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Abstract. Traditional automata accept or reject their input, and are therefore
Boolean. In contrast, weighted automata map each word to a value from a semir-
ing over a large domain. The special case of lattice automata, in which the semir-
ing is a finite lattice, has interesting theoretical properties as well as applications
in formal methods. A minimal deterministic automaton captures the combina-
toric nature and complexity of a formal language. Deterministic automata are
used in run-time monitoring, pattern recognition, and modeling systems. Thus,
the minimization problem for deterministic automata is of great interest, both
theoretically and in practice.

For traditional automata on finite words, a minimization algorithm, based on
the Myhill-Nerode right congruence on the set of words, generates in polynomial
time a canonical minimal deterministic automaton. A polynomial algorithm is
known also for weighted automata over the tropical semiring. For general deter-
ministic weighted automata, the problem of minimization is open. In this paper
we study minimization of lattice automata. We show that it is impossible to de-
fine a right congruence in the context of lattices, and that no canonical minimal
automaton exists. Consequently, the minimization problem is much more com-
plicated, and we prove that it is NP-complete. As good news, we show that while
right congruence fails already for finite lattices that are fully ordered, for this set-
ting we are able to combine a finite number of right congruences and generate a
minimal deterministic automaton in polynomial time.

1 Introduction

Automata theory is one of the longest established areas in Computer Science. Standard
applications of automata theory include pattern matching, syntax analysis, and formal
verification. In recent years, novel applications of automata-theoretic concepts have
emerged from numerous sciences, like biology, physics, cognitive sciences, control,
and linguistics. These novel applications require significant advances in fundamental
aspects of automata theory [2]. One such advance is a transition from a Boolean to
a multi-valued setting: while traditional automata accept or reject their input, and are
therefore Boolean, novel applications, for example in speech recognition and image
processing [18], are based on weighted automata, which map an input word to a value
from a semiring over a large domain [7].

Focusing on applications in formal verification, the multi-valued setting arises di-
rectly in quantitative verification [10], and indirectly in applications like abstraction
methods, in which it is useful to allow the abstract system to have unknown assignments
to atomic propositions and transitions [9], query checking [5], which can be reduced to
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model checking over multi-valued systems, and verification of systems from inconsis-
tent viewpoints [11], in which the value of the atomic propositions is the composition
of their values in the different viewpoints.

Recall that in the multi-valued setting, the automata map words to a value from a
semiring over a large domain. A distributive finite lattice is a special case of a semiring.
A lattice 〈A,≤〉 is a partially ordered set in which every two elements a, b ∈ A have
a least upper bound (a join b) and a greatest lower bound (a meet b). In many of the
applications of the multi-valued setting described above, the values are taken from finite
lattices. For example (see Figure 2), in the abstraction application, researchers use the
lattice L3 of three fully ordered values [3], as well as its generalization to Ln [6]. In
query checking, the lattice elements are sets of formulas, ordered by the inclusion order
[4]. When reasoning about inconsistent viewpoints, each viewpoint is Boolean, and
their composition gives rise to products of the Boolean lattice, as in L2,2 [8]. Finally,
when specifying prioritized properties of system, one uses lattices in order to specify
the priorities [1].

In [13], the authors study lattice automata, their theoretical properties, and decision
problems for them. In a nondeterministic lattice automaton on finite words (LNFA, for
short), each transition is associated with a transition value, which is a lattice element
(intuitively indicating the truth of the statement “the transition exists”), and each state
is associated with an initial value and an acceptance value, indicating the truth of the
statements “the state is initial/accepting”, respectively. Each run r of an LNFA A has a
value, which is the meet of the values of all the components of r: the initial value of the
first state, the transition value of all the transitions taken along r, and the acceptance
value of the last state. The value of a word w is then the join of the values of all the
runs of A on w. Accordingly, an LNFA over an alphabet Σ and lattice L induces an
L-language L : Σ∗ → L. Note that traditional finite automata (NFAs) can be viewed
as a special case of LNFAs over the lattice L2. In a deterministic lattice automaton on
finite words (LDFA, for short), at most one state has an initial value that is not ⊥ (the
least lattice element), and for every state q and letter σ, at most one state q′ is such that
the value of the transition from q on σ to q′ is not ⊥. Thus, an LDFA A has at most one
run (whose value is not ⊥) on each input word, and the value of this run is the value of
the word in the language of A.

For example, the LDFA A in Figure 1 below is over the alphabet Σ = {0, 1, 2} and
the lattice L = 〈2{a,b,c,d},⊆〉. All states have acceptance value {a, b, c, d}, and this is
also the initial value of the single initial state. The L-language of A is L : Σ∗ → L such
that L(ε) = {a, b, c, d}, L(0) = {c, d}, L(0 · 0) = {d}, L(1) = {a, b}, L(1 · 0) = {a},
L(2) = {c, d}, L(2 · 0) = {c}, and L(x) = ∅ for all other x ∈ Σ∗.

A minimal deterministic automaton captures the combinatoric nature and complexity
of a formal language. Deterministic automata are used in run-time monitoring, pattern
recognition, and modeling systems. Thus, the minimization problem for deterministic
automata is of great interest, both theoretically and in practice. For traditional automata
on finite words, a minimization algorithm, based on the Myhill-Nerode right congru-
ence on the set of words, generates in polynomial time a canonical minimal determin-
istic automaton [20,21]. In more detail, given a regular language L over Σ, then the
relation ∼L⊆ Σ∗ × Σ∗, where x ∼L y iff for all z ∈ Σ∗ we have that x · z ∈ L iff
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0, {c, d}

1, {a, b}

2, {c, d}

0, {d}

0, {c}
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0, {d}

A1

0, {a, d} 0, {a, c}

Fig. 1. An LDFA with two different minimal LDFAs

y · z ∈ L, is an equivalence relation, its equivalence classes correspond to the states
of a minimal automaton for A, and they also uniquely induce the transitions of such
an automaton. Further, given a deterministic automaton for L, it is possible to use the
relation ∼L in order to minimize it in polynomial time.

A polynomial algorithm is known also for deterministic weighted automata over the
tropical semiring [18]. In such automata, each transition has a value in R, each state
has an initial and acceptance values in R, and the value of a run is the sum of the values
of its components. Unlike the case of DFAs, in the case of weighted automata there
may be several different minimal automata. They all, however, have the same graph
topology, and only differ by the values assigned to the transitions and states. In other
words, there is a canonical minimal topology, but no canonical minimal automaton. For
semirings that are not the tropical semiring, and in particular, for lattice automata, the
minimization problem is open.

In this work we study the minimization problem for lattice automata. An indication
that the problem is not easy is the fact that in the latticed setting, the “canonical topol-
ogy” property does not hold. To see this, consider again the LDFA A in Figure 1. Note
that an automaton for L(A) must have at least three states. Indeed, if it has at most
two then the word w = 000 would not get the value ⊥, whereas L(000) = ⊥. Hence,
the automata A1 and A2 presented on its right are two minimal automata for L. Their
topologies differ by the transition leaving the initial state with the letter 11.

The absence of the “canonical topology” property suggests that efforts to construct
the minimal LDFA by means of a right congruence are hopeless. The main difficulty
in minimizing LDFAs is that the “configuration” of an automaton consists not only of
the current state, but also of the run that leads to the state, and the value accumulated
reaching it2. Attempts to somehow allow the definition of the right congruence to refer
to lattice values (as is the case in the successful minimization of weighted automata
over the tropical semiring [18]) do not succeed. To see this, consider even a simpler

1 Note that the automata A1 and A2 are not simple, in the sense that the transitions are associated
with values from the lattice that are not ⊥ or �. The special case of simple lattice automata,
where the value of a run is determined only by the value associated with the last state of the
run is simpler, and has been solved in the context of fuzzy automata [17,22]. We will get back
to it in Section 2.2.

2 It is interesting to note that also in the context of deterministic Büchi automata, there is no
single minimal topology for a minimal automaton. As with LDFAs, this has to do with the fact
that the outcome of a run depends on its on-going behavior, rather than its last state only.
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model of LDFA, in which all acceptance values are � (the greatest value in the lattice,
and thus, L(x ·z) ≤ L(x) for all x, z ∈ Σ∗). A natural candidate for a right congruence
for an L-language L is the relation ∼L⊆ Σ∗ ×Σ∗ such that x ∼L x′ iff for all z ∈ Σ∗

there exists l ∈ L such that L(x ·z) = L(x)∧ l and L(x′ ·z) = L(x′)∧ l. Unfortunately,
the relation is not even transitive. For example, for the language L of the LDFA A in
Figure 1, we have 0 ∼L 1 and 1 ∼L 2, but 0 
∼L 2.

We formalize these discouraging indications by showing that the problem of LDFA
minimization is NP-complete. This is a quite surprising result, as this is the first pa-
rameter in which lattice automata are more complex than weighted automata over the
tropical semiring. In particular, lattice automata can always be determinized [13,15],
which is not the case for weighted automata over the tropical semiring [18]. Also, lan-
guage containment between nondeterministic lattice automata can be solve in PSPACE
[13,14], whereas the containment problem for weighted automata on the tropical semir-
ing is undecidable [16]. In addition, lattices have some appealing properties that general
semirings do not, which make them seem simpler. Specifically, the idempotent laws
(i.e., a ∨ a = a and a ∧ a = a) as well as the absorption laws (i.e., a ∨ (a ∧ b) = a and
a∧(a∨b) = a), do not hold in a general semiring, and do hold for lattices. Nevertheless,
as mentioned, we are able to prove that their minimization is NP-complete.

Our NP-hardness proof is by a reduction from the vertex cover problem [12]. The
lattice used in the reduction is L ⊂ 2E , for the set E of edges of the graph, with the
usual set-inclusion order. The reduction strongly utilizes on the fact that the elements of
2E are not fully ordered. The most challenging part of the reduction is to come up with
a lattice that, on the one hand, strongly uses the fact L is not fully ordered, yet on the
other hand is of size polynomial in E (and still satisfies the conditions of closure under
meet and join).

As pointed above, the NP-hardness proof involved a partially ordered lattice, embod-
ied in the “subset lattice”, and strongly utilizes on the order being partial. This suggests
that for fully ordered lattices, we may still be able to find a polynomial minimization
algorithm. On the other hand, as we shall show, the property of no canonical minimal
LDFA is valid already in the case of fully ordered lattice, which suggests that no poly-
nomial algorithm exists. As good news, we show that minimization of LDFAs over fully
ordered lattices can nevertheless be done in polynomial time. The idea of the algorithm
is to base the minimization on linearly many minimal DFAs that correspond to the dif-
ferent lattice values. The fact the values are fully ordered enables us to combine these
minimal automata into one minimal LDFA.

Due to lack of space, some proofs are omitted in this version and can be found in the
full version, on the authors’ home pages.

2 Preliminaries

This section introduces the definitions and notations related to lattices and lattice au-
tomata, as well as some background about the minimization problem.
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2.1 Lattices and Lattice Automata

Let 〈A,≤〉 be a partially ordered set, and let P be a subset of A. An element a ∈ A is an
upper bound on P if a ≥ b for all b ∈ P . Dually, a is a lower bound on P if a ≤ b for
all b ∈ P . An element a ∈ A is the least element of P if a ∈ P and a is a lower bound
on P . Dually, a ∈ A is the greatest element of P if a ∈ P and a is an upper bound on
P . A partially ordered set 〈A,≤〉 is a lattice if for every two elements a, b ∈ A both the
least upper bound and the greatest lower bound of {a, b} exist, in which case they are
denoted a ∨ b (a join b) and a ∧ b (a meet b), respectively. A lattice is complete if for
every subset P ⊆ A both the least upper bound and the greatest lower bound of P exist,
in which case they are denoted

∨
P and

∧
P , respectively. In particular,

∨
A and

∧
A

are denoted � (top) and ⊥ (bottom), respectively. A lattice 〈A,≤〉 is finite if A is finite.
Note that every finite lattice is complete. A lattice 〈A,≤〉 is distributive if for every
a, b, c ∈ A, we have a∧ (b∨ c) = (a∧ b)∨ (a∧ c) and a∨ (b∧ c) = (a∨ b)∧ (a∨ c).

{b}

1

0

L2

{a, b}

{a} {c}

{b, c}

∅
2{a,b,c}

{a, b, c}

{a, c}

0

1

(1,1)

(0,0)

L2,2

(1,0)(0,1)

n − 1

n − 2

Ln

Fig. 2. Some lattices

In Figure 2 we describe some finite lattices. The elements of the lattice L2 are the
usual truth values 1 (true) and 0 (false) with the order 0 ≤ 1. The lattice Ln contains
the values 0, 1...n − 1, with the order 0 ≤ 1 ≤ ... ≤ n − 1. The lattice L2,2 is the
Cartesian product of two L2 lattices, thus (a, b) ≤ (a′, b′) if both a ≤ a′ and b ≤ b′.
Finally, the lattice 2{a,b,c} is the power set of {a, b, c} with the set-inclusion order. In
this lattice, for example, {a} ∨ {b} = {a, b}, {a} ∧ {b} = ⊥, {a, c} ∨ {b} = �, and
{a, c} ∧ {b} = ⊥.

Consider a lattice L (we abuse notation and refer to L also as a set of elements, rather
than a pair of a set with an order on it). For a set X of elements, an L-set over X is a
function S : X → L assigning to each element of X a value in L. It is convenient to
think about S(x) as the truth value of the statement “x is in S”. We say that an L-set S
is Boolean if S(x) ∈ {�,⊥} for all x ∈ X .

Consider a lattice L and an alphabet Σ. An L-language is an L-set over Σ∗. Thus,
an L-language L : Σ∗ → L assigns a value in L to each word over Σ.

A deterministic lattice automaton on finite words (LDFA, for short) is a tuple A =
〈L, Σ, Q, Q0, δ, F 〉, where L is a finite lattice, Σ is an alphabet, Q is a finite set of
states, Q0 ∈ LQ is an L-set of initial states, δ ∈ LQ×Σ×Q is an L-transition-relation,
and F ∈ LQ is an L-set of accepting states. The fact A is deterministic is reflected in
two conditions on Q0 and δ. First, there is at most one state q ∈ Q, called the initial state
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of A, such that Q0(q) 
= ⊥. In addition, for every state q ∈ Q and letter σ ∈ Σ, there
is at most one state q′ ∈ Q, called the σ-destination of q, such that δ(q, σ, q′) 
= ⊥.
The run of an LDFA on a word w = σ1 · σ2 · · ·σn is a sequence r = q0, . . . , qn of
n + 1 states, where q0 is the initial state of A, and for all 1 ≤ i ≤ n it holds that qi

is the σi-destination of qi−1. Note that A may not have a run on w. The value of w is
val(w) = Q0(q0)∧

∧n
i=1 δ(qi−1, σi, qi) ∧F (qn). Intuitively, Q0(q0) is the value of q0

being initial, δ((qi−1, σi, qi)) is the value of qi being a successor of qi−1 when σi is the
input letter, F (qn) is the value of qn being accepting, and the value of r is the meet of all
these values. The traversal value of w is tr val (w) = Q0(q0) ∧

∧n
i=1 δ(qi−1, σi, qi),

and its acceptance value is F (qn). The L-language of A, denoted L(A), maps each
word w to the value of its run in A. Note that since A is deterministic, it has at most one
run on w whose value is not ⊥. This is why we talk about the traversal and acceptance
values of words rather than of runs.

Note that traditional deterministic automata over finite words (DFA, for short) cor-
respond to LDFA over the lattice L2. Indeed, over L2, a word is mapped to the value �
if the run on it uses only transitions with value � and its final state has value �.

An LDFA is simple if Q0 and δ are Boolean. Note that the traversal value of a run r
of a simple LDFA is either ⊥ or �, thus the value of r is induced by F . Simple LDFAs
have been studied in the context of fuzzy logic and automata [17,22].

Analyzing the size of A, one can refer to |L|, |Q|, and |δ|. Since the emphasize in
this paper is on the size of the state space, we use |A| to refer to the size of its state
space. Our complexity results, however, refer to the size of the input, and thus take into
an account the other components of A as well, and in particular the size of L.

2.2 Minimizing LDFAs

We now turn to discuss the problem of minimizing LDFA. We describe the difficulties of
the problem, and present some examples that are important for the full comprehension
of the issue.

A first attempt to minimize lattice automata would be to follow the classical paradigm
for minimizing DFA using the Myhill Nerode theorem [20,21]. In fact, for the case of
simple LDFA, the plan proceeds smoothly (see [17,22], where the problem is discussed
by means of fuzzy automata)3: Given an L-language L, we extend the definition of ∼L

to fit the nature of L-languages. For all x, x′ ∈ Σ∗, we say that x ∼L x′ iff for all
z ∈ Σ∗ it holds that L(x · z)=L(x′ · z). Clearly, ∼L is an equivalence relation, since it
is based on the equality relation. As in the case of DFA, we can build a minimal simple
LDFA Amin for L such that |Amin| = | ∼L |. We construct it in the same manner, only
that here the acceptance values are defined such that F ([x]) = L(x). Also, we can show
that every simple LDFA for L must have at least | ∼L | states. Indeed, if this is not the
case then we have two words x, x′ ∈ Σ∗ reaching the same state q, while x 
∼L x′. The
contradiction is reached when we read the distinguishing tail z from q as in the case of
DFA, due to the fact that in simple LDFA the value of the words is solely determined
by the final state.

3 Several variants of fuzzy automata are studied in the literature. The difficulties we cope with
in the minimization of our lattice automata are not applied to them, and indeed they can be
minimized by variants of the minimization construction described here [19].
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So, simple lattice automata can be minimized in polynomial time, and the key for
proving it was a generalization of the right congruence to require agreement on the
values of the words. Encouraged by this, we now turn to examine the case of gen-
eral LDFAs. Unfortunately, the generalization does not seem to work here. To see the
difficulties in the latticed setting, consider an L-language L over Σ = L such that
L(l1 · l2 · · · ln) =

∧n
i=1 li. The language L can be recognized by an LDFA A with

a single state q. The initial and acceptance values of q are �, and for every l ∈ Σ,
there is an l-transition with value l from q to itself. Thus, the single run of A on an
input word maps it to the meet of all letters. Clearly, there exist x, x′ ∈ Σ∗ such that
L(x) 
= L(x′), and still A has only one state. Thus, despite being mapped to different
values, x and x′ reach the same state in A. This observation shows a crucial difference
between the setting of DFAs or simple LDFAs and the one of general LDFA. It is only
in the latter, that a “configuration” of a word is not only the state it reaches but also
the traversal value accumulated when reading it. In our example, the words x and x′

have a different traversal value, which is implicit in the LDFA, and an attempt to distin-
guish between words according to the values they have accumulated results in LDFAs
with needlessly more states. Accordingly, a right congruence that may be helpful for
minimization should take into an account the value accumulated by the words, and in
particular, in the case of L above, should have only one equivalence class.

Following the above discussion, we now try to define an equivalence relation for
LDFA that does take into an account the accumulated traversal values. Let us first con-
sider a simpler model of LDFAs in which all acceptance values are �. Note that in this
model, for all x, z ∈ Σ∗ we have that L(x · z) ≤ L(x). Let L be an L-language in the
model above. We define a relation ∼L⊆ Σ∗ × Σ∗ such that x ∼L x′ iff for all z ∈ Σ∗

there exists l ∈ L such that L(x · z) = L(x) ∧ l and L(x′ · z) = L(x′) ∧ l. Note that
the relation ∼L indeed takes into a consideration the values accumulated when x and
x′ are read. Indeed, x and x′ are equivalent iff for all tails z ∈ Σ∗ there exists some
l ∈ L such that z can be read with the value l after reading either x or x′. Unfortunately,
the relation is not even transitive. For example, for the language L of the LDFA A in
Figure 1, we have 0 ∼L 1 and 1 ∼L 2, but 0 
∼L 2.

We have seen some evidences that minimization of LDFAs cannot follow the mini-
mization paradigm for DFAs and even not the one for deterministic weighted automata
over the tropical semiring. In the rest of the paper we formalize these evidences by
showing that the problem is NP-complete. We also challenge them by describing a
polynomial algorithm for minimization of LDFAs over fully ordered lattices – a special
case for which the evidences apply.

3 Minimizing General LDFA

In this section we study the problem of minimizing LDFAs and show that unlike the
case of DFAs, and even the case of weighted DFAs over the tropical semiring, which
can be minimized in polynomial time, here the problem is NP-complete. We consider
the corresponding decision problem MINLDFA={〈A, k〉 : A is an LDFA and there
exists an LDFA A′ with at most k states such that L(A′) = L(A)}.

Theorem 1. MINLDFA is NP-complete.
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Proof. We start with membership in NP. Given A and k, a witness to their membership
in MINLDFA is an LDFA A′ as required. Since |A′| = k, its size is linear in the input.
Deciding language equivalence between LDFAs is NLOGSPACE-complete [13], thus
we can verify that L(A′) = L(A) in polynomial time.

For the lower bound, we show a polynomial time reduction from the Vertex Cover
problem (VC, for short), proved to be NP-complete in [12]. Recall that VC={〈G, k〉 : G
is an undirected graph with a vertex cover of size k}, where a vertex cover of a graph
G = 〈V, E〉 is a set C ⊆ V such that for all edges (u, v) ∈ E we have u ∈ C or v ∈ C.

Before we describe the reduction, we need some definitions. Consider an undirected
graph G = 〈V, E〉. Let n = |V | and m = |E|. For simplicity, we assume that V and
E are ordered, thus we can refer to the minimum element in a set of vertices or edges.
For v ∈ V , let touch(v) = {e : e = (v, u) for some u}. For e = (v1, v2) ∈ E, let
far (e) = min{e′ : e′ 
∈ touch(v1) ∪ touch(v2)}. That is, far (e) is the minimal edge
that is not adjacent to e. Note that if {e′ : e′ 
∈ touch(v1) ∪ touch(v2)} = ∅, then
{v1, v2} is a VC of size two, so we can assume that far (e) is well defined.

Example 1. In the graph G below, we have, for example, touch(1)={a, b}, touch(2)=
{d, e}, far (a) = d, far (b) = e, and far(c) = e.

1 2

3 4 5

a b

c

d e

touch(v){e, far(e)}
{a, d} {c, e}{b, e}

{a}{b}{c}{d}{e}

{a, b}{d, e}{a, c}{b, c, d}{e}{e, a}

G

Fig. 3. A graph and its corresponding lattice

We now turn to describe the reduction. Given an input G = 〈V, E〉, we construct an
LDFA A = 〈L, Q, Σ, δ, Q0, F 〉 as follows:

– L ⊆ 2E contains the following elements: {∅, E} ∪ {{e} : e ∈ E} ∪ {{e, far(e)} :
e ∈ E} ∪ {touch(v) : v ∈ V }, with the usual set-inclusion relation. In particular,
⊥ = ∅ and � = E. Note that L contains at most 2 + n + 2m elements (“at
most” since {e, far(e)} may be identical to {far (e), far (far (e))}). For example,
the graph in Example 1 induces the lattice shown on its right (for clarity, we omit the
elements � and ⊥ in the figure). Note that in this example we have {a, far(a)} =
{far(a), far (far (a))}, so we omit the unnecessary element.

We claim that though L does not contain all the elements in 2E , the operators
join and meet are well defined for all l1, l2 ∈ L.4 In the case l1 and l2 are ordered,

4 We note that this point has been the most challenging part of the reduction, as on the one
hand, we have to strongly use the fact L is not fully ordered (as we show in Section 4, poly-
nomial minimization is possible for LDFAs over fully ordered lattice), yet on the other hand
the reduction has to be polynomial and thus use only polynomially many values of the subset
lattice.
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the closure for both join and meet is obvious. Otherwise, we handle the operators
separately as follows. We start with the case of meet. Closing to meet is easy since
l1∧l2 never contains more than one edge. Indeed, if l1, l2 are of the form touch(v1),
touch(v2) then their meet is the single edge (v1, v2). In all other possibilities for
l1 and l2 that are not ordered, one of them contains at most two edges, so the fact
they are not ordered implies that they have at most one edge in their meet. As for
join, given l1 and l2 let S = {l : l ≥ l1 and l ≥ l2}. We claim that all the elements
in S are ordered, thus we can define l1∨ l2 to be the minimal element in S. Assume
by way of contradiction that S contains two elements l and l′ that are not ordered.
On the one hand, l ∧ l′ ≥ l1 ∨ l2. Since l1 and l2 are not ordered, this implies that
l ∧ l′ is of size at least two. On the other hand, as we argued above, the meet of
two elements that are not ordered contains at most one edge, and we have reached
a contradiction.

– Q = {qinit , q0, ..., qm−1}.
– Σ = {e0, ..., em−1} ∪ {#}.
– For 0 ≤ i < m, we define δ(qinit , ei, qi)={ei, far (ei)} and δ(qi, #, q(i+1)modm)=
{ei}. For all other q ∈ Q and σ ∈ Σ, we define δ(q, σ, q) = ⊥.

– Q0(qinit ) = �, and Q0(q) = ⊥ for all other q ∈ Q.
– F (q) = � for all q ∈ Q.

For example, the graph G in Example 1 induces the LDFA AG below.

qinit

a, {a, d}

b, {b, e}
c, {c, e}
d, {d, a}

e, {e, a}

qinit

q1

q2

q3

q4

a, {a, d}

b, {b, e}

c, {c, e}

d, {d, a}

e, {e, a}

#, {a}

#, {b}

#, {c}

#, {d}

#, {e}

#, {a, c}

#, {b, c, d}

#, {e}

q0

qv0

qv1

qv2

AG: Amin
G :

Fig. 4. The LDFA induced by G, and the minimal LDFA that corresponds to the 3-cover {3, 4, 5}

It is not hard to see that the L-language induced by A, denoted L, is such that for all
e ∈ Σ, we have that L(e) = {e, far(e)} and L(e · #) = {e}. In addition, L(ε) = �,
and for all other w ∈ Σ∗, we have that L(w) = ⊥. Also, A is indeed deterministic, and
has m + 1 states. Finally, since the components of A are all of size polynomial in the
input graph, the reduction is polynomial.

In the full version we proved that G has a k-VC iff there is an LDFA with k + 1
states for L.

4 Minimizing an LDFA over a Fully Ordered Lattice

In Section 3, we saw that the problem of minimizing LDFAs is NP-complete. The hard-
ness proof involved a partially ordered lattice, embodied in the “subset lattice”, and
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strongly utilized on the order being partial. This suggests that for fully ordered lattices,
we may still be able to find a polynomial minimization algorithm. On the other hand,
as we show below, the property of no canonical minimal LDFA is valid already in the
case of fully ordered lattice, and there is a tight connection between this and the fact we
could not come up with a polynomial algorithm in the general case.

Example 2. Let L = 〈{0, 1, 2, 3},≤〉, and let L be the L-language over Σ = {0, 1, 2},
where L(ε) = 3, L(0) = 3, L(0·0) = 1, L(1) = 1, L(1·0) = 1, L(2) = 3, L(2·0) = 2,
and L(x) = 0 for all other x ∈ Σ∗.

Note that L is monotonic, in the sense that for all x, z ∈ Σ∗, we have that L(x · z) ≤
L(x). For monotonicL-languages, it is tempting to consider the relation ∼L⊆ Σ∗×Σ∗

such that x ∼L x′ iff for all z ∈ Σ∗ there exists l ∈ L such that L(x · z) = L(x) ∧ l
and L(x′ · z) = L(x′) ∧ l. It is not hard to see, however, that 0 ∼L 1 and 1 ∼L 2,
but 0 
∼L 2. Thus, even for monotonic languages over a fully ordered lattice, a relation
that takes the accumulated values into account is not transitive, and there are two minimal
LDFAs with different topologies for L. In the first, the letters 0 and 1 lead to a state from
which the letter 0 is read with the value 1, and in the second, the letters 1 and 2 lead to a
state from which 0 is read with the value 2.

In this section we show that in spite of the non-canonicality, we are able to minimize
them in polynomial time. We describe a polynomial time algorithm that is given an
LDFA A = 〈L,Q,Σ,δ,Q0,F 〉 over a fully ordered lattice, and returns an LDFA Amin

with a minimal number of states, such that L(Amin) = L(A).
Let L = {0, 1, ..., n − 1} be the fully ordered lattice, let L : Σ∗ → L be the

language of A, and let m = maxw∈Σ∗L(w); that is, m is the maximal value of a
word in L(A). Finally, let q0 ∈ Q be the single state with initial value that is not ⊥.
For each 1 ≤ i ≤ m we define a DFA Ai that accepts exactly all words w such that
L(w) ≥ i. Note that it is indeed enough to consider only the automata A1, ...,Am, as
Am+1, ...,An−1 are always empty and hence not needed, and A0 is not needed as well,
as L(A0) = Σ∗.

For 1 ≤ i ≤ m, we define Ai = 〈Qi,Σ,δi,q0,Fi〉 as follows:

– Qi ⊆ Q contains exactly all states that are both reachable from q0 using transitions
with value at least i, and also have some state with acceptance value at least i that is
reachable from them using zero or more transitions with value at least i. Note that
q0 ∈ Qi for all i.

– δi contains all transitions that their value in A is at least i and that both their source
and destination are in Qi.

– Fi ⊆ Qi contains all states their acceptance value in A is at least i.

For readers that wonder why we do not define δi first, as these transitions with value at
least i, and then define Qi and Fi according to reachability along δi, note that such a def-
inition would result in different automata that are not trim, as it may involve transitions
that never lead to an accepting state in Ai, and states that are equivalent to a rejecting
sink. As we will see later, the fact that all the components in our Ai are essential is
going to be important.

Note that for all 1 < i ≤ m, we have that Qi ⊆ Qi−1, δi ⊆ δi−1, and Fi ⊆ Fi−1.
Also, it is not hard to see that Ai indeed accepts exactly all words w such that L(w) ≥ i.
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We now turn back to the given LDFA A and describe how it can be minimized using
A1, ...,Am. First, we apply a pre-processing on A that reduces the values appearing
in A to be the minimal possible values (without changing the language). Formally, we
define A′ = 〈L, Q, Σ, δ′, Q0, F

′〉, where

– For all q, q′ ∈ Q and σ ∈ Σ, we have that δ′(q, σ, q′) = max{i : (q, σ, q′) ∈ δi}.
– For all q ∈ Q, we have that F ′(q) = max{i : q ∈ Fi}.

Note that since for all 1 < i ≤ m, we have that δi ⊆ δi−1 and Fi ⊆ Fi−1, then for
all 1 ≤ i ≤ m, we also have that δ′(q, σ, q′) ≥ i iff (q, σ, q′) ∈ δi and F ′(q) ≥ i iff
q ∈ Fi.

Lemma 1. L(A) = L(A′).

By Lemma 1, it is enough to minimizeA′. We start with applying the algorithm for min-
imizing DFA on A1, ...,Am. Each such application generates a partition of the states of
Ai into equivalence classes.5 Let us denote the equivalence classes produced for Ai by
Hi = {Si

1, S
i
2, ..., S

i
ni
}.

Now, we construct from A′ a minimal automaton Amin = 〈L,Qmin,Σ,δmin,Q0min ,
Fmin〉 as follows.

– We obtain the set Qmin by partitioning the states of A′ into sets, each inducing a
state in Qmin. The partitioning process is iterative: we maintain a disjoint partition
Pi of the states Q, starting with one set containing all states, and refining it along
the iterations. The refinement at the i-th iteration is based on Hi, and guarantees
that the new partition Pi agrees with Hi, meaning that states that are separated
in Hi are separated in Pi as well. At the end of this process, the sets of the final
partition constitute Qmin.

More specifically, the algorithm has m + 1 iterations, starting with i = 0, end-
ing with i = m. Let us denote the partition obtained at the i-th iteration by Pi =
{T i

1, ..., T
i
di
}. At the first iteration, for i = 0, we have that d0 = 1, and T 0

1 = Q. At
the i-th iteration, for i > 0, we are given the partition Pi−1 = {T i−1

1 , ..., T i−1
di−1

},

and generate Pi = {T i
1, ..., T

i
di
} as follows. For each 1 ≤ j ≤ di−1, we ex-

amine T i−1
j and partition it further. We do it in two stages. First, we examine

Si
1, S

i
2, ..., S

i
ni

and for each 1 ≤ k ≤ ni we compute the set U i
j,k = T i−1

j ∩ Si
k,

and if U i
j,k 
= ∅, then we add U i

j,k to Pi. Thus, we indeed separate the states that

are separated in Hi. At the second stage, we consider the states in T i−1
j that do

not belong to U i
j,k for all k. Note that these states do not belong to Qi, so Ai is

indifferent about them. This is the stage where we have a choice in the algorithm.
We choose an arbitrary k for which U i

j,k 
= ∅, and add these states to U i
j,k. If no

such k exists, we know that no state in T i−1
j appears in Qi, so we have no reason

to refine T i−1
j , and we can add T i−1

j to Pi. Finally, we define Qmin to be the sets
of Pm.

5 Note that, by definition, all the states in Qi have some accepting state reachable from them,
so the fact we do not have a rejecting state is not problematic, as such a state would have
constitute a singleton state in all the partitions we are going to consider.
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– The transition relation δmin is defined as follows. Consider a state T ∈ Qmin. We
choose one state qT

rep ∈ T to be a representative of T , as follows. Let iTmax =
max{i : there is q ∈ T s.t. q ∈ Qi}, and let qT

rep be a state in T ∩ QiT
max

.
Note that T ∩ QiT

max
may contain more than one state, in which case we can as-

sume Q is ordered and take the minimal. We now define the transitions leaving
T according to the original transitions of qT

rep in A′. For σ ∈ Σ, let qdest ∈ Q

be the σ-destination of qT
rep in A′. For all T ′ ∈ Qmin, if qdest ∈ T ′ we define

δmin(T, σ, T ′) = δ′(qT
rep, σ, qdest); otherwise, δmin(T, σ, T ′) = 0.

– For all T ∈ Qmin, if q0 ∈ T , where q0 is the initial state of A′, we define
Q0min(T ) = Q0(q0); otherwise, Q0min(T ) = 0.

– For all T ∈ Q, we define Fmin(T ) = F ′(qT
rep).

An example illustrating an execution of the algorithm can be found in the full version.
Let Lmin = L(Amin) and L′ = L(A′). We prove that the construction is correct.

Thus, Lmin = L′, |Amin| is minimal, and the time complexity of the construction of
Amin is polynomial.

We first prove that Lmin = L′. For q, q′ ∈ Q, we say that q ∼i q′ iff there exists some
class S ∈ Hi such that q, q′ ∈ S. Also, we say that q ≡i q′ iff for all j ≤ i it holds that
q ∼j q′. Note that although ∼i and ≡i are equivalence relations over Qi ×Qi, they are
not equivalence relations over Q×Q, as they are not reflexive. Indeed, for q ∈ Q \Qi,
there is no class S ∈ Hi such that q ∈ S, so q 
∼i q and of course q 
≡i q. However, it
is easy to see that ∼i and ≡i are both symmetric and transitive over Q × Q.

Lemma 2 below explains the essence of the relation ≡i. As we shall prove, if q ≡i q′

then q and q′ agree on the transition and acceptance values in A′, if these values are less
than i.

Lemma 2. For q, q′ ∈ Q, if q ≡i q′ then for all j < i, the following hold.

– For all σ ∈ Σ, we have δ′(q, σ, s) = j iff δ′(q′, σ, s′) = j, where s, s′ ∈ Q are the
σ-destinations of q, q′ in A′, respectively. .

– F ′(q) = j iff F ′(q′) = j.

In the case of DFA, we know that each state of the minimal automaton for L corre-
sponds to an equivalence class of ∼L, and the minimization algorithm merges all the
states of the DFA that correspond to each class into a single state. Consequently, the
transition function of the minimal automaton can be defined according to one of the
merged states, and the definition is independent of the state being chosen. In the case
of our Amin, things are more complicated, as states that are merged in Amin do not
correspond to equivalence classes. We still were able, in the definition of the transitions
and acceptance values, to chose a state qT

rep, for each state T . Lemma 3 below explains
why working with the chosen state is sound.

The lemma considers a word w ∈ Σ∗, and examines the connection between a state
qi in the run of A′ on w and the corresponding state Ti in the run of Amin on w. It
shows that if L′(w) ≥ l for some l ∈ L, then qi ≡l qTi

rep for all i. Thus, the states
along the run of Amin behave the same as the corresponding states in A′ on values that
are less than l, and may be different on values that are at least l, as long as they are
both at least l. Intuitively, this is valid since after reaching a value l, we can replace all
subsequent values l′ ≥ l along the original run with any other value l′′ ≥ l.
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Lemma 3. Let w = σ1σ2...σk be a word in Σ∗, and let q0, q1, ..., qk and T0, T1, ..., Tk

be the runs of A′ and Amin on w respectively. For l ∈ L, if L′(w) ≥ l then for all
0 ≤ i ≤ k it holds that qi ≡l qTi

rep.

Based on the above, we now turn to prove that Lmin = L′. Let w ∈ Σ∗, and let l =
L′(w). We show that Lmin(w) = l. Let r′ = q0, q1, ..., qk and rmin = T0, T1, ..., Tk be
the runs of A′ and Amin on w respectively.

We first show that Lmin(w) ≥ l. Consider the values read along r′, which are
Q0(q0), δ′(q0, σ1, q1), . . ., δ′(qk−1, σk, qk), and F ′(qk). Since L′(w) = l we know
that all these values are at least l. By Lemma 3 we get that for all 0 ≤ i ≤ k it holds
that qi ≡l qTi

rep. Then by applying the first part of Lemma 2 on q0, ..., qk−1 and the sec-

ond part on qk, we get that the values δ′(qT0
rep, σ1, s0), . . ., δmin(qTk−1

rep , σk, sk−1) and
Fmin(qTk

rep) are all at least l, where si is the σi-destination of qTi
rep for all 0 ≤ i < k.

Thus, we get that δmin(T0, σ1, T1), . . . , δmin(Tk−1, σk, Tk) and Fmin(Tk) are all at
least l as well, since these values are defined according to qT0

rep, ..., q
Tk
rep. Together with

the fact that the initial value remains the same in Amin, we get that Lmin(w) ≥ l.
In order to prove that Lmin(w) ≤ l, we show that at least one of the values read along

rmin is l. Since L′(w) = l, at least one of the values read along r′ is l. If this value is
Q0(q0) then we are done, since by definition Q0(T0) = Q0(q0). Otherwise, it must be
one of the values δ′(q0, σ1, q1), . . . , δ′(qk−1, σk, qk) or F ′(qk). Let qd be the state from
which the value l is read for the first time along r′, either as a transition value (d < k)
or as an acceptance value (d = k). We claim that qd ∈ Ql+1 (note that if l = m, then
clearly Lmin(w) ≤ l, thus, we assume that l < m, so Ql+1 is well defined). If d = 0,
then we are done, since q0 ∈ Ql+1 by definition. Otherwise, we look at the transition
(qd−1, σd, qd). By the definition of qd, we know that δ′(qd−1, σd, qd) ≥ l+1, and by the
definition of δ′ it then follows that (qd−1, σd, qd) ∈ δl+1. Thus, we get that qd ∈ Ql+1.
Now, by the definition of Ql+1, there exists some state ql+1

acc ∈ Q with acceptance value
at least l + 1 that is reachable from qd in A using zero or more transitions with value
at least l + 1. Let w′ be the word read along these transitions from qd to ql+1

acc , and let
w′′ = σ1, ..., σd ·w′. It is easy to see that L′(w′′) ≥ l+1. Thus, we can apply Lemma 3,
and get that qd ≡l+1 qTd

rep. Then, by applying Lemma 2 on qd and qTd
rep we conclude that

the value l is read from Td along rmin, and we are done.
We now turn to prove that |Amin| is minimal. Let N = |Amin|. We describe below

N different words w1, ..., wN ∈ Σ∗, and prove that for all i 
= j the words wi and wj

cannot reach the same state in an LDFA for L. Clearly, this implies that an LDFA for L
must contain at least N states, so |Amin| is indeed minimal.

We define the words w1, ..., wN as follows. Let T1, ..., TN be the states of Amin,
and let qT1

rep, ..., q
TN
rep be their representatives respectively. We go back to the original

automaton A, and for each such representative q, we define the following:

– reach(q) = {w ∈ Σ∗ : δ(q0, w, q)>0}, where q0 is the initial state of A.
– maxval(q) = max{δ(q0, w, q) : w ∈ reach(q)}. Note that maxval(q) considers

only the traversal values of the words reaching q.
– maxw(q) is w ∈ Σ∗ for which δ(q0, w, q) = maxval(q). Note that there may be

several such words, so we can take the lowest one by lexicographic order, to make
it well defined.
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For all 1 ≤ i ≤ N , we now define wi = maxw(qTi
rep). Note that these words are indeed

different, as they reach different states in the deterministic automaton A. Consider two
different indices i and j. We prove that the words maxw(qTi

rep) and maxw(qTj
rep) cannot

reach the same state in an LDFA for L. Consider the states qTi
rep and q

Tj
rep. These states

belong to different sets in Qmin. Let 1 ≤ l ≤ m be the index of the iteration in which
they were first separated.

We use the following lemmas:

Lemma 4. The states qTi
rep and q

Tj
rep belong to different classes in Hl.

Lemma 5. tr val(maxw (qTi
rep)) ≥ l and tr val (maxw(qTj

rep)) ≥ l in all LDFA for L.

Based on the above, we prove that the words maxw(qTi
rep) and maxw(qTj

rep) cannot reach
the same state in an LDFA for L. By Lemma 4, there is a distinguishing tail z ∈ Σ∗.
That is, without loss of generality, z is read in A from qTi

rep with value at least l, and

is read from q
Tj
rep with value less than l. Let us examine the words maxw(qTi

rep) · z and

maxw(qTj
rep) · z. By applying Lemma 5 on A, we get that L(A)(maxw(qTi

rep) · z) ≥ l

and that L(A)(maxw (qTj
rep) · z) < l. Now, let U be an LDFA for L, and assume by

way of contradiction that maxw(qTi
rep) and maxw(qTj

rep) are reaching the same state in
U . Let q be that state. Applying Lemma 5 on U , we get that both maxw(qTi

rep) and

maxw(qTj
rep) are reaching q with traversal value at least l. Now, let us examine the value

vz with which z is read from q. If vz ≥ l, then L(U)(maxw(qTj
rep) · z) ≥ l, which

contradicts the fact that L(A)(maxw(qTj
rep) · z) < l. On the other hand, if vz < l, then

L(U)(maxw(qTi
rep) · z) < l, which contradicts the fact that L(A)(maxw(qTi

rep) · z) ≥ l.
Thus, we conclude that |Amin| is minimal.
It is not hard to see that each of the three stages of the algorithm (constructing the au-

tomata A1,A2, . . . ,Am and minimizing them, generating A′ from A, and constructing
Amin from A′) can be implemented in polynomial time. In the full version we analyse
the complexity in detail, and show that the overall complexity is O(|L|(|Q| log |Q| +
|δ|)).

We can now conclude with the following.

Theorem 2. An LDFA over a fully ordered lattice can be minimized in polynomial time.
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