
characteristics, the two schemes can be quantitatively compared using a set of bench-
mark features.

We have applied our model to two case studies: the evolution of the XML parser
library Xerces [30], and 42 bug fixes for Apache httpd server obtained from Bugzilla
(Section 3). Other case studies are presented in our technical report [10]. Using these
case-studies, we studied the model’s trends, relative values depending on the selected
parameters, and assessed its precision. These studies also give us insights on how one
would actually go about estimating the parameters that serve as the input to the model.
We believe this to be a very useful aide to system developers and maintainers. To sum-
marize, our contributions in this paper are:

– A quantitative model for cost/benefit analysis of updating systems and its formula-
tion. The novelty of the model is in its application of net options value theory to the
area of software updates.

– Case studies from software evolution of real-world applications that illustrate the
use of our model. The main benefit of the case studies is that they give insights into
selection of the model parameters.

The rest of this paper is organized as follows. In Section 2 we discuss our quantita-
tive model . We describe our case studies in Section 3. Section 4 presents the related

Analyzing Software Updates 373

work while Section 5 discuss various aspects and limitations of our evaluation model.
Section 6 discusses directions for future investigations and concludes.

2 Quantifying Software Update

This section presents our analysis model. The main idea behind the analysis model is the
computation of daily revenue of the system. By understanding how different updating
policies affect the daily value, we can calculate the effect on total revenue made by
these systems.

2.1 Update Models

We will evaluate the following updating models:

– Model 0: Offline update at release time.
– Model 1: Offline update at feature time.
– Model 2: Dynamic Updating.

The first model (Model 0) represents the base case where updates are performed when
a new version is released. The update in this model is performed offline so the service
is stopped until the system finishes the updating process. The disadvantage here is that
severe bugs will not be addressed in a timely manner.

The costs and benefits of the last two update models are summarized in Figure 1.
Model 1 presents the option for offline updating at feature availability time. In this
model, updates are scheduled on the next system restart and applied when the system
goes offline. Users are able to install these features instead of waiting for the next
release date. Under this model, users will be required to restart their phones, which
might cause users to delay applying the patch until a more suitable time.

Finally, in Model 2 the system is dynamically updated when new features are avail-
able even if availability occurs before the next release time. However, users might suffer
from short-time performance loss during the update process.

In the last two models, we assume that the system is restarted when a new version
is released. Models 1 and 2 allow developers to deploy features quickly rather than
waiting for the new version release time. However, under these models, a restart is still
required at each release.

Model Revenue

Model 1
(+) time value of feature.
(-)cost of updating, which depends on cost of disabling and
restarting the service.

Model 2
(+) time value of feature.
(-)cost of online updating, which depends on feature complexity.
(-)cost of using a modified system that supports online updating.

Fig. 1. Value of Updating to Feature i

374 B. Gharaibeh, H. Rajan, and J.M. Chang

2.2 Net Options Value Model

Net Options Value (NOV) model quantifies the value of using the system over a certain
period of time. In other words, if the value is represented as a function of time, the total
value is equal to the integration of the value function over the specified period.

Fig. 2. Net Option Value of Different Updating Models

To illustrate, consider the scenario in Figure 2. It shows the revenue generated by
Model 1 (bold line) and Model 2. Each model’s total revenue is equal to the area under
its value function. Model 2 has less value initially due to the cost of supporting dynamic
updates. However, Model 2 gains value by early adoption of feature and reduced cost of
updating. The dip in the Model 2 value represent the cost of the updating process. For
Model 1, the dip is more severe since it incurs complete service disruption. The area in
the figure shaded by diagonal lines represents the gain achieved by offline over dynamic
updating, while areas shaded by horizontal lines represents the gain of dynamic over
offline updating. Intuitively, if the area of diagonally shaded region is larger than the
horizontal region, then offline updating provides better total revenue and the cost of
supporting dynamic updating does not justify its benefits.

In general, net options value [2] is represented as follows:

V = S +
∑

i

NOVi − C

NOVi = Vi − Ci

where S is the base system’s value (i.e. before applying new features), V is the net value
of the model, C is the model cost, which is paid even if no updates were exercised.
NOVi is the value gained by updating to feature i and Ci is the cost of the update. This
formula, although general, does not offer much insight into the specifics of a typical
updating system. Thus, we seek a domain-specific formulation of the net-options value
analysis starting with a quantitative treatment of the value of Model 1 and 2.

Model 0: Static Update at Release Time. For this model the system value increases
at release time by an amount equal to added features value. Thus we define the system
value (V) for this model at a future release as:

V = S +
∑

i

σi

Analyzing Software Updates 375

where S is the system value at the current release and σi is the technical significance
(value) of feature i. In other words, the value of the system after installing a new release
is equal to its original value (old release value) plus the value of new features.

Model 1: Static Update at Feature Time. For this model the system value increases at
next restart time by an amount proportional to added features time value. The cost has
two components. First, the cost of delaying the update. Second, the cost of restarting
the service. Thus we define the system value (V) for this model at a future release time
(ti) until the new version is released T , as follows:

V =
n∑

i=1

NOVi

NOVi = E[U]
T∫

ti+Ti
off

σi(t)dt − CR (1)

CR =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 ti + T i
off = ti−1 + T i−1

off

UL

tfa∫
0

dt

∗︷ ︸︸ ︷
i−1∑
j=1

σj(ti) otherwise

(2)

(3)

The value function we will use represent the value gained by a single user. It is often
necessary to multiply the gained value by the expected number of users to obtain the
total value. In the value model, E[U] represents the expected number of users, UL is
the number of users at low-demand time. Toff is expected value of time until update
is applied, and tfa is the time needed to complete offline update. This value model has
two parts. The first part describes how the deployment of a feature increases the system
value. The value is equal to the summation of daily revenue of a feature represented by
(σ(t)). The integration bounds represents the period of time the new feature is active.
Since this model relies on scheduled restarts, the feature will not be deployed at its
release time (ti) but rather after certain number of days (Toff). The second part of the
formula presents the cost associated with offline updating. The first case states that if
two features are scheduled on the same restart period, we only need to pay the cost once.
The second case presents the cost of the restart in terms of lost value (system value so
far, labeled with (*)) and the time needed to finish the restart of the system after update
(tfa).

Model 2: Dynamic Updating. For this model the system value increases at feature
availability time by an amount proportional to added feature’s time value. The cost has
two components. First, the long-running cost of using the updating system. Second, the
cost of performing the update. Thus we define the system value (V) for this model at a
future release as:

V = E[U]Cvm

n∑
i=1

NOVi

376 B. Gharaibeh, H. Rajan, and J.M. Chang

where Cvm is the ratio of the performance of a dynamic-updating system relative to an
offline-updating system and ranges over the period [0, 1], where having the value of one
means that there are no long-running overhead. Thus, as Cvm � 1, the operating cost
of the system with dynamic updating decreases. Like Model 1, E[U] is the expected
number of users. The per-feature value (NOVi) is defined as follows:

NOVi =

T∫
ti

σi(t)dt −
toa∫
0

Coa(t)dt

i−1∑
j=1

σj(ti) (4)

where ti is the time of release for feature i, T is the time of next release, σi(t) the
value function of the feature, toa is time needed to finish the dynamic update, and Coa

represents the reduction in system’s value during the dynamic updating. Again, this
value model represents the gain from deploying the feature (integration of σ(t)) minus
the cost of the dynamic update which is related to update duration and value loss during
the update.

2.3 Effect of Operational Parameters

Operational parameters are those used to describe the cost and timing of the update pro-
cess. Based on the previous valuation models, we will now construct a set of relations
that describes the bounds on these parameters that guarantees profitable operation. The
original value models can be used to compare total revenue, while this set of relations
can be used to calculate the system parameters based on known constraints.

Effect of Updating Overhead. In our model, both update systems suffer a value loss
during the update. However, the dynamic update system also pays the continuous cost
of supporting dynamic updates (Cvm). The value of Cvm represents the performance
overhead from using the dynamic update system. It is known that such overhead must
be kept at minimum. However, the question is when does the overhead reverse any gains
from the modified system.

In general, the relation between Cvm and gain in comparison to the other system
can be modeled by equating equations (4) and (3). By assuming n dispersed features,
dynamic updating has higher value when its value is higher than the value offered by
static updating. After simplification, the effect of update overhead is presented in the
following formula:

n∑
i=1

[

effect of dynamic update︷ ︸︸ ︷
E[U](1 − Cvm)

T∫
ti

σi(t)dt + E[U]Cvm

toa∫
0

Coa(t)dt

i−1∑
j=1

σj(ti)dt

−E[U]

T i
off∫
0

σi(t)dt − UL

tfa∫
0

dt

i−1∑
j=1

σj(ti)dt

︸ ︷︷ ︸
effect of static update

] < 0

The first half represents the cost of the dynamic update system which consists of the
long-running cost and the update cost. The second half shows the offline updating cost

Analyzing Software Updates 377

consisting of delayed feature deployment and service disruption at update time. Notice
that as Cvm increases to reach the value of one (no long-running costs), the cost of
dynamic update is reduced to the cost of the update process at update time. As Cvm

decreases, the long running cost increases in a similar amount. Also, note that as either
Toff or tfa increases, lower values of Cvm can be tolerated.

Effect of Delayed Updates. For two features fi, fj where tj > ti, applying the two
features at tj has higher value than applying each feature at its time for Model 1 if (here
terms have their previously defined meanings):

UL

tfa∫
0

dt

i−1∑
k=1

σk(ti) > E[U]

tj+T
j
off∫

ti+Ti
off

σi(t)dt

and for Model 2 if
toa∫
0

Coa(t)dt

i−1∑
k=1

σk(ti) >

tj∫
ti

σi(t)dt

On the other hand, if σ(t), Coa(t) do not depend on time (i.e. constant values), these
conditions are simplified to:

Model 1: σi <
UL

E[U]
tfa

∑ i−1
k=1 σk(ti)

(tj + T j
off) − (ti + T i

off)

Model 2: σi <
toaCoa

∑ i−1
k=1 σk(ti)

tj − ti
(5)

The later condition relates the value of σi to the cumulative system value, update cost
and period between features. For example, under Model 2 (5), a feature that is equal to
10% of cumulative value and with a period of one week until next feature, the dynamic
update time should be more than 8 hours and 24 min to justify combining the update of
these two features.

Coverage of Dynamic Updating. Many dynamic updating systems do not support all
types of code updates. Therefore, even a dynamic update system requires occasional
restarts to serve certain update requests. Generally, we can include this factor as a ran-
dom event xi that is related to the ratio of supported updates. Assuming that for any
certain feature, there is a probability p(xi) that the feature can not be updated dynami-
cally. Therefore, the valuation model of Model 2 is changed as follows:

NOVi =p(xi)NOV 1
i

+ (1 − p(xi|xi−1))max{NOV 1
i , NOV 2

i }
+ (1 − p(xi|xi−1))NOV 2

i

In the new model, the NOV of feature i has two factors. First, there is a probability of
xi that a static update is required (i.e. NOV 1

i). Second, if the feature can be applied
dynamically, the NOV is the maximum of the dynamic and static NOV. We are using
the maximum aggregate to cover the possibility that feature i−1 was updated statically

378 B. Gharaibeh, H. Rajan, and J.M. Chang

(i.e. p(xi|xi−1)) and that the new feature is released within the Toff period. In this case,
we have the option of upgrading feature i dynamically at the regular cost or statically
at reduced cost since the restart is already required. Otherwise, the regular NOV of
dynamic update is used (i.e. p(xi|xi−1))

3 Applying Our Analysis Model

This section applies our analysis model for comparing software updating schemes to
Apache httpd [1], a well-known web server. The main objective is to study our model’s
trends, relative values depending on the selected parameters, and assess its precision.
The Apache httpd case we collected information about bug fixes over a five years period.

We will start by describing the process of selecting the evaluation parameters. Then
we will present detailed information about the case study. Finally, we will study the
effect of operating parameters on gains achieved by different updating models and how
the timing of applying updates affect the system’s value.

3.1 Selecting Analysis Parameters

The main challenge in the application of our model is selection of proper value func-
tions. Each feature contributes to the value of a release and each bug reduces the system
value until it is fixed. However, assigning proper values of σ(t) is not trivial as it re-
quires an understanding of the technical importance of a feature and how it affects the
whole system’s value. Here, we use a simple heuristic to evaluate a feature’s impor-
tance. For evaluation purposes, we used a constant value for σ(t). However, if more
information is available regarding a feature effect on system’s value, this information
should be represented using a more appropriate function. The value of Toff equals the
number of days until offline updates are performed (i.e. Sundays). The value of toa is
approximated by αtfa. The value of α depending on code modifications required to
implement the feature and was computed by studying code changes. Finally, the value
of Coa is set to 0.5. This value indicates that the system loses half of its performance
(which is very conservative) during the dynamic update process.

3.2 Xerces Case Study

We selected ten features from two consecutive releases of Xerces XML parsing library.
The features provide additional capabilities (e.g. A3: Japanese characters serialization,
B4: support for <redefine> attribute), performance enhancement (e.g. A4: improve De-
terministic Finite Automaton(DFA) build-time performance) or resolve bugs (e.g. B1).
Deploying these features allows the system to increase its revenue through faster pro-
cessing, wider customer base and support additional types of XML documents. We
approximated σi values for studied features through a point system. We assume that
a system value (

∑
i σi) doubles at every release. Any security-related features is as-

signed four points, bug fixes and added features are assigned three points, performance
enhancement are assigned two points, and finally, any remaining features are assigned
one point. Using this approach, each feature’s σi is equal to its share of points.

Analyzing Software Updates 379

Feature Points σ α T − t Toff

A1 3 0.214 0.185 54 2
A2 3 0.214 0.012 50 5
A3 3 0.214 0.235 48 3
A4 2 0.143 0.136 20 3
A5 3 0.214 0.432 13 3
B1 3 0.214 0.4 43 3
B2 3 0.214 0.36 42 2
B3 2 0.143 0.1 38 5
B4 3 0.214 0.08 28 2
B5 3 0.214 0.05 11 6

Fig. 3. Xerces Feature’s Parameters

For simplicity, we are assuming that a release consists of these features only. Figure 3
shows the parameter values for selected features. The table shows the number of points
assigned to each feature as points are used to approximate value gained by deploying a
feature (σ). The table also shows the feature’s relative complicity (α) as derived from
code modification logs. Feature complexity is used to derive the dynamic updating time
(toa). A complex feature requires more updating time than a simpler feature. The table
also lists the time in days until the next release is available (T − t) and the wait period
from the feature release time until the next Sunday (Toff) which we used as waiting
period for the offline updating.

We can note that feature complexity follows the trend of feature’s value for Xerces. In
other words, important features are complex. Therefore, supporting a high-value feature
comes at higher cost than a simpler feature, but will provide higher value.

3.3 Apache httpd Case Study

In this case study, we analyzed the history of bug fixes for Apache httpd for versions
from 2.0 to 2.3. Figure 4 shows an overview of bugs timeline and their effect on sys-
tem value. Each bug has a severity level that represents its effect on the system and is
assigned by users reporting the bug. In the figure, the system value is decreased by the
weight of the bug severity (Figure 5) starting from bug discovery date until it was fixed.
In this study, bugs that can be fixed by changing configuration files rather than source
code, and bugs that caused a crash at startup were excluded. These bugs require a restart
in any update model and thus, will not be included in the analysis between dynamic and
static updating. Furthermore, we excluded bugs with severity below normal. The reason
behind excluding these bugs is that users do not usually update their servers for below
normal bugs.

The value of each bug fix (W) is proportional to its severity. Since severity is se-
lected by users reporting the bug, it reflects the value of the bug fix more accurately
compared to value assigned by an external observer. However, it is less obvious how
bug severity affects the system quantitatively. For httpd, we assigned different weights
to different severity levels (Figure 5)1. To compute σi, the severity weight is multiplied
by β, which is an estimate of value loss. For example, a packet monitoring service may

1 https://issues.apache.org/bugzilla/page.cgi?id=fields.html

380 B. Gharaibeh, H. Rajan, and J.M. Chang

Fig. 4. History of httpd Value

Category W Description
Critical 3 crashes, loss of data, memory leak
Major 2 major loss of function

Normal 1 some loss of functionality under specific circum-
stances

Fig. 5. Apache httpd Bug Categories. Taken from ASF Bugzilla: A Bug’s Life Cycle.

be employed to record transactions affected by the bug. Such system can affect the
overall throughput, and thus, reduces the system value (i.e. hits per day).

The value of a bug fix depends on its severity level (user supplied) and its estimated
value loss (β). We later show the effect of β and bug severity on system values of
different updating models.

3.4 Analysis

We will now apply our analysis model to evaluate the two update models (Model 1
and Model 2). We will study the difference and the effect of operational parameters on
revenue.

Revenue Analysis. Assuming E[U] = UL = 1, Figure 6 presents the revenue values
for Model 2 and Model 1. These values reflect the expected benefits for a single con-
tinues user. Note that increasing the number of expected users (E[U]) will increase the
absolute revenue. However, it has minimum effect on the difference between Model 1
and Model 2 update systems. The main cause of increased value in Model 2 for Xerces
is the wait period until restart required by Model 1. For Apache httpd, the wait pe-
riod for receiving a bug fix is manifolds longer than that for the next scheduled restart.
Therefore, in the case of httpd, the long running cost of Model 2 makes it less beneficial
on the long run.

Effect of Updating Overhead. Figure 7 shows the gain percentage from using Model
2 compared to Model 1 for the studied features from Xerces and bug fixes of Apache
httpd. It shows that for Xerces, dynamic updating can provide benefit as long as its

Analyzing Software Updates 381

Cycle Model 1 Model 2
Xerces 1.2.3-1.3.0 34.86 37.73
Xerces 1.3.0-1.3.1 28.43 31.64
httpd 2285.15 2269.66

Fig. 6. NOV Calculation when E[U] = UL = 1 and tfa = one min. Cvm = 0.99. β = 0.05.

Fig. 7. Effect of Cvm. E[U] = UL = 1 and tfa = one min

performance is above 90% of Model 1 performance. In other words, the long running
costs of using dynamic updating for Xerces must not exceed 10% of the system revenue.
If supporting the dynamic update system reduces a server’s performance (e,g, satisfied
requests per second) by 10%, then this performance loss translates into lost customers,
and thus a loss in revenue by 10%. Any gain from early adoption of features will be
eliminated by the constant high cost of supporting dynamic updating. Apache httpd
presents a different story. Even at highest Cvm ratio, there is no benefit from using
Model 2. While as expected, the loss of value increases as Cvm decreases.

Effect of Restart Schedule. The main reason that Model 2 can generate better value
compared to Model 1 is delayed updates in Model 1, which is related to Toff . This
parameter represents the period of maintenance cycle in model 1. High value indicates
longer periods without restarts and thus reduced cost due to service interruption. On the
other hand, low values of Toff brings required updates at a faster rate. Figure 8 shows
the relation between the value of Toff and the gain of model 2 compared to Model 1.
At higher Toff values, the static update model losses most of its benefits and become
closer to Model 0. Xerces case is very sensitive to varying the value of Toff due to
the short period between features. As Toff increases, many features will be delayed.
However, Apache httpd bug fixes are well-dispersed in time. Therefore, higher Toff

barely affect Model 2 gain (from -1% to 1.5%).
With low Toff (i.e. daily restarts), the system will closely follow the value of Model

2. It is worthy to note that in all cases, we assumed that static updates occur on low
demand times (i.e. restart cost multiplied by UL rather than E[U]). In reality, this as-
sumption may not hold for low values of Toff .

382 B. Gharaibeh, H. Rajan, and J.M. Chang

Fig. 8. Effect of toff . E[U] = UL = 1 and tfa = one min. Cvm = 0.99.

3.5 Summary

In this section, we investigated the value of different update models on a set of real-
world applications (Xerces and Apache httpd). Our main objective was to study our
model’s trends and values depending on the selected parameters. Several key insights
are worthy to note. First, the long running cost of dynamic updating has an influential
role in determining the total revenue. Another observation is the relation between bug
fix history and benefits from dynamic updating. In general, we note the usefulness of
this model in understanding why certain models perform better and how the model
parameter affects its performance. We also note that the exact values obtained in our
analysis are dependent on the choice of the model parameters values.

4 Related Work

Dynamic updating is gaining increased interest from research and industry. Several re-
search projects have proposed, designed and implemented dynamic updating systems.
However, the main evaluation tasks in the literature were performance and coverage.
Chen et al. [6] and Subramanian et al. [27] evaluated their systems in terms of service
disruptions during the update process. Evaluation of runtime aspect-weaving tools [8]
have also focused on runtime overhead. Dumitras et al. [7] developed a framework to
assess the risk of dynamic update verses the risk of postponing the update. In this pa-
per, we explored a different evaluation goal and methods. To the best of our knowledge,
this is the first exposition into evaluating update systems in terms of running costs and
added options value.

Our evaluation model is based on the NOV analysis [5, 13]. NOV analysis is based
on the problem of pricing financial options. A financial option presents the opportunity
to purchase a commodity at a strike price in the future regardless of price fluctuations,
provided that the buyer pays a premium in the present (also known as Call Option). In
this paper we used the basics of options analysis to evaluate the benefits of dynamic
updating. Updating has a significant resemblance with the problem of option pricing.
As options, dynamic updating provides the opportunity to perform a future update at a

Analyzing Software Updates 383

possibly reduced price given that a premium (i.e. cost of using the dynamic update sys-
tem) is paid. The body of literature describing this financial instruments is extensive and
out of the scope of this paper. However, we note the application of options to software
design and especially to design modularity. Baldwin and Clark [2] showed the benefits
of modular design in increasing a system’s value. They conclude that a set of options
over modules are more valuable than options on the whole system. This idea is further
utilized in software design research by analyzing which modularization provides the
best value. Sullivan et al. [28] show the value of design based on information hiding
principles by combining NOV analysis and design information.

Similar uses of option analysis can be found in [4, 12, 16]. Our work shares the basic
analysis techniques since the problem of quantifying updating benefits can be translated
into a modular design evaluation problem (i.e. Updatable systems are modular). How-
ever, the case for software updating presents a different set of operational parameters
and dependencies on time that are not considered for option analysis for software de-
sign. Ji et al. [11] used option analysis to evaluate the benefits from designing and issu-
ing new software releases in relation to market uncertainty. Their analysis is concerned
with the software developer perspective and analyze the preferred market conditions
for releasing an upgrade (additional features). In this paper, we were mainly concerned
with how to decide between different upgrading policies. In contrast, our analysis as-
sists system users and updatable systems designers, rather than feature providers, with
deriving decisions related to upgrading policies.

The problem of designing dynamically updatable systems has also received consid-
erable attention in the last decade. Oreizy et al. [22, 23, 25] and Garlan et al. [9] have
presented and studied dynamic software architectures. These systems were evaluated
based on the performance of resulting application and other code metrics. The model
presented in this paper can be applied to evaluate different online updating schemes
including those presented by Oreizy et al. and Garlan et al.. Evaluating dynamic de-
ployment architectures were also presented Mikic-Rakic in her PhD thesis [18], where
the goal was to reduce service disruption (i.e. increase value) in distributed systems
through better deployment strategies. In this paper, we are not concerned with enhanc-
ing a specific updating system, but rather on providing a mechanism to evaluate and
compare their benefits.

5 Discussion

We have illustrated how our proposed model can be used to evaluate updating systems
and to understand the effect of some operational parameters. This evaluation model is
advantageous since it accounts for the value of time and supports the study of time
dependent value functions. In our evaluation (Section 3), we treated the feature value
function as a constant. In general, assigning values to features is often subjective. How-
ever, it would be of interest to study value functions that directly depend on time. For
example, functions that model compound interest on feature’s value.

We assumed that each applied update is correct and does not fail (i.e. bug-free). This
assumption simplifies the formulation. However, a more practical model will incorpo-
rate the possibility of failed updates. A failed update can be considered as a feature

384 B. Gharaibeh, H. Rajan, and J.M. Chang

with negative gain to model value loss during the use of the malfunctioning code. Since
failures are unknown before their occurrence, this additional negative-gain feature will
depend on a probability distribution that describes bug probability over time. The issue
of failed updates have been extensively studied by Mokous and Weiss [19].

Finally, this study evaluated two update models, static(offline) and dynamic. An in-
teresting question is to try to evaluate a combination of several dynamic update schemes
depending on the nature of the feature and how they compare in provided value.

6 Conclusions and Future Work

Software updating has several advantages such as runtime monitoring, bug fixes or
adding features to long running applications. Therefore, dynamic software updating
has attracted significant interest in the last few years [6, 20, 21, 24, 26]. To date, dy-
namic updating literature evaluates such systems in terms of coverage (i.e. what type of
code changes are supported) and performance. For example, Chen et al. [6] evaluated
their system in terms of service disruptions during the update process and noted the
types of code changes that their system can not handle. Such evaluation is sufficient to
understand the system performance and coverage. However, we often need other met-
rics to compare different updating systems. For example, what would be the gain from
dynamic updating over offline updating, or what is the gain difference between two dy-
namic updating systems. To answer these questions, we formalized a quantitative model
to evaluate the net revenue gained by the use of different updating models. Using this
model, we were able to evaluate the gain from online updating vs. offline updating based
on the evolution history of real-world applications. Furthermore, the model can also be
used to compare two, updating schemes that differ in their coverage and performance.

An interesting outcome of this analysis was an insight into the perceived value of
performance overheads for dynamic update systems. Generally, researchers have been
concerned about two kinds of such overheads [8]: first, during update time, and sec-
ond, constant overhead during the system’s normal execution. Our analysis provides a
method to analyze and compare these overheads based on their perceived values, which
has the potential to aid in the selection of an updating system during software design.

Future work involves extending our analysis model in two main directions. First,
the formulation can be extended to model the effect of bug discovery. Often after a
feature release a bug is discovered and a second patch is needed to resolve the bug. The
extension can model the revenue loss from such activity. Second, in terms of evaluation,
we used simple constants to represent feature values. However, modeling real-world
economics would require more complex valuation functions.

References

1. Apache, http://httpd.apache.org/
2. Baldwin, C.Y., Clark, K.B.: Design Rules: The Power of Modularity, vol. 1. MIT Press,

Cambridge (1999)
3. Bennett, K.H., Rajlich, V.T.: Software maintenance and evolution: a roadmap. In: The Con-

ference on The Future of Software Engineering, pp. 73–87 (2000)

http://httpd.apache.org/

Analyzing Software Updates 385

4. Cai, Y.: Modularity in Design: Formal Modeling and Automated Analysis. PhD thesis, U. of
Virginia (2006)

5. Chandler, A.D.: Strategy and Structure. MIT Press, Cambridge (1962)
6. Chen, H., Yu, J., Chen, R., Zang, B., Yew, P.-C.: POLUS: A POwerful Live Updating System.

In: ICSE (2007)
7. Dumitras, T., Narasimhan, P., Tilevich, E.: To upgrade or not to upgrade: impact of online

upgrades across multiple administrative domains. In: OOPSLA 2010, pp. 865–876 (2010)
8. Dyer, R., Rajan, H.: Nu: a dynamic aspect-oriented intermediate language model and virtual

machine for flexible runtime adaptation. In: AOSD 2008 (2008)
9. Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., Steenkiste, P.: Rainbow: Architecture-

based self-adaptation with reusable infrastructure. Computer 37, 46–54 (2004)
10. Gharaibeh, B., Rajan, H., Chang, J.M.: A quantitative cost/benefit analysis for dynamic up-

dating. Technical report, Iowa State University (2009)
11. Ji, Y., Mookerjee, V., Radhakrishnan, S.: Real options and software upgrades: An economic

analysis. In: International Conf. on Information Systems (ICIS), pp. 697–704 (2002)
12. Sullivan, K., et al.: Modular aspect-oriented design with XPIs. ACM TOSEM (2009)
13. Klepper, S.: Entry, exit, growth and innovation over the product life cycle. American Eco-

nomic Review 86(30), 562–583 (1996)
14. Kniesel, G.: Type-safe delegation for dynamic component adaptation. In: Demeyer, S., Dan-

nenberg, R.B. (eds.) ECOOP 1998 Workshops. LNCS, vol. 1543, pp. 136–137. Springer,
Heidelberg (1998)

15. Lehman, M.: Software’s future: managing evolution. IEEE Software 15(1), 40–44 (1998)
16. Lopes, C.V., Bajracharya, S.K.: An analysis of modularity in aspect oriented design. In:

AOSD 2005, pp. 15–26 (2005)
17. Mätzel, K., Schnorf, P.: Dynamic component adaptation. Technical Report 97-6-1, Union

Bank of Swizerland (1997)
18. Mikic-Rakic, M.: Software architectural support for disconnected operation in distributed

environments. PhD thesis, University of Southern California (2004)
19. Mockus, A., Weiss, D.M.: Predicting risk of software changes. Bell Labs Technical Jour-

nal 5, 169–180 (2000)
20. Neamtiu, I., Hicks, M.: Safe and timely updates to multi-threaded programs. SIGPLAN

Not. 44(6), 13–24 (2009)
21. Neamtiu, I., Hicks, M., Stoyle, G., Oriol, M.: Practical dynamic software updating for C. In:

PLDI (2006)
22. Oreizy, P., Medvidovic, N., Taylor, R.N.: Runtime software adaptation: framework, ap-

proaches, and styles. In: ICSE Companion 2008: Companion of the 30th International Con-
ference on Software Engineering, pp. 899–910 (2008)

23. Oreizy, P., Taylor, R.: On the role of software architectures in runtime system reconfigura-
tion. In: Intl. Conf. on Configurable Distributed Systems, (1998)

24. Orso, A., Rao, A., Harrold, M.: A technique for dynamic updating of Java software (2002)
25. Oreizy, P., et al.: An architecture-based approach to self-adaptive software. IEEE Intelligent

Systems 14(3), 54–62 (1999)
26. Malabarba, S., et al.: Runtime support for type-safe dynamic java classes. In: Hwang, J., et

al. (eds.) ECOOP 2000. LNCS, vol. 1850, pp. 337–361. Springer, Heidelberg (2000)
27. Subramanian, S., Hicks, M., McKinley, K.S.: Dynamic software updates: a VM-centric ap-

proach. In: PLDI, pp. 1–12 (2009)
28. Sullivan, K.J., Griswold, W.G., Cai, Y., Hallen, B.: The structure and value of modularity in

software design. In: ESEC/FSE 2001, pp. 99–108 (2001)
29. Williamson, O.E.: The Economic Institutions of Capitalism. Free Press, New York (1985)
30. Xerces. XML library, http://xerces.apache.org/xerces-j/

http://xerces.apache.org/xerces-j/

Flow-Augmented Call Graph: A New Foundation for
Taming API Complexity

Qirun Zhang, Wujie Zheng, and Michael R. Lyu

Computer Science and Engineering
The Chinese University of Hong Kong, China

{qrzhang,wjzheng,lyu}@cse.cuhk.edu.hk

Abstract. Software systems often undergo significant changes in their life cycle,
exposing increasingly complex API to their developers. Without methodical guid-
ances, it is easy to become bogged down in a morass of complex API even for
the professional software developers. This paper presents the Flow-Augmented
Call Graph (FACG) for taming API complexity. Augmenting the call graph with
control flow analysis brings us a new insight to capture the significance of the
caller-callee linkages in the call graph. We apply the proposed FACG in API rec-
ommendation and compare our approach with the state-of-the-art approaches in
the same domain. The evaluation result indicates that our approach is more effec-
tive in retrieving the relevant APIs with regard to the original API documentation.

Keywords: API Recommendation, Static Analysis, Control Flow Analysis.

1 Introduction

Software systems often undergo significant changes during the in-service phrase of their
life cycle [7]. Most of contemporary software systems are becoming larger with expos-
ing increasingly complex API to developers [8]. A recent survey conducted in Microsoft
Research reveals that software developers usually become lost working on projects with
complex API, unsure of how to make progress by selecting the proper API for a cer-
tain task [15]. Previous literature [6,20] points out that working with complex APIs in
large scale software systems presents many barriers: understanding how the APIs are
structured, selecting the appropriate APIs, figuring out how to use the selected APIs and
coordinating the use of different APIs together all pose significant difficulties. Facing
with these difficulties along, developers spend an enormous amount of time navigating
the complex API landscape at the expense of other value-producing tasks [16].

A methodical investigation of the API usage in large software systems is more ef-
fective than an opportunistic approach [2]. The API relevance is usually considered to
tame the API complexity. Two APIs are relevant if they are often used together or they
share the similar functionality. According to previous literature [19], the original API
documentation which groups the APIs into modules is the best resource to indicate the
API relevance. However, few projects provide the insight to capture the relevant APIs
in their documentation [8]. With the need exposed, recommendation systems specific to
software engineering are emerging to assist developers [13]. Recommending relevant

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 386–400, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Flow-Augmented Call Graph: A New Foundation for Taming API Complexity 387

APIs (namely, API recommendation) in software systems is also a long-standing prob-
lem that has attracted a lot of attention [4,8,9,14,19,22]. Generally, there are two funda-
mental approaches in API recommendation concerned with data mining techniques and
the other with structural dependency. The mining approaches emphasize on “How API
is used” and extract frequent usage patterns from client code. The structural approaches,
on the other hand, focus on “How API is implemented” and recommend relevant APIs
according to structural dependencies in library code.

Previous work on API recommendation heavily relies on the call graph. The call
graph is a fundamental data representation for software systems, which provides the
first-hand evidence of interprocedural communications [17]. Especially for the work
concerned with API usage, the impact of the call graph is critical. The call graph itself
does not imply the significance of callees to the same caller. However, the callees are
commonly invoked by a caller under various constrains. For example, the callees en-
closed with no conditional statement will be definitely invoked by the caller, whereas
the callees preceded by one or more conditional statements are not necessarily invoked.
Previous approaches relying on the call graph do not distinguish the differences between
callees.

Our approach takes a different path from the previous work by extending the very
foundation in API recommendation—the call graph. We introduce the Flow-Augmented
Call Graph (FACG) that assigns weights to each callee with respect to the control flow
analysis of the caller. The key insight of the FACG is that a caller is more likely to
invoke a callee preceded by less conditional statements. Thus the bond between them is
stronger comparing to the others preceded by more conditional statements. Therefore,
the significance of caller-callee linkages can be inferred in the FACG. The insignificant
callees in the FACG can be eliminated, so that the API complexity can be reasonably
reduced with respect to specific software tasks. In this work, we employ the FACG
in API recommendation and conduct our evaluation on several well-known software
systems with three state-of-the-art API recommendation tools.

This paper makes the following contributions:

– We propose the Flow-Augmented Call Graph (FACG) as a new foundation for tam-
ing API complexity. The FACG extends the call graph by presenting the signifi-
cance of caller-callee linkages in the call graph.

– We apply the FACG in API recommendation and evaluate our approach on several
well-documented software projects. We employ their module documentation as a
yardstick to judge the correctness of the recommendation. The evaluation indicates
our approach is more effective than the state-of-the-art API recommendation tools
in retrieving the relevant APIs.

– We implement our API recommendation approach as a scalable tool built on GCC.
Our tool copes with C projects compliable with GCC-4.3. All the supplemental
resources are available online1.

The rest of the paper is organized as follows. Section 2 describes the motivating ex-
ample. Section 3 presents the approach to build FACG and recommend relevant APIs.

1 http://www.cse.cuhk.edu.hk/˜qrzhang/facg.html

http://www.cse.cuhk.edu.hk/~qrzhang/facg.html

388 Q. Zhang, W. Zheng, and M.R. Lyu

1 APR DECLARE(apr status t) apr pool create ex(...)
2 {
3 ...
4 if ((node = allocator alloc(allocator, MIN ALLOC - APR MEMNODE T SIZE)) == NULL)
5 {
6 ...
7 }
8 ...
9 #ifdef NETWARE

10 pool->owner proc = (apr os proc t)getnlmhandle();
11 #endif /* defined(NETWARE) */
12 ...
13 if ((pool->parent = parent) != NULL)
14 {
15 #if APR HAS THREADS
16 ...
17 if ((mutex = apr allocator mutex get(parent->allocator)) != NULL)
18 apr thread mutex lock(mutex);
19 #endif /* APR HAS THREADS */
20 ...
21 #if APR HAS THREADS
22 if (mutex)
23 apr thread mutex unlock(mutex);
24 #endif /* APR HAS THREADS */
25 }
26 ...
27 return APR SUCCESS;
28 }

Fig. 1. apr pool create ex() in Apache

Section 4 compares our approach with three state-of-the-art tools. Section 5 summaries
the previous work. Section 6 conducts the conclusion.

2 Motivating Example

We motivate our approach by selecting a real world API apr pool create ex()2

from the latest Apache HTTP server-2.2.16. Consider the code snippet shown in Fig. 1,
if we investigate the control flow of this API, we may obtain two interesting observa-
tions. First, the call-site of API getnlmhandle() at line 10 is subject to the macro
NETWARE3, and this API will never be called by apr pool create ex() on the plat-
forms other than Netware R©. Second, the call-site of allocator alloc() at line 4
is unconditional, whereas apr thread mutex lock() at line 18 is subject to two
conditions. As a result, allocator alloc() is much more likely to be called by
apr pool create ex() than apr thread mutex lock(). However, in the conven-
tional call graph shown in Fig. 2(a), the callees are identical to the caller. These observa-
tions reveal that the conventional call graph is blind to the significance among different
callees, and we are likely to miss some critical information if we treat every callee as
the same in a call graph.

In this paper, we propose the Flow-Augmented Call Graph (FACG), which aims to
address the limitations of the conventional call graph. We build the FACG with respect

2 The irrelevant code is omitted.
3 Netware is a network operating system developed by Novell, Inc. Find more on
http://httpd.apache.org/docs/2.0/platform/netware.html

http://httpd.apache.org/docs/2.0/platform/netware.html

Flow-Augmented Call Graph: A New Foundation for Taming API Complexity 389

Table 1. Flow distributions of each API in the previous example

API name Description Flow
apr pool create ex Creating a new memory pool.
allocator alloc Allocate a block of mem from the allocator 1
apr allocator mutex get Get the mutex currently set for the allocator 0.5
apr thread mutex lock Acquire the lock for the given mutex. 0.25
apr thread mutex unlock Release the lock for the given mutex. 0.25
getnlmhandle Returns the handle of the NLM owning the calling thread. 0

(a) Call Graph (b) Flow-Augmented Call Graph

Fig. 2. Call Graph and Flow-Augmented Call Graph

to the fact that some of the call-sites are unconditional while others are conditional;
some are concerned with more conditions while the others are with fewer conditions.
By applying the control flow analysis, we observe that the unconditional call-sites oc-
cupy the caller’s major control flow, whereas the call-sites under more conditions tend
to reside in a less important sub branch. It is more possible for the caller to invoke
the callee with fewer or without conditions. In order to cope with individual call-sites,
we split the control flow equally for every branch in the control flow graph. For the
motivating example in Fig. 1, we initialize the inflow by 1. The final distribution of
the control flow for each callee is shown in Table 1. Especially, getnlmhandle()
is eliminated since our analyzer is built on GCC Gimple IR, where all of the macros
have been preprocessed by the compiler. Finally, we extract the description of each
API from Apache Http Documentation4 to interpret the insight beyond our FACG. As
shown in Table 1, among the five callees, API allocator alloc() is more likely
to accomplish “creating a new memory pool” than other less important APIs (e.g.,
apr thread mutex lock()) in this case. The FACG shown in Fig. 2(b) indicates that
the linkage of apr pool create ex() and allocator alloc() is the most signifi-
cant one among all potential caller-callee pairs.

3 Approach

3.1 Augmenting the Call Graph with Control Flow

Parsing Source Code. The GCC compiler is chosen as the backbone parser. Our static
analyzer takes the advantage of Gimple [10] Intermediate Representation and is able to

4 http://apr.apache.org/docs/apr/1.4/modules.html

http://apr.apache.org/docs/apr/1.4/modules.html

390 Q. Zhang, W. Zheng, and M.R. Lyu

capture essential information (e.g., basic block, API call-site and structure accessing)
from the source code. The current implementation only works for C; however, it can be
easily extended to other languages through different GCC front ends.

Reducing CFG. We adopt the definition of CFG from those presented by Podgurski
and Clarke [11].

Definition 1. A Control Flow Graph (CFG) G = (N, E) for procedure P is a directed
graph in which N is a set of nodes that represent basic blocks in procedure P . N
contains two distinguished nodes, ne and nx, representing ENTRY and EXIT node,
where ne has no predecessors and nx has no successors. The set of N is partitioned
into two subsets, NS and NP , where NS are statement nodes with each ns ∈ NS

having exactly one successor, where NP are predicate nodes representing predicate
statements with each np ∈ NP has two successors5. E is a set of directed edges with
each ei,j representing the control flow from ni to nj in procedure P . All nodes in N are
reachable from ENTRY node ne.

In the common case that the CFG is reducible [21], eliminating loop back-edges results
in a DAG and this can be done in linear time[1]. For the irreducible CFG, we adapt the
conservative approximation from [12] and unroll every loop exactly once. This is done
at early stage so that the DAG instead of CFG is considered in building the FACG.

Calculating the Flow of Callees. For a callee Q, if a path with flow x contains Q, we
say Q has flow x along the path, otherwise Q has flow 0 along the path. The flow of Q
in the caller is the sum of the flow of Q along all the paths. To calculate the flow of Q,
a naive strategy is to employ an exhausted graph walking strategy to collect the flow of
callees in each path. However, this is infeasible as there are an exponential number of
paths [12]. We propose an approach to calculate the flow of Q incrementally. We define
the inflow and outflow of each basic block ni as the following:

Definition 2. The inflow of a basic block is defined as:

IN(ni) =

⎧⎪⎨
⎪⎩

∑
ej,i∈E

OUT (nj) if(ni �= ne)

n0 if(ni = ne)
(1)

Definition 3. The outflow of a basic block is defined as:

OUT (ni) =

⎧⎨
⎩

IN(ni) if(ni ∈ NS)
IN(ni)

2
if(ni ∈ NP)

(2)

The inflow IN(ni) denotes the flow of all the paths arriving the basic block ni (ni

is counted in the paths), and the outflow OUT (ni) denotes the flow of all the paths

5 As indicated in [11], the outedge of each ni in CFG is at most two. This restriction is made for
simplicity only.

Flow-Augmented Call Graph: A New Foundation for Taming API Complexity 391

Algorithm 1. Algorithm to determine the flow of each callee in the DAG

Input : G(V, E),directed, acyclic CFG of procedure P ;
V is topologically sorted;
the set of Q, where Q is the callee of P ;

Output: Q.F low = IN(nx)Q for each callee Q;
foreach callee Q of procedure P do

foreach ni ∈ V do
foreach nj ∈ PRED(ni) do

IN(ni) ← IN(ni) + OUT (nj);
IN(ni)Q ← IN(ni)Q + OUT (nj)Q;

end
if ni has call-site of Q then

IN(ni)Q ← IN(ni);
end

end
Q.F low ← IN(nx)Q

end

arriving a successor of ni through ni. We also use IN(ni)Q and OUT (ni)Q to denote
the inflow and outflow of ni associated with a callee Q. IN(ni)Q denotes the flow of
Q in all the paths arriving ni, and OUT (ni)Q denotes the flow of Q in all the paths
arriving a successor of ni through ni.

Definition 4. The inflow of a basic block associated with Q is defined as:

IN(ni)Q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
ej,i∈E

OUT (nj)Q if(ni �= ne and ni does not contain Q)

0 if(ni = ne and ni does not contain Q)
IN(ni) if(ni contains Q)

(3)

Definition 5. The outflow of a basic block associated with Q is defined as:

OUT (ni)Q =

⎧⎨
⎩

IN(ni)Q if(ni ∈ NS)
IN(ni)Q

2
if(ni ∈ NP)

(4)

In order to calculate the flow information effectively, we first rank the basic blocks using
topological sorting. For ne, we calculate IN(ne)Q according to the definition. We then
calculate the inflow of the basic blocks associated with Q in the order of topological
sorting. If ni contains Q, IN(ni)Q is determined by IN(ni). Otherwise, IN(ni)Q

is the sum of the inflow of the predecessors of ni associated with Q, which has been
calculated. Finally, the flow of Q is equal to the inflow of nx associated with Q, i.e.,
IN(nx)Q. The overall algorithm is shown in Algorithm 1.

Augmenting the Call Graph. We initialize the inflow of each procedure P by 1 (i.e.,
n0 = 1), and propagate the flow in the CFG . Upon the completion of Algorithm 1, we

392 Q. Zhang, W. Zheng, and M.R. Lyu

Fig. 3. The FACG Example

augment every caller-callee edge according to Q.F low for each callee Q to build the
FACG.

In the FACG, the significance of each caller-callee linkage can be indicated on each
edge in the call graph. We revise the definition of the call graph [3] to give a formal
definition of FACG.

Definition 6. A Flow-Augmented Call Graph (FACG) G = (N, E) for procedure P is
a directed multigraph in which each node n ∈ N corresponds to either a caller P or a
callee Q, and each weighted edge e ∈ E represents a call-site augmented with control
flow.

3.2 Recommending the Relevant APIs

The relevant APIs have similar functionalities, and thus they may access some program
elements (i.e., the callee APIs and the structures) in common. Therefore, we adopt the
set of program elements accessed by the APIs to recommend relevant APIs. However,
an API may access many program elements (along with its callees), most of which are
irrelevant to the main functionality of the API. These irrelevant elements can easily
dominate the relevance calculation of APIs, and introduce noises to recommendation
results6. To reduce the impact of the irrelevant elements, one may consider only the
elements directly accessed by the APIs in the conventional call graph (For example,
Saul et al. [19] consider only the neighboring functions of an API as the candidates for
recommendation). But many relevant APIs for a API query may be far from the query
in the call graph, and are missed by such kind of approaches.

Despite the difficulty of selecting a representative set of program elements accessed
by an API from the conventional call graph, the task is feasible using the FACG. Given
the FACG, the significant callees of a caller API can be found with regard to the flow-
augmented edge. The representative set of program elements of an API is determined
along with its significant callees. Basically, if a callee is called with a large flow in the
FACG, it is considered to be the significant callee. Note that the flow can be propagated
along the FACG, and a callee that is called indirectly by an API can be significant to
the API as well. For example, in Fig. 3, f0 calls g0 with flow 1, and g0 calls h0 with

6 We further discuss this in section 4.4.

Flow-Augmented Call Graph: A New Foundation for Taming API Complexity 393

Table 2. Subject Project

Software Version KLOC #C files #Functions
Httpd 2.2.16 299.7 571 2188
D-Bus 1.1.3 99.2 108 1608

Tcl 8.5.9 227.1 207 1880
Tk 8.5.9 260.1 201 2303

flow 0.5, therefore, the flow of f0 to h0 is 1 ∗ 0.5 = 0.5. If we use 0.5 as the threshold
of flow for determining significant callees, then the significant callees of f0, f1, and f2
are: g0, h0 of f0; g1, h0 of f1; and g2, h1 for f2.

We then calculate the relation of two APIs as the cosine similarity of their represent-
ing vectors. Cosine similarity can capture the similarity of two vectors without biasing
to vectors with large norm, and it is widely used in text retrieval. The cosine similarity
of two vectors is

cosine(f, g) =
f · g

||f || · ||g|| (5)

For the example shown in Fig. 3, the relation of f0 and f1 is 0.5, and the relation of f0
and f2 is 0 (for simplicity of presentation, we omit the structures accessed by the APIs).
While it is difficult to distinguish the relevance of f1 and f2 to f0 in the conventional
call graph, it is clear that f1 is more relevant to f0 than f2 is in the FACG, since f1
and f0 have some main functionalities in common. We thus recommend f1 as a highly
relevant API of f0.

4 Evaluation

We compare the proposed approach with three state-of-the-art API recommendation
tools: Suade [14], Fran [19] and Altair [8]. Suade recommends a set of API by analyzing
the specificity and reinforcement, Fran performs a random walk algorithm in the call
graph to find relevant APIs. Altair suggests the recommendation based on API’s internal
structural overlap. Our evaluation over the four tools is conducted with regard to the
specific task suggested by Fran [19]: Given a query API, retrieve other APIs in the same
module. The subject projects in our evolution section are Apache HTTP Server, Tcl/Tk
library, and D-Bus message bus system. These subject projects are chosen because they
are documented well, and the original API documentation which groups the APIs into
modules is the best resource to tell the API relevance. Table 2 gives the basic description
on the subject projects.

4.1 Experimental Setup

The experiments are conducted on an Intel Core 2 Duo 2.80GHz machine with 3GB
memory and Linux 2.6.28 system. Suade, Altair, and Fran are freely available online.
As mentioned in Altair [8], Suade is not initially designed for API recommendation; we
use a re-implementation from Fran [19]. Fran proposes two algorithms,namely, FRAN

394 Q. Zhang, W. Zheng, and M.R. Lyu

Table 3. A Comparison of API Recommendation Tools. Curly underline indicates a matched
recommendation.

Suade Fran Altair our approach

apr os file get N/A N/A

apr file writev
pipeblock
pipenonblock
proc mutex posix cleanup
proc mutex posix acquire
proc mutex posix release
proc mutex sysv cleanup
proc mutex sysv acquire
proc mutex sysv release
proc mutex fcntl cleanup

���������
apr os pipe put

�����������
apr os pipe put ex

apr file pool get

���������
apr os file put

apr file buffer size get
apr file close
apr file ungetc
apr unix child file cleanup
apr file name get
apr file open stderr

apr fnmatch

tolower
rangematch
make autoindex entry

apr palloc
apr pstrdup
strlen
apr pstrcat
ap make full path
ap make dirstr parent
find item
toupper
memset
ignore entry

N/A

rangematch
pcre maketables
apr uri unparse

����������
apr fnmatch test

ap str tolower
atoq
strip paren comments
ap filter protocol

���������
apr match glob

is token

Tcl SetVar2

������
Tcl SetVar

��������
Tcl SetVar2Ex
EnvTraceProc
TclpSetVariables
Tcl NewStringObj
Tcl GetString
TclFreeObj

������
Tcl SetVar
TclpSetVariables
EnvTraceProc
Tcl ExternalToUtfDString
getuid
uname
ctype b loc

Tcl DStringInit
TclpGetPwUid
Tcl DStringFree

ObjFindNamespaceVar
Tcl FindNamespaceVar
TclLookupSimpleVar
TclObjLookupVarEx
TclObjLookupVar
TclLookupVar

���������
Tcl ObjSetVar2

��������
Tcl SetVar2Ex

������
Tcl SetVar

���������
Tcl ObjGetVar2

��������
Tcl SetVar2Ex

��������
Tcl UnsetVar2

��������
Tcl GetVar2Ex

�������
Tcl GetVar2

������
Tcl UpVar2

TclVarErrMsg
TclLookupVar

������
Tcl SetVar

TclObjLookupVar
Tcl FindNamespaceVar

and FRIAR. They concludes that a combination of the two algorithms can achieve bet-
ter performance. We use their implementation of the combined algorithm in our ex-
periment, denoted as Fran to avoid the naming confusion. Suade and Fran need to be
initialized with a call graph. We feed them with the call graph extracted by our im-
plementation based on Gcc Gimple IR. Altair is built on LLVM, which can gracefully
handle the source code. Moreover, Fran implements the top-k precision/recall measure-
ment, we adopt the result to calculate the F1 score for Fran and Suade in our evaluation.

4.2 Case Studies

Case study is de rigueur in evaluating the result obtained by API recommenders [19].
Suade, Fran and Altair used human examination [14,19] and API naming [8] (concerned
with the prefix apr and ap in Apache HTTP server). However, without convincing
ground truth to support the judgement, these case studies have several limitations, which
have been well-discussed in Fran [19] (which conducted an additional quantitative study
as a supplement).

We sought to judge the result objectively and bring about fair comparisons among
four tools. As suggested in Fran [19], the original project documentation which groups
the APIs into modules is the best resource to judge the API relevance. Therefore, we
take the module content as a yardstick to avoid subjective judgement on the correctness
of relevant APIs and underline the relevant APIs that appear in the module in Table 3.
Table 3 shows the recommendation set obtained by the four tools with respect to the
queries list below. The cases are chosen in order to indicate the typical situations in the
related projects.

Flow-Augmented Call Graph: A New Foundation for Taming API Complexity 395

Case 1: apr os file get() is a function in the Apache Portable Runtime (APR)
which the Apache HTTP server is built on top of. The APR documentation indicates
that this API belongs to the Portability Routines module7 and its functionality is to
“convert the file from apr type to os specific type”. This API is not directly called
by Apache HTTP server, yet it exports the interface for developers to extend Apache
HTTP server. In this case, Suade and Fran return no result with regard to this query
because it is not in the call graph. Among the top 10 results returned by Altair, there is
no relevant APIs according to the documentation. We investigate the source code and
find that apr os file get() is a simple function with two lines of code and accesses
only one data structure apr status t. Altair computes the structural overlap among
APIs; however, the useful information available for this query is limited and there are
many APIs, which only access apr status t. Altair cannot distinguish the difference
among them and returns the irrelevant results. Our approach investigates the structral
information with the help of FACG and records how data structures are accessed by the
APIs explicitly. Take pipeblock() in Altair’s result for example, this API accesses
apr status t in different branches with regard to the control flow, where our approach
is capable of distinguishing this case from a single access as in apr os file get().
Among the top 10 results obtained by our approach, three APIs can be found in the doc-
umentation which are identified to be relevant to the query shown by a curly underline.

Case 2: apr fnmatch() is a member of the Filename Matching Module in Apache
HTTP server, which is described in the documentation as “to match the string to the
given pattern”8. This query is a self-contained API, which simply manipulates the
strings without accessing any data structures. As discussed in Altair [8], Altair may not
return any result for these self-contained API. However, apr fnmatch() is called by
many other APIs in Apache HTTP server, and the documentation indicates that there
are two APIs apr finatch test() and apr match glob(), that are relevant to it.
Suade and Fran attempt to answer the query by searching the call graph. Since the call
graph is not able to tell the significance of each callees to the caller. The result returned
by Suade and Fran implies that those approaches rely on the conventional call graph
may “get lost” in the API jungle because all the neighbour nodes in the call graph ap-
pear to be “the same”. Our approach, on the other hand, only considers the callee APIs
on the major flow of the caller rather than those less important ones. Within our FACG,
such explorations in the API jungle can be directed to the caller/callee more relevant
to the query. In the end, our approach finds both of the other two APIs in the module
according to the top 10 result.

Case 3: Tcl SetVar2() in Tcl library belongs to the group of APIs that manipulate
Tcl variables9. All of the four tools return meaningful results with regard to the query.
Tcl SetVar2() is widely used in Tcl to create/modify the variable, consequently, it
has large neighbour sets (i.e., parent, child, sibling and spouse set defined by Fran). Both
of Suade and Fran return Tcl SetVar() which is a wrapper function of the query.

7 http://apr.apache.org/docs/apr/1.4/group__apr__portabile.html
8 http://apr.apache.org/docs/apr/1.4/group__apr__fnmatch.html
9 http://www.tcl.tk/man/tcl8.5/TclLib/SetVar.htm

http://apr.apache.org/docs/apr/1.4/group__apr__portabile.html
http://apr.apache.org/docs/apr/1.4/group__apr__fnmatch.html
http://www.tcl.tk/man/tcl8.5/TclLib/SetVar.htm

396 Q. Zhang, W. Zheng, and M.R. Lyu

Table 4. The Precision and Recall Performance

Suade Fran Altair Our approach

Precison

Top-5 0.111 0.155 0.266 0.384
Top-10 0.104 0.134 0.236 0.319
Top-15 0.109 0.135 0.222 0.278
Top-20 0.109 0.135 0.212 0.252

Recall

Top-5 0.025 0.072 0.099 0.173
Top-10 0.027 0.094 0.136 0.242
Top-15 0.028 0.103 0.154 0.283
Top-20 0.029 0.109 0.163 0.314

F1 Score

Top-5 0.033 0.070 0.114 0.181
Top-10 0.034 0.075 0.132 0.209
Top-15 0.035 0.080 0.133 0.213
Top-20 0.035 0.081 0.132 0.213

Suade also returns Tcl SetVar2Ex() which is called by the query. Most of the rest
APIs in their results has nothing to do with variable manipulation. The situation is quite
the same as in case 2; the conventional call graph does not distinguish the differences
between callees. The top 10 results obtained by Altair and our approach are all related
to variable manipulation in Tcl. This can be confirmed by taking look at the naming
of these APIs. However, the relevant APIs (which are listed in the documentation and
are the ground truth of F1 comparison) rank higher in our result. The reason behind is
our approach supported by FACG is likely to consider the most important neighbours
in the call graph. For example, query Tcl SetVar2 calls four APIs. Among them,
Tcl SetVar2Ex occupies the main flow of the query, so that it ranks high in the result.
The result precisely illustrates the main advantage of the FACG. Moreover, in our top
10 results, we retrieve six out of the nine APIs that are documented in the same module,
which is the best result from all four tools.

4.3 Quantitative Study

To perform the quantitative study, we compared the effectiveness of the four tools in
retrieving relevant APIs at four recommendation-set size cutoffs, top-5, top-10, top-
15 and top-20. Three measures (precision, recall and the F1-measure) of perfor-
mance in information retrieval are adopted in our evaluation. All are defined by the
recommendation set retrieved by the four tools. Let A be the recommended set ob-
tained by each tools, and B be the set of relevant APIs which appear in the mod-
ule. The precision and recall is defined as follows: precision = |A ∩ B|/|A| and
recall = |A ∩ B|/|B|. Precision measures the accuracy of obtaining the relevant
APIs while recall measures the ability to obtain the relevant APIs. The F1-measure
is the equally-weighted harmonic mean of the precision and recall measures, defined as
F = 2 ∗ presion ∗ recall/(presion + recall). It is usually engaged as the combined
measure of both precision and recall.

The summary of precision and recall performance is shown in Table 4. It can be seen
that our approach achieves the highest precision. Moreover, our approach improves the
precision rate over Suade, Fran and Altair by 184.8%, 120.6% and 31.7% respectively,

Flow-Augmented Call Graph: A New Foundation for Taming API Complexity 397

(a) F1 Comparison on Tcl-8.5.9 Library (b) F1 Comparison on Tk-8.5.9 Library

(c) F1 Comparison on Apache-2.2.16 (d) F1 Comparison on D-Bus-1.1.3

Fig. 4. Overall F1 Score Comparison

which indicates that our approach is able to suggest the most precise recommend set
among the four. In addition, our approach achieves recall improvement over Suade, Fran
and Altair by 828.4% , 167.7% and 83.3% respectively. Finally, the overall performance
measurement is determined by F1-Score, where our approach achieves the highest F1
score with a large improvement of 495.6%, 166.7% and 59.7% over Suade, Fran and
Altair respectively. The performance measurement indicates that our approach is able to
recommend relevant APIs much more effectively than all other tools. Fig. 4 shows the
F1 score comparisons over all the subject projects in our experiment. It is clearly seen
that our approach dominates the performance in all recommendation-set size cutoffs.

4.4 Discussion on the Impact of FACG

The main insight in our work is to deploy the FACG to address the significance of
caller-callee linkages. We conduct this subsection investigating our recommendation
algorithm on the conventional call graph to further illustrate the impact of the FACG.

We apply our algorithm on the conventional call graph which treats every caller-
callee linkage identically. Table 5 shows the F1 score of top-20 recommendation sets
compared with our FACG approach on the four subject projects. On average, the per-
formance of recommendation using the FACG is 41.7% higher than using the conven-
tional call graph. More specifically, Table 6 lists the top 10 results of the case study in

398 Q. Zhang, W. Zheng, and M.R. Lyu

Table 5. F1 Score of Top-20 Result

Subject Project Httpd D-bus Tcl Tk
Approach relying on the call graph 0.16 0.17 0.17 0.10

Approach relying on the FACG 0.23 0.24 0.23 0.15

Table 6. Top-10 results of our recommendation algorithm on the call graph

Query apr os file get apr fnmatch Tcl SetVar2

Top-10 Result

apr file pool get
apr file buffer size get
apr file ungetc
apr file name get
apr file buffer set
apr file flush locked
apr unix child file cleanup
database cleanup
apr file unlock

�����������
apr os pipe put ex

rangematch
find desc
make parent entry

���������
apr match glob

ap file walk
ap location walk
ap process request internal
ap process resource config
include config
dummy connection

������
Tcl SetVar

��������
Tcl SetVar2Ex

Tcl TraceVar2
Tcl ResetResult

���������
Tcl ObjSetVar2

TclGetNamespaceForQualName
Tcl TraceVar
TclObjLookupVarEx
EstablishErrorInfoTraces
Tcl DeleteNamespace

section 4.2. The relevant APIs supported by the module documentation are underlined
with a curly line as well. As mentioned before, the recommendation algorithm based
on the conventional call graph is blind to the difference between callees; therefore,
it searches more candidates than our FACG approach, without distinguishing the sig-
nificance of each candidate. Take Tcl SetVar2 for example, the first two results are
directly linked with the query in call graph, thus they rank on the top in Table 6. How-
ever, although other relevant APIs (e.g., Tcl GetVar2) appear in the candidate set,
their significance is not clear enough in the call graph to be distinguished from other
insignificant ones in the top 10 result. Moreover, the approach based on the call graph
introduces some APIs (e.g., TclGetNamespaceForQualName) irrelevant to variable
manipulation into the top 10 result, whereas the FACG approach can properly filter
them as shown in Table 3. The evaluation demostrates the benefit of the FACG in cap-
turing the essence concerned with API usage and the impact of applying the FACG in
API recommendation.

5 Related Work

There are mainly two categories of API recommendation approaches. The approaches
which recommend APIs by using mining techniques belong to the first category. These
approaches usually mine certain patterns or code snippets from sample code reposi-
tories. Prospector [9] developed by Mandelin et al. synthesizes the Jungloid graph to
answer a query providing the input and output types. Prospector traverses the possible
paths from input type to output type and recommends certain code snippets accord-
ing to API signatures and a corpus of the client code. XSnippet [18] developed by
Sahavechaphan et al. extends Prospector by adding more queries and ranking heuris-
tics to mine code snippets from a sample repository. Context-sensitive is introduced to
enhance the queries in XSnippet and produce more relevant results. Strathcona [4] de-
veloped by Holmes et al. is dedicated to recommending code examples matching the
structural context. Six heuristics are applied to obtain the structural context description
in the stored repository. MAPO [24] developed by Zhong et al. takes the advantage
of mining frequent usage patterns of an API with the help of code search engines.

Flow-Augmented Call Graph: A New Foundation for Taming API Complexity 399

PARSEWeb [22] developed by Thummalapenta et al. mines open source repositories
by using code search engines as well. Different from MAPO, PARSEWeb accepts the
queries of the form “Source type⇒Destination type” and suggests the relevant methods
that yield the object with the destination type.

The approaches in the second category aim at recommending APIs with respect to
structural dependency. Zhang et al. propose a random-walk approach [23] based on
PageRank algorithm to rank “popular” and “significant” program elements in Java pro-
grams. Inoue et al. proposed another approach [5] inspired by PageRank algorithm,
which can be employed to rank valuable components in software systems based on the
use relations. Suade [14] developed by Robillard is focused on providing suggestions
for aiding program investigation. It accomplishes the suggestion by ranking the desired
program elements concerned with the topological properties of structural dependency
in software systems. Fran [19] developed by Saul et al. extends the topological prop-
erties by considering neighbouring relationships in the call graph. Altair [8] developed
by Long et al. recommends the relevant APIs according to the overlap of commonly
accessed variable information.

To the best of our knowledge, all of the previous API recommendation approaches
rely on the conventional call graph. By distinguishing the significance of caller-callee
linkages, the proposed FACG improves the accuracy of recommending relevant APIs.

6 Conclusion

This paper presents the Flow-Augmented Call Graph (FACG) to tame the API com-
plexity. Augmenting the call graph by control flow analysis brings us a new foundation
to capture the significance of caller-callee linkages. We employed API recommendation
as a client application and engaged the FACG to retrieve the relevant APIs. We further
conduct the experiment on four large projects with original documentation as ground
truth to judge the performance, and compared our approach with three other state-of-
the-art API recommendation tools. The case studies and quantitative evaluation results
indicate our approach is more effective in retrieving the relevant APIs.

Acknowledgments. The authors would like to thank the anonymous reviewers for their
insightful feedback. We would also like to thank Jie Zhang and Jianke Zhu with the writ-
ing. This research was fully supported by a grant from the Research Grants Council of
the Hong Kong Special Administrative Region, China (Project No. CUHK4154/10E).

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Princiles, Techniques, and Tools. Addison-
Wesley, Reading (1986)

2. DeMarco, T., Lister, T.: Programmer performance and the effects of the workplace. In: ICSE,
pp. 268–272 (1985)

3. Hall, M., Hall, M.W., Kennedy, K., Kennedy, K.: Efficient call graph analysis. ACM Letters
on Programming Languages and Systems 1, 227–242 (1992)

400 Q. Zhang, W. Zheng, and M.R. Lyu

4. Holmes, R., Murphy, G.C.: Using structural context to recommend source code examples.
In: Inverardi, P., Jazayeri, M. (eds.) ICSE 2005. LNCS, vol. 4309, pp. 117–125. Springer,
Heidelberg (2006)

5. Inoue, K., Yokomori, R., Fujiwara, H., Yamamoto, T., Matsushita, M., Kusumoto, S.: Com-
ponent rank: Relative significance rank for software component search. In: ICSE, pp. 14–24
(2003)

6. Ko, A.J., Myers, B.A., Aung, H.H.: Six learning barriers in end-user programming systems.
In: VL/HCC, pp. 199–206 (2004)

7. Lehman, M.M., Parr, F.N.: Program evolution and its impact on software engineering. In:
ICSE, pp. 350–357 (1976)

8. Long, F., Wang, X., Cai, Y.: API hperlinking via structural overlap. In: ESEC/SIGSOFT FSE,
pp. 203–212 (2009)

9. Mandelin, D., Xu, L., Bodı́k, R., Kimelman, D.: Jungloid mining: helping to navigate the
API jungle. In: PLDI, pp. 48–61 (2005)

10. Merrill, J.: Generic and Gimple: A new tree representation for entire functions. In: Proceed-
ings of the 2003 GCC Developers Summit, Citeseer, pp. 171–179 (2003)

11. Podgurski, A., Clarke, L.A.: A formal model of program dependences and its implications
for software testing, debugging, and maintenance. IEEE Transactions on Software Engineer-
ing 16, 965–979 (1990)

12. Ramanathan, M.K., Grama, A., Jagannathan, S.: Path-sensitive inference of function prece-
dence protocols. In: ICSE, pp. 240–250 (2007)

13. Robillard, M., Walker, R., Zimmermann, T.: Recommendation systems for software engi-
neering. IEEE Software 27(4), 80–86 (2010)

14. Robillard, M.P.: Automatic generation of suggestions for program investigation. In:
ESEC/SIGSOFT FSE, pp. 11–20 (2005)

15. Robillard, M.P.: What makes APIs hard to learn? answers from developers. IEEE Soft-
ware 26(6), 27–34 (2009)

16. Robillard, M.P., Coelho, W., Murphy, G.C.: How effective developers investigate source
code: An exploratory study. IEEE Trans. Software Eng. 30(12), 889–903 (2004)

17. Ryder, B.G.: Constructing the call graph of a program. IEEE Trans. Software Eng. 5(3),
216–226 (1979)

18. Sahavechaphan, N., Claypool, K.T.: XSnippet: mining for sample code. In: OOPSLA, pp.
413–430 (2006)

19. Saul, Z.M., Filkov, V., Devanbu, P.T., Bird, C.: Recommending random walks. In:
ESEC/SIGSOFT FSE, pp. 15–24 (2007)

20. Stylos, J., Myers, B.A.: Mica: A web-search tool for finding API components and examples.
In: VL/HCC, pp. 195–202 (2006)

21. Tarjan, R.E.: Testing flow graph reducibility. In: STOC, pp. 96–107 (1973)
22. Thummalapenta, S., Xie, T.: PARSEWeb: a programmer assistant for reusing open source

code on the web. In: ASE, pp. 204–213 (2007)
23. Zhang, C., Jacobsen, H.A.: Efficiently mining crosscutting concerns through random walks.

In: AOSD, pp. 226–238 (2007)
24. Zhong, H., Xie, T., Zhang, L., Pei, J., Mei, H.: MAPO: mining and recommending api usage

patterns. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 318–343. Springer,
Heidelberg (2009)

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 401–415, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Search-Based Design Defects Detection by Example

Marouane Kessentini1, Houari Sahraoui1, Mounir Boukadoum2,
and Manuel Wimmer3

1 DIRO, Université de Montréal, Canada
{Kessentm, sahraouh}@iro.umontreal.ca

2 DI, Université du Québec à Montréal, Canada
mounir.boukadoum@uqam.ca

3 Vienna University of Technology, Austria
wimmer@big.tuwien.ac.at

Abstract. We propose an automated approach to detect various types of design
defects in source code. Our approach allows to automatically find detection
rules, thus relieving the designer from doing so manually. Rules are defined as
combinations of metrics/thresholds that better conform to known instances of
design defects (defect examples). In our setting, we use and compare between
different heuristic search algorithms for rule extraction: Harmony Search,
Particle Swarm Optimization, and Simulated Annealing. We evaluate our
approach by finding potential defects in two open-source systems. For all these
systems, we found, in average, more than 75% of known defects, a better result
when compared to a state-of-the-art approach, where the detection rules are
manually or semi-automatically specified.

Keywords: Design defects, software quality, metrics, search-based software
engineering, by example.

1 Introduction

Many studies report that software maintenance, traditionally defined as any
modification made on a system after its delivery, consumes up to 90% of the total cost
of a software project [2]. Adding new functionalities, correcting bugs, and modifying
the code to improve its quality (by detecting and correcting design defects) are major
parts of those costs [1]. There has been much research devoted to the study of bad
design practices, also known in the literature as defects, antipatterns [1], smells [2], or
anomalies [3]. Although bad practices are sometimes unavoidable, they should
otherwise be prevented by the development teams and removed from the code base as
early as possible in the design cycle.

Detecting and fixing defects is a difficult, time-consuming, and to some extent,
manual process [5]. The number of outstanding software defects typically exceeds the
resources available to address them [4]. In many cases, mature software projects are
forced to ship with both known and unknown defects for lack of the development
resources to deal with everyone. For example, in 2005, one Mozilla developer

402 M. Kessentini et al.

claimed that “everyday, almost 300 bugs and defects appear . . . far too much for only
the Mozilla programmers to handle”. To help cope with this magnitude of activity,
several automated detection techniques have been proposed [5, 7].

The vast majority of existing work in defect detection relies on declarative rule
specification [5, 7]. In these settings, rules are manually defined to identify the key
symptoms that characterize a defect, using combinations of mainly quantitative,
structural, and/or lexical indicators. However, in an exhaustive scenario, the number
of possible defects to characterize manually with rules can be very large. For each
defect, the metric combinations that serve to define its detection rule(s) require a
substantial calibration effort to find the right threshold value to assign to each metric.
Alternatively, [5] proposes to generate detection rules using formal definitions of
defects. This partial automation of rule writing helps developers to concentrate on
symptom description. Still, translating symptoms into rules is not obvious because
there is no consensual symptom-based definition of design defects [8]. When a
consensus exists, the same symptom could be associated with many defect types,
which may compromise the precise identification of defect types. These difficulties
explain a large portion of the high false-positive rates found in existing research [8].

The previous difficulties contrast with the ease of finding defect repositories in
several companies, where defects that are manually identified and corrected are
documented. This observation is at the origin of the work described herein. We start
from the premise that defect repositories contain valuable information that can be
used to mine regularities about defect manifestations, subsequently leading to the
generation of detection rules. More concretely, we propose a new automated approach
to derive rules for design defect detection. Instead of specifying rules manually for
detecting each defect type, or semi-automatically using defect definitions, we extract
them from valid instances of design defects. In our setting, we view the generation of
design defect rules as an optimization problem, where the quality of a detection rule is
determined by its ability to conform to a base of examples that contains instances of
manually validated defects (classes).

The generation process starts from an initial set of rules that consists of random
combinations of metrics. Then, the rules evolve progressively according to the set’s
ability to detect the documented defects in the example base. Due to the potentially
huge number of possible metric combinations that can serve to define rules, a
heuristic approach is used instead of exhaustive search to explore the space of
possible solutions. To that end, we use and compare between three rule induction
heuristics : Harmony Search (HS) [9], Particle Swarm Optimization (PSO) [28] and
Simulated Annealing (SA) [27] to find a near-optimal set of detection rules.

We evaluated our approach on defects present in two open source projects:
GANTTPROJECT [11] and XERCES [12]. We used an n-fold cross validation
procedure. For each fold, six projects are used to learn the rules, which tested on the
remaining seventh project. Almost all the identified classes in a list of classes tagged
as defects (blobs, spaghetti code and functional decomposition) in previous projects
[17] were found, with a precision superior to 75%.

The remainder of this paper is structured as follows. Section 2 is dedicated to the
problem statement. In Section 3, we describe the overview of our proposal. Then
Section 4 describes the principles of the different heuristic algorithms used in our
approach and the adaptations needed to our problem. Section 5 presents and discusses

 Search-Based Design Defects Detection by Example 403

the validation results. A summary of the related work in defect detection is given in
Section 6. We conclude and suggest future research directions in Section 7.

2 Problem Statement

To understand better our contribution, it is important to define clearly the problem of
defect detection. In this section, we start by giving the definitions of important
concepts. Then, we detail the specific problems that are addressed by our approach.

2.1 Definitions

Design defects, also called design anomalies, refer to design situations that adversely
affect the development of software. As stated by Fenton and Pfleeger [3], design
defects are unlikely to cause failures directly, but may do it indirectly. In general, they
make a system difficult to change, which may in turn introduce bugs.

Different types of defects, presenting a variety of symptoms, have been studied in
the intent of facilitating their detection [1] and suggesting improvement paths. The
two types of defects that are commonly mentioned in the literature are code smells
and anti-patterns. In [2], Beck defines 22 sets of symptoms of common defects,
named code smells. These include large classes, feature envy, long parameter lists,
and lazy classes. Each defect type is accompanied by refactoring suggestions to
remove it. Brown et al. [1] define another category of design defects, named anti-
patterns, that are documented in the literature. In this section, we define the following
three that will be used to illustrate our approach and in the detection tasks of our
validation study.

• Blob: It is found in designs where one large class monopolizes the
behavior of a system (or part of it), and other classes primarily
encapsulate data.

• Spaghetti Code: It is a code with a complex and tangled control structure.
• Functional Decomposition: It occurs when a class is designed with the

intent of performing a single function. This is found in code produced by
non-experienced object-oriented developers.

For both types of defects, the initial authors focus on describing the symptoms to look
for, in order to identify occurrences of these defects.

From the detection standpoint, the process consists of finding code fragments in
the system that violate properties on internal attributes such as coupling and
complexity. In this setting, internal attributes are captured through software metrics
and properties are expressed in terms of valid values for these metrics [3]. The most
widely used metrics are the ones defined by Chidamber and Kemerer [14]. These
include the depth of inheritance tree DIT, weighted methods per class WMC and
coupling between objects CBO. Variations of this metrics, adaptations of procedural
ones as well as new metrics were also used such as the number of lines of code in a
class LOCCLASS, number of lines of code in a method LOCMETHOD, number of
attributes in a class NAD, number of methods NMD, lack of cohesion in methods
LCOM5, number of accessors NACC, and number of private fields NPRIVFIELD.

404 M. Kessentini et al.

2.2 Problem Statement

Although there is a consensus that it is necessary to detect design anomalies, our
experience with industrial partners showed that there are many open issues that need
to be addressed when defining a detection tool. Design anomalies have definitions at
different levels of abstraction. Some of them are defined in terms of code structure,
others in terms of developer/designer intentions, or in terms of code evolution. These
definitions are in many cases ambiguous and incomplete. However, they have to be
mapped into rigorous and deterministic rules to make the detection effective.

In the following, we discuss some of the open issues related to the detection.
How to decide if a defect candidate is an actual defect? Unlike software bugs,

there is no general consensus on how to decide if a particular design violates a quality
heuristic. There is a difference between detecting symptoms and asserting that the
detected situation is an actual defect.

Are long lists of defect candidates really useful? Detecting dozens of defect
occurrences in a system is not always helpful. In addition to the presence of false
positives that may create a rejection reaction from development teams, the process of
using the detected lists, understanding the defect candidates, selecting the true
positives, and correcting them is long, expensive, and not always profitable.

What are the boundaries? There is a general agreement on extreme
manifestations of design defects. For example, consider an OO program with a
hundred classes from which one implements all the behavior and all the others are
only classes with attributes and accessors. There is no doubt that we are in presence of
a Blob. Unfortunately, in real life systems, we can find many large classes, each one
using some data classes and some regular classes. Deciding which ones are Blob
candidates depends heavily on the interpretation of each analyst.

How to define thresholds when dealing with quantitative information? For
example, the Blob detection involves information such as class size. Although, we can
measure the size of a class, an appropriate threshold value is not trivial to define. A
class considered large in a given program/community of users could be considered
average in another.

How to deal with the context? In some contexts, an apparent violation of a design
principle is considered as a consensual practice. For example, a class Log responsible
for maintaining a log of events in a program, used by a large number of classes, is a
common and acceptable practice. However, from a strict defect definition, it can be
considered as a class with abnormally large coupling.

In addition to these issues, the process of defining rules manually is complex, time-
consuming and error-prone. Indeed, the list of all possible defect types can be very
large. And each type requires specific rules.

To address or circumvent the above mentioned issues, we propose to use examples
of manually found design defects to derive detection rules. Such example are in
general available and documents as part of the maintenance activity (version control
logs, incident reports, inspection reports, etc.). The use of examples allows to derive
rules that are specific to a particular company rather than rules that are supposed to be
applicable to any context. This includes the definition of thresholds that correspond to
the company best practices. Learning from examples aims also at reducing the list of
detected defect candidates.

 Search-Based Design Defects Detection by Example 405

3 Approach Overview

This section shows how, under some circumstances, design defects detection can be
seen as an optimization problem. We also show why the size of the corresponding
search space makes heuristic search necessary to explore it.

3.1 Overview

We propose an approach that uses knowledge from previously manually inspected
projects in order to detect design defects, called defects examples, to generate new
detection rules based on a combinations of software quality metrics. More specifically,
the detection rules are automatically derived by an optimization process that exploits
the available examples.

Figure 1 shows the general structure of our approach. The approach takes as inputs
a base of examples (i.e., a set of defects examples) and a set of quality metrics, and
generates as output a set of rules. The generation process can be viewed as the
combination of metrics that best detect the defects examples. In other words, the best
set of rules is that who detect the maximum number of defects.

Fig. 1. Approach overview

As showed in Figure 2, the base of examples contains some projects (systems) that
are inspected manually to detect all possible defects. In the training process, these
systems are evaluated using the generated rules in each iterations of the algorithm.A
fitness functions calculates the quality of the solution (rules) by comparing the list of
detected defects with expected ones in the base.

Fig. 2. Base of examples

406 M. Kessentini et al.

As many metrics combinations are possible, the rules generation is a combinatorial
optimization problem. The number of possible solutions quickly becomes huge as the
number of metrics increases. A deterministic search is not practical in such cases,
hence the use of heuristic search. The dimensions of the solution space are the metrics
and some operators between them: union (metric1 OR metric2) and intersection
(metric1 AND metric2). A solution is determined by the assignment of a threshold
value to each metric. The search is guided by the quality of the solution according to
the number of detected defects comparing to expected ones in the base.

To explore the solution space, we use different heuristic algorithms that will be
detailed in Section 4.

3.2 Problem Complexity

Our approach assigns to each metric a corresponding threshold value. The number m
of possible threshold value is very large. Furthermore, the rules generation process
consists of finding the best combination between n metrics. In this context, (n!) m
possible solutions have to be explored. This value can quickly become huge. A list of
5 metrics with 6 possible thresholds necessitates exploring at least 1206 combinations.
Considering these magnitudes, an exhaustive search cannot be used within a
reasonable time frame. This motivates the use of a heuristic search if a more formal
approach is not available or hard to deploy.

4 Search-Based Design Defect Detection by Example

We describe in this section the adaptation of three different heuristic algorithms to the
design defects rules generation problem. To apply it to a specific problem, one must
specify the encoding of solutions and the fitness function to evaluate a solution’s
quality. These two elements are detailed in subsections 4.1 and 4.2 respectively.

4.1 Solution Representation

One key issue when applying a search-based technique is finding a suitable mapping
between the problem to solve and the techniques to use, i.e., in our case, generating
design defects rules. As stated in Section 3, we view the set of potential solutions as
points in a n-dimensional space where each dimension corresponds to one metric or
operator (union or intersection). Figure 3 shows an illustrative example which describes
this rule: if (WMC≥4) AND (TCC≥7) AND (ATFD≥1) Then Defect_Type(1)_detected.
The WMC, TCC and ATFD are metrics defined as [14]:

• Weighted Method Count (WMC) is the sum of the statical complexity of all
methods in a class. We considered the McCabe’s cyclomatic complexity as a
complexity measure.

• Tight Class Cohesion (TCC) is the relative number of directly connected
methods.

• Access to Foreign Data (ATFD) represents the number of external classes
from which a given class accesses attributes, directly or via accessor-
methods.

 Search-Based Design Defects Detection by Example 407

• We used three types of defects : (1) blob, (2) spaghetti code and (3)
functional decomposition.

The operator used as default is the intersection (and). The other operator (union) can
be used as a dimension. The vector presented in Figure 3 generates only one rule.
However, a vector may contain many rules separated by the dimension “Type”.

Fig. 3. Solution Representation

4.2 Evaluating Solutions

The fitness function quantifies the quality of the generate rules. As discussed in
Section 3, the fitness function must consider the following aspect:

• Maximize the number of detected defects comparing to expected ones in the
base of examples

In this context, we define the fitness function of a solution as

∑
=

=
p

i
iaf

1

 (1)

Where p represents the number of detected classes. ai has value 1 if the ith detected
classes exists in the base of examples, and value 0 otherwise.

4.3 Search Algorithms

4.3.1 Harmony Search (HS)
The HS algorithm is based on natural musical performance processes that occur when
a musician searches for a better state of harmony, such as during jazz improvisation
[9]. Jazz improvisation seeks to find musically pleasing harmony as determined by an
aesthetic standard, just as the optimization process seeks to find a global solution as
determined by a fitness function. The pitch of each musical instrument determines the
aesthetic quality, just as the fitness function value is determined by the set of values
assigned to each dimension in the solution vector.

In general, the HS algorithm works as follows:

Step 1. Initialize the problem and algorithm parameters.
The HS algorithm parameters are specified in this step. They are the harmony
memory size (HMS), or the number of solution vectors in the harmony memory;
harmony memory considering rate (HMCR); bandwidth (bw); pitch adjusting rate
(PAR); and the number of improvisations (K), or stopping criterion.

408 M. Kessentini et al.

Step 2. Initialize the harmony memory.
The initial harmony memory is generated from a uniform distribution in the ranges
[ximin,ximax] (i = 1,2, . . .,N) , as shown in Equation 1 :

HM =

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

1-HMS
N

 HMS
21

1
N

1
2

1
1

 x. x

.

.

 x. . x

HMSx

x

 (2)

Step 3. Improvise a new harmony.
Generating a new harmony is called improvisation. The new harmony vector x’ =
(x’1, x’2,…, x’N) is determined by the memory consideration, pitch adjustment and
random selection.
Step 4. Update harmony memory.
If the fitness of the improvised harmony vector x’ = (x’1, x’2,…, x’N) is better than the
worst harmony, replace the worst harmony in the IHM with x’.
Step 5. Check the stopping criterion: If the stopping criterion (maximum number of
iterations K) is satisfied, computation is terminated. Otherwise, step 3 is repeated.

4.3.2 Particle Swarm Optimization (PSO)
PSO is a parallel population-based computation technique [31]. It was originally
inspired from the flocking behavior of birds, which emerges from very simple
individual conducts. Many variations of the algorithm have been proposed over the
years, but they all share a common basis. First, an initial population (named swarm)
of random solutions (named particles) is created. Then, each particle flies in the
n-dimensional problem space with a velocity that is regularly adjusted according to
the composite flying experience of the particle and some, or all, the other particles.
All particles have fitness values that are evaluated by the objective function to be
optimized. Every particle in the swarm is described by its position and velocity. A
particle position represents a possible solution to the optimization problem, and
velocity represents the search distances and directions that guide particle flying. In
this paper, we use basic velocity and position update rules defined by [31]:

)(()2)(()1 idXgdPRandCidXidPrandCidVWidV −∗∗+−∗∗+∗=
 (3)

idVidXidX += (4)

At each time (iteration), Vid represents the particle velocity and Xid its position in the
search space. Pid (also called pbest for local best solution), represents the ith particle’s
best previous position, and Pgd (also called gbest for global best solution), represents
the best position among all particles in the population. w is an inertia term; it sets a
balance between the global and local exploration abilities in the swarm. Constants c1
and c2 represent cognitive and social weights associated to the individual and global
behavior, respectively. There are also two random functions rand() and Rand()

 Search-Based Design Defects Detection by Example 409

(normally uniform in the interval [0, 1]) that represent stochastic acceleration during
the attempt to pull each particle toward the pbest and gbest positions. For a n-
dimensional search space, the ith particle in the swarm is represented by a n-
dimensional vector, xi=(xi1,xi2,…,xid). The velocity of the particle, pbest and gbest are
also represented by n-dimensional vectors.

4.3.3 Simulated Annealing (SA)
SA [19] is a search algorithm that gradually transforms a solution following the
annealing principle used in metallurgy.

After defining an initial solution, the algorithm iterates the following three steps:

1 Determine a new neighboring solution,
2 Evaluate the fitness of the new solution
3 Decide on whether to accept the new solution in place of the current one

based on the fitness gain/lost (∆cost).

When ∆cost < 0, the new solution has lower cost than the current solution and it is
accepted. For ∆cost > 0 the new solution has higher cost. In this case, the new
solution is accepted with probability e -∆cost /T. The introduction of a stochastic element
in the decision process avoids being trapped in a local minimum solution. Parameter
T, called temperature, controls the acceptance probability of a lesser good solution. T
begins with a high value, for a high probability of accepting a solution during the
early iterations. Then, it decreases gradually (cooling phase) to lower the acceptation
probability as we advance in the iteration sequence. For each temperature value, the
three steps of the algorithm are repeated for a fixed number of iterations.

5 Validation

To test our approach, we studied its usefulness to guide quality assurance efforts on
an open-source program. In this section, we describe our experimental setup and
present the results of an exploratory study.

5.1 Goals and Objectives

The goal of the study is to evaluate the efficiency of our approach for the detection of
design defects from the perspective of a software maintainer conducting a quality
audit. We present the results of the experiment aimed at answering the following
research questions:

RQ1: To what extent can the proposed approach detect design defects?
RQ2: What types of defects does it locate?

To answer RQ1, we used an existing corpus of known design defects to evaluate the
precision and recall of our approach. We compared our results to those produced by
an existing rule-based strategy [5]. To answer RQ2, we investigated the type of
defects that were found.

410 M. Kessentini et al.

5.2 System Studied

We used two open-source Java projects to perform our experiments: GanttProject
(Gantt for short) v1.10.2, and Xerces-J v2.7.0.

Table 1. Program statistics

Systems Number of classes KLOC

GanttProject v1.10.2 245 31
Xerces-J v2.7.0 991 240

Table 1 summarizes facts on these programs. Gantt�is a tool for creating project

schedules by means of Gantt charts and resource-load charts. Gantt enables breaking
down projects into tasks and establishing dependencies between these tasks. Xerces-J
is a family of software packages for parsing and manipulating XML. It implements a
number of standard APIs for XML parsing.

In our experiments, we used some of the classes in Gantt as our example set of
design defects. These examples are validated manually by a group of experts [17]. We
choose the Xerces-J and Gantt libraries because they are medium sized open-source
projects and were analysed in related work. The version of Gantt studied was known
to be of poor quality, which lead to a new major version. Xerces-J on the other hand
has been actively developed over the past 10 years and its design has not been
responsible for a slowdown of its development.

In [5], Moha et al. asked three groups of students to analyse the libraries to tag
instances of specific antipatterns to validate their detection technique, DECOR. For
replication purposes, they provided a corpus of describing instances of different
antipatters including: Blob classes, Spaghetti code, and Functional Decompositions.
Blobs are classes that do or know too much. Spaghetti Code (SC) is code that does not
use appropriate structuring mechanisms. Functional Decomposition (FD) is code that
is structured as a series of function calls. These represent different types of design
risks. In our study, we verified the capacity of our approach to locate classes that
corresponded to instances of these antipatterns. Thus, Xerces-J is then analyzed using
some defects examples from Gantt and vice-versa.

The obtained results were compared to those of DECOR [5]. For every antipattern
in Xerces-J and Gantt, they published the number of antipatterns detected, the number
of true positives, the recall (number of true positives over the number of design
defects) and the precision (ratio of true positives over the number detected). Our
comparison is consequently done using precision and recall.

5.3 Results

Tables 2, 3 and 4 summarize our findings. The results show that HS performs
comparing to PSO and SA. In fact, the two global search algorithms HS and PSO are
suitable to explore large search space. For Gantt, our precision average is 87%.
DECOR on the other hand has a combined precision of 59% for its detection on the

 Search-Based Design Defects Detection by Example 411

Table 2. HS results

System Precision Recall
Gantt Spaghetti: 82%

Blob: 100%
F.D: 87%

Spaghetti: 90%
Blob: 100%
F.D: 47%

Xerces-J Spaghetti:82%
Blob:93%
F.D:76%

Spaghetti:84%
Blob:94%
F.D:60%

Table 3. PSO results

System Precision Recall
Gantt Spaghetti: 79%

Blob: 100%
F.D: 82%

Spaghetti: 94%
Blob: 100%
F.D: 53%

Xerces-J Spaghetti:89%
Blob:91%
F.D:73%

Spaghetti:81%
Blob:92%
F.D:68%

Table 4. SA results

System Precision Recall
Gantt Spaghetti: 81%

Blob: 100%
F.D: 80%

Spaghetti: 95%
Blob: 100%
F.D: 51%

Xerces-J Spaghetti:77%
Blob:91%
F.D:71%

Spaghetti:80%
Blob:92%
F.D:69%

same set of antipatterns. For Xerces-J, our precision average is of 83%. For the same
dataset, DECOR had a precision of 67%. However, the recall score for both systems
is less than DECOR. In fact, the rules defined in DECOR are large and this is
explained by the lower score in terms of precision, In the context of this experiment,
we can conclude that our technique is able to accurately identify design anomalies
more accurately than DECOR (RQ1).

We noticed that our technique does not have a bias towards the detection of
specific anomaly types. In Xerces-J, we had an almost equal distibution of each
antipattern. On Gantt, the distribution is not as balanced. This is principally due to the
number of actual antipatterns in the system.

The detection of FDs using only metrics seems difficult. This difficulty is why
DECOR includes an analysis of naming conventions to perform its detection. Using
naming convention means that their results depend on the coding practices of a
development team. Our results are however comparable to theirs while we do not
leverage lexical information. The complete results of our experiments, including the
comparison with DÉCOR, can be found in [18].

412 M. Kessentini et al.

5.4 Discussion

The reliability of the proposed approach requires an example set of bad code. It can
be argued that constituting such a set might require more work than identifying,
specifying, and adapting rules. In our study, we showed that by using Gantt or
Xerces-J directly, without any adaptation, the technique can be used out of the box
and this will produce good detection and recall results for the detection of antipatterns
for the two systems studied.

The performance of this detection was superiour to that of DECOR. In an industrial
setting, we could expect a company to start with Xerces-J or Gantt, and gradually
migrate its set of bad code examples to include context-specific data. This might be
essential if we consider that different languages and software infrastructures have
different best/worst practices.

Another issue is the rules generation process. The detection results might vary
depending on the used rules which are generated randomly though guided by a meta-
heuristic. To ensure that our results are relatively stable, we compared the results of
multiple executions for rules generation. We observed an average recall and precision
more than 80% for both Gantt and Xerces-J with the three different heuristic search
algoithms. Furthermore, we found that the majority of defects detected are found in
every execution. We consequently believe that our technique is stable, since the
precision and recall scores are approximately the same for different executions.

Another important advantage comparing to machine learning techniques is that our
search algorithms do not need both positive (good code) and negative (bad code)
examples to generate rules like for example Inductive Logic Programming [19].

Finally, since we viewed the design defects detection problem as a combinatorial
problem addressed with heuristic search, it is important to contrast the results with the
execution time. We executed our algorithm on a standard desktop computer (Pentium
CPU running at 2 GHz with 2GB of RAM). The execution time for rules generation
with a number of iteration (stopping criteria) fixed to 500 is less than three minutes
(2min36s). This indicates that our approach is scalable from the performance
standpoint. However, the execution time depends to the number of used metrics and
the size of the base of examples. It should be noted that more important execution
times may be obtained in comparison with using DECOR. In any case, our approach
is meant to apply to situations where manual rule-based solutions are normally not
easily available.

6 Related Work

Several studies have recently focused on detecting design defects in software using
different techniques. These techniques range from fully automatic detection to guided
manual inspection. The related work can be classified into three broad categories:
metric-based detection, detection of refactoring opportunities, visual-based detection.

In first category, Marinescu [7] defined a list of rules relying on metrics to detect
what he calls design flaws of OO design at method, class and subsystem levels. Erni
et al. [20] use metrics to evaluate frameworks with the goal of improving them. They
introduce the concept of multi-metrics, as an n-tuple of metrics expressing a quality

 Search-Based Design Defects Detection by Example 413

criterion (e.g., modularity). The main limitation of the two previous contributions is
the difficulty to define manually threshold values for metrics in the rules. To
circumvent this problem, Alikacem et al. [21] express defect detection as fuzzy rules
with fuzzy label for metrics, e.g., small, medium, large. When evaluating the rules,
actual metric values are mapped to truth value for the labels by means of membership
functions. Although no thresholds have to be defined, still, it is not obvious to decide
for membership functions.

The previous approaches start from the hypothesis that all defect symptoms could
be expressed in terms of metrics. Actually, many defects involve notions that could
not quantified. This observation was the foundation of the work of Moha et al. [5]. In
their approach, named DECOR, they start by describing defect symptoms using an
abstract rule language. These descriptions involve different notions such as class roles
and structures. The descriptions are later mapped to detection algorithms. In addition
to the threshold problem, this approach uses heuristics to approximate some notions
with results in an important rate of false positives. Khomh et al. [4] extended DECOR
to support uncertainty and to sort the defect candidates accordingly. Uncertainty is
managed by Bayesian belief networks that implement the detection rules of DECOR.
The detection outputs are probabilities that a class is an occurrence of a defect type.

In our approach, all the above mentioned problems related to the use of rules and
metrics do not arise. Indeed, the symptoms are not explicitly used, which reduces the
manual adaptation/calibration effort.

In the second category of work, defects are not detected explicitly. They are
implicitly because, the approaches refactor a system by detecting elements to change
to improve the global quality. For example, in [22], defect detection is considered as
an optimization problem. The authors use a combination of 12 metrics to measure the
improvements achieved when sequences of simple refactorings are applied, such as
moving methods between classes. The goal of the optimization is to determine the
sequence that maximize a function, which captures the variations of a set of metrics
[23]. The fact that the quality in terms of metrics is improved does not necessary
means that the changes make sense. The link between defect and correction is not
obvious, which make the inspection difficult for the maintainers. In our case, we
separate the detection and correction phase. In [8, 26], we have proposed an approach
for the automatic detection of potential design defects in code. The detection is based
on the notion that the more code deviates from good practices, the more likely it is
bad. Taking inspiration from artificial immune systems, we generated a set of
detectors that characterize different ways that a code can diverge from good practices.
We then used these detectors to measure how far code in assessed systems deviates
from normality.

7 Conclusion

In this article, we presented a novel approach for tackling the problem of detecting
design defects. Typically, researchers and practitioners try to characterize different
types of common design defects and present symptoms to use in order to locate them
in a system. In our work, we show that we do not need this knowledge to perform
detection. Instead, all we need is some examples of design defects to generate

414 M. Kessentini et al.

detection rules. Interestingly enough, our study shows that our technique outperforms
DECOR [5], a state of the art, metric-based approach, where rules are defined
manually, on its test corpus.

The proposed approach was tested on open-source systems and the results were
promising. The detection process uncovered different types of design defects was
more efficiently than DECOR. The comparison between three heuristic algorithm
shows that HS give better results than PSO and SA. Furthermore, as DECOR needed
an expert to define rules, our results were achieved without any expert knowledge,
relying only on the bad structure of Gantt to guide the detection process.

The benefits of our approach can be summarized as follows: 1) it is fully
automatable; 2) it does not require an expert to manually write rules for every defect
type and adapt them to different systems; 3) the rule generation process is executed
once; then, the obtained rules can be used to evaluate any system.

The major limitations of our approach are: 1) the generated rules are based on
metrics, and some defects may require additional or different knowledge to be
detected; 2) the approach requires the availability of a code base that is representative
of bad design practices, and where all the possible design defects are already detected.

As part of our future work, we plan to explore the second step: correction of
detected design defects (refactoring). Furthermore, we need to extend our base of
examples with other bad-designed code in order to take into consideration different
programming contexts.

References

1. Brown, W.J., Malveau, R.C., Brown, W.H., McCormick III, H.W., Mowbray, T.J.: Anti
Patterns: Refactoring Software, Architectures, and Projects in Crisis, 1st edn. John Wiley
and Sons, Chichester (March 1998)

2. Fowler, M.: Refactoring – Improving the Design of Existing Code. 1st edn. Addison-
Wesley, Reading (June 1999)

3. Fenton, N., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach, 2nd edn.
International Thomson Computer Press, London (1997)

4. Khomh, F., Vaucher, S., Guéhéneuc, Y.-G., Sahraoui, H.: A Bayesian Approach for the
Detection of Code and Design Smells. In: Proc. of the ICQS 2009 (2009)

5. Moha, N., Guéhéneuc, Y.-G., Duchien, L., Meur, A.-F.L.: DECOR: A method for the
specification and detection of code and design smells. Transactions on Software
Engineering (TSE), 16 pages (2009)

6. Liu, H., Yang, L., Niu, Z., Ma, Z., Shao, W.: Facilitating software refactoring with
appropriate resolution order of bad smells. In: Proc. of the ESEC/FSE 2009, pp. 265–268
(2009)

7. Marinescu, R.: Detection strategies: Metrics-based rules for detecting design flaws. In:
Proc. of ICM 2004, pp. 350–359 (2004)

8. Kessentini, M., Vaucher, S., Sahraoui, H.: Deviance from perfection is a better criterion
than closeness to evil when identifying risky code. In: Proc. of the International
Conference on Automated Software Engineering, ASE 2010 (2010)

9. Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering
optimization: harmony search theory and practice. Comput. Method Appl. M 194(36-38),
3902–3933 (2005)

 Search-Based Design Defects Detection by Example 415

10. Lee, K.S., Geem, Z.W., Lee, S.H., Bae, K.W.: The harmony search heuristic algorithm for
discrete structural optimization. Eng Optimiz 37(7), 663–684 (2005)

11. http://ganttproject.biz/index.php
12. http://xerces.apache.org/
13. Riel, A.J.: Object-Oriented Design Heuristics. Addison-Wesley, Reading (1996)
14. Gaffney, J.E.: Metrics in software quality assurance. In: Proc. of the ACM 1981

Conference, pp. 126–130. ACM, New York (1981)
15. Mantyla, M., Vanhanen, J., Lassenius, C.: A taxonomy and an initial empirical study of

bad smells in code. In: Proc. of ICSM 2003. IEEE Computer Society, Los Alamitos (2003)
16. Wake, W.C.: Refactoring Workbook. Addison-Wesley Longman Publishing Co., Inc.,

Boston (2003)
17. http://www.ptidej.net/research/decor/index_html
18. http://www.marou ane-kessentini/FASE10.zip
19. Raedt, D.: Advances in Inductive Logic Programming, 1st edn. IOS Press, Amsterdam

(1996)
20. Erni, K., Lewerentz, C.: Applying design metrics to object-oriented frameworks. In: Proc.

IEEE Symp. Software Metrics. IEEE Computer Society Press, Los Alamitos (1996)
21. Alikacem, H., Sahraoui, H.: Détection d’anomalies utilisant un langage de description de

règle de qualité, in actes du 12e colloque LMO (2006)
22. O’Keeffe, M., Cinnéide, M.: Search-based refactoring: an empirical study. Journal of

Software Maintenance 20(5), 345–364 (2008)
23. Harman, M., Clark, J.A.: Metrics are fitness functions too. In: IEEE METRICS, pp. 58–69.

IEEE Computer Society Press, Los Alamitos (2004)
24. Kessentini, M., Sahraoui, H.A., Boukadoum, M.: Model Transformation as an

Optimization Problem. In: Busch, C., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.)
MODELS 2008. LNCS, vol. 5301, pp. 159–173. Springer, Heidelberg (2008)

25. Kirkpatrick, D.S., Gelatt, Jr., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671680 (1983)

26. Eberhart, R.C., Shi, Y.: Particle swarm optimization: developments, applications and
resources. In: Proc. IEEE Congress on Evolutionary Computation (CEC 2001), pp. 81–86
(2001)

An Empirical Study on Evolution of API Documentation

Lin Shi1, Hao Zhong1, Tao Xie3, and Mingshu Li1,2

1 Laboratory for Internet Software Technologies, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

2 Key Laboratory for Computer Science, Chinese Academy of Sciences, Beijing 100190, China
3 Department of Computer Science, North Carolina State University, USA

{shilin,zhonghao}@itechs.iscas.ac.cn, xie@csc.ncsu.edu,
mingshu@iscas.ac.cn

Abstract. With the evolution of an API library, its documentation also evolves.
The evolution of API documentation is common knowledge for programmers
and library developers, but not in a quantitative form. Without such quantitative
knowledge, programmers may neglect important revisions of API documentation,
and library developers may not effectively improve API documentation based on
its revision histories. There is a strong need to conduct a quantitative study on
API documentation evolution. However, as API documentation is large in size
and revisions can be complicated, it is quite challenging to conduct such a study.
In this paper, we present an analysis methodology to analyze the evolution of
API documentation. Based on the methodology, we conduct a quantitative study
on API documentation evolution of five widely used real-world libraries. The
results reveal various valuable findings, and these findings allow programmers
and library developers to better understand API documentation evolution.

1 Introduction

In modern software industries, it is a common practice to use Application Programming
Interface (API) libraries (e.g., J2SE1) to assist development, and API documentation is
typically shipped with these API libraries. With API documentation, library developers
provide documents on functionalities and usages of API elements (i.e., classes, meth-
ods, and fields of API libraries), and programmers of library API client code (referred
to as programmers for short in this paper) follow these documents to use API elements.

Due to various factors such as adding new functionalities and improving API usabil-
ity, both API libraries and their documentation evolve across versions. For example,
the document of the java.sql.connection.close() method in J2SE 1.52 has a
notice that connections can be automatically closed without calling the close method
(Figure 1a). In J2SE 1.63, library developers delete the notice, and emphasize the im-
portance of calling the close method explicitly (Figure 1b). In practice, the preceding
document of J2SE 1.5 is misleading, and causes many related defects. For example, a
known defect4 of the Chukwa project is related to unclosed JDBC connections. Existing

1 http://www.oracle.com/technetwork/java/javase/overview
2 http://java.sun.com/j2se/1.5.0/docs/api/
3 http://java.sun.com/javase/6/docs/api/
4 http://issues.apache.org/jira/browse/CHUKWA-9

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 416–431, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.oracle.com/technetwork/java/javase/overview
http://java.sun.com/j2se/1.5.0/docs/api/
http://java.sun.com/javase/6/docs/api/
http://issues.apache.org/jira/browse/CHUKWA-9

An Empirical Study on Evolution of API Documentation 417

(a) J2SE 1.5

close
void close() throws SQLException

Releases this Connection object's database
and JDBC resources immediately instead of
waiting for them to be automatically
released.
Calling the method close on
a Connection object that is already closed is
a no-op.
Note: A Connection object is automatically
closed when it is garbage collected. Certain
fatal errors also close a Connection object.

(b) J2SE 1.6

close
void close() throws SQLException

Releases this Connection object's database
and JDBC resources immediately instead of
waiting for them to be automatically
released.
Calling the method close on
a Connection object that is already closed is
a no-op.
It is strongly recommended that an
application explicitly commits or rolls back
an active transaction prior to calling the
close method. If the close method is called
and there is an active transaction, the results
are implementation-defined.

Fig. 1. An example of API documentation evolution

research [16] shows that programmers are often unwilling to read API documentation
carefully. If programmers miss the revision in J2SE 1.6, they may follow the old doc-
ument in J2SE 1.5, and still introduce defects that are related to unclosed connections
even after the document is modified. From the revision, library developers can also learn
a lesson, since their API documentation contains misleading documents. In summary,
revisions in API documentation are important for both client code development and
library development.

As API documentation contains documents for hundreds or even thousands of API
elements, revisions in API documentation could also be quite large in size. Due to the
pressure of software development, it is difficult for programmers and library developers
to analyze these revisions systematically and comprehensively. A quantitative study
on evolution of API documentation can help programmers and library developers better
understand the evolution, so there is a strong need of such a quantitative study. However,
to the best of our knowledge, no previous work presents such a study, since textual
revisions across versions are typically quite large, and analyzing these revisions requires
a large amount of human effort and a carefully designed analysis methodology.

In this paper, we present an analysis methodology to analyze API documentation
evolution quantitatively. Based on the methodology, we conduct a quantitative study on
documentation provided by five widely used real-world libraries.

The main contributions of this paper are as follows:

– We highlight the importance of API documentation evolution, and propose a
methodology to analyze the evolution quantitatively.

– Based on our methodology, we provide the first quantitative analysis on API docu-
mentation evolution. The results show various aspects of API documentation evo-
lution. The results allow programmers and library developers to better understand
API documentation evolution quantitatively.

The rest of this paper is organized as follows. Section 2 presents our analysis method-
ology. Section 3 presents our empirical results. Section 4 discusses issues and future
work. Section 5 introduces related work. Section 6 concludes.

418 L. Shi et al.

2 Analysis Methodology

To conduct a systematic and quantitative study on API documentation, we present a
methodology to analyze documentation evolution. Given API documentation of two
versions of an API library, we classify their revisions into various categories.

Step 1: Identifying revisions. In this step, we first compare API documents of the two
versions to find their revisions. In API documentation, we refer to a collection of words
that describe an API element as a document. During evolution, an API element may be
added, removed, and modified (see Section 3.3 for our results). As we focus on API
documentation, we consider an API element modified when its declaration changes or
its document changes. For a changed document, we refer to a pair of two associated
sentences with differences as a revision. We divide a revision into one of the three
categories: (1) an addition: a newly added sentence; (2) a deletion: a deleted sentence;
(3) a modification: a modified sentence. Finally, we extract various characteristics such
as word appearances and change locations from identified revisions.

Step 2: Classifying revisions based on heuristic rules. In this step, we first analyze
a few hundred randomly selected sample revisions, and extract characteristics for vari-
ous categories manually. For each category, we define heuristic rules according to these
characteristics. For example, we find that different types of annotations (e.g., @see
and @version) are associated with different key words with specific fonts, so we de-
fine a corresponding heuristic rule to classify revisions by their annotations. With these
heuristic rules, we classify revisions into various clusters by our heuristic rules. Revi-
sions in the same cluster share similar characteristics.

Step 3: Refining and analyzing classified revisions. In this step, we tune our classi-
fiers iteratively. In each iteration, we analyze inappropriately classified results to refine
existing heuristic rules or to implement new rules for better classification. When clas-
sified results are accurate enough, we further fix remaining inappropriately classified
results, and analyze results for insights on the evolution of API documentation (see
Sections 3.1 and 3.2 for our results).

3 Empirical Study

In our empirical study, we focus on three research questions as follows:

RQ1: Which parts of API documentation are frequently revised?
RQ2: To what degree do such revisions indicate behavioral differences?
RQ3: How frequently are API elements and their documentation changed?

We use five widely used real-world libraries as subjects. The five libraries have 9,506,
580 words of API documentation in total. For each library, we analyze the latest five
stable versions as shown in Table 1. For J2SE, we do not choose some end-of-life ver-
sions (i.e., J2SE 1.4.1, J2SE 1.4.0, and J2SE 1.3.0)5. We still choose J2SE 1.2.2 (an
end-of-life version), since existing stable versions of J2SE do not have five releases.

5 http://java.sun.com/products/archive/j2se-eol.html

http://java.sun.com/products/archive/j2se-eol.html

An Empirical Study on Evolution of API Documentation 419

Table 1. Versions of selected libraries

Library v1 v2 v3 v4 v5
J2SE 1.2.2 1.3.1 1.4.2 1.5 1.6

ActiveMQ 5.0.0 5.1.0 5.2.0 5.3.0 5.3.1
lucene 2.9.0 2.9.1 2.9.2 3.0.0 3.0.1
log4j 1.2.12 1.2.13 1.2.14 1.2.15 1.2.16
struct 2.0.14 2.1.2 2.1.6 2.1.8 2.1.8.1

For ActiveMQ, we analyze its core API elements only. More details can be found on
our project site: https://sites.google.com/site/asergrp/projects/
apidocevolution.

3.1 RQ1: Which Parts of API Documentation Are Frequently Revised?

In this section, we present proportions of all types and some examples of these types.
In total, we compared 2,131 revisions that cover the java.util package of J2SE, and
all the other four libraries. We identify three primary categories of API documentation
evolution, and for each category, we further identify detailed revision types, as shown
in Figure 2. The vertical axis shows the three primary categories of revisions, and the
horizontal axis shows the proportion for each category over the 2,131 revisions.

Finding 1: 45.99% of revisions are about annotations as follows.
In the official guidance of Java documentation6, tags and annotations are different.

By using tags, library developers can add structures and contents to the documentation
(e.g., @since), whereas annotations are used to affect the way API elements are treated
by tools and libraries (e.g., @Entity). In this paper, we do not distinguish the two
definitions and use annotation to represent both of them for simplicity.

Version 19.25% A version consists of numbers and dates that indicate when an API
element is created or changed, and a version is marked by the @version annotation or
the @since annotation. With either annotation, the version of an API element is updated
automatically when API code changes. As the two annotations cause to automatically
modify documents, they cause a large proportion of revisions. It is still an open question
on whether such version numbers are useful, since we notice that library developers
systematically deleted the two annotations in the documentation of lucene 3.0.0.

Exception 8.21% Exception handling plays an important role in the Java language,
and the exceptions of an API method can be marked by the @throws annotation or the
@exception annotation. Revisions on exceptions often indicate behavioral differences,
and Finding 4 in Section 3.2 presents more such examples.

Reference 7.60% The document of one API element may refer programmers to
other API elements since these API elements are related. The reference relations can
be marked by the @see annotation or the @link annotation. We find that at least two
factors drive library developers to modify reference relations. One factor is that the

6 http://www.oracle.com/technetwork/java/javase/documentation/
index-137868.html

https://sites.google.com/site/asergrp/projects/apidocevolution
https://sites.google.com/site/asergrp/projects/apidocevolution
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

420 L. Shi et al.

0.00% 10.00% 20.00% 30.00% 40.00% 50.00%

A t ti

Version
Exception
Reference
Parameter
Return value

0.00% 10.00% 20.00% 30.00% 40.00% 50.00%

Annotation

Literal polish

Version
Exception
Reference
Parameter
Return�value
Inheritance
Deprecation
Rephrasing
Syntax
Typo
Format

0.00% 10.00% 20.00% 30.00% 40.00% 50.00%

Annotation

Literal polish

Programming tip

Version
Exception
Reference
Parameter
Return�value
Inheritance
Deprecation
Rephrasing
Syntax
Typo
Format
Notice
Code�Example
New�description

Fig. 2. Categories of revisions

names of referred API elements are modified. The other factor is that it is difficult
even for library developers to decide reference relations among API elements. Besides
other API elements, one document may even refer to some Internet documents using
URLs. Library developers may also modify URLs across versions. For example, in
the java.util.Locale.getISO3Language()method of J2SE 1.5, the URL of ISO
639-2 language codes is updated from one7 to another8.

Using the annotations such as @see or @link, one document may refer to other code
elements or documents, and these code elements or documents may get updated across
versions. Code refactoring [15] is a hot research topic, but most of existing refactor-
ing approaches address the problem of refactoring code partially, and its impacts on
documents are less exploited.

Parameter 3.94% For each API method, the document of its parameters can be
marked by the @param annotation, and library developers may add parameter docu-
ments to describe parameters. For example, in J2SE 1.3.1, library developers add a doc-
ument to the comp parameter of the java.util.Collections.max(Collection,
Comparator) method: “comp the comparator with which to determine the maximum
element. A null value indicates that...”.

Return value 2.86% The return value of an API method can be marked by the
@return annotation, and library developers may add return-value documents to better
describe return values. For example, in J2SE 1.4.2, library developers add a document
to the java.util.ArrayList.contains(Object) method: “Return: true if the
specified element is present; false otherwise”.

Inheritance 2.39% Inheritances among classes and interfaces cause similar docu-
ments across them, and also their methods and fields. The document of a class often
needs to be modified, when the document of its superclass is modified. Although li-
brary developers can use the @inheritDoc annotation to deal with similar documents
caused by inheritance relations, we notice that only a small proportion of such similar
documents are marked by the annotation.

Deprecation 1.74% An API element may become deprecated, and its document can
be marked by the @deprecated annotation. When the document of an API element

7 ftp://dkuug.dk/i18n/iso-639-2.txt
8 http://www.loc.gov/standards/iso639-2/englangn.html

ftp://dkuug.dk/i18n/iso-639-2.txt
http://www.loc.gov/standards/iso639-2/englangn.html

An Empirical Study on Evolution of API Documentation 421

is marked as deprecated, some IDEs such as the Eclipse IDE explicitly warn that pro-
grammers should be careful to use the API element. When an API element becomes
deprecated, library developers sometimes may suggest programmers to use alternative
API elements. Although a deprecated API element is assumed to be deleted in later ver-
sions, we find that some deprecated API elements can become undeprecated again. For
example, we find that eight API elements (e.g., the org.apache.lucene.search.

function.CustomScoreQuery.customExplain()method) get updated from dep-
recated to undeprecated in lucene 3.0.0.

Implication 1: Library developers take much effort to write annotations, and some
annotations (e.g., @see) are difficult to maintain. Some tools may be beneficial if they
can help library developers write and update these annotations. Researchers may borrow
ideas from existing research on code refactoring when implementing these tools.

Finding 2: 29.14% of revisions are literal polishes as follows.
Rephrasing 21.26% We find that library developers often rephrase documents to

improve their accuracies. For example, in J2SE 1.2.2, the document of the java.util.
GregorianCalendar class includes a sentence: “Week 1 for a year is the first week
that ...”, and the document is modified in J2SE 1.3.1: “Week 1 for a year is the earliest
seven day period starting on getFirstDayOfWeek() that...”.

In many cases, a modified document has trivial revisions. While in other cases, revi-
sions are non-trivial, and modified documents may indicate behavioral differences. For
example, in ActiveMQ 5.3.0, the document of the org.apache.activemq.broker.
region.cursors.PendingMessageCursor.pageInList(int) method is “Page
in a restricted number of messages”. In ActiveMQ 5.3.1, the document is changed to
“Page in a restricted number of messages and increment the reference count”. Based
on the revision, the behavior of the method may change, and the changed method can
increase the reference count. We further discuss this issue in Section 3.2.

Syntax 3.57% Library developers may produce a document with syntax errors, and
fix them in a later version. For example, in J2SE 1.5, the document of the java.util.
ArrayList.remove(int) method includes a sentence: “index the index of the ele-
ment to removed”. Library developers fix this syntax error in J2SE 1.6, and the modified
document is “index the index of the element to be removed”.

Typo 3.47% Library developers may produce some typos, and fix them in a later
version (e.g., possble → possible).

Format 0.84% Library developers may modify formats of some words for better pre-
sentation. For example, in J2SE 1.5, the document of the java.util.Vector.set-
ElementAt(E,int)method includes a sentence: “the set method reverses ...”. In J2SE
1.6, library developers change the font of one word, and the modified document is “the
set method reverses ...”. For better readability, a code element within a document is
marked by the @code annotation in J2SE 1.6.

Implication 2: Many literal polishes such as those for fixing typos, syntax errors, and
format issues can be avoided if researchers or practitioners propose an appropriate edi-
tor to library developers. It is challenging to implement such an editor for three reasons.
(1) Many specialized terms and code names may be detected as typos. For example,
although the Eclipse IDE can find some typos, it wrongly identifies “applet” as a typo

422 L. Shi et al.

since it is a specialized term of computer science. (2) Code examples may be detected
to include syntax errors. To check these code examples, an editor should understand
corresponding programming languages. (3) Specific styles of API documentation may
not be well supported by existing editors, and one such style is defined by the official
guidance of Java documentation: “library developers should use ‘this’ instead of ‘the’
when referring to an object created from the current class”.

Finding 3: 22.62% of revisions are about programming tips as follows.
Notice 16.24% Library developers may add notices to describe API usages. Many

notices start with the labeling word “Note”, but following this style is not a strict re-
quirement. For example, in lucene 3.0.0, library developers add two sentences to the
document of the org.apache.lucene.util.CloseableThreadLocal class with-
out any labels: “We can not rely on ThreadLocal.remove()... You should not call
close until all threads are done using the instance”. In some cases, notices even have no
modal verbs such as must and should. For example, in J2SE 1.5, a notice is added to the
document of the java.util.Observable.deleteObserver(Observer) method:
“Passing null to this method will have no effect”.

Library developers may also modify a notice. For example, in J2SE 1.3.1, the doc-
ument of the java.util.AbstractCollection.clear() method has a sentence:
“Note that this implementation will throw an UnsupportedOperationException if
the iterator returned by this collection’s iterator method does not implement the remove
method”. In J2SE 1.4.2, the modified document includes another condition: “... not im-
plement the remove method and this collection is non-empty”. Library developers may
even delete notice. For example, in lucene 3.0.0, library developers delete a notice of
the org.apache.lucene.index.IndexWriter.getReader()method: “You must
close the IndexReader returned by this method once you are done using it”. It seems
that programmers do not have to close the reader explicitly any more.

Code Example 4.36% Library developers may add code examples to illustrate API
usages, and later fix defects in code examples. For example, in J2SE 1.5, the docu-
ment of the java.util.List.hashCode() method has a code sample: “hashCode
= 1;...”, and in J2SE 1.6, a defect is fixed: “int hashCode = 1;...”.

As pointed out by Kim et al. [12], API documentation in Java typically does not con-
tain as many code examples as API documentation in other languages (e.g., MSDN9).
Still, library developers of Java libraries are reluctant to add code examples to API doc-
uments. Although code examples are useful to programmers, some library developers
believe that API documentation should not contain code examples. In particular, the of-
ficial guidance of Java documentation says “What separates API specifications from a
programming guide are examples,...”, so adding many code examples to documentation
is against the guidance.

New Description 2.02% Some API elements may not have any documents, or have
only automatically generated documents without any true descriptions of usages. In
some cases, an API element is found not straightforward to use, so library developers
add new descriptions for the API element. For example, in J2SE 1.5, the document
of the java.util.ListResourceBundle.getContents() method has only one

9 http://msdn.microsoft.com/

http://msdn.microsoft.com/

An Empirical Study on Evolution of API Documentation 423

sentence: “See class description”. However, in J2SE 1.6, library developers add de-
tailed explanations to the method: “Returns an array in which each item is a pair of
objects in an Object array. The first element of each pair is the key, which must be
a String, and the second element is the value associated with that key. See the class
description for details”.

Implication 3: Dekel and Herbsleb [7] show that programming tips such as notices are
quite valuable to programmers, but we find that programming tips are challenging to
identify since Java does not provide any corresponding annotations. If such annotations
are available, tools (e.g., the one proposed by Dekel and Herbsleb [7]) may assist pro-
grammers more effectively. In addition, although many programmers complain that API
documentation in Java lacks code examples, some library developers are still reluctant
to add more code samples partially because doing so violates the principle of writing
Java documentation. Some tools (e.g., the tool proposed by Kim et al. [12]) may help
bridge the gap between programmers and library developers.

Besides the preceding findings (Findings 1–3), other 2.25% revisions cannot be put
into the preceding categories. Some of such revisions are still valuable. For example,
in lucene 2.9.1, the document of the org.apache.lucene.analysis.standard.

StandardTokenizer class includes a sentence that describes a fixed defect and its
related bug report: “As of 2.4, Tokens incorrectly identified as acronyms are corrected
(see LUCENE-1608)”. Tools can use this clue to build relations between bug reports
and API code automatically.

3.2 RQ2: To What Degree Do Such Revisions Indicate Behavioral Differences?

In this paper, we refer to differences in input/output values, functionalities, and call
sequences between two versions of an API library as behavioral differences of API
elements. Some behavioral differences can be reflected from revisions of API docu-
mentation. In this section, we analyze behavioral differences based on textual revisions
of exceptions, parameters, returns, rephrasing, notices, and example code, since these
revisions can often indicate behavioral differences as shown in Section 3.1. In total, we
find that 18.44% revisions indicate behavioral differences. We classify found behavioral
differences into three primary categories, and Figure 3 shows the results. The vertical
axis shows the primary categories, and the horizontal axis shows their proportions.

Finding 4: 41.99% of behavioral differences are about exceptions as follows.
Addition 39.19% Library developers may re-implement API methods to throw new

exceptions, and add exception documents for these API methods. For example, in J2SE
1.3, library developers re-implement the java.util.ResourceBundle.getObject
(String)method to throw a new exception (NullException), and add a correspond-
ing document. In total, we find that NullException, ClassCastException, and
IllegalArgumentException are the top three added exceptions.

Modification 2.04% Library developers may change thrown exceptions of API
methods, and modify corresponding documents. For example, in J2SE 1.3, the Vector.
addAll(Collection) method throws ArrayIndexOutOfBoundsException. The
thrown exception is changed to NullPointerException in J2SE 1.4, and its docu-
ment is also modified.

424 L. Shi et al.

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00% 45.00%

Exception

Addition

Modification

Deletion

Notice

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00% 45.00%

Exception

API�usage

Addition

Modification

Deletion

Notice

Code�Example

Alternative

Call�sequence

New�functionality

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00% 45.00%

Exception

API�usage

Functionality

Addition

Modification

Deletion

Notice

Code�Example

Alternative

Call�sequence

New�functionality

Input�value

Default�value

Output�value

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00% 45.00%

Exception

API�usage

Functionality

Addition

Modification

Deletion

Notice

Code�Example

Alternative

Call�sequence

New�functionality

Input�value

Default�value

Output�value

Fig. 3. Categories of behavioral differences

Deletion 0.76% Library developers may delete exceptions from API meth-
ods, and delete corresponding documents. For example, in ActiveMQ 5.1.0, the
org.apache. activemq.transport.tcp.SslTransportFactory.setKey-

AndTrustManagers (KeyManager[],TrustManager[],SecureRandom)

method throws KeyManagementException. In ActiveMQ 5.2.0, library developers
deprecate this method and delete its exception.

Implication 4: Library developers can add, modify, and delete exception documents,
and these modifications indicate behavioral differences. In addition, we find that similar
API methods often have similar revisions, and such a similarity could potentially be
leveraged to better maintain API documentation.

Finding 5: 29.77% of behavioral differences are about API usage as follows.
Notice 24.68% As discussed in Finding 3, modifications of notices can reflect be-

havioral differences. For example, in J2SE 1.5, the document of the java.util.Ran-
dom.setSeed(long) method has one notice: “Note: Although the seed value is an
AtomicLong, this method must still be synchronized to ensure correct semantics of
haveNextNextGaussian”. In J2SE 1.6, the notice is deleted. The revision indicates that
the latter version does not have to be synchronized as the former version does.

Code example 2.29% Code examples explain API usages, so their revisions very
likely reflect behavioral differences. For example, in lucene 2.9.0, the example code of
keys in the org.apache.lucene.search.Hits class is as follow:

TopScoreDocCollector collector = new TopScoreDocCollector(hitsPerPage);
searcher.search(query, collector);
ScoreDoc[] hits = collector.topDocs().scoreDocs;
for (int i = 0; i < hits.length; i++) {
...

In lucene 2.9.1, the code example is modified as follows:
TopDocs topDocs = searcher.search(query, numHits);
ScoreDoc[] hits = topDocs.scoreDocs;
for (int i = 0; i < hits.length; i++) {
...

The version shows that programmers should follow a different way to attain a
ScoreDoc[] object.

Alternative 1.78% When an API element becomes deprecated, library developers
may refer to another API element for the deprecated one as alternatives. Revisions on
alternatives very likely reflect behavioral differences. For example, the document of the

An Empirical Study on Evolution of API Documentation 425

Table 2. Percentages of overall API differences

Library 1-2 2-3 3-4 4-5
J2SE 26.05% 59.04% 40.02% 22.60%

ActiveMQ 5.51% 4.95% 5.52% 1.64%
lucene 1.17% 0.51% 13.81% 0.55%
log4j 0.02% 0.00% 13.13% 5.47%
struct 28.17% 8.41% 4.60% 0.20%

deprecated org.apache.lucene.analysis.StopAnalyzer.StopAnalyzer(Set)
constructor is “Use StopAnalyzer(Set,boolean)instead” in lucene 2.9.0. In lucene
2.9.1, library developers change the document to “Use StopAnalyzer(Version,Set)
instead”. The revision indicates that another API method should be used to replace the
deprecated API method.

Call sequence 1.02% The revisions of API call sequences very likely reflect be-
havioral differences. For example, in lucene 2.9.2, the document of the org.apache.
lucene.search.Scorer.score() method has a sentence: “Initially invalid, until
DocIdSetIterator.next() or DocIdSetIterator.skipTo(int) is called the
first time”. In lucene 3.0.0, library developers modify this sentence: “Initially invalid,
until DocIdSetIterator.nextDoc() or DocIdSetIterator.advance(int) is
called the first time”. The revision indicates that programmers should call different API
methods in the latter version from those in the former version.

Implication 5: As API usages are quite important to programmers, library developers
take much effort to improve related documents. However, we find that Java has quite
limited annotations to support API-usage documents. If such annotations are available,
library developers can improve readability of API documentation, and programmers
can better understand API evolution.

Finding 6: 26.71% of behavioral differences are about functionalities as follows.
New functionality 14.50% Library developers may implement new functionalities

for some API elements, and revise corresponding documents. For example, generic is
a new functionality introduced in J2SE 1.5, and many related documents are modified
(e.g., the document of the java.util.Collections class).

Input value 7.89% Library developers may change input ranges of some API meth-
ods, and revise corresponding documents. For example, in J2SE 1.3.1, the document
of the java.util.Properties.store(OutputStream,String)method includes
“The ASCII characters \, tab, newline, and carriage return are written as \\, \t, \n,
and \r, respectively”. In J2SE 1.4.2, library developers add a new ASCII translation for
“form feed”, and the sentence is modified to “The ASCII characters \, tab, form feed,
newline, and carriage return are written as \\, \t, \f \n, and \r, respectively”. The re-
vision indicates that the latter version can accept more characters (e.g., form feed) as
inputs than the former version does.

Default value 2.54% Library developers may change default values of some API
methods, and revise corresponding documents. For example, in J2SE 1.3.1, the docu-
ment of the java.util.Hashtable(Map t) method informs that “The hashtable is

426 L. Shi et al.

created with a capacity of twice the number of entries in the given Map or 11 (whichever
is greater)”. In J2SE 1.4.2, library developers delete the words about default values, and
change the sentence to “The hashtable is created with an initial capacity sufficient to
hold the mappings in the given Map”. The revision indicates that the capacity of the
latter version is different form the former version.

Output value 1.78% Library developers may change output values of some API
methods, and revise corresponding documents. In some cases, library developers may
find that some output values are not straightforward, so they add documents to these
output values. For example, in log4j 1.2.15, the document of the org.apache.log4j.
Appender.getName() method does not have any sentences about return values. In
log4j 1.2.16, library developers add one sentence about return values: “return name,
may be null”. The sentence explains that the return value can be null. The revision
indicates that the latter version can return null values, whereas the former version may
not. Still, it is difficult to fully determine whether such a revision indicates behavioral
differences or not, and we further discuss the issue in Section 4.

Implication 6: Besides adding new functionalities, library developers also change func-
tionalities by modifying default values and input/output values of some API methods.
Although some annotations (e.g., @param and @return) are provided to describe in-
put and output parameters, value ranges are difficult to identify since they are usually
mixed with names and descriptions of parameters. In addition, other revisions (e.g., re-
visions of default values) even have no corresponding annotations. If such annotations
are supported, it may be easier to analyze those revisions for behavioral differences.

Besides the preceding findings (Findings 4–6), other 1.53% revisions of behavioral
differences cannot be put into the preceding categories.

3.3 RQ3: How Frequently Are API Elements and Their Documentation
Changed?

Sections 3.1 and 3.2 have investigated detailed revisions in API documentation. In this
section, we present an overall evolution frequency of API differences over versions of
all the libraries listed in Table 1. Given two library versions L1 and L2, we define the
API difference between the two versions of the API library as follows:

Dif(L1, L2) =
additions + removals + 2 × modifications

sum of public elements in L1 and L2
(1)

In Equation 1, additions denote newly added API elements; removals denote deleted
API elements; and modifications denote API elements whose declarations or documents
are modified. We count the number of modifications twice, since each modification can
be considered as a removal and an addition.

Finding 7: Contrary to normal expectations, API libraries between two nearby ver-
sions are typically quite different. The API differences between two library versions are
largely proportional to the differences between the version numbers of the two versions,
and additions and modifications account for most of the proportions by evolution types.

An Empirical Study on Evolution of API Documentation 427

Table 3. Percentages of API differences by types

(1) J2SE
V A R M

1-2 10.37% 0.61% 89.02%
2-3 15.02% 0.83% 84.15%
3-4 20.12% 4.55% 75.33%
4-5 12.68% 1.40% 85.92%

(2) ActiveMQ
V A R M

1-2 56.80% 5.78% 37.42%
2-3 67.60% 2.23% 30.17%
3-4 42.84% 4.91% 52.25%
4-5 41.61% 7.42% 50.97%

(3) lucene
V A R M

1-2 22.89% 1.21% 75.90%
2-3 7.89% 0.00% 92.11%
3-4 8.71% 41.41% 49.88%
4-5 14.71% 2.94% 82.35%

(4) log4j
V A R M

1-2 50.00% 0.00% 50.00%
2-3 n/a n/a n/a
3-4 42.11% 6.57% 51.32%
4-5 38.74% 0.00% 61.26%

(5) struct
V A R M

1-2 26.88% 39.13% 33.99%
2-3 39.13% 12.32% 48.55%
3-4 52.05% 11.06% 36.89%
4-5 0.00% 0.00% 100.00%

Table 2 shows the overall API differences. Each column denotes the API difference
between the two versions of a library. For example, Column “1-2” lists the API differ-
ences between a v1 version and a v2 version. From Table 2, we find that two versions
of a library typically provide different API elements, and only two versions of log4j
have exactly the same API elements. For each library, API differences are largely pro-
portional to differences of version numbers. For example, API differences of ActiveMQ
are proportional to the differences of its version numbers shown in Table 1.

Table 3 shows the proportions of evolution types. For each library, Column “V”
lists versions. For example, Row “1-2” shows the proportions between a v1 version
and a v2 version. Column “A” denotes proportions of additions. Column “R” denotes
proportions of removals. Column “M” denotes proportions of modifications. From the
results of Table 3, we find that additions and modifications account for the most of the
proportions of evolution types. It seems that library developers are often reluctant to
remove API elements, possibly for the consideration of compatibility across versions.

Implication 7: Based on our results, the API differences between two versions of an
API library increase with the differences between their version numbers, so analysis
tools for API evolution should deal with more API differences between versions with
more different version numbers. Modifications account for the largest proportions. As
modifications keep signatures of API methods unchanged, they typically do not cause
compilation errors. Thus, analysis tools need to identify and deal with modifications
carefully to ensure that the process of API evolution does not introduce new defects
into client code.

3.4 Summary

Overall, we find that API documentation between two nearby versions can be quite dif-
ferent, and API differences between versions are proportional to differences of version
numbers (Finding 7). Our findings are valuable to better understand API documentation
evolution by highlighting the following aspects:

428 L. Shi et al.

Evolution distribution. Most revisions occur in annotations, but some of annotations
are difficult to maintain (Finding 1). Literal polishes account for the second place, and
about 30% effort can be saved when an appropriate editor is available (Finding 2).
Programming tips account for the third place, and documents on programming tips are
challenging to identify since there are no corresponding annotations (Finding 3).

Behavioral differences. Most behavioral differences occur in revisions of exceptions
(Finding 4). Although various revisions can indicate behavioral differences, no corre-
sponding annotations exist to support these revisions (Findings 5 and 6).

3.5 Threats to Validity

The threats to external validity include the representativeness of the subjects in true
practice. Although we choose five widely used real-world libraries as subjects, our em-
pirical study investigated limited libraries with limited versions, so some findings (e.g.,
percentages) may not be general. This threat could be reduced by investigating more
versions of more libraries. The threats to internal validity include the human factors
within our methodology. Although we tried our best to reduce the subjectivity by using
double verification, to further reduce this threat, we need to invite more participants to
verify our results.

4 Discussion and Future Work

In this section, we discuss issues and our future work.

Variance across version changes. As shown in Table 2, percentages of changes be-
tween versions are not fully uniform with variances. To investigate such variances, we
plan to use finer-grained analysis in future work. In particular, we plan to investigate the
distribution of those variances, their associations, and their styles of common changes
for better understanding API evolution.

Determining behavioral differences. It is challenging to automatically determine be-
havioral differences through only documentation analysis or only code analysis (e.g.,
code refactoring typically does not cause any behavioral differences). In future work,
we plan to combine documentation analysis with code analysis to better determine be-
havioral differences than with individual techniques.

Benefits of our findings. Our findings are beneficial to programmers, library develop-
ers, IDE developers, and researchers. For example, for IDE developers, as our findings
reveal that many revisions (e.g., revisions of version numbers) are of little interest, it can
be ineffective if IDE developers design an IDE where library developers are required to
manually make all types of revisions of API documentation. As another example, for re-
searchers, Mariani et al. [14] can also improve their approach that identifies anomalous
events, if they consider modified notices and code examples that may lead to anoma-
lous events. Furthermore, we released our results on our project website, so others can
analyze benefits of our findings under their contexts.

An Empirical Study on Evolution of API Documentation 429

5 Related Work

Our quantitative study is related to previous work as follows.

Natural language analysis in software engineering. Researchers have proposed ap-
proaches to analyze natural language documents in software engineering. Tan et al. [21]
proposed an approach to infer rules and to detect defects from single sentences of com-
ments. Zhong et al. [26] proposed an approach that infers resource specifications from
descriptions of multiple methods. Tan et al. [22] proposed an approach that infers anno-
tations from both code and comments to detect concurrency defects. Dekel and Herb-
sleb [7] proposed an approach that pushes rule-containing documents to programmers.
Horie and Chiba [11] proposed an extended Javadoc tool that provides new tags to main-
tain crosscutting concerns in documentation. Buse and Weimer [4,3] presented various
automatic techniques for exception documentation and synthesizing documentation for
arbitrary programme differences across versions. Sridhara et al. [20] proposed an ap-
proach that infers comments of Java methods from API code. Würsch et al. [23] pro-
posed an approach that supports programmers with natural language queries. Kof [13]
used POS tagging to identify missing objects and actions in requirement documents.
Instead of proposing a new approach, we conducted an empirical study that motivates
future work on analyzing API documentation in natural languages.

API translation. Researchers have proposed approaches to translate APIs from one
API library to another. Henkel and Diwan [10] proposed an approach that captures
and replays API refactoring actions to update the client code. Xing and Stroulia [24]
proposed an approach that recognizes the changes of APIs by comparing the differ-
ences between two versions of libraries. Balaban et al. [2] proposed an approach to
migrate client code when mapping relations of libraries are available. Dagenais and
Robillard [5] proposed an approach that recommends relevant changes of API elements
based on comparing API code. Zhong et al. [25] proposed an approach that mines API
mapping relations for translating APIs in one language to another. Our empirical study
reveals various findings and implications on API documentation evolution, and these
findings are valuable to improve exiting API translation approaches.

Empirical studies on software evolution or API libraries. Researchers have con-
ducted various empirical studies on software evolution or API libraries. Ruffell and
Selby’s empirical study [19] reveals that global data is inherent and follows a wave
pattern during software evolution. Geiger et al.’s empirical study [9] reveals that the re-
lation between code clones and change couplings is statistically unverifiable, although
they find many such cases. Bacchelli et al.’s empirical study [1] reveals that the dis-
cussions of an artifact in email archives and the defects of the artifact are significantly
correlated. Novick and Ward’s empirical study [16] reveals that many programmers are
reluctant to seek help from documentation. Robillard and DeLine [18] conducted an
empirical study to understand obstacles to learn APIs, and present many implications to
improve API documentation. Padioleau et al. [17] presented an empirical study on tax-
onomies of comments in operating system code. Dagenais and Robillard [6] conducted
a qualitative study on creation and evolution of documentation, whereas we conducted a
quantitative study on the evolution. Dig and Johnson’s empirical studies [8] reveal that

430 L. Shi et al.

refactoring plays an important role in API evolution, and some breaking changes may
cause behavioral differences or compilation errors in client code. Our empirical study
focuses on the evolution of API documentation, complementing their studies.

6 Conclusion

A quantitative study on API documentation evolution is quite valuable for both pro-
grammers and library developers to better understand evolution, and it is difficult to
conduct such a study due to various challenges. In this paper, we present an analysis
methodology to analyze the evolution of API documentation. We conduct a quantita-
tive study on API documentation evolution of five real-world Java libraries. The results
show that API documentation undergoes frequent evolution. Understanding these re-
sults helps programmers better learn API documentation evolution, and guides library
developers better in maintaining their documentation.

Acknowledgments

We appreciate anonymous reviewers for their supportive and constructive comments.
The authors from Chinese Academy of Sciences are sponsored by the National Ba-
sic Research Program of China (973) No. 2007CB310802, the Hi-Tech Research and
Development Plan of China (863) No. 2007AA010303, the National Natural Science
Foundation of China No. 90718042, 60803023, 60873072, and 60903050, and the
CAS Innovation Program ISCAS2009-GR. Tao Xie’s work is supported in part by NSF
grants CNS-0716579, CCF-0725190, CCF-0845272, CCF-0915400, CNS-0958235, an
NCSU CACC grant, ARO grant W911NF-08-1-0443, and ARO grant W911NF-08-1-
0105 managed by NCSU SOSI.

References

[1] Bacchelli, A., Ambros, M.D., Lanza, M.: Are popular classes more defect prone? In: Rosen-
blum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013, pp. 59–73. Springer, Heidel-
berg (2010)

[2] Balaban, I., Tip, F., Fuhrer, R.: Refactoring support for class library migration. In: Proc.
20th OOPSLA, pp. 265–279 (2005)

[3] Buse, R., Weimer, W.: Automatic documentation inference for exceptions. In: Proc. ISSTA,
pp. 273–282 (2008)

[4] Buse, R., Weimer, W.: Automatically documenting program changes. In: Proc. 26th ASE,
pp. 33–42 (2010)

[5] Dagenais, B., Robillard, M.: Recommending adaptive changes for framework evolution.
In: Proc. 30th ICSE, pp. 481–490 (2009)

[6] Dagenais, B., Robillard, M.P.: Creating and evolving developer documentation: Under-
standing the decisions of open source contributors. In: Proc. 18th ESEC/FSE, pp. 127–136
(2010)

[7] Dekel, U., Herbsleb, J.D.: Improving API documentation usability with knowledge push-
ing. In: Proc. 31st ICSE, pp. 320–330 (2009)

An Empirical Study on Evolution of API Documentation 431

[8] Dig, D., Johnson, R.: How do APIs evolve? a story of refactoring. Journal of software
maintenance and evolution: Research and Practice 18(2), 83–107 (2006)

[9] Geiger, R., Fluri, B., Gall, H., Pinzger, M.: Relation of code clones and change couplings.
In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 411–425. Springer,
Heidelberg (2006)

[10] Henkel, J., Diwan, A.: CatchUp!: capturing and replaying refactorings to support API evo-
lution. In: Proc. 27th ICSE, pp. 274–283 (2005)

[11] Horie, M., Chiba, S.: Tool support for crosscutting concerns of API documentation. In:
Proc. 8th AOSD, pp. 97–108 (2010)

[12] Kim, J., Lee, S., Hwang, S., Kim, S.: Adding examples into Java documents. In: Proc. 24th
ASE, pp. 540–544 (2009)

[13] Kof, L.: Scenarios: Identifying missing objects and actions by means of computational
linguistics. In: Proc. 15th RE, pp. 121–130 (2007)

[14] Mariani, L., Pastore, F., Pezze, M.: A toolset for automated failure analysis. In: Proc. 31st
ICSE, pp. 563–566 (2009)

[15] Mens, T., Tourwe, T.: A survey of software refactoring. IEEE Transactions on software
engineering 30(2), 126–139 (2004)

[16] Novick, D.G., Ward, K.: Why don’t people read the manual? In: Proc. 24th SIGDOC, pp.
11–18 (2006)

[17] Padioleau, Y., Tan, L., Zhou, Y.: Listening to programmers Taxonomies and characteristics
of comments in operating system code. In: Proc. 31st ICSE, pp. 331–341 (2009)

[18] Robillard, M.P., DeLine, R.: A field study of API learning obstacles. Empirical Software
Engineering (to appear, 2011)

[19] Ruffell, F., Selby, J.: The pervasiveness of global data in evolving software systems. In:
Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 396–410. Springer, Heidel-
berg (2006)

[20] Sridhara, G., Hill, E., Muppaneni, D., Pollock, L.L., Vijay-Shanker, K.: Towards automat-
ically generating summary comments for Java methods. In: Proc. 25th ASE, pp. 43–52
(2010)

[21] Tan, L., Yuan, D., Krishna, G., Zhou, Y.: iComment: Bugs or bad comments. In: Proc. 21st
SOSP, pp. 145–158 (2007)

[22] Tan, L., Zhou, Y., Padioleau, Y.: aComment: Mining annotations from comments and code
to detect interrupt-related concurrency bugs. In: Proc. 33rd ICSE (to appear, 2011)

[23] Würsch, M., Ghezzi, G., Reif, G., Gall, H.C.: Supporting developers with natural language
queries. In: Proc. 32nd ICSE, pp. 165–174 (2010)

[24] Xing, Z., Stroulia, E.: API-evolution support with Diff-CatchUp. IEEE Transactions on
Software Engineering 33(12), 818–836 (2007)

[25] Zhong, H., Thummalapenta, S., Xie, T., Zhang, L., Wang, Q.: Mining API mapping for
language migration. In: Proc. 32nd ICSE, pp. 195–204 (2010)

[26] Zhong, H., Zhang, L., Xie, T., Mei, H.: Inferring resource specifications from natural lan-
guage API documentation. In: Proc. 24th ASE, pp. 307–318 (2009)

An Empirical Study of Long-Lived Code Clones

Dongxiang Cai1 and Miryung Kim2

1 Hong Kong University of Science and Technology
caidx@cse.ust.hk�

2 The University of Texas at Austin
miryung@ece.utexas.edu

Abstract. Previous research has shown that refactoring code clones as
soon as they are formed or discovered is not always feasible or worth-
while to perform, since some clones never change during evolution and
some disappear in a short amount of time, while some undergo repetitive
similar edits over their long lifetime.

Toward a long-term goal of developing a recommendation system that
selectively identifies clones to refactor, as a first step, we conducted an
empirical investigation into the characteristics of long-lived clones. Our
study of 13558 clone genealogies from 7 large open source projects, over
the history of 33.25 years in total, found surprising results. The size of
a clone, the number of clones in the same group, and the method-level
distribution of clones are not strongly correlated with the survival time
of clones. However, the number of developers who modified clones and
the time since the last addition or removal of a clone to its group are
highly correlated with the survival time of clones. This result indicates
that the evolutionary characteristics of clones may be a better indicator
for refactoring needs than static or spatial characteristics such as LOC,
the number of clones in the same group, or the dispersion of clones in a
system.

Keywords: Software evolution, empirical study, code clones,
refactoring.

1 Introduction

Code clones are code fragments similar to one another in syntax and semantics.
Existing research on code cloning indicates that a significantly large portion
of software (e.g. gcc-8.7% [9], JDK-29% [14], Linux-22.7% [27], etc.) contains
code duplicates created by copy and paste programming practices. Though code
cloning helps developers to reuse existing design and implementation, it could
incur a significant maintenance cost because programmers need to apply repet-
itive edits when the common logic among clones changes. Neglecting to update
clones consistently may introduce a bug.

� This research was conducted while the first author was a graduate student intern at
The University of Texas at Austin.

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 432–446, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Code Clone Survival Time 433

Refactoring is defined as a disciplined technique for restructuring existing
software systems, altering a program’s internal structure without changing its
external behavior [10]. Because refactoring is considered a key to keeping source
code easier to understand, modify, and extend, previous research effort has fo-
cused on automatically identifying clones [15,4,2,21,13].

However, recent studies on code clones [7,18,19,20,26] indicated that cloning
is not necessarily harmful and that refactoring may not be always applicable to
or beneficial for clones. In particular, our previous study of clone evolution [20]
found that (1) some clones never change during evolution, (2) some clones disap-
pear after staying in a system for only a short amount of time due to divergent
changes, and (3) some clones stay in a system for a long time and undergo con-
sistent updates repetitively, indicating a high potential return for the refactoring
investment. These findings imply that it is crucial to selectively identify clones
to refactor.

We hypothesize that the benefit of clone removal may depend on how long
clones survive in the system and how often they require similar edits over their
lifetime. Toward a long-term goal of developing a system that recommends clones
to refactor, as a first step, we conducted an empirical investigation into the char-
acteristics of long-surviving clones. Based on our prior work on clone genealo-
gies—an automatically extracted history of clone evolution from a sequence of
program versions [20]—we first studied various factors that may influence a
clone’s survival time, such as the number of clones in the same group, the num-
ber of consistent updates to clones in the past, the degree of clone dispersion
in a system, etc. In total, we extracted 34 attributes from a clone genealogy
and investigated correlation between each attribute and a clone’s survival time
in terms of the number of days before disappearance from a system. Our study
found several surprising results. The more developers maintain code clones, the
longer the clones survive in a system. The longer it has been since the time of
the last addition or deletion of a clone to its clone group, the longer the clones
survive in a system. On the other hand, a clone’s survival time did not have much
correlation with the size of clones, the number of clones in the same group, and
the number of methods that the clones are located in.

For each subject, we developed a decision-tree based model that predicts a
clone survival time based on its characteristics. The model’s precision ranges
from 58.1% to 79.4% and the recall measure ranges from 58.8% to 79.3%. This
result shows promise in developing a refactoring recommendation system that
selects long-lived clones.

The rest of this paper is organized as follows. Section 2 describes related
work. Section 3 gives background of our previous clone genealogy research and
Section 4 describes the characteristics of clone genealogy data and the subject
programs that we studied. Section 5 describes correlation analysis results and
Section 6 presents construction and evaluation of decision tree-based prediction
models. Section 7 discusses threats to validity, and Section 8 summarizes our
contributions.

434 D. Cai and M. Kim

2 Related Work

This section describes tool support for identifying refactoring opportunities, em-
pirical studies of code cloning, and clone evolution analysis.

Identification of Refactoring Opportunities. Higo et al. [13] propose Aries
to identify refactoring candidates based on the number of assigned variables, the
number of referred variables, and clone dispersion in the class hierarchy. Aries
suggests two types of refactorings, extract method and pull-up method [10]. A
refactoring can be suggested if the clone metrics satisfy certain predefined val-
ues. Komondoor’s technique [22] extracts non-contiguous lines of clones into a
procedure that can then be refactored by applying an extract method refactoring.
Koni-N’Sapu [23] provides refactoring suggestions based on the location of clones
with respect to a system’s class hierarchy. Balazinska et al. [2] suggest clone
refactoring opportunities based on the differences between the cloned methods
and the context of attributes, methods, and classes containing clones. Breakaway
[8] automatically identifies detailed structural correspondences between two ab-
stract syntax trees to help programmers generalize two pieces of similar code.
Several techniques [35,34,33,11,28] automatically identify bad-smells that indi-
cate refactoring needs. For example, Tsantalis and Chatzigeorgiou’s technique
identifies extract method refactoring opportunities using static slicing. Our work
is different from these refactoring opportunity identification techniques in that
it uses clone evolution history to predict how long clones are likely to survive in
a system.

Studies about Cloning Practice. Cordy [7] notes that cloning is a common
method of risk minimization used by financial institutions because modifying
an abstraction can introduce the risk of breaking existing code. Fixing a shared
abstraction is costly and time consuming as it requires any dependent code to
be extensively tested. On the other hand, clones increase the degrees of freedom
in maintaining each new application or module. Cordy noted that propagating
bug fixes to clones is not always a desired practice because the risk of changing
an already properly working module is too high.

Godfrey et al. [12] conducted a preliminary investigation of cloning in Linux
SCSI drivers and found that super-linear growth in Linux is largely caused by
cloning of drivers. Kapser and Godfrey [18] further studied cloning practices in
several open source projects and found that clones are not necessarily harmful.
Developers create new features by starting from existing similar ones, as this
cloning practice permits the use of stable, already tested code. While interview-
ing and surveying developers about how they develop software, LaToza et al. [26]
uncovered six patterns of why programmers create clones: repeated work, exam-
ple, scattering, fork, branch, and language. For each pattern, less than half of the
developers interviewed thought that the cloning pattern was a problem. LaToza
et al.’s study confirms that most cloning is unlikely to be created with ill inten-
tions. Rajapakse et al. [30] found that reducing duplication in a web application
had negative effects on the extensibility of an application. After significantly re-
ducing the size of the source code, a single change often required testing a vastly

Code Clone Survival Time 435

larger portion of the system. Avoiding clones during initial development could
contribute to a significant overhead. These studies indicate that not all clones
are harmful and it is important to selectively identify clones to refactor.

Clone Evolution Analysis. While our study uses the evolutionary character-
istics captured by the clone genealogy model [20], the following clone evolution
analyses could serve as a basis for generating clone evolution data. The evolu-
tion of code clones was analyzed for the first time by Laguë et al. [25]. Aversano
et al. [1] refined our clone genealogy model [20] by further categorizing the In-
consistent Change pattern into the Independent Evolution pattern and the Late
Propagation pattern. Krinke [24] also extended our clone genealogy analysis and
independently studied clone evolution patterns. Balint et al. [3] developed a vi-
sualization tool to show who created and modified code clones, the time of the
modifications, the location of clones in the system, and the size of code clones.

Classification of Code Clones. Bellon et al. categorized clones into Type 1
(an exact copy without modifications), Type 2 (a syntactically identical copy)
and Type 3 (a copy with further modifications, e.g., addition and deletion of
statements) in order to distinguish the kinds of clones that can be detected by
existing clone detectors [5]. Kapser and Godfrey [17,16] taxonomized clones to
increase the user comprehension of code duplication and to filter false positives
in clone detection results. Several attributes of a clone genealogy in Section 4 are
motivated by Kapser and Godfrey’s region and location based clone filtering cri-
teria. Our work is different from these projects by identifying the characteristics
of long-lived clones.

3 Background on Clone Genealogy and Data Set

A clone genealogy describes how groups of code clones change over multiple
versions of the program. A clone group is a set of clones considered equivalent
according to a clone detector. For example, clone A and B belong to the same
group in version i because a clone detector finds them equivalent. In a clone’s
genealogy, a group to which the clone belongs is traced to its origin clone group
in the previous version. The model associates related clone groups that have
originated from the same ancestor group. In addition, the genealogy contains
information about how each element in a group of clones changed with respect
to other elements in the same group. The detail description on the clone geneal-
ogy representation is described elsewhere [20]. The following evolution patterns
describe all possible changes in a clone group.
Same: all code snippets in the new version’s clone group did not change from
the old version’s clone group.
Add: at least one code snippet is newly added to the clone group.
Subtract: at least one code snippet in the old version’s clone group does not
appear in the corresponding clone group in the new version.
Consistent Change: all code snippets in the old version’s clone group have
changed consistently; thus, they all belong to the new clone group.

436 D. Cai and M. Kim

Inconsistent Change: at least one code snippet in the old version’s clone group
changed inconsistently; thus, it no longer belongs to the same group in the new
version.
Shift: at least one code snippet in the new clone group partially overlaps with
at least one code snippet in the original clone group.

A clone lineage is a directed acyclic graph that describes the evolution history
of a sink node (clone group). A clone group in the kth version is connected to a
clone group in the k−1th version by an evolution pattern. For example, Figure 1
shows a clone lineage following the sequence of Add, Same, Consistent Change,
Consistent Change, and Inconsistent Change. In the figure, code snippets
with the similar content are filled with the same shade.

A clone genealogy is a set of clone lineages that have originated from the
same clone group. A clone genealogy is a connected component where every
clone group is connected by at least one evolution pattern. A clone genealogy
approximates how programmers create, propagate, and evolve code clones.

Clone genealogies are classified into two groups: dead genealogies that do not
include clone groups of the final version and alive genealogies that include clone
groups of the final version. We differentiate a dead genealogy from an alive
genealogy because only dead genealogies provide information about how long
clones stayed in the system before they disappeared. On the other hand, for an
alive genealogy, we cannot tell how long its clones will survive because they are
still evolving. In Figure 1, G1 is a dead genealogy with the age 5, and G2 is an
alive genealogy with the age 4. Dead genealogies are essentially genealogies that
disappeared because clones were either refactored, because they were deleted by
a programmer, or because they are no longer considered as clones by a clone
detector due to divergent changes to the clones.

To extract clone evolution histories with respect to this model, our clone
genealogy extractor (CGE) takes a sequence of program versions as input and

A

B

A

B

A

B

C C

A

B

C

Add Same
Consistent

Change

A

B

C

Consistent
Change

A

C

Inconsistent
Change

Disappeared
through

refactoring

Dead Genealogy: Disappeared through refactoring at the age of 5

A

B

A

B

C C

A

B

C

Same Same

A

B

C

Consistent
Change

A

C

Alive Genealogy: Present in the last version with the age of 4

Subtract

The last
investigated

version

Vi Vi+1 Vi+2 Vi+3 Vi+4 Vi+5 Vi+6

Fig. 1. Example clone genealogies: G1 (above) and G2 (below)

Code Clone Survival Time 437

uses CCFinder [15] to find clones in each version. It then relates clones between
consecutive versions based on a textual similarity computed by CCFinder and
a location overlapping score computed by diff, a line-level program differencing
tool. Basically, if the similarity between a clone of version i and a clone of a
version i + 1 is greater than a similarity threshold, simth, their container clone
groups are mapped.

Data sets. For our study, we extracted clone genealogy data from seven projects:
Eclipse JDT core, jEdit, HtmlUnit, JFreeChart, Hadoop.common, Hadoop.pig,
and Columba. Table 1 summarizes the size of subject programs and the number
of studied versions. We constructed genealogies at a temporal granularity of
releases instead of check-ins because our goal is not to understand fine-grained
evolution patterns but to correlate clones’ characteristics with a survival time.
In total, we studied 7 large projects of over 100KLOC, in total 33.25 years of
release history. Table 2 summarizes the number of dead and alive genealogies. In
our analysis, we removed dead genealogies of age 0, because they do not provide
much meaningful information about evolutionary characteristics.

Table 1. Description of Java subject programs

project URL LOC duration # of check-ins # of versions
Columba http://sourceforge.net/projects/columba 80448 ∼ 194031 42 months 420 420
Eclipse http://www.eclipse.org 216813 ∼ 424210 92 months 13790 21
common http://hadoop.apache.org/common 226643 ∼ 315586 14 months 410 18
pig http://hadoop.apache.org/pig 46949 ∼ 302316 33 months 906 8
HtmlUnit http://htmlunit.sourceforge.net 35248 ∼ 279982 94 months 5850 22
jEdit http://www.jedit.org 84318 ∼ 174767 91 months 3537 26
JFreeChart http://www.jfree.org/jfreechart 284269 ∼ 316954 33 months 916 7

Table 2. Clone genealogies (mintoken=40, simth = 0.8)

of genealogies Columba Eclipse common pig HtmlUnit jEdit JFreeChart
Total 556 3190 3094 3302 1029 654 1733
Alive genealogies 452 1257 627 2474 500 232 1495
Dead genealogies 104 1933 2467 828 529 422 238
of dead genealogies with age>0 102 1826 455 422 425 245 219

4 Encoding Clone Genealogy Characteristics

To study the characteristics of long-lived clones, we encode a clone genealogy
into a feature vector, which consists of a set of attributes. When measuring
spatial characteristics of clones, we use information from the last version of a
genealogy. For example, to measure the average size of clones in Genealogy G1 in
Figure 1, we use the average size of clone A and C in the genealogy’s last version,
Vi+5. This section introduces each attribute and the rationale of choosing the
attribute.

The number of clones in each group and the average size of a clone. The
more clones exist in each clone group and the larger the size of each clone, it

438 D. Cai and M. Kim

may require more effort for a developer to remove those clones, contributing to
a longer survival time.

a0: the total LOC (lines of code) of clones in a genealogy

a1: the number of clones in each group

a2: the average size of a clone in terms of LOC

Addition. Addition of new clones to a genealogy could imply that the clones
are still volatile, or that it is becoming hard to maintain the system without
introducing new clones, indicating potential refactoring needs.

a3: the number of Add evolution patterns

a4: the relative timing of the last Add pattern with respect to the age of a genealogy

Consistent update. If clones require similar edits repetitively over their lifetime,
removal of those clones could provide higher maintenance cost-savings than re-
moving unchanged clones.

a5: the number of Consistent Change patterns

a6: the relative timing of the last Consistent Change pattern with respect to the age

of a genealogy

Subtraction. A Subtract pattern may indicate a programmer removed only a
subset of existing clones.

a7: the number of Subtract patterns

a8: the relative timing of the last Subtract pattern with respect to the age of a ge-

nealogy

Inconsistent update. An Inconsistent Change pattern may indicate that the
programmer forgot to update clones consistently, and thus a programmer may
prefer to refactor such clones early to prevent inconsistent updates in the future.

a9: the number of Inconsistent Change patterns

a10: the relative timing of the last Inconsistent Change pattern with respect to the

age of a genealogy

File modification. If a file containing clones was modified frequently, it may
indicate that those clones are likely to be removed early.

a11: the number of times that files containing clones were modified.

Developers. The more developers are involved in maintaining clones, it may be
harder to refactor the clones.

a12: the number of developers involved in maintaining clones.

a13: the distribution of file modifications in terms of developers.

If the following entropy measure—a well-known measure of uncertainty [31]—is
low, that means only a few developers make most of the modifications. If the
entropy is high, all developers equally contribute to the modifications. The en-
tropy measure is defined as follows: entropy =

∑n
i=1 −plog(pi), where pi is the

probability of a file modification belonging to author i, when n unique authors
maintain the file.

Dispersion. The farther clones are located from one another, the harder it is to
find and refactor them. Inspired by Kapser and Godfrey’s clone taxonomy [17],

Code Clone Survival Time 439

Package A

File B(Forest.java) File A(Tree.java)

Forest
Tree

Leaf

public void add(){
|||||||||||||||||||||||||||||||||||||
}

public void add(){
||||||||||||||||||||||||||||||||||||
}

public void add(){
||||||||||||||||||||||||||||||||||||
}

|||||||||| Code Clone

Fig. 2. Example physical distribution of code clones

we count the number of unique methods, classes, files, packages, and directories
the clones are located. Table 3 shows that most clones are located within the
same class or package, only 4.0% to 29.5% of clones are located within the same
method, and only 2.8% to 31.1% clones are scattered across different directories.
We also used an entropy measure to characterize the physical distribution of
clones at a different level (method, class, file, package, and directory respectively)
by defining pi to be the probability of clones located in location i. For example,
in Figure 2, the dispersion entropy at a method level is 1.5, the entropy at a
file level is 0.81, and the entropy at a package level is 0. If the entropy is low,
clones are concentrated in only a few locations. If the entropy is high, clones are
equally dispersed across different locations.

a14: Dispersion of clones into five nominal labels: ’within the same method’, ’within

the same class’, ’within the same file’, ’within the same package’, and ’across multiple

directories.’

a15: The number of unique methods that clones in the last version are located.

a16: The distribution of clones in the last version at a method level according to the

entropy measure.

Table 3. Characteristics of studied clones

Columba Eclipse common pig HtmlUnit jEdit JFreeChart
Age Average age (days) 538.6 435.1 72.49 136.6 292.8 640.9 229.0

Min 1.1 68.7 34.0 30.0 6.9 13.3 11.1
Max 1222.2 2010.0 585.0 536.9 2122.4 2281.7 415.0

of clones Average 3.38 3.37 3.67 4.54 4.43 4.10 3.26
in each group Min 2 2 2 2 2 2 2

Max 21 112 53 115 62 120 42
Size (LOC) Average clone size 12.97 18.59 16.22 14.38 14.34 12.10 15.77

Min 2 3 3 3 3 4 4
Max 38.5 343.4 79 70 92 60 75

Dispersion % clones in the
same method

27.5% 29.5% 13.4% 12.8% 4% 24.5% 22.8%

% clones in the
same class

61.8% 60.6% 32.5% 49.1% 44.9% 75.9% 31.5%

% clones in the
same file

61.8% 61.0% 48.8% 49.5% 45.2% 75.9% 31.5%

% clones in the
same package

80.4% 83.5% 71.4% 94.1% 87.3% 90.6% 58.9%

% clones in the
same directory

87.3% 83.9% 75.4% 97.2% 88.5% 93.9% 68.9%

440 D. Cai and M. Kim

a17: The number of unique methods that clones in all versions are located.

a18: The distribution of clones in all versions at a method level according to the entropy

measure.

We then created similar attributes at the level of class (a19 to a22), file (a23 to
a26), package (a27 to a30), and directory (a31 to a34) by replicating attributes
(a15 to a18).

Clone survival time (class label). The last attribute a35 is the age of a genealogy
in terms of the number of days.

a35: the age of a genealogy in terms of the number of days

In the next section, we conduct a correlation analysis between each of the 34
attributes (a1 to a34) with a clone survival time (a35).

5 Characteristics of Long-Lived Clones

To understand the characteristics of long-lived clones, we measured Pearson’s
correlation coefficient between each attribute and a clone genealogy survival
time [32]. In our analysis, we used only dead genealogies, because alive genealo-
gies are still evolving and thus cannot be used to predict how long clones would
survive before they disappear. Table 4 shows the result of top 5 and bottom 5
attributes in terms of correlation strength.

The result indicates the more developers maintained clones, the longer the sur-
vival time of a clone genealogy (a12). The more uniformly developers contribute
to maintaining clones, the longer time it takes for the clones to be removed (a13).
The longer it has been since the last addition or deletion of a clone, the longer it
takes for them to be removed (a4 and a8). On the other hand, the size of clones
(LOC), the number of clones in each group, and the physical dispersion of clones
do not affect a clone survival time much (a0, a1, a31, and a32). This implies that
the size and the number of clones do not play much role in estimating a clone
survival time; however, it may be harder to remove those clones changed by a
large number of developers.

For example, a clone genealogy id 1317 from Eclipse JDT disappeared in
revision 13992 after surviving more than 813 days. We found that the clones
were modified over 83 times by 10 different developers and were finally removed
when fixing bug id 172633. As another example, we found a clone genealogy that

Table 4. Correlation analysis results

All Columba JDT common pig HtmlUnit jEdit JFreeChart

Top 5

a13(0.553) a27(0.366) a13(0.632) a8(0.568) a13(0.494) a13(0.674) a12(0.385) a6(0.448)
a12(0.528) a29(0.353) a12(0.601) a4(0.563) a12(0.474) a8(0.647) a29(0.358) a12(0.446)
a8(0.481) a28(0.351) a4(0.562) a10(0.466) a4(0.302) a4(0.637) a33(0.358) a11(0.438)
a4(0.479) a21(0.307) a8(0.561) a7(0.456) a8(0.287) a12(0.628) a21(0.356) a5(0.415)
a11(0.458) a25(0.300) a11(0.493) a3(0.448) a10(0.247) a7(0.551) a13(0.347) a10(0.294)

Bot. 5

a31(0.023) a15(0.031) a23(0.015) a18(0.048) a24(0.008) a32(0.051) a15(0.066) a1(0.041)
a32(0.018) a18(0.027) a33(0.013) a17(0.046) a20(0.006) a0(0.043) a9(0.047) a17(0.021)
a1(0.016) a0(0.027) a24(0.009) a32(0.026) a25(0.004) a25(0.040) a16(0.039) a22(0.016)
a17(0.014) a10(0.011) a19(0.009) a24(0.021) a21(0.004) a21(0.036) a0(0.036) a18(0.006)
a0(0.009) a16(0.007) a20(0.005) a31(0.012) a26(0.001) a1(0.014) a1(0.003) a21(0.006)

Code Clone Survival Time 441

contained 45 clones modified by 6 different developers in 20 different revisions,
which survived 898 days before being removed.

6 Predicting the Survival Time of Clones

This section describes a decision-tree based model that predicts how long clones
are likely to stay in a system. When building a training data set, we catego-
rized a clone survival time into five categories: very short-lived, short-lived,
normal, long-lived, and very long-lived. It is very important to find an un-
biased binning scheme that converts the number of days a clone survived into a
nominal label. If a binning scheme is chosen so that most vectors in the train-
ing data are put into a single bin, then the resulting prediction model is highly
accurate by predicting always the same label. However, it is not useful because
it cannot distinguish the survival time of clones.

To find an unbiased binning scheme, we explored two binning methods to
convert a clone survival time into five categories. The first scheme is to gradually
increase the size of a bin such that the bin size is larger than the preceding bin
size: bini = bini−1 + 0.5 × (i + 1) × χ, where χ is the size of the first bin. For
example, when χ is 50, the binning scheme is { [0,50), [50, 125), [125, 225), [225,
350), [350, ∞) }. The second scheme is to uniformly assign a bin size to χ. For
both schemes, we varied the size of the first bin χ to be 30, 40, 50, 60 and 70
and computed the entropy measure to assess distribution of the training data set
across those bins. If the training feature vectors are equally distributed across
five bins, the entropy should be 2.3219 (= − log2

1
5). If all vectors are localized in

a single bin, the entropy will be 0. For each subject program, we then selected a
binning scheme with the highest entropy score, which will distribute the training
set as uniformly as possible across the five bins. Figure 5 shows the entropy score
for different binning schemes. After selecting a binning scheme with the highest
entropy score, the training data set is distributed across the selected bins as
shown in Table 6.

We built prediction models using five different classifiers in the Weka toolkit
(K Nearest Neighbor, J48, Naive Bayes, Bayes Network and Random Forest)
on these data sets. The J48 decision tree-based classifier [29] combined with the

Table 5. Entropy measures for various binning schemes

project entropy in incremental scheme entropy in uniform scheme
χ value 30 40 50 60 70 30 40 50 60 70
Columba 1.797 1.954 1.796 1.860 1.955 1.256 1.474 1.769 1.958 1.945
Eclipse1 1.101 1.496 1.804 1.534 1.919 0.642 0.659 1.092 1.365 1.755
common 1.229 1.367 1.353 1.274 1.235 1.201 1.330 1.352 1.360 1.331
pig 1.979 2.201 2.061 2.040 1.826 1.512 2.106 2.139 2.172 2.067
HtmlUnit 2.009 1.943 1.662 2.157 2.036 1.724 1.945 2.009 2.065 2.102
jEdit 1.085 1.454 1.544 1.735 1.843 0.604 0.821 1.136 1.465 1.473
JFreeChart 1.654 1.535 1.882 1.535 1.339 0.846 0.728 0.769 1.535 1.535

1 For Eclipse JDT, we tried additional χ values (80, 90, 100). For the incremental binning scheme,
entropy = 2.227, 2.264, and 1.970 respectively, while using an uniform scheme, entropy = 1.823,
1.543, and 1.784.

442 D. Cai and M. Kim

Table 6. Categorization of feature vectors based on a selected binning scheme

project # of survival time # of genealogies for each category
vectors (days)

Columba 102 1.1 ∼ 1222.2 [0,60):18, [60,120):8, [120,180):9, [180,240):16, [240+):51
Eclipse 1826 68.7 ∼ 2010.0 [0,90):204, [90,225):423, [225,405):340, [405,630):510, [630+):349
common 455 34.0 ∼ 585.0 [0,40):324, [40,100):66, [100,180):16, [180,280):33, [280+):16
pig 422 30.0 ∼ 536.9 [0,40):131, [40,100):91, [100,180):97, [180,280):31, [280+):72
HtmlUnit 425 6.9 ∼ 2122.4 [0,60):125, [60,150):119, [150,270):63, [270,420):24, [420+):94
jEdit 245 13.3 ∼ 2281.7 [0,70):22, [70,175):31, [175,315):31, [315,490):22, [490+):139
JFreeChart 219 11.1 ∼ 415.0 [0,50):37, [50,125):2, [125,225):104, [225,350):38, [350+):38
1 [n,m):k means there are k number of vectors whose survival time lie in between n to m days.

bagging method [6] performed the best among these classifiers in terms of overall
accuracy. J48 is an implementation of Quinlan’s decision tree learner C4.5 [29]
based on information entropy. At each node of the tree, it chooses an attribute
that most effectively splits the data set into subsets. The attribute that results
in the highest normalized information gain (difference in entropy) is used to split
the data. Bagging is a bootstrapping method, proposed by L. Breiman [6] that
generates multiple versions of a predictor and aggregates these predictors into
a new predictor. Since our class label is nominal, the resulting predictor uses a
voting scheme to produce a new class label. Figure 4 shows a J48 decision tree for
Eclipse JDT core. This model considers factors such as the number of developers
who modified clones and the dispersion of clones in a system to predict how long
the clones are likely to survive in a system.

a3 : The number of add evolution patterns.
a11: The number of times that files containing clones were modified.
a12: The number of developers involved in maintaining clones.
a27: The number of unique methods that clones in the last version are located

a27

a12

>1 <=1

<=1 >1

>6 <=6

a3

a12

a

<=1 >1

>6 <=6

<=5 >5

a11
>50 <=50 >50 <=50

[225,405)

[225,405) [630,∞)

[630,∞)

[630,∞) [405,630)

Fig. 3. An excerpt of a resulting decision tree for
Eclipse JDT core

Project Precision Recall
Columba 58.1% 58.8%

Eclipse JDT core 79.4% 79.3%
Hadoop.common 74.5% 78.0%

Hadoop.pig 79.1% 79.1%
HtmlUnit 73.3% 73.6%

jEdit 62.0% 65.7%
JFreeChart 68.2% 70.3%

Total 75.7% 76.5%

Fig. 4. Prediction model

We use 10-fold cross validation to evaluate the prediction model based on two

measures: (1) a weighted average precision,
∑ n

i=1
T Pi

TPi+F Pi
×ti∑

n
i=1 ti

and (2) a weighted

average recall,
∑ n

i=1 TPi∑ n
i=1 ti

, when TPi is the number of correct predictions of each
class label i, FPi is the number of incorrect predictions of i, and ti is the total
number of vectors with a class label i in the training data set. Table 6 summarizes

Code Clone Survival Time 443

the weighted average precision and recall measures for each project. Our precision
ranges from 58.1% to 79.4%, and our recall ranges from 58.8% to 79.3%. This
result shows promise in using the attributes extracted from clone evolution data
to predict a clone survival time.

7 Limitations

Our clone genealogy extractor (CGE) uses CCFinder to detect code clones and to
map clones across versions [15]. CCFinder is a token-based clone detection tech-
nique that transforms tokens of a program according to a language-specific rule
and performs a token-by-token comparison. CCFinder is recognized as a state
of the art clone detector that handles industrial size programs; it is reported
to produce higher recall although its precision is lower than some other tools.
CCFinder does not detect non-contiguous clones and it is sensitive to reordering
statements. This limitation leads to CGE’s limitation in extracting clone geneal-
ogy data. If a programmer consistently modified an old clone group OG to create
a new clone group NG, CCFinder does not find a cloning relationship between
OG and NG if they do not share a contiguous token string greater than the size
of simth=(|OG.text| + |NG.text|)/2. The absence of a cloning relationship can
be mistakenly interpreted as a discontinuation of a lineage. Furthermore, CGE
incorrectly counts the number of consistent change patterns in some cases, be-
cause CCFinder detects only a contiguous token string as a clone. For example,
when code is inserted in the middle of one clone in a clone group, the existing
clone group is broken into two new clone groups with shorter contiguous text,
causing identification of two consistent patterns rather than one inconsistent
change pattern. Similarly when the statements in a clone are reordered, such
clones could be considered as removed because CCFinder may not be able to
detect those clones.

We set the minimum token threshold of CCFinder to be 40 tokens and the
similarity threshold simth for associating clones between consecutive versions as
0.8. Thus, we considered only the clones that are at least 40 tokens long and
could map clones across versions only when the old and new clones are at least
80% similar according to CCFinder’s equivalence criteria.

We extracted clone genealogies at a temporal granularity of major releases
because CGE could not handle more than 1000 program versions as input.
Studying clone evolution data at a finer temporal granularity such as check-in
snapshots may provide more accurate evolutionary characteristics of long-lived
clones. When studying the characteristics of clones, we did not consider the
dispersion of clones in a class hierarchy or the refatorability of clones. Further
investigation of such characteristics remains as future work.

8 Conclusions

Previous studies on code cloning indicate that clones are not necessarily harmful
and that refactoring may not be always applicable to clones or be even beneficial

444 D. Cai and M. Kim

for them. As a first step toward selectively identifying clones to refactor, we
conducted an empirical investigation into the characteristics of long-lived clones.
Based on our prior work on clone genealogy extraction, we developed a method
that takes a clone genealogy as input and generates a feature vector to encode its
characteristics. By feeding the feature vectors to decision-tree based classification
algorithms, we developed models that predict a clone survival time. The study
found that the size of a clone, the number of clones in the same group, and
the method-level distribution of clones are not strongly correlated with a clone
survival time. However, the number of developers who modified clones and the
time since the last addition or removal of a clone to its group are highly correlated
with the survival time of clones. The survival time prediction model has 75.7%
precision and 76.5% recall, showing promise in selectively identifying clones to
remove.

References

1. Aversano, L., Cerulo, L., Penta, M.D.: How clones are maintained: An empirical
study. In: CSMR 2007, pp. 81–90. IEEE Computer Society Press, Washington, DC,
USA (2007)

2. Balazinska, M., Merlo, E., Dagenais, M., Lagüe, B., Kontogiannis, K.: Advanced
clone-analysis to support object-oriented system refactoring. In: WCRE 2000, p.
98. IEEE Computer Society, Washington, DC, USA (2000)

3. Balint, M., Marinescu, R., Girba, T.: How developers copy. In: ICPC 2006, pp.
56–68. IEEE Computer Society, Washington, DC, USA (2006)

4. Baxter, I.D., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone detection using
abstract syntax trees. In: ICSM 1998, p. 368. IEEE Computer Society, Washington,
DC, USA (1998)

5. Bellon, S., Koschke, R., Antoniol, G., Krinke, J., Merlo, E.: Comparison and eval-
uation of clone detection tools. IEEE Trans. Softw. Eng. 33(9), 577–591 (2007)

6. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
7. Cordy, J.R.: Comprehending reality practical barriers to industrial adoption of

software maintenance automation. In: IWPC 2003, p. 196. IEEE Computer Society,
Washington, DC, USA (2003)

8. Cottrell, R., Chang, J.J.C., Walker, R.J., Denzinger, J.: Determining detailed struc-
tural correspondence for generalization tasks. In: ESEC-FSE 2007, Dubrovnik,
Croatia, pp. 165–174. ACM, New York (2007)

9. Ducasse, S., Rieger, M., Demeyer, S.: A language independent approach for detect-
ing duplicated code. In: ICSM 1999, p. 109. IEEE Computer Society, Washington,
DC, USA (1999)

10. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Professional, Reading (2000)

11. Garcia, J., Popescu, D., Edwards, G., Medvidovic, N.: Identifying architectural
bad smells. In: CSMR 2009, pp. 255–258. IEEE Computer Society, Washington,
DC, USA (2009)

12. Godfrey, M.W., Svetinovic, D., Tu, Q.: Evolution, growth, and cloning in linux, a
case study. In: CASCON 2000 (2000)

Code Clone Survival Time 445

13. Higo, Y., Kamiya, T., Kusumoto, S., Inoue, K.: Refactoring support based on code
clone analysis. In: Bomarius, F., Iida, H. (eds.) PROFES 2004. LNCS, vol. 3009,
pp. 220–233. Springer, Heidelberg (2004)

14. Howard Johnson, J.: Identifying redundancy in source code using fingerprints. In:
CASCON 1993, pp. 171–183. IBM Press (1993)

15. Kamiya, T., Kusumoto, S., Inoue, K.: CCFinder: A multilinguistic token-based
code clone detection system for large scale source code. IEEE Trans. Softw.
Eng. 28(7), 654–670 (2002)

16. Kapser, C., Godfrey, M.W.: Aiding comprehension of cloning through categoriza-
tion. In: IWPSE 2004, Washington, DC, USA, pp. 85–94. IEEE Computer Society
Press, Los Alamitos (2004)

17. Kapser, C., Godfrey, M.W.: Improved tool support for the investigation of du-
plication in software. In: ICSM 2005: Proceedings of the 21st IEEE International
Conference on Software Maintenance, Washington, DC, USA, pp. 305–314. IEEE
Computer Society Press, Los Alamitos (2005)

18. Kapser, C., Godfrey, M.W.: ”Cloning Considered Harmful” Considered Harmful.
In: WCRE 2006, pp. 19–28. IEEE Computer Society, Washington, DC, USA (2006)

19. Kim, M., Bergman, L., Lau, T., Notkin, D.: An ethnographic study of copy and
paste programming practices in oopl. In: ISESE 2004, pp. 83–92. IEEE Computer
Society, Washington, DC, USA (2004)

20. Kim, M., Sazawal, V., Notkin, D., Murphy, G.: An empirical study of code clone
genealogies. In: ESEC/FSE-13, pp. 187–196. ACM Press, New York (2005)

21. Komondoor, R., Horwitz, S.: Semantics-preserving procedure extraction. In: POPL
2000, pp. 155–169. ACM Press, New York (2000)

22. Komondoor, R., Horwitz, S.: Effective, automatic procedure extraction. In: IWPC
2003, p. 33. IEEE Computer Society, Washington, DC, USA (2003)

23. Koni-N’-Sapu, G.G.: A scenario based approach for refactoring duplicated code in
object-oriented systems. Master’s thesis, University of Bern (2001)

24. Krinke, J.: A study of consistent and inconsistent changes to code clones. In: WCRE
2007, pp. 170–178. IEEE Computer Society, Washington, DC, USA (2007)

25. Lague, B., Proulx, D., Mayrand, J., Merlo, E.M., Hudepohl, J.: Assessing the
benefits of incorporating function clone detection in a development process. In:
ICSM 1997, p. 314. IEEE Computer Society, Washington, DC, USA (1997)

26. LaToza, T.D., Venolia, G., DeLine, R.: Maintaining mental models: a study of
developer work habits. In: ICSE 2006, pp. 492–501. ACM, New York (2006)

27. Li, Z., Lu, S., Myagmar, S., Zhou, Y.: CP-Miner: A tool for finding copy-paste and
related bugs in operating system code. In: OSDI 2004, pp. 289–302 (2004)

28. Moha, N., Guéhéneuc, Y.-G., Le Meur, A.-F., Duchien, L.: A domain analysis to
specify design defects and generate detection algorithms. In: Fiadeiro, J.L., Inver-
ardi, P. (eds.) FASE 2008/ETAPS 2008. LNCS, vol. 4961, pp. 276–291. Springer,
Heidelberg (2008)

29. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Fran-
cisco (1993)

30. Rajapakse, D.C., Jarzabek, S.: Using server pages to unify clones in web applica-
tions: A trade-off analysis. In: ICSE 2007, pp. 116–126. IEEE Computer Society,
Washington, DC, USA (2007)

31. Reza, F.M.: An Introduction to Information Theory. Dover Publications, Inc., New
York (1996)

446 D. Cai and M. Kim

32. Rodgers, J.L., Nicewander, W.A.: Thirteen ways to look at the correlation coeffi-
cient. The American Statistician 42, 59–66 (1988)

33. Tsantalis, N., Chaikalis, T., Chatzigeorgiou, A.: Jdeodorant: Identification and
removal of type-checking bad smells. In: CSMR 2008, pp. 329–331. IEEE Computer
Society Press, Washington, DC, USA (2008)

34. Tsantalis, N., Chatzigeorgiou, A.: Identification of extract method refactoring op-
portunities. In: CSMR 2009, pp. 119–128. IEEE Computer Society, Washington,
DC, USA (2009)

35. Tsantalis, N., Chatzigeorgiou, A.: Identification of move method refactoring op-
portunities. IEEE Trans. Softw. Eng. 35(3), 347–367 (2009)

D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 447–461, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Where the Truth Lies:
AOP and Its Impact on Software Modularity

Adam Przybyłek

University of Gdańsk, Department of Business Informatics,
Piaskowa 9, 81-824 Sopot, Poland

adam@univ.gda.pl

Abstract. Modularity is the single attribute of software that allows a program to
be intellectually manageable [29]. The recipe for modularizing is to define a
narrow interface, hide an implementation detail, keep low coupling and high
cohesion. Over a decade ago, aspect-oriented programming (AOP) was
proposed in the literature to “modularize the un-modularizable” [24]. Since
then, aspect-oriented languages have been providing new abstraction and
composition mechanisms to deal with concerns that could not be modularized
because of the limited abstractions of the underlying programming language.
This paper is a continuation of our earlier work [32] and further investigates AO
software with regard to coupling and cohesion. We compare two versions (Java
and AspectJ) of ten applications to review AOP within the context of software
modularity. It turns out that the claim that “the software built in AOP is more
modular than the software built in OOP” is a myth.

Keywords: AOP, modularization, separation of concerns.

1 Introduction

Modularity is a key concept that programmers wield in their struggle against the
complexity of software systems. Modularization is the process of decomposing a system
into logically cohesive and loosely-coupled modules that hide their implementation
from each other and present services to the outside world through a well-defined
interface [3, 28, 30, 43]. Cohesion is the “intramodular functional relatedness” and
describes how tightly bound the internal elements of a module are to one another,
whereas coupling is “the degree of interdependence between modules” [43].
Modularization makes it possible to reason about every module in isolation, such that
when a small change in requirements occurs, it will be possible to go to one place in
code to make the necessary modifications [11].

In practice, modularization corresponds with finding the right decomposition of a
problem [13]. However, in traditional programming languages, no matter how well a
software system is decomposed into modules, there will always be concerns (typically
non-functional ones) whose code cuts across the chosen decomposition [27]. The
implementations of these crosscutting concerns will necessarily be spread over
different modules, which has a negative impact on maintainability and reusability.

448 A. Przybyłek

Such concerns are called crosscutting concerns. The presented problem is known as
the “tyranny of the dominant decomposition” [41] and several techniques have been
invented to overcome it. The most prominent among them is AOP [23].

2 Motivations and Goals

Whenever a new technology is proposed, it has to prove its superiority over existing
competitors. AOP emergenced as a new paradigm to modularize the concerns whose
implementations would otherwise have been spread throughout the whole application,
because of the limited abstractions of the underlying programming languages. Since
then, several studies [15, 16, 17, 19, 35, 36] have suggested that AOP is successful in
modularizing crosscutting concerns. Unfortunately, these studies either wrongly
identify modularization with the lexical SoC offered by AOP, or wrongly measure
coupling in AO systems. Indeed, in our previous study [32] we adapted the CBO
metric to AOP and investigated implementations of the 23 GoF design patterns. We
found no cases in which an AO implementation was more modular than its OO
counterpart. Since these results cannot be generalized beyond simple academic
examples, we continue our earlier work and evaluate real-life systems.

3 Modularity Metrics

3.1 Measurement System

In order to compare software modularity between the OO and AO paradigm, we used
the G-Q-M (Goal-Question-Metric) approach [2]. G-Q-M defines a measurement
system on three levels (Fig. 1) starting with a goal. The goal is refined in questions
that break down the issue into quantifiable components. Each question is associated
with metrics that, when measured, will provide information to answer the question.
Our goal is to compare AO and OO systems with respect to software modularity from
the viewpoint of the developer.

In our previous paper [32], we argued for measuring modularity with the help of
coupling and cohesion. This pair of attributes was firstly suggested to measure
software modularity by Yourdon & Constantine [43] as part of their structured design
methodology and then it was adapted to OO methodology by Coad & Yourdon [12],
Booch [3], and Meyer [28]. Also, several empirical studies [6, 7, 20, 31] confirm that
improvements in coupling and cohesion are linked to improved modularity.

Despite coupling and cohesion having been concepts in software design for almost
50 years, we still do not have widely-accepted metrics for them. In our previous paper
[32], we supported CBO (Coupling Between Object classes) and LCOM (Lack of
Cohesion in Methods), adapted from the Chidamber & Kemerer (CK) metrics suite
[10]. CBO is a count of the number of other modules to which a module is coupled.
Two modules are coupled when methods declared in one module use methods or
instance variables of the other module [10]. LCOM is the degree to which methods
within a module are related to one another. It is measured as the number of pairs of
methods working on different attributes minus pairs of methods working on at least
one shared attribute (zero if negative).

 Where the Truth Lies: AOP and Its Impact on Software Modularity 449

CBO and LCOM complement each other, and because of their dual nature, they are
useful only when analyzed together. Attempting to optimize a design with respect to
CBO alone would trivially yield to a single giant module with no coupling. However,
such an extreme solution can be avoided by considering also the antagonistic attribute
LCOM (which would yield inadmissibly high values in the single-module case) [20].

GOAL

Purpose comparison

Issue software modularity

Object
OO and AO implementations
of ten software systems

Viewpoint software developers

What is the average
coupling for each
implementation?

What is the average
cohesion for each
implementation?

CBO

LCOM

Fig. 1. Goal-Question-Metric

Since AOP provides new programming abstractions, existing OO measures cannot
be directly applied to AO software. The efforts to make the CK metrics suite
applicable to AO software were originated by Ceccato & Tonella [9] and Sant’Anna
et al. [35]. Zhao [45] complemented their work by specifying the coupling
dependencies in a formal way. Their general suggestion is to treat advices as methods
and to consider introductions as members of the aspect that defines them. Although
this suggestion is enough to adapt LCOM, the adjustment of CBO requires further
explanation.

Coupling is a more complex attribute in AO systems, because new programming
constructs introduce novel kinds of coupling relationships. We found that the existing
coupling metrics [9, 35, 45] take into account only syntactic dependency. Syntactic
dependency occurs when there is a direct reference between modules, such as
inheritance or composition. However, in AO programs there is another kind of
dependency that is not so easy to realize because it occurs without explicit references
in the code. Ribeiro et al. [34] called this kind of coupling as semantic dependency. In
our earlier work [32], we proposed a metric that considers this subtle kind of
coupling. Our CBO metric considers a module M to be coupled to N if (in
parentheses, we provide the abbreviations for the dependencies):

• M accesses attributes of N (A);
• M calls methods of N (M);
• M potentially captures messages to N (C);
• Messages to M are potentially captured by N (C_by);
• M declares an inter-type declaration for N (I);
• M is affected by an inter-type declaration declared in N (I_by);
• M uses pointcuts of N, excluding the case where N is an ancestor of M (P).

The C_by and I_by dependencies are semantic.

450 A. Przybyłek

3.2 Rationale for Semantic Dependency

To construct our metric, we extrapolated the original CBO definition according to the
question that underlies coupling: “How much of one module must be known in order
to understand another module?” [43]. The syntactic dependencies (i.e. A, M, C, I, P)
occurring in our metric do not raise any doubts even among proponents of AOP.
Nevertheless, the debate on our previous paper [32], during and after the panel
discussion at ENASE'10, demonstrated that further explanation of the semantic
dependencies is required. It suffices to show that for understanding a given module
M, we have to analyze N if the C_by or I_by dependency exists between M and N.

Suppose there are two modules as shown in Listing 1. Next, we send the inc(5)
message to an instance of M. If we analyze M without considering the C_by
dependency from M to N1, we will deduce (following program control flow) that the
result is 6. However, the result is actually 11, and analyzing N1 is necessary to
compute it correctly.

public class M {
 public int inc(int x) {
 return ++x;
 }
}
public aspect N1 {
 int around(int i):
 execution(int M.inc(int)) && args(i) {
 return proceed(2*i);
 }
}

Listing 1. The C_by dependency

Now, suppose two new modules were added as shown in Listing 2. This time the
same message is being sent to an instance of SubM. Once again, if we analyze M
without considering the I_by dependency from SubM to N2, we will deduce an
incorrect result. The correct is 20.

public aspect N2 {
 public int subM.inc(int x) {
 return x+10;
 }
}
public class SubM extends M {}

Listing 2. The I_by dependency

4 Empirical Study

4.1 Assessment Procedures

We compared two versions (Java and AspectJ) of 10 different systems: Telestrada,
Pet Store, CVS Core, EImp, Health Watcher, JHotDraw, HyperCast, Prevayler,

 Where the Truth Lies: AOP and Its Impact on Software Modularity 451

Berkeley DB, and HyperSQL Database. To the best of our knowledge, these are all
systems that have been implemented in both Java and AspectJ. They have also been
widely used by other researchers to evaluate their work in the area of AOP.

The assessment of both versions bases on the application of metrics that quantify
two fundamental modularity attributes, namely coupling and cohesion. In addition, we
supplement our study by size metrics. Table 1 overviews the employed metrics and
associates them with the attributes measured by each one of them. Detailed
description of the coupling metric is provided in Sect. 3.1.

The gathering of data for the metrics was automated through the use of the
extended version of AOPmetrics [37]. We extended AOPmetrics to support the CBO
metric as defined in the previous section, except for capturing C and C_by (available
at: http://przybylek.wzr.pl/AOP/). This is due to some inherent bugs in AOPmetrics
[32]. Hence, we manually revised the CBO measures.

Table 1. Metric definitions

Attributes Metrics Definitions

Vocabulary Size
Number of modules (classes, interfaces, and
aspects) of the system

Size
Lines of Code

Number of lines in the text of the system's source
code

Coupling
Between Object
classes

Number of other modules to which a module is
coupled

Modularity
Lack of
Cohesion in
Methods

Number of pairs of methods/advices working on
different attributes minus pairs of methods
working on at least one shared attribute (zero if
negative)

4.2 Selected Systems

Our study uses ten real-world systems from different domains and of varying sizes.
These are:

• Telestrada, which is a traveler information system being developed for a Brazilian
national highway administrator. It allows its users to register and visualize
information about Brazilian roads;

• Pet Store, which is a demo for the J2EE platform that is representative of existing
e-commerce applications;

• CVS Core, which is an Eclipse Plugin that implements the basic functionalities of a
CVS client, such as checkin and checkout of a system stored in a remote
repository;

• EImp, which is an Eclipse Plugin that supports collaborative software development
for distributed teams;

• Health Watcher, which is a web-based information system that was developed by
Soares [36] for the healthcare bureau of the city of Recife, Brazil. The system aims
to improve the quality of services provided by the healthcare institution, allowing

452 A. Przybyłek

citizens to register complaints regarding health issues, and the healthcare
institution to investigate and take the required actions. It involves a number of
recurring concerns and technologies common in day-to-day software development,
such as GUI, concurrency, RMI, Servlets and JDBC;

• JHotDraw (www.jhotdraw.org), which is a framework for technical and structured
2D graphics. Its design relies heavily on some well-known design patterns.
JHotDraw's original authors were Gamma & Eggenschwiler;

• HyperCast (www.hypercast.org), which is software for developing protocols and
application programs for application-layer overlay networks. It supports a variety
of overlay protocols, delivery semantics and security schemes, and has a monitor
and control capability. It was developed at the University of Virginia in
cooperation with the Microsoft Corporation;

• Prevayler (www.prevayler.org), which is an object persistence library for Java. It is
an implementation of the Prevalent System design pattern, in which business
objects are kept live in memory and transactions are journaled for system recovery.
Business object must be serializable, i.e., implement the java.io.Serializable
interface, and deterministic, i.e., given an input, the object’s methods must always
return the same output;

• Berkeley DB Java Edition (oracle.com/technology/products/berkeley-db), which is
a database system that can be embedded in other applications as a fast transactional
storage engine. It stores arbitrary key/data pairs as byte arrays and supports
multiple data items for a single key. Berkeley DB provides the underlying storage
and retrieval system of several LDAP servers, database systems and many other
applications;

• HyperSQL Database (hsqldb.org), which implements a relational database
management system. It offers a small and fast database engine which supports both
in-memory and disk-based tables. HSQLDB is currently being used as a database
and persistence engine in many projects, such as Mathematica and OpenOffice.

All of these systems were originally implemented in Java and, afterwards, were
refactored using AspectJ, so that the code responsible for some crosscutting concerns
was moved to aspects. In each case, code refactoring was done by proponents of AOP
to present the benefits of AOP over OOP.

In the first four systems, aspects were used to implement exception handling [8],
[16]. Exception-handling is known to be a global design issue that affects almost all
system modules, mostly in an application-specific manner.

The next work (Health Watcher) [19], [36] goes beyond refactoring of exception
handling including concerns such as data persistence, concurrency and distribution
(basic remote access to system services using Java RMI). Both the OO and AO
designs of the Health Watcher system were developed with modularity and
changeability principles as main driving design criteria.

AJHotDraw (ajhotdraw.sourceforge.net) is an aspect-oriented refactoring of
JHotDraw with regard to persistence, design policies contract enforcement and undo
command. It was started to experiment with the feasibility of adopting aspect-oriented
solutions in existing software and demonstrate the strategies proposed by research of
the Software Evolution Research Lab of Delft University of Technology in the

 Where the Truth Lies: AOP and Its Impact on Software Modularity 453

Netherlands. The aims, objectives and experience of the AJHotDraw project are
summarized by Marin et al. [26].

Sullivan et al. [40] encountered two types of development problems when
refactoring logging and event notification in HyperCast. First, the tight coupling
between aspects and method names prevented the development of aspects in parallel
with primary code refactoring, because the aspects could only be developed after
inspecting the core concerns. Second, they found cases where joinpoints were not
accessible, because AspectJ supports specifying joinpoints at the method call level
and data member level, but not at the if or switch statement level. Next, they re-
implemented the base version using AspectJ and crosscutting interfaces (XPI). What
distinguishes that particular release, is the lack of introductions used. In our
experiment, we evaluate the improved version.

Prevayler was refactored using AspectJ and horizontal decomposition by Godil &
Jacobsen [18]. The horizontal decomposition principles were proposed by Zhang &
Jacobsen [44] to guide the AO refactoring and implementation of complex software
systems. The refactored code includes persistence, transaction, query, and replication
management [18].

Störzer et al. [38] refactored version 1.8.0 of HSQLDB (sourceforge.net/projects/
ajhsqldb/). They started with an accepted catalog of well-known crosscutting concerns and
then tried to find classes, methods or fields related to the respective concerns. They used
manual semantics-guided code inspection supported by Feature Exploration and analysis
tool to find a relevant crosscutting code. They discovered and refactored many standard
crosscutting concerns, including Logging, Tracing, Exception Handling, Caching, Pooling
and Authentication/Authorization. When becoming familiar with the source code, they
also found some application specific aspects, for example trigger firing or checking
constraints before certain operations are performed [39].

By analyzing the domain, manual, configuration parameters, and source code,
Kästner et al. [22] identified many parts of Berkeley DB that represented increments
in program functionality that were candidates to be refactored into features. These
features are implicit in the original code. They vary from small caches to entire
transaction or persistence subsystems. All identified features represent program
functionality, as a user would select or deselect them when customizing a database
system. From these features, they chose 38 and manually refactored one feature after
another (wwwiti.cs.uni-magdeburg.de/iti_db/berkeley/). They used various OOP-to-
AOP refactoring techniques, including Extract Introduction, Extract Beginning and
Extract End, Extract Before/After Call, Extract Method, and Extract Pointcut [22].

4.3 Experimental Results

Table 2 shows the obtained results for both size metrics, vocabulary size (n) and
LOC, and both modularity metrics, CBO and LCOM. For all the employed metrics, a
lower value implies a better result. The fourth and fifth column presents the mean
values of the measures, over all modules per system. Rows labeled ‘Δ’ indicate the
percentage difference between the OO and AO implementations relative to each
metric. A positive value means that the original version performs better, whereas a
negative value indicates that the refactored version exhibits better results.

454 A. Przybyłek

Table 2. Results for size, coupling and cohesion metrics

In the case of both Eclipse Plugins, their refactored code is not publicly available,
so we based our analysis on the measurements carried out by Castor et al. [8].
However, since they do not consider all types of coupling, we cannot present the
exact CBO values. We can only say that coupling is greater for the refactored
systems.

Contradicting the general intuition that AOP makes programs smaller, the
refactored versions are larger with regard to the LOC metric in half the cases.
Nevertheless, the increase ranges between 1% and 4%. In the remaining half,
differences are greater than 5% (except for Telestrada) in favor of AOP.

 Where the Truth Lies: AOP and Its Impact on Software Modularity 455

The average coupling between modules is significantly higher in most of the
refactored versions. For the refactored versions of Prevayler and Health Watcher, it is
more than 30% higher than for the corresponding OO releases. Only for HSQLDB,
JHotDraw and HyperCast is the increase rather slight. The higher coupling is the
result of introducing new constructs intrinsic for AOP. In a typical scenario during
AO refactoring, the coupling generated by explicit method call is replaced by the
coupling generated by implicit advice triggering. Since an implicit advice triggering is
associated with C and C_by in our CBO metric, the overall coupling grows. In
addition, Filho et al. found [16] that new coupling was introduced when exception-
handler aspects had to capture contextual information from classes.

Although the obtained results were as expected due to the above presented
theoretical considerations, they contradict the outcomes achieved in several earlier
studies. The advocates of AOP claim that the refactored versions of Telestrada [8,
16], Pet Store [8, 16] , CVS Core Plugin [8, 16], EImp Plugin [8], Health Watcher
[19, 36], and Prevayler [18] exhibit lower coupling. However, they take into account
only a subset of the dependencies that generate coupling in AO systems. Hence, the
coupling measured with their metrics is underestimated.

The Lack of Cohesion in Methods is the metric for which the impact of AOP has
remained unclear. For the refactored versions of Berkeley DB, Prevayler, Health
Watcher and JHotDraw, the average LCOM is respectively 38%, 25%, 17%, and 12%
lower than for the corresponding original versions. On the other hand, the average
LCOM grew by 16% in the refactored version of Telestrada, 10% in the EImp Plugin,
and 9% in HSQLDB. A partial explanation for this increase is the large number of
methods that were created to expose join points (e.g. try-catch blocks in loops, etc.)
that AspectJ can capture [21]. As discussed in [8], these new methods are not part of
the implementation of the exception-handling concern but a direct consequence of
using aspects to implement this concern. The average LCOM varied (positively or
negatively) by less than 4% in the refactored versions of the remaining systems.

It is worth mentioning that most researchers compare aggregate coupling and
cohesion between an OO and AO version of the same system. Aggregate coupling
(cohesion) for a system is calculated as the sum of coupling (cohesion) taken over all
modules. Hence, it can be derived from Table 2 as multiplication of the average value
by vocabulary size. It should be also noted that the original versions perform better
with regard to the aggregate coupling and cohesion, since the measures of vocabulary
size grew in all cases, due to the introduction of aspects. Nevertheless, aggregate
coupling does not satisfy the second axiom of Fenton & Melton [14] for coupling
measures. That axiom states that system coupling should be independent from the
number of modules in the system. If a module is added and shows the same level of
pairwise coupling as the already existing modules, then the coupling of the system
remains constant.

The obtained results confirm our previous findings. In [32], we compared Java and
AspectJ implementations of 23 GoF design patterns. There was no pattern whose AO
implementations would exhibit lower coupling, while 22 patterns presented lower
coupling in the original implementations. With regard to cohesion, the OO
implementations were superior in 9 cases, while the AO ones in 6 cases. 8 patterns
exhibited the same cohesion in both implementations.

456 A. Przybyłek

5 Threats to Validity

There are a number of limitations of this study that are worth stating. Firstly, we
narrow software modularity to cohesion and coupling, despite of many other factors
assigned to it. Nevertheless, cohesion and coupling are the concepts that lie at the
heart of software modularity and are considered as main factors related to the
goodness of modularization [3, 6, 7, 20, 28, 31]. The causal effect of AOP on
software modularity was demonstrated in our earlier study [33].

Secondly, we could be criticised for applying metrics that are theoretically flawed.
Briand et al. demonstrate [4] that LCOM is neither normalized nor monotonic.
Normalization is intended to allow for comparison between modules of different size.
To avoid this anomaly we weighted LCOM by the number of methods. Monotonicity
states that adding a method which shares an attribute with any other method of the
same module, must not increase LCOM. If we drop the very rare case where the
methods of a module do not reference any of the attributes, the monotonicity anomaly
disappears. The other problem with LCOM is that it does not differentiate modules
well [1]. This is partly due to the fact that LCOM is set to zero whenever there are
more pairs of methods which use an attribute in common than pairs of methods which
do not [4]. In addition, the presence of access methods artificially decreases this
metric. Access methods typically reference only one attribute, namely the one they
provide access to, therefore they increase the number of pairs of methods in the class
that do not use attributes in common [4]. The CBO metric also indicates inherent
weakness. Briand et al. illustrate [5] that merging two unconnected modules may
affect the overall coupling. Nevertheless, CBO as well as LCOM are widely applied
and have been validated in many empirical studies [1, 5], and [6].

Thirdly, the applied metrics address only one possible dimension of cohesion and
coupling. Moreover, CBO implicitly assumes that all basic couples are of equal
strength [20]. In addition, it takes a binary approach to coupling between modules:
two modules are either coupled or not. Multiple connections to the same module are
counted as one [5]. In our defence we would point out that the OO community has yet
to arrive at a consensus about the appropriate measurement of coupling and cohesion.
The interested reader is referred to [4, 5], and [20] where an extensive surveys have
been presented.

Finally, we could be criticised for generalizing findings from AspectJ to AOP. In
our defence, most of the claims about the superiority of the AO modularization have
been made in the context of AspectJ. It also should be noted that AspectJ is the only
production-ready general purpose AO language.

To conclude, we are well aware that CBO and LCOM suffer from several
disadvantages. We also known that the modularity evaluated in our setting may differ
from the real modularity. The reason is that, it is not yet clear neither how to best
measure attributes such as coupling and cohesion, nor how to compare modularity
between systems that were developed in different paradigms. Nevertheless, the cases
investigated provide enough evidence to challenge the claim that AOP improves
software modularity.

 Where the Truth Lies: AOP and Its Impact on Software Modularity 457

6 Related Work

There are few studies focusing on the quantitative evaluation of the AO modularization.
Sant’Anna et al. [35] conducted a semi-controlled experiment to compare the use of an
OO approach (based on design patterns) and an AO approach to implement Portalware
(about 60 modules and over 1 KLOC), a multi-agent system. Portalware is a web-based
environment that supports the development and management of Internet portals. The
collected metrics show that the AO version incorporates modules with higher coupling
and lower cohesion. Their coupling metric is broader than the original CBO in the sense
that it additionally counts modules declared in formal parameters, return types, throws
declarations and local variables. However, it is not complete, since it does not take into
account either the semantic dependencies, or the dependency that occurs when an
advice refers to a pointcut defined in other, non-ancestor module.

The same suite of metrics was used by Garcia et al. [17] to compare the AO and
OO implementations of the Gang-of-Four design patterns. They performed two
studies, one on the original implementations from Hannemann & Kiczales and the
other on the implementations with introduced changes. These changes were
introduced because the H&K implementations encompassed few participant classes to
play pattern roles [17]. Garcia and his team concluded that “the use of aspects helped
to improve the coupling and cohesion of some pattern implementations.” However,
such conclusion may be misleading, according to the metrics they collected. The
measures before the application of the changes exhibit that only Composite and
Mediator present lower coupling for the AO solutions. The implementations of
Adapter and State have the same coupling in both paradigms. In the case of the other
patterns, the OO solutions indicate lower coupling. The superiority of OO solutions
decreased a little after the changes were introduced. Although the AO
implementations of Observer, Chain of responsibility, State and Visitor became better
with respect to coupling than their OO counterparts, there are still 16 patterns for
which the OO implementations provide superior results. With regard to cohesion, the
OO implementations were also superior in most cases. They analyzed the absolute
(aggregate) values.

Other studies can be classified into 2 groups. In the first group [8, 16, 19, 25], new
kinds of coupling introduced by pointcuts are not considered at all. In the second
group [21, 42], the coupling introduced by a pointcut is considered only if a module is
explicitly named by the pointcut expression.

Greenwood et al. [19] chose the Health Watcher system as the base for their study.
Their evaluation focused upon ten releases of the system, which underwent a number
of typical maintenance tasks, including: refactorings, functionality increments,
extensions of abstract modules and more complex system evolutions. Some of the
crosscutting concerns were “aspectized” from the first release, while others were
modularized as new HW versions were released. They found that modularity was
improved with AOP. The average “coupling” as well as cohesion were enhanced by
17% in the initial version, and by 23% and 21% in the 10th release.

458 A. Przybyłek

Madeyski & Szała [25] examined the impact of AOP on software development
efficiency and design quality in the context of a web-based manuscript submission
and a review system (about 80 modules and 4 KLOC). Three students took part in
their study. Two of them developed the system (labeled as OO1 and OO2) using Java,
whilst one implemented the system using AspectJ. The observed results show that the
AO version is 24% better than the others with regard to average “coupling” and it is
60% (3%) better than OO1 (OO2) with regard to average cohesion.

Filho et al. [8, 16] refactored to AOP four systems: Telestrada, Pet Store, CVS, and
EImp. The average “coupling” was decreased by 6%, 9%, and 1% for the first three
systems and increased by 2% for the last system. Nevertheless, Filho et al. [18] were
aware that their study missed some coupling dependencies introduced by AOP: “a
closer examination on the code (...) reveals a subtle kind of coupling that is not
captured by the employed metrics.”

The Telestrada and Pet Store systems were also used by Hoffman & Eugster. In
their study [21], they calculated two coupling metrics, namely CBM and CIM.
However, since CBM and CIM are not simply additive, the results are difficult to
interpret.

Tsang et al. [42] compared AO vs. OO solutions in the context of real time traffic
simulator. They found that aspects improved modularity by reducing “coupling” and
cohesion. They considered aspects coupled to classes only if the aspects explicitly
named the classes. “For instance, if we have the joinpoint call(* *(..)), then the aspect
is not coupled to any classes. However, if we have the joinpoint call(void
Test.methodName(..)), then the aspect is coupled to Test.” In the conclusion of their
work, they recommend the use of wildcards to maximize modularity improvements.
Following this reasoning, one could recommend to replace the previous pointcut by
call(void Test.methodNam*(..)), where ‘*’ instead of ‘e’ eliminates “coupling”.

7 Summary

This paper presents an empirical study in which we compare OO and AO
implementations of ten software systems with respect to modularity. The evaluation is
performed using the CBO and LCOM metrics from the CK suite, which were adapted
to AOP. We hope that this paper regenerates some discussion about the role of AOP
in software development.

The contribution of our work are twofold. Firstly, we gave a rationale for our
coupling metric. At the same time, we argued why the existing coupling metrics are
invalid for evaluating AO systems – they do not take into account all the composition
mechanisms offered by the underlying paradigm. Secondly, we found that there is no
evidence that AOP promotes better modularity of software than OOP. The OO
implementation of every system exhibits lower average coupling. With regard to
average cohesion the OO implementations are superior in 4 cases, while the AO ones
in 6 cases. As far as we know, this is the first presentation of empirical evidence to
this effect on real-life systems.

 Where the Truth Lies: AOP and Its Impact on Software Modularity 459

References

1. Basili, V.R., Briand, L.C., Melo, W.L.: A Validation of Object-Oriented Design Metrics as
Quality Indicators. IEEE Transactions on Software Engineering 22(10), 751–761 (1996)

2. Basili, V.R., Caldiera, G., Rombach, H.D.: Goal Question Metric Approach. In:
Encyclopedia of Software Engineering, pp. 528–532. John Wiley & Sons, Inc., Chichester
(1994)

3. Booch, G.: Object-oriented Analysis and Design with Applications. Benjamin-Cummings,
Redwood City (1994)

4. Briand, L.C., Daly, J.W., Wüst, J.: A Unified Framework for Cohesion Measurement in
Object-Oriented Systems. Empirical Softw. Engg. 3(1), 65–117 (1998)

5. Briand, L.C., Daly, J.W., Wüst, J.K.: A Unified Framework for Coupling Measurement in
Object-Oriented Systems. IEEE Transactions on Software Engineering 25(1), 91–121
(1999)

6. Briand, L.C., Morasca, S., Basili, V.R.: Defining and Validating Measures for Object-
Based High-Level Design. IEEE Trans. Softw. Eng. 25(5), 722–743 (1999)

7. Briand, L.C., Wüst, J.K., Lounis, H.: Replicated Case Studies for Investigating Quality
Factors in Object-Oriented Designs. Empirical Software Eng 6(1), 11–58 (2001)

8. Castor, F., Cacho, N., Figueiredo, E., Garcia, A., Rubira, C.M., de Amorim, J.S., da Silva,
H.O.: On the modularization and reuse of exception handling with aspects. Softw. Pract.
Exper. 39(17), 1377–1417 (2009)

9. Ceccato, M., Tonella, P.: Measuring the Effects of Software Aspectization. In: 1st
Workshop on Aspect Reverse Engineering, Delft, Netherlands (2004)

10. Chidamber, S.R., Kemerer, C.F.: A Metrics Suite for Object Oriented Design. IEEE Trans.
Softw. Eng. 20(6), 476–493 (1994)

11. Cline, M., Lomow, G., Girou, M.: C++ FAQs. Addison-Wesley, Reading (1998)
12. Coad, P., Yourdon, E.: Object-Oriented Analysis. Prentice-Hall, Englewood Cliffs (1991)
13. De Win, B., Piessens, F., Joosen, W., Verhanneman, T.: On the importance of the

separation-of-concerns principle in secure software engineering. In: ACSA Workshop on
the Application of Engineering Principles to System Security Design, Boston,
Massachusetts (2002)

14. Fenton, N., Melton, A.: Deriving Structurally Based Software Measures. J. Syst.
Software 12, 177–187 (1990)

15. Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M., Kulesza, U., Garcia, A., Soares,
S., Ferrari, F., Khan, S., Castor Filho, F., Dantas, F.: Evolving software product lines with
aspects: An empirical study on design stability. In: 30th International Conference on
Software Engineering (ICSE 2008), Leipzig, Germany (2008)

16. Filho, F.C., Cacho, N., Figueiredo, E., Maranhão, R., Garcia, A., Rubira, C.M.: Exceptions
and aspects: the devil is in the details. In: Proceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, Portland, Oregon
(2006)

17. Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U., Lucena, C., von Staa, A.:
Modularizing design patterns with aspects: a quantitative study. In: Proceedings of the 4th
international Conference on Aspect-Oriented Software Development (AOSD 2005),
Chicago, Illinois (2005)

18. Godil, I., Jacobsen, H.: Horizontal decomposition of Prevayler. In: The 2005 Conference
of the Centre For Advanced Studies on Collaborative Research, Toronto, Canada (2005)

460 A. Przybyłek

19. Greenwood, P., Bartolomei, T., Figueiredo, E., Dósea, M., Garcia, A.F., Cacho, N.,
Sant’Anna, C., Soares, S., Borba, P., Kulesza, U., Rashid, A.: On the Impact of Aspectual
Decompositions on Design Stability: An Empirical Study. In: Bateni, M. (ed.) ECOOP
2007. LNCS, vol. 4609, pp. 176–200. Springer, Heidelberg (2007)

20. Hitz, M., Montazeri, B.: Measuring Coupling and Cohesion in Object-Oriented Systems.
In: Proceedings of the 3rd International Symposium on Applied Corporate Computing,
Monterrey, Mexico (1995)

21. Hoffman, K., Eugster, P.: Bridging Java and AspectJ through explicit join points. In: 5th
international Symposium on Principles and Practice of Programming in Java (PPPJ 2007),
Lisboa, Portugal (2007)

22. Kästner, C., Apel, S., Batory, D.: A Case Study Implementing Features using AspectJ. In:
11th International Conference of Software Product Line Conference (SPLC 2007), Kyoto,
Japan (2007)

23. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Cristina Lopes, C., Loingtier, J.,
Irwin, J.: Aspect-Oriented Programming. In: Liu, Y., Auletta, V. (eds.) ECOOP 1997.
LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

24. Lesiecki, N.: Improve modularity with aspect-oriented programming (2002),
http://www.ibm.com/developerworks/library/j-aspectj/

25. Madeyski, L., Szała, Ł.: Impact of aspect-oriented programming on software development
efficiency and design quality: an empirical study. IET Software Journal 1(5), 180–187
(2007)

26. Marin, M., Moonen, L., van Deursen, A.: An Integrated Crosscutting Concern Migration
Strategy and its Application to JHotDraw. In: IEEE International Conference on Source
Code Analysis and Manipulation (SCAM 2007), Paris, France (2007)

27. Mens, T., Mens, K., Tourwé, T.: Software Evolution and Aspect-Oriented Software
Development, a cross-fertilisation. ERCIM special issue on Automated Software
Engineering. Vienna, Austria (2004)

28. Meyer, B.: Object-oriented Software Construction. Prentice-Hall, Englewood Cliffs (1989)
29. Myers, G.J.: Composite/Structured Design. Van Nostrand Reinhold (1978)
30. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.

Communications of the ACM 15(12), 1053–1058 (1972)
31. Ponnambalam, K.: Characterization and Selection of Good Object-Oriented Design. In:

Workshop on OO Design at OOPSLA 1997, Atlanta, Georgia (1997)
32. Przybyłek, A.: An empirical assessment of the impact of AOP on software modularity. In:

5th International Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE 2010), Athens, Greece (2010)

33. Przybyłek, A.: What is wrong with AOP? In: 5th International Conference on Software
and Data Technologies (ICSOFT 2010), Athens, Greece (2010)

34. Ribeiro, M., Dósea, M., Bonifácio, R., Neto, A.C., Borba, P., Soares, S.: Analyzing Class
and Crosscutting Modularity with Design Structure Matrixes. In: Proceedings of the 21th
Brazilian Symposium on Software Engineering (SBES 2007), João Pessoa, Brazil (2007)

35. Sant’Anna, C., Garcia, A., Chavez, C., Lucena, C., von Staa, A.: On the Reuse and
Maintenance of Aspect-Oriented Software: An Assessment Framework. In: 17th Brazilian
Symposium on Software Engineering (SEES 2003), Manaus, Brazil (2003)

36. Soares, S., Laureano, E., Borba, P.: Implementing Distribution and Persistence Aspects
with Aspect J. In: 17th ACM conference on Object-Oriented Programming Systems,
Languages and Applications, OOPSLA 2002, Seattle, Washington (2002)

37. Stochmiałek, M.: AOPmetrics, http://aopmetrics.tigris.org

 Where the Truth Lies: AOP and Its Impact on Software Modularity 461

38. Störzer, M., Eibauer, U., Schöffmann, S.: Aspect Mining for Aspect Refactoring: An
Experience Report. In: Workshop on Towards Evaluation of Aspect Mining at ECOOP
2006, Nantes, France (2006)

39. Störzer, M.: Impact Analysis for AspectJ – A Critical Analysis and Tool-based Approach
to AOP. PhD thesis, School of Computer Science and Mathematics, University of Passau,
Germany (2007)

40. Sullivan, K., Griswold, W.G., Song, Y., Cai, Y., Shonle, M., Tewari, N., Rajan, H.:
Information hiding interfaces for aspect-oriented design. In: 10th European Software
Engineering Conference Held Jointly with 13th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, Lisbon, Portugal (2005)

41. Tarr, P., Ossher, H., Harrison, W., Sutton, S.M.: N degrees of separation: multi-
dimensional separation of concerns. In: 21st International Conference on Software
Engineering (ICSE 2009), Los Angeles, California (1999)

42. Tsang, S.L., Clarke, S., Baniassad, E.L.A.: An evaluation of aspect-oriented programming
for java-based real-time systems development. In: 7th IEEE International Symposium on
Object-oriented Real-time distributed Computing (ISORC 2004), Vienna, Austria (2004)

43. Yourdon, E., Constantine, L.L.: Structured Design: Fundamentals of a Discipline of
Computer Program and System Design. Prentice-Hall, Englewood Cliffs (1979)

44. Zhang, C., Jacobsen, H.: Resolving Feature Convolution in Middleware Systems. In: 19th
Annual ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications, Vancouver, Canada, pp. 188–205 (2004)

45. Zhao, J.: Measuring Coupling in Aspect-Oriented Systems. In: 10th International Software
Metrics Symposium, Chicago, IL (2004)

Author Index

Alves, Tiago 186
Anderson, Ross 1
Arcuri, Andrea 262

Ball, Thomas 141
Balland, Emilie 217
Bendisposto, Jens 50
Boukadoum, Mounir 401
Bracciali, Andrea 96

Cai, Dongxiang 432
Chang, J. Morris 371
Chang, Kai-Hsiang 310
Consel, Charles 217
Crouzen, Pepijn 111
Cunha, Jácome 186

Day, Nancy A. 65
de Halleux, Jonathan 294
Denise, Alain 127
Dietrich, Dominik 81

Ehrig, Hartmut 202
Ermel, Claudia 156, 202
Esmaeilsabzali, Shahram 65

Feng, Lu 2
Fiadeiro, José Luiz 18
Fraser, Gordon 262

Gall, Jürgen 156
Gatti, Stéphanie 217
Gaudel, Marie-Claude 127
Gharaibeh, Bashar 371
Gligoric, Milos 262
Glodt, Christian 171

Hatebur, Denis 232
Heckel, Reiko 341
Heisel, Maritta 232
Hillston, Jane 96
Hoenicke, Jochen 34
Holzer, Andreas 278
Huang, Chung-Hao 310

Januzaj, Visar 278
Jürjens, Jan 232

Kelsen, Pierre 171
Kessentini, Marouane 401
Khan, Tamim Ahmed 341
Kim, Miryung 432
Kugele, Stefan 278
Kwiatkowska, Marta 2

Lambers, Leen 156
Lang, Frédéric 111
Langer, Boris 278
Lassaigne, Richard 127
Latella, Diego 96
Leuschel, Michael 50
Levin, Vladimir 141
Li, Huiqing 356
Li, Juncao 141
Li, Mingshu 416
Lopes, Antónia 18
Lyu, Michael R. 386

Ma, Qin 171
Marinov, Darko 262
Marri, Madhuri R. 294
Massink, Mieke 96

Oudinet, Johan 127

Parker, David 2
Peyronnet, Sylvain 127
Piessens, Frank 247
Podelski, Andreas 34
Post, Amalinda 34
Przyby�lek, Adam 447

Rajan, Hridesh 371
Rajan, Sreeranga 326

Sahraoui, Houari 401
Saraiva, João 186
Schallhart, Christian 278
Schmidt, Holger 232
Schröder, Lutz 81
Schulz, Ewaryst 81
Sharma, Rohan 262
Shi, Lin 416

464 Author Index

Taentzer, Gabriele 156, 202
Tautschnig, Michael 278
Thompson, Simon 356
Thummalapenta, Suresh 294
Tillmann, Nikolai 294
Tkachuk, Oksana 326

Vanoverberghe, Dries 247
Veith, Helmut 278
Visser, Joost 186

Wang, Farn 310
Wimmer, Manuel 401
Wu, Jung-Hsuan 310

Xie, Fei 141
Xie, Tao 294, 416

Zhang, Qirun 386
Zheng, Wujie 386
Zhong, Hao 416

	Title Page
	Foreword
	Preface
	Organization
	Table of Contents
	Invited Talk
	The Dependability of Complex Socio-technical Systems
	Automated Learning of Probabilistic Assumptions for Compositional Reasoning
	Introduction
	Probabilistic Verification
	Modelling and Verification of Probabilistic Systems
	Compositional Reasoning for Probabilistic Systems

	Learning Assumptions for Compositional Verification
	Learning Probabilistic Assumptions
	Experimental Results
	A New Case Study: Mars Exploration Rovers
	A Comparison of Learning Methods: L* versus NL*
	Learning Multiple Assumptions: Rule (ASym-N)

	Conclusions and Future Work
	References

	Verification
	An Interface Theory for Service-Oriented Design
	Services vs. Components, Informally
	A Service Component Algebra
	A Service Interface Algebra
	Related Work and Concluding Remarks
	References

	rt-Inconsistency: A New Property for Real-Time Requirements
	Introduction
	Defining rt-Inconsistency
	Checking rt-Inconsistency
	Phase Event Automata
	Characterizing rt-Inconsistency via Phase Event Automata
	Characterizing rt-Inconsistency via Timed Automata

	Using rt-Inconsistency in a Case Study
	Conclusion and Future Work
	References

	Automatic Flow Analysis for Event-B
	Introduction
	Preliminaries
	Dependency between Events
	Computing the Enabling Predicates
	Using the Enable Graph for Model Checking
	Enable Graph Case Study
	Flow Construction
	Flow Graph Case Study
	Applicability and Restrictions
	Related and Future Work
	References

	Semantic Quality Attributes for Big-Step Modelling Languages
	Introduction
	Background: Big-Step Modelling Languages (BSMLs)
	BSML Syntax
	Common Semantics of BSMLs
	BSML Semantic Variations

	Semantic Quality Attributes for BSMLs
	Priority Consistency
	Non-cancelling
	Determinacy

	Related Work
	Conclusion and Future Work
	References

	Specification and Modelling
	Formalizing and Operationalizing Industrial Standards
	Introduction
	Industrial Standards
	The Heterogeneous Tool Set
	A Domain-Specific Language for Engineering Calculations
	Syntax
	Semantics
	EnCL as an Institution
	Example

	Conclusion
	References

	Modelling Non-linear Crowd Dynamics in Bio-PEPA
	Introduction
	Rowe and Gomez Model of Crowd Dynamics
	Bio-PEPA and Fluid Flow Analysis
	Modelling Crowd Movement with Bio-PEPA
	Selected Results for a Model with Four Squares
	Analytical Assessment of the Fluid Flow Approximation
	Conclusions and Further Work
	References

	Reachability and Model Checking
	Smart Reduction
	Introduction
	Networks of LTSs
	Compositional Aggregation of Networks
	Smart Reduction
	Implementation
	Experimental Results
	Conclusion
	References

	Uniform Monte-Carlo Model Checking
	Introduction
	Counting and Generating Lassos in Directed Graphs
	Uniform Random Generation of Lassos in Reducible Flowgraphs
	Application to LTL Model-Checking
	Drawing Lassos in B
	Complexities
	Probabilities

	Experimental Results
	Implementation and Methodology
	Description of the Model and the Formula
	LTL Model-Checking with Uniform Generation of Lassos

	Conclusion
	References

	Model Checking B¨uchi Pushdown Systems
	Introduction
	Related Work
	Background
	Büchi Automaton (BA)
	Labeled Pushdown System (LPDS)
	Büchi Pushdown System (BPDS)

	Model Checking Algorithms for BPDS
	Model Checking Problem
	Model Checking Algorithm

	Reduction
	Implementation
	Specification of the BA B and LPDS P
	Specification of LTL Properties
	Reduction during the Cartesian Product

	Evaluation
	Conclusion and Future Work
	References

	Model Driven Engineering
	Modeling with Plausibility Checking: Inspecting Favorable and Critical Signs for Consistency between Control Flow and Functional Behavior
	Introduction
	Case Study: A Conference Scheduling System
	Integrating Activity Models with Object Rules
	Graphs and Graph Transformation
	Integrated Behavior Models
	Simulation of Integrated Behavior Models

	Plausibility Checks for Integrated Behavior Models
	Inspecting Initialization
	Inspecting Trigger Causalities along Control Flow Direction
	Inspecting Conflicts along Control Flow Direction
	Inspecting Trigger Causalities against Control Flow Direction
	Inspecting Causalities in Fork/Joins

	Related Work
	Conclusions and Future Work
	References

	Models within Models: Taming Model Complexity Using the Sub-model Lattice
	Introduction
	Models and MetaModels
	Metamodels
	Models
	Model Conformance

	Model Decomposition
	Criteria
	Algorithm
	Correctness
	The Lattice of Sub-models
	Implementation

	Application: Pruning Based Model Comprehension
	Conclusion and Future Work
	References

	Type-Safe Evolution of Spreadsheets
	Introduction
	Motivating Example: Spreadsheet Refactoring
	A Framework for Evolution of Spreadsheets in Haskell
	ClassSheets and Spreadsheets in Haskell
	Specifying Formulas
	Rewriting Systems

	Spreadsheets Evolution
	Combinators
	Semantic Rules
	Layout Rules

	Related Work
	Conclusions
	References

	A Formal Resolution Strategy for Operation-Based Conflicts in Model Versioning Using Graph Modifications
	Introduction
	Graph Modifications: Independence and Behavioural Equivalence
	Conflict Resolution
	Related Work
	Conclusions and Future Work
	References

	Software Development for QoS
	A Step-Wise Approach for Integrating QoS throughout Software Development
	Introduction
	Background and Working Example
	Overview of the DiaSuite Approach
	Aircraft Guidance Application

	QoS throughout Software Development
	Requirements Analysis and Functional Specification
	Architecture Design
	Implementation
	Deployment

	QoS Requirements Traceability
	From Functional Specification to Architecture Design
	From Architecture Design to Implementation
	From Implementation to Deployment

	Towards Certification of Avionics Systems
	Related Work
	Conclusion
	References

	Systematic Development of UMLsec Design Models Based on Security Requirements
	Introduction
	Environment Description and Security Requirements Analysis
	UMLsec
	From Security Requirements to UMLsec Design Models
	UMLsec Deployment Diagrams for Environment Descriptions
	UMLsec Class and Sequence Diagrams for Security Mechanism Descriptions
	Tool Design

	Related Work
	Conclusions and Future Work
	References

	Testing: Theory and New Trends
	Theoretical Aspects of Compositional Symbolic Execution
	Introduction
	Motivation
	Precision
	Progress

	Programming Language
	Compositional Symbolic Execution
	Overview
	Symbolic Interpretation
	Reachability Checking
	Implementation

	Properties
	Related Work
	Conclusion
	References

	Testing Container Classes: Random or Systematic?
	Introduction
	Related Work
	Example
	Test Generation for Container Classes
	Random Testing
	Shape Abstraction

	Case Study
	Subject Containers
	Predicate Coverage
	Mutation Analysis
	Experimental Design
	Results for Predicate Coverage and Mutation Score
	Random Testing vs. Shape Abstraction
	Bugs

	Threats to Validity
	Conclusion
	References

	Seamless Testing for Models and Code
	Introduction
	Seamless Test Specifications in FQL
	FQL in a Nutshell
	FQL for UML Models

	Test Process
	Test Generation
	Test Concretization
	Test Evaluation

	Prototype Evaluation
	Related Work
	Conclusion
	References

	Testing in Practice
	Retrofitting Unit Tests for Parameterized Unit Testing
	Introduction
	Background
	Test Generalization Methodology
	Overview
	Example

	Empirical Study
	Subject Applications
	Study Setup
	RQ1: Branch Coverage
	RQ2: Defects
	RQ3: Generalization Effort

	Threats to Validity
	Related Work
	Conclusion
	References

	Evolving a Test Oracle in Black-Box Testing
	Introduction
	Related Work
	Background
	Definitions
	Genetic Programming
	Support Vector Machine

	Input/Output List Relation Language(IOLRL)
	Implementation
	Experiment
	Performance Study
	Compare with Manually Specified Relations and Neural Network Approaches

	Conclusion
	References

	Automated Driver Generation for Analysis of Web Applications
	Introduction
	Approach
	PTG Analysis
	PTG-Based Analysis

	PTG Extraction
	Struts Framework
	Example
	Extracting PTG-Related Data
	PTG Construction

	Implementation
	Experience
	Case Studies
	Experiment
	Discussion

	Related Work
	Conclusions and Future Work
	References

	On Model-Based Regression Testing of Web-Services Using Dependency Analysis of Visual Contracts
	Introduction
	Visual Contracts and Trace Semantics
	Model-Based Evolution
	Evaluation
	Related Work
	Conclusion and Outlook
	References

	Code Development and Analysis
	Incremental Clone Detection and Elimination for Erlang Programs
	Introduction
	Erlang and Wrangler
	Terminology
	The Clone Detection Algorithm
	The Initial Detection Algorithm
	The Incremental Detection Algorithm

	Support for Clone Elimination
	Experimental Evaluation
	Related Work
	Conclusions and Future Work
	References

	Analyzing Software Updates: Should You Build a Dynamic Updating Infrastructure?
	Introduction
	Quantifying Software Update
	Update Models
	Net Options Value Model
	Effect of Operational Parameters

	Applying Our Analysis Model
	Selecting Analysis Parameters
	Xerces Case Study
	Apache httpd Case Study
	Analysis
	Summary

	Related Work
	Discussion
	Conclusions and Future Work
	References

	Flow-Augmented Call Graph: A New Foundation for Taming API Complexity
	Introduction
	Motivating Example
	Approach
	Augmenting the Call Graph with Control Flow
	Recommending the Relevant APIs

	Evaluation
	Experimental Setup
	Case Studies
	Quantitative Study
	Discussion on the Impact of FACG

	Related Work
	Conclusion
	References

	Search-Based Design Defects Detection by Example
	Introduction
	Problem Statement
	Definitions
	Problem Statement

	Approach Overview
	Overview
	Problem Complexity

	Search-Based Design Defect Detection by Example
	Solution Representation
	Evaluating Solutions
	Search Algorithms

	Validation
	Goals and Objectives
	System Studied
	Results
	Discussion

	Related Work
	Conclusion
	References

	Empirical Studies
	An Empirical Study on Evolution of API Documentation
	Introduction
	Analysis Methodology
	Empirical Study
	RQ1: Which Parts of API Documentation Are Frequently Revised?
	RQ2: To What Degree Do Such Revisions Indicate Behavioral Differences?
	RQ3: How Frequently Are API Elements and Their Documentation Changed?
	Summary
	Threats to Validity

	Discussion and Future Work
	Related Work
	Conclusion
	References

	An Empirical Study of Long-Lived Code Clones
	Introduction
	Related Work
	Background on Clone Genealogy and Data Set
	Encoding Clone Genealogy Characteristics
	Characteristics of Long-Lived Clones
	Predicting the Survival Time of Clones
	Limitations
	Conclusions
	References

	Where the Truth Lies: AOP and Its Impact on Software Modularity
	Introduction
	Motivations and Goals
	Modularity Metrics
	Measurement System
	Rationale for Semantic Dependency

	Empirical Study
	Assessment Procedures
	Selected Systems
	Experimental Results

	Threats to Validity
	Related Work
	Summary
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

