
Church Synthesis Problem for Noisy Input

Yaron Velner and Alexander Rabinovich

The Blavatnik School of Computer Science, Tel Aviv University, Israel

Abstract. We study two variants of infinite games with imperfect in-
formation. In the first variant, in each round player-1 may decide to hide
his move from player-2. This captures situations where the input signal
is subject to fluctuations (noises), and every error in the input signal
can be detected by the controller. In the second variant, all of player-
1 moves are visible to player-2; however, after the game ends, player-1
may change some of his moves. This captures situations where the input
signal is subject to fluctuations; however, the controller cannot detect
errors in the input signal.

We consider several cases, according to the amount of errors allowed
in the input signal: a fixed number of errors, finitely many errors and
the case where the rate of errors is bounded by a threshold. For each
of these cases we consider games with regular and mean-payoff winning
conditions. We investigate the decidability of these games.

There is a natural reduction for some of these games to (perfect infor-
mation) multidimensional mean-payoff games recently considered in [7].
However, the decidability of the winner of multidimensional mean-payoff
games was stated as an open question. We prove its decidability and
provide tight complexity bounds.

1 Introduction

The algorithmic theory of infinite games is a powerful and flexible framework
for the design of reactive systems (see e.g., [12]). It is well known for instance,
that the construction of a controller acting indefinitely within its environment
amounts to the computation of a winning strategy in an infinite game. For the
case of regular games, algorithmic solutions of the synthesis problem have been
developed, providing methods for the automatic construction of controllers. The
basis of this approach is the Büchi-Landweber Theorem, which states that in
a regular infinite game, i.e., a game over a finite game graph with a winning
condition given by an ω-regular language, a finite state winning strategy for the
winner can be constructed [4]. Much work has been devoted to the generalizations
and extensions of this fundamental result. One well known extension are mean-
payoff games where the winning condition is an ω language recognized by an
automaton with a mean-payoff acceptance condition. These games have been
studied since the end of the seventies [11,17] and still attract a large interest.
Another well known extension are games with imperfect information. In most
of the previous work, the setting of an imperfect information game is given
by a game graph with a coloring of the state space that defines equivalence

M. Hofmann (Ed.): FOSSACS 2011, LNCS 6604, pp. 275–289, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

276 Y. Velner and A. Rabinovich

classes of indistinguishable states called observations [9,15], and the strategies
are observation-based (i.e., they rely on the past sequence of observations rather
than on states).

In the present paper we investigate games with errors which are different kind
of imperfect information games.

To present games with errors it is convenient to refer to the simplest format
of infinite games, also called Gale-Stewart games. In such game we abstract from
graphs but just let the two players choose letters from a finite alphabets Σ1, Σ2 in
turn. A play is built up a sequence

(
b0
a0

)(
b1
a1

)(
b2
a2

) · · · ∈ (Σ1×Σ2)ω. A natural view
is to consider the sequence a = a0a1 . . . as the input stream and the sequence
b = b0b1 . . . as the output stream. In the Gale-Stewart game, the play is won by
player-2 if the ω word

(
b0
a0

)(
b1
a1

)(
b2
a2

)
. . . satisfies the winning condition, i.e., if it

belongs to a given specification language L ⊆ (Σ1 × Σ2)ω.
We consider a game with detected errors where in each round of the game,

player-1 has the possibility to hide his move from the opponent; however, player-
2 can detect whether player-1 hides a move. Player-1 needs to decide on the value
of the hidden moves, only at the end of the game. Hence, at the end of the game
he replaces his hidden moves in the produced play ρ by letters from Σ1 and this
defines an interpretation Int(ρ) ∈ (Σ1 × Σ2)ω for the play ρ. Round i ∈ N has
an error if player-1 decides to hide his move in round i. This game captures
the cases where the input signal is noisy and the controller can detect errors in
the input signal. We also consider a game with undetected errors where in each
round player-2 is fully aware of player-1 moves; however, at the end of the game
player-1 can change some of his moves, i.e., player-1 provides an interpretation
Int(ρ) ∈ (Σ1 × Σ2)ω for the play ρ. An error is made in round i ∈ N if at the
end of the game player-1 decides to change his move in round i. Note that in
this game, an error is determined according to the interpretation of the play.
This game captures the cases where the input signal is noisy and the controller
cannot detect errors in the input signal.

We measure the amount of errors in a play according to two scales. The error
count scale counts the number of errors in a play (the result is in N∪{∞}). The
error rate of a play ρ is lim supn→∞

1
n · (number of errors in first n rounds).

In both games a limitation on the amount of errors allowed for player-1 is
given by one of the following conditions types. The first type of conditions is a
bound n ∈ N on the error count. The second type of conditions requires that
the error count of a play is finite. The third type of conditions is a bound δ ∈ Q

on the error rate. The last type seems to be the most interesting for real life
applications.

For a specification language L: Player-1 is the winner of a play with detected
errors if the play satisfies the amount of errors limitation and there exists an
interpretation Int /∈ L. Player-1 is the winner of a play with undetected errors
if there exists an interpretation Int /∈ L which satisfies the amount of errors
limitation.

We consider the cases where the specification language is either an ω regular
language or when the language is recognizable by a mean-payoff automaton.

Church Synthesis Problem for Noisy Input 277

We investigate the decidability of who is the winner, and the computability of
the winning strategies. In addition, we investigate the bounded number of errors
problem which asks if there exists n ∈ N such that player-1 is the winner of a
game when he allowed to do at most n errors.

Table 1 summarizes our decidability results for games with detected and un-
detected errors with regular and mean-payoff winning condition.

Table 1. � - Decidable. ✕ - Undecidable. ? - Open.

Bounded1 Finite2 Rate3 δ = 0 Rate3 δ ∈ (0, 1) Rate3 δ = 1
Regular MP Regular MP Regular MP Regular MP Regular MP

Detected � � � � � � � ✕ � ✕

Undetected ? ? � ? ? ? ✕ ✕ � ✕

We reduced games with detected errors and a mean-payoff winning condition
to multidimensional mean-payoff games.

A multidimensional mean-payoff game, introduced in [7], is played on a fi-
nite weighted graph by two players. The edges of the graphs are labeled by
k-dimensional vectors w ∈ Z

k. The game is played as follows. A pebble is placed
on a designated initial vertex of the game graph G = (V, E). The game is played
in rounds in which the player owning the position where the pebble lies moves
the pebble to an adjacent position of the graph using an outgoing edge. An in-
finite play results an infinite path π = e0e1 · · · ∈ Eω through the game graph.
The energy level vector of the finite path e0e1 . . . en−1 is EL(e0e1 . . . en−1) =∑n−1

i=1 w(ei). The infinite path π produces two mean-payoff vectors. MP(π) =
lim infn→∞ 1

n ·EL(e0e1 . . . en−1) and MP(π) = lim supn→∞
1
n ·EL(e0e1 . . . en−1).

Hence, the vector associated to a play ρ which induces an infinite path πρ is
the 2k dimensional vector

−−→
MP(ρ) = (MP(πρ),MP(πρ)). The winning condition

for player-2 is given by a threshold ν = 〈ν1, . . . , ν2k〉 ∈ Q
2k, which induces 2k

boolean variables xν
i

.=
−−→
MP(ρ)i ≥ νi, and by a boolean formula on xν

i (for
i = 1, . . . , 2k).

In [7] the players were restricted to use only finite state strategies. The play π
produced by finite state strategies is always quasi periodic and MP(π) = MP(π).

It was proved in [7] that when the players are restricted to use the finite state
strategies and the winning condition is a conjunction of the form

∧2k
i=1 xν

i , then
it is decidable who is the winner. The decidability of who is the winner when
players are allowed to use arbitrary strategies was stated as an open question. We
prove that this problem is decidable and provide tight bounds on its complexity.
The lower complexity bounds are easily derived from [7,3].

We investigate the case where the winning condition is given by the for-
mula ϕ∧

MeanPayoffInf≥(ν)
.=

∧k
i=1 xν

i or by the formula ϕ∧
MeanPayoffSup≥(ν)

.=

1 Decidability of the bounded number of errors problem.
2 Games with finitely many errors.
3 Games with the errors rate limitation δ.

278 Y. Velner and A. Rabinovich

∧2k
i=k+1 xν

i . We show that the problem who wins ϕ∧
MeanPayoffInf≥(ν) games is

Strongly coNP complete, while there exists a pseudo-polynomial algorithm which
determines the winner for a condition of the form ϕ∧

MeanPayoffSup≥(ν).
We also consider the case where the winning condition is given by a positive

boolean formula which depends only on the MP(πρ) vector or on the MP(πρ)
vector, and prove decidability for this case.

This paper is organized as follows. In the next section we introduce notations
and well known definitions. In section 3, we provide formal definitions of games
with errors. In sections 4-5, we investigate regular games with errors. In section
6, we investigate mean-payoff games with errors. In section 7, we investigate mul-
tidimensional mean-payoff games and complete the proof of the main theorem
of section 6. Due to lack of space, only the outlines of the proofs are presented.

2 Definitions

Words and languages. Let Σ be a finite alphabet. A finite word over Σ is
w = σ0σ1 . . . σn, for n ∈ N and σi ∈ Σ. An infinite word over Σ is w =
σ0σ1 . . . σn . . . Let w = σ0σ1 . . . σn . . . , we denote σi by w(i). For j > i ≥ 0,
w[i, j] = w(i)w(i + 1) . . . w(j − 1)w(j), w[0, n − 1] is a prefix of length n of w.
w[i,∞] is a suffix of w starting from position i. For every i ≥ 0, w[i, i − 1] is
defined to be the empty word ε. We denote by Σ∗ the set of all finite words,
and by Σω the set of all infinite words. A language is a subset of Σ∗, and an ω
language is a subset of Σω. In the sequel, when it is clear from the context, we
shall also refer to an ω language L ⊆ Σω as a language. A word over Σ = Σ1×Σ2

is w =
(σ2(0)
σ1(0)

)(σ2(1)
σ1(1)

)
. . .

(σ2(n)
σ1(n)

)
. . . We denote

(σ2(i)
σ1(i)

)
by w(i), σ1(i) by w(i)1 and

σ2(i) by w(i)2, for j = 1, 2 we denote σj(0)σj(1) . . . by wj .

Gale-Stewart game. A Gale-Stewart game is a two-player game of perfect
information. The game is defined using an alphabet Σ = Σ1×Σ2 and a language
L ⊆ (Σ1 × Σ2)ω, and is denoted by GL. The two players alternate turns, and
each player is aware of all moves before making the next one. A play of game has
ω rounds. At round i ∈ N: first player-1 chooses σ1 ∈ Σ1, then player-2 chooses
σ2 ∈ Σ2. At the end of the play, an ω word w =

(σ2(0)
σ1(0)

)(σ2(1)
σ1(1)

)
. . . is formed.

Player-2 wins the play if w ∈ L.

Strategies. A player-1 strategy is τ : (Σ1×Σ2)∗ → Σ1. A play ρ =
(σ2(0)
σ1(0)

)(σ2(1)
σ1(1)

)

. . . is consistent with player-1 strategy τ if τ(
(σ2(0)

σ1(0)

)(σ2(1)
σ1(1)

)
. . .

(σ2(i)
σ1(i)

)
) = σ1(i+1)

for every i ∈ N. A player-2 strategy is τ : (Σ1×Σ2)∗×Σ1 → Σ2. The consistency
of a play with player-2 strategy is defined similarly. Player-j (for j = 1, 2) is the
winner of game GL if it has a strategy τ such that in every play consistent with
τ , player-j wins.

Automaton. An automaton over Σ is a tuple A = (Σ, Q, Q0, E) Where Σ is a
finite alphabet, Q is a finite set of states, Q0 ⊆ Q is a set of initial states and E ⊆
Q×Q×Σ is a transition relation. Automaton A is deterministic if |Q0| = 1 and
∀q ∈ Q, ∀σ ∈ Σ, ∀q1, q2 ∈ Q if (q, q1, σ) ∈ E and (q, q2, σ) ∈ E then q1 = q2. For
infinite word ρ = σ1σ2 . . . a run of ρ is an infinite sequence π = q0e0q1e1 . . . with

Church Synthesis Problem for Noisy Input 279

q0 ∈ Q0 and ei = (qi, qi+1, ρ(i)) ∈ E for every i ∈ N. The set of all states reach-
able by a finite word ρ is E∗(ρ) = {q ∈ Q | ρ has a (finite) run that ends in q}.

Language recognized by automaton. Let A = (Σ, Q, Q0, E). An acceptance
condition for A is a set φ ⊆ (Q×E)ω, note that we are interested only in the cases
where φ has a finite description. An infinite word is accepted by automaton A
and condition φ if it has a run π such that π ∈ φ. The set of all ω words accepted
by automaton A and condition φ is denoted by LA,φ. In the sequel, when the
acceptance condition φ it is clear from the context, we shall omit it and denote
the language by LA.

Acceptance conditions (objectives). Let p : Q → N be a priority function
and w : E → Z be a weight function. The energy level of a finite path γ =
q0e0q1e1...en−1qn is EL(w, γ) =

∑n−1
i=0 w(ei), and the mean-payoff value of an

infinite path π = q0e0q1e1... is defined by either MP(w, π) = lim supn→∞
1
n ·

EL(w, π[0, n − 1]) or by MP(w, π) = lim infn→∞ 1
n · EL(w, π[0, n − 1]). In the

sequel, when the weight function w is clear from the context we will omit it and
simply write EL(γ) and MP(π) or MP(π). We denote by Inf (π) the set of states
that occur infinitely often in π. We consider the following conditions:

– Parity condition. The parity condition ParityA(p) = {π ∈ (Q × E)ω |
min{p(q)|q ∈ Inf (π)} is even} requires that the minimum priority visited
infinitely often is even.

– Mean-payoff condition. Given a threshold ν ∈ Q, and ∼∈ {>,≥} the mean-
payoff condition is either

• MeanPayoffSup∼(ν) = {π ∈ (Q × E)ω |MP(π) ∼ ν}
• MeanPayoffInf∼(ν) = {π ∈ (Q × E)ω |MP(π) ∼ ν}

Mean-payoff conditions defined with ∼∈ {<,≤} are obtained by duality since
lim supn→∞ xn = − lim infn→∞ −xn.

– Tail objective, Informally the class of tail objectives is the class of objectives
that are independent of all finite prefixes. Formally φ ⊆ (Q × E)ω is a tail
objective if for every π ∈ (Q × E)ω , π ∈ φ ⇔ every suffix of π is in φ.

Language defined by a MSO formula. Let ϕ(X1, X2) be a formula of
Monadic Second-order logic over the signature {<}, where X1 and X2 are set
(second-order) variables. We define the language Lϕ ⊆ ({0, 1}×{0, 1})ω as usual.
Let w =

(σ2(0)
σ1(0)

)(σ2(1)
σ1(1)

)
. . . be an ω word. Let P1, P2 be monadic predicates on

N defined as: P1(t) ⇔ w(t)1 = 1 and P2(t) ⇔ w(t)2 = 1 for every t ∈ N. Then
w ∈ Lϕ iff (N, <) |= ϕ(P1, P2). A language L ⊆ ({0, 1} × {0, 1})ω is MSO de-
finable if there exists a MSO formula ϕ(X1, X2) such that L = Lϕ. The MSO
definable languages over an alphabet Σ1 × Σ2 are defined similarly [16].

ω regular languages. It is well-known that the class of ω language definable
by MSO formulas is the same as the class recognizable by parity automata. An
ω language is regular if it is definable by a MSO formula.

280 Y. Velner and A. Rabinovich

3 Games with Errors

We define two versions of games with errors. Informally we want to distinguish
the case where player-2 can detect errors made by player-1, from the case where
errors cannot be detected during the play.

The first case is captured by games with detected errors, and the second case
is captured by games with undetected errors.

3.1 Games with Detected Errors

Let z be a symbol not in Σ1. We use z to represent a (detected) error.

Play with detected errors. A play with detected errors has ω rounds. In
round i ∈ N: First player-1 chooses σ1 ∈ Σ1 ∪ {z}, then player-2 responds with
σ2 ∈ Σ2.

A play with detected errors ρ ∈ ((Σ1 ∪ {z})×Σ2)ω is formed. In the sequel if
it is clear from the context, we shall refer a to play with detected errors simply
as a play.
Interpretation of a play with detected errors. Let ρ be a play with detected
errors. ρ′ ∈ (Σ1 ×Σ2)ω is an interpretation of ρ if for every i ∈ N, ρ(i)2 = ρ′(i)2
and if ρ(i)1 �= z then ρ(i)1 = ρ′(i)1. The set of interpretations of a play ρ is
denoted by Interp(ρ). We define the interpretation of a play prefix similarly.
Error count and error rate. Let ρ be a play with detected errors.

The error count of a play prefix ρ[0, n] is denoted by EC (ρ[0, n]) and it is the
number of occurrences of z in ρ[0, n]. The error rate of a play ρ is denoted by
ER(ρ) and is defined as lim supn→∞

1
n · EC (ρ[0, n − 1]).

Winning conditions for plays with detected errors. A winning condition
is a tuple (L, χ), where L ⊆ (Σ1 × Σ2)ω is the target objective, and χ ⊆ ((Σ1 ∪
{z}) × Σ2)ω is the quantitative threshold objective. For a play with detected
errors ρ, we consider three types of quantitative thresholds.
– Fixed number of errors. For m ∈ N, ρ ∈ χ ⇔ EC (ρ[0, n − 1]) ≤ m for every

n ≥ 0.
– Finite number of errors. ρ ∈ χ if z does not occur infinitely often in ρ.
– Error rate. For δ ∈ Q, ρ ∈ χ ⇔ ER(ρ) ≤ δ.

Let ρ be a play with detected errors, player-2 wins in ρ if Interp(ρ) ⊆ L or if
ρ /∈ χ.

We name a class of games according to the target objective and the quantita-
tive threshold. For example, the class of games with ω regular language target
objective and any quantitative threshold χ is named: Regular games with de-
tected errors.

In the sequel, if the target objective is clear from the context, we omit the
name of the target objective. In addition instead of defining χ explicitly we
simply state the threshold value (i.e., n, fin or δ).

Definition 1. Let L ⊆ (Σ1 × Σ2)ω be the target objective.
1. DEn(L) is a game with detected errors and a winning condition (L, n).
2. DEfin(L) is a game with detected errors and a winning condition (L,fin).
3. DEδ(L) is a game with detected errors and a winning condition (L, δ).

Church Synthesis Problem for Noisy Input 281

Strategies for plays with detected errors. A strategy determines player
next move according to the history of moves (of both players) in the play. For-
mally, a player-1 strategy is a function τ1 : ((Σ1 ∪ {z}) × Σ2)∗ → (Σ1 ∪ {z}), a
player-2 strategy is a function τ2 : ((Σ1 ∪ {z})× Σ2)∗ × (Σ1 ∪ {z}) → Σ2.

A play with detected errors ρ is played according to player-1 strategy τ1 if
ρ(i)1 = τ1(ρ[0, i − 1]) for i ≥ 0. A play according to player-2 strategy is defined
similarly.

Finite-memory strategies. A strategy of player-1 is a finite-memory strategy
if it can be encoded by a deterministic transducer (M, m0, αu, αn) where M is
a finite set (the memory of the strategy), m0 ∈ M is the initial memory value,
αu : M × (Σ1∪{z})×Σ2 → M is an update function, and αn : M → Σ1∪{z} is
the next move function. The size of the strategy is the cardinality of M . In every
round, let m be the current memory value, then the strategy chooses σ1 = αn(m)
as player-1 next move and the memory is updated to αu(m, σ1, σ2), where σ2 is
player-2 move. Finite-memory strategy for player-2 is defined similarly.

Winning strategy. Player-i strategy τi (for i = 1, 2) is a winning strategy if
for every play played according to τi, player-i wins. If player-i has a winning
strategy, player-i is said to be the winner of the game.

3.2 Games with Undetected Errors

In this game, player-1 errors are not detected by player-2, thus the error count
and error rate cannot be measured by the amount of zs in the play. In this
subsection we give appropriate definitions for plays, play interpretation, error
count, error rate, and winning conditions.

Play with undetected errors. A play with undetected error is defined exactly
as a play (without errors) in section 2. Thus every play with undetected errors
forms ρ ∈ (Σ1 × Σ2)ω.

Interpretation of play with undetected errors. Let ρ ∈ (Σ1 × Σ2)ω be
a play with undetected errors. ρ′ ∈ (Σ1 × Σ2)ω is an interpretation of ρ if
ρ(i)2 = ρ′(i)2 for every i ≥ 0. The set of interpretations of a play ρ is denoted
by Interp(ρ). The interpretations of a play prefix are defined similarly.

Error count and error rate. Since errors are not detected, the existence of
an error in a certain position of the play is relative to a specific interpretation
of the play. i.e., for play ρ, different interpretations ρ1, ρ2 may define different
error positions.

Let ρ be a play with undetected errors, and ρ′ ∈ Interp(ρ). ρ′ is said to have
an error in position i if ρ(i)1 �= ρ′(i)1 The Error count of the finite play prefix
ρ and ρ′ ∈ Interp(ρ), denoted by EC (ρ, ρ′), is the number of positions in ρ with
errors relatively to ρ′.

The error rate of a play ρ and ρ′ ∈ Interp(ρ) is denoted by ER(ρ, ρ′) =
lim supn→∞

1
n · EC (ρ[0, n − 1], ρ′[0, n − 1]).

282 Y. Velner and A. Rabinovich

Winning conditions for plays with undetected errors. For L ⊆ (Σ1 ×
Σ2)ω, the winning condition is a tuple (L, χ). We refer to L as the target objective,
and to χ ⊆ ((Σ1 × Σ2)ω × (Σ1 × Σ2)ω) as the quantitative threshold objective.
For a play with undetected errors ρ, we consider three types of quantitative
thresholds.

– Fixed number of errors. For m ∈ N, (ρ, ρ′) ∈ χ ⇔ EC (ρ[0, n−1], ρ′[0, n−1]) ≤
m for every n ≥ 0.

– Finite number of errors. (ρ, ρ′) ∈ χ ⇔ ρ′ ∈ Interp(ρ) and ρ′ differs from ρ
in finite number of positions.

– Error rate. For δ ∈ Q, (ρ, ρ′) ∈ χ ⇔ ER(ρ, ρ′) ≤ δ.

Let ρ be a play with undetected errors, player-2 wins in play ρ if for every
ρ′ ∈ Interp(ρ), either ρ′ ∈ L or (ρ, ρ′) /∈ χ.

We name a class of games according to the target objective and the quanti-
tative threshold. For example a class of games with languages recognized by a
mean-payoff automatons as a target objective, and any quantitative threshold χ
is named: mean-payoff games with undetected errors.

In the sequel, if the target objective is clear from the context, we omit the
name of the target objective. In addition instead of defining χ explicitly we
simply state the threshold value (i.e., n, fin or δ).

Definition 2. Let L be the target objective.

1. UDEn(L) is a game with undetected errors and a winning condition (L, n).
2. UDEfin(L) is a game with undetected errors and a winning condition (L,fin).
3. UDEδ(L) is a game with undetected errors and a winning condition (L, δ).

4 Regular Games with Detected Errors

Regular games with detected errors consists of ω regular language L and an error
threshold objective χ.

Decision problem. Deciding who is the winner :

– Input: An ω regular language L ⊆ (Σ1×Σ2)ω (given either as a MSO formula
or as a parity automaton), numbers n ∈ N and δ ∈ Q.

– Output: decide who is the winner of DEn(L), DEfin(L) and DEδ(L).

Computation problems

– The computability of winning parameters problem is:
• Input: ω regular language L ⊆ (Σ1 × Σ2)ω

• Output: Find the minimal n ∈ N such that player-1 is the winner of
DEn(L) and the minimal δ ∈ Q such that player-1 is the winner of
DEδ(L).

– The computability of winning strategy problem is:
• Input: An ω regular language L ⊆ Σ1×Σ2)ω , numbers n ∈ N and δ ∈ Q.
• Output: A finite description of the winning strategies for the winning

player of DEn(L), DEfin(L) and DEδ(L).

Church Synthesis Problem for Noisy Input 283

The main result of this section is

Theorem 1. Let L be an ω regular language.

1. For every n ∈ N and δ ∈ Q It is decidable who is the winner of DEn(L),
DEfin(L) and DEδ(L).

2. The winning parameters problem is computable.
3. The winning strategy problem is computable.

A proof outline for Theorem 1. We present an immediate reduction from
DEn(L) and DEfin(L) games, where L is an ω regular language to regular games
without errors.

In addition we present a reduction from DEδ(L) games, where L is an ω
regular language to mean-payoff parity games (studied in [5]). This reduction
together with results of [5] imply the decidability of who is the winner of DEδ(L)
game and the computability of the minimal δ such that player-1 is the winner
of DEδ(L).

The computability of the minimal m ∈ N such that player-1 is the winner of
DEm(L) for an ω regular language L is obtained by the following lemma.

Lemma 1. Let A = (Σ1 ×Σ2, Q, Q0, E) be a an automaton, and let φ be a tail
objective. Then player-2 is the winner of DEfin(LA,φ) ⇔ player-2 is the winner
of DEm(LA,φ) for m = 2|Q|.

Due to Lemma 1 and Theorem 1(1) and since every parity objective is a tail
objective, one can decide the winner of DEn(L) for every n = 0, 1, . . . , 2|Q| and
return the minimal n such that player-1 is the winner of DEn(L).

Need of infinite memory strategies. The following proposition asserts the
need of infinite memory strategies for player-1 for regular games with detected
errors and error rate threshold.

Proposition 1. There exists an ω regular language L ⊆ (Σ1 × Σ2)ω and a
threshold δ ∈ Q such that player-1 is the winner of DEδ(L), however player-1
does not have a finite memory winning strategy.

Proof (of Proposition 1). Fix Σ1 = Σ2 = {a, b}. Consider the following ω lan-
guage L ⊆ (Σ1 × Σ2)ω . A tuple (X1, X2) ∈ (Σ1 × Σ2)ω is in the language L if
the following conditions are hold.

1. (∃ωtX1(t) = b) → (∃t(∀t′ > t(X2(t′) = a)))
2. (∀tX1(t) = a) → (∃ωt(X2(t) = b))

First, let us show that for δ = 0, player-1 is the winner of DEδ(L). The following
strategy τ is a winning strategy for player-1: In round i ∈ N, if there exists n ∈ N

such that i = 2n, play z, otherwise play a.
Clearly the error rate of a play played according to τ is 0. Player-1 violates

the target objective in the following way. If player-2 played infinitely often b,
then the play interpretation which replaces every occurrence of z with b violates
the first condition. If player-2 played finitely often b, then the play interpretation
which replaces every occurrence of z with a violates the second condition.

284 Y. Velner and A. Rabinovich

Thus, player-1 is the winner of DEδ(L).
Second, the reader can verify that for every n ∈ N, every player-1 finite

memory winning strategy for DE 1
n
(L) requires memory size of at least n. Hence,

player-1 does not have a finite memory winning strategy for DEδ(L) for δ = 0,
which concludes the proof of proposition 1. �

5 Regular Games with Undetected Errors

Analyzing games with errors is much more difficult when the errors are not
detected. As in section 4 we are interesting in the decidability of who is the
winner and in the computation of winning parameters and winning strategies.
However, we are able to give only partial answer to these questions.

The main result of this section is:

Theorem 2. The following problem is undecidable.
– Input: δ ∈ (0, 1) ∩ Q and an ω regular language L.
– Question: Decide who is the winner of UDEδ(L).

A proof outline for Theorem 2. In [10,8] it was proved that the universal-
ity problem of a non-deterministic mean-payoff automaton is undecidable. We
provide a reduction from this problem to the problem of who is the winner of
UDEδ(L) game.

The next remark deals with the simple cases.

Remark 1. Let L be an ω regular language.
1. For n ∈ N it is decidable who is the winner of UDEn(L), and a winning

strategy is computable.
2. It is decidable who is the winner of UDEfin(L), and the winning strategy is

computable.
3. For δ = 1, it is decidable who is the winner of UDEδ(L), and the winning

strategy is computable.
Proof (of Remark 1). All items in Remark 1 are immediately proved by encoding
the winning condition as a MSO formula. �

The following two decision problems remain open.
1. The bounded errors problem asks if for an ω-regular language L, there exists

n ∈ N such that player-1 is the winner of UDEn(L).
2. The zero error rate problem, asks for an ω-regular language L and for δ = 0,

who is the winner of DEδ(L).
At first glance one can hope to answer the bounded number of errors problem
with the same technique used in Lemma 1, i.e., try to prove that if for an ω-
regular language L player-2 is the winner of UDEfin(L), then there exists mL ∈ N

such that player-2 is the winner of UDEmL(L). The next proposition show that
this is not the case.

Proposition 2. There exists an ω regular language L such that player-1 is
the winner of UDEfin(L), however for every n ∈ N player-2 is the winner of
UDEn(L).

Church Synthesis Problem for Noisy Input 285

6 Mean-Payoff Games with Errors

Quantitative languages do not enjoy the same robustness as ω regular languages.
In particular, the class of quantitative languages recognized by the deterministic
mean-payoff automata is a strict subset of the class of quantitative languages
recognized by the non-deterministic mean-payoff automata [8]. In addition,
deterministic mean-payoff automatons are not closed under the conjunction
operation [8].

In this section we consider only quantitative languages defined by a de-
terministic mean-payoff automaton. We also assume that the mean-payoff
condition is an objective of the form of MeanPayoffInf≥(0). However unless
noted otherwise, the proofs can be easily modified for MeanPayoffInf>(0),
MeanPayoffSup≥(0) and MeanPayoffSup>(0) objectives.

The next theorem is the main result of this section.

Theorem 3. Let L ⊆ (Σ1 × Σ2)ω be a quantitative language recognized by a
mean-payoff automaton A.
1. For every δ > 0, it is undecidable who is the winner of DEδ(L).
2. For every δ > 0, it is undecidable who is the winner of UDEδ(L).
3. For every n ∈ N it is decidable who is the winner of DEn(L) and of DEfin(L).
4. For δ = 0, it is decidable who is the winner of DEδ(L). Moreover, player-2

is the winner of DEδ(L), for δ = 0 ⇔ player-2 is the winner DEfin(L)1.

A proof outline for Theorem 3. The first two items are proved by an imme-
diate reduction from the universality problem of non-deterministic mean-payoff
automatons. This problem was proved to be undecidable in [10,8].

For the last two items we prove that for every quantitative language defined
by a mean-payoff automaton A, there exists a computable mA such that: Player-
1 is the winner of DEmA(L) ⇔ Player-1 is the winner of DEfin(L) ⇔ Player-1
is the winner of DEδ(L) for δ = 0.

Determining the winner of DEm(L) for fixed m ∈ N is done by a reduction
to a game without errors with winning condition of the form

⋂f(m)
i=1 Li, where

f(m) is computable from m and Li is a quantitative language computable from
L, m and i. The proof is concluded with the following lemma.

Lemma 2. Let A1, . . . ,Ak be mean-payoff automatons. Let L =⋂k
i=1 LAi,MeanPayoffInf≥(0). Then it is decidable who is the winner of the

Gale-Stewart game GL.

The proof of Lemma 2 is given is section 7.
Need for infinite memory strategies. The following proposition assert that
player-2 has to use infinite memory strategies for DEn games even for n = 1.

Proposition 3. There exists an ω language L recognized by a mean-payoff au-
tomaton such that player-2 is the winner of DEn(L) for every n ∈ N, however
player-2 does not have a finite memory winning strategy for DEn(L) even for
n = 1.
1 The proof of item 4 holds only for MeanPayoffInf≥(0) objective.

286 Y. Velner and A. Rabinovich

7 Multidimensional Mean-Payoff Games

Multidimensional mean-payoff games are an extension of mean-payoff games to
graphs with multidimensional weights. A multidimensional mean-payoff objec-
tive is a boolean combination of one dimensional mean-payoff objectives. For
example, let G be a graph with weight function w : E → Z

2, and ν ∈ Q. Let
φ1 be the MeanPayoffInf≥(ν) objective according to the projection of w to the
first dimension, and φ2 be the MeanPayoffInf≥(ν) objective according to the
projection of w to the second dimension. A possible multidimensional objective
can be any boolean combination of φ1 and φ2.

One interesting form of multidimensional objective is a conjunction of one
dimensional mean-payoff objectives. This objective was introduced in [7]. How-
ever, the decidability of who is the winner was proved only for the case where
player-2 is restricted to finite memory strategies. The general case (i.e., when
player-2 strategy is not limited to finite memory) was stated as an open question.
In this section we prove decidability and present tight complexity bounds to the
question of who is the winner. Thus we answer an open question from [7], and
complete the proof of Theorem 3.

Another interesting multidimensional objective is a positive boolean combi-
nation of one dimensional mean-payoff objectives. For this case we prove decid-
ability of who is the winner.

Since in this section we consider games without errors, we find it convenient
to use the standard definitions of games on graphs presented below.

Game graph. A game graph G = 〈Q, E〉 consists of a finite set Q of states
partitioned into player-1 states Q1 and player-2 states Q2. The graph is bipartite,
i.e., E ⊆ (Q1×Q2)∪ (Q2×Q1). In addition, every state must have an outdegree
of at least 1.

Plays and strategies. A game on G starting from an initial state q0 ∈ Q
is played in rounds as follows. If the game is in a player-1 state, then player-1
chooses an outgoing edges; otherwise the game is in a player-2 state, and player-2
chooses an outgoing edges. The game results is a play from q0, i.e., an infinite
path ρ = q0e0q1e1 . . . such that ei is an edge from qi to qi+1 for all i ≥ 0. A
strategy for player-1 is a function τ : (Q×E)∗×Q1 → E. A strategy for player-2
is a function τ : (Q × E)∗ × Q2 → E.

Mean-payoff vector. Let G be a game graph, k ∈ N, and w : E → Z
k be a

multi-dimension weight function for the edges. We denote by wi the projection
of w to dimension i. Let π ∈ (Q × E)ω be an infinite path (i.e., play) in G. The
mean-payoff vector

−−→
MP(π) = (MP(π)1, . . . ,MP(π)k,MP(π)1, . . . ,MP(π)k) has

2k dimensions. In the first k dimensions, MP(π)i = MP(wi, π), for i = 1, . . . , k.
Similarly, in the last k dimensions, MP(π)i = MP(wi, π), for i = 1, . . . , k.

Multidimensional mean-payoff objectives. For a k-dimensional game and
S ⊆ {1, . . . , k} and ν ∈ Q we denote by

∧
MeanPayoffSup≥

S (ν) the following
objectives:

Church Synthesis Problem for Noisy Input 287

Player-2 wins
∧

MeanPayoffSup≥
S (ν) in a play π if MP(π)i ≥ ν, for every

i ∈ S.

The objectives
∧

MeanPayoffSup>
S (ν),

∧
MeanPayoffInf≥S (ν) and∧

MeanPayoffInf>S (ν), are defined similarly. When S = {1, . . . , k} we
will drop the subscript and write

∧
MeanPayoffSup≥(ν) instead of∧

MeanPayoffSup≥
{1,...,k}(ν).

An objective is conjunctive if it is a conjunction of conditions of the form
MP(π)i ∼ ν and MP(π)i ∼ ν, where ∼∈ {>,≥}.∨∧

MeanPayoffInf≥,>(ν) is the class of objectives of the form∨
i∈{1,...,m}

∧
j∈Si

MP(π)j ∼ ν, where ∼∈ {>,≥} and S1, . . . , Sm ⊆ {1, . . . , k}.
∧∨

MeanPayoffSup≥,>(ν) is the class of objectives of the form∨
i∈{1,...,m}

∧
j∈Si

MP(π)j ∼ ν, where ∼∈ {>,≥} and S1, . . . , Sm ⊆ {1, . . . , k}.
Let w be a weight function and b, c ∈ Q such that b > 0, and π be a play.

Then MP(w, π)i ≥ ν iff MP(w′, π)i ≥ bν+c, where w′ is a weight function equal
to w in all dimensions except i and w′

i = bwi + c. Similar equivalences hold for
MP .

For −→ν ∈ Q
2k an objective MultiDimensionMeanPayoff(−→ν) is defined as

{π ∈ (Q × E)ω|−−→MP(π) ≥ −→ν }. Clearly determining the winner of a game with
MultiDimensionMeanPayoff(−→ν) objective is log-space reducible to determining
the winner of a game with conjunctive objective.

The next two theorems are the main result of this section.

Theorem 4. For every finite game graph G = 〈Q, E〉 with a weight function
w : E → Z

k, and a conjunctive objective φ: player-1 has a winning strategy iff
he has a memoryless winning strategy.

Theorem 5. For input: game graph G = 〈Q, E, w : E → Z
k〉, initial state

q ∈ Q and ν ∈ Q. The problem of deciding whether player-2 is the winner for a
multidimensional mean-payoff objective φ is

1. In coNP ∩ NP when φ ∈ {∧MeanPayoffSup≥(ν),
∧

MeanPayoffSup>(ν)}.
Moreover the problem of determining the winner is in P̃ (i.e., it has a pseudo-
polynomial-time algorithm) and there is a polynomial time Cook reduction to
the problem of determining the winner of a (one dimensional) mean-payoff
game.

2. (Strongly) coNP complete when
φ ∈ {∧MeanPayoffInf≥(ν),

∧
MeanPayoffInf>(ν)}.

3. (Strongly) coNP complete when φ is an arbitrary conjunctive objective.
4. (Strongly) coNP complete when φ ∈ ∨∧

MeanPayoffInf≥,>(ν) and
(Strongly) NP complete when φ ∈ ∧∨

MeanPayoffSup≥,>(ν).

We recall that an algorithm runs in pseudo-polynomial time, for input G =
〈Q, E, w : E → Z

k〉, if its running time is polynomial in the size of G and the
description of w, when the values of the weight function w are represented in
unary. A (co)NP-complete problem is called strongly (co)NP-complete if it is
proven that it cannot be solved by a pseudo-polynomial time algorithm unless
P=NP.

288 Y. Velner and A. Rabinovich

We would like to note that the lower bounds of Theorems 5(2)-(3) are easily
obtained from proofs of lower bounds in [7]. Our proof of Theorems 5(2) relies
on the corresponding result of [7] for the case when the players are restricted to
use only finite state memory strategies.

We are now ready to prove Lemma 2.

Proof of Lemma 2. We begin with the following remark.

Remark 2. Let A1, A2 be automatons with a
∧

MeanPayoffInf≥(0) objective.
Then there exists an automaton A3 with a

∧
MeanPayoffInf≥(0) objective such

that LA3 = LA1 ∩LA2 . Moreover A3 is computable from A1 and A2, and |A3| =
|A1| × |A2|.
By Remark 2 we conclude the proof of Lemma 2 in the following way.
Let A1, . . . ,Ak be a one dimension mean-payoff automatons. Let L =⋂k

i=1 LAi,MeanPayoffInf≥(0). Then one can compute a k dimensional mean-payoff
automaton A such that LA,

∧
MeanPayoffInf≥(0) = L. By Theorem 5 deciding the

winner in the Gale-Stewart game defined by L is decidable.
Moreover, Remark 2 implies that Theorem 3 can be extended also to quan-

titative languages defined by a multidimensional mean-payoff automaton with∧
MeanPayoffInf≥(0) objective.
Note that by the same arguments we can prove Lemma 2 for∧
MeanPayoffInf>(0),

∧
MeanPayoffSup≥(0) and

∧
MeanPayoffSup>(0)

objectives.

8 Conclusion and Further Work

In this work we investigated games with errors and obtained decidability results
described in Table 1. Our proofs immediately imply a 2-EXPTIME upper bound
for the complexity of determining the winner of a game with errors (for the
decidable fragments). Further work is required to give tighter complexity bounds.
Further work may also consider additional classes of specification languages.
While Table 1 contains five open problems, we believe that the following two open
problems may have applications outside the framework of games with errors.

1. Decidability of the bounded number of errors problem for regular games with
undetected errors.

2. Decidability of who is the winner of UDEδ(L) game for ω regular language
L and δ = 0.

We also investigated multidimensional mean-payoff games and provided com-
plexity bounds for interesting fragments of these games. The following two in-
teresting problems are open.

1. Decidability of who is the winner for arbitrary multidimensional mean-payoff
objective (as defined in section 7). For example, the decidability of who is
the winner for the objective

{π ∈ (Q × E)ω|(MP (π)1 ≥ 0) ∧ (MP(π)2 ≥ 0) ∨ (MP(π)3 ≥ 0)}
was not determined in this paper.

Church Synthesis Problem for Noisy Input 289

2. Complexity of solving multidimensional mean-payoff games with fixed num-
ber of dimensions and a

∧
MeanPayoffInf≥(0) objective. Specifically whether

the problem of determining the winner is in NP∩coNP, and/or in P̃?

References

1. Alur, R., Degorre, A., Maler, O., Weiss, G.: On omega-languages defined by mean-
payoff conditions. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp.
333–347. Springer, Heidelberg (2009)

2. Bjorklund, H., Sandberg, S., Vorobyov, S.: Memoryless determinacy of parity and
mean payoff games: a simple proof. Theoretical Computer Science 310, 365–378
(2004)

3. Brázdil, T., Jancar, P., Kucera, A.: Reachability games on extended vector addi-
tion systems with states. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 478–489.
Springer, Heidelberg (2010)

4. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Transactions of the AMS 138, 295–311 (1969)

5. Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Mean payoff parity games. In:
Proc. of LICS, pp. 178–187. IEEE Computer Society, Los Alamitos (2005)

6. Chatterjee, K., Doyen, L.: Energy Parity Games. In: Abramsky, S., Gavoille, C.,
Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS,
vol. 6199, pp. 599–610. Springer, Heidelberg (2010)

7. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.F.: Generalized mean payoff
and Energy Games. To appear in Proc. of FSTTCS (2010)

8. Chatterjee, K., Doyen, L., Edelsbrunner, H., Henzinger, T.A., Rannou, P.: Mean-
Payoff Automaton Expressions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010. LNCS, vol. 6269, pp. 269–283. Springer, Heidelberg (2010)

9. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Algorithms for omega-
regular games with imperfect information,. In: Ésik, Z. (ed.) CSL 2006. LNCS,
vol. 4207, pp. 287–302. Springer, Heidelberg (2006)

10. Degorre, A., Doyen, L., Gentilini, R., Raskin, J.-F., Torunczyk, S.: Energy and
Mean-Payoff Games with Imperfect Information. In: Dawar, A., Veith, H. (eds.)
CSL 2010. LNCS, vol. 6247, pp. 260–274. Springer, Heidelberg (2010)

11. Ehrenfeucht, A., Mycielski, J.: International journal of game theory. Positional
Strategies for Mean-Payoff Games 8, 109–113 (1979)

12. Grädel, E., Thomas, W., Wilke, T.: Automata, Logics, and Infinite Games. LNCS,
vol. 2500. Springer, Heidelberg (2002)

13. Holtmann, M., Kaiser, L., Thomas, W.: Degrees of Lookahead in Regular Infi-
nite Games. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 252–266.
Springer, Heidelberg (2010)

14. Kosaraju, S.R., Sullivan, G.F.: Detecting cycles in dynamic graphs in polynomial
time. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, pp. 398–406 (1988)

15. Reif, J.H.: The complexity of two-player games of incomplete information. Journal
of Computer and System Sciences 29(2), 274–301 (1984)

16. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer
Science, vol. B, pp. 133–191. Elsevier Science Pub., Amsterdam (1990)

17. Zwick, U., Paterson, M.: The Complexity of Mean Payoff Games on Graphs.
Theoretical Computer Science 158, 343–359 (1996)

	Church Synthesis Problem for Noisy Input
	Introduction
	Definitions
	Games with Errors
	Games with Detected Errors
	Games with Undetected Errors

	Regular Games with Detected Errors
	Regular Games with Undetected Errors
	Mean-Payoff Games with Errors
	Multidimensional Mean-Payoff Games
	Conclusion and Further Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

