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Abstract. We solve the open problems of translating, when possible, all common
classes of nondeterministic word automata to deterministic and nondeterminis-
tic co-Büchi word automata. The handled classes include Büchi, parity, Rabin,
Streett and Muller automata. The translations follow a unified approach and are
all asymptotically tight.

The problem of translating Büchi automata to equivalent co-Büchi automata
was solved in [2], leaving open the problems of translating automata with richer
acceptance conditions. For these classes, one cannot easily extend or use the con-
struction in [2]. In particular, going via an intermediate Büchi automaton is not
optimal and might involve a blow-up exponentially higher than the known lower
bound. Other known translations are also not optimal and involve a doubly expo-
nential blow-up.

We describe direct, simple, and asymptotically tight constructions, involving
a 2Θ(n) blow-up. The constructions are variants of the subset construction, and
allow for symbolic implementations. Beyond the theoretical importance of the
results, the new constructions have various applications, among which is an im-
proved algorithm for translating, when possible, LTL formulas to deterministic
Büchi word automata.

1 Introduction

Finite automata on infinite objects are widely used in formal verification and synthe-
sis of nonterminating systems. The automata-theoretic approach to verification reduces
questions about systems and their specifications to automata-theoretic problems like
language containment and emptiness [10,18]. Recent industrial-strength specification-
languages such as Sugar, ForSpec and PSL 1.01 include regular expressions and/or
automata, making automata-theory even more essential and popular [1].

There are various classes of automata, characterized by their branching mode and ac-
ceptance condition. Each class has its advantages, disadvantages, and common usages.
Accordingly, an important challenge in the the study of automata on infinite objects is
to provide algorithms for translating between the different classes. For most transla-
tions, our community was able to come up with satisfactory solutions, in the sense that
the state blow-up involved in the algorithm is proved to be unavoidable. Yet, for some
translations there is still a significant gap between the best known algorithm and the
corresponding lower bound.

Among these open problems are the translations of nondeterministic automata to
equivalent deterministic and nondeterministic co-Büchi automata (NCW and DCW),
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when possible.1 In [2], we introduced the augmented subset construction and used it
for translating a nondeterministic Büchi automaton (NBW) to NCW and DCW, when
possible. We left open the problems of translating automata with richer acceptance con-
ditions (parity, Rabin, Streett and Muller) to co-Büchi automata. For these classes, one
cannot easily extend or use the construction in [2], and the gap between the lower and
upper bounds is still significant (for some of the classes it is even exponential). In this
paper, we solve these problems and study the translation of nondeterministic parity
(NPW), Streett (NSW), Rabin (NRW), and Muller (NMW) word automata to NCW
and to DCW.

A straightforward approach is to translate an automaton of the richer classes via an
intermediate NBW. This approach, however, is not optimal. For example, starting with
an NSW with n states and index k, the intermediate NBW has n2k states, thus the NCW
would have n2k+n2k

states, making the dependency in k doubly-exponential. Note that
the exponential blow-up in the translation of NSW or NMW to NBW cannot be avoided
[15]. A different approach is to translate the original automaton, for example an NRW,
to an equivalent DPW, which can then be translated to an equivalent DCW over the same
structure [5]. However, translating an NRW to an equivalent DPW might be doubly
exponential [4], with no matching lower bound, even for the problem of translating to a
DCW, let alone translating to NCW.

Thus, the approaches that go via intermediate automata are far from optimal, and our
goal is to find a direct translation of these stronger classes of automata to NCW and
DCW. We first show that for NSW, an equivalent NCW can be defined on top of the
augmented subset construction (the product of the original automaton with its subset
construction). The definition of the corresponding co-Büchi acceptance condition is
more involved in this case than in the case of translating an NBW, but the blow-up stays
the same. Thus, even though NSW are exponentially more succinct than NBW, their
translation to NCW is of exactly the same state complexity as is the one for NBW! This
immediately provides an n2n upper bound for the translation of NSW to NCW. As in
the case of translating an NBW, we can further determinize the resulting augmented
subset construction, getting a 3n upper bound for the translation of NSW to DCW. Both
bounds are asymptotically tight, having matching lower bounds by the special cases of
translating NBW to NCW [2] and NCW to DCW [3]. The above good news apply also
to the parity and the generalized-Büchi acceptance conditions, as they are special cases
of the Streett condition.

For NRW and NMW, the situation is more complicated. Unfortunately, an equiva-
lent NCW cannot in general be defined on top of the augmented subset construction.
Moreover, even though the results on NSW imply a translation of NRW[1] (that is,
a nondeterministic Rabin automaton with a single pair) to NCW, one cannot hope to
proceed via a decomposition of an NRW with index k to k NRW[1]s. Indeed, the un-
derlying NRW[1]s may not be NCW-realizable, even when the NRW is, and the same
for NMWs. We show that still, the NCW can be defined on top of k copies of the aug-
mented subset construction, giving rise to a kn2n upper bound for the translation to
NCW. Moreover, we show that when translating to an equivalent DCW, the k copies

1 The co-Büchi condition is weaker than the Büchi acceptance condition, and not all ω-regular
languages are NCW-recognizable, hence the “when possible”.
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can be determinized separately, while connected in a round-robin fashion, which gives
rise to a k3n blow-up. As with the other cases, the blow-up involved in the transla-
tions is asymptotically tight. The state blow-up involved in the various translations is
summarized in Table 1 of the Section 6.

Beyond the theoretical challenge in tightening the gaps, and the fact they are related
to other gaps in our knowledge [6], these translations have immediate important ap-
plications in formal methods. The interest in the co-Büchi condition follows from its
simplicity and its duality to the Büchi acceptance condition. The interest in the stronger
acceptance conditions follows from their richness and succinctness. In particular, stan-
dard translations of LTL to automata go via intermediate generalized Büchi automata,
which are then being translated to Büchi automata. For some algorithms, it is possible
to give up the last step and work directly with the generalized Büchi automaton [8]. It
follows from our results that the same can be done with the algorithm of translating LTL
formulas to NCW and DCW. By the duality of the co-Büchi and Büchi conditions, one
can construct a DBW for ψ by dualizing the DCW for ¬ψ. Thus, since the translation
of LTL to NSW may be exponentially more succinct than a translation to NBW, our
construction suggests the best known translation of LTL to DBW, when exists.

An important and useful property of our constructions is the fact they have only a
one-sided error when applied to automata whose language is not NCW-recognizable.
Thus, given an automaton A, the NCW C and the DCW D we construct are always
such that L(A) ⊆ L(C) = L(D), while L(A) = L(C) = L(D) in case A is NCW-
recognizable. Likewise, given an LTL formula ψ, the DBW Dψ we construct is always
such that L(Dψ) ⊆ L(ψ), while L(Dψ) = L(ψ) in case ψ is DBW-recognizable. As
specified in Section 5, this enables us to extend the scope of the applications also to
specifications that are not NCW-realizable.

2 Preliminaries

Given an alphabet Σ, a word over Σ is a (possibly infinite) sequence w = w1 · w2 · · ·
of letters in Σ. For two words, x and y, we use x � y to indicate that x is a pre-
fix of y and x ≺ y to indicate that x is a strict prefix of y. An automaton is a tu-
ple A = 〈Σ,Q, δ,Q0, α〉, where Σ is the input alphabet, Q is a finite set of states,
δ : Q × Σ → 2Q is a transition function, Q0 ⊆ Q is a set of initial states, and α
is an acceptance condition. We define several acceptance conditions below. Intuitively,
δ(q, σ) is the set of states that A may move into when it is in the state q and it reads
the letter σ. The automaton A may have several initial states and the transition function
may specify many possible transitions for each state and letter, and hence we say that
A is nondeterministic. In the case where |Q0| = 1 and for every q ∈ Q and σ ∈ Σ, we
have that |δ(q, σ)| ≤ 1, we say that A is deterministic. The transition function extends
to sets of states and to finite words in the expected way, thus for a set of states S and a
finite word x, δ(S, x) is the set of states that A may move into when it is in a state in S
and it reads x. Formally, δ(S, ε) = S and δ(S,w · σ) =

⋃
q∈δ(S,w) δ(q, σ). We abbrevi-

ate δ(Q0, x) by δ(x), thus δ(x) is the set of states that A may visit after reading x. For
an automaton A and a state q of A, we denote by Aq the automaton that is identical to
A, except for having {q} as its set of initial states. An automaton without an acceptance
condition is called a semi-automaton.
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A run r = r0, r1, · · · of A on w = w1 ·w2 · · · ∈ Σω is an infinite sequence of states
such that r0 ∈ Q0, and for every i ≥ 0, we have that ri+1 ∈ δ(ri, wi+1). Note that while
a deterministic automaton has at most a single run on an input word, a nondeterministic
automaton may have several runs on an input word. We sometimes refer to r as a word
in Qω or as a function from the set of prefixes of w to the states of A. Accordingly, we
use r(x) to denote the state that r visits after reading the prefix x.

Acceptance is defined with respect to the set inf(r) of states that the run r visits in-
finitely often. Formally, inf(r) = {q ∈ Q | for infinitely many i ∈ IN, we have ri =
q}. As Q is finite, it is guaranteed that inf(r) �= ∅. The run r is accepting iff the set
inf(r) satisfies the acceptance condition α.

Several acceptance conditions are studied in the literature. We consider here six:

– Büchi, where α ⊆ Q, and r is accepting iff inf(r) ∩ α �= ∅.
– co-Büchi, where α ⊆ Q, and r is accepting iff inf(r) ⊆ α. Note that the definition

we use is less standard than the inf(r) ∩ α = ∅ definition; clearly, inf(r) ⊆ α iff
inf(r) ∩ (Q \ α) = ∅, thus the definitions are equivalent. We chose to go with this
variant as it better conveys the intuition that, as with the Büchi condition, a visit in
α is a “good event”.

– parity, where α = {α1, α2, . . . , α2k} with α1 ⊂ α2 ⊂ · · · ⊂ α2k = Q, and r is
accepting if the minimal index i for which inf(r) ∩ αi �= ∅ is even.

– Rabin, where α = {〈α1, β1〉, 〈α2, β2〉, . . . , 〈αk, βk〉}, with αi, βi ⊆ Q and r is
accepting iff for some 1 ≤ i ≤ k, we have that inf(r)∩αi �= ∅ and inf(r)∩βi = ∅.

– Streett, where α = {〈β1, α1〉, 〈β2, α2〉, . . . , 〈βk, αk〉}, with βi, αi ⊆ Q and r is
accepting iff for all 1 ≤ i ≤ k, we have that inf(r) ∩ βi = ∅ or inf(r) ∩ αi �= ∅.

– Muller, where α = {α1, α2, . . . , αk}, with αi ⊆ Q and r is accepting iff for some
1 ≤ i ≤ k, we have that inf(r) = αi.

The number of sets in the parity and Muller acceptance conditions or pairs in the Rabin
and Streett acceptance conditions is called the index of the automaton. An automaton
accepts a word if it has an accepting run on it. The language of an automatonA, denoted
L(A), is the set of words that A accepts. We also say that A recognizes the language
L(A). For two automata A and A′, we say that A and A′ are equivalent if L(A) =
L(A′).

We denote the different classes of automata by three letter acronyms in {D,N} ×
{B, C, P, R, S, M} × {W}. The first letter stands for the branching mode of the au-
tomaton (deterministic or nondeterministic); the second letter stands for the acceptance-
condition type (Büchi, co-Büchi, parity, Rabin, Streett, or Muller); and the third letter
indicates that the automaton runs on words. We say that a language L is γ-recognizable
or γ-realizable if L can be recognized by an automaton in the class γ.

Different classes of automata have different expressive power. In particular, while
NBWs recognize all ω-regular languages [12], DBWs are strictly less expressive than
NBWs, and so are DCWs [11]. In fact, a language L is in DBW iff its complement is
in DCW. Indeed, by viewing a DBW as a DCW and switching between accepting and
non-accepting states, we get an automaton for the complementing language, and vice
versa. The expressiveness superiority of the nondeterministic model over the determin-
istic one does not apply to the co-Büchi acceptance condition. There, every NCW has
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an equivalent DCW [13]. As for parity, Rabin, Streett and Muller automata, both the
deterministic and nondeterministic models recognize all ω-regular languages [17].

Our constructions for translating the various automata to co-Büchi automata will use
the augmented subset construction [2], which is the product of an automaton with its
subset construction.

Definition 1 (Augmented subset construction). [2] Let A = 〈Σ,Q, δ,Q0〉 be a semi-
automaton. The augmented subset construction A′ of A is the product of A with its
subset construction. Formally, A′ = 〈Σ,Q′, δ′, Q′

0〉, where

– Q′ = Q × 2Q. That is, the states of A′ are all the pairs 〈q, E〉 where q ∈ Q and
E ⊆ Q.

– For all 〈q, E〉 ∈ Q′ and σ ∈ Σ, we have δ′(〈q, E〉, σ) = δ(q, σ)×{δ(E, σ)}. That
is, A′ nondeterministically follows A on its Q-component and deterministically
follows the subset construction of A on its 2Q-component.

– Q′
0 = Q0 × {Q0}.

3 Translating to NCW

In this section we study the translation, when possible, of NPWs, NRWs, NSWs, and
NMWs to NCWs. Since the Büchi acceptance condition is a special case of these
stronger conditions, the 2Ω(n) lower bound from [2] applies, and the challenge is to
come up with matching upper bounds. While nondeterministic Rabin, Streett, and
Muller automata are not more expressive than nondeterministic Büchi automata, they
are more succinct: translating an NRW, NSW, and NMW with n states and index k
to an NBW, results in an NBW with O(nk), O(n2k), and O(n2k) states, respectively
[15,16]. Note that an NPW is a special case of both an NSW and an NRW.

A first attempt to translate NRWs, NSWs, and NMWs to NCWs is to go via interme-
diate NBWs, which can be translated to NCWs by the augmented subset construction
[2]. By the blow-ups above, however, this results in NCWs that are far from optimal.
A second attempt is to apply the augmented subset construction directly on the input
automaton, and check the possibility of defining on top of it a suitable co-Büchi accep-
tance condition.

It is not hard to see that this second attempt does not work for all automata. Consider
for example the Rabin acceptance condition. Note that the augmented subset construc-
tion does not alter a deterministic automaton. Also, DRWs are not DCW-type [7] (that
is, there is a DRW A whose language is DCW-recognizable, but still no DCW equiva-
lent to A can be defined on top of the structure of A). It follows that there are NRWs
whose language is NCW-recognizable, but still no NCW recognizing them can be de-
fined on top of the automaton obtained by applying the augmented subset construction
on them (see Theorem 2 for a concrete example).

With this in mind, this section is a collection of good news. First, we show in Sub-
section 3.1 that NSWs (and NPWs) can be translated to NCWs on top of the augmented
subset construction. Second, while this is not valid for NRWs and NMWs, we show
in Subsection 3.2 that they can be translated to NCWs on top of a union of copies of
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the augmented subset construction. Moreover, the translation of the obtained NCWs to
equivalent DCWs does not involve an additional exponential blow-up (see Section 4).

We first provide some basic lemmata from [2]. We start with a property relating
states of a DCW (in fact, any deterministic automaton) that are reachable via words
that lead to the same state in the subset construction of an equivalent nondeterministic
automaton.

Lemma 1. [2] Consider a nondeterministic automaton A with a transition function
δA and a DCW D with a transition function δD such that L(A) = L(D). Let d1 and d2

be states of D such that there are two finite words x1 and x2 such that δD(x1) = d1,
δD(x2) = d2, and δA(x1) = δA(x2). Then, L(Dd1) = L(Dd2).

For automata on finite words, if two states of the automaton have the same language,
they can be merged without changing the language of the automaton. While this is
not the case for automata on infinite words, the lemma below enables us to do take
advantage of such states.

Lemma 2. [2] Consider a DCW D = 〈Σ,D, δ,D0, α〉. Let d1 and d2 be states in
D such that L(Dd1) = L(Dd2). For all finite words u and v, if δ(d1, u) = d1 and
δ(d2, v) = d2 then for all words w ∈ (u + v)∗ and states d ∈ δ(d1, w) ∪ δ(d2, w), we
have L(Dd) = L(Dd1).

The next lemma takes further advantage of DCW states recognizing the same language.

Lemma 3. [2] Let D = 〈Σ,D, δ,D0, α〉 be a DCW. Consider a state d ∈ D. For all
nonempty finite words v and u, if (v∗ · u+)ω ⊆ L(Dd) and for all words w ∈ (v + u)∗

and states d′ ∈ δ(d, w), we have L(Dd′) = L(Dd), then vω ∈ L(Dd).

3.1 From NSW to NCW

The translation of an NSW to an NCW, when exists, can be done on top of the aug-
mented subset construction, generalizing the acceptance condition used for translating
an NBW to an NCW.

In the translation of an NBW to an NCW, we start with an NBW B and define a state
〈b, E〉 of the augmented subset construction to be co-Büchi accepting if there is some
path p in B, taking 〈b, E〉 back to itself via a Büchi accepting state. The correctness
of the construction follows from the fact that an NCW-recognizable language is closed
under pumping such cycles. Thus, if B accepts a word that includes a subword along
which p is read, then B also accepts words obtained by pumping the subword along
which p is read. In turns out that this intuition is valid also when we start with an NSW
S: a state 〈s, E〉 of the augmented subset construction is co-Büchi accepting if there is
some path p in S, taking 〈s, E〉 back to itself, such that p visits αi or avoid βi for every
pair i in the Streett acceptance condition. This guarantees that pumping p infinitely
often results in a run that satisfies the Streett condition, which in turn implies that an
NCW-recongnizable language is closed under such pumping.

We formalize and prove this idea below.
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Theorem 1. For every NSW S with n states that is NCW-recognizable, there is an
equivalent NCW C with at most n2n states.

Proof. Let S = 〈Σ,S, δS , S0, 〈β1, α1〉, . . . 〈βk, αk〉〉. We define the NCW C = 〈Σ,C,
δC , C0, αC〉 as the augmented subset construction of S with the following acceptance
condition: a state is a member of αC if it is reachable from itself along a path whose
projection on S visits αi or avoids βi for every 1 ≤ i ≤ k.

Formally, 〈s, E〉 ∈ αC if there is a finite word z = z1z2 · · · zm of length m and
a sequence of m + 1 states 〈s0, E0〉 . . . 〈sm, Em〉 such that 〈s0, E0〉 = 〈sm, Em〉 =
〈s, E〉, and for all 0 ≤ l < m we have 〈sl+1, El+1〉 ∈ δC(〈sl, El〉, zl+1), and for every
1 ≤ i ≤ k, either there is 0 ≤ l < m such that sl ∈ αi or sl �∈ βi for all 0 ≤ l < m.
We refer to z as the witness for 〈s, E〉. Note that z may be the empty word.

We prove the equivalence of S and C. Note that the 2S-component of C proceeds in
a deterministic manner. Therefore, each run r of S induces a single run of C (the run in
which the S-component follows r). Likewise, each run r of C induces a single run of
S, obtained by projecting r on its S-component.

We first prove that L(S) ⊆ L(C). Note that this direction is always valid, even if S
is not NCW-recognizable. Consider a word w ∈ L(S). Let r be an accepting run of S
on w. We prove that the run r′ induced by r is accepting. Let J ⊆ {1, . . . , k} denote
the set of indices of acceptance-pairs whose β-element is visited infinitely often by r.
That is, J = {j | βj ∩ inf(r) �= ∅}. Consider a state 〈s, E〉 ∈ inf(r′). We prove that
〈s, E〉 ∈ αC . Since 〈s, E〉 appears infinitely often in r′ and r is accepting, it follows
that there are two (not necessarily adjacent) occurrences of 〈s, E〉, between which r
visits αj for all j ∈ J and avoids βi for all i �∈ J . Hence, we have the required witness
for 〈s, E〉, and we are done.

We now prove that L(C) ⊆ L(S). Consider a word w ∈ L(C), and let r be an
accepting run of C on w. Let J ⊆ {1, . . . , k} denote the set of indices of acceptance-
pairs whose β-element is visited infinitely often by r. That is, J = {j | (βj × 2S) ∩
inf(r) �= ∅}. If J is empty then the projection of r on its S-component is accepting,
and we are done. Otherwise, we proceed as follows. For every j ∈ J , let 〈sj , Ej〉 be a
state in (βj × 2S) ∩ inf(r).

By the definition of J , all the states 〈sj , Ej〉, with j ∈ J , are visited infinitely often
in r, whereas states whose S-component is in βi, for i �∈ J , are visited only finitely
often in r. Accordingly, the states 〈sj , Ej〉, with j ∈ J , are strongly connected via a
path that does not visit βi, for i �∈ J . In addition, for every 〈sj , Ej〉, with j ∈ J , there is
a witness zj for the membership of 〈sj , Ej〉 in αC , going from 〈sj , Ej〉 back to itself via
αj and either avoiding βi or visiting αi, for every 1 ≤ i ≤ k. Let 〈s, E〉 be one of these
〈sj , Ej〉 states, and let x be a prefix of w such that r(x) = 〈s, E〉. Then, there is a finite
word z along which there is a path from 〈s, E〉 back to itself, visiting all αj for j ∈ J
and either avoiding βi or visiting αi for every 1 ≤ i ≤ k. Therefore, x · zω ∈ L(S).

Recall that the language of S is NCW-recognizable. Let D = 〈Σ,D, δD, D0, αD〉
be a DCW equivalent to S. Since L(S) = L(D) and x · zω ∈ L(S), it follows that the
run ρ of D on x · zω is accepting. Since D is finite, there are two indices, l and m, such
that l < m, ρ(x · zl) = ρ(x · zm), and for all prefixes y of x · zω such that x · zl � y,
we have ρ(y) ∈ αD. Let q be the state of D such that q = ρ(x · zl).
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Consider the run η of D on w. Since r visits 〈s, E〉 infinitely often and D is finite,
there must be a state d ∈ D and infinitely many prefixes p1, p2, . . . of w such that
for all i ≥ 1, we have r(pi) = 〈s, E〉 and η(pi) = d. We claim that the states q
and d of D satisfy the conditions of Lemma 1 with x0 being p1 and x1 being x · zl.
Indeed, δD(p1) = d, δD(x · zl) = q, and δS(p1) = δS(x · zl) = E. For the latter
equivalence, recall that δS(x) = E and δS(E, z) = E. Hence, by Lemma 1, we have
that L(Dq) = L(Dd).

Recall the sequence of prefixes p1, p2, . . .. For all i ≥ 1, let pi+1 = pi · ti. We
now claim that for all i ≥ 1, the state d satisfies the conditions of Lemma 3 with u
being zm−l and v being ti. The second condition is satisfied by Lemma 2. For the first
condition, consider a word w′ ∈ (v∗ · u+)ω. We prove that w′ ∈ L(Dd). Recall that
there is a run of Ss on v that goes back to s while avoiding βi for all i �∈ J and there
is a run of Ss on u that goes back to s while visiting αj for all j ∈ J and either
visiting αi or avoiding βi for all i �∈ J . (Informally, u “fixes” all the problems of v, by
visiting αj for every βj that v might visit.) Recall also that for the word p1, we have
that r(p1) = 〈s, E〉 and η(p1) = d. Hence, p1 · w′ ∈ L(S). Since L(S) = L(D), we
have that p1 · w′ ∈ L(S). Therefore, w′ ∈ L(Dd).

Thus, by Lemma 3, for all i ≥ 1 we have that tωi ∈ L(Dd). Since δD(d, ti) = d,
it follows that all the states that D visits when it reads ti from d are in αD. Note that
w = p1 · t1 · t2 · · · . Hence, since δD(p1) = d, the run of D on w is accepting, thus
w ∈ L(D). Since L(D) = L(S), it follows that w ∈ L(S), and we are done. ��

Two common special cases of the Streett acceptance condition are the parity and the
generalized Büchi acceptance conditions. In a generalized Büchi automaton with states
Q, the acceptance condition is α = {α1, α2, . . . , αk} with αi ⊆ Q, and a run r is
accepting if inf(r) ∩ αi �= ∅ for all 1 ≤ i ≤ k. Theorem 1 implies that an NCW-
recognizable nondeterministic parity or generalized Büchi automaton with n states can
be translated to an NCW with n2n states, which can be defined on top of the augmented
subset construction.

3.2 From NRW and NMW to NCW

In this section we study the translation of NRWs and NMWs to NCWs, when exists.
Unfortunately, for these automata classes we cannot define an equivalent NCW on top
of the augmented subset construction. Intuitively, the key idea of Subsection 3.1, which
is based on the ability to pump paths that satisfy the acceptance condition, is not valid
in the Rabin and the Muller acceptance conditions, as in these conditions, visiting some
“bad” states infinitely often need not be compensated by visiting some “good” ones
infinitely often. We formalize this in the example below, which consists of the fact that
DRWs are not DCW-type [7].

Theorem 2. There is an NRW and an NMW that are NCW-recognizable but an equiv-
alent NCW for them cannot be defined on top of the augmented subset construction.

Proof. Consider the NRW A appearing in Figure 1. The language of A consists of
all words over the alphabet {0, 1} that either have finitely many 0’s or have finitely
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many 1’s. This language is clearly NCW-recognizable, as it is the union of two NCW-
recognizable languages. Since A is deterministic and the augmented subset construction
does not alter a deterministic automaton, it suffices to show that there is no co-Büchi
acceptance condition α′ that we can define on the structure of A and get an equivalent
language. Indeed, α′ may either be ∅, {q0}, {q1}, or {q0, q1}, none of which provides
the language of A. Since every NRW has an equivalent NMW over the same structure,
the above result also applies to the NMW case. ��

A:

α = {〈q0, q1〉, 〈q1, q0〉}q1q0

1

1
0 0

Fig. 1. The NRW A, having no equivalent NCW on top of its augmented subset construction

Consider an NRW or an NMW A with index k. Our approach for translating A to an
NCW is to decompose it to k NSWs over the same structure, and apply the augmented
subset construction on each of the components. Note that the components may not
be NCW-realizable even when A is, thus, we should carefully analyze the proof of
Theorem 1 and prove that the approach is valid.

We now formalize and prove the above approach. We start with the decomposition
of an NRW or an NMW with index k into k NSWs over the same structure.

Lemma 4. Every NRW or NMW A with index k is equivalent to the union of k NSWs
over the same structure as A.

Proof. An NRW A with states A and index k is the union of k NRWs with index 1 over
the same structure as A. Since a single-indexed Rabin acceptance condition {〈α1, β1〉}
is equivalent to the Streett acceptance condition {〈α1, ∅〉, 〈A, β1〉}, we are done.

An NMW A with states A and index k is the union of k NMWs with index 1 over
the same structure as A. Since a single-indexed Muller acceptance condition {α1} is
equivalent to the Streett acceptance condition {〈A\α1, ∅〉}∪

⋃
s∈α1

{〈A, {s}〉}, we are
done. ��
Next we show that a union of k NSWs can be translated to a single NSW over their
union.

Lemma 5. Consider k NSWs, S1, . . . ,Sk, over the same structure. There is an NSW S
over the disjoint union of their structures, such that L(S) =

⋃k
i=1 L(Si).

Proof. We obtain the Streett acceptance condition ofS by taking the union of the Streett
acceptance conditions of the NSWs S1, . . . ,Sk. Note that while the underlying NSWs
are interpreted disjunctively (that is, in order for a word to be accepted by the union,
there should be an accepting run on it in some Si), the pairs in the Streett condition
are interpreted conjunctively (that is, in order for a run to be accepting, it has to satisfy
the constraints by all the pairs in the Streett condition). We prove that still L(S) =
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⋃k
i=1 L(Si). First, if a run r of S is an accepting run of an underlying NSW Si, then

the acceptance conditions of the other underlying NSWs are vacuously satisfied. Hence,
if a word is accepted by Si for some 1 ≤ i ≤ k, then S accepts it too. For the other
direction, if a word w is accepted in S, then its accepting run in S is also an accepting
run of one of the underlying NSWs, thus w is in

⋃k
i=1 L(Si). ��

Finally, we combine the translation to Streett automata with the augmented subset con-
struction and get the required upper bound for NRW and NMW.

Theorem 3. For every NCW-recognizable NRW or NMW with n states and index k,
there is an equivalent NCW C with at most kn2n states.

Proof. Consider an NRW or an NMW A with n states and index k. By Lemmas 4 and
5, there is an NSW S whose structure consists of k copies of the structure of A such that
L(S) = L(A). Let C be the NCW equivalent to S, defined over the augmented subset
construction of S, as described in Theorem 1. Note that S has nk states, thus a naive
application of the augmented subset construction on it results in an NCW with kn2kn

states. The key observation, which implies that we get an NCW with only kn2n states,
is that applying the augmented subset construction on S, the deterministic component
of all the underlying NCWs is the same, and it coincides with the subset construction
applied to A. To see this, assume that A = 〈Σ,A,A0, δ, α〉. Then, S = 〈Σ,A ×
{1, . . . , k}, A0 × {1, . . . , k}, δ′, α′〉, where for all a ∈ A, 1 ≤ j ≤ k, and σ ∈ Σ, we
have that δ′(〈a, j〉, σ) = δ(a, σ) × {j}. Applying the augmented subset construction,
we get the product of S and its subset construction, where the latter has a state for every
reachable subset of S. That is, a subset G′ ⊆ S is a state of the subset construction if
there is a finite word u for which δ′(u) = G′. Since for all a ∈ A, 1 ≤ j ≤ k, and
σ ∈ Σ, we have that δ′(〈a, j〉, σ) = δ(a, σ) × {j}, it follows that G′ is of the form
G× {j} for all 1 ≤ j ≤ k and some G ⊆ A. Hence, there are up to 2|A| = 2n states in
the subset construction of S. Thus, when we apply the augmented subset construction
on S, we end up with an NCW with only kn2n states, and we are done. ��

4 Translating to DCW

In a first sight, the constructions of Section 3, which translate a nondeterministic word
automaton to an NCW, are not useful for translating it to a DCW, as the determiniza-
tion of an NCW to a DCW has an exponential state blow-up. Yet, we show that the
special structure of the constructed NCW allows to determinize it without an additional
exponential blow-up. The key to our construction is the observation that the augmented
subset construction is transparent to additional applications of the subset construction.
Indeed, applying the subset construction on an NCW C with state space B × 2B, one
ends up in a deterministic automaton with state space {{〈q, E〉 | q ∈ E} : E ⊆ B},
which is isomorphic to 2B .

The standard breakpoint construction [13] uses the subset construction as an inter-
mediate layer in translating an NCW with state space C to a DCW with state space
3C . Thus, the observation above suggests that applying it on our special NCW C would
not involve an additional exponential blow-up on top of the one involved in going from
some automaton A to C. As we show in Theorem 4 below, this is indeed the case.
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Starting with an NSW, the determinization of the corresponding NCW is straightfor-
ward, following [13]’s construction. However, when starting with an NRW or an NMW,
the k different parts of the corresponding NCW (see Theorem 3) might cause a doubly-
exponential blowup. Fortunately, we can avoid it by determinizing each of the k parts
separately and connecting them in a round-robin fashion. We refer to the construction
in Theorem 4 as the breakpoint construction.

Theorem 4. For every DCW-recognizable NPW, NSW, NRW, or NMW A with n states
there is an equivalent DCW D with O(3n) states.

Proof. We start with the case A is an NSW. The DCW D follows all the runs of the
NCW C constructed in Theorem 1. Let αC ⊆ A × 2A be the acceptance condition of
C. The DCW D accepts a word if some run of C remains in αC from some position.2

At each state, D keeps the corresponding subset of the states of C, and it updates it
deterministically whenever an input letter is read. In order to check that some run of C
remains in αC from some position, the DCW D keeps track of runs that do not leave
αC . The key observation in [13] is that keeping track of such runs can be done by
maintaining the subset of states that belong to these runs.

Formally, let A = 〈Σ,A, δA, A0, αA〉. We define a function f : 2A → 2A by
f(E) = {a | 〈a,E〉 ∈ αC}. Thus, when the subset component of D is in state E, it
should continue and check the membership in αC only for states in f(E). We define the
DCW D = 〈Σ,D, δD, D0, αD〉 as follows.

– D = {〈S,O〉 | S ⊆ A and O ⊆ S ∩ f(S)}.
– For all 〈S,O〉 ∈ D and σ ∈ Σ, the transition function is defined as follows.

• If O �= ∅, then δD(〈S,O〉, σ) = {〈δA(S, σ), δA(O, σ) ∩ f(S)〉}.
• If O = ∅, then δD(〈S,O〉, σ) = {〈δA(S, σ), δA(S, σ) ∩ f(S)〉}.

– D0 = {〈A0, ∅〉}.
– αD = {〈S,O〉 | O �= ∅}.

Thus, the run of D on a word w has to visit states in 2A × {∅} only finitely often,
which holds iff some run of C on w eventually always visits αC . Since each state of D
corresponds to a function from A to the set { “in S ∩O”, “in S \O”, “not in S”}, its
number of states is at most 3|A|.

We proceed to the case A is an NRW or an NMW. Here, by Theorem 3, A has an
equivalent NCW C with kn2n states. The NCW C is obtained by applying the aug-
mented subset construction on k copies of A, and thus has k unconnected components,
C1, . . . , Ck that are identical up to their acceptance conditions αC1 , . . . , αCk

.
Since the k components of C all have the same A× 2A structure, applying the stan-

dard subset construction on C, one ends up with a deterministic automaton that is iso-
morphic to 2A. Applying the standard breakpoint construction on C, we could thus hope
to obtain a deterministic automaton with only 3|A| states. This construction, however,
has to consider the different acceptance conditions αi, maintaining in each state not
only a pair 〈S,O〉, but a tuple 〈S,O1, . . . , Ok〉, where each Oi ⊆ S corresponds to

2 Readers familiar with the construction of [13] may find it easier to view the construction here as
one that dualizes a translation of universal co-Büchi automata to deterministic Büchi automata,
going through universal Büchi word automata – these constructed by dualizing Theorem 1.
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the standard breakpoint construction with respect to αi. Such a construction, however,
involves a kn blow-up.

We circumvent this blow-up by determinizing each of the Ci’s separately and con-
necting the resulting Di’s in a round-robin fashion, moving from Di to Di (mod k)+1

when the set O, which maintains the set of states in paths in which Di avoids αi, be-
comes empty. Now, there is 1 ≤ i ≤ k such that Ci has a run that eventually gets stuck
in αi iff there is 1 ≤ i ≤ k such that in the round-robin construction, the run gets stuck
in a copy that corresponds to Di in states with O �= ∅.

Formally, for every 1 ≤ i ≤ k, we define a function fi : 2A → 2A by fi(E) =
{a | 〈a,E〉 ∈ αCi}. We define the DCW D = 〈Σ,D, δD, D0, αD〉 as follows.

– D = {〈S,O, i〉 | S ⊆ A, O ⊆ S ∩ fi(S), and i ∈ {1, . . . k}}.
– For all 〈S,O, i〉 ∈ D and σ ∈ Σ, the transition function is defined as follows.

• If O �= ∅, then δD(〈S,O, i〉, σ) = {〈S′, O′, i′〉}, where S′ = δA(S, σ), O′ =
δA(O, σ) ∩ fi(S) and i′ = i (mod k) + 1 if O′ = ∅ and i otherwise.

• If O = ∅, then δD(〈S,O, i〉, σ) = {〈S′, O′, i′〉}, where S′ = δA(S, σ), O′ =
δA(S, σ) ∩ fi(S) and i′ = i (mod k) + 1 if O′ = ∅ and i otherwise.

– D0 = {〈A0 of C1, ∅〉}.
– αD = {〈S,O, i〉 | O �= ∅}.

A run of D is accepting if it gets stuck in one of the sets of accepting states. Since
the different parts of C are unconnected, we have that a run of C is accepting iff it gets
stuck in the accepting states of one of the Ci’s. Hence, a word is accepted by C iff it is
accepted by D, and we are done.

��
By [3], one cannot avoid the 3n state blow-up for translating an NCW to a DCW. Since
this lower bound clearly holds also for the stronger conditions, we can conclude with
the following.

Theorem 5. The tight bound for the state blow-up in the translation, when possible, of
NPW, NSW, NRW and NMW to an equivalent DCW is Θ(3n).

5 Applications

The translations of nondeterministic automata to NCW and DCW are useful in various
applications, mainly in procedures that currently involve determinization. The idea is
to either use an NCW instead of a deterministic Büchi or parity automaton, or to use a
DBW instead of a deterministic parity automaton. We elaborated on these applications
in [2], where the starting point was NBWs. In this section we show that the starting
point for the applications can be automata with richer acceptance conditions, and that
starting with the richer acceptance conditions (and hence, with automata that may be
exponentially more succinct!), involves no extra cost.

In addition, all the applications described in [2] that involve a translation of LTL for-
mulas to NCWs, DCWs or DBWs, can now use an intermediate automaton of the richer
classes rather than an NBW. Here too, this can lead to an exponential saving. Indeed, the
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exponential succinctness of NSW with respect to NBW [15] is proved using languages
that can be described by LTL formulas of polynomial length. It follows that there are
LTL formulas whose translation to NSW would be exponentially more succinct than
their translation to NBW. Moreover, in practice, tools that translate LTL to NBW go
through intermediate generalized-Büchi automata, which are a special case of NSW.
Our results suggest that in the applications described below, one need not blow-up the
state space by going all the way to an NBW.

We first note two important features of the translations. The first feature is the fact
that the constructions in Theorems 1, 3, and 4 are based on the subset construction, have
a simple state space, are amenable to optimizations, and can be implemented symbol-
ically [14]. The second feature has to do with the one-sided error of the construction,
when applied to automata that are not NCW-recognizable: Theorems 1, 3 and 4 guar-
antee that if the given automaton is NCW-recognizable, then the constructions result in
equivalent automata. As stated below, if this is not the case, then the constructions have
only a one-sided error.

Lemma 6. For an automaton A, let C be the NCW obtained by the translations of
Theorems 1 and 3, and let D be the DCW obtained from A by applying the breakpoint
construction of Theorem 4. Then, L(A) ⊆ L(C) = L(D).

Proof. It is easy to see that the proof of the L(A) ⊆ L(C) direction in Theorems 1
and 3, as well as the equivalence of C and D in Theorem 4, do not rely on the assumption
that A is NCW-recognizable. ��
Below we list the main applications. More details can be found in [2] (the descrip-
tion of the problems is the same, except that there the input or intermediate automata
are NBWs, whereas here we can handle, at the same complexity, all other acceptance
conditions).

– Deciding whether a given automaton (NSW, NPW, NRW, or NMW) is NCW-
recognizable.

– Deciding whether a given LTL formula is NCW- or DBW-recognizable.
– Translating an LTL formula to a DBW: For an LTL formula ψ, let L(ψ) denote the

set of computations satisfying ψ. Then, the following is an easy corollary of the
duality between DBW and DCW.

Lemma 7. Consider an LTL formula ψ that is DBW-recognizable. Let A¬ψ be a
nondeterministic automaton acceptingL(¬ψ), and let Dψ be the DBW obtained by
dualizing the breakpoint construction of A¬ψ. Then, L(Dψ) = L(ψ).

Note that one need not translate the LTL formula to an NBW, and can instead
translate it to a nondeterministic generalized Büchi or even to a Streett automaton,
which are more succinct.

– Translating LTL formula to the alternation-free μ-calculus.

Using the one-sided error. The one-sided error of the constructions suggest applications
also for specifications that are not NCW-recognizable. The translation to DBW, for
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example, can be used in a decision procedure for CTL� even when the path formulas
are not DBW-recognizable.

We demonstrate below how the one-sided error can be used for solving LTL synthe-
sis. Given an arbitrary LTL formula ψ, let Dψ be the DBW constructed as in Lemma 7.
Lemma 6 implies that L(Dψ) ⊆ L(ψ). The polarity of the error (that is, Dψ underap-
proximates ψ) is the helpful one. If we get a transducer that realizes Dψ, we know that
it also realizes ψ, and we are done. Moreover, as suggested in [9], in case Dψ is unreal-
izable, we can check, again using an approximating DBW, whether ¬ψ is realizable for
the environment. Only if both ψ is unrealizable for the system and ¬ψ is unrealizable
for the environment, we need precise realizability. Note that then, we can also conclude
that ψ is not in DBW.

6 Discussion

The simplicity of the co-Büchi condition and its duality to the Büchi condition makes
it an interesting theoretical object. Its many recent applications in practice motivate
further study of it. Translating automata of rich acceptance conditions to co-Büchi au-
tomata is useful in formal verification and synthesis, yet the state blow-up that such
translations involve was a long-standing open problem. We solved the problem, and
provided asymptotically tight constructions for translating all common automata classes
to nondeterministic and deterministic co-Büchi automata.

All the constructions are extensions of the augmented subset construction and break-
point construction, which are in turn an extension of the basic subset construction. In
particular, the set of accepting states is induced by simple reachability queries in the
graph of the automaton. Hence, the constructed automata have a simple state space and
are amenable to optimizations and to symbolic implementations.

The state blow-up involved in the various translations is summarized in Table 1.

Table 1. The state blow-up involved in the translation, when possible, of a word automaton with
n states and index k to an equivalent NCW and DCW

From � To NCW DCW

NBW, NPW, NSW n2n 3n

NRW, NMW kn2n k3n

Since the lower bounds for the translations are known for the special case of the ori-
gin automaton being an NBW, this is a “good news” paper, providing matching upper
bounds. The new translations are significantly, in some cases exponentially, better than
known translations. In particular, they show that the exponential blow-ups in the trans-
lation of NSW to NBW and of NBW to NCW are not additive. This is quite rare in the
theory of automata on infinite words. The good news is carried over to the applications
of the translations. In particular, our results suggest that one need not go via intermedi-
ate NBWs in the translation of LTL formulas to DBWs, and that working instead with
intermediate NSWs can result in DBWs that are exponentially smaller.
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